

RESTful Web Services Cookbook

RESTful Web Services Cookbook

Subbu Allamaraju

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

RESTful Web Services Cookbook
by Subbu Allamaraju

Copyright © 2010 Yahoo!, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mary E. Treseler
Production Editor: Sumita Mukherji
Production Services: Molly Sharp

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
March 2010: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. RESTful Web Services Cookbook, the image of a great fringed lizard, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

TM

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 978-0-596-80168-7

[M]

1266619255

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Preface . ix

1. Using the Uniform Interface . 1
1.1 How to Keep Interactions Visible 2
1.2 When to Trade Visibility 4
1.3 How to Maintain Application State 7
1.4 How to Implement Safe and Idempotent Methods on the Server 9
1.5 How to Treat Safe and Idempotent Methods in Clients 12
1.6 When to Use GET 13
1.7 When to Use POST 14
1.8 How to Create Resources Using POST 16
1.9 When to Use PUT to Create New Resources 18

1.10 How to Use POST for Asynchronous Tasks 19
1.11 How to Use DELETE for Asynchronous Deletion 23
1.12 When to Use Custom HTTP Methods 23
1.13 When and How to Use Custom HTTP Headers 25

2. Identifying Resources . 29
2.1 How to Identify Resources from Domain Nouns 30
2.2 How to Choose Resource Granularity 31
2.3 How to Organize Resources into Collections 32
2.4 When to Combine Resources into Composites 34
2.5 How to Support Computing/Processing Functions 37
2.6 When and How to Use Controllers to Operate on Resources 39

3. Designing Representations . 45
3.1 How to Use Entity Headers to Annotate Representations 46
3.2 How to Interpret Entity Headers 49
3.3 How to Avoid Character Encoding Mismatch 50
3.4 How to Choose a Representation Format and a Media Type 52
3.5 How to Design XML Representations 56

v

3.6 How to Design JSON Representations 58
3.7 How to Design Representations of Collections 59
3.8 How to Keep Collections Homogeneous 61
3.9 How to Use Portable Data Formats in Representations 62

3.10 When to Use Entity Identifiers 65
3.11 How to Encode Binary Data in Representations 66
3.12 When and How to Serve HTML Representations 67
3.13 How to Return Errors 69
3.14 How to Treat Errors in Clients 73

4. Designing URIs . 75
4.1 How to Design URIs 75
4.2 How to Use URIs As Opaque Identifiers 79
4.3 How to Let Clients Treat URIs As Opaque Identifiers 81
4.4 How to Keep URIs Cool 83

5. Web Linking . 87
5.1 How to Use Links in XML Representations 88
5.2 How to Use Links in JSON Representations 90
5.3 When and How to Use Link Headers 91
5.4 How to Assign Link Relation Types 93
5.5 How to Use Links to Manage Application Flow 95
5.6 How to Deal with Ephemeral URIs 99
5.7 When and How to Use URI Templates 101
5.8 How to Use Links in Clients 103

6. Atom and AtomPub . 107
6.1 How to Model Resources Using Atom 108
6.2 When to Use Atom 111
6.3 How to Use AtomPub Service and Category Documents 116
6.4 How to Use AtomPub for Feed and Entry Resources 118
6.5 How to Use Media Resources 119

7. Content Negotiation . 123
7.1 How to Indicate Client Preferences 124
7.2 How to Implement Media Type Negotiation 126
7.3 How to Implement Language Negotiation 127
7.4 How to Implement Character Encoding Negotiation 129
7.5 How to Support Compression 130
7.6 When and How to Send the Vary Header 131
7.7 How to Handle Negotiation Failures 132
7.8 How to Use Agent-Driven Content Negotiation 133
7.9 When to Support Server-Driven Negotiation 135

vi | Table of Contents

8. Queries . 137
8.1 How to Design URIs for Queries 138
8.2 How to Design Query Responses 140
8.3 How to Support Query Requests with Large Inputs 142
8.4 How to Store Queries 144

9. Web Caching . 147
9.1 How to Set Expiration Caching Headers 148
9.2 When to Set Expiration Caching Headers 151
9.3 When and How to Use Expiration Headers in Clients 153
9.4 How to Support Caching for Composite Resources 154
9.5 How to Keep Caches Fresh and Warm 156

10. Conditional Requests . 159
10.1 How to Generate Last-Modified and ETag Headers 161
10.2 How to Implement Conditional GET Requests in Servers 162
10.3 How to Submit Conditional GET and HEAD Requests

from Clients 165
10.4 How to Implement Conditional PUT Requests in Servers 167
10.5 How to Implement Conditional DELETE Requests in Servers 171
10.6 How to Make Unconditional GET Requests from Clients 172
10.7 How to Submit Conditional PUT and DELETE Requests

from Clients 174
10.8 How to Make POST Requests Conditional 176
10.9 How to Generate One-Time URIs 179

11. Miscellaneous Writes . 183
11.1 How to Copy a Resource 184
11.2 How to Merge Resources 186
11.3 How to Move a Resource 188
11.4 When to Use WebDAV Methods 189
11.5 How to Support Operations Across Servers 191
11.6 How to Take Snapshots of Resources 193
11.7 How to Undo Resource Updates 196
11.8 How to Refine Resources for Partial Updates 198
11.9 How to Use the PATCH Method 201

11.10 How to Process Similar Resources in Bulk 203
11.11 How to Trigger Bulk Operations 206
11.12 When to Tunnel Multiple Requests Using POST 208
11.13 How to Support Batch Requests 211
11.14 How to Support Transactions 213

Table of Contents | vii

12. Security . 217
12.1 How to Use Basic Authentication to Authenticate Clients 218
12.2 How to Use Digest Authentication to Authenticate Clients 221
12.3 How to Use Three-Legged OAuth 223
12.4 How to Use Two-Legged OAuth 228
12.5 How to Deal with Sensitive Information in URIs 231
12.6 How to Maintain the Confidentiality and Integrity

of Representations 233

13. Extensibility and Versioning . 235
13.1 How to Maintain URI Compatibility 236
13.2 How to Maintain Compatibility of XML and JSON

Representations 237
13.3 How to Extend Atom 241
13.4 How to Maintain Compatibility of Links 244
13.5 How to Implement Clients to Support Extensibility 246
13.6 When to Version 247
13.7 How to Version RESTful Web Services 248

14. Enabling Discovery . 251
14.1 How to Document RESTful Web Services 251
14.2 How to Use OPTIONS 254

A. Additional Reading . 257

B. Overview of REST . 261

C. HTTP Methods . 265

D. Atom Syndication Format . 271

E. Link Relation Registry . 277

Index . 285

viii | Table of Contents

Preface

In 2000, Roy Fielding, one of the key contributors to HTTP and URI, codified the
architecture of the Web in his doctoral thesis titled “Architectural Styles and the Design
of Network-Based Software Architectures.” In this thesis, he introduced an architecture
style known as Representational State Transfer (REST). This style, in abstract terms,
describes the foundation of the World Wide Web. The technologies that make up this
foundation include the Hypertext Transfer Protocol (HTTP), Uniform Resource Iden-
tifier (URI), markup languages such as HTML and XML, and web-friendly formats
such as JSON.

REST is an architectural style for networked applications. It consists of several con-
straints to address separation of concerns, visibility, reliability, scalability, perform-
ance, etc. See Appendix B for a brief overview of these constraints. What makes REST
attractive to build distributed and decentralized client/server applications is the infra-
structure of the Web. Deploying web services on this infrastructure lets you take
advantage of a wide range of existing infrastructure that includes web servers, client
libraries, proxy servers, caches, firewalls, and so on. Although, in theory, it is possible
to build RESTful applications without relying on HTTP, attempting to do so can be an
expensive proposition. In this book, RESTful web services means web services built
using HTTP, URIs, XML, JSON, Atom, etc.

Scope of the Book
This book is not a discourse on REST or its merits over other styles of architecture.
This is a cookbook for designers and developers of RESTful web services.

Plenty of material exists that describes the REST architectural style. Wikipedia’s entry
on Representational State Transfer (http://en.wikipedia.org/wiki/Representational_State
_Transfer) provides a concise description of REST’s underlying concepts, its con-
straints, and the guiding principles to design applications. Leonard Richardson and
Sam Ruby’s RESTful Web Services (O’Reilly) provides a more in-depth coverage on the
basics of this topic detailing how to use resources as the core building blocks. But how
do you find help with day-to-day design and implementation questions? This is the
book to fill that gap.

ix

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://oreilly.com/catalog/9780596529260/

This book consists of recipes to help design and implement RESTful client/server ap-
plications. It presents these recipes in a manner that lets you take advantage of the web
infrastructure and REST without having to ponder whether your web service is REST-
ful. Each recipe includes one or more problem statements and a solution, followed by
a detailed discussion with examples, commentary on implementation, and any trade-
offs involved.

Much of the material for the recipes is based on common design problems found while
developing RESTful web services. The problems include usage of HTTP, resource and
representation design, URIs, caching, concurrency control, partial updates, batch pro-
cessing, transactions, security, versioning, compatibility, etc.

This book is not programming language specific. It uses HTTP request and response
messages to illustrate implementation. You can use languages such as C#, C++, Java,
Ruby, Python, PHP, and Perl to implement these recipes. See Appendix A for a list of
programming language–specific books, or search your favorite bookstore.

This book does not also deal with installing, administering, or securing web servers,
caches, and proxies. See books such as Apache Cookbook by Ken Coar and Rich Bowen,
Apache Security by Ivan Ristic, and Squid: The Definitive Guide by Duane Wessels (all
from O’Reilly), or product manuals to learn such topics.

Companion Material
See http://www.restful-webservices-cookbook.org for additional material, errata, com-
ments, and questions about this book.

You may find the following additional resources helpful:

REST-Discuss Yahoo! Group (http://tech.groups.yahoo.com/group/rest-discuss)
If you have questions on the REST architectural style, search the archives of this
group. Better yet, join this group to post your questions and engage in conversa-
tions about the merits and demerits of REST, commonly encountered problems,
and usage of HTTP for RESTful web services.

Leonard Richardson and Sam Ruby’s RESTful Web Services (O’Reilly)
See this book to learn more about REST and how to use the Web as a platform for
building RESTful web services.

RESTwiki (http://rest.blueoxen.net/cgi-bin/wiki.pl)
This wiki contains a collection of articles written over years that describe various
aspects of REST and its application.

Chris Shiflett’s HTTP Developer’s Handbook (Sams)
See this book if you have questions about using HTTP in client or server
applications.

x | Preface

http://oreilly.com/catalog/9780596529949/
http://oreilly.com/catalog/9780596007249/
http://oreilly.com/catalog/9780596001629/
http://www.restful-webservices-cookbook.org
http://tech.groups.yahoo.com/group/rest-discuss
http://oreilly.com/catalog/9780596529260/
http://rest.blueoxen.net/cgi-bin/wiki.pl

Undoubtedly, there will be additional design and implementation problems that are
not addressed by this book or the previously discussed resources. Visit http://www
.restful-webservices-cookbook.org to post your questions, suggestions, or alternative
solutions you have had success with in your experience. In due course, this site will
include additional recipes, and they will be included in the next revision of this book.

How This Book Is Organized
This book is organized into 14 chapters followed by 5 appendixes as follows:

Chapter 1, Using the Uniform Interface
This chapter describes the details of using HTTP’s uniform interface and deals with
issues such as statelessness, visibility, safety and idempotency, extensibility, new
resource creation, GET versus POST, etc. The recipes in this chapter primarily deal
with using HTTP’s uniform interface.

Chapter 2, Identifying Resources
This chapter describes how to identify resources to cover some commonly en-
countered application scenarios.

Chapter 3, Designing Representations
This chapter describes how to design representations, how to use HTTP headers
on requests and responses, how to choose media types and formats, and how to
do error handling.

Chapter 4, Designing URIs
This chapter describes common patterns for designing URIs, using URIs as iden-
tifiers, and keeping URIs cool.

Chapter 5, Web Linking
This chapter shows when and how to use links in representations and covers details
of links in the body of representations, link headers, URI templates, and applica-
tions of links.

Chapter 6, Atom and AtomPub
This chapter presents how to use Atom feeds, entries, media resources, and service
documents as resources; how to use the AtomPub protocol; and when to use Atom
to design resource representations.

Chapter 7, Content Negotiation
This chapter shows how to negotiate for representations based on media type,
character encoding, content encoding, or content language; how to use the Vary
header; and when to use content negotiation.

Chapter 8, Queries
This chapter shows some approaches for designing URIs for queries, handling large
queries, and storing queries.

Preface | xi

http://www.restful-webservices-cookbook.org
http://www.restful-webservices-cookbook.org

Chapter 9, Web Caching
This chapter describes how to support expiration caching in servers and deal with
caching in clients.

Chapter 10, Conditional Requests
This chapter describes how to implement conditional requests in servers and clients
for various HTTP methods and shows how conditional requests can help caching,
optimistic concurrency control, and idempotency.

Chapter 11, Miscellaneous Writes
This chapter shows how to solve a variety of design problems that at first glance
may seem outside the scope of REST and HTTP. Topics include copying, merging,
partial updates, batch processing, and transactions.

Chapter 12, Security
This chapter shows how to address common security needs such as authentication,
authorization, delegation, etc.

Chapter 13, Extensibility and Versioning
This chapter shows how to write extensible servers, how to keep clients resilient
to change, and how to implement versioning.

Chapter 14, Enabling Discovery
This chapter describes how to document RESTful web services.

Appendix A, Additional Reading
This appendix lists places where you can find more information about REST and
the underlying technologies.

Appendix B, Overview of REST
This appendix provides a brief introduction to REST with an example.

Appendix C, HTTP Methods
This appendix shows how to use standard HTTP methods.

Appendix D, Atom Syndication Format
This appendix provides a reference to Atom feed and entry documents.

Appendix E, Link Relation Registry
This appendix lists link relation types that you can use in links.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, datatypes, environment variables,
statements, and keywords.

xii | Preface

Constant width starting with "#"
Used for comments in HTTP requests and response messages. For instance:

This is a request
GET /toc
Host: www.restful-webservices-cookbook.org

This is a response
HTTP/1.1 200 OK
Date: Sat, 07 Nov 2009 03:14:05 GMT
Last-Modified: Sat, 07 Nov 2009 03:14:05 GMT
Content-Type: text/html; charset=UTF-8

<html>...</html>

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “RESTful Web Services Cookbook by Subbu
Allamaraju. Copyright 2010 Yahoo!, Inc., 978-0-596-80168-7.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you easily
search over 7,500 technology and creative reference books and videos to
find the answers you need quickly.

Preface | xiii

mailto:permissions@oreilly.com

With a subscription, you can read any page and watch any video from our library online.
Read books on your cell phone and mobile devices. Access new titles before they are
available for print, and get exclusive access to manuscripts in development and post
feedback for the authors. Copy and paste code samples, organize your favorites, down-
load chapters, bookmark key sections, create notes, print out pages, and benefit from
tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from O’Reilly and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596801687

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Acknowledgments
Many people have helped this book happen. Mary Treseler, the editor for this book at
O’Reilly, helped shape the outline for this book by asking the right questions. She
provided much needed support, encouragement, and polite nudging to transform ideas
into a reality.

Many thanks to Mark Nottingham and Hugo Haas for helping me draft an initial outline
for this book.

xiv | Preface

http://my.safaribooksonline.com/?portal=oreilly
http://www.oreilly.com/catalog/9780596801687
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Mike Amundsen, who contributed to parts of this book, spent countless hours and red
pens to review and comment on the book line by line. His suggestions on improving
the tone of this book were invaluable. Despite his limited availability, Mike was always
on call to discuss the merits and demerits of solutions and the real-world trade-offs.

Thanks to Havi Hoffman, who manages Yahoo! Press, for patiently guiding me through
the process of writing a proposal and for pulling the right strings to shield me from the
elaborate process. My thanks to Neal Sample, James Lok, Jay Rossiter, and Tony Ng
(all from Yahoo! Inc.) for their support during the course of writing this book. I would
also like to thank Korby Parnell for planting the seeds to write this book.

I am profoundly grateful to Mark Nottingham, Eben Hewitt, Colin Jack, Stefan Tilkov,
Norbert Lindenberg, Chris Westin, Dan Theurer, Shaunak Kashyap, Larry Cable, Alan
Dean, Surya Suravarapu, Jim D’Ambrosia, Randolph Kahle, Dhananjay Nene, and
Brian Sletten for their valuable and critical feedback on the clarity, approach, quality,
and accuracy of the material in this book.

Thanks to the members of the REST-Discuss Yahoo! Group (http://tech.groups.yahoo
.com/group/rest-discuss) for all the passionate, tough, and insightful discussions on all
things related to REST.

Thanks also to all the readers who provided feedback on the rough cuts drafts of this
book.

Mike Amundsen’s Contribution
Mike Amundsen contributed to Recipes 4.1, 4.3, 6.1, 6.4, 9.1, 9.4, 9.5, 11.8, 11.9,
11.12, and Appendix D.

Preface | xv

http://tech.groups.yahoo.com/group/rest-discuss
http://tech.groups.yahoo.com/group/rest-discuss

CHAPTER 1

Using the Uniform Interface

HTTP is an application-level protocol that defines operations for transferring repre-
sentations between clients and servers. In this protocol, methods such as GET, POST,
PUT, and DELETE are operations on resources. This protocol eliminates the need for you
to invent application-specific operations such as createOrder, getStatus, updateSta
tus, etc. How much you can benefit from the HTTP infrastructure largely depends on
how well you can use HTTP as an application-level protocol. However, a number of
techniques including SOAP and some Ajax web frameworks use HTTP as a protocol
to transport messages. Such usage makes poor use of HTTP-level infrastructure. This
chapter presents the following recipes to highlight various aspects of using HTTP as
an application protocol:

Recipe 1.1, “How to Keep Interactions Visible”
Visibility is one of the key characteristics of HTTP. Use this recipe to learn how to
maintain visibility.

Recipe 1.2, “When to Trade Visibility”
There are cases when you may need to forgo visibility to meet application needs.
Use this recipe to find some scenarios.

Recipe 1.3, “How to Maintain Application State”
Use this recipe to learn the best way to manage state.

Recipe 1.4, “How to Implement Safe and Idempotent Methods on the Server”
Maintaining safety and idempotency helps servers guarantee repeatability for re-
quests. Use this recipe when implementing servers.

Recipe 1.5, “How to Treat Safe and Idempotent Methods in Clients”
Follow this recipe to implement clients for safety and idempotency principles.

Recipe 1.6, “When to Use GET”
Use this recipe to learn when to use GET.

Recipe 1.7, “When to Use POST”
Use this recipe to learn when to use POST.

1

Recipe 1.8, “How to Create Resources Using POST”
Use this recipe to learn how to create new resources using the POST method.

Recipe 1.9, “When to Use PUT to Create New Resources”
You can use either POST or PUT to create new resources. This recipe will discuss
when using PUT is better.

Recipe 1.10, “How to Use POST for Asynchronous Tasks”
Use this recipe to learn how to use the POST method for asynchronous tasks.

Recipe 1.11, “How to Use DELETE for Asynchronous Deletion”
Use this recipe to learn how to use the DELETE method for asynchronous deletion
of resources.

Recipe 1.12, “When to Use Custom HTTP Methods”
Use this recipe to learn why custom HTTP methods are not recommended.

Recipe 1.13, “When and How to Use Custom HTTP Headers”
Use this recipe to learn when and how to use custom HTTP headers.

1.1 How to Keep Interactions Visible
As an application protocol, HTTP is designed to keep interactions between clients and
servers visible to libraries, servers, proxies, caches, and other tools. Visibility is a key
characteristic of HTTP. Per Roy Fielding (see Appendix A for references), visibility is
“the ability of a component to monitor or mediate the interaction between two other
components.” When a protocol is visible, caches, proxies, firewalls, etc., can monitor
and even participate in the protocol.

Problem
You want to know what visibility means and what you can do to keep HTTP requests
and responses visible.

Solution
Once you identify and design resources, use GET to get a representation of a resource,
PUT to update a resource, DELETE to delete a resource, and POST to perform a variety of
potentially nonidempotent and unsafe operations. Add appropriate HTTP headers to
describe requests and responses.

Discussion
Features like the following depend entirely on keeping requests and responses visible:

Caching
Caching responses and automatically invalidating cached responses when
resources are modified

2 | Chapter 1: Using the Uniform Interface

Optimistic concurrency control
Detecting concurrent writes and preventing resource changes when such opera-
tions are based on stale representations

Content negotiation
Selecting a representation among alternatives available for a given resource

Safety and idempotency
Ensuring that clients can repeat or retry certain HTTP requests

When a web service does not maintain visibility, such features will not work correctly.
For instance, when the server’s usage of HTTP breaks optimistic concurrency, you may
be forced to invent application-specific concurrency control mechanisms on your own.

Maintaining visibility lets you use existing HTTP software and infra-
structure for features that you would otherwise have to build yourself.

HTTP achieves visibility by virtue of the following:

• HTTP interactions are stateless. Any HTTP intermediary can infer the meaning of
any given request and response without correlating them with past or future re-
quests and responses.

• HTTP uses a uniform interface consisting of OPTIONS, GET, HEAD, POST, PUT, DELETE,
and TRACE methods. Each method in this interface operates on one and only one
resource. The syntax and the meaning of each method do not change from appli-
cation to application or from resource to resource. That is why HTTP is known as
a uniform interface.

• HTTP uses a MIME-like envelope format to encode representations. This format
maintains a clear separation between headers and the body. Headers are visible,
and except for the software that is creating the message and the software that is
processing the message, every piece of software in between can treat the body as
completely opaque.

Consider an HTTP request to update a resource:

Request
PUT /movie/gone_with_the_wind HTTP/1.1
Host: www.example.org
Content-Type: application/x-www-form-urlencoded

summary=...&rating=5&...

Response
HTTP/1.1 200 OK
Content-Type: text/html;charset=UTF-8
Content-Length: ...

1.1 How to Keep Interactions Visible | 3

<html>
 ...
</html>

Request line containing HTTP method, path to the resource, and HTTP version

Representation headers for the request

Representation body for the request

Response status line containing HTTP version, status code, and status message

Representation headers for the response

Representation body for the response

In this example, the request is an HTTP message. The first line in this message describes
the protocol and the method used by the client. The next two lines are request headers.
By simply looking at these three lines, any piece of software that understands HTTP
can decipher not only the intent of the request but also how to parse the body of the
message. The same is the case with the response. The first line in the response indicates
the version of HTTP, the status code, and a message. The next two lines tell HTTP-
aware software how to interpret the message.

For RESTful web services, your key goal must be to maintain visibility to the extent
possible. Keeping visibility is simple. Use each HTTP method such that it has the same
semantics as specified by HTTP, and add appropriate headers to describe requests and
responses.

Another part of maintaining visibility is using appropriate status codes and messages
so that proxies, caches, and clients can determine the outcome of a request. A status
code is an integer, and the status message is text.

As we will discuss in Recipe 1.2, there are cases where you may need to trade off visibility
for other characteristics such as network efficiency, client convenience, and separation
of concerns. When you make such trade-offs, carefully analyze the effect on features
such as caching, idempotency, and safety.

1.2 When to Trade Visibility
This recipe describes some common situations where trading off visibility may be
necessary.

Problem
You want to know common situations that may require you to keep requests and re-
sponses less visible to the protocol.

4 | Chapter 1: Using the Uniform Interface

Solution
Whenever you have multiple resources that share data or whenever an operation modi-
fies more than one resource, be prepared to trade visibility for better abstraction of
information, loose coupling, network efficiency, resource granularity, or pure client
convenience.

Discussion
Visibility often competes with other architectural demands such as abstraction, loose
coupling, efficiency, message granularity, etc. For example, think of a person resource
and a related address resource. Any client can submit GET requests to obtain represen-
tations of these two resources. For the sake of client convenience, the server may include
data from the address resource within the representation of the person resource as
follows:

Request to get the person
GET /person/1 HTTP/1.1
Host: www.example.org
Content-Type: application/xml;charset=UTF-8

<person>
 <name>John Doe</name>
 <address type="home">
 <street>1 Main Street</street>
 <city>Bellevue</city>
 <state>WA</state>
 </address>
</person>

Request to get the address
GET /person/1/address HTTP/1.1
Host: www.example.org
Content-Type: application/xml;charset=UTF-8

<address type="home">
 <street>1 Main Street</street>
 <city>Bellevue</city>
 <state>WA</state>
</address>

Let’s assume that the server allows clients to submit PUT requests to update these re-
sources. When a client modifies one of these resources, the state of the related resource
also changes. However, at the HTTP level, these are independent resources. Only the
server knows that they are dependent. Such overlapping data is a common cause of
reduced visibility.

One of the important consequences of reduced visibility is caching (see Chapter 9).
Since these are two independent resources at the HTTP level, caches will have two
copies of the address: one as an independent address representation and the other as
part of the person representation. This can be inefficient. Also, invalidating one

1.2 When to Trade Visibility | 5

representation from the cache will not invalidate the other representation. This can
leave stale representations in the cache.

In this particular example, you can eliminate the overlap between these
resources by including a reference to the address from the person re-
source and avoid including address details. You can use links (see
Chapter 5) to provide references to other resources.

Although providing a link may minimize overlaps, it will force clients
to make additional requests.

In this example, the trade-off is between visibility and client convenience and, poten-
tially, network efficiency. A client that always deals with person resources can make a
single request to get information about the person as well as the address.

Here are some more situations where you may need to give up visibility for other
benefits:

Client convenience
Servers may need to design special-purpose coarse-grained composite resources
for the sake of client convenience (e.g., Recipe 2.4).

Abstraction
In order to abstract complex business operations (including transactions), servers
may need to employ controller resources to make changes to other resources (e.g.,
Recipe 2.6). Such resources can hide the details used to implement business
operations.

Network efficiency
In cases where a client is performing several operations in quick succession, you
may need to combine such operations into batches to reduce network latency (e.g.,
Recipes 11.10 and 11.13).

In each of these cases, if you focus only on visibility, you may be forced to design your
web service to expose all data as independent resources with no overlaps. A web service
designed in that manner may lead to fine-grained resources and poor separation of
concerns between clients and servers. For an example, see Recipe 2.6. Other scenarios
such as copying or merging resources and making partial updates (see Chapter 11) may
also require visibility trade-offs.

Provided you are aware of the consequences early during the design
process, trading off visibility for other benefits is not necessarily bad.

6 | Chapter 1: Using the Uniform Interface

1.3 How to Maintain Application State
Often when you read about REST, you come across the recommendation to “keep the
application state on the client.” But what is “application state” and how can you keep
that state on the client? This recipe describes how best to maintain state.

Problem
You want to know how to manage state in RESTful web services such that you do not
need to rely on in-memory sessions on servers.

Solution
Encode application state into URIs, and include those URIs into representations via
links (see Chapter 5). Let clients use these URIs to interact with resources. If the state
is large or cannot be transported to clients for security or privacy reasons, store the
application state in a durable storage (such as a database or a filesystem), and encode
a reference to that state in URIs.

Discussion
Consider a simplified auto insurance application involving two steps. In the first step,
the client submits a request with driver and vehicle details, and the server returns a
quote valid for a week. In the second step, the client submits a request to purchase
insurance. In this example, the application state is the quote. The server needs to know
the quote from the first step so that it can issue a policy based on that quote in the
second request.

Application state is the state that the server needs to maintain between
each request for each client. Keeping this state in clients does not mean
serializing some session state into URIs or HTML forms, as web frame-
works like ASP.NET and JavaServer Faces do.

Since HTTP is a stateless protocol, each request is independent of any previous request.
However, interactive applications often require clients to follow a sequence of steps in
a particular order. This forces servers to temporarily store each client’s current position
in those sequences outside the protocol. The trick is to manage state such that you
strike a balance between reliability, network performance, and scalability.

The best place to maintain application state is within links in representations of re-
sources, as in the following example:

Request
POST /quotegen HTTP/1.1
Host: www.example.org
Content-Type: application/x-www-form-urlencoded

1.3 How to Maintain Application State | 7

fname=...&lname=...&..

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<quote xmlns:atom="http://www.w3.org/2005/Atom">
 <driver>
 ...
 </driver>
 <vehicle>
 ...
 </vehicle>
 <offer>
 ...
 <valid-until>2009-10-02</valid-until>
 <atom:link href="http://www.example.org/quotes/buy?quote=abc1234"
 rel="http://www.example.org/rels/quotes/buy"/>
 </offer>
</html>

A link containing application state

In this example, the server stores the quote data in a data store and encodes its primary
key in the URI. When the client makes a request to purchase insurance using this URI,
the server can reinstate the application state using this key.

Choose a durable storage such as a database or a filesystem to store
application state. Using a nondurable storage such as a cache or an in-
memory session reduces the reliability of the web service as such state
may not survive server restart. Such solutions may also reduce scalability
of the server.

Alternatively, if the amount of data for the quote is small, the server can encode the
state within the URI itself, as shown in the code below.

When you store application state in databases, use database replication
so that all server instances have access to that state. If the application
state is not permanent, you may also need to clean up the state at some
point.

Request
GET /quotegen?fname=...&lname=...&... HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<quote xmlns:atom="http://www.w3.org/2005/Atom">
 <driver>

8 | Chapter 1: Using the Uniform Interface

 ...
 </driver>
 <vehicle>
 ...
 </vehicle>
 <offer>
 ...
 <valid-until>2009-08-02</valid-until>
 <atom:link href="http://www.example.org/quotes/buy?fname=...&lname=...&..."
 rel="http://www.example.org/quotes/buy"/>
 </offer>
</html>

Since the client will need to send all that data back in every request, encoding the
application state in links may reduce network performance. Yet it can improve scala-
bility since the server does not need to store any data, and it may improve reliability
since the server does not need to use replication. Depending on your specific use case
and the amount of state, use a combination of these two approaches for managing
application state, and strike a balance between network performance, scalability, and
reliability.

When you store application state in links, make sure to add checks (such
as signatures) to detect/prevent the tampering of state. See Rec-
ipe 12.5 for an example.

1.4 How to Implement Safe and Idempotent Methods
on the Server
Safety and idempotency are guarantees that a server must provide to clients in its im-
plementation for certain methods. This recipe discusses why these matter and how to
implement safety and idempotency on the server.

Problem
You want to know what idempotency and safety mean, and what you can do to ensure
that the server’s implementation of various HTTP methods maintain these two
characteristics.

Solution
While implementing GET, OPTIONS, and HEAD methods, do not cause any side effects.
When a client resubmits a GET, HEAD, OPTIONS, PUT, or DELETE request, ensure that
the server provides the same response except under concurrent conditions (see Chap-
ter 10).

1.4 How to Implement Safe and Idempotent Methods on the Server | 9

Discussion
Safety and idempotency are characteristics of HTTP methods for servers to implement.
Table 1-1 shows which methods are safe and which are idempotent.

Table 1-1. Safety and idempotency of HTTP methods

Method Safe? Idempotent?

GET Yes Yes

HEAD Yes Yes

OPTIONS Yes Yes

PUT No Yes

DELETE No Yes

POST No No

Implementing safe methods

In HTTP, safe methods are not expected to cause side effects. Clients can send requests
with safe methods without worrying about causing unintended side effects. To provide
this guarantee, implement safe methods as read-only operations.

Safety does not mean that the server must return the same response every time. It just
means that the client can make a request knowing that it is not going to change the
state of the resource. For instance, both the following requests may be safe:

First request
GET /quote?symb=YHOO HTTP/1.1

HTTP/1.1 200 OK
Content-Type: text/plain;charset=UTF-8

15.96

Second request 10 minutes later
GET /quote?symb=YHOO HTTP/1.1

HTTP/1.1 200 OK
Content-Type: text/plain;charset=UTF-8

16.10

In this example, the change in response between these two requests may have been
triggered by some other client or some backend operation.

Implementing idempotent methods

Idempotency guarantees clients that repeating a request has the same effect as making
a request just once. Idempotency matters most in the case of network or software

10 | Chapter 1: Using the Uniform Interface

failures. Clients can repeat such requests and expect the same outcome. For example,
consider the case of a client updating the price of a product.

Request
PUT /book/gone-with-the-wind/price/us HTTP/1.1
Content-Type: application/x-www-form-urlencoded

val=14.95

Now assume that because of a network failure, the client is unable to read the response.
Since HTTP says that PUT is idempotent, the client can repeat the request.

Request
PUT /book/gone-with-the-wind/price/us HTTP/1.1
Content-Type: application/x-www-form-urlencoded

val=14.95

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<value>14.95</value>

For this approach to work, you must implement all methods except POST to be idem-
potent. In programming language terms, idempotent methods are similar to “setters.”
For instance, calling the setPrice method in the following code more than once has
the same effect as calling it just once:

class Book {
 private Price price;
 public void setPrice(Price price) {
 this.price = price;
 }
}

Idempotency of DELETE

The DELETE method is idempotent. This implies that the server must return response
code 200 (OK) even if the server deleted the resource in a previous request. But in practice,
implementing DELETE as an idempotent operation requires the server to keep track of
all deleted resources. Otherwise, it can return a 404 (Not Found).

First request
DELETE /book/gone-with-the-wind HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK

Second request
DELETE /book/gone-with-the-wind HTTP/1.1
Host: www.example.org

Response

1.4 How to Implement Safe and Idempotent Methods on the Server | 11

HTTP/1.1 404 Not Found
Content-Type: text/html;charset=UTF-8

<html>
 ...
</html>

Even when the server has a record of all the deleted resources, security policies may
require the server to return a 404 (Not Found) response code for any resource that does
not currently exist.

1.5 How to Treat Safe and Idempotent Methods in Clients
Problem
You want to know how to implement HTTP requests that are idempotent and/or safe.

Solution
Treat GET, OPTIONS, and HEAD as read-only operations, and send those requests whenever
required.

In the case of network or software failures, resubmit GET, PUT, and DELETE requests to
confirm, supplying If-Unmodified-Since and/or If-Match conditional headers (see
Chapter 10).

Do not repeat POST requests, unless the client knows ahead of time (e.g., via server’s
documentation) that its implementation of POST for any particular resource is
idempotent.

Discussion

Safe methods

Any client should be able to make GET, OPTIONS and HEAD requests as many times as
necessary. If a server’s implementation causes unexpected side effects when processing
these requests, it is fair to conclude that the server’s implementation of HTTP is in-
correct.

Idempotent methods

As discussed in Recipe 1.4, idempotency guarantees that the client can repeat a request
when it is not certain the server successfully processed that request. In HTTP, all meth-
ods except POST are idempotent. In client implementations, whenever you encounter a
software or a network failure for an idempotent method, you can implement logic to
retry the request. Here is a pseudocode snippet:

try {
 // Submit a PUT request

12 | Chapter 1: Using the Uniform Interface

 response = httpRequest.send("PUT", ...);
 if(response.code == 200) {
 // Success
 ...
 }
 else if(response.code >= 400) {
 // Failure due to client error
 ...
 }
 else if(response.code >= 500) {
 // Failure due to server error
 ...
 }
 ...
}
catch(NetworkFailure failure) {
 // Retry the request now or later
 ...
}

In this example, the client implements logic to repeat the request only in the case of
network failures, not when the server returned a 4xx or 5xx error. The client must con-
tinue to treat various HTTP-level errors as usual (see Recipe 3.14).

Since POST is not idempotent, do not apply the previous pattern for POST requests unless
told by the server. Recipe 10.8 describes a way for servers to provide idempotency for
POST requests.

1.6 When to Use GET
The infrastructure of the Web strongly relies on the idempotent and safe nature of
GET. Clients count on being able to repeat GET requests without causing side effects.
Caches depend on the ability to serve cached representations without contacting the
origin server.

Problem
You want to know when and when not to use GET and the potential consequences of
using GET inappropriately.

Solution
Use GET for safe and idempotent information retrieval.

Discussion
Each method in HTTP has certain semantics. As discussed in Recipe 1.1, the purpose
of GET is to get a representation of a resource, PUT is to create or update a resource,
DELETE is to delete a resource, and POST is either to create new resources or to make
various other changes to resources.

1.6 When to Use GET | 13

Of all these methods, GET can take the least amount of misuse. This is because GET is
both safe and idempotent.

Do not use GET for unsafe or nonidempotent operations. Doing so could
cause permanent, unexpected, and undesirable changes to resources.

Most abuse of GET happens in the form of using this method for unsafe operations. Here
are some examples:

Bookmark a page
GET /bookmarks/add_bookmark?href=http%3A%2F%2F
 www.example.org%2F2009%2F10%2F10%2Fnotes.html HTTP/1.1
Host: www.example.org

Add an item to a shopping cart
GET /add_cart?pid=1234 HTTP/1.1
Host: www.example.org

Send a message
GET /messages/send?message=I%20am%20reading HTTP/1.1
Host: www.example.org

Delete a note
GET /notes/delete?id=1234 HTTP/1.1
Host: www.example.org

For the server, all these operations are unsafe and nonidempotent. But for any HTTP-
aware software, these operations are safe and idempotent. The consequences of this
difference can be severe depending on the application. For example, a tool routinely
performing health checks on a server by periodically submitting a GET request using the
fourth URI shown previously will delete a note.

If you must use GET for such operations, take the following precautions:

• Make the response noncacheable by adding a Cache-Control: no-cache header.

• Ensure that any side effects are benign and do not alter business-critical data.

• Implement the server such that those operations are repeatable (i.e., idempotent).

These steps may help reduce the impact of errors for certain but not all operations. The
best course of action is to avoid abusing GET.

1.7 When to Use POST
This recipe summarizes various applications of POST.

Problem
You want to know the potential applications of the POST method.

14 | Chapter 1: Using the Uniform Interface

Solution
Use POST for the following:

• To create a new resource, using the resource as a factory as described in Recipe 1.8

• To modify one or more resources via a controller resource as described in Recipe 2.6

• To run queries with large inputs as described in Recipe 8.3

• To perform any unsafe or nonidempotent operation when no other HTTP method
seems appropriate

Discussion
In HTTP, the semantics of method POST are the most generic. HTTP specifies that this
method is applicable for the following.*

• Annotation of existing resources;

• Posting a message to a bulletin board, newsgroup, mailing list, or similar group of
articles;

• Providing a block of data, such as the result of submitting a form, to a data-handling
process;

• Extending a database through an append operation.

All such operations are unsafe and nonidempotent, and all HTTP-aware tools treat
POST as such:

• Caches do not cache responses of this method.

• Crawlers and such tools do not automatically activate POST requests.

• Most generic HTTP tools do not resubmit POST requests automatically.

Such a treatment gives great latitude for servers to use POST as a general-purpose method
for a variety of operations, including tunneling. Consider the following:

An XML-RPC message tunneled over HTTP POST
POST /RPC2 HTTP/1.1
Host: www.example.org
Content-Type: text/xml;charset=UTF-8

<methodCall>
 <methodName>messages.delete</methodName>
 <params>
 <param>
 <value><int>1234</int></value>
 </param>
 </params>
</methodCall>

* From Sec 9.5 of RFC 2616 (http://tools.ietf.org/html/rfc2616#section-9.5).

1.7 When to Use POST | 15

http://tools.ietf.org/html/rfc2616#section-9.5

This is an example of XML-RPC (http://www.xmlrpc.com/) tunneling an operation via
the POST method. Another popular example is SOAP with HTTP:

A SOAP message tunneled over HTTP POST
POST /Messages HTTP/1.1
Host: www.example.org
Content-Type: application/soap+xml; charset=UTF-8

<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 <soap:Body xmlns:ns="http://www.example.org/messages">
 <ns:DeleteMessage>
 <ns:MessageId>1234</ns:MessageId>
 </ns:DeleteMessage>
 </soap:Body>
</soap:Envelope>

Both these approaches misuse the method POST. For this example, the DELETE method
is more appropriate:

Using DELETE
DELETE /message/1234 HTTP/1.1
Host: www.example.org

When there is no such direct mapping between the application’s operations and HTTP,
using POST has less severe consequences than overloading other HTTP methods.

In addition, the following situations force you to use POST even when GET is the right
method to use:

• HTML clients like browsers use the URI of the page as the Referer header while
making requests to fetch any linked resources. This may leak any sensitive infor-
mation contained in the URI to external servers.

In such cases, if using Transport Layer Security (TLS, a successor to SSL) or if the
encryption of any sensitive information in the URI is not possible, consider using
POST to serve HTML documents.

• As discussed in Recipe 8.3, POST may be the only option when queries from clients
contain too many parameters.

Even in these conditions, use POST only as the last resort.

1.8 How to Create Resources Using POST
One of the applications of POST is to create new resources. The protocol is similar to
using the “factory method pattern” for creating new objects.

16 | Chapter 1: Using the Uniform Interface

http://www.xmlrpc.com/

Problem
You want to know how to create a new resource, what to include in the request, and
what to include in the response.

Solution
Identify an existing resource as a factory for creating new resources. It is common
practice to use a collection resource (see Recipe 2.3) as a factory, although you may use
any resource.

Let the client submit a POST request with a representation of the resource to be created
to the factory resource. Optionally support the Slug header to let clients suggest a name
for the server to use as part of the URI of the resource to be created.

After creating the resource, return response code 201 (Created) and a Location header
containing the URI of the newly created resource.

If the response body includes a complete representation of the newly created resource,
include a Content-Location header containing the URI of the newly created resource.

Discussion
Consider the case of creating an address resource for a user. You can take the user
resource as a factory to create a new address:

Request
POST /user/smith HTTP/1.1
Slug: Home Address
Host: www.example.org
Content-Type: application/xml;charset=UTF-8
Slug: Home Address

<address>
 <street>1, Main Street</street>
 <city>Some City</city>
</address>

Response
HTTP/1.1 201 Created
Location: http://www.example.org/user/smith/address/home_address
Content-Location: http://www.example.org/user/smith/address/home_address
Content-Type: application/xml;charset=UTF-8

<address>
 <id>urn:example:user:smith:address:1</id>
 <atom:link rel="self" href="http://www.example.org/user/smith/address/home_address"/>
 <street>1, Main Street</stret>
 <city>Some City</city>
</address>

User resource acting as a factory to create a home address resource

1.8 How to Create Resources Using POST | 17

A suggestion for naming the URI of the new resource

URI of the newly created resource

URI of representation in the response

In this example, the request contains data to create a new resource, and a Slug header
with a suggestion for the URI of the new resource. Note that the Slug header is specified
by AtomPub (RFC 5023). This header is just a suggestion from the client. The server
need not honor it. See Chapter 6 to learn about AtomPub.

The status code of the response 201 indicates that the server created a new resource and
assigned the URI http://www.example.org/user/smith/address/home_address to it, as
indicated by the Location response header. The Content-Location header informs the
client that the body of the representation can also be accessed via the URI value of this
header.

Along with the Content-Location header, you can also include the Last-
Modified and ETag headers of the newly created resource. See Chap-
ter 10 to learn more about these headers.

1.9 When to Use PUT to Create New Resources
You can use either HTTP POST or HTTP PUT to create new resources. This recipe dis-
cusses when to use PUT to create new resources.

Problem
You want to know when to use PUT to create new resources.

Solution
Use PUT to create new resources only when clients can decide URIs of resources.
Otherwise, use POST.

Discussion
Here is an example of a client using PUT to create a new resource:

Request
PUT /user/smith/address/home_address HTTP/1.1
Host: www.example.org
Content-Type: application/xml;charset=UTF-8

<address>
 <street>1, Main Street</street>
 <city>Some City</city>
</address>

18 | Chapter 1: Using the Uniform Interface

Response
HTTP/1.1 201 Created
Location: http://www.example.org/user/smith/address/home_address
Content-Location: http://www.example.org/user/smith/address/home_address
Content-Type: application/xml;charset=UTF-8

<address>
 <id>urn:example:user:smith:address:1</id>
 <atom:link rel="self" href="http://www.example.org/user/smith/address/home_address"/>
 <street>1, Main Street</street>
 <city>Some City</city>
</address>

Client using PUT to create a new resource

Use PUT to create new resources only when the client can control part of the URI. For
instance, a storage server may allocate a root URI for each client and let clients create
new resources using that root URI as a root directory on a filesystem. Otherwise,
use POST.

When using POST to create new resources, the server decides the URI for the newly
created resource. It can control its URI naming policies along with any network
security-level configurations. You can still let servers use information in the represen-
tation (such as the Slug header) while generating URIs for new resources.

When you support PUT to create new resources, clients must be able to assign URIs for
resources. When using this method to create new resources, take the following into
consideration:

• To let clients assign URIs, the server needs to explain to clients how URIs on the
server are organized, what kind of URIs are valid, and what kind are not.

• You also need to consider any security and filtering rules set up on servers based
on URI patterns and may want to restrict clients to use a narrow range of URIs
while creating new URIs.

In general, any resource that can be created via PUT can equivalently be
created by using POST with a factory resource. Using a factory resource
gives the server more control without explaining its URI naming rules.
An exception is the case of servers providing a filesystem-like interface
for clients to manage documents. WebDAV (see Recipe 11.4) is an
example.

1.10 How to Use POST for Asynchronous Tasks
HTTP is a synchronous and stateless protocol. When a client submits a request to a
server, the client expects an answer, whether the answer is a success or a failure. But
this does not mean that the server must finish processing the request before returning
a response. For example, in a banking application, when you initiate an account

1.10 How to Use POST for Asynchronous Tasks | 19

transfer, the transfer may not happen until the next business day, and the client may
be required to check for the status later. This recipe discusses how to use this method
to process requests asynchronously.

Problem
You want to know how to implement POST requests that take too long to complete.

Solution
On receiving a POST request, create a new resource, and return status code 202
(Accepted) with a representation of the new resource. The purpose of this resource is
to let a client track the status of the asynchronous task. Design this resource such that
its representation includes the current status of the request and related information
such as a time estimate.

When the client submits a GET request to the task resource, do one of the following
depending on the current status of the request:

Still processing
Return response code 200 (OK) and a representation of the task resource with the
current status.

On successful completion
Return response code 303 (See Other) and a Location header containing a URI of
a resource that shows the outcome of the task.

On task failure
Return response code 200 (OK) with a representation of the task resource informing
that the resource creation has failed. Clients will need to read the body of the
representation to find the reason for failure.

Discussion
Consider an image-processing web service offering services such as file conversions,
optical character recognition, image cleanup, etc. To use this service, clients upload
raw images. Depending on the nature and size of images uploaded and the current
server load, the server may take from a few seconds up to several hours to process each
image. Upon completion, client applications can view/download processed images.

Let’s start with the client submitting a POST request to initiate a new image-processing
task:

Request
POST /images/tasks HTTP/1.1
Host: www.example.org
Content-Type: multipart/related; boundary=xyz

--xyz
Content-Type: application/xml;charset=UTF-8

20 | Chapter 1: Using the Uniform Interface

...

--xyz
Content-Type: image/png

...

--xyz--

In this example, the client uses a multipart message, with the first part containing an
XML document describing the kind of image-processing operations the server needs
to perform and the second part containing the image to be processed.

Upon ensuring that the contents are valid and that the given image-processing request
can be honored, let the server create a new task resource:

Response
HTTP/1.1 202 Accepted
Content-Type: application/xml;charset=UTF-8
Content-Location: http://www.example.org/images/task/1
Date: Sun, 13 Sep 2009 01:49:27 GMT

<status xmlns:atom="http://www.w3.org/2005/Atom">
 <state>pending</state>
 <atom:link href="http://www.example.org/images/task/1" rel="self"/>
 <message xml:lang="en">Your request has been accepted for processing.</message>
 <ping-after>2009-09-13T01:59:27Z</ping-after>
</status>

Response code indicating that the server accepted the request for processing

A hint to check for the status at a later time

The client can subsequently send a GET request to this task resource. If the server is still
processing the task, it can return the following response:

Request
GET /images/task/1 HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<status xmlns:atom="http://www.w3.org/2005/Atom">
 <state>pending</state>
 <atom:link href="http://www.example.org/images/task/1" rel="self"/>
 <message xml:lang="en">Your request is currently being processed.</message>
 <ping-after>2009-09-13T02:09:27Z</ping-after>
</status>

1.10 How to Use POST for Asynchronous Tasks | 21

See Recipe 3.9 to learn the rationale behind the choice of the date-time
value for the ping-after element.

After the server successfully completes image processing, it can redirect the client to
the result. In this example, the result is a new image resource:

Request
GET /images/task/1 HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 303 See Other
Location: http://www.example.org/images/1
Content-Location: http://www.example.org/images/task/1

<status xmlns:atom="http://www.w3.org/2005/Atom">
 <state>done</state>
 <atom:link href="http://www.example.org/images/task/1" rel="self"/>
 <message xml:lang="en">Your request has been processed.</message>
</status>

See the target resource for the result.

The response code 303 merely states that the result exists at the URI
indicated in the Location header. It does not mean that the resource at
the request URI (e.g., http://www.example.org/images/task/1) has
moved to a new location.

This representation informs the client that it needs to refer to http://www.example.org/
images/1 for the result. If, on the other hand, the server fails to complete the task, it can
return the following:

Request
GET /images/task/1 HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<status xmlns:atom="http://www.w3.org/2005/Atom">
 <state>failed</state>
 <atom:link href="http://www.example.org/images/task/1" rel="self"/>
 <message xml:lang="en">Failed to complete the request.</message>
 <detail xml:lang="en">Invalid image format.</detail>
 <completed>2009-09-13T02:10:00Z</completed>
</status>

22 | Chapter 1: Using the Uniform Interface

1.11 How to Use DELETE for Asynchronous Deletion
This recipe outlines an approach for using DELETE for asynchronous tasks. This recipe
is appropriate when resource deletion takes a significant amount of time for cleanup
and archival tasks in the backend.

Problem
You want to know how to implement DELETE requests that take too long to complete.

Solution
On receiving a DELETE request, create a new resource, and return 202 (Accepted) with
the response containing a representation of this resource. Let the client use this resource
to track the status. When the client submits a GET request to the task resource, return
response code 200 (OK) with a representation showing the current status of the task.

Discussion
Supporting asynchronous resource deletion is even simpler than creating or updating
resources. The following sequence of steps illustrates an implementation of this recipe:

1. To begin, a client submits a request to delete a resource.

DELETE /users/john HTTP/1.1
Host: www.example.org

2. The server creates a new resource and returns a representation indicating the status
of the task.

HTTP/1.1 202 Accepted
Content-Type: application/xml;charset=UTF-8

<status xmlns:atom="http://www.w3.org/2005/Atom">
 <state>pending</state>
 <atom:link href="http://www.example.org/task/1" rel="self"/>
 <message xml:lang="en">Your request has been accepted for processing.</message>
 <created>2009-07-05T03:10:00Z</ping>
 <ping-after>2009-07-05T03:15:00Z</ping-after>
</status>

3. The client can query the URI http://www.example.org/task/1 to learn the status of
the request.

You can use the same approach for asynchronously updating a resource via the PUT
method.

1.12 When to Use Custom HTTP Methods
There were several attempts to extend HTTP with new methods. The most prominent
attempt was WebDAV (http://www.webdav.org). WebDAV defines several HTTP

1.12 When to Use Custom HTTP Methods | 23

http://www.webdav.org

methods, such as PROPFIND, PROPPATCH, MOVE, LOCK, UNLOCK, etc., for distributed authoring
and versioning of documents (see Recipe 11.4). Other examples include PATCH (Rec-
ipe 11.9) for partial updates and MERGE (http://msdn.microsoft.com/en-us/library/
cc668771.aspx) for merging resources.

Problem
You want to know the consequences of using custom HTTP methods.

Solution
Avoid using nonstandard custom HTTP methods. When you introduce new methods,
you cannot rely on off-the-shelf software that only knows about the standard HTTP
methods.

Instead, design a controller (see Recipe 2.6) resource that can abstract such operations,
and use HTTP method POST.

Discussion
The most important benefit of extending methods is that they let servers define clear
semantics for those methods and keep the interface uniform. But unless widely sup-
ported, extension methods reduce interoperability.

For example, WebDAV defines the semantics of MOVE as a “logical equivalent of a copy
(COPY), followed by consistency maintenance processing, followed by a delete of the
source, where all three actions are performed atomically.” Any client can submit an
OPTIONS request to determine whether a WebDAV resource implements MOVE. When
necessary, if a resource supports this method, the client can submit a MOVE request to
move a resource from one location to another.

Request to discover supported methods
OPTIONS /docs/annual_report HTTP/1.1
Host: www.example.org

Response
HTTP/1.1. 204 No Content
Allow: GET, PUT, DELETE, MOVE

Move
MOVE /docs/annual_report HTTP/1.1
Host: www.example.org
Destination: http://www.example.org/docs/annual_report_2009

Response
HTTP/1.1 201 Created
Location: http://www.example.org/docs/annual_report_2009

24 | Chapter 1: Using the Uniform Interface

http://msdn.microsoft.com/en-us/library/cc668771.aspx
http://msdn.microsoft.com/en-us/library/cc668771.aspx

It is certainly possible to follow WebDAV’s approach and design a new method, say,
CLONE, to create a clone of an existing resource:

Request to clone
CLONE /po/1234 HTTP/1.1
Host: www.example.org

Clone created
HTTP/1.1 201 Created
Location: www.example.org/po/5678

Clients will then be able to discover support for this method and submit a CLONE request.

In reality, proxies, caches, and HTTP libraries will treat such methods as nonidempo-
tent, unsafe, and noncacheable. In other words, they apply the same rules to such
extension methods as POST, which is nonidempotent, unsafe, and most often non-
cacheable. This is because idempotency and safety are guarantees that the server must
explicitly provide. For unknown custom methods, proxies, caches, and HTTP libraries
cannot assume that the server provides such guarantees. Therefore, for most HTTP-
aware software and tools, custom HTTP methods are synonymous with POST.

Request to clone
POST /clone-orders HTTP/1.1
Host: www.example.org
Content-Type: application/x-www-form-urlencoded

id=urn:example:po:1234

Clone created
HTTP/1.1 201 Created
Location: www.example.org/po/5678

Moreover, not all HTTP software (including firewalls) may support arbitrary extension
methods. Therefore, use custom methods only when wide interoperability is not a
concern.

Prefer POST over custom HTTP methods. Not every HTTP software lets
you use custom HTTP methods. Using POST is a safer option.

1.13 When and How to Use Custom HTTP Headers
It is not uncommon to find HTTP servers using custom headers. Some well-known
custom headers include X-Powered-By, X-Cache, X-Pingback, X-Forwarded-For, and X-
HTTP-Method-Override. HTTP does not prohibit such extension headers, but depending
on what clients and servers use custom headers for, custom headers may impede in-
teroperability. This recipe discusses when and how to use custom HTTP headers.

1.13 When and How to Use Custom HTTP Headers | 25

Problem
You want to know the common conventions and best practices for using custom HTTP
headers.

Solution
Use custom headers for informational purposes. Implement clients and servers such
that they do not fail when they do not find expected custom headers.

Avoid using custom HTTP headers to change the behavior of HTTP methods. Limit
any behavior-changing headers to the method POST.

If the information you are conveying through a custom HTTP header is important for
the correct interpretation of the request or response, include that information in the
body of the request or response or the URI used for the request. Avoid custom headers
for such usages.

Discussion
Most websites using the WordPress blogging platform (http://wordpress.org) include
the following HTTP headers in responses:

X-Powered-By: PHP/5.2.6-2ubuntu4.2
X-Pingback: http://www.example.org/xmlrpc.php

Such headers are not part of HTTP. The first header is generated by the PHP runtime
that WordPress is built on. It indicates that the server is using a particular version of
PHP on Ubuntu. The X-Pingback header contains a URI that clients can use to notify
WordPress when a reference is made on some other server to the resource. Similarly,
HTTP caching proxy Squid uses X-Cache headers to inform clients whether the repre-
sentation in the response is being served from the cache.

Such usages are informational. Clients receiving those headers are free to ignore them
without loss of functionality. Another commonly used informational header is
X-Forwarded-By.

X-Forwarded-For: 192.168.123.10, 192.168.123.14

The purpose of this header is to convey the source of the request to the server. Some
proxies and caches add this header to report the source of the request to the server. In
this example, the server received a request from 192.168.123.10 via 192.168.123.14. If
all proxies and caches that the request is served through augment this header, then the
server can determine the IP address of the client.

Although names of some custom headers start with X-, there is no es-
tablished convention for naming these headers. When you introduce
custom headers, use a convention such as X-{company-name}-{header-
name}.

26 | Chapter 1: Using the Uniform Interface

http://wordpress.org

The following custom HTTP headers are not informational and may be required for
the correct processing of requests or responses:

A version number of the resource
X-Example-Version: 1.2

An identifier for the client
X-Example-Client-Id: 12345

An operation
X-Example-Update-Type: Overwrite

Avoid such usages. They weaken the use of URIs as resource identifiers and HTTP
methods as operations.

Another commonly used custom header is X-HTTP-Method-Override. This header was
initially used by Google as part of the Google Data Protocol (http://code.google.com/
apis/gdata/docs/2.0/basics.html). Here is an example:

Request
POST /user/john/address HTTP/1.1
X-HTTP-Method-Override: PUT
Content-Type: application/xml;charset=UTF-8

<address>
 <street>...</street>
 <city>...</city>
 <postal-code>...</postal-code>
</address>

In this case, the client uses X-HTTP-Method-Override with a value of PUT to override the
behavior of the method used for the request, which is POST. The rationale for this ex-
tension was to tunnel the method PUT over POST so that any firewalls configured to block
PUT will permit the request.

Instead of using X-HTTP-Method-Override to override POST, use a distinct
resource to process the same request using POST without that header.
Any HTTP intermediary between the client and the server may omit
custom headers.

1.13 When and How to Use Custom HTTP Headers | 27

http://code.google.com/apis/gdata/docs/2.0/basics.html
http://code.google.com/apis/gdata/docs/2.0/basics.html

CHAPTER 2

Identifying Resources

One of the first steps in developing a RESTful web service is designing the resource
model. The resource model identifies and classifies all the resources the client uses to
interact with the server. Of all the aspects of designing a RESTful web service, such as
identification of resources, choice of media types and formats, and application of the
uniform interface, resource identification is the most flexible part.

Because of the visible nature of HTTP (see Recipe 1.1), you can use tools like Firebug
(http://getfirebug.com), Yahoo! YSlow (http://developer.yahoo.com/yslow/), or Resource
Expert Droid (http://redbot.org/) to make reasonable assertions about whether the serv-
er is implementing HTTP correctly. But you cannot do the same with resources. There
is no right or wrong resource model. All that matters is whether you can use HTTP’s
uniform interface reasonably correctly to implement your web service. This chapter
goes through the following recipes to help identify resources for a number of common
situations:

Recipe 2.1, “How to Identify Resources from Domain Nouns”
Use this recipe to identify an initial set of resources from domain entities.

Recipe 2.2, “How to Choose Resource Granularity”
Use this recipe to guide resource granularity.

Recipe 2.3, “How to Organize Resources into Collections”
When you have several resources of the same kind, use this recipe to group those
into collection resources.

Recipe 2.4, “When to Combine Resources into Composites”
Use this recipe to combine resources into composites, based on client usage
patterns.

