
The Rust Programming
Language





The Rust Programming
Language

Steve Klabnik and Carol Nichols, with
Contributions from the Rust Community



The Rust Programming Language, © Steve Klabnik and Carol Nichols,
with Contributions from the Rust Community.



Contents

I Getting started 7

1 Introduction 9
1.1 Contributing to the book . . . . . . . . . . . . . . . . . 10
1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Guessing Game 21
2.1 Setting Up a New Project . . . . . . . . . . . . . . . . . 21
2.2 Processing a Guess . . . . . . . . . . . . . . . . . . . . . 22
2.3 Generating a Secret Number . . . . . . . . . . . . . . . 27
2.4 Comparing the Guess to the Secret Number . . . . . . . 33
2.5 Allowing Multiple Guesses with Looping . . . . . . . . . 38
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Common Programming Concepts 45
3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Understanding Ownership 77
4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Using Structs to Structure Related Data 105
5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



6

6 Enums and Pattern Matching 123
6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

II Basic Rust Literacy 143

1 Using Modules to Reuse and Organize Code 145
1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

2 Common Collections 169
2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

3 Error Handling 191
3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

4 Generic Types, Traits, and Lifetimes 213
4.1 Removing Duplication by Extracting a Function . . . . 214
4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

5 Testing 255
5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

6 An I/O Project Building a Small Grep 287
6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
6.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324



7

III Thinking in Rust 329

1 Functional Language features in Rust: Iterators and
Closures 331
1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

2 More about Cargo and Crates.io 369
2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

3 Smart Pointers 385
3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

4 Fearless Concurrency 419
4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

5 Is Rust an Object-Oriented Programming Language? 449
5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

IV Advanced Topics 481

1 Patterns Match the Structure of Values 483
1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491



8

2 Advanced Features 507
2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

3 Final Project: Building a Multithreaded Web Server 551
3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592



Part I

Getting started





Chapter 1

Introduction

Welcome to “The Rust Programming Language,” an introductory book
about Rust. Rust is a programming language that’s focused on safety,
speed, and concurrency. Its design lets you create programs that have
the performance and control of a low-level language, but with the pow-
erful abstractions of a high-level language. These properties make Rust
suitable for programmers who have experience in languages like C and
are looking for a safer alternative, as well as those from languages like
Python who are looking for ways to write code that performs better
without sacrificing expressiveness.

Rust performs the majority of its safety checks and memory man-
agement decisions at compile time, so that your program’s runtime
performance isn’t impacted. This makes it useful in a number of use
cases that other languages aren’t good at: programs with predictable
space and time requirements, embedding in other languages, and writ-
ing low-level code, like device drivers and operating systems. It’s also
great for web applications: it powers the Rust package registry site,
crates.io! We’re excited to see what you create with Rust.

This book is written for a reader who already knows how to program
in at least one programming language. After reading this book, you
should be comfortable writing Rust programs. We’ll be learning Rust
through small, focused examples that build on each other to demon-
strate how to use various features of Rust as well as how they work
behind the scenes.

https://crates.io/


12

1.1 Contributing to the book
This book is open source. If you find an error, please don’t hesitate
to file an issue or send a pull request on GitHub. Please see CON-
TRIBUTING.md for more details.

1.2
Installation
The first step to using Rust is to install it. You’ll need an internet con-
nection to run the commands in this chapter, as we’ll be downloading
Rust from the internet.

We’ll be showing off a number of commands using a terminal, and
those lines all start with $. You don’t need to type in the $ character;
they are there to indicate the start of each command. You’ll see many
tutorials and examples around the web that follow this convention: $
for commands run as a regular user, and # for commands you should be
running as an administrator. Lines that don’t start with $ are typically
showing the output of the previous command.

Installing on Linux or Mac

If you’re on Linux or a Mac, all you need to do is open a terminal and
type this:

$ curl https://sh.rustup.rs -sSf | sh

This will download a script and start the installation. You may be
prompted for your password. If it all goes well, you’ll see this appear:

Rust is installed now. Great!

Of course, if you disapprove of the curl | sh pattern, you can down-
load, inspect and run the script however you like.

Installing on Windows

On Windows, go to https://rustup.rs and follow the instructions to
download rustup-init.exe. Run that and follow the rest of the instruc-
tions it gives you.

The rest of the Windows-specific commands in the book will assume
that you are using cmd as your shell. If you use a different shell, you

https://github.com/rust-lang/book
https://github.com/rust-lang/book/blob/master/CONTRIBUTING.md
https://github.com/rust-lang/book/blob/master/CONTRIBUTING.md
https://rustup.rs/


13

may be able to run the same commands that Linux and Mac users do.
If neither work, consult the documentation for the shell you are using.

Custom installations

If you have reasons for preferring not to use rustup.rs, please see the
Rust installation page for other options.

Updating

Once you have Rust installed, updating to the latest version is easy.
From your shell, run the update script:

$ rustup update

Uninstalling

Uninstalling Rust is as easy as installing it. From your shell, run the
uninstall script:

$ rustup self uninstall

Troubleshooting

If you’ve got Rust installed, you can open up a shell, and type this:

$ rustc --version

You should see the version number, commit hash, and commit date in
a format similar to this for the latest stable version at the time you
install:

rustc x.y.z (abcabcabc yyyy-mm-dd)

If you see this, Rust has been installed successfully! Congrats!
If you don’t and you’re on Windows, check that Rust is in your

%PATH% system variable.
If it still isn’t working, there are a number of places where you

can get help. The easiest is the #rust IRC channel on irc.mozilla.org,
which you can access through Mibbit. Go to that address, and you’ll
be chatting with other Rustaceans (a silly nickname we call ourselves)
who can help you out. Other great resources include the Users forum
and Stack Overflow.

https://www.rust-lang.org/install.html
https://www.rust-lang.org/install.html
irc://irc.mozilla.org/#rust
http://chat.mibbit.com/?server=irc.mozilla.org&channel=%23rust
https://users.rust-lang.org/
http://stackoverflow.com/questions/tagged/rust


14

Local documentation

The installer also includes a copy of the documentation locally, so you
can read it offline. Run rustup doc to open the local documentation
in your browser.

Any time there’s a type or function provided by the standard library
and you’re not sure what it does, use the API documentation to find
out!

1.3
Hello, World!
Now that you have Rust installed, let’s write your first Rust program.
It’s traditional when learning a new language to write a little program
to print the text “Hello, world!” to the screen, and in this section, we’ll
follow that tradition.

Note: This book assumes basic familiarity with the com-
mand line. Rust itself makes no specific demands about your
editing, tooling, or where your code lives, so if you prefer
an IDE to the command line, feel free to use your favorite
IDE.

Creating a Project Directory

First, make a directory to put your Rust code in. Rust doesn’t care
where your code lives, but for this book, we’d suggest making a projects
directory in your home directory and keeping all your projects there.
Open a terminal and enter the following commands to make a directory
for this particular project:

Linux and Mac:

$ mkdir ~/projects
$ cd ~/projects
$ mkdir hello_world
$ cd hello_world

Windows:

> mkdir %USERPROFILE%\projects
> cd %USERPROFILE%\projects
> mkdir hello_world



15

> cd hello_world

Writing and Running a Rust Program

Next, make a new source file and call it main.rs. Rust files always end
with the .rs extension. If you’re using more than one word in your
filename, use an underscore to separate them. For example, you’d use
hello_world.rs rather than helloworld.rs.

Now open the main.rs file you just created, and type the following
code:

Filename: main.rs

fn main() {
println!("Hello, world!");

}

Save the file, and go back to your terminal window. On Linux or OSX,
enter the following commands:

$ rustc main.rs
$ ./main
Hello, world!

On Windows, run .\main.exe instead of ./main. Regardless of your
operating system, you should see the string Hello, world! print to
the terminal. If you did, then congratulations! You’ve officially written
a Rust program. That makes you a Rust programmer! Welcome!

Anatomy of a Rust Program

Now, let’s go over what just happened in your “Hello, world!” program
in detail. Here’s the first piece of the puzzle:

fn main() {

}

These lines define a function in Rust. The main function is special: it’s
the first thing that is run for every executable Rust program. The first
line says, “I’m declaring a function named main that has no parameters
and returns nothing.” If there were parameters, their names would go
inside the parentheses, ( and ).

Also note that the function body is wrapped in curly braces, { and
}. Rust requires these around all function bodies. It’s considered good



16

style to put the opening curly brace on the same line as the function
declaration, with one space in between.

Inside the main function:

println!("Hello, world!");

This line does all of the work in this little program: it prints text to
the screen. There are a number of details to notice here. The first is
that Rust style is to indent with four spaces, not a tab.

The second important part is println!. This is calling a Rust
macro, which is how metaprogramming is done in Rust. If it were
calling a function instead, it would look like this: println (without
the !). We’ll discuss Rust macros in more detail in Appendix E, but
for now you just need to know that when you see a ! that means that
you’re calling a macro instead of a normal function.

Next is “Hello, world!” which is a string. We pass this string as
an argument to println!, which prints the string to the screen. Easy
enough!

The line ends with a semicolon (;). The ; indicates that this ex-
pression is over, and the next one is ready to begin. Most lines of Rust
code end with a ;.

Compiling and Running Are Separate Steps

In “Writing and Running a Rust Program”, we showed you how to run
a newly created program. We’ll break that process down and examine
each step now.

Before running a Rust program, you have to compile it. You can
use the Rust compiler by entering the rustc command and passing it
the name of your source file, like this:

$ rustc main.rs

If you come from a C or C++ background, you’ll notice that this is
similar to gcc or clang. After compiling successfully, Rust should
output a binary executable, which you can see on Linux or OSX by
entering the ls command in your shell as follows:

$ ls
main main.rs

On Windows, you’d enter:



17

> dir /B %= the /B option says to only show the file names
=%
main.exe
main.rs

This shows we have two files: the source code, with the .rs extension,
and the executable (main.exe on Windows, main everywhere else). All
that’s left to do from here is run the main or main.exe file, like this:

$ ./main # or .\main.exe on Windows

If main.rs were your “Hello, world!” program, this would print Hello,
world! to your terminal.

If you come from a dynamic language like Ruby, Python, or JavaScript,
you may not be used to compiling and running a program being sep-
arate steps. Rust is an ahead-of-time compiled language, which means
that you can compile a program, give it to someone else, and they can
run it even without having Rust installed. If you give someone a .rb, .
py, or .js file, on the other hand, they need to have a Ruby, Python, or
JavaScript implementation installed (respectively), but you only need
one command to both compile and run your program. Everything is a
tradeoff in language design.

Just compiling with rustc is fine for simple programs, but as your
project grows, you’ll want to be able to manage all of the options your
project has and make it easy to share your code with other people and
projects. Next, we’ll introduce you to a tool called Cargo, which will
help you write real-world Rust programs.

Hello, Cargo!
Cargo is Rust’s build system and package manager, and Rustaceans
use Cargo to manage their Rust projects because it makes a lot of
tasks easier. For example, Cargo takes care of building your code,
downloading the libraries your code depends on, and building those
libraries. We call libraries your code needs dependencies.

The simplest Rust programs, like the one we’ve written so far, don’t
have any dependencies, so right now, you’d only be using the part of
Cargo that can take care of building your code. As you write more
complex Rust programs, you’ll want to add dependencies, and if you
start off using Cargo, that will be a lot easier to do.

As the vast, vast majority of Rust projects use Cargo, we will assume
that you’re using it for the rest of the book. Cargo comes installed with



18

Rust itself, if you used the official installers as covered in the Installation
chapter. If you installed Rust through some other means, you can check
if you have Cargo installed by typing the following into your terminal:

$ cargo --version

If you see a version number, great! If you see an error like command not
found, then you should look at the documentation for your method of
installation to determine how to install Cargo separately.

Creating a Project with Cargo

Let’s create a new project using Cargo and look at how it differs from
our project in hello_world. Go back to your projects directory (or
wherever you decided to put your code):

Linux and Mac:

$ cd ~/projects

Windows:

> cd %USERPROFILE%\projects

And then on any operating system run:

$ cargo new hello_cargo --bin
$ cd hello_cargo

We passed the --bin argument to cargo new because our goal is to
make an executable application, as opposed to a library. Executa-
bles are binary executable files often called just binaries. We’ve given
hello_cargo as the name for our project, and Cargo creates its files in
a directory of the same name that we can then go into.

If we list the files in the hello_cargo directory, we can see that Cargo
has generated two files and one directory for us: a Cargo.toml and a
src directory with a main.rs file inside. It has also initialized a new git
repository in the hello_cargo directory for us, along with a .gitignore
file; you can change this to use a different version control system, or no
version control system, by using the --vcs flag.

Open up Cargo.toml in your text editor of choice. It should look
something like this:

Filename: Cargo.toml



19

[package]
name = "hello_cargo"
version = "0.1.0"
authors = ["Your Name <you@example.com>"]

[dependencies]

This file is in the TOML (Tom’s Obvious, Minimal Language) format.
TOML is similar to INI but has some extra goodies and is used as
Cargo’s configuration format.

The first line, [package], is a section heading that indicates that
the following statements are configuring a package. As we add more
information to this file, we’ll add other sections.

The next three lines set the three bits of configuration that Cargo
needs to see in order to know that it should compile your program: its
name, what version it is, and who wrote it. Cargo gets your name and
email information from your environment. If it’s not correct, go ahead
and fix that and save the file.

The last line, [dependencies], is the start of a section for you to
list any crates (which is what we call packages of Rust code) that your
project will depend on so that Cargo knows to download and compile
those too. We won’t need any other crates for this project, but we will
in the guessing game tutorial in the next chapter.

Now let’s look at src/main.rs:
Filename: src/main.rs

fn main() {
println!("Hello, world!");

}

Cargo has generated a “Hello World!” for you, just like the one we
wrote earlier! So that part is the same. The differences between our
previous project and the project generated by Cargo that we’ve seen
so far are:

• Our code goes in the src directory

• The top level contains a Cargo.toml configuration file

Cargo expects your source files to live inside the src directory so that the
top-level project directory is just for READMEs, license information,
configuration files, and anything else not related to your code. In this

https://github.com/toml-lang/toml


20

way, using Cargo helps you keep your projects nice and tidy. There’s a
place for everything, and everything is in its place.

If you started a project that doesn’t use Cargo, as we did with our
project in the hello_world directory, you can convert it to a project
that does use Cargo by moving your code into the src directory and
creating an appropriate Cargo.toml.

Building and Running a Cargo Project

Now let’s look at what’s different about building and running your
Hello World program through Cargo! To do so, enter the following
commands:

$ cargo build
Compiling hello_cargo v0.1.0 (file:///projects/hello_

cargo)

This should have created an executable file in target/debug/hello_cargo
(or target\debug\hello_cargo.exe on Windows), which you can run with
this command:

$ ./target/debug/hello_cargo # or .\target\debug\hello_
cargo.exe on Windows
Hello, world!

Bam! If all goes well, Hello, world! should print to the terminal
once more.

Running cargo build for the first time also causes Cargo to create
a new file at the top level called Cargo.lock, which looks like this:

Filename: Cargo.lock

[root]
name = "hello_cargo"
version = "0.1.0"

Cargo uses the Cargo.lock to keep track of dependencies in your ap-
plication. This project doesn’t have dependencies, so the file is a bit
sparse. Realistically, you won’t ever need to touch this file yourself;
just let Cargo handle it.

We just built a project with cargo build and ran it with ./target/
debug/hello_cargo, but we can also use cargo run to compile and
then run:



21

$ cargo run
Running `target/debug/hello_cargo`

Hello, world!

Notice that this time, we didn’t see the output telling us that Cargo
was compiling hello_cargo. Cargo figured out that the files haven’t
changed, so it just ran the binary. If you had modified your source
code, Cargo would have rebuilt the project before running it, and you
would have seen something like this:

$ cargo run
Compiling hello_cargo v0.1.0 (file:///projects/hello_

cargo)
Running `target/debug/hello_cargo`

Hello, world!

So a few more differences we’ve now seen:

• Instead of using rustc, build a project using cargo build (or
build and run it in one step with cargo run)

• Instead of the result of the build being put in the same directory
as our code, Cargo will put it in the target/debug directory.

The other advantage of using Cargo is that the commands are the same
no matter what operating system you’re on, so at this point we will
no longer be providing specific instructions for Linux and Mac versus
Windows.

Building for Release

When your project is finally ready for release, you can use cargo build
--release to compile your project with optimizations. This will cre-
ate an executable in target/release instead of target/debug. These opti-
mizations make your Rust code run faster, but turning them on makes
your program take longer to compile. This is why there are two differ-
ent profiles: one for development when you want to be able to rebuild
quickly and often, and one for building the final program you’ll give to
a user that won’t be rebuilt and that we want to run as fast as possi-
ble. If you’re benchmarking the running time of your code, be sure to
run cargo build --release and benchmark with the executable in
target/release.



22

Cargo as Convention

With simple projects, Cargo doesn’t provide a whole lot of value over
just using rustc, but it will prove its worth as you continue. With com-
plex projects composed of multiple crates, it’s much easier to let Cargo
coordinate the build. With Cargo, you can just run cargo build, and
it should work the right way. Even though this project is simple, it
now uses much of the real tooling you’ll use for the rest of your Rust
career. In fact, you can get started with virtually all Rust projects you
want to work on with the following commands:

$ git clone someurl.com/someproject
$ cd someproject
$ cargo build

Note: If you want to look at Cargo in more detail, check
out the official Cargo guide, which covers all of its features.

http://doc.crates.io/guide.html


Chapter 2

Guessing Game

Let’s jump into Rust by working through a hands-on project together!
This chapter introduces you to a few common Rust concepts by show-
ing you how to use them in a real program. You’ll learn about let,
match, methods, associated functions, using external crates, and more!
The following chapters will explore these ideas in more detail. In this
chapter, you’ll practice the fundamentals.

We’ll implement a classic beginner programming problem: a guess-
ing game. Here’s how it works: the program will generate a random
integer between 1 and 100. It will then prompt the player to enter a
guess. After entering a guess, it will indicate whether the guess is too
low or too high. If the guess is correct, the game will print congratula-
tions and exit.

2.1 Setting Up a New Project
To set up a new project, go to the projects directory that you created
in Chapter 1, and make a new project using Cargo, like so:

$ cargo new guessing_game --bin
$ cd guessing_game

The first command, cargo new, takes the name of the project (guessing_
game) as the first argument. The --bin flag tells Cargo to make a bi-
nary project, similar to the one in Chapter 1. The second command
changes to the new project’s directory.

Look at the generated Cargo.toml file:
Filename: Cargo.toml



24

[package]
name = "guessing_game"
version = "0.1.0"
authors = ["Your Name <you@example.com>"]

[dependencies]

If the author information that Cargo obtained from your environment
is not correct, fix that in the file and save it again.

As you saw in Chapter 1, cargo new generates a “Hello, world!”
program for you. Check out the src/main.rs file:

Filename: src/main.rs

fn main() {
println!("Hello, world!");

}

Now let’s compile this “Hello, world!” program and run it in the same
step using the cargo run command:

$ cargo run
Compiling guessing_game v0.1.0 (file:///projects/guessing_

game)
Running `target/debug/guessing_game`

Hello, world!

The run command comes in handy when you need to rapidly iterate
on a project, and this game is such a project: we want to quickly test
each iteration before moving on to the next one.

Reopen the src/main.rs file. You’ll be writing all the code in this
file.

2.2 Processing a Guess
The first part of the program will ask for user input, process that
input, and check that the input is in the expected form. To start, we’ll
allow the player to input a guess. Enter the code in Listing 2-1 into
src/main.rs.

Filename: src/main.rs



25

use std::io;

fn main() {
println!("Guess the number!");

println!("Please input your guess.");

let mut guess = String::new();

io::stdin().read_line(&mut guess)
.expect("Failed to read line");

println!("You guessed: {}", guess);
}

Listing 2-1: Code to get a guess from the user and print it out
This code contains a lot of information, so let’s go over it bit by bit.

To obtain user input and then print the result as output, we need to
bring the io (input/output) library into scope. The io library comes
from the standard library (which is known as std):

use std::io;

By default, Rust brings only a few types into the scope of every program
in the prelude. If a type you want to use isn’t in the prelude, you have
to bring that type into scope explicitly with a use statement. Using
the std::io library provides you with a number of useful io-related
features, including the functionality to accept user input.

As you saw in Chapter 1, the main function is the entry point into
the program:

fn main() {

The fn syntax declares a new function, the () indicate there are no
parameters, and { starts the body of the function.

As you also learned in Chapter 1, println! is a macro that prints
a string to the screen:

println!("Guess the number!");

println!("Please input your guess.");

This code is just printing a prompt stating what the game is and re-
questing input from the user.

trpl/second-edition/src/../../std/prelude/index.html


26

Storing Values with Variables
Next, we’ll create a place to store the user input, like this:

let mut guess = String::new();

Now the program is getting interesting! There’s a lot going on in this
little line. Notice that this is a let statement, which is used to create
variables. Here’s another example:

let foo = bar;

This line will create a new variable named foo and bind it to the
value bar. In Rust, variables are immutable by default. The following
example shows how to use mut before the variable name to make a
variable mutable:

let foo = 5; // immutable
let mut bar = 5; // mutable

Note: The // syntax starts a comment that continues
until the end of the line. Rust ignores everything in com-
ments.

Now you know that let mut guess will introduce a mutable variable
named guess. On the other side of the equal sign (=) is the value that
guess is bound to, which is the result of calling String::new, a func-
tion that returns a new instance of a String. String is a string type
provided by the standard library that is a growable, UTF-8 encoded
bit of text.

The :: syntax in the ::new line indicates that new is an associated
function of the String type. An associated function is implemented on
a type, in this case String, rather than on a particular instance of a
String. Some languages call this a static method.

This new function creates a new, empty String. You’ll find a new
function on many types, because it’s a common name for a function
that makes a new value of some kind.

To summarize, the let mut guess = String::new(); line has
created a mutable variable that is currently bound to a new, empty
instance of a String. Whew!

Recall that we included the input/output functionality from the
standard library with use std::io; on the first line of the program.
Now we’ll call an associated function, stdin, on io:

trpl/second-edition/src/../../std/string/struct.String.html


27

io::stdin().read_line(&mut guess)
.expect("Failed to read line");

If we didn’t have the use std::io line at the beginning of the program,
we could have written this function call as std::io::stdin. The stdin
function returns an instance of std::io::Stdin, which is a type that
represents a handle to the standard input for your terminal.

The next part of the code, .read_line(&mut guess), calls the
read_line method on the standard input handle to get input from the
user. We’re also passing one argument to read_line: &mut guess.

The job of read_line is to take whatever the user types into stan-
dard input and place that into a string, so it takes that string as an
argument. The string argument needs to be mutable so the method
can change the string’s content by adding the user input.

The & indicates that this argument is a reference, which gives you
a way to let multiple parts of your code access one piece of data with-
out needing to copy that data into memory multiple times. References
are a complex feature, and one of Rust’s major advantages is how safe
and easy it is to use references. You don’t need to know a lot of those
details to finish this program: Chapter 4 will explain references more
thoroughly. For now, all you need to know is that like variables, refer-
ences are immutable by default. Hence, we need to write &mut guess
rather than &guess to make it mutable.

We’re not quite done with this line of code. Although it’s a single
line of text, it’s only the first part of the single logical line of code. The
second part is this method:

.expect("Failed to read line");

When you call a method with the .foo() syntax, it’s often wise to
introduce a newline and other whitespace to help break up long lines.
We could have written this code as:

io::stdin().read_line(&mut guess).expect("Failed to read
line");

However, one long line is difficult to read, so it’s best to divide it, two
lines for two method calls. Now let’s discuss what this line does.

Handling Potential Failure with the Result Type
As mentioned earlier, read_line puts what the user types into the
string we’re passing it, but it also returns a value—in this case, an io:

trpl/second-edition/src/../../std/io/struct.Stdin.html
trpl/second-edition/src/../../std/io/struct.Stdin.html#method.read_line
trpl/second-edition/src/../../std/io/type.Result.html


28

:Result. Rust has a number of types named Result in its standard
library: a generic Result as well as specific versions for submodules,
such as io::Result.

The Result types are enumerations, often referred to as enums.
An enumeration is a type that can have a fixed set of values, and those
values are called the enum’s variants. Chapter 6 will cover enums in
more detail.

For Result, the variants are Ok or Err. Ok indicates the operation
was successful, and inside the Ok variant is the successfully generated
value. Err means the operation failed, and Err contains information
about how or why the operation failed.

The purpose of these Result types is to encode error handling infor-
mation. Values of the Result type, like any type, have methods defined
on them. An instance of io::Result has an expect method that you
can call. If this instance of io::Result is an Err value, expect will
cause the program to crash and display the message that you passed as
an argument to expect. If the read_line method returns an Err, it
would likely be the result of an error coming from the underlying op-
erating system. If this instance of io::Result is an Ok value, expect
will take the return value that Ok is holding and return just that value
to you so you could use it. In this case, that value is the number of
bytes in what the user entered into standard input.

If we don’t call expect, the program will compile, but we’ll get a
warning:

$ cargo build
Compiling guessing_game v0.1.0 (file:///projects/guessing_

game)
src/main.rs:10:5: 10:39 warning: unused result which must
be used,
#[warn(unused_must_use)] on by default
src/main.rs:10 io::stdin().read_line(&mut guess);

^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Rust warns that we haven’t used the Result value returned from read_
line, indicating that the program hasn’t handled a possible error. The
right way to suppress the warning is to actually write error handling,
but since we just want to crash this program when a problem occurs, we
can use expect. You’ll learn about recovering from errors in Chapter
9.

trpl/second-edition/src/../../std/io/type.Result.html
trpl/second-edition/src/../../std/io/type.Result.html
trpl/second-edition/src/../../std/result/enum.Result.html
trpl/second-edition/src/../../std/result/enum.Result.html#method.expect


29

Printing Values with println! Placeholders
Aside from the closing curly brace, there’s only one more line to discuss
in the code added so far, which is the following:

println!("You guessed: {}", guess);

This line prints out the string we saved the user’s input in. The set
of {} is a placeholder that holds a value in place. You can print more
than one value using {}: the first set of {} holds the first value listed
after the format string, the second set holds the second value, and so
on. Printing out multiple values in one call to println! would look
like this:

let x = 5;
let y = 10;

println!("x = {} and y = {}", x, y);

This code would print out x = 5 and y = 10.

Testing the First Part
Let’s test the first part of the guessing game. You can run it using
cargo run:

$ cargo run
Compiling guessing_game v0.1.0 (file:///projects/guessing_

game)
Running `target/debug/guessing_game`

Guess the number!
Please input your guess.
6
You guessed: 6

At this point, the first part of the game is done: we’re getting input
from the keyboard and then printing it.

2.3 Generating a Secret Number
Next, we need to generate a secret number that the user will try to
guess. The secret number should be different every time so the game is
fun to play more than once. Let’s use a random number between 1 and



30

100 so the game isn’t too difficult. Rust doesn’t yet include random
number functionality in its standard library. However, the Rust team
does provide a rand crate.

Using a Crate to Get More Functionality
Remember that a crate is a package of Rust code. The project we’ve
been building is a binary crate, which is an executable. The rand crate
is a library crate, which contains code intended to be used in other
programs.

Cargo’s use of external crates is where it really shines. Before we
can write code that uses rand, we need to modify the Cargo.toml file
to include the rand crate as a dependency. Open that file now and add
the following line to the bottom beneath the [dependencies] section
header that Cargo created for you:

Filename: Cargo.toml

[dependencies]

rand = "0.3.14"

In the Cargo.toml file, everything that follows a header is part of a sec-
tion that continues until another section starts. The [dependencies]
section is where you tell Cargo which external crates your project de-
pends on and which versions of those crates you require. In this case,
we’ll specify the rand crate with the semantic version specifier 0.3.14.
Cargo understands Semantic Versioning (sometimes called SemVer),
which is a standard for writing version numbers. The number 0.3.14
is actually shorthand for ^0.3.14, which means “any version that has
a public API compatible with version 0.3.14.”

Now, without changing any of the code, let’s build the project, as
shown in Listing 2-2:

$ cargo build
Updating registry `https://github.com/rust-lang/crates.

io-index`
Downloading rand v0.3.14
Downloading libc v0.2.14
Compiling libc v0.2.14
Compiling rand v0.3.14

https://crates.io/crates/rand
http://semver.org


31

Compiling guessing_game v0.1.0 (file:///projects/guessing_
game)

Listing 2-2: The output from running cargo build after adding the
rand crate as a dependency

You may see different version numbers (but they will all be com-
patible with the code, thanks to SemVer!), and the lines may be in a
different order.

Now that we have an external dependency, Cargo fetches the latest
versions of everything from the registry, which is a copy of data from
Crates.io. Crates.io is where people in the Rust ecosystem post their
open source Rust projects for others to use.

After updating the registry, Cargo checks the [dependencies] sec-
tion and downloads any you don’t have yet. In this case, although we
only listed rand as a dependency, Cargo also grabbed a copy of libc,
because rand depends on libc to work. After downloading them, Rust
compiles them and then compiles the project with the dependencies
available.

If you immediately run cargo build again without making any
changes, you won’t get any output. Cargo knows it has already down-
loaded and compiled the dependencies, and you haven’t changed any-
thing about them in your Cargo.toml file. Cargo also knows that you
haven’t changed anything about your code, so it doesn’t recompile
that either. With nothing to do, it simply exits. If you open up the
src/main.rs file, make a trivial change, then save it and build again,
you’ll only see one line of output:

$ cargo build
Compiling guessing_game v0.1.0 (file:///projects/guessing_

game)

This line shows Cargo only updates the build with your tiny change
to the src/main.rs file. Your dependencies haven’t changed, so Cargo
knows it can reuse what it has already downloaded and compiled for
those. It just rebuilds your part of the code.

The Cargo.lock File Ensures Reproducible Builds

Cargo has a mechanism that ensures you can rebuild the same artifact
every time you or anyone else builds your code: Cargo will use only the
versions of the dependencies you specified until you indicate otherwise.
For example, what happens if next week version v0.3.15 of the rand

https://crates.io


32

crate comes out and contains an important bug fix but also contains a
regression that will break your code?

The answer to this problem is the Cargo.lock file, which was created
the first time you ran cargo build and is now in your guessing_game
directory. When you build a project for the first time, Cargo figures
out all the versions of the dependencies that fit the criteria and then
writes them to the Cargo.lock file. When you build your project in
the future, Cargo will see that the Cargo.lock file exists and use the
versions specified there rather than doing all the work of figuring out
versions again. This lets you have a reproducible build automatically.
In other words, your project will remain at 0.3.14 until you explicitly
upgrade, thanks to the Cargo.lock file.

Updating a Crate to Get a New Version

When you do want to update a crate, Cargo provides another command,
update, which will:

1. Ignore the Cargo.lock file and figure out all the latest versions
that fit your specifications in Cargo.toml.

2. If that works, Cargo will write those versions to the Cargo.lock
file.

But by default, Cargo will only look for versions larger than 0.3.0 and
smaller than 0.4.0. If the rand crate has released two new versions, 0.
3.15 and 0.4.0, you would see the following if you ran cargo update:

$ cargo update
Updating registry `https://github.com/rust-lang/crates.

io-index`
Updating rand v0.3.14 -> v0.3.15

At this point, you would also notice a change in your Cargo.lock file
noting that the version of the rand crate you are now using is 0.3.15.

If you wanted to use rand version 0.4.0 or any version in the 0.
4.x series, you’d have to update the Cargo.toml file to look like this
instead:

[dependencies]

rand = "0.4.0"



33

The next time you run cargo build, Cargo will update the registry
of crates available and reevaluate your rand requirements according to
the new version you specified.

There’s a lot more to say about Cargo and its ecosystem that Chap-
ter 14 will discuss, but for now, that’s all you need to know. Cargo
makes it very easy to reuse libraries, so Rustaceans are able to write
smaller projects that are assembled from a number of packages.

Generating a Random Number
Let’s start using rand. The next step is to update src/main.rs, as
shown in Listing 2-3:

Filename: src/main.rs
extern crate rand;

use std::io;
use rand::Rng;

fn main() {
println!("Guess the number!");

let secret_number = rand::thread_rng().gen_range(1,
101);

println!("The secret number is: {}", secret_number)
;

println!("Please input your guess.");

let mut guess = String::new();

io::stdin().read_line(&mut guess)
.expect("Failed to read line");

println!("You guessed: {}", guess);
}

Listing 2-3: Code changes needed in order to generate a random number
We’re adding a extern crate rand; line to the top that lets Rust

know we’ll be using that external dependency. This also does the equiv-
alent of calling use rand, so now we can call anything in the rand crate
by prefixing it with rand::.

http://doc.crates.io
http://doc.crates.io/crates-io.html


34

Next, we’re adding another use line: use rand::Rng. Rng is a trait
that defines methods that random number generators implement, and
this trait must be in scope for us to use those methods. Chapter 10
will cover traits in detail.

Also, we’re adding two more lines in the middle. The rand::
thread_rng function will give us the particular random number gen-
erator that we’re going to use: one that is local to the current thread
of execution and seeded by the operating system. Next, we call the
gen_range method on the random number generator. This method is
defined by the Rng trait that we brought into scope with the use rand:
:Rng statement. The gen_range method takes two numbers as argu-
ments and generates a random number between them. It’s inclusive
on the lower bound but exclusive on the upper bound, so we need to
specify 1 and 101 to request a number between 1 and 100.

Knowing which traits to use and which functions and methods to
call from a crate isn’t something that you’ll just know. Instructions for
using a crate are in each crate’s documentation. Another neat feature
of Cargo is that you can run the cargo doc --open command that
will build documentation provided by all of your dependencies locally
and open it in your browser. If you’re interested in other functionality
in the rand crate, for example, run cargo doc --open and click rand
in the sidebar on the left.

The second line that we added to the code prints the secret number.
This is useful while we’re developing the program to be able to test it,
but we’ll delete it from the final version. It’s not much of a game if the
program prints the answer as soon as it starts!

Try running the program a few times:

$ cargo run
Compiling guessing_game v0.1.0 (file:///projects/guessing_

game)
Running `target/debug/guessing_game`

Guess the number!
The secret number is: 7
Please input your guess.
4
You guessed: 4
$ cargo run

Running `target/debug/guessing_game`
Guess the number!
The secret number is: 83



35

Please input your guess.
5
You guessed: 5

You should get different random numbers, and they should all be num-
bers between 1 and 100. Great job!

2.4 Comparing the Guess to the Secret Num-
ber

Now that we have user input and a random number, we can compare
them. That step is shown in Listing 2-4:

Filename: src/main.rs

extern crate rand;

use std::io;
use std::cmp::Ordering;
use rand::Rng;

fn main() {
println!("Guess the number!");

let secret_number = rand::thread_rng().gen_range(1,
101);

println!("The secret number is: {}", secret_number)
;

println!("Please input your guess.");

let mut guess = String::new();

io::stdin().read_line(&mut guess)
.expect("Failed to read line");

println!("You guessed: {}", guess);

match guess.cmp(&secret_number) {
Ordering::Less => println!("Too small!"),



36

Ordering::Greater => println!("Too big!"),
Ordering::Equal => println!("You win!"),

}
}

Listing 2-4: Handling the possible return values of comparing two num-
bers

The first new bit here is another use, bringing a type called std:
:cmp::Ordering into scope from the standard library. Ordering is
another enum, like Result, but the variants for Ordering are Less,
Greater, and Equal. These are the three outcomes that are possible
when you compare two values.

Then we add five new lines at the bottom that use the Ordering
type:

match guess.cmp(&secret_number) {
Ordering::Less => println!("Too small!"),
Ordering::Greater => println!("Too big!"),
Ordering::Equal => println!("You win!"),

}

The cmp method compares two values and can be called on anything
that can be compared. It takes a reference to whatever you want to
compare with: here it’s comparing the guess to the secret_number.
cmp returns a variant of the Ordering enum we brought into scope with
the use statement. We use a match expression to decide what to do
next based on which variant of Ordering was returned from the call to
cmp with the values in guess and secret_number.

A match expression is made up of arms. An arm consists of a pattern
and the code that should be run if the value given to the beginning of
the match expression fits that arm’s pattern. Rust takes the value
given to match and looks through each arm’s pattern in turn. The
match construct and patterns are powerful features in Rust that let
you express a variety of situations your code might encounter and helps
ensure that you handle them all. These features will be covered in detail
in Chapter 6 and Chapter 18, respectively.

Let’s walk through an example of what would happen with the
match expression used here. Say that the user has guessed 50, and
the randomly generated secret number this time is 38. When the code
compares 50 to 38, the cmp method will return Ordering::Greater,
because 50 is greater than 38. Ordering::Greater is the value that the
match expression gets. It looks at the first arm’s pattern, Ordering:



37

:Less, but the value Ordering::Greater does not match Ordering:
:Less, so it ignores the code in that arm and moves to the next arm.
The next arm’s pattern, Ordering::Greater, does match Ordering::
Greater! The associated code in that arm will execute and print Too
big! to the screen. The match expression ends because it has no need
to look at the last arm in this particular scenario.

However, the code in Listing 2-4 won’t compile yet. Let’s try it:

$ cargo build
Compiling guessing_game v0.1.0 (file:///projects/guessing_

game)
error[E0308]: mismatched types

--> src/main.rs:23:21
|

23 | match guess.cmp(&secret_number) {
| ^^^^^^^^^^^^^^ expected struct

`std::string::String`, found integral variable
|
= note: expected type `&std::string::String`
= note: found type `&{integer}`

error: aborting due to previous error
Could not compile `guessing_game`.

The core of the error states that there are mismatched types. Rust has
a strong, static type system. However, it also has type inference. When
we wrote let guess = String::new(), Rust was able to infer that
guess should be a String and didn’t make us write the type. The
secret_number, on the other hand, is a number type. A few number
types can have a value between 1 and 100: i32, a 32-bit number; u32,
an unsigned 32-bit number; i64, a 64-bit number; as well as others.
Rust defaults to an i32, which is the type of secret_number unless
we add type information elsewhere that would cause Rust to infer a
different numerical type. The reason for the error is that Rust will not
compare a string and a number type.

Ultimately, we want to convert the String the program reads as
input into a real number type so we can compare it to the guess nu-
merically. We can do that by adding the following two lines to the
main function body:

Filename: src/main.rs



38

extern crate rand;

use std::io;
use std::cmp::Ordering;
use rand::Rng;

fn main() {
println!("Guess the number!");

let secret_number = rand::thread_rng().gen_range(1,
101);

println!("The secret number is: {}", secret_number)
;

println!("Please input your guess.");

let mut guess = String::new();

io::stdin().read_line(&mut guess)
.expect("Failed to read line");

let guess: u32 = guess.trim().parse()
.expect("Please type a number!");

println!("You guessed: {}", guess);

match guess.cmp(&secret_number) {
Ordering::Less => println!("Too small!"),
Ordering::Greater => println!("Too big!"),
Ordering::Equal => println!("You win!"),

}
}

The two new lines are:

let guess: u32 = guess.trim().parse()
.expect("Please type a number!");

We create a variable named guess. But wait, doesn’t the program
already have a variable named guess? It does, but Rust allows us to
shadow the previous value of guess with a new one. This feature is



39

often used in similar situations in which you want to convert a value
from one type to another type. Shadowing lets us reuse the guess
variable name rather than forcing us to create two unique variables,
like guess_str and guess for example. (Chapter 3 covers shadowing
in more detail.)

We bind guess to the expression guess.trim().parse(). The
guess in the expression refers to the original guess that was a String
with the input in it. The trim method on a String instance will elim-
inate any whitespace at the beginning and end. u32 can only contain
numerical characters, but the user must press the Return key to sat-
isfy read_line. When the user presses Return, a newline character
is added to the string. For example, if the user types 5 and presses
return, guess looks like this: 5\n. The \n represents “newline,” the
return key. The trim method eliminates \n, resulting in just 5.

The parse method on strings parses a string into some kind of
number. Because this method can parse a variety of number types,
we need to tell Rust the exact number type we want by using let
guess: u32. The colon (:) after guess tells Rust we’ll annotate
the variable’s type. Rust has a few built-in number types; the u32
seen here is an unsigned, 32-bit integer. It’s a good default choice for
a small positive number. You’ll learn about other number types in
Chapter 3. Additionally, the u32 annotation in this example program
and the comparison with secret_number means that Rust will infer
that secret_number should be a u32 as well. So now the comparison
will be between two values of the same type!

The call to parse could easily cause an error. If, for example,
the string contained A�%, there would be no way to convert that to a
number. Because it might fail, the parse method returns a Result
type, much like the read_line method does as discussed earlier in
“Handling Potential Failure with the Result Type”. We’ll treat this
Result the same way by using the expect method again. If parse
returns an Err Result variant because it couldn’t create a number
from the string, the expect call will crash the game and print the
message we give it. If parse can successfully convert the string to a
number, it will return the Ok variant of Result, and expect will return
the number that we want from the Ok value.

Let’s run the program now!

$ cargo run
Compiling guessing_game v0.1.0 (file:///projects/guessing_

game)

trpl/second-edition/src/../../std/primitive.str.html#method.parse


40

Running `target/guessing_game`
Guess the number!
The secret number is: 58
Please input your guess.

76
You guessed: 76
Too big!

Nice! Even though spaces were added before the guess, the program
still figured out that the user guessed 76. Run the program a few times
to verify the different behavior with different kinds of input: guess the
number correctly, guess a number that is too high, and guess a number
that is too low.

We have most of the game working now, but the user can make only
one guess. Let’s change that by adding a loop!

