

ZeroMQ

Use ZeroMQ and learn how to apply different
message patterns

Faruk Akgul

 BIRMINGHAM - MUMBAI

ZeroMQ

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2013

Production Reference: 1140313

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-104-2

www.packtpub.com

Cover Image by Abhishek Pandey (abhishek.pandey1210@gmail.com)

Credits

Author
Faruk Akgul

Reviewers
Burak Arslan

David Greco

Kevin J. Rice

Acquisition Editor
Usha Iyer

Commissioning Editor
Harsha Bharwani

Technical Editor
Hardik Soni

Copy Editors
Insiya Morbiwala

Alfida Paiva

Laxmi Subramanian

Project Coordinator
Amigya Khurana

Proofreader
Maria Gould

Indexer
Monica Ajmera Mehta

Graphics
Valentina D'silva

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

About the Author

Faruk Akgul is a developer and an Emacs user who loves using open source
software and frequently contributes to some open source projects. He specializes
in Python but enjoys experiencing new programming languages as well. He likes
to travel when he's not coding.

Thanks to Pieter Hintjens and all the contributors who helped in
making this software available.

About the Reviewers

Burak Arslan is the technical lead at Arskom, a quarter-century-old Turkish
Software and IT infrastructure services company focusing on bundling the latest
products in Satellite Communications with its value-added solutions. His current
job involves working as a full-stack web developer where he gets to design
and implement the UX, frontend, and backend code, as well as administering
the underlying IP network and hardware infrastructure, while also having an
influence in managing customer relations and the future strategy and planning
of his company. He has a BSc in Computer Engineering from Galatasaray
University and an MSc in Computer Science from Sabanci University, both
in Istanbul, Turkey.

David Greco is an experienced software architect with more than 20 years
of working experience. After an initial period as a researcher in the field of
high performance computing, he started working as a consultant in the
professional services organizations of leading software companies such as
BEA Systems, IONA, Progress, and FuseSource. As a consultant, he has mainly
helped customers to design and develop complex distributed platforms and
service-oriented architectures. Lately, he worked as a CTO for one of the
most successful gambling and poker online companies in Italy.

David is now working as a CTO for a startup, Eligotech, developing a parallel
business intelligence platform based on very popular big data technologies.

Kevin Rice has been involved in computing since the mid 80s, starting with a
TI-99/4A and Commodore 64. His current skill set includes Unix, C/C++, PERL,
Python, infosec, and network-monitoring related tools.

I'd like to thank Packt Publishing and Harsha Bharwani for allowing
me the opportunity to review this book.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents
Preface 1
Chapter 1: Getting Started 7

The beginning 7
The message queue 8
Introduction to ZeroMQ 10

Simplicity 11
Performance 11
The brokerless design 11

Hello world 11
The request-reply pattern 15

Reply 15
Request 16
Sending the message 16

Handling strings in C 17
Checking the ZeroMQ version 18
Summary 19

Chapter 2: Introduction to Sockets 21
The publish-subscribe pattern 21

Filtering out messages 27
The socket options 32

Subscription 33
Unsubscription 33

Notes on the publisher-subscriber pattern 33
The pipeline pattern 34

The divide and conquer strategy 34
The ZMQ_PULL socket 40
The ZMQ_PUSH socket 40

Table of Contents

[ii]

Getting ZeroMQ context 40
Destroying ZeroMQ context 41
Cleaning up 41
Detecting memory leaks 42

Introduction to Valgrind 42
Summary 44

Chapter 3: Using Socket Topology 45
What a socket is 45
Types of Internet sockets 45
Transmission Control Protocol (TCP) 47

The three-way handshake protocol 47
TCP header 49

TCP flags 49
Properties of TCP 50

ZeroMQ sockets 50
Differences between TCP sockets and ZeroMQ sockets 50

Routing schemes 51
Unicast 52

Setting I/O threads and limiting the number of sockets 53
Working with multiple sockets 53
Working with multi-part messages 57
How to handle interruptions 60
Introduction to CZMQ 64

zctx 64
zstr_send 65
zloop 65
zmsg 67
zfile 68

zfile_mkdir 70
zhash 71
zlist 74
zclock 75
zthread 75

Summary 75
Chapter 4: Advanced Patterns 77

Extending the request-reply pattern 77
Writing multithreaded applications with ZeroMQ 78
Wrapping publisher-subscriber messages 80

Table of Contents

[iii]

High watermark 82
Reliability 83

Slow subscribers in a publish-subscribe pattern 84
Summary 86

Appendix 87
Index 89

Preface
This book is an introductory guide to message queuing components and ZeroMQ.
We will cover how you can apply patterns to your applications.

What this book covers
Chapter 1, Getting Started, explains what a message queuing system is, discusses
the importance of message queuing, and introduces ZeroMQ to the reader. It also
introduces the request-reply pattern with the "hello world" example and shows
examples of how to handle string in C and version reporting in ZeroMQ.

Chapter 2, Introduction to Sockets, explores how to use ZeroMQ with sockets by
providing example code.

Chapter 3, Using Socket Topology, goes beyond Chapter 2, Introduction to Sockets, and
discusses the difference between ZeroMQ sockets and TCP sockets and shows how
to use the topics covered in the previous chapters for real-world applications.

Chapter 4, Advanced Patterns, is a brief introduction to more advanced topics and
discusses how to use patterns in ZeroMQ applications.

Appendix, contains bibliography and external links.

What you need for this book
To run the examples in the book the following software will be required:

• ZeroMQ v3.2, available at http://www.zeromq.org/
• CZMQ v1.3.1, available at http://czmq.zeromq.org/

Preface

[2]

• Microsoft Visual C++ (to build on Windows), available at
http://www.microsoft.com/visualstudio/eng/products/
visual-studio-express-products

• GCC v4.7.2, available at http://gcc.gnu.org
• The Libtool, Autoconf, and Automake tools to build on Unix

Who this book is for
This book is for developers who are interested in learning and implementing
ZeroMQ for their applications. The reader needs to have basic C programming
knowledge. Prior ZeroMQ experience is not expected.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "You may use czmq.h which lets
C developers to code their ZeroMQ applications easier and shorter."

A block of code is set as follows:

#include <string.h>
#include <stdio.h>
#include "zmq.h"

int main (int argc, char const *argv[]) {
 void* context = zmq_init(1);
 void* request = zmq_socket(context, ZMQ_REQ);
 printf("Connecting to server\n");
 zmq_connect(request, "tcp://localhost:4040");

 zmq_close(request);
 zmq_term(context);
 return 0;
}

Preface

[3]

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

#include <string.h>
#include <stdio.h>
#include "zmq.h"

int main (int argc, char const *argv[]) {
 void* context = zmq_init(1);
 void* request = zmq_socket(context, ZMQ_REQ);
 printf("Connecting to server\n");
 zmq_connect(request, "tcp://localhost:4040");

 zmq_close(request);
 zmq_term(context);
 return 0;
}

Any command-line input or output is written as follows:

gcc -Wall -lzmq -o zero zero.c

When we say zmq_socket(2) we mean zmq_socket function takes two parameters.
When we say zmq_ctx_new() we mean zmq_ctx_new function does not take any
parameters.

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission will
be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Getting Started
Welcome to ZeroMQ! This chapter is an introduction to ZeroMQ and gives the
reader a general idea of what a message queuing system is and most importantly
what ZeroMQ is. In this chapter we will learn about the following topics:

• An overview of what a message queue is
• Why use ZeroMQ and what makes it different from other message

queuing technologies
• Basic client/server architecture
• Introducing the first pattern, request-reply
• How we can handle strings in C
• Detecting the installed ZeroMQ version

The beginning
Humans are social and will always socially interact with each other for as long as
they exist. Programs are no different. A program has to communicate with another
program since we are living in a connected world. We have UDP, TCP, HTTP, IPX,
WebSocket, and other relevant protocols to connect applications.

However, such low-level approaches make things harder and we need something
easier and faster. High-level abstractions sacrifice speed and flexibility whereas
directly dealing with low-level details is not easy to master and use. That is where
ZeroMQ shows up as the savior, giving us the usability features of high-level
techniques with the speed of low-level approaches.

Before we start digging into ZeroMQ, let's first have a brief introduction on the
general concept of message queues.

Getting Started

[8]

The message queue
A message queue, or technically a FIFO (First In First Out) queue is a fundamental and
well-studied data structure. There are different queue implementations such as priority
queues or double-ended queues that have different features, but the general idea is
that the data is added in a queue and fetched when the data or the caller is ready.

Imagine we are using a basic in-memory queue. In case of an issue, such as power
outage or a hardware failure, the entire queue could be lost. Hence, another program
that expects to receive a message will not receive any messages.

However, adopting a message queue guarantees that messages will be delivered to
the destination no matter what happens. Message queuing enables asynchronous
communication between loosely-coupled components and also provides solid queuing
consistency. In case of insufficient resources, which prevent you from immediately
processing the data that is sent, you can queue them up in the message queue server
that would store the data until the destination is ready to accept the messages.

Message queuing has an important role in large-scaled distributed systems
and enables asynchronous communication. Let's have a quick overview on
the difference between synchronous and asynchronous systems.

In ordinary synchronous systems, tasks are processed one at a time. A task is
not processed until the task in-process is finished. This is the simplest way to
get the job done.

Chapter 1

[9]

Time

Task 1

Task 2

Task 3

Task 4

Synchronous system

We could also implement this system with threads. In this case threads process each
task in parallel.

Task 1 Task 2 TimeTask 3 Task 4

Threaded synchronous system

In the threading model, threads are managed by the operating system itself on a
single processor or multiple processors/cores.

Asynchronous Input/Output (AIO) allows a program to continue its execution
while processing input/output requests. AIO is mandatory in real-time applications.
By using AIO, we could map several tasks to a single thread.

Time

Task 3

Task 1

Task 2

Task 4

Task 1

Task 4

Task 3

Task 2

Asynchronous system

Getting Started

[10]

The traditional way of programming is to start a process and wait for it to complete.
The downside of this approach is that it blocks the execution of the program while
there is a task in progress. However, AIO has a different approach. In AIO, a task
that does not depend on the process can still continue. We will cover AIO and how
to use it with ZeroMQ in depth in Chapter 2, Introduction to Sockets.

You may wonder why you would use message queue instead of handling all
processes with a single-threaded queue approach or multi-threaded queue approach.
Let's consider a scenario where you have a web application similar to Google Images
in which you let users type some URLs. Once they submit the form, your application
fetches all the images from the given URLs. However:

• If you use a single-threaded queue, your application would not be able
to process all the given URLs if there are too many users

• If you use a multi-threaded queue approach, your application would be
vulnerable to a distributed denial of service attack (DDoS)

• You would lose all the given URLs in case of a hardware failure

In this scenario, you know that you need to add the given URLs into a queue and
process them. So, you would need a message queuing system.

Introduction to ZeroMQ
Until now we have covered what a message queue is, which brings us to the purpose
of this book, that is, ZeroMQ.

The community identifies ZeroMQ as "sockets on steroids". The formal definition of
ZeroMQ is it is a messaging library that helps developers to design distributed and
concurrent applications.

The first thing we need to know about ZeroMQ is that it is not a traditional message
queuing system, such as ActiveMQ, WebSphereMQ, or RabbitMQ. ZeroMQ is
different. It gives us the tools to build our own message queuing system. It is a library.

It runs on different architectures from ARM to Itanium, and has support for more
than 20 programming languages.

Chapter 1

[11]

Simplicity
ZeroMQ is simple. We can do some asynchronous I/O operations and ZeroMQ could
queue the message in an I/O thread. ZeroMQ I/O threads are asynchronous when
handling network traffic, so it can do the rest of the job for us. If you have worked on
sockets before, you will know that it is quite painful to work on. However, ZeroMQ
makes it easy to work on sockets.

Performance
ZeroMQ is fast. The website Second Life managed to get 13.4 microseconds end-to-end
latencies and up to 4,100,000 messages per second. ZeroMQ can use multicast transport
protocol, which is an efficient method to transmit data to multiple destinations.

The brokerless design
Unlike other traditional message queuing systems, ZeroMQ is brokerless.
In traditional message queuing systems, there is a central message server
(broker) in the middle of the network and every node is connected to this
central node, and each node communicates with other nodes via the central
broker. They do not directly communicate with each other.

However, ZeroMQ is brokerless. In a brokerless design, applications can directly
communicate with each other without any broker in the middle. We will cover
this topic in depth in Chapter 2, Introduction to Sockets.

ZeroMQ does not store messages on disk. Please do not even
think about it. However, it is possible to use a local swap file
to store messages if you set zmq.SWAP.

Hello world
We can start writing some code after our introduction to message queuing and
ZeroMQ and of course we will start with the famous "hello world" program.

Let's consider a scenario where we have a server and a client. The server replies
world whenever it receives a hello message from the clients. The server runs
on port 4040 and clients send messages to port 4040.