Recipe 2.5, “How to Support Computing/Processing Functions”
Apply this recipe to identify resources that implement processing functions.

Recipe 2.6, “When and How to Use Controllers to Operate on Resources”
Use this recipe to design controller resources to make changes across several
resources.

29

http://getfirebug.com
http://developer.yahoo.com/yslow/
http://redbot.org/

Designing a resource model is usually an iterative process. While developing a web
service, look at backend design constraints and client needs along with other use cases,
and revisit these recipes to improve resources iteratively.

2.1 How to Identify Resources from Domain Nouns
Both object-oriented design and database modeling techniques use domain entities as
a basis for design. You can use the same technique to identify resources. But be warned.
As you shall see later in this chapter, this recipe is simplistic and can, in some cases,
provide a misleading outcome.

Problem
You want to start identifying resources from the use cases and a description of the web
service.

Solution
Analyze your use cases to find domain nouns that can be operated using “create,”
“read,” “update,” or “delete” operations. Designate each noun as a resource. Use POST,
GET, PUT, and DELETE methods to implement “create,” “read,” “update,” and “delete”
operations, respectively, on each resource.

Discussion
Consider a web service for managing photos. Clients can upload a new photo, replace
an existing photo, view a photo, or delete a photo. In this example, “photo” is an entity
in the application domain. The actions a client can perform on this entity include “cre-
ate a new photo,” “replace an existing photo,” “view a photo,” and “delete a photo.”

You can apply this recipe to identify each “photo” as a resource such that clients can
use HTTP’s uniform interface to operate on these photos as follows:

• Method GET to get a representation of each photo

• Method PUT to update a photo

• Method DELETE to delete a photo

• Method POST to create a new photo

This recipe is what gives REST the perception that REST is suitable for CRUD-style
(Create, Read, Update, Delete) applications only. If you limit yourself to identifying
resources based on domain nouns alone, you are likely to find that the fixed set of
methods in HTTP is quite a limitation. In most applications, CRUD operations make
only part of the interface. Consider some examples:

• Find traffic directions from Seattle to San Francisco.

• Generate random numbers, or convert a given distance from miles to kilometers.

30 | Chapter 2: Identifying Resources

• Provide a way for a client to get a user’s profile with a minimal set of properties,
list of the 10 latest photos uploaded by the user, and 10 news stories that match
the user’s interest all in one single request.

• Approve a requisition to buy software.

• Transfer money from one bank account to another bank account.

• Merge two address books.

In all these use cases, it is easy to spot the nouns. But in each case, if you designate
those nouns as resources, you will find that the corresponding actions do not map to
HTTP methods such as GET, POST, PUT, and DELETE. You will need additional resources
to tackle such use cases. See the rest of the recipes in this chapter to identify those
additional resources.

2.2 How to Choose Resource Granularity
Bluntly mapping domain entities into resources may lead to resources that are ineffi-
cient and inconvenient to use. This recipe discusses criteria that you can use to deter-
mine appropriate granularity for resources.

Problem
You want to know the criteria for determining an appropriate granularity of resources.

Solution
Use network efficiency, size of representations, and client convenience to guide re-
source granularity.

Discussion
Looking at the scenarios of your application, you may find several nouns of different
granularity. Take, for example, a social network where the interactions happen in the
context of a “user.” Each user’s data may include an activity stream, list of friends, list
of followers, links to share, etc. In such an application, should you model each user as
a coarse-grained resource to encapsulate all this data? Or should you make the resources
less coarse-grained and offer activity streams, friends, followers, etc., as resources as
well? The answer depends on what a typical client for your web service does. With the
former approach, user representations may be too big for clients to handle, and the
latter may be more flexible. If most of the clients download the user’s data onto
the user’s computers, store it, and then present it using some rich user interface, then
offering the user resource containing all its data makes sense.

Take a much simpler case such as a user with an address. You may want to maintain
a proxy HTTP cache to keep representations of all users in its memory so that clients
can quickly access these representations. In this example, the representation of the user

2.2 How to Choose Resource Granularity | 31

resource that also includes the address may be too big to fit into the cache. Offering
the address of each user as a separate resource makes more sense, although it can make
client/server interactions chatty because of the reduced granularity.

Similarly, mapping database tables or object models in your application to resources
may not produce the best results. A number of factors, such as domain modeling and
allowing for efficient data access and processing, influence the design of database tables
and object models. HTTP clients, on the other hand, access resources over the network
using HTTP’s uniform interface. Therefore, you need to design resources to suit clients’
usage patterns and not design them based on what exists in a database or the object
model.

So, how can you determine nouns that are candidate resources? How granular should
you design them? The best way to answer these questions is to think from the client’s
perspective. In the first example shown previously, coarse granularity is more conven-
ient for rich-client applications, whereas in the second example, the resources are more
fine-grained to meet caching requirements. Therefore, look from the client and network
point of view to determine resource granularity. The following factors may further
influence resource granularity:

• Cacheablility

• Frequency of change

• Mutability

Refining resource granularity to ensure that more cacheable, less frequently changing,
or immutable data is separated from less cacheable, more frequently changing, or mu-
table data can improve the efficiency of both clients and servers.

2.3 How to Organize Resources into Collections
Organizing resources into collections gives clients and servers an ability to refer to a
group of a resources as one, to perform queries on the collection, or even to use the
collection as a factory to create new resources.

Problem
You want to know how best to group together resources that share some commonality.

Solution
Identify similar resources based on any application-specific criteria. Common examples
are resources that share the same database schema or the same set of attributes or
properties or look similar to clients. Group similar resources into a collection resource
for each similarity.

32 | Chapter 2: Identifying Resources

Design a representation for each collection such that it contains information about all
or some of its member resources (see Recipe 3.7).

Discussion
Once you group several similar resources under a collection resource, you can refer to
the group as a whole, as in the following example. You can, for instance, submit a
GET request to fetch an entire collection instead of fetching individual resources one
after the other.

Consider a social network, where all user records share the same database schema.
Each user in this network has a list of friends and a list of followers. Friends and fol-
lowers are other users in the same database. Users are categorized based on personal
interests, such as running, cycling, swimming, hiking, etc. In this example, you can
identify the following collections whose members are user resources:

• Collection of user resources

• Collection of friends of any given user

• Collection of followers of a given user

• Collections of users by the same interest

Here is an example of a users collection resource returned in response to a GET request
to that collection:

Request
GET /users HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<users xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:link rel="self" href="http://www.example.org/users"/>
 <user>
 <id>urn:example:user:001</id>
 <atom:link rel="self" href="http://www.example.org/user/user001"/>
 <name>John Doe</name>
 <email>john.doe@example.org</email>
 </user>
 <user>
 <id>urn:example:user:002</id>
 <atom:link rel="self" href="http://www.example.org/user/user002"/>
 <name>Jane Doe</name>
 <email>jane.doe@example.org</email>
 </user>
 ...
</users>

A collection resource

A member of the collection

2.3 How to Organize Resources into Collections | 33

Note that a collection does not necessarily imply hierarchical containment. A given
resource may be part of more than one collection resource. For example, a user resource
may be part of several collections such as “users,” “friends,” “followers,” and “hikers.”
Here is a friends collection for a user:

Request
GET /user/user001/friends HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<users xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:link rel="self" href="http://www.example.org/user/user001/friends"/>
 <user>
 <id>urn:example:user:002</id>
 <atom:link rel="self" href="http://www.example.org/user/user002"/>
 <name>Jane Doe</name>
 <email>jane.doe@example.org</email>
 </user>
 ...
</users>

You can use collection resources for the following:

• To retrieve paginated views of a collection, such as browsing through the friends
collection of a user, obtained 10 at a time (see Recipe 3.7).

• To search the collection for its members or to obtain a filtered view of the collection.
For instance, you could search for friends who are swimmers (see Recipe 8.2).

• To create new member resources using the collection as a factory, by submitting
HTTP POST requests to the collection resource.

• To perform the same operation on a number of resources at once (see Rec-
ipe 11.10).

2.4 When to Combine Resources into Composites
When you look at the home pages of sites like http://www.yahoo.com or http://www
.msn.com, you will notice that these pages aggregate information from a number of
sources, such as news, email, weather, entertainment, finance, etc. If you think of each
of these sources as resources, serving each of these home pages is a result of combining
those disparate resources into a single resource whose representation is an HTML page.
Such web pages are composite resources; i.e., they combine information from other
resources. This recipe uses the same technique to identify composite resources.

34 | Chapter 2: Identifying Resources

http://www.yahoo.com
http://www.msn.com
http://www.msn.com

Problem
You want to know how to provide a resource whose state is made up of states from
two or more resources.

Solution
Based on client usage patterns and performance and latency requirements, identify new
resources that aggregate other resources to reduce the number of client/server
round-trips.

Discussion
A composite resource combines information from other resources. Consider a snapshot
page for each customer in an enterprise application. This page shows the customer
information, such as the name, the contact information, a summary of the latest pur-
chase orders from the customer, and any pending requests for quotes. Using the recipes
discussed in this chapter so far, you can identify the following resources:

• Customer, with name, contact information, and other details

• Collection of purchase orders for each customer

• Collection of pending quotes for each customer

Given these resources, you can make the following GET requests and, using the respon-
ses, build a customer snapshot page:

Get the customer data
GET /customer/1234 HTTP/1.1
Host: www.example.org

Get the 10 latest purchase orders
GET /orders?customerid=1234&sortby=date_desc&limit=10 HTTP/1.1
Host: www.example.org

Get the 10 latest pending quotes
GET /quotes?customerid=1234&sortby=date_desc&status=pending&limit=10 HTTP/1.1
Host: www.example.org

Although this sequence of GET requests may be acceptable for the server, these requests
are very chatty. It may be more efficient for the client to send a single network request
for all the data needed to render the page.

For the customer snapshot page, you can design a “customer snapshot” composite
resource that combines all the information needed for the client to render the page.
Assign a URI of the form http://www.example.org/customer/1234/snapshot where
1234 is an identifier that identifies a customer. Here is an example of this resource in use:

Request
GET /customer/1234/snapshot HTTP/1.1
Host: www.example.org

2.4 When to Combine Resources into Composites | 35

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<snapshot xmlns:atom="http://www.w3.org/2005/Atom">
 <!-- Customer info -->
 <customer>
 <id>1234</id>
 <atom:link rel="self" href="http://www.example.org/customer/1234">
 <name>...</name>
 <address>...</address>
 </customer>
 <!-- Most 10 recent orders placed by the customer -->
 <orders>
 <atom:link rel="http://www.example.org/rels/orders/recent"
 href="http://www.example.org/orders?customerid=1234&sortby=date_desc&"/>
 <order>
 <id>...</id>
 ...
 </order>
 ...
 </orders>
 <!-- Most 10 pending quotes for the customer -->
 <quotes>
 <atom:link rel="http://www.example.org/rels/quotes/recent"
 href="http://www.example.org/quotes?customerid=1234&sortby=date_desc&"/>
 ...
 </quotes>
</snapshot>

This response is an aggregate of representations that the client would get by submitting
three GET requests.

Composite resources reduce the visibility of the uniform interface since their represen-
tations contain overlapping data with other resources. Therefore, before offering com-
posite resources, consider the following:

• If requests for composites are rare in your application, composites may be a poor
choice. The client may benefit from relying on a caching proxy to fetch those re-
sources from a cache instead.

• Another factor is the network cost between the client and the server and between
the server and any backend services or data stores it relies upon. If the cost of the
latter is significant, then retrieving large amounts of data and combing them on the
server into a composite may increase the latency for the client and reduce through-
put for the server.

In this case, you may be able to improve latency by adding a caching layer between
clients and servers and avoiding composites. Conduct load tests to verify whether
a composite would help.

36 | Chapter 2: Identifying Resources

• Finally, creating special-purpose composites for the sake of every client is not a
pragmatic task. Pick the clients that are most important for your web service, and
design composites to suit the needs of those clients.

2.5 How to Support Computing/Processing Functions
Processing functions are not uncommon. Websites like Babel Fish (http://babelfish.ya
hoo.com/), XE.com (http://www.xe.com/), and Google Maps (http://maps.google.com)
take some inputs, process them with the help of data stored in their backend servers
and some algorithms, and return results. These are all processing functions.

Problem
You want to know how to provide resource abstractions for tasks such as performing
computations or validating data.

Solution
Treat the processing function as a resource, and use HTTP GET to fetch a representation
containing the output of the processing function. Use query parameters to supply in-
puts to the processing function.

Discussion
One of the most common perceptions of REST’s architectural constraints is that they
only apply to resources that are “things” or “entities” in the application domain. Al-
though this may be true in a number of cases, scenarios that involve processing func-
tions challenge that perception. Here are some examples:

Distance between two places
A client submits latitude and longitude values of both the locations to the server.
The server then computes and returns the distance to the client.

Driving directions
A client submits two locations in free form, say, “Seattle, WA” and “San Francisco,
CA,” and the server returns the directions as a list of driving segments and turn
directions.

Validate a credit card
The client submits credit card data such as the name of the cardholder, card num-
ber, and expiry date to the server, and the server returns data to the client indicating
whether the card is valid.

All these examples share the same peculiarity. In each case, if you apply Recipe 2.1,
you will find nouns on which you cannot easily apply the uniform interface. For ex-
ample, if you identify each “place” as a resource, you will find that there is no HTTP
equivalent of the operation “compute distance.”

2.5 How to Support Computing/Processing Functions | 37

http://babelfish.yahoo.com/
http://babelfish.yahoo.com/
http://www.xe.com/
http://maps.google.com

One way to address such use cases is to treat the processing function itself as a resource.
In the first example, you can treat the distance calculator as a resource and the distance
as its representation. The following request and response illustrate this resource:

Request
GET /distance_calc?lats=47.610&lngs=-122.333&late=37.788&lnge=-122.406 HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<result xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:link rel="self"
 href="http://www.example.org/distance_calc?lats=47.610&
 lngs=-122.333&late=37.788&lnge=-122.406"/>
 <distance unit="miles">808.0</distance>
</result>

Similarly, “direction finder,” “points of interest finder,” and “credit card validator” can
all be resources with “directions,” “points of interest,” and “validation result” as rep-
resentations of those resources:

Request to find directions
GET /directions?from=Seattle,WA&to=San%20Francisco HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<directions>
 <step>
 ...
 </step>
 <step>
 ...
 </step>
</directions>

Request to find points of interest
GET /poi?lat=47.610&lng=-122.333 HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/atom+xml;charset=UTF-8

<atom:feed xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:title>Points of Interest</title>
 <atom:link href="http://www.example.org/poi?lat=47.610&lng=-122.333/" rel="self"/>
 <atom:updated>2009-10-01T18:30:02Z</atom:updated>
 <atom:author>
 <atom:name>All Names Made Up Inc.</atom:name>
 </atom:author>

38 | Chapter 2: Identifying Resources

 <atom:id>urn:uuid:60a76c80-d399-11d9-b93C-0003939e0af6</atom:id>
 <atom:entry>
 <atom:id>urn:example:poi:0012</atom:id>
 <atom:title>...</atom:title>
 <atom:updated>2009-09-13T18:30:02Z</atom:updated>
 <atom:link rel="alternate" href="http://www.example.org/poi/0012.html"/>
 <atom:content type="text">...</atom:content>
 </atom:entry>
 ...
</atom:feed>

Request to validate a credit card (sent via HTTPS)
GET /validate?ccnum=1234567890123456 HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: text/plain;charset=UTF-8

invalid

Because all these methods are safe and idempotent, GET is the most appropriate HTTP
method for implementing processing functions.

URIs such as https://www.example.org/validate appear to denote “op-
erations,” thus undermining the uniform interface. However, URIs
merely identify resources, and the syntax of URIs does not matter as far
as HTTP is concerned.

2.6 When and How to Use Controllers to Operate on Resources
In the case of RESTful web services, controllers can help increase the separation of
concerns between servers and clients, improve network efficiency, and let servers im-
plement complex operations atomically.

Problem
You want to know how to tackle write operations that involve modifying more than
one resource atomically, or whose mapping to PUT or DELETE is not obvious.

Solution
Designate a controller resource for each distinct operation. Let clients use the HTTP
method POST to submit a request to trigger the operation. If the outcome of the operation
is the creation of a new resource, return response code 201 (Created) with a Location
header referring to the URI of the newly created resource. If the outcome is the modi-
fication of one or more existing resources, return response code 303 (See Other) with
a Location with a URI that clients can use to fetch a representation of those modifica-
tions. If the server cannot provide a single URI to all the modified resources, return

2.6 When and How to Use Controllers to Operate on Resources | 39

response code 200 (OK) with a representation in the body that clients can use to learn
about the outcome. Handle errors as described in Recipe 3.13.

Discussion
A controller is a resource that can atomically make changes to resources. The need for
such a resource may not be apparent from your domain model, but it can help the server
abstract complex business operations and provide a way for clients to trigger those
operations. This in turn reduces coupling between clients and servers.

Consider merging two address books for a user. A client on the mobile phone needs a
way to synchronize all the contacts with the current address book on the server. One
option is to use PUT as follows:

1. Submit a GET request to the address book resource to download the complete ad-
dress book from the server.

2. Load the local list of contacts, and merge them with the address book downloaded
from the server.

3. Submit a PUT request to the address book resource to replace the entire address
book with the merged one.

This will do the job but with some limitations. For the client’s environment, down-
loading the entire address book and then merging it with the local list of contacts makes
the client’s use of the network inefficient. Moreover, some users may have very large
address books on the server, and not all fields in the address book may be relevant for
the client. The client may not have enough computing power for handling the merge
operation. More importantly, the application logic to merge entries in the address book
belongs to the server, not the client. Expecting clients to deal with this task results in
the duplication of code and poor separation of concerns.

Here is another option:

1. Get each address in the address book from the server.

2. If that address matches with an entry in the local storage, merge it, and update it
by submitting a PUT request.

3. If there is a new contact in the local storage that does not exist on the server, submit
a POST request to the address book to add it.

This approach has the additional drawback of network chattiness, which again is not
suitable for the client’s constrained environment such as a mobile phone.

A more effective solution is to employ a controller resource to solve this problem. For
this example, design a controller resource, and allow the client to submit the address
book to the server for a merge.

Request to merge an address book
POST /user/smith/address_merge HTTP/1.1
Host: www.example.org

40 | Chapter 2: Identifying Resources

Content-Type: text/csv;charset=UTF-8

John Doe, 1 Main Street, Seattle, WA
Jane Doe, 100 North Street, Los Angeles, CA
...

Response
HTTP/1.1 303 See Other
Location: http://www.example.org/user/smith/address_book
Content-Type: text/html;charset=UTF-8

<html>
 <body>
 <p>See address
 book for the merged address book.</p>
 </body>
</html>

After merging the address books, the server redirects the client to the user’s updated
address book. The client can fetch a copy of the merged address book, if necessary.

Here is another example. Consider a bookstore where a store operator wants to reduce
the pretax price of a book by 15 percent, and update the posttax price to reflect this
discount. The server can offer the discount percentage as a resource, and clients can
submit a PUT request to modify the current discount. The server can update the total
price of the book as part of the same request.

Request to update the discount value
PUT /book/1234/discount HTTP/1.1
Host: www.example.org
Content-Type: application/x-www-urlencoded

value=15

Response
HTTP/1.1 204 No Content

Now consider that the client wants to offer a 30-day free access to an online version of
the same book along with this 15 percent discount. The server can maintain a collection
of all books that are currently being offered in the 30-day free plan, and the client can
submit a POST request to add this particular book to that collection.

Request to add the book to the list of offers
POST /30dayebookoffers HTTP/1.1
Host: www.example.org
Content-Type: application/x-www-urlencoded

id=1234&from=2009-10-10&to=2000-11-10

Response
HTTP/1.1 201 Created
Location: http://www.example.org/30dayebookoffer/1234
Content-Length: 0

2.6 When and How to Use Controllers to Operate on Resources | 41

If your business case requires that these two changes be done atomically, you can em-
ploy a controller resource for this purpose.

Request to add a discount offer and 30-day free access
POST /book/1234/discountebookoffer HTTP/1.1
Host: www.example.org
Content-Type: application/x-www-urlencoded

id=1234&discount=15&ebook_from=2009-10-10&ebook_to=2000-11-10

Response
HTTP/1.1 303 See Other
Location: http://www.example.org/book/1234
Content-Length: 0

Request to get the updated book
GET /book/1234 HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<book xmlns:atom="http://www.w3.org/2005/Atom">
 <id>urn:example:book:1234</id>
 <atom:link rel="self" href="http://www.example.org/book/1234"/>
 ...
 <discount>15</discount>
 ...
 <atom:link rel="http://www.example.org/rels/offer"
 href="http://www.example.org/30dayebookoffer/1234"/>
 ...
</book>

In the response, the server includes a link to let clients discover the 30-day offer. If the
client is presenting a user interface to end users, it can provide a link to this offer for
users to navigate to.

The key point to notice from these examples is the difficulty you might find in mapping
operations in your application to the methods in the uniform interface. For example,
in the discount example, the server identifies the current discount value as a resource
so that clients can use PUT to update it. Similarly, the server identifies 30-day free elec-
tronic book offers as a collection and lets clients use POST to add a new book to this
collection. But when it comes to combining these two tasks into a single request, a
direct mapping to any HTTP method is not obvious. Controllers are most appropriate
in such cases.

For use cases like the previous one, do not use the method POST directly on the book
resource because it could lead to tunneling. Tunneling occurs whenever the client is
using the same method on a single URI for different actions. Here is an example of
tunneling:

42 | Chapter 2: Identifying Resources

Request to add a discount offer
POST /book/1234 HTTP/1.1
Host: www.example.org
Content-Type: application/x-www-urlencoded

op=updateDiscount&discount=15

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<book xmlns:atom="http://www.w3.org/2005/Atom">
 <id>urn:example:book:1234</id>
 <atom:link rel="self" href="http://www.example.org/book/1234"/>
 ...
 <discount>15</discount>
 ...
</book>

Request to add the book for 30-day offers
POST /book/1234 HTTP/1.1
Host: www.example.org
Content-Type: application/x-www-urlencoded

op=30dayOffer&ebook_from=2009-10-10&ebook_to=2000-11-10

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<book xmlns:atom="http://www.w3.org/2005/Atom">
 <id>urn:example:book:1234</id>
 <atom:link rel="self" href="http://www.example.org/book/1234"/>
 ...
 <atom:link rel="http://www.example.org/rels/offer"
 href="http://www.example.org/30dayebookoffer/1234"/>
</book>

In the requests, the parameters op=updateDiscount and op=30dayOffer signify the oper-
ation. This leads to tunneling.

Tunneling reduces protocol-level visibility (see Recipe 1.1) because the visible parts of
requests such as the request URI, the HTTP method used, headers, and media types
do not unambiguously describe the operation.

Avoid tunneling at all costs. Instead, use a distinct resource (such as a
controller) for each operation.

2.6 When and How to Use Controllers to Operate on Resources | 43

CHAPTER 3

Designing Representations

As far as clients are concerned, a resource is an abstract entity that is identified by a
URI. A representation, on the other hand, is concrete and real since that is what you
program to and operate upon in clients and servers.

Recall from Recipe 1.1 that HTTP provides an envelope format for representations in
requests and responses. Designing a representation involves (a) using that envelope
format to include the right headers, and (b) when there is a body for the representation,
choosing a media type and designing a format for the body. This chapter presents the
following recipes covering various aspects of representation design:

Recipe 3.1, “How to Use Entity Headers to Annotate Representations”
Use this to decide what entity headers to include when sending a representation.

Recipe 3.2, “How to Interpret Entity Headers”
Use this to decide how to interpret entity headers from a representation received.

Recipe 3.3, “How to Avoid Character Encoding Mismatch”
Use this recipe to learn about some precautions about character encoding
mismatch.

Recipe 3.4, “How to Choose a Representation Format and a Media Type”
Use this recipe to find the criteria to choose a representation format and a
media type.

Recipe 3.5, “How to Design XML Representations”
Use this recipe to decide the essential ingredients for XML-formatted
representations.

Recipe 3.6, “How to Design JSON Representations”
Use this recipe to learn how to design JSON-formatted representations.

Recipe 3.7, “How to Design Representations of Collections”
Refer to this recipe to learn about the conventions used to design representations
of collections.

Recipe 3.8, “How to Keep Collections Homogeneous”
Use this recipe to check for guidelines on how to keep collections easy to iterate.

45

Recipe 3.9, “How to Use Portable Data Formats in Representations”
Use this recipe to learn about interoperable ways to format numbers, dates, times,
currencies, etc., in representations.

Recipe 3.10, “When to Use Entity Identifiers”
Although URIs are unique identifiers of resources, sometimes using entity identi-
fiers can help improve interoperability. Use this recipe to learn why.

Recipe 3.11, “How to Encode Binary Data in Representations”
Sometimes you may have to deal with binary data. Use this recipe to learn how to
use multipart media types to encode binary data in representations.

Recipe 3.12, “When and How to Serve HTML Representations”
When you expect developers or end users to browse certain resources, support
HTML format for those resources.

Recipe 3.13, “How to Return Errors”
Errors are also representations, except that they reflect the error state of a resource.
Use this recipe to learn how to return error responses.

Recipe 3.14, “How to Treat Errors in Clients”
Use this recipe to learn how to implement clients to process errors.

3.1 How to Use Entity Headers to Annotate Representations
A representation is much more than just data serialized in a format. It is a sequence of
bytes and metadata that describes those bytes. In HTTP, representation metadata is
implemented as name-value pairs using entity headers. These headers are as important
as the application data itself. They ensure visibility, discoverability, routing by proxies,
caching, optimistic concurrency, and correct operation of HTTP as an application
protocol.

Problem
You want to know what HTTP headers to send in a request to a server or in a response
to a client.

Solution
Use the following headers to annotate representations that contain message bodies:

• Content-Type, to describe the type of the representation, including a charset pa-
rameter or other parameters defined for that media type.

• Content-Length, to specify the size in bytes of the body of the representation.

• Content-Language, to specify the language if you localized the representation in a
language.

• Content-MD5, to include an MD5 digest of the body of the representation when the
tools/software processing or storing representations may be buggy and need to

46 | Chapter 3: Designing Representations

provide consistency checks. Note that TCP uses checksums at the transport level
for consistency checking.

• Content-Encoding, when you encode the body of the representation using gzip,
compress, or deflate encoding.

• Last-Modified, to specify the last time the server modified the representation or
the resource.

Discussion
HTTP is designed such that the sender can describe the body (also called the entity
body or message body) of the representation using a family of headers known as entity
headers. With the help of these headers, recipients can make decisions on how to proc-
ess the body without looking inside the body. These headers also minimize the amount
of out-of-band knowledge and guesswork needed to parse the body.

Here is an example of a representation annotated:

Content-Type: application/xml;charset=UTF-8
Content-Language: en-US
Content-MD5: bbdc7bbb8ea5a689666e33ac922c0f83
Last-Modified: Sun, 29 Mar 2009 04:51:38 GMT

<user xmlns:atom="http://www.w3.org/2005/Atom">
 <id>user001</id>
 <atom:link rel="self" href="http://example.org/user/user001"/>
 <name>John Doe</name>
 <email>john@example.org</email>
</user>

Let’s now look at each of the headers.

Content-Type

This header describes the “type” of a representation and is more generally known as
the media-type or MIME type. Examples include text/html, image/png, application/
xml, and text/plain. These are all identifiers of the format used to encode the body of
the representation. Roughly speaking, a format is the way you encode information into
some medium, such as a file, a disk, or the network. XML, JSON, text, CSV, PDF, etc.
are formats. A media type identifies the format used and describes the semantics of
how to interpret the body of a representation. application/xml, application/json,
text/plain, text/csv, application/pdf, etc., are all media types.

This header informs the receiver of how to parse the data. For instance, if the value of
the header is application/xml or any value that ends with +xml, you can use an XML
parser to parse the message. If the value is application/json, you can use a JSON parser.
When this header is absent, all you are left with is guesswork about the nature of
the body.

3.1 How to Use Entity Headers to Annotate Representations | 47

Content-Length

Originally introduced in HTTP 1.0, the purpose of this header is to let the recipient of
a message know whether it has read the correct number of bytes from the connection.
To send this header, the sender needs to compute the size of the representation before
writing the body. HTTP 1.1 supports a more efficient mechanism known as chunked
transfer encoding. This makes the Content-Length header redundant. Here is a repre-
sentation using chunked encoding:

HTTP/1.1 200 OK
Last-Modified: Thu, 02 Apr 2009 02:32:28 GMT
Content-Type: application/xml;charset=UTF-8
Transfer-Encoding: chunked

FF
[some bytes here]

58
[some bytes here]
0

Include the Content-Length if the client does not support HTTP 1.1.

For POST and PUT requests, even if you are using Transfer-Encoding:
chunked, include the Content-Length header in requests from client ap-
plications. Some proxies reject POST and PUT requests that contain nei-
ther of these headers.

Content-Language

Use this header when the representation is localized for a specific language. The value
of this header is a two-letter RFC 5646 language tag, optionally followed by a hyphen
(-) and any two-letter country code. Here is an example:

Response
HTTP/1.1 200 OK
Content-Language: kr

<address type="work">
 <street-address>강남구 삼성동 144-19,20번지 JS타워</street-address>
 <locality>서울특별시</locality>
 <postal-code>135-090</postal-code>
 <country-name>대한민국</country-name>
 <country-code>KR</country-code>
</address>

Content-MD5

Recipients can use this header to validate the integrity of entity body. The value of this
header is an MD5 digest of the body of the representation computed after applying the
content encoding (gzip, compress, etc.) but before applying the transfer encoding (e.g.,
chunked encoding).

48 | Chapter 3: Designing Representations

Since this header does not guarantee that the message has not been
tampered with, do not use this header as a measure of security. Whoever
altered the body can also update the value of this header.

This header can be useful when sending or receiving large representations over poten-
tially unreliable networks. When the sender of a representation includes the Content-
MD5 header, the recipient can verify the integrity of the message before attempting to
parse it.

Content-Encoding

The presence of this header indicates the type of compression applied to the body of
the representation. The value of this header is a string like gzip, compress, or deflate.
Here is a gzip-encoded representation:

Content-Type: application/xml;charset=UTF-8
Content-Language: en-US
Content-MD5: b7c50feb215b112d3335ad0bd3dd88c1
Content-Encoding: gzip
Last-Modified: Sun, 29 Mar 2009 04:51:38 GMT

... gzip encoded bytes ...

The recipient of this message needs to decompress this message before parsing the body.

Clients can indicate their preference for Content-Encoding using the Accept-Encoding
header (see Chapter 7 for more details). However, there is no standard way for the client
to learn whether a server can process representations compressed in a given encoding.

Unless you know out of band that the target server supports a particular
encoding method, avoid using this header in HTTP requests.

Last-Modified

This header applies for responses only. This value of this header is the timestamp of
the last time the server modified the representation of the resource. We will discuss this
header in Chapter 9.

3.2 How to Interpret Entity Headers
When a server or client receives a representation, correctly interpreting entity headers
before processing a request is vital. This recipe discusses how to interpret a represen-
tation from the headers included.

3.2 How to Interpret Entity Headers | 49

Problem
You want to know how to interpret the entity headers included in a representation,
and how to process the representation using those headers.

Solution
Content-Type

When you receive a representation with no Content-Type, avoid guessing the type
of the representation. When a client sends a request without this header, return
error code 400 (Bad Request). When you receive a response without this header
from a server, treat it as a bad response.

Content-Length
Do not check for the presence of the Content-Length header in a representation you
receive without first confirming the absence of Transfer-Encoding: chunked.

Content-Encoding
Let your network library deal with uncompressing compressed representations.

Content-Language
Read and store the value of this header, if present, to record the language used.

Discussion
In most cases, client applications need only deal with checking the Content-Type header
and character encoding to determine how to parse the body of a representation. Client-
side HTTP libraries must be able to deal with Content-Encoding transparently.

Some software applications assume that the Content-Length header must always be
present and reject representations that do not contain this header. This is an incorrect
assumption. If you must determine the message length before processing a request or
a response in your code, follow the procedure outlined in Section 4.4 of RFC 2616.

Make sure to process representations in responses based on the values of the Content-
Type, Content-Language, and Content-Encoding headers. For instance, just because the
client sent an Accept: application/json header or because the URI for the resource
ends with .json, don’t assume the response will be JSON formatted. See Recipe 7.1 for
how to inform the server of what types of representations the client can process.

3.3 How to Avoid Character Encoding Mismatch
Character encoding mismatch between the sender and receiver of a representation
usually results in data corruption and often in parse errors.

50 | Chapter 3: Designing Representations

Problem
You want to know how to ensure that the characters in your representations are inter-
preted correctly by the recipients.

Solution
When sending a representation, if the media type allows a charset parameter, include
that parameter with a value of the character encoding used to convert characters into
bytes.

When you receive a representation with a media type that supports the charset pa-
rameter, use the specified encoding when constructing a character stream from bytes
in the body of the representation. If you ignore the sender-supplied charset value and
use some other value, your applications may misinterpret the characters.

If you receive an XML, JSON, or HTML representation with a missing charset param-
eter, let your XML, JSON, or HTML parsers interpret the character set by inspecting
the first several bytes as per algorithms outlined in specifications of those formats.

Discussion
Text and XML media types such as application/xml, text/html, application/atom
+xml, and text/csv let you specify the character encoding used to convert characters
into bytes in the entity body via a charset parameter of the Content-Type header. Here
is an example:

Content-Type: application/xml;charset=UTF-8

The JSON media type application/json does not specify a charset parameter but uses
UTF-8 as the default encoding. RFC 4627 specifies ways to determine the character
encoding of JSON-formatted data.

Errors due to character encoding mismatch can be hard to detect. For instance, when
a sender uses UTF-8 encoding to encode some text into bytes and the recipient uses
Windows-1252 encoding to decode those bytes into text, you will not detect any issues
as long as the characters the sender used have the same code values in both the encod-
ings. For instance, a phrase such as “Hello World” will appear the same on both sides,
but a phrase such as “2 €s for an espresso?” will appear as “2 ?Ǩs for an
espresso?” because of differences between these encodings.

Such mismatch is described by the term Mojibake. See http://en.wikipe
dia.org/wiki/Mojibake for more examples.

3.3 How to Avoid Character Encoding Mismatch | 51

http://en.wikipedia.org/wiki/Mojibake
http://en.wikipedia.org/wiki/Mojibake

Another common way to introduce a character encoding mismatch in XML represen-
tations is to report one encoding in the Content-Type header and report another in the
body as in the following example:

Content-Type: application/xml; charset=UTF-8

<?xml version="1.0" encoding="ISO-8859-1"?>
<user> ... </user>

UTF-8 declared in the Content-Type header

ISO-8859-1 declared in the prolog of the XML document

In this case, if you ignore supplying the encoding from the charset parameter (UTF-8)
to the XML parser, the parser will attempt to determine the character encoding from
the prolog and will find it as ISO-8859-1. This will cause the recipient to misinterpret
the characters in the body.

Also avoid using the text/xml media type for XML-formatted representations. The de-
fault charset for text/xml is us-ascii, whereas application/xml uses UTF-8.

3.4 How to Choose a Representation Format and a Media Type
This may be one of the first questions to come to mind when designing a RESTful web
service. However, no single format may be right for all kinds of resources and repre-
sentations. Picking up a format like JSON or XML for all representations may reduce
the flexibility that HTTP has to offer.

Problem
You want to know how to choose a format and a media type for representations.

Solution
Keep the choice of media types and formats flexible to allow for varying application
use cases and client needs for each resource.

Determine whether there is a standard format and media type that matches your use
cases. The best place to start your search is the Internet Assigned Numbers Authority
(IANA, http://www.iana.org/assignments/media-types/) media type registry.

If there is no standard media type and format, use extensible formats such as XML
(application/xml), Atom Syndication Format (application/atom+xml), or JSON
(application/json).

Use image formats like image/png or rich document formats like application/vnd.ms-
excel or application/pdf to provide alternative representations of data. When using
such formats, consider adding a Content-Disposition header, as in

52 | Chapter 3: Designing Representations

http://www.iana.org/assignments/media-types/

Content-Disposition: attachment; filename=<status.xls> to give a hint of the file-
name that the client could use to save the representation to the filesystem.

Prefer to use well-known media types for representations. If you are designing a new
media type, register the format and media type with IANA by following the procedure
outlined in RFC 4288.

Discussion
HTTP’s message format is designed to allow different media types and formats for
requests and responses. Some resources may require XML-formatted representations,
others may require HTML representations, while still others may require PDF-format-
ted representations. Similarly, some resources can process application/x-www-form-
urlencoded but return XML-formatted representations in response. Leaving room for
such flexibility is a vital part of designing representations. For instance, a system man-
aging customer accounts may need to provide a variety of media types and formats.

• An XML-formatted representation for each customer account

• An Atom feed of all new customers

• Customer trends presented as a spreadsheet

• HTML pages for summary of each customer

When it comes to format and media type selection, the rule of thumb is to let the use
cases and the types of clients dictate the choice. For this reason, it is important not to
pick up a development framework that rigidly enforces one or two formats for all re-
sources with no flexibility to use other formats.

Using standard or well-known media types

When selecting a format and a media type for representations, first check whether there
is a standard or well-known format and media type that matches your use cases. The
IANA media type registry lists media types by primary types such as text and
application and subtypes such as plain, html, and xml and provides additional refer-
ences to the media type and the underlying format. For example, at http://www.iana
.org/assignments/media-types/application/, you will find that RFC 4627 defines the me-
dia type application/json. If you decide to use JSON as a format for your representa-
tions, that is the document to consult to learn the semantics of this format. Table 3-1
lists some commonly used standard or well-known media types.

Table 3-1. Well-known/standard media types

Media types Format Reference

application/xml Generic XML format RFC 3023

application/*+xml Special-purpose media types using the XML format RFC 3023

application/atom+xml An XML format for Atom documents RFC 4287 and RFC 5023

3.4 How to Choose a Representation Format and a Media Type | 53

http://www.iana.org/assignments/media-types/application/
http://www.iana.org/assignments/media-types/application/

Media types Format Reference

application/json Generic JSON format RFC 4627

application/javascript JavaScript, for processing by JavaScript-capable clients RFC 4329

application/x-www-form-urlencoded Query string format HTML 4.01

application/pdf PDF RFC 3778

text/html Various versions of HTML RFC 2854

text/csv Comma-separated values, a generic format RFC 4180

In this table, the first column specifies the media type, whereas the second one specifies
the format used by the media type. The generic formats in this table have no application-
specific semantics. For example, an XML-formatted representation for a customer
account resource will have widely different semantics than, say, an XML-formatted
representation for a purchase order resource. In this example, it is up to the server to
define the semantics of various XML elements in these representations.

A customer representation
Content-Type: application/xml;charset=UTF-8

<customer>
 <id>urn:example:customer:cust001</id>
 ...
</customer>

A purchase customer representation
Content-Type: application/xml;charset=UTF-8

<po>
 <id>urn:example:po:po001</id>
 ...
</po>

On the other hand, specialized formats such as Atom, PNG, HTML, and PDF have
concrete semantics specified by the respective RFCs or other documents listed in Ta-
ble 3-1. Take, for example, the following HTML representation of a customer:

A customer representation
Content-Type: text/html;charset=UTF-8

<html>
 <head>
 <title>Customer Xyz</title>
 </head>
 <body>
 ...
 </body>
</html>

54 | Chapter 3: Designing Representations

The HTML specifications describe the semantics of this representation. If you decide
to use a generic format such as XML or JSON, you should document the semantics of
the representations in as much detail as possible.

Introducing new formats and media types

You can design completely new textual or binary formats with application-specific rules
for encoding and decoding data, and you can assign new media types for those formats.
For instance, you can assign the media type application/vnd.example.customer+xml for
the XML format used for customer account resource. Here vnd stands for “vendor,”
implying that this is a vendor/implementation-specific media type:

A customer representation
Content-Type: application/vnd.example.customer+xml;charset=UTF-8

<customer>
 <id>urn:example:customer:cust001</id>
 ...
</customer>

In this case, by looking at the Content-Type header and without parsing the XML, any
software that is aware of this media type can recognize that this is a customer account
representation. The following two things may motivate the introduction of such new
media types:

New formats
In some cases, your application data may be specialized and significantly differs
from any existing related media types. Examples include new audio, video, or
document formats or binary formats for encoding data.

Visibility
As shown in the previous example, application-specific media types promote vis-
ibility as long as such media types are widely supported.

If you choose to create new media types of your own, consider the following guidelines:

• If the media type is XML based, use a subtype that ends with +xml.

• If the media type is for private use, use the subtype starting with vnd.. For example,
you can use a media type such as application/vnd.example.org.user+xml. This is
another convention used by some application-specific media types.

• If the media type is for public use, register your media type with IANA as per
RFC 4288.

Note that new media types that are not widely recognized may reduce interoperability
with clients as well as tools such as proxies, log file analyzers, monitoring software, etc.

Avoid introducing new application-specific media types unless they are
expected to be broadly used. Proliferation of new application-specific
media types may impede interoperability.

3.4 How to Choose a Representation Format and a Media Type | 55

Although custom media types improve protocol-level visibility, existing protocol-level
tools for monitoring, filtering, or routing HTTP traffic pay little or no attention to media
types. Hence, using custom media types only for the sake of protocol-level visibility is
not necessary.

3.5 How to Design XML Representations
For representations that are application specific, such as a customer profile or a pur-
chase order, it is natural to include application data in representations. In addition, in
order to make representations in your web service consistent with each other and to
improve the usability of those representations, it is essential that you include certain
additional details in each representation.

Problem
You want to know what data to include in XML-formatted representations.

Solution
In each representation, include a self link (i.e., a link with the link relation type self)
to the resource (see Chapter 5), and include identifiers for each of the application do-
main entities that makes up a resource (Recipe 3.10).

If part of the representation contains natural-language text, add xml:lang attributes
indicating the language that the contents of that element are localized in.

Discussion
Including common elements such as identifiers and links in all representations makes
it easier for clients and servers to process requests and generate responses. For instance,
the self link can help clients know the URI for the representation, and clients can use
that as an identifier for the resource.

The self link serves the same purpose as the request URI when the response contains
the representation of the resource at that URI, or as the Content-Location header when
the representation in the response does not correspond to the resource at the request
URI. For instance, in the first request shown here, the request URI corresponds to the
location of the resource for the response in the representation. In the second request,
the Content-Location provides the URI of the resource:

Request
GET /user/smith/address/0 HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

56 | Chapter 3: Designing Representations

<address>
 <id>urn:example:user:smith:address:0</id>
 <atom:link rel="self" href="http://www.example.org/user/smith/address/0"/>
 <street>1, Olympia Dr</street>
 <city>Some City</city>
</address>

Second request to create a resource
POST /user/smith HTTP/1.1
Host: www.example.org
Content-Type: application/xml;charset=UTF-8

<address>
 <street>1, Main Street</stret>
 <city>Some City</city>
</address>

Response
HTTP/1.1 201 Created
Location: http://www.example.org/user/smith/address/1
Content-Location: http://www.example.org/user/smith/address/1
Content-Type: application/xml;charset=UTF-8

<address>
 <id>urn:example:user:smith:address:1</id>
 <atom:link rel="self" href="http://www.example.org/user/smith/address/1"/>
 <street>1, Main Street</street>
 <city>Some City</city>
</address>

Including self links in the body of the representation may be useful when
the code used for processing the body does not have access to the request
URI or the response headers.

For representations that contain data localized in more than one language, the Content-
Language header is not sufficient. In such cases, include language tags directly to
the body of the representation. Here is an example, adapted from the XML 1.0
specification:

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8
Content-Language: en

<content>
 <text>The quick brown fox jumps over the lazy dog.</text>
 <text xml:lang="en-GB">What colour is it?</text>
 <text xml:lang="en-US">What color is it?</text>
 <text xml:lang="de">
 <p>Habe nun, ach! Philosophie,</p>
 <p>Juristerei, und Medizin</p>

3.5 How to Design XML Representations | 57

 <p>und leider auch Theologie</p>
 <p>durchaus studiert mit heißem Bemüh'n.</p>
 </text>
</content>

Text in the default language for the representation, as specified by the Content-
Language header

Text in the en-GB language

Text in the en-US language

Text in all the child elements in the de language

3.6 How to Design JSON Representations
JSON is a JavaScript-based data format. Like XML, it is a general-purpose, human-
readable, and extensible format. In languages like JavaScript and PHP, parsing JSON
structures is easier than parsing XML. Most web services that are consumed by browser-
based clients often prefer JSON over representation formats.

Problem
You want to know what data to include in JSON-formatted representations.

Solution
In each representation, include a self link to the resource (see Recipe 5.2), and include
identifiers for each of the application domain entities that make up resource (Rec-
ipe 3.10).

If an object in the representation is localized, add a property to indicate the language
its contents are localized in.

Discussion
The approach presented in this recipe is similar to that of XML (Recipe 3.5). Here is
an example of a representation of a person resource:

{
 "name" : "John",
 "id" : "urn:example:user:1234",
 "link" : {
 "rel : "self",
 "href" : "http://www.example.org/person/john"
 },
 "address" : {
 "id" : "urn:example:address:4567",
 "link" : {
 "rel : "self",
 "href" : "http://www.example.org/person/john/address"
 }

58 | Chapter 3: Designing Representations

 ...
 }
}

When the Content-Language header does not sufficiently describe the locale of the rep-
resentation, add a property to express the language, as in the following example:

{
 "content" : {
 "text" : [{
 "value" : "The quick brown fox jumps over the lazy dog."
 },
 {
 "lang" : "en-GB",
 "value" : "What colour is it"
 },
 {
 "lang" : "en-US",
 "value" : "What color is it"
 }
]
 }
}

3.7 How to Design Representations of Collections
Clients use collections to iterate through its members. Since some collections contain
a large number of member resources, clients need a way to paginate/scroll through the
collection.

Problem
You want to know what to include in representations of collection resources.

Solution
Include the following in each collection representation:

• A self link to the collection resource

• If the collection is paginated and has a next page, a link to the next page

• If the collection is paginated and has a previous page, a link to the previous page

• An indicator of the size of the collection

Discussion
A collection resource is like any other resource except that, in some case, it contains a
large number of members. When a server returns only a subset of members in the
representation of a collection, the server should also provide links to allow the client
to paginate through all the members. Here is a collection resource containing several
articles:

3.7 How to Design Representations of Collections | 59

Request
GET /articles?contains=cycling&start=10 HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8
Content-Language: en

<articles total="1921" xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:link rel="self"
 href="http://www.example.org/articles?contains=cycling&start=10"/>
 <atom:link rel="prev"
 href="http://www.example.org/books?contains=cycling"/>
 <atom:link rel="next"
 href="http://www.example.org/books?contains=cycling&start=20"/>
 <article>
 <atom:link rel="self"
 href="http://www.nytimes.com/2009/07/15/sports/cycling/15tour.html"/>
 <title>For Italian, Yellow Jersey Is Fun While It Lasts</title>
 <body>...</body>
 </article>
 <article>
 <atom:link rel="alternate"
 href="http://www.nytimes.com/2009/07/27/sports/cycling/27tour.html"/>
 <title>Contador Wins, but Armstrong Has Other Victory</title>
 <body>...</body>
 </article>
 ...
</articles>

A link to the collection itself

A link to the previous page

A link to the next page

This representation is the result of searching a large collection of news articles. This
representation has three links—a link with the self relation type to get the represen-
tation itself, a link with the prev relation type to get the previous 10 articles, and another
link with the next relation type to get the next 10 articles. Clients can use these links
to navigate through the entire collection.

The total attribute gives the client an indication of the number of members in the
collection.

Although the size of the collection is useful for building user interfaces,
avoid computing the exact size of the collection. It may be expensive to
compute, volatile, or even confidential for your web service. Providing
a hint is usually good enough.

60 | Chapter 3: Designing Representations

At the HTTP level, each page is a different resource. This is because each page of results
in this example has a different URI such as http://www.example.org/books?contains=
cycling and http://www.example.org/books?contains=cycling&start=10.

3.8 How to Keep Collections Homogeneous
Depending on use cases, you can group resources into collections by using similarities.
However, no matter what criteria you choose for any collection, it is important to keep
the representation homogeneous so that it is easy to use by clients.

Problem
You want to know how to design a representation format for a collection whose mem-
bers don’t completely look alike.

Solution
Design the representation of the collection such that members in a collection are struc-
turally and syntactically similar.

Discussion
When designing a representation format for the collection, include only the homoge-
neous aspects of its member resources. For instance, if your collection of products can
contain cars, boats, and motorcycles, include just the product-specific details of those
resources in the product collection. Note that collections are meant for grouping re-
sources that are similar in some sense, and when you include resource-specific infor-
mation that is not common across other resources within the same collection, it usually
is a result of poor abstraction. Here is an example of such a poor abstraction:

<!-- Avoid this -->
<products xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:link rel="self" href="http://www.example.org/catalog/products"/>
 <!-- The first member is an automobile. -->
 <automobile>
 <id>9001</id>
 <atom:link rel="self" href="http://www.example.org/catalog/product/9001"/>
 <make>Smart</make>
 <model>Fortwo Convertible</model>
 <year>2009</year>
 <class classid="small">Small Car</class>
 <mpg>
 <city>33</city>
 <highway>41</highway>
 </mpg>
 <drivetrain>2WD</drivetrain>
 <list-price currency="USD">19495</list-price>
 </automobile>
 <!-- The second member is a boat! -->
 <sailboat>

3.8 How to Keep Collections Homogeneous | 61

 <id>10101</id>
 <atom:link rel="self" href="http://www.example.org/catalog/product/10101"/>
 <make>Jeanneau</make>
 <model>Sunfast 3200</model>
 <year>2008</year>
 <length unit="ft">32</length>
 <hull-type>fiberglass</hull-type>
 <number-of-engines>1</number-of-engines>
 <list-price currency="USD">95995</list-price>
 </sailboat>
</products>

In this example, although the automobile and sailboat share common properties, they
have properties that are specific to each product. For a client application iterating over
such a collection, those specific properties may not make sense, and clients may not be
able to cope with such a representation. Consider avoiding such representations, and
keep the representation of collections homogeneous, as in the following:

<products xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:link rel="self" href="http://www.example.org/catalog/products"/>
 <product type="automobile">
 <id>9001</id>
 <atom:link rel="self" href="http://www.example.org/catalog/product/9001"/>
 <make>Smart</make>
 <model>Fortwo Convertible</model>
 <year>2009</year>
 <list-price currency="USD">19495</list-price>
 </product>
 <product type="sailboat">
 <id>10101</id>
 <atom:link rel="self" href="http://www.example.org/catalog/product/10101"/>
 <make>Jeanneau</make>
 <model>Sunfast 3200</model>
 <year>2008</year>
 <list-price currency="USD">95995</list-price>
 </product>
</products>

This homogeneous form is more convenient for the client than the previous example.

3.9 How to Use Portable Data Formats in Representations
There are a number of ways to encode dates, times, countries, numbers, and time zones
in representations. For instance, you can format date-time values as using the Unix
date format, Unix epoch time, or plain MM-DD-YYYY and DD-MM-YYYY formats.
Most date-time formats require clock synchronization between clients and servers or
depend on local time. These formats cause interoperability problems because of dif-
ferences in clocks, time zones, or even daylight saving time. Similarly, currency and
number formats vary from country to country, and representations designed for audi-
ences in one country may not interoperate with clients or servers in another country
unless you use portable data formats.

62 | Chapter 3: Designing Representations

Problem
You want to know the appropriate formats to choose for dates, times, numbers, cur-
rencies, etc.

Solution
Except when the text is meant for presentation to end users, avoid using language-,
region-, or country-specific formats or format identifiers. Instead, use the following
portable formats:

• Use decimal, float, and double datatypes defined in the W3C XML Schema for
formatting numbers including currency.

• Use ISO 3166 codes for countries and dependent territories.

• Use ISO 4217 alphabetic or numeric codes for denoting currency.

• Use RFC 3339 for dates, times, and date-time values used in representations.

• Use BCP 47 language tags for representing the language of text.

• Use time zone identifiers from the Olson Time Zone Database to convey time
zones.

Discussion
Choosing portable formats for data eliminates interoperability errors. See examples
below for some commonly used formats. Note that your application domain may in-
volve additional types of data not included here. Look for industry- or domain-specific
standards before inventing your own.

Numbers

The formats specified by the XML Schema for numbers are language and country in-
dependent and hence are portable:

123.456 +1234.456 -1234.456 -.456, 123.

However, formats like the following are not portable:

1,234,567 12,34,567 1,234

Countries and territories

ISO 3166-1, the first part of ISO 3166, specifies two-letter country codes such as US for
the United States, Dk for Denmark, IN for India, etc.

ISO 3166-2, the second part of ISO 3166, specifies codes for subdivisions of countries
such as states and provinces. Examples include US-WA, US-CO, CA-BC, IN-AP, etc.

3.9 How to Use Portable Data Formats in Representations | 63

Currencies

ISO 4217 specifies three-letter currency codes for names of currencies. The first two
letters of these codes represent ISO 3166-1 two-letter country codes, and the third letter
is usually the initial for the currency. Examples include USD for the U.S. dollar, CAD for
the Canadian dollar, and DKK for the Danish krone. These codes represent revaluation
and changes in currencies. Using these codes with currency values removes ambiguity
with currency names such as “dollar” or symbols such as $.

Dates and times

RFC 3339 is a profile of ISO 8601, which is a standard for representing dates and times
using the Gregorian calendar. RFC 3339–formatted dates, times, and date-time values
have the following characteristics:

• You can compare two values by sorting them as strings.

• This format is human readable.

• Dates can use either Coordinated Universal Time (UTC) or an offset from the UTC,
thus avoiding issues related to time zones and daylight saving time.

Here are some examples of properly formatted date, time, and date-time values:

2009-09-18Z
23:05:08Z
2009-09-18T23:05:08Z
2009-09-18T23:05:08-08:00

The date, time, and dateTime datatypes in the W3C XML Schema follow RFC 3339,
and you can use libraries that support these datatypes to read and parse these values.

Language tags

BCP stands for “best current practice.” BCP 47 currently refers to RFC 5646 and RFC
5645 that define values of language tags such as the HTML lang attribute and XML
xml:lang attribute. Examples include en for English, en-CA for Canadian English, and
ja-JP for Japanese as used in Japan.

Time zone identifiers

The Olso Time Zone Database provides a uniform convention for time zone names and
contains data about time zones. This database accounts for time zones, seasonal
changes such as daylight saving time, and even historical time zone changes. Most
programming languages support time zone classes/utilities that support this database.
Examples include Java’s java.util.Timezone, Ruby’s TZInfo, Python’s tzinfo, and C#’s
System.TimeZoneInfo.

64 | Chapter 3: Designing Representations

3.10 When to Use Entity Identifiers
For RESTful web services, URIs are the unique identifiers for resources. However, ap-
plication code usually has to deal with identifiers of domain entities. When a client or
a server is part of a larger heterogeneous set of applications, information from resources
may cross several system boundaries, and entity identifiers can be used to cross-
reference or transform data.

Problem
You want to know when to include entity identifiers in representations along with
resource URIs.

Solution
For each of the application domain entities included in the representation of a resource,
include identifiers formatted as URNs.

Discussion
Although URIs uniquely identify resources, entity identifiers come in handy for the
following:

• When your clients and servers are part of a larger environment containing appli-
cations using RPC, SOAP, asynchronous messaging, stored procedures, and even
third-party applications, entity identifiers may be the only common denominator
across all those systems to provide the identity of data uniformly.

• Clients and servers can maintain their own stored copies of entities included in a
resource without having to decode from resource URIs or having to use URIs as
database keys. Although not ideal, URIs may change. Clients can use these iden-
tifiers to cross-reference various entities referred to from different representations.

• When not all entities in your application domain are mapped to resources, entity
identifiers can help provide uniqueness for data contained in representations.

Even if you mapped all the entities in your application to resources with unique URIs,
including entity identifiers in representations will future-proof your application when
it needs to integrate with non-HTTP web services. To maintain the uniqueness of iden-
tifiers, consider formatting identifiers as URNs.

Here is an example, where the database identifier of the user resource is 1234 and that
of the user’s address is 4567:

<person xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:link rel="self" href="http://example.org/person/john"/>
 <id>urn:example:user:1234</id>
 <name>John Doe</name>
 <address>
 <id>urn:example:address:4567</id>

3.10 When to Use Entity Identifiers | 65

 <street>1 Main Street</street>
 <city>Seattle</city>
 <state>WA</state>
 </address>
</person>

3.11 How to Encode Binary Data in Representations
Not every representation can completely rely on textual formats such as XML and
JSON. Some representations may need to contain binary data within textual represen-
tations. Examples include a video preview of a movie in a movie catalog or some image
cover art of a representation of an audio sample in a music store.

Problem
You want to know how to encode binary data in representations that also contain
textual data.

Solution
Use multipart media types such as multipart/mixed, multipart/related, or multipart/
alternative. Avoid encoding binary data within textual formats using Base64
encoding.

Discussion
Multipart messages give you the ability to combine dissimilarly formatted data into one
single HTTP message. A multipart message is a message containing several message
parts each separated by a boundary. Each part can contain a message of a different
media type. Here is an example:

Content-type: multipart/mixed; boundary="abcd"

--abcd
Content-Type: application/xml;charset=UTF-8

<movie> ... </movie>
--abcd
Content-type: video/mpeg

... image here ...

--abcd--

This multipart message has two parts, one containing an XML document and the other
containing a video. Consider one of the multipart media types listed in Table 3-2 for
such use cases.

66 | Chapter 3: Designing Representations

Table 3-2. Using multipart media types

Media type Usage

multipart/
form-data

To encode name-value pairs of data mixed with parts containing data of arbitrary media types. The usage
is the same as you would use to upload files using HTML forms.

multipart/
mixed

To bundle several parts of arbitrary media types. In the previous example, the multipart message combined
the metadata of a movie represented as application/xml and the video as video/mpeg into a
single HTTP message.

multipart/
alternative

Use this when sending alternative representations of the same resource using different media types. The
best example for this media type is sending email as plain text (media type text/plain) and HTML
(media type text/html).

multipart/
related

Use this when the parts are interrelated and you need to process the parts together. The first part is the
root part and can refer to various other parts via a Content-ID header.

Creating and parsing multipart messages in some programming lan-
guages may be cumbersome and complex. As an alternative, instead of
including binary data in representations, provide a link to fetch the bi-
nary data as a separate resource. For instance, in the previous example,
you can provide a link to the video.

3.12 When and How to Serve HTML Representations
HTML is a popular hypermedia format, and with browsers as universal clients, users
can interact with HTML representations without any application-specific logic imple-
mented in browsers. Moreover, you can use JavaScript and HTML parsers to extract
or infer data from HTML. This recipe discusses the pros and cons and when HTML
may be appropriate.

Problem
You want to know if you must design HTML representations along with XML or JSON-
formatted representations, and if so, how.

Solution
For resources that are expected to be consumed by end users, provide HTML repre-
sentations. Avoid designing HTML representations for machine clients. To enable web
crawlers and such software, use microformats or RDFa to annotate data within the
markup.