2.5 Allowing Multiple Guesses with Loop-
ing

The loop keyword gives us an infinite loop. Add that now to give users
more chances at guessing the number:

Filename: src/main.rs

extern crate rand;

use std::io;
use std::cmp::Ordering;
use rand::Rng;

fn main() {
println!("Guess the number!");

let secret_number = rand::thread_rng().gen_range(1,
101);

println!("The secret number is: {}", secret_number)
;

loop {
println!("Please input your guess.");



41

let mut guess = String::new();

io::stdin().read_line(&mut guess)
.expect("Failed to read line");

let guess: u32 = guess.trim().parse()
.expect("Please type a number!");

println!("You guessed: {}", guess);

match guess.cmp(&secret_number) {
Ordering::Less => println!("Too small!")

,
Ordering::Greater => println!("Too big!"),
Ordering::Equal => println!("You win!"),

}
}

}

As you can see, we’ve moved everything into a loop from the guess
input prompt onward. Be sure to indent those lines another four spaces
each, and run the program again. Notice that there is a new problem
because the program is doing exactly what we told it to do: ask for
another guess forever! It doesn’t seem like the user can quit!

The user could always halt the program by using the keyboard
shortcut Ctrl-C. But there’s another way to escape this insatiable
monster that we mentioned in the parse discussion in “Comparing
the Guess to the Secret Number”: if the user enters a non-number an-
swer, the program will crash. The user can take advantage of that in
order to quit, as shown here:

$ cargo run
Compiling guessing_game v0.1.0 (file:///projects/guessing_

game)
Running `target/guessing_game`

Guess the number!
The secret number is: 59
Please input your guess.
45
You guessed: 45



42

Too small!
Please input your guess.
60
You guessed: 60
Too big!
Please input your guess.
59
You guessed: 59
You win!
Please input your guess.
quit
thread 'main' panicked at 'Please type a number!: ParseIntError
{ kind: InvalidDigit }', src/libcore/result.rs:785
note: Run with `RUST_BACKTRACE=1` for a backtrace.
error: Process didn't exit successfully: `target/debug/
guess` (exit code: 101)

Typing quit actually quits the game, but so will any other non-number
input. However, this is suboptimal to say the least. We want the game
to automatically stop when the correct number is guessed.

Quitting After a Correct Guess
Let’s program the game to quit when the user wins by adding a break:

Filename: src/main.rs

extern crate rand;

use std::io;
use std::cmp::Ordering;
use rand::Rng;

fn main() {
println!("Guess the number!");

let secret_number = rand::thread_rng().gen_range(1,
101);

println!("The secret number is: {}", secret_number)
;



43

loop {
println!("Please input your guess.");

let mut guess = String::new();

io::stdin().read_line(&mut guess)
.expect("Failed to read line");

let guess: u32 = guess.trim().parse()
.expect("Please type a number!");

println!("You guessed: {}", guess);

match guess.cmp(&secret_number) {
Ordering::Less => println!("Too small!")

,
Ordering::Greater => println!("Too big!"),
Ordering::Equal => {

println!("You win!");
break;

}
}

}
}

By adding the break line after You win!, the program will exit the
loop when the user guesses the secret number correctly. Exiting the
loop also means exiting the program, because the loop is the last part
of main.

Handling Invalid Input
To further refine the game’s behavior, rather than crashing the program
when the user inputs a non-number, let’s make the game ignore a non-
number so the user can continue guessing. We can do that by altering
the line where guess is converted from a String to a u32:

let guess: u32 = match guess.trim().parse() {
Ok(num) => num,
Err(_) => continue,

};



44

Switching from an expect call to a match expression is how you gener-
ally move from crash on error to actually handling the error. Remember
that parse returns a Result type, and Result is an enum that has the
variants Ok or Err. We’re using a match expression here, like we did
with the Ordering result of the cmp method.

If parse is able to successfully turn the string into a number, it
will return an Ok value that contains the resulting number. That Ok
value will match the first arm’s pattern, and the match expression will
just return the num value that parse produced and put inside the Ok
value. That number will end up right where we want it in the new
guess variable we’re creating.

If parse is not able to turn the string into a number, it will return
an Err value that contains more information about the error. The Err
value does not match the Ok(num) pattern in the first match arm, but
it does match the Err(_) pattern in the second arm. The _ is a catchall
value; in this example, we’re saying we want to match all Err values,
no matter what information they have inside them. So the program
will execute the second arm’s code, continue, which means to go to
the next iteration of the loop and ask for another guess. So effectively,
the program ignores all errors that parse might encounter!

Now everything in the program should work as expected. Let’s try
it by running cargo run:

$ cargo run
Compiling guessing_game v0.1.0 (file:///projects/guessing_

game)
Running `target/guessing_game`

Guess the number!
The secret number is: 61
Please input your guess.
10
You guessed: 10
Too small!
Please input your guess.
99
You guessed: 99
Too big!
Please input your guess.
foo
Please input your guess.
61



45

You guessed: 61
You win!

Awesome! With one tiny final tweak, we will finish the guessing game:
recall that the program is still printing out the secret number. That
worked well for testing, but it ruins the game. Let’s delete the println!
that outputs the secret number. Listing 2-5 shows the final code:

Filename: src/main.rs

extern crate rand;

use std::io;
use std::cmp::Ordering;
use rand::Rng;

fn main() {
println!("Guess the number!");

let secret_number = rand::thread_rng().gen_range(1,
101);

loop {
println!("Please input your guess.");

let mut guess = String::new();

io::stdin().read_line(&mut guess)
.expect("Failed to read line");

let guess: u32 = match guess.trim().parse() {
Ok(num) => num,
Err(_) => continue,

};

println!("You guessed: {}", guess);

match guess.cmp(&secret_number) {
Ordering::Less => println!("Too small!")

,
Ordering::Greater => println!("Too big!"),
Ordering::Equal => {



46

println!("You win!");
break;

}
}

}
}

Listing 2-5: Complete code of the guessing game

2.6 Summary
At this point, you’ve successfully built the guessing game! Congratu-
lations!

This project was a hands-on way to introduce you to many new
Rust concepts: let, match, methods, associated functions, using exter-
nal crates, and more. In the next few chapters, you’ll learn about these
concepts in more detail. Chapter 3 covers concepts that most program-
ming languages have, such as variables, data types, and functions, and
shows how to use them in Rust. Chapter 4 explores ownership, which
is a Rust feature that is most different from other languages. Chapter
5 discusses structs and method syntax, and Chapter 6 endeavors to
explain enums.



Chapter 3

Common Programming
Concepts

This chapter covers concepts that appear in almost every programming
language and how they work in Rust. Many programming languages
have much in common at their core. None of the concepts presented in
this chapter are unique to Rust, but we’ll discuss them in the context
of Rust and explain their conventions.

Specifically, you’ll learn about variables, basic types, functions,
comments, and control flow. These foundations will be in every Rust
program, and learning them early will give you a strong core to start
from.

Keywords

The Rust language has a set of keywords that have been
reserved for use by the language only, much like other lan-
guages do. Keep in mind that you cannot use these words
as names of variables or functions. Most of the keywords
have special meanings, and you’ll be using them to do var-
ious tasks in your Rust programs; a few have no current
functionality associated with them but have been reserved
for functionality that might be added to Rust in the future.
You can find a list of the keywords in Appendix A.



48

3.1
Variables and Mutability
As mentioned in Chapter 2, by default variables are immutable. This
is one of many nudges in Rust that encourages you to write your code
in a way that takes advantage of the safety and easy concurrency that
Rust offers. However, you still have the option to make your variables
mutable. Let’s explore how and why Rust encourages you to favor
immutability, and why you might want to opt out.

When a variable is immutable, that means once a value is bound
to a name, you can’t change that value. To illustrate, let’s generate a
new project called variables in your projects directory by using cargo
new --bin variables.

Then, in your new variables directory, open src/main.rs and replace
its code with the following:

Filename: src/main.rs

fn main() {
let x = 5;
println!("The value of x is: {}", x);
x = 6;
println!("The value of x is: {}", x);

}

Save and run the program using cargo run. You should receive an
error message, as shown in this output:

error[E0384]: re-assignment of immutable variable `x`
--> src/main.rs:4:5
|

2 | let x = 5;
| - first assignment to `x`

3 | println!("The value of x is: {}", x);
4 | x = 6;
| ^^^^^ re-assignment of immutable variable

This example shows how the compiler helps you find errors in your
programs. Even though compiler errors can be frustrating, they only
mean your program isn’t safely doing what you want it to do yet;
they do not mean that you’re not a good programmer! Experienced
Rustaceans still get compiler errors. The error indicates that the cause



49

of the error is re-assignment of immutable variable, because we
tried to assign a second value to the immutable x variable.

It’s important that we get compile-time errors when we attempt
to change a value that we previously designated as immutable because
this very situation can lead to bugs. If one part of our code operates
on the assumption that a value will never change and another part of
our code changes that value, it’s possible that the first part of the code
won’t do what it was designed to do. This cause of bugs can be difficult
to track down after the fact, especially when the second piece of code
changes the value only sometimes.

In Rust the compiler guarantees that when we state that a value
won’t change, it really won’t change. That means that when you’re
reading and writing code, you don’t have to keep track of how and
where a value might change, which can make code easier to reason
about.

But mutability can be very useful. Variables are immutable only
by default; we can make them mutable by adding mut in front of the
variable name. In addition to allowing this value to change, it conveys
intent to future readers of the code by indicating that other parts of
the code will be changing this variable value.

For example, change src/main.rs to the following:
Filename: src/main.rs

fn main() {
let mut x = 5;
println!("The value of x is: {}", x);
x = 6;
println!("The value of x is: {}", x);

}

When we run this program, we get the following:

$ cargo run
Compiling variables v0.1.0 (file:///projects/variables)

Running `target/debug/variables`
The value of x is: 5
The value of x is: 6

Using mut, we’re allowed to change the value that x binds to from 5
to 6. In some cases, you’ll want to make a variable mutable because it
makes the code more convenient to write than an implementation that
only uses immutable variables.



50

There are multiple trade-offs to consider, in addition to the pre-
vention of bugs. For example, in cases where you’re using large data
structures, mutating an instance in place may be faster than copying
and returning newly allocated instances. With smaller data structures,
creating new instances and writing in a more functional programming
style may be easier to reason about, so the lower performance might
be a worthwhile penalty for gaining that clarity.

Differences Between Variables and Constants

Being unable to change the value of a variable might have reminded
you of another programming concept that most other languages have:
constants. Like immutable variables, constants are also values that are
bound to a name and are not allowed to change, but there are a few
differences between constants and variables.

First, we aren’t allowed to use mut with constants: constants aren’t
only immutable by default, they’re always immutable.

We declare constants using the const keyword instead of the let
keyword, and the type of the value must be annotated. We’re about
to cover types and type annotations in the next section, “Data Types,”
so don’t worry about the details right now, just know that we must
always annotate the type.

Constants can be declared in any scope, including the global scope,
which makes them useful for values that many parts of code need to
know about.

The last difference is that constants may only be set to a constant
expression, not the result of a function call or any other value that
could only be computed at runtime.

Here’s an example of a constant declaration where the constant’s
name is MAX_POINTS and its value is set to 100,000. (Rust constant
naming convention is to use all upper case with underscores between
words):

const MAX_POINTS: u32 = 100_000;

Constants are valid for the entire time a program runs, within the scope
they were declared in, making them a useful choice for values in your
application domain that multiple parts of the program might need to
know about, such as the maximum number of points any player of a
game is allowed to earn or the speed of light.

Naming hardcoded values used throughout your program as con-
stants is useful in conveying the meaning of that value to future main-
tainers of the code. It also helps to have only one place in your code



51

you would need to change if the hardcoded value needed to be updated
in the future.

Shadowing

As we saw in the guessing game tutorial in Chapter 2, we can declare
new variables with the same name as a previous variables, and the
new variable shadows the previous variable. Rustaceans say that the
first variable is shadowed by the second, which means that the second
variable’s value is what we’ll see when we use the variable. We can
shadow a variable by using the same variable’s name and repeating the
use of the let keyword as follows:

Filename: src/main.rs

fn main() {
let x = 5;

let x = x + 1;

let x = x * 2;

println!("The value of x is: {}", x);
}

This program first binds x to a value of 5. Then it shadows x by
repeating let x =, taking the original value and adding 1 so the value
of x is then 6. The third let statement also shadows x, taking the
previous value and multiplying it by 2 to give x a final value of 12.
When you run this program, it will output the following:

$ cargo run
Compiling variables v0.1.0 (file:///projects/variables)

Running `target/debug/variables`
The value of x is: 12

This is different than marking a variable as mut, because unless we use
the let keyword again, we’ll get a compile-time error if we accidentally
try to reassign to this variable. We can perform a few transformations
on a value but have the variable be immutable after those transforma-
tions have been completed.

The other difference between mut and shadowing is that because
we’re effectively creating a new variable when we use the let keyword



52

again, we can change the type of the value, but reuse the same name.
For example, say our program asks a user to show how many spaces
they want between some text by inputting space characters, but we
really want to store that input as a number:

let spaces = " ";
let spaces = spaces.len();

This construct is allowed because the first spaces variable is a string
type, and the second spaces variable, which is a brand-new variable
that happens to have the same name as the first one, is a number
type. Shadowing thus spares us from having to come up with different
names, like spaces_str and spaces_num; instead, we can reuse the
simpler spaces name. However, if we try to use mut for this, as shown
here:

let mut spaces = " ";
spaces = spaces.len();

we’ll get a compile-time error because we’re not allowed to mutate a
variable’s type:

error[E0308]: mismatched types
--> src/main.rs:3:14
|

3 | spaces = spaces.len();
| ^^^^^^^^^^^^ expected &str, found usize
|
= note: expected type `&str`

found type `usize`

Now that we’ve explored how variables work, let’s look at more data
types they can have.

3.2
Data Types
Every value in Rust is of a certain type, which tells Rust what kind of
data is being specified so it knows how to work with that data. In this
section, we’ll look at a number of types that are built into the language.
We split the types into two subsets: scalar and compound.



53

Throughout this section, keep in mind that Rust is a statically typed
language, which means that it must know the types of all variables at
compile time. The compiler can usually infer what type we want to use
based on the value and how we use it. In cases when many types are
possible, such as when we converted a String to a numeric type using
parse in Chapter 2, we must add a type annotation, like this:

let guess: u32 = "42".parse().expect("Not a number!");

If we don’t add the type annotation here, Rust will display the following
error, which means the compiler needs more information from us to
know which possible type we want to use:

error[E0282]: unable to infer enough type information about
`_`
--> src/main.rs:2:9
|

2 | let guess = "42".parse().expect("Not a number!")
;

| ^^^^^ cannot infer type for `_`
|
= note: type annotations or generic parameter binding

required

You’ll see different type annotations as we discuss the various data
types.

Scalar Types

A scalar type represents a single value. Rust has four primary scalar
types: integers, floating-point numbers, booleans, and characters. You’ll
likely recognize these from other programming languages, but let’s
jump into how they work in Rust.

Integer Types An integer is a number without a fractional com-
ponent. We used one integer type earlier in this chapter, the i32
type. This type declaration indicates that the value it’s associated
with should be a signed integer (hence the i, as opposed to a u for
unsigned) that takes up 32 bits of space. Table 3-1 shows the built-in
integer types in Rust. Each variant in the Signed and Unsigned columns
(for example, i32) can be used to declare the type of an integer value.

Table 3-1: Integer Types in Rust



54

Length Signed Unsigned
8-bit i8 u8
16-bit i16 u16
32-bit i32 u32
64-bit i64 u64
arch isize usize

Each variant can be either signed or unsigned and has an explicit
size. Signed and unsigned refers to whether it’s possible for the number
to be negative or positive; in other words, whether the number needs
to have a sign with it (signed) or whether it will only ever be positive
and can therefore be represented without a sign (unsigned). It’s like
writing numbers on paper: when the sign matters, a number is shown
with a plus sign or a minus sign; however, when it’s safe to assume the
number is positive, it’s shown with no sign. Signed numbers are stored
using two’s complement representation (if you’re unsure what this is,
you can search for it online; an explanation is outside the scope of this
book).

Each signed variant can store numbers from -(2n - 1) to 2n - 1 - 1
inclusive, where n is the number of bits that variant uses. So an i8 can
store numbers from -(27) to 27 - 1, which equals -128 to 127. Unsigned
variants can store numbers from 0 to 2n - 1, so a u8 can store numbers
from 0 to 28 - 1, which equals 0 to 255.

Additionally, the isize and usize types depend on the kind of
computer your program is running on: 64-bits if you’re on a 64-bit
architecture and 32-bits if you’re on a 32-bit architecture.

You can write integer literals in any of the forms shown in Table
3-2. Note that all number literals except the byte literal allow a type
suffix, such as 57u8, and _ as a visual separator, such as 1_000.

Table 3-2: Integer Literals in Rust

Number literals Example
Decimal 98_222
Hex 0xff
Octal 0o77
Binary 0b1111_0000
Byte (u8 only) b’A’

So how do you know which type of integer to use? If you’re unsure,
Rust’s defaults are generally good choices, and integer types default to
i32: it’s generally the fastest, even on 64-bit systems. The primary
situation in which you’d use isize or usize is when indexing some
sort of collection.



55

Floating-Point Types Rust also has two primitive types for floating-
point numbers, which are numbers with decimal points. Rust’s floating-
point types are f32 and f64, which are 32 bits and 64 bits in size, re-
spectively. The default type is f64 because it’s roughly the same speed
as f32 but is capable of more precision. It’s possible to use an f64
type on 32-bit systems, but it will be slower than using an f32 type on
those systems. Most of the time, trading potential worse performance
for better precision is a reasonable initial choice, and you should bench-
mark your code if you suspect floating-point size is a problem in your
situation.

Here’s an example that shows floating-point numbers in action:
Filename: src/main.rs

fn main() {
let x = 2.0; // f64

let y: f32 = 3.0; // f32
}

Floating-point numbers are represented according to the IEEE-754
standard. The f32 type is a single-precision float, and f64 has double
precision.

Numeric Operations Rust supports the usual basic mathematic op-
erations you’d expect for all of the number types: addition, subtraction,
multiplication, division, and remainder. The following code shows how
you’d use each one in a let statement:

Filename: src/main.rs

fn main() {
// addition
let sum = 5 + 10;

// subtraction
let difference = 95.5 - 4.3;

// multiplication
let product = 4 * 30;

// division
let quotient = 56.7 / 32.2;



56

// remainder
let remainder = 43 % 5;

}

Each expression in these statements uses a mathematical operator and
evaluates to a single value, which is then bound to a variable. Appendix
B contains a list of all operators that Rust provides.

The Boolean Type As in most other programming languages, a
boolean type in Rust has two possible values: true and false. The
boolean type in Rust is specified using bool. For example:

Filename: src/main.rs

fn main() {
let t = true;

let f: bool = false; // with explicit type annotation
}

The main way to consume boolean values is through conditionals, such
as an if expression. We’ll cover how if expressions work in Rust in
the “Control Flow” section.

The Character Type So far we’ve only worked with numbers, but
Rust supports letters too. Rust’s char type is the language’s most
primitive alphabetic type, and the following code shows one way to use
it:

Filename: src/main.rs

fn main() {
let c = 'z';
let z = '�';
let heart_eyed_cat = '�';

}

Rust’s char type represents a Unicode Scalar Value, which means
it can represent a lot more than just ASCII. Accented letters, Chi-
nese/Japanese/Korean ideographs, emoji, and zero width spaces are
all valid char types in Rust. Unicode Scalar Values range from U+0000
to U+D7FF and U+E000 to U+10FFFF inclusive. However, a “character”
isn’t really a concept in Unicode, so your human intuition for what a
“character” is may not match up with what a char is in Rust. We’ll
discuss this topic in detail in the “Strings” section in Chapter 8.



57

Compound Types

Compound types can group multiple values of other types into one type.
Rust has two primitive compound types: tuples and arrays.

Grouping Values into Tuples A tuple is a general way of grouping
together some number of other values with a variety of types into one
compound type.

We create a tuple by writing a comma-separated list of values inside
parentheses. Each position in the tuple has a type, and the types of the
different values in the tuple don’t have to be the same. We’ve added
optional type annotations in this example:

Filename: src/main.rs

fn main() {
let tup: (i32, f64, u8) = (500, 6.4, 1);

}

The variable tup binds to the entire tuple, since a tuple is considered a
single compound element. To get the individual values out of a tuple,
we can use pattern matching to destructure a tuple value, like this:

Filename: src/main.rs

fn main() {
let tup = (500, 6.4, 1);

let (x, y, z) = tup;

println!("The value of y is: {}", y);
}

This program first creates a tuple and binds it to the variable tup. It
then uses a pattern with let to take tup and turn it into three separate
variables, x, y, and z. This is called destructuring, because it breaks
the single tuple into three parts. Finally, the program prints the value
of y, which is 6.4.

In addition to destructuring through pattern matching, we can also
access a tuple element directly by using a period (.) followed by the
index of the value we want to access. For example:

Filename: src/main.rs



58

fn main() {
let x: (i32, f64, u8) = (500, 6.4, 1);

let five_hundred = x.0;

let six_point_four = x.1;

let one = x.2;
}

This program creates a tuple, x, and then makes new variables for each
element by using their index. As with most programming languages,
the first index in a tuple is 0.

Arrays Another way to have a collection of multiple values is with
an array. Unlike a tuple, every element of an array must have the same
type. Arrays in Rust are different than arrays in some other languages
because arrays in Rust have a fixed length: once declared, they cannot
grow or shrink in size.

In Rust, the values going into an array are written as a comma-
separated list inside square brackets:

Filename: src/main.rs

fn main() {
let a = [1, 2, 3, 4, 5];

}

Arrays are useful when you want your data allocated on the stack rather
than the heap (we will discuss the stack and the heap more in Chapter
4), or when you want to ensure you always have a fixed number of
elements. They aren’t as flexible as the vector type, though. The
vector type is a similar collection type provided by the standard library
that is allowed to grow or shrink in size. If you’re unsure whether to
use an array or a vector, you should probably use a vector: Chapter 8
discusses vectors in more detail.

An example of when you might want to use an array rather than
a vector is in a program that needs to know the names of the months
of the year. It’s very unlikely that such a program will need to add
or remove months, so you can use an array because you know it will
always contain 12 items:



59

let months = ["January", "February", "March", "April",
"May", "June", "July",

"August", "September", "October", "November",
"December"];

Accessing Array Elements An array is a single chunk of mem-
ory allocated on the stack. We can access elements of an array using
indexing, like this:

Filename: src/main.rs

fn main() {
let a = [1, 2, 3, 4, 5];

let first = a[0];
let second = a[1];

}

In this example, the variable named first will get the value 1, because
that is the value at index [0] in the array. The variable named second
will get the value 2 from index [1] in the array.

Invalid Array Element Access What happens if we try to access
an element of an array that is past the end of the array? Say we change
the example to the following:

Filename: src/main.rs

fn main() {
let a = [1, 2, 3, 4, 5];
let index = 10;

let element = a[index];

println!("The value of element is: {}", element);
}

Running this code using cargo run produces the following result:

$ cargo run
Compiling arrays v0.1.0 (file:///projects/arrays)
Running `target/debug/arrays`

thread '<main>' panicked at 'index out of bounds: the len
is 5 but the index is



60

10', src/main.rs:6
note: Run with `RUST_BACKTRACE=1` for a backtrace.

The compilation didn’t produce any errors, but the program results
in a runtime error and didn’t exit successfully. When you attempt to
access an element using indexing, Rust will check that the index you’ve
specified is less than the array length. If the index is greater than the
length, Rust will panic, which is the term Rust uses when a program
exits with an error.

This is the first example of Rust’s safety principles in action. In
many low-level languages, this kind of check is not done, and when
you provide an incorrect index, invalid memory can be accessed. Rust
protects you against this kind of error by immediately exiting instead of
allowing the memory access and continuing. Chapter 9 discusses more
of Rust’s error handling.

3.3
How Functions Work
Functions are pervasive in Rust code. You’ve already seen one of the
most important functions in the language: the main function, which is
the entry point of many programs. You’ve also seen the fn keyword,
which allows you to declare new functions.

Rust code uses snake case as the conventional style for function and
variable names. In snake case, all letters are lowercase and underscores
separate words. Here’s a program that contains an example function
definition:

Filename: src/main.rs

fn main() {
println!("Hello, world!");

another_function();
}

fn another_function() {
println!("Another function.");

}

Function definitions in Rust start with fn and have a set of parentheses
after the function name. The curly braces tell the compiler where the
function body begins and ends.



61

We can call any function we’ve defined by entering its name followed
by a set of parentheses. Because another_function is defined in the
program, it can be called from inside the main function. Note that we
defined another_function after the main function in the source code;
we could have defined it before as well. Rust doesn’t care where you
define your functions, only that they’re defined somewhere.

Let’s start a new binary project named functions to explore func-
tions further. Place the another_function example in src/main.rs
and run it. You should see the following output:

$ cargo run
Compiling functions v0.1.0 (file:///projects/functions)

Running `target/debug/functions`
Hello, world!
Another function.

The lines execute in the order in which they appear in the main func-
tion. First, the “Hello, world!” message prints, and then another_
function is called and its message is printed.

Function Parameters

Functions can also be defined to have parameters, which are special
variables that are part of a function’s signature. When a function has
parameters, we can provide it with concrete values for those parameters.
Technically, the concrete values are called arguments, but in casual
conversation people tend to use the words “parameter” and “argument”
interchangeably for either the variables in a function’s definition or the
concrete values passed in when you call a function.

The following rewritten version of another_function shows what
parameters look like in Rust:

Filename: src/main.rs

fn main() {
another_function(5);

}

fn another_function(x: i32) {
println!("The value of x is: {}", x);

}

Try running this program; you should get the following output:



62

$ cargo run
Compiling functions v0.1.0 (file:///projects/functions)

Running `target/debug/functions`
The value of x is: 5

The declaration of another_function has one parameter named x.
The type of x is specified as i32. When 5 is passed to another_
function, the println! macro puts 5 where the pair of curly braces
were in the format string.

In function signatures, you must declare the type of each parameter.
This is a deliberate decision in Rust’s design: requiring type annota-
tions in function definitions means the compiler almost never needs you
to use them elsewhere in the code to figure out what you mean.

When you want a function to have multiple parameters, separate
the parameter declarations with commas, like this:

Filename: src/main.rs

fn main() {
another_function(5, 6);

}

fn another_function(x: i32, y: i32) {
println!("The value of x is: {}", x);
println!("The value of y is: {}", y);

}

This example creates a function with two parameters, both of which
are i32 types. The function then prints out the values in both of its
parameters. Note that function parameters don’t all need to be the
same type, they just happen to be in this example.

Let’s try running this code. Replace the program currently in your
function project’s src/main.rs file with the preceding example, and run
it using cargo run:

$ cargo run
Compiling functions v0.1.0 (file:///projects/functions)

Running `target/debug/functions`
The value of x is: 5
The value of y is: 6

Because we called the function with 5 as the value for x and 6 is passed
as the value for y, the two strings are printed with these values.



63

Function Bodies

Function bodies are made up of a series of statements optionally end-
ing in an expression. So far, we’ve only covered functions without an
ending expression, but we have seen expressions as parts of statements.
Because Rust is an expression-based language, this is an important
distinction to understand. Other languages don’t have the same dis-
tinctions, so let’s look at what statements and expressions are and how
their differences affect the bodies of functions.

Statements and Expressions

We’ve actually already used statements and expressions. Statements
are instructions that perform some action and do not return a value.
Expressions evaluate to a resulting value. Let’s look at some examples.

Creating a variable and assigning a value to it with the let keyword
is a statement. In Listing 3-3, let y = 6; is a statement:

Filename: src/main.rs

fn main() {
let y = 6;

}

Listing 3-3: A main function declaration containing one statement.
Function definitions are also statements; the entire preceding ex-

ample is a statement in itself.
Statements do not return values. Therefore, you can’t assign a let

statement to another variable, as the following code tries to do:
Filename: src/main.rs

fn main() {
let x = (let y = 6);

}

When you run this program, you’ll get an error like this:

$ cargo run
Compiling functions v0.1.0 (file:///projects/functions)

error: expected expression, found statement (`let`)
--> src/main.rs:2:14
|

2 | let x = (let y = 6);



64

| ^^^
|
= note: variable declaration using `let` is a statement

The let y = 6 statement does not return a value, so there isn’t anything
for x to bind to. This is different than in other languages, such as C
and Ruby, where the assignment returns the value of the assignment.
In those languages, you can write x = y = 6 and have both x and y
have the value 6; that is not the case in Rust.

Expressions evaluate to something and make up most of the rest of
the code that you’ll write in Rust. Consider a simple math operation,
such as 5 + 6, which is an expression that evaluates to the value 11.
Expressions can be part of statements: in Listing 3-3 that had the
statement let y = 6;, 6 is an expression that evaluates to the value 6.
Calling a function is an expression. Calling a macro is an expression.
The block that we use to create new scopes, {}, is an expression, for
example:

Filename: src/main.rs

fn main() {
let x = 5;

let y = {
let x = 3;
x + 1

};

println!("The value of y is: {}", y);
}

This expression:

{
let x = 3;
x + 1

}

is a block that, in this case, evaluates to 4. That value gets bound to
y as part of the let statement. Note the line without a semicolon at
the end, unlike most of the lines you’ve seen so far. Expressions do
not include ending semicolons. If you add a semicolon to the end of
an expression, you turn it into a statement, which will then not return
a value. Keep this in mind as you explore function return values and
expressions next.



65

Functions with Return Values

Functions can return values to the code that calls them. We don’t
name return values, but we do declare their type after an arrow (->).
In Rust, the return value of the function is synonymous with the value
of the final expression in the block of the body of a function. Here’s an
example of a function that returns a value:

Filename: src/main.rs

fn five() -> i32 {
5

}

fn main() {
let x = five();

println!("The value of x is: {}", x);
}

There are no function calls, macros, or even let statements in the five
function—just the number 5 by itself. That’s a perfectly valid function
in Rust. Note that the function’s return type is specified, too, as ->
i32. Try running this code; the output should look like this:

$ cargo run
Compiling functions v0.1.0 (file:///projects/functions)

Running `target/debug/functions`
The value of x is: 5

The 5 in five is the function’s return value, which is why the return
type is i32. Let’s examine this in more detail. There are two important
bits: first, the line let x = five(); shows that we’re using the return
value of a function to initialize a variable. Because the function five
returns a 5, that line is the same as the following:

let x = 5;

Second, the five function has no parameters and defines the type of
the return value, but the body of the function is a lonely 5 with no
semicolon because it’s an expression whose value we want to return.
Let’s look at another example:

Filename: src/main.rs



66

fn main() {
let x = plus_one(5);

println!("The value of x is: {}", x);
}

fn plus_one(x: i32) -> i32 {
x + 1

}

Running this code will print The value of x is: 6. What happens if
we place a semicolon at the end of the line containing x + 1, changing
it from an expression to a statement?

Filename: src/main.rs

fn main() {
let x = plus_one(5);

println!("The value of x is: {}", x);
}

fn plus_one(x: i32) -> i32 {
x + 1;

}

Running this code produces an error, as follows:

error[E0308]: mismatched types
--> src/main.rs:7:28
|

7 | fn plus_one(x: i32) -> i32 {
| ____________________________^

8 | | x + 1;
9 | | }

| |_^ expected i32, found ()
|
= note: expected type `i32`

found type `()`
help: consider removing this semicolon:
--> src/main.rs:8:10
|

8 | x + 1;



67

| ^

The main error message, “mismatched types,” reveals the core issue
with this code. The definition of the function plus_one says that it
will return an i32, but statements don’t evaluate to a value, which
is expressed by (), the empty tuple. Therefore, nothing is returned,
which contradicts the function definition and results in an error. In
this output, Rust provides a message to possibly help rectify this issue:
it suggests removing the semicolon, which would fix the error.

3.4
Comments
All programmers strive to make their code easy to understand, but
sometimes extra explanation is warranted. In these cases, programmers
leave notes, or comments, in their source code that the compiler will
ignore but people reading the source code may find useful.

Here’s a simple comment:

// Hello, world.

In Rust, comments must start with two slashes and continue until the
end of the line. For comments that extend beyond a single line, you’ll
need to include // on each line, like this:

// So we’re doing something complicated here, long enough
that we need
// multiple lines of comments to do it! Whew! Hopefully,
this comment will
// explain what’s going on.

Comments can also be placed at the end of lines containing code:
Filename: src/main.rs

fn main() {
let lucky_number = 7; // I’m feeling lucky today.

}

But you’ll more often see them used in this format, with the comment
on a separate line above the code it’s annotating:

Filename: src/main.rs



68

fn main() {
// I’m feeling lucky today.
let lucky_number = 7;

}

That’s all there is to comments. They’re not particularly complicated.

3.5
Control Flow
Deciding whether or not to run some code depending on if a condition
is true or deciding to run some code repeatedly while a condition is true
are basic building blocks in most programming languages. The most
common constructs that let you control the flow of execution of Rust
code are if expressions and loops.

if Expressions

An if expression allows us to branch our code depending on conditions.
We provide a condition and then state, “If this condition is met, run
this block of code. If the condition is not met, do not run this block of
code.”

Create a new project called branches in your projects directory to
explore the if expression. In the src/main.rs file, input the following:

Filename: src/main.rs

fn main() {
let number = 3;

if number < 5 {
println!("condition was true");

} else {
println!("condition was false");

}
}

All if expressions start with the keyword if, which is followed by a
condition. In this case, the condition checks whether or not the vari-
able number has a value less than 5. The block of code we want to
execute if the condition is true is placed immediately after the condi-
tion inside curly braces. Blocks of code associated with the conditions



69

in if expressions are sometimes called arms, just like the arms in match
expressions that we discussed in the “Comparing the Guess to the Se-
cret Number” section of Chapter 2. Optionally, we can also include
an else expression, which we chose to do here, to give the program
an alternative block of code to execute should the condition evaluate
to false. If you don’t provide an else expression and the condition is
false, the program will just skip the if block and move on to the next
bit of code.

Try running this code; you should see the following output:

$ cargo run
Compiling branches v0.1.0 (file:///projects/branches)

Running `target/debug/branches`
condition was true

Let’s try changing the value of number to a value that makes the con-
dition false to see what happens:

let number = 7;

Run the program again, and look at the output:

$ cargo run
Compiling branches v0.1.0 (file:///projects/branches)

Running `target/debug/branches`
condition was false

It’s also worth noting that the condition in this code must be a bool.
To see what happens if the condition isn’t a bool, try running the
following code:

Filename: src/main.rs

fn main() {
let number = 3;

if number {
println!("number was three");

}
}

The if condition evaluates to a value of 3 this time, and Rust throws
an error:



70

error[E0308]: mismatched types
--> src/main.rs:4:8
|

4 | if number {
| ^^^^^^ expected bool, found integral variable
|
= note: expected type `bool`

found type `{integer}`

The error indicates that Rust expected a bool but got an integer. Rust
will not automatically try to convert non-boolean types to a boolean,
unlike languages such as Ruby and JavaScript. You must be explicit
and always provide if with a boolean as its condition. If we want the
if code block to run only when a number is not equal to 0, for example,
we can change the if expression to the following:

Filename: src/main.rs

fn main() {
let number = 3;

if number != 0 {
println!("number was something other than zero")

;
}

}

Running this code will print number was something other than zero.

Multiple Conditions with else if We can have multiple condi-
tions by combining if and else in an else if expression. For example:

Filename: src/main.rs

fn main() {
let number = 6;

if number % 4 == 0 {
println!("number is divisible by 4");

} else if number % 3 == 0 {
println!("number is divisible by 3");

} else if number % 2 == 0 {
println!("number is divisible by 2");

} else {



71

println!("number is not divisible by 4, 3, or 2")
;

}
}

This program has four possible paths it can take. After running it, you
should see the following output:

$ cargo run
Compiling branches v0.1.0 (file:///projects/branches)

Running `target/debug/branches`
number is divisible by 3

When this program executes, it checks each if expression in turn and
executes the first body for which the condition holds true. Note that
even though 6 is divisible by 2, we don’t see the output number is
divisible by 2, nor do we see the number is not divisible by 4,
3, or 2 text from the else block. The reason is that Rust will only
execute the block for the first true condition, and once it finds one, it
won’t even check the rest.

Using too many else if expressions can clutter your code, so if you
have more than one, you might want to refactor your code. Chapter
6 describes a powerful Rust branching construct called match for these
cases.

Using if in a let statement Because if is an expression, we can
use it on the right side of a let statement, for instance in Listing 3-4:

Filename: src/main.rs

fn main() {
let condition = true;
let number = if condition {

5
} else {

6
};

println!("The value of number is: {}", number);
}

Listing 3-4: Assigning the result of an if expression to a variable
The number variable will be bound to a value based on the outcome

of the if expression. Run this code to see what happens:



72

$ cargo run
Compiling branches v0.1.0 (file:///projects/branches)

Running `target/debug/branches`
The value of number is: 5

Remember that blocks of code evaluate to the last expression in them,
and numbers by themselves are also expressions. In this case, the value
of the whole if expression depends on which block of code executes.
This means the values that have the potential to be results from each
arm of the if must be the same type; in Listing 3-4, the results of both
the if arm and the else arm were i32 integers. But what happens if
the types are mismatched, as in the following example?

Filename: src/main.rs

fn main() {
let condition = true;

let number = if condition {
5

} else {
"six"

};

println!("The value of number is: {}", number);
}

When we try to run this code, we’ll get an error. The if and else
arms have value types that are incompatible, and Rust indicates exactly
where to find the problem in the program:

error[E0308]: if and else have incompatible types
--> src/main.rs:4:18
|

4 | let number = if condition {
| __________________^

5 | | 5
6 | | } else {
7 | | "six"
8 | | };
| |_____^ expected integral variable, found reference
|



73

= note: expected type `{integer}`
found type `&'static str`

The expression in the if block evaluates to an integer, and the expres-
sion in the else block evaluates to a string. This won’t work because
variables must have a single type. Rust needs to know at compile time
what type the number variable is, definitively, so it can verify at compile
time that its type is valid everywhere we use number. Rust wouldn’t be
able to do that if the type of number was only determined at runtime;
the compiler would be more complex and would make fewer guarantees
about the code if it had to keep track of multiple hypothetical types
for any variable.

Repetition with Loops

It’s often useful to execute a block of code more than once. For this
task, Rust provides several loops. A loop runs through the code inside
the loop body to the end and then starts immediately back at the
beginning. To experiment with loops, let’s make a new project called
loops.

Rust has three kinds of loops: loop, while, and for. Let’s try each
one.

Repeating Code with loop The loop keyword tells Rust to execute
a block of code over and over again forever or until you explicitly tell
it to stop.

As an example, change the src/main.rs file in your loops directory
to look like this:

Filename: src/main.rs

fn main() {
loop {

println!("again!");
}

}

When we run this program, we’ll see again! printed over and over
continuously until we stop the program manually. Most terminals sup-
port a keyboard shortcut, ctrl-C, to halt a program that is stuck in a
continual loop. Give it a try:



74

$ cargo run
Compiling loops v0.1.0 (file:///projects/loops)

Running `target/debug/loops`
again!
again!
again!
again!
^Cagain!

The symbol ^C represents where you pressed ctrl-C. You may or may
not see the word again! printed after the ^C, depending on where the
code was in the loop when it received the halt signal.

Fortunately, Rust provides another, more reliable way to break out
of a loop. You can place the break keyword within the loop to tell the
program when to stop executing the loop. Recall that we did this in
the guessing game in the “Quitting After a Correct Guess” section of
Chapter 2 to exit the program when the user won the game by guessing
the correct number.

Conditional Loops with while It’s often useful for a program to
evaluate a condition within a loop. While the condition is true, the loop
runs. When the condition ceases to be true, you call break, stopping
the loop. This loop type could be implemented using a combination
of loop, if, else, and break; you could try that now in a program, if
you’d like.

However, this pattern is so common that Rust has a built-in lan-
guage construct for it, and it’s called a while loop. The following
example uses while: the program loops three times, counting down
each time. Then, after the loop, it prints another message and exits:

Filename: src/main.rs

fn main() {
let mut number = 3;

while number != 0 {
println!("{}!", number);

number = number - 1;
}

println!("LIFTOFF!!!");



75

}

This construct eliminates a lot of nesting that would be necessary if you
used loop, if, else, and break, and it’s clearer. While a condition
holds true, the code runs; otherwise, it exits the loop.

Looping Through a Collection with for You could use the while
construct to loop over the elements of a collection, such as an array.
For example:

Filename: src/main.rs

fn main() {
let a = [10, 20, 30, 40, 50];
let mut index = 0;

while index < 5 {
println!("the value is: {}", a[index]);

index = index + 1;
}

}

Listing 3-5: Looping through each element of a collection using a while
loop

Here, the code counts up through the elements in the array. It starts
at index 0, and then loops until it reaches the final index in the array
(that is, when index < 5 is no longer true). Running this code will
print out every element in the array:

$ cargo run
Compiling loops v0.1.0 (file:///projects/loops)
Running `target/debug/loops`

the value is: 10
the value is: 20
the value is: 30
the value is: 40
the value is: 50

All five array values appear in the terminal, as expected. Even though
index will reach a value of 5 at some point, the loop stops executing
before trying to fetch a sixth value from the array.



76

But this approach is error prone; we could cause the program to
panic if the index length is incorrect. It’s also slow, because the com-
piler adds runtime code to perform the conditional check on every ele-
ment on every iteration through the loop.

As a more efficient alternative, you can use a for loop and execute
some code for each item in a collection. A for loop looks like this:

Filename: src/main.rs

fn main() {
let a = [10, 20, 30, 40, 50];

for element in a.iter() {
println!("the value is: {}", element);

}
}

Listing 3-6: Looping through each element of a collection using a for
loop

When we run this code, we’ll see the same output as in Listing 3-
5. More importantly, we’ve now increased the safety of the code and
eliminated the chance of bugs that might result from going beyond the
end of the array or not going far enough and missing some items.