Getting Started

[12]

The following is the server code, which sends the world message to clients:

#include <string.h>
#include <stdio.h>
#include <unistd.h>
#include "zmq.h"

int main (int argc, char const *argv[]) {

 void* context = zmq_ctx_new();
 void* respond = zmq_socket(context, ZMQ_REP);
 zmq_bind(respond, "tcp://*:4040");

 printf("Starting…\n");

 for(;;) {
 zmq_msg_t request;
 zmq_msg_init(&request);
 zmq_msg_recv(&request, respond, 0);
 printf("Received: hello\n");
 zmq_msg_close(&request);
 sleep(1); // sleep one second

 zmq_msg_t reply;
 zmq_msg_init_size(&reply, strlen("world"));
 memcpy(zmq_msg_data(&reply), "world", 5);
 zmq_msg_send(&reply, respond, 0);
 zmq_msg_close(&reply);
 }
 zmq_close(respond);
 zmq_ctx_destroy(context);

 return 0;
}

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.PacktPub.com.
If you purchased this book elsewhere, you can visit
http://www.PacktPub.com/support and register to have the
files e-mailed directly to you.

Chapter 1

[13]

The following is the client code that sends the hello message to the server:

#include <string.h>
#include <stdio.h>
#include <unistd.h>
#include "zmq.h"

int main (int argc, char const *argv[]) {

 void* context = zmq_ctx_new();

 printf("Client Starting….\n");

 void* request = zmq_socket(context, ZMQ_REQ);
 zmq_connect(request, "tcp://localhost:4040");

 int count = 0;

 for(;;) {
 zmq_msg_t req;
 zmq_msg_init_size(&req, strlen("hello"));
 memcpy(zmq_msg_data(&req), "hello", 5);
 printf("Sending: hello - %d\n", count);
 zmq_msg_send(&req, request, 0);
 zmq_msg_close(&req);

 zmq_msg_t reply;
 zmq_msg_init(&reply);
 zmq_msg_recv(&reply, request, 0);
 printf("Received: hello - %d\n", count);
 zmq_msg_close(&reply);
 count++;
 }
 // We never get here though.
 zmq_close(request);
 zmq_ctx_destroy(context);

 return 0;
}

Please note that the examples in this book are written for ZeroMQ
3.2. Bear in mind that some examples may not work properly when
using ZeroMQ Version 2.2 or older. Methods that were deprecated
in 2.x were removed in 3.x. Some methods have been deprecated
from those versions.

Getting Started

[14]

We have our first basic request-reply architecture, as shown in the following diagram:

The request-reply pattern

Let's have a closer look at the code to understand how it works.

First we create a context and a socket. The zmq_ctx_new() method creates a new
context. It is thread safe, so one context can be used from multiple threads.

zmq_socket(2) creates a new socket in the defined context. ZeroMQ sockets
are not thread safe, so it should be used only by the thread where it was created.
Traditional sockets are synchronous whereas ZeroMQ sockets have a queue on
the client side and another on the server side for managing the request-reply
pattern asynchronously. ZeroMQ automatically arranges setting up the connection,
reconnecting, disconnecting, and content delivery. We will cover the difference
between traditional sockets and ZeroMQ sockets in depth in Chapter 3, Using
Socket Topology.

The server binds the ZMQ_REP socket to port 4040 and starts waiting for requests
and replies back whenever it receives a message.

This basic "hello world" example introduces us to our first pattern, the request-reply
pattern.

Chapter 1

[15]

The request-reply pattern
We use the request-reply pattern to send messages from a client to one or multiple
services and receive a reply for each message sent. This is most likely the easiest
way to use ZeroMQ. The replies to the requests have to be strictly in order.

Reply
The following is the reply part of the request-reply pattern:

void* context = zmq_ctx_new();
void* respond = zmq_socket(context, ZMQ_REP);
zmq_bind(respond, "tcp://*:4040");

A server uses the ZMQ_REP socket to receive messages from and send replies to
the clients. If the connection between a client and the server is lost then the replied
message is thrown away without any notice. The incoming routing strategy of
ZMQ_REP is fair-queue and the outgoing strategy is last-peer.

The fair-queue strategy
This book is all about queues. You may wonder what we mean when we refer to
a fair-queue strategy. It is a scheduling algorithm and allocates the resources fairly
by its definition.

Input

Flow 1

Flow 2

Flow 3

Flow 4

Output

The fair-queue strategy

To understand how it works, let's say that the Flows in the preceding figure send 16,
2, 6, and 8 packets/second respectively, but the output can handle only 12 packets per
second. In this case we could transmit 4 packets/second, but Flow 2 transmits only
2 packets/second. The rule of fair-queue is that there should not be any idle output
unless all inputs are idle. Thus, we could allow Flow 2 to transmit its 2 packets/second
and share the remaining 10 packets between the rest of the Flows.

Getting Started

[16]

This is the incoming routing strategy used by ZMQ_REP. The round-robin scheduling is
the simplest way of implementing the fair-queue strategy, which is used by ZeroMQ
as well.

Request
The following is the request part of the request-reply pattern:

void* context = zmq_ctx_new();
printf("Client Starting….\n");
void* request = zmq_socket(context, ZMQ_REQ);
zmq_connect(request, "tcp://localhost:4040");

A client uses ZMQ_REQ for sending messages to and receiving replies from a server.
All messages are sent with the round-robin routing strategy. The incoming routing
strategy is last-peer.

ZMQ_REQ does not throw away any messages. If there are no available services to send
the message or if the all services are busy, all send operations—zmq_send(3)—are
blocked until a service becomes available to send the message. ZMQ_REQ is compatible
with the ZMQ_REP and ZMQ_ROUTER types. We will cover ZMQ_ROUTER in Chapter 4,
Advanced Patterns.

Sending the message
This part combines the request and reply sections and shows how to request a message
from somewhere and how to respond to them.

printf("Sending: hello - %d\n", count);
zmq_msg_send(&req, request, 0);
zmq_msg_close(&req);

The client sends the message to the server using zmq_msg_send(3). It queues the
message and sends it to the socket.

int zmq_send_msg(zmq_msg_t *msg, void *socket, int flags)

zmq_msg_send takes three parameters, namely, message, socket, and flags.

• The message parameter is nullified during the request, so if you want to
send the message to multiple sockets you need to copy it.

• A successful zmq_msg_send() request does not point out if the message
has been sent over the network.

Chapter 1

[17]

• The flags parameter is either ZMQ_DONTWAIT or ZMQ_SNDMORE. ZMQ_DONTWAIT
indicates that the message should be sent asynchronously. ZMQ_SNDMORE
indicates that the message is a multipart message and the rest of the parts
of the message are on the way.

After sending the message, the client waits to receive a response. This is done by
using zmq_msg_recv(3).

zmq_msg_recv(&reply, request, 0);
printf("Received: hello - %d\n", count);
zmq_msg_close(&reply);

zmq_msg_recv(3) receives a part of the message from the socket, as specified in the
socket parameter, and stores the reply in the message parameter.

int zmq_msg_recv (zmq_msg_t *msg, void *socket, int flags)

zmq_msg_recv takes three parameters, namely, message, socket, and flags.

• The previously received message (if any) is nullified
• The flags parameter could be ZMQ_DONTWAIT, which indicates that the

operation should be done asynchronously

Handling strings in C
Every programming language has a different approach to handling strings. Erlang does
not even have strings. In the C programming language, strings are null-terminated.
Strings in C are basically character arrays where \0 states the end of the string. String
manipulation errors are common and the result of many security vulnerabilities.

According to Miller and others (1995), 65 percent of Unix failures are due to string
manipulation errors such as null-terminated byte and buffer overflow; therefore,
handling strings in C should be done carefully.

When you send a message with ZeroMQ, it is your responsibility to format it safely,
so that other applications can read it. ZeroMQ only knows the size of the message.
That's about it.

It is a common way to use different programming languages in an application. An
application written in a programming language that does not add a null-byte at the
end of strings and C application code needs to communicate properly otherwise you
will get strange results.

Getting Started

[18]

You could send a message such as world as in our example with the null byte,
as follows:

zmq_msg_init_data_(&request, "world", 6, NULL, NULL);

However, you would send the same message in Erlang as follows:

erlzmq:send(Request, <<"world">>)

Let's say our C client connects to a ZeroMQ service written in Erlang and we send the
message world to this service. In this case Erlang will see it as world. If we send the
message with the null byte, Erlang will see it as [119,111,114,108,100,0]. Instead
of a string, we would get a list that contains some numbers! Well, those numbers are
the ASCII-encoded characters. However, it is not interpreted as a string anymore.

You cannot rely on the fact that a message coming from a ZeroMQ service is safely
terminated when you work in C.

Strings in ZeroMQ are fixed in length and are sent without the null byte.
So, ZeroMQ strings are transmitted as some bytes (the string itself in this
example) along with the length.

W O R L D

Length: 5

A ZeroMQ string

Checking the ZeroMQ version
It is quite useful to know which ZeroMQ version you are using. Knowing the
exact version is helpful in some scenarios to avoid unwanted surprises. For example,
there are some differences between ZeroMQ 2.x and ZeroMQ 3.x, such as deprecated
methods; therefore, if you know the exact ZeroMQ version you have on your
machine, you would avoid using deprecated methods.

#include <stdio.h>
#include "zmq.h"

int main (int argc, char const *argv[]) {

Chapter 1

[19]

 int major, minor, patch;
 zmq_version(&major, &minor, &patch);
 printf("Installed ZeroMQ version: %d.%d.%d\n", major, minor,
 patch);

 return 0;
}

Summary
This chapter was an introduction to how message queuing works in general, then
we had an introduction to ZeroMQ. We then looked at how ZeroMQ handles strings
and introduced the request-reply pattern with a simple "hello world" application.

Introduction to Sockets
After having a look at the basic structure of ZeroMQ in previous chapter, in this
chapter we will have a look at sockets with respect to the following points:

• The publish-subscribe pattern
• The pipeline pattern

The publish-subscribe pattern
First, let's introduce the second classic pattern, that is, the publish-subscribe pattern,
which is a one-way distribution pattern where the server sends messages to a set of
clients. It is a one-to-many model. The fundamental idea of this pattern is a publisher
sends a message and connected subscribers receive the message, whereas disconnected
subscribers just miss the message. A publisher is loosely coupled to the subscribers and
does not care if any subscribers exist. It is similar to how TV channels or radio stations
work. A TV channel always broadcasts TV shows and only the viewers who turn that
channel on receive the broadcast. If you miss the time, you miss your favorite show
(unless you have TiVo or something similar, but let's assume that our scenario happens
in a world where recordings have not been invented). The advantage of the publish-
subscribe pattern is that it provides a more dynamic network topology.

The publish-subscribe pattern can be summarized in the following four main points:

• Publish: An event is published by the publisher
• Notify: The subscriber is notified of a published event
• Subscribe: A new subscription is issued by a subscriber
• Unsubscribe: A subscriber removes its existing subscription

Introduction to Sockets

[22]

Let's take an example to make things clearer. Consider a scenario where we would
like to set up a stock exchange program. There are brokers and they would like to
know how certain stocks are doing in the market. Our publisher is the stock market
and our subscribers are the brokers.

Instead of getting real numbers from stock markets, we will just generate some random
numbers for stock values.

Before jumping into any code, first let's see what the publish-subscribe pattern
looks like.

SUB

Subscriber

- SUB

Subscriber

- SUB

Subscriber

- SUB

Subscriber

-

PUB

Publisher

-

connect connect connect connect

update update update update

binds

The publish-subscribe pattern

The following is the publisher code (server):

/*
 * Stock Market Server
 * Binds PUB socket to tcp://*:4040
 * Publishes random stock values of random companies
 */

#include <string.h>
#include "zmq.h"

Chapter 2

[23]

int main (int argc, char const *argv[]) {

 void* context = zmq_ctx_new();
 void* publisher = zmq_socket(context, ZMQ_PUB);
 printf("Starting server...\n");

 int conn = zmq_bind(publisher, "tcp://*:4040");

 const char* companies[2] = {"Company1", "Company2"};
 int count = 0;
 for(;;) {
 int price = count % 2;
 int which_company = count % 2;
 int index = strlen(companies[0]);
 char update[12];
 snprintf(update, sizeof update, "%s",
 companies[which_company]);

 zmq_msg_t message;
 zmq_msg_init_size(&message, index);
 memcpy(zmq_msg_data(&message), update, index);
 zmq_msg_send(&message, publisher, 0);
 zmq_msg_close(&message);
 count++;
 }

 zmq_close(publisher);
 zmq_ctx_destroy(context);

 return 0;
}

And the following is the subscriber code (client):

/*
 * Stock Market Client
 * Connects SUB socket to tcp://localhost:4040
 * Collects stock exchange values
 */

#include <stdlib.h>
#include <string.h>
#include "zmq.h"

Introduction to Sockets

[24]

int main (int argc, char const *argv[]) {

 void* context = zmq_ctx_new();
 void* subscriber = zmq_socket(context, ZMQ_SUB);

 printf("Collecting stock information from the server.\n");

 int conn = zmq_connect(subscriber, "tcp://localhost:4040");
 conn = zmq_setsockopt(subscriber, ZMQ_SUBSCRIBE, 0, 0);

 int i;
 for(i = 0; i < 10; i++) {
 zmq_msg_t reply;
 zmq_msg_init(&reply);
 zmq_msg_recv(&reply, subscriber, 0);

 int length = zmq_msg_size(&reply);
 char* value = malloc(length);
 memcpy(value, zmq_msg_data(&reply), length);
 zmq_msg_close(&reply);
 printf("%s\n", value);
 free(value);
 }
 zmq_close(subscriber);
 zmq_ctx_destroy(context);

 return 0;
}

Setting a subscription using zmq_setsockopt(3) and subscribe is mandatory
whenever you use a SUB socket, otherwise you will not receive any messages.
This is a very common error.