Discussion
HTML is widely understood and supported by client software such as browsers, HTML
parsers, authoring tools, and generating tools. It is also self-describing, enabling users
to use any HTML-compliant client to interact with servers. This makes it a suitable

3.12 When and How to Serve HTML Representations | 67

format for human consumption. For instance, consider the following XML-formatted
representation of a resource:

<person xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:link rel="self" href="http://example.org/person/john"/>
 <id>urn:example:user:1234</id>
 <name>John</name>
 <address>
 <atom:link rel="self" href="http://example.org/person/john"/>
 <id>usr:example:address:4567</id>
 <street>1 Main Street</street>
 <city>Seattle</city>
 <state>WA</state>
 </address>
</person>

You can design the following equivalent HTML representation (without any CSS styles,
for the sake of simplicity) for the same resource:

<html>
 <head>
 <title>John</title>
 <link rel="self" href="http://example.org/person/john"/>
 </head>
 <body>
 <h1>John</h1>
 <div>
 <div>1 Main Street</div>
 <div>Seattle</div>
 <div>WA</div>
 </div>
 </body>
</html>

When offering some or all of your representations as HTML documents, consider an-
notating HTML with microformats or RDFa. Doing so allows web crawlers and such
software to extract information from your HTML documents without depending on
the structure of your HTML documents. Here is an example of the previous HTML
representation annotated with the hcard microformat (http://microformats.org/wiki/
hcard):

<html>
 <head>
 <title>John</title>
 </head>
 <body>
 <h1 class="fn">John</h1>
 <div class="vcard">
 <div class="adr">
 <div class="street-address">1 Main Street</div>
 <div class="locality">Seattle</div>
 <div><abbr class="region" title="Washington">WA</abbr></div>
 </div>
 </div>

68 | Chapter 3: Designing Representations

http://microformats.org/wiki/hcard
http://microformats.org/wiki/hcard

 </body>
</html>

Microformats use HTML class attributes to annotate various HTML elements so that
HTML-aware clients can interpret the semantics of those elements. The hcard micro-
format is a mapping of the vcard format (RFC 2426) to HTML. The vcard format is an
interoperable standard for representing addresses. The hcard microformat specifies
several CSS class names. The previous example uses the class name fn for the name,
adr for the address, street-address for street names, locality for location names, and
region for regions such as states.

Any microformat-capable HTML parser can interpret the address from this HTML
document. Adding this format need not affect the rendering of the document in brows-
ers since microformats use the class attribute to extend HTML.

You can similarly use RDFa:

<html>
 <head>
 <title>John</title>
 </head>
 <body>
 <div xmlns:v="http://www.w3.org/2001/vcard-rdf/3.0#"
 about="http://example.org/person/john">
 <h1 property="v:FN" href="http://example.org/person/john">John</h1>
 <div role="v:ADR">
 <div property="v:Street">1 Main Street</div>
 <div property="v:Locality>Seattle</div>
 <div><abbr property="v:Region" title="Washington">WA</abbr></div>
 </div>
 </div>
 </body>
</html>

The only difference is that it uses RDFa and the vcard format to annotate HTML ele-
ments. Some search engines use these annotations to decipher the semantics of infor-
mation from HTML documents.

Note that RDFa is specified only for XHTML 1.1. However, all currently
deployed browsers do support RDFa for HTML documents.

3.13 How to Return Errors
HTTP is based on the exchange of representations, and that applies to errors as well.
When a server encounters an error, either because of problems with the request that a
client submitted or because of problems within the server, always return a representa-
tion that reflects the state of the error condition. This includes the response status code,
response headers, and a body containing the description of the error.

3.13 How to Return Errors | 69

Problem
You want to know how to return errors to clients.

Solution
For errors due to client inputs, return a representation with a 4xx status code. For errors
due to server implementation or its current state, return a representation with a 5xx
status code. In both cases, include a Date header with a value indicating the date-time
at which the error occurred.

Unless the request method is HEAD, include a body in the representation formatted and
localized using content negotiation (see Chapter 7) or in human-readable HTML or
plain text.

If information to correct or debug the error is available as a separate human-readable
document, include a link to that document via a Link header (see Recipe 5.3) or a link
in the body.

If you are logging errors on the server side for later tracking or analysis, provide an
identifier or a link that can be used to refer to that error. For instance, clients can report
the error code to the server’s team while reporting problems.

Keep the response body descriptive, but exclude details such as stack traces, errors from
database connection failures, etc. If appropriate, describe any actions that the client
can take to correct the error or to help the server debug and fix the errors.

Discussion
HTTP 1.1 defines two classes of error codes, one in the range of 400 to 417 and the other
in the range of 500 to 505. One common mistake that some web services make is to
return a status code that reflects success (status codes from 200 to 206 and from 300 to
307) but include a message body that describes an error condition.

Avoid returning success code with an error in the body.
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<error>
 <message>Account limit exceeded.</message>
</error>

Doing this prevents HTTP-aware software from detecting errors. For example, a cache
will store it as a successful response and serve it to subsequent clients even when clients
may be able to make a successful request.

70 | Chapter 3: Designing Representations

Errors due to client inputs: 4xx

The following list shows error codes you are likely to generate in your server-side ap-
plication code and not codes that will be automatically by generated by your web/
application server:

400 (Bad Request)
You can return this error when your server cannot decipher client requests becasue
of syntactical errors.

HTTP 1.1 defines only one condition under which you can return this error. That
is when the request does not include a Host header.

401 (Unauthorized)
Return this when the client is not authorized to access the resource but may be able
to gain access after authentication. If your server will not let the client access the
resource even after authentication, then return 403 (Forbidden) instead.

When returning this error code, include a WWW-Authenticate header field with the
authentication method to use. Commonly used methods are Basic and Digest, as
discussed in Chapter 12.

403 (Forbidden)
Use this when your server will not let the client gain access to the resource and
authentication will not help.

For instance, you can return this when the user is already authenticated but is not
allowed to request a resource.

404 (Not Found)
Return this when the resource is not found. If possible, specify a reason in the
message body.

405 (Not Allowed)
Return this when an HTTP method is not allowed for this resource.

Return an Allow header with methods that are valid for this resource (see Rec-
ipe 14.2).

406 (Not Acceptable)
See Recipe 7.7.

409 (Conflict)
Return this when the request conflicts with the current state of the resource. In-
clude a body explaining the reason.

410 (Gone)
Return this when the resource used to exist, but it does not anymore.

You may not be able to return this code unless you have some bookkeeping data
about deleted resources. If you do not keep track of deleted resources on the server
side, return a 404 (Not Found) instead.

3.13 How to Return Errors | 71

412 (Precondition Failed)
See Recipe 10.4.

413 (Request Entity Too Large)
Return this when the body of a POST of PUT request is too large.

If possible, specify what is allowed in the body, and provide alternatives.

415 (Unsupported Media Type)
Return this error when a client sends the message body in a format that the server
does not understand.

Errors due to server errors: 5xx

The following list shows error codes that you may generate when the request fails
because of some error on the server:

500 (Internal Server Error)
This is the best code to return when your code on the server side failed due to some
implementation bug.

503 (Service Unavailable)
Return this when the server cannot fulfill the request either for some specific in-
terval or for an undetermined amount of time.

Two common conditions that prompt this error are failures with backend servers
(such as a database connection failure) or when the client exceeded some rate limit
set by the server.

If possible, include a Retry-After response header with either a date or a number
of seconds as a hint.

HTTP status codes are normative, but the status messages are not.
Those are the messages that HTTP 1.1 uses. Servers are free to use
application-specific error message strings.

Message body for errors

Include a body in the error response for all errors except when the HTTP method is
HEAD. In the body, include some or all of the following:

• A brief message describing the error condition

• A longer description with information on how to fix the error condition, if
applicable

• An identifier for the error

• A link to learn more about the error condition, with tips on how to resolve it

Here is an example. This is an error that occurred when the client sent a request for an
account transfer:

72 | Chapter 3: Designing Representations

Response
HTTP/1.1 409 Conflict
Content-Type: application/xml;charset=UTF-8
Content-Language: en
Date: Wed, 14 Oct 2009 10:16:54 GMT
Link: <http://www.example.org/errors/limits.html>;rel="help"

<error xmlns:atom="http://www.w3.org/2005/Atom">
 <message>Account limit exceeded. We cannot complete the transfer due to
 insufficient funds in your accounts</message>
 <error-id>321-553-495</error-id>
 <account-from>urn:example:account:1234</account-from>
 <account-to>urn:example:account:5678</account-to>
 <atom:link href="http://example.org/account/1234"
 rel="http://example.org/rels/transfer/from"/>
 <atom:link href="http://example.org/account/5678"
 rel="http://example.org/rels/transfer/to"/>
</error>

When generating the message body, consider following the recipes discussed
Chapter 7.

3.14 How to Treat Errors in Clients
When implementing a client, there are two kinds of errors that the client needs to deal
with. The first is network-level failures. The second is HTTP errors returned by servers.
Programming libraries deal with the former class of errors and surface them via pro-
gramming language-specific exception handling. The latter class is application specific
and requires explicit coding.

Problem
You want to know how to interpret errors returned by the server.

Solution
See the following list for appropriate action for each error code:

400 (Bad Request)
Look into the body of the error representation on hints for the root cause of the
problem.

401 (Unauthorized)
If the client is user-facing, prompt the user to supply credentials. In other cases,
obtain the necessary security credentials. Retry the request with an
Authorization header containing the credentials.

403 (Forbidden)
This error means that the client is forbidden from accessing the resource with the
request method. Do not repeat the request that caused this error.

3.14 How to Treat Errors in Clients | 73

404 (Not Found)
The resource is gone. If you stored data about the resource on the client side, clean
up the data or mark it as deleted.

405 (Not Allowed)
Look for the Allow header for the methods that are valid for this resource, and make
necessary code changes to limit access to only those methods.

406 (Not Acceptable)
See Recipe 7.7.

409 (Conflict)
Look for the conflicts listed in the body of the representation of PUT.

410 (Gone)
Treat this the same as 404 (Not Found).

412 (Precondition Failed)
See Recipe 10.4.

413 (Request Entity Too Large)
Look for hints on valid size in the body of the error.

415 (Unsupported Media Type)
See the body of the representation to learn the supported media types for the
request.

500 (Internal Server Error)
Log this error, and then notify the server developers.

503 (Service Unavailable)
If the response has a Retry-After header, avoid retrying until that period of time.
This error may be serverwide, and hence, you may need to implement appropriate
back-off logic in your clients to avoid sending requests to the server for some period
of time.

Discussion
Explicitly handling various error codes makes clients robust. In particular, watch out
for HTTP client libraries that translate both network-level failures and HTTP errors
into exception or error classes. These classes of errors need different treatments.

HTTP status codes are extensible, and servers can introduce new status codes. If a client
does not understand an Xmn status code where X is 2, 3, 4, or 5, then it should treat it as
an X00 code. For example, if a server returns 599 and if the client does not understand
what it is, treat it as 500. The same goes for a status code like 245.

Do not treat HTTP errors as I/O or network exceptions. Treat them as first-class ap-
plication objects. See Recipe 1.5 for an example.

74 | Chapter 3: Designing Representations

CHAPTER 4

Designing URIs

URIs are identifiers of resources that work across the Web. A URI consists of a scheme
(such as http and https), a host (such as www.example.org), a port number followed by
a path with one or more segments (such as /users/1234), and a query string. In this
chapter, our focus is on designing URIs for RESTful web services:

Recipe 4.1, “How to Design URIs”
Use this recipe to learn some commonly practiced URI design conventions.

Recipe 4.2, “How to Use URIs As Opaque Identifiers”
Use this recipe to learn some dos and don’ts to keep URIs as opaque identifiers.

Recipe 4.3, “How to Let Clients Treat URIs As Opaque Identifiers”
Treating URIs as opaque identifiers helps decouple clients from servers. This recipe
shows techniques that the server can employ to help clients treat URIs as opaque.

Recipe 4.4, “How to Keep URIs Cool”
Since URIs are a key part of the interface between clients and servers, it is important
to keep them “cool,” i.e., stable and permanent. Use this recipe to learn some
practices to help keep URIs cool.

4.1 How to Design URIs
URIs are opaque resource identifiers. In most cases, clients need not be concerned with
how a server designs its URIs. However, following common conventions when design-
ing URIs has several advantages:

• URIs that support convention are usually easy to debug and manage.

• Servers can centralize code to extract data from request URIs.

• You can avoid spending valuable design and implementation time inventing new
conventions and rules for processing URIs.

• Partitioning the server’s URIs across domains, subdomains, and paths gives you
operational flexibility for load distribution, monitoring, routing, and security.

75

Problem
You want to know the best practices to design URIs for resources.

Solution
• Use domains and subdomains to logically group or partition resources for locali-

zation, distribution, or to enforce various monitoring or security policies.

• Use the forward-slash separator (/) in the path portion of the URI to indicate a
hierarchical relationship between resources.

• Use the comma (,) and semicolon (;) to indicate nonhierarchical elements in the
path portion of the URI.

• Use the hyphen (-) and underscore (_) characters to improve the readability of
names in long path segments.

• Use the ampersand (&) to separate parameters in the query portion of the URI.

• Avoid including file extensions (such as .php, .aspx, and .jsp) in URIs.

Discussion
URI design is just one aspect of implementing RESTful applications. Here are some
conventions to consider when designing URIs.

As important as URI design is to the success of your web service, it is
just as important to keep the time spent in URI design to a minimum.
Focus on consistency of URIs instead.

Domains and subdomains

A logical partition of URIs into domains and subdomains provides several operational
benefits for server administration. Make sure to use logical names for subdomains while
partitioning URIs. For example, the server could offer localized representations via
different subdomains, as in the following:

http://en.example.org/book/1234
http://da.example.org/book/1234
http://fr.example.org/book/1234

Another example is, partition based on the class of clients.

http://www.example.org/book/1234
http://api.example.org/book/1234

In this example, the server offers two subdomains, one for browsers and the other for
custom clients. Such partitioning may let the server allocate different hardware or apply
different routing, monitoring, or security policies for HTML and non-HTML
representations.

76 | Chapter 4: Designing URIs

Forward-slash separator

By convention, the forward slash (/) character is used to convey hierarchical relation-
ships. This is not a hard and fast rule, but most users assume this when they scan URIs.
In fact, the forward slash is the only character mentioned in RFC 3986 as typically
indicating a hierarchical relationship. For example, all the following URIs convey a
hierarchical association between path segments:

http://www.example.org/messages/msg123
http://www.example.org/customer/orders/order1
http://www.example.org/earth/north-america/canada/manitoba

Some web services may use a trailing forward slash for collection resources. Use such
conventions with care since some development frameworks may incorrectly remove
such slashes or add trailing slashes during URI normalization.

Underscore and hyphen

If you want to make your URIs easy for humans to scan and interpret, use the under-
score (_) or hyphen (-) character:

http://www.example.org/blog/this-is-my-first-post
http://www.example.org/my_photos/our_summer_vacation/first_day/setting_up_camp/

There is no reason to favor one over the other. For the sake of consistency, pick one
and use it consistently.

Ampersand

Use the ampersand character (&) to separate parameters in the query portion of the URI:

http://www.example.org/print?draftmode&landscape
http://www.example.org/search?word=Antarctica&limit=30

In the first URI shown, the parameters are draftmode and landscape. The second URI
has the parameters word=Antarctica and limit=30.

Comma and semicolon

Use the comma (,) and semi-colon (;) characters to indicate nonhierarchical portions
of the URI. The semicolon convention is used to identify matrix parameters:

http://www.example.org/co-ordinates;w=39.001409,z=-84.578201
http://www.example.org/axis;x=0,y=9

These characters are valid in the path and query portions of URIs, but not all code
libraries recognize the comma and semicolon as separators and may require custom
coding to extract these parameters.

4.1 How to Design URIs | 77

Full stop, or period

Apart from its use in domain names, the full stop (.), or period, is used to separate the
document and file extension portions of the URI:

http://www.example.org/my-photos/flowers.png
http://www.example.org/index.html
http://www.example.org/api/recent-messages.xml
http://www.example.org/blog/this.is.my.next.post.html

The last example in the previous list is valid but might introduce confusion. Since some
code libraries use the period to signal the start of the file extension portion of the URI
path, URIs with multiple periods can return unexpected results or might cause a parsing
error.

Except for legacy reasons, there is no reason to use this character in URIs. Clients should
use the media type of the representation to learn how to process the representation.
“Sniffing” the media type from extensions can lead to security vulnerabilities. For in-
stance, various versions of Internet Explorer are prone to security vulnerabilities be-
cause of its implementation of media type sniffing (http://msdn.microsoft.com/en-us/
library/ms775148(VS.85).aspx).

Implementation-specific file extensions

Consider the following URIs:

http://www.example.org/report-summary.xml
http://www.example.org/report-summary.jsp
http://www.example.org/report-summary.aspx

In all three cases, the data is the same and the representation format may be the same,
but the file extension indicates the technology used to generate the resource represen-
tation. These URIs will need to change if the technology used needs to change.

Spaces and capital letters

Spaces are valid URI characters, and according to RFC 3986, the space character should
be percent-encoded to %20. However, the application/x-www-form-urlencoded media
type (used by HTML form elements) encodes the space character as the plus sign (+).
Consider the following HTML:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html lang="en">
 <head>
 <title>Search</title>
 </head>
 <body>
 <form method="GET" action="http://www.example.org/search"
 enc-type="application/x-www-form-urlencoded">
 <label for="phrase">Enter a search phrase</label>
 <input type="text" name="phrase" value=""/>
 <input type="submit" value="Search"/>

78 | Chapter 4: Designing URIs

http://msdn.microsoft.com/en-us/library/ms775148(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms775148(VS.85).aspx

 </form>
 </body>
</html>

When a user submits the search phrase “Hadron Supercollider,” the resulting URI
(using application/x-www-form-urlencoded rules) would be as follows:

http://www.example.org/search?phrase=Hadron+Supercollider

Code that is not aware of how the URI was generated will interpret the URI using RFC
3986 and treat the value of the search phrase as “Hadron+Supercollider.”

This inconsistency can cause encoding errors for web services that are not prepared to
accept URIs encoded using the application/x-www-form-urlencoded media type. This
is not just a problem with common web browsers. Some code libraries also apply these
rules inconsistently.

Capital letters in URIs may also cause problems. RFC 3986 defines URIs as case sen-
sitive except for the scheme and host parts. For example, although http://www.exam
ple.org/my-folder/doc.txt and HTTP://WWW.EXAMPLE.ORG/my-folder/doc.txt are the
same, but http://www.example.org/My-Folder/doc.txt isn’t. However, Windows-
based web servers treat these URIs as the same when the resource is served from the
filesystem. This case insensitivity does not apply to characters in the query portion. For
these reasons, avoid using uppercase characters in URIs.

4.2 How to Use URIs As Opaque Identifiers
Treating URIs as opaque identifiers is, in most cases, trivial. It only requires you to
make sure that each resource has a distinct URI. However, some practices illustrated
in this recipe can lead to overloading URIs. In such cases, URIs may become generic
gateways for unspecified information and actions. This can result in improperly cached
responses, possibly even the leakage of secure data that should not be shared without
appropriate authentication.

Problem
You want to know how to avoid situations that prevent URIs from being used as unique
identifiers.

Solution
Use only the URI to determine which resource processes a request.

Do not tunnel repeated state changes over POST using the same URI or use custom
headers to overload URIs. Use custom headers for informational purposes only.

4.2 How to Use URIs As Opaque Identifiers | 79

Discussion
Designating URIs as unique resource identifiers is a straightforward exercise except
when you overload some HTTP methods or use something other than the URI to de-
termine how to process a request.

Here is an example that uses a custom HTTP header to determine what to return:

Request
GET /news HTTP/1.1
Host: www.example.org
X-Filter: science;sports;weather

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

... message body ...

In this example, the URI http://www.example.org/news is overloaded by the contents
of the X-Filter header. If another client makes a similar request but with a different
value in this custom header (e.g., politics;economy;healthcare), the server will return
the representation of a different resource.

Such practices are easy to avoid. In this example, the server should offer different URIs
for different news filters.

Another common practice that uses URIs as gateways and not as unique identifiers is
tunneling repeated state changes using POST. This is the default practice in several web
frameworks including ASP.NET, JavaServer Pages, and some Ajax toolkits:

Request
POST /ajax-endpoint HTTP/1.1
Host: www.example.org

<request>
 <filter>science</filter>
 <filter>sports</filter>
 <filter>weather</filter>
</request>

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

... message body ...

Request
POST /ajax-endpoint HTTP/1.1
Host: www.example.org

<request>
 <filter>politics</filter>
 <filter>economy</filter>

80 | Chapter 4: Designing URIs

 <filter>healthcare</filter>
</request>

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

... message body ...

Such practices are usually a result of treating HTTP as a transport protocol. As long as
you avoid such practices, treating URIs as unique identifiers should be relatively easy.

4.3 How to Let Clients Treat URIs As Opaque Identifiers
No matter how you design your URIs, it is important that web services make it possible
for clients to treat them as opaque identifiers to the extent possible. Clients should be
able to use server-provided URIs to make additional requests without having to un-
derstand how the server’s URIs are structured.

Problem
You want to know how to ensure clients treat URIs as opaque.

Solution
Whenever possible, provide URIs at runtime using links in the body of representations
(see Recipes 5.1 and 5.2) or headers (see Recipe 5.3).

When it is not reasonable to provide a complete set of possible URIs, consider using
URI templates (see Recipe 5.7), or establish out-of-band rules to let clients construct
URIs programmatically.

Discussion
Neither the architectural constraints of REST nor HTTP require that clients treat URIs
as opaque. But doing so reduces coupling between servers and clients. A server ex-
pecting clients to construct URIs from bits of information returned in representations
or offline knowledge (e.g., documentation or reverse-engineering) indicates tight cou-
pling. This coupling can break existing clients when the web service makes changes to
the way it creates new URIs.

In most cases, the process of creating URIs belongs to the server, not the client. For
example, consider a photo-sharing web service, returning a list of photos uploaded
recently to the server.

<?xml version="1.0" encoding="utf-8" ?>
<photos>
 <photo>
 <id>nj1-1234</id>
 <user-id>987</user-id>

4.3 How to Let Clients Treat URIs As Opaque Identifiers | 81

 <server-id>east-nj1</server-id>
 </photo>
 <photo>
 <id>nj4-1235</id>
 <user-id>988</user-id>
 <server-id>east-nj4</server-id>
 </photo>
 ...
</photos>

Since no URIs are provided in this representation, anyone implementing a client for
this web service must read documentation and write client code to programmatically
create URIs to each photo.

http://east-nj1.photos.example.org/987/nj1-1234
http://east-nj4.photos.example.org/988/nj4-1235

These URIs contain implementation-level data such as server names, photo IDs, and
user IDs. If the server makes architectural changes that result in changes in URIs for all
new photos, clients will have to make changes in the way they create URIs.

When your web service requires clients to create URIs based on the
implementation details of your web service, those details will become
part of your web service’s public interface. Avoid or minimize leaking
such implementation details to clients.

To decouple the client from these implementation details, the server can provide links
in the representation.

<?xml version="1.0" encoding="utf-8" ?>
<photos xmlns:atom="http://www.w3.org/2005/Atom">
 <photo>
 <atom:link href="http://east-nj1.photos.example.org/987/nj1-1234"
 rel="alternate"
 title="Sunset view from our backyard"/>
 <atom:link href="http://east-nj1.photos.example.org/987"
 rel="http://www.example.org/rels/owner"/>
 <id>nj1-1234</id>
 </photo>
 <photo>
 <atom:link href="http://east-nj4.photos.example.org/988/nj4-1235"
 rel="alternate"/>
 <atom:link href="http://east-nj1.photos.example.org/988"
 rel="http://www.example.org/rels/owner"/>
 <id>nj4-1235</id>
 </photo>
 ...
</photos>

This representation uses links to encode implementation details into URIs directly.
Each photo in this representation has a link with a URI to fetch the image file and
another link to fetch the owner resource of each photo. To realize which link points to

82 | Chapter 4: Designing URIs

which, clients do not have to know how to manufacture URIs. They just need to un-
derstand the meaning of the values of the rel attribute.

Note that requiring clients to treat URIs as opaque may require you to
tradeoff against performance. Usually URIs are longer in length than
database identifiers, and hence transporting URIs over the network in-
creases the message size. This may matter when the representation
needs to convey a large number of URIs.

In cases where it is impractical for web services to supply the client with a list of all the
possible URIs in the representation (e.g., supporting ad hoc searching), use “semi-
opaque” URI templates (see Recipe 5.7). You will also need to loosen/ignore opacity
if you want to protect against request tampering by using digitally signed URIs (see
Recipe 12.5) or to encrypt parts of the URI to shield sensitive information. For this
purpose, clients and servers will need to exchange details of how to sign URIs out
of band.

4.4 How to Keep URIs Cool
URIs should be designed to last a long time. Clients may store URIs in databases and
configuration files, or may even hard-code them in code. In fact, the Web works under
the assumption that URIs are permanent. This design principle is referred to with the
axiom “Cool URIs don’t change” (http://www.w3.org/Provider/Style/URI). When a
server decides to change its URIs, clients will fail to function. Cool URIs are those that
never change.

The effect of URI changes may seem insignificant when your web service is operating
in a private and controlled network. However, URIs make up a vital part of the interface
between clients and servers, and changes to URIs are bound to be disruptive. This recipe
shows you how to keep URIs permanent.

Problem
You want to know how to support the axiom “Cool URIs don’t change.”

Solution
Design URIs based on stable concepts, identifiers, and information. Use rewrite rules
on the server to shield clients from implementation-level changes. In cases where URIs
must change (e.g., when merging two applications, major redesign, etc.), honor old
URIs and issue redirects to clients with the new URI using 301 (Moved Permanently)
responses or, in rare cases, by issuing a 410 (Gone) for URIs that are no longer valid.

URIs cannot be permanent if the concepts or identifiers used for URIs cannot be per-
manent for business, technical, or security reasons. See Recipe 5.6 for ways to deal with
such cases.

4.4 How to Keep URIs Cool | 83

http://www.w3.org/Provider/Style/URI

Discussion
The permanence of URIs depends on stability and the permanence of concepts and
identifiers used to create URIs. For example, the URI http://www.example.org/2009/11/
my_trip_report for a document titled “My Trip Report” is stable as long as the server
treats the title as unchangeable once the document has been published. Usually, unique
identifiers used to store data of resources help design stable URIs. Such identifiers rarely
change.

Even when the concepts/identifiers used to create URIs change, it may be possible to
hide such changes by employing rewrite rules supported by web servers such as Apache
mod_rewrite (http://httpd.apache.org/docs/2.0/mod/mod_rewrite.html) and Internet In-
formation Services (IIS) server’s URLRewrite (http://www.iis.net/extensions/URLRe
write). You can use these web server extensions to hide URI changes that may be caused
by merging server applications, changing paths, etc.

If you are not able hide URI changes, respond to all requests to the old URI with a
301 (Moved Permanently) and the new URI in the Location header:

Request
GET /users/1 HTTP/1.1
Host: www.example.org
Accept: application/json

Response
HTTP/1.1 301 Found
Location: http://www.example2.org/users/1

When a client receives the 301 (Moved Permanently) response, it should remove any
copies of the old URI from the client’s local storage and replace them with the new
URI. This will reduce the number of redirects the client needs to follow.

Do not disable support for redirects in client applications. Instead, con-
sider a sensible limit on the number of redirects a client can follow. Also
verify that the Location URI maps to a trusted domain or IP address.
Disabling redirects altogether will break the client when the server de-
cides to change URIs.

Once you set up redirection, monitor request traffic on the server for the old URIs.
Maintain redirection services for old URIs until you are confident the majority of clients
have updated their stored links to point to the new URI. When you cannot monitor
the old URIs, establish and communicate an appropriate end-of-life policy for old URIs.

Once the traffic has fallen off or the preset time interval has passed, convert the 301
(Moved Permanently) responses to 410 (Gone) or 404 (Not Found). Also include a message
body to indicate where the new (or related) resources may be found.

Request
GET /users/ HTTP/1.1
Host: www.example.org

84 | Chapter 4: Designing URIs

http://httpd.apache.org/docs/2.0/mod/mod_rewrite.html
http://www.iis.net/extensions/URLRewrite
http://www.iis.net/extensions/URLRewrite

Accept: application/xml;charset=UTF-8

Response
HTTP/1.1 410 Gone
Content-Type: application/xml;charset=UTF-8;
Expires: Sat, 01 Jan 2011 00:00:00 GMT

<error xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:link rel="help" href="http://www.example2.org"/>
 <message xml:lang="en-US">This resource no longer exists.
 Related information may be found at http://www.example2.org</message>
</error>

Note that the previous example shows the 410 (Gone) response is marked with an
Expires header value far into the future. For more on caching responses, see Chapter 9.

4.4 How to Keep URIs Cool | 85

CHAPTER 5

Web Linking

A link provides a means of navigation from one resource to another. There are many
everyday examples of links. Travelers use street signs and maps to decide which way
to travel. Books and articles use footnotes and references to direct readers to related
material. In software, we use variables and pointers to create links between different
parts of an application.

The World Wide Web is based on the same principle. HTML documents use anchors
and forms to let users navigate between web pages, and they use img, object, and
link elements to include references to related resources. Here is the body of a repre-
sentation of a resource as an HTML document:

<html>
 <head>
 <link href="http://www.restful-webservices-cookbook.org/styles/main.css"
 rel="stylesheet" type="text/css"/>
 <link href="http://www.restful-webservices-cookbook.org/feed"
 rel="alternate feed" type="application/atom+xml"/>
 </head>
 <body>
 <p><img src="http://www.restful-webservices-cookbookorg/images/cover"
 align="left"/>Read
 RESTful Web Services Cookbook to learn about building RESTful apps.
 </p>
 </body>
</html>

Each link element in this example points to a related resource. A browser can use the
first link element to discover the stylesheet associated with this HTML document. A
feed reader can use the second link to fetch a related Atom feed. The img element points
to another related resource, an image file, that the browser can render on the screen.
The anchor (a) element provides a way for the client to navigate to another page.

87

This chapter discusses the following recipes that show when and how to use links in
RESTful web services:

Recipe 5.1, “How to Use Links in XML Representations”
Use this recipe to learn how to include links in general-purpose XML representa-
tions.

Recipe 5.2, “How to Use Links in JSON Representations”
Use this recipe to learn how to include links in JSON representations.

Recipe 5.3, “When and How to Use Link Headers”
Link headers provide a format-independent means to provide links. Use this recipe
to learn when and how to use them.

Recipe 5.4, “How to Assign Link Relation Types”
Links without meaningful link relation types are not very useful. This recipe shows
how to assign relation types to links.

Recipe 5.5, “How to Use Links to Manage Application Flow”
Use this recipe to learn how you can use links to manage application flow.

Recipe 5.6, “How to Deal with Ephemeral URIs”
Not all links can be permanent. This recipe shows scenarios where links may be
ephemeral and how to deal with such cases.

Recipe 5.7, “When and How to Use URI Templates”
Use this recipe to learn how to use URI templates in cases where the server cannot
construct complete URIs.

Recipe 5.8, “How to Use Links in Clients”
Use this recipe to learn how to implement clients to use links supplied by servers.

5.1 How to Use Links in XML Representations
HTML, XHTML, and Atom establish rules for including links in representations. Cli-
ents that understand the semantics of these formats can discover links in those repre-
sentations. However, XML is a general-purpose format, and it is the server’s responsi-
bility to design a way to include links in XML-formatted representations and document
that design to clients. Clients can refer to that design to learn how to find and use links
included in representations.

Problem
You want to know how to include links in XML-formatted representations.

Solution
Use the link element defined in Atom. This element is declared in the http://www.w3
.org/2005/Atom namespace and has the following attributes:

88 | Chapter 5: Web Linking

http://www.w3.org/2005/Atom
http://www.w3.org/2005/Atom

href
This contains the link’s URI.

rel
This attribute, which originally stood for “relation,” indicates the type of the link.

title (optional)
This is a human-readable title for the link. Clients can present this to end users if
the end users are expected to activate the link.

type (optional)
This is a hint to the media type of the representation that the server may return for
the link’s URI.

hreflang (optional)
This is a hint to the content language of the representation that the server may
return for the link’s URI.

length (optional)
This is a hint to the content length of the representation that the server may return
for the link’s URI.

The mere presence of a link in a particular element does not imply anything unless
clients know how to find them and use them. Therefore, provide documentation on
how clients can find links in XML representations.

Discussion
Atom’s link element is flexible, is extensible, and is similar to links in HTML and
XHTML documents. Here is an example of a link in the representation of a photo
resource:

<photo xmlns:atom="http://www.w3.org/2005/Atom">
 ...
 <atom:link link href="http://east-nj1.photos.example.org/987/nj1-1234"
 type="image/jpeg"
 rel="alternate"
 title="Sunset view from our backyard"/>
</photo>

The intent of the link in this representation is to tell clients that the resource at the URI
http://east-nj1.photos.example.org/987/nj1-1234 is available as an alternate repre-
sentation and that it may offer a JPEG-formatted representation.

The href and rel attributes are the most essential of all the link attributes. Although
the value of the href attribute is necessary for the client to locate the URI of a resource,
the rel attribute is the one that conveys the semantics of the link. It answers questions
such as the following:

• What resource does the URI refer to?

• What is the significance of the link?

5.1 How to Use Links in XML Representations | 89

• What kind of actions can a client perform on the resource at the URI?

• What are the supported representation formats for requests and responses for that
resource?

Other attributes are optional. Use them to provide hints when appropriate.

The value of href is an absolute URI. You can use relative URIs as long as you also
include an xml:base attribute on the link element or one of its parent elements, as
shown in the following example:

<addresses xmlns:atom="http://www.w3.org/2005/Atom" xml:base="http://www.example.org">
 <atom:link rel="http://www.example.org/rels/address"
 href="/address/1">
 <atom:link rel="http://www.example.org/rels/address"
 href="/address/2">
 <atom:link rel="http://www.example.org/rels/address"
 href="/address/3">
</addresses>

The value of the xml:base attribute is a URI that clients can use to resolve relative URIs
in links.

Since XML parsing libraries don’t automatically resolve relative URIs
against the xml:base attribute, absolute URIs are preferable.

Some applications use plain URIs to link resources together. Here are some examples:

<!-- Avoid these styles -->
<user>
 <uri>http://www.example.org/user/001</uri>
 <address>http://www.example.org/user/001/address/001</address>
</user>

Avoid such methods of communicating URIs because such URIs lack the flexibility and
extensibility of Atom’s link element. As discussed in Recipe 5.4, plain URIs with no
link relation type do not communicate the semantics of URIs to clients.

5.2 How to Use Links in JSON Representations
As of writing this book, there is no standard approach for links in JSON representations.
This recipe presents a mapping of Atom’s definition of the link element to JSON, which
retains the same flexibility and extensibility.

Problem
You want to know how to include links in JSON-formatted representations.

90 | Chapter 5: Web Linking

Solution
For each link, use a link property (or a links property to include several links as an
array) whose value is a link object or a link object array. For each link object, include
the href and rel properties. See Recipe 5.1 for the meaning of these properties.

Alternatively, use the link relation type as the name of the property with the link’s URI
as the value.

Discussion
Here are examples links using two alternative forms:

{
 "link" : {
 "rel" : "alternate",
 "href" : "http://east-nj1.photos.example.org/987/nj1-1234",
 }
}

{
 "links" : [
 {
 "rel" : "alternate",
 "href" : "http://east-nj1.photos.example.org/987/nj1-1234"
 },
 {
 "rel" : "http://www.example.org/rels/owner",
 "href" : "http://east-nj1.photos.example.org/987",
 }
]
}

The previous form follows Atom’s link element. The following form defines the same
links in a more compact form:

{
 "alternate" : "http://east-nj1.photos.example.org/987/nj1-1234"
 "owner" : "http://east-nj1.photos.example.org/987/nj1-1234"
}

No matter which form you adopt, it is important to capture the essence of Atom’s
link element. Make sure to at least convey a link relation type along with each URI.
See Recipe 5.4 to learn why link relations types matter.

5.3 When and How to Use Link Headers
Link headers provide a format-independent means to convey links. Instead of embed-
ding links inside the body of representations, you can communicate links via link
headers.

5.3 When and How to Use Link Headers | 91

Problem
You want to know how to communicate links via HTTP headers.

Solution
A link header provides a way to convey a link as an HTTP header. Here is the format
of the Link header and an example:

Link header format
Link: <{URI}>;rel="{relation}";type="{media type"};title="{title}"...

An example
Link: <http://east-nj1.photos.example.org/987/nj1-1234>;rel="alternate"

Use link headers either when you want to convey links in a format-independent manner
or when a representation format does not support links.

Discussion
Link headers are appropriate in the following cases:

• Representations that use binary format, such as images, rich-text documents,
spreadsheets, etc.

• Representations in formats that do not allow the easy discovery of links (e.g., plain-
text documents)

• When your client/server software needs to add links or read links without parsing
the body of representations

Here is an example of the representation of a photo image resource with two links. The
first link header refers to an alternative representation of the same photo resource, while
the second one provides a link to the owner of the photo:

Response
HTTP/1.1 200 OK
Content-Type: image/jpeg
Link: <http://east-nj1.photos.example.org/987/nj1-1234.xml>;
 rel="alternate;type="application/xml"
Link: <http://east-nj1.photos.example.org/987>;
 rel="http://www.example.org/rels/owner"

... bytes ..

The key benefits of a link header are that it is format independent and it is visible at the
protocol level. On the other hand, links expressed inside representations are format
dependent. In particular, general-purpose formats like XML and JSON do not define
a processing model for discovering links. In other words, clients need to read the doc-
umentation provided by the server to learn how to discover links in XML or JSON
representations. Link headers do not have the same limitation.

92 | Chapter 5: Web Linking

5.4 How to Assign Link Relation Types
Without meaningful semantics assigned to URIs in links, links by themselves are not
very useful. A link relation type conveys the role or purpose of a link. Once clients and
servers agree on the meaning of these types, clients can find and use URIs from links.
It is essential that you assign very specific and meaningful relation types to links.

Problem
You want to know what relation type to use for a link.

Solution
The key purpose of a link relation type is to act as an identifier for the semantics asso-
ciated with the link. There are two ways to assign a value for link relation types. When
the purpose of a link matches one of the standard types described in Table 5-1, use that
value. See Appendix E for a complete list of registered relation types. If none of the
registered types match, define an extended link relation type using the following
conventions:

• Express the link relation type as a URI, such as http://www.example.org/rels/
create-po.

• Provide an informational resource as an HTML document at that URI, with the
HTML document describing the semantics of the link relation type. Include details
such as HTTP methods supported, representation formats supported for requests
and responses, and business rules about using the link.

• If the link relation type is meant for public use, register that link relation as per the
process outlined in Section 6.2 of Web Linking Internet-Draft.

Table 5-1. Some commonly used registered link relation types

Name Purpose

self Use this type to link to the preferred URI of the resource.

alternate Use this type when providing a link to a URI for an alternative version of the same resource.

edit Use this type to link to a URI that clients can use to edit the resource.

related Use this type to link to a related resource.

previous and
next

Use these types to link to the previous or next resource in an ordered series of resources.

first and last Use these types to link to the first and last resources in an ordered series of resources, e.g., to the first
and last resources in a collection.

5.4 How to Assign Link Relation Types | 93

Discussion
To keep links effective, you must choose unambiguous values for link relations. If the
semantics of any type in Table 5-1 do not match your use case, take advantage of the
extensible nature of link relation values to define application-specific values as URIs.

Link relations were first introduced in HTML. Section 6.12 of HTML 4.01 defines the
alternate, stylesheet, start, next, prev, contents, index, glossary, copyright, chapter,
section, subsection, appendix, help, and bookmark link relations. All these values are
case insensitive. You can also use multiple values for each relation, such as rel="alter
nate help". The HTML 5 specification defines additional link relations such as
archives, feed, pingback, etc.

Atom Syndication Format, which also defines links, provides an extensible mechanism
to define extended link relation types. Here is a sample representation that uses both
registered and extended relation types:

<review xmlns="org:example:books" xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:link rel="self" href="http://example.org/book/978-0374292881/review/189742"/>
 <atom:link rel="first" href="http://example.org/book/978-0374292881/review/9863"/>
 <atom:link rel="last" href="http://example.org/book/978-0374292881/review/49732"/>
 <id>urn:org:example:books:189742</id>
 <author>...</author>
 <content type="text/html"><![CDATA[
 ...
]]></content>
 <atom:link rel="http://example.org/rels/book"
 href="http://example.org/book/978-0452286757"/>
 <atom:link rel="http://example.org/rels/author"
 href="http://example.org/authors/ayn_rand"/>
 <atom:link rel="http://example.org/rels/add-review"
 href="http://example.org/book/978-0452286757/reviews"/>
</review>

This representation pertains to a book review resource at URI http://www.example.org/
book/978-0374292881/review/189742 and uses the following link relation types:

self
The purpose of this link relation type is to provide a link to the resource. Clients
should be able to use the link’s URI to fetch the resource.

first and last
Links with these relation types refer to the first and last reviews of the book.

http://www.example.org/rels/book
This extended relation type identifies the book associated with this review.

http://www.example.org/rels/author
This extended relation type identifies the author of the book.

http://www.example.org/rels/add-review
This purpose of the link with this relation type is to create new reviews for the book.

94 | Chapter 5: Web Linking

Always use URIs as the values of extended link relation types. In addition, consider
providing HTML documentation at the URI of the extended link relation, describing
the link relation with the following information:

• Purpose of the link relation

• The types of resources that use the link relation, and the types of resources at the
target of the link

• Valid HTTP methods for the target URI

• Expected media types on request and response for the target URI

Here is an example:

<html>
 <head>
 <title>Link relation - http://www.example.org/rels/add-review</title>
 </head>
 <body>
 <h1>Link Relation: <code>http://www.example.org/rels/add-review</code></h1>

 <p>Use this link relation to add new book reviews. You may find links with this
 relation type in representations of book resources and review resources.</p>

 <p>You can use the link's URI to submit new reviews.</p>

 <p>Use a representation of media type <code>application/xml</code> and HTTP method
 <code>POST</code> to submit new reviews.</p>
 </body>
</html>

Such online documentation can help development-time discovery of link relation types.

Use lowercase characters for all link relation types.

Note that registered link relation types such as self and alternate must be compared
case insensitively, while extended relation types must be compared as URIs in a case-
sensitive fashion. Using lowercase values for both types simplifies code used to extract
links.

5.5 How to Use Links to Manage Application Flow
One of the key applications of hypermedia and links is the ability to decouple the client
from learning about the rules the server uses to manage its application flow. The server
can provide links containing application state, thereby using hypermedia as the engine
of application state.

5.5 How to Use Links to Manage Application Flow | 95

Problem
You want to know how to keep clients decoupled from the business logic used to
implement the flow of the application.

Solution
Design each representation such that it contains links that help clients transition to all
the next possible steps. If the server needs to carry forward state from one step to the
next, encode the state in links as described in Recipe 1.3.

Discussion
Imagine a web service that manages an employee hiring process. This process has mul-
tiple steps, such as (a) enter candidate details, (b) check references, (c) conduct back-
ground security checks, and (d) make an offer. Each step must happen in sequence.
You can use the resources and URIs shown in Table 5-2 to implement this sequence.
The token {id} in these URIs is the candidate ID.

Table 5-2. URIs for employee hiring process

Method URI Purpose

POST http://www.example.org/hires Create a candidate resource.

POST http://www.example.org/hires/{id}/refs Submit reference comments.

POST http://www.example.org/hires/{id}/bgchecks Submit background check results.

POST http://www.example.org/hires/{id}/hire Make an offer.

POST http://www.example.org/hires/{id}/no-hire Do not make an offer.

Assume that this web service is governed by the following business rules:

• After entering candidate information, start the reference check.

• After receiving at least two positive references, start the background check.

• After getting background clearance, make an offer.

Given these rules and the URIs, you can implement a client for the employee hiring
process. After each step, the client can check the rules to see whether it can move to
the next step. However, this introduces coupling between the client and server’s busi-
ness rules, since the server, and not the client, should be responsible for managing those
rules.

When your web service requires clients to learn and implement application flow rules,
you are introducing yet another kind of coupling between your clients and servers. Just
like the details to construct URIs, such flow rules also become part of your web service’s
public interface and therefore cannot be changed without breaking clients.

96 | Chapter 5: Web Linking

A better alternative is to let the server provide clients with “contextual” links containing
URIs for possible next steps. When the client discovers a link, it can attempt a transition
to the next step in the process. When the link is absent in the representation, the client
can assume that the transition is not possible. This prevents the client from having to
learn and hard-code application flow.

For an analogy, consider a user interacting with a browser-based web application. The
browser, as instructed by the user, follows the links and forms without prior knowledge
of the flow of the application. The purpose of links is to extend the same benefit to
application clients. Here is a representation of the newly entered candidate resource
created by the server:

Request to enter candidate info
POST /hires HTTP/1.1
Host: www.example.org
Content-Type: application/json

{
 "name": "Joe Prospect",
 ...
}

Response containing a link to post reference checks
HTTP/1.1 201 Created
Location: http://www.example.org/hires/099
Content-Location: http://www.example.org/hires/099
Content-Type: application/json

{
 "name": "Joe Prospect",
 "id": "urn:example:hr:hiring:099",
 ...
 "link" : {
 "rel" : "http://www.example.org/rels/hiring/post-ref-result",
 "href" : "http://www.example.org/hires/099/refs"
 }
}

Link to post reference check results

This representation has a link to submit new reference check results. Since there is no
other link, the client cannot yet initiate the background check process or make an offer.

After entering two positive reference check results, the server can return a representa-
tion to indicate that the client can start the background check:

Request to enter first reference comment
POST /hires/099/refs HTTP/1.1
Host: www.example.org
Content-Type: application/json

{
 "text" : "Joe is a ...",
 "by" : "...",

5.5 How to Use Links to Manage Application Flow | 97

 "on" : "2009:10:12T16:05:00Z"
}

Response
HTTP/1.1 200 OK
Content-Location: http://www.example.org/hires/099
Content-Type: application/json

{
 "name": "Joe Prospect",
 "id": "urn:example:hr:hiring:099",
 ...
 "link" : {
 "rel" : "http://www.example.org/rels/hiring/post-ref-result",
 "href" : "http://www.example.org/hires/099/refs"
 }
}

Request to enter second reference comment
POST /hires/099/refs HTTP/1.1
Host: www.example.org
Content-Type: application/json

{
 "text" : "Worked with Joe, ...",
 "by" : "...",
 "on" : "2009:10:12T17:00:00Z"
}

Response
HTTP/1.1 200 OK
Content-Location: http://www.example.org/hires/099
Content-Type: application/json

{
 "name": "Joe Prospect",
 "id": "urn:example:hr:hiring:099",
 "refs": ...,
 ...
 "links" : [{
 "rel" : "http://www.example.org/rels/hiring/add-ref-result",
 "href" : "http://www.example.org/hires/099/refs"
 },
 {
 "rel" : "http://www.example.org/rels/hiring/add-background-check",
 "href" : "http://www.example.org/hires/099/bgchecks"
 }]
}

Link to post reference check results

Link to post background check results

98 | Chapter 5: Web Linking

At this point, the client can either enter more reference checks or move on to submit
background check results. If the results are acceptable based on the server’s business
policies, the server can include a link to make an offer.

Request to submit background check results
POST /hires/099/bgchecks HTTP/1.1
Host: www.example.org
Content-Type: application/json
{
 "text" : "...",
 "by" : "...",
 "on" : "..."
}

Successful background check
HTTP/1.1 200 OK
Content-Location: http://www.example.org/hires/099
Content-Type: application/json;charset=UTF-8

{
 "prospect" : {
 "name": "Joe Prospect",
 "id": "urn:example:hr:hiring:099",
 "refs": ...,
 "link" : {
 "rel" : "http://www.example.org/rels/hiring/make-offer",
 "href" : "http://www.example.org/hires/099/hire"
 }
 }
}

Link to make an offer

In this manner, the server guides the client through an employee hiring process without
forcing the client to implement any more logic than it should.

The mere presence of a link will not still decouple the client from having to know how
to prepare the data and make a request for the transition. As discussed in Recipe 5.4,
servers will have to establish and document how to find links and the semantics of all
extended link relation types.

5.6 How to Deal with Ephemeral URIs
As discussed in Recipe 4.4, the integrity of the Web is based on the permanence (or
“coolness”) of URIs. However, there are cases when URIs are temporary. For example,
a URI may be valid only for a single use or may expire after a fixed period of time. Here
are some situations that rely on ephemeral URIs:

• A web service provides a security token to its clients, like the token you may receive
for accessing a teller’s counter at a bank. Clients can use this token to gain access
to a resource for a short period of time.

5.6 How to Deal with Ephemeral URIs | 99

• An insurance quote web service generates quotes. Each quote is specific to a given
client and is valid for 72 hours, after which the quote expires, and the client will
have to fetch a new quote.

• Upon registering a user on a website, the server emails a secret token to the user
and expects the user to enter the token in an HTML form on the server in order to
validate the user’s email address.

Problem
You want to know how to support short-lived URIs.

Solution
Communicate ephemeral URIs via links. Assign extended relation types for those links
and document how long such URIs are valid and what the client should do after the
expiry. When a client submits a request for an expired URI, return an appropriate
4xx error code with instructions in the body on any actions the client can take.

Discussion
When a server provides a URI for a resource, by default clients expect URIs to be
permanent. Since servers cannot generate ephemeral URIs beforehand, they can use
links to communicate those URIs at runtime. But that is just one part of the problem.
The other part of the problem is how to inform clients that those URIs are ephemeral.
Clearly documenting link relations can help solve this part of the problem.

For instance, if the problem is to let the client make a purchase within two minutes
after making a bid, the server could include a link for the purchase. The link may contain
an encrypted state that becomes invalid after two minutes as an extra measure of se-
curity:

Request
POST /bid/ASBV_04_10_2009_1 HTTP/1.1
Host: www.example.org
Content-Type: application/xml;charset=UTF-8

...

HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<purchase-req xmlns:atom="http://www.w3.org/2005/Atom">
 <amount currency="USD">...</amount>
 ...
 <atom:link rel="http://www.example.org/purchase-req/auth"
 href="http://www.example.org/auth/ASBV_04_10_2009_1/09_31?_k=a1191fd35d23"/>
</purchase-req>

100 | Chapter 5: Web Linking

In this case, the server needs to document that the URI with link relation type http://
www.example.org/funds-req/auth is valid only for two minutes. If a client activates the
URI after its expiry, the server returns an error:

Request
POST /bid/ASBV_04_10_2009_1/09_31?_k=a1191fd35d23 HTTP/1.1
Host: www.example.org
Content-Type: application/xml;charset=UTF-8

...

HTTP/1.1 403 Forbidden
Content-Type: application/xml;charset=UTF-8
Date: Sat, 17 Oct 2009 20:16:18 GMT

<error xmlns:atom="http://www.w3.org/2005/Atom">
 <message xml:lang="en">Authorization expired. Resubmit the bid.</message>
 <atom:link rel="http://www.example.org/purchase-req/bid"
 href="http://www.example.org/auth/ASBV_04_10_2009_1?retry"/>
</error>

See Recipe 5.8 for details on how to implement clients to deal with ephemeral URIs.

5.7 When and How to Use URI Templates
The recipes in this chapter so far assume that the server has all the information necessary
to generate a valid and complete URI for each link. When this is not the case, the server
can provide URI templates to clients.

Problem
You want to know how to let clients include additional information in URIs before
submitting requests to the server.

Solution
A URI template is a string consisting of tokens marked off between matching braces
({ and }). Clients substitute these tokens (including the matching braces) with URI-
safe strings to convert the template into a valid URI.

To keep token substitution and matching simple, limit the tokens to the following parts
of URIs:

• Path segments, as in http://www.example.org/segment1/{token1}/segment2

• Values of query parameters, as in http://www.example.org/path?param1
={p1}¶m2={p2}

• Values of matrix parameters, as in http://www.example.org/path;param1
={p1};param2={p2}

5.7 When and How to Use URI Templates | 101

To include a URI template in a representation, use the following:

• For the XML family of representation, use a link-template element defined in your
own application XML namespace. For the sake of consistency, define the same set
of attributes on this element as that of the link element.

Note that the href element in the link element defined by the Atom Syndication
Format does not permit using URI templates.

• For JSON representations, use link-template or link-templates properties to con-
vey URI templates.

Discussion
URI templates provide a way for servers to return semi-opaque URIs to clients and
allow clients to fill in the missing pieces to generate valid URIs. The idea of URI tem-
plates is not new. Section 6.8.1.1 of WSDL 2.0 uses braces to specify replacement
tokens. WADL uses the same notation to specify resource IDs in URI path segments.
There was also an effort to formalize the syntax used for URI templates as an Internet-
Draft.*

Here is an example URI template that can be used for searching people:

http://www.example.org/people?k={keyword}&
 p={page-number}&r={results-per-page}

This template has three tokens: one for search keywords, one for the starting page
number, and one for the number of results per page. A client can replace these tokens
with actual values to generate a valid URI.

http://www.example.org/people/k=sports&p=1&r=10

Because of the presence of brace characters, a URI template is not a valid
URI until you replace all the tokens, including the braces, with URI-safe
characters.

Here are snippets of representations containing URI templates:

<!-- XML representations -->
<link-template href="http://www.example.org/customers/{customer-id}"
 title="View customer detail"
 rel="http://www.example.org/rels/detail"/>
<link-template href="http://www.example.org/search/k={keyword}&p={page-number}&
 r={results-per-page}"
 title="Search results"
 rel="http://www.example.org/rels/search"/>

// JSON representations

* At the time of writing this book, this Internet-Draft has expired. Check http://tools.ietf.org/html/draft-gregorio
-uritemplate for any updates.

102 | Chapter 5: Web Linking

http://tools.ietf.org/html/draft-gregorio-uritemplate
http://tools.ietf.org/html/draft-gregorio-uritemplate

"link-templates" : [{
 "rel" : "http://www.example.org/rels/detail",
 "href" : "http://www.example.org/customers/{customer-id}",
 "title" : "View customer detail"
 },
 {
 "rel" : "http://www.example.org/rels/search",
 "href" : "http://www.example.org/search/k={keyword}&p={page-number}&r=
 {results-per-page}",
 "title" : "Search results"
 }]

The href values in these link-template elements are URI templates. The first template
requires the client to replace {customer-id} with a valid value. The second template
requires the client to replace {keyword}, {page-number}, and {results-per-page}.

Since URI templates are semi-opaque and contain tokens that clients need to substitute,
you need a way to tell clients what values are valid for each token. The simplest way to
do so is to document the tokens used in your URI templates, as in Table 5-3.

Table 5-3. URI template: /search/k={keyword}&p={page-number}&r={results-per-page}

Token Purpose

{keyword} A comma- or space-separated list of search terms.

{page-number} Page number of search results. The first page starts at 0.

{results-per-page} Results per page.

5.8 How to Use Links in Clients
A web browser is the best example of a client that uses links for browsing. The server
presents the current state of the application in the form of HTML with links. Users can
either invoke links immediately or bookmark them for later use. The HTML presented
in the page helps the user determine whether a particular link is bookmarkable (i.e., it
can be used later) or whether the user needs to act on certain links immediately. You
need to implement clients to operate in the same manner.

Problem
You want to know to how to implement a client using links supplied by the server.

Solution
To support URIs and URI templates provided by the server, extract URI and URI tem-
plates from links based on known link relation types. These links along with other
resource data constitute the current state of the application.

If the application is long running, store the URIs and the relation type along with other
representation data.

5.8 How to Use Links in Clients | 103

Make flow decisions based on the presence or absence of links. Store the knowledge of
whether a representation contains a given link.

Check the documentation of the link relation to learn any associated business rules
regarding authentication, permanence of the URI, methods and media types
supported, etc.

Discussion
When a server is using links to communicate its URIs in a representation, implement
clients to take advantage of those links. This requires extracting the current state of the
application from links (in particular URIs and link relation types), storing them, and
making choices based on the presence or absence of links of known relation types.

Consider the employee hiring process discussed in Recipe 5.5 from the client’s point
of view. Most likely, the client application would be long running. It may be a desktop
application or a web application with a web-based user interface. Someone using the
client does some out-of-band work such as sending requests for background checks.
Whenever there is new information, the user invokes the client and drives it to the next
step. In between the steps, the client needs to store the state of the resource and all the
valid transitions (i.e., links) in its database.

For instance, revisit the request to enter the prospective employee information and the
server’s response.

Request to enter candidate info
POST /hires HTTP/1.1
Host: www.example.org
Content-Type: application/json

{
 "name": "Joe Prospect",
 ...
}

Response containing a link to post reference checks
HTTP/1.1 201 Created
Location: http://www.example.org/hires/099
Content-Location: http://www.example.org/hires/099
Content-Type: application/json

{
 "name": "Joe Prospect",
 "id": "urn:example:hr:hiring:099",
 ...
 "link" : {
 "rel" : "http://www.example.org/rels/hiring/post-ref-result",
 "href" : "http://www.example.org/hires/099/refs"
 }
}

104 | Chapter 5: Web Linking

When a client receives this representation, it needs to extract and store the following:

• Employee details such as name, ID, and other information

• The current state of the resource that the hiring process is ready for reference checks

When the user conducts reference checks, and is ready to enter those details, the client
needs to recognize the current state of the resource and provide a user interface for the
user. In this case, this involves presenting a user interface to enter reference checks.

After entering two positive reference checks, the current state of the resource changes
to the following:

Response
Content-Location: http://www.example.org/hires/099
Content-Type: application/json

{
 "name": "Joe Prospect",
 "id": "urn:example:hr:hiring:099",
 "refs": ...,
 ...
 "links" : [{
 "rel" : "http://www.example.org/rels/hiring/add-ref-result",
 "href" : "http://www.example.org/hires/099/refs"
 },
 {
 "rel" : "http://www.example.org/rels/hiring/add-background-check",
 "href" : "http://www.example.org/hires/099/bgchecks"
 }]
}

The current state of the resource now includes two links: one to add further reference
checks and one to add background check results. The client’s user interface needs to
offer a choice to the user to either add a new reference check or enter background check
results. At this point, the user likely follows business policies to start background checks
and reopens the client after getting those results. The client then re-creates the user
interface with the same choices to enter the results of the reference check or background
check.

As you see from this example, when a server uses links, the client needs to act like a
browser to use those links. Although this may seem cumbersome, this approach de-
couples the client from the server and helps the client and server evolve independently
of each other.

5.8 How to Use Links in Clients | 105

CHAPTER 6

Atom and AtomPub

The Atom Syndication Format (RFC 4287) and the Atom Publishing Protocol (also
called as AtomPub, RFC 5023) define resources such as entries and feeds, their repre-
sentations, and a protocol to operate on those resources. Atom was designed with
human-readable content such as HTML and plain text in mind. It works best for re-
sources that are primarily text-based and intended for people to read such as blogs,
discussion forums, commenting systems, etc. AtomPub describes semantics that allow
clients to create and modify Atom-formatted resources. AtomPub also introduces serv-
ice and category resources to aid application discovery.