For example, in the code in Listing 3-5, if you removed an item from
the a array but forgot to update the condition to while index < 4,
the code would panic. Using the for loop, you don’t need to remember
to change any other code if you changed the number of values in the
array.

The safety and conciseness of for loops make them the most com-
monly used loop construct in Rust. Even in situations in which you
want to run some code a certain number of times, as in the countdown
example that used a while loop in Listing 3-5, most Rustaceans would
use a for loop. The way to do that would be to use a Range, which is
a type provided by the standard library that generates all numbers in
sequence starting from one number and ending before another number.

Here’s what the countdown would look like using a for loop and
another method we’ve not yet talked about, rev, to reverse the range:

Filename: src/main.rs

fn main() {
for number in (1..4).rev() {

println!("{}!", number);
}



77

println!("LIFTOFF!!!");
}

This code is a bit nicer, isn’t it?

Summary
You made it! That was a sizable chapter: you learned about variables,
scalar and if expressions, and loops! If you want to practice with the
concepts discussed in this chapter, try building programs to do the
following:

• Convert temperatures between Fahrenheit and Celsius.

• Generate the nth Fibonacci number.

• Print the lyrics to the Christmas carol “The Twelve Days of
Christmas,” taking advantage of the repetition in the song.

When you’re ready to move on, we’ll talk about a concept in Rust that
doesn’t commonly exist in other programming languages: ownership.



78



Chapter 4

Understanding
Ownership

Ownership is Rust’s most unique feature, and it enables Rust to make
memory safety guarantees without needing a garbage collector. There-
fore, it’s important to understand how ownership works in Rust. In this
chapter we’ll talk about ownership as well as several related features:
borrowing, slices, and how Rust lays data out in memory.

4.1
What Is Ownership?
Rust’s central feature is ownership. Although the feature is straightfor-
ward to explain, it has deep implications for the rest of the language.

All programs have to manage the way they use a computer’s memory
while running. Some languages have garbage collection that constantly
looks for no longer used memory as the program runs; in other lan-
guages, the programmer must explicitly allocate and free the memory.
Rust uses a third approach: memory is managed through a system of
ownership with a set of rules that the compiler checks at compile time.
No run-time costs are incurred for any of the ownership features.

Because ownership is a new concept for many programmers, it does
take some time to get used to. The good news is that the more experi-
enced you become with Rust and the rules of the ownership system, the
more you’ll be able to naturally develop code that is safe and efficient.
Keep at it!



80

When you understand ownership, you’ll have a solid foundation for
understanding the features that make Rust unique. In this chapter,
you’ll learn ownership by working through some examples that focus
on a very common data structure: strings.

The Stack and the Heap
In many programming languages, we don’t have to think
about the stack and the heap very often. But in a systems
programming language like Rust, whether a value is on the
stack or the heap has more of an effect on how the language
behaves and why we have to make certain decisions. We’ll
describe parts of ownership in relation to the stack and the
heap later in this chapter, so here is a brief explanation in
preparation.

Both the stack and the heap are parts of memory that
is available to your code to use at runtime, but they are
structured in different ways. The stack stores values in the
order it gets them and removes the values in the opposite
order. This is referred to as last in, first out. Think of a
stack of plates: when you add more plates, you put them
on top of the pile, and when you need a plate, you take one
off the top. Adding or removing plates from the middle or
bottom wouldn’t work as well! Adding data is called pushing
onto the stack, and removing data is called popping off the
stack.

The stack is fast because of the way it accesses the data:
it never has to search for a place to put new data or a
place to get data from because that place is always the top.
Another property that makes the stack fast is that all data
on the stack must take up a known, fixed size.

For data with a size unknown to us at compile time or
a size that might change, we can store data on the heap
instead. The heap is less organized: when we put data on
the heap, we ask for some amount of space. The operating
system finds an empty spot somewhere in the heap that is
big enough, marks it as being in use, and returns to us a
pointer to that location. This process is called allocating on
the heap, and sometimes we abbreviate the phrase as just
“allocating.” Pushing values onto the stack is not considered
allocating. Because the pointer is a known, fixed size, we



81

can store the pointer on the stack, but when we want the
actual data, we have to follow the pointer.

Think of being seated at a restaurant. When you enter,
you state the number of people in your group, and the staff
finds an empty table that fits everyone and leads you there.
If someone in your group comes late, they can ask where
you’ve been seated to find you.

Accessing data in the heap is slower than accessing data
on the stack because we have to follow a pointer to get there.
Contemporary processors are faster if they jump around less
in memory. Continuing the analogy, consider a server at a
restaurant taking orders from many tables. It’s most effi-
cient to get all the orders at one table before moving on to
the next table. Taking an order from table A, then an order
from table B, then one from A again, and then one from B
again would be a much slower process. By the same token,
a processor can do its job better if it works on data that’s
close to other data (as it is on the stack) rather than farther
away (as it can be on the heap). Allocating a large amount
of space on the heap can also take time.

When our code calls a function, the values passed into
the function (including, potentially, pointers to data on the
heap) and the function’s local variables get pushed onto the
stack. When the function is over, those values get popped
off the stack.

Keeping track of what parts of code are using what data
on the heap, minimizing the amount of duplicate data on the
heap, and cleaning up unused data on the heap so we don’t
run out of space are all problems that ownership addresses.
Once you understand ownership, you won’t need to think
about the stack and the heap very often, but knowing that
managing heap data is why ownership exists can help explain
why it works the way it does.

Ownership Rules

First, let’s take a look at the ownership rules. Keep these rules in mind
as we work through the examples that illustrate the rules:

1. Each value in Rust has a variable that’s called its
owner.

2. There can only be one owner at a time.



82

3. When the owner goes out of scope, the value will be
dropped.

Variable Scope

We’ve walked through an example of a Rust program already in Chap-
ter 2. Now that we’re past basic syntax, we won’t include all the fn
main() { code in examples, so if you’re following along, you’ll have
to put the following examples inside a main function manually. As a
result, our examples will be a bit more concise, letting us focus on the
actual details rather than boilerplate code.

As a first example of ownership, we’ll look at the scope of some
variables. A scope is the range within a program for which an item is
valid. Let’s say we have a variable that looks like this:

let s = "hello";

The variable s refers to a string literal, where the value of the string is
hardcoded into the text of our program. The variable is valid from the
point at which it’s declared until the end of the current scope. Listing
4-1 has comments annotating where the variable s is valid:

{ // s is not valid here, it’s not
yet declared

let s = "hello"; // s is valid from this point forward

// do stuff with s
} // this scope is now over, and s
is no longer valid

Listing 4-1: A variable and the scope in which it is valid
In other words, there are two important points in time here:

1. When s comes into scope, it is valid.

2. It remains so until it goes out of scope.

At this point, the relationship between scopes and when variables are
valid is similar to other programming languages. Now we’ll build on
top of this understanding by introducing the String type.



83

The String Type

To illustrate the rules of ownership, we need a data type that is more
complex than the ones we covered in Chapter 3. All the data types
we’ve looked at previously are stored on the stack and popped off the
stack when their scope is over, but we want to look at data that is
stored on the heap and explore how Rust knows when to clean up that
data.

We’ll use String as the example here and concentrate on the parts
of String that relate to ownership. These aspects also apply to other
complex data types provided by the standard library and that you
create. We’ll discuss String in more depth in Chapter 8.

We’ve already seen string literals, where a string value is hardcoded
into our program. String literals are convenient, but they aren’t always
suitable for every situation in which you want to use text. One reason
is that they’re immutable. Another is that not every string value can
be known when we write our code: for example, what if we want to
take user input and store it? For these situations, Rust has a second
string type, String. This type is allocated on the heap and as such is
able to store an amount of text that is unknown to us at compile time.
You can create a String from a string literal using the from function,
like so:

let s = String::from("hello");

The double colon (::) is an operator that allows us to namespace
this particular from function under the String type rather than using
some sort of name like string_from. We’ll discuss this syntax more
in the “Method Syntax” section of Chapter 5 and when we talk about
namespacing with modules in Chapter 7.

This kind of string can be mutated:

let mut s = String::from("hello");

s.push_str(", world!"); // push_str() appends a literal
to a String

println!("{}", s); // This will print `hello, world!`

So, what’s the difference here? Why can String be mutated but literals
cannot? The difference is how these two types deal with memory.



84

Memory and Allocation

In the case of a string literal, we know the contents at compile time so
the text is hardcoded directly into the final executable, making string
literals fast and efficient. But these properties only come from its im-
mutability. Unfortunately, we can’t put a blob of memory into the
binary for each piece of text whose size is unknown at compile time
and whose size might change while running the program.

With the String type, in order to support a mutable, growable
piece of text, we need to allocate an amount of memory on the heap,
unknown at compile time, to hold the contents. This means:

1. The memory must be requested from the operating system at
runtime.

2. We need a way of returning this memory to the operating system
when we’re done with our String.

That first part is done by us: when we call String::from, its imple-
mentation requests the memory it needs. This is pretty much universal
in programming languages.

However, the second part is different. In languages with a garbage
collector (GC), the GC keeps track and cleans up memory that isn’t
being used anymore, and we, as the programmer, don’t need to think
about it. Without a GC, it’s the programmer’s responsibility to identify
when memory is no longer being used and call code to explicitly return
it, just as we did to request it. Doing this correctly has historically been
a difficult programming problem. If we forget, we’ll waste memory. If
we do it too early, we’ll have an invalid variable. If we do it twice,
that’s a bug too. We need to pair exactly one allocate with exactly
one free.

Rust takes a different path: the memory is automatically returned
once the variable that owns it goes out of scope. Here’s a version of
our scope example from Listing 4-1 using a String instead of a string
literal:
{

let s = String::from("hello"); // s is valid from this
point forward

// do stuff with s
} // this scope is now
over, and s is no



85

// longer valid

There is a natural point at which we can return the memory our String
needs to the operating system: when s goes out of scope. When a
variable goes out of scope, Rust calls a special function for us. This
function is called drop, and it’s where the author of String can put
the code to return the memory. Rust calls drop automatically at the
closing }.

Note: In C++, this pattern of deallocating resources at
the end of an item’s lifetime is sometimes called Resource
Acquisition Is Initialization (RAII). The drop function in
Rust will be familiar to you if you’ve used RAII patterns.

This pattern has a profound impact on the way Rust code is written. It
may seem simple right now, but the behavior of code can be unexpected
in more complicated situations when we want to have multiple variables
use the data we’ve allocated on the heap. Let’s explore some of those
situations now.

Ways Variables and Data Interact: Move Multiple variables can
interact with the same data in different ways in Rust. Let’s look at an
example using an integer in Listing 4-2:

let x = 5;
let y = x;

Listing 4-2: Assigning the integer value of variable x to y
We can probably guess what this is doing based on our experience

with other languages: “Bind the value 5 to x; then make a copy of
the value in x and bind it to y.” We now have two variables, x and y,
and both equal 5. This is indeed what is happening because integers
are simple values with a known, fixed size, and these two 5 values are
pushed onto the stack.

Now let’s look at the String version:

let s1 = String::from("hello");
let s2 = s1;

This looks very similar to the previous code, so we might assume that
the way it works would be the same: that is, the second line would
make a copy of the value in s1 and bind it to s2. But this isn’t quite
what happens.



86

To explain this more thoroughly, let’s look at what String looks
like under the covers in Figure 4-3. A String is made up of three parts,
shown on the left: a pointer to the memory that holds the contents of
the string, a length, and a capacity. This group of data is stored on the
stack. On the right is the memory on the heap that holds the contents.

Figure 4-3: Representation in memory of a String holding the value
“hello” bound to s1

The length is how much memory, in bytes, the contents of the
String is currently using. The capacity is the total amount of mem-
ory, in bytes, that the String has received from the operating system.
The difference between length and capacity matters, but not in this
context, so for now, it’s fine to ignore the capacity.

When we assign s1 to s2, the String data is copied, meaning we
copy the pointer, the length, and the capacity that are on the stack.
We do not copy the data on the heap that the pointer refers to. In
other words, the data representation in memory looks like Figure 4-4.

Figure 4-4: Representation in memory of the variable s2 that has
a copy of the pointer, length, and capacity of s1

The representation does not look like Figure 4-5, which is what
memory would look like if Rust instead copied the heap data as well. If
Rust did this, the operation s2 = s1 could potentially be very expensive
in terms of runtime performance if the data on the heap was large.

Figure 4-5: Another possibility of what s2 = s1 might do if Rust
copied the heap data as well

Earlier, we said that when a variable goes out of scope, Rust auto-
matically calls the drop function and cleans up the heap memory for
that variable. But Figure 4-4 shows both data pointers pointing to the
same location. This is a problem: when s2 and s1 go out of scope,
they will both try to free the same memory. This is known as a double
free error and is one of the memory safety bugs we mentioned previ-
ously. Freeing memory twice can lead to memory corruption, which
can potentially lead to security vulnerabilities.

To ensure memory safety, there’s one more detail to what happens in
this situation in Rust. Instead of trying to copy the allocated memory,
Rust considers s1 to no longer be valid and therefore, Rust doesn’t need
to free anything when s1 goes out of scope. Check out what happens
when you try to use s1 after s2 is created:

let s1 = String::from("hello");
let s2 = s1;



87

println!("{}", s1);

You’ll get an error like this because Rust prevents you from using the
invalidated reference:

error[E0382]: use of moved value: `s1`
--> src/main.rs:4:27
|

3 | let s2 = s1;
| -- value moved here

4 | println!("{}, world!", s1);
| ^^ value used here after

move
|
= note: move occurs because `s1` has type `std::string:

:String`,
which does not implement the `Copy` trait

If you’ve heard the terms “shallow copy” and “deep copy” while working
with other languages, the concept of copying the pointer, length, and
capacity without copying the data probably sounds like a shallow copy.
But because Rust also invalidates the first variable, instead of calling
this a shallow copy, it’s known as a move. Here we would read this by
saying that s1 was moved into s2. So what actually happens is shown
in Figure 4-6.

Figure 4-6: Representation in memory after s1 has been invalidated
That solves our problem! With only s2 valid, when it goes out of

scope, it alone will free the memory, and we’re done.
In addition, there’s a design choice that’s implied by this: Rust

will never automatically create “deep” copies of your data. Therefore,
any automatic copying can be assumed to be inexpensive in terms of
runtime performance.

Ways Variables and Data Interact: Clone If we do want to
deeply copy the heap data of the String, not just the stack data, we
can use a common method called clone. We’ll discuss method syntax
in Chapter 5, but because methods are a common feature in many
programming languages, you’ve probably seen them before.

Here’s an example of the clone method in action:



88

let s1 = String::from("hello");
let s2 = s1.clone();

println!("s1 = {}, s2 = {}", s1, s2);

This works just fine and is how you can explicitly produce the behavior
shown in Figure 4-5, where the heap data does get copied.

When you see a call to clone, you know that some arbitrary code is
being executed and that code may be expensive. It’s a visual indicator
that something different is going on.

Stack-Only Data: Copy There’s another wrinkle we haven’t talked
about yet. This code using integers, part of which was shown earlier in
Listing 4-2, works and is valid:

let x = 5;
let y = x;

println!("x = {}, y = {}", x, y);

But this code seems to contradict what we just learned: we don’t have
a call to clone, but x is still valid and wasn’t moved into y.

The reason is that types like integers that have a known size at
compile time are stored entirely on the stack, so copies of the actual
values are quick to make. That means there’s no reason we would want
to prevent x from being valid after we create the variable y. In other
words, there’s no difference between deep and shallow copying here, so
calling clone wouldn’t do anything differently from the usual shallow
copying and we can leave it out.

Rust has a special annotation called the Copy trait that we can place
on types like integers that are stored on the stack (we’ll talk more about
traits in Chapter 10). If a type has the Copy trait, an older variable is
still usable after assignment. Rust won’t let us annotate a type with
the Copy trait if the type, or any of its parts, has implemented the
Drop trait. If the type needs something special to happen when the
value goes out of scope and we add the Copy annotation to that type,
we’ll get a compile time error. To learn about how to add the Copy
annotation to your type, see Appendix C on Derivable Traits.

So what types are Copy? You can check the documentation for the
given type to be sure, but as a general rule, any group of simple scalar
values can be Copy, and nothing that requires allocation or is some
form of resource is Copy. Here are some of the types that are Copy:



89

• All the integer types, like u32.

• The boolean type, bool, with values true and false.

• All the floating point types, like f64.

• Tuples, but only if they contain types that are also Copy. (i32,
i32) is Copy, but (i32, String) is not.

Ownership and Functions

The semantics for passing a value to a function are similar to assigning
a value to a variable. Passing a variable to a function will move or copy,
just like assignment. Listing 4-7 has an example with some annotations
showing where variables go into and out of scope:

Filename: src/main.rs

fn main() {
let s = String::from("hello"); // s comes into scope.

takes_ownership(s); // s's value moves
into the function...

// ... and so is no
longer valid here.

let x = 5; // x comes into scope.

makes_copy(x); // x would move into
the function,

// but i32 is Copy,
so it’s okay to still

// use x afterward.

} // Here, x goes out of scope, then s. But since s's value
was moved, nothing
// special happens.

fn takes_ownership(some_string: String) { // some_string
comes into scope.

println!("{}", some_string);



90

} // Here, some_string goes out of scope and `drop` is
called. The backing
// memory is freed.

fn makes_copy(some_integer: i32) { // some_integer comes
into scope.

println!("{}", some_integer);
} // Here, some_integer goes out of scope. Nothing special
happens.

Listing 4-7: Functions with ownership and scope annotated
If we tried to use s after the call to takes_ownership, Rust would

throw a compile time error. These static checks protect us from mis-
takes. Try adding code to main that uses s and x to see where you can
use them and where the ownership rules prevent you from doing so.

Return Values and Scope

Returning values can also transfer ownership. Here’s an example with
similar annotations to those in Listing 4-7:

Filename: src/main.rs

fn main() {
let s1 = gives_ownership(); // gives_ownership

moves its return
// value into s1.

let s2 = String::from("hello"); // s2 comes into
scope.

let s3 = takes_and_gives_back(s2); // s2 is moved
into

// takes_and_gives_
back, which also

// moves its return
value into s3.
} // Here, s3 goes out of scope and is dropped. s2 goes
out of scope but was
// moved, so nothing happens. s1 goes out of scope and

is dropped.



91

fn gives_ownership() -> String { // gives_ownership
will move its

// return
value into the function

// that calls
it.

let some_string = String::from("hello"); // some_string
comes into scope.

some_string // some_string
is returned and

// moves out
to the calling

// function.

}

// takes_and_gives_back will take a String and return one.

fn takes_and_gives_back(a_string: String) -> String { /
/ a_string comes into

/
/ scope.

a_string // a_string is returned and moves out to
the calling function.
}

The ownership of a variable follows the same pattern every time: as-
signing a value to another variable moves it. When a variable that
includes data on the heap goes out of scope, the value will be cleaned
up by drop unless the data has been moved to be owned by another
variable.

Taking ownership and then returning ownership with every function
is a bit tedious. What if we want to let a function use a value but not
take ownership? It’s quite annoying that anything we pass in also needs
to be passed back if we want to use it again, in addition to any data
resulting from the body of the function that we might want to return
as well.

It’s possible to return multiple values using a tuple, like this:
Filename: src/main.rs



92

fn main() {
let s1 = String::from("hello");

let (s2, len) = calculate_length(s1);

println!("The length of '{}' is {}.", s2, len);
}

fn calculate_length(s: String) -> (String, usize) {
let length = s.len(); // len() returns the length of

a String.

(s, length)
}

But this is too much ceremony and a lot of work for a concept that
should be common. Luckily for us, Rust has a feature for this concept,
and it’s called references.

4.2
References and Borrowing
The issue with the tuple code at the end of the preceding section is
that we have to return the String to the calling function so we can
still use the String after the call to calculate_length, because the
String was moved into calculate_length.

Here is how you would define and use a calculate_length function
that has a reference to an object as a parameter instead of taking
ownership of the value:

Filename: src/main.rs

fn main() {
let s1 = String::from("hello");

let len = calculate_length(&s1);

println!("The length of '{}' is {}.", s1, len);
}

fn calculate_length(s: &String) -> usize {



93

s.len()
}

First, notice that all the tuple code in the variable declaration and
the function return value is gone. Second, note that we pass &s1 into
calculate_length, and in its definition, we take &String rather than
String.

These ampersands are references, and they allow you to refer to
some value without taking ownership of it. Figure 4-8 shows a diagram.

Figure 4-8: &String s pointing at String s1
Let’s take a closer look at the function call here:

# fn calculate_length(s: &String) -> usize {
# s.len()
# }
let s1 = String::from("hello");

let len = calculate_length(&s1);

The &s1 syntax lets us create a reference that refers to the value of s1
but does not own it. Because it does not own it, the value it points to
will not be dropped when the reference goes out of scope.

Likewise, the signature of the function uses & to indicate that the
type of the parameter s is a reference. Let’s add some explanatory
annotations:

fn calculate_length(s: &String) -> usize { // s is a reference
to a String

s.len()
} // Here, s goes out of scope. But because it does not
have ownership of what
// it refers to, nothing happens.

The scope in which the variable s is valid is the same as any function
parameter’s scope, but we don’t drop what the reference points to when
it goes out of scope because we don’t have ownership. Functions that
have references as parameters instead of the actual values mean we
won’t need to return the values in order to give back ownership, since
we never had ownership.

We call having references as function parameters borrowing. As in
real life, if a person owns something, you can borrow it from them.
When you’re done, you have to give it back.



94

So what happens if we try to modify something we’re borrowing?
Try the code in Listing 4-9. Spoiler alert: it doesn’t work!

Filename: src/main.rs

fn main() {
let s = String::from("hello");

change(&s);
}

fn change(some_string: &String) {
some_string.push_str(", world");

}

Listing 4-9: Attempting to modify a borrowed value
Here’s the error:

error: cannot borrow immutable borrowed content `*some_
string` as mutable
--> error.rs:8:5
|

8 | some_string.push_str(", world");
| ^^^^^^^^^^^

Just as variables are immutable by default, so are references. We’re
not allowed to modify something we have a reference to.

Mutable References

We can fix the error in the code from Listing 4-9 with just a small
tweak:

Filename: src/main.rs

fn main() {
let mut s = String::from("hello");

change(&mut s);
}

fn change(some_string: &mut String) {
some_string.push_str(", world");

}



95

First, we had to change s to be mut. Then we had to create a muta-
ble reference with &mut s and accept a mutable reference with some_
string: &mut String.

But mutable references have one big restriction: you can only have
one mutable reference to a particular piece of data in a particular scope.
This code will fail:

Filename: src/main.rs

let mut s = String::from("hello");

let r1 = &mut s;
let r2 = &mut s;

Here’s the error:

error[E0499]: cannot borrow `s` as mutable more than once
at a time
--> borrow_twice.rs:5:19
|

4 | let r1 = &mut s;
| - first mutable borrow occurs here

5 | let r2 = &mut s;
| ^ second mutable borrow occurs here

6 | }
| - first borrow ends here

This restriction allows for mutation but in a very controlled fashion.
It’s something that new Rustaceans struggle with, because most lan-
guages let you mutate whenever you’d like. The benefit of having this
restriction is that Rust can prevent data races at compile time.

A data race is a particular type of race condition in which these
three behaviors occur:

1. Two or more pointers access the same data at the same time.

2. At least one of the pointers is being used to write to the data.

3. There’s no mechanism being used to synchronize access to the
data.

Data races cause undefined behavior and can be difficult to diagnose
and fix when you’re trying to track them down at runtime; Rust pre-
vents this problem from happening because it won’t even compile code
with data races!



96

As always, we can use curly brackets to create a new scope, allowing
for multiple mutable references, just not simultaneous ones:

let mut s = String::from("hello");

{
let r1 = &mut s;

} // r1 goes out of scope here, so we can make a new reference
with no problems.

let r2 = &mut s;

A similar rule exists for combining mutable and immutable references.
This code results in an error:
let mut s = String::from("hello");

let r1 = &s; // no problem
let r2 = &s; // no problem
let r3 = &mut s; // BIG PROBLEM

Here’s the error:
error[E0502]: cannot borrow `s` as mutable because it is
also borrowed as
immutable
--> borrow_thrice.rs:6:19
|

4 | let r1 = &s; // no problem
| - immutable borrow occurs here

5 | let r2 = &s; // no problem
6 | let r3 = &mut s; // BIG PROBLEM
| ^ mutable borrow occurs here

7 | }
| - immutable borrow ends here

Whew! We also cannot have a mutable reference while we have an
immutable one. Users of an immutable reference don’t expect the values
to suddenly change out from under them! However, multiple immutable
references are okay because no one who is just reading the data has the
ability to affect anyone else’s reading of the data.

Even though these errors may be frustrating at times, remember
that it’s the Rust compiler pointing out a potential bug early (at com-
pile time rather than at runtime) and showing you exactly where the



97

problem is instead of you having to track down why sometimes your
data isn’t what you thought it should be.

Dangling References

In languages with pointers, it’s easy to erroneously create a dangling
pointer, a pointer that references a location in memory that may have
been given to someone else, by freeing some memory while preserving a
pointer to that memory. In Rust, by contrast, the compiler guarantees
that references will never be dangling references: if we have a reference
to some data, the compiler will ensure that the data will not go out of
scope before the reference to the data does.

Let’s try to create a dangling reference:
Filename: src/main.rs

fn main() {
let reference_to_nothing = dangle();

}

fn dangle() -> &String {
let s = String::from("hello");

&s
}

Here’s the error:
error[E0106]: missing lifetime specifier
--> dangle.rs:5:16
|

5 | fn dangle() -> &String {
| ^^^^^^^
|
= help: this function's return type contains a borrowed

value, but there is no
value for it to be borrowed from

= help: consider giving it a 'static lifetime

error: aborting due to previous error

This error message refers to a feature we haven’t covered yet: lifetimes.
We’ll discuss lifetimes in detail in Chapter 10. But, if you disregard
the parts about lifetimes, the message does contain the key to why this
code is a problem:



98

this function's return type contains a borrowed value,
but there is no value
for it to be borrowed from.

Let’s take a closer look at exactly what’s happening at each stage of
our dangle code:

fn dangle() -> &String { // dangle returns a reference
to a String

let s = String::from("hello"); // s is a new String

&s // we return a reference to the String, s
} // Here, s goes out of scope, and is dropped. Its memory
goes away.
// Danger!

Because s is created inside dangle, when the code of dangle is finished,
s will be deallocated. But we tried to return a reference to it. That
means this reference would be pointing to an invalid String! That’s
no good. Rust won’t let us do this.

The solution here is to return the String directly:

fn no_dangle() -> String {
let s = String::from("hello");

s
}

This works without any problems. Ownership is moved out, and noth-
ing is deallocated.

The Rules of References

Let’s recap what we’ve discussed about references:

1. At any given time, you can have either but not both of:

• One mutable reference.

• Any number of immutable references.

1. References must always be valid.

Next, we’ll look at a different kind of reference: slices.



99

4.3
Slices
Another data type that does not have ownership is the slice. Slices let
you reference a contiguous sequence of elements in a collection rather
than the whole collection.

Here’s a small programming problem: write a function that takes a
string and returns the first word it finds in that string. If the function
doesn’t find a space in the string, it means the whole string is one word,
so the entire string should be returned.

Let’s think about the signature of this function:

fn first_word(s: &String) -> ?

This function, first_word, has a &String as a parameter. We don’t
want ownership, so this is fine. But what should we return? We don’t
really have a way to talk about part of a string. However, we could
return the index of the end of the word. Let’s try that as shown in
Listing 4-10:

Filename: src/main.rs

fn first_word(s: &String) -> usize {
let bytes = s.as_bytes();

for (i, &item) in bytes.iter().enumerate() {
if item == b' ' {

return i;
}

}

s.len()
}

Listing 4-10: The first_word function that returns a byte index value
into the String parameter

Let’s break down this code a bit. Because we need to go through the
String element by element and check whether a value is a space, we’ll
convert our String to an array of bytes using the as_bytes method:

let bytes = s.as_bytes();

Next, we create an iterator over the array of bytes using the iter
method :



100

for (i, &item) in bytes.iter().enumerate() {

We’ll discuss iterators in more detail in Chapter 13. For now, know
that iter is a method that returns each element in a collection, and
enumerate wraps the result of iter and returns each element as part
of a tuple instead. The first element of the returned tuple is the index,
and the second element is a reference to the element. This is a bit more
convenient than calculating the index ourselves.

Because the enumerate method returns a tuple, we can use patterns
to destructure that tuple, just like everywhere else in Rust. So in the
for loop, we specify a pattern that has i for the index in the tuple and
&item for the single byte in the tuple. Because we get a reference to
the element from .iter().enumerate(), we use & in the pattern.

We search for the byte that represents the space by using the byte
literal syntax. If we find a space, we return the position. Otherwise,
we return the length of the string by using s.len():

if item == b' ' {
return i;

}
}
s.len()

We now have a way to find out the index of the end of the first word in
the string, but there’s a problem. We’re returning a usize on its own,
but it’s only a meaningful number in the context of the &String. In
other words, because it’s a separate value from the String, there’s no
guarantee that it will still be valid in the future. Consider the program
in Listing 4-11 that uses the first_word function from Listing 4-10:

Filename: src/main.rs

# fn first_word(s: &String) -> usize {
# let bytes = s.as_bytes();
#
# for (i, &item) in bytes.iter().enumerate() {
# if item == b' ' {
# return i;
# }
# }
#
# s.len()
# }



101

#
fn main() {

let mut s = String::from("hello world");

let word = first_word(&s); // word will get the value
5.

s.clear(); // This empties the String, making it equal
to "".

// word still has the value 5 here, but there's no
more string that

// we could meaningfully use the value 5 with. word
is now totally invalid!
}

Listing 4-11: Storing the result from calling the first_word function
then changing the String contents

This program compiles without any errors and also would if we used
word after calling s.clear(). word isn’t connected to the state of s at
all, so word still contains the value 5. We could use that value 5 with
the variable s to try to extract the first word out, but this would be a
bug because the contents of s have changed since we saved 5 in word.

Having to worry about the index in word getting out of sync with
the data in s is tedious and error prone! Managing these indices is even
more brittle if we write a second_word function. Its signature would
have to look like this:
fn second_word(s: &String) -> (usize, usize) {

Now we’re tracking a start and an ending index, and we have even more
values that were calculated from data in a particular state but aren’t
tied to that state at all. We now have three unrelated variables floating
around that need to be kept in sync.

Luckily, Rust has a solution to this problem: string slices.

String Slices

A string slice is a reference to part of a String, and looks like this:

let s = String::from("hello world");

let hello = &s[0..5];



102

let world = &s[6..11];

This is similar to taking a reference to the whole String but with the
extra [0..5] bit. Rather than a reference to the entire String, it’s a
reference to a portion of the String. The start..end syntax is a range
that begins at start and continues up to, but not including, end.

We can create slices using a range within brackets by specifying
[starting_index..ending_index], where starting_index is the first
position included in the slice and ending_index is one more than the
last position included in the slice. Internally, the slice data structure
stores the starting position and the length of the slice, which corre-
sponds to ending_index minus starting_index. So in the case of
let world = &s[6..11];, world would be a slice that contains a
pointer to the 6th byte of s and a length value of 5.

Figure 4-12 shows this in a diagram.
Figure 4-12: String slice referring to part of a String
With Rust’s .. range syntax, if you want to start at the first index

(zero), you can drop the value before the two periods. In other words,
these are equal:

let s = String::from("hello");

let slice = &s[0..2];
let slice = &s[..2];

By the same token, if your slice includes the last byte of the String,
you can drop the trailing number. That means these are equal:

let s = String::from("hello");

let len = s.len();

let slice = &s[3..len];
let slice = &s[3..];

You can also drop both values to take a slice of the entire string. So
these are equal:

let s = String::from("hello");

let len = s.len();

let slice = &s[0..len];



103

let slice = &s[..];

With all this information in mind, let’s rewrite first_word to return
a slice. The type that signifies “string slice” is written as &str:

Filename: src/main.rs

fn first_word(s: &String) -> &str {
let bytes = s.as_bytes();

for (i, &item) in bytes.iter().enumerate() {
if item == b' ' {

return &s[0..i];
}

}

&s[..]
}

We get the index for the end of the word in the same way as we did in
Listing 4-10, by looking for the first occurrence of a space. When we
find a space, we return a string slice using the start of the string and
the index of the space as the starting and ending indices.

Now when we call first_word, we get back a single value that is
tied to the underlying data. The value is made up of a reference to the
starting point of the slice and the number of elements in the slice.

Returning a slice would also work for a second_word function:

fn second_word(s: &String) -> &str {

We now have a straightforward API that’s much harder to mess up,
since the compiler will ensure the references into the String remain
valid. Remember the bug in the program in Listing 4-11, when we got
the index to the end of the first word but then cleared the string so
our index was invalid? That code was logically incorrect but didn’t
show any immediate errors. The problems would show up later if we
kept trying to use the first word index with an emptied string. Slices
make this bug impossible and let us know we have a problem with our
code much sooner. Using the slice version of first_word will throw a
compile time error:

Filename: src/main.rs



104

fn main() {
let mut s = String::from("hello world");

let word = first_word(&s);

s.clear(); // Error!
}

Here’s the compiler error:

17:6 error: cannot borrow `s` as mutable because it is
also borrowed as

immutable [E0502]
s.clear(); // Error!
^

15:29 note: previous borrow of `s` occurs here; the immutable
borrow prevents

subsequent moves or mutable borrows of `s`
until the borrow ends

let word = first_word(&s);
^

18:2 note: previous borrow ends here
fn main() {

}
^

Recall from the borrowing rules that if we have an immutable reference
to something, we cannot also take a mutable reference. Because clear
needs to truncate the String, it tries to take a mutable reference, which
fails. Not only has Rust made our API easier to use, but it has also
eliminated an entire class of errors at compile time!

String Literals Are Slices Recall that we talked about string lit-
erals being stored inside the binary. Now that we know about slices,
we can properly understand string literals:

let s = "Hello, world!";

The type of s here is &str: it’s a slice pointing to that specific point of
the binary. This is also why string literals are immutable; &str is an
immutable reference.



105

String Slices as Parameters Knowing that you can take slices of
literals and Strings leads us to one more improvement on first_word,
and that’s its signature:

fn first_word(s: &String) -> &str {

A more experienced Rustacean would write the following line instead
because it allows us to use the same function on both Strings and
&strs:

fn first_word(s: &str) -> &str {

If we have a string slice, we can pass that directly. If we have a String,
we can pass a slice of the entire String. Defining a function to take
a string slice instead of a reference to a String makes our API more
general and useful without losing any functionality:

Filename: src/main.rs

# fn first_word(s: &str) -> &str {
# let bytes = s.as_bytes();
#
# for (i, &item) in bytes.iter().enumerate() {
# if item == b' ' {
# return &s[0..i];
# }
# }
#
# &s[..]
# }
fn main() {

let my_string = String::from("hello world");

// first_word works on slices of `String`s
let word = first_word(&my_string[..]);

let my_string_literal = "hello world";

// first_word works on slices of string literals
let word = first_word(&my_string_literal[..]);

// since string literals *are* string slices already,
// this works too, without the slice syntax!



106

let word = first_word(my_string_literal);
}

Other Slices

String slices, as you might imagine, are specific to strings. But there’s
a more general slice type, too. Consider this array:

let a = [1, 2, 3, 4, 5];

Just like we might want to refer to a part of a string, we might want
to refer to part of an array and would do so like this:

let a = [1, 2, 3, 4, 5];

let slice = &a[1..3];

This slice has the type &[i32]. It works the same way as string slices
do, by storing a reference to the first element and a length. You’ll use
this kind of slice for all sorts of other collections. We’ll discuss these
collections in detail when we talk about vectors in Chapter 8.

Summary
The concepts of ownership, borrowing, and slices are what ensure mem-
ory safety in Rust programs at compile time. The Rust language gives
you control over your memory usage like other systems programming
languages, but having the owner of data automatically clean up that
data when the owner goes out of scope means you don’t have to write
and debug extra code to get this control.

Ownership affects how lots of other parts of Rust work, so we’ll talk
about these concepts further throughout the rest of the book. Let’s
move on to the next chapter and look at grouping pieces of data to-
gether in a struct.



Chapter 5

Using Structs to
Structure Related Data

A struct, or structure, is a custom data type that lets us name and
package together multiple related values that make up a meaningful
group. If you’re familiar with an object-oriented language, a struct is
like an object’s data attributes. In this chapter, we’ll compare and con-
trast tuples with structs, demonstrate how to use structs, and discuss
how to define methods and associated functions on structs to specify
behavior associated with a struct’s data. The struct and enum (which
is discussed in Chapter 6) concepts are the building blocks for creating
new types in your program’s domain to take full advantage of Rust’s
compile time type checking.

5.1
Defining and Instantiating Structs
Structs are similar to tuples, which were discussed in Chapter 3. Like
tuples, the pieces of a struct can be different types. Unlike tuples, we
name each piece of data so it’s clear what the values mean. As a result
of these names, structs are more flexible than tuples: we don’t have
to rely on the order of the data to specify or access the values of an
instance.

To define a struct, we enter the keyword struct and name the entire
struct. A struct’s name should describe the significance of the pieces
of data being grouped together. Then, inside curly braces, we define



108

the names and types of the pieces of data, which we call fields. For
example, Listing 5-1 shows a struct to store information about a user
account:
struct User {

username: String,
email: String,
sign_in_count: u64,
active: bool,

}

Listing 5-1: A User struct definition
To use a struct after we’ve defined it, we create an instance of that

struct by specifying concrete values for each of the fields. We create
an instance by stating the name of the struct, and then add curly
braces containing key: value pairs where the keys are the names
of the fields and the values are the data we want to store in those
fields. We don’t have to specify the fields in the same order in which
we declared them in the struct. In other words, the struct definition is
like a general template for the type, and instances fill in that template
with particular data to create values of the type. For example, we can
declare a particular user as shown in Listing 5-2:

# struct User {
# username: String,
# email: String,
# sign_in_count: u64,
# active: bool,
# }
#
let user1 = User {

email: String::from("someone@example.com"),
username: String::from("someusername123"),
active: true,
sign_in_count: 1,

};

Listing 5-2: Creating an instance of the User struct
To get a specific value from a struct, we can use dot notation. If

we wanted just this user’s email address, we can use user1.email
wherever we want to use this value. To change a value in a struct,
if the instance is mutable, we can use the dot notation and assign into
a particular field, such as user1.email = String::from(“someone-
else@example.com”);.



109

Field Init Shorthand when Variables Have the Same Name as
Fields

If you have variables with the same names as struct fields, you can use
field init shorthand. This can make functions that create new instances
of structs more concise. The function named build_user shown here in
Listing 5-3 has parameters named email and username. The function
creates and returns a User instance:

# struct User {
# username: String,
# email: String,
# sign_in_count: u64,
# active: bool,
# }
#
fn build_user(email: String, username: String) -> User
{

User {
email: email,
username: username,
active: true,
sign_in_count: 1,

}
}

Listing 5-3: A build_user function that takes an email and username
and returns a User instance

Because the parameter names email and username are the same
as the User struct’s field names email and username, we can write
build_user without the repetition of email and username as shown
in Listing 5-4. This version of build_user behaves the same way as
the one in Listing 5-3. The field init syntax can make cases like this
shorter to write, especially when structs have many fields.

# struct User {
# username: String,
# email: String,
# sign_in_count: u64,
# active: bool,
# }
#



110

fn build_user(email: String, username: String) -> User
{

User {
email,
username,
active: true,
sign_in_count: 1,

}
}

Listing 5-4: A build_user function that uses field init syntax since the
email and username parameters have the same name as struct fields

Creating Instances From Other Instances With Struct Update
Syntax

It’s often useful to create a new instance from an old instance, using
most of the old instance’s values but changing some. Listing 5-5 shows
an example of creating a new User instance in user2 by setting the
values of email and username but using the same values for the rest
of the fields from the user1 instance we created in Listing 5-2:

# struct User {
# username: String,
# email: String,
# sign_in_count: u64,
# active: bool,
# }
#
# let user1 = User {
# email: String::from("someone@example.com"),
# username: String::from("someusername123"),
# active: true,
# sign_in_count: 1,
# };
#
let user2 = User {

email: String::from("another@example.com"),
username: String::from("anotherusername567"),
active: user1.active,



111

sign_in_count: user1.sign_in_count,
};

Listing 5-5: Creating a new User instance, user2, and setting some
fields to the values of the same fields from user1

The struct update syntax achieves the same effect as the code in
Listing 5-5 using less code. The struct update syntax uses .. to specify
that the remaining fields not set explicitly should have the same value
as the fields in the given instance. The code in Listing 5-6 also creates
an instance in user2 that has a different value for email and username
but has the same values for the active and sign_in_count fields that
user1 has:

# struct User {
# username: String,
# email: String,
# sign_in_count: u64,
# active: bool,
# }
#
# let user1 = User {
# email: String::from("someone@example.com"),
# username: String::from("someusername123"),
# active: true,
# sign_in_count: 1,
# };
#
let user2 = User {

email: String::from("another@example.com"),
username: String::from("anotherusername567"),
..user1

};

Listing5-6: Using struct update syntax to set a new email and username
values for a User instance but use the rest of the values from the fields
of the instance in the user1 variable

Tuple Structs without Named Fields to Create Different Types

We can also define structs that look similar to tuples, called tuple
structs, that have the added meaning the struct name provides, but
don’t have names associated with their fields, just the types of the
fields. The definition of a tuple struct still starts with the struct



112

keyword and the struct name, which are followed by the types in the
tuple. For example, here are definitions and usages of tuple structs
named Color and Point:

struct Color(i32, i32, i32);
struct Point(i32, i32, i32);

let black = Color(0, 0, 0);
let origin = Point(0, 0, 0);

Note that the black and origin values are different types, since they’re
instances of different tuple structs. Each struct we define is its own
type, even though the fields within the struct have the same types.
Otherwise, tuple struct instances behave like tuples, which we covered
in Chapter 3.