The subscriber can set numerous subscriptions, which the subscriber receives,
to any messages if an update matches any of the subscriptions. It can unsubscribe
from particular subscriptions as well. Subscriptions are fixed-length blobs.

A subscriber receives the message using zmq_msg_recv(3). zmq_msg_recv(3)
receives a message from a socket and stores the message. Previous messages,
if any, are deallocated.

int zmq_msg_recv (zmq_msg_t *msg, void *socket, int flags);

Chapter 2

[25]

The flag option can only be one value, which is ZMQ_DONTWAIT. If ZMQ_DONTWAIT is
specified, then the operation is performed in the non-blocking mode. If the message
is successfully received, it (zmq_msg_recv(3)) returns the size of the message in
bytes; otherwise it returns -1 and the error message flag.

The publish-subscribe pattern is asynchronous and sending a message to a SUB socket
causes an error. You could call zmq_msg_send(3) to send messages whenever you
want but you should never call zmq_msg_recv(3) on a PUB socket.

The following is the sample output of the client code:

Company2 570
Company2 878
Company2 981
Company2 783
Company1 855
Company1 524
Company2 639
Company1 984
Company1 158
Company2 145

The publisher will always send messages even if there is no subscriber. You could
try it and see for yourself. You would see that the publisher sends something like
the following:

Sending... Company2 36
Sending... Company2 215
Sending... Company2 712
Sending... Company2 924
Sending... Company2 721
Sending... Company1 668
Sending... Company2 83
Sending... Company2 209
Sending... Company1 450
Sending... Company1 940
Sending... Company1 57
Sending... Company2 3
Sending... Company1 100
Sending... Company2 947

Introduction to Sockets

[26]

Let's say we want to receive the results of Company1 or the company name that we
pass as an argument. In that case, we could change our client code to the following:

//
// Stock Market Client
// Connects SUB socket to tcp://localhost:4040
// Collects stock exchange values
//

#include <stdlib.h>
#include <string.h>
#include "zmq.h"

int main (int argc, char const *argv[]) {

 void* context = zmq_ctx_new();
 void* subscriber = zmq_socket(context, ZMQ_SUB);

 const char* filter;

 if(argc > 1) {
 filter = argv[1];
 } else {
 filter = "Company1";
 }
 printf("Collecting stock information from the server.\n");

 int conn = zmq_connect(subscriber, "tcp://localhost:4040");
 conn = zmq_setsockopt(subscriber, ZMQ_SUBSCRIBE, filter,
 strlen(filter));

 int i = 0;
 for(i = 0; i < 10; i++) {
 zmq_msg_t reply;
 zmq_msg_init(&reply);
 zmq_msg_recv(&reply, subscriber, 0);

 int length = zmq_msg_size(&reply);
 char* value = malloc(length + 1);
 memcpy(value, zmq_msg_data(&reply), length);
 zmq_msg_close(&reply);

Chapter 2

[27]

 printf("%s\n", value);
 free(value);

 }
 zmq_close(subscriber);
 zmq_ctx_destroy(context);

 return 0;
}

The output would be something like the following:

Company1 575
Company1 504
Company1 513
Company1 584
Company1 444
Company1 1010
Company1 524
Company1 963
Company1 929
Company1 718

Filtering out messages
Our basic stock exchange application sends messages to subscribers. It seems
everything has gone as expected, right? Unfortunately, no.

ZeroMQ matches the subscriber strings with prefix matching, which means
ZeroMQ will return Company1, Company10, and Company101 even if you look
for Company1 alone.

Let's change our publisher code to the following:

//
// Stock Market Server
// Binds PUB socket to tcp://*:4040
// Publishes random stock values of random companies
//

#include <string.h>
#include "zmq.h"

Introduction to Sockets

[28]

int main (int argc, char const *argv[]) {

 void* context = zmq_ctx_new();
 void* publisher = zmq_socket(context, ZMQ_PUB);

 int conn = zmq_bind(publisher, "tcp://*:4040");

 const char* companies[3] = {"Company1", "Company10",
 "Company101"};
 int count = 0;
 for(;;) {
 int price = count % 17;
 int which_company = count % 3;
 int index = strlen(companies[which_company]);
 char update[64];
 snprintf(update, sizeof update, "%s",
 companies[which_company]);

 zmq_msg_t message;
 zmq_msg_init_size(&message, index);
 memcpy(zmq_msg_data(&message), update, index);
 zmq_msg_send(&message, publisher, 0);
 zmq_msg_close(&message);
 count++;

 }

 zmq_close(publisher);
 zmq_ctx_destroy(context);

 return 0;
}

And now let's change our subscriber code to the following:

//
// Stock Market Client
// Connects SUB socket to tcp://localhost:4040
// Collects stock exchange values
//

#include <stdlib.h>
#include <string.h>

Chapter 2

[29]

#include "zmq.h"

int main (int argc, char const *argv[]) {

 void* context = zmq_ctx_new();
 void* subscriber = zmq_socket(context, ZMQ_SUB);

 const char* filter;

 if(argc > 1) {
 filter = argv[1];
 } else {
 filter = "Company1";
 }
 printf("Collecting stock information from the server.\n");

 int conn = zmq_connect(subscriber, "tcp://localhost:4040");
 conn = zmq_setsockopt(subscriber, ZMQ_SUBSCRIBE, filter,
 strlen(filter));

 int i = 0;
 for(i = 0; i < 10; i++) {
 zmq_msg_t reply;
 zmq_msg_init(&reply);
 zmq_msg_recv(&reply, subscriber, 0);

 int length = zmq_msg_size(&reply);
 char* value = malloc(length + 1);
 memcpy(value, zmq_msg_data(&reply), length);
 zmq_msg_close(&reply);
 printf("%s\n", value);
 free(value);

 }
 zmq_close(subscriber);
 zmq_ctx_destroy(context);

 return 0;
}

Introduction to Sockets

[30]

In this case, the output will be something similar to the following:

Collecting stock information from the server.
Company101 950
Company10 707
Company101 55
Company101 343
Company10 111
Company1 651
Company10 287
Company101 8
Company1 889
Company101 536

Our subscriber code explicitly says that we want to see the results of Company1.
However, the publisher sends us the results of Company10 and Company101 as
well. This is certainly not what we want. We need to solve this small issue.

We may want to do some dirty hacking to get what we want but using a delimiter
is a much simpler solution for it.

We need to make some changes both in the publisher and the subscriber code
and we will filter the company names using a delimiter.

The following is our updated publisher code that fixes the previous problem.
Have a look at the highlighted line to see how we can use a delimiter to send
the message to the subscribers:

//
// Stock Market Server
// Binds PUB socket to tcp://*:4040
// Publishes random stock values of random companies
//

#include <stdlib.h>
#include <string.h>
#include "zmq.h"

int main (int argc, char const *argv[]) {

 void* context = zmq_ctx_new();
 void* publisher = zmq_socket(context, ZMQ_PUB);

Chapter 2

[31]

 int conn = zmq_bind(publisher, "tcp://*:4040");
 conn = zmq_bind(publisher, "ipc://stock.ipc");

 const char* companies[3] = {"Company1", "Company10",
 "Company101"};

 for(;;) {
 int price = count % 17;
 int which_company = count % 3;
 int index = strlen(companies[which_company]);
 char update[64];
 sprintf(update, "%s| %d", companies[which_company], price);
 zmq_msg_t message;
 zmq_msg_init_size(&message, index);
 memcpy(zmq_msg_data(&message), update, index);
 zmq_msg_send(&message, publisher, 0);
 zmq_msg_close(&message);
 count++;
 }

 zmq_close(publisher);
 zmq_ctx_destroy(context);

 return 0;
}

And the following is our updated subscriber code to filter results using the delimiter
we use in our publisher code:

//
// Stock Market Client
// Connects SUB socket to tcp://localhost:4040
// Collects stock exchange values
//

#include <stdlib.h>
#include <string.h>
#include "zmq.h"

int main (int argc, char const *argv[]) {

Introduction to Sockets

[32]

 void* context = zmq_ctx_new();
 void* subscriber = zmq_socket(context, ZMQ_SUB);

 const char* filter;

 filter = "Company1|";
 printf("Collecting stock information from the server.\n");

 int conn = zmq_connect(subscriber, "tcp://localhost:4040");
 conn = zmq_setsockopt(subscriber, ZMQ_SUBSCRIBE, filter,
 strlen(filter));

 int i = 0;
 for(i = 0; i < 10; i++) {
 zmq_msg_t reply;
 zmq_msg_init(&reply);
 zmq_msg_recv(&reply, subscriber, 0);

 int length = zmq_msg_size(&reply);
 char* value = malloc(length + 1);
 memcpy(value, zmq_msg_data(&reply), length);
 zmq_msg_close(&reply);
 printf("%s\n", value);
 free(value);
 }
 zmq_close(subscriber);
 zmq_ctx_destroy(context);

 return 0;
}

Now we can see the results as expected after the changes we have made in our
publisher and subscriber code.

The socket options
Since we use the publish-subscribe pattern, the option name we use
is ZMQ_SUBSCRIBE.

int conn = zmq_connect(subscriber, "tcp://localhost:4040");
conn = zmq_setsockopt(subscriber, ZMQ_SUBSCRIBE, option_value,
 strlen(option_value));

Chapter 2

[33]

The socket options are set with the zmq_setsockopt(3) function. It takes
four parameters:

• Socket
• Option name
• Option value
• Length of the option

This can be made clear by the following line of code:

int zmq_setsockopt (void *socket, int option_name, const void *option_
value, size_t option_len);

Subscription
ZMQ_SUBSCRIBE establishes a new message on the ZMQ_SUB socket. If the
option_value argument is not empty, we are subscribed to all messages
that start with option_value. You could attach multiple filters to a one
ZMQ_SUB socket.

Unsubscription
ZMQ_UNSUBSCRIBE removes a message on the ZMQ_SUB socket. It removes only one
message even if there are multiple filters.

An important thing we need to note about the publisher-subscriber sockets is that
we do not know when the subscriber starts to receive messages. In this case, it is a
good idea to start the subscriber and then to start the publisher. This is because the
subscriber always misses the first message as connecting to the publisher takes time
and the publisher may already be sending a message.

However, we will talk about how to synchronize the publisher and the subscribers
so we do not have to send any messages unless the subscribers are really connected.

Notes on the publisher-subscriber pattern
The key points to be noted about the publisher-subscriber pattern are as follows:

• Messages are queued up on the publisher's side if you are using TCP and the
subscriber is too slow to receive messages. We will show you how to protect
the application against this.

Introduction to Sockets

[34]

• A subscriber could connect to multiple publishers. Data will be transmitted
via the fair-queue strategy.

• The publisher sends all the messages to all subscribers and filtering is done
on the subscriber's side as we have seen from our stock exchange program
that we provided earlier.

• We will return to the publisher-subscriber pattern in Chapter 4, Advanced
Patterns, to discuss how to deal with the slow subscribers.

The pipeline pattern
Let's continue with the pipeline pattern. The pipeline pattern transmits data between
nodes ordered in the pipeline. Data is transmitted continuously and each step of the
pipeline is connected to one or more nodes. A round-robin strategy is used to transmit
data between nodes. It is somewhat similar to the request-reply pattern.

The divide and conquer strategy
It is like there is no escape from a divide and conquer strategy when you do
programming. Remember when you enrolled in your algorithms class and your
annoying professor introduced divide and conquer using merge sort and a week
later half of the class dropped the unit? We remember as well. It is a small world
and here is divide and conquer, again.

Let's do something in parallel with ZeroMQ. Consider a scenario where we have a
producer that generates some random numbers. We also have workers, which find
the square root of those numbers with Newton's method. Then we have a collector
that collects the results from the workers.