Atom and AtomPub have been used for a number of application scenarios. Although
Atom is used commonly for blog feeds, it is possible to extend this format to application
data such as user profiles, search results, albums, and so on. For instance, Google Data
Protocol APIs extend Atom for a number of Google’s products. Such usages bring up
the questions of when using Atom and AtomPub is appropriate. Even when you find
that Atom and AtomPub are not suitable for your web service, you may find using links,
service documents, and supporting media resources and categories useful. This chapter
presents the following recipes to help answer these questions:

Recipe 6.1, “How to Model Resources Using Atom”
Use this recipe to learn how to model resources and collections using Atom.

Recipe 6.2, “When to Use Atom”
Use this recipe to determine whether Atom is an appropriate format for your re-
source representations.

Recipe 6.3, “How to Use AtomPub Service and Category Documents”
Use this recipe to learn how to use AtomPub service and category documents.

Recipe 6.4, “How to Use AtomPub for Feed and Entry Resources”
Use this recipe to learn how to use AtomPub to manage Atom-formatted resources.

Recipe 6.5, “How to Use Media Resources”
Use this recipe to learn how to use AtomPub to manage media resources.

107

6.1 How to Model Resources Using Atom
A key advantage of using Atom for resources is interoperability. A wide range of tools
(feed readers such Google Reader, Bloglines, and NewsGator, as well as most browsers
and email clients) and programming libraries (Apache Abdera, ROME Project, Win-
dows Communication Foundation, etc.) are available. Using Atom as a representation
format for resources involves modeling resources as Atom entries and feeds and map-
ping application-specific data fields to elements and attributes specified by Atom.

Problem
You want to know how to support the Atom format for your resource representations.

Solution
To use Atom, model resources as entries and collections as feeds. The representation
of an entry is an XML document with the entry element defined in Atom as the root
element. The representation of a feed is an XML document with the feed element as
the root element. A feed document consists of several entry elements. These elements
are defined in the http://www.w3.org/2005/Atom namespace. The most commonly used
prefix for this namespace is atom. See Appendix D for an overview of the elements
defined in the Atom format.

Discussion
Atom is an XML format that is based on two types of resources: entry documents and
feed documents. To best illustrate how to design representations using Atom, consider
an XML-formatted representation of a book:

Request
GET /books/1 HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<book xmlns:atom="http://www.w3.org/2005/Atom">
 <isbn>0-9767736-6-X</isbn>
 <title>Johnny Web and the Atomic Circle</title>
 <atom:link href="http://www.example.org/books/1"/>
 <date-published>2010-01-01</date-published>
 <cover-art href="http://www.example.org/books/1/cover" type="image/jpeg"/>
 <author href="http://www.example.org/books/1/authors/1>R. W. Smith</author>
 <description>
 A lively tale of a young boy who discovers a secret
 scientific fraternity with a dark past and hidden purpose.
 <description>
</book>

108 | Chapter 6: Atom and AtomPub

http://www.w3.org/2005/Atom

Here is the same resource expressed as an Atom entry document:

Request
GET /books/1 HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/atom+xml;type=entry;charset=UTF-8

<atom:entry xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:id>urn:isbn:0-9767736-6-X</atom:id>
 <atom:title>Johnny Web and the Atomic Circle</atom:title>
 <atom:link href="http://www.example.org/books/1" rel="edit"/>
 <atom:link href="http://www.example.org/books/1/cover.png"
 rel="enclosure" type="image/png"/>
 <atom:published>2010-01-01T00:00:00Z</atom:published>
 <atom:author>
 <atom:name>R. W. Smith</atom:name>
 <atom:uri>http://www.example.org/books/1/authors/1</atom:uri>
 </atom:author>
 <atom:updated>2010-12-13T18:30:02Z</atom:updated>
 <atom:content type="text">
 A lively tale of a young boy who discovers a secret scientific fraternity
 with a dark past and hidden purpose.
 </atom:content>
</atom:entry>

ISBN identifier of the book

Title of the book

Link to the cover art

Date published

Author of the book

Description of the book

The media type of this representation is application/atom+xml, which is registered with
the IANA by Atom.

Atom registers the media type application/atom+xml for feed
documents. AtomPub, discussed in Recipe 6.4, defines entry
documents as representations with the media type application/atom
+xml;type=entry. In AtomPub, you can use application/atom+xml or
application/atom+xml;type=entry as the media type when the repre-
sentation is an Atom entry document.

This representation contains several mandatory elements along with application data
such as the author, title, description, link to cover art, etc. Both the representations

6.1 How to Model Resources Using Atom | 109

shown previously contain the same information, but they differ in the way the server
encodes them as representations. Some notable differences are as follows:

• The ISBN identifier of the book is mapped to the atom:id element.

• The link to the cover art is mapped to an atom:link element.

• Metadata such as the title of the book and its date of publication is mapped to
corresponding Atom elements.

• The data for the author of the book is mapped to the atom:author element.

Such a mapping exercise can remain meaningful as long as the application’s semantics
for resources closely match those specified by Atom.

You can extend this example to use an Atom feed document to represent a collection
of books:

GET /books HTTP/1.1
Host: www.example.org

HTTP/1.1 200 OK
Content-Type: application/atom+xml;charset=UTF-8

<atom:feed xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:title>Sci-Fi Books</title>
 <atom:link href="http://www.example.org/books" rel="self"
 hreflang="en" type="application/atom+xml"/>
 <atom:updated>2013-12-13T18:30:02Z</atom:updated>
 <atom:author>
 <atom:name>Example Inc.</atom:name>
 </atom:author>
 <atom:id>urn:uuid:5f49aa74-e920-425d-a150-8907494905e7</atom:id>
 <atom:entry>
 <atom:id>urn:isbn:0-9767736-6-X</atom:id>
 <atom:title>Johnny Web and the Atomic Circle</atom:title>
 <atom:link href="http://www.example.org/books/1" rel="alternate"/>
 <atom:link href="http://www.example.org/books/1/cover.png"
 rel="enclosure" type="image/png"/>
 <atom:published>2010-01-01T00:00:00Z</atom:published>
 <atom:author>
 <atom:name>R. W. Smith</atom:name>
 <atom:uri>http://www.example.org/books/1/authors/1</atom:uri>
 </atom:author>
 <atom:updated>2010-12-13T18:30:02Z</atom:updated>
 <atom:content type="text">
 A lively tale of a young boy who discovers a secret scientific fraternity
 with a dark past and hidden purpose.
 </atom:content>
 </atom:entry>
 <atom:entry>
 <atom:id>urn:isbn:0-9767736-9-X</atom:id>
 <atom:title>Johnny Web Meets the Wolfman</atom:title>
 <atom:link href="http://www.example.org/books/2" rel="alternate"/>
 <atom:link href="http://www.example.org/books/2/cover.png"
 rel="enclosure" type="image/png"/>

110 | Chapter 6: Atom and AtomPub

 <atom:published>2011-02-21T00:00:00Z</atom:published>
 <atom:author>
 <atom:name>R. W. Smith</atom:name>
 <atom:uri>http://www.example.org/books/1/authors/1</atom:uri>
 </atom:author>
 <atom:updated>2010-12-13T18:30:02Z</atom:updated>
 <atom:content type="text">
 Young Johnny goes to college and sets out to solve the mystery behind the
 strange noises coming from Professor Sirius' basement lab.
 </atom:content>
 </atom:entry>
</atom:feed>

Collection of books represented as a feed

A book represented as a member entry of the feed

Another book represented as a member entry of the same feed

In this representation, the feed document has two entries, each corresponding to a
book. If there are more entries and if the server needs to paginate the feed, the server
can use links with relations such as previous, next, first, and last. These relations are
specified by the RFC 5005. See Appendix E for a list of registered link relation types,
and see Recipe 3.7 for an example of using links for pagination.

Any client software that understands the Atom format can process or display the feed
of books without custom coding. For example, you can use a feed reader to subscribe
to updates of all upcoming books when the publisher offers the collection of latest
books as an Atom feed document. See Recipe 6.2 for a more detailed discussion on
applicability of Atom.

6.2 When to Use Atom
The default content model of Atom feeds and entries consists of text, HTML, or
XHTML content and summary, an identifier, links, authorship, categories, etc. This
content model is best suited for publishing and syndicating snippets of information as
feeds. However, since this format captures essential concepts that benefit most appli-
cations, it can be applied to a wide variety of scenarios and not just for content feeds.
This recipe helps you determine whether Atom is a good fit for your web service.

Problem
You want to know if the Atom-format is appropriate for your web service.

Solution
Use Atom when the information model or metadata of resources naturally maps to the
syntax and semantics of Atom feeds and entries. Even when the information model of
resources does not map to Atom, consider offering Atom feeds with entries consisting

6.2 When to Use Atom | 111

of short text, HTML, or XHTML summaries of resources and links to them. Users can
learn about those resources by relying on feed-capable tools such as feed readers.

Discussion
The Atom format has strong semantics for lists of snippets of information. Atom speci-
fies elements for identifying the resource, related links, and metadata such as authors.
However, it has relatively weak semantics for carrying data within atom:content and
atom:summary elements. For example, consider the following Atom entry:

<atom:entry xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:title>Johnny Web Series Goes Anime</atom:title>
 <atom:id>urn:blog:1234</atom:id>
 <atom:link rel="self" href="http://www.example.org/blog/2009/11/01"/>
 <atom:updated>2009-11-11T11:11:11Z</atom:updated>
 <atom:author>
 <atom:name>J. W. Smith</atom:name>
 </atom:author>
 <atom:content type="xhtml">
 <div xmlns="http://www.w3.org/1999/xhtml">
 <h1>Johnny Web Series goes Anime</h1>
 <p>After months of negotiation and lots of hush-hush shuttle diplomacy,
 I am pleased to announce we've reached a deal to bring the entire
 Johnny Web book series out as an anime television show.</p>
 <p>The first production is scheduled for early next year. "Atomic
 Circle" will be the book used for the first season.
 Others will follow.</p>
 <p>I'll keep you posted here on the latest developments.
 As Johnny always sez:</p>
 <blockquote>
 <p>Ursus Major!</p>
 </blockquote>
 </div>
 </atom:content>
</atom:entry>

This is an example of a blog entry. The bulk of the information is contained in the
atom:content element as XHTML markup. Clients that understand Atom can interpret
the contents of the Atom entry document.

Now consider the following representation of a production schedule. This representa-
tion relies on the extensible nature of atom:entry elements (see Appendix D for various
ways to use atom:content). Client applications should use this production information
to track and manage the production schedule for a television project:

<atom:entry xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:title>Johnny Web Sample Production Schedule</atom:title>
 <atom:id>urn:example:sked:1111</atom:id>
 <atom:link rel="self" href="http://www.example.org/ps/1111"/>
 <atom:updated>2011-11-11T11:11:11Z</atom:updated>
 <atom:author><name>J. W. Smith</name></atom:author>
 <atom:content type="application/xml">
 <production-schedule>

112 | Chapter 6: Atom and AtomPub

 <story-development>
 <days>5</days>
 <planned-start>2012-01-01</planned-start>
 </story-development>
 <pencil-roughs>
 <days>2</days>
 <planned-start>2012-01-10</planne-start>
 </pencil-roughs>
 <layouts-and-ink>
 <days>3</days>
 <planned-start>2012-01-15</planned-start>
 </layouts-and-ink>
 </production-schedule>
 </content>
</atom:entry>

Production schedule as a child element of the atom:content element

Although the previous representation is a valid Atom entry, standard Atom clients will
not know how to process the custom XML in the atom:content element. Custom ap-
plication clients that understand the embedded XML document can, however, read
this data, with some extra overhead. For custom clients, first parsing the entry docu-
ment only to extract an additional XML document from the atom:content is added work
that does little to improve the efficiency of the client code.

For non-HTML data that is targeted at machine clients, Atom format is less useful, and
it is often simpler to design a more compact XML representation of the resource:

<production-schedule xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:link rel="self" href="http://www.example.org/ps/1111"/>
 <story-development>
 <days>5</days>
 <planned-start>2012-01-01</planned-start>
 </story-development>
 <pencil-roughs>
 <days>2</days>
 <planned-start>2012-01-10</planne-start>
 </pencil-roughs>
 <layouts-and-ink>
 <days>3</days>
 <planned-start>2012-01-15</planned-start>
 </layouts-and-ink>
</production-schedule>

Consider the following criteria in the order of their importance before choosing Atom
for the representation of a resource:

• Whether the data model and semantics of the resource maps to an Atom feed or
entry

• Whether the metadata (such as atom:author, atom:category, and
atom:contributor) is meaningful for the resource

• Interoperability with Atom-capable tools

6.2 When to Use Atom | 113

Here is another example. The server offers a user’s address book as a resource with
each address consisting of a postal address, an email, a few telephone numbers, etc.,
formatted as XHTML.

Atom is well suited for this example since the server can represent the XHTML content
along with the metadata of each address as a resource:

<atom:feed xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:title>John Doe's Address Book</title>
 <atom:link href="http://www.example.org/user/001/ab" rel="self"
 hreflang="en" type="application/atom+xml"/>
 <atom:updated>2013-12-13T18:30:02Z</atom:updated>
 <atom:author>
 <atom:name>John Doe</atom:name>
 </atom:author>
 <atom:id>urn:uuid:94dcfd50-dd4b-11de-8a39-0800200c9a66</atom:id>
 <atom:entry>
 <atom:id>urn:uuid:b550ca30-dd4b-11de-8a39-0800200c9a66</atom:id>
 <atom:title>John's home address</atom:title>
 <atom:link href="http://www.example.org/user/ab/1" rel="alternate"/>
 <atom:published>2009-01-05T10:00:00Z</atom:published>
 <atom:author>
 <atom:name>John</atom:name>
 </atom:author>
 <atom:updated>2009-05-10T13:30:00Z</atom:updated>
 <atom:content type="xhtml">
 <div> <!-- XHTML of the address --> </div>
 </atom:content>
 </atom:entry>
 <atom:entry>
 <atom:id>urn:uuid:b550ca30-dd4b-11de-8a39-0800200c9a66</atom:id>
 <atom:title>Jane</atom:title>
 <atom:link href="http://www.example.org/user/ab/2" rel="alternate"/>
 <atom:published>2009-01-05T10:00:00Z</atom:published>
 <atom:author>
 <atom:name>Jane Doe</atom:name>
 </atom:author>
 <atom:updated>2009-01-10T13:30:00Z</atom:updated>
 <atom:content type="xhtml">
 <div> <!-- XHTML of the address --> </div>
 </atom:content>
 </atom:entry>

Address book represented as an atom:feed document

Address represented as an atom:entry element containing XHTML

Another address represented as an atom:entry element containing XHTML

Now consider the same address book for processing by a desktop address book appli-
cation. To implement such a desktop client, the server needs to provide addresses in a
format suitable for data and not presentation. Here is an example:

<atom:feed xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:title>John Doe's Address Book</title>

114 | Chapter 6: Atom and AtomPub

 <atom:link href="http://www.example.org/user/001/ab" rel="self"
 hreflang="en" type="application/atom+xml"/>
 <atom:updated>2013-12-13T18:30:02Z</atom:updated>
 <atom:author>
 <atom:name>John Doe</atom:name>
 </atom:author>
 <atom:id>urn:uuid:94dcfd50-dd4b-11de-8a39-0800200c9a66</atom:id>
 <atom:entry>
 <atom:id>urn:uuid:b550ca30-dd4b-11de-8a39-0800200c9a66</atom:id>
 <atom:title>John's home address</atom:title>
 <atom:link href="http://www.example.org/user/ab/1" rel="alternate"/>
 <atom:published>2009-01-05T10:00:00Z</atom:published>
 <atom:author>
 <atom:name>John</atom:name>
 </atom:author>
 <atom:updated>2009-05-10T13:30:00Z</atom:updated>
 <atom:content type="application/xml">
 <address>
 <street>...</street>
 <city>...</city>
 <postal-code>...</postal-code>
 <phone type="home">...</phone>
 </address
 </atom:content>
 </atom:entry>
 <atom:entry>
 <atom:id>urn:uuid:b550ca30-dd4b-11de-8a39-0800200c9a66</atom:id>
 <atom:title>Jane</atom:title>
 <atom:link href="http://www.example.org/user/ab/2" rel="alternate"/>
 <atom:published>2009-01-05T10:00:00Z</atom:published>
 <atom:author>
 <atom:name>Jane Doe</atom:name>
 </atom:author>
 <atom:updated>2009-01-10T13:30:00Z</atom:updated>
 <atom:content type="application/xml">
 <address>
 <street>...</street>
 <city>...</city>
 <postal-code>...</postal-code>
 <phone type="home">...</phone>
 </address
 </atom:content>
 </atom:entry>

Address book feed for a desktop client

First address formatted as application-specific XML element

Second address formatted as application-specific XML element

This form makes the Atom format less useful.

Finally, consider a list of stock quotes with each stock listing containing ticker name,
volume, and hourly, daily, weekly, and yearly high and low values. The data model for

6.2 When to Use Atom | 115

such a resource cannot be mapped to an Atom entry without extensions to describe
volume, highs and lows. Atom is not the best fit for such resources.

6.3 How to Use AtomPub Service and Category Documents
AtomPub introduces additional resources such as service documents and media re-
sources. Service documents help clients discover collections offered by a web service.
Servers can use media resources to associate media such as audio and video files, images
or any arbitrary document with an Atom entry. Recipe 6.5 discusses media resources.

Problem
You want to know how to use AtomPub service and category documents.

Solution
Use a service document resource to group collections into workspaces. The represen-
tation of this resource is an XML document with service as the root element defined
in the http://www.w3.org/2007/app namespace. The most commonly used namespace
prefix for this namespace is app. The media type of this representation is application/
atomsvc+xml.

A service consists of one or more workspaces (app:workspace). Each workspace consists
of several collections (app:collection) listing URIs of all feeds, media types that they
accept (app:accept), and categories (app:category).

A category resource lists categories of resources in a collection. Its representation is an
XML document with category as the root element. It consists of atom:category ele-
ments. The media type of this representation is application/atomcat+xml.

See the “Discussion” section next for complete examples.

Discussion
The purpose of service documents is to let clients find the collections available on a
server, and a workspace is a convenience mechanism to group related collections. Once
the client knows a URI of the service document, it can find the URIs of all the collections
in that service. Here is an example:

Request
GET /bookservice HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/atomsvc+xml;charset=UTF-8

<app:service xmlns="http://www.w3.org/2007/app"
 xmlns:atom="http://www.w3.org/2005/Atom">

116 | Chapter 6: Atom and AtomPub

http://www.w3.org/2007/app

 <app:workspace>
 <atom:title>CDs by Independent Artists and Reviews</atom:title>
 <app:collection href="http://www.example.org/cds" >
 <atom:title>CDs</atom:title>
 <app:categories href="http://www.example.org/cds/categories"/>
 <app:accept>image/png</accept>
 <app:accept>image/jpeg</accept>
 <app:accept>image/gif</accept>
 </app:collection>
 <app:collection href="http://www.example.org/reviews">
 <atom:title>Reviews</atom:title>
 </app:collection>
 </app:workspace>
</app:service>

A service document

A workspace

A CD collection

A reviews collection

This is a representation of a service document consisting of a single workspace. A
workspace is a logical grouping of collections. This workspace has two collections: one
for CDs and the other for reviews.

The CDs collection has the URI http://www.example.org/cds. Along with Atom entries,
this collection offers PNG, JPEG, and GIF images. See Recipe 6.5 to learn how to man-
age such media resources. Clients can fetch the categories resource to discover the
categories of resources offered by this collection.

Request
GET /cds/categories HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/atomcat+xml;charset=UTF-8

<app:categories xmlns:app="http://www.w3.org/2007/app"
 xmlns:atom="http://www.w3.org/2005/Atom"
 fixed="yes" scheme="http://www.example.org/audio">
 <atom:category term="jazz"/>
 <atom:category term="hip hop"/>
 <atom:category term="classical"/>
</app:categories>

The second collection in this workspace is a reviews collection to manage reviews. See
Appendix B of RFC 5023 for the schema for service and category documents.

6.3 How to Use AtomPub Service and Category Documents | 117

6.4 How to Use AtomPub for Feed and Entry Resources
The Atom Publishing Protocol (RFC 5023) is an application protocol for editing Atom
documents. It describes, among other things, how to create, update, and delete Atom
entries. It also supports editing associated nontextual media such as images, archive
files, etc. If you are publishing your resources using the Atom format and those re-
sources are editable, consider supporting AtomPub.

Problem
You want to know how to use the AtomPub protocol.

Solution
Allow clients to create new resources by submitting an Atom entry document as the
body of a POST request using the URI of the Atom feed as a factory. Clients can subse-
quently use the link with the edit relation type to modify (using PUT) or delete (using
DELETE) the resource.

Add a parameter type=entry to the media type when the representation is an Atom
entry document.

Discussion
AtomPub uses a subset of HTTP to create, retrieve, update, and delete resources. Re-
sources in AtomPub are Atom entries, Atom feeds, and media resources (see Rec-
ipe 6.5). AtomPub uses POST to create new resources, GET to retrieve representation,
PUT to update a resource, and DELETE to delete a resource. Here is a typical sequence of
operations:

Request to create a resource
POST /books HTTP/1.1
Content-Type: application/atom+xml;type=entry;charset=UTF-8

<atom:entry>
 <atom:id>urn:isbn:0-9767736-7-X</atom:id>
 <atom:title>Johnny Web Goes Out West</atom:title>
 <atom:published>2012-04-01T00:00:00Z</atom:published>
 <atom:author>
 <atom:name>R. W. Smith</atom:name>
 <atom:uri>http://example.org/books/1/authors/1</atom:uri>
 </atom:author>
 <atom:updated>2012-04-01T18:30:02Z</atom:updated>
 <atom:content type="text">
 Space hero Johnny Web tries
 to enjoy a vacation at a dude
 ranch only to be swept up in
 a criminal plot to sell unregulated
 solar power to off-worlders.
 </atom:content>
</atom:entry>

118 | Chapter 6: Atom and AtomPub

Response
HTTP/1.1 201 Created
Location: http://www.example.org/books/13

Request to update
PUT /books/13 HTTP/1.1
Host: www.example.org
Accept: application/atom+xml
If-Match: "h1g2f3d4s5a"

<atom:entry>
 ...
</atom:entry>

Response
HTTP/1.1 200 OK
Content-Type: application/atom+xml;type=entry;charset=UTF-8
Content-Length: XXX
ETag: "m1n2b3v4c5x6z"

<atom:entry>
 ...
</atom:entry>

Request to delete
DELETE /books/13 HTTP/1.1
Host: www.example.org
If-Match: "m1n2b3v4c5x6z"

Response
HTTP/1.1 204 No Content

Use POST to create a new resource.

Use PUT to update a resource.

Use DELETE to delete a resource.

Note that AtomPub registers the edit relation type with IANA. Clients can use the URI
of a link with this relation type to retrieve, update, or delete the resource.

AtomPub also specifies the Slug header. Clients can use this header with POST requests
to provide a text value that servers can use for the URI assigned to the new resource.
See Recipe 1.9 for an example.

6.5 How to Use Media Resources
One of the types of resources that AtomPub introduces is a media resource. A media
resource is anything other than an Atom entry document and can be used to represent
documents, images, audio and video files, etc. Since the media resource is not an Atom
entry document, AtomPub associates a media link resource for each media resource.

6.5 How to Use Media Resources | 119

A media link resource is nothing but an Atom entry that describes the media resource
and links to it.

Problem
You want to know how to deal with media such as images, audio/video files, etc.,
associated with Atom entries.

Solution
Atom uses a media link entry with each media resource. Since media resources may be
binary resources, you can use a media link entry to provide metadata for each media
resource.

If a collection (i.e., feed) supports media resources, list the supported media types in
the service document as described in Recipe 6.3.

Let clients create media resources by submitting a POST request to the collection. Create
the media resource and a media link resource. Return the URI of the media link resource
via the Location header. In the representation of the media link resource, provide the
URI of the newly created media resource via the src attribute of the atom:content
element.

If the server supports editing media resources, include a link with relation edit-media
in the Atom entry. Clients can use this link to retrieve, update, or delete the media
resource.

Discussion
AtomPub supports read/write operations on media resources (i.e., images, audio, video
files, etc.) through the use of a media resource and an associated media link entry
resource. The media resource is the actual media. The media link entry is an Atom entry
that contains metadata about the media resource. The media link entry appears in the
associated Atom feed along with other Atom entries.

When a client adds a media file using AtomPub, the server creates both the media
resource and the media link entry. Here is an example:

Request
POST /cds HTTP/1.1
Host: www.example.org
Content-Type: image/png
Slug: Epocalyptica
Content-Length: nnn

... binary data ...

Response
HTTP/1.1 201 Created
Content-Type: application/atom+xml;charset=UTF-8
Location: http://www.example.org/cds/112-epocalyptica

120 | Chapter 6: Atom and AtomPub

Content-Location: http://www.example.org/cds/112-epocalyptica

<atom:entry xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:title>Epocalyptica</atom:title>
 <id>urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efa6a</atom:id>
 <atom:updated>2009-04-01T04:01:00Z</atom:updated>
 <atom:author><atom:name>Jay Doe</atom:name></atom:author>
 <atom:summary type="text">Epocalyptica</atom:summary>
 <atom:content type="image/png"
 src="http://www.example.org/cds/112-epocalyptica.png"/>
 <atom:link rel="self" href="http://www.example.org/cds/112-epocalyptica"/>
 <atom:link rel="edit-media"
 href="http://www.example.org/cds/112-epocalyptica.png"/>
 <atom:link rel="edit"
 href="http://www.example.org/cds/112-epocalyptica"/>
</atom:entry>

Media link resource

Media entry resource containing metadata of the media

Link to edit the media

Link to edit metadata of the media

The purpose of the media resource URI (the one with the edit-media relation type) is
to modify the actual media file, as shown in the following example:

Request
PUT /cds/112-epocalyptica.png HTTP/1.1
Host: www.example.org
Content-Type: image/png
Content-Length: nnn

...binary data...

Response
HTTP/1.1 200 OK

Clients can use the media link entry URI (the one with the edit relation) to modify the
metadata associated with the media file. Here is an example that adds summary content
to media link entry associated with media resource:

Request
PUT /cds/112-epocalyptica HTTP/1.1
Content-Type: application/atom+xml;charset=UTF-8
If-Match: "z9x8c7v6b5n4m3"

<atom:entry xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:title>Epocalyptica</atom:title>
 <atom:id>urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efa6a</atom:id>
 <atom:updated>2009-04-01T04:01:00Z</atom:updated>
 <atom:author><name>Jay Doe</name></atom:author>
 <atom:summary type="text">Coolest album ever</atom:summary>
 <atom:content type="image/png"
 src="http://www.example.org/cds/112-epocalyptica.png"/>

6.5 How to Use Media Resources | 121

 <atom:link rel="self"
 href="http://www.example.org/cds/112-epocalyptica"/>
 <atom:link rel="edit-media"
 href="http://www.example.org/cds/112-epocalyptica.png"/>
 <atom:link rel="edit"
 href="http://www.example.org/cds/112-epocalyptica"/>
</atom:entry>

Response
HTTP/1.1 204 No Content

This example shows how to deal with arbitrary media content and how to manage the
metadata of the media. You can apply this pattern for a wide variety of use cases that
involve nontextual resources and their metadata. Some examples include movie trailer
videos, reports, presentations, spreadsheets, scanned documents, etc.

122 | Chapter 6: Atom and AtomPub

CHAPTER 7

Content Negotiation

Content negotiation, or conneg as it is sometimes called, is the process of selecting the
best representation of a resource for a client when there are multiple representations
(or variants) available. Although content negotiation is often associated with the prac-
tice of indicating media type preferences, content negotiation is also used to indicate
preferences for localizing by language, character encoding, and compression.

HTTP specifies two types of content negotiation. These are server-driven negotiation
and agent-driven negotiation. Server-driven negotiation uses request headers to select
a variant, and agent-driven negotiation uses a distinct URI for each variant.

This chapter discusses the following recipes that deal with content negotiation:

Recipe 7.1, “How to Indicate Client Preferences”
Use this recipe to decide which Accept-* headers to include when requesting a
resource and with what values.

Recipe 7.2, “How to Implement Media Type Negotiation”
Use this recipe to learn how to implement servers that correctly interpret the
Accept request header for media type negotiation.

Recipe 7.3, “How to Implement Language Negotiation”
Use this recipe to learn how to implement language negotiation using the Accept-
Language header.

Recipe 7.4, “How to Implement Character Encoding Negotiation”
Use this recipe to learn how to determine the requested character encoding for a
representation.

Recipe 7.5, “How to Support Compression”
HTTP allows clients to indicate their preference for compressed representations
via the Accept-Encoding request header. Use this recipe to decide how to process
this header on the server.

Recipe 7.6, “When and How to Send the Vary Header”
Use this recipe to learn how to use the Vary header.

123

Recipe 7.7, “How to Handle Negotiation Failures”
Use this recipe to determine when and how to return an error when the preferred
variant is not available.

Recipe 7.8, “How to Use Agent-Driven Content Negotiation”
Agent-driven negotiation is an alternative for a client to ask for a specific repre-
sentation of a resource. Use this recipe to learn when and how to use this.

Recipe 7.9, “When to Support Server-Driven Negotiation”
Use this recipe to learn the pros and cons of supporting multiple representations.

7.1 How to Indicate Client Preferences
When you are implementing a client, it is important for the client to indicate its pref-
erences and capabilities to the server. These include representation formats it can proc-
ess, languages it prefers, character encodings it can deal with, and its support for
compression. Even when you know out of band the format, character encoding, lan-
guage, and type of compression for a given representation in a response, clearly indi-
cating the client’s preferences and capabilities can help the client in the face of change.
If not, when a server decides to offer an alternative representation for a resource, any
default preferences your HTTP library may be using may prompt the server to return
a different representation and break the client. It is better to ask for a specific repre-
sentation instead of getting a default one, because the default representation can
change.

Problem
You want to know how to allow a client to indicate its capabilities, such as supported
media types, languages, etc.

Solution
When making a request, add an Accept header with a comma-separated list of media
type preferences. If the client prefers one media type over the other, add a q parameter
with each media type. This parameter indicates a relative preference for each media
type listed in Accept-* headers. It is most commonly used with the Accept header. If
the client can process only certain formats, add *; q=0.0 in the Accept header to indicate
to the server it cannot process anything other than the media types listed in the
Accept header.

If the client can process characters of a specific character set only, add an Accept-
Charset header with the preferred character set. If not, avoid adding this header.

Add an Accept-Language header for the preferred language of the representation.

124 | Chapter 7: Content Negotiation

If the client is able to decompress representations compressed using encodings such as
gzip, compress, or deflate, add an Accept-Encoding header listing the supported en-
codings. If not, skip this header.

Discussion
In HTTP, the purpose of the Accept-* header is to let the client express its preferences
for response representation. The server, based on its own capabilities, evaluates client
preferences and determines an appropriate representation to return. Since the server
determines the outcome of this process, this technique is called server-driven
negotiation.

For example, consider a client with the following preferences:

• The client prefers a French representation but can accept English.

• The client can process an Atom-formatted representation with media type
application/atom+xml, can accept an XML-formatted representation with media
type application/xml representation, but cannot accept anything else.

• The client knows how to process gzip-compressed representations.

The client can indicate these preferences with the following request headers:

Request headers
Accept: application/atom+xml;q=1.0, application/xml;q=0.6, */*;q=0.0
Accept-Language: fr;q=1.0, en;q=0.5
Accept-Encoding: gzip

In these headers, the part after the semicolon is the q parameter. The value of this header
parameter is a floating-point number usually with one digit after the decimal, although
HTTP 1.1 allows using up to three digits after the decimal. Clients can use this param-
eter to indicate the relative preference of each option in a range of 0.0 (i.e., unaccept-
able) to 1.0 (i.e., most preferred). For instance, the previous Accept header indicates
that the client cannot process anything other than Atom- and XML-formatted repre-
sentations. The default value of the q parameter is 1.0.

Not all servers support q parameters. Such servers may select the first
supported media type from the Accept header.

Note that servers may not always support content negotiation completely or correctly.
Clients should be prepared to receive a representation that does not meet the
Accept-* headers. Recipe 3.2 discusses how to use entity headers such as Content-
Type to determine how to process response representations.

7.1 How to Indicate Client Preferences | 125

Accept-* headers such as Accept and Accept-Language express ranges of
media types, languages, etc.

Content-* headers, on the other hand, express a specific media type,
language, etc.

7.2 How to Implement Media Type Negotiation
Whether the server supports one media type or several media types for any resource,
correctly interpreting the Accept header is necessary to improve interoperability.

Problem
You want to know how to decide which media type to use for a representation in a
response.

Solution
If the request has no Accept header, return a representation using the default format
for the requested resource.

If the request has an Accept header, parse the header and sort the values of media types
by the q parameters in descending order. Then select a media type from the list that the
server supports. Include a Vary response header as described in Recipe 7.6.

If the server does not support any of the media types in this list, use Recipe 7.7 to
determine an appropriate response.

Discussion
Consider this Accept header:

Accept: application/atom+xml;q=1.0, application/xml;q=0.6, text/html

This includes two media types with different q parameter values and a third media type
with no q parameter value. Since the default value of the q parameter is 1.0, this header
is equivalent to the following:

Accept: application/atom+xml;q=1.0, application/xml;q=0.6, text/html;q=1.0

From such a header, the server’s first choice should be either application/atom+xml or
text/html, and the second choice should be application/xml. If the server supports all
three, it can return either Atom- or HTML-formatted representations. Given the value
of the Accept header, either choice should be acceptable to the client:

Response
HTTP/1.1 200 OK
Content-Type: application/atom+xml;charset=UTF-8

... representation ...

126 | Chapter 7: Content Negotiation

Although implementing this logic is simple, certain situations can break interoperabil-
ity with clients. Consider the following.

In the beginning, assume that the server supports application/xml for all its represen-
tations. Since it is not serving any other representation, it chooses to ignore the
Accept header and returns XML-formatted representations for all requests. Then,
because of client demand, it adds support for application/json and decides to rely on
the value of the Accept header. This results in the following:

Original request
GET /movie/gone_with_the_wind HTTP/1.1
Host: www.example.org
Accept: application/json

Server can only support XML
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

... xml ...

Same request now
GET /movie/gone_with_the_wind HTTP/1.1
Host: www.example.org
Accept: application/json

Response - server supports JSON as well as XML
HTTP/1.1 200 OK
Content-Type: application/json

... json ...

This breaks compatibility because a working client no longer works. When you are
faced with such situations, serve the new representation using a new URI. Here is an
example:

Same request now
GET /movie/gone_with_the_wind?format=json HTTP/1.1
Host: www.example.org
Accept: application/json

HTTP/1.1 200 OK
Content-Type: application/json

... json ...

This technique is called agent-driven negotiation. See Recipe 7.8.

7.3 How to Implement Language Negotiation
HTTP’s support for language negotiation can help with limited localization support
for web services. Language selection is just one aspect of localization. Apart from

7.3 How to Implement Language Negotiation | 127

translation of human-readable text in representations, localization often involves the
regional and cultural adaptation of information.

Problem
You want to know how to decide the language to use for the human-readable text in a
representation.

Solution
If the request has no Accept-Language header, return a representation with all human-
readable text in a default language.

If the request has an Accept-Language header, parse the header, sort the media types by
the q parameters, and select the first language in the list that the server can support.
Include a Vary response header as described in Recipe 7.6.

If the server does not support any languages in the list and the Accept-Language header
does not contain *; q=0.0, use a default language for that resource.

Discussion
The protocol for language negotiation is similar to media type negotiation. The client
expresses its intent by supplying an Accept-Language header with acceptable languages
and their q header parameter values, and the server decides which one to use for the
response.

Request
GET /movie/gone_with_the_wind HTTP/1.1
Host: www.example.org
Accept-Language: en,en-US,fr;q=0.6

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8
Content-Language: en
Vary: Accept-Language

<movie>
 <title>Gone with the Wind</title>
 <year>1936</year>
 ...
</movie>

This approach is best suited when representations in different languages differ only in
terms of the language used for any human-readable text in the representation, as in the
following representation:

Request
GET /movie/gone_with_the_wind HTTP/1.1
Host: www.example.org
Accept-Language: en,en-US,fr;q=0.6

128 | Chapter 7: Content Negotiation

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8
Content-Language: fr
Vary: en

<movie>
 <title>Autant en emporte le vent</title>
 <year>1936</year>
 ...
</movie>

If the differences between representations are more significant, use other means of
localization such as the client’s IP address or region/language-specific URIs.

7.4 How to Implement Character Encoding Negotiation
If the client asks (via the Accept-Charset header) for textual representations to be en-
coded in a particular character encoding, encoding the response using that encoding
promotes interoperability.

Problem
You want to know what character encoding to use for textual representations in
responses.

Solution
If the request has no Accept-Charset header, return a representation using UTF-8
encoding.

If the request has an Accept-Charset header, parse the header, sort the character sets
by the q parameters, and select the character set that the server can support for
encoding.

If the server does not support any requested character sets and the Accept-Charset
header does not contain *; q=0.0, return a representation using UTF-8 encoding.

In all these cases, if the media type is textual and allows a charset parameter, include
the charset parameter in the Content-Type header indicating the character encoding
that the server used. Also include a Vary response header as described in Recipe 7.6.

Discussion
Most platforms and programming languages support UTF-8. UTF-8 is the default en-
coding for both application/xml and application/json media types. Always use
UTF-8 encoding unless the client asks for a different encoding.

7.4 How to Implement Character Encoding Negotiation | 129

Avoid using text/xml since its default encoding is US-ASCII.

7.5 How to Support Compression
Servers can optionally serve compressed representations to clients using encodings such
as gzip, deflate, or compress. In HTTP, this technique is generally called content
encoding.

Problem
You want to know when to enable compression of representations.

Solution
If the server is capable of compressing-response body, select the compression technique
from the Accept-Encoding header. Include a Vary response header as described in Rec-
ipe 7.6. If no encoding in this header matches the server’s supported encodings, ignore
this header. The q parameter processing is similar to other Accept-* headers.

If the request has no Accept-Encoding header, do not compress representations.

Discussion
Clients may or may not support content encodings such as gzip or deflate. It is
important to return compressed responses only when the client sends an
Accept-Encoding header with a compression format that the server supports. Here is an
example:

Request
GET /movie/gone_with_the_wind HTTP/1.1
Host: www.example.org
Accept-Encoding: gzip

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8
Content-Encoding: gzip
Vary: Accept-Encoding

... gzipped bytes ...

In most cases, you should be able to configure your HTTP servers to automatically
apply a given encoding for responses. For instance, placing the following line in your
Apache HTTP server configuration tells the server to apply deflate encoding to all
application/xml representations:

AddOutputFilterByType DEFLATE application/xml

130 | Chapter 7: Content Negotiation

7.6 When and How to Send the Vary Header
When a server uses content negotiation to select a representation, the same URI can
yield different representations based on Accept-* headers. The Vary header tells clients
which request headers the server used when selecting a representation.

Problem
You want to know how to use the Vary header to indicate clients how the server chose
a particular representation.

Solution
Include a Vary header whenever multiple representations are available for a resource.
The value of this header is a comma-separated list of request headers the server uses
when choosing a representation. If the server uses information other than the headers
in the request, such as the client’s IP address, time of the day, user personalization, etc.,
include a Vary header with a value of *.

Discussion
The server can use the Vary header to inform clients of the results of server-driven
content negotiation. The value of the Vary header is a set of request headers and not
response headers. For instance, consider the following sequences of requests and
responses:

Request for English representation
GET /status HTTP/1.1
Host: www.example.org
Accept-Language: en;q=1.0,*/*;q=0.0

Response
HTTP/1.1 200 OK
Content-Language: en
Vary: Accept-Language

...

Request for German representation
GET /status HTTP/1.1
Host: www.example.org
Accept-Language: de;q=1.0,*/*;q=0.0

Response
HTTP/1.1 200 OK
Content-Language: de
Vary: Accept-Language

...

Request for French representation

7.6 When and How to Send the Vary Header | 131

GET /status HTTP/1.1
Host: www.example.org
Accept-Language: fr;q=1.0,*/*;q=0.0

Response
HTTP/1.1 200 OK
Content-Language: fr
Vary: Accept-Language

Although the request URI is the same, clients and intermediaries can differentiate be-
tween the responses by looking at the value of the request headers listed in Vary header.
Caches use this header as part of cache keys to maintain variants of a resource. Clients
can use this information to know the criteria the server used for content negotiation.

7.7 How to Handle Negotiation Failures
Servers are free to serve any available representation for a given resource. However,
clients may not be able to handle arbitrary media types. Except for browsers, most
HTTP clients can deal with only one or two formats.

Problem
You want to know whether to serve a default representation, or return an error, when
the server is unable to serve a representation preferred by the client.

Solution
When the server cannot serve a representation that meets the client’s preferences and
if the client explicitly included a */*;q=0.0, return status code 406 (Not Acceptable)
with the body of the representation containing the list of representations.

If the server is unable to support requested Accept-Encoding values, serve the repre-
sentation without applying any content encoding.

Discussion
Here is an example of a request from a client that can process no media type except
application/json:

Request
GET /user/001/followers HTTP/1.1
Accept: application/json,*/*;q=0.0

Response
406 Not Acceptable
Content-Type: application/json
Link: <http://www.example.org/errors/mediatypes.html>;rel="help"

{
 "message" : "This server does not support JSON. See help for alternatives."
}

132 | Chapter 7: Content Negotiation

The client cannot process anything other than JSON.

The server does not support JSON.

A link with help on supported formats.

In this example, the server recognizes JSON but is unable to serve a representation of
the resource in that format. Since the client request includes a q=0.0 for every other
media type except application/json, a failure is acceptable for the client.

Note that the server uses a JSON-formatted representation for the error message. It is
quite reasonable for the server to implement error messages in commonly used formats.
If not, return the error message in human-readable HTML format.

Request
GET /user/001/followers HTTP/1.1
Accept: application/json,*/*;q=0.0

Response
406 Not Acceptable
Content-Type: text/html;charset=UTF-8
Link: <http://www.example.org/errors/mediatypes.html>;rel="help"

<html>
 <head>
 <title>JSON Not Supported</title>
 </head>
 <body>
 <p>This server does not support JSON. See help for alternatives.</p>
 </body>
</html>

7.8 How to Use Agent-Driven Content Negotiation
Although server-driven negotiation is built into HTTP, it has limitations:

• Content negotiation does not include elements such as currency units, distance
units, date formats, and other regional flavors for any human-readable text in rep-
resentations. For instance, you cannot always determine currency and date formats
based on the language preference.

• In some cases, because of complex localization requirements, the server may decide
to maintain different resources for different locales.

• Common web browsers use a broad range of media types for the Accept headers.
For instance, some installations of the Firefox browser send Accept: text/html,
application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8. This makes it difficult
to view content-negotiated representations in browsers.

For these, use agent-driven negotiation. Agent-driven negotiation is useful when the
client cannot communicate its preferences using Accept-* headers.

7.8 How to Use Agent-Driven Content Negotiation | 133

Problem
You want to know how to implement agent-driven negotiation.

Solution
Provide a URI for each representation.

Discussion
Agent-driven negotiation simply means providing a distinct URI for each variant and
allowing the client to use that URI to select the desired representation. In agent-driven
negotiation, client uses out-of-band information from the server to determine which
URI to use. If the representation exists, the server returns it. If it does not, it returns a
404 (Not Found) response code.

Since the client determines the outcome of this process, this technique
is called agent-driven negotiation. The term agent refers to user agents,
and the most common user agents are browsers.

Although it is possible to implement agent-driven negotiation for all Accept-* headers,
in practice it is most commonly used for media types and languages.

There are several ways for the server to assign URIs for each language and media type
of a resource. Some commonly used approaches include the following:

Query parameters
Append the language and or media type as query parameters to a base URI, with
the values of these query parameters using a shorthand notation for media types.
Examples include format for language negotiation and lang to support media type
negotiation. Here are some examples:

http://www.example.org/status?format=json
http://www.example.org/status?format=xml
http://www.example.org/status?format=csv

URI extensions
Append a dot (the . character), and shorthand media type to a base URI. Examples
include status.atom for an application/atom+xml representation and status.json
for an application/json representation.

Subdomains
Create subdomains to support language-specific representations. Examples in-
clude en.wikipedia.org to serve English-language representations of Wikipedia
entries and de.wikipedia.org to serve German-language representations of Wiki-
pedia entries.

134 | Chapter 7: Content Negotiation

When using agent-driven negotiation, the server can choose to advertise alternatives
using links with the alternate link relation type. Here is an example:

<status xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:link rel="self" href="http://www.example.org/status?format=xml&lang=en"/>
 <atom:link rel="alternate" type="application/json"
 href="http://www.example.org/status?format=json&lang=fr"/>
 ...
</status>

A link to the resource

A link to a variant

7.9 When to Support Server-Driven Negotiation
Content negotiation is not always appropriate. Although some popular web services
and web service frameworks support general-purpose formats such as XML, JSON,
and Atom for every resource, consider the cost of supporting multiple formats in your
web services.

Problem
You want to know if server-driven negotiation is right for your web service.

Solution
Support multiple variants when only your clients need them or whether each variant
contains the same information. If the information content is different, use a distinct
URI for each.

Discussion
Content negotiation is only cheap to implement when your development framework
supports it. In other cases, content negotiation takes time and effort to implement, test,
and manage. Most client applications can deal only with a single format. In such cases,
supporting multiple formats may be unnecessary. Before deciding to support multiple
representations for each resource, consider the following:

• In some cases, the application flow may be different for each representation format.
This is particularly true for HTML representations. User interface constraints may
require HTML representations to follow a different application flow from the one
used for, say, XML-formatted representations. In this case, server-driven negotia-
tion for both HTML and XML formats is not realistic.

• Unambiguously returning a variant based on the Accept header with several media
types with different q is not trivial. Not all development frameworks support this.

7.9 When to Support Server-Driven Negotiation | 135

• Language negotiation may be simplistic for global services. In some cases, legal
and business requirements may be regional, and agent-driven negotiation may be
the best approach.

• Caches may not handle content-negotiated responses well. Some caches may ig-
nore or limit the number of variants they store for any given resource.

Given these, carefully consider the requirements before supporting server-driven con-
tent negotiation in your server applications.

136 | Chapter 7: Content Negotiation

CHAPTER 8

Queries

Querying for information is a common application of the HTTP method GET. Queries
usually involve three components. They are filtering, sorting, and projections. Filter-
ing is the process of selecting a subset of entities based on some filter criteria. Sorting
influences how the server arranges the results in the response. Finally, a projection is
the process of selecting certain fields in each entity to be included in the results. For
example, a query submitted to a movies server may involve filtering the movies by genre,
then sorting the movies by their release dates in reverse chronological order, but then
selecting only the title, the year, and a brief description of each movie in the response
to the client.

Query design is relatively simple as far as URIs and representations are concerned. For
clients to run queries, the server’s responsibilities include designing URIs to support
filtering, sorting, and projections; designing representations; and setting appropriate
caching headers. This chapter deals with such protocol-visible aspects of query design,
covering the following recipes:

Recipe 8.1, “How to Design URIs for Queries”
This recipe shows how to design URIs for queries.

Recipe 8.2, “How to Design Query Responses”
This recipe shows how to model query results as representations of collection re-
sources.

Recipe 8.3, “How to Support Query Requests with Large Inputs”
Use this recipe to learn how to process queries with large inputs.

Recipe 8.4, “How to Store Queries”
Use this recipe to implement stored queries.

137

8.1 How to Design URIs for Queries
Problem
You want to know how to design URIs to support queries.

Solution
Use query parameters to let clients specify filter conditions, sort fields, and projections.
Treat the query parameters as optional with sensible defaults. To support commonly
used queries, use predefined named queries. Document the purpose of each parameter
using Recipe 14.1.

Discussion
Using query parameters to design queries is a common convention. Depending on your
use cases, you may need to support query parameters for one or all of the following:

• To select data from among the resources available

• To specify sort criteria

• To list the fields of resources to be included in the response

For instance, consider a URI that identifies reviews of a book.

http://www.example.org/book/978-0374292881/reviews

When a client submits a GET request, the server returns a collection of reviews. The
server may apply a default query for this URI and treat it as equivalent to the following:

http://www.example.org/book/978-0374292881/reviews?sortbyDesc=created&limit=5

This URI includes a query to return the latest five reviews sorted in reverse chronological
order of the creation date of each review. There are several types of queries possible for
this example:

Select all reviews where the author of the review contains "Jane"
http://www.example.org/book/978-0374292881/reviews?author=Jane

Select all 5-star-rated reviews
http://www.example.org/book/978-0374292881/reviews?rating=5

Select all reviews posted after August 15, 2009
http://www.example.org/book/978-0374292881/reviews?after=2009-08-15

Select all reviews posted after August 15, 2009, and sort the
results in the ascending order by date posted
http://www.example.org/book/978-0374292881/reviews?after=2009-08-15&sortbyAsc=date

All these URIs include filter and sort conditions as query parameters. You can further
refine the output of this query, say, to return only the title of each review:

138 | Chapter 8: Queries

http://www.example.org/book/978-0374292881/reviews?after=2009-08-15&
 sortbyAsc=date&fields=title

In this URI, the query parameter fields is used to specify a projection. Alternatively,
if most clients only need review summaries sorted in reverse chronological order of the
creation date, the server can predefine the query to include a projection for the title,
the rating, and a link for each review:

http://www.example.org/book/978-0374292881/reviews?after=2009-08-15&
 view=summary

The value of the parameter view is a predefined query. Predefined queries give you a
chance to optimize the server implementation to serve commonly used queries and
guarantee faster response times. For instance, in this example, the server can cache
review summaries of the most popular books in memory.

Consider predefined queries for commonly used queries.

Finally, you can extend queries to let clients run ad hoc queries. Here are some
examples:

Get all movies with titles containing "war" released after the year 2000
with at least 100 comments. Sort the results by year
http://www.example.org/movies$contains('war')$compare(year>2000)
 $compare(count(comments)>100)?$sortby=year

Use the value of the query parameter as part of a SQL WHERE clause
http://www.example.org/movies?query=
 '.title%20like%20'war'%20and%20year%20%3E%202000%20order%20by%20year'

Use an XPath expression to select movie titles
http://www.example.org/movies[year>2000&genre='war']/title

Such queries are flexible for clients to use since clients can treat servers as databases.
However, they may reduce the ability for the server to optimize the data storage and
backend caching, thereby reducing performance. These queries may also tightly couple
the URIs to how data is stored.

Avoid ad hoc queries that use general-purpose query languages such as
SQL or XPath.

Some servers use HTTP range requests for queries. Here is an example:

Request
GET /book/978-0374292881/reviews HTTP/1.1
Host: www.example.org
Range: query:after=2009-08-15&sortbyAsc=date

8.1 How to Design URIs for Queries | 139

Request
GET /report/June2009 HTTP/1.1
Host: www.example.org
Range: xpath://title

However, HTTP does not define range requests for anything other than byte ranges,
as in the following example:

Request to fetch a part of the representation
GET /docs/reportsJune2009.pdf HTTP/1.1
Host: www.example.org
Accept: application/pdf
Range: bytes=10241-20480

Response
HTTP/1.1 206 Partial Content
Content-Type: application/pdf
Content-Range: bytes=102341-20480

...

Caches may ignore range requests when used for anything other than byte ranges. In
contrast, query parameters are simpler to implement and support.

Avoid range requests for implementing queries.

8.2 How to Design Query Responses
This recipe discusses how to use a collection as a resource for implementing queries.

Problem
You want to know how to design representations for query responses.

Solution
Design the response of a query as a representation of a collection resource. See Rec-
ipe 3.7 to learn how to design collection representations. Set the appropriate expiration
caching headers as described in Recipe 9.1.

If the query does not match any resources, return an empty collection.

Discussion
A collection is a convenient way to model representations of queries. Here is the result
of a query to get, at most, five reviews of a book posted after August 15, 2009, sorted
in reverse chronological order of the creation date of each review:

140 | Chapter 8: Queries

Request
GET /book/978-0374292881/reviews?after=2009-08-15&sortbyDesc=created&limit=5 HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8
Cache-Control: max-age=86400
Content-Language: en

<reviews total="23" xmlns:atom="http://www.w3.org/2005/Atom"
 xml:base="http://www.example.org/978-0374292881">
 <atom:link rel="self"
 href="/book/reviews?after=2009-08-15&sortbyDesc=created&limit=5"/>
 <atom:link rel="next"
 href="/book/reviews?after=2009-08-15&sortbyDesc=created&limit=5&start=5"/>
 <review>
 <atom:link rel="self" href="/book/review/03213"/>
 <created>2007-08-02</created>
 <title>Oversimplified?</title>
 <body>...</body>
 </review>

 <!-- four more -->
 ...
</reviews>

Total number of reviews that match the query

Link to a URI that returns the first five reviews that match the query

Link to a URI that returns the next five reviews that match the query

This is a representation containing five reviews and a link to the next five reviews,
designed as per Recipe 3.7. You can let clients refine the output of this query, say, to
return only the links to all reviews:

Request
GET /book/978-0374292881/reviews?after=2009-08-15&sortbyDesc=created&limit=5&
 fields=link HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8
Content-Language: en

<reviews total="23" xmlns:atom="http://www.w3.org/2005/Atom"
 xml:base="http://www.example.org/978-0374292881">
 <atom:link rel="self" href="/book/reviews?after=2009-08-15&sortbyAsc=date"/>
 <atom:link rel="next" href="/book/reviews?after=2009-08-15&sortbyAsc=date&next=5"/>
 <atom:link rel="http://www.example.org/rels/review" href="/book/review/03213"/>
 <atom:link rel="http://www.example.org/rels/review" href="/book/review/03493"/>
 <atom:link rel="http://www.example.org/rels/review" href="/book/review/04501"/>
 <atom:link rel="http://www.example.org/rels/review" href="/book/review/04731"/>

8.2 How to Design Query Responses | 141

 <atom:link rel="http://www.example.org/rels/review" href="/book/review/04934"/>
</reviews>

In this representation, the server uses an extended link relation type to identify that the
link’s URI is a review. The client can obtain the review representation using the URI.

Each permutation and combination of query parameters results in a different URI. This
may reduce cache efficiency since, at the protocol level, each URI corresponds to a
different resource. To reduce the number of URIs possible, consider using predefined
queries as described in the previous recipe.

8.3 How to Support Query Requests with Large Inputs
Although HTTP does not pose any limit on the length of URIs, some implementations
do. Browsers like Internet Explorer limit the length to 2,083 characters. The Apache
web server, by default, limits the length of the request line (e.g. GET /jobs?params.....
HTTP/1.1) to 8,190 bytes (see the documentation of Apache’s LimitRequestLine direc-
tive). Microsoft’s Internet Information Services (IIS) uses a default value of 16,384 for
the cumulative number of bytes used to represent the request line and headers (see the
documentation of IIS’s MaxClientRequestBuffer). Squid limits URIs to 8,192 bytes.
Such limits usually exist for security reasons, such as circumventing buffer overruns.
These limits may prevent you from encoding a large number of filter conditions
into URIs.

Problem
You want to know how to support queries involving large numbers of query parameters
that, when included URIs, cause URIs to exceed the typical length restrictions posed
by various HTTP-level software.

Solution
Use HTTP POST to support large queries.

Discussion
Using POST for queries weakens HTTP’s uniform interface since GET is defined for safe
and idempotent information retrieval. However, this is a necessary trade-off to address
a practical limitation. For instance, consider a server that lets clients search for job
postings based on the location of the job, qualifications, experience level, type of the
job, keywords, company names, etc. This list of conditions is long. When a client enc-
odes those conditions into a URI via query parameters, the length of the URI or the
request line may exceed the limits mentioned previously. Use POST to support such
queries:

Request
POST /jobs HTTP/1.1

142 | Chapter 8: Queries

Host: www.example.org
Content-Type: application/x-www-form-urlencoded

keywords=web,ajax,php&industry=software&experience=5&...

The query is encoded as an application/x-www-form-urlencoded string in the body of
this request. The server responds with a representation of the search results:

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<postings xmlns:atom="http://www.w3.org/2005/Atom" xml:base="http://www.example.org">
 <posting>
 <atom:link rel="self" href="/job/499"/>
 ...
 </posting>
 <posting>
 <atom:link rel="self" href="/job/1863"/>
 ...
 </posting>
 ...
</postings>

Given that this operation is safe and idempotent, using the POST method is a misuse of
HTTP’s uniform interface. A consequence of this implementation is a loss of
cacheability.

Adding a Cache-Control or Expires header does not help since caches
treat responses of the POST method as not cacheable.

Another limitation of this technique is latency during pagination. To browse the search
results, the client needs to repeat the POST request:

Request to get the results starting from 10
POST /jobs HTTP/1.1
Host: www.example.org
Content-Type: application/x-www-form-urlencoded

start=10&keywords=web,ajax,php&industry=software&experience=5&...

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<postings xmlns:atom="http://www.w3.org/2005/Atom" xml:base="http://www.example.org">
 <posting>
 <atom:link rel="self" href="/job/5323"/>
 ...
 </posting>
 <posting>
 <atom:link rel="self" href="/job/435"/>

8.3 How to Support Query Requests with Large Inputs | 143

 ...
 </posting>
 ...
</postings>

Since these results are not cacheable, any client-side user interface controls to browse
the results back and forward cause the server, and not a cache, to respond to each
request. This introduces extra latency for the client and reduced scalability for the
server. If such queries are frequently needed in your web service, use Recipe 8.4 to store
queries on the server.

8.4 How to Store Queries
Stored queries can help make queries submitted using POST cacheable. Recipe 8.3 uses
POST to process queries that have a large number of parameters. This recipe shows you
how to store those queries on the server so that clients can use GET to execute stored
queries.

Problem
You want to know to how to store large query requests so that clients can use GET to
execute them.

Solution
When a client makes a query request using POST, create a new resource whose state
contains the query criteria. Return response code 201 (Created) with a Location header
referring to a resource created. Implement a GET request for the new resource such that
it returns query results.

If the same or another client repeats the same query request using POST, find the resource
that matches the request, and redirect the client to the URI of that resource.

Discussion
You can make query results cacheable by storing the query criteria permanently in a
data store, and you can assign a URI for stored query. The client can use this URI to
repeat the query. By transforming POST-based queries into GET requests for resources,
caches can serve cached representations of query results to clients.

In response to the query request, the server stores the query and assigns the URI http://
www.example.org/query/1 to it:

Request
POST /jobs HTTP/1.1
Host: www.example.org
Content-Type: application/x-www-form-urlencoded

keywords=web,ajax,php&industry=software&experience=5&...