Unit-Like Structs without Any Fields

We can also define structs that don’t have any fields! These are called
unit-like structs since they behave similarly to (), the unit type. Unit-
like structs can be useful in situations such as when you need to imple-
ment a trait on some type, but you don’t have any data that you want
to store in the type itself. We’ll be discussing traits in Chapter 10.

Ownership of Struct Data
In the User struct definition in Listing 5-1, we used the
owned String type rather than the &str string slice type.
This is a deliberate choice because we want instances of this
struct to own all of its data and for that data to be valid for
as long as the entire struct is valid.

It’s possible for structs to store references to data owned
by something else, but to do so requires the use of lifetimes,
a Rust feature that is discussed in Chapter 10. Lifetimes
ensure that the data referenced by a struct is valid for as
long as the struct is. Let’s say you try to store a reference
in a struct without specifying lifetimes, like this:

Filename: src/main.rs

struct User {
username: &str,
email: &str,



113

sign_in_count: u64,
active: bool,

}

fn main() {
let user1 = User {

email: "someone@example.com",
username: "someusername123",
active: true,
sign_in_count: 1,

};
}

The compiler will complain that it needs lifetime specifiers:

error[E0106]: missing lifetime specifier
-->
|

2 | username: &str,
| ^ expected lifetime parameter

error[E0106]: missing lifetime specifier
-->
|

3 | email: &str,
| ^ expected lifetime parameter

We’ll discuss how to fix these errors so you can store refer-
ences in structs in Chapter 10, but for now, we’ll fix errors
like these using owned types like String instead of refer-
ences like &str.

5.2
An Example Program Using Structs
To understand when we might want to use structs, let’s write a program
that calculates the area of a rectangle. We’ll start with single variables,
and then refactor the program until we’re using structs instead.

Let’s make a new binary project with Cargo called rectangles that
will take the length and width of a rectangle specified in pixels and will



114

calculate the area of the rectangle. Listing 5-7 shows a short program
with one way of doing just that in our project’s src/main.rs:

Filename: src/main.rs

fn main() {
let length1 = 50;
let width1 = 30;

println!(
"The area of the rectangle is {} square pixels.

",
area(length1, width1)

);
}

fn area(length: u32, width: u32) -> u32 {
length * width

}

Listing 5-7: Calculating the area of a rectangle specified by its length
and width in separate variables

Now, run this program using cargo run:

The area of the rectangle is 1500 square pixels.

Refactoring with Tuples

Even though Listing 5-7 works and figures out the area of the rectangle
by calling the area function with each dimension, we can do better.
The length and the width are related to each other because together
they describe one rectangle.

The issue with this method is evident in the signature of area:

fn area(length: u32, width: u32) -> u32 {

The area function is supposed to calculate the area of one rectangle, but
the function we wrote has two parameters. The parameters are related,
but that’s not expressed anywhere in our program. It would be more
readable and more manageable to group length and width together.
We’ve already discussed one way we might do that in the Grouping
Values into Tuples section of Chapter 3 on page XX: by using tuples.
Listing 5-8 shows another version of our program that uses tuples:

Filename: src/main.rs



115

fn main() {
let rect1 = (50, 30);

println!(
"The area of the rectangle is {} square pixels.

",
area(rect1)

);
}

fn area(dimensions: (u32, u32)) -> u32 {
dimensions.0 * dimensions.1

}

Listing 5-8: Specifying the length and width of the rectangle with a
tuple

In one way, this program is better. Tuples let us add a bit of
structure, and we’re now passing just one argument. But in another
way this version is less clear: tuples don’t name their elements, so our
calculation has become more confusing because we have to index into
the parts of the tuple.

It doesn’t matter if we mix up length and width for the area cal-
culation, but if we want to draw the rectangle on the screen, it would
matter! We would have to keep in mind that length is the tuple index
0 and width is the tuple index 1. If someone else worked on this code,
they would have to figure this out and keep it in mind as well. It would
be easy to forget or mix up these values and cause errors, because we
haven’t conveyed the meaning of our data in our code.

Refactoring with Structs: Adding More Meaning

We use structs to add meaning by labeling the data. We can transform
the tuple we’re using into a data type with a name for the whole as
well as names for the parts, as shown in Listing 5-9:

Filename: src/main.rs

struct Rectangle {
length: u32,
width: u32,

}



116

fn main() {
let rect1 = Rectangle { length: 50, width: 30 };

println!(
"The area of the rectangle is {} square pixels.

",
area(&rect1)

);
}

fn area(rectangle: &Rectangle) -> u32 {
rectangle.length * rectangle.width

}

Listing 5-9: Defining a Rectangle struct
Here we’ve defined a struct and named it Rectangle. Inside the {}

we defined the fields as length and width, both of which have type
u32. Then in main we create a particular instance of a Rectangle that
has a length of 50 and a width of 30.

Our area function is now defined with one parameter, which we’ve
named rectangle, whose type is an immutable borrow of a struct
Rectangle instance. As mentioned in Chapter 4, we want to borrow
the struct rather than take ownership of it. This way, main retains its
ownership and can continue using rect1, which is the reason we use
the & in the function signature and where we call the function.

The area function accesses the length and width fields of the
Rectangle instance. Our function signature for area now indicates
exactly what we mean: calculate the area of a Rectangle using its
length and width fields. This conveys that the length and width are
related to each other, and gives descriptive names to the values rather
than using the tuple index values of 0 and 1—a win for clarity.

Adding Useful Functionality with Derived Traits

It would be helpful to be able to print out an instance of the Rectangle
while we’re debugging our program in order to see the values for all its
fields. Listing 5-10 uses the println! macro as we have been in earlier
chapters:

Filename: src/main.rs



117

struct Rectangle {
length: u32,
width: u32,

}

fn main() {
let rect1 = Rectangle { length: 50, width: 30 };

println!("rect1 is {}", rect1);
}

Listing 5-10: Attempting to print a Rectangle instance
When we run this code, we get an error with this core message:

error[E0277]: the trait bound `Rectangle: std::fmt::Display`
is not satisfied

The println! macro can do many kinds of formatting, and by de-
fault, {} tells println! to use formatting known as Display: output
intended for direct end user consumption. The primitive types we’ve
seen so far implement Display by default, because there’s only one
way you’d want to show a 1 or any other primitive type to a user. But
with structs, the way println! should format the output is less clear
because there are more display possibilities: do you want commas or
not? Do you want to print the curly braces? Should all the fields be
shown? Due to this ambiguity, Rust doesn’t try to guess what we want
and structs don’t have a provided implementation of Display.

If we continue reading the errors, we’ll find this helpful note:

note: `Rectangle` cannot be formatted with the default
formatter; try using
`:?` instead if you are using a format string

Let’s try it! The println! macro call will now look like println!(
“rect1 is {:?}”, rect1);. Putting the specifier :? inside the {}
tells println! we want to use an output format called Debug. Debug
is a trait that enables us to print out our struct in a way that is useful
for developers so we can see its value while we’re debugging our code.

Run the code with this change. Drat! We still get an error:

error: the trait bound `Rectangle: std::fmt::Debug` is
not satisfied

But again, the compiler gives us a helpful note:



118

note: `Rectangle` cannot be formatted using `:?`; if it
is defined in your
crate, add `#[derive(Debug)]` or manually implement it

Rust does include functionality to print out debugging information, but
we have to explicitly opt-in to make that functionality available for our
struct. To do that, we add the annotation #[derive(Debug)] just
before the struct definition, as shown in Listing 5-11:

Filename: src/main.rs

#[derive(Debug)]
struct Rectangle {

length: u32,
width: u32,

}

fn main() {
let rect1 = Rectangle { length: 50, width: 30 };

println!("rect1 is {:?}", rect1);
}

Listing5-11: Adding the annotation to derive the Debug trait and print-
ing the Rectangle instance using debug formatting

Now when we run the program, we won’t get any errors and we’ll
see the following output:

rect1 is Rectangle { length: 50, width: 30 }

Nice! It’s not the prettiest output, but it shows the values of all the
fields for this instance, which would definitely help during debugging.
When we have larger structs, it’s useful to have output that’s a bit
easier to read; in those cases, we can use {:#?} instead of {:?} in the
println! string. When we use the {:#?} style in the example, the
output will look like this:

rect1 is Rectangle {
length: 50,
width: 30

}

Rust has provided a number of traits for us to use with the derive
annotation that can add useful behavior to our custom types. Those



119

traits and their behaviors are listed in Appendix C. We’ll cover how to
implement these traits with custom behavior as well as how to create
your own traits in Chapter 10.

Our area function is very specific: it only computes the area of
rectangles. It would be helpful to tie this behavior more closely to our
Rectangle struct, because it won’t work with any other type. Let’s
look at how we can continue to refactor this code by turning the area
function into an area method defined on our Rectangle type.

5.3
Method Syntax
Methods are similar to functions: they’re declared with the fn keyword
and their name, they can have parameters and return values, and they
contain some code that is run when they’re called from somewhere else.
However, methods are different from functions in that they’re defined
within the context of a struct (or an enum or a trait object, which we
cover in Chapters 6 and 17, respectively), and their first parameter is
always self, which represents the instance of the struct the method is
being called on.

Defining Methods

Let’s change the area function that has a Rectangle instance as a
parameter and instead make an area method defined on the Rectangle
struct, as shown in Listing 5-12:

Filename: src/main.rs

#[derive(Debug)]
struct Rectangle {

length: u32,
width: u32,

}

impl Rectangle {
fn area(&self) -> u32 {

self.length * self.width
}

}



120

fn main() {
let rect1 = Rectangle { length: 50, width: 30 };

println!(
"The area of the rectangle is {} square pixels.

",
rect1.area()

);
}

Listing 5-12: Defining an area method on the Rectangle struct
To define the function within the context of Rectangle, we start

an impl (implementation) block. Then we move the area function
within the impl curly braces and change the first (and in this case,
only) parameter to be self in the signature and everywhere within the
body. In main where we called the area function and passed rect1
as an argument, we can instead use method syntax to call the area
method on our Rectangle instance. The method syntax goes after an
instance: we add a dot followed by the method name, parentheses, and
any arguments.

In the signature for area, we use &self instead of rectangle:
&Rectangle because Rust knows the type of self is Rectangle due
to this method being inside the impl Rectangle context. Note that
we still need to use the & before self, just like we did in &Rectangle.
Methods can take ownership of self, borrow self immutably as we’ve
done here, or borrow self mutably, just like any other parameter.

We’ve chosen &self here for the same reason we used &Rectangle
in the function version: we don’t want to take ownership, and we just
want to read the data in the struct, not write to it. If we wanted to
change the instance that we’ve called the method on as part of what
the method does, we’d use &mut self as the first parameter. Having a
method that takes ownership of the instance by using just self as the
first parameter is rare; this technique is usually used when the method
transforms self into something else and we want to prevent the caller
from using the original instance after the transformation.

The main benefit of using methods instead of functions, in addition
to using method syntax and not having to repeat the type of self in
every method’s signature, is for organization. We’ve put all the things
we can do with an instance of a type in one impl block rather than
making future users of our code search for capabilities of Rectangle in
various places in the library we provide.



121

Where’s the -> Operator?
In languages like C++, two different operators are used for
calling methods: you use . if you’re calling a method on
the object directly and -> if you’re calling the method on a
pointer to the object and need to dereference the pointer first.
In other words, if object is a pointer, object->something(
) is similar to (*object).something().

Rust doesn’t have an equivalent to the -> operator; in-
stead, Rust has a feature called automatic referencing and
dereferencing. Calling methods is one of the few places in
Rust that has this behavior.

Here’s how it works: when you call a method with object.
something(), Rust automatically adds in &, &mut, or * so
object matches the signature of the method. In other words,
the following are the same:

# #[derive(Debug,Copy,Clone)]
# struct Point {
# x: f64,
# y: f64,
# }
#
# impl Point {
# fn distance(&self, other: &Point) -> f64
{
# let x_squared = f64::powi(other.x - self.
x, 2);
# let y_squared = f64::powi(other.y - self.
y, 2);
#
# f64::sqrt(x_squared + y_squared)
# }
# }
# let p1 = Point { x: 0.0, y: 0.0 };
# let p2 = Point { x: 5.0, y: 6.5 };
p1.distance(&p2);
(&p1).distance(&p2);

The first one looks much cleaner. This automatic referenc-
ing behavior works because methods have a clear receiver—
the type of self. Given the receiver and name of a method,



122

Rust can figure out definitively whether the method is reading
(&self), mutating (&mut self), or consuming (self). The
fact that Rust makes borrowing implicit for method receivers
is a big part of making ownership ergonomic in practice.

Methods with More Parameters

Let’s practice using methods by implementing a second method on
the Rectangle struct. This time, we want an instance of Rectangle
to take another instance of Rectangle and return true if the second
Rectangle can fit completely within self; otherwise it should return
false. That is, we want to be able to write the program shown in
Listing 5-13, once we’ve defined the can_hold method:

Filename: src/main.rs

fn main() {
let rect1 = Rectangle { length: 50, width: 30 };
let rect2 = Rectangle { length: 40, width: 10 };
let rect3 = Rectangle { length: 45, width: 60 };

println!("Can rect1 hold rect2? {}", rect1.can_hold(
&rect2));

println!("Can rect1 hold rect3? {}", rect1.can_hold(
&rect3));
}

Listing 5-13: Demonstration of using the as-yet-unwritten can_hold
method

And the expected output would look like the following, because
both dimensions of rect2 are smaller than the dimensions of rect1,
but rect3 is wider than rect1:

Can rect1 hold rect2? true
Can rect1 hold rect3? false

We know we want to define a method, so it will be within the impl
Rectangle block. The method name will be can_hold, and it will take
an immutable borrow of another Rectangle as a parameter. We can
tell what the type of the parameter will be by looking at the code that
calls the method: rect1.can_hold(&rect2) passes in &rect2, which
is an immutable borrow to rect2, an instance of Rectangle. This
makes sense because we only need to read rect2 (rather than write,
which would mean we’d need a mutable borrow), and we want main to



123

retain ownership of rect2 so we can use it again after calling the can_
hold method. The return value of can_hold will be a boolean, and
the implementation will check whether the length and width of self
are both greater than the length and width of the other Rectangle,
respectively. Let’s add the new can_hold method to the impl block
from Listing 5-12, shown in Listing 5-14:

Filename: src/main.rs

# #[derive(Debug)]
# struct Rectangle {
# length: u32,
# width: u32,
# }
#
impl Rectangle {

fn area(&self) -> u32 {
self.length * self.width

}

fn can_hold(&self, other: &Rectangle) -> bool {
self.length > other.length && self.width > other.

width
}

}

Listing 5-14: Implementing the can_hold method on Rectangle that
takes another Rectangle instance as a parameter

When we run this code with the main function in Listing 5-13, we’ll
get our desired output. Methods can take multiple parameters that we
add to the signature after the self parameter, and those parameters
work just like parameters in functions.

Associated Functions

Another useful feature of impl blocks is that we’re allowed to define
functions within impl blocks that don’t take self as a parameter.
These are called associated functions because they’re associated with
the struct. They’re still functions, not methods, because they don’t
have an instance of the struct to work with. You’ve already used the
String::from associated function.

Associated functions are often used for constructors that will re-
turn a new instance of the struct. For example, we could provide an



124

associated function that would have one dimension parameter and use
that as both length and width, thus making it easier to create a square
Rectangle rather than having to specify the same value twice:

Filename: src/main.rs

# #[derive(Debug)]
# struct Rectangle {
# length: u32,
# width: u32,
# }
#
impl Rectangle {

fn square(size: u32) -> Rectangle {
Rectangle { length: size, width: size }

}
}

To call this associated function, we use the :: syntax with the struct
name, like let sq = Rectangle::square(3);, for example. This
function is namespaced by the struct: the :: syntax is used for both
associated functions and namespaces created by modules, which we’ll
discuss in Chapter 7.

Summary
Structs let us create custom types that are meaningful for our domain.
By using structs, we can keep associated pieces of data connected to
each other and name each piece to make our code clear. Methods let us
specify the behavior that instances of our structs have, and associated
functions let us namespace functionality that is particular to our struct
without having an instance available.

But structs aren’t the only way we can create custom types: let’s
turn to Rust’s enum feature to add another tool to our toolbox.



Chapter 6

Enums and Pattern
Matching

In this chapter we’ll look at enumerations, also referred to as enums.
Enums allow you to define a type by enumerating its possible values.
First, we’ll define and use an enum to show how an enum can encode
meaning along with data. Next, we’ll explore a particularly useful
enum, called Option, which expresses that a value can be either some-
thing or nothing. Then we’ll look at how pattern matching in the match
expression makes it easy to run different code for different values of an
enum. Finally, we’ll cover how the if let construct is another con-
venient and concise idiom available to you to handle enums in your
code.

Enums are a feature in many languages, but their capabilities differ
in each language. Rust’s enums are most similar to algebraic data types
in functional languages like F#, OCaml, and Haskell.

6.1

Defining an Enum
Let’s look at a situation we might want to express in code and see why
enums are useful and more appropriate than structs in this case. Say
we need to work with IP addresses. Currently, two major standards
are used for IP addresses: version four and version six. These are the
only possibilities for an IP address that our program will come across:



126

we can enumerate all possible values, which is where enumeration gets
its name.

Any IP address can be either a version four or a version six address
but not both at the same time. That property of IP addresses makes the
enum data structure appropriate for this case, because enum values can
only be one of the variants. Both version four and version six addresses
are still fundamentally IP addresses, so they should be treated as the
same type when the code is handling situations that apply to any kind
of IP address.

We can express this concept in code by defining an IpAddrKind
enumeration and listing the possible kinds an IP address can be, V4
and V6. These are known as the variants of the enum:

enum IpAddrKind {
V4,
V6,

}

IpAddrKind is now a custom data type that we can use elsewhere in
our code.

Enum Values

We can create instances of each of the two variants of IpAddrKind like
this:

# enum IpAddrKind {
# V4,
# V6,
# }
#
let four = IpAddrKind::V4;
let six = IpAddrKind::V6;

Note that the variants of the enum are namespaced under its identifier,
and we use a double colon to separate the two. The reason this is
useful is that now both values IpAddrKind::V4 and IpAddrKind::V6
are of the same type: IpAddrKind. We can then, for instance, define a
function that takes any IpAddrKind:

# enum IpAddrKind {
# V4,
# V6,



127

# }
#
fn route(ip_type: IpAddrKind) { }

And we can call this function with either variant:
# enum IpAddrKind {
# V4,
# V6,
# }
#
# fn route(ip_type: IpAddrKind) { }
#
route(IpAddrKind::V4);
route(IpAddrKind::V6);

Using enums has even more advantages. Thinking more about our IP
address type, at the moment we don’t have a way to store the actual
IP address data; we only know what kind it is. Given that you just
learned about structs in Chapter 5, you might tackle this problem as
shown in Listing 6-1:

enum IpAddrKind {
V4,
V6,

}

struct IpAddr {
kind: IpAddrKind,
address: String,

}

let home = IpAddr {
kind: IpAddrKind::V4,
address: String::from("127.0.0.1"),

};

let loopback = IpAddr {
kind: IpAddrKind::V6,
address: String::from("::1"),

};

Listing 6-1: Storing the data and IpAddrKind variant of an IP address
using a struct



128

Here, we’ve defined a struct IpAddr that has two fields: a kind field
that is of type IpAddrKind (the enum we defined previously) and an
address field of type String. We have two instances of this struct. The
first, home, has the value IpAddrKind::V4 as its kind with associated
address data of 127.0.0.1. The second instance, loopback, has the
other variant of IpAddrKind as its kind value, V6, and has address ::1
associated with it. We’ve used a struct to bundle the kind and address
values together, so now the variant is associated with the value.

We can represent the same concept in a more concise way using
just an enum rather than an enum as part of a struct by putting data
directly into each enum variant. This new definition of the IpAddr
enum says that both V4 and V6 variants will have associated String
values:

enum IpAddr {
V4(String),
V6(String),

}

let home = IpAddr::V4(String::from("127.0.0.1"));

let loopback = IpAddr::V6(String::from("::1"));

We attach data to each variant of the enum directly, so there is no need
for an extra struct.

There’s another advantage to using an enum rather than a struct:
each variant can have different types and amounts of associated data.
Version four type IP addresses will always have four numeric compo-
nents that will have values between 0 and 255. If we wanted to store V4
addresses as four u8 values but still express V6 addresses as one String
value, we wouldn’t be able to with a struct. Enums handle this case
with ease:

enum IpAddr {
V4(u8, u8, u8, u8),
V6(String),

}

let home = IpAddr::V4(127, 0, 0, 1);

let loopback = IpAddr::V6(String::from("::1"));

We’ve shown several different possibilities that we could define in our



129

code for storing IP addresses of the two different varieties using an
enum. However, as it turns out, wanting to store IP addresses and
encode which kind they are is so common that the standard library has
a definition we can use! Let’s look at how the standard library defines
IpAddr: it has the exact enum and variants that we’ve defined and
used, but it embeds the address data inside the variants in the form of
two different structs, which are defined differently for each variant:

struct Ipv4Addr {
// details elided

}

struct Ipv6Addr {
// details elided

}

enum IpAddr {
V4(Ipv4Addr),
V6(Ipv6Addr),

}

This code illustrates that you can put any kind of data inside an enum
variant: strings, numeric types, or structs, for example. You can even
include another enum! Also, standard library types are often not much
more complicated than what you might come up with.

Note that even though the standard library contains a definition for
IpAddr, we can still create and use our own definition without conflict
because we haven’t brought the standard library’s definition into our
scope. We’ll talk more about importing types in Chapter 7.

Let’s look at another example of an enum in Listing 6-2: this one
has a wide variety of types embedded in its variants:

enum Message {
Quit,
Move { x: i32, y: i32 },
Write(String),
ChangeColor(i32, i32, i32),

}

Listing 6-2: A Message enum whose variants each store different amounts
and types of values

This enum has four variants with different types:

trpl/second-edition/src/../../std/net/enum.IpAddr.html
trpl/second-edition/src/../../std/net/enum.IpAddr.html


130

• Quit has no data associated with it at all.

• Move includes an anonymous struct inside it.

• Write includes a single String.

• ChangeColor includes three i32s.

Defining an enum with variants like the ones in Listing 6-2 is similar
to defining different kinds of struct definitions except the enum doesn’t
use the struct keyword and all the variants are grouped together under
the Message type. The following structs could hold the same data that
the preceding enum variants hold:

struct QuitMessage; // unit struct
struct MoveMessage {

x: i32,
y: i32,

}
struct WriteMessage(String); // tuple struct
struct ChangeColorMessage(i32, i32, i32); // tuple struct

But if we used the different structs, which each have their own type,
we wouldn’t be able to as easily define a function that could take any
of these kinds of messages as we could with the Message enum defined
in Listing 6-2, which is a single type.

There is one more similarity between enums and structs: just as
we’re able to define methods on structs using impl, we’re also able to
define methods on enums. Here’s a method named call that we could
define on our Message enum:

# enum Message {
# Quit,
# Move { x: i32, y: i32 },
# Write(String),
# ChangeColor(i32, i32, i32),
# }
#
impl Message {

fn call(&self) {
// method body would be defined here

}
}



131

let m = Message::Write(String::from("hello"));
m.call();

The body of the method would use self to get the value that we called
the method on. In this example, we’ve created a variable m that has
the value Message::Write(“hello”), and that is what self will be in
the body of the call method when m.call() runs.

Let’s look at another enum in the standard library that is very
common and useful: Option.

The Option Enum and Its Advantages Over Null Values

In the previous section, we looked at how the IpAddr enum let us use
Rust’s type system to encode more information than just the data into
our program. This section explores a case study of Option, which is
another enum defined by the standard library. The Option type is used
in many places because it encodes the very common scenario in which
a value could be something or it could be nothing. Expressing this
concept in terms of the type system means the compiler can check that
you’ve handled all the cases you should be handling, which can prevent
bugs that are extremely common in other programming languages.

Programming language design is often thought of in terms of which
features you include, but the features you exclude are important too.
Rust doesn’t have the null feature that many other languages have.
Null is a value that means there is no value there. In languages with
null, variables can always be in one of two states: null or not-null.

In “Null References: The Billion Dollar Mistake,” Tony Hoare, the
inventor of null, has this to say:

I call it my billion-dollar mistake. At that time, I was
designing the first comprehensive type system for references
in an object-oriented language. My goal was to ensure that
all use of references should be absolutely safe, with checking
performed automatically by the compiler. But I couldn’t re-
sist the temptation to put in a null reference, simply because
it was so easy to implement. This has led to innumerable
errors, vulnerabilities, and system crashes, which have prob-
ably caused a billion dollars of pain and damage in the last
forty years.

The problem with null values is that if you try to actually use a value
that’s null as if it is a not-null value, you’ll get an error of some kind.



132

Because this null or not-null property is pervasive, it’s extremely easy
to make this kind of error.

However, the concept that null is trying to express is still a useful
one: a null is a value that is currently invalid or absent for some reason.

The problem isn’t with the actual concept but with the particular
implementation. As such, Rust does not have nulls, but it does have an
enum that can encode the concept of a value being present or absent.
This enum is Option<T>, and it is defined by the standard library as
follows:

enum Option<T> {
Some(T),
None,

}

The Option<T> enum is so useful that it’s even included in the pre-
lude; you don’t need to import it explicitly. In addition, so are its
variants: you can use Some and None directly without prefixing them
with Option::. Option<T> is still just a regular enum, and Some(T)
and None are still variants of type Option<T>.

The <T> syntax is a feature of Rust we haven’t talked about yet.
It’s a generic type parameter, and we’ll cover generics in more detail in
Chapter 10. For now, all you need to know is that <T> means the Some
variant of the Option enum can hold one piece of data of any type.
Here are some examples of using Option values to hold number types
and string types:

let some_number = Some(5);
let some_string = Some("a string");

let absent_number: Option<i32> = None;

If we use None rather than Some, we need to tell Rust what type of
Option<T> we have, because the compiler can’t infer the type that the
Some variant will hold by looking only at a None value.

When we have a Some value, we know that a value is present, and
the value is held within the Some. When we have a None value, in some
sense, it means the same thing as null: we don’t have a valid value. So
why is having Option<T> any better than having null?

In short, because Option<T> and T (where T can be any type) are
different types, the compiler won’t let us use an Option<T> value as if
it was definitely a valid value. For example, this code won’t compile
because it’s trying to add an i8 to an Option<i8>:

trpl/second-edition/src/../../std/option/enum.Option.html


133

let x: i8 = 5;
let y: Option<i8> = Some(5);

let sum = x + y;

If we run this code, we get an error message like this:

error[E0277]: the trait bound `i8: std::ops::Add<std::option:
:Option<i8>>` is
not satisfied
-->
|

7 | let sum = x + y;
| ^^^^^
|

Intense! In effect, this error message means that Rust doesn’t under-
stand how to add an Option<i8> and an i8, because they’re different
types. When we have a value of a type like i8 in Rust, the compiler will
ensure that we always have a valid value. We can proceed confidently
without having to check for null before using that value. Only when we
have an Option<i8> (or whatever type of value we’re working with) do
we have to worry about possibly not having a value, and the compiler
will make sure we handle that case before using the value.

In other words, you have to convert an Option<T> to a T before you
can perform T operations with it. Generally, this helps catch one of
the most common issues with null: assuming that something isn’t null
when it actually is.

Not having to worry about missing an assumption of having a not-
null value helps you to be more confident in your code. In order to
have a value that can possibly be null, you must explicitly opt in by
making the type of that value Option<T>. Then, when you use that
value, you are required to explicitly handle the case when the value
is null. Everywhere that a value has a type that isn’t an Option<T>,
you can safely assume that the value isn’t null. This was a deliberate
design decision for Rust to limit null’s pervasiveness and increase the
safety of Rust code.

So, how do you get the T value out of a Some variant when you have
a value of type Option<T> so you can use that value? The Option<T>
enum has a large number of methods that are useful in a variety of
situations; you can check them out in its documentation. Becoming
familiar with the methods on Option<T> will be extremely useful in
your journey with Rust.

trpl/second-edition/src/../../std/option/enum.Option.html


134

In general, in order to use an Option<T> value, we want to have
code that will handle each variant. We want some code that will run
only when we have a Some(T) value, and this code is allowed to use
the inner T. We want some other code to run if we have a None value,
and that code doesn’t have a T value available. The match expression
is a control flow construct that does just this when used with enums: it
will run different code depending on which variant of the enum it has,
and that code can use the data inside the matching value.

6.2
The match Control Flow Operator
Rust has an extremely powerful control-flow operator called match that
allows us to compare a value against a series of patterns and then
execute code based on which pattern matches. Patterns can be made
up of literal values, variable names, wildcards, and many other things;
Chapter 18 will cover all the different kinds of patterns and what they
do. The power of match comes from the expressiveness of the patterns
and the compiler checks that make sure all possible cases are handled.

Think of a match expression kind of like a coin sorting machine:
coins slide down a track with variously sized holes along it, and each
coin falls through the first hole it encounters that it fits into. In the
same way, values go through each pattern in a match, and at the first
pattern the value “fits,” the value will fall into the associated code block
to be used during execution.

Because we just mentioned coins, let’s use them as an example using
match! We can write a function that can take an unknown United
States coin and, in a similar way as the counting machine, determine
which coin it is and return its value in cents, as shown here in Listing
6-3:

enum Coin {
Penny,
Nickel,
Dime,
Quarter,

}

fn value_in_cents(coin: Coin) -> i32 {
match coin {



135

Coin::Penny => 1,
Coin::Nickel => 5,
Coin::Dime => 10,
Coin::Quarter => 25,

}
}

Listing 6-3: An enum and a match expression that has the variants of
the enum as its patterns.

Let’s break down the match in the value_in_cents function. First,
we list the match keyword followed by an expression, which in this case
is the value coin. This seems very similar to an expression used with
if, but there’s a big difference: with if, the expression needs to return
a boolean value. Here, it can be any type. The type of coin in this
example is the Coin enum that we defined in Listing 6-3.

Next are the match arms. An arm has two parts: a pattern and
some code. The first arm here has a pattern that is the value Coin:
:Penny and then the => operator that separates the pattern and the
code to run. The code in this case is just the value 1. Each arm is
separated from the next with a comma.

When the match expression executes, it compares the resulting value
against the pattern of each arm, in order. If a pattern matches the
value, the code associated with that pattern is executed. If that pattern
doesn’t match the value, execution continues to the next arm, much
like a coin sorting machine. We can have as many arms as we need: in
Listing 6-3, our match has four arms.

The code associated with each arm is an expression, and the result-
ing value of the expression in the matching arm is the value that gets
returned for the entire match expression.

Curly braces typically aren’t used if the match arm code is short,
as it is in Listing 6-3 where each arm just returns a value. If you want
to run multiple lines of code in a match arm, you can use curly braces.
For example, the following code would print out “Lucky penny!” every
time the method was called with a Coin::Penny but would still return
the last value of the block, 1:

# enum Coin {
# Penny,
# Nickel,
# Dime,
# Quarter,



136

# }
#
fn value_in_cents(coin: Coin) -> i32 {

match coin {
Coin::Penny => {

println!("Lucky penny!");
1

},
Coin::Nickel => 5,
Coin::Dime => 10,
Coin::Quarter => 25,

}
}

Patterns that Bind to Values

Another useful feature of match arms is that they can bind to parts of
the values that match the pattern. This is how we can extract values
out of enum variants.

As an example, let’s change one of our enum variants to hold data
inside it. From 1999 through 2008, the United States minted quarters
with different designs for each of the 50 states on one side. No other
coins got state designs, so only quarters have this extra value. We can
add this information to our enum by changing the Quarter variant to
include a State value stored inside it, which we’ve done here in Listing
6-4:
#[derive(Debug)] // So we can inspect the state in a minute
enum UsState {

Alabama,
Alaska,
// ... etc

}

enum Coin {
Penny,
Nickel,
Dime,
Quarter(UsState),

}

Listing 6-4: A Coin enum where the Quarter variant also holds a
UsState value



137

Let’s imagine that a friend of ours is trying to collect all 50 state
quarters. While we sort our loose change by coin type, we’ll also call
out the name of the state associated with each quarter so if it’s one our
friend doesn’t have, they can add it to their collection.

In the match expression for this code, we add a variable called
state to the pattern that matches values of the variant Coin::Quarter.
When a Coin::Quarter matches, the state variable will bind to the
value of that quarter’s state. Then we can use state in the code for
that arm, like so:

# #[derive(Debug)]
# enum UsState {
# Alabama,
# Alaska,
# }
#
# enum Coin {
# Penny,
# Nickel,
# Dime,
# Quarter(UsState),
# }
#
fn value_in_cents(coin: Coin) -> i32 {

match coin {
Coin::Penny => 1,
Coin::Nickel => 5,
Coin::Dime => 10,
Coin::Quarter(state) => {

println!("State quarter from {:?}!", state)
;

25
},

}
}

If we were to call value_in_cents(Coin::Quarter(UsState::Alaska)
), coin would be Coin::Quarter(UsState::Alaska). When we com-
pare that value with each of the match arms, none of them match until
we reach Coin::Quarter(state). At that point, the binding for state
will be the value UsState::Alaska. We can then use that binding in
the println! expression, thus getting the inner state value out of the



138

Coin enum variant for Quarter.

Matching with Option<T>

In the previous section we wanted to get the inner T value out of the
Some case when using Option<T>; we can also handle Option<T> using
match as we did with the Coin enum! Instead of comparing coins,
we’ll compare the variants of Option<T>, but the way that the match
expression works remains the same.

Let’s say we want to write a function that takes an Option<i32>,
and if there’s a value inside, adds one to that value. If there isn’t a
value inside, the function should return the None value and not attempt
to perform any operations.

This function is very easy to write, thanks to match, and will look
like Listing 6-5:

fn plus_one(x: Option<i32>) -> Option<i32> {
match x {

None => None,
Some(i) => Some(i + 1),

}
}

let five = Some(5);
let six = plus_one(five);
let none = plus_one(None);

Listing 6-5: A function that uses a match expression on an Option<i32>

Matching Some(T) Let’s examine the first execution of plus_one
in more detail. When we call plus_one(five), the variable x in the
body of plus_one will have the value Some(5). We then compare that
against each match arm.
None => None,

The Some(5) value doesn’t match the pattern None, so we continue to
the next arm.
Some(i) => Some(i + 1),

Does Some(5) match Some(i)? Why yes it does! We have the same
variant. The i binds to the value contained in Some, so i takes the
value 5. The code in the match arm is then executed, so we add one
to the value of i and create a new Some value with our total 6 inside.



139

Matching None Now let’s consider the second call of plus_one in
Listing 6-5 where x is None. We enter the match and compare to the
first arm.

None => None,

It matches! There’s no value to add to, so the program stops and
returns the None value on the right side of =>. Because the first arm
matched, no other arms are compared.

Combining match and enums is useful in many situations. You’ll
see this pattern a lot in Rust code: match against an enum, bind a
variable to the data inside, and then execute code based on it. It’s a
bit tricky at first, but once you get used to it, you’ll wish you had it in
all languages. It’s consistently a user favorite.

Matches Are Exhaustive

There’s one other aspect of match we need to discuss. Consider this
version of our plus_one function:

fn plus_one(x: Option<i32>) -> Option<i32> {
match x {

Some(i) => Some(i + 1),
}

}

We didn’t handle the None case, so this code will cause a bug. Luckily,
it’s a bug Rust knows how to catch. If we try to compile this code,
we’ll get this error:

error[E0004]: non-exhaustive patterns: `None` not covered
-->
|

6 | match x {
| ^ pattern `None` not covered

Rust knows that we didn’t cover every possible case and even knows
which pattern we forgot! Matches in Rust are exhaustive: we must ex-
haust every last possibility in order for the code to be valid. Especially
in the case of Option<T>, when Rust prevents us from forgetting to
explicitly handle the None case, it protects us from assuming that we
have a value when we might have null, thus making the billion dollar
mistake discussed earlier.



140

The _ Placeholder

Rust also has a pattern we can use in situations when we don’t want
to list all possible values. For example, a u8 can have valid values of
0 through 255. If we only care about the values 1, 3, 5, and 7, we
don’t want to have to list out 0, 2, 4, 6, 8, 9 all the way up to 255.
Fortunately, we don’t have to: we can use the special pattern _ instead:

let some_u8_value = 0u8;
match some_u8_value {

1 => println!("one"),
3 => println!("three"),
5 => println!("five"),
7 => println!("seven"),
_ => (),

}

The _ pattern will match any value. By putting it after our other arms,
the _ will match all the possible cases that aren’t specified before it.
The () is just the unit value, so nothing will happen in the _ case. As
a result, we can say that we want to do nothing for all the possible
values that we don’t list before the _ placeholder.

However, the match expression can be a bit wordy in a situation
in which we only care about one of the cases. For this situation, Rust
provides if let.

6.3
Concise Control Flow with if let
The if let syntax lets you combine if and let into a less verbose way
to handle values that match one pattern and ignore the rest. Consider
the program in Listing 6-6 that matches on an Option<u8> value but
only wants to execute code if the value is three:

let some_u8_value = Some(0u8);
match some_u8_value {

Some(3) => println!("three"),
_ => (),

}

Listing 6-6: A match that only cares about executing code when the
value is Some(3)



141

We want to do something with the Some(3) match but do nothing
with any other Some<u8> value or the None value. To satisfy the match
expression, we have to add _ => () after processing just one variant,
which is a lot of boilerplate code to add.

Instead, we could write this in a shorter way using if let. The
following code behaves the same as the match in Listing 6-6:

# let some_u8_value = Some(0u8);
if let Some(3) = some_u8_value {

println!("three");
}

if let takes a pattern and an expression separated by an =. It works
the same way as a match, where the expression is given to the match
and the pattern is its first arm.

Using if let means you have less to type, less indentation, and
less boilerplate code. However, we’ve lost the exhaustive checking that
match enforces. Choosing between match and if let depends on what
you’re doing in your particular situation and if gaining conciseness is
an appropriate trade-off for losing exhaustive checking.

In other words, you can think of if let as syntax sugar for a match
that runs code when the value matches one pattern and then ignores
all other values.

We can include an else with an if let. The block of code that
goes with the else is the same as the block of code that would go
with the _ case in the match expression that is equivalent to the if
let and else. Recall the Coin enum definition in Listing 6-4, where
the Quarter variant also held a UsState value. If we wanted to count
all non-quarter coins we see while also announcing the state of the
quarters, we could do that with a match expression like this:

# #[derive(Debug)]
# enum UsState {
# Alabama,
# Alaska,
# }
#
# enum Coin {
# Penny,
# Nickel,
# Dime,
# Quarter(UsState),



142

# }
# let coin = Coin::Penny;
let mut count = 0;
match coin {

Coin::Quarter(state) => println!("State quarter from
{:?}!", state),

_ => count += 1,
}

Or we could use an if let and else expression like this:

# #[derive(Debug)]
# enum UsState {
# Alabama,
# Alaska,
# }
#
# enum Coin {
# Penny,
# Nickel,
# Dime,
# Quarter(UsState),
# }
# let coin = Coin::Penny;
let mut count = 0;
if let Coin::Quarter(state) = coin {

println!("State quarter from {:?}!", state);
} else {

count += 1;
}

If you have a situation in which your program has logic that is too
verbose to express using a match, remember that if let is in your
Rust toolbox as well.

Summary
We’ve now covered how to use enums to create custom types that can
be one of a set of enumerated values. We’ve shown how the standard
library’s Option<T> type helps you use the type system to prevent
errors. When enum values have data inside them, you can use match
or if let to extract and use those values, depending on how many
cases you need to handle.



143

Your Rust programs can now express concepts in your domain using
structs and enums. Creating custom types to use in your API ensures
type safety: the compiler will make certain your functions only get
values of the type each function expects.

In order to provide a well-organized API to your users that is
straightforward to use and only exposes exactly what your users will
need, let’s now turn to Rust’s modules.



144



Part II

Basic Rust Literacy





Chapter 1

Using Modules to Reuse
and Organize Code

When you start writing programs in Rust, your code might live solely
in the main function. As your code grows, you’ll eventually move func-
tionality into other functions for reuse and better organization. By
splitting your code into smaller chunks, each chunk is easier to under-
stand on its own. But what happens if you have too many functions?
Rust has a module system that enables the reuse of code in an organized
fashion.

In the same way that you extract lines of code into a function, you
can extract functions (and other code, like structs and enums) into
different modules. A module is a namespace that contains definitions
of functions or types, and you can choose whether those definitions
are visible outside their module (public) or not (private). Here’s an
overview of how modules work:

• The mod keyword declares a new module. Code within the module
appears either immediately following this declaration within curly
braces or in another file.

• By default, functions, types, constants, and modules are private.
The pub keyword makes an item public and therefore visible out-
side its namespace.

• The use keyword brings modules, or the definitions inside mod-
ules, into scope so it’s easier to refer to them.

We’ll look at each of these parts to see how they fit into the whole.



148

1.1
mod and the Filesystem
We’ll start our module example by making a new project with Cargo,
but instead of creating a binary crate, we’ll make a library crate: a
project that other people can pull into their projects as a dependency.
For example, the rand crate in Chapter 2 is a library crate that we
used as a dependency in the guessing game project.