The following is our server code:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/time.h>
#include <time.h>
#include "zmq.h"

int main (int argc, char const *argv[]) {

 void* context = zmq_ctx_new();

Chapter 2

[35]

 // This is the socket that we send messages.
 void* socket = zmq_socket(context, ZMQ_PUSH);
 zmq_bind(socket, "tcp://*:4040");

 // This is the socket that we send batch message.
 void* connector = zmq_socket(context, ZMQ_PUSH);
 zmq_connect(connector, "tcp://localhost:5050");

 printf("Please press enter when workers are ready...");
 getchar();
 printf("Sending tasks to workers...\n");

 // The first message. It's also the signal start of batch.
 int length = strlen("-1");
 zmq_msg_t message;
 zmq_msg_init_size(&message, length);
 memcpy(zmq_msg_data(&message), "-1", length);
 zmq_msg_send(&message, connector, 0);
 zmq_msg_close(&message);

 // Generate some random numbers.
 srandom((unsigned) time(NULL));

 // Send the tasks.
 int count;
 int msec = 0;
 for(count = 0; count < 100; count++) {
 int load = (int) ((double) (100) * random () / RAND_MAX);
 msec += load;
 char string[10];
 sprintf(string, "%d", load);
 }
 printf("Total: %d msec\n", msec);
 sleep(1);

 zmq_close(connector);
 zmq_close(socket);
 zmq_ctx_destroy(context);

 return 0;
}

Introduction to Sockets

[36]

The following is the worker code where we do some square root calculations using
Newton's method:

#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "zmq.h"

double square(double x) {
 return x * x;
}

double average(double x, double y) {
 return (x + y) / 2.0;
}

double good_enough(double guess, double x) {
 return abs(square(guess) - x) < 0.000001;
}

double improve(double guess, double x) {
 return average(guess, x / guess);
}

double sqrt_inner(double guess, double x) {
 if(good_enough(guess, x))
 return guess;
 else
 return sqrt_inner(improve(guess, x), x);
}

double newton_sqrt(double x) {
 return sqrt_inner(1.0, x);
}

int main (int argc, char const *argv[]) {

 void* context = zmq_ctx_new();

 // Let's initialize a socket to receive messages.
 void* receiver = zmq_socket(context, ZMQ_PULL);
 zmq_connect(receiver, "tcp://localhost:4040");

Chapter 2

[37]

 // Let's initialize a socket to send the messages.
 void* sender = zmq_socket(context, ZMQ_PUSH);
 zmq_connect(sender, "tcp://localhost:5050");

 for(;;) {
 zmq_msg_t reply;
 zmq_msg_init(&reply);
 zmq_msg_recv(&reply, receiver, 0);

 int length = zmq_msg_size(&reply);
 char* msg = malloc(length + 1);
 memcpy(msg, zmq_msg_data(&reply), length);
 zmq_msg_close(&reply);

 fflush(stdout);
 double val = atof(msg);
 printf("%.1f: %.1f\n", val, newton_sqrt(val));

 sleep(1);
 free(msg);

 zmq_msg_t message;
 char* ssend = "T";
 int t_length = strlen(ssend);
 zmq_msg_init_size(&message, t_length);
 memcpy(zmq_msg_data(&message), ssend, t_length);
 zmq_msg_send(&message, receiver, 0);
 zmq_msg_close(&message);

 }
 zmq_close(receiver);
 zmq_close(sender);
 zmq_ctx_destroy(context);

 return 0;
}

The following is the receiver code:

#include <stdlib.h>
#include <string.h>
#include "zmq.h"

Introduction to Sockets

[38]

int main (int argc, char const *argv[]) {

 void* context = zmq_ctx_new();
 void* receiver = zmq_socket(context, ZMQ_PULL);
 zmq_bind(receiver, "tcp://*:5050");

 // We receive the first message and discard it since it's the
 // signal start of batch which is -1.
 zmq_msg_t reply;
 zmq_msg_init(&reply);
 zmq_msg_recv(&reply, receiver, 0);

 int length = zmq_msg_size(&reply);
 char* msg = malloc(length + 1);
 memcpy(msg, zmq_msg_data(&reply), length);
 zmq_msg_close(&reply);
 free(msg);

 int count;
 for(count = 0; count < 100; count++) {
 zmq_msg_t reply;
 zmq_msg_init(&reply);
 zmq_msg_recv(&reply, receiver, 0);

 int length = zmq_msg_size(&reply);
 char* value = malloc(length + 1);
 memcpy(value, zmq_msg_data(&reply), length);
 zmq_msg_close(&reply);
 free(value);
 if(count / 10 == 0)
 printf("10 Tasks have been processed.");
 fflush(stdout);
 }

 zmq_close(receiver);
 zmq_ctx_destroy(context);

 return 0;
}

Chapter 2

[39]

The following diagram represents the code we have written so far:

Results

Collector

PULL

Worker Worker Worker

PULL PULL PULL

PUSH PUSH PUSH- - -

Server

PUSH-

ResultsResults

Task Task Task

Tasks

What we have done so far:

• The start of the batch needs to be synchronized when the workers are up
and running. As we have said earlier, the connection process takes some
time. If we do not do that, then the first worker will take messages while
other workers are being connected. In order to prevent this, we need to
synchronize the start of the batch to run in parallel.

• The collector's PULL socket fetches the results using the fair-queue
scheduling that we described in Chapter 1, Getting Started.

• The server's PUSH socket sends the tasks to the workers evenly.
• The workers are connected downstream to the collector and upstream

to the server. You could add more workers explicitly.

We have mentioned that workers connect to downstream to the collector and
upstream to the server. Now, let's examine what this means more closely.

Introduction to Sockets

[40]

Let's have a look at the following code snippet from our worker code:

// Let's initialize a socket to receive messages.
 void* receiver = zmq_socket(context, ZMQ_PULL);
 zmq_connect(receiver, "tcp://localhost:4040");

The ZMQ_PULL socket
When we want to retrieve data from upstream to nodes, we use ZMQ_PULL. The
ZMQ_PULL type sockets are used to receive messages from upstream nodes in the
pipeline. As we have said earlier, this process is done with fair-queue scheduling.

zmq_send(3) cannot be used in place of ZMQ_PULL.

The ZMQ_PUSH socket
When we want to communicate downstream with nodes, we use ZMQ_PUSH.
The ZMQ_PUSH type sockets are used to send messages to downstream nodes
in the pipeline.

ZMQ_PUSH never discards messages. If a high watermark is reached for downstream
nodes, or if there are no downstream nodes available, all messages sent with zmq_
send(3) are blocked until there is an available downstream node to receive messages.

Getting ZeroMQ context
You must have realized by now that all examples we have done so far start with zmq_
ctx_new(3). ZeroMQ applications always start with creating a context. All sockets
are put inside a single process using the context, which acts as in-process sockets since
they are the fastest way to connect threads in a single process. ZeroMQ context is
thread safe and you may share it with multiple threads.

If ZeroMQ context cannot be created, it returns NULL.

Even though it is possible to create multiple contexts, which would be considered
as separate ZeroMQ applications, it is a better idea to create one ZeroMQ context
rather than multiple ones.

Chapter 2

[41]

Destroying ZeroMQ context
At the end of your application code, you need to destroy the context you have created
by calling zmq_ctx_destroy(3). Once zmq_ctx_destroy(3) is called, all processes
are returned with an error code (ETERM) and zmq_ctx_destroy(3) blocks the calls
until opened sockets within the context are closed by zmq_close(3).

Cleaning up
When you code in a programming language such as Python or Java, you do not
need to worry about memory management since these languages have built-in
mechanisms to clean up the memory.

For example, Python uses reference counting when there are cycles in a reference
chain of objects, which never gets freed and memory automatically gets cleaned
up for you when you implement a ZeroMQ application in Python. So, you do not
need to explicitly close a connection when coding a ZeroMQ application since it
will be closed as soon as the reference count of the object becomes zero. However,
we should note that this would not work on Jython, PyPy, or IronPython. Anyway,
this is enough information on Python. Let's return to our main concern.

When you code in C, memory management is your responsibility. Otherwise you
will have an unstable application, which will have memory leak problems.

You need to take care of sockets, messages, and contexts in ZeroMQ. There are
a couple of things you need to consider to finish an application successfully:

• As we have said earlier, you need to close the application by destroying the
context using zmq_ctx_destroy(3). However, if there are some sockets open,
zmq_ctx_destroy(3) will just wait there forever. Therefore, you need to close
the sockets and then call zmq_ctx_destroy(3) to destroy the context.

• zmq_ctx_destroy(3) will wait forever if there are connections or messages
on the queue to be sent.

• Whenever you have finished processing a message, you need to close it
immediately by calling zmq_msg_close(3), otherwise your application may
have memory leaks. You could think about it this way: when you leave your
house, you close the door. You do not leave it open. Similar idea.

• Do not open and close a lot of sockets. If you do so, it pretty much means you
are doing something wrong and you will want to redesign your application
from scratch.

Introduction to Sockets

[42]

You may wonder what happens if your application is a multithreaded application.
Well, in that case, things get really complicated.

Detecting memory leaks
Memory management needs to be done carefully when an application is coded in
C or C++, since it is the developer's responsibility to manage the memory. For this
purpose, we are going to use a Linux-only tool called Valgrind. It can be used to
detect memory leaks or generate profiling data, among many other useful sanity
checks on the running code.

Firstly, the following section is a small tutorial on Valgrind where we will discuss
using Valgrind with ZeroMQ.

Introduction to Valgrind
You could compile your program with the –g parameter to include debugging
information. In that case, error messages will include exact line numbers. Using
–O1 can result in inaccurate messages, and using –O2 or –O3 definitely results in
inaccurate messages.

Consider the following example:

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char const *argv[]) {

 char* a = malloc(4);
 int b;
 printf("b = %d\n", b);

 return 0;
}

Let's compile with gcc –g –o test test.c. Now, it is time to run Valgrind to
check for memory leaks. Let's run the following command:

valgrind --leak-check=full --show-reachable=yes test

Chapter 2

[43]

Once we run the previous command, Valgrind will check for memory errors using
the memcheck tool. You could specify it using tool=memcheck, but this would
be pointless in this case since memcheck is the default tool. The output would be
something similar to the following:

==98190== Conditional jump or move depends on uninitialised value(s)

==98190== at 0x2D923: __vfprintf

==98190== by 0x4AC5A: vfprintf_l

==98190== by 0x952BE: printf

==98190== by 0x1F5E: main (test.c:8)

==98190== 4 bytes in 1 blocks are definitely lost in loss record 1 of 5

==98190== at 0xF656: malloc (vg_replace_malloc.c:195)

==98190== by 0x1F46: main (test.c:6)

==98190== LEAK SUMMARY:

==98190== definitely lost: 4 bytes in 1 blocks

==98190== indirectly lost: 0 bytes in 0 blocks

==98190== possibly lost: 0 bytes in 0 blocks

Let's now describe the preceding output:

• We could ignore 98190 since it is the process ID
• Conditional jump or move depends on uninitialised value(s)

means we have uninitialized variables in our code
• definitely lost means there is a memory leak and we need to fix it
• indirectly lost means the blocks that point to another block are lost
• possibly lost means there is a memory leak, unless you really know

what you are doing

By default, Valgrind uses $PREFIX/lib/valgrind/default.supp. However,
we need to create our own suppression file to use with ZeroMQ, which would
be something like the following:

{
 <socketcall_sendto>
 Memcheck:Param

Introduction to Sockets

[44]

 socketcall.sendto(msg)
 fun:send
 ...
}
{
 <socketcall_sendto>
 Memcheck:Param
 socketcall.send(msg)
 fun:send
 ...
}

Then you could run Valgrind with arguments similar to the following:

valgrind --leak-check=full --show-reachable=yes --suppressions=zeromq.
supp server

Here we can say that running code under Valgrind has severe impacts on the
performance and can introduce timeouts in some cases.

Summary
In this chapter, we had an introduction to sockets and we introduced two new
patterns, namely the publish-subscribe and pipeline pattern. We also discussed
how to solve a certain problem using the publish-subscribe pattern with the help
of a simple example. Then we had a small discussion on how to detect memory
leaks in our ZeroMQ applications by using Valgrind.

Using Socket Topology
We have looked at basic patterns such as pipeline, publish-subscribe, request-reply,
detecting memory leaks, and also how to deal with the borderline of publish and
subscribe. In this chapter, we are going to dig deep into sockets. First, let's start
with a description of sockets.

What a socket is
Sockets are the de-facto standard API for performing network programming.
The socket API is very similar to the file I/O in many aspects since we perform
open, write, read, and close operations. They let us interact with other nodes in
the network. There are several different kinds of sockets and they have different
properties. The two most common families are:

• PF_UNIX for Unix inter-process communication
• PF_INET for Internet communication

However, we are going to look at DARPA Internet addresses (Internet sockets)
since the most common ZeroMQ sockets are Internet sockets.