144 | Chapter 8: Queries

Response
HTTP/1.1 201 Created
Content-Type: application/xml;charset=UTF-8
Location: http://www.example.org/query/1
Content-Length: 0

The client can use the created resource to fetch query results:

Request
GET /query/1 HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8
Date: Wed, 28 Oct 2009 07:22:34 GMT
Cache-Control: max-age:3600
Expires: Wed, 28 Oct 2009 08:22:34 GMT

<postings xmlns:atom="http://www.w3.org/2005/Atom" xml:base="http://www.example.org">
 <posting>
 <atom:link rel="self" href="/job/499"/>
 ...
 </posting>
 <posting>
 <atom:link rel="self" href="/job/863"/>
 ...
 </posting>
 ...
</postings>

Moreover, since the query is stored, the server can support the pagination of query
results via GET, and not through POST as is done in Recipe 8.3:

Request
GET /query/1?start=10 HTTP/1.1
Host: www.example.org

Stored queries thus compensate for some of the limitations of using POST for queries.
The downside is having to permanently store queries as resources. Furthermore, unless
the possible number of queries is small, the server may end up accumulating a large
number of less frequently used queries that may require frequent cleanup.

Also note that making queries cacheable does not guarantee that the
results will be served from the cache in the future. If the possible number
of such queries is high, since each URI calls for a different cached copy
of the response, the cache hit ratio will be low. The cache may fill up
quickly, and it may discard less frequently used URIs.

8.4 How to Store Queries | 145

CHAPTER 9

Web Caching

Caching is one of the most useful features built on top of HTTP’s uniform interface.
You can take advantage of caching to reduce end user perceived latency, to increase
reliability, to reduce bandwidth usage and cost, and to reduce server load. Caches can
be anywhere. They can be in the server network, content delivery networks (CDNs),
or in the client network (usually called forward proxies).

It is common to use the word cache to refer to either an object cache such as memcached
(http://memcached.org/) or HTTP caches such as Squid (http://www.squid-cache.org/)
or Traffic Server (http://incubator.apache.org/projects/trafficserver.html). Both of these
kinds of caches improve performance and have key roles to play in the overall web
service deployment architecture. But there is an important difference between these
two. HTTP caches such as Squid do not require clients and servers to call any special
programming API to manage data in the cache. This is not the case with object caches.
For instance, in order to use memcached, you must use memcached’s programming
API to store, retrieve, and delete objects. HTTP caches are based on the same uniform
interface that clients and servers use. Therefore, as long as you are using HTTP as
defined, you should be able to add a caching layer without making code changes.

Since a cache can be both an HTTP client and a server, in caching-related
discussions, the term origin server is used to differentiate between cach-
ing servers and the servers that host your server code.

Here is the list of recipes discussed in this chapter:

Recipe 9.1, “How to Set Expiration Caching Headers”
Expiration caching headers control if and how long a cache can serve a cached copy
of a representation to its clients. Use this recipe to learn how to set these headers.

Recipe 9.2, “When to Set Expiration Caching Headers”
Only certain responses in HTTP are cacheable. Use this recipe to determine when
to set expiration caching headers.

147

http://memcached.org/
http://www.squid-cache.org/
http://incubator.apache.org/projects/trafficserver.html

Recipe 9.3, “When and How to Use Expiration Headers in Clients”
Use this recipe to check how clients should treat expiration caching headers.

Recipe 9.4, “How to Support Caching for Composite Resources”
Use this recipe to learn how to make trade-offs for caching composite resources.

Recipe 9.5, “How to Keep Caches Fresh and Warm”
Use this recipe to learn some hints about keeping caches fresh and warm.

9.1 How to Set Expiration Caching Headers
Caches operate efficiently when they can serve as many responses as possible without
contacting the origin server. Expiration caching is designed to reduce the number of
requests received by the origin server as well as reduce the bandwidth used by your
application.

Expiration caching is based on Cache-Control and Expires headers. These headers in-
struct clients and caches to keep a copy of the representation returned by the server for
a specific length of time. Caches can fulfill any subsequent requests within or even
beyond that time window by serving a cached copy of the representation without con-
tacting the origin server.

Problem
You want to know how to enable caching for your resource representations.

Solution
Based on the frequency of updates, determine a time period during which caches can
serve a representation. This time period is the freshness lifetime. After this time, caches
will consider cached representation stale.

When serving a representation, include a Cache-Control header with a max-age value
(in seconds) equal to the freshness lifetime. The Cache-Control header is an HTTP 1.1
header. To support legacy HTTP 1.0 caches, also include an Expires header with the
expiration date-time. The expiration time is a time at which the server generated the
representation plus the freshness lifetime. Also include a Date header with a date-time
of the time at which the server returned the response. Including this header helps clients
compute the freshness lifetime as the difference between the values of the Expires and
Date headers.

If you determine that caches must not serve cached copies, add a Cache-Control header
with the value no-cache. In this case, also add a Pragma: no-cache header to support
legacy HTTP 1.0 caches.

See the following list for Cache-Control directives and their applicability:

148 | Chapter 9: Web Caching

public
This is the default. You can also use this directive when the request is authenticated
but you still want to allow shared caches to serve cached responses.

private
Use this directive when the response is private to the client or the user. When this
directive is present, any client-side cache (e.g., the browser cache or a forward
proxy) can cache the representation, but shared caches such as those at the server
or along the network must not cache it.

Add this directive when serving representations based on client or user
authentication.

no-cache and no-store
Add these directives to prevent any cache from storing or serving a cached response.

max-age
Use the freshness lifetime in seconds as the value of this directive.

s-maxage
This directive is similar to max-age but is meant only for shared caches. When an
origin server sets both a max-age and s-maxage directive, caches use the s-maxage
header. In practice, setting a max-age directive alone is sufficient.

must-revalidate
Use this directive to require caches to check the origin server before serving stale
representations.

proxy-revalidate
This directive is similar to the must-revalidate directive except that it applies only
to shared caches.

Discussion
A server can control expiration caching via two HTTP headers: the Expires (HTTP 1.0)
header and the Cache-Control (HTTP 1.1) header. Here is an example that instructs a
cache to serve the representation for an hour:

Response
HTTP/1.1 200 OK
Date: Sun, 09 Aug 2009 00:56:14 GMT
Last-Modified: Sun, 09 Aug 2009 00:56:14 GMT
Expires: Sun, 09 Aug 2009 01:56:14 GMT
Cache-Control: max-age=3600,must-revalidate
Content-Type: application/xml; charset=UTF-8

...

The date-time value the server generated the response

The date-time value the representation was last modified by the server

Expiration date-time value

9.1 How to Set Expiration Caching Headers | 149

Expiration lifetime and other directives

This message has a Cache-Control header with the max-age directive set to 3600 seconds.
Also note the Expires and Date headers. The difference between the values of these
headers is 3600 seconds. After one hour, because of the presence of the must-revali
date directive, caches will make a conditional request to the server to revalidate the
response before serving it again to clients (see Recipe 10.3).

When a client makes another request for the same resource before the expiry of one
hour, provided the cache still has a copy of the response, it will fulfill the request by
serving a stored copy of the representation without contacting the origin server:

First request
GET /person/joe HTTP/1.1
Host: www.example.org

First response
HTTP/1.1 200 OK
Date: Sun, 09 Aug 2009 00:44:14 GMT
Last-Modified: Sun, 09 Aug 2009 00:40:14 GMT
Expires: Sun, 09 Aug 2009 01:44:14 GMT
Cache-Control: max-age=3600,must-revalidate

...

Second request after 10 minutes
GET /person/joe HTTP/1.1
Host: www.example.org

Second response - returned by cache
HTTP/1.1 200 OK
Date: Sun, 09 Aug 2009 00:54:14 GMT
Last-Modified: Sun, 09 Aug 2009 00:40:14 GMT
Expires: Sun, 09 Aug 2009 01:44:14 GMT
Cache-Control: max-age=3600,must-revalidate
Age: 600

...

The Age header in this response is added by a cache. It indicates how long ago the cache
retrieved the representation from the origin server. By looking at this header in this
response, the client can determine that it received a 10-minute-old copy. If the value of
this header is greater than max-age, then the representation is stale.

The key to optimal expiration caching is calculating a reasonable freshness lifetime
value for the resource representation. If you have historical information such as update
logs for the representations, use them to establish a base lifetime. If you do not have
such information, start with a reasonable guess, and adjust this value as you get more
information. Usually that information comes in the form of discovering that a client is
unable to see a recently updated representation.

150 | Chapter 9: Web Caching

Adding either no-cache or no-store directives will prevent any cache
from serving cached responses. Do not use these unless you must. Usu-
ally using a small value of max-age as opposed to adding no-cache or no-
store directives helps clients fetch cached copies for at least a short
duration of time without compromising freshness severely.

Caches like Squid support two extension directives to the Cache-Control header. These
are state-if-error and stale-while-revalidate. Servers can use stale-if-error to tell
caches that they can continue to serve a stale response until the specified time interval.

Response
HTTP/1.1 200 OK
Cache-Control: max-age=3600, stale-if-error=600

...

In this case, the response becomes stale after an hour. But if the cache encounters errors
while contacting the origin server after the expiry, it can continue to serve a stale re-
sponse for 10 more minutes.

The following example illustrates stale-while-revalidate:

Response
HTTP/1.1 200 OK
Cache-Control: max-age=3600, stale-while-revalidate=600

...

This extension allows the cache to revalidate the response asynchronously while serving
a stale response for up to 10 minutes. See Recipe 10.3 to learn about revalidation.

9.2 When to Set Expiration Caching Headers
Not every response in HTTP is cacheable. HTTP specifies what is cacheable and what
is not, and caches may only implement parts of the HTTP’s caching protocol. This
recipe lists what is cacheable and what is not.

Problem
You want to know when to include expiration caching headers on responses.

Solution
Set expiration caching headers for responses of GET and HEAD requests for all successful
response codes. Although POST is cacheable, caches consider this method as noncache-
able. You need not set expiration headers on other methods.

9.2 When to Set Expiration Caching Headers | 151

In addition to successful responses with the 200 (OK) response code, consider adding
caching headers to the 3xx and 4xx response codes listed here. This will help reduce the
amount of error-triggering traffic from clients. This is called negative caching.

• 300 (Multiple Choices)

The representation with this status code may not change often. Making this re-
sponse cacheable may reduce server load.

• 301 (Moved Permanently)

Clients that store URIs in databases may not update them when the resource moves
permanently. In such cases, caches can serve the redirect response without con-
tacting the origin server.

• 400 (Bad Request)

When the server returns this code, clients are not supposed to repeat the request.
But some clients may because of software bugs or malintent.

• 403 (Forbidden)

Add this if the server is permanently refusing to serve the resource.

• 404 (Not Found)

The resource does not exist, and there is no need for the server to attempt to gen-
erate a representation only to fail.

• 405 (Method Not Allowed)

Clients may repeat such requests because of software bugs in the client.

• 410 (Gone)

The resource no longer exists, and hence the error response can be served by caches
for as long as possible.

Discussion
As per HTTP 1.1, responses from the methods GET, HEAD, and POST are cacheable.
Moreover, caches can store and serve any response to GET and HEAD requests unless you
explicitly prevent this by using caching directives such as Cache-Control: no-cache.
Even if you include caching headers, caches will not cache responses from POST requests.

Furthermore, when a client submits a HEAD request, most caches forward the request
as a GET request to the origin server, store it if the response is cacheable, and then return
a response to the client with no body:

Request from the client
HEAD /person/joe HTTP/1.1
Host: www.example.org

Request from the cache to the origin server
GET /person/joe HTTP.1.1
Host: www.example.org

152 | Chapter 9: Web Caching

Response from the origin server to the cache
HTTP/1.1 200 OK
Cache-Control: max-age=3600
Date: Sun, 09 Aug 2009 00:56:14 GMT
Last-Modified: Sun, 09 Aug 2009 00:56:14 GMT
Expires: Sun, 09 Aug 2009 01:56:14 GMT

...body...

Response from the cache to the client
HTTP/1.1 200 OK
Cache-Control: max-age=3600
Date: Sun, 09 Aug 2009 00:56:14 GMT
Last-Modified: Sun, 09 Aug 2009 00:56:14 GMT
Expires: Sun, 09 Aug 2009 01:56:14 GMT

...

Consequently, if you mark GET responses cacheable, caches will be able to respond to
both GET and HEAD requests.

It may be worth noting that it is common for a cache to negative cache 404 (Not
Found) and similar response status codes by assigning their own (usually short-term)
freshness to these responses, even when the response from the origin has no explicit
freshness information. The motivation for this is usually to handle error conditions
quickly without contacting the origin server.

9.3 When and How to Use Expiration Headers in Clients
The previous two recipes discussed expiration caching headers from the server’s point
of view. This recipe discusses them from the client’s point of view.

Problem
You want to know whether you must explicitly implement support for caching in your
client.

Solution
Unless you are building a shrink-wrapped client application that users install and run,
avoid implementing support for expiration caching within the client application. In-
stead, deploy a forward proxy cache in the client network, and avoid implementing
your own caching layer in the client code.

Discussion
In general, clients should stay independent of expiration caching. In theory, it is pos-
sible to build client applications that support HTTP’s caching protocol. For example,
common browsers implement expiration caching and store representations in memory

9.3 When and How to Use Expiration Headers in Clients | 153

and/or the filesystem. In practice, building and maintaining a cache within a client
application is a nontrivial task. It involves correctly implementing expiration directives
such as no-store, no-cache, and must-revalidate, and honoring the Vary header. Placing
a cache within the same runtime can introduce memory and CPU contention between
the client application code and the caching code. This can make tuning the client more
difficult. Moreover, any errors in implementation could lead to security vulnerabilities
in the client.

In comparison, placing a forward proxy cache between your clients and servers is less
complex. It does not involve any development activity, and you can have the benefits
of a well-tested and robust caching infrastructure without building one. It also leaves
room for expansion since you can set up a cluster of forward proxy servers to be shared
by all clients.

Avoid programmatic caching, even if your client library supports such
an approach. Instead, delegate all caching activities to a forward proxy.

If both clients and servers are within the same network, a forward proxy may be un-
necessary. The server can deploy a cache that can be shared by all clients. But if your
clients are interacting with third-party web services in other networks, using a forward
proxy can help reduce round-trip times between clients and servers.

9.4 How to Support Caching for Composite Resources
Problem
You want to know how to enable expiration caching for composite resources.

Solution
Base caching decisions on the part of the data that has the strongest freshness require-
ments. Set expiry headers based on how frequently such data changes.

Discussion
Implementing caching for composite resources is trickier than other kinds of resources.
Such resources contain data that overlaps with other resources that may have differing
expiration times. One example is a customer snapshot resource containing customer
information, contact details, a summary of the latest purchase orders from the cus-
tomer, and any pending requests for quotes. Since the server may have offered customer
information, contact details, purchase orders, and quotes as resources, changes to any
of those resources can render the composite resource stale.

154 | Chapter 9: Web Caching

Composites are a good example of a trade-off between convenience and cache effi-
ciency. Composites are convenient for clients to use but costly for the server to serve
fresh. In this example, there are three pieces of information, each of which may change
at different frequencies and possibly via different sources:

• Customer, with name, contact information, and other details. This data may not
change often. When serving this data as a resource, the server can set a large expiry
interval (e.g., seven days).

• Collection of purchase orders for each customer. This data may change nightly as
it gets imported from another backend system, and the server can set the Last-
Modified header to the date-time at midnight and set an expiry of 24 hours.

• Collection of pending quotes for each customer. This data may be business critical,
and the server may want to set an expiry of five minutes for this data.

Now assume that this composite is for use by an employee who manages customer
relations, and that employee using a client needs to be aware of new quote requests
within five minutes.

In this case, the choice for the server is obvious. Since the pending quote information
is the most critical, the server can use that to guide the computation of the
Last-Modified and ETag headers:

Request
GET /snapshot/1234 HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8
Date: Sun, 25 Oct 2009 18:08:22 GMT
Last-Modified: Sun, 25 Oct 2009 16:54:10 GMT
Cache-Control: max-age=300
ETag: "81a540e69b4c29a80586284be0d3f296"

<snapshot xmlns:atom="http://www.w3.org/2005/Atom">
 <customer>
 <id>1234</id>
 <atom:link rel="self" href="http://www.example.org/customer/1234">
 <name>...</name>
 <address>...</address>
 </customer>
 <orders>
 <atom:link rel="http://www.example.org/rels/orders/recent"
 href="http://www.example.org/orders?customerid=1234&sortby=date_desc&"/>
 <order>
 <id>...</id>
 ...
 </order>
 </orders>
 <quotes>
 <atom:link rel="http://www.example.org/rels/quotes/recent"

9.4 How to Support Caching for Composite Resources | 155

 href="http://www.example.org/quotes?customerid=1234&sortby=date_desc&"/>
 ...
 </quotes>
</snapshot>

This example shows a trade-off. To guarantee that the user of this resource is able to
see quotes within five minutes, the server chooses a shorter expiry interval for the entire
representation. This is an inefficient use of the cache since even less frequently changing
data will become stale after five minutes. A fix is to break the composite into three
resources. But this will force the client to make multiple requests to fetch the data. In
other words, the server needs to consider competing interests and make a trade-off.
This situation can occur whenever the representation of a resource is coarse-grained,
consisting of data that could potentially be offered as independent resources.

9.5 How to Keep Caches Fresh and Warm
One of the challenges of supporting caching is keeping caches fresh (up-to-date) and
warm (nonempty) even when clients are not making requests. For instance, consider a
photo-sharing service. After a user uploads photos, all caches will be empty for those
photos, and hence the server will have to generate representations of photos. Similarly,
when you introduce a new cache, it will be empty and will only fill up over time as
clients start making requests. When a cache is fresh, it contains the latest possible
representations. A warm cache avoids the cold-start problem. However, proactively
keeping caches fresh and warm is outside the realm of HTTP. The techniques presented
in this recipe are just hints.

Problem
You want to know how to ensure that caches have the fresh representations and are
operating efficiently.

Solution
Whenever possible, synchronize expiry with the frequency of updates. When this is
not possible, implement background processes to watch for database updates, and
schedule unconditional GET requests (see Recipe 10.6) to refresh caches. Make sure to
account for database replication delays while scheduling such requests.

If you are using Squid, use the HTTP cache channels extension to propagate resource
updates to caches.

If you want to purge cached representations, check the documentation of your cache.
For instance, Squid provides an extension to purge representations from the cache (see
http://wiki.squid-cache.org/SquidFaq/OperatingSquid). Note that you can purge repre-
sentations only from the caches that are in your control. There may be several down-
stream caches that may continue to hold cached copies.

156 | Chapter 9: Web Caching

http://wiki.squid-cache.org/SquidFaq/OperatingSquid

Discussion
In HTTP, caches are required to invalidate representations when a client submits PUT,
POST, or DELETE requests. Consequently, when a client submits a GET or HEAD request for
the same resource, the cache will obtain a fresh representation from the origin server.
Although this approach is not efficient (because the cache cannot stay warm), it guar-
antees that clients see fresh representations.

In reality, it is possible that your network has several applications that read and write
to the same data stores. Write operations by any of those applications bypass HTTP
caches and servers, thus leaving caches with stale representations. Consider the fol-
lowing examples:

• The server may have a nightly job that updates summary data tables to reflect the
day’s work. This update may happen directly at the database level and not be tied
at all to any HTTP requests. However, you may have one or more of these resources
in caches. Once the nightly update occurs, responses stored in the cache become
stale.

• Widely distributed data stores may perform periodic replication throughout the
day. Changes to data may not be reflected in all caches.

• Large applications may have one or more clients or services that use custom pro-
tocols to update data. Anyone using these services will be able to make changes to
the database without using HTTP. Caches will not see resource updates.

In all these cases, you need a way to make sure any changes to the backend data stores
are eventually reflected in caches. One way to solve this problem is to implement trig-
gers to monitor all database updates. You can then run a scheduler to submit uncon-
ditional GET requests (see Recipe 10.6) through the cache to the server. By the time a
client makes a request for those resources, their representations will be in the cache.
For instance, you may schedule such a task every morning so that the previous day’s
updates will be in the cache when the business day starts.

Another possible solution is to take advantage of Cache-Control extensions such as
HTTP cache channels. This extension defines a “channel” to which cache services can
subscribe in order to receive notifications of resource updates. As of writing this book,
the Squid web cache supports this extension. Here is an example of a server offering a
URI to check for resource updates:

Request
GET /orders HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Cache-Control: max-age=600,channel="http://www.example.org/channels/orders"
Date: Sun, 09 Aug 2009 00:56:14 GMT
Last-Modified: Sun, 09 Aug 2009 00:56:14 GMT
Expires: Sun, 09 Aug 2009 01:56:14 GMT

9.5 How to Keep Caches Fresh and Warm | 157

Content-Type: application/xml;charset=UTF-8

...

Caching services that understand this extension can use the URI http://www.exam
ple.org/channels/orders to subscribe to events published by the server. See http://iet
freport.isoc.org/idref/draft-nottingham-http-cache-channels for more details.

158 | Chapter 9: Web Caching

http://ietfreport.isoc.org/idref/draft-nottingham-http-cache-channels
http://ietfreport.isoc.org/idref/draft-nottingham-http-cache-channels

CHAPTER 10

Conditional Requests

Conditional requests in HTTP help address two problems. For GET requests, condi-
tional requests help clients and caches validate that a cached representation can still be
considered fresh. For unsafe requests such as PUT, POST, and DELETE, conditional requests
provide concurrency control.

Not supporting conditional GET requests reduces performance, but in the face of con-
currency, not making unsafe requests such as POST, PUT, and DELETE conditional may
affect the integrity of the application. In the absence of adequate concurrency control
checks, the server is susceptible to “lost updates” and “stale deletes.” When a client
submits a request to modify or delete a resource, it does so based on what it thinks is
the current state of the resource. But under concurrent conditions, the current state of
the resource is not static. Either the server, through some backend means, or other
clients may have updated or deleted the resource.

Concurrency control ensures the correct processing of data under concurrent opera-
tions by clients. There are two ways to implement concurrency control:

Pessimistic concurrency control
In this model, the client gets a lock, obtains the current state of the resource, makes
modifications, and then releases the lock. During this process, the server prevents
other clients from acquiring a lock on the same resource. Relational databases
operate in this manner.

Optimistic concurrency control
In this model, the client first gets a token. Instead of obtaining a lock, the client
attempts a write operation with the token included in the request. The operation
succeeds if the token is still valid and fails otherwise.

159

HTTP, being a stateless application control, is designed for optimistic concurrency
control. The essence of optimistic concurrency control is as follows:

1. The server gives a token to the client with each representation of the resource.

2. The server implements resource modifications such that these tokens change with
every change to the resource. In other words, the server’s version of tokens change
whenever the state of the resource changes.

3. With each request to modify or delete a resource, the client supplies the token back
to the server. A request containing such a token is called a conditional request.

4. The server checks whether the client-supplied token is still valid. If it is not, then
there is a concurrency failure, and the server aborts the request.

Clients, servers, and caches can use a similar technique to implement conditional GET
requests. Conditional GET requests can extend the life of stale representations. This
chapter describes the following recipes to implement conditional requests:

Recipe 10.1, “How to Generate Last-Modified and ETag Headers”
Use this recipe to learn how to generate Last-Modified and ETag headers.

Recipe 10.2, “How to Implement Conditional GET Requests in Servers”
Use this recipe to learn how to implement support for conditional GET requests in
servers.

Recipe 10.3, “How to Submit Conditional GET and HEAD Requests from Clients”
Use this recipe to learn how to make conditional GET requests from clients.

Recipe 10.4, “How to Implement Conditional PUT Requests in Servers”
Use this recipe to implement optimistic concurrency control in servers for PUT
requests.

Recipe 10.5, “How to Implement Conditional DELETE Requests in Servers”
Use this recipe to implement optimistic concurrency control in servers for DELETE
requests.

Recipe 10.6, “How to Make Unconditional GET Requests from Clients”
Use this recipe to learn how to retrieve fresh representations for development and
debugging purposes.

Recipe 10.7, “How to Submit Conditional PUT and DELETE Requests from Clients”
Use this recipe to learn how to implement clients to supply If-Unmodified-Since
and If-Match headers as tokens for concurrency control checks.

Recipe 10.8, “How to Make POST Requests Conditional”
Use this recipe to learn how servers can use links to exchange concurrency control
tokens for POST requests.

Recipe 10.9, “How to Generate One-Time URIs”
Use this recipe to learn how to generate a URI that is conditional on the state of
the resources it is used to modify or that can be used just once.

160 | Chapter 10: Conditional Requests

10.1 How to Generate Last-Modified and ETag Headers
Servers use Last-Modified and ETag response headers to drive conditional requests.
Clients use the following request headers to make requests conditional:

• If-Modified-Since and If-None-Match for validating cached representations

• If-Unmodified-Since and If-Match as preconditions for concurrency control

If the names of these headers seem confusing, remember the intent. For
GET requests, the client’s intent is to ask for a fresh representation only
if the representation was modified since the date-time specified and/or
if none of the supplied entity tags matches.

For concurrency control, the intent is to request to perform an operation
only if the representation was not modified since the date-time specified
and/or if the supplied entity tags match.

Both these sets of request headers allow clients to supply “precondi-
tions” with requests.

The efficacy of processing conditional requests depends on how quickly the server can
validate the Last-Modified and ETag headers. This recipes discusses how to generate
these headers.

Problem
You want to know how to generate Last-Modified and ETag headers to support caching
and conditional requests for your resource representations.

Solution
If you have control on the data store used for storing resources, modify the storage
schema for each resource to include a timestamp for the modified date-time and/or a
sequence number to keep track of a version.

In the case of relational databases, use database triggers to automatically update these
fields whenever the data is modified.

If you cannot modify the storage schema or if your data store does not permit main-
taining timestamps or sequence numbers, use some function of the resource data to
generate a value for the ETag header. Store this value and a timestamp in a separate table
or data store such that the server does not need to reload the entire representation to
compute this.

If the representation size is not large, use the representation body to generate an MD5
hash value for the ETag. Alternatively, use some field of the data that changes every time
the resource is updated.

10.1 How to Generate Last-Modified and ETag Headers | 161

Make sure to use a different ETag value for each representation of the resource.

Discussion
Most web servers let you add ETag and Last-Modified headers automatically for static
content. For application resources, you need to generate them programmatically.

Of these headers, Last-Modified has a one-second resolution and hence is considered
a “weak” validator. An entity tag is a strong validator since its value can be changed
every time the server modifies the representation. An entity tag is like an object’s hash
code. You can use entity tags to compare representations of a resource.

You do not need to use both Last-Modified and ETag headers to support conditional
requests. Use either or both consistently to support conditional requests.

If you are designing a new web service, include a timestamp and a version counter in
your data store. Most relational databases let you use some database-specific triggers
to automatically update and increment these values whenever the data changes. This
is usually the most efficient approach since the server does not need to load all the
resource data from the database to check these values.

Some web frameworks autogenerate ETag headers after letting your code generate the
representation. They do so by computing a hash of the entire representation. This may
not perform well if the data for the representation takes time to load from the database.

In case the data for the resource spawns multiple tables, you may need to pick the latest
last-modified timestamps from those tables and use a hash of the corresponding version
numbers.

The techniques you need to employ for nonrelational data stores vary from implemen-
tation to implementation.

When you use version numbers for generating ETag values, ensure that
this header value is representation specific. For instance, if two repre-
sentations of a resource vary by the media type, use the media type value
along with the version identifier to make the ETag values representation
specific.

10.2 How to Implement Conditional GET Requests in Servers
Conditional GET requests give the server an opportunity to skip the response body if
the representation has not changed since the last time it served the representation.
Conditional requests involve the client sending If-Modified-Since and If-Match head-
ers based on the Last-Modified and ETag headers from a previous request. Conditional
requests do not cut down on the number of requests from the client, but they can reduce
the number of times a server needs to send a fresh representation to the client.

162 | Chapter 10: Conditional Requests

Problem
You want to know how to implement conditional GET requests.

Solution
Design the server to keep track of last modification date-time values and/or entity tags.
Include the last-modified date-time as the Last-Modified header and the entity tag as
the ETag header when serving representations.

When responding to GET and HEAD requests from the client, if the client has sent an If-
None-Match header, compare its value with the ETag of the representation on the server.
If the client has sent an If-Unmodified-Since, compare its value with the last-modified
time of the representation on the server.

If either checks are false or if the client sent neither of these headers, return the latest
copy of the representation to the client including new ETag and/or Last-Modified head-
ers. If not, return HTTP status code 304 (Not Modified) to the client with no message
body.

Discussion
The process of using conditional GET requests to extend the life of a cached copy is
called validation. To support this, the server must return expiration headers along
with conditional headers to clients and implement validation by returning 304 (Not
Modified) to extend the life of a cached response.

The following example illustrates how clients can take advantage of a
caching proxy server to store cached response and let the cache handle
validation automatically. See Recipe 10.3 if your client stores a copy of
a representation in its local storage and would like to check whether its
locally stored copy can still be considered fresh.

Here is a representation that includes ETag and Last-Modified headers along with expiry
caching headers:

Response
HTTP/1.1 200 OK
Date: Sun, 09 Aug 2009 00:56:14 GMT
Last-Modified: Sun, 09 Aug 2009 00:56:14 GMT
Expires: Sun, 09 Aug 2009 01:56:14 GMT
Cache-Control: max-age=3600,must-revalidate
E-Tag: "3f4a74db207d0447d46710a64971e777"
Content-Type: application/xml; charset=UTF-8

...

10.2 How to Implement Conditional GET Requests in Servers | 163

In this example, the value of the ETag header is an entity tag. If you make two GET
requests and receive two different values for the ETag header, this implies that the rep-
resentation changed.

The values of the ETag, If-Match, and If-None-Match headers are quoted
strings.

The server’s intent in this example is to let a cache serve a stored representation for an
hour and, upon expiry, validate the representation by making a conditional GET request.
The following sequence illustrates the process of validation:

First request
GET /person/joe HTTP/1.1
Host: www.example.org

First response
HTTP/1.1 200 OK
Date: Sun, 09 Aug 2009 00:44:14 GMT
Last-Modified: Sun, 09 Aug 2009 00:40:14 GMT
Expires: Sun, 09 Aug 2009 01:44:14 GMT
Cache-Control: max-age=3600,must-revalidate

...

Second request after 10 minutes
GET /person/joe HTTP/1.1
Host: www.example.org

Second response - returned by cache
HTTP/1.1 200 OK
Date: Sun, 09 Aug 2009 00:54:14 GMT
Last-Modified: Sun, 09 Aug 2009 00:40:14 GMT
Expires: Sun, 09 Aug 2009 01:44:14 GMT
Cache-Control: max-age=3600,must-revalidate
Age: 600

...

Response generated by the server

Response may be cached for 3600 seconds but must be revalidated after that time
period

A 600-second-old response served by the cache

Requests made by clients after the expiry of one hour cause the cache to revalidate the
cached response.

Third request after an hour
GET /person/joe HTTP/1.1
Host: www.example.org

164 | Chapter 10: Conditional Requests

Request sent by the cache to the origin server
GET /person/joe HTTP/1.1
Host: www.example.org
If-Modified-Since: Sun, 09 Aug 2009 00:40:14 GMT
If-None-Match: "3f4a74db207d0447d46710a64971e777"

Response generated by the server
HTTP/1.1 304 Not Modified
Date: Sun, 09 Aug 2009 01:54:14 GMT
Last-Modified: Sun, 09 Aug 2009 00:56:14 GMT
Expires: Sun, 09 Aug 2009 02:54:14 GMT
Cache-Control: max-age=3600,must-revalidate
E-Tag: "3f4a74db207d0447d46710a64971e777"
Content-Type: application/xml; charset=UTF-8

Response returned by the cache
HTTP/1.1 200 OK
Date: Sun, 09 Aug 2009 00:54:14 GMT
Last-Modified: Sun, 09 Aug 2009 00:40:14 GMT
Expires: Sun, 09 Aug 2009 01:44:14 GMT
Cache-Control: max-age=3600,must-revalidate

...

Request by the client after expiry

Request by the cache to the origin server to validate the cached response

Response by the origin server indicating that the response has not been modified

Response by the cache to the client containing a cached copy

The server does not see the second request since the response has not expired and the
cache still has a copy. The third request does reach the server for validation. The third
response by the server says that the representation has not changed. It also extends the
freshness lifetime for another hour.

In this example, the server’s responsibility is to compare the values of
the If-Modified-Since and/or If-None-Match headers with their current
values and return either 200 (OK) with a resource representation or 304
(Not Modified).

10.3 How to Submit Conditional GET and HEAD Requests
from Clients
When a client stores representations locally, it can use conditional GET or HEAD requests
to find whether the locally stored representation is still fresh.

10.3 How to Submit Conditional GET and HEAD Requests from Clients | 165

Problem
You want to know how to implement conditional GET and HEAD requests in your clients.

Solution
When a server returns Last-Modified and/or ETag headers, store them along with the
representation data.

When making GET and HEAD requests for the same resource in the future, include the
following headers to make these requests “conditional”:

• If-Modified-Since header with a value of the stored Last-Modified header

• If-None-Match header with a value of the stored ETag header

Discussion
Supporting conditional requests involves storing Last-Modified and ETag headers and
then replaying them with future requests to the server. Consider the following request:

Request
GET /person/joe HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Date: Sun, 09 Aug 2009 02:55:46 GMT
Last-Modified: Sun, 09 Aug 2009 00:56:14 GMT
Expires: Sun, 09 Aug 2009 03:55:46 GMT
Cache-Control: max-age=3600,must-revalidate
E-Tag: "3f4a74db207d0447d46710a64971e777"
Content-Type: application/xml; charset=UTF-8

<person xmlns="org:example:people" xmlns:atom="http://www.w3.org/2005/Atom">
 <name>John Doe</name>
 <address>
 <street>1 Main Street</street>
 <city>Seattle</city>
 <atom:link rel="self" href="http://www.example.org/person/john/address"/>
 <state>WA</state>
 </address>
 <atom:link rel="self" href="http://www.example.org/person/john"/>
</person>

This is not a conditional request because of the request does not include If-Modified-
Since of If-None-Match.

If you are storing this representation for future use by the client, you are likely to include
the name of the person, the address, and the URI of the resource in the storage. Also
include the values of Last-Modified and/or ETag in the same storage for each represen-
tation so that you can make conditional requests.

166 | Chapter 10: Conditional Requests

At a later time, you can check to see whether the server changed the representation by
including If-Modified-Since and/or If-None-Match headers with the request:

Request
GET /person/joe HTTP/1.1
If-Modified-Since: Sun, 09 Aug 2009 00:56:14 GMT
If-None-Match: "3f4a74db207d0447d46710a64971e777"

Response
HTTP/1.1 304 Not Modified
Date: Sun, 09 Aug 2009 03:10:03 GMT
Last-Modified: Sun, 09 Aug 2009 00:56:14 GMT
Expires: Sun, 09 Aug 2009 04:10:03 GMT
Cache-Control: max-age=3600,must-revalidate
E-Tag: "3f4a74db207d0447d46710a64971e777"

The response from the server implies that the client’s copy of the representation is still
fresh. This response also extends the freshness lifetime for another hour from the time
the server returned the response.

Do not send conditional requests unless you have a copy of the repre-
sentation stored locally on the client.

10.4 How to Implement Conditional PUT Requests in Servers
Lax implementation or lack of concurrency control for PUT requests can cause “lost
updates.” This recipe shows how to use Last-Modified and/or ETag headers to imple-
ment conditional PUT requests in servers for optimistic concurrency control.

Problem
You want to know how to implement concurrency control for PUT requests.

Solution
If the resource does not exist yet and if the server supports resource creation via PUT,
create a new resource at the URI specified by the client. If the server does not support
resource creation, return 404 (Not Found) status to the client.

If the resource exists, take the following steps:

• If the client does not include If-Unmodified-Since and/or If-Match headers, return
403 (Forbidden). Explain why in the body of the response.

• If the supplied If-Unmodified-Since or If-Match headers do not match the actual
modified date-time and ETag values of the representation on the server, return error
code 412 (Precondition Failed).

10.4 How to Implement Conditional PUT Requests in Servers | 167

• If the clients submits a conditional PUT request and if the supplied conditions
match, update the resource, and return 200 (OK) or 204 (No Content).

You can optionally include updated Last-Modified and/or ETag headers provided
the response also includes a Content-Location header with the URI of the updated
resource.

See Figure 10-1 for an overview of the checks that the server needs to make.

Figure 10-1. Implementing conditional PUT requests

To make this work, make sure to include Last-Modified and/or ETag headers whenever
the server is returning a representation to a client.

Discussion
The steps to implement conditional PUT requests are similar to those of conditional
GET requests (see Recipe 10.2). The key difference is the use of If-Unmodified-Since
and/or If-Match headers in place of If-Modified-Since and/or If-None-Match headers.

Here is a conditional PUT request submitted by a client:

Process this request if and only if the included conditional tags match
PUT /reviews/notes_from_underground HTTP/1.1
Host: www.example.org

168 | Chapter 10: Conditional Requests

If-Unmodified-Since: Sun, 09 Aug 2009 00:56:14 GMT
If-Match: "3f4a74db207d0447d46710a64971e777"

If the server is expecting conditional headers but finds none in the request, it must
return response code 403 (Forbidden). If it finds conditional headers in the request, it
must compare them with the current values of Last-Modified and/or ETag values. If they
match, the server can process the update, and return 200 (OK). If not, the server must
return response code 412 (Precondition Failed). See Recipe 10.7 for some example
response messages for these response codes.

If the server sends both Last-Modified and ETag headers on requests,
process the PUT request only if both the If-Unmodified-Since and If-
Match headers match the current values. Even if one of them fails to
match, return 412 (Precondition Failed).

Here is an example that illustrates why making PUT requests conditional is important.
Consider a wiki-like server that manages content, where clients can modify and/or
delete content. Assume that there are two clients, A and B, that would like to modify
a resource in the following sequence. Client A obtains a representation of the resource.
A user of client A starts editing the resource in a text editor locally:

Request from client A
GET /reviews/notes_from_underground HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset-UTF-8

...

Client B gets a representation of the same resource, and a user of client B starts editing
the resource locally:

Request from client B
GET /reviews/notes_from_underground HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset-UTF-8

...

The user of client B finishes her edits and submits the changes by making a PUT request
to the server:

Request from client B
PUT /reviews/notes_from_underground HTTP/1.1
Host: www.example.org

Response

10.4 How to Implement Conditional PUT Requests in Servers | 169

HTTP/1.1 200 OK
Content-Type: application/xml;charset-UTF-8

...

First update

A few seconds later, user of client A finishes her edits and submits the changes with
another PUT request:

Request from client A
PUT /reviews/notes_from_underground HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 204 OK
Content-Type: application/xml;charset-UTF-8

...

Second update overwrites the first update

As a result of this sequence, client A overwrites changes made by client B. Client B’s
update has been lost! Neither client A nor client B is aware of the lost update. As far
these clients are concerned, both PUT operations succeeded. It is only later that B’s user
will find that her updates are lost. Unless you implement the server to log every change
explicitly, you cannot debug the server to detect this lost update.

Making PUT requests conditional prevents the lost update. Here is the request from
client B:

Request from client B
PUT /reviews/notes_from_underground HTTP/1.1
Host: www.example.org
If-Unmodified-Since: Sun, 09 Aug 2009 00:56:14 GMT
If-Match: "3f4a74db207d0447d46710a64971e777"

Response
HTTP/1.1 204 No Content
Content-Location: http://www.example.org/reviews/notes_from_underground
Content-Type: application/xml;charset-UTF-8
Last-Modified: Sun, 09 Aug 2009 01:10:14 GMT
If-Match: "5dcb920acfd4f3943dbc1672756d7f43"

First conditional update succeeds

The response includes a Content-Location header and updated Last-Modified and
ETag values that the client can use in future requests.

The update by client A will fail if the client’s request is conditional and the server
correctly identifies conflicts:

Request from client A
PUT /reviews/notes_from_underground HTTP/1.1
Host: www.example.org
If-Unmodified-Since: Sun, 09 Aug 2009 00:56:14 GMT

170 | Chapter 10: Conditional Requests

If-Match: "3f4a74db207d0447d46710a64971e777"

Response
HTTP/1.1 412 Precondition Failed
Content-Type: application/xml;charset-UTF-8

<error>
 <message>The review you are trying to update has changed.</message>
 <description>You are trying to update a resource based on stale information.
 Get a new copy of this review, resolve any differences, and retry.</description>
</error>

Second conditional update fails

10.5 How to Implement Conditional DELETE Requests
in Servers
Conditional DELETE requests can help block clients from deleting resources based on
stale information. For example, a client may not want to delete a user resource if another
client changes the state of the user from “inactive” to “active.”

Problem
You want to now how to implement concurrency control for DELETE requests.

Solution
If the client submits an unconditional DELETE request, return error code 403
(Forbidden). If the supplied conditions do not match, return error code 412 (Precondi
tion Failed). In either case, explain the reason for the failure to the client in the body
of the representation.

If the clients submits a conditional DELETE request and the supplied conditions match,
delete the resource.

See Figure 10-2 for an overview of the checks that the server needs to make.

Discussion
A client may decide to delete a resource assuming that it is ready to be deleted. In the
meantime, another client may update the same resource, invalidating the first client’s
assumption. Using conditional DELETE prevents this. When the server makes the
DELETE request conditional, the server can verify that the client’s decision to delete the
resource is based on the most recent state of the resource. The server can do this by
comparing the client-supplied If-Unmodified-Since and If-Match headers with their
current values.

Process this request if and only if the included conditional tags match
DELETE /reviews/notes_from_underground HTTP/1.1

10.5 How to Implement Conditional DELETE Requests in Servers | 171

Host: www.example.org
If-Unmodified-Since: Sun, 09 Aug 2009 00:56:14 GMT
If-Match: "3f4a74db207d0447d46710a64971e777"

Response
HTTP/1.1 204 No Content

Figure 10-2. Implementing conditional DELETE requests

10.6 How to Make Unconditional GET Requests from Clients
HTTP 1.1 allows clients to modify expiration caching and ask for fresh representations.
You can use this recipe to get a fresh representation of a resource after you receive a
412 (Precondition Failed) or even after a successful PUT or PATCH to get the latest
representation.

Problem
You want to know how to implement a client to get the freshest representation available
from a server.

Solution
Include Cache-Control: no-cache and Pragma: no-cache headers in the GET request.

Discussion
Suppose the client makes a conditional PUT request to update a resource. But the sup-
plied conditions do not match, and the server returns 412 (Precondition Failed).

172 | Chapter 10: Conditional Requests

Process this request if and only if the included conditional tags match
PUT /reviews/notes_from_underground HTTP/1.1
Host: www.example.org
If-Unmodified-Since: Sun, 09 Aug 2009 00:56:14 GMT
If-Match: "3f4a74db207d0447d46710a64971e777"

...

Response
HTTP/1.1 412 Precondition Failed
Content-Length: 0

The client can now make an unconditional GET request to obtain a fresh representation
of the resource.

Request
GET /status HTTP/1.1
Cache-Control: no-cache
Pragma: no-cache

Response
HTTP/1.1 200 OK
Date: Sun, 09 Aug 2009 05:20:10 GMT
Last-Modified: Sun, 09 Aug 2009 05:20:10 GMT
ETag: "a3d3005f4a1632c88e8889af985e6294"
Expires: Sun, 09 Aug 2009 15:56:14 GMT
Cache-Control: max-age=36000,public
Content-Type: application/xml; charset=UTF-8

...

Cache-Control: no-cache and Pragma: no-cache headers make client requests un-
conditional.

The server responds with a fresh representation along with the applicable Last-
Modified and ETag.

The no-cache directive in the request asks any intermediate caches to not serve a cached
representation but pass the request to the origin server.

Note that some caches may be configured to ignore the no-cache directive. In such
cases, caches may return a Warning header.

Request
GET /status HTTP/1.1
Cache-Control: no-cache
Pragma: no-cache

Response
Date: Sun, 09 Aug 2009 00:56:14 GMT
Last-Modified: Sun, 09 Aug 2009 00:56:14 GMT
Expires: Sun, 09 Aug 2009 10:56:14 GMT
Cache-Control: max-age=36000,public
Content-Type: application/xml; charset=UTF-8
Age: 1021
Warning: 110

10.6 How to Make Unconditional GET Requests from Clients | 173

The value of the Warning header is an integer code, which in this example indicates that
the response is stale. For further details of this header, refer to HTTP 1.1.

Do not make unconditional GET requests unless necessary. Uncondi-
tional requests downgrade performance and increase latency.

10.7 How to Submit Conditional PUT and DELETE Requests
from Clients
Problem
You want to know how to support concurrency control for PUT and DELETE requests in
clients.

Solution
When the client is creating a new resource using PUT or the server has not returned If-
Modified-Since and/or ETag headers from a previous GET or PUT request to the resource,
make PUT requests as usual.

If the client has If-Modified-Since and/or ETag headers from a previous request to the
resource, when making PUT and DELETE requests, include the following headers to make
these requests “conditional”:

• An If-Unmodified-Since header with the same value as the Last-Modified header,
to indicate that the server should process the request if and only if the server has
not modified the resource since the time specified in this header

• An If-Match header, with the same value as the ETag header, to indicate that the
server should process the request if and only if the supplied header value matches
the current ETag value

If the server returns status code 412 (Precondition Failed), submit an unconditional
GET request (Recipe 10.6) to obtain fresh Last-Modified and ETag headers, verify that
the decision to update or delete the resource is still valid per the fresh representation,
and then repeat the PUT or DELETE request with those headers.

Discussion
Here is an example of a client making a conditional PUT request:

Request
PUT /reviews/notes_from_underground HTTP/1.1
Host: www.example.org
If-Unmodified-Since: Sun, 09 Aug 2009 00:56:14 GMT
If-Match: "3f4a74db207d0447d46710a64971e777"

174 | Chapter 10: Conditional Requests

...

Response
HTTP/1.1 200 OK
Date: Sun, 16 Aug 2009 01:00:23 GMT
Content-Location: http://www.example.org/reviews/notes_from_underground
Last-Modified: Sun, 16 Aug 2009 01:00:23 GMT
E-Tag: "5bbae963eb30e03cf1fd218a9dc92a5b"
Content-Type: application/xml; charset=UTF-8

...

In this request, the value of If-Unmodified-Since is the value the Last-Modified header
that the client obtained during a previous request (see Recipe 10.3). Similarly, the value
of the If-Match header is the value of the ETag header. If the client does not already have
these headers for its copy of the representation or if the server returns response code
412 (Precondition Failed), submit a new unconditional request GET request to obtain
those as described in Recipe 10.6.

Unconditional GET request
GET /reviews/notes_from_underground HTTP/1.1
Host: www.example.org
Cache-Control: no-cache
Pragma: no-cache

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset-UTF-8
Date: Sun, 16 Aug 2009 01:00:23 GMT
Last-Modified: Sun, 09 Aug 2009 00:55:46 GMT
ETag: "3f4a74db207d0447d46710a64971e777"

...

Obtaining these headers by making a HEAD request is not sufficient. For
the clients, these headers correspond to the current state of the resource.
Getting the headers alone via a HEAD request will not help the client know
the current state of the resource. It needs to get the body along with the
headers.

The client must follow the same process for DELETE requests. A 412 (Precondition
Failed) to either request implies that the client is making its decision to update or delete
a resource based on stale information.

Conditional request
PUT /reviews/notes_from_underground HTTP/1.1
Host: www.example.org
If-Unmodified-Since: Sun, 09 Aug 2009 00:56:14 GMT
If-Match: "3f4a74db207d0447d46710a64971e777"

Response
HTTP/1.1 412 Precondition Failed

10.7 How to Submit Conditional PUT and DELETE Requests from Clients | 175

Content-Type: application/xml;charset=UTF-8

<error>
 <message>The review you are trying to update has changed.</message>
 <description>You are trying to update a resource based on stale information.
 Get a new copy of this review, resolve any differences, and retry.</description>
</error>

10.8 How to Make POST Requests Conditional
Unlike PUT or DELETE, the outcome of a POST request to a resource may not result in any
changes to the resource at the request URI. The server may create a new resource (with
response code 201) or identify the outcome with a different URI (with response code
303). For these cases, the client will not have a representation and the conditional
headers stored locally. This recipe shows how to use links to make such POST requests
conditional. You can apply this recipe to make POST requests conditional and nonrep-
eatable (i.e., used “once-only”).

Problem
You want to implement POST such that the server can detect and prevent duplicate
submission by clients.

Solution
Let clients use a one-time URI supplied by the server via a link for each POST request.
Use Recipe 10.9 to generate the one-time URI. This URI contains a token generated by
the server that is valid for just one usage of the POST request. Store all used tokens in a
transaction log on the server.

When the client submits a POST request, verify whether the token exists in the transac-
tion log. If it does, return response code 403 (Forbidden). Explain why in the body. If
not, process the request to return 201 (Created) or 303 (See Other) depending on the
outcome. Also store the token in the transaction log.

Discussion
Consider a bank transfer application, where the server needs to transfer a given sum of
money from one account to another. The server can employ a controller resource to
implement this transfer.

Request
POST /transfers
Host: example.org
Content-Type: application/xml;charset=UTF-8

<transfer>
 <source>urn:example:org:account:1</source>
 <target>urn:example:org:account:2</target>

176 | Chapter 10: Conditional Requests

 <currency>USD</currency>
 <amount>100.00</amount>
 <note>Testing transfer</note>
</transfer>

Response
HTTP/1.1 201 Created
Content-Type: application/xml;charset=UTF-8
Location: http://www.example.org/transactions/1
Content-Location: http://www.example.org/transactions/1

<transfer xmlns:atom="http://www.w3.org/2005/Atom">
 <source>urn:example:org:account:1</source>
 <target>urn:example:org:account:2</target>
 <atom:link href="http://www.example.org/transactions/1" rel="self"/>
 <currency>USD</currency>
 <amount>100.00</amount>
 <note>Testing transfer</note>
</transfer>

The client submits a POST request based on what it thinks is the current state of the
two bank account resources.

The server cannot verify whether the client’s request is based on the current state of
the account resources.

In this example, the resource identified by the URI http://www.example.org/trans
fers is a controller resource. The outcome of the POST request in this example is the
modification of two account resources and the creation of a new resource. To make
this request conditional, the server must use a token whose value is a function of the
current state of the two account resources. The server can use Recipe 10.9 to generate
the following URI:

http://www.example.org/transfers;t=e6e3c89d4dfe7f3a818734a6237ccfc5

Unlike http://www.example.org/transfers, this URI includes a token that is a function
of the two resources being modified. The client can use the URI to request for a transfer.
The server can verify that the token in the URI still corresponds to the current state of
the account resources before proceeding to create an account transfer.

Request
POST /transfer;t=e6e3c89d4dfe7f3a818734a6237ccfc5 HTTP/1.1
Host: example.org
Content-Type: application/xml;charset=UTF-8

<transfer>
 <source>urn:example:org:account:1</source>
 <target>urn:example:org:account:2</target>
 <currency>USD</currency>
 <amount>100.00</amount>
 <note>Testing transfer</note>
</transfer>

Response

10.8 How to Make POST Requests Conditional | 177

HTTP/1.1 201 Created
Content-Type: application/xml;charset=UTF-8
Location: http://www.example.org/transactions/1
Content-Location: http://www.example.org/transactions/1

<transfer xmlns:atom="http://www.w3.org/2005/Atom">
 <source>urn:example:org:account:1</source>
 <target>urn:example:org:account:2</target>
 <atom:link href="http://www.example.org/transactions/1" rel="self"/>
 <currency>USD</currency>
 <amount>100.00</amount>
 <note>Testing transfer</note>
</transfer>

The client submits a conditional POST request with a URI that is based on the current
state of the two bank account resources.

The server can verify whether the client’s request is based on the current state of the
account resources.

The server can detect duplicate requests by checking that the token exists in the server’s
transaction log.

Request
POST /transfer;t=e6e3c89d4dfe7f3a818734a6237ccfc5 HTTP/1.1
Host: example.org
Content-Type: application/xml;charset=UTF-8

<transfer>
 <source>urn:example:org:account:1</source>
 <target>urn:example:org:account:2</target>
 <currency>USD</currency>
 <amount>100.00</amount>
 <note>Testing transfer</note>
</transfer>

Response
HTTP/1.1 403 Forbidden
Content-Type: application/xml;charset=UTF-8
Date: Sat, 17 Oct 2009 20:16:18 GMT

<error xmlns:atom="http://www.w3.org/2005/Atom">
 <message xml:lang="en">Transfer already created.</message>
</error>

The client submits a conditional POST request.

The server detects a conflict.

This time, the server checks the transaction log to see that the token has already been
used. It returns 403 (Forbidden) instead of creating a duplicate. This technique is some-
times called POST once exactly.

178 | Chapter 10: Conditional Requests

10.9 How to Generate One-Time URIs
This recipe discusses how to generate URIs that can be used for conditional POST
requests.

Problem
You want to generate a URI that clients can use to implement conditional POST requests.

Solution
If the purpose of the URI is to create a new resource, generate a token based either on
a sequence number or on a concatenation of a timestamp and a random number. If the
purpose of the URI is to modify one or more resources, also include the entity tags and
identifiers of those resources in the token. Encode that token in the URI.

Discussion
Consider the bank account transfer example from Recipe 10.8. To request the transfer,
the server needs to supply a URI that is a function of the current state of the two bank
accounts. Here is a resource that can generate such a URI:

Request
GET /transfer-token?from=urn:example:org:account:1&
 to=urn:example:org:account:2 HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Cache-Control: no-cache
Link: <http://www.example.org/transfers;t=e6e3c89d4dfe7f3a818734a6237ccfc5>;
 rel="http://www.example.org/rel/transfer"

<accounts>
 <account>
 <id>urn:example:org:account:1</id>
 <balance>200.00</balance>
 </account>
 <account>
 <id>urn:example:org:account:2</id>
 <balance>100.00</balance>
 </account>
</accounts

Request to get a URI to make a conditional request

Conditional URI

Current state of the resources

10.9 How to Generate One-Time URIs | 179

The resource in the request is like a token-dispensing machine. The client supplies the
accounts involved in the transfer, and the server returns a link with a URI to initiate
the transfer. The server also includes the current state of the accounts.

The client must base its decision to use the link on the state returned in
the response. This link is valid only for the current state of the account
resources.

There are several ways to generate such a URI. The following URI contains a token
whose value is an MD5 hash of the concatenation of a random number, current date-
time value, and entity tags of the two bank accounts:

http://www.example.org/transfers;t=e6e3c89d4dfe7f3a818734a6237ccfc5

To prevent URI tampering, consider including digital signatures as well in the URI. The
server does not need to store this token for later verification since it can recompute the
token from the current entity tags of the resources. If the hashes do not match,
the server can conclude that the URI used by the client is no longer valid. Such one-
time tokens are called nonces. Nonce stands for “number used once.”

You can also use one-time URIs to detect replay attacks. Replay attacks
involve a malicious entity eavesdropping to capture requests and re-
sponses and replaying requests masquerading as a genuine client.

When using one-time URIs for such purposes, ensure that the token
used is randomly generated so that the malicious entity cannot guess
future token values.

If the purpose of the URI is to create a new resource using POST, generate the token
based on the current date-time value and a random number. Here is a one-time URI
issued to create a new address resource. The token in this URI is an MD5 hash of a
random number and the current time.

Request
GET /user/smith/address-token HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 204 No Content
Cache-Control: no-cache
Link: <http://www.example.org/user/smith;t=360e22a55267f0a525b1d49ddc9eed71>;
 rel="http://www.example.org/rel/transfer"

Request to get a URI to make a conditional request to create a resource

Conditional URI

180 | Chapter 10: Conditional Requests

In this case, there is no need to supply any inputs to generate the URI. To verify that
the URI has not been used before, the server needs to maintain a transaction log. When
the client submits the URI to create a new resource using POST, first check whether the
token exists in a transaction log on the server. If not, process the request, and store the
token in the transaction log.

In the case of web applications, you can also encode the token as hidden
form fields in HTML forms. This is a common pattern to detect dupli-
cate form submissions.

10.9 How to Generate One-Time URIs | 181

CHAPTER 11

Miscellaneous Writes

This chapter addresses some problems that are often seen as challenging or outside the
realm of REST’s uniform interface constraint. Use cases for recipes in this chapter in-
volve operations such as making copies, taking snapshots, moving and merging, pro-
cessing batch requests, and supporting transactions. Although such use cases may not
be common in every RESTful web service, this chapter shows how to combine HTTP’s
uniform interface with resources and links to address such problems.

The key principle used in this chapter is to always think in terms of application use
cases and not generalize the problem or the solution any further than necessary. For
instance, a use case may involve changing the category of an album. In the server’s
implementation, such a change may require changing the URI of the album. You may
generalize this problem into that of “moving” a resource from one location to another.
Since there is no such method as MOVE in HTTP, you may conclude that this problem
is beyond the scope of HTTP. However, a problem like “changing the category” could
easily be addressed by using Recipe 11.3 without needing to extend HTTP. The same
goes for other problems such as batch processing, copying, and even transactions. Here
is the list of recipes discussed in this chapter:

Recipe 11.1, “How to Copy a Resource”
Use this recipe to learn how to make a copy of a resource.

Recipe 11.2, “How to Merge Resources”
Use this recipe to learn how to merge two or more resources.

Recipe 11.3, “How to Move a Resource”
Use this recipe to learn how to move a resource.

Recipe 11.4, “When to Use WebDAV Methods”
Use this recipe to learn when to use WebDAV extension methods.

Recipe 11.5, “How to Support Operations Across Servers”
Use this recipe to learn how to support operations across server boundaries.

183

Recipe 11.6, “How to Take Snapshots of Resources”
Use this recipe to implement a simple versioning mechanism for resources so that
clients can browse through changes made to a given resource.

Recipe 11.7, “How to Undo Resource Updates”
Use this recipe to learn how to undo changes made to a resource.

Recipe 11.8, “How to Refine Resources for Partial Updates”
Use this recipe to learn how to refine resources and adjust their granularity to allow
the use of PUT for partial updates.

Recipe 11.9, “How to Use the PATCH Method”
Use this recipe to learn how to use the PATCH method for making partial updates.

Recipe 11.10, “How to Process Similar Resources in Bulk”
Use this recipe to learn how to create, update, or delete similar resources in bulk.

Recipe 11.11, “How to Trigger Bulk Operations”
Use this recipe to learn how to employ an application-specific resource to trigger
batch operations.

Recipe 11.12, “When to Tunnel Multiple Requests Using POST”
Use this recipe to learn why batch processing by tunneling multiple HTTP requests
via a single HTTP POST request is not recommended.

Recipe 11.13, “How to Support Batch Requests”
Use this recipe to learn how to use POST for batch processing.

Recipe 11.14, “How to Support Transactions”
Use this recipe to learn how to deal with transactions when designing RESTful web
services.

11.1 How to Copy a Resource
This recipe shows how to make a copy of a resource without leaking the server’s im-
plementation details.

Problem
You want to know how to make a copy of an existing resource.

Solution
Design a controller resource that can create a copy. The client makes a POST request to
this controller to copy the resource. To make the POST conditional, provide a one-time
URI to the client using Recipe 10.9.