We’ll create a skeleton of a library that provides some general net-
working functionality; we’ll concentrate on the organization of the mod-
ules and functions but we won’t worry about what code goes in the
function bodies. We’ll call our library communicator. By default,
Cargo will create a library unless another type of project is specified: if
we omit the --bin option that we’ve been using in all of the chapters
preceding this one, our project will be a library:

$ cargo new communicator
$ cd communicator

Notice that Cargo generated src/lib.rs instead of src/main.rs. Inside
src/lib.rs we’ll find the following:

Filename: src/lib.rs

#[cfg(test)]
mod tests {

#[test]
fn it_works() {
}

}

Cargo creates an empty test to help us get our library started, rather
than the “Hello, world!” binary that we get when we use the --bin
option. We’ll look at the #[] and mod tests syntax in the “Using
super to Access a Parent Module” section later in this chapter, but for
now, leave this code at the bottom of src/lib.rs.

Because we don’t have a src/main.rs file, there’s nothing for Cargo
to execute with the cargo run command. Therefore, we’ll use the
cargo build command to compile our library crate’s code.

We’ll look at different options for organizing your library’s code that
will be suitable in a variety of situations, depending on the intent of
the code.



149

Module Definitions

For our communicator networking library, we’ll first define a mod-
ule named network that contains the definition of a function called
connect. Every module definition in Rust starts with the mod key-
word. Add this code to the beginning of the src/lib.rs file, above the
test code:

Filename: src/lib.rs

mod network {
fn connect() {
}

}

After the mod keyword, we put the name of the module, network, and
then a block of code in curly braces. Everything inside this block is
inside the namespace network. In this case, we have a single function,
connect. If we wanted to call this function from a script outside the
network module, we would need to specify the module and use the
namespace syntax ::, like so: network::connect() rather than just
connect().

We can also have multiple modules, side by side, in the same src/lib.rs
file. For example, to also have a client module that has a function
named connect as well, we can add it as shown in Listing 7-1:

Filename: src/lib.rs

mod network {
fn connect() {
}

}

mod client {
fn connect() {
}

}

Listing 7-1: The network module and the client module defined side-
by-side in src/lib.rs

Now we have a network::connect function and a client::connect
function. These can have completely different functionality, and the
function names do not conflict with each other because they’re in dif-
ferent modules.



150

In this case, because we’re building a library, the file that serves
as the entry point for building our library is src/lib.rs. However, in
respect to creating modules, there’s nothing special about src/lib.rs.
We could also create modules in src/main.rs for a binary crate in the
same way as we’re creating modules in src/lib.rs for the library crate.
In fact, we can put modules inside of modules, which can be useful as
your modules grow to keep related functionality organized together and
separate functionality apart. The choice of how you organize your code
depends on how you think about the relationship between the parts
of your code. For instance, the client code and its connect function
might make more sense to users of our library if they were inside the
network namespace instead, as in Listing 7-2:

Filename: src/lib.rs

mod network {
fn connect() {
}

mod client {
fn connect() {
}

}
}

Listing 7-2: Moving the client module inside the network module
In your src/lib.rs file, replace the existing mod network and mod

client definitions with the ones in Listing 7-2, which have the client
module as an inner module of network. Now we have the functions
network::connect and network::client::connect: again, the two
functions named connect don’t conflict with each other because they’re
in different namespaces.

In this way, modules form a hierarchy. The contents of src/lib.rs are
at the topmost level, and the submodules are at lower levels. Here’s
what the organization of our example in Listing 7-1 looks like when
thought of as a hierarchy:

communicator
��� network
��� client

And here’s the hierarchy corresponding to the example in Listing 7-2:



151

communicator
��� network

��� client

The hierarchy shows that in Listing 7-2, client is a child of the
network module rather than a sibling. More complicated projects can
have many modules, and they’ll need to be organized logically in order
to keep track of them. What “logically” means in your project is up to
you and depends on how you and your library’s users think about your
project’s domain. Use the techniques shown here to create side-by-side
modules and nested modules in whatever structure you would like.

Moving Modules to Other Files

Modules form a hierarchical structure, much like another structure in
computing that you’re used to: filesystems! We can use Rust’s module
system along with multiple files to split up Rust projects so not ev-
erything lives in src/lib.rs or src/main.rs. For this example, let’s start
with the code in Listing 7-3:

Filename: src/lib.rs

mod client {
fn connect() {
}

}

mod network {
fn connect() {
}

mod server {
fn connect() {
}

}
}

Listing 7-3: Three modules, client, network, and network::server,
all defined in src/lib.rs

The file src/lib.rs has this module hierarchy:

communicator
��� client
��� network



152

��� server

If these modules had many functions, and those functions were becom-
ing lengthy, it would be difficult to scroll through this file to find the
code we wanted to work with. Because the functions are nested inside
one or more mod blocks, the lines of code inside the functions will start
getting lengthy as well. These would be good reasons to separate the
client, network, and server modules from src/lib.rs and place them
into their own files.

First, replace the client module code with only the declaration of
the client module, so that your src/lib.rs looks like the following:

Filename: src/lib.rs

mod client;

mod network {
fn connect() {
}

mod server {
fn connect() {
}

}
}

We’re still declaring the client module here, but by replacing the block
with a semicolon, we’re telling Rust to look in another location for the
code defined within the scope of the client module. In other words,
the line mod client; means:

mod client {
// contents of client.rs

}

Now we need to create the external file with that module name. Create
a client.rs file in your src/ directory and open it. Then enter the
following, which is the connect function in the client module that we
removed in the previous step:

Filename: src/client.rs

fn connect() {
}



153

Note that we don’t need a mod declaration in this file because we already
declared the client module with mod in src/lib.rs. This file just pro-
vides the contents of the client module. If we put a mod client here,
we’d be giving the client module its own submodule named client!

Rust only knows to look in src/lib.rs by default. If we want to add
more files to our project, we need to tell Rust in src/lib.rs to look in
other files; this is why mod client needs to be defined in src/lib.rs and
can’t be defined in src/client.rs.

Now the project should compile successfully, although you’ll get a
few warnings. Remember to use cargo build instead of cargo run
because we have a library crate rather than a binary crate:

$ cargo build
Compiling communicator v0.1.0 (file:///projects/communicator)

warning: function is never used: `connect`, #[warn(dead_
code)] on by default
--> src/client.rs:1:1
|

1 | fn connect() {
| ^

warning: function is never used: `connect`, #[warn(dead_
code)] on by default
--> src/lib.rs:4:5
|

4 | fn connect() {
| ^

warning: function is never used: `connect`, #[warn(dead_
code)] on by default
--> src/lib.rs:8:9
|

8 | fn connect() {
| ^

These warnings tell us that we have functions that are never used.
Don’t worry about these warnings for now; we’ll address them in the
“Controlling Visibility with pub” section later in this chapter. The
good news is that they’re just warnings; our project built successfully!

Next, let’s extract the network module into its own file using the



154

same pattern. In src/lib.rs, delete the body of the network module and
add a semicolon to the declaration, like so:

Filename: src/lib.rs

mod client;

mod network;

Then create a new src/network.rs file and enter the following:
Filename: src/network.rs

fn connect() {
}

mod server {
fn connect() {
}

}

Notice that we still have a mod declaration within this module file; this
is because we still want server to be a submodule of network.

Run cargo build again. Success! We have one more module to
extract: server. Because it’s a submodule—that is, a module within
a module—our current tactic of extracting a module into a file named
after that module won’t work. We’ll try anyway so you can see the
error. First, change src/network.rs to have mod server; instead of the
server module’s contents:

Filename: src/network.rs

fn connect() {
}

mod server;

Then create a src/server.rs file and enter the contents of the server
module that we extracted:

Filename: src/server.rs

fn connect() {
}

When we try to cargo build, we’ll get the error shown in Listing 7-4:



155

$ cargo build
Compiling communicator v0.1.0 (file:///projects/communicator)

error: cannot declare a new module at this location
--> src/network.rs:4:5
|

4 | mod server;
| ^^^^^^
|

note: maybe move this module `network` to its own directory
via `network/mod.rs`
--> src/network.rs:4:5
|

4 | mod server;
| ^^^^^^

note: ... or maybe `use` the module `server` instead of
possibly redeclaring it
--> src/network.rs:4:5
|

4 | mod server;
| ^^^^^^

Listing 7-4: Error when trying to extract the server submodule into
src/server.rs

The error says we cannot declare a new module at this
location and is pointing to the mod server; line in src/network.rs.
So src/network.rs is different than src/lib.rs somehow: keep reading to
understand why.

The note in the middle of Listing 7-4 is actually very helpful because
it points out something we haven’t yet talked about doing:

note: maybe move this module `network` to its own directory
via
`network/mod.rs`

Instead of continuing to follow the same file naming pattern we used
previously, we can do what the note suggests:

1. Make a new directory named network, the parent module’s name.

2. Move the src/network.rs file into the new network directory, and
rename src/network/mod.rs.

3. Move the submodule file src/server.rs into the network directory.



156

Here are commands to carry out these steps:

$ mkdir src/network
$ mv src/network.rs src/network/mod.rs
$ mv src/server.rs src/network

Now when we try to run cargo build, compilation will work (we’ll still
have warnings though). Our module layout still looks like this, which
is exactly the same as it did when we had all the code in src/lib.rs in
Listing 7-3:

communicator
��� client
��� network

��� server

The corresponding file layout now looks like this:

��� src
� ��� client.rs
� ��� lib.rs
� ��� network
� ��� mod.rs
� ��� server.rs

So when we wanted to extract the network::server module, why did
we have to also change the src/network.rs file to the src/network/mod.rs
file and put the code for network::server in the network directory in
src/network/server.rs instead of just being able to extract the network:
:server module into src/server.rs? The reason is that Rust wouldn’t
be able to recognize that server was supposed to be a submodule of
network if the server.rs file was in the src directory. To clarify Rust’s
behavior here, let’s consider a different example with the following mod-
ule hierarchy, where all the definitions are in src/lib.rs:

communicator
��� client
��� network

��� client

In this example, we have three modules again: client, network, and
network::client. Following the same steps we did earlier for extract-
ing modules into files, we would create src/client.rs for the client
module. For the network module, we would create src/network.rs.



157

But we wouldn’t be able to extract the network::client module into
a src/client.rs file because that already exists for the top-level client
module! If we could put the code for both the client and network::
client modules in the src/client.rs file, Rust wouldn’t have any way
to know whether the code was for client or for network::client.

Therefore, in order to extract a file for the network::client sub-
module of the network module, we needed to create a directory for the
network module instead of a src/network.rs file. The code that is in the
network module then goes into the src/network/mod.rs file, and the
submodule network::client can have its own src/network/client.rs
file. Now the top-level src/client.rs is unambiguously the code that
belongs to the client module.

Rules of Module Filesystems

Let’s summarize the rules of modules with regard to files:

• If a module named foo has no submodules, you should put the
declarations for foo in a file named foo.rs.

• If a module named foo does have submodules, you should put
the declarations for foo in a file named foo/mod.rs.

These rules apply recursively, so if a module named foo has a submod-
ule named bar and bar does not have submodules, you should have the
following files in your src directory:

��� foo
� ��� bar.rs (contains the declarations in `foo::bar`)
� ��� mod.rs (contains the declarations in `foo`, including
`mod bar`)

The modules should be declared in their parent module’s file using the
mod keyword.

Next, we’ll talk about the pub keyword and get rid of those warn-
ings!

1.2
Controlling Visibility with pub
We resolved the error messages shown in Listing 7-4 by moving the
network and network::server code into the src/network/mod.rs and



158

src/network/server.rs files, respectively. At that point, cargo build
was able to build our project, but we still get warning messages about
the client::connect, network::connect, and network::server::
connect functions not being used:

warning: function is never used: `connect`, #[warn(dead_
code)] on by default
src/client.rs:1:1

|
1 | fn connect() {

| ^

warning: function is never used: `connect`, #[warn(dead_
code)] on by default
--> src/network/mod.rs:1:1
|

1 | fn connect() {
| ^

warning: function is never used: `connect`, #[warn(dead_
code)] on by default
--> src/network/server.rs:1:1
|

1 | fn connect() {
| ^

So why are we receiving these warnings? After all, we’re building a
library with functions that are intended to be used by our users, not
necessarily by us within our own project, so it shouldn’t matter that
these connect functions go unused. The point of creating them is that
they will be used by another project, not our own.

To understand why this program invokes these warnings, let’s try
using the connect library from another project, calling it externally.
To do that, we’ll create a binary crate in the same directory as our
library crate by making a src/main.rs file containing this code:

Filename: src/main.rs

extern crate communicator;

fn main() {



159

communicator::client::connect();
}

We use the extern crate command to bring the communicator library
crate into scope. Our package now contains two crates. Cargo treats
src/main.rs as the root file of a binary crate, which is separate from
the existing library crate whose root file is src/lib.rs. This pattern is
quite common for executable projects: most functionality is in a library
crate, and the binary crate uses that library crate. As a result, other
programs can also use the library crate, and it’s a nice separation of
concerns.

From the point of view of a crate outside the communicator library
looking in, all the modules we’ve been creating are within a module that
has the same name as the crate, communicator. We call the top-level
module of a crate the root module.

Also note that even if we’re using an external crate within a sub-
module of our project, the extern crate should go in our root module
(so in src/main.rs or src/lib.rs). Then, in our submodules, we can refer
to items from external crates as if the items are top-level modules.

Right now, our binary crate just calls our library’s connect function
from the client module. However, invoking cargo build will now give
us an error after the warnings:

error: module `client` is private
--> src/main.rs:4:5
|

4 | communicator::client::connect();
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Ah ha! This error tells us that the client module is private, which
is the crux of the warnings. It’s also the first time we’ve run into the
concepts of public and private in the context of Rust. The default state
of all code in Rust is private: no one else is allowed to use the code.
If you don’t use a private function within your program, because your
program is the only code allowed to use that function, Rust will warn
you that the function has gone unused.

After we specify that a function like client::connect is public,
not only will our call to that function from our binary crate be allowed,
but the warning that the function is unused will go away. Marking a
function as public lets Rust know that the function will be used by
code outside of our program. Rust considers the theoretical external
usage that’s now possible as the function “being used.” Thus, when



160

something is marked public, Rust will not require that it be used in
our program and will stop warning that the item is unused.

Making a Function Public

To tell Rust to make something public, we add the pub keyword to the
start of the declaration of the item we want to make public. We’ll focus
on fixing the warning that indicates client::connect has gone unused
for now, as well as the module `client` is private error from our
binary crate. Modify src/lib.rs to make the client module public, like
so:

Filename: src/lib.rs

pub mod client;

mod network;

The pub keyword is placed right before mod. Let’s try building again:

error: function `connect` is private
--> src/main.rs:4:5
|

4 | communicator::client::connect();
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Hooray! We have a different error! Yes, different error messages are a
cause for celebration. The new error shows function `connect` is
private, so let’s edit src/client.rs to make client::connect public
too:

Filename: src/client.rs

pub fn connect() {
}

Now run cargo build again:

warning: function is never used: `connect`, #[warn(dead_
code)] on by default
--> src/network/mod.rs:1:1
|

1 | fn connect() {
| ^

warning: function is never used: `connect`, #[warn(dead_



161

code)] on by default
--> src/network/server.rs:1:1
|

1 | fn connect() {
| ^

The code compiled, and the warning about client::connect not being
used is gone!

Unused code warnings don’t always indicate that an item in your
code needs to be made public: if you didn’t want these functions to be
part of your public API, unused code warnings could be alerting you
to code you no longer need that you can safely delete. They could also
be alerting you to a bug if you had just accidentally removed all places
within your library where this function is called.

But in this case, we do want the other two functions to be part of
our crate’s public API, so let’s mark them as pub as well to get rid of
the remaining warnings. Modify src/network/mod.rs to look like the
following:

Filename: src/network/mod.rs

pub fn connect() {
}

mod server;

Then compile the code:

warning: function is never used: `connect`, #[warn(dead_
code)] on by default
--> src/network/mod.rs:1:1
|

1 | pub fn connect() {
| ^

warning: function is never used: `connect`, #[warn(dead_
code)] on by default
--> src/network/server.rs:1:1
|

1 | fn connect() {
| ^

Hmmm, we’re still getting an unused function warning, even though
network::connect is set to pub. The reason is that the function is



162

public within the module, but the network module that the function
resides in is not public. We’re working from the interior of the library
out this time, whereas with client::connect we worked from the
outside in. We need to change src/lib.rs to make network public too,
like so:

Filename: src/lib.rs

pub mod client;

pub mod network;

Now when we compile, that warning is gone:

warning: function is never used: `connect`, #[warn(dead_
code)] on by default
--> src/network/server.rs:1:1
|

1 | fn connect() {
| ^

Only one warning is left! Try to fix this one on your own!

Privacy Rules

Overall, these are the rules for item visibility:

1. If an item is public, it can be accessed through any of its parent
modules.

2. If an item is private, it can be accessed only by the current module
and its child modules.

Privacy Examples

Let’s look at a few more privacy examples to get some practice. Create
a new library project and enter the code in Listing 7-5 into your new
project’s src/lib.rs:

Filename: src/lib.rs

mod outermost {
pub fn middle_function() {}

fn middle_secret_function() {}



163

mod inside {
pub fn inner_function() {}

fn secret_function() {}
}

}

fn try_me() {
outermost::middle_function();
outermost::middle_secret_function();
outermost::inside::inner_function();
outermost::inside::secret_function();

}

Listing 7-5: Examples of private and public functions, some of which
are incorrect

Before you try to compile this code, make a guess about which lines
in the try_me function will have errors. Then, try compiling the code
to see whether you were right, and read on for the discussion of the
errors!

Looking at the Errors The try_me function is in the root module of
our project. The module named outermost is private, but the second
privacy rule states that the try_me function is allowed to access the
outermost module because outermost is in the current (root) module,
as is try_me.

The call to outermost::middle_function will work because middle_
function is public, and try_me is accessing middle_function through
its parent module outermost. We determined in the previous para-
graph that this module is accessible.

The call to outermost::middle_secret_function will cause a com-
pilation error. middle_secret_function is private, so the second rule
applies. The root module is neither the current module of middle_
secret_function (outermost is), nor is it a child module of the cur-
rent module of middle_secret_function.

The module named inside is private and has no child modules,
so it can only be accessed by its current module outermost. That
means the try_me function is not allowed to call outermost::inside:
:inner_function or outermost::inside::secret_function.

Fixing the Errors Here are some suggestions for changing the code
in an attempt to fix the errors. Before you try each one, make a guess



164

as to whether it will fix the errors, and then compile the code to see
whether or not you’re right, using the privacy rules to understand why.

• What if the inside module was public?

• What if outermost was public and inside was private?

• What if, in the body of inner_function, you called ::outermost:
:middle_secret_function()? (The two colons at the beginning
mean that we want to refer to the modules starting from the root
module.)

Feel free to design more experiments and try them out!
Next, let’s talk about bringing items into scope with the use key-

word.

1.3
Importing Names
We’ve covered how to call functions defined within a module using the
module name as part of the call, as in the call to the nested_modules
function shown here in Listing 7-6:

Filename: src/main.rs

pub mod a {
pub mod series {

pub mod of {
pub fn nested_modules() {}

}
}

}

fn main() {
a::series::of::nested_modules();

}

Listing 7-6: Calling a function by fully specifying its enclosing module’s
path

As you can see, referring to the fully qualified name can get quite
lengthy. Fortunately, Rust has a keyword to make these calls more
concise.



165

Concise Imports with use

Rust’s use keyword shortens lengthy function calls by bringing the
modules of the function you want to call into scope. Here’s an example
of bringing the a::series::of module into a binary crate’s root scope:

Filename: src/main.rs

pub mod a {
pub mod series {

pub mod of {
pub fn nested_modules() {}

}
}

}

use a::series::of;

fn main() {
of::nested_modules();

}

The line use a::series::of; means that rather than using the full
a::series::of path wherever we want to refer to the of module, we
can use of.

The use keyword brings only what we’ve specified into scope: it
does not bring children of modules into scope. That’s why we still have
to use of::nested_modules when we want to call the nested_modules
function.

We could have chosen to bring the function into scope by instead
specifying the function in the use as follows:

pub mod a {
pub mod series {

pub mod of {
pub fn nested_modules() {}

}
}

}

use a::series::of::nested_modules;

fn main() {



166

nested_modules();
}

Doing so allows us to exclude all the modules and reference the function
directly.

Because enums also form a sort of namespace like modules, we can
import an enum’s variants with use as well. For any kind of use state-
ment, if you’re importing multiple items from one namespace, you can
list them using curly braces and commas in the last position, like so:

enum TrafficLight {
Red,
Yellow,
Green,

}

use TrafficLight::{Red, Yellow};

fn main() {
let red = Red;
let yellow = Yellow;
let green = TrafficLight::Green;

}

We’re still specifying the TrafficLight namespace for the Green vari-
ant because we didn’t include Green in the use statement.

Glob Imports with *

To import all the items in a namespace at once, we can use the * syntax.
For example:

enum TrafficLight {
Red,
Yellow,
Green,

}

use TrafficLight::*;

fn main() {
let red = Red;



167

let yellow = Yellow;
let green = Green;

}

The * is called a glob, and it will import all items visible inside the
namespace. You should use globs sparingly: they are convenient, but
this might also pull in more items than you expected and cause naming
conflicts.

Using super to Access a Parent Module

As we saw at the beginning of this chapter, when you create a library
crate, Cargo makes a tests module for you. Let’s go into more detail
about that now. In your communicator project, open src/lib.rs:

Filename: src/lib.rs

pub mod client;

pub mod network;

#[cfg(test)]
mod tests {

#[test]
fn it_works() {
}

}

Chapter 11 explains more about testing, but parts of this example
should make sense now: we have a module named tests that lives
next to our other modules and contains one function named it_works.
Even though there are special annotations, the tests module is just
another module! So our module hierarchy looks like this:

communicator
��� client
��� network
| ��� client
��� tests

Tests are for exercising the code within our library, so let’s try to call our
client::connect function from this it_works function, even though
we won’t be checking any functionality right now:

Filename: src/lib.rs



168

#[cfg(test)]
mod tests {

#[test]
fn it_works() {

client::connect();
}

}

Run the tests by invoking the cargo test command:

$ cargo test
Compiling communicator v0.1.0 (file:///projects/communicator)

error[E0433]: failed to resolve. Use of undeclared type
or module `client`
--> src/lib.rs:9:9
|

9 | client::connect();
| ^^^^^^^^^^^^^^^ Use of undeclared type or module

`client`

The compilation failed, but why? We don’t need to place communicator:
: in front of the function like we did in src/main.rs because we are def-
initely within the communicator library crate here. The reason is that
paths are always relative to the current module, which here is tests.
The only exception is in a use statement, where paths are relative to
the crate root by default. Our tests module needs the client module
in its scope!

So how do we get back up one module in the module hierarchy to
call the client::connect function in the tests module? In the tests
module, we can either use leading colons to let Rust know that we want
to start from the root and list the whole path, like this:

::client::connect();

Or, we can use super to move up one module in the hierarchy from our
current module, like this:

super::client::connect();

These two options don’t look that different in this example, but if you’re
deeper in a module hierarchy, starting from the root every time would
make your code lengthy. In those cases, using super to get from the



169

current module to sibling modules is a good shortcut. Plus, if you’ve
specified the path from the root in many places in your code and then
you rearrange your modules by moving a subtree to another place, you’d
end up needing to update the path in several places, which would be
tedious.

It would also be annoying to have to type super:: in each test,
but you’ve already seen the tool for that solution: use! The super::
functionality changes the path you give to use so it is relative to the
parent module instead of to the root module.

For these reasons, in the tests module especially, use super::
something is usually the best solution. So now our test looks like this:

Filename: src/lib.rs

#[cfg(test)]
mod tests {

use super::client;

#[test]
fn it_works() {

client::connect();
}

}

When we run cargo test again, the test will pass and the first part
of the test result output will be the following:

$ cargo test
Compiling communicator v0.1.0 (file:///projects/communicator)

Running target/debug/communicator-92007ddb5330fa5a

running 1 test
test tests::it_works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured

Summary
Now you know some new techniques for organizing your code! Use
these techniques to group related functionality together, keep files from
becoming too long, and present a tidy public API to your library users.

Next, we’ll look at some collection data structures in the standard
library that you can use in your nice, neat code!



170



Chapter 2

Common Collections

Rust’s standard library includes a number of really useful data struc-
tures called collections. Most other data types represent one specific
value, but collections can contain multiple values. Unlike the built-in
array and tuple types, the data these collections point to is stored on
the heap, which means the amount of data does not need to be known
at compile time and can grow or shrink as the program runs. Each
kind of collection has different capabilities and costs, and choosing an
appropriate one for the situation you’re in is a skill you’ll develop over
time. In this chapter, we’ll go over three collections which are used
very often in Rust programs:

• A vector allows us to store a variable number of values next to
each other.

• A string is a collection of characters. We’ve seen the String type
before, but we’ll talk about it in depth now.

• A hash map allows us to associate a value with a particular key.
It’s a particular implementation of the more general data struc-
ture called a map.

To learn about the other kinds of collections provided by the standard
library, see the documentation.

We’re going to discuss how to create and update vectors, strings,
and hash maps, as well as what makes each special.

trpl/second-edition/src/../../std/collections/index.html


172

2.1
Vectors
The first type we’ll look at is Vec<T>, also known as a vector. Vectors
allow us to store more than one value in a single data structure that
puts all the values next to each other in memory. Vectors can only
store values of the same type. They are useful in situations where you
have a list of items, such as the lines of text in a file or the prices of
items in a shopping cart.

Creating a New Vector

To create a new, empty vector, we can call the Vec::new function:

let v: Vec<i32> = Vec::new();

Note that we added a type annotation here. Since we aren’t inserting
any values into this vector, Rust doesn’t know what kind of elements we
intend to store. This is an important point. Vectors are homogeneous:
they may store many values, but those values must all be the same
type. Vectors are implemented using generics, which Chapter 10 will
cover how to use in your own types. For now, all you need to know is
that the Vec type provided by the standard library can hold any type,
and when a specific Vec holds a specific type, the type goes within angle
brackets. We’ve told Rust that the Vec in v will hold elements of the
i32 type.

In real code, Rust can infer the type of value we want to store
once we insert values, so you rarely need to do this type annotation.
It’s more common to create a Vec that has initial values, and Rust
provides the vec! macro for convenience. The macro will create a new
Vec that holds the values we give it. This will create a new Vec<i32>
that holds the values 1, 2, and 3:

let v = vec![1, 2, 3];

Because we’ve given initial i32 values, Rust can infer that the type of
v is Vec<i32>, and the type annotation isn’t necessary. Let’s look at
how to modify a vector next.

Updating a Vector

To create a vector then add elements to it, we can use the push method:



173

let mut v = Vec::new();

v.push(5);
v.push(6);
v.push(7);
v.push(8);

As with any variable as we discussed in Chapter 3, if we want to be able
to change its value, we need to make it mutable with the mut keyword.
The numbers we place inside are all of type i32, and Rust infers this
from the data, so we don’t need the Vec<i32> annotation.

Dropping a Vector Drops its Elements

Like any other struct, a vector will be freed when it goes out of scope:

{
let v = vec![1, 2, 3, 4];

// do stuff with v

} // <- v goes out of scope and is freed here

When the vector gets dropped, all of its contents will also be dropped,
meaning those integers it holds will be cleaned up. This may seem like
a straightforward point, but can get a little more complicated once we
start to introduce references to the elements of the vector. Let’s tackle
that next!

Reading Elements of Vectors

Now that you know how to create, update, and destroy vectors, knowing
how to read their contents is a good next step. There are two ways to
reference a value stored in a vector. In the examples, we’ve annotated
the types of the values that are returned from these functions for extra
clarity.

This example shows both methods of accessing a value in a vector
either with indexing syntax or the get method:

let v = vec![1, 2, 3, 4, 5];

let third: &i32 = &v[2];



174

let third: Option<&i32> = v.get(2);

There are a few things to note here. First, that we use the index value
of 2 to get the third element: vectors are indexed by number, starting
at zero. Second, the two different ways to get the third element are:
using & and [], which gives us a reference, or using the get method
with the index passed as an argument, which gives us an Option<&T>.

The reason Rust has two ways to reference an element is so that
you can choose how the program behaves when you try to use an index
value that the vector doesn’t have an element for. As an example, what
should a program do if it has a vector that holds five elements then tries
to access an element at index 100 like this:

let v = vec![1, 2, 3, 4, 5];

let does_not_exist = &v[100];
let does_not_exist = v.get(100);

When you run this, you will find that with the first [] method, Rust
will cause a panic! when a non-existent element is referenced. This
method would be preferable if you want your program to consider an
attempt to access an element past the end of the vector to be a fatal
error that should crash the program.

When the get method is passed an index that is outside the array, it
will return None without panicking. You would use this if accessing an
element beyond the range of the vector will happen occasionally under
normal circumstances. Your code can then have logic to handle having
either Some(&element) or None, as we discussed in Chapter 6. For
example, the index could be coming from a person entering a number.
If they accidentally enter a number that’s too large and your program
gets a None value, you could tell the user how many items are in the
current Vec and give them another chance to enter a valid value. That
would be more user-friendly than crashing the program for a typo!

Invalid References Once the program has a valid reference, the
borrow checker will enforce the ownership and borrowing rules covered
in Chapter 4 to ensure this reference and any other references to the
contents of the vector stay valid. Recall the rule that says we can’t
have mutable and immutable references in the same scope. That rule
applies in this example, where we hold an immutable reference to the
first element in a vector and try to add an element to the end:



175

let mut v = vec![1, 2, 3, 4, 5];

let first = &v[0];

v.push(6);

Compiling this will give us this error:

error[E0502]: cannot borrow `v` as mutable because it is
also borrowed as
immutable

|
4 | let first = &v[0];

| - immutable borrow occurs here
5 |
6 | v.push(6);
| ^ mutable borrow occurs here

7 | }
| - immutable borrow ends here

This code might look like it should work: why should a reference to
the first element care about what changes about the end of the vector?
The reason why this code isn’t allowed is due to the way vectors work.
Adding a new element onto the end of the vector might require allocat-
ing new memory and copying the old elements over to the new space, in
the circumstance that there isn’t enough room to put all the elements
next to each other where the vector was. In that case, the reference
to the first element would be pointing to deallocated memory. The
borrowing rules prevent programs from ending up in that situation.

Note: For more on this, see The Nomicon at https://doc.rust-
lang.org/stable/nomicon/vec.html.

Using an Enum to Store Multiple Types

At the beginning of this chapter, we said that vectors can only store
values that are all the same type. This can be inconvenient; there are
definitely use cases for needing to store a list of things of different types.
Luckily, the variants of an enum are all defined under the same enum
type, so when we need to store elements of a different type in a vector,
we can define and use an enum!

For example, let’s say we want to get values from a row in a spread-
sheet, where some of the columns in the row contain integers, some



176

floating point numbers, and some strings. We can define an enum
whose variants will hold the different value types, and then all of the
enum variants will be considered the same type, that of the enum. Then
we can create a vector that holds that enum and so, ultimately, holds
different types:

enum SpreadsheetCell {
Int(i32),
Float(f64),
Text(String),

}

let row = vec![
SpreadsheetCell::Int(3),
SpreadsheetCell::Text(String::from("blue")),
SpreadsheetCell::Float(10.12),

];

Listing 8-1: Defining an enum to be able to hold different types of data
in a vector

The reason Rust needs to know exactly what types will be in the
vector at compile time is so that it knows exactly how much memory on
the heap will be needed to store each element. A secondary advantage
to this is that we can be explicit about what types are allowed in this
vector. If Rust allowed a vector to hold any type, there would be
a chance that one or more of the types would cause errors with the
operations performed on the elements of the vector. Using an enum
plus a match means that Rust will ensure at compile time that we
always handle every possible case, as we discussed in Chapter 6.

If you don’t know at the time that you’re writing a program the
exhaustive set of types the program will get at runtime to store in a
vector, the enum technique won’t work. Instead, you can use a trait
object, which we’ll cover in Chapter 17.

Now that we’ve gone over some of the most common ways to use
vectors, be sure to take a look at the API documentation for all of
the many useful methods defined on Vec by the standard library. For
example, in addition to push there’s a pop method that will remove
and return the last element. Let’s move on to the next collection type:
String!



177

2.2
Strings
We’ve already talked about strings a bunch in Chapter 4, but let’s take
a more in-depth look at them now. Strings are an area that new Rus-
taceans commonly get stuck on. This is due to a combination of three
things: Rust’s propensity for making sure to expose possible errors,
strings being a more complicated data structure than many program-
mers give them credit for, and UTF-8. These things combine in a way
that can seem difficult when coming from other languages.

The reason strings are in the collections chapter is that strings are
implemented as a collection of bytes plus some methods to provide
useful functionality when those bytes are interpreted as text. In this
section, we’ll talk about the operations on String that every collection
type has, like creating, updating, and reading. We’ll also discuss the
ways in which String is different than the other collections, namely
how indexing into a String is complicated by the differences in which
people and computers interpret String data.

What is a String?

Before we can dig into those aspects, we need to talk about what exactly
we mean by the term string. Rust actually only has one string type
in the core language itself: str, the string slice, which is usually seen
in its borrowed form, &str. We talked about string slices in Chapter
4: these are a reference to some UTF-8 encoded string data stored
elsewhere. String literals, for example, are stored in the binary output
of the program, and are therefore string slices.

The type called String is provided in Rust’s standard library rather
than coded into the core language, and is a growable, mutable, owned,
UTF-8 encoded string type. When Rustaceans talk about “strings”
in Rust, they usually mean both the String and the string slice &str
types, not just one of those. This section is largely about String, but
both these types are used heavily in Rust’s standard library. Both
String and string slices are UTF-8 encoded.

Rust’s standard library also includes a number of other string types,
such as OsString, OsStr, CString, and CStr. Library crates may
provide even more options for storing string data. Similar to the
*String/*Str naming, they often provide an owned and borrowed
variant, just like String/&str. These string types may store different
encodings or be represented in memory in a different way, for example.



178

We won’t be talking about these other string types in this chapter; see
their API documentation for more about how to use them and when
each is appropriate.

Creating a New String

Many of the same operations available with Vec are available with
String as well, starting with the new function to create a string, like
so:
let mut s = String::new();

This creates a new empty string called s that we can then load data
into.

Often, we’ll have some initial data that we’d like to start the string
off with. For that, we use the to_string method, which is available on
any type that implements the Display trait, which string literals do:

let data = "initial contents";

let s = data.to_string();

// the method also works on a literal directly:
let s = "initial contents".to_string();

This creates a string containing initial contents.
We can also use the function String::from to create a String from

a string literal. This is equivalent to using to_string:

let s = String::from("initial contents");

Because strings are used for so many things, there are many different
generic APIs that can be used for strings, so there are a lot of options.
Some of them can feel redundant, but they all have their place! In
this case, String::from and .to_string end up doing the exact same
thing, so which you choose is a matter of style.

Remember that strings are UTF-8 encoded, so we can include any
properly encoded data in them:

let hello = "������ �����";
let hello = "Dobrý den";
let hello = "Hello";
let hello = "�������";
let hello = "������";



179

let hello = "�����";
let hello = "�����";
let hello = "��";
let hello = "Olá";
let hello = "������������";
let hello = "Hola";

Updating a String

A String can grow in size and its contents can change just like the
contents of a Vec, by pushing more data into it. In addition, String
has concatenation operations implemented with the + operator for con-
venience.

Appending to a String with Push We can grow a String by using
the push_str method to append a string slice:

let mut s = String::from("foo");
s.push_str("bar");

s will contain “foobar” after these two lines. The push_str method
takes a string slice because we don’t necessarily want to take ownership
of the parameter. For example, it would be unfortunate if we weren’t
able to use s2 after appending its contents to s1:

let mut s1 = String::from("foo");
let s2 = String::from("bar");
s1.push_str(&s2);

The push method is defined to have a single character as a parameter
and add it to the String:

let mut s = String::from("lo");
s.push('l');

After this, s will contain “lol”.

Concatenation with the + Operator or the format! Macro
Often, we’ll want to combine two existing strings together. One way is
to use the + operator like this:



180

let s1 = String::from("Hello, ");
let s2 = String::from("world!");
let s3 = s1 + &s2; // Note that s1 has been moved here
and can no longer be used

After this code the String s3 will contain Hello, world!. The reason
that s1 is no longer valid after the addition and the reason that we
used a reference to s2 has to do with the signature of the method that
gets called when we use the + operator. The + operator uses the add
method, whose signature looks something like this:

fn add(self, s: &str) -> String {

This isn’t the exact signature that’s in the standard library; there add is
defined using generics. Here, we’re looking at the signature of add with
concrete types substituted for the generic ones, which is what happens
when we call this method with String values. We’ll be discussing
generics in Chapter 10. This signature gives us the clues we need to
understand the tricky bits of the + operator.

First of all, s2 has an &, meaning that we are adding a reference of
the second string to the first string. This is because of the s parameter
in the add function: we can only add a &str to a String, we can’t add
two String values together. But wait - the type of &s2 is &String,
not &str, as specified in the second parameter to add. Why does our
example compile? We are able to use &s2 in the call to add because a
&String argument can be coerced into a &str - when the add function
is called, Rust uses something called a deref coercion, which you could
think of here as turning &s2 into &s2[..] for use in the add function.
We’ll discuss deref coercion in more depth in Chapter 15. Because add
does not take ownership of the parameter, s2 will still be a valid String
after this operation.

Second, we can see in the signature that add takes ownership of
self, because self does not have an &. This means s1 in the above
example will be moved into the add call and no longer be valid after
that. So while let s3 = s1 + &s2; looks like it will copy both strings
and create a new one, this statement actually takes ownership of s1,
appends a copy of the contents of s2, then returns ownership of the
result. In other words, it looks like it’s making a lot of copies, but isn’t:
the implementation is more efficient than copying.

If we need to concatenate multiple strings, the behavior of + gets
unwieldy:



181

let s1 = String::from("tic");
let s2 = String::from("tac");
let s3 = String::from("toe");

let s = s1 + "-" + &s2 + "-" + &s3;

s will be “tic-tac-toe” at this point. With all of the + and " charac-
ters, it gets hard to see what’s going on. For more complicated string
combining, we can use the format! macro:

let s1 = String::from("tic");
let s2 = String::from("tac");
let s3 = String::from("toe");

let s = format!("{}-{}-{}", s1, s2, s3);

This code will also set s to “tic-tac-toe”. The format! macro works
in the same way as println!, but instead of printing the output to
the screen, it returns a String with the contents. This version is much
easier to read, and also does not take ownership of any of its parameters.

Indexing into Strings

In many other languages, accessing individual characters in a string by
referencing them by index is a valid and common operation. In Rust,
however, if we try to access parts of a String using indexing syntax,
we’ll get an error. That is, this code:

let s1 = String::from("hello");
let h = s1[0];

will result in this error:
error: the trait bound `std::string::String: std::ops::
Index<_>` is not
satisfied [--explain E0277]

|>
|> let h = s1[0];
|> ^^^^^

note: the type `std::string::String` cannot be indexed
by `_`

The error and the note tell the story: Rust strings don’t support in-
dexing. So the follow-up question is, why not? In order to answer that,
we have to talk a bit about how Rust stores strings in memory.



182

Internal Representation A String is a wrapper over a Vec<u8>.
Let’s take a look at some of our properly-encoded UTF-8 example
strings from before. First, this one:

let len = String::from("Hola").len();

In this case, len will be four, which means the Vec storing the string
“Hola” is four bytes long: each of these letters takes one byte when
encoded in UTF-8. What about this example, though?

let len = String::from("������������").len();

A person asked how long the string is might say 12. However, Rust’s
answer is 24. This is the number of bytes that it takes to encode
“������������” in UTF-8, since each Unicode scalar value takes two bytes
of storage. Therefore, an index into the string’s bytes will not always
correlate to a valid Unicode scalar value.

To demonstrate, consider this invalid Rust code:

let hello = "������������";
let answer = &hello[0];

What should the value of answer be? Should it be �, the first letter?
When encoded in UTF-8, the first byte of � is 208, and the second is
151, so answer should in fact be 208, but 208 is not a valid character
on its own. Returning 208 is likely not what a person would want if
they asked for the first letter of this string, but that’s the only data
that Rust has at byte index 0. Returning the byte value is probably not
what people want, even with only Latin letters: &“hello”[0] would
return 104, not h. To avoid returning an unexpected value and causing
bugs that might not be discovered immediately, Rust chooses to not
compile this code at all and prevent misunderstandings earlier.

Bytes and Scalar Values and Grapheme Clusters! Oh my!
This leads to another point about UTF-8: there are really three relevant
ways to look at strings, from Rust’s perspective: as bytes, scalar values,
and grapheme clusters (the closest thing to what people would call
letters).

If we look at the Hindi word “������” written in the Devanagari script,
it is ultimately stored as a Vec of u8 values that looks like this:



183

[224, 164, 168, 224, 164, 174, 224, 164, 184, 224, 165,
141, 224, 164, 164,
224, 165, 135]

That’s 18 bytes, and is how computers ultimately store this data. If
we look at them as Unicode scalar values, which are what Rust’s char
type is, those bytes look like this:

['�', '�', '�', '�', '�', '�']

There are six char values here, but the fourth and sixth are not letters,
they’re diacritics that don’t make sense on their own. Finally, if we
look at them as grapheme clusters, we’d get what a person would call
the four letters that make up this word:

["�", "�", "��", "��"]

Rust provides different ways of interpreting the raw string data that
computers store so that each program can choose the interpretation it
needs, no matter what human language the data is in.

A final reason Rust does not allow you to index into a String to
get a character is that indexing operations are expected to always take
constant time (O(1)). It isn’t possible to guarantee that performance
with a String, though, since Rust would have to walk through the
contents from the beginning to the index to determine how many valid
characters there were.