Types of Internet sockets
There are different types of Internet sockets. You may have seen SOCK_DGRAM,
SOCK_STREAM, and SOCK_RAW before. The following are the brief definitions of
the most popular ones:

• Stream sockets (SOCK_STREAM): These types of sockets use Transmission
Control Protocol (TCP) or Stream Control Transmission Protocol (SCTP).
It ensures that sent data is sequenced and unduplicated and it is a reliable
socket. A sample usage would be socket(PF_INET, SOCK_STREAM, 0);.

Using Socket Topology

[46]

• Datagram sockets (SOCK_DGRAM): These types of sockets use User Datagram
Protocol (UDP). These sockets are known as connectionless sockets. It should
be noted that they are unreliable and the data may arrive out of sequence.
There may be duplication as well. A sample usage would be socket(PF_
INET, SOCK_DGRAM, 0);.

• Raw sockets (SOCK_RAW): These types of socket neither use TCP nor UDP.
It directly communicates with the IP layer. This may be useful to build
a new protocol and is a lower-level approach.

The network layer

Our main concern is the SOCK_STREAM type of sockets. These types of sockets
are unduplicated and have a best-effort policy to guarantee in-order delivery
of datagrams to have a full reconstruction of the stream on the receiving side.
What we can do with these sockets is very simple:

• Create a connection with connect
• Use read and write or send and recv to transmit data respectively
• Close the connection with close

Chapter 3

[47]

Transmission Control Protocol (TCP)
TCP prevents loss of data, duplication, and damage. It ensures that the sent message
isn't out of order. These characteristics make it a reliable protocol, unlike UDP.

Please refer to the RFC 793 guide for more information about TCP.

TCP synchronizes using a three-way handshake. Synchronization between two nodes
begins when a TCP segment is sent with the SYN (0x02) flag set.

TCP sockets are one-to-one. A source node transmits messages to the destination node.

1:1

Node

Node

TCP sockets are one-to-one

The three-way handshake protocol
A three-way handshake allows TCP to prevent out-of-order message delivery and
duplicated transmission.

1. Transmission begins when the SYN (0x02) flag is set in a packet and is sent
to the destination.

Using Socket Topology

[48]

2. The destination receives the packet with the SYN (0x02) flag and sends an
acknowledgement to the source by setting the ACK (0x10) flag in the reply.
This stage is called SYN-ACK.

3. The source receives the SYN-ACK message and sends an ACK segment,
which notes that each packet in the TCP messages contains a sequence
number to maintain the order.

4. Once the transmission is done, the FIN (0x01) flag is set in the next
reply packet.

Source

SYN=M, SEQ #N

Destination

SYN = M, ACK = M, ACK #N

ACK = M, SEQ #N

Time

The three-way handshake protocol

The sequence numbers allow TCP to control the flow. TCP uses a sliding-window
technique. If an ACK segment is not received in a particular period of time, then it
retransmits the missing part of data. However, choosing an appropriate timeout is not
an easy task. Therefore, in order to solve this issue, TCP uses adaptive retransmission.

Chapter 3

[49]

TCP header
The following diagram shows the header format of TCP:

TCP header

The source port number and destination port number set the port numbers.
The sequence number starts at the fourth byte in the message transmitted from
the source node to the destination node, as shown in the figure demonstrating
the three-way handshake protocol. The acknowledgement number is the next
sequence number that the source node expects.

TCP flags
The following is the list of flags that are commonly used in ZeroMQ:

• URG (0x20): Urgent
• ACK (0x10): Acknowledgement
• PSH (0x08): Push
• RST (0x04): Reset
• SYN (0x02): Synchronize
• FIN (0x01): Finish

Using Socket Topology

[50]

Properties of TCP
Some of the properties of TCP that make it popular among the users are as follows:

• Reliability: This is the most important characteristic of TCP. As we have
said earlier, TCP guarantees unduplicated transmission and data delivery.

• Full-duplex: TCP allows full-duplex operations, hence two nodes can send
messages to each other simultaneously.

• Flow control: TCP uses the sliding-window technique to implement flow
control. Sequence numbers attached to the transmission travels with the
ACK (0x10) flag set. This indicates the number of bytes they can receive
without resulting in a buffer overflow.

• Multiplexing: This feature allows a single node to handle multiple
processes simultaneously.

ZeroMQ sockets
ZeroMQ sockets have four different methods, just like normal sockets, as we have
said at the beginning of this chapter. It should be noted that ZeroMQ sockets are
always void pointers and are asynchronous.

Differences between TCP sockets and
ZeroMQ sockets
The following is the difference between TCP sockets and ZeroMQ sockets:

• ZeroMQ sockets are asynchronous.
• They may implement particular patterns.
• TCP sockets are one-to-one whereas ZeroMQ sockets are many-to-many.

However, you could implement one-to-many, one-to-one, many-to-one, or
many-to-many with ZeroMQ, depending on your needs and socket type.

• ZeroMQ sockets transmit messages whereas TCP transmit bytes. As we said
in Chapter 1, Getting Started, a message is a fixed-length binary object.

• I/O is done in the background in ZeroMQ sockets. Even if your application
is too busy to handle messages, they are put in queues.

Chapter 3

[51]

• Unlike TCP, ZeroMQ sockets do not care whether the destination exists
or not.

• ZeroMQ sockets may transmit data to multiple nodes and receive data from
multiple nodes.

We cannot start the source node and then the destination node when we work with
TCP sockets. This is because the source node would immediately try to connect to
the destination and if there was no destination present to receive the message, then
we would have a problem. However, in ZeroMQ, the message can be enqueued and
sent later if there is no destination to receive the message. Another difference is that
we tell ZeroMQ to send and receive messages instead of bytes.

Node
Node

Node
Node

N:N

ZeroMQ sockets are many-to-many

Routing schemes
We will focus mainly on the unicast scheme, but there are other routing schemes
worth mentioning:

• Unicast: This is the major message transmission scheme among the other
routing schemes. It has a one-to-one relationship where the source transmits
a message to only one destination.

• Multicast: This is a one-to-many approach where one source transmits
messages to many destinations, which are subscribed to the source. It does
not guarantee the delivery of messages to the destinations, just like UDP.

Using Socket Topology

[52]

• Broadcast: This is a one-to-all approach where the source transmits messages
to every single destination. However, not all protocols support broadcasting
(for example, X.25).

• Geocast: This is a one-to-many approach where one source transmits
messages to multiple destinations based on their geographic locations.

ZeroMQ supports unicast transports such as IPC, TCP, and INPROC
and multicast transports such as Pragmatic General Multicast (PGM)
and Encapsulated Pragmatic General Multicast (EPGM). EPGM datagrams
are encapsulated inside UDP datagrams.

ZeroMQ is bundled with OpenPGM. This is the advantage of using ZeroMQ over
AMQP since AMQP has no multicast support. Multicast allows us to send data to all
clients only once, hence the bandwidth usage is kept steady. However, this should not
be taken as a comparison between ZeroMQ and AMQP. This would not be a healthy
comparison. As we said in Chapter 1, Getting Started, ZeroMQ is a library.

PGM and EPGM can only be used with ZMQ_SUB and ZMQ_PUB.

Unicast
Unicast is a transmission scheme that transmits messages to one destination.
ZeroMQ supports TCP, INPROC, and IPC.

Node

Node Node

Node

Node

Node

Unicast scheme

Chapter 3

[53]

Inter-process communication (IPC) is the transmission of data among processes
or threads.

TCP transport is another option you could use. However, TCP transportation
of ZeroMQ does not care whether a destination node exists or not. This is similar
to IPC.

Inter-thread transport (INPROC) has a restriction; it is mandatory to bind before
creating a connection.

Setting I/O threads and limiting the number of
sockets
ZeroMQ does I/O in the background. You could change the number of threads to
work with zmq_ctx_set by setting it before creating a socket. ZeroMQ creates one
thread by default.

void* context = zmq_ctx_new();
zmq_ctx_set(context, ZMQ_IO_THREADS, 8);

Limiting the number of sockets would be a good idea since ZeroMQ will continue
to create sockets as long as your operating system can handle it and this will make
your application vulnerable to the denial of service attacks.

void* context = zmq_ctx_new();
zmq_ctx_set(context, ZMQ_MAX_SOCKETS, 512);

Working with multiple sockets
In Chapter 1, Getting Started, and Chapter 2, Introduction to Sockets, we worked on
programs with a single socket. Working on one socket is easy, but working on
multiple sockets is somewhat tricky. To work with multiple sockets, we use zmq_
poll(3), which is an event loop that allows an application to multiplex I/O with
multiple sockets.

/*

 Polling with ZeroMQ

*/

Using Socket Topology

[54]

#include <string.h>
#include "zmq.h"

int main (int argc, char const *argv[]) {

 void* ctx = zmq_ctx_new();
 void* pull = zmq_socket(ctx, ZMQ_PULL);
 zmq_connect(pull, "tcp://localhost:4040");

 void* subscriber = zmq_socket(ctx, ZMQ_SUB);

 char* company_name = "Company1";
 int length = strlen(company_name) + 1;

 zmq_connect(subscriber, "tcp://localhost:5050");
 zmq_setsockopt(subscriber, ZMQ_SUBSCRIBE, company_name, length);

 printf("starting...\n");

 zmq_pollitem_t polls[2];

 polls[0].socket = pull;
 polls[0].fd = 0;
 polls[0].events = ZMQ_POLLIN;
 polls[0].revents = 0;

 polls[1].socket = subscriber;
 polls[1].fd = 0;
 polls[1].events = ZMQ_POLLIN;
 polls[1].revents = 0;

 for(;;) {
 zmq_msg_t msg;
 int res = zmq_poll(polls, 2, -1);

 if(polls[0].revents > 0) {
 zmq_msg_init(&msg);
 zmq_msg_recv(&msg, pull, 0);
 zmq_msg_close(&msg);
 }

 if(polls[1].revents > 0) {
 zmq_msg_init(&msg);

Chapter 3

[55]

 zmq_msg_recv(&msg, subscriber, 0);
 zmq_msg_close(&msg);
 }
 }

 zmq_close(pull);
 zmq_close(subscriber);
 zmq_ctx_destroy(ctx);

 return 0;
}

You could initialize polling options by putting them into an array as well. For example,
the following code connects to three different sockets and pulls (ZMQ_PULL) the results
from those sockets. Those sockets push data using ZMQ_PUSH.

/*

 Pull from multiple sockets with zmq_poll.

*/

#include "zmq.h"

int main (int argc, char const *argv[]) {

 void* context = zmq_ctx_new();

 void* pull1 = zmq_socket(context, ZMQ_PULL);
 zmq_bind(pull1, "tcp://*:5050");

 void* pull2 = zmq_socket(context, ZMQ_PULL);
 zmq_bind(pull2, "tcp://*:4040");

 void* pull3 = zmq_socket(context, ZMQ_PULL);
 zmq_bind(pull3, "tcp://*:6060");

 printf("Starting...\n");

 zmq_pollitem_t polls[] = {
 {pull1, 0, ZMQ_POLLIN, 0},
 {pull2, 0, ZMQ_POLLIN, 0},

Using Socket Topology

[56]

 {pull3, 0, ZMQ_POLLIN, 0}
 };

 int length = sizeof(polls) / sizeof(zmq_pollitem_t);

 for(;;) {
 zmq_msg_t msg;
 zmq_poll(polls, length, -1);

 if(polls[0].revents & ZMQ_POLLIN) {
 zmq_msg_init(&msg);
 zmq_msg_recv(&msg, pull1, 0);
 zmq_msg_close(&msg);
 }
 if(polls[1].revents > 0) {
 zmq_msg_init(&msg);
 zmq_msg_recv(&msg, pull2, 0);
 zmq_msg_close(&msg);
 }
 if(polls[2].revents > 0) {
 zmq_msg_init(&msg);
 zmq_msg_recv(&msg, pull3, 0);
 zmq_msg_close(&msg);
 }
 }

 zmq_close(pull1);
 zmq_close(pull2);
 zmq_close(pull3);
 zmq_ctx_destroy(context);

 return 0;
}

Never access the zmq_msg_t variables directly.