After the controller creates the copy, return response code 201 (Created) with a
Location header containing the URI of the copy.

184 | Chapter 11: Miscellaneous Writes

Discussion
Consider a web service that manages photo albums. The client would like to duplicate
an album and then make some changes to the newly created copy. To support this, the
server can design a controller resource to make the copy and include a link to this
controller resource in the album representation. Here is a request to fetch a represen-
tation of the album resource:

Request
GET /albums/2009/10/1011 HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<album xmlns:atom="http://www.w3.org/2005/Atom">
 <id>urn:example:album:1011</id>
 <atom:link rel="self" href="http://www.example.org/albums/2009/10/1011"/>
 <atom:link rel="http://www.example.org/rels/duplicate"
 href="http://www.example.org/albums/2009/10/1011/duplicate;
 t=a5d0e32ddff373df1b3351e53fc6ffb1"/>
 ...
</album>

A link with a URI to copy a resource

The URI for the controller resource includes a token to make the request conditional.
The server can use the token to ensure that repeating the POST does not cause extraneous
duplicate albums.

Assuming that the client knows the semantics of the link relation type http://www.exam
ple.org/rels/duplicate, it can use the URI http://www.example.org/albums/2009/08/
hiking/duplicate;t=a5d0e32ddff373df1b3351e53fc6ffb1 to create a copy of the album.

Request
POST /albums/2009/08/1011/duplicate;t=a5d0e32ddff373df1b3351e53fc6ffb1 HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 201 Created
Content-Type: application/xml;charset=UTF-8
Location: http://www.example.org/2009/08/1014
Content-Location: http://www.example.org/2009/08/1014

<album xmlns:atom="http://www.w3.org/2005/Atom">
 <id>urn:example:album:1014</id>
 <atom:link rel="self" href="http://www.example.org/albums/2009/08/1014"/>
 ...
</album>

Request to copy a resource

Copy of the original resource

11.1 How to Copy a Resource | 185

In this implementation, the server makes the copy and provides a new URI to the copied
resource. The client is completely isolated from the server’s implementation details.

11.2 How to Merge Resources
Problem
You want to know how to merge two or more resources.

Solution
Design an application-specific controller resource to merge resources. The client sub-
mits a GET request to this URI with URIs or identifiers of the resources to be merged to
this controller as query parameters. The server returns a Last-Modified, and an ETag
header along with a summary of the resources to be merged in the body of the repre-
sentation. In the entity tag, include a sequence number or a concatenation of a
timestamp and a random number.

Upon verifying the summary, the client makes a POST request supplying If-Unmodified-
Since and If-Match headers to the same URI to cause the merge.

After merging, the server stores the If-Match header value in a transaction log and
returns response code 201 (Created) with a Location header containing the URI of the
merged resource. In the future, if a client submits a POST request with the same If-
Match value, the server returns 412 (Precondition Failed).

Discussion
A merge involves two or more resources presented to the server. To keep clients loosely
coupled, the details of merging two documents should be left up to the server. Here is
a request by the client to get a URI to merge two albums into a new album:

Request
GET /albums/merge?src=urn%3Aexample%3Aalbum%3A1011&
 dest=urn%3Aexample%3Aalbum%3A1012 HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Cache-Control: no-cache
Content-Type: application/xml;charset=UTF-8
Last-Modified: Sun, 08 Nov 2009 04:47:03 GMT
ETag: "d88a39e41c314f57917da04c920fd608"

<albums>
 <album>
 <id>urn:example:album:1011</id>
 <atom:link rel="self" href="http://www.example.org/albums/2009/08/1011"/>
 ...
 </album>

186 | Chapter 11: Miscellaneous Writes

 <album>
 <id>urn:example:album:1012</id>
 <atom:link rel="self" href="http://www.example.org/albums/2009/08/1012"/>
 ...
 </album>
</albums>

Request to get the current state of resources being merged

Last-Modified and ETag for the representation

State of resources being merged

In this example, the client supplies the identifiers of two resources to merge, and the
server returns a summary of the resources to be merged. You may alternatively use
URIs as parameters for merging.

This step essentially manifests a new composite resource (see Rec-
ipe 2.4) for the resources being merged.

On the client side, you need to verify that the state of albums in the previous response
is the same as the one the client has locally before submitting a request to merge.

Request
POST /albums/merge?src=urn%3Aexample%3Aalbum%3A1011&
 dest=urn%3Aexample%3Aalbum%3A1012 HTTP/1.1
Host: www.example.org
If-Unmodified-Since: Sun, 08 Nov 2009 04:47:03 GMT
If-Match: "d88a39e41c314f57917da04c920fd608"

Response
HTTP/1.1 201 Created
Location: http://www.example.org/albmus/2009/08/1091
Content-Location: http://www.example.org/albmus/2009/08/1091
Content-Type: application/xml;charset=UTF-8
Last-Modified: Sun, 08 Nov 2009 05:30:10 GMT
ETag: "48be3ab269550ee00a84eb5a1a44f330"

<album>
 <id>urn:example:album:1091</id>
 <atom:link rel="self" href="http://www.example.org/albums/2009/08/1091"/>
 ...
</album>

Request to merge resources

Preconditions

The server creates a new merged resource. During this process, depending on what the
server’s use cases demand, the server may also delete the original resources.

11.2 How to Merge Resources | 187

11.3 How to Move a Resource
Problem
You want to know how to move a resource.

Solution
Include a link or a link template to a controller that can move the resource. Let the
client use POST to submit a request to move. Use Recipe 10.8 to make the POST request
conditional.

After processing the request, return response code 201 (Created) or 303 (See Other)
depending on the outcome.

Discussion
What a move means is completely application specific. It could mean copying a re-
source to a different location on the same or a different server and deleting the original.
Alternatively, it could also mean changing the state of a resource without changing its
location. In either case, to maintain loose coupling, the client should not concern itself
about what a move means and how the server implements it.

Consider a photo album. The album is part of a friends folder. The client would like
to move the album to the family folder. The server organizes its URIs based on the
album’s category. A move operation results in a change in the album’s URI.

Moving a resource is not much different from copying. In this case, the server can
provide a URI or a URI template to let the client supply criteria for a destination
resource:

Request
GET /albums/friends/2009/08/1011 HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<album xmlns:atom="http://www.w3.org/2005/Atom">
 <id>urn:example:album:1011</id>
 <atom:link rel="self" href="http://www.example.org/albums/2009/08/1011"/>
 <link-template rel="http://www.example.org/rels/move"
 href="http://www.example.org/albums/friends/2009/08/1011/move;
 t=dc4128786d463dc7e40c18457d1826fa?group={category}"/>
 <category>friends</category>
 ...
</album>

A link with a URI template to change the category of a resource

188 | Chapter 11: Miscellaneous Writes

In this representation, the server uses a URI template for the client to specify a category
for the resource to be moved into.

Request
POST /albums/friends/2009/08/1011/move;t=dc4128786d463dc7e40c18457d1826fa?
 group=family HTTP/1.1
Host: www.example.org
Content-Length: 0

Response
HTTP/1.1 201 Created
Content-Type: application/xml;charset=UTF-8
Location: http://www.example.org/family/2009/08/1021
Content-Location: http://www.example.org/family/2009/08/1021

<album>
 <id>urn:example:album:1021</id>
 <atom:link rel="self" href="http://www.example.org/family/albums/2009/08/1021"/>
 <category>family</category>
 ...
</album>

Request to change the category

New resource

The result of this request is a new resource at URI http://www.example.org/albums/
family/2009/08/1021. The server can return either a 410 (Gone) or a 404 (Not Found) when
the client tries to access the original album.

11.4 When to Use WebDAV Methods
WebDAV (RFC 4918) is an extension of HTTP for the distributed authoring and ver-
sioning of resources. This extension extends HTTP and specifies a number of HTTP
methods and headers for managing files and documents. This protocol includes the
following extension methods:

PROPFIND
In WebDAV, documents can have properties, and clients can use this method to
retrieve those properties.

PROPPATCH
Clients can use this method to set, add, or remove properties of resources.

MKCOL
WebDAV lets you group documents into collections, and clients can use this
method to create a new collection.

COPY
Clients can use this method to create a duplicate of a given resource at a
destination URI.

11.4 When to Use WebDAV Methods | 189

MOVE
This is similar to COPY, but the server is expected to delete the source resource as
part of this operation.

LOCK
This method lets clients lock a given document. This method enables pessimistic
concurrency control.

UNLOCK
Clients can use this method to unlock a previously locked resource.

Problem
You want to know when to use WebDAV specified methods.

Solution
Use WebDAV-specified methods when your web service is a content-authoring appli-
cation and if your servers can support WebDAV. Avoid using WebDAV for other kinds
of applications.

Discussion
It is important to note that WebDAV methods are “file-centric” operations. They as-
sume that resources are like file objects that can be easily copied, overwritten, renamed,
etc. However, in most RESTful web services, resources are not files, and such a file-
centric view often does not map easily to application resources and business scenarios.

WebDAV is often cited as an example of how to extend HTTP to address the needs of
specific application domains. WebDAV extensions are designed to allow clients to edit
and manage documents or files on remote servers. Here is an example to copy a
resource:

Request to copy a resource
COPY /report/working/2010.pdf HTTP/1.1
Host: www.example.org
Destination: http://www.example.org/projections/2010.pdf

Response
HTTP/1.1 201 Created

In the request, the client chooses the destination for the copy via a Destination header.
The client can apply this method to other WebDAV resources such as properties or
collections. The client can also specify whether the server should override any resource
that exists at the destination URI by supplying an Overwrite header or can specify a
Depth header to indicate the depth while copying a collection.

Request to copy a resource
COPY /report/working/2010.pdf HTTP/1.1
Host: www.example.org
Destination: http://www.example.org/projections/2010.pdf

190 | Chapter 11: Miscellaneous Writes

Overwrite: F

Response
HTTP/1.1 201 Created

You can similarly use the MOVE method to move a resource from one location to another
location.

Request
MOVE /report/working/2010.pdf HTTP/1.1
Host: www.example.org
Destination: http://www.example.org/projections/2010.pdf

Response
HTTP/1.1 201 Created
Location: http://www.example.org/archives/this-resource

Both the COPY and MOVE methods are atomic and can even be applied to resources across
servers. For instance, the actual move operation may require placing one or more re-
sources from the source server on the destination server and then removing the resour-
ces on the source server. The server can remove the source only once it has been
successfully replicated on the destination server. These methods also require clients to
deal with details such as locking, unlocking, or even copying resources across servers.

11.5 How to Support Operations Across Servers
This recipe discusses how to support operations that cross server boundaries. Examples
include migrating a user profile from one application to another, importing summaries
of pending quotes into a customer relation management application, or publishing a
document on the production server that is currently on the drafts server. Such use cases
need manipulation of state in multiple servers.

Problem
You want to know how to initiate an operation that involves changes to resources on
two or more servers.

Solution
Let servers collaborate with each other to design and implement cross-server opera-
tions. This may involve servers agreeing on data formats, backend interfaces, and con-
currency control, as well as loading data from one data store, normalizing it to meet
the other server’s format, and then storing it. Let one of the servers provide a link to
clients to trigger the operation.

Discussion
When confronted with operations that cross server boundaries, separation of concerns
should be a key concern. Consider two web services: one managing users’ contacts

11.5 How to Support Operations Across Servers | 191

running on http://contacts.example1.org and the other managing messaging such as
email, text messages, voicemail, etc., running on http://messaging.example2.org. The
use case is to let a user import her contacts into the messaging web service. To support
this, assume that the contacts web service includes a link to export contacts into the
messaging web service.

Here is the representation of a user’s contact list with a link to export the contact list
into the messaging web service:

Request
GET /user/smith/contacts HTTP/1.1
Host: contacts.example1.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<contacts xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:link rel="self" href="http://contacts.example2.org/user/smith/contacts"/>
 <atom:link rel="http://contacts.example1.org/rels/export-to-messaging"
 href="http://messaging.example2.org/user/smith/import;
 t=bcb9169866c69410be37f68210a6986c"
 title="Export contacts into to messaging."/>
 <contact>
 ...
 </contact>
 ...
</contact>

Link with a URI to export data from one server to another

A client that understands the semantics of the link with relation type http://con
tacts.example2.org/rels/export-to-messaging can initiate the export operation. As-
sume that the documentation of this link relation type says that the client needs to
submit a POST request to the link’s URI to export contacts into the message service. The
link’s URI contains a security token to prevent the unauthorized use of the link.

Request
POST /user/smith/import;t=bcb9169866c69410be37f68210a6986c HTTP/1.1
Host: messaging.example2.org

Response
HTTP/1.1 303 See Other
Location: http://messaging.example2.org/user/smith
Content-Type: application/xml;charset=UTF-8

Request to export data

URI that provides the results of the export

When the client submits this request, the messaging service makes a backend request
to the contacts web service to get a copy of the contacts. During this process, depending
on how security is managed between the servers, the messaging web service may present
the token included in the URI to the contacts web service.

192 | Chapter 11: Miscellaneous Writes

In this process, the servers are responsible for making sure to make the contact list data
is available on the message server. The client is responsible only for triggering the op-
eration. This keeps the client decoupled from the server’s implementation details in-
cluding concurrency control, atomicity, differences in data formats, etc. This is the
result of coordination between the servers.

When no such coordination is possible because of technical or organi-
zational issues, the client has no choice but to download all contacts
from http://contacts.example2.org/user/smith/contacts and submit
them to the messaging service. See Recipe 2.6 for an example.

11.6 How to Take Snapshots of Resources
This recipe describes how to take a snapshot of the resource before each update. When
a client updates a resource via the method PUT, the server updates the current state of
the resource, leaving no way for the client to know what existed before the update.
However, there are cases when clients expect to be able to go back in time and browse
through the history of changes.

For example, imagine that you are designing a web service to provide past and present
snapshots of traffic conditions at certain intersections. Most clients would like to see
the latest conditions, but some clients may want to browse through past traffic
conditions.

Alternatively consider a wiki. For each page on the wiki, the server needs to maintain
a revision stack of current and past revisions for each page so that any client can retrieve,
compare, and evaluate changes made to any given page.

Problem
You want to know how to keep snapshots of a resource so that clients can browse
through previous versions of the resource.

Solution
Every time a client submits a PUT request to update a resource, before updating the
resource, implicitly create a snapshot (a copy resource). In the representation of the
updated resource, include a link to the snapshot. Also include a link in the snapshot
resource to the updated resource.

When a client submits a DELETE request, delete the resource along with all the snapshots.

Discussion
In essence, this recipe lets you build a simple versioning mechanism for resources with-
out requiring clients to learn how to create and manage versions of resources. Clients
that do not care about versions can use HTTP’s uniform interface as usual without even

11.6 How to Take Snapshots of Resources | 193

noticing that the server is maintaining snapshots. Clients that do care about versions
can browse through past versions. In the server’s storage, each snapshot can be a full
copy or a contain just the list of differences from the previous version.

Here is an example that creates a new snapshot:

Request
PUT /trails/ColchuckLake HTTP/1.1
Host: wiki.example.org
If-Unmodified-Since: Sun, 01 Nov 2009 12:34:43 GMT
Content-Type: application/atom+xml;type=entry;charset=UTF-8

<atom:entry xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:author>
 <atom:name>Joe Hiker</atom:name>
 </atom:author>
 <atom:title>Colchuck Lake</atom:title>
 <atom:id>urn:example:wiki:trails:ColcuckLake</atom:id>
 <atom:content xml:lang="en" type="html">
 ... initial draft ...
 </atom:content>
</atom:entry>

Response
HTTP/1.1 204 No Content

In response to a PUT request, the server copies the resource to http://wiki.example.org/
trails/ColchukLake/s1.

Request
GET /trails/ColchuckLake HTTP/1.1
Host: wiki.example.org

Response
HTTP/1.1 200 OK
Last-Modified: Sun, 01 Nov 2009 16:24:56 GMT
Content-Type: application/atom+xml;type=entry;charset=UTF-8

<atom:entry xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:author>
 <atom:name>Joe Hiker</atom:name>
 </atom:author>
 <atom:title>Colchuck Lake</atom:title>
 <atom:id>urn:example:wiki:trails:ColcuckLake</atom:id>
 <atom:link href="http://wiki.example.org/trails/ColchuckLake" rel="self"/>
 <atom:link href="http://wiki.example.org/trails/ColchuckLake/s1" rel="previous"/>
 <atom:content xml:lang="en" atom:type="html">
 ... updated draft ...
 </atom:content>
</atom:entry>

Current version of the resource

Snapshot

194 | Chapter 11: Miscellaneous Writes

The link with the previous relation is a link to the previous snapshot of the resource.
When the client submits another PUT request to modify the resource, the server can
repeat the process shown previously to create a new snapshot at http://wiki.exam
ple.org/trails/ColchuckLake/s2.

Request to update the resource
PUT /trails/ColchuckLake HTTP/1.1
Host: wiki.example.org
Content-Type: application/atom+xml;type=entry;charset=UTF-8
If-Unmodified-Since: Sun, 01 Nov 2009 16:24:56 GMT

<atom:entry xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:author>
 <atom:name>Joe Hiker</atom:name>
 </atom:author>
 <atom:title>Colchuck Lake</atom:title>
 <atom:id>urn:example:wiki:trails:ColcuckLake</atom:id>
 <atom:content xml:lang="en" type="html">
 ... updated draft ...
 </atom:content>
</atom:entry>

Response
HTTP/1.1 204 No Content

After this step, the resource at URI http://wiki.example.org/trails/ColchuckLake is
the latest version. It is preceded by http://wiki.example.org/trails/ColchuckLake/
s2, which further is preceded by http://wiki.example.org/trails/ColchuckLake/s1.
Using the link with the previous relation type, the client can walk backward to get older
snapshots.

After this update, a representation of http://wiki.example.org/trails/ColchuckLake/
s2 includes its own snapshot—http://wiki.example.org/trails/ColchuckLake/s2.

Request
GET /trails/ColchuckLake/s2 HTTP/1.1
Host: wiki.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/atom+xml;type=entry;charset=UTF-8

<atom:entry xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:author>
 <atom:name>Joe Hiker</atom:name>
 </atom:author>
 <atom:title>Colchuck Lake</atom:title>
 <atom:id>urn:example:wiki:trails:ColcuckLake</atom:id>
 <atom:link href="http://wiki.example.org/trails/ColchuckLake/s2" rel="self"/>
 <atom:link href="http://wiki.example.org/trails/ColchuckLake/s1" rel="previous"/>
 <atom:link href="http://wiki.example.org/trails/ColchuckLake" rel="next"/>
 <atom:content xml:lang="en" atom:type="html">
 ... updated draft ...

11.6 How to Take Snapshots of Resources | 195

 </atom:content>
</atom:entry>

Current version of the resource

Another snapshot

Later snapshot

The client can use the link with the previous relation type to navigate to previous snap-
shots and use the link with the next relation to navigate to more recent snapshots.

11.7 How to Undo Resource Updates
On occasion, you may be need to provide an “undo” functionality to clients. For in-
stance, a client may want to undo some recently made changes to a quote. This problem
is similar to taking a snapshot with the added capability of making the latest snapshot
active again.

Problem
You want to know to how to undo changes made to a resource.

Solution
Every time a client submits a PUT to update a resource, take a snapshot as described in
Recipe 11.6.

Provide a controller resource for undo. To undo a change, let the client submit a POST
request. Log the current state of the resource in a transaction log for auditing purposes.
The server restores the state of the resource from the latest snapshot and redirects the
client to the URI of the resource.

Discussion
Consider the document on a wiki at URI http://wiki.example.org/trails/Colcuck
Lake introduced in Recipe 11.6. In the representation of the resource, include a link to
perform an undo.

Request
GET /trails/ColchuckLake HTTP/1.1
Host: wiki.example.org

Response
HTTP/1.1 200 OK
Last-Modified: Sun, 01 Nov 2009 16:24:56 GMT
Content-Type: application/atom+xml;type=entry;charset=UTF-8

<atom:entry xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:author>
 <atom:name>Joe Hiker</atom:name>

196 | Chapter 11: Miscellaneous Writes

 </atom:author>
 <atom:title>Colchuck Lake</atom:title>
 <atom:id>urn:example:wiki:trails:ColcuckLake</atom:id>
 <atom:link href="http://wiki.example.org/trails/ColchuckLake" rel="self"/>
 <atom:link href="http://wiki.example.org/trails/ColchuckLake/s1" rel="previous"/>
 <atom:link href="http://wiki.example.org/trails/ColchuckLake/undo;
 t=72f2a2342ce7dc806ae7697e138bad71"
 rel="http://wiki.example.org/rels/undo"/>
 <atom:content xml:lang="en" atom:type="html">
 ... updated draft ...
 </atom:content>
</atom:entry>

Link with a URI to undo the current state of the resource

The client can use the link with relation type http://wiki.example.org/rels/undo to
submit an undo request. The URI in this link is a controller resource capable of undoing
a change.

Request
POST /trails/ColchuckLake/undo;t=72f2a2342ce7dc806ae7697e138bad71
Host: wiki.example.org
Content-Length: 0

Response
HTTP/1.1 303 See Other
Location: http://wiki.example.org/trails/ColcuckLake

The controller restores the current state of the resource and logs the undo request for
auditing purposes. A subsequent GET request to the resource will have the restored state.

Request
GET /trails/ColchuckLake HTTP/1.1
Host: wiki.example.org

Response
HTTP/1.1 200 OK
Last-Modified: Sun, 01 Nov 2009 16:24:56 GMT
Content-Type: application/atom+xml;type=entry;charset=UTF-8

<atom:entry xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:author>
 <atom:name>Joe Hiker</atom:name>
 </atom:author>
 <atom:title>Colchuck Lake</atom:title>
 <atom:id>urn:example:wiki:trails:ColcuckLake</atom:id>
 <atom:link href="http://wiki.example.org/trails/ColchuckLake" rel="self"/>
 <atom:content xml:lang="en" atom:type="html">
 ... updated draft ...
 </atom:content>
</atom:entry>

You can extend this recipe to support redo.

11.7 How to Undo Resource Updates | 197

11.8 How to Refine Resources for Partial Updates
At some point, you are likely to encounter a situation where you need to partially update
an existing resource. This may happen if the resource is large and/or the update you
want to make is small. In these cases, it may seem wasteful to submit a GET request to
get the entire representation, make the small change, and submit a PUT request with the
entire representation back to the server to update the resource. When you are con-
fronted with such a situation, one of the first solutions to consider is to refine the
resource in question in a way that removes the need for partial updates in the first place.
See Recipe 11.9 for an alternative.

Problem
You want to know how to refine resources so that clients can partially update resources.

Solution
Design a new resource that encapsulates the parts of the resource that a client can
modify. Let clients use PUT to update that resource, in effect partially updating the
original resource.

Discussion
The key advantage of this solution is that it gives clients the ability to update subsets
of the original resource by using the HTTP method PUT. It also has the added bonus of
making otherwise previously hidden resources accessible via their own URIs to clients.

For example, consider the following representation of a customer resource:

Request
GET /customers/1 HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8
Last-Modified: Thu, 05 Nov 2009 01:54:19 GMT
ETag: "ca87aa4ff1505934281d91f807b25b3c"

<customer xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:link rel="self" href="http://www.example.org/customers/1"/>
 <name>J. P. Goodright</name>
 <status>active</status>
 <address>
 <street>123 Main</street>
 <city>Byteville</city>
 <state>MD</state>
 <postal-code>12345</postal-code>
 </address>
 <billing-contact>
 <name>P.J. Billingsley</name>

198 | Chapter 11: Miscellaneous Writes

 <email>pjbill@example.org</email>
 <voice-phone>123-456-7890</voice-phone>
 <fax-line>234-567-8901</fax-line>
 </billing-contact>
 <services>
 <preferred-shipping>two-day</preferred-shipping>
 <billing-method>net-30</billing-method>
 <minimum-order>1000</mininum-order>
 <customer-discount>10%</customer-discount>
 </services>
</customer>

Assume that you want to update the billing contact information for the customer re-
source. To support this, the server can refine the resource to introduce a new “billing
contact” resource that contains the desired elements from the original resource.

Request
GET /customers/1/billing-contact HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8
Last-Modified: Thu, 05 Nov 2009 01:54:19 GMT
ETag: "d65b17759967753e7eb37b28f1bdb1fa"

<billing-contact xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:link ref="self" href="http://www.example.org/customers/1/billing-contact"/>
 <name>P.J. Billingsley</name>
 <email>pjbill@example.org</email>
 <voice-phone>123-456-7890</voice-phone>
 <fax-line>234-567-8901</fax-line>
</billing-contact>

You can then refine the representation of the customer resource to include a link to the
billing-contact resource.

Request
GET /customers/1 HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8
Last-Modified: Thu, 05 Nov 2009 01:54:19 GMT
ETag: "99d37a01bc588d8743f704eaffdb22b0"

<customer xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:link rel="self" href="http://www.example.org/customers/1"/>
 <atom:link rel="related" href="http://www.example.org/customers/1/billing-contact"/>
 <name>J. P. Goodright</name>
 <status>active</status>
 <address>
 <street>123 Main</street>
 <city>Byteville</city>
 <state>MD</state>

11.8 How to Refine Resources for Partial Updates | 199

 <postal-code>12345</postal-code>
 </address>
 <services>
 <preferred-shipping>two-day</preferred-shipping>
 <billing-method>net-30</billing-method>
 <minimum-order>1000</mininum-order>
 <customer-discount>10%</customer-discount>
 </services>
</customer>

Clients can now update the billing contact by submitting a PUT request to the resource
at URI http://www.example.org/customers/1/billing-contact.

You can extend this approach to other parts of the customer resource. For instance,
the following PUT request updates the customer status and preferred shipping method:

Request
PUT /customer/1234/info HTTP/1.1
Content-Type: application/xml;charset=UTF-8
If-Match: "bfcc688bd542e17f27da0f82200c35ea"
If-Unmodified-Since: Thu, 05 Nov 2009 01:54:19 GMT

<customer-info>
 <status>premium</status>
 <preferred-shipping>next-day</preferred-shipping>
</customer-info>

Alternatively, consider a case where a client wants to remove the existing email address
of the customer but add two new email addresses. In this case, you can represent all
email addresses as another resource and let the client update that resource by submit-
ting a PUT request:

Request
PUT /customer/1234/emails HTTP/1.1
Content-Type: application/xml;charset=UTF-8
If-Match: "b5b55c8a7f18dd77b4b2d94eed7f1be5"
If-Unmodified-Since: Thu, 05 Nov 2009 01:54:19 GMT

<emails>
 <email type="work">pjbill1@example.org</status>
 <email type="alt">jane1@example.org</status>
</emails>

Such resources may seem inconsistent, or polluting. The resources for
“customer info” or “emails” have no reason to exist other than to sup-
port certain partial updates of the customer resource. But remember
that anything that is appropriate for retrieval and updates is a candidate
as a resource.

200 | Chapter 11: Miscellaneous Writes

11.9 How to Use the PATCH Method
The HTTP PUT method is defined for the complete update or replacement of a resource.
The PATCH method is designed to support partial updates. As of writing this book, the
specification that defines this method is a work in progress (see http://tools.ietf.org/html/
draft-dusseault-http-patch).

Problem
You want to know how to use the PATCH method.

Solution
The PATCH method is an unsafe and nonidempotent HTTP method. The body of the
request is a representation that describes a set of changes that need to be made to the
resource. On receiving this request, the server applies the changes to the resource and
returns response code 200 (OK) or 204 (No Content).

Make the implementation of this method conditional by requiring clients to supply If-
Unmodified-Since and/or If-Match headers. Return response code 412 (Precondition
Failed) if the supplied preconditions do not match.

Advertise support for the PATCH via the Allow header of the OPTIONS response. Also in-
clude an Accept-Patch header with the supported media types for the PATCH method.

Discussion
Here is an example of a client submitting a PATCH request to modify the customer’s
name, add a nickname, and remove the fax number. Except for the representation in
the request, this request-response pair is similar to using a conditional PUT request.

Request for a partial update
PATCH /customers/1 HTTP/1.1
Host: www.example.org
If-Match: "2a7ad61820b6ba89e6c4a119e22f7dfc"
If-Unmodified-Since: Thu, 05 Nov 2009 01:00:01 GMT
Content-Type: application/xml;charset=UTF-8

<diff-customer>
 <replace-name>J. P. Goodright, Jr.</replace-name>
 <add-nickname>Jimmy</add-nickname>
 <remove-fax-line/>
</diff-customer>

Response
HTTP/1.1 204 No Content

Request to partially update a resource

Preconditions for the request

Body of the representation describing changes need to be made

11.9 How to Use the PATCH Method | 201

http://tools.ietf.org/html/draft-dusseault-http-patch
http://tools.ietf.org/html/draft-dusseault-http-patch

In this example, the server uses an XML format to describe changes for the customer
resource as simple commands such as “replace name,” “add nickname,” and “remove
fax line.”

To support the PATCH method, the server needs to define a representation
format that can express changes. Solutions to this problem are media-
type specific. For example, the way to express patches for an XML
document might be very different from the way to express patches to a
binary image file. Moreover, there are no IANA registered media types
and formats that you can reuse to describe changes.

In the response, the server can include a Content-Location header along with the latest
Last-Modified and/or ETag headers. If not, the client must issue an unconditional GET
request (see Recipe 10.6) to fetch the updated representation of the resource along with
fresh ETag and Last-Modified headers.

Since the PATCH method is not idempotent, clients must not repeat
PATCH requests.

The response codes for the PATCH method are similar to other HTTP methods except
for 422 (Unprocessable Entity). Return this when the server cannot honor the request
because it might result in a bad state for the resource. Here is an example:

Request for a partial update
PATCH /customers/1 HTTP/1.1
If-Match: "2ce12fc9d303b1eee1ed3efe9713663c"
If-Unmodified-Since: xxx
Host: www.example.org
Content-Type: application/xml;charset=UTF-8

<diff-customer>
 <remove>
 <name/>
 <fax-line/>
 </remove>
</diff-customer>

Response
422 Unprocessable Entity
Content-Type: application/xml;charset=UTF-8

<error>
 <message xml:lang="en">Name cannot be removed.</message>
</error>

You can avoid such failures by making the representation format for the PATCH request
include only the valid combinations of changes that, when executed, do not leave the
resource in an inconsistent state.

202 | Chapter 11: Miscellaneous Writes

One way to ensure that PATCH requests include only valid combinations
of changes is to design a specific format for each resource as in the pre-
vious example and avoid general-purpose diff formats. General-purpose
diff tools include Unix diff or Microsoft’s XML Diff and Patch Tool
(http://msdn.microsoft.com/en-us/library/aa302294.aspx).

Finally, list the media types supported for this method by adding the Accept-Patch
header to the OPTIONS response.

Request
OPTIONS /customers/1
Host: http://www.example.org

Response
HTTP/1.1 204 No Content
Allow: POST, GET, PATCH
Accept-Patch: application/xml

As of writing this book, the specification for the PATCH method is new and may still
undergo minor changes before it is finalized. If this is a concern, use Recipe 11.8 or
substitute the HTTP method POST for PATCH.

Request for a partial update using POST
POST /customers/1 HTTP/1.1
Host: www.example.org
If-Match: "2a7ad61820b6ba89e6c4a119e22f7dfc"
If-Unmodified-Since: Thu, 05 Nov 2009 01:00:01 GMT
Content-Type: application/xml;charset=UTF-8

<diff-customer>
 <replace-name>J. P. Goodright, Jr.</replace-name>
 <add-nickname>Jimmy</add-nickname>
 <remove-fax-line/>
</diff-customer>

Response
HTTP/1.1 303 See Other
Location: http://www.example.org/customers/1
Content-Length: 0

When using PATCH is not an option, overload POST but not PUT for partial
updates. Per HTTP, PUT is meant for fully updating or replacing a
resource.

11.10 How to Process Similar Resources in Bulk
When a client needs to submit a number of similar requests for different resources, as
long as the operations on each resource are the same and the resources are “similar,”
you can combine them into a single operation on a collection resource. Recipe 11.11
and Recipe 11.13 present alternatives for solving related “batch processing” problems.

11.10 How to Process Similar Resources in Bulk | 203

http://msdn.microsoft.com/en-us/library/aa302294.aspx

Problem
You want to know how to create, update, or delete several similar resources all at once.

Solution
Use POST and a collection resource to create a number of similar resources at once. Let
clients include information about the resources to be created in the request. Assign a
URI for all the resources created, and redirect the client to the collection using response
code 303 (See Other). A representation of this resource includes links to all the newly
created resources.

To update or delete a number of similar resources in bulk, use a single URI that can
return a representation containing information about all those resources. Submit a
PUT request to that URI with information about the resources to be updated or a
DELETE request to delete those resources.

In all these cases, ensure that the processing of the request is atomic.

Since bulk operations can be long running, restrict the size of requests
to prevent overloading the server. If not, clients can accidentally or in-
tentionally cause denial-of-service attacks.

Also, controlling the concurrency and atomicity of bulk operations may
involve database locks held for long durations of time, which may re-
duce performance and scalability.

Discussion
Consider the following use cases:

• Create 10 addresses.

• Delete five books from a user’s wish list.

• Update all the favorite movies of a user.

For such use cases, if you can identify the resources involved via a single URI, the client
can use an appropriate HTTP method to operate on that collection as a whole. For
example, a client can submit a POST request to create 10 addresses.

Request
POST /user/user002/addresses HTTP/1.1
Host: www.example.org
Content-Type: application/xml;charset=UTF-8

<addresses>
 <address>

 </address>
 <address>

204 | Chapter 11: Miscellaneous Writes

 </address>
 ...
</addresses>

Response
HTTP/1.1 303 See Other
Location: http://www.example.org/user/user002/addresses

Collection used as a factory to create resources in bulk

Representation containing data of all the resources to be created

Refer to the collection for results

The client needs to follow the redirect to obtain URIs of all newly created resources.

Request
GET /user/user002/addresses HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8
Cache-Control: max-age:3600
Last-Modified: Thu, 05 Nov 2009 01:54:19 GMT
ETag: "474263ccac5ad16fbe9f48bf63ef0846"

<addresses xmlns:atom="http://www.w3.org/2005/Atom">
 <address>
 <atom:link rel="self" href="http://www.example.org/user/user002/addr001"/>

 </address>
 <address>
 <atom:link rel="self" href="http://www.example.org/user/user002/addr002"/>

 </address>
 ...
</addresses>

Operations like the previous reduce the visibility of the uniform inter-
face. In this example, since the server created several resources, it cannot
use response code 201 (Created) and provide a single Location header.
Clients need to read the collection’s body to learn the URIs of the re-
sources created.

This is a trade-off between client convenience/network efficiency and
visibility.

You can similarly update several resources at once by submitting a PUT request for that
collection. The following example replaces all the existing favorite movies of a user with
a new set of favorite movies:

Request
PUT /user/user002/favmovies HTTP/1.1
Host: www.example.org

11.10 How to Process Similar Resources in Bulk | 205

Content-Type: application/xml;charset=UTF-8
If-Match: "10895276d1cfdabdce24e6e902222198"

<favmovies>
 <favmovie>
 <id>urn:example:movie:2001</id>
 ...
 </favmovie>
 <favmovie>
 <id>urn:example:movie:2002</id>
 ...
 </favmovie>
</favmovies>

Response
HTTP/1.1 204 No Content

You can implement bulk deletion in the same manner.

The server must implement bulk requests as atomic. If the request is for
creating 10 addresses, the server should create all 10 addresses before
returning a successful response code. The server should not commit
changes partially in the case of failures.

11.11 How to Trigger Bulk Operations
Use cases where a client needs to perform work in bulk are not uncommon. For ex-
ample, creating summaries for the previous day’s sales orders, archiving one or more
documents for future reference, approving a selected set of purchase orders, etc., in-
volve tasks that need to be executed in bulk. Use this recipe when the server has most
of the data needed to perform the bulk operation. Recipes 11.12 and 11.13 discuss
alternatives.

Problem
You want to know how to design an application-specific resource to trigger bulk
operations.

Solution
Design a controller resource that, with some client inputs, can start executing a bulk
operation. Allow the client to use a POST request to initiate processing. If the processing
needs to be tracked by the client or if the client needs to submit a large amount of data
for the operation, use Recipe 1.10 to return response code 202 (Accepted). If not, return
200 (OK) or 204 (No Content).

206 | Chapter 11: Miscellaneous Writes

Discussion
This recipe shows how you can use a “fire and forget” strategy to handle bulk opera-
tions. For instance, consider the process of applying an address correction process to
the addresses of all users in the system created before 2010. The server has a large
number of addresses collected from a legacy system and needs to reformat them to the
format used by the postal service. One way to approach this problem is to let the client
iterate through each address, apply the address correction process, flag each address
as being valid or needing manual correction, and then store each address in the fol-
lowing sequence:

Get each address
GET /user/001/address HTTP/1.1
Host: www.example.org

Apply address correction locally
...

Store updated address
PUT /user/001/address HTTP/1.1
Host: www.example.org
Content-Type: application/xml;charset=UTF-8

...

Since this process involves two requests per address, alternatively the client could fetch
all addresses as a single collection, apply address correction to all of them locally, and
then use Recipe 11.10 to update all the addresses in a single request.

Get all addresses
GET /addresses?before=2010-01-01 HTTP/1.1
Host: www.example.org

Apply address correction to all addresses
...

Store updated addresses
PUT /addresses?before=2010-01-01 HTTP/1.1
Host: www.example.org
Content-Type: application/xml;charset=UTF-8

...

As discussed in Recipe 11.10, designing a resource to consume a large volume of data
in a single request and process them atomically can be challenging. A simpler alternative
is to “ask” the server to apply address correction. The client submits a POST to ask the
server to start the address correction. Since there are no other inputs needed, the body
of the request is empty.

Request to apply address correction
POST /address-correction?before=2010-01-01 HTTP/1.1
Host: www.example.org
Content-Length: 0

11.11 How to Trigger Bulk Operations | 207

Response
HTTP/1.1 202 Accepted
Content-Type: application/xml;charset=UTF-8
Date: Sun, 13 Sep 2009 01:49:27 GMT

<status xmlns:atom="http://www.w3.org/2005/Atom">
 <state>pending</state>
 <atom:link href="http://www.example.org/address-correction/status/1" rel="self"/>
 <message xml:lang="en">Your request has been accepted for processing.</message>
 <ping-after>2009-09-13T01:59:27Z</ping-after>
</status>

Fire and forget a bulk task

If your use cases do not require any client-side tracking of the progress, the server can
return 200 (OK) or 204 (No Content).

Request to apply address correction
POST /address-correction?before=2010-01-01 HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 204 No Content

In this example, the client only needs to submit a POST request to a known URI, which
initiates the bulk operation. The server applies the address correction process for each
address on its own. In essence, the client is “flipping a switch” to start the work.

11.12 When to Tunnel Multiple Requests Using POST
Combining several HTTP requests in a single HTTP request to support batch process-
ing is not an uncommon technique. Here is a commonly used implementation of this
technique:

1. The client serializes each HTTP request (including the URI, HTTP method name
and HTTP headers) into a JSON object or an XML document or even a single part
in a multipart/mixed message.

2. The client creates an envelope format to combine each of those requests into a
single message.

3. The client submits that message to the server using POST to a resource that is often
termed a batch end point.

4. The server, on receiving this message, opens the envelope, reconstructs HTTP re-
quests, and then dispatches them to the respective URIs on the server. Alterna-
tively, the server may bypass HTTP and dispatch these requests directly to the code
that can process those requests.

5. The server collects the response for each request and then serializes them into a
single message and returns to the client.

208 | Chapter 11: Miscellaneous Writes

6. The client opens the envelope and processes each response message.

Here is an example:

Batch request
POST /batch HTTP/1.1
Host: www.example.org
Content-Type: application/xml;charset=UTF-8

<batch-request>
 <request method="PUT" uri="http://www.example.org/req/2009/11/1/log">
 <headers>
 <header name="Content-Type" value="application/xml"/>
 </headers>
 <body>
 ...
 </body>
 </request>
 <request method="POST" uri="http://www.example.org/req/2009/11/2/reject">
 <headers>
 <header name="Content-Type" value="application/xml"/>
 </headers>
 <body>
 ...
 </body>
 </request>
 ...
</batch-request>

Batch response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<batch-response>
 <response status="200" message="OK">
 <headers>
 <header name="Content-Type" value="application/xml"/>
 </headers>
 <body>
 ...
 </body>
 </response>
 <response status="412" message="Precondition Failed">
 <headers>
 <header name="Content-Type" value="application/xml"/>
 </headers>
 <body>
 ...
 </body>
 </response>
 ...
</batch-response>

An HTTP request to a gateway resource

A serialized version of an HTTP PUT request to update a resource

11.12 When to Tunnel Multiple Requests Using POST | 209

A serialized version of an HTTP POST request to create a new resource

An HTTP response from the gateway resource containing results

Result of the request to update a resource

Result of the request to create a new resource

This is a process of tunneling several HTTP requests into a single HTTP POST request.

Problem
You want to know if batch processing of several HTTP requests via single POST request
is appropriate for your web service.

Solution
Avoid tunneling of multiple HTTP requests within a single POST request. Instead, use
Recipe 11.13 to design application-specific resources to process batch requests without
tunneling.

Discussion
Here is a design problem that may prompt the previous tunneling technique.

A server manages purchase requisitions. The client provides a user interface for appro-
val and presents open requisitions to the user in lists of 10. The user reviews each and
selects a user interface control (e.g., a checkbox) to approve or reject each requisition.
In some cases, the user adds a log seeking a clarification. After making these changes,
the user presses a “submit” button to process the 10 requisitions shown. The client
then repeats the same user interface for the next 10 open requisitions.

The server offers each requisition as a resource and uses HTTP methods as follows:

• PUT to update the log section of each requisition

• POST with a controller resource to reject a requisition

• PUT to accept a requisition

Since the client is processing up to 10 requisitions at a time, it seems natural to bundle
up to 10 HTTP requests into a single request and submit them to the server. An argu-
ment for doing so is reduced network latency. Instead of opening 10 connections, the
client opens a single network connection.

However, such a generalized tunneling approach has several disadvantages:

Concurrency
HTTP offers Last-Modified and ETag headers as a way to implement optimistic
concurrency checks. Batch operations that tunnel multiple HTTP requests in a
single request make concurrency checks difficult since the server may need to check
for concurrency for each individual task within the batch.

210 | Chapter 11: Miscellaneous Writes

Atomicity
HTTP requests are atomic. Each request performs a single task, and if an error
occurs, the server can ensure the atomicity and consistency of data. Batch opera-
tions that mix multiple tasks in a single request, especially batches in which the
success of some operations is dependent on previous operations in the same batch,
can make it much harder for web services to ensure atomicity and recover from
failures.

Visibility
Tunneling multiple operations through a single HTTP request makes it impossible
for intermediaries to respond to actions described within the batch. Also, typical
security measures that inspect requests and guard against abuse attacks are less
likely to catch suspect requests carried in a batch. This may lead to denial-of-service
attacks.

Error handling
Handling and reporting errors is more complicated for batch operations. The re-
sults of a single batch request might be “mixed,” with some completed successfully
and some not.

Scalability
Typical justifications for batch operations rely on the assumption that batch re-
quests are more scalable than executing each individual request. If most batch
operations arrive at a single server, the requests can reduce the responsiveness of
that server. An application that makes heavy use of batch client requests sent to a
single server for processing may perform poorly when compared to the same ap-
plication that does not support batch operations.

Whenever an HTTP operation modifies more than one resource, the server should build
custom solutions such as the one discussed in Recipe 10.8. However, a generalized
solution for processing batch requests makes HTTP requests and responses completely
opaque and is not guaranteed to meet the objective of better performance and lower
latency. If not designed and implemented well, tunneling HTTP requests via POST can
also make the server prone to denial-of-service attacks.

Note that the Internet-Draft “HTTP Multipart Batched Request Format” (see Appen-
dix A) attempts to formalize a multipart/http media type for using HTTP requests or
response messages within each part of a multipart message. The use of such media types
is prone to all the previously discussed limitations.

11.13 How to Support Batch Requests
Problem
You want to know how to support batch processing of HTTP requests.

11.13 How to Support Batch Requests | 211

Solution
When confronted with a need to tunnel several HTTP requests via a POST request,
backtrack to analyze the use case that prompted such an approach. Design an
application-specific controller resource that can support the same use case without
generalizing the problem into one of tunneling multiple requests via POST.

Discussion
Here is an alternative solution to the purchase requisition example introduced in Rec-
ipe 11.12:

Approve 10 requisitions
POST /approvals HTTP/1.1
Host: www.example.org
Content-Type: application/xml;charset=UTF-8

<approvals>
 <approval>
 <id>001</id>
 <status>approve</status>
 </approval>
 <approval>
 <id>002</id>
 <log>Missing bids</log>
 </approval>
 <approval>
 <id>003</id>
 <status>reject</status>
 <log>Exceeds budget limit</log>
 </approval>
 ...
</approvals>

Response
HTTP/1.1 303 See Other
Location: http://www.example.org/reqs/2009/11?page=2

A request to approve requisitions

A representation containing requisition approval data

A success response

The request message shown previously has the same information as the batch request
shown in Recipe 11.12 except that, instead of tunneling HTTP methods inside a POST
request, it uses an application-specific resource to submit approvals in bulk. It results
in a single response. In the case of success, the server redirects the client to the next
page of requisitions. In the case of failure, the server can return an error message.

Approve 10 requisitions
POST /approvals HTTP/1.1
Host: www.example.org
Content-Type: application/xml;charset=UTF-8

212 | Chapter 11: Miscellaneous Writes

<approvals>
 <approval>
 <id>001</id>
 <status>approve</status>
 </approval>
 <approval>
 <id>002</id>
 <log>Missing bids</log>
 </approval>
 <approval>
 <id>003</id>
 <status>reject</status>
 <log>Exceeds budget limit</log>
 </approval>
 ...
</approvals>

Batch response
HTTP/1.1 400 Bad Request
Date: Tue, 03 Nov 2009 06:44:39 GMT
Content-Type: application/xml;charset=UTF-8
Content-Language: en
Link: <http://www.example.org/help/approvalcodes.html>;rel="help"

<error>
 <message>Authorization type is missing for requisition ID 001.</message>
</error>

An atomic failure response

Such a solution is simpler to implement than a general-purpose HTTP tunneling sol-
ution. Since the previous request uses a distinct URI for the resource that is processing
the request, the request is visible. Since there is a single status code, the response is
visible.

11.14 How to Support Transactions
One of the frequently asked questions about RESTful web services is how to deal with
transactions. Usually, one of the following scenarios prompts this question:

• A client goes through a sequence of steps with a server in a flow. The client would
like to cancel the flow and undo all the changes done to the data in that flow.

• A client interacts with a number of servers in a sequence to implement an appli-
cation flow, and the client either wants to revert any resulting state changes or
wants to record them permanently.

Transactions are often seen as a missing feature of REST and HTTP. For instance, if
HTTP supports transactions, a banking server could let a client deduct some amount
from one account and add it to another account within a single transaction, thus
guaranteeing atomicity. Such an implementation would also improve the visibility of

11.14 How to Support Transactions | 213

interactions since each HTTP request could be implemented to not modify any related
resource. However, supporting transactions in distributed and decentralized web serv-
ices reduces the separation of concerns between servers and clients. It also makes the
application protocol stateful, thereby reducing scalability.

Problem
You want to know how to support transactions.

Solution
Provide a resource that can make atomic changes to data. Treat uncommitted state as
application state, and manage it as per Recipe 1.3. If the server needs to allow clients
to undo actions, use PUT, DELETE, or POST as appropriate to make compensating changes.

Discussion
There are a number of types of transaction models. The following are the most notable:

• Short-lived atomic transactions to guarantee properties such as atomicity, consis-
tency, isolation, and durability (i.e., ACID)

• Long-running transactions where changes happen over a period of time and the
application has a chance to move forward or apply compensating actions

For instance, creating a user in a data store may happen under an atomic transaction,
whereas buying a book or making a travel reservation may need to happen over a long-
running transaction.

In the case of HTTP, each request provides a sphere of control for atomic changes. An
HTTP request either succeeds or fails. There is no scope for partial failures in HTTP.
You can support an atomic operation by submitting changes to a resource and let that
resource attempt to commit those changes by using optimistic concurrency control
(Chapter 10). The server can provide guarantees such as atomicity, consistency, isola-
tion, and durability as appropriate by delegating the task of committing changes to a
transactional backend data store.

For instance, the account transfer example in Recipe 10.8 uses a resource to atomically
update two bank account resources within a single request.

Request
POST /transfer;t=e6e3c89d4dfe7f3a818734a6237ccfc5 HTTP/1.1
Host: example.org
Content-Type: application/xml;charset=UTF-8

<transfer>
 <source>urn:example:org:account:1</source>
 <target>urn:example:org:account:2</target>
 <currency>USD</currency>
 <amount>100.00</amount>
 <note>Testing transfer</note>

214 | Chapter 11: Miscellaneous Writes

</transfer>

Response
HTTP/1.1 201 Created
Content-Type: application/xml;charset=UTF-8
Location: http://www.example.org/transactions/1

<transfer xmlns:atom="http://www.w3.org/2005/Atom">
 <source>urn:example:org:account:1</source>
 <target>urn:example:org:account:2</target>
 <atom:link href="http://www.example.org/transactions/1" rel="self"/>
 <currency>USD</currency>
 <amount>100.00</amount>
 <note>Testing transfer</note>
</transfer>

As far as the client is concerned, this is an atomic activity. The client is decoupled from
the details of how the server implements the atomic activity. The server ensures con-
currency control either by checking conditional headers such as If-Unmodified-Since
or If-Match or by encoding preconditions in URIs as shown in the previous example.

Mimicking transaction protocols such as two-phase commit over
HTTP, on the other hand, makes the protocol stateful and may reduce
the scalability of web services.

You can use links to introduce compensating actions. For example, the server can pro-
vide a link to cancel a travel reservation in the itinerary resource.

A travel itinerary
GET /bookings/XAA55Z HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<itinerary xmlns:atom="http://www.w3.org/2005/Atom">
 <locator-id>XAA55Z</locator-id>
 <atom:link rel="self" href="http://www.example.org/bookings/XAA55Z"/>
 <atom:link rel="http://www.example.org/rels/cancel"
 href="http://www.example.org/bookings/XAA55Z/cancel"/>

 <!-- details of the itinerary -->
 ...
</itinerary>

The client can use the link with the relation http://www.example.org/rels/cancel to
cancel the reservation and perform the necessary compensating actions such as can-
celing each segment of the travel, deducting cancelation fees, and refunding the money.

Using this recipe for managing transactions keeps clients decoupled, keeps interactions
stateless, and guarantees atomicity within each HTTP request.

11.14 How to Support Transactions | 215

CHAPTER 12

Security

Security is a term used to describe different things at different layers and parts of a
system. For instance, take a web-based application that involves users accessing re-
sources. Securing such a system may require the following:

• Ensure that only authenticated users access resources.

• Ensure the confidentiality and integrity of information right from the moment it is
collected until the time it is stored and later presented to authorized entities or
users.

• Prevent unauthorized or malicious clients from abusing resources and data.

• Maintain privacy, and follow the laws of the land that govern various security
aspects.

There is no one-size-fits-all solution to address all these needs. Each application re-
quires a careful analysis as part of the architecture and design exercise to cover all these
aspects of security.

This chapter covers a subset of security-related topics for RESTful web services. It maps
common problems such as authentication, authorization, confidentiality, and integrity
to established HTTP-based standards and practices.

Recipe 12.1, “How to Use Basic Authentication to Authenticate Clients”
Use this recipe to learn how to use HTTP basic authentication.

Recipe 12.2, “How to Use Digest Authentication to Authenticate Clients”
Use this recipe to learn how to use HTTP digest authentication.

Recipe 12.3, “How to Use Three-Legged OAuth”
Use this recipe to learn how to use the three-legged OAuth protocol to let users
authorize clients to access their resources.

Recipe 12.4, “How to Use Two-Legged OAuth”
Use this recipe to learn how to use the two-legged OAuth protocol to authenticate
clients.

217

Recipe 12.5, “How to Deal with Sensitive Information in URIs”
Use this recipe to learn how to prevent the tampering of state encoded in URIs and
how to keep the state confidential.

Recipe 12.6, “How to Maintain the Confidentiality and Integrity of Representations”
Use this recipe to find out how to maintain the confidentiality and integrity of
representations.

12.1 How to Use Basic Authentication to Authenticate Clients
Basic authentication involves the client exchanging an identifier and a shared secret to
authenticate a request with the server.

Problem
You want to know how to implement basic authentication.

Solution
On the server, when a client submits a request to access a protected resource, return
response code 401 (Authorization Required) along with a WWW-Authenticate header.

WWW-Authenticate: Basic realm="Some name"

On the client, concatenate the client identifier (e.g., the username if the client is making
a request on behalf of a user) and the shared secret (such as a password) as
<identifier>:<secret>, and then compute a Base64 encoding of this text. Include the
value of the resulting text in an Authorization header in client requests.

Authorization: Basic <Base64 encoded value>

On the server, decode the text, and verify that the secret is the same.

If the client knows a priori that the server requires basic authentication for a resource,
it can include the Authorization header with each request and avoid receiving the 401
(Unauthorized) response with the WWW-Authorization header. To facilitate this, include
authentication requirements in the server’s documentation.

Discussion
Authentication protocols like basic and digest authentication (see Recipe 12.2) use a
challenge-response protocol. When a client accesses a protected resource, the server
uses the WWW-Authenticate header to challenge the client to provide an answer. For basic
and digest authentication, the question is “Who are you?” The client then responds
using the Authorization header to provide an answer. For basic and digest authentica-
tion, the answer is a function of the password or, more generally, a function of the
secret shared between the client and the server.

218 | Chapter 12: Security

No secret is truly secret unless it is safely stored in a client
implementation.

You can use authentication schemes such as basic and digest authentication for two
scenarios: when a client is accessing a protected resource on its own behalf and when
a client is accessing a protected resource on behalf of a user.

Basic authentication dates back to HTTP 1.0 and was later specified by RFC 2617. In
basic authentication, the client Base64-encodes the shared secret and supplies it via the
Authorization request header.

Base64 encoding is reversible. Do not use basic authentication when the
client is not using TLS to connect to the server.

Here is an initial request from a client attempting to access a resource that requires
authentication:

Request
GET /photos HTTP/1.1
Host: www.example.org

Response
401 Unauthorized
WWW-Authenticate: Basic realm="Photos App"
Content-Type: application/xml;charset=UTF-8

<error xmlns:atom="http://www.w3.org/2005/Atom">
 <message>Unauthorized.</message>
</error>

A request with no credentials

A response with a challenge to supply credentials using basic authentication

Since the resource is protected, the server challenges the client to provide its credentials
using an authentication scheme named Basic. The realm value is an opaque string that
identifies a protected space on the server.

Assume that the client/user is identified as photoapp.001 with the shared secret
basicauth. The client computes the Base64 encoding of the string photoapp.001:basi
cauth and sends the following request with the Authorization header:

Request
GET /photos HTTP/1.1
Host: www.example.org
Authorization: Basic cGhvdG9hcHAuMDAxOmJhc2ljYXV0aA==

Response
HTTP/1.1 200 OK

12.1 How to Use Basic Authentication to Authenticate Clients | 219

Content-Type: application/xml;charset-UTF8

...

A request with credentials

The server decodes the credentials using Base64 and checks that the shared secret sup-
plied by the client matches the one known to the server and that the client is allowed
to access the resource with the supplied credentials. If the server receives a request with
no Authorization header or if the credentials in the supplied Authorization header do
not match, the server can return an error with the WWW-Authentication response header.

Since authenticated responses may contain sensitive information, make sure that the
Cache-Control and Expires headers are appropriate for the response. For instance, if
the response is specific to the client, use Cache-Control: private to prevent shared
caches from storing or serving the response to other clients.

Request
GET /users/admin HTTP/1.1
Host: www.example.org
Authorization: Basic cGhvdG9hcHAuMDAxOmJhc2ljYXV0aA==

Response
HTTP/1.1 200 OK
Cache-Control: max-age:3600,private
Vary: Authorization
Content-Type: application/xml;charset-UTF8

...

Extending the Authorization Header
The Authorization header is extensible. Digest authentication (see Recipe 12.2) and
OAuth (see Recipes 12.3 and 12.4) use this header to send credentials to the server. In
addition, some proprietary authentication techniques also use this header for supplying
credentials. For instance, Amazon’s Simple Storage Service (S3) uses this header to let
clients authenticate with the server using the following request header:

Authorization: AWS AWSAccessKeyId:Signature

Here AWS is an identifier for the authentication scheme used by Amazon,
AWSAccessKeyId is an identifier that Amazon assigns to clients, and Signature is a digital
signature of the request method, certain headers, and the body of the message. Clients
compute the signature using a secret generated by Amazon and shared with the client.
Amazon verifies the identity of the client by computing the signature of the same data
using the shared secret and verifying it against the signature supplied by the client.

220 | Chapter 12: Security

12.2 How to Use Digest Authentication to Authenticate Clients
Digest authentication (also specified by RFC 2617) is similar to basic authentication
except that the client sends a digest of the credentials to the server. Digest authentica-
tion also provides mechanisms to prevent replay attacks.

Problem
You want to know how to implement digest authentication.

Solution
When a client submits a request without including an Authorization header to access
a protected resource, return response code 401 (Authorization Required) along with a
WWW-Authenticate header, Digest authentication scheme, and at least realm and nonce
directives. A nonce is a number or a token that can be used once or only a limited number
of times.

On the client, include an Authorization header that contains a digest of the client or
user identifier, the realm, and the shared secret.

Upon verifying that the supplied digest matches a digest of the credentials stored in the
server, include an Authentication-Info response header. This is a server-side equivalent
of the Authorization header.

By default, clients use MD5 to compute the digest. Unlike basic authentication, this
technique does not exchange an unencrypted shared secret.

Discussion
Here is a sample server response with a nonce and a client request with the
Authorization header:

Request
GET /photos HTTP/1.1
Host: www.example.org

Response
401 Unauthorized
WWW-Authenticate: Digest realm="Sample app", nonce="6cf093043215da528d7b5039ed4694d3",
 qop="auth"
Content-Type: application/xml;charset=UTF-8

<error xmlns:atom="http://www.w3.org/2005/Atom">
 <message>Unauthorized.</message>
</error>

Request
GET /photos HTTP/1.1
Host: www.example.org
Authorization: Digest username="photoapp.001", realm="Sample app",

12.2 How to Use Digest Authentication to Authenticate Clients | 221

 nonce="6cf093043215da528d7b5039ed4694d3",
 uri="/photos", response="89fba5bf5e5f9dd69865258c21860956",
 cnonce="c019e396409afe784ae9f203b8dfdf7e", nc=00000001, qop="auth"

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset-UTF8

...

A request without credentials.

Response containing a challenge and a nonce.

Request containing a response directive. See the following to learn how to compute
this.