Slicing Strings

Because it’s not clear what the return type of string indexing should
be, and it is often a bad idea to index into a string, Rust dissuades
you from doing so by asking you to be more specific if you really need
it. The way you can be more specific than indexing using [] with a
single number is using [] with a range to create a string slice containing
particular bytes:

let hello = "������������";

let s = &hello[0..4];

Here, s will be a &str that contains the first four bytes of the string.
Earlier, we mentioned that each of these characters was two bytes, so
that means that s will be “��”.



184

What would happen if we did &hello[0..1]? The answer: it will
panic at runtime, in the same way that accessing an invalid index in a
vector does:
thread 'main' panicked at 'index 0 and/or 1 in `������������`
do not lie on
character boundary', ../src/libcore/str/mod.rs:1694

You should use this with caution, since it can cause your program to
crash.

Methods for Iterating Over Strings

Luckily, there are other ways we can access elements in a String.
If we need to perform operations on individual Unicode scalar val-

ues, the best way to do so is to use the chars method. Calling chars
on “������” separates out and returns six values of type char, and you can
iterate over the result in order to access each element:
for c in "������".chars() {

println!("{}", c);
}

This code will print:
�
�
�
�
�
�

The bytes method returns each raw byte, which might be appropriate
for your domain:

for b in "������".bytes() {
println!("{}", b);

}

This code will print the 18 bytes that make up this String, starting
with:
224
164
168
224



185

// ... etc

But make sure to remember that valid Unicode scalar values may be
made up of more than one byte.

Getting grapheme clusters from strings is complex, so this function-
ality is not provided by the standard library. There are crates available
on crates.io if this is the functionality you need.

Strings are Not so Simple

To summarize, strings are complicated. Different programming lan-
guages make different choices about how to present this complexity
to the programmer. Rust has chosen to make the correct handling of
String data the default behavior for all Rust programs, which does
mean programmers have to put more thought into handling UTF-8
data upfront. This tradeoff exposes more of the complexity of strings
than other programming languages do, but this will prevent you from
having to handle errors involving non-ASCII characters later in your
development lifecycle.

Let’s switch to something a bit less complex: hash map!

2.3
Hash Maps
The last of our common collections is the hash map. The type HashMap<K,
V> stores a mapping of keys of type K to values of type V. It does this
via a hashing function, which determines how it places these keys and
values into memory. Many different programming languages support
this kind of data structure, but often with a different name: hash, map,
object, hash table, or associative array, just to name a few.

Hash maps are useful for when you want to be able to look up data
not by an index, as you can with vectors, but by using a key that can
be of any type. For example, in a game, you could keep track of each
team’s score in a hash map where each key is a team’s name and the
values are each team’s score. Given a team name, you can retrieve their
score.

We’ll go over the basic API of hash maps in this chapter, but there
are many more goodies hiding in the functions defined on HashMap by
the standard library. As always, check the standard library documen-
tation for more information.



186

Creating a New Hash Map

We can create an empty HashMap with new, and add elements with
insert. Here we’re keeping track of the scores of two teams whose
names are Blue and Yellow. The Blue team will start with 10 points
and the Yellow team starts with 50:
use std::collections::HashMap;

let mut scores = HashMap::new();

scores.insert(String::from("Blue"), 10);
scores.insert(String::from("Yellow"), 50);

Note that we need to first use the HashMap from the collections portion
of the standard library. Of our three common collections, this one
is the least often used, so it’s not included in the features imported
automatically in the prelude. Hash maps also have less support from
the standard library; there’s no built-in macro to construct them, for
example.

Just like vectors, hash maps store their data on the heap. This
HashMap has keys of type String and values of type i32. Like vectors,
hash maps are homogeneous: all of the keys must have the same type,
and all of the values must have the same type.

Another way of constructing a hash map is by using the collect
method on a vector of tuples, where each tuple consists of a key and its
value. The collect method gathers up data into a number of collection
types, including HashMap. For example, if we had the team names and
initial scores in two separate vectors, we can use the zip method to
create a vector of tuples where “Blue” is paired with 10, and so forth.
Then we can use the collect method to turn that vector of tuples into
a HashMap:

use std::collections::HashMap;

let teams = vec![String::from("Blue"), String::from("Yellow")
];
let initial_scores = vec![10, 50];

let scores: HashMap<_, _> = teams.iter().zip(initial_scores.
iter()).collect();

The type annotation HashMap<_, _> is needed here because it’s possible
to collect into many different data structures, and Rust doesn’t know



187

which you want unless you specify. For the type parameters for the key
and value types, however, we use underscores and Rust can infer the
types that the hash map contains based on the types of the data in the
vector.

Hash Maps and Ownership

For types that implement the Copy trait, like i32, the values are copied
into the hash map. For owned values like String, the values will be
moved and the hash map will be the owner of those values:

use std::collections::HashMap;

let field_name = String::from("Favorite color");
let field_value = String::from("Blue");

let mut map = HashMap::new();
map.insert(field_name, field_value);
// field_name and field_value are invalid at this point

We would not be able to use the bindings field_name and field_
value after they have been moved into the hash map with the call to
insert.

If we insert references to values into the hash map, the values them-
selves will not be moved into the hash map. The values that the ref-
erences point to must be valid for at least as long as the hash map is
valid, though. We will talk more about these issues in the Lifetimes
section of Chapter 10.

Accessing Values in a Hash Map

We can get a value out of the hash map by providing its key to the get
method:

use std::collections::HashMap;

let mut scores = HashMap::new();

scores.insert(String::from("Blue"), 10);
scores.insert(String::from("Yellow"), 50);

let team_name = String::from("Blue");



188

let score = scores.get(&team_name);

Here, score will have the value that’s associated with the Blue team,
and the result will be Some(&10). The result is wrapped in Some be-
cause get returns an Option<&V>; if there’s no value for that key in
the hash map, get will return None. The program will need to handle
the Option in one of the ways that we covered in Chapter 6.

We can iterate over each key/value pair in a hash map in a similar
manner as we do with vectors, using a for loop:

use std::collections::HashMap;

let mut scores = HashMap::new();

scores.insert(String::from("Blue"), 10);
scores.insert(String::from("Yellow"), 50);

for (key, value) in &scores {
println!("{}: {}", key, value);

}

This will print each pair, in an arbitrary order:

Yellow: 50
Blue: 10

Updating a Hash Map

While the number of keys and values is growable, each individual key
can only have one value associated with it at a time. When we want
to change the data in a hash map, we have to decide how to handle
the case when a key already has a value assigned. We could choose
to replace the old value with the new value, completely disregarding
the old value. We could choose to keep the old value and ignore the
new value, and only add the new value if the key doesn’t already have
a value. Or we could combine the old value and the new value. Let’s
look at how to do each of these!

Overwriting a Value If we insert a key and a value into a hash
map, then insert that same key with a different value, the value asso-
ciated with that key will be replaced. Even though this following code
calls insert twice, the hash map will only contain one key/value pair
because we’re inserting the value for the Blue team’s key both times:



189

use std::collections::HashMap;

let mut scores = HashMap::new();

scores.insert(String::from("Blue"), 10);
scores.insert(String::from("Blue"), 25);

println!("{:?}", scores);

This will print {“Blue”: 25}. The original value of 10 has been
overwritten.

Only Insert If the Key Has No Value It’s common to want to
check if a particular key has a value and, if it does not, insert a value
for it. Hash maps have a special API for this, called entry, that takes
the key we want to check as an argument. The return value of the
entry function is an enum, Entry, that represents a value that might
or might not exist. Let’s say that we want to check if the key for the
Yellow team has a value associated with it. If it doesn’t, we want to
insert the value 50, and the same for the Blue team. With the entry
API, the code for this looks like:

use std::collections::HashMap;

let mut scores = HashMap::new();
scores.insert(String::from("Blue"), 10);

scores.entry(String::from("Yellow")).or_insert(50);
scores.entry(String::from("Blue")).or_insert(50);

println!("{:?}", scores);

The or_insert method on Entry returns the value for the correspond-
ing Entry key if it exists, and if not, inserts its argument as the new
value for this key and returns the modified Entry. This is much cleaner
than writing the logic ourselves, and in addition, plays more nicely with
the borrow checker.

This code will print {“Yellow”: 50, “Blue”: 10}. The first
call to entry will insert the key for the Yellow team with the value 50,
since the Yellow team doesn’t have a value already. The second call to
entry will not change the hash map since the Blue team already has
the value 10.



190

Update a Value Based on the Old Value Another common use
case for hash maps is to look up a key’s value then update it, based
on the old value. For instance, if we wanted to count how many times
each word appeared in some text, we could use a hash map with the
words as keys and increment the value to keep track of how many times
we’ve seen that word. If this is the first time we’ve seen a word, we’ll
first insert the value 0.

use std::collections::HashMap;

let text = "hello world wonderful world";

let mut map = HashMap::new();

for word in text.split_whitespace() {
let count = map.entry(word).or_insert(0);
*count += 1;

}

println!("{:?}", map);

This will print {“world”: 2, “hello”: 1, “wonderful”: 1}. The
or_insert method actually returns a mutable reference (&mut V) to the
value for this key. Here we store that mutable reference in the count
variable, so in order to assign to that value we must first dereference
count using the asterisk (*). The mutable reference goes out of scope
at the end of the for loop, so all of these changes are safe and allowed
by the borrowing rules.

Hashing Function

By default, HashMap uses a cryptographically secure hashing function
that can provide resistance to Denial of Service (DoS) attacks. This is
not the fastest hashing algorithm out there, but the tradeoff for better
security that comes with the drop in performance is worth it. If you
profile your code and find that the default hash function is too slow
for your purposes, you can switch to another function by specifying a
different hasher. A hasher is a type that implements the BuildHasher
trait. We’ll be talking about traits and how to implement them in
Chapter 10. You don’t necessarily have to implement your own hasher
from scratch; crates.io has libraries that others have shared that provide
hashers implementing many common hashing algorithms.



191

Summary
Vectors, strings, and hash maps will take you far in programs where
you need to store, access, and modify data. Here are some exercises
you should now be equipped to solve:

• Given a list of integers, use a vector and return the mean (av-
erage), median (when sorted, the value in the middle position),
and mode (the value that occurs most often; a hash map will be
helpful here) of the list.

• Convert strings to Pig Latin, where the first consonant of each
word is moved to the end of the word with an added “ay”, so
“first” becomes “irst-fay”. Words that start with a vowel get
“hay” added to the end instead (“apple” becomes “apple-hay”).
Remember about UTF-8 encoding!

• Using a hash map and vectors, create a text interface to allow
a user to add employee names to a department in the company.
For example, “Add Sally to Engineering” or “Add Amir to Sales”.
Then let the user retrieve a list of all people in a department or
all people in the company by department, sorted alphabetically.

The standard library API documentation describes methods these types
have that will be helpful for these exercises!

We’re getting into more complex programs where operations can
fail, which means it’s a perfect time to go over error handling next!



192



Chapter 3

Error Handling

Rust’s commitment to reliability extends to error handling. Errors are
a fact of life in software, so Rust has a number of features for handling
situations in which something goes wrong. In many cases, Rust will
require you to acknowledge the possibility of an error occurring and take
some action before your code will compile. This makes your program
more robust by ensuring that you won’t only discover errors after you’ve
deployed your code to production.

Rust groups errors into two major categories: recoverable and un-
recoverable errors. Recoverable errors are situations when it’s usually
reasonable to report the problem to the user and retry the operation,
like a file not being found. Unrecoverable errors are always symptoms
of bugs, like trying to access a location beyond the end of an array.

Most languages don’t distinguish between the two kinds of errors,
and handle both in the same way using mechanisms like exceptions.
Rust doesn’t have exceptions. Instead, it has the value Result<T,
E> for recoverable errors and the panic! macro that stops execution
when it encounters unrecoverable errors. This chapter will cover calling
panic! first, then talk about returning Result<T, E> values. Finally,
we’ll discuss considerations to take into account when deciding whether
to try to recover from an error or to stop execution.



194

3.1
Unrecoverable Errors with panic!
Sometimes, bad things happen, and there’s nothing that you can do
about it. For these cases, Rust has the panic! macro. When this
macro executes, your program will print a failure message, unwind and
clean up the stack, and then quit. The most common situation this
occurs in is when a bug of some kind has been detected and it’s not
clear to the programmer how to handle the error.

Unwinding the Stack Versus Aborting on
Panic
By default, when a panic! occurs, the program starts un-
winding, which means Rust walks back up the stack and
cleans up the data from each function it encounters, but this
walking and cleanup is a lot of work. The alternative is to
immediately abort, which ends the program without cleaning
up. Memory that the program was using will then need to be
cleaned up by the operating system. If in your project you
need to make the resulting binary as small as possible, you
can switch from unwinding to aborting on panic by adding
panic = ‘abort’ to the appropriate [profile] sections
in your Cargo.toml. For example, if you want to abort on
panic in release mode:

[profile.release]
panic = 'abort'

Let’s try calling panic! with a simple program:
Filename: src/main.rs

fn main() {
panic!("crash and burn");

}

If you run it, you’ll see something like this:

$ cargo run
Compiling panic v0.1.0 (file:///projects/panic)
Finished dev [unoptimized + debuginfo] target(s) in

0.25 secs



195

Running `target/debug/panic`
thread 'main' panicked at 'crash and burn', src/main.rs:
2
note: Run with `RUST_BACKTRACE=1` for a backtrace.
error: Process didn't exit successfully: `target/debug/
panic` (exit code: 101)

The last three lines contain the error message caused by the call to
panic!. The first line shows our panic message and the place in our
source code where the panic occurred: src/main.rs:2 indicates that it’s
the second line of our src/main.rs file.

In this case, the line indicated is part of our code, and if we go to
that line we see the panic! macro call. In other cases, the panic! call
might be in code that our code calls. The filename and line number
reported by the error message will be someone else’s code where the
panic! macro is called, not the line of our code that eventually led to
the panic!. We can use the backtrace of the functions the panic! call
came from to figure this out.

Using a panic! Backtrace

Let’s look at another example to see what it’s like when a panic! call
comes from a library because of a bug in our code instead of from our
code calling the macro directly:

Filename: src/main.rs

fn main() {
let v = vec![1, 2, 3];

v[100];
}

We’re attempting to access the hundredth element of our vector, but it
only has three elements. In this situation, Rust will panic. Using [] is
supposed to return an element, but if you pass an invalid index, there’s
no element that Rust could return here that would be correct.

Other languages like C will attempt to give you exactly what you
asked for in this situation, even though it isn’t what you want: you’ll
get whatever is at the location in memory that would correspond to
that element in the vector, even though the memory doesn’t belong to
the vector. This is called a buffer overread, and can lead to security
vulnerabilities if an attacker can manipulate the index in such a way as
to read data they shouldn’t be allowed to that is stored after the array.



196

In order to protect your program from this sort of vulnerability, if
you try to read an element at an index that doesn’t exist, Rust will
stop execution and refuse to continue. Let’s try it and see:

$ cargo run
Compiling panic v0.1.0 (file:///projects/panic)
Finished dev [unoptimized + debuginfo] target(s) in

0.27 secs
Running `target/debug/panic`

thread 'main' panicked at 'index out of bounds: the len
is 3 but the index is
100', /stable-dist-rustc/build/src/libcollections/vec.rs:
1362
note: Run with `RUST_BACKTRACE=1` for a backtrace.
error: Process didn't exit successfully: `target/debug/
panic` (exit code: 101)

This points at a file we didn’t write, libcollections/vec.rs. That’s the
implementation of Vec<T> in the standard library. The code that gets
run when we use [] on our vector v is in libcollections/vec.rs, and that
is where the panic! is actually happening.

The next note line tells us that we can set the RUST_BACKTRACE
environment variable to get a backtrace of exactly what happened to
cause the error. Let’s try that. Listing 9-1 shows the output:

$ RUST_BACKTRACE=1 cargo run
Finished dev [unoptimized + debuginfo] target(s) in

0.0 secs
Running `target/debug/panic`

thread 'main' panicked at 'index out of bounds: the len
is 3 but the index is 100', /stable-dist-rustc/build/src/
libcollections/vec.rs:1392
stack backtrace:

1: 0x560ed90ec04c - std::sys::imp::backtrace::tracing:
:imp::write::hf33ae72d0baa11ed

at /stable-dist-rustc/build/src/
libstd/sys/unix/backtrace/tracing/gcc_s.rs:42

2: 0x560ed90ee03e - std::panicking::default_hook:
:{{closure}}::h59672b733cc6a455

at /stable-dist-rustc/build/src/
libstd/panicking.rs:351



197

3: 0x560ed90edc44 - std::panicking::default_hook:
:h1670459d2f3f8843

at /stable-dist-rustc/build/src/
libstd/panicking.rs:367

4: 0x560ed90ee41b - std::panicking::rust_panic_with_
hook::hcf0ddb069e7abcd7

at /stable-dist-rustc/build/src/
libstd/panicking.rs:555

5: 0x560ed90ee2b4 - std::panicking::begin_panic:
:hd6eb68e27bdf6140

at /stable-dist-rustc/build/src/
libstd/panicking.rs:517

6: 0x560ed90ee1d9 - std::panicking::begin_panic_
fmt::abcd5965948b877f8

at /stable-dist-rustc/build/src/
libstd/panicking.rs:501

7: 0x560ed90ee167 - rust_begin_unwind
at /stable-dist-rustc/build/src/

libstd/panicking.rs:477
8: 0x560ed911401d - core::panicking::panic_fmt::

hc0f6d7b2c300cdd9
at /stable-dist-rustc/build/src/

libcore/panicking.rs:69
9: 0x560ed9113fc8 - core::panicking::panic_bounds_

check::h02a4af86d01b3e96
at /stable-dist-rustc/build/src/

libcore/panicking.rs:56
10: 0x560ed90e71c5 - <collections::vec::Vec<T> as

core::ops::Index<usize>>::index::h98abcd4e2a74c41
at /stable-dist-rustc/build/src/

libcollections/vec.rs:1392
11: 0x560ed90e727a - panic::main::h5d6b77c20526bc35

at /home/you/projects/panic/src/
main.rs:4
12: 0x560ed90f5d6a - __rust_maybe_catch_panic

at /stable-dist-rustc/build/src/
libpanic_unwind/lib.rs:98
13: 0x560ed90ee926 - std::rt::lang_start::hd7c880a37a646e81

at /stable-dist-rustc/build/src/
libstd/panicking.rs:436



198

at /stable-dist-rustc/build/src/
libstd/panic.rs:361

at /stable-dist-rustc/build/src/
libstd/rt.rs:57
14: 0x560ed90e7302 - main
15: 0x7f0d53f16400 - __libc_start_main
16: 0x560ed90e6659 - _start
17: 0x0 - <unknown>

Listing 9-1: The backtrace generated by a call to panic! displayed
when the environment variable RUST_BACKTRACE is set

That’s a lot of output! Line 11 of the backtrace points to the line in
our project causing the problem: src/main.rs, line four. A backtrace
is a list of all the functions that have been called to get to this point.
Backtraces in Rust work like they do in other languages: the key to
reading the backtrace is to start from the top and read until you see files
you wrote. That’s the spot where the problem originated. The lines
above the lines mentioning your files are code that your code called; the
lines below are code that called your code. These lines might include
core Rust code, standard library code, or crates that you’re using.

If we don’t want our program to panic, the location pointed to by
the first line mentioning a file we wrote is where we should start inves-
tigating in order to figure out how we got to this location with values
that caused the panic. In our example where we deliberately wrote
code that would panic in order to demonstrate how to use backtraces,
the way to fix the panic is to not try to request an element at index 100
from a vector that only contains three items. When your code panics
in the future, you’ll need to figure out for your particular case what
action the code is taking with what values that causes the panic and
what the code should do instead.

We’ll come back to panic! and when we should and should not
use these methods later in the chapter. Next, we’ll now look at how to
recover from an error with Result.

3.2
Recoverable Errors with Result
Most errors aren’t serious enough to require the program to stop en-
tirely. Sometimes, when a function fails, it’s for a reason that we can
easily interpret and respond to. For example, if we try to open a file



199

and that operation fails because the file doesn’t exist, we might want
to create the file instead of terminating the process.

Recall from Chapter 2 the section on “Handling Potential Failure
with the Result Type” that the Result enum is defined as having two
variants, Ok and Err, as follows:

enum Result<T, E> {
Ok(T),
Err(E),

}

The T and E are generic type parameters; we’ll go into generics in more
detail in Chapter 10. What you need to know right now is that T
represents the type of the value that will be returned in a success case
within the Ok variant, and E represents the type of the error that will
be returned in a failure case within the Err variant. Because Result
has these generic type parameters, we can use the Result type and the
functions that the standard library has defined on it in many different
situations where the successful value and error value we want to return
may differ.

Let’s call a function that returns a Result value because the func-
tion could fail: opening a file, shown in Listing 9-2.

Filename: src/main.rs

use std::fs::File;

fn main() {
let f = File::open("hello.txt");

}

Listing 9-2: Opening a file
How do we know File::open returns a Result? We could look at

the standard library API documentation, or we could ask the compiler!
If we give f a type annotation of some type that we know the return
type of the function is not, then we try to compile the code, the compiler
will tell us that the types don’t match. The error message will then tell
us what the type of f is! Let’s try it: we know that the return type of
File::open isn’t of type u32, so let’s change the let f statement to:

let f: u32 = File::open("hello.txt");

Attempting to compile now gives us:



200

error[E0308]: mismatched types
--> src/main.rs:4:18
|

4 | let f: u32 = File::open("hello.txt");
| ^^^^^^^^^^^^^^^^^^^^^^^ expected u32,

found enum
`std::result::Result`
|
= note: expected type `u32`
= note: found type `std::result::Result<std::fs::File,

std::io::Error>`

This tells us the return type of the File::open function is a Result<T,
E>. The generic parameter T has been filled in here with the type of
the success value, std::fs::File, which is a file handle. The type of
E used in the error value is std::io::Error.

This return type means the call to File::open might succeed and
return to us a file handle that we can read from or write to. The
function call also might fail: for example, the file might not exist, or we
might not have permission to access the file. The File::open function
needs to have a way to tell us whether it succeeded or failed, and at
the same time give us either the file handle or error information. This
information is exactly what the Result enum conveys.

In the case where File::open succeeds, the value we will have in
the variable f will be an instance of Ok that contains a file handle. In
the case where it fails, the value in f will be an instance of Err that
contains more information about the kind of error that happened.

We need to add to the code from Listing 9-2 to take different actions
depending on the value File::open returned. Listing 9-3 shows one
way to handle the Result with a basic tool: the match expression that
we learned about in Chapter 6.

Filename: src/main.rs

use std::fs::File;

fn main() {
let f = File::open("hello.txt");

let f = match f {
Ok(file) => file,
Err(error) => {



201

panic!("There was a problem opening the file:
{:?}", error)

},
};

}

Listing 9-3: Using a match expression to handle the Result variants
we might have

Note that, like the Option enum, the Result enum and its variants
have been imported in the prelude, so we don’t need to specify Result:
: before the Ok and Err variants in the match arms.

Here we tell Rust that when the result is Ok, return the inner file
value out of the Ok variant, and we then assign that file handle value
to the variable f. After the match, we can then use the file handle for
reading or writing.

The other arm of the match handles the case where we get an Err
value from File::open. In this example, we’ve chosen to call the
panic! macro. If there’s no file named hello.txt in our current di-
rectory and we run this code, we’ll see the following output from the
panic! macro:

thread 'main' panicked at 'There was a problem opening
the file: Error { repr:
Os { code: 2, message: "No such file or directory" } }',
src/main.rs:8

Matching on Different Errors

The code in Listing 9-3 will panic! no matter the reason that File:
:open failed. What we’d really like to do instead is take different
actions for different failure reasons: if File::open failed because the
file doesn’t exist, we want to create the file and return the handle to
the new file. If File::open failed for any other reason, for example
because we didn’t have permission to open the file, we still want to
panic! in the same way as we did in Listing 9-3. Let’s look at Listing
9-4, which adds another arm to the match:

Filename: src/main.rs

use std::fs::File;
use std::io::ErrorKind;

fn main() {



202

let f = File::open("hello.txt");

let f = match f {
Ok(file) => file,
Err(ref error) if error.kind() == ErrorKind::NotFound

=> {
match File::create("hello.txt") {

Ok(fc) => fc,
Err(e) => {

panic!(
"Tried to create file but there

was a problem: {:?}",
e

)
},

}
},
Err(error) => {

panic!(
"There was a problem opening the file:

{:?}",
error

)
},

};
}

Listing 9-4: Handling different kinds of errors in different ways
The type of the value that File::open returns inside the Err vari-

ant is io::Error, which is a struct provided by the standard library.
This struct has a method kind that we can call to get an io::ErrorKind
value. io::ErrorKind is an enum provided by the standard library that
has variants representing the different kinds of errors that might result
from an io operation. The variant we’re interested in is ErrorKind:
:NotFound, which indicates the file we’re trying to open doesn’t exist
yet.

The condition if error.kind() == ErrorKind::NotFound is called
a match guard: it’s an extra condition on a match arm that further re-
fines the arm’s pattern. This condition must be true in order for that
arm’s code to get run; otherwise, the pattern matching will move on to
consider the next arm in the match. The ref in the pattern is needed
so that error is not moved into the guard condition but is merely ref-



203

erenced by it. The reason ref is used to take a reference in a pattern
instead of & will be covered in detail in Chapter 18. In short, in the
context of a pattern, & matches a reference and gives us its value, but
ref matches a value and gives us a reference to it.

The condition we want to check in the match guard is whether
the value returned by error.kind() is the NotFound variant of the
ErrorKind enum. If it is, we try to create the file with File::create.
However, since File::create could also fail, we need to add an inner
match statement as well! When the file can’t be opened, a different
error message will be printed. The last arm of the outer match stays
the same so that the program panics on any error besides the missing
file error.

Shortcuts for Panic on Error: unwrap and expect

Using match works well enough, but it can be a bit verbose and doesn’t
always communicate intent well. The Result<T, E> type has many
helper methods defined on it to do various things. One of those meth-
ods, called unwrap, is a shortcut method that is implemented just like
the match statement we wrote in Listing 9-3. If the Result value is the
Ok variant, unwrap will return the value inside the Ok. If the Result is
the Err variant, unwrap will call the panic! macro for us.

use std::fs::File;

fn main() {
let f = File::open("hello.txt").unwrap();

}

If we run this code without a hello.txt file, we’ll see an error message
from the panic! call that the unwrap method makes:

thread 'main' panicked at 'called `Result::unwrap()` on
an `Err` value: Error {
repr: Os { code: 2, message: "No such file or directory"
} }',
/stable-dist-rustc/build/src/libcore/result.rs:868

There’s another method similar to unwrap that lets us also choose the
panic! error message: expect. Using expect instead of unwrap and
providing good error messages can convey your intent and make track-
ing down the source of a panic easier. The syntax of expect looks like
this:



204

use std::fs::File;

fn main() {
let f = File::open("hello.txt").expect("Failed to open

hello.txt");
}

We use expect in the same way as unwrap: to return the file handle or
call the panic! macro. The error message that expect uses in its call
to panic! will be the parameter that we pass to expect instead of the
default panic! message that unwrap uses. Here’s what it looks like:

thread 'main' panicked at 'Failed to open hello.txt: Error
{ repr: Os { code:
2, message: "No such file or directory" } }',
/stable-dist-rustc/build/src/libcore/result.rs:868

Propagating Errors

When writing a function whose implementation calls something that
might fail, instead of handling the error within this function, you can
choose to let your caller know about the error so they can decide what
to do. This is known as propagating the error, and gives more control
to the calling code where there might be more information or logic that
dictates how the error should be handled than what you have available
in the context of your code.

For example, Listing 9-5 shows a function that reads a username
from a file. If the file doesn’t exist or can’t be read, this function will
return those errors to the code that called this function:

use std::io;
use std::io::Read;
use std::fs::File;

fn read_username_from_file() -> Result<String, io::Error>
{

let f = File::open("hello.txt");

let mut f = match f {
Ok(file) => file,
Err(e) => return Err(e),

};



205

let mut s = String::new();

match f.read_to_string(&mut s) {
Ok(_) => Ok(s),
Err(e) => Err(e),

}
}

Listing 9-5: A function that returns errors to the calling code using
match

Let’s look at the return type of the function first: Result<String,
io::Error>. This means that the function is returning a value of the
type Result<T, E> where the generic parameter T has been filled in
with the concrete type String, and the generic type E has been filled
in with the concrete type io::Error. If this function succeeds without
any problems, the caller of this function will receive an Ok value that
holds a String — the username that this function read from the file.
If this function encounters any problems, the caller of this function will
receive an Err value that holds an instance of io::Error that contains
more information about what the problems were. We chose io::Error
as the return type of this function because that happens to be the type
of the error value returned from both of the operations we’re calling in
this function’s body that might fail: the File::open function and the
read_to_string method.

The body of the function starts by calling the File::open function.
Then we handle the Result value returned with a match similar to the
match in Listing 9-3, only instead of calling panic! in the Err case,
we return early from this function and pass the error value from File:
:open back to the caller as this function’s error value. If File::open
succeeds, we store the file handle in the variable f and continue.

Then we create a new String in variable s and call the read_to_
string method on the file handle in f in order to read the contents
of the file into s. The read_to_string method also returns a Result
because it might fail, even though File::open succeeded. So we need
another match to handle that Result: if read_to_string succeeds,
then our function has succeeded, and we return the username from the
file that’s now in s wrapped in an Ok. If read_to_string fails, we
return the error value in the same way that we returned the error value
in the match that handled the return value of File::open. We don’t
need to explicitly say return, however, since this is the last expression
in the function.



206

The code that calls this code will then handle getting either an Ok
value that contains a username or an Err value that contains an io:
:Error. We don’t know what the caller will do with those values. If
they get an Err value, they could choose to call panic! and crash
their program, use a default username, or look up the username from
somewhere other than a file, for example. We don’t have enough infor-
mation on what the caller is actually trying to do, so we propagate all
the success or error information upwards for them to handle as they
see fit.

This pattern of propagating errors is so common in Rust that there
is dedicated syntax to make this easier: ?.

A Shortcut for Propagating Errors: ?

Listing 9-6 shows an implementation of read_username_from_file
that has the same functionality as it had in Listing 9-5, but this imple-
mentation uses the question mark operator:

use std::io;
use std::io::Read;
use std::fs::File;

fn read_username_from_file() -> Result<String, io::Error>
{

let mut f = File::open("hello.txt")?;
let mut s = String::new();
f.read_to_string(&mut s)?;
Ok(s)

}

Listing 9-6: A function that returns errors to the calling code using ?
The ? placed after a Result value is defined to work the exact same

way as the match expressions we defined to handle the Result values in
Listing 9-5. If the value of the Result is an Ok, the value inside the Ok
will get returned from this expression and the program will continue.
If the value is an Err, the value inside the Err will be returned from
the whole function as if we had used the return keyword so that the
error value gets propagated to the caller.

In the context of Listing 9-6, the ? at the end of the File::open
call will return the value inside an Ok to the variable f. If an error
occurs, ? will return early out of the whole function and give any Err
value to our caller. The same thing applies to the ? at the end of the
read_to_string call.



207

The ? eliminates a lot of boilerplate and makes this function’s
implementation simpler. We could even shorten this code further by
chaining method calls immediately after the ?:
use std::io;
use std::io::Read;
use std::fs::File;

fn read_username_from_file() -> Result<String, io::Error>
{

let mut s = String::new();

File::open("hello.txt")?.read_to_string(&mut s)?;

Ok(s)
}

We’ve moved the creation of the new String in s to the beginning of
the function; that part hasn’t changed. Instead of creating a variable
f, we’ve chained the call to read_to_string directly onto the result
of File::open(“hello.txt”)?. We still have a ? at the end of the
read_to_string call, and we still return an Ok value containing the
username in s when both File::open and read_to_string succeed
rather than returning errors. The functionality is again the same as in
Listing 9-5 and Listing 9-6, this is just a different, more ergonomic way
to write it.

? Can Only Be Used in Functions That Return Result

The ? can only be used in functions that have a return type of Result,
since it is defined to work in exactly the same way as the match ex-
pression we defined in Listing 9-5. The part of the match that requires
a return type of Result is return Err(e), so the return type of the
function must be a Result to be compatible with this return.

Let’s look at what happens if we use ? in the main function, which
you’ll recall has a return type of ():
use std::fs::File;

fn main() {
let f = File::open("hello.txt")?;

}

When we compile this, we get the following error message:



208

error[E0308]: mismatched types
-->
|

3 | let f = File::open("hello.txt")?;
| ^^^^^^^^^^^^^^^^^^^^^^^^^ expected (),

found enum
`std::result::Result`
|
= note: expected type `()`
= note: found type `std::result::Result<_, _>`

This error is pointing out that we have mismatched types: the main
function has a return type of (), but the ? might return a Result.
In functions that don’t return Result, when you call other functions
that return Result, you’ll need to use a match or one of the Result
methods to handle it, instead of using ? to potentially propagate the
error to the caller.

Now that we’ve discussed the details of calling panic! or returning
Result, let’s return to the topic of how to decide which is appropriate
to use in which cases.

3.3
To panic! or Not To panic!
So how do you decide when you should panic! and when you should
return Result? When code panics, there’s no way to recover. You
could choose to call panic! for any error situation, whether there’s
a possible way to recover or not, but then you’re making the decision
for your callers that a situation is unrecoverable. When you choose
to return a Result value, you give your caller options, rather than
making the decision for them. They could choose to attempt to recover
in a way that’s appropriate for their situation, or they could decide
that actually, an Err value in this case is unrecoverable, so they can
call panic! and turn your recoverable error into an unrecoverable
one. Therefore, returning Result is a good default choice when you’re
defining a function that might fail.

There are a few situations in which it’s more appropriate to write
code that panics instead of returning a Result, but they are less com-
mon. Let’s discuss why it’s appropriate to panic in examples, proto-
type code, and tests, then situations where you as a human can know



209

a method won’t fail that the compiler can’t reason about, and con-
clude with some general guidelines on how to decide whether to panic
in library code.

Examples, Prototype Code, and Tests: Perfectly Fine to Panic

When you’re writing an example to illustrate some concept, having
robust error handling code in the example as well can make the example
less clear. In examples, it’s understood that a call to a method like
unwrap that could panic! is meant as a placeholder for the way that
you’d actually like your application to handle errors, which can differ
based on what the rest of your code is doing.

Similarly, the unwrap and expect methods are very handy when
prototyping, before you’re ready to decide how to handle errors. They
leave clear markers in your code for when you’re ready to make your
program more robust.

If a method call fails in a test, we’d want the whole test to fail, even
if that method isn’t the functionality under test. Because panic! is
how a test gets marked as a failure, calling unwrap or expect is exactly
what makes sense to do.

Cases When You Have More Information Than The Compiler

It would also be appropriate to call unwrap when you have some other
logic that ensures the Result will have an Ok value, but the logic isn’t
something the compiler understands. You’ll still have a Result value
that you need to handle: whatever operation you’re calling still has the
possibility of failing in general, even though it’s logically impossible in
your particular situation. If you can ensure by manually inspecting the
code that you’ll never have an Err variant, it is perfectly acceptable to
call unwrap. Here’s an example:

use std::net::IpAddr;

let home = "127.0.0.1".parse::<IpAddr>().unwrap();

We’re creating an IpAddr instance by parsing a hardcoded string. We
can see that 127.0.0.1 is a valid IP address, so it’s acceptable to use
unwrap here. However, having a hardcoded, valid string doesn’t change
the return type of the parse method: we still get a Result value, and
the compiler will still make us handle the Result as if the Err variant is
still a possibility since the compiler isn’t smart enough to see that this



210

string is always a valid IP address. If the IP address string came from
a user instead of being hardcoded into the program, and therefore did
have a possibility of failure, we’d definitely want to handle the Result
in a more robust way instead.

Guidelines for Error Handling

It’s advisable to have your code panic! when it’s possible that you
could end up in a bad state—in this context, bad state is when some
assumption, guarantee, contract, or invariant has been broken, such as
when invalid values, contradictory values, or missing values are passed
to your code—plus one or more of the following:

• The bad state is not something that’s expected to happen occa-
sionally

• Your code after this point needs to rely on not being in this bad
state

• There’s not a good way to encode this information in the types
you use

If someone calls your code and passes in values that don’t make sense,
the best thing might be to panic! and alert the person using your
library to the bug in their code so that they can fix it during develop-
ment. Similarly, panic! is often appropriate if you’re calling external
code that is out of your control, and it returns an invalid state that
you have no way of fixing.

When a bad state is reached, but it’s expected to happen no matter
how well you write your code, it’s still more appropriate to return a
Result rather than calling panic!. Examples of this include a parser
being given malformed data, or an HTTP request returning a status
that indicates you have hit a rate limit. In these cases, you should
indicate that failure is an expected possibility by returning a Result
in order to propagate these bad states upwards so that the caller can
decide how they would like to handle the problem. To panic! wouldn’t
be the best way to handle these cases.

When your code performs operations on values, your code should
verify the values are valid first, and panic! if the values aren’t valid.
This is mostly for safety reasons: attempting to operate on invalid data
can expose your code to vulnerabilities. This is the main reason that
the standard library will panic! if you attempt an out-of-bounds ar-
ray access: trying to access memory that doesn’t belong to the current



211

data structure is a common security problem. Functions often have
contracts: their behavior is only guaranteed if the inputs meet particu-
lar requirements. Panicking when the contract is violated makes sense
because a contract violation always indicates a caller-side bug, and it
is not a kind of error you want callers to have to explicitly handle. In
fact, there’s no reasonable way for calling code to recover: the calling
programmers need to fix the code. Contracts for a function, especially
when a violation will cause a panic, should be explained in the API
documentation for the function.

Having lots of error checks in all of your functions would be verbose
and annoying, though. Luckily, you can use Rust’s type system (and
thus the type checking the compiler does) to do a lot of the checks for
you. If your function has a particular type as a parameter, you can
proceed with your code’s logic knowing that the compiler has already
ensured you have a valid value. For example, if you have a type rather
than an Option, your program expects to have something rather than
nothing. Your code then doesn’t have to handle two cases for the Some
and None variants, it will only have one case for definitely having a
value. Code trying to pass nothing to your function won’t even compile,
so your function doesn’t have to check for that case at runtime. Another
example is using an unsigned integer type like u32, which ensures the
parameter is never negative.

Creating Custom Types for Validation

Let’s take the idea of using Rust’s type system to ensure we have a valid
value one step further, and look at creating a custom type for validation.
Recall the guessing game in Chapter 2, where our code asked the user
to guess a number between 1 and 100. We actually never validated
that the user’s guess was between those numbers before checking it
against our secret number, only that it was positive. In this case, the
consequences were not very dire: our output of “Too high” or “Too low”
would still be correct. It would be a useful enhancement to guide the
user towards valid guesses, though, and have different behavior when
a user guesses a number that’s out of range versus when a user types,
for example, letters instead.

One way to do this would be to parse the guess as an i32 instead
of only a u32, to allow potentially negative numbers, then add a check
for the number being in range:



212

loop {
// snip

let guess: i32 = match guess.trim().parse() {
Ok(num) => num,
Err(_) => continue,

};

if guess < 1 || guess > 100 {
println!("The secret number will be between 1 and

100.");
continue;

}

match guess.cmp(&secret_number) {
// snip

}

The if expression checks to see if our value is out of range, tells the
user about the problem, and calls continue to start the next iteration
of the loop and ask for another guess. After the if expression, we can
proceed with the comparisons between guess and the secret number
knowing that guess is between 1 and 100.

However, this is not an ideal solution: if it was absolutely critical
that the program only operated on values between 1 and 100, and it had
many functions with this requirement, it would be tedious (and poten-
tially impact performance) to have a check like this in every function.

Instead, we can make a new type and put the validations in a func-
tion to create an instance of the type rather than repeating the vali-
dations everywhere. That way, it’s safe for functions to use the new
type in their signatures and confidently use the values they receive.
Listing 9-8 shows one way to define a Guess type that will only create
an instance of Guess if the new function receives a value between 1 and
100:

pub struct Guess {
value: u32,

}

impl Guess {
pub fn new(value: u32) -> Guess {



213

if value < 1 || value > 100 {
panic!("Guess value must be between 1 and 100,

got {}.", value);
}

Guess {
value

}
}

pub fn value(&self) -> u32 {
self.value

}
}

Listing 9-8: A Guess type that will only continue with values between
1 and 100

First, we define a struct named Guess that has a field named value
that holds a u32. This is where the number will be stored.

Then we implement an associated function named new on Guess
that creates instances of Guess values. The new function is defined to
have one parameter named value of type u32 and to return a Guess.
The code in the body of the new function tests value to make sure it
is between 1 and 100. If value doesn’t pass this test, we call panic!,
which will alert the programmer who is calling this code that they have
a bug they need to fix, since creating a Guess with a value outside this
range would violate the contract that Guess::new is relying on. The
conditions in which Guess::new might panic should be discussed in its
public-facing API documentation; we’ll cover documentation conven-
tions around indicating the possibility of a panic! in the API docu-
mentation that you create in Chapter 14. If value does pass the test,
we create a new Guess with its value field set to the value parameter
and return the Guess.

Next, we implement a method named value that borrows self,
doesn’t have any other parameters, and returns a u32. This is a kind
of method sometimes called a getter, since its purpose is to get some
data from its fields and return it. This public method is necessary
because the value field of the Guess struct is private. It’s important
that the value field is private so that code using the Guess struct is
not allowed to set value directly: callers outside the module must use
the Guess::new function to create an instance of Guess, which ensures
there’s no way for a Guess to have a value that hasn’t been checked



214

by the conditions in the Guess::new function.
A function that has a parameter or returns only numbers between

1 and 100 could then declare in its signature that it takes or returns
a Guess rather than a u32, and wouldn’t need to do any additional
checks in its body.