Chapter 3

[57]

Working with multi-part messages
We always define messages using zmq_msg. When we want to send multi-part
messages, again, we need to use zmq_msg. For example, if the data package is divided
into 10 parts, you need to create 10 zmq_msg sockets. The client either receives all the
message parts or nothing at all. In order to send multi-part messages, the ZMQ_SNDMORE
flag must be set during the zmq_send call.

int zmq_send(void* socket, void* buf, size_t len, int flags);

The following is the request-reply example that we used in Chapter 1, Getting Started,
but this time we will send the message in multiple parts. First, let's have a look at the
server code:

/*

 Request - Reply

 Send "world" in multiple-parts.

 server.c

*/

#include <string.h>
#include <stdio.h>
#include <unistd.h>
#include "zmq.h"

int main (int argc, char const *argv[]) {

 void* context = zmq_ctx_new();
 void* respond = zmq_socket(context, ZMQ_REP);
 zmq_bind(respond, "tcp://*:4040");

 printf("Starting...\n");

 for(;;) {

 zmq_msg_t request;
 zmq_msg_init(&request);
 zmq_msg_recv(&request, respond, 0);

Using Socket Topology

[58]

 printf("Received: hello\n");

 zmq_msg_close(&request);

 sleep(1);

 zmq_msg_t msg1, msg2, msg3, msg4, msg5;
 zmq_msg_init_size(&msg1, 2);
 zmq_msg_init_size(&msg2, 2);
 zmq_msg_init_size(&msg3, 2);
 zmq_msg_init_size(&msg4, 2);
 zmq_msg_init_size(&msg5, 2);

 memcpy(zmq_msg_data(&msg1), "w", 2);
 zmq_msg_send(&msg1, respond, ZMQ_SNDMORE);

 memcpy(zmq_msg_data(&msg2), "o", 2);
 zmq_msg_send(&msg2, respond, ZMQ_SNDMORE);

 memcpy(zmq_msg_data(&msg3), "r", 2);
 zmq_msg_send(&msg3, respond, ZMQ_SNDMORE);

 memcpy(zmq_msg_data(&msg4), "l", 2);
 zmq_msg_send(&msg4, respond, ZMQ_SNDMORE);

 memcpy(zmq_msg_data(&msg5), "d", 2);
 zmq_msg_send(&msg5, respond, 0);

 zmq_msg_close(&msg1);
 zmq_msg_close(&msg2);
 zmq_msg_close(&msg3);
 zmq_msg_close(&msg4);
 zmq_msg_close(&msg5);
 }

 zmq_close(respond);
 zmq_ctx_destroy(context);

 return 0;
}

Chapter 3

[59]

And the following is the client code:

/*

 Request - Reply

 Receive "world" in multi-parts.

 client.c

*/

#include <string.h>
#include <stdio.h>
#include <stdint.h>
#include <unistd.h>
#include "zmq.h"

int main (int argc, char const *argv[]) {

 void* context = zmq_ctx_new();

 printf("Client Starting....\n");

 void* request = zmq_socket(context, ZMQ_REQ);
 zmq_connect(request, "tcp://localhost:4040");

 for(;;) {

 zmq_msg_t reply;
 zmq_msg_init(&reply);
 zmq_msg_recv(&reply, request, 0);
 printf("Received: %s\n", (char *) zmq_msg_data(&reply));
 zmq_msg_close(&reply);

 uint64_t more_part;
 size_t more_size = sizeof(more_part);
 zmq_getsockopt(request, ZMQ_RCVMORE, &more_part, &more_size);

Using Socket Topology

[60]

 if (!more_part)
 break;

 }

 zmq_close(request);
 zmq_ctx_destroy(context);

 return 0;
}

We should note that the last part of the message flag that you send should always be
set to 0. If you set it to ZMQ_SNDMORE, then the client will not receive any messages.

zmq_msg_t msg1, msg2, msg3, msg4, msg5;
zmq_msg_init_size(&msg1, 2);
zmq_msg_init_size(&msg2, 2);
zmq_msg_init_size(&msg3, 2);
zmq_msg_init_size(&msg4, 2);
zmq_msg_init_size(&msg5, 2);

zmq_msg_send(&msg1, respond, ZMQ_SNDMORE);
zmq_msg_send(&msg2, respond, ZMQ_SNDMORE);
zmq_msg_send(&msg3, respond, ZMQ_SNDMORE);
zmq_msg_send(&msg4, respond, ZMQ_SNDMORE);
zmq_msg_send(&msg5, respond, ZMQ_SNDMORE);

The previous code snippet will not work. You could change the relevant parts of
server code with it and experience it yourself.

How to handle interruptions
You need to close the applications properly when you interrupt your application
with signals such as SIGTERM or SIGINT. SIGTERM is one of the POSIX signals that
sends a signal to a process to end it. Signals are asynchronous and are vulnerable
to race conditions.

• SIGTERM: When you execute the kill command with its defaults in a Unix
system, you are basically calling a SIGTERM signal to the denoted process.
These signals should be handled properly so your application can release the
resources or close database connections and flush the messages properly.

Chapter 3

[61]

• SIGINT: This signal can be caught by the application just like SIGTERM as well.
The user usually calls it with Ctrl + C.

• SIGKILL: This is the signal that is called with a kill -9 command. However,
this signal cannot be caught by an application, so there is nothing much we
could do about it.

SIGINT could be caught in languages that support exception handling by throwing
the proper exception such as KeyboardInterrupt in Python. However, things are a
little bit different in C.

Let's recall our "hello world" request-reply program to demonstrate the handling of
the SIGTERM (Ctrl + C) interrupt.

/*

 Request - Reply

 Handling interrupts.

 server.c

*/

#include <string.h>
#include <stdio.h>
#include "czmq.h"

int main (int argc, char const *argv[]) {

 zctx_t* context = zctx_new();
 void* socket = zsocket_new(context, ZMQ_REP);
 zsocket_bind(socket, "tcp://*:5050");

 printf("Starting server...\n");

 for(;;) {

 char* msg = zstr_recv(socket);

 if(!msg) {
 break;
 }

Using Socket Topology

[62]

 printf("Received: %s\n", msg);
 zstr_send(socket, "world");
 free(msg);
 }

 zsocket_destroy(context, socket);
 zctx_destroy(&context);

 return 0;
}

And the following is the client code:

/*

 Request - Reply

 Handling interrupts.

 client.c

*/

#include "czmq.h"

int main (int argc, char const *argv[]) {

 zctx_t* context = zctx_new();
 void* request = zsocket_new(context, ZMQ_REQ);

 printf("Starting client...\n");

 zsocket_connect(request, "tcp://localhost:5050");

 for(;;) {
 zstr_send(request, "hello");
 char* reply = zstr_recv(request);
 if(!reply) {
 break;
 }

Chapter 3

[63]

 printf("Received: %s\n", reply);
 free(reply);
 sleep(1);
 }

 zsocket_destroy(context, request);
 zctx_destroy(&context);

 return 0;

}

However, we are coding in C and it already has signal-handling functions defined in
signal.h. We could do things closer to the traditional C style by including a signal
handler, as follows:

/*

 Request - Reply

 Send "world" in multi-parts.

 server.c

*/

#include "czmq.h"
#include <signal.h>

int main (int argc, char const *argv[]) {

 zctx_t* context = zctx_new();
 void* socket = zsocket_new(context, ZMQ_REP);
 zsocket_bind(socket, "tcp://*:5050");
 signal(SIGINT, exit);

 printf("Starting server...\n");

 for(;;) {

 char* msg = zstr_recv(socket);

Using Socket Topology

[64]

 printf("Received: %s\n", msg);
 zstr_send(socket, "world");
 free(msg);
 }

 zsocket_destroy(context, socket);
 zctx_destroy(&context);

 return 0;
}

Did you notice something different? Yes, we included the czmq.h header.
The code has completely changed.

Introduction to CZMQ
CZMQ is a high-level C library for ZeroMQ. Its main purpose is to minimize the
differences between ZeroMQ v2.x and v3.x and also to enable doing more with
less code. If you recall from Chapter 1, Getting Started, we said that the examples
are written for ZeroMQ v3.2. Therefore, they may not work with ZeroMQ v2.2
or older.

It includes list and hash structures and lets developers work with strings and
multi-part messages easier. It also automatically closes opened sockets when
a given context is terminated.

Linking CZMQ with your ZeroMQ application is simple:

gcc –lczmq –o program program.c

zctx
This is a wrapper for the ZeroMQ context. Its main features are as follows:

• Setting up signal handling, thus blocking calls such as zmq_poll and zmq_
recv() and returning when SIGINT (Ctrl + C) or SIGTERM (kill) is called.

• It automatically closes the opened sockets before terminating the context.

Sample usage:

zctx_t* context = zctx_new();

Chapter 3

[65]

zstr_send
This is called to send and receive C strings. It is used to send basic strings.
The important thing we need to note is that zstr sends strings without a trailing
null byte, \0. However, it appends a null byte after receiving the string.

Sample usage:

zstr_send(socket, "world");

zloop
This provides an event-driven reactor pattern by handling events using zmq_
pollitem_t. The event-driven programming paradigm is useful since it does
not require a new thread for each request. Threading may result in poor
performance because of context switching.

Here is a simple example. The server receives a "hello" message from a client
and sends back the message.

First, let's see the server code:

/*
 Polling example

*/

#include "czmq.h"
#include <signal.h>

int do_something(zloop_t* loop, zmq_pollitem_t* item, void* socket) {
 char* s = zstr_recv(socket);
 printf("%s\n", s);
 return 0;
}

int main (int argc, char const *argv[]) {

 zctx_t* context = zctx_new();
 void* socket = zsocket_new(context, ZMQ_PULL);
 zsocket_bind(socket, "tcp://*:5050");
 signal(SIGINT, exit);

Using Socket Topology

[66]

 printf("Starting server...\n");

 zloop_t* loop = zloop_new();

 zloop_set_verbose(loop, 1);
 zloop_timer(loop, 10000, 1, do_send, NULL);

 zmq_pollitem_t poll = {socket, 0, ZMQ_POLLIN};
 zloop_poller(loop, &poll, do_something, socket);

 zloop_start(loop);
 zloop_destroy(&loop);

 zsocket_destroy(context, socket);
 zctx_destroy(&context);

 return 0;
}

And the following is the client code:

#include "czmq.h"
#include <signal.h>

int main (int argc, char const *argv[]) {

 zctx_t* context = zctx_new();
 void* request = zsocket_new(context, ZMQ_PUSH);
 signal(SIGINT, exit);
 printf("Starting client...\n");

 zsocket_connect(request, "tcp://localhost:5050");
 int i = 0;

 for(;;) {
 zstr_send(request, "hello");
 printf("Pushing Hello\n");
}

 zsocket_destroy(context, request);
 zctx_destroy(&context);

 return 0;

}

Chapter 3

[67]

zmsg
This is used to work with multi-part messages. Its sample usage is as follows:

/*

 Send "hello" in multi-parts using zmsg.

 server.c

*/

#include "czmq.h"

int main (int argc, char const *argv[]) {

 zctx_t* context = zctx_new();
 void* socket = zsocket_new(context, ZMQ_REP);
 zsocket_bind(socket, "tcp://*:5050");

 printf("Starting server...\n");

 for(;;) {

 zmsg_t* msg = zmsg_new();

 zmsg_addmem(msg, "h", 1);
 zmsg_addmem(msg, "e", 1);
 zmsg_addmem(msg, "l", 1);
 zmsg_addmem(msg, "l", 1);
 zmsg_addmem(msg, "o", 1);

 zmsg_send(&msg, socket);

 zmsg_destroy(&msg);
 }

 zsocket_destroy(context, socket);
 zctx_destroy(&context);

 return 0;
}

Using Socket Topology

[68]

zfile
This contains the following helper functions to work with files:

• zfile_size: This detects the file size.
• zfile_mkdir: This creates a directory if it does not exist. However, it goes

only one level deep; therefore, it will create /my_zmq_folder/ but will not
create /my_zmq_files/my_another_folder/.

• zfile_delete: This deletes the file.
• zfile_exists: This detects if files already exist or not.

Here is some sample code for zfile. The scenario is that a client receives the
"world" message from the server and writes it to a file.

The following server code is identical to what we have done in the interrupt
signals example:

/*

 Request - Reply

 Working with files

 Helloserver.c

*/

#include "czmq.h"

int main (int argc, char const *argv[]) {

 zctx_t* context = zctx_new();
 void* socket = zsocket_new(context, ZMQ_REP);
 zsocket_bind(socket, "tcp://*:5050");

 printf("Starting server...\n");

 for(;;) {

 char* msg = zstr_recv(socket);

Chapter 3

[69]

 if(!msg) {
 break;
 }

 printf("Received: %s\n", msg);
 zstr_send(socket, "world");
 free(msg);
 }

 zsocket_destroy(context, socket);
 zctx_destroy(&context);

 return 0;
}

The client sends a "Hello" message to the server, receives the "world" message, and
writes the "world" message to a file:

/*

 Request - Reply

 Receive "world" in multi-parts.

 client.c

*/

#include <stdio.h>
#include "czmq.h"

int main (int argc, char const *argv[]) {

 zctx_t* context = zctx_new();
 void* request = zsocket_new(context, ZMQ_REQ);

 printf("Starting client...\n");

 zsocket_connect(request, "tcp://localhost:5050");

 zstr_send(request, "Hello");

Using Socket Topology

[70]

 zmsg_t* msg = zmsg_recv(request);

 FILE* file = fopen("server.txt", "w");
 zmsg_save(msg, file);
 fclose(file);

 zmsg_destroy(&msg);

 zsocket_destroy(context, request);
 zctx_destroy(&context);

 return 0;

}

zfile_mkdir
As we have said earlier, zfile_mkdir creates a directory if and only if it is one level
deep. Therefore, it will create a test folder, but will not create a test/test2 folder.
Here it is in action:

/*

 Request - Reply

 Working with zfile_mkdir

*/

#include <stdio.h>
#include "czmq.h"

int main (int argc, char const *argv[]) {

 zctx_t* context = zctx_new();
 void* request = zsocket_new(context, ZMQ_REQ);

 printf("Starting client...\n");

Chapter 3

[71]

 zsocket_connect(request, "tcp://localhost:5050");

 zstr_send(request, "Hello");

 zfile_mkdir("test"); // Will work

 zfile_mkdir("test2/test3"); // Will not work

 zmsg_destroy(&msg);
 zsocket_destroy(context, request);
 zctx_destroy(&context);

 return 0;

}

zhash
This is basically a hash table. It internally uses a Bernstein hash data structure to
hash the strings. You could use zhash for caching; for example, the client sends
a key to the server and receives the e-mail address of a user.