Unlike basic authentication, digest authentication requires the client to supply a digest
of the credentials. In the second step, the server includes the following directives:

realm
An opaque string that identifies a protected space on the server.

nonce
An opaque string uniquely generated with each 401 (Unauthorized) response. Cli-
ents are required to use this value while generating a digest. Servers can reject
requests containing nonce directives older than some value to prevent replay
attacks.

qop
Digest authentication specifies two values for this directive: auth and auth-int.
auth implies that the server uses digest authentication for client authentication
only. auth-int implies that the server uses this authentication to also maintain
integrity of requests. When qop=auth-int, clients include the body of the request
while computing the digest.

In this example, the shared secret is digestauth and the client/user is identified as
photoapp.001. The client uses these, the request method, the resource URI, and the nonce
to compute the digest as follows:

1. Concatenate the client/user identifier, the realm, and the shared secret as
<identifier>:<realm>:<secret>, and compute its MD5 value. Say the value of the
result is A1.

2. Concatenate the request method and the request URI as <method>:<URI>, and com-
pute its MD5 value. Say the value of the result is A2.

3. Concatenate A1, nonce, and A2 as <A1>:<nonce>:<A2>, and compute its MD5 value.

The client uses the resulting value as the value of the response directive in the
Authorization header.

222 | Chapter 12: Security

Since the server-supplied nonce is part of the Authorization headers,
clients cannot send an Authorization header without first obtaining a
nonce value via the WWW-Authenticate header.

Servers can limit the chance of replay attacks by using a one-time or limited-use token
as a nonce.

Similar to the one-time tokens used in Recipe 10.9, using one-time or limited-use tokens
in requests requires the server to maintain a log of all used tokens.

The WWW-Authenticate header can also include other directives such as domain, opaque,
stale, and algorithm directives. Further discussion of these directives and implemen-
tation details are beyond the scope of this book. See Chris Shiflett’s HTTP Developer’s
Handbook (Sams) for more details of digest authentication.

12.3 How to Use Three-Legged OAuth
OAuth (http://oauth.net) is a delegated authorization protocol developed in 2007. Using
this protocol, a user can, without revealing her credentials, let a client access her data
available on a server. OAuth’s authentication protocol is called three-legged because
there are three parties involved in the protocol: the service provider (i.e., the server),
the OAuth consumer (i.e., the client), and a user.

OAuth’s three-legged protocol is applicable whenever a client would like to access a
given user’s resources available on a server. For instance, users of Twitter, Yahoo!,
Google, Netflix, etc., use the OAuth protocol to grant access to their data to third-party
tools so that those tools can access a user’s data without asking users to share their
credentials such as username and password. Implementations of this protocol are
available in most programming languages.

Problem
You want to know how to implement three-legged OAuth protocol.

Solution
Figure 12-1 shows the role of the OAuth protocol. At the start of the protocol, the server
uses a “consumer key” as an identifier for the client and a“ consumer secret” as a shared
secret. Once a user authorizes the client to access her resources, the server uses an
“access token” as an identifier uses the authorized client and uses a “token secret” as
a shared secret.

12.3 How to Use Three-Legged OAuth | 223

http://oauth.net

Figure 12-1. Role of the three-legged OAuth flow

OAuth relies on three sets of tokens and secrets issued by the server to the client:

Consumer key and consumer secret
The consumer key is a unique identifier for the client. The client uses the consumer
secret to sign the request to obtain request tokens.

Request token and token secret
The request token is a temporary one-time identifier issued by the server for the
purpose of asking the user to grant permission to the client. The token secret is
used to sign the request to obtain an access token.

Access token and token secret
The access token is an identifier for use by the client to access the user’s resources.
A client in possession of an access token can access the user’s resources as long as
the token is valid. The server may revoke it at any time either due to expiry or due
to the user revoking the permission. The secret is used to sign requests to access
the protected user’s resources.

Using three-legged OAuth involves the following steps. The purpose of this flow is to
obtain an access token and a secret. The server may grant the access token for a par-
ticular period of time and/or to limit access to certain user resources.

1. The client requests the server for a consumer key and a consumer secret out of band.

2. The client uses the consumer key to obtain a request token and a secret.

3. The client directs the user to the server to grant permission to let the client access
the user’s resources. This process results in an authenticated request token.

224 | Chapter 12: Security

4. The client requests the server to provide an access token and secret. These represent
an identifier and shared secret that the client can use to access resources on behalf
of the user.

5. When making a request to access a protected resource, the client includes an
Authorization header (or query parameters) containing the consumer key, the ac-
cess token, the signature method and a signature, the timestamp, a nonce, and
optionally the version of the OAuth protocol.

Note that since OAuth is a protocol layered on top of HTTP, servers need to document
the following URIs to clients:

• URI to obtain request token

• URI to authorize the server

• URI to obtain an access token

OAuth recommends using POST to obtain request and access tokens.

Discussion
Consider the photo album web service introduced in Recipe 11.1. The client needs the
user’s authorization for it to be able to make a copy of a user’s photo album resource.
The client approaches the server to obtain an oauth_consumer_key and a secret through
some out-of-band means. For example, the server may provide a web page for clients
to register and obtain the consumer key and consumer secret. Assume that the server
assigns a1191fd420e0164c2f9aeac32ed35d23 as the consumer key and, as the shared se-
cret, fd9b9d0f769c3bcc548496e4b5077da79c02d7be.

For the client to initiate the three-legged protocol, the server documents the
following URIs:

• A URI to obtain request tokens (e.g., https://www.example.org/oauth/
request_token)

• A URI to obtain a user’s authorization (e.g., https://www.example.org/oauth/
authorize)

• A URI to obtain an access token (e.g., https://www.example.org/oauth/
access_token)

Consider using TLS for these URIs since responses involve shared se-
crets and user authorization.

These requests involve the following parameters:

oauth_consumer_key
This is the unique identifier issued by the server to each client.

12.3 How to Use Three-Legged OAuth | 225

oauth_signature_method
This is the signing method used when computing a signature. OAuth defines HMAC-
SHA1 and RSA-SHA1 as the signing methods. When clients and servers are using TLS,
you can avoid signatures and use PLAINTEXT as the value of this parameter.

oauth_timestamp
This is the number of seconds since January 1, 1970, 00:00:00 GMT.

oauth_nonce
This is a random string that is unique for all requests sent at a given
oauth_timestamp. This parameter helps servers deter replay attacks. Note that, un-
like digest authentication, OAuth requires clients to generate nonce values.

oauth_version
This is the version of OAuth, which is currently 1.0.

Clients can send these parameters as directives of the Authorization
headers, or query parameters, or encoded using application/x-www-
form-urlencoded in the body of the request. The following examples use
the Authorization header for all requests.

The first step for the client is to submit a request to obtain a request token and a secret
from the server. The signature in this request is based on the consumer secret that the
client obtained along with the consumer key. The signature includes
oauth_consumer_key, oauth_signature_method, oauth_timestamp, oauth_nonce, and
oauth_version and must be computed as follows:

1. Collect parameters oauth_consumer_key, oauth_signature_method,
oauth_timestamp, oauth_nonce, and oauth_version.

2. Percent-encode the parameters, and sort them first by their name and then by their
value.

3. Concatenate the parameters into a string just the way you compute an application/
x-www-form-urlencoded string. For this example, the value of this string is oauth_con
sumer_key=a1191fd420e0164c2f9aeac32ed35d23&oauth_nonce=109843dea839120a&oa
uth_signature_method=HMAC-SHA1&oauth_timestamp=1258308730&oauth_ver
sion=1.0.

4. Compute a signature using the shared secret. For this example, the signature is
d8e19bb988110380a72f6ca33b2ba5903272fe1.

5. Base64-encode the signature, and then percent-encode the resulting text.

Using this signature, the consumer sends a request to obtain a request token.

Request to obtain a request token
POST /request_token HTTP/1.1
Host: www.example.org
Authorization: OAuth realm="http://www.example.com/photos",
 oauth_consumer_key=a1191fd420e0164c2f9aeac32ed35d23,

226 | Chapter 12: Security

 oauth_nonce=109843dea839120a,
 oauth_signature=d8e19bb988110380a72f6ca33b2ba5903272fe1,
 oauth_signature_method=HMAC-SHA1,
 oauth_timestamp=1258308730,
 oauth_version=1.0
Content-Length: 0

Response containing a request token and a secret
HTTP/1.1 200 OK
Content-Type: application/x-www-form-urlencoded

oauth_token=0e713d524f290676de8aff4073b1bb52e37f065c
 &oauth_token_secret=394bc633d4c93f79aa0539fd554937760f05987c

Request to obtain a request token and secret

Authorization header to authenticate the client

Response containing a request token and a secret

The oauth_token in this response is a request token that the client must use in order to
get the user’s permission. The client directs the user to visit a resource on the server to
grant authorization.

Request to obtain authorization
GET /oauth/authorize?oauth_token=0e713d524f290676de8aff4073b1bb52e37f065c HTTP/1.1
Host: www.example.org

The implementation of this resource is up to the server. At this point, the server will
need to check whether the user is authenticated with the server. The server may allow
the user to select the parts of data that the client can access and the nature of the access.
For instance, the user may grant the client permission to edit an album or create a new
album but not delete any album or photos. After this step, the server directs the user
back to the client. If the client has a web-based user interface, the server may redirect
the user to that interface via a callback URI. If not, the server will ask the user to man-
ually enter a verification code in the client’s user interface. With either approach, the
client obtains a verification code from the server.

The client uses the verification code to obtain an access token. The signature in this
request is based on oauth_consumer_key, the request token, the verification code,
oauth_signature_method, oauth_timestamp, oauth_nonce, and oauth_version.

Request to obtain an access token
POST /access_token HTTP/1.1
Host: www.example.org
Authorization: OAuth oauth_consumer_key="a1191fd420e0164c2f9aeac32ed35d23",
 oauth_token="ad0d1c7a765c9e6e8b14e639c763177312d18e7e",
 oauth_verifier="988786765423",
 oauth_signature_method="RSA-SHA1",
 oauth_signature="698d58fd3316304181e11c6eb8127ffea7e2df46",
 oauth_timestamp="1258328458",
 oauth_nonce="109843dea839120a",
 oauth_version="1.0"

12.3 How to Use Three-Legged OAuth | 227

Content-Length: 0

HTTP/1.1 200 OK
Content-Type: application/x-www-form-urlencoded

oauth_token=8d743f1165c7030177040ec70f16df8bc6f415c7
 &oauth_token_secret=95aec3132c167ec2df818770dfbdbd0a8b2e105e

Request to obtain an access token and secret

Authorization header to authenticate the client

Response containing an access token and token secret

This response contains an access token and a secret. The server must verify that the
request token matches the consumer key before issuing an access token.

The client uses these to construct an Authorization header with its requests to
access protected resources for that user. The signature in this request is based on the
oauth_consumer_key, access token, oauth_signature_method, oauth_timestamp,
oauth_nonce, and oauth_version along with any query parameters in the URI or the
body of the request when the request media type is
application/x-www-form-urlencoded.

Request
POST /albums/2009/08/1011/duplicate;t=a5d0e32ddff373df1b3351e53fc6ffb1 HTTP/1.1
Host: www.example.org
Authorization: OAuth oauth_consumer_key="a1191fd420e0164c2f9aeac32ed35d23",
 oauth_token="827fa00c6f15db4063378bb988e1563e0c318dbc",
 oauth_signature_method="RSA-SHA1",
 oauth_signature="f863cceebb4f1fe60739b125128e7355dcbf14ea",
 oauth_timestamp="1258328889",
 oauth_nonce="3c93e7fdd1101e515997abf84116ef579dccce1a",
 oauth_version="1.0"

Request to access a protected resource

Request containing an Authorization header using the access token and token secret

Although the flow appears complex, it is designed to let clients access the user’s data
without asking for the user’s credentials such as a username and password. Moreover,
the user can ask the server to revoke the permission to any client.

When considering OAuth, note that the protocol is not associated with any particular
resource. For a more in-depth discussion on using this protocol, see the “Beginner’s
Guide to OAuth” (http://hueniverse.com/oauth).

12.4 How to Use Two-Legged OAuth
Two-legged OAuth is similar to a client supplying its credentials to the server via the
Authorization header using basic or digest authentication with no delegation involved.

228 | Chapter 12: Security

http://hueniverse.com/oauth

Note that the OAuth specification does not specify this style of authentication, but it
is widely used as a means of authenticating a client with a server.

Problem
You want to know how to implement two-legged OAuth to authenticate client requests.

Solution
Two-legged OAuth involves the following steps:

1. The client requests the server for a consumer key and a consumer secret out of
band. The consumer key is an identifier for the client. The consumer secret is a
secret shared between the client and the server.

2. When making a request to access a protected resource, the client includes an
Authorization header containing the consumer key, the signature method and sig-
nature, a timestamp, a nonce, and optionally the version of the OAuth protocol.

The server verifies the signature before granting access to the resource. This approach
is called two-legged since there are just two parties involved in the authentication flow.

Use two-legged OAuth when the server needs to the authenticate the client to provide
access control, logging, metering, rate limiting, metrics, etc.

Discussion
Two-legged OAuth is well suited for cases involving several clients accessing protected
resources on a server. The server can issue a consumer key and a secret to each client
and require that clients submit an Authorization header containing a signature com-
puted as per OAuth. Two-legged OAuth is also convenient to support servers that
already support three-legged OAuth.

For instance, consider the hiring process example introduced in Recipe 5.5. In this
example, a client interacts with the server to implement an employee hiring process.
The client has its own authentication mechanism in place to authenticate its end users.
For instance, the client may be a web-based application that uses cookies to authenti-
cate its users. The server requires that the client use two-legged OAuth to authenticate
itself to the server with each request. The server issues an oauth_consumer_key and a
secret to the client through some out-of-band means. Assume that the server assigns
a1191fd420e0164c2f9aeac32ed35d23 as the consumer key and, as the shared secret, as-
signs fd9b9d0f769c3bcc548496e4b5077da79c02d7be.

Assume that the client is submitting the candidate information to create a new resource.
To make an authenticated request, the client needs to include an Authorization header.
See Recipe 12.3 for an outline of how to compute the signature.

The result is the value of the oauth_signature parameter. The client then generates the
following Authorization header and makes a request:

12.4 How to Use Two-Legged OAuth | 229

Request to enter candidate info
POST /hires HTTP/1.1
Host: www.example.org
Authorization: OAuth realm="http://www.example.com/hires",
 oauth_consumer_key=a1191fd420e0164c2f9aeac32ed35d23,
 oauth_nonce=85a55859fde262ba,
 oauth_signature=d8e19bb988110380a72f6dba33b2ba5903272fe1,
 oauth_signature_method=HMAC-SHA1,
 oauth_timestamp=1258308689,
 oauth_version=1.0
Content-Type: application/json

{
 "name": "Joe Prospect",
 ...
}

Response
HTTP/1.1 201 Created
Location: http://www.example.org/hires/099
Content-Location: http://www.example.org/hires/099
Content-Type: application/json

{
 "name": "Joe Prospect",
 "id": "urn:example:hr:hiring:099",
 ...
 "link" : {
 "rel" : "http://www.example.org/rels/hiring/post-ref-result",
 "href" : "http://www.example.org/hires/099/refs"
 }
}

Request to access a protected resource

Authorization header computed using the consumer key and consumer secret

Note that OAuth also allows clients to supply the credentials via query parameters.

Request to enter candidate info
POST /hires?oauth_consumer_key=a1191fd420e0164c2f9aeac32ed35d23&
 oauth_nonce=85a55859fde262ba&
 oauth_signature=d8e19bb988110380a72f6dba33b2ba5903272fe1&
 oauth_signature_method=HMAC-SHA1&
 oauth_timestamp=1258308689&oauth_version=1.0 HTTP/1.1
Host: www.example.org
Content-Type: application/json

{
 "name": "Joe Prospect",
 ...
}

However, using the Authorization header reduces URI proliferation.

230 | Chapter 12: Security

If the client fails to include a valid Authorization header, the server should include the
WWW-Authenticate header and a 401 (Unauthorized) response header.

Request to enter candidate info
POST /hires HTTP/1.1
Host: www.example.org
Content-Type: application/json

{
 "name": "Joe Prospect",
 ...
}

Response
401 Unauthorized
WWW-Authenticate: OAuth realm="http://www.example.com/hires"
Content-Type: text/html;charset=UTF-8

<html>
 ...
 <body>
 <p>Unauthorized.</p>
 </body>
</html>

This indicates that the server uses OAuth for authentication.

12.5 How to Deal with Sensitive Information in URIs
As discussed in Recipe 1.3, servers can encode application state into URIs. In some
cases, such state may be sensitive. Using TLS can help the integrity of such state when
URIs are transported over the network, but the server can not control how clients
manage URIs. In such cases, servers need to ensure that (a) the URIs have not been
tampered with and/or (b) the information in URIs remains confidential.

Problem
You want to know how to maintain the integrity or confidentiality of sensitive infor-
mation contained in URIs.

Solution
To detect tampering, compute a digital signature of the data in URIs using algorithms
such as HMAC-SHA1 and RSA-SHA1. Include the signature as a query parameter in
the resource URI.

If the data in URIs is confidential, encrypt the data algorithms such as AES, Blowfish,
DES, Triple DES, Serpent, Twofish, etc. Make sure to Base64-encode the result before
including it in the URI.

12.5 How to Deal with Sensitive Information in URIs | 231

Discussion
Take the insurance quote example introduced in Recipe 1.3. In this example, the server
encodes the data used to issued a quote in a link in the representation. The client can
use the link to buy insurance based on the quote.

Request
GET /quotegen?fname=...&lname=...&... HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<quote xmlns:atom="http://www.w3.org/2005/Atom">
 <driver>
 ...
 </driver>
 <vehicle>
 ...
 </vehicle>
 <offer>
 ...
 <valid-until>2009-08-02</valid-until>
 <atom:link href="http://www.example.org/quotes/buy?fname=...&lname=...&..."
 rel="http://www.example.org/quotes/buy"/>
 </offer>
</quote>

The state encoded in the URI in the link is prone to tampering. To prevent this, the
server can include a signature of all the key parameters used to generate the quote.

http://www.example.org/quotes/buy?fname=...&lname=...&...
 &sign=f5b244520c2a452a0ee8c8b6ab5b6828317d2f7f

The signature in this example is computed using HMAC-SHA1 and a secret known
only to the server. When the client makes a request, the server recomputes the signature
of the data included in the URI and compare it with the signature included in the URI.
Any difference between these values shows that the data has been tampered with.

The server can instead encrypt the state and use the encrypted state.

http://www.example.org/quotes/buy?gZwEW9oJIlZhYa1CuJ9IshGyvYJp2Gfo99M5115
 hWRKk497mkAOrnBZhkSb18UBzYftLpnryxUT2Y0C8GFDpNT64hypV4kMu

When using TLS is not an option, the server can require the client to include the body
of the request in the signature. In this case, the server needs to assign an identifier and
a shared secret to each client and document the algorithm that clients must use to
generate signatures. For instance, OAuth requests to access the resource include a
signature of any parameters included in the body of the request. Digest authentication
with qop=auth-int also uses the body of the request as part of the digest. Either approach
ensures the integrity of the request.

232 | Chapter 12: Security

12.6 How to Maintain the Confidentiality and Integrity
of Representations
Problem
You want to know how to maintain the confidentiality and integrity of resource
representations.

Solution
Use TLS and make resources accessible over a server configured to serve requests only
using HTTPS.

Discussion
HTTP is a layered protocol. It relies on a transport protocol such as TCP/IP to provide
the reliability of message transport. By layering HTTP over the TLS (RFC 5246) pro-
tocol, which is a successor of SSL, you can maintain the confidentiality and integrity
of request and response messages without dealing with encryption and digital signa-
tures in client and server code.

TLS can also be used for mutual authentication where both the server
and the client can be assured of the other party’s identity. For instance,
you can use basic authentication to authenticate users but rely on TLS
to authenticate the client and the server.

When you use TLS for confidentiality and integrity, you can avoid building protocols
for such security measures directly into request and response messages. Moreover, TLS
is message agnostic. It can be used for any media type or request.

Details of setting up TLS are web server and client software specific. These may even
change from programming language to language. Consult server- or software-specific
material to learn the details of how to set up TLS between clients and servers.

Note that SOAP-based web services rely on WS-Security (http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=wss). WS-Security specifies ways to send security
tokens as SOAP headers. For instance, to prevent tampering, SOAP-based web services
include a signature in the header of SOAP messages as in the following example:

12.6 How to Maintain the Confidentiality and Integrity of Representations | 233

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

A SOAP message containing a signature
<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Header>
 <wsse:Security
 soapenv:actor="http://www.example.org"
 soapenv:mustUnderstand="1"
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext">
 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo>
 <CanonicalizationMethod
 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <Reference URI="#abcd">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <DigestValue>... digest value</DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue>...</SignatureValue>
 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 ... key info ...
 </KeyInfo>
 </Signature>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>... application data ...</</soapenv:Body>
</soapenv:Envelope>

This message contains the application data in the Body element and its signature in the
Header. In contrast, RESTful web services can use HTTPS (i.e., HTTP layered over TLS)
to let TLS deal with digital signatures and encryption independently of the methods
and media types used.

HTTP’s layered architecture thus decouples application-level messages
from transport-level security.

234 | Chapter 12: Security

CHAPTER 13

Extensibility and Versioning

Managing change in any distributed client/server environment can be hard. In these
environments, clients count on servers to honor their contracts. RESTful web services
are no exception. For these web services, the contract consists of URIs, resources, the
structure and content of representations, their formats, and the HTTP methods for
each resource.

Any change to a server may seem benign until you consider backward compatibility.
When a change is backward compatible, you need not upgrade clients at the same time
as you modify the server. Clients can ignore the fact that you upgraded the server and
continue to use the server as though nothing changed, barring any downtime during
server upgrades.

There is another kind of compatibility called forward compatibility that may be impor-
tant when you have several clients and servers upgraded at different points in time. In
this case, some newer clients may be interacting with older servers. The purpose of
forward compatibility is to ensure that newer clients can continue to use the older
servers without disruption albeit with reduced functionality. Whether your application
needs to consider backward compatibility alone or both backward and forward com-
patibility depends on your operating environment. The recipes described in this chapter
can help you tackle both.

The characteristic that lets you maintain compatibility is extensibility. Extensibility is
a design process to account for future changes. As a transfer protocol, HTTP is exten-
sible. You can extend HTTP by adding new methods or headers, with certain caveats
(see Recipes 1.12 and 1.13). But that does not mean that applications built over HTTP
are automatically extensible. This chapter shows the steps that you can take to maintain
the extensibility of web services.

Managing change takes discipline, careful planning, and defensive cod-
ing practices. Most changes have good intentions. Either they fix some-
thing broken or they enhance some functionality. However, if not
planned well, changes can be disruptive.

235

Although maintaining compatibility is desirable, making compatible changes is not
always possible. For instance, you may have added security measures that require cli-
ents to upgrade. In this case, clients have no option. Alternatively, you may have added
new functionality to the server that requires clients to make changes to use those fea-
tures. The challenge is to let existing clients continue to function as usual at least for
some period of time, while allowing new clients to take advantage of the newer features
in the server. This is a problem of versioning.

Even if you plan to upgrade all clients to use newer servers, a one-time
simultaneous upgrade of all servers and clients is not a realistic task.
Your web services may need to operate round the clock, and simulta-
neous upgrades may require downtime. Therefore, you need to plan for
a gradual rollout of upgrades to servers and clients to maintain the
availability of the overall system.

Note that both clients and servers need to take the appropriate steps to operate smooth-
ly under change. For the server, the goal is to keep the clients from breaking. For the
clients, the objective is to not fail when new unknown data or links appear in repre-
sentations. This chapter discusses the following recipes:

Recipe 13.1, “How to Maintain URI Compatibility”
Use this recipe to learn how to keep URI changes compatible.

Recipe 13.2, “How to Maintain Compatibility of XML and JSON Representations”
Use this recipe to learn how to extend XML and JSON representations while
maintaining compatibility.

Recipe 13.3, “How to Extend Atom”
Use this recipe to learn ways to extend Atom.

Recipe 13.4, “How to Maintain Compatibility of Links”
Use this recipe to learn how to keep links compatible.

Recipe 13.5, “How to Implement Clients to Support Extensibility”
Use this recipe to learn about implementing clients that do not break when the
server makes compatible changes.

Recipe 13.6, “When to Version”
Use this recipe to decide when to version the server.

Recipe 13.7, “How to Version RESTful Web Services”
Use this recipe to learn how to version a web service.

13.1 How to Maintain URI Compatibility
Problem
You want to know how to keep changes to URIs compatible with existing clients.

236 | Chapter 13: Extensibility and Versioning

Solution
As described in Recipe 4.4, keep URIs permanent. Treat request URIs containing the
same query parameters but in a different order as the same. Clients must be able to get
the same behavior irrespective of the order of the query parameters.

When you add new parameters to URIs, continue to honor existing parameters, and
treat new parameters as optional. When changing data formats for query parameters,
continue to honor existing formats. If that is not viable, introduce format changes via
new query parameters or new URIs. By default, treat query parameters in URIs as op-
tional except when such parameters are needed for concurrency or security reasons.

Discussion
Consider the following URIs:

http://www.example.org/catalog?q=rest&pub=oreilly&y=2010
http://www.example.org/catalog?pub=oreilly&q=rest&y=2010

Since these two URIs are syntactically different, they identify two different resources
at the protocol level. However, treating them as equivalent on the server code gives
clients flexibility in URI parsing and URI construction.

The following URIs use different formats for a query parameter and hence are
compatible:

Original URI format
http://www.example.org/catalog?q=fiction&pubdate=1230796800

New URI format
http://www.example.org/catalog?q=fiction&pubdate=2009-01-01Z

The first URI uses a Unix epoch time for the pubdate parameter. The second URI sup-
ports an RFC-3339 compliant format for this parameter. The server must continue to
support the first format to maintain compatibility with existing clients. If supporting
both formats is not viable, say, because of your server-side library not being able to
support multiple formats at once, add a new parameter that supports the new format.

http://www.example.org/catalog?q=fiction&pubdate=1230796800
http://www.example.org/catalog?q=fiction&published=2009-01-01Z

The second URI uses a query parameter with a different name, implying that the first
parameter is optional. Designing URIs and server code that can keep query parameters
optional gives flexibility to introduce new parameters.

13.2 How to Maintain Compatibility of XML and JSON
Representations
This recipe discusses how to make compatible changes to XML and JSON represen-
tations. See Recipe 13.3 to learn about extending Atom representations.

13.2 How to Maintain Compatibility of XML and JSON Representations | 237

Problem
You want to know how to keep changes to XML/JSON representations compatible
with existing clients.

Solution
Design an XML format to keep the child elements unordered. When making changes
to XML and JSON, preserve the hierarchical structure so that clients can continue to
follow the same structure to extract data.

Make new data elements in requests optional to maintain compatibility with existing
clients. Clients that do not send new data fields must be able to continue to function.

Do not remove or rename any data fields from representations in response bodies.

Discussion
Although headers are part of a representation, as long as clients and servers use headers
correctly as per HTTP, headers should not affect compatibility. Most compatibility
problems occur with the body of representations.

Using extensible formats such as XML and JSON is necessary to allow servers to make
changes. However, using such extensible formats does not automatically guarantee that
the representations are compatible. To keep clients from breaking, you need to preserve
the way clients read data from the body of a representation. The following example
illustrates a compatible change:

Response before change
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<user>
 <first-name>John</first-name>
 <last-name>Doe</last-name>
 <street>1 Some Street</street>
 <city>Some City</city>
<user>

Representation body after the change
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<user>
 <first-name>John</first-name>
 <last-name>Doe</last-name>
 <street>1 Some Street</street>
 <city>Some City</city>
 <state>WA</state>
<user>

238 | Chapter 13: Extensibility and Versioning

But the following representation introduces an incompatible change:

Representation body after the change
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<user>
 <first-name>John</first-name>
 <last-name>Doe</last-name>
 <address>
 <street>1 Some Street</street>
 <city>Some City</city>
 </address>
<user>

The elements that clients need to parse in order to read the name of the city are different
in this representation. A client that is written to extract the city name from the city
child element of the user element will not find it in the second example. This breaks
compatibility.

For any representation format that allows the hierarchical arrangement
of data, do not change the hierarchy.

Some applications of XML schema languages for XML representations may limit ex-
tensibility. For example, consider the following XML schema for an XML document:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="address">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="first-name" type="xs:string"/>
 <xs:element name="last-name" type="xs:string"/>
 <xs:element name="street" type="xs:string"/>
 <xs:element name="city" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Such a schema prevents you from adding new child elements anywhere except after the
city element. Moreover, it requires clients to construct XML as per the document order
of child elements. For this particular example, the following schema is a better choice.
This schema uses xs:all to keep the child elements unordered.

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="address">
 <xs:complexType>
 <xs:all>
 <xs:element name="first-name" type="xs:string"/>
 <xs:element name="last-name" type="xs:string"/>
 <xs:element name="street" type="xs:string"/>

13.2 How to Maintain Compatibility of XML and JSON Representations | 239

 <xs:element name="city" type="xs:string"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
</xs:schema>

You can also use xs:choice or substitution groups for unordered child elements. In
RelaxNG, you can use the interleave pattern to describe unordered elements. See
Appendix A for references of books to learn about extensible XML design.

Use schemas to assist documentation but not to enforce constraints on
XML documents at runtime.

In the case of JSON representations, the order of properties for a JSON object does not
matter because, by definition, properties are unordered. Hence, the following are
equivalent:

{
 "first-name" : "John",
 "last-name" : "Doe",
 "street" : "1 Some Street",
 "city" : "Some City"
}

{
 "city" : "Some City"
 "last-name" : "Doe",
 "first-name" : "John",
 "street" : "1 Some Street",
}

Note that when a server adds new fields to representations, there is no guarantee that
clients submit them back to the server when making PUT or POST requests.

Request
GET /user/001 HTTP/1.1
Host: www.example.org

Response contains a new email property
HTTP/1.1 200 OK
Content-Type: application/json

{
 "first-name" : "John",
 "last-name" : "Doe",
 "street" : "1 Some Street",
 "city" : "Some City",
 "email" : "john.doe@example.org"
}

Request to update

240 | Chapter 13: Extensibility and Versioning

PUT /user/001 HTTP/1.1
Content-Type: application/json

{
 "first-name" : "John A.",
 "last-name" : "Doe",
 "street" : "1012 North 1st Street",
 "city" : "Some City"
}

Response
HTTP/1.1 204 No Content

Clients that do not understand new fields may not store them locally. In this example,
the client does not include the email property in the PUT request. If this causes the server
to assume that the user has no email address, introduce a new version of the resource
that contains the email. See Recipe 13.7 for an example.

13.3 How to Extend Atom
The Atom format was designed to support future extensions. All elements in the Atom
format allow foreign XML elements and attributes. For example, in the following snip-
pet, the atom:author element is extended to include the author’s telephone number:

<atom:author xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:name>John Author</atom:name>
 <atom:uri>http://www.example.org/authors/john-author</atom:uri>
 <atom:email>john.author@mail.example.org</atom:mail>
 <ex:phone xmlns:ex="http://www.example.org/ns">425-123-4567</ex:phone>
</atom:author>

This is a valid atom:author element. Clients that can understand this extension can
interpret the author’s phone numbers, and clients that do not understand it can ignore
it. You can extend Atom in the following ways:

• Add new link relation types. An example is the “Feed Paging and Archiving” ex-
tensions (RFC 5005), which introduce the first, last, previous, and next link
relation types.

• Add new elements within Atom elements such as atom:entry, atom:feed, and
atom:link. Examples include “Atom Threading Extensions” (RFC 4685), which
introduces new elements in-reply-to and total, and “In-Lining Extensions for
Atom,” which extends the atom:link element to include atom:entry or atom:feed
documents of linked resources.

• Use foreign XML or other textual content nested inside atom:content elements.

This recipe reviews various ways of extending Atom and presents preferred ways.

13.3 How to Extend Atom | 241

Problem
You want to know possible ways to extend Atom.

Solution
Define new link relations as described in Recipe 5.4. Add new child elements or at-
tributes to atom:feed and atom:entry elements as long as such extensions do not hamper
the proper function of clients and other software that does not know about such ex-
tensions.

When adding foreign content under the atom:content element, provide human-
readable text or XHTML under the atom:summary element.

Discussion
A key consideration for the introduction of extensions is their effect on interoperability.
It is better to avoid extensions that reduce the chances of interoperability. Here is an
extension used by OpenSearch (http://www.opensearch.org):

<!-- Example reproduced from
 http://www.opensearch.org/Specifications/OpenSearch/1.1 -->
<atom:feed xmlns:atom="http://www.w3.org/2005/Atom"
 xmlns:opensearch="http://a9.com/-/spec/opensearch/1.1/">
 <opensearch:Query role="request" searchTerms="General Motors annual report"/>
 <opensearch:Query role="related" searchTerms="GM" title="General Motors stock symbol"/>
 <opensearch:Query role="related" searchTerms="automotive industry revenue"/>
 <opensearch:Query role="subset" searchTerms="General Motors annual report 2005"
 <opensearch:Query role="superset" searchTerms="General Motors"/>
 ...
</atom:feed>

Extending by adding optional child elements to atom:feed

Clients that do not understand OpenSearch extensions can ignore the extension. Here
is another example of an extension that does not reduce interoperability. This is based
on the “In-Lining Extensions for Atom” Internet-Draft.

<atom:feed xmlns:atom="http://www.w3.org/2005/Atom">
 ...
 <atom:link rel="http://www.example.org/rels/comments"
 href="http://www.example.org/comments">
 <ae:inline xmlns:ae="http://purl.org/atom/ext/">
 <atom:feed>
 <!-- A complete feed -->
 </atom:feed>
 </ae:inline>
 </atom:link>
 ...
</atom:feed>

Extending by introducing a new link relation type

Extending by adding optional child elements to atom:link

242 | Chapter 13: Extensibility and Versioning

http://www.opensearch.org

This example has two extensions. It uses an extended link relation type to introduce a
new type of link not defined by Atom. It also extends the atom:link element to include
the comments feed inside a link used to provide a URI to the comments feed.

The previous examples extend Atom but do not affect interoperability. Here is an ex-
ample that most Atom-aware tools cannot process. This is variant of the example from
Recipe 6.2.

<!-- Avoid this -->
<atom:entry xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:title>Johnny Web Sample Production Schedule</atom:title>
 <atom:id>urn:sked:1111</atom:id>
 <atom:updated>2011-11-11T11:11:11Z</atom:updated>
 <atom:author><name>J. W. Smith</name></atom:author>
 <atom:link rel="self" href="http://www.example.org/ps/1111"/>
 <atom:content type="text">
 Johnny Web Sample Production Schedule
 </atom:content>
 <ex:story-development xmlns:ex="http://www.example.org/ns/ps">
 <ex:days>5</ex:days>
 <ex:planned-start>2012-01-01</ex:planned-start>
 </ex:story-development>
 <ex:pencil-roughs xmlns:ex="http://www.example.org/ns/ps">
 <ex:days>2</ex:days>
 <ex:planned-start>2012-01-10</ex:planned-start>
 </ex:pencil-roughs>
 <ex:layouts-and-ink xmlns:ex="http://www.example.org/ns/ps">
 <ex:days>3</ex:days>
 <ex:planned-start>2012-01-15</ex:planned-start>
 </ex:layouts-and-ink>
</atom:entry>

Required elements added to the atom:entry or atom:feed element reduce
interoperability

This representation has several extension elements for the production data. Atom-
capable tools that do not know about this extension will see it as follows:

<atom:entry xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:title>Johnny Web Sample Production Schedule</atom:title>
 <atom:id>urn:sked:1111</atom:id>
 <atom:updated>2011-11-11T11:11:11Z</atom:updated>
 <atom:author><name>J. W. Smith</name></atom:author>
 <atom:ink rel="self" href="http://www.example.org/ps/1111"/>
 <atom:content type="text">
 Johnny Web Sample Production Schedule
 </atom:content>
</atom:entry>

You can make such a representation meaningful to such clients by providing XHTML
content or a summary.

<atom:entry xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:title>Johnny Web Sample Production Schedule</atom:title>
 <atom:id>urn:sked:1111</atom:id>

13.3 How to Extend Atom | 243

 <atom:updated>2011-11-11T11:11:11Z</atom:updated>
 <atom:author><name>J. W. Smith</name></atom:author>
 <atom:link rel="self" href="http://www.example.org/ps/1111"/>
 <atom:content type="xhtml">
 <html>
 <head>
 <title>Johnny Web Sample Production Schedule</title>
 </head>
 <body>
 <!-- HTML formatted production schedule -->
 ...
 </body>
 </html>
 </atom:content>
 <ex:story-development xmlns:ex="http://www.example.org/ns/ps">
 <ex:days>5</ex:days>
 <ex:planned-start>2012-01-01</ex:planned-start>
 </ex:story-development>
 <ex:pencil-roughs xmlns:ex="http://www.example.org/ns/ps">
 <ex:days>2</ex:days>
 <ex:planned-start>2012-01-10</ex:planned-start>
 </ex:pencil-roughs>
 <ex:layouts-and-ink xmlns:ex="http://www.example.org/ns/ps">
 <ex:days>3</ex:days>
 <ex:planned-start>2012-01-15</ex:planned-start>
 </ex:layouts-and-ink>
</atom:entry>

In general, extensions that can be safely ignored by clients promote in-
teroperability and should be preferred.

13.4 How to Maintain Compatibility of Links
Problem
You want to know how to keep changes to links compatible with existing clients.

Solution
Avoid removing links. Do not change the values of the rel and href attributes of links.
When introducing new resources, use links to provide URIs of those resources to
clients.

Discussion
Using links allows clients to treat URIs as opaque resource identifiers. Clients can use
link relation types to learn what URI to use. However, clients may store URIs in

244 | Chapter 13: Extensibility and Versioning

databases. When a server changes the value of href, clients may not update their stored
URIs with the new value. For instance, the following change may break clients:

<!-- Old link -->
<atom:link rel="edit" href="http://www.example.org/catalog?prodid=32543Y2009"/>

<-- New link -->
<atom:link rel="edit" href="http://www.example.org/catalog/2009/32543Y"/>

Clients may have stored the value of this link locally in a data store and may continue
to use the old URI. When you need to change URIs, honor old URIs by using server-
side URI rewriting rules. See Recipe 4.4 to learn why it is better to keep URIs permanent.

Changing the value of the link relation type will also break client functionality. Instead
of changing the name, introduce a new link with the new rel.

<!-- Link in the old representation -->
<atom:link rel="edit" href="http://www.example.org/catalog?prodid=32543Y2009"/>

<-- Links in the new representation -->
<atom:link rel="edit" href="http://www.example.org/catalog?prodid=32543Y2009"/>
<atom:link rel="http://www.example.org/rels/update"
 href="http://www.example.org/catalog?prodid=32543Y2009"/>

Links also play a vital role to keep the web service extensible. For example, if the product
catalog now supports user-generated content such as comments, reviews, and photos,
the server can introduce this feature by adding new links.

Request
GET /catalog/2009/32543Y HTTP/1.1
Host: www.example.org

Response contains new links
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<product xmlns:atom="http://www.w3.org/2005/Atom">
 ...
 <atom:link rel="http://www.example.org/rels/ugc-comments"
 href="http://www.example.org/catalog/2009/32543/comments"/>
 <atom:link rel="http://www.example.org/rels/ugc-reviews"
 href="http://www.example.org/catalog/2009/32543/reviews"/>
 <atom:link rel="http://www.example.org/rels/ugc-photos"
 href="http://www.example.org/catalog/2009/32543/photos"/>
</product>

The new links in this representation provide URIs of collections for user-generated
content, thus extending the representation. Clients that support the new link relations
can take advantage of the new functionality.

13.4 How to Maintain Compatibility of Links | 245

13.5 How to Implement Clients to Support Extensibility
Problem
You want to know how to implement a client such that it does not fail when the server
makes compatible changes.

Solution
When parsing bodies of representations, look for known data. In the case of XML, look
for known elements and attributes by name and not by position. Implement the client
to not fail when it finds unrecognized data. If the client is capable of storing the complete
representation locally, store everything.

Do not assume that the representation received from the server is of a fixed media type,
character encoding, content language, or content encoding. As described in Rec-
ipe 3.2, read these values from the corresponding Content-* headers, and process them
accordingly.

Discussion
A key rule to remember when writing client applications is to not falter on any data
that is not relevant for the client functionality. For instance, in the case of an XML
representation, a server may enhance user profile representations to include the user’s
blog address and an email.

Response before the change
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<person>
 <first-name>John</first-name>
 <last-name>Doe</last-name>
 <street>1 Some Street</street>
 <city>Some City</city>
<person>

Response after the change
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8

<person xmlns:atom="http://www.w3.org/2005/Atom">
 <first-name>John</first-name>
 <last-name>Doe</last-name>
 <atom:link href="http://blog.example.org/johndoe" rel="related"/>
 <email>...</email>
 <street>1 Some Street</street>
 <city>Some City</city>
<person>

246 | Chapter 13: Extensibility and Versioning

Implement the client such that it does not fail when it finds a link after the second child
of the person element.

13.6 When to Version
Problem
You want to know when to introduce a new version of a web service.

Solution
Consider versioning when the server is unable to maintain compatibility. Also consider
versioning if some clients require behavior or functionality different from other clients.

Discussion
Versioning is sometimes seen as a simpler task in comparison to maintaining compat-
ibility. To maintain compatibility, you have to constantly assess whether a given change
breaks clients and then proceed with caution. Sometimes simple changes to the server
code break clients. In reality, versioning may introduce new problems.

• Data stored by a client for one version of a web service may not automatically work
with the data from a different version of the same web service. Clients may have
to port resource data stored locally before migrating to the new version. You can
avoid this by making compatible changes.

• Version changes may involve new business rules and new application flow. These
require code changes in clients.

• Maintaining multiple versions of resources at the same time is not trivial. You may
need to partition your servers or code or data stores for each version.

• When you use links to convey URIs to clients, clients may store them locally. When
you assign new URIs, clients will have to upgrade those URIs along with other
stored data of resources.

However, there are exceptions. For instance, you may have consolidated all customer
data stores in your organization, and for some servers that serve the customer data to
clients, the fields used are completely different. Similarly, a photo-sharing site now
wants to support videos for microblogging, and the resource definitions for videos
cannot be shoehorned into the resource definitions used for photos.

Another exception is when servers are required to maintain a different set of features
customized for each client. This is common in the case of multitenant or “software as
a service” platforms. For example, a server that provides health insurance management
for employers may need to maintain separate versions of the server software for each
employer. Each version may include special customizations.

13.6 When to Version | 247

See Recipe 13.7 to learn how to introduce a new version.

13.7 How to Version RESTful Web Services
When making compatible changes is no longer an option, version some or all resources
to isolate changes from existing clients.

Problem
You want to know how to introduce a new version of a web service.

Solution
Add new resources with new URIs when there is a change in the behavior of resources
or a change in the information contained in representations. Use easily detectable pat-
terns such as v1 or v2 in subdomain names, path segments, or query parameters to
distinguish URIs by their version.

Avoid treating each version as a new representation with a new media type of the same
resource.

Discussion
Versioning a RESTful web service involves versioning resources with new URIs. This
is because HTTP dictates everything except URIs of resources and their representations.
Although you can add custom HTTP methods and headers, as discussed in Rec-
ipe 1.12 and Recipe 1.13, such additions may impair interoperability with other clients
and servers. This leaves you with resources for versioning.

Here are some URIs using version identifiers:

http://www.example.org/v1/customer/1234
http://www.example.org/v2/customer/1234
http://www.example.org/customer/1234?version=v3
http://v4.example.org/customer/1234

Of these, what works best may depend on your software stack and server deployment.
When the same server manages multiple versions, then using path segments or query
parameters may be convenient.

Consider the email example from Recipe 13.2. Since the email field is new and editable
by clients, the server introduces a new version of the person resource with a new URI.

Request
GET /v2/person/001 HTTP/1.1
Host: www.example.org

Response contains a new email property
HTTP/1.1 200 OK
Content-Type: application/json

248 | Chapter 13: Extensibility and Versioning

{
 "first-name" : "John",
 "last-name" : "Doe",
 "street" : "1 Some Street",
 "city" : "Some City",
 "email" : "john.doe@example.org"
}

Request to update
PUT /v2/person/001 HTTP/1.1
Content-Type: application/json

{
 "first-name" : "John A.",
 "last-name" : "Doe",
 "street" : "1012 North 1st Street",
 "city" : "Some City",
 "email" : "john.doe@example.com
}

Response
HTTP/1.1 204 No Content

Clients that use the new version will see or be able to update the email. Clients that use
the old version do not.

When a server uses this approach to introduce new versions of existing resources, cli-
ents need to upgrade their data stores to support new fields of new versions of resources.
For instance, in the data store, the client may have the following data stored for user
resources:

Use ID, First name, Last name, URI, ...
user001 "John" "Doe" "http://www.example.org/user/001" ...
user002 "Jane" "Doe" "http://www.example.org/user/002" ...
user003 "Bob" "Coder" "http://www.example.org/user/003" ...
...

Clients storing URIs in databases is like bookmarking. However, since
clients may use one set of servers for development and another set for
production, you may need to store just the path portion of the URIs,
leaving the domain name configurable.

When the server introduces a new version of these resources, the client needs to update
its database to point to the new URIs.

Use ID, First name, Last name, email, URI, ...
user001 "John" "Doe" - "http://www.example.org/v2/user/001"
user002 "Jane" "Doe" - "http://www.example.org/v2/user/002"
user003 "Bob" "Coder" - "http://www.example.org/v2/user/003"
...

13.7 How to Version RESTful Web Services | 249

Well-recognizable version identifier URIs can help with the migration of URIs on
the client side. For instance, the client may write code to replace all occurrences of
http://www.example.org/user/ with http://www.example.org/v2/user/ in the database
as part of its upgrade process to support the new version. After upgrading the URIs,
the client can fetch new fields to update the stored data.

Use ID, First name, Last name, email, URI, ...
user001 "John" "Doe" "john.doe@emample.org" "http://www.example.org/v2/user/001"
user002 "Jane" "Doe" "jane.doe@example.org" "http://www.example.org/v2/user/002"
user003 "Bob" "Coder" "bob.Coder@example.org" "http://www.example.org/v2/user/003"
...

Note that some server applications prefer extending media types with version identifiers
instead of using version identifiers in URIs, as shown in the following example:

application/xml;version=1
application/vnd.user+xml;version=1
application/vns.user+xml;version=2

The idea of this approach is to treat each version of the resource as a different repre-
sentation so that clients can negotiate for a given version by submitting an Accept header
with a media type for that version. If the server supports that version, it will return a
representation of that version. When the client is upgraded to support the new version,
it can change the media type used in the Accept header to switch to the new version.

Avoid introducing new media types for each version since it leads to
media type proliferation, which may reduce interoperability with other
servers/clients as well as existing HTTP-level tools.

250 | Chapter 13: Extensibility and Versioning

CHAPTER 14

Enabling Discovery

When building RESTful web services, you need to address two kinds of discoverability.
These are design-time discoverability and runtime discoverability. Design-time discov-
erability helps others design and build clients. It describes all the essentials that client
developer teams and administrators need to know in order to build and launch clients.
Runtime discoverability, on the other hand, helps maintain loose coupling between
clients and servers and enables plug-and-play-style automation. Runtime discovery in-
volves HTTP’s uniform interface, media types, links, and link relations. This chapter
is about design-time discoverability.

Design-time discoverability simply means describing your web service in prose,
whether such prose is generated by some tools or created manually by the designers or
developers of the web service. Client developers can consult this prose to understand
the “semantics” of the resources, media types, link relations, and so on, and implement
clients.

This chapter discusses the following recipes:

Recipe 14.1, “How to Document RESTful Web Services”
This recipe illustrates what to document to help client developers learn about your
web service.

Recipe 14.2, “How to Use OPTIONS”
Use this recipe to learn when and how to use the OPTIONS method.

14.1 How to Document RESTful Web Services
The best way to promote design- and development-time discoverability is to unam-
biguously document the information needed to implement clients.

251

Problem
You want to know how to document your web service.

Solution
Fully describe the following in human-readable documentation:

• All resources and methods supported for each resource

• Media types and representation formats for resources in requests and responses

• Each link relation used, its business significance, HTTP method to be used, and
resource that the link identifies

• All fixed URIs that are not supplied via links

• Query parameters used for all fixed URIs

• URI templates and token substitution rules

• Authentication and security credentials for accessing resources

For XML representations, if your clients and servers are capable of supporting XML
schemas, use a schema language as a “convention” to describe the structure of XML
documents used for representations in requests and responses. For other formats, use
conventions to describe representations in prose.

Discussion
No machine-readable description can replace human-readable documentation. Docu-
menting your web service in human-readable format such as HTML is the most useful
way to enable design-time discovery. When documenting your service, include all the
information necessary to implement a client.

Lack of a standard description language is often cited as a limitation of
REST. In reality, machine-readable description languages do not com-
municate the semantics necessary for client developers to write code.
See, for examples, the documentation of web services by Yahoo! (http:
//developer.yahoo.com), Flickr (http://www.flickr.com/services/api/),
Twitter (http://apiwiki.twitter.com/), and Google Data Protocol (http://
code.google.com/apis/gdata/). All these services provide extensive
human-readable documentation with examples.

Here is an example of what to include when documenting a RESTful web service. Con-
sider the album example from Recipe 11.2 to support finding, creating, editing, dupli-
cating, and merging albums. Tables 14-1, 14-2, and 14-3 illustrate how to document
such a web service.

252 | Chapter 14: Enabling Discovery

http://developer.yahoo.com
http://developer.yahoo.com
http://www.flickr.com/services/api/
http://apiwiki.twitter.com/
http://code.google.com/apis/gdata/
http://code.google.com/apis/gdata/

Table 14-1. Resources

Resource Methods Description

Photo GET, PUT This resource contains photo metadata and a link to a
related binary photo media resource (such as a JPEG file).

Media types: application/xml

Photo media GET, PUT This resource represents the uploaded photo. Submit a
POST request with media type multipart/form-
data to the album resource to create a photo and a photo
media resource.

Media types: image/jpeg, image/gif, image/png

Album GET, DELETE, and POST This resource contains zero or more photos. Use POST to
add photos to an album.

Media types: application/xml, multipart/
form-data

Album collection GET, DELETE, and POST This resource contains zero or more albums. Use POST to
add a new album to the collection.

Media types: application/xml

Duplicate album controller POST This resource lets a client duplicate an album.

Media types: application/xml

Merge album controller GET and POST This resource lets a client merge albums.

Media types: application/xml

Table 14-2. URIs

Resource URI Description

Album
collection

http://www.example.org/albums Use this URI to get the 10 latest albums using GET or to
create a new album using POST.

Use links with the relation types next and previous to
browse through all the albums.

Album
search

http://www.example.org/albums?
q={keyword}&ym={year-month}

Use this URI template to search for albums.

The token {keyword} takes a keyword, and the token
{year-month} takes either a year or a year and month.
Here are some example URIs after token substitution:

http://www.example.org/albums?q=paris&ym=
http://www.example.org/albums?q=hiking&ym=2009-08
http://www.example.org/albums?q=&ym=2000

Album
merge

http://www.example.org/albums/
merge?src={srcid1}&src={srcid2}

Use this template to get a link to merge two albums into
a new album. The server will delete the original albums
after this operation. This operation cannot undone.

In this template, the tokens {srcid1} and srcid2 are
identifiers of the albums to be merged.

14.1 How to Document RESTful Web Services | 253

Table 14-3. Link relation types

Name Description

http://www.example.org/rels/duplicate Use a link with this relation type to submit a POST request to duplicate
an existing album.

http://www.example.org/rels/merge Use a link with this relation type to refer to a controller resource to
merge albums.

For the sake of brevity, the previous documentation excludes details of the XML docu-
ments and form parameters used.

14.2 How to Use OPTIONS
By implementing the HTTP OPTIONS method, you can help tools learn about resources
in your web service.

Problem
You want to know how to provide information about a resource or the server to clients
using the OPTIONS method.

Solution
On the server side, implement OPTIONS to return the list of supported methods via the
Allow response header.

When a resource supports the PATCH method (Recipe 11.9), add an Accept-Patch header
listing the media types supported for PATCH requests.

Optionally add a Link header with a link containing a human-readable document that
describes the resource.

Discussion
Consider the photo album example again. For each of the resources in that example,
you can provide a link to human-readable documentation along with the list of sup-
ported methods to help tools learn more about your resources. Here is an example:

Request
OPTIONS /photos HTTP/1.1
Host: http://www.example.org

Response
HTTP/1.1 204 No Content
Allow: POST, GET
Link: <http://www.example.org/docs/photos>; type=text/html; rel=help

254 | Chapter 14: Enabling Discovery

In this example, in addition to advertising to clients that this resource supports the
HTTP methods POST and GET, the server provides a link to documentation about the
resource that client developers may browse. You might develop a plug-in for your fa-
vorite browser to automatically show the documentation about the resource when you
type the resource URI in the browser.

Although you can use this method at runtime to discover the methods supported by
any given resource at runtime, doing so is expensive. In HTTP, the OPTIONS method is
not cacheable. For instance, the following sequence of requests introduces extra latency
into the client application:

Request
OPTIONS /photos HTTP/1.1
Host: http://www.example.org

Response
HTTP/1.1 204 No Content
Allow: POST, GET
Link: <http://www.example.org/docs/photos>; type=text/html; rel=help

Submit a POST request to create a photo
POST /photos HTTP/1.1
Host: http://www.example.org
Content-Type: application/xml;charset=UTF-8

<photo>
 ...
</photo>

Response
HTTP/1.1 201 Created
Location: http://www.example.org/photo/4312
Content-Type: application/xml;charset=UTF-8

<photo>
 ...
</photo>

Instead of using OPTIONS at runtime, use development-time knowledge of the server and
links to discover URIs and make requests.

14.2 How to Use OPTIONS | 255

APPENDIX A

Additional Reading

Books
Anderson, Ross J. Security Engineering: A Guide to Building Dependable Distributed
Systems, 2nd Edition. Indianapolis, IN: Wiley, 2008.

Bowen, Rich, and Ken Coar. Apache Cookbook. Sebastopol, CA: O’Reilly, 2007.

Burke, Bill. RESTful Java with JAX-RS. Sebastopol, CA: O’Reilly, 2009.

Flanders, Jon. .NET. Sebastopol, CA: O’Reilly, 2008.

Gourley, David, and Brian Totty. HTTP: The Definitive Guide. Sebastopol, CA:
O’Reilly, 2002.

Lewis, Emily P. Microformats Made Simple. Berkeley, CA: New Riders, 2009.

Richardson, Leonard, and Sam Ruby. RESTful Web Services. Sebastopol, CA: O’Reilly,
2007.

Ristic, Ivan. Apache Security. Sebastopol, CA: O’Reilly, 2005.

Ruby, Sam, Dave Thomas, and David Hansson. Agile Web Development with Rails.
Raleigh, NC: Pragmatic Bookshelf, 2009.

Shiflett, Chris. HTTP Developer’s Handbook. Indianapolis, IN: Sams, 2003.

van der Vlist, Eric. RELAX NG. Sebastopol, CA: O’Reilly, 2003.

———. XML Schema. Sebastopol, CA: O’Reilly, 2002.

Wessels, Duane. Squid: The Definitive Guide. Sebastopol, CA: O’Reilly, 2004.

———. Web Caching. Sebastopol, CA: O’Reilly, 2001.

257

References
Foundation
“Architectural Styles and the Design of Network-Based Software Architectures,”
Doctoral dissertation of Roy Fielding, http://www.ics.uci.edu/~fielding/pubs/disserta
tion/top.htm

HTTP Authentication: Basic and Digest Access Authentication, http://tools.ietf.org/
html/rfc2617

HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV), http://
tools.ietf.org/html/rfc4918

HTTP Multipart Batched Request Format, http://tools.ietf.org/html/draft-snell-http
-batch

Hypertext Transfer Protocol: HTTP 1.0, http://tools.ietf.org/html/rfc1945

Hypertext Transfer Protocol: HTTP 1.1, http://tools.ietf.org/html/rfc2616

PATCH Method for HTTP, http://tools.ietf.org/html/draft-dusseault-http-patch

Uniform Resource Identifier (URI): Generic Syntax, http://www.ietf.org/rfc/rfc3986.txt

URI Template, http://tools.ietf.org/html/draft-gregorio-uritemplate-03

URN Syntax, http://tools.ietf.org/html/rfc2141

Web Linking Internet-Draft, http://tools.ietf.org/html/draft-nottingham-http-link-head
er

Atom and AtomPub
The Atom Publishing Protocol, http://tools.ietf.org/html/rfc5023

The Atom Syndication Format, http://tools.ietf.org/html/rfc4287

Atom Threading Extensions, http://tools.ietf.org/html/rfc4685

Feed Paging and Archiving, http://tools.ietf.org/html/rfc5005

In-Lining Extensions for Atom, http://tools.ietf.org/html/draft-mehta-atom-inline

Caching
Caching Tutorial, http://www.mnot.net/cache_docs/

HTTP Cache Channels, http://ietfreport.isoc.org/idref/draft-nottingham-http-cache
-channels

The stale-if-error HTTP Cache-Control Extension, http://tools.ietf.org/html/draft-not
tingham-http-stale-if-error

258 | Appendix A: Additional Reading

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc4918
http://tools.ietf.org/html/rfc4918
http://tools.ietf.org/html/draft-snell-http-batch
http://tools.ietf.org/html/draft-snell-http-batch
http://tools.ietf.org/html/rfc1945
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/draft-dusseault-http-patch
http://www.ietf.org/rfc/rfc3986.txt
http://tools.ietf.org/html/draft-gregorio-uritemplate-03
http://tools.ietf.org/html/rfc2141
http://tools.ietf.org/html/draft-nottingham-http-link-header
http://tools.ietf.org/html/draft-nottingham-http-link-header
http://tools.ietf.org/html/rfc5023
http://tools.ietf.org/html/rfc4287
http://tools.ietf.org/html/rfc4685
http://tools.ietf.org/html/rfc5005
http://tools.ietf.org/html/draft-mehta-atom-inline
http://www.mnot.net/cache_docs/
http://ietfreport.isoc.org/idref/draft-nottingham-http-cache-channels
http://ietfreport.isoc.org/idref/draft-nottingham-http-cache-channels
http://tools.ietf.org/html/draft-nottingham-http-stale-if-error
http://tools.ietf.org/html/draft-nottingham-http-stale-if-error

The stale-while-revalidate HTTP Cache-Control Extension, http://tools.ietf.org/html/
draft-nottingham-http-stale-while-revalidate-01

Formats and Media Types
The application/json Media Type for JavaScript Object Notation (JSON), http://tools
.ietf.org/html/rfc4627

BCP 47: Matching of Language Tags, http://tools.ietf.org/html/bcp47

Date and Time on the Internet: Timestamps, http://tools.ietf.org/html/rfc3339

English country names and code elements, http://www.iso.org/iso/english_country
_names_and_code_elements

Extensible Markup Language (XML) 1.0 (Fifth Edition), http://www.w3.org/TR/REC
-xml/

HTML 4.01 Specification, http://www.w3.org/TR/html401/

Internet Assigned Numbers Authority (IANA) MIME Media Types, http://www.iana
.org/assignments/media-types/

ISO 4217 currency names and code elements, http://www.iso.org/iso/support/currency
_codes_list-1.htm

Olson Time Zone Database: Sources for Time Zone and Daylight Saving Time Data,
http://www.twinsun.com/tz/tz-link.htm

RDFa in XHTML: Syntax and Processing, http://www.w3.org/TR/rdfa-syntax/

Tags for Identifying Languages, http://tools.ietf.org/html/rfc5646

XML Base (Second Edition), http://www.w3.org/TR/xmlbase/

XML Media Types, http://tools.ietf.org/html/rfc3023

XML Schema Part 2: Datatypes Second Edition, http://www.w3.org/TR/xmlschema-2

Security
Beginner’s Guide to OAuth, http://hueniverse.com/oauth/

HTTP Authentication: Basic and Digest Access Authentication, http://tools.ietf.org/
html/rfc2617

OAuth Core 1.0, http://oauth.net/core/1.0a

References | 259

http://tools.ietf.org/html/draft-nottingham-http-stale-while-revalidate-01
http://tools.ietf.org/html/draft-nottingham-http-stale-while-revalidate-01
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/bcp47
http://tools.ietf.org/html/rfc3339
http://www.iso.org/iso/english_country_names_and_code_elements
http://www.iso.org/iso/english_country_names_and_code_elements
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/html401/
http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/media-types/
http://www.iso.org/iso/support/currency_codes_list-1.htm
http://www.iso.org/iso/support/currency_codes_list-1.htm
http://www.twinsun.com/tz/tz-link.htm
http://www.w3.org/TR/rdfa-syntax/
http://tools.ietf.org/html/rfc5646
http://www.w3.org/TR/xmlbase/
http://tools.ietf.org/html/rfc3023
http://www.w3.org/TR/xmlschema-2
http://hueniverse.com/oauth/
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617
http://oauth.net/core/1.0a

APPENDIX B

Overview of REST

REST stands for Representational State Transfer. To understand what it means, con-
sider a simple web-based social application.