Summary
Rust’s error handling features are designed to help you write more
robust code. The panic! macro signals that your program is in a state
it can’t handle, and lets you tell the process to stop instead of trying to
proceed with invalid or incorrect values. The Result enum uses Rust’s
type system to indicate that operations might fail in a way that your
code could recover from. You can use Result to tell code that calls
your code that it needs to handle potential success or failure as well.
Using panic! and Result in the appropriate situations will make your
code more reliable in the face of inevitable problems.

Now that we’ve seen useful ways that the standard library uses
generics with the Option and Result enums, let’s talk about how gener-
ics work and how you can make use of them in your code.



Chapter 4

Generic Types, Traits,
and Lifetimes

Every programming language has tools to deal effectively with dupli-
cation of concepts; in Rust, one of those tools is generics. Generics are
abstract stand-ins for concrete types or other properties. When we’re
writing and compiling the code we can express properties of generics,
such as their behavior or how they relate to other generics, without
needing to know what will actually be in their place.

In the same way that a function takes parameters whose value we
don’t know in order to write code once that will be run on multiple
concrete values, we can write functions that take parameters of some
generic type instead of a concrete type like i32 or String. We’ve
already used generics in Chapter 6 with Option<T>, Chapter 8 with
Vec<T> and HashMap<K, V>, and Chapter 9 with Result<T, E>. In
this chapter, we’ll explore how to define our own types, functions, and
methods with generics!

First, we’re going to review the mechanics of extracting a function
that reduces code duplication. Then we’ll use the same mechanics to
make a generic function out of two functions that only differ in the
types of their parameters. We’ll go over using generic types in struct
and enum definitions too.

After that, we’ll discuss traits, which are a way to define behavior
in a generic way. Traits can be combined with generic types in order to
constrain a generic type to those types that have a particular behavior,
rather than any type at all.

Finally, we’ll discuss lifetimes, which are a kind of generic that let us



216

give the compiler information about how references are related to each
other. Lifetimes are the feature in Rust that allow us to borrow values
in many situations and still have the compiler check that references will
be valid.

4.1 Removing Duplication by Extracting a
Function

Before getting into generics syntax, let’s first review a technique for
dealing with duplication that doesn’t use generic types: extracting a
function. Once that’s fresh in our minds, we’ll use the same mechanics
with generics to extract a generic function! In the same way that you
recognize duplicated code to extract into a function, you’ll start to
recognize duplicated code that can use generics.

Consider a small program that finds the largest number in a list,
shown in Listing 10-1:

Filename: src/main.rs

fn main() {
let numbers = vec![34, 50, 25, 100, 65];

let mut largest = numbers[0];

for number in numbers {
if number > largest {

largest = number;
}

}

println!("The largest number is {}", largest);
# assert_eq!(largest, 100);
}

Listing 10-1: Code to find the largest number in a list of numbers
This code takes a list of integers, stored here in the variable numbers.

It puts the first item in the list in a variable named largest. Then
it iterates through all the numbers in the list, and if the current value
is greater than the number stored in largest, it replaces the value in
largest. If the current value is smaller than the largest value seen so
far, largest is not changed. When all the items in the list have been



217

considered, largest will hold the largest value, which in this case is
100.

If we needed to find the largest number in two different lists of
numbers, we could duplicate the code in Listing 10-1 and have the
same logic exist in two places in the program, as in Listing 10-2:

Filename: src/main.rs

fn main() {
let numbers = vec![34, 50, 25, 100, 65];

let mut largest = numbers[0];

for number in numbers {
if number > largest {

largest = number;
}

}

println!("The largest number is {}", largest);

let numbers = vec![102, 34, 6000, 89, 54, 2, 43, 8];

let mut largest = numbers[0];

for number in numbers {
if number > largest {

largest = number;
}

}

println!("The largest number is {}", largest);
}

Listing 10-2: Code to find the largest number in two lists of numbers
While this code works, duplicating code is tedious and error-prone,

and means we have multiple places to update the logic if we need to
change it.

To eliminate this duplication, we can create an abstraction, which
in this case will be in the form of a function that operates on any list
of integers given to the function in a parameter. This will increase
the clarity of our code and let us communicate and reason about the
concept of finding the largest number in a list independently of the



218

specific places this concept is used.
In the program in Listing 10-3, we’ve extracted the code that finds

the largest number into a function named largest. This program can
find the largest number in two different lists of numbers, but the code
from Listing 10-1 only exists in one spot:

Filename: src/main.rs

fn largest(list: &[i32]) -> i32 {
let mut largest = list[0];

for &item in list.iter() {
if item > largest {

largest = item;
}

}

largest
}

fn main() {
let numbers = vec![34, 50, 25, 100, 65];

let result = largest(&numbers);
println!("The largest number is {}", result);

# assert_eq!(result, 100);

let numbers = vec![102, 34, 6000, 89, 54, 2, 43, 8];

let result = largest(&numbers);
println!("The largest number is {}", result);

# assert_eq!(result, 6000);
}

Listing 10-3: Abstracted code to find the largest number in two lists
The function has a parameter, list, which represents any concrete

slice of i32 values that we might pass into the function. The code
in the function definition operates on the list representation of any
&[i32]. When we call the largest function, the code actually runs on
the specific values that we pass in.

The mechanics we went through to get from Listing 10-2 to Listing
10-3 were these steps:

1. We noticed there was duplicate code.



219

2. We extracted the duplicate code into the body of the function,
and specified the inputs and return values of that code in the
function signature.

3. We replaced the two concrete places that had the duplicated code
to call the function instead.

We can use these same steps with generics to reduce code duplication
in different ways in different scenarios. In the same way that the func-
tion body is now operating on an abstract list instead of concrete
values, code using generics will operate on abstract types. The con-
cepts powering generics are the same concepts you already know that
power functions, just applied in different ways.

What if we had two functions, one that found the largest item in
a slice of i32 values and one that found the largest item in a slice of
char values? How would we get rid of that duplication? Let’s find out!

4.2
Generic Data Types
Using generics where we usually place types, like in function signatures
or structs, lets us create definitions that we can use for many different
concrete data types. Let’s take a look at how to define functions,
structs, enums, and methods using generics, and at the end of this
section we’ll discuss the performance of code using generics.

Using Generic Data Types in Function Definitions

We can define functions that use generics in the signature of the func-
tion where the data types of the parameters and return value go. In
this way, the code we write can be more flexible and provide more
functionality to callers of our function, while not introducing code du-
plication.

Continuing with our largest function, Listing 10-4 shows two func-
tions providing the same functionality to find the largest value in a slice.
The first function is the one we extracted in Listing 10-3 that finds the
largest i32 in a slice. The second function finds the largest char in a
slice:

Filename: src/main.rs



220

fn largest_i32(list: &[i32]) -> i32 {
let mut largest = list[0];

for &item in list.iter() {
if item > largest {

largest = item;
}

}

largest
}

fn largest_char(list: &[char]) -> char {
let mut largest = list[0];

for &item in list.iter() {
if item > largest {

largest = item;
}

}

largest
}

fn main() {
let numbers = vec![34, 50, 25, 100, 65];

let result = largest_i32(&numbers);
println!("The largest number is {}", result);

# assert_eq!(result, 100);

let chars = vec!['y', 'm', 'a', 'q'];

let result = largest_char(&chars);
println!("The largest char is {}", result);

# assert_eq!(result, 'y');
}

Listing 10-4: Two functions that differ only in their names and the
types in their signatures

Here, the functions largest_i32 and largest_char have the exact
same body, so it would be nice if we could turn these two functions



221

into one and get rid of the duplication. Luckily, we can do that by
introducing a generic type parameter!

To parameterize the types in the signature of the one function we’re
going to define, we need to create a name for the type parameter,
just like how we give names for the value parameters to a function.
We’re going to choose the name T. Any identifier can be used as a type
parameter name, but we’re choosing T because Rust’s type naming
convention is CamelCase. Generic type parameter names also tend to
be short by convention, often just one letter. Short for “type”, T is the
default choice of most Rust programmers.

When we use a parameter in the body of the function, we have to
declare the parameter in the signature so that the compiler knows what
that name in the body means. Similarly, when we use a type parameter
name in a function signature, we have to declare the type parameter
name before we use it. Type name declarations go in angle brackets
between the name of the function and the parameter list.

The function signature of the generic largest function we’re going
to define will look like this:
fn largest<T>(list: &[T]) -> T {

We would read this as: the function largest is generic over some type
T. It has one parameter named list, and the type of list is a slice of
values of type T. The largest function will return a value of the same
type T.

Listing 10-5 shows the unified largest function definition using the
generic data type in its signature, and shows how we’ll be able to call
largest with either a slice of i32 values or char values. Note that this
code won’t compile yet!

Filename: src/main.rs

fn largest<T>(list: &[T]) -> T {
let mut largest = list[0];

for &item in list.iter() {
if item > largest {

largest = item;
}

}

largest
}



222

fn main() {
let numbers = vec![34, 50, 25, 100, 65];

let result = largest(&numbers);
println!("The largest number is {}", result);

let chars = vec!['y', 'm', 'a', 'q'];

let result = largest(&chars);
println!("The largest char is {}", result);

}

Listing 10-5: A definition of the largest function that uses generic
type parameters but doesn’t compile yet

If we try to compile this code right now, we’ll get this error:

error[E0369]: binary operation `>` cannot be applied to
type `T`

|
5 | if item > largest {
| ^^^^
|

note: an implementation of `std::cmp::PartialOrd` might
be missing for `T`

The note mentions std::cmp::PartialOrd, which is a trait. We’re
going to talk about traits in the next section, but briefly, what this error
is saying is that the body of largest won’t work for all possible types
that T could be; since we want to compare values of type T in the body,
we can only use types that know how to be ordered. The standard
library has defined the trait std::cmp::PartialOrd that types can
implement to enable comparisons. We’ll come back to traits and how
to specify that a generic type has a particular trait in the next section,
but let’s set this example aside for a moment and explore other places
we can use generic type parameters first.

Using Generic Data Types in Struct Definitions

We can define structs to use a generic type parameter in one or more
of the struct’s fields with the <> syntax too. Listing 10-6 shows the
definition and use of a Point struct that can hold x and y coordinate
values of any type:



223

Filename: src/main.rs

struct Point<T> {
x: T,
y: T,

}

fn main() {
let integer = Point { x: 5, y: 10 };
let float = Point { x: 1.0, y: 4.0 };

}

Listing 10-6: A Point struct that holds x and y values of type T
The syntax is similar to using generics in function definitions. First,

we have to declare the name of the type parameter within angle brackets
just after the name of the struct. Then we can use the generic type in
the struct definition where we would specify concrete data types.

Note that because we’ve only used one generic type in the definition
of Point, what we’re saying is that the Point struct is generic over some
type T, and the fields x and y are both that same type, whatever it ends
up being. If we try to create an instance of a Point that has values of
different types, as in Listing 10-7, our code won’t compile:

Filename: src/main.rs

struct Point<T> {
x: T,
y: T,

}

fn main() {
let wont_work = Point { x: 5, y: 4.0 };

}

Listing 10-7: The fields x and y must be the same type because both
have the same generic data type T

If we try to compile this, we’ll get the following error:

error[E0308]: mismatched types
-->
|

7 | let wont_work = Point { x: 5, y: 4.0 };
| ^^^ expected integral

variable, found



224

floating-point variable
|
= note: expected type `{integer}`
= note: found type `{float}`

When we assigned the integer value 5 to x, the compiler then knows for
this instance of Point that the generic type T will be an integer. Then
when we specified 4.0 for y, which is defined to have the same type as
x, we get a type mismatch error.

If we wanted to define a Point struct where x and y could have
different types but still have those types be generic, we can use multiple
generic type parameters. In listing 10-8, we’ve changed the definition
of Point to be generic over types T and U. The field x is of type T, and
the field y is of type U:

Filename: src/main.rs

struct Point<T, U> {
x: T,
y: U,

}

fn main() {
let both_integer = Point { x: 5, y: 10 };
let both_float = Point { x: 1.0, y: 4.0 };
let integer_and_float = Point { x: 5, y: 4.0 };

}

Listing 10-8: A Point generic over two types so that x and y may be
values of different types

Now all of these instances of Point are allowed! You can use as
many generic type parameters in a definition as you want, but using
more than a few gets hard to read and understand. If you get to a
point of needing lots of generic types, it’s probably a sign that your
code could use some restructuring to be separated into smaller pieces.

Using Generic Data Types in Enum Definitions

Similarly to structs, enums can be defined to hold generic data types in
their variants. We used the Option<T> enum provided by the standard
library in Chapter 6, and now its definition should make more sense.
Let’s take another look:



225

enum Option<T> {
Some(T),
None,

}

In other words, Option<T> is an enum generic in type T. It has two
variants: Some, which holds one value of type T, and a None variant
that doesn’t hold any value. The standard library only has to have this
one definition to support the creation of values of this enum that have
any concrete type. The idea of “an optional value” is a more abstract
concept than one specific type, and Rust lets us express this abstract
concept without lots of duplication.

Enums can use multiple generic types as well. The definition of the
Result enum that we used in Chapter 9 is one example:

enum Result<T, E> {
Ok(T),
Err(E),

}

The Result enum is generic over two types, T and E. Result has two
variants: Ok, which holds a value of type T, and Err, which holds a
value of type E. This definition makes it convenient to use the Result
enum anywhere we have an operation that might succeed (and return
a value of some type T) or fail (and return an error of some type E).
Recall Listing 9-2 when we opened a file: in that case, T was filled in
with the type std::fs::File when the file was opened successfully
and E was filled in with the type std::io::Error when there were
problems opening the file.

When you recognize situations in your code with multiple struct or
enum definitions that differ only in the types of the values they hold,
you can remove the duplication by using the same process we used with
the function definitions to introduce generic types instead.

Using Generic Data Types in Method Definitions

Like we did in Chapter 5, we can implement methods on structs and
enums that have generic types in their definitions. Listing 10-9 shows
the Point<T> struct we defined in Listing 10-6. We’ve then defined a
method named x on Point<T> that returns a reference to the data in
the field x:

Filename: src/main.rs



226

struct Point<T> {
x: T,
y: T,

}

impl<T> Point<T> {
fn x(&self) -> &T {

&self.x
}

}

fn main() {
let p = Point { x: 5, y: 10 };

println!("p.x = {}", p.x());
}

Listing 10-9: Implementing a method named x on the Point<T> struct
that will return a reference to the x field, which is of type T.

Note that we have to declare T just after impl, so that we can
use it when we specify that we’re implementing methods on the type
Point<T>.

Generic type parameters in a struct definition aren’t always the
same generic type parameters you want to use in that struct’s method
signatures. Listing 10-10 defines a method mixup on the Point<T,
U> struct from Listing 10-8. The method takes another Point as a
parameter, which might have different types than the self Point that
we’re calling mixup on. The method creates a new Point instance that
has the x value from the self Point (which is of type T) and the y
value from the passed-in Point (which is of type W):

Filename: src/main.rs

struct Point<T, U> {
x: T,
y: U,

}

impl<T, U> Point<T, U> {
fn mixup<V, W>(self, other: Point<V, W>) -> Point<T,

W> {
Point {



227

x: self.x,
y: other.y,

}
}

}

fn main() {
let p1 = Point { x: 5, y: 10.4 };
let p2 = Point { x: "Hello", y: 'c'};

let p3 = p1.mixup(p2);

println!("p3.x = {}, p3.y = {}", p3.x, p3.y);
}

Listing 10-10: Methods that use different generic types than their
struct’s definition

In main, we’ve defined a Point that has an i32 for x (with value 5)
and an f64 for y (with value 10.4). p2 is a Point that has a string slice
for x (with value “Hello”) and a char for y (with value c). Calling
mixup on p1 with the argument p2 gives us p3, which will have an i32
for x, since x came from p1. p3 will have a char for y, since y came
from p2. The println! will print p3.x = 5, p3.y = c.

Note that the generic parameters T and U are declared after impl,
since they go with the struct definition. The generic parameters V and W
are declared after fn mixup, since they are only relevant to the method.

Performance of Code Using Generics

You may have been reading this section and wondering if there’s a run-
time cost to using generic type parameters. Good news: the way that
Rust has implemented generics means that your code will not run any
slower than if you had specified concrete types instead of generic type
parameters!

Rust accomplishes this by performing monomorphization of code
using generics at compile time. Monomorphization is the process of
turning generic code into specific code with the concrete types that are
actually used filled in.

What the compiler does is the opposite of the steps that we per-
formed to create the generic function in Listing 10-5. The compiler
looks at all the places that generic code is called and generates code
for the concrete types that the generic code is called with.



228

Let’s work through an example that uses the standard library’s
Option enum:

let integer = Some(5);
let float = Some(5.0);

When Rust compiles this code, it will perform monomorphization. The
compiler will read the values that have been passed to Option and see
that we have two kinds of Option<T>: one is i32, and one is f64. As
such, it will expand the generic definition of Option<T> into Option_
i32 and Option_f64, thereby replacing the generic definition with the
specific ones.

The monomorphized version of our code that the compiler generates
looks like this, with the uses of the generic Option replaced with the
specific definitions created by the compiler:

Filename: src/main.rs

enum Option_i32 {
Some(i32),
None,

}

enum Option_f64 {
Some(f64),
None,

}

fn main() {
let integer = Option_i32::Some(5);
let float = Option_f64::Some(5.0);

}

We can write the non-duplicated code using generics, and Rust will
compile that into code that specifies the type in each instance. That
means we pay no runtime cost for using generics; when the code runs, it
performs just like it would if we had duplicated each particular defini-
tion by hand. The process of monomorphization is what makes Rust’s
generics extremely efficient at runtime.



229

4.3
Traits: Defining Shared Behavior
Traits allow us to use another kind of abstraction: they let us abstract
over behavior that types can have in common. A trait tells the Rust
compiler about functionality a particular type has and might share with
other types. In situations where we use generic type parameters, we
can use trait bounds to specify, at compile time, that the generic type
may be any type that implements a trait and therefore has the behavior
we want to use in that situation.

Note: Traits are similar to a feature often called ‘inter-
faces’ in other languages, though with some differences.

Defining a Trait

The behavior of a type consists of the methods we can call on that type.
Different types share the same behavior if we can call the same methods
on all of those types. Trait definitions are a way to group method
signatures together in order to define a set of behaviors necessary to
accomplish some purpose.

For example, say we have multiple structs that hold various kinds
and amounts of text: a NewsArticle struct that holds a news story
filed in a particular place in the world, and a Tweet that can have at
most 140 characters in its content along with metadata like whether it
was a retweet or a reply to another tweet.

We want to make a media aggregator library that can display sum-
maries of data that might be stored in a NewsArticle or Tweet in-
stance. The behavior we need each struct to have is that it’s able to
be summarized, and that we can ask for that summary by calling a
summary method on an instance. Listing 10-11 shows the definition of
a Summarizable trait that expresses this concept:

Filename: lib.rs

pub trait Summarizable {
fn summary(&self) -> String;

}

Listing 10-11: Definition of a Summarizable trait that consists of the
behavior provided by a summary method

We declare a trait with the trait keyword, then the trait’s name,
in this case Summarizable. Inside curly braces we declare the method



230

signatures that describe the behaviors that types that implement this
trait will need to have, in this case fn summary(&self) -> String.
After the method signature, instead of providing an implementation
within curly braces, we put a semicolon. Each type that implements
this trait must then provide its own custom behavior for the body of
the method, but the compiler will enforce that any type that has the
Summarizable trait will have the method summary defined for it with
this signature exactly.

A trait can have multiple methods in its body, with the method
signatures listed one per line and each line ending in a semicolon.

Implementing a Trait on a Type

Now that we’ve defined the Summarizable trait, we can implement it on
the types in our media aggregator that we want to have this behavior.
Listing 10-12 shows an implementation of the Summarizable trait on
the NewsArticle struct that uses the headline, the author, and the
location to create the return value of summary. For the Tweet struct,
we’ve chosen to define summary as the username followed by the whole
text of the tweet, assuming that tweet content is already limited to 140
characters.

Filename: lib.rs

# pub trait Summarizable {
# fn summary(&self) -> String;
# }
#
pub struct NewsArticle {

pub headline: String,
pub location: String,
pub author: String,
pub content: String,

}

impl Summarizable for NewsArticle {
fn summary(&self) -> String {

format!("{}, by {} ({})", self.headline, self.author,
self.location)

}
}



231

pub struct Tweet {
pub username: String,
pub content: String,
pub reply: bool,
pub retweet: bool,

}

impl Summarizable for Tweet {
fn summary(&self) -> String {

format!("{}: {}", self.username, self.content)
}

}

Listing 10-12: Implementing the Summarizable trait on the NewsArticle
and Tweet types

Implementing a trait on a type is similar to implementing methods
that aren’t related to a trait. The difference is after impl, we put the
trait name that we want to implement, then say for and the name of the
type that we want to implement the trait for. Within the impl block,
we put the method signatures that the trait definition has defined, but
instead of putting a semicolon after each signature, we put curly braces
and fill in the method body with the specific behavior that we want
the methods of the trait to have for the particular type.

Once we’ve implemented the trait, we can call the methods on in-
stances of NewsArticle and Tweet in the same manner that we call
methods that aren’t part of a trait:

let tweet = Tweet {
username: String::from("horse_ebooks"),
content: String::from("of course, as you probably already

know, people"),
reply: false,
retweet: false,

};

println!("1 new tweet: {}", tweet.summary());

This will print 1 new tweet: horse_ebooks: of course, as you
probably already know, people.

Note that because we’ve defined the Summarizable trait and the
NewsArticle and Tweet types all in the same lib.rs in Listing 10-
12, they’re all in the same scope. If this lib.rs is for a crate we’ve



232

called aggregator, and someone else wants to use our crate’s function-
ality plus implement the Summarizable trait on their WeatherForecast
struct, their code would need to import the Summarizable trait into
their scope first before they could implement it, like in Listing 10-13:

Filename: lib.rs

extern crate aggregator;

use aggregator::Summarizable;

struct WeatherForecast {
high_temp: f64,
low_temp: f64,
chance_of_precipitation: f64,

}

impl Summarizable for WeatherForecast {
fn summary(&self) -> String {

format!("The high will be {}, and the low will
be {}. The chance of

precipitation is {}%.", self.high_temp, self.low_
temp,

self.chance_of_precipitation)
}

}

Listing 10-13: Bringing the Summarizable trait from our aggregator
crate into scope in another crate

This code also assumes Summarizable is a public trait, which it is
because we put the pub keyword before trait in Listing 10-11.

One restriction to note with trait implementations: we may imple-
ment a trait on a type as long as either the trait or the type are local
to our crate. In other words, we aren’t allowed to implement exter-
nal traits on external types. We can’t implement the Display trait
on Vec, for example, since both Display and Vec are defined in the
standard library. We are allowed to implement standard library traits
like Display on a custom type like Tweet as part of our aggregator
crate functionality. We could also implement Summarizable on Vec in
our aggregator crate, since we’ve defined Summarizable there. This
restriction is part of what’s called the orphan rule, which you can look
up if you’re interested in type theory. Briefly, it’s called the orphan
rule because the parent type is not present. Without this rule, two



233

crates could implement the same trait for the same type, and the two
implementations would conflict: Rust wouldn’t know which implemen-
tation to use. Because Rust enforces the orphan rule, other people’s
code can’t break your code and vice versa.

Default Implementations

Sometimes it’s useful to have default behavior for some or all of the
methods in a trait, instead of making every implementation on every
type define custom behavior. When we implement the trait on a par-
ticular type, we can choose to keep or override each method’s default
behavior.

Listing 10-14 shows how we could have chosen to specify a default
string for the summary method of the Summarize trait instead of only
choosing to only define the method signature like we did in Listing
10-11:

Filename: lib.rs

pub trait Summarizable {
fn summary(&self) -> String {

String::from("(Read more...)")
}

}

Listing 10-14: Definition of a Summarizable trait with a default imple-
mentation of the summary method

If we wanted to use this default implementation to summarize in-
stances of NewsArticle instead of defining a custom implementation
like we did in Listing 10-12, we would specify an empty impl block:

impl Summarizable for NewsArticle {}

Even though we’re no longer choosing to define the summary method
on NewsArticle directly, since the summary method has a default
implementation and we specified that NewsArticle implements the
Summarizable trait, we can still call the summary method on an in-
stance of NewsArticle:

let article = NewsArticle {
headline: String::from("Penguins win the Stanley Cup

Championship!"),
location: String::from("Pittsburgh, PA, USA"),
author: String::from("Iceburgh"),



234

content: String::from("The Pittsburgh Penguins once
again are the best

hockey team in the NHL."),
};

println!("New article available! {}", article.summary()
);

This code prints New article available! (Read more...).
Changing the Summarizable trait to have a default implementation

for summary does not require us to change anything about the imple-
mentations of Summarizable on Tweet in Listing 10-12 or WeatherForecast
in Listing 10-13: the syntax for overriding a default implementation is
exactly the same as the syntax for implementing a trait method that
doesn’t have a default implementation.

Default implementations are allowed to call the other methods in
the same trait, even if those other methods don’t have a default imple-
mentation. In this way, a trait can provide a lot of useful functionality
and only require implementers to specify a small part of it. We could
choose to have the Summarizable trait also have an author_summary
method whose implementation is required, then a summary method that
has a default implementation that calls the author_summary method:

pub trait Summarizable {
fn author_summary(&self) -> String;

fn summary(&self) -> String {
format!("(Read more from {}...)", self.author_summary(

))
}

}

In order to use this version of Summarizable, we’re only required to
define author_summary when we implement the trait on a type:

impl Summarizable for Tweet {
fn author_summary(&self) -> String {

format!("@{}", self.username)
}

}

Once we define author_summary, we can call summary on instances of
the Tweet struct, and the default implementation of summary will call
the definition of author_summary that we’ve provided.



235

let tweet = Tweet {
username: String::from("horse_ebooks"),
content: String::from("of course, as you probably already

know, people"),
reply: false,
retweet: false,

};

println!("1 new tweet: {}", tweet.summary());

This will print 1 new tweet: (Read more from @horse_ebooks...
).

Note that it is not possible to call the default implementation from
an overriding implementation.

Trait Bounds

Now that we’ve defined traits and implemented those traits on types, we
can use traits with generic type parameters. We can constrain generic
types so that rather than being any type, the compiler will ensure that
the type will be limited to those types that implement a particular
trait and thus have the behavior that we need the types to have. This
is called specifying trait bounds on a generic type.

For example, in Listing 10-12, we implemented the Summarizable
trait on the types NewsArticle and Tweet. We can define a function
notify that calls the summary method on its parameter item, which
is of the generic type T. To be able to call summary on item without
getting an error, we can use trait bounds on T to specify that item
must be of a type that implements the Summarizable trait:

pub fn notify<T: Summarizable>(item: T) {
println!("Breaking news! {}", item.summary());

}

Trait bounds go with the declaration of the generic type parameter,
after a colon and within the angle brackets. Because of the trait bound
on T, we can call notify and pass in any instance of NewsArticle or
Tweet. The external code from Listing 10-13 that’s using our aggregator
crate can call our notify function and pass in an instance of WeatherForecast,
since Summarizable is implemented for WeatherForecast as well. Code
that calls notify with any other type, like a String or an i32, won’t
compile, since those types do not implement Summarizable.



236

We can specify multiple trait bounds on a generic type by using +.
If we needed to be able to use display formatting on the type T in a
function as well as the summary method, we can use the trait bounds
T: Summarizable + Display. This means T can be any type that
implements both Summarizable and Display.

For functions that have multiple generic type parameters, each
generic has its own trait bounds. Specifying lots of trait bound in-
formation in the angle brackets between a function’s name and its pa-
rameter list can get hard to read, so there’s an alternate syntax for
specifying trait bounds that lets us move them to a where clause after
the function signature. So instead of:

fn some_function<T: Display + Clone, U: Clone + Debug>(
t: T, u: U) -> i32 {

We can write this instead with a where clause:

fn some_function<T, U>(t: T, u: U) -> i32
where T: Display + Clone,

U: Clone + Debug
{

This is less cluttered and makes this function’s signature look more
similar to a function without lots of trait bounds, in that the function
name, parameter list, and return type are close together.

Fixing the largest Function with Trait Bounds

So any time you want to use behavior defined by a trait on a generic,
you need to specify that trait in the generic type parameter’s type
bounds. We can now fix the definition of the largest function that
uses a generic type parameter from Listing 10-5! When we set that
code aside, we were getting this error:

error[E0369]: binary operation `>` cannot be applied to
type `T`

|
5 | if item > largest {
| ^^^^
|

note: an implementation of `std::cmp::PartialOrd` might
be missing for `T`



237

In the body of largest we wanted to be able to compare two values of
type T using the greater-than operator. That operator is defined as a
default method on the standard library trait std::cmp::PartialOrd.
So in order to be able to use the greater-than operator, we need to spec-
ify PartialOrd in the trait bounds for T so that the largest function
will work on slices of any type that can be compared. We don’t need
to bring PartialOrd into scope because it’s in the prelude.

fn largest<T: PartialOrd>(list: &[T]) -> T {

If we try to compile this, we’ll get different errors:

error[E0508]: cannot move out of type `[T]`, a non-copy
array
--> src/main.rs:4:23
|

4 | let mut largest = list[0];
| ----------- ^^^^^^^ cannot move out of here
| |
| hint: to prevent move, use `ref largest` or

`ref mut largest`

error[E0507]: cannot move out of borrowed content
--> src/main.rs:6:9
|

6 | for &item in list.iter() {
| ^----
| ||
| |hint: to prevent move, use `ref item` or `ref

mut item`
| cannot move out of borrowed content

The key to this error is cannot move out of type [T], a non-copy
array. With our non-generic versions of the largest function, we were
only trying to find the largest i32 or char. As we discussed in Chapter
4, types like i32 and char that have a known size can be stored on the
stack, so they implement the Copy trait. When we changed the largest
function to be generic, it’s now possible that the list parameter could
have types in it that don’t implement the Copy trait, which means
we wouldn’t be able to move the value out of list[0] and into the
largest variable.

If we only want to be able to call this code with types that are
Copy, we can add Copy to the trait bounds of T! Listing 10-15 shows



238

the complete code of a generic largest function that will compile as
long as the types of the values in the slice that we pass into largest
implement both the PartialOrd and Copy traits, like i32 and char:

Filename: src/main.rs

use std::cmp::PartialOrd;

fn largest<T: PartialOrd + Copy>(list: &[T]) -> T {
let mut largest = list[0];

for &item in list.iter() {
if item > largest {

largest = item;
}

}

largest
}

fn main() {
let numbers = vec![34, 50, 25, 100, 65];

let result = largest(&numbers);
println!("The largest number is {}", result);

let chars = vec!['y', 'm', 'a', 'q'];

let result = largest(&chars);
println!("The largest char is {}", result);

}

Listing 10-15: A working definition of the largest function that works
on any generic type that implements the PartialOrd and Copy traits

If we don’t want to restrict our largest function to only types that
implement the Copy trait, we could specify that T has the trait bound
Clone instead of Copy and clone each value in the slice when we want
the largest function to have ownership. Using the clone function
means we’re potentially making more heap allocations, though, and
heap allocations can be slow if we’re working with large amounts of
data. Another way we could implement largest is for the function to
return a reference to a T value in the slice. If we change the return type
to be &T instead of T and change the body of the function to return a



239

reference, we wouldn’t need either the Clone or Copy trait bounds and
we wouldn’t be doing any heap allocations. Try implementing these
alternate solutions on your own!

Traits and trait bounds let us write code that uses generic type
parameters in order to reduce duplication, but still specify to the com-
piler exactly what behavior our code needs the generic type to have.
Because we’ve given the trait bound information to the compiler, it
can check that all the concrete types used with our code provide the
right behavior. In dynamically typed languages, if we tried to call a
method on a type that the type didn’t implement, we’d get an error at
runtime. Rust moves these errors to compile time so that we’re forced
to fix the problems before our code is even able to run. Additionally,
we don’t have to write code that checks for behavior at runtime since
we’ve already checked at compile time, which improves performance
compared to other languages without having to give up the flexibility
of generics.

There’s another kind of generics that we’ve been using without even
realizing it called lifetimes. Rather than helping us ensure that a type
has the behavior we need it to have, lifetimes help us ensure that refer-
ences are valid as long as we need them to be. Let’s learn how lifetimes
do that.

4.4
Validating References with Lifetimes
When we talked about references in Chapter 4, we left out an important
detail: every reference in Rust has a lifetime, which is the scope for
which that reference is valid. Most of the time lifetimes are implicit
and inferred, just like most of the time types are inferred. Similarly to
when we have to annotate types because multiple types are possible,
there are cases where the lifetimes of references could be related in
a few different ways, so Rust needs us to annotate the relationships
using generic lifetime parameters so that it can make sure the actual
references used at runtime will definitely be valid.

Yes, it’s a bit unusual, and will be different to tools you’ve used
in other programming languages. Lifetimes are, in some ways, Rust’s
most distinctive feature.

Lifetimes are a big topic that can’t be covered in entirety in this
chapter, so we’ll cover common ways you might encounter lifetime syn-
tax in this chapter to get you familiar with the concepts. Chapter 19



240

will contain more advanced information about everything lifetimes can
do.

Lifetimes Prevent Dangling References

The main aim of lifetimes is to prevent dangling references, which will
cause a program to reference data other than the data we’re intending
to reference. Consider the program in Listing 10-16, with an outer
scope and an inner scope. The outer scope declares a variable named
r with no initial value, and the inner scope declares a variable named
x with the initial value of 5. Inside the inner scope, we attempt to set
the value of r as a reference to x. Then the inner scope ends, and we
attempt to print out the value in r:

{
let r;

{
let x = 5;
r = &x;

}

println!("r: {}", r);
}

Listing 10-16: An attempt to use a reference whose value has gone out
of scope

Uninitialized Variables Cannot Be Used

The next few examples declare variables without giving them
an initial value, so that the variable name exists in the outer
scope. This might appear to be in conflict with Rust not
having null. However, if we try to use a variable before
giving it a value, we’ll get a compile-time error. Try it out!

When we compile this code, we’ll get an error:

error: `x` does not live long enough
|

6 | r = &x;
| - borrow occurs here

7 | }



241

| ^ `x` dropped here while still borrowed
...
10 | }

| - borrowed value needs to live until here

The variable x doesn’t “live long enough.” Why not? Well, x is going
to go out of scope when we hit the closing curly brace on line 7, ending
the inner scope. But r is valid for the outer scope; its scope is larger
and we say that it “lives longer.” If Rust allowed this code to work, r
would be referencing memory that was deallocated when x went out of
scope, and anything we tried to do with r wouldn’t work correctly. So
how does Rust determine that this code should not be allowed?

The Borrow Checker The part of the compiler called the borrow
checker compares scopes to determine that all borrows are valid. List-
ing 10-17 shows the same example from Listing 10-16 with annotations
showing the lifetimes of the variables:

{
let r; // -------+-- 'a

// |
{ // |

let x = 5; // -+-----+-- 'b
r = &x; // | |

} // -+ |
// |

println!("r: {}", r); // |
// |
// -------+

}

Listing 10-17: Annotations of the lifetimes of r and x, named ’a and
’b respectively

We’ve annotated the lifetime of r with ’a and the lifetime of x
with ’b. As you can see, the inner ’b block is much smaller than the
outer ’a lifetime block. At compile time, Rust compares the size of
the two lifetimes and sees that r has a lifetime of ’a, but that it refers
to an object with a lifetime of ’b. The program is rejected because
the lifetime ’b is shorter than the lifetime of ’a: the subject of the
reference does not live as long as the reference.

Let’s look at an example in Listing 10-18 that doesn’t try to make
a dangling reference and compiles without any errors:



242

{
let x = 5; // -----+-- 'b

// |
let r = &x; // --+--+-- 'a

// | |
println!("r: {}", r); // | |

// --+ |
} // -----+

Listing 10-18: A valid reference because the data has a longer lifetime
than the reference

Here, x has the lifetime ’b, which in this case is larger than ’a.
This means r can reference x: Rust knows that the reference in r will
always be valid while x is valid.

Now that we’ve shown where the lifetimes of references are in a
concrete example and discussed how Rust analyzes lifetimes to ensure
references will always be valid, let’s talk about generic lifetimes of pa-
rameters and return values in the context of functions.

Generic Lifetimes in Functions

Let’s write a function that will return the longest of two string slices.
We want to be able to call this function by passing it two string slices,
and we want to get back a string slice. The code in Listing 10-19
should print The longest string is abcd once we’ve implemented
the longest function:

Filename: src/main.rs

fn main() {
let string1 = String::from("abcd");
let string2 = "xyz";

let result = longest(string1.as_str(), string2);
println!("The longest string is {}", result);

}

Listing 10-19: A main function that calls the longest function to find
the longest of two string slices

Note that we want the function to take string slices (which are
references, as we talked about in Chapter 4) since we don’t want the
longest function to take ownership of its arguments. We want the
function to be able to accept slices of a String (which is the type of



243

the variable string1) as well as string literals (which is what variable
string2 contains).

Refer back to the “String Slices as Arguments” section of Chapter
4 for more discussion about why these are the arguments we want.

If we try to implement the longest function as shown in Listing
10-20, it won’t compile:

Filename: src/main.rs

fn longest(x: &str, y: &str) -> &str {
if x.len() > y.len() {

x
} else {

y
}

}

Listing 10-20: An implementation of the longest function that returns
the longest of two string slices, but does not yet compile

Instead we get the following error that talks about lifetimes:

error[E0106]: missing lifetime specifier
|

1 | fn longest(x: &str, y: &str) -> &str {
| ^ expected lifetime

parameter
|
= help: this function's return type contains a borrowed

value, but the
signature does not say whether it is borrowed from `x`

or `y`

The help text is telling us that the return type needs a generic lifetime
parameter on it because Rust can’t tell if the reference being returned
refers to x or y. Actually, we don’t know either, since the if block in
the body of this function returns a reference to x and the else block
returns a reference to y!

As we’re defining this function, we don’t know the concrete values
that will be passed into this function, so we don’t know whether the
if case or the else case will execute. We also don’t know the concrete
lifetimes of the references that will be passed in, so we can’t look at
the scopes like we did in Listings 10-17 and 10-18 in order to determine
that the reference we return will always be valid. The borrow checker



244

can’t determine this either, because it doesn’t know how the lifetimes
of x and y relate to the lifetime of the return value. We’re going to add
generic lifetime parameters that will define the relationship between
the references so that the borrow checker can perform its analysis.

Lifetime Annotation Syntax

Lifetime annotations don’t change how long any of the references in-
volved live. In the same way that functions can accept any type when
the signature specifies a generic type parameter, functions can accept
references with any lifetime when the signature specifies a generic life-
time parameter. What lifetime annotations do is relate the lifetimes of
multiple references to each other.

Lifetime annotations have a slightly unusual syntax: the names of
lifetime parameters must start with an apostrophe '. The names of
lifetime parameters are usually all lowercase, and like generic types,
their names are usually very short. ’a is the name most people use as
a default. Lifetime parameter annotations go after the & of a reference,
and a space separates the lifetime annotation from the reference’s type.

Here’s some examples: we’ve got a reference to an i32 without a
lifetime parameter, a reference to an i32 that has a lifetime parameter
named ’a, and a mutable reference to an i32 that also has the lifetime
’a:

&i32 // a reference
&'a i32 // a reference with an explicit lifetime
&'a mut i32 // a mutable reference with an explicit lifetime

One lifetime annotation by itself doesn’t have much meaning: lifetime
annotations tell Rust how the generic lifetime parameters of multiple
references relate to each other. If we have a function with the parameter
first that is a reference to an i32 that has the lifetime ’a, and the
function has another parameter named second that is another reference
to an i32 that also has the lifetime ’a, these two lifetime annotations
that have the same name indicate that the references first and second
must both live as long as the same generic lifetime.

Lifetime Annotations in Function Signatures

Let’s look at lifetime annotations in the context of the longest function
we’re working on. Just like generic type parameters, generic lifetime
parameters need to be declared within angle brackets between the func-
tion name and the parameter list. The constraint we want to tell Rust



245

about for the references in the parameters and the return value is that
they all must have the same lifetime, which we’ll name ’a and add to
each reference as shown in Listing 10-21:

Filename: src/main.rs

fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
if x.len() > y.len() {

x
} else {

y
}

}

Listing 10-21: The longest function definition that specifies all the
references in the signature must have the same lifetime, ’a

This will compile and will produce the result we want when used
with the main function in Listing 10-19.

The function signature now says that for some lifetime ’a, the func-
tion will get two parameters, both of which are string slices that live
at least as long as the lifetime ’a. The function will return a string
slice that also will last at least as long as the lifetime ’a. This is the
contract we are telling Rust we want it to enforce.

By specifying the lifetime parameters in this function signature,
we are not changing the lifetimes of any values passed in or returned,
but we are saying that any values that do not adhere to this contract
should be rejected by the borrow checker. This function does not know
(or need to know) exactly how long x and y will live, but only needs to
know that there is some scope that can be substituted for ’a that will
satisfy this signature.

When annotating lifetimes in functions, the annotations go on the
function signature, and not in any of the code in the function body.
This is because Rust is able to analyze the code within the function
without any help, but when a function has references to or from code
outside that function, the lifetimes of the arguments or return values
will potentially be different each time the function is called. This would
be incredibly costly and often impossible for Rust to figure out. In this
case, we need to annotate the lifetimes ourselves.

When concrete references are passed to longest, the concrete life-
time that gets substituted for ’a is the part of the scope of x that
overlaps with the scope of y. Since scopes always nest, another way
to say this is that the generic lifetime ’a will get the concrete lifetime
equal to the smaller of the lifetimes of x and y. Because we’ve anno-



246

tated the returned reference with the same lifetime parameter ’a, the
returned reference will therefore be guaranteed to be valid as long as
the shorter of the lifetimes of x and y.