The following is the server code:

/*

 Request - Reply

 Using zhash.

 server.c

*/

#include "czmq.h"
#include <signal.h>

int main (int argc, char const *argv[]) {

 zctx_t* context = zctx_new();

Using Socket Topology

[72]

 void* socket = zsocket_new(context, ZMQ_REP);
 zsocket_bind(socket, "tcp://*:5050");
 signal(SIGINT, exit);

 printf("Starting server...\n");

 zhash_t* map = zhash_new();
 zhash_insert(map, "user_id", "1234");
 zhash_insert(map, "user_email", "name@example.org");

 for(;;) {

 char* msg = zstr_recv(socket);

 char* email = zhash_lookup(map, msg);
 printf("Received: %s\n", msg);

 if(email) {
 zstr_send(socket, zhash_lookup(map, msg));
 } else {
 zstr_send(socket, "Not Found");
 }

 free(msg);
 }

 zsocket_destroy(context, socket);
 zctx_destroy(&context);

 return 0;
}

And the client code is as follows:

/*

 Request - Reply

 Using zhash.

Chapter 3

[73]

 client.c

*/
#include "czmq.h"
#include <signal.h>

int main (int argc, char const *argv[]) {

 zctx_t* context = zctx_new();
 void* request = zsocket_new(context, ZMQ_REQ);

 printf("Starting client...\n");

 zsocket_connect(request, "tcp://localhost:5050");

 for(;;) {

 /* Send 'user_email' key to the server and receive the e-mail
 address of a user.
 */
 zstr_send(request, "user_email");
 char* reply = zstr_recv(request);

 if(!reply) {
 break;
 }

 printf("Received: %s\n", reply);

 free(reply);
 sleep(1);
 }

 zsocket_destroy(context, request);
 zctx_destroy(&context);

 return 0;

}

Using Socket Topology

[74]

zlist
This is a single-list interface. For example, you could use zlist to store buffer results.
It is reasonably fast.

The following is a client example. The server example provided for zhash can be
used with this:

#include "czmq.h"
#include <signal.h>

int main (int argc, char const *argv[]) {

 zctx_t* context = zctx_new();
 void* request = zsocket_new(context, ZMQ_REQ);

 printf("Starting client...\n");

 zsocket_connect(request, "tcp://localhost:5050");

 zlist_t* list = zlist_new();

 zstr_send(request, "user_email");
 char* reply = zstr_recv(request);

 zlist_push(list, reply);

 zstr_send(request, "user_id");
 reply = zstr_recv(request);

 zlist_push(list, reply);

 int length = zlist_size(list);
 for(i = 0; i < length; i++) {
 char* s = (char *) zlist_pop(list);
 printf("%s ", s);
 }
 printf("\n");

 sleep(1);

 free(reply);

Chapter 3

[75]

 zsocket_destroy(context, request);
 zctx_destroy(&context);

 return 0;

}

zclock
This has sleep and timing functions. You would use this mostly for testing and
debugging threads or polls.

zthread
This is used to create detached threads. Such threads create their own ZeroMQ
context, zctx_t.

There is also the libzfl library, which aims to build
industrial-scale ZeroMQ applications that you could
use. The libzfl library relies on CZMQ, so you need
to have CZMQ before using libzfl.

Summary
In this chapter, we discussed how ZeroMQ sockets differ from traditional TCP sockets.
Later on, we discussed limiting the number of sockets and setting I/O threads. We
also discussed how to work with multiple sockets and how we could send multi-part
messages. In the last section of this chapter, we learned about CZMQ, a high-level C
binding library for ZeroMQ, which would minimize the difference between ZeroMQ
v2.x and ZeroMQ v3.x.

Advanced Patterns
In this chapter we will look at multithreading applications with ZeroMQ and have
a brief look at more advanced patterns. This chapter is a journey into ZeroMQ's
advanced features.

Extending the request-reply pattern
In Chapter 1, Getting Started, we worked on a simple request-reply example. When
you have one server to handle multiple client responses, everything is fine. However,
in a realistic situation, there would be more than one server. How do we solve this,
then? We could set up a broker to handle it. However, ZeroMQ is brokerless. Perhaps
we could use zmq_poll, but in this case we will not be able to use the request-reply
pattern since it only gives us synchronous transmission.

Advanced Patterns

[78]

It looks like we are stuck, but there must be some way to solve this. If you remember
from Chapter 1, Getting Started, we said that ZeroMQ gives us tools to code our
own message-queuing service. We are going to implement a broker to solve this
small issue.

ReplyReply

Request Request Request Request

Broker

Extended request-reply pattern

When there is a broker, servers and clients do not interact directly with each other.
They communicate only through a broker.

This is a brief introduction to more advanced topics that we will cover later in
this chapter.

Writing multithreaded applications with
ZeroMQ
ZeroMQ threads are native threads, which means they are OS threads instead of green
threads. The difference between native threads and green threads is that the latter run
on user space whereas the former run on kernel space. The main disadvantage of green
threads is that the OS has no clue what is going on since these kinds of threads do not
rely on the operating system.

Chapter 4

[79]

There are a few things you need to keep in mind when programming multithreaded
applications with ZeroMQ:

• As mentioned in the previous chapters, ZeroMQ sockets are not thread safe.
Therefore, you should not share sockets between threads.

• Only ZeroMQ context is thread safe.
• Do not access the same messages from different threads.

The following is a sample multithreaded "Hello world" server using pthread.

#include "czmq.h"
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

void* worker(void* ctx) {
 zctx_t* context = ctx;
 void* receiver = zsocket_new(context, ZMQ_REP);
 zsocket_connect(receiver, "inproc://workers");

 for(;;) {
 char* str = zstr_recv(receiver);
 printf("Received: %s\n", str);
 free(str);

 zclock_sleep(10);
 zstr_send(receiver, "world");
 }

 zsocket_destroy(context, receiver);
 zmq_close(receiver);
 return NULL;
}

int main (int argc, char const *argv[]) {

 zctx_t* context = zctx_new();
 void* clients = zsocket_new(context, ZMQ_ROUTER);
 zsocket_bind(clients, "tcp://*:4040");

Advanced Patterns

[80]

 void* workers = zsocket_new(context, ZMQ_DEALER);
 zsocket_bind(workers, "inproc://workers");

 int i;
 for(i = 0; i < 5; i++) {
 pthread_t thread;
 pthread_create(&thread, NULL, worker, context);
 }
 zclock_sleep(10);

 zctx_destroy(&context);
 return 0;
}

Wrapping publisher-subscriber
messages
If you recall from Chapter 2, Introduction to Sockets, we said that messages are prefix
matched when using the publisher-subscriber pattern and we have showed a work-
around to get what the subscriber really wants. This time, we visit the PUB-SUB
sockets by enveloping messages with separate keys.

The following is the server code:

/*

 PUB – SUB wrap messages.
 server.c

*/

#include "czmq.h"

int main (int argc, char const *argv[]) {

 zctx_t* context = zctx_new();
 void* pub = zsocket_new(context, ZMQ_PUB);
 zsocket_bind(pub, "tcp://*:4040");

 printf("starting server\n");

Chapter 4

[81]

 for(;;) {
 zstr_sendm(pub, "Company1");
 zstr_send(pub, "Company Message to be ignored.");
 zstr_sendm(pub, "Company10");
 zstr_send(pub, "Company message to receive.");
 zclock_sleep(10);
 }

 zsocket_destroy(context, pub);
 zctx_destroy(&context);

 return 0;
}

And the following is the client code:

/*
 PUB – SUB envelop messages.
 client.c
*/

#include "czmq.h"

int main (int argc, char const *argv[]) {

 zctx_t* context = zctx_new();
 void* request = zsocket_new(context, ZMQ_SUB);

 printf("Starting client...\n");

 zsocket_connect(request, "tcp://localhost:4040");
 zsocket_set_subscribe (request, "Company10");

 for(;;) {

 char* env = zstr_recv(request);
 char* msg = zstr_recv(request);
 printf("env: %s | %s\n", env, msg);

 if(!msg) break;

Advanced Patterns

[82]

 free(env);
 free(msg);

 zclock_sleep(1);
 }

 zsocket_destroy(context, request);
 zctx_destroy(&context);

 return 0;

}

High watermark
When messages are sent from source node to destination node very rapidly,
the source node could run out of memory. There are quite a few solutions to this,
such as flow management. However, it may not be feasible in some situations.

ZeroMQ uses a high watermark to set the capacity of pipes. In ZeroMQ v2.x,
the default value is infinite whereas in ZeroMQ v3.x the default value is 1,000.

When a socket reaches a high watermark, it either drops the message or blocks it.
The REQ-REP socket will block the message whereas PUB will drop it.

The following is an example:

/*
 HWM example.
*/

#include "czmq.h"

int main (int argc, char const *argv[]) {

 zctx_t* context = zctx_new();
 void* pub = zsocket_new(context, ZMQ_PUB);
 zsocket_bind(pub, "tcp://*:4040");

 zsocket_set_hwm(pub, 10);

Chapter 4

[83]

 for(;;) {
 zstr_sendm(pub, "Company1");
 zstr_send(pub, "Message to be ignored.");
 zstr_sendm(pub, "Company10");
 zstr_send(pub, "Message to receive.");
 zclock_sleep(10);
 }

 zsocket_destroy(context, pub);
 zctx_destroy(&context);

 return 0;
}

Reliability
Applications may crash unexpectedly, stop responding, can have memory leaks,
 or a bug can make them run slower. In addition to problems that an application
may have, we may experience hardware failures or network problems. We need
to be sure that messages arrive at their destination no matter what problems our
infrastructure may experience. Reliability means every event is guaranteed to
arrive at its destination.

Most message queue implementations rely on a broker to have reliability, which
means messages are queued and then delivered to their destinations, whereas in
ZeroMQ, applications directly communicate with each other and messages are
resent if they are lost for some reason.

It is easy to figure out if either the server or the client stops responding when we
use the request-reply pattern. If the client or the server does not receive messages
from each other, it means there is a problem.

If you recall from Chapter 2, Introduction to Sockets, we said that the publisher
does not know whether a subscriber is connected or not. This also means that
if a subscriber starts experiencing problems, the publisher will not know about
it and the subscriber will miss messages the publisher has been transmitting.

When it comes to reliability in the publish-subscribe pattern, we need bidirectional
communication between the publisher and the subscribers. However, the publisher-
subscriber pattern does not support bidirectional communication in ZeroMQ,
therefore, the option is to use the dealer-router pattern.

Advanced Patterns

[84]

Having reliability in the request-reply pattern is relatively easier than in the
publish-subscribe pattern. We could simply retry sending the message if we
have not received a reply yet. If we still do not get a reply after trying a number
of times, we could discard the communication.

Heartbeating is a layer that can be used to detect if a worker has died or is alive.
However, it should not be used with the request-reply pattern. Heartbeating travels
asynchronously between resources.

If there are a limited number of subscribers connected to the publisher then TCP
is fine, whereas if there are massive number of subscribers, in that case, it would
be a better idea to use PGM.

Slow subscribers in a publish-subscribe
pattern
A serious issue of the publish-subscribe pattern is slow subscribers. A flawless
environment would be one where the publisher sends messages to the subscriber at
full speed, but this is utopia. In reality, subscribers cannot keep up with the publisher
most of the time. They are either poorly implemented, have network issues, or some
other reason.