1. A user visits the home page of the application by typing the address in the browser.

2. The browser submits an HTTP request to the server.

3. The server responds with an HTML document containing some links and forms.

4. The user types her status in a form and submits the form.

5. The browser submits another HTTP request to the server.

6. The server processes the request and responds with another page.

This cycle continues until the user stops browsing. Except for a few exceptions, most
websites and web-based applications follow the same pattern. Let’s see how this ap-
plication is related to REST.

Uniform Resource Identifiers
What the user types into the browser at the start of the previous interaction is a Uniform
Resource Identifier (URI). Another commonly used name for this is a Uniform Resource
Locator (URL). URI is a more generalized term that you can use to refer to either a
location (URL) or a name.

A URI is an identifier of a resource. In most cases, URIs are opaque for clients.

Resources
A resource is anything that can be identified by a URI. In the first step of the previous
flow, the URI typed by the user is the address of a resource that corresponds to a web
page. In a typical static website, every web page is a resource.

261

In the fourth step, the part of the server that updates the user’s status is another re-
source. The HTML form that is used to submit the form has the address (URI) of this
resource encoded as the value of the action attribute of the form element.

Representations
The HTML document that the server returns to the client is a representation of the
resource. A representation is an encapsulation of the information (state, data, or mark-
up) of the resource, encoded using a format such as XML, JSON, or HTML.

A resource may have one or more representations. Clients and servers use media
types to denote the type of the representation to the receiving party (the client or the
server). Most websites and applications typically use HTML format with text/html as
the media type. Similarly, when a user submits the form, the browser submits a repre-
sentation using the URI-encoded format using the application/x-www-form-urlenco
ded media type.

Uniform Interface
Clients use the Hypertext Transfer Protocol (HTTP) to submit requests to resources
and get responses. In the first step, the client submits a GET request to fetch an HTML
document. In the fourth step, the client submits a POST request to update the user status.

These two methods are part of HTTP’s uniform interface. Use of a uniform interface
makes the request and responses self-describing and visible. In addition to these two
methods, this interface consists of other methods such as OPTIONS, HEAD, PUT, DELETE,
TRACE, and CONNECT. Of these methods, except for the CONNECT method, which HTTP
1.1 reserves for tunneling TCP-based protocols such as TLS, HTTP defines the seman-
tics of each method.

HTTP is a protocol between clients and resources. In this protocol, except when you
define new methods to extend HTTP, the list of methods and their semantics is fixed.
Those semantics are independent of the resources. That is why HTTP is called a uni-
form interface. This is unlike remote procedure calls (RPC) or SOAP-based web services
where the semantics of each request are application specific.

Hypermedia and Application State
Finally, each representation that the client receives from the server represents the state
of the user’s interaction within the application. For instance, when the user submits
the form to receive another page, the user changes the state of the application from her
point of view. When a user, just browsing a website, the user changes the state of the
application with each click on a link to load another page.

262 | Appendix B: Overview of REST

In this example, to change the state of the application, the user relies on forms and links
found in the HTML. HTML is an hypermedia format, allowing link and form controls
to let you flow through the application and thereby change the state of the application.

This way of using hypermedia of the representation (such as HTML) to denote and
manage the state of the application is called hypermedia as the engine of application
state, or in short form the hypertext constraint.

Hypermedia and Application State | 263

APPENDIX C

HTTP Methods

HTTP’s uniform interface consists of the OPTIONS, GET, HEAD, POST, PUT, DELETE, and
TRACE methods. This appendix provides a short primer on using these HTTP methods,
listed in the order used by RFC 2616.

OPTIONS
Use this method to find the list of HTTP methods supported by any resource or to ping
the server.

Request: Headers but no body.

Response: Headers but no body by default. The server may provide a description of the
resource in the body.

Examples:

1. Request to find methods supported by a resource
OPTIONS /movie/gone_with_the_wind HTTP/1.1
Host: www.example.org

Response with the methods supported by the resource
HTTP/1.1 204 No Content
Allow: HEAD, GET, OPTIONS, PUT, DELETE

2. Request to ping the server or find the version of HTTP supported
OPTIONS * HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 204 No Content

265

GET
Use this method to retrieve a representation of a resource.

Request: Headers but no body specified by HTTP 1.1.

Response: A representation of the resource at the request URI usually with a body.
Response headers such as Content-Type, Content-Length, Content-Language,
Last-Modified, and ETag correspond to the representation in the response.

Examples:

A request to get a representation of a resource
GET /tx/1234 HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8
Content-Length: xxx

<status>
...
</status>

HEAD
Use this method to retrieve the same headers as that of a GET response but without any
body in the response. In other words, this method returns the same response as GET
except that the server returns an empty body. Clients can use this method to check
whether a resource exists or to learn its metadata (see Recipe 3.1).

Request: Headers, with no body specified by HTTP 1.1.

Response: Headers but no body. Servers must not include a body.

Examples:

Request to get a representation of a resource
HEAD /movie/gone_with_the_wind HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 200 OK
Content-Type: application/xml;charset=UTF-8
Content-Length: xxx

POST
Use this method to let the resource perform a variety of actions on the server side such
as creating new resources, updating existing resources, or making a mixture of changes
to one or more resources.

266 | Appendix C: HTTP Methods

Request: A representation of a resource.

Response: A representation of the resource or instructions for a redirect. If there is a
representation in the body that corresponds to a URI of a resource other than the re-
quest URI, include a Content-Location header with the URI of that resource.

Examples:

1. Perform some resource specific action
POST /admin/purge HTTP/1.1
Host: www.example.org

HTTP/1.1 204 No Content

2. Request to create a resource
POST /user/smith HTTP/1.1
Host: www.example.org
Content-Type: application/xml;charset=UTF-8

<address>
 <street>1, Main Street</street>
 <city>Some City</city>
</address>

Response
HTTP/1.1 201 Created
Location: http://www.example.org/user/smith/address/1
Content-Location: http://www.example.org/user/smith/address/1
Content-Type: application/xml;charset=UTF-8

<address>
 <id>urn:example:user:smith:address:1</id>
 <atom:link rel="self" href="http://www.example.org/user/smith/address/1"/>
 <street>1, Main Street</street>
 <city>Some City</city>
</address>

3. Request to modify a resource
POST /user/smith/address_merge HTTP/1.1
Host: www.example.org
Content-Type: text/csv;charset=UTF-8

John Doe, 1 Main Street, Seattle, WA
Jane Doe, 100 North Street, Los Angeles, CA
...

Response
HTTP/1.1 303 See Other
Location: http://www.example.org/user/smith/address_book
Content-Type: text/html;charset=UTF-8

<html>
 <head> ... </head>
 <body>
 <p>See address

POST | 267

 book for the merged address book.</p>
 </body>
</html>

PUT
Use this method to completely update or replace an existing resource or to create a new
resource with a URI specified by the client.

Request: A representation of a resource. The body of the request may or may not be
same as a client would receive for a subsequent GET request. In some cases, the server
may require clients to include only the mutable portions of the resource.

Response: The response can be a status of the update. You can include a complete
representation of the updated resource in the response, but clients cannot assume that
the response contains a complete representation unless the response includes a
Content-Location header. If the server does not include this header, clients must submit
an unconditional GET request to get the updated representation along with
Last-Modified and/or ETag headers.

Examples:

1. Request to update a resource
PUT /movie/gone_with_the_wind HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 204 No Content

2. Request to create a new resource
PUT /movie/gone_with_the_wind HTTP/1.1
Host: www.example.org

Response
HTTP/1.1 201 Created
Location: http://www.example.org/movie/gone_with_the_wind
Content-Length: 0

DELETE
Use this method to let a client delete a resource.

Request: Headers but no body. If you must submit data to delete a resource, use POST
with a controller resource as in Recipe 2.6.

Response: Success or failure. The body may include the status of the operation.

Examples:

Request to delete a resource
DELETE /movie/gone_with_the_wind HTTP/1.1
Host: www.example.org

268 | Appendix C: HTTP Methods

Response
HTTP/1.1 204 No Content

As far as the client is concerned, the resource is gone after a successful response.

TRACE
Use this method to let the server echo back the headers that it received. Servers sup-
porting this method may be prone to the cross-site tracing (XST) security vulnerability.

Request: Headers and body.

Response: The body contains the entire request message.

Example:

Request
TRACE /movie/gone_with_the_wind HTTP/1.1
Host: www.example.org
Accept: text/html

Response
HTTP/1.1 200 OK
Content-Type: message/http

TRACE /movie/gone_with_the_wind HTTP/1.1
Host: www.example.org
Accept: text/html

TRACE | 269

APPENDIX D

Atom Syndication Format

This appendix provides a quick overview of how to use Atom entry and feed documents
for resources. Figures D-1 and D-2 show a high-level view of the structure of Atom
entry and feed elements. For a complete description of these elements, see RFC 4287.

Figure D-1. Atom entry

271

Figure D-2. Atom feed

Key Elements of Feeds and Entries
Here is a list of the key elements within the Atom entry and feed elements. Note that
both feeds and entries are extensible, and you can introduce new attributes and
elements.

atom:author
Contained in: atom:feed and atom:entry

The atom:author element represents the person or entity that created the entry or feed.
It can contain several child elements including atom:name, atom:uri, and atom:email. A
single Atom entry or feed can contain more than one atom:author element. Each
atom:author element should have at least an atom:name element. The atom:uri and
atom:email elements are optional.

272 | Appendix D: Atom Syndication Format

Here is an example of the atom:author element:

<atom:author xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:name>J. P. Williams</atom:name>
 <atom:uri>http://www.example.org/jpwill</atom:uri>
 <atom:email>jpwill@example.org</atom:email>
</atom:author>

If the Atom feed has an atom:author element, each Atom entry need not have an
atom:author element. Also, if each Atom entry has an atom:author, the Atom feed need
not have an atom:author element. However, always including an atom:author element
for each entry and for the feed itself simplifies coding to process feeds and entries.

atom:content and atom:summary
Contained in: atom:entry

Each Atom entry should have an atom:content or atom:summary element.

The purpose of the atom:summary element is to provide a short summary or description
of the entry. Similar to the atom:title element, this element supports a type attribute.

You can use the atom:content element in the following ways:

• To include the content of the entry as plain text or HTML or XHTML

• To include any other content with a media type

• To link to an arbitrary resource using the src and type attributes

Here are examples of valid atom:content elements:

<!-- Inline plain text -->
<atom:content xmlns:atom="http://www.w3.org/2005/Atom" type="text">
 This is some plain text
</atom:content>

<!-- Inline HTML -->
<atom:content xmlns:atom="http://www.w3.org/2005/Atom" type="html">
 <p>This is some HTML.</p>
</atom:content>

<!-- Inline XHTML -->
<atom:content xmlns:atom="http://www.w3.org/2005/Atom" type="xhtml">
 <div>
 <p>This is some XHTML.</p>
 </div>
</atom:content>

<!-- Inline other content -->
<atom:content xmlns:atom="http://www.w3.org/2005/Atom" type="text/csv">
name,email
"John Doe","john@example.org"
"Jane Doe",jane@example.org"
</atom:content>

Key Elements of Feeds and Entries | 273

<!-- External content -->
<atom:content src="http://www.example.org/reports/2009.pdf" type="application/pdf"/>

atom:id
Contained in: atom:entry

The atom:id element contains the globally unique identifier of the entry. The value is
in the form of a URN (for example, urn:guid:550e8400-e29b-41d4-
a716-446655440000). The value of atom:id must never change even when the entry or
feed is updated or moved. Clients should be able to compare these identifiers to check
whether two entries or feeds are the same. See Recipe 3.10 for other use cases for such
identifiers in representations.

atom:link
Contained in: atom:feed and atom:entry

Each Atom entry or feed can contain several atom:link elements. See Recipe 5.1 for the
structure of this element. The rules for when to include atom:link elements are detailed
in RFC 4287 and are summarized here:

• Each feed and entry must contain a single atom:link element with a rel value
of self.

• You can include additional atom:link elements with a rel value of alternate as
long as the combination of type and hreflang attribute values are unique. See
Recipe 7.8 for an application.

• You can also include additional atom:link elements to link to related resources.

atom:title
Contained in: atom:feed, atom:entry, and atom:source

This element contains a string representation of the title of the entry or feed (e.g.,
<atom:title type="text">My Title</atom:title>). The title element supports a
type attribute with a value of text, html, or xhtml. type="text" is the default. When the
type is html or xhtml, you must entity-escape the value of the element, as in <atom:title
type="html">My Title</atom:title>.

atom:updated
Contained in: atom:feed and atom:entry

This element contains the date-time at which the entry or feed was last updated. See
Recipe 3.9 for the format.

274 | Appendix D: Atom Syndication Format

Other Atom Elements to Consider
atom:category
Contained in: atom:feed and atom:entry

The purpose of this element is to categorize feeds and entries. Each Atom entry can
contain one or more atom:category elements.

<atom:category term="animal"
 scheme="http://example.org/categories/animal"
 label="Animal">Animal</atom:category>

atom:contributor
Each Atom entry can contain one or more atom:contributor elements.

<atom:contributor>
 <atom:name>E. Pound</atom:name>
 <atom:email>epound@example.org</atom:email>
 <atom:uri>http://epound.example.org</atom:uri>
</atom:contributor>

atom:generator
Contained in: atom:feed and atom:source

You can use this element to indicate the software that generated the feed or source of
an entry. Each Atom entry can contain one atom:generator element.

<atom:generator uri="http://www.example.org/generator/"
 version="1.0">Atom Generator 1.0</atom:generator>

atom:icon
Contained in: atom:feed

Each feed can contain an atom:icon element.

<atom:icon uri="http://example.org/image/icon.png" />

atom:logo
Contained in: atom:feed

Each feed can contain an atom:logo element.

<atom:logo
 uri="http://example.org/image/logo.png" />

Other Atom Elements to Consider | 275

atom:published
Contained in: atom:entry

Each Atom entry can contain one atom:published element. This is usually the date-time
value the entry was first published.

<atom:published>2010-06-24T12:15:30Z</atom:published>

atom:rights
Contained in: atom:entry

Each Atom entry can contain one atom:rights element to describe rights, such as
copyright.

<atom:rights type="text">©2010 All rights
 reserved.</atom:rights>

atom:subtitle
Contained in: atom:feed and atom:source

Each Atom entry or source can contain one atom:subtitle element.

<atom:subtitle type="text">How I learned to
 love the Atom format</atom:subtitle>

276 | Appendix D: Atom Syndication Format

APPENDIX E

Link Relation Registry

This appendix lists all the registered link relation types documented at http://www.iana
.org/assignments/link-relations/link-relations.xhtml and when to use them. The Web
Linking Internet-Draft will consolidate this list when it is finalized.

alternate
Use this type when providing a URI to an alternative version of the same resource. You
can use links with this type whenever a resource has alternate representations with
distinct URIs.

<!-- Link to an alternate representation in the PDF format -->
<atom:link rel="alternate"
 href="http://www.example.org/report.pdf" type="application/pdf"/>

<!-- Link to an alternate representation in French -->
<atom:link rel="alternate"
 href="http://www.example.org/report.fr.pdf" hreflang="fr"
 type="application/pdf"/>

appendix
Use this type when linking to a resource that serves as an appendix for a collection of
resources. Links with this relation type may be useful in content-centric applications.

<atom:link rel="appendix"
 href="http://www.example.org/books/restful-webservices-cookbook/appendix"/>

bookmark
This link relation type is used by blogging platforms such as WordPress to create per-
manent links to resources from their summaries.

<div id="p1">
 <h2>My First Post</h2>

277

http://www.iana.org/assignments/link-relations/link-relations.xhtml
http://www.iana.org/assignments/link-relations/link-relations.xhtml

 <p>Hello world. This is my first post.</p>

 <p>Read more.</p>
</div>

chapter, section, subsection
These relation types can be used to link to chapters, sections, and subsections in a
collection of resources.

<book xmlns:atom="http://www.w3.org/2005/Atom">
 <title>RESTful Web Services Cookbook</title>
 <atom:link rel="chapter" title="Introduction"
 href="http://www.example.org/contents/ch01.xml"/>
 <atom:link rel="chapter" title="Using the Protocol"
 href="http://www.example.org/contents/ch02.xml"/>
 ...
</book>

contents
This relation type can be used to link to a table of contents for a collection of resources.

<book xmlns:atom="http://www.w3.org/2005/Atom">
 <title>RESTful Web Services Cookbook</title>
 <atom:link rel="contents" title="Table of Contents"
 href="http://www.example.org/contents/toc.xml"/>
 ...
</book>

copyright
This relation type can be used to link to a copyright statement for a resource.

<book xmlns:atom="http://www.w3.org/2005/Atom">
 <title>RESTful Web Services Cookbook</title>
 <atom:link rel="copyright" title="Copyright"
 href="http://www.example.org/contents/copyright.xml"/>
 ...
</book>

current
This relation type refers to a resource containing the most recent item or items in a
collection. Here is an example providing a link to the latest articles:

<atom:feed xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:title>Archives - 2008</atom:title>
 <atom:link rel="current" href="http://www.example.org/latest"/>
 <atom:link rel="self" href="http://www.example.org/2008/archive"/>

278 | Appendix E: Link Relation Registry

 ...
</atom:feed>

describedby
This link relation type refers to a resource that describes the link’s context. For instance,
you can use this relation type to link to a document that describes a user’s hometown.

<user xmlns:atom="http://www.w3.org/2005/Atom">
 <name>John Doe</name>
 <location>
 <latitude>47.45</latitude>
 <lingitude>122.30</logitude>
 <atom:link rel="describedby" href="http://www.example.org/places/Seattle"/>
 </location>
</user>

edit
Use this relation to link to a URI that clients can use to retrieve, update, or delete the
resource.

<user xmlns="http://www.w3.org/2005/Atom">
 <atom:link rel="edit"
 href="http://www.example.org/users/john.doe/profile"/>
 <name>John Doe</name>
 ...
</user>

When you include a link with this relation in a resource that is not a collection, it usually
means that the client can use the link’s URI to retrieve (via GET), update (via PUT), or
delete (via DELETE) the resource. Although it is common to have the value of the link
the same as the request URI used to fetch the representation of the resource, in some
cases the server may choose to offer a separate URI for editing purposes.

The presence of a link with this relation does not automatically mean that such editing
is possible. The client must check the HTTP OPTIONS response and server’s documen-
tation before attempting to edit the resource.

edit-media
This relation type is used by Atom entry documents that have an associated media
resource. An example is an article with a video resource attached. Clients can use a link
with this relation type to edit such associated media.

<atom:entry xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:title>Balloon Boy</atom:title>
 <atom:content type="text/html"
 src="http://news.example.org/balloon_boy.html"/>
 <atom:link rel="edit-media"

edit-media | 279

 href="http://media.example.org/balloon_boy.mov"
 type="video/quicktime"/>
 ...
</atom:entry>

enclosure
Use this relation type to refer to a related resource that is potentially large. Here is an
example of a preview of a video podcast linking to a full podcast:

Content-Type: video/quicktime
Link: <http://www.example.org/podcasts/what-is-rest.mov>;
 type="video/quicktime;length="124143";rel="enclosure"

...

first, last, next, next-archive, prev, previous, prev-archive,
start
Use these relation types to provide links to scroll through a collection of resources.
Here is an example of a collection:

<result xmlns="http://www.w3.org/2005/Atom">
 <atom:link rel="first" href="http://www.example.org/item/12321"/>
 <atom:link rel="last" href="http://www.example.org/item/6721"/>
 <atom:link rel="next" href="http://www.example.org/item/54674"/>
 ...
</result>

glossary
Use this relation type to link to a resource that provides a glossary of terms.

<book xmlns="http://www.w3.org/2005/Atom">
 <title>RESTful Web Services Cookbook</title>
 <atom:link rel="glossary" title="Glossary"
 href="http://www.example.org/contents/glossary.xml"/>
 ...
</book>

help
Use this type to link to a resource offering information or help about the current
resource.

<div class="approval">

 <form ...>

280 | Appendix E: Link Relation Registry

 </form>
</div>

index
Use this relation type to link to a resource that provides an index.

<book xmlns="http://www.w3.org/2005/Atom">
 <title>RESTful Web Services Cookbook</title>
 <atom:link rel="glossary" title="Index"
 href="http://www.example.org/contents/index.xml"/>
 ...
</book>

license
You can use a link with this relation type to link to license of a resource such as an
article, graphic, etc.

Content-Type: video/quicktime
Link: <http://creativecommons.org/licenses/by-nd/3.0/us/>;rel="license"

...

payment
Use this relation type to link to a resource that provides a link to purchase or conduct
some payment. Here is an example of a link to buy a book:

<book xmlns="http://www.w3.org/2005/Atom">
 <title>RESTful Web Services Cookbook</title>
 <atom:link rel="payment" title="Buy this book"
 href="http://my.safaribooksonline.com/9780596809140"/>
 <atom:link rel="chapter" title="Using the Protocol"
 href="http://www.example.org/contents/ch02.xml"/>
 ...
</book>

related
Use this to link to a related resource.

<book xmlns="http://www.w3.org/2005/Atom">
 <title>RESTful Web Services Cookbook</title>
 <atom:link rel="related" title="RESTful Web Services"
 href="http://my.safaribooksonline.com/9780596529260"/>
 ...
</book>

related | 281

This relation is generic and simply says that the resource at the link’s URI is related to
the containing resource. If you prefer to be more specific, use extended link relations
such as http://www.example.org/rels/photos/owner for a photo resource to link to a
owner resource, and such as http://www.example.org/rels/friend for a user resource
to link to a friend resource.

replies
Use this link relation type to link to a resource that is a reply to the context of the link.
Links of this relation type may be relevant in content-centric systems or on servers
managing user-generated content.

<article xmlns="http://www.w3.org/2005/Atom">
 <title>State of the State</title>
 <atom:link rel="replies" title="Comments"
 href="http://www.example.org/ch01/comments"/>
 ...
</article>

self
Use this type to link to the preferred URI of the resource. Here is an example:

<user xmlns:atom="http://www.w3.org/2005/Atom">
 <name>John Doe</name>
 <atom:link rel="self" href="http://www.example.org/users/0012"/>
</user>

service
A link with this relation type refers to a service document of Atom feeds.

<atom:feed xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:title>Sci-Fi Books</title>
 <atom:link href="http://www.example.org/books" rel="self"
 hreflang="en" type="application/atom+xml"/>
 <atom:link href="http://www.example.org/service" rel="service"
 hreflang="en" type="application/atomsvc+xml"/>
 <atom:updated>2013-12-13T18:30:02Z</atom:updated>
 ...
</atom:feed>

stylesheet
This well-known link relation is used by documents to link to stylesheets.

<html>
 <head>

282 | Appendix E: Link Relation Registry

 <title>Hello World</title>
 <link rel="stylesheet" type="text/css" href="/style.css" />
 <head>
 <body>
 ...
 </body>
</html>

up
Clients can use links with this relation type to navigate up a hierarchy of resources.
Here is an example:

<place xmlns:atom="http://www.w3.org/2005/Atom">
 <name>Seattle </name>
 <atom:link rel="self" href="http://www.example.org/us/wa/seattle"/>
 <atom:link rel="up" href="http://www.example.org/us/wa"/>
</user>

via
Use this type to identify a resource that is the source of the information. In this example,
an Atom entry attributes the source to another resource:

<atom:entry xmlns:atom="http://www.w3.org/2005/Atom">
 <atom:title>...</atom:title>
 <atom:link rel="alternate" type="text/html"
 href="http://www.subbu.org/archives/2009/10/15/announce.html"/>
 <atom:id>urn:example:10001</atom:id>
 <atom:link rel="via" type="text/html"
 href="http://www.example.org/blog/213"
 title="Jeffrey Veen"/>
</atom:entry>

via | 283

Index

Symbols
& (ampersand), URIs, 76
, (comma), URIs, 76
- (hyphen), URIs, 76
. (dot) character, URI extensions, 134
. (full stop), URIs, 78
/ (forward-slash separator), URIs, 76
_ (underscore), URIs, 76

A
absolute URIs, 90
abstraction versus visibility, 6
Accept-* headers, 124
Accept-Charset headers, 129
Accept-Language headers, 128
ad hoc queries, SQL and XPath, 139
address book example, 114
address correction process example, 207
Age headers, 150
agent-driven content negotiation, 133
alternate link relation type, 93, 277
Amazon S3, Authorization headers, 220
ampersand (&), URIs, 76
annotating representations using entity

headers, 46–49
appendix link relation type, 277
application flow

content versus server-driven negotiation,
135

links, 95–99
application protocol (see HTTP)
application state

defined, 262
HTTP, 7

asynchronous tasks
DELETE, 23
POST, 19–22

Atom Syndication Format, 107–116, 271–276
content model, 111–116
extensibility, 241–244
link relation types, 94
modeling resources, 108–111

atom:author element, 272
atom:category element, 275
atom:content element, 273
atom:contributor element, 275
atom:generator element, 275
atom:icon element, 275
atom:id element, 274
atom:link element, 274
atom:logo element, 275
atom:published element, 276
atom:subtitle element, 276
atom:summary element, 273
atom:title element, 274
atom:updated element, 274
atomicity, tunneling, 211
AtomPub (Atom Publishing Protocol), 116–

122
about, 107
category documents, 116
feed and entry resources, 118
media resources, 119–122
media type, 109
service documents, 116–117

authentication
clients, 218–223
OAuth, 223–231

Authorization headers, 220, 226

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

285

auto insurance application example, 7

B
backward compatibility, 235
bank transfer application example, 176
Base64 encoding, security, 219
batch HTTP requests, 211
binary data, representations, 66
bookmark link relation type, 277
bookstore example, 41
bulk operations, resources, 203–208

C
Cache-Control headers, 148–151
caching, 147–158

composite resources, 154
content negotiation, 136
expiration caching headers, 148–154
keeping caches up-to-date and nonempty,

156
POST method, 143, 144
proxy HTTP caches, 31
queries, 144

caching proxy servers, 163
capital letters, URIs, 79
category documents, AtomPub, 116
chapter link relation type, 278
character encoding negotiation, 129
characters, encoding mismatch, 50
charset parameter, 51
clients

agent-driven negotiation, 134
application state, 7
authentication, 218–223
client preferences and content negotiation,

124
conditional GET and HEAD requests, 165
conditional PUT and DELETE requests

from clients, 174
convenience versus visibility, 6
decoupling from application state, 95
expiration caching headers, 153
extensions and interoperability, 244
HTTP error codes, 71
links in, 103
media types and HTTP clients, 132
safety and idempotency, 12
supporting extensibility, 246

unconditional GET requests, 172
URIs as opaque identifiers, 81

collections
representations of, 59–62
resources, 32

comma (,), URIs, 76
compatibility

forward and backward, 235
links, 244
URIs, 236

composite resources
caching, 154
combining into, 34–37

compression, content negotiation, 130
concurrency control

DELETE requests, 174
PUT requests, 167, 174
types of, 159

concurrency, tunneling, 210
conditional requests, 159–181

conditional DELETE requests in servers,
171

conditional GET and HEAD requests from
clients, 165

conditional POST requests, 176
conditional PUT and DELETE requests

from clients, 174
conditional PUT requests in servers, 167–

170
GET requests in servers, 162–165
Last-Modified and ETag Headers, 161
one-time URLs for POST requests, 179
unconditional GET requests from clients,

172
conneg (see content negotiation)
content encoding, 130
content model, Atom, 111–116
content negotiation, 123–136

agent-driven content negotiation, 133
character encoding negotiation, 129
client preferences, 124
compression, 130
expensiveness of implementing, 135
language negotiation, 127
media type negotiation, 126
negotiation failures, 132
server-driven negotiation, 135
Vary headers, 131

Content-Encoding headers, 49

286 | Index

Content-Language headers, 48
Content-Length headers, 48
Content-MD5 headers, 48
contents link relation type, 278
contextual links, 97
controllers, operating on resources, 39–43
“Cool URIs don’t change”, 83
COPY WebDAV method, 189
copying resources, 184
copyright link relation type, 278
country formats, 63
CRUD-style (Create, Read, Update, Delete)

applications, 30
currency formats, 64
current link relation type, 278

D
data formats, portable data formats in

representations, 62–64
data, binary data in representations, 66
databases

mapping tables, 32
storing application state, 8
timestamps, 161
URIs, 249

date and time formats, 64
DELETE method, 11, 23, 268
DELETE requests

conditional DELETE requests from clients,
174

conditional DELETE requests in servers,
171

denial-of-service attacks, 204, 211
describedby link relation type, 279
design-time discoverability, 251–255
digest authentication, clients, 221
discovery, 251–255

documenting RESTful web services, 251
OPTIONS, 254

documenting RESTful web services, 251
documents, 45

(see also representations)
category documents and AtomPub, 116
entry and feed documents in Atom, 108
service documents in AtomPub, 116–117
XML documents and schemas, 240

domain nouns, identifying resources, 30
domains, URIs, 76
dot (.) character, 134

E
edit link relation type, 93, 279
edit-media link relation type, 279
efficiency, 142

(see also performance)
composite resources and caching, 155
network latency, 6
queries and caching, 142
resource granularity, 32

elements
Atom feed and entry methods, 272
link elements, 87, 88, 90

email example example, 248
employee hiring process example, 104
enclosure link relation type, 280
entity headers

annotating representations, 46–49
interpreting, 49

entity identifiers, representations, 65
entry documents, Atom, 108
entry elements (Atom), 272
entry resources, AtomPub, 118
ephemeral URIs, links, 99
errors

handling and tunneling, 211
representation errors in clients, 73
returning in representations, 69–73

ETag headers
generating, 161
sending on requests, 169

expiration caching headers, 148–154
expiration caching, optimizing, 150
Expires headers, 148
extensibility, 235–247

Atom, 241–244
Authorization headers, 220
client support, 246
compatibility of links, 244
compatibility of XML and JSON

representations, 237–241
defined, 235
HTTP status codes, 74
interoperability, 244
link relation types in Atom Syndication

Format, 94
URI compatibility, 236
URI extensions, 134
WebDAV methods, 189, 190

Index | 287

F
failures, negotiation failures, 132
feed documents, Atom, 108
feed elements (Atom), 272
feed resources, AtomPub, 118
Fielding, Roy, REST, ix
filesystems, storing application state, 8
first link relation type, 93, 280
formats

JSON, 58
for media types, 55
portable data formats in representations,

62–64
representation formats, 52–56

forward compatibility, 235
forward proxy caches, 154
forward-slash separator (/), URIs, 76
freshness lifetime, defined, 148
full stop (.), URIs, 78
functions, supporting processing functions, 37

(see also methods)

G
GET method, 13, 142, 266
GET requests

combining resources into composites, 35
conditional, 160
conditional GET requests from clients, 165
conditional GET requests in servers, 162–

165
unconditional GET requests from clients,

172
glossary link relation type, 280
granularity, resources, 31

H
hcard microformat, 69
HEAD method, 266
HEAD requests

conditional HEAD requests from clients,
165

limitations of, 175
headers

Accept-* headers, 124
Accept-Charset headers, 129
Accept-Language headers, 128
Age headers, 150
Authorization headers, 220, 226

Cache-Control header, 148–151
custom HTTP headers, 25–27
entity headers annotating representations,

46–49
ETag headers, 161, 169
expiration caching headers, 148–154
Expires headers, 148
interpreting entity headers, 49
keeping interactions visible, 2
Last-Modified headers, 161, 169
link headers, 91
representations, 47
Slug headers, 119
Vary headers and content negotiation, 131

help link relation type, 280
hiring process example, 229
homogeneous collections, 61
HTML representations, serving, 67
HTTP, 1–27, 23

(see also methods)
application state, 7
batch HTTP requests, 211
caching headers, 151
custom HTTP headers, 25–27
custom methods, 23
DELETE, 23
GET, 13
media types and HTTP clients, 132
optimistic concurrency control, 160
POST, 14, 16, 19–22
PUT, 18
safety and idempotency, 9–13
security, 233
visibility of interactions, 2–6

hypermedia, defined, 262
hyphen (-), URIs, 76

I
IANA (Internet Assigned Numbers Authority),

52
idempotency

and safety in clients, 12
and safety on servers, 9–12

identifiers, entity identifiers in representations,
65

(see also URIs)
identifying resources from domain nouns, 30
image-processing web service example, 20
index link relation type, 281

288 | Index

interface (see HTTP)
Internet Assigned Numbers Authority (IANA),

52
interoperability

Atom, 108
extensions, 244

interpreting entity headers, 49

J
JSON representations

compatibility of XML and, 237–241
designing, 58
links, 90

L
language formats, 64
language negotiation

content versus server driven negotiation,
136

implementing, 127
last link relation type, 93, 280
Last-Modified headers

about, 49
generating, 161
sending on requests, 169

latency
network cost, 36
network latency, 6
query requests with large inputs, 143
unconditional GET requests, 174
web caching, 147

length, URIs, 142
license link relation type, 281
link elements

about, 87
JSON, 90
XML, 88

link relation types, 277–283
links, 87–105

application flow, 95–99
in clients, 103
compatibility, 244
contextual links, 97
ephemeral URIs, 99
headers, 91
links in JSON representations, 90
relation types, 93
self links, 56

storing application state, 9
URI templates, 101
XML representations, 88

localization, language negotiation, 127
LOCK WebDAV method, 190

M
mapping

database tables or object models, 32
operations to methods, 42

max-age Cache-Control directive, 149
media resources, AtomPub, 119–122
media type negotiation, 126
media types

Atom and AtomPub, 109
HTTP clients, 132
list of, 53
multipart media types, 66
representation formats, 52–56
versioning, 250

memcached, 147
merging resources, 186
metadata, representation metadata, 46
methods, 265–269

(see also conditional requests; GET
requests; HEAD requests; POST method;
POST requests; requests)
custom methods in HTTP, 23
DELETE method, 11, 23, 268
GET method, 13, 142, 266
HEAD method, 266
mapping operations to, 42
OPTIONS method, 254, 265
PATCH method, 201
PUT method, 18, 193, 268
safety and idempotency, 10
TRACE method, 269
WebDAV methods, 189

microformats, 68
mimicking transaction protocols, 215
MKCOL WebDAV method, 189
modeling

Atom content model, 111–116
mapping object models, 32

modeling resources using Atom, 108–111
MOVE WebDAV method, 190
moving resources, 188
multipart media types, 66
must-revalidate Cache-Control directive, 149

Index | 289

N
negative caching, 152
negotiation (see content negotiation)
networks

collections of resources in social networks,
33

efficiency versus visibility, 6
next link relation type, 93
next-archive link relation type, 280
no-cache Cache-Control directive, 149, 151
no-store Cache-Control directive, 149, 151
nonce directive, 222
nonces, defined, 180
number formats, 63

O
OAuth, 223–231
oauth_consumer_key OAuth parameter, 225
oauth_nonce OAuth parameter, 226
oauth_signature_method OAuth parameter,

226
oauth_timestamp OAuth parameter, 226
oauth_version OAuth parameter, 226
object models, mapping, 32
opaque resource identifiers, 79–83, 244
OpenSearch, 242
operations, mapping to methods, 42
optimistic concurrency control, 159
OPTIONS method, 254, 265
origin servers, defined, 147
Oslo Time Zone Database, 64

P
pagination: latency and POST, 143
parameters

OAuth, 225
q parameters (Accept-* headers), 125
query parameters, 134
URIs, 237

PATCH method, 201
payment link relation type, 281
performance, 147

(see also efficiency)
ad hoc queries, 139
conditional GET requests, 159
encoding application state in links, 9
memcached and HTTP caches, 147
treating URIs as opaque, 83

unconditional GET requests, 174
pessimistic concurrency control, 159
photo album service example, 185, 225, 252,

254
photo management service example, 30
photo-sharing service example, 81, 156
portable data formats, representations, 62–64
POST method

about, 266
asynchronous tasks, 19–22
controllers to operate on resources, 39
creating resources, 16
queries, 142, 144
tunneling multiple requests, 208–211
using, 14

POST requests
conditional POST requests, 176
one-time URLs for POST requests, 179

predefined queries, 139
preferences, client preferences and content

negotiation, 124
prev link relation type, 280
prev-archive link relation type, 280
previous link relation type, 93, 280
private Cache-Control directive, 149
processing functions, supporting, 37
production schedule example, 112
programmatic caching, 154
PROPFIND WebDAV method, 189
PROPPATCH WebDAV method, 189
protocol (see HTTP)
proxy HTTP caches, 31
proxy-revalidate Cache-Control directive, 149
public Cache-Control directive, 149
PUT method, 18, 193, 268
PUT requests

conditional PUT requests from clients, 174
conditional PUT requests in servers, 167–

170

Q
q parameters (Accept-* headers), 125
qop directive, 222
queries, 137–145

requests with large inputs, 142
responses, 140
storing, 144
URIs, 138

query parameters, 134

290 | Index

R
range requests, queries, 140
RDFa, 68
realm directive, 222
redirects, disabling, 84
related link relation type, 93, 281
relation types, links, 93
relative URIs, 90
replies link relation type, 282
Representational State Transfer (see REST)
representations, 45–74

(see also documents)
annotating with entity headers, 46–49
binary data, 66
character encoding mismatch, 50
collections, 59–62
compatibility of XML and JSON

representations, 237–241
defined, 262
entity identifiers, 65
errors in clients, 73
formats and media type, 52–56
HTML representations, 67
interpreting entity headers, 49
JSON representations, 58
links in JSON representations, 90
links in XML representations, 88
portable data formats, 62–64
returning errors, 69–73
security, 233
XML representations, 56, 252

request tokens, 226
requests, 159

(see also conditional requests; GET
requests; HEAD requests; methods; POST
method; POST requests)
batch HTTP requests, 211
range requests, 140
tunneling multiple requests using POST,

208–211
resources, 29–43

caching for composite resources, 154
collections, 32
composites, 34–37
computing/processing functions, 37
controllers, 39–43
copying, 184
creating using POST, 16
creating using PUT, 18

defined, 261
feed and entry resources, and AtomPub,

118
granularity, 31
identifying from domain nouns, 30
media resources and AtomPub, 119–122
merging, 186
modeling using Atom, 108–111
moving, 188
partial updates, 198–200
processing in bulk, 203–206
snapshots, 193–196
undoing updates, 196

responses, queries, 140
REST (Representational State Transfer), 261

about, ix
machine-readable description language,

252
returning representation errors in HTTP, 69–

73

S
s-maxage Cache-Control directive, 149
S3 (Simple Storage Service), Authorization

headers, 220
safety

and idempotency in clients, 12
and idempotency on servers, 9–12
methods, 10

scalability
maintaining application state, 8
mimicking transaction protocols, 215
POST method, 144
transactions, 214
tunneling, 211

schemas, XML representations, 240, 252
section link relation type, 278
security, 217–234

authentication, 218–223
denial-of-service attacks, 204, 211
OAuth, 223–231
representations, 233
URIs, 231

security tokens, 99
self link relation type, 93, 282
self links, XML representations, 56
semi-opaque URIs, 102
servers

conditional DELETE requests, 171

Index | 291

conditional GET requests, 162–165
conditional PUT requests, 167–170
HTTP error codes, 72
maintaining application state, 7
origin servers, 147
overloading, 204
safety and idempotency, 9–12, 10
server-driven negotiation, 135
supporting operations across servers, 191
wiki-like server example, 169

service documents, Atom, 116–117
service link relation type, 282
Simple Storage Service (S3), Authorization

headers, 220
Slug headers, 18, 119
snapshots, resources, 193–196
social application example, 261
social networks, collections of resources, 33
spaces, URIs, 78
SQL, ad hoc queries, 139
Squid, 147, 156
start link relation type, 280
states, application state, 7, 95, 262
storing

application state, 8
queries, 144

stylesheet link relation type, 282
subdomains

language-specific representations, 134
URIs, 76

submitting
conditional GET and HEAD requests from

clients, 165
conditional PUT and DELETE requests

from clients, 174
subsection link relation type, 278

T
tables, mapping, 32
tasks

asynchronous deletion, 23
asynchronous tasks, 19–22

templates, URI templates, 101
three-legged OAuth, 223
time and date formats, 64
time zone identifiers, 64
timestamps, 161
TLS (Transport Layer Security), 233
tokens

candidate IDs, 96
conditional POST requests, 176
as hidden form fields, 181
OAuth, 224
one-time URIs, 179
optimistic concurrency control, 159
request tokens, 226
security tokens, 99
URI templates, 101

TRACE method, 269
Traffic Server, 147
transactions, supporting, 213
tunneling

multiple requests using POST, 208–211
and protocol-level visibility, 43
repeated state changes, 79

two-legged OAuth, 228
types

link relation types, 93, 277–283
media type negotiation, 126
media types, 53
multipart media types, 66
of representations, 47

U
underscore (_), URIs, 76
undoing resource updates, 196
uniform interface (see HTTP)

defined, 262
visibility, 205

UNLOCK WebDAV method, 190
up link relation type, 283
updates

PATCH method for partial updates, 201
refining resources for partial updates, 198–

200
undoing resource updates, 196

URIs (Uniform Resource Identifiers), 75–85
absolute URIs, 90
agent-driven negotiation, 134
as opaque identifiers, 244
compatibility, 236
“Cool URIs don’t change”, 83
creating new resources with POST, 19
in databases, 249
defined, 261
designing, 75–79
ephemeral URIs, 99
file or media type extensions, 134

292 | Index

length, 142
link relation types, 93, 95
maintaining application state, 7
one-time URLs for POST requests, 179
as opaque identifiers, 79–83
opaque resource identifiers, 244
parameters, 237
as parameters for merging, 187
queries, 138
relative URIs, 90
security, 231
syntax, 39
tampering, 180
templates, 101

URNs (Uniform Resource Names), 65
use cases, generalizing from, 183
UTF-8 encoding, 129

V
variants (see documents; representations)
Vary headers, content negotiation, 131
vcard format, 69
versioning

about, 247–250
ETag values, 162
value of, 236

via link relation type, 283
visibility

of interactions in HTTP, 2–6
tunneling, 43, 211
uniform interface, 205

W
web caching (see caching)
WebDAV methods, 189
wiki example, 169, 193, 196
WordPress blogging platform, HTTP headers,

26

X
X-HTTP-Method-Override, 27
XML

Atom, 108, 113
compatibility of XML and JSON

representations, 237–241, 237–
241

XML representations
designing, 56

links, 88
schemas, 240, 252

XML-RPC tunneling example, 16
xml:base attribute, 90
Xpath, ad hoc queries, 139

Index | 293

About the Author
Subbu Allamaraju is an architect at Yahoo!, where he developed standards and prac-
tices for designing RESTful web services, and now provides architectural oversight for
certain developer-facing platforms. Prior to that, Subbu developed web services/
Java-based software and contributed to the JCP and OASIS standards at BEA Systems,
Inc. Subbu has contributed to four books on J2EE, all published by Wrox. See http://
www.subbu.org to learn more about him.

Colophon
The animal on the cover of RESTful Web Services Cookbook is a great fringed lizard or
Hatteria punctata. Hatteria, more commonly known as tuatara, are endemic to New
Zealand; “tuatara” is a native Maori word meaning “peaks on back” (referring to their
spiky, or fringed, spines). The name “great fringed lizard” is a misnomer; though they
resemble common lizards, tuatara are quite different anatomically, and, unlike lizards,
they’re nocturnal and enjoy cool weather. Misclassified as lizards by the British Muse-
um in 1831, tuatara were reclassified by zoologist Albert Günther in 1867 as Rhyncho-
cephala, an order from which many Mesozoic fossil species are known. In fact, some
scientists refer to these reptiles, the only living representative of Rhynchocephala, as
“living fossils.”

Tuatara grow very slowly—they don’t reach maturity until they are 13–20 years old
and don’t stop growing until they are about 30. It is believed that tuatara in the wild
can reach the impressive age of 80 or older. Their average length is 20–31 inches and
they weigh 1–3 pounds. They can be gray, olive, or brick red, and their coloring can
change over their lifetime. As adults, they shed their skin at least once per year. Other
physical characteristics include a diapsid skull (two openings on either side), a lack of
external ears, acrodont tooth structure (meaning the teeth are fused to the jawbone—
another fact that distinguishes tauatara from lizards), and a third eye. This third eye
grows on top of the head—under the skin in adults—and has a retina, lens, and nerve
endings, although it is not used for seeing. It is, however, sensitive to light and is thought
by some to help the tuatara detect the time of day or season.

Despite an endangered status, the tuatara maintains high visibility in and around New
Zealand. Until October 2006, it was featured on one side of New Zealand’s 5-cent piece,
but the coin has since been phased out. The reptiles also figure prominently in Maori
culture; they are esteemed as ariki (god forms). According to indigenous legends,
they’re messengers of Whiro, the god of death and disaster, and Maori women are
forbidden to eat them. They also represent tapu, the line marking all things sacred and
beyond which lie potentially serious consequences (manu). Maori women have been
known to tattoo lizards or tuatara near their genitals to symbolize the concept of
tapu. Today, tuataras are regarded as a taonga (treasure), and as the kaitiaki (guardian)
of the trails to the mental and spiritual realms that give humans life.

http://www.subbu.org
http://www.subbu.org

The cover image is from Wood’s Animate Creation. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Con-
densed; and the code font is LucasFont’s TheSansMonoCondensed.

	Oreilly - RESTful Web Services Cookbook (2010) (ATTiCA)
	Table of Contents
	Preface
	Scope of the Book
	Companion Material
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Mike Amundsen’s Contribution

	Chapter 1. Using the Uniform Interface
	1.1 How to Keep Interactions Visible
	Problem
	Solution
	Discussion

	1.2 When to Trade Visibility
	Problem
	Solution
	Discussion

	1.3 How to Maintain Application State
	Problem
	Solution
	Discussion

	1.4 How to Implement Safe and Idempotent Methods on the Server
	Problem
	Solution
	Discussion
	Implementing safe methods
	Implementing idempotent methods
	Idempotency of DELETE

	1.5 How to Treat Safe and Idempotent Methods in Clients
	Problem
	Solution
	Discussion
	Safe methods
	Idempotent methods

	1.6 When to Use GET
	Problem
	Solution
	Discussion

	1.7 When to Use POST
	Problem
	Solution
	Discussion

	1.8 How to Create Resources Using POST
	Problem
	Solution
	Discussion

	1.9 When to Use PUT to Create New Resources
	Problem
	Solution
	Discussion

	1.10 How to Use POST for Asynchronous Tasks
	Problem
	Solution
	Discussion

	1.11 How to Use DELETE for Asynchronous Deletion
	Problem
	Solution
	Discussion

	1.12 When to Use Custom HTTP Methods
	Problem
	Solution
	Discussion

	1.13 When and How to Use Custom HTTP Headers
	Problem
	Solution
	Discussion

	Chapter 2. Identifying Resources
	2.1 How to Identify Resources from Domain Nouns
	Problem
	Solution
	Discussion

	2.2 How to Choose Resource Granularity
	Problem
	Solution
	Discussion

	2.3 How to Organize Resources into Collections
	Problem
	Solution
	Discussion

	2.4 When to Combine Resources into Composites
	Problem
	Solution
	Discussion

	2.5 How to Support Computing/Processing Functions
	Problem
	Solution
	Discussion

	2.6 When and How to Use Controllers to Operate on Resources
	Problem
	Solution
	Discussion

	Chapter 3. Designing Representations
	3.1 How to Use Entity Headers to Annotate Representations
	Problem
	Solution
	Discussion
	Content-Type
	Content-Length
	Content-Language
	Content-MD5
	Content-Encoding
	Last-Modified

	3.2 How to Interpret Entity Headers
	Problem
	Solution
	Discussion

	3.3 How to Avoid Character Encoding Mismatch
	Problem
	Solution
	Discussion

	3.4 How to Choose a Representation Format and a Media Type
	Problem
	Solution
	Discussion
	Using standard or well-known media types
	Introducing new formats and media types

	3.5 How to Design XML Representations
	Problem
	Solution
	Discussion

	3.6 How to Design JSON Representations
	Problem
	Solution
	Discussion

	3.7 How to Design Representations of Collections
	Problem
	Solution
	Discussion

	3.8 How to Keep Collections Homogeneous
	Problem
	Solution
	Discussion

	3.9 How to Use Portable Data Formats in Representations
	Problem
	Solution
	Discussion
	Numbers
	Countries and territories
	Currencies
	Dates and times
	Language tags
	Time zone identifiers

	3.10 When to Use Entity Identifiers
	Problem
	Solution
	Discussion

	3.11 How to Encode Binary Data in Representations
	Problem
	Solution
	Discussion

	3.12 When and How to Serve HTML Representations
	Problem
	Solution
	Discussion

	3.13 How to Return Errors
	Problem
	Solution
	Discussion
	Errors due to client inputs: 4xx
	Errors due to server errors: 5xx
	Message body for errors

	3.14 How to Treat Errors in Clients
	Problem
	Solution
	Discussion

	Chapter 4. Designing URIs
	4.1 How to Design URIs
	Problem
	Solution
	Discussion
	Domains and subdomains
	Forward-slash separator
	Underscore and hyphen
	Ampersand
	Comma and semicolon
	Full stop, or period
	Implementation-specific file extensions
	Spaces and capital letters

	4.2 How to Use URIs As Opaque Identifiers
	Problem
	Solution
	Discussion

	4.3 How to Let Clients Treat URIs As Opaque Identifiers
	Problem
	Solution
	Discussion

	4.4 How to Keep URIs Cool
	Problem
	Solution
	Discussion

	Chapter 5. Web Linking
	5.1 How to Use Links in XML Representations
	Problem
	Solution
	Discussion

	5.2 How to Use Links in JSON Representations
	Problem
	Solution
	Discussion

	5.3 When and How to Use Link Headers
	Problem
	Solution
	Discussion

	5.4 How to Assign Link Relation Types
	Problem
	Solution
	Discussion

	5.5 How to Use Links to Manage Application Flow
	Problem
	Solution
	Discussion

	5.6 How to Deal with Ephemeral URIs
	Problem
	Solution
	Discussion

	5.7 When and How to Use URI Templates
	Problem
	Solution
	Discussion

	5.8 How to Use Links in Clients
	Problem
	Solution
	Discussion

	Chapter 6. Atom and AtomPub
	6.1 How to Model Resources Using Atom
	Problem
	Solution
	Discussion

	6.2 When to Use Atom
	Problem
	Solution
	Discussion

	6.3 How to Use AtomPub Service and Category Documents
	Problem
	Solution
	Discussion

	6.4 How to Use AtomPub for Feed and Entry Resources
	Problem
	Solution
	Discussion

	6.5 How to Use Media Resources
	Problem
	Solution
	Discussion

	Chapter 7. Content Negotiation
	7.1 How to Indicate Client Preferences
	Problem
	Solution
	Discussion

	7.2 How to Implement Media Type Negotiation
	Problem
	Solution
	Discussion

	7.3 How to Implement Language Negotiation
	Problem
	Solution
	Discussion

	7.4 How to Implement Character Encoding Negotiation
	Problem
	Solution
	Discussion

	7.5 How to Support Compression
	Problem
	Solution
	Discussion

	7.6 When and How to Send the Vary Header
	Problem
	Solution
	Discussion

	7.7 How to Handle Negotiation Failures
	Problem
	Solution
	Discussion

	7.8 How to Use Agent-Driven Content Negotiation
	Problem
	Solution
	Discussion

	7.9 When to Support Server-Driven Negotiation
	Problem
	Solution
	Discussion

	Chapter 8. Queries
	8.1 How to Design URIs for Queries
	Problem
	Solution
	Discussion

	8.2 How to Design Query Responses
	Problem
	Solution
	Discussion

	8.3 How to Support Query Requests with Large Inputs
	Problem
	Solution
	Discussion

	8.4 How to Store Queries
	Problem
	Solution
	Discussion

	Chapter 9. Web Caching
	9.1 How to Set Expiration Caching Headers
	Problem
	Solution
	Discussion

	9.2 When to Set Expiration Caching Headers
	Problem
	Solution
	Discussion

	9.3 When and How to Use Expiration Headers in Clients
	Problem
	Solution
	Discussion

	9.4 How to Support Caching for Composite Resources
	Problem
	Solution
	Discussion

	9.5 How to Keep Caches Fresh and Warm
	Problem
	Solution
	Discussion

	Chapter 10. Conditional Requests
	10.1 How to Generate Last-Modified and ETag Headers
	Problem
	Solution
	Discussion

	10.2 How to Implement Conditional GET Requests in Servers
	Problem
	Solution
	Discussion

	10.3 How to Submit Conditional GET and HEAD Requests from Clients
	Problem
	Solution
	Discussion

	10.4 How to Implement Conditional PUT Requests in Servers
	Problem
	Solution
	Discussion

	10.5 How to Implement Conditional DELETE Requests in Servers
	Problem
	Solution
	Discussion

	10.6 How to Make Unconditional GET Requests from Clients
	Problem
	Solution
	Discussion

	10.7 How to Submit Conditional PUT and DELETE Requests from Clients
	Problem
	Solution
	Discussion

	10.8 How to Make POST Requests Conditional
	Problem
	Solution
	Discussion

	10.9 How to Generate One-Time URIs
	Problem
	Solution
	Discussion

	Chapter 11. Miscellaneous Writes
	11.1 How to Copy a Resource
	Problem
	Solution
	Discussion

	11.2 How to Merge Resources
	Problem
	Solution
	Discussion

	11.3 How to Move a Resource
	Problem
	Solution
	Discussion

	11.4 When to Use WebDAV Methods
	Problem
	Solution
	Discussion

	11.5 How to Support Operations Across Servers
	Problem
	Solution
	Discussion

	11.6 How to Take Snapshots of Resources
	Problem
	Solution
	Discussion

	11.7 How to Undo Resource Updates
	Problem
	Solution
	Discussion

	11.8 How to Refine Resources for Partial Updates
	Problem
	Solution
	Discussion

	11.9 How to Use the PATCH Method
	Problem
	Solution
	Discussion

	11.10 How to Process Similar Resources in Bulk
	Problem
	Solution
	Discussion

	11.11 How to Trigger Bulk Operations
	Problem
	Solution
	Discussion

	11.12 When to Tunnel Multiple Requests Using POST
	Problem
	Solution
	Discussion

	11.13 How to Support Batch Requests
	Problem
	Solution
	Discussion

	11.14 How to Support Transactions
	Problem
	Solution
	Discussion

	Chapter 12. Security
	12.1 How to Use Basic Authentication to Authenticate Clients
	Problem
	Solution
	Discussion

	12.2 How to Use Digest Authentication to Authenticate Clients
	Problem
	Solution
	Discussion

	12.3 How to Use Three-Legged OAuth
	Problem
	Solution
	Discussion

	12.4 How to Use Two-Legged OAuth
	Problem
	Solution
	Discussion

	12.5 How to Deal with Sensitive Information in URIs
	Problem
	Solution
	Discussion

	12.6 How to Maintain the Confidentiality and Integrity of Representations
	Problem
	Solution
	Discussion

	Chapter 13. Extensibility and Versioning
	13.1 How to Maintain URI Compatibility
	Problem
	Solution
	Discussion

	13.2 How to Maintain Compatibility of XML and JSON Representations
	Problem
	Solution
	Discussion

	13.3 How to Extend Atom
	Problem
	Solution
	Discussion

	13.4 How to Maintain Compatibility of Links
	Problem
	Solution
	Discussion

	13.5 How to Implement Clients to Support Extensibility
	Problem
	Solution
	Discussion

	13.6 When to Version
	Problem
	Solution
	Discussion

	13.7 How to Version RESTful Web Services
	Problem
	Solution
	Discussion

	Chapter 14. Enabling Discovery
	14.1 How to Document RESTful Web Services
	Problem
	Solution
	Discussion

	14.2 How to Use OPTIONS
	Problem
	Solution
	Discussion

	Appendix A. Additional Reading
	Books
	References
	Foundation
	Atom and AtomPub
	Caching
	Formats and Media Types
	Security

	Appendix B. Overview of REST
	Uniform Resource Identifiers
	Resources
	Representations
	Uniform Interface
	Hypermedia and Application State

	Appendix C. HTTP Methods
	OPTIONS
	GET
	HEAD
	POST
	PUT
	DELETE
	TRACE

	Appendix D. Atom Syndication Format
	Key Elements of Feeds and Entries
	atom:author
	atom:content and atom:summary
	atom:id
	atom:link
	atom:title
	atom:updated

	Other Atom Elements to Consider
	atom:category
	atom:contributor
	atom:generator
	atom:icon
	atom:logo
	atom:published
	atom:rights
	atom:subtitle

	Appendix E. Link Relation Registry
	alternate
	appendix
	bookmark
	chapter, section, subsection
	contents
	copyright
	current
	describedby
	edit
	edit-media
	enclosure
	first, last, next, next-archive, prev, previous, prev-archive, start
	glossary
	help
	index
	license
	payment
	related
	replies
	self
	service
	stylesheet
	up
	via

	Index