Let's consider the following example where the subscriber runs slower and we abort
the program. First, let's look at the server code:

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/time.h>
#include <time.h>
#include "zmq.h"

int main (int argc, char const *argv[]) {
 void* context = zmq_ctx_new();
 void* publisher = zmq_socket(context, ZMQ_PUB);
 printf("Starting Server...\n");

 zmq_bind(publisher, "tcp://*:4040");

 for(;;) {
 time_t current_time = time(NULL) % 86400;
 char str[11];
 snprintf(str, sizeof str, "%lu", current_time);

 int s_len = strlen(str);

Chapter 4

[85]

 zmq_msg_t message;
 zmq_msg_init_size(&message, s_len);
 memcpy(zmq_msg_data(&message), str, s_len);
 zmq_msg_send(&message, publisher, 0);
 zmq_msg_close(&message);
 sleep(1);
 }
 zmq_close(publisher);
 zmq_ctx_destroy(context);

 return 0;
}

And the subscriber that runs slower:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/time.h>
#include <time.h>
#include "zmq.h"

#define DELAY 4

int main (int argc, char const *argv[]) {

 void* context = zmq_ctx_new();
 void* subscriber = zmq_socket(context, ZMQ_SUB);

 printf("Getting data...\n");

 int conn = zmq_connect(subscriber, "tcp://localhost:4040");
 conn = zmq_setsockopt(subscriber, ZMQ_SUBSCRIBE, 0, 0);

 int i ;

 for(i = 0; i < 10; i++) {
 time_t current_time = time(NULL) % 86400;

 zmq_msg_t reply;
 zmq_msg_init(&reply);
 zmq_msg_recv(&reply, subscriber, 0);

Advanced Patterns

[86]

 int length = zmq_msg_size(&reply);

 char* value = malloc(length + 1);
 memcpy(value, zmq_msg_data(&reply), length);
 zmq_msg_close(&reply);

 unsigned long t_timer;
 sscanf(value, "%lu", &t_timer);

 int res = abs(current_time - t_timer);

 free(value);

 if(res > DELAY) {
 printf("Subscriber is too slow. Aborting.\n");
 break;
 }
 sleep(3);
 }

 zmq_close(subscriber);
 zmq_ctx_destroy(context);

 return 0;
}

We have defined a DELAY constant in our subscriber code and we calculate
the time the server takes to send a message and the local time of the subscriber.
If the difference between these values is larger than the DELAY constant, we
abort the subscriber as it means it runs slower. This is also known as suicidal
snail pattern in ZeroMQ terminology.

Summary
In this chapter we briefly looked at some advanced patterns, reliability, and how
to deal with slow subscribers in the publish-subscribe pattern.

ZeroMQ is a flexible, easy-to-use, and fast message queuing service. Unlike other
message queuing libraries, it allows developers to implement their own message
queuing services.

Appendix
Structure and Interpretation of Computer Programs, Second Edition, Abelson Harold,
Gerald Jay Sussman, and Julie Sussman, McGraw-Hill Science, 1996.

Fuzz revisited: A re-examination of the reliability of Unix utilities and services,
Barton P. Miller, David Koski, Cjin Pheow, Lee Vivekananda Maganty, Ravi Murthy,
Ajitkumar Natarajan, and Jeff Steidl, 1995.

CSSV: Towards a Realistic Tool for Statically Detecting All Buffer Overflows In C,
Nurit Dor, Michael Rodeh, and Mooly Sagiv, 2003.

Beej's Guide to Unix IPC, Brian "Beej Jorgensen" Hall, available at
http://beej.us/guide/bgipc/output/html/multipage/index.html
and viewed on October 22, 2012.

ZeroMQ – The Guide, Pieter Hintjens, available at http://zguide.zeromq.org/
and viewed on November 4, 2012.

ZeroMQ – API, Pieter Hintjens, available at http://api.zeromq.org/ and
viewed on October 17, 2012.

CZMQ – High Level C Binding for ZeroMQ, Pieter Hintjens, available at
http://czmq.zeromq.org/ and viewed on November 6, 2012.

A TCP Tutorial, Andy Ogielski. available at http://www.ssfnet.org/Exchange
/tcp/tcpTutorialNotes.html and viewed on October 15, 2012.

An Introduction to Asyncronous Programming and Twisted, Dave Peticolas, 2011,
available at http://krondo.com/blog/?page_id=1327 and viewed on
September 12, 2012.

ZeroMQ an Introduction, Nicholas Piël, 2010, available at http://nichol.as/
zeromq-an-introduction.

Appendix

[88]

Valgrind Manual, Julian Seward, available at http://valgrind.org/docs/manual/
quick-start.html#quick-start.intro and viewed on October 17, 2012.

Cloud-based Queuing System with Strong Consistency, Zhe Zhang, Han Chen,
Minkyong Kim, and Hui Lei, 2011.

Message Queue Evaluation Notes, Second Life, available at http://wiki.secondlife.
com/wiki/Message_Queue_Evaluation_Notes#Zero_MQ and viewed on
September 15, 2012.

Index
A
AIO 9, 10
Asynchronous Input/Output. See AIO

B
Beej Guide

URL 87
broadcast 52

C
C

strings, handling 17, 18
connectionless sockets 46
CZMQ

about 64
URL 87
zclock 75
zctx 64
zfile 68, 69
zfile_mkdir 70
zhash 71
zlist 74
zloop 65, 66
zmsg 67
zstr_send 65
zthread 75

D
DARPA Internet addresses

(Internet Sockets) 45

datagram sockets, internet sockets 46
definitely lost 43
DELAY constant 86
distributed denial of service

attack (DDoS) 10
divide-and-conquer strategy 34-39

E
Encapsulated Pragmatic General Multicast.

See EPGM
EPGM 52

F
fair-queue strategy 15
FIFO (First In First Out) queue 8
flags, TCP 49
full-duplex operation 50

G
geocast 52
green threads

and native threads, differences 78

H
header, TCP 49
heartbeating 84
Hello world

request-reply architecture 14
request-reply pattern 15
writing 11-13

helper functions, zfile 68

[90]

I
indirectly lost 43
INPROC 53
internet sockets

about 45
datagram sockets 46
raw sockets 46
stream sockets 45

interruptions
handling 60-64

Inter-thread Transport. See INPROC
I/O threads

setting 53

K
kill -9 command 61

L
libzfl library 75

M
memory leaks

detecting 42
message

filtering 27-32
sending 16, 17

message queue 7-9
multicast 51
multi-part messages 57-60
multiple sockets

about 53
zmq_poll(3) used 53
ZMQ_PULL used 55
ZMQ_PUSH used 55

multithreaded applications
writing, with ZeroMQ 78, 79

N
native threads

and green threads, differences 78
notify 21

O
OpenPGM 52

P
PF_INET 45
PF_UNIX 45
pipeline pattern

about 34
divide-and-conquer strategy 34-39
ZMQ_PULL socket 40
ZMQ_PUSH socket 40

possibly lost 43
POSIX signal 60
Pragmatic General Multicast (PGM) 52
processes 41
publish 21
publisher-subscriber messages

wrapping 80, 81
publish-subscribe pattern

about 21, 22
client code, sample output 25
messages, filtering 27, 28
notes 33, 34
notify 21
publish 21
reliability 83, 84
slow subscribers 84-86
socket, options 32
subscribe 21
unsubscribe 21

PUB-SUB sockets 80
PULL socket 39
PUSH socket 39

R
raw sockets, internet sockets 46
reliability, publish-subscribe pattern 83, 84
reply part, request-reply pattern

fair-queue strategy 15
REQ-REP socket 82
request part, request-reply pattern 16
request-reply architecture 14 14

[91]

request-reply pattern
about 15
extending 77, 78
reply part 15
 request part 16

RFC 793 guide 47
routing schemes

about 51
broadcast 52
geocast 52
multicast 51
unicast 51

S
SIGINT signal 61
SIGINT. SIGTERM signal 60
SIGKILL signal 61
SIGTERM signal 60
slow subscribers, publish-subscribe

pattern 84-86
SOCK_DGRAM. See datagram sockets,

internet sockets
socket

about 45
internet socket, types 45, 46
limiting 53

socket API 45
socket options, publish-subscribe pattern

about 32
subscription 33
unsubscription 33

SOCK_RAW. See raw sockets, internet
sockets

SOCK_STREAM. See stream sockets,
internet sockets

stream sockets, internet sockets 45
subscribe 21
subscriptions 24

T
TCP

about 47
flags 49

header 49
properties 50
sockets 47
three-way handshake protocol 47

TCP, properties
flow-control 50
full-duplex 50
multiplexing 50
reliability 50

TCP sockets
and ZeroMQ sockets, differences 50, 51

TCP Tutorial
URL 87

three-way handshake protocol 47, 48
Transmission Control Protocol. See TCP

U
unicast 51, 52, 53
unsubscribe 21

V
Valgrind 42, 43

Z
zclock, CZMQ 75
zctx, CZMQ 64
ZeroMQ

about 7, 10
brokerless design 11
high watermark 82
multithreaded applications,

writing with 78, 79
performance 11
simplicity 11
sockets and TCP sockets, differences 50
TCP flags 49
URL 87
version, checking 18

ZeroMQ context
destroying 41
getting 40

ZeroMQ sockets
and TCP sockets, differences 50, 51

[92]

zfile_delete, helper function 68
zfile_exists, helper function 68
zfile_mkdir, helper function 68, 70
zfile_send, CZMQ

about 68
zfile_delete 68
zfile_exists 68
zfile_mkdir 68-70
zfile_size 68

zfile_size, helper function 68
zlist, CZMQ 74
zloop_send, CZMQ 65, 66
zmq_ctx_new() method 14
zmq_msg_recv

parameters 17
zmq_msg_send

parameters 16
zmq_msg sockets 57
ZMQ_PULL socket 40
ZMQ_PUSH socket 40
ZMQ_REP socket 14, 15
ZMQ_REQ 16
ZMQ_SNDMORE flag 57, 60
zmsg_send, CZMQ 67
zstr_send, CZMQ 65
zthread, CZMQ 75

Thank you for buying
ZeroMQ

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

RESTful PHP Web Services
ISBN: 978-1-847195-52-4 Paperback: 220 pages

Learn the basic architectural concepts and steps
through examples of consuming and creating
RESTful

web services in PHP

1. Get familiar with REST principles

2. Learn how to design and implement PHP web
services with REST

3. Real-world examples, with services and client
PHP code snippets

4. Introduces tools and frameworks that
can be used when developing RESTful
PHP applications

ASP.NET 3.5 Application
Architecture and Design
ISBN: 978-1-847195-50-0 Paperback: 260 pages

Build robust, scalable ASP.NET applications quickly
and easily

1. Master the architectural options in ASP.NET to
enhance your applications

2. Develop and implement n-tier architecture
to allow you to modify a component without
disturbing the next one

3. Design scalable and maintainable web
applications rapidly

Please check www.PacktPub.com for information on our titles

Mastering OpenLDAP:
Configuring, Securing and
Integrating Directory Services
ISBN: 978-1-847191-02-1 Paperback: 484 pages

Configuring, Securing, and Integrating Directory
Services

1. Up-to-date with the latest OpenLDAP release

2. Installing and configuring the OpenLDAP
server

3. Synchronizing multiple OpenLDAP servers
over the network

4. Creating custom LDAP schemas to model
your own information

Catalyst
ISBN: 978-1-847190-95-6 Paperback: 200 pages

Design, develop, test, and deploy applications with
the open-source Catalyst MVC framework

1. Understand the Catalyst Framework and
MVC architecture

2. Build and test a site with Catalyst

3. Detailed walkthroughs to create sample
applications

4. Extend Catalyst through plug-ins

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	The beginning
	The message queue
	Introduction to ZeroMQ
	Simplicity
	Performance
	The brokerless design

	Hello world
	The request-reply pattern
	Reply
	Request
	Sending the message

	Handling strings in C
	Checking the ZeroMQ version
	Summary

	Chapter 2: Introduction to Sockets
	The publish-subscribe pattern
	Filtering out messages
	The socket options
	Subscription
	Unsubscription

	Notes on the publisher-subscriber pattern

	The pipeline pattern
	The divide and conquer strategy
	The ZMQ_PULL socket
	The ZMQ_PUSH socket

	Getting ZeroMQ context
	Destroying ZeroMQ context
	Cleaning up
	Detecting memory leaks
	Introduction to Valgrind

	Summary

	Chapter 3: Using Socket Topology
	What a socket is
	Types of Internet sockets
	Transmission Control Protocol (TCP)
	The three-way handshake protocol

	TCP header
	TCP flags
	Properties of TCP

	ZeroMQ sockets
	Differences between TCP sockets and ZeroMQ sockets

	Routing schemes
	Unicast
	Setting I/O threads and limiting the number of sockets

	Working with multiple sockets
	Working with multi-part messages
	How to handle interruptions
	Introduction to CZMQ
	zctx
	zstr_send
	zloop
	zmsg
	zfile
	zfile_mkdir

	zhash
	zlist
	zclock
	zthread

	Summary

	Chapter 4: Advanced Patterns
	Extending the request-reply pattern
	Writing multithreaded applications with ZeroMQ
	Wrapping publisher-subscriber messages
	High watermark
	Reliability
	Slow subscribers in a publish-subscribe pattern

	Summary

	Appendix
	Index