Let’s see how this restricts the usage of the longest function by
passing in references that have different concrete lifetimes. Listing
10-22 is a straightforward example that should match your intuition
from any language: string1 is valid until the end of the outer scope,
string2 is valid until the end of the inner scope, and result references
something that is valid until the end of the inner scope. The borrow
checker approves of this code; it will compile and print The longest
string is long string is long when run:

Filename: src/main.rs

# fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
# if x.len() > y.len() {
# x
# } else {
# y
# }
# }
#
fn main() {

let string1 = String::from("long string is long");

{
let string2 = String::from("xyz");
let result = longest(string1.as_str(), string2.

as_str());
println!("The longest string is {}", result);

}
}

Listing 10-22: Using the longest function with references to String
values that have different concrete lifetimes

Next, let’s try an example that will show that the lifetime of the
reference in result must be the smaller lifetime of the two arguments.
We’ll move the declaration of the result variable outside the inner
scope, but leave the assignment of the value to the result variable
inside the scope with string2. Next, we’ll move the println! that
uses result outside of the inner scope, after it has ended. The code in
Listing 10-23 will not compile:

Filename: src/main.rs



247

fn main() {
let string1 = String::from("long string is long");
let result;
{

let string2 = String::from("xyz");
result = longest(string1.as_str(), string2.as_str(

));
}
println!("The longest string is {}", result);

}

Listing 10-23: Attempting to use result after string2 has gone out
of scope won’t compile

If we try to compile this, we’ll get this error:

error: `string2` does not live long enough
|

6 | result = longest(string1.as_str(), string2.
as_str());

| -------
borrow occurs here

7 | }
| ^ `string2` dropped here while still borrowed

8 | println!("The longest string is {}", result);
9 | }

| - borrowed value needs to live until here

The error is saying that in order for result to be valid for the println!,
string2 would need to be valid until the end of the outer scope. Rust
knows this because we annotated the lifetimes of the function parame-
ters and return values with the same lifetime parameter, ’a.

We can look at this code as humans and see that string1 is longer,
and therefore result will contain a reference to string1. Because
string1 has not gone out of scope yet, a reference to string1 will
still be valid for the println!. However, what we’ve told Rust with
the lifetime parameters is that the lifetime of the reference returned by
the longest function is the same as the smaller of the lifetimes of the
references passed in. Therefore, the borrow checker disallows the code
in Listing 10-23 as possibly having an invalid reference.

Try designing some more experiments that vary the values and life-
times of the references passed in to the longest function and how the
returned reference is used. Make hypotheses about whether your ex-



248

periments will pass the borrow checker or not before you compile, then
check to see if you’re right!

Thinking in Terms of Lifetimes

The exact way to specify lifetime parameters depends on what your
function is doing. For example, if we changed the implementation of
the longest function to always return the first argument rather than
the longest string slice, we wouldn’t need to specify a lifetime on the y
parameter. This code compiles:

Filename: src/main.rs

fn longest<'a>(x: &'a str, y: &str) -> &'a str {
x

}

In this example, we’ve specified a lifetime parameter ’a for the pa-
rameter x and the return type, but not for the parameter y, since the
lifetime of y does not have any relationship with the lifetime of x or
the return value.

When returning a reference from a function, the lifetime parameter
for the return type needs to match the lifetime parameter of one of
the arguments. If the reference returned does not refer to one of the
arguments, the only other possibility is that it refers to a value created
within this function, which would be a dangling reference since the value
will go out of scope at the end of the function. Consider this attempted
implementation of the longest function that won’t compile:

Filename: src/main.rs

fn longest<'a>(x: &str, y: &str) -> &'a str {
let result = String::from("really long string");
result.as_str()

}

Even though we’ve specified a lifetime parameter ’a for the return type,
this implementation fails to compile because the return value lifetime
is not related to the lifetime of the parameters at all. Here’s the error
message we get:

error: `result` does not live long enough
|

3 | result.as_str()
| ^^^^^^ does not live long enough



249

4 | }
| - borrowed value only lives until here
|

note: borrowed value must be valid for the lifetime 'a
as defined on the block
at 1:44...

|
1 | fn longest<'a>(x: &str, y: &str) -> &'a str {

| ^

The problem is that result will go out of scope and get cleaned up at
the end of the longest function, and we’re trying to return a reference
to result from the function. There’s no way we can specify lifetime
parameters that would change the dangling reference, and Rust won’t
let us create a dangling reference. In this case, the best fix would be to
return an owned data type rather than a reference so that the calling
function is then responsible for cleaning up the value.

Ultimately, lifetime syntax is about connecting the lifetimes of vari-
ous arguments and return values of functions. Once they’re connected,
Rust has enough information to allow memory-safe operations and dis-
allow operations that would create dangling pointers or otherwise vio-
late memory safety.

Lifetime Annotations in Struct Definitions

Up until now, we’ve only defined structs to hold owned types. It is
possible for structs to hold references, but we need to add a lifetime
annotation on every reference in the struct’s definition. Listing 10-24
has a struct named ImportantExcerpt that holds a string slice:

Filename: src/main.rs

struct ImportantExcerpt<'a> {
part: &'a str,

}

fn main() {
let novel = String::from("Call me Ishmael. Some years

ago...");
let first_sentence = novel.split('.')

.next()

.expect("Could not find a '.'");



250

let i = ImportantExcerpt { part: first_sentence };
}

Listing 10-24: A struct that holds a reference, so its definition needs a
lifetime annotation

This struct has one field, part, that holds a string slice, which is
a reference. Just like with generic data types, we have to declare the
name of the generic lifetime parameter inside angle brackets after the
name of the struct so that we can use the lifetime parameter in the
body of the struct definition.

The main function here creates an instance of the ImportantExcerpt
struct that holds a reference to the first sentence of the String owned
by the variable novel.

Lifetime Elision

In this section, we’ve learned that every reference has a lifetime, and
we need to specify lifetime parameters for functions or structs that use
references. However, in Chapter 4 we had a function in the “String
Slices” section, shown again in Listing 10-25, that compiled without
lifetime annotations:

Filename: src/lib.rs

fn first_word(s: &str) -> &str {
let bytes = s.as_bytes();

for (i, &item) in bytes.iter().enumerate() {
if item == b' ' {

return &s[0..i];
}

}

&s[..]
}

Listing 10-25: A function we defined in Chapter 4 that compiled with-
out lifetime annotations, even though the parameter and return type
are references

The reason this function compiles without lifetime annotations is
historical: in early versions of pre-1.0 Rust, this indeed wouldn’t have
compiled. Every reference needed an explicit lifetime. At that time,
the function signature would have been written like this:



251

fn first_word<'a>(s: &'a str) -> &'a str {

After writing a lot of Rust code, the Rust team found that Rust pro-
grammers were typing the same lifetime annotations over and over in
particular situations. These situations were predictable and followed
a few deterministic patterns. The Rust team then programmed these
patterns into the Rust compiler’s code so that the borrow checker can
infer the lifetimes in these situations without forcing the programmer
to explicitly add the annotations.

We mention this piece of Rust history because it’s entirely possible
that more deterministic patterns will emerge and be added to the com-
piler. In the future, even fewer lifetime annotations might be required.

The patterns programmed into Rust’s analysis of references are
called the lifetime elision rules. These aren’t rules for programmers
to follow; the rules are a set of particular cases that the compiler will
consider, and if your code fits these cases, you don’t need to write the
lifetimes explicitly.

The elision rules don’t provide full inference: if Rust deterministi-
cally applies the rules but there’s still ambiguity as to what lifetimes
the references have, it won’t guess what the lifetime of the remaining
references should be. In this case, the compiler will give you an error
that can be resolved by adding the lifetime annotations that correspond
to your intentions for how the references relate to each other.

First, some definitions: Lifetimes on function or method parame-
ters are called input lifetimes, and lifetimes on return values are called
output lifetimes.

Now, on to the rules that the compiler uses to figure out what
lifetimes references have when there aren’t explicit annotations. The
first rule applies to input lifetimes, and the second two rules apply to
output lifetimes. If the compiler gets to the end of the three rules
and there are still references that it can’t figure out lifetimes for, the
compiler will stop with an error.

1. Each parameter that is a reference gets its own lifetime param-
eter. In other words, a function with one parameter gets one
lifetime parameter: fn foo<’a>(x: &’a i32), a function with
two arguments gets two separate lifetime parameters: fn foo<’a,
’b>(x: &’a i32, y: &’b i32), and so on.

2. If there is exactly one input lifetime parameter, that lifetime is
assigned to all output lifetime parameters: fn foo<’a>(x: &’a
i32) -> &’a i32.



252

3. If there are multiple input lifetime parameters, but one of them
is &self or &mut self because this is a method, then the lifetime
of self is assigned to all output lifetime parameters. This makes
writing methods much nicer.

Let’s pretend we’re the compiler and apply these rules to figure out
what the lifetimes of the references in the signature of the first_word
function in Listing 10-25 are. The signature starts without any lifetimes
associated with the references:

fn first_word(s: &str) -> &str {

Then we (as the compiler) apply the first rule, which says each param-
eter gets its own lifetime. We’re going to call it ’a as usual, so now the
signature is:

fn first_word<'a>(s: &'a str) -> &str {

On to the second rule, which applies because there is exactly one input
lifetime. The second rule says the lifetime of the one input parameter
gets assigned to the output lifetime, so now the signature is:

fn first_word<'a>(s: &'a str) -> &'a str {

Now all the references in this function signature have lifetimes, and the
compiler can continue its analysis without needing the programmer to
annotate the lifetimes in this function signature.

Let’s do another example, this time with the longest function that
had no lifetime parameters when we started working with in Listing
10-20:

fn longest(x: &str, y: &str) -> &str {

Pretending we’re the compiler again, let’s apply the first rule: each
parameter gets its own lifetime. This time we have two parameters, so
we have two lifetimes:

fn longest<'a, 'b>(x: &'a str, y: &'b str) -> &str {

Looking at the second rule, it doesn’t apply since there is more than
one input lifetime. Looking at the third rule, this also does not apply
because this is a function rather than a method, so none of the pa-
rameters are self. So we’re out of rules, but we haven’t figured out
what the return type’s lifetime is. This is why we got an error trying to



253

compile the code from Listing 10-20: the compiler worked through the
lifetime elision rules it knows, but still can’t figure out all the lifetimes
of the references in the signature.

Because the third rule only really applies in method signatures, let’s
look at lifetimes in that context now, and see why the third rule means
we don’t have to annotate lifetimes in method signatures very often.

Lifetime Annotations in Method Definitions

When we implement methods on a struct with lifetimes, the syntax is
again the same as that of generic type parameters that we showed in
Listing 10-10: the place that lifetime parameters are declared and used
depends on whether the lifetime parameter is related to the struct fields
or the method arguments and return values.

Lifetime names for struct fields always need to be declared after
the impl keyword and then used after the struct’s name, since those
lifetimes are part of the struct’s type.

In method signatures inside the impl block, references might be
tied to the lifetime of references in the struct’s fields, or they might
be independent. In addition, the lifetime elision rules often make it so
that lifetime annotations aren’t necessary in method signatures. Let’s
look at some examples using the struct named ImportantExcerpt that
we defined in Listing 10-24.

First, here’s a method named level. The only parameter is a ref-
erence to self, and the return value is just an i32, not a reference to
anything:

# struct ImportantExcerpt<'a> {
# part: &'a str,
# }
#
impl<'a> ImportantExcerpt<'a> {

fn level(&self) -> i32 {
3

}
}

The lifetime parameter declaration after impl and use after the type
name is required, but we’re not required to annotate the lifetime of the
reference to self because of the first elision rule.

Here’s an example where the third lifetime elision rule applies:



254

# struct ImportantExcerpt<'a> {
# part: &'a str,
# }
#
impl<'a> ImportantExcerpt<'a> {

fn announce_and_return_part(&self, announcement: &str)
-> &str {

println!("Attention please: {}", announcement);
self.part

}
}

There are two input lifetimes, so Rust applies the first lifetime elision
rule and gives both &self and announcement their own lifetimes. Then,
because one of the parameters is &self, the return type gets the lifetime
of &self, and all lifetimes have been accounted for.

The Static Lifetime

There is one special lifetime we need to discuss: ’static. The ’static
lifetime is the entire duration of the program. All string literals have
the ’static lifetime, which we can choose to annotate as follows:

let s: &'static str = "I have a static lifetime.";

The text of this string is stored directly in the binary of your program
and the binary of your program is always available. Therefore, the
lifetime of all string literals is ’static.

You may see suggestions to use the ’static lifetime in error mes-
sage help text, but before specifying ’static as the lifetime for a ref-
erence, think about whether the reference you have is one that actually
lives the entire lifetime of your program or not (or even if you want it
to live that long, if it could). Most of the time, the problem in the code
is an attempt to create a dangling reference or a mismatch of the avail-
able lifetimes, and the solution is fixing those problems, not specifying
the ’static lifetime.

Generic Type Parameters, Trait Bounds, and Lifetimes To-
gether

Let’s briefly look at the syntax of specifying generic type parameters,
trait bounds, and lifetimes all in one function!



255

use std::fmt::Display;

fn longest_with_an_announcement<'a, T>(x: &'a str, y: &'a
str, ann: T) -> &'a str

where T: Display
{

println!("Announcement! {}", ann);
if x.len() > y.len() {

x
} else {

y
}

}

This is the longest function from Listing 10-21 that returns the longest
of two string slices, but with an extra argument named ann. The type
of ann is the generic type T, which may be filled in by any type that
implements the Display trait as specified by the where clause. This
extra argument will be printed out before the function compares the
lengths of the string slices, which is why the Display trait bound is
necessary. Because lifetimes are a type of generic, the declarations of
both the lifetime parameter ’a and the generic type parameter T go in
the same list within the angle brackets after the function name.

Summary
We covered a lot in this chapter! Now that you know about generic type
parameters, traits and trait bounds, and generic lifetime parameters,
you’re ready to write code that isn’t duplicated but can be used in
many different situations. Generic type parameters mean the code can
be applied to different types. Traits and trait bounds ensure that even
though the types are generic, those types will have the behavior the
code needs. Relationships between the lifetimes of references specified
by lifetime annotations ensure that this flexible code won’t have any
dangling references. And all of this happens at compile time so that
run-time performance isn’t affected!

Believe it or not, there’s even more to learn in these areas: Chap-
ter 17 will discuss trait objects, which are another way to use traits.
Chapter 19 will be covering more complex scenarios involving lifetime
annotations. Chapter 20 will get to some advanced type system fea-
tures. Up next, though, let’s talk about how to write tests in Rust so



256

that we can make sure our code using all these features is working the
way we want it to!



Chapter 5

Testing

Program testing can be a very effective way to show the
presence of bugs, but it is hopelessly inadequate for showing
their absence.

Edsger W. Dijkstra, “The Humble Programmer” (1972)

Correctness in our programs means that our code does what we intend
for it to do. Rust is a programming language that cares a lot about
correctness, but correctness is a complex topic and isn’t easy to prove.
Rust’s type system shoulders a huge part of this burden, but the type
system cannot catch every kind of incorrectness. As such, Rust includes
support for writing software tests within the language itself.

As an example, say we write a function called add_two that adds
two to a number passed to it. This function’s signature accepts an
integer as a parameter and returns an integer as a result. When we
implement and compile that function, Rust will do all the type checking
and borrow checking that we’ve seen so far. Those checks will make
sure that, for instance, we aren’t passing a String value or an invalid
reference to this function. What Rust can’t check is that this function
will do precisely what we intend: return the parameter plus two, rather
than, say, the parameter plus 10 or the parameter minus 50! That’s
where tests come in.

We can write tests that assert, for example, that when we pass 3 to
the add_two function, we get 5 back. We can run these tests whenever
we make changes to our code to make sure any existing correct behavior
has not changed.

Testing is a complex skill, and we cannot hope to cover everything
about how to write good tests in one chapter of a book, so here we’ll



258

just discuss the mechanics of Rust’s testing facilities. We’ll talk about
the annotations and macros available to you when writing your tests,
the default behavior and options provided for running your tests, and
how to organize tests into unit tests and integration tests.

5.1
How to Write Tests
Tests are Rust functions that verify non-test code is functioning in the
program in the expected manner. The bodies of test functions typically
contain some setup, running the code we want to test, then asserting
that the results are what we expect. Let’s look at the features Rust
provides specifically for writing tests: the test attribute, a few macros,
and the should_panic attribute.

The Anatomy of a Test Function

At its simplest, a test in Rust is a function that’s annotated with the
test attribute. Attributes are metadata about pieces of Rust code:
the derive attribute that we used with structs in Chapter 5 is one
example. To make a function into a test function, we add #[test]
on the line before fn. When we run our tests with the cargo test
command, Rust will build a test runner binary that runs the functions
annotated with the test attribute and reports on whether each test
function passes or fails.

We saw in Chapter 7 that when you make a new library project
with Cargo, a test module with a test function in it is automatically
generated for us. This is to help us get started writing our tests, since
we don’t have to go look up the exact structure and syntax of test
functions every time we start a new project. We can add as many
additional test functions and as many test modules as we want, though!

We’re going to explore some aspects of how tests work by experi-
menting with the template test generated for us, without actually test-
ing any code. Then we’ll write some real-world tests that call some
code that we’ve written and assert that its behavior is correct.

Let’s create a new library project called adder:

$ cargo new adder
Created library `adder` project

$ cd adder



259

The contents of the src/lib.rs file in your adder library should be as
follows:

Filename: src/lib.rs

#[cfg(test)]
mod tests {

#[test]
fn it_works() {
}

}

Listing 11-1: The test module and function generated automatically
for us by cargo new

For now, let’s ignore the top two lines and focus on the function to
see how it works. Note the #[test] annotation before the fn line: this
attribute indicates this is a test function, so that the test runner knows
to treat this function as a test. We could also have non-test functions in
the tests module to help set up common scenarios or perform common
operations, so we need to indicate which functions are tests with the
#[test] attribute.

The function currently has no body, which means there is no code
to fail the test; an empty test is a passing test! Let’s run it and see
that this test passes.

The cargo test command runs all tests we have in our project, as
shown in Listing 11-2:

$ cargo test
Compiling adder v0.1.0 (file:///projects/adder)
Finished dev [unoptimized + debuginfo] target(s) in

0.22 secs
Running target/debug/deps/adder-ce99bcc2479f4607

running 1 test
test tests::it_works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured

Doc-tests adder

running 0 tests



260

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured

Listing 11-2: The output from running the one automatically generated
test

Cargo compiled and ran our test. After the Compiling, Finished,
and Running lines, we see the line running 1 test. The next line
shows the name of the generated test function, called it_works, and
the result of running that test, ok. Then we see the overall summary
of running the tests: test result: ok. means all the tests passed. 1
passed; 0 failed adds up the number of tests that passed or failed.

We don’t have any tests we’ve marked as ignored, so the summary
says 0 ignored. We’re going to talk about ignoring tests in the next
section on different ways to run tests. The 0 measured statistic is for
benchmark tests that measure performance. Benchmark tests are, as of
this writing, only available in nightly Rust. See Appendix D for more
information about nightly Rust.

The next part of the test output that starts with Doc-tests adder
is for the results of any documentation tests. We don’t have any doc-
umentation tests yet, but Rust can compile any code examples that
appear in our API documentation. This feature helps us keep our docs
and our code in sync! We’ll be talking about how to write documen-
tation tests in the “Documentation Comments” section of Chapter 14.
We’re going to ignore the Doc-tests output for now.

Let’s change the name of our test and see how that changes the
test output. Give the it_works function a different name, such as
exploration, like so:

Filename: src/lib.rs

#[cfg(test)]
mod tests {

#[test]
fn exploration() {
}

}

And run cargo test again. In the output, we’ll now see exploration
instead of it_works:

running 1 test
test tests::exploration ... ok



261

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured

Let’s add another test, but this time we’ll make a test that fails! Tests
fail when something in the test function panics. We talked about the
simplest way to cause a panic in Chapter 9: call the panic! macro!
Type in the new test so that your src/lib.rs now looks like Listing
11-3:

Filename: src/lib.rs

#[cfg(test)]
mod tests {

#[test]
fn exploration() {
}

#[test]
fn another() {

panic!("Make this test fail");
}

}

Listing 11-3: Adding a second test; one that will fail since we call the
panic! macro

And run the tests again with cargo test. The output should look
like Listing 11-4, which shows that our exploration test passed and
another failed:

running 2 tests
test tests::exploration ... ok
test tests::another ... FAILED

failures:

---- tests::another stdout ----
thread 'tests::another' panicked at 'Make this test

fail', src/lib.rs:9
note: Run with `RUST_BACKTRACE=1` for a backtrace.

failures:
tests::another

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured



262

error: test failed

Listing 11-4: Test results when one test passes and one test fails
Instead of ok, the line test tests::another says FAILED. We have

two new sections between the individual results and the summary: the
first section displays the detailed reason for the test failures. In this
case, another failed because it panicked at ‘Make this test fail’,
which happened on src/lib.rs line 9. The next section lists just the
names of all the failing tests, which is useful when there are lots of
tests and lots of detailed failing test output. We can use the name of a
failing test to run just that test in order to more easily debug it; we’ll
talk more about ways to run tests in the next section.

Finally, we have the summary line: overall, our test result is FAILED.
We had 1 test pass and 1 test fail.

Now that we’ve seen what the test results look like in different
scenarios, let’s look at some macros other than panic! that are useful
in tests.

Checking Results with the assert! Macro

The assert! macro, provided by the standard library, is useful when
you want to ensure that some condition in a test evaluates to true.
We give the assert! macro an argument that evaluates to a boolean.
If the value is true, assert! does nothing and the test passes. If the
value is false, assert! calls the panic! macro, which causes the
test to fail. This is one macro that helps us check that our code is
functioning in the way we intend.

Remember all the way back in Chapter 5, Listing 5-9, where we had
a Rectangle struct and a can_hold method, repeated here in Listing
11-5. Let’s put this code in src/lib.rs instead of src/main.rs and write
some tests for it using the assert! macro.

Filename: src/lib.rs

#[derive(Debug)]
pub struct Rectangle {

length: u32,
width: u32,

}

impl Rectangle {
pub fn can_hold(&self, other: &Rectangle) -> bool {



263

self.length > other.length && self.width > other.
width

}
}

Listing 11-5: The Rectangle struct and its can_hold method from
Chapter 5

The can_hold method returns a boolean, which means it’s a perfect
use case for the assert! macro. In Listing 11-6, let’s write a test that
exercises the can_hold method by creating a Rectangle instance that
has a length of 8 and a width of 7, and asserting that it can hold another
Rectangle instance that has a length of 5 and a width of 1:

Filename: src/lib.rs

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn larger_can_hold_smaller() {

let larger = Rectangle { length: 8, width: 7 };
let smaller = Rectangle { length: 5, width: 1 };

assert!(larger.can_hold(&smaller));
}

}

Listing 11-6: A test for can_hold that checks that a larger rectangle
indeed holds a smaller rectangle

Note that we’ve added a new line inside the tests module: use
super::*;. The tests module is a regular module that follows the
usual visibility rules we covered in Chapter 7. Because we’re in an
inner module, we need to bring the code under test in the outer module
into the scope of the inner module. We’ve chosen to use a glob here so
that anything we define in the outer module is available to this tests
module.

We’ve named our test larger_can_hold_smaller, and we’ve cre-
ated the two Rectangle instances that we need. Then we called the
assert! macro and passed it the result of calling larger.can_hold(
&smaller). This expression is supposed to return true, so our test
should pass. Let’s find out!



264

running 1 test
test tests::larger_can_hold_smaller ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured

It does pass! Let’s add another test, this time asserting that a smaller
rectangle cannot hold a larger rectangle:

Filename: src/lib.rs

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn larger_can_hold_smaller() {

let larger = Rectangle { length: 8, width: 7 };
let smaller = Rectangle { length: 5, width: 1 };

assert!(larger.can_hold(&smaller));
}

#[test]
fn smaller_can_not_hold_larger() {

let larger = Rectangle { length: 8, width: 7 };
let smaller = Rectangle { length: 5, width: 1 };

assert!(!smaller.can_hold(&larger));
}

}

Because the correct result of the can_hold function in this case is
false, we need to negate that result before we pass it to the assert!
macro. This way, our test will pass if can_hold returns false:
running 2 tests
test tests::smaller_can_not_hold_larger ... ok
test tests::larger_can_hold_smaller ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured

Two passing tests! Now let’s see what happens to our test results if
we introduce a bug in our code. Let’s change the implementation of
the can_hold method to have a less-than sign when it compares the
lengths where it’s supposed to have a greater-than sign:



265

#[derive(Debug)]
pub struct Rectangle {

length: u32,
width: u32,

}

impl Rectangle {
pub fn can_hold(&self, other: &Rectangle) -> bool {

self.length < other.length && self.width > other.
width

}
}

Running the tests now produces:

running 2 tests
test tests::smaller_can_not_hold_larger ... ok
test tests::larger_can_hold_smaller ... FAILED

failures:

---- tests::larger_can_hold_smaller stdout ----
thread 'tests::larger_can_hold_smaller' panicked at

'assertion failed:
larger.can_hold(&smaller)', src/lib.rs:22

note: Run with `RUST_BACKTRACE=1` for a backtrace.

failures:
tests::larger_can_hold_smaller

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured

Our tests caught the bug! Since larger.length is 8 and smaller.
length is 5, the comparison of the lengths in can_hold now returns
false since 8 is not less than 5.

Testing Equality with the assert_eq! and assert_ne! Macros

A common way to test functionality is to take the result of the code
under test and the value we expect the code to return and check that
they’re equal. We could do this using the assert! macro and passing
it an expression using the == operator. However, this is such a common



266

test that the standard library provides a pair of macros to perform this
test more conveniently: assert_eq! and assert_ne!. These macros
compare two arguments for equality or inequality, respectively. They’ll
also print out the two values if the assertion fails, so that it’s easier to
see why the test failed, while the assert! macro only tells us that it
got a false value for the == expression, not the values that lead to the
false value.

In Listing 11-7, let’s write a function named add_two that adds two
to its parameter and returns the result. Then let’s test this function
using the assert_eq! macro:

Filename: src/lib.rs

pub fn add_two(a: i32) -> i32 {
a + 2

}

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn it_adds_two() {

assert_eq!(4, add_two(2));
}

}

Listing 11-7: Testing the function add_two using the assert_eq! macro
Let’s check that it passes!

running 1 test
test tests::it_adds_two ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured

The first argument we gave to the assert_eq! macro, 4, is equal to
the result of calling add_two(2). We see a line for this test that says
test tests::it_adds_two ... ok, and the ok text indicates that
our test passed!

Let’s introduce a bug into our code to see what it looks like when
a test that uses assert_eq! fails. Change the implementation of the
add_two function to instead add 3:



267

pub fn add_two(a: i32) -> i32 {
a + 3

}

And run the tests again:

running 1 test
test tests::it_adds_two ... FAILED

failures:

---- tests::it_adds_two stdout ----
thread 'tests::it_adds_two' panicked at 'assertion

failed: `(left ==
right)` (left: `4`, right: `5`)', src/lib.rs:11

note: Run with `RUST_BACKTRACE=1` for a backtrace.

failures:
tests::it_adds_two

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured

Our test caught the bug! The it_adds_two test failed with the message
assertion failed: `(left == right)` (left: `4`, right: `5`)
. This message is useful and helps us get started debugging: it says the
left argument to assert_eq! was 4, but the right argument, where
we had add_two(2), was 5.

Note that in some languages and test frameworks, the parameters
to the functions that assert two values are equal are called expected
and actual and the order in which we specify the arguments matters.
However, in Rust, they’re called left and right instead, and the order
in which we specify the value we expect and the value that the code
under test produces doesn’t matter. We could have written the asser-
tion in this test as assert_eq!(add_two(2), 4), which would result
in a failure message that says assertion failed: `(left == right)
` (left: `5`, right: `4`).

The assert_ne! macro will pass if the two values we give to it are
not equal and fail if they are equal. This macro is most useful for cases
when we’re not sure exactly what a value will be, but we know what
the value definitely won’t be, if our code is functioning as we intend.
For example, if we have a function that is guaranteed to change its
input in some way, but the way in which the input is changed depends



268

on the day of the week that we run our tests, the best thing to assert
might be that the output of the function is not equal to the input.

Under the surface, the assert_eq! and assert_ne! macros use
the operators == and !=, respectively. When the assertions fail, these
macros print their arguments using debug formatting, which means
the values being compared must implement the PartialEq and Debug
traits. All of the primitive types and most of the standard library types
implement these traits. For structs and enums that you define, you’ll
need to implement PartialEq in order to be able to assert that values
of those types are equal or not equal. You’ll need to implement Debug
in order to be able to print out the values in the case that the assertion
fails. Because both of these traits are derivable traits, as we mentioned
in Chapter 5, this is usually as straightforward as adding the #[derive(
PartialEq, Debug)] annotation to your struct or enum definition. See
Appendix C for more details about these and other derivable traits.

Custom Failure Messages

We can also add a custom message to be printed with the failure mes-
sage as optional arguments to assert!, assert_eq!, and assert_ne!.
Any arguments specified after the one required argument to assert!
or the two required arguments to assert_eq! and assert_ne! are
passed along to the format! macro that we talked about in Chapter
8, so you can pass a format string that contains {} placeholders and
values to go in the placeholders. Custom messages are useful in order
to document what an assertion means, so that when the test fails, we
have a better idea of what the problem is with the code.

For example, let’s say we have a function that greets people by
name, and we want to test that the name we pass into the function
appears in the output:

Filename: src/lib.rs

pub fn greeting(name: &str) -> String {
format!("Hello {}!", name)

}

#[cfg(test)]
mod tests {

use super::*;

#[test]



269

fn greeting_contains_name() {
let result = greeting("Carol");
assert!(result.contains("Carol"));

}
}

The requirements for this program haven’t been agreed upon yet, and
we’re pretty sure the Hello text at the beginning of the greeting will
change. We decided we don’t want to have to update the test for the
name when that happens, so instead of checking for exact equality to
the value returned from the greeting function, we’re just going to
assert that the output contains the text of the input parameter.

Let’s introduce a bug into this code to see what this test failure
looks like, by changing greeting to not include name:

pub fn greeting(name: &str) -> String {
String::from("Hello!")

}

Running this test produces:

running 1 test
test tests::greeting_contains_name ... FAILED

failures:

---- tests::greeting_contains_name stdout ----
thread 'tests::greeting_contains_name' panicked at

'assertion failed:
result.contains("Carol")', src/lib.rs:12

note: Run with `RUST_BACKTRACE=1` for a backtrace.

failures:
tests::greeting_contains_name

This just tells us that the assertion failed and which line the assertion
is on. A more useful failure message in this case would print the value
we did get from the greeting function. Let’s change the test function
to have a custom failure message made from a format string with a
placeholder filled in with the actual value we got from the greeting
function:



270

#[test]
fn greeting_contains_name() {

let result = greeting("Carol");
assert!(

result.contains("Carol"),
"Greeting did not contain name, value was `{}`",

result
);

}

Now if we run the test again, we’ll get a much more informative error
message:

---- tests::greeting_contains_name stdout ----
thread 'tests::greeting_contains_name' panicked at

'Greeting did not contain
name, value was `Hello`', src/lib.rs:12

note: Run with `RUST_BACKTRACE=1` for a backtrace.

We can see the value we actually got in the test output, which would
help us debug what happened instead of what we were expecting to
happen.

Checking for Panics with should_panic

In addition to checking that our code returns the correct values we ex-
pect, it’s also important to check that our code handles error conditions
as we expect. For example, consider the Guess type that we created in
Chapter 9 in Listing 9-8. Other code that uses Guess is depending on
the guarantee that Guess instances will only contain values between 1
and 100. We can write a test that ensures that attempting to create a
Guess instance with a value outside that range panics.

We can do this by adding another attribute, should_panic, to our
test function. This attribute makes a test pass if the code inside the
function panics, and the test will fail if the code inside the function
does not panic.

Listing 11-8 shows how we’d write a test that checks the error con-
ditions of Guess::new happen when we expect:

Filename: src/lib.rs

struct Guess {
value: u32,



271

}

impl Guess {
pub fn new(value: u32) -> Guess {

if value < 1 || value > 100 {
panic!("Guess value must be between 1 and 100,

got {}.", value);
}

Guess {
value

}
}

}

#[cfg(test)]
mod tests {

use super::*;

#[test]
#[should_panic]
fn greater_than_100() {

Guess::new(200);
}

}

Listing 11-8: Testing that a condition will cause a panic!
The #[should_panic] attribute goes after the #[test] attribute

and before the test function it applies to. Let’s see what it looks like
when this test passes:

running 1 test
test tests::greater_than_100 ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured

Looks good! Now let’s introduce a bug in our code, by removing the
condition that the new function will panic if the value is greater than
100:

# struct Guess {
# value: u32,



272

# }
#
impl Guess {

pub fn new(value: u32) -> Guess {
if value < 1 {

panic!("Guess value must be between 1 and 100,
got {}.", value);

}

Guess {
value

}
}

}

If we run the test from Listing 11-8, it will fail:

running 1 test
test tests::greater_than_100 ... FAILED

failures:

failures:
tests::greater_than_100

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured

We don’t get a very helpful message in this case, but once we look at the
test function, we can see that it’s annotated with #[should_panic].
The failure we got means that the code in the function, Guess::new(
200), did not cause a panic.

should_panic tests can be imprecise, however, because they only
tell us that the code has caused some panic. A should_panic test
would pass even if the test panics for a different reason than the one
we were expecting to happen. To make should_panic tests more pre-
cise, we can add an optional expected parameter to the should_panic
attribute. The test harness will make sure that the failure message
contains the provided text. For example, consider the modified code
for Guess in Listing 11-9 where the new function panics with different
messages depending on whether the value was too small or too large:

Filename: src/lib.rs



273

struct Guess {
value: u32,

}

impl Guess {
pub fn new(value: u32) -> Guess {

if value < 1 {
panic!("Guess value must be greater than or

equal to 1, got {}.",
value);

} else if value > 100 {
panic!("Guess value must be less than or equal

to 100, got {}.",
value);

}

Guess {
value

}
}

}

#[cfg(test)]
mod tests {

use super::*;

#[test]
#[should_panic(expected = "Guess value must be less

than or equal to 100")]
fn greater_than_100() {

Guess::new(200);
}

}

Listing 11-9: Testing that a condition will cause a panic! with a
particular panic message

This test will pass, because the value we put in the expected pa-
rameter of the should_panic attribute is a substring of the message
that the Guess::new function panics with. We could have specified
the whole panic message that we expect, which in this case would be
Guess value must be less than or equal to 100, got 200. It
depends on how much of the panic message is unique or dynamic and



274

how precise you want your test to be. In this case, a substring of the
panic message is enough to ensure that the code in the function that
gets run is the else if value > 100 case.

To see what happens when a should_panic test with an expected
message fails, let’s again introduce a bug into our code by swapping
the bodies of the if value < 1 and the else if value > 100 blocks:

if value < 1 {
panic!("Guess value must be less than or equal to 100,

got {}.", value);
} else if value > 100 {

panic!("Guess value must be greater than or equal to
1, got {}.", value);
}

This time when we run the should_panic test, it will fail:

running 1 test
test tests::greater_than_100 ... FAILED

failures:

---- tests::greater_than_100 stdout ----
thread 'tests::greater_than_100' panicked at 'Guess

value must be greater
than or equal to 1, got 200.', src/lib.rs:10

note: Run with `RUST_BACKTRACE=1` for a backtrace.
note: Panic did not include expected string 'Guess value
must be less than or
equal to 100'

failures:
tests::greater_than_100

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured

The failure message indicates that this test did indeed panic as we
expected, but the panic message did not include expected string
‘Guess value must be less than or equal to 100’. We can see
the panic message that we did get, which in this case was Guess value
must be greater than or equal to 1, got We could then start
figuring out where our bug was!



275

Now that we’ve gone over ways to write tests, let’s look at what is
happening when we run our tests and talk about the different options
we can use with cargo test.

5.2
Controlling How Tests are Run
Just as cargo run compiles your code and then runs the resulting
binary, cargo test compiles your code in test mode and runs the
resulting test binary. There are options you can use to change the de-
fault behavior of cargo test. For example, the default behavior of
the binary produced by cargo test is to run all the tests in parallel
and capture output generated during test runs, preventing it from be-
ing displayed to make it easier to read the output related to the test
results. You can change this default behavior by specifying command
line options.

Some command line options can be passed to cargo test, and some
need to be passed instead to the resulting test binary. To separate these
two types of arguments, you list the arguments that go to cargo test,
then the separator --, and then the arguments that go to the test
binary. Running cargo test --help will tell you about the options
that go with cargo test, and running cargo test -- --help will tell
you about the options that go after the separator --.

Running Tests in Parallel or Consecutively

When multiple tests are run, by default they run in parallel using
threads. This means the tests will finish running faster, so that we
can get faster feedback on whether or not our code is working. Since
the tests are running at the same time, you should take care that your
tests do not depend on each other or on any shared state, including a
shared environment such as the current working directory or environ-
ment variables.

For example, say each of your tests runs some code that creates
a file on disk named test-output.txt and writes some data to that
file. Then each test reads the data in that file and asserts that the
file contains a particular value, which is different in each test. Because
the tests are all run at the same time, one test might overwrite the file
between when another test writes and reads the file. The second test
will then fail, not because the code is incorrect, but because the tests



276

have interfered with each other while running in parallel. One solu-
tion would be to make sure each test writes to a different file; another
solution is to run the tests one at a time.

If you don’t want to run the tests in parallel, or if you want more
fine-grained control over the number of threads used, you can send the
--test-threads flag and the number of threads you want to use to
the test binary. For example:

$ cargo test -- --test-threads=1

We set the number of test threads to 1, telling the program not to use
any parallelism. This will take longer than running them in parallel,
but the tests won’t be potentially interfering with each other if they
share state.

Showing Function Output

By default, if a test passes, Rust’s test library captures anything printed
to standard output. For example, if we call println! in a test and
the test passes, we won’t see the println! output in the terminal:
we’ll only see the line that says the test passed. If a test fails, we’ll see
whatever was printed to standard output with the rest of the failure
message.

For example, Listing 11-10 has a silly function that prints out the
value of its parameter and then returns 10. We then have a test that
passes and a test that fails:

Filename: src/lib.rs

fn prints_and_returns_10(a: i32) -> i32 {
println!("I got the value {}", a);
10

}

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn this_test_will_pass() {

let value = prints_and_returns_10(4);
assert_eq!(10, value);

}



277

#[test]
fn this_test_will_fail() {

let value = prints_and_returns_10(8);
assert_eq!(5, value);

}
}

Listing 11-10: Tests for a function that calls println!
The output we’ll see when we run these tests with cargo test is:

running 2 tests
test tests::this_test_will_pass ... ok
test tests::this_test_will_fail ... FAILED

failures:

---- tests::this_test_will_fail stdout ----
I got the value 8

thread 'tests::this_test_will_fail' panicked at 'assertion
failed: `(left ==
right)` (left: `5`, right: `10`)', src/lib.rs:19
note: Run with `RUST_BACKTRACE=1` for a backtrace.

failures:
tests::this_test_will_fail

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured

Note that nowhere in this output do we see I got the value 4, which
is what gets printed when the test that passes runs. That output has
been captured. The output from the test that failed, I got the value
8, appears in the section of the test summary output that also shows
the cause of the test failure.

If we want to be able to see printed values for passing tests as well,
the output capture behavior can be disabled by using the --nocapture
flag:

$ cargo test -- --nocapture

Running the tests from Listing 11-10 again with the --nocapture flag
now shows:



278

running 2 tests
I got the value 4
I got the value 8
test tests::this_test_will_pass ... ok
thread 'tests::this_test_will_fail' panicked at 'assertion
failed: `(left ==
right)` (left: `5`, right: `10`)', src/lib.rs:19
note: Run with `RUST_BACKTRACE=1` for a backtrace.
test tests::this_test_will_fail ... FAILED

failures:

failures:
tests::this_test_will_fail

test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured

Note that the output for the tests and the test results is interleaved;
this is because the tests are running in parallel as we talked about in
the previous section. Try using both the --test-threads=1 option and
the --nocapture function and see what the output looks like then!

Running a Subset of Tests by Name

Sometimes, running a full test suite can take a long time. If you’re
working on code in a particular area, you might want to run only the
tests pertaining to that code. You can choose which tests to run by
passing cargo test the name or names of the test/s you want to run
as an argument.

To demonstrate how to run a subset of tests, we’ll create three tests
for our add_two function as shown in Listing 11-11 and choose which
ones to run:

Filename: src/lib.rs

pub fn add_two(a: i32) -> i32 {
a + 2

}

#[cfg(test)]
mod tests {

use super::*;



279

#[test]
fn add_two_and_two() {

assert_eq!(4, add_two(2));
}

#[test]
fn add_three_and_two() {

assert_eq!(5, add_two(3));
}

#[test]
fn one_hundred() {

assert_eq!(102, add_two(100));
}

}

Listing 11-11: Three tests with a variety of names
If we run the tests without passing any arguments, as we’ve already

seen, all the tests will run in parallel:

running 3 tests
test tests::add_two_and_two ... ok
test tests::add_three_and_two ... ok
test tests::one_hundred ... ok

test result: ok. 3 passed; 0 failed; 0 ignored; 0 measured

Running Single Tests We can pass the name of any test function
to cargo test to run only that test:

$ cargo test one_hundred
Finished dev [unoptimized + debuginfo] target(s) in

0.0 secs
Running target/debug/deps/adder-06a75b4a1f2515e9

running 1 test
test tests::one_hundred ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured

We can’t specify the names of multiple tests in this way, only the first
value given to cargo test will be used.



280

Filtering to Run Multiple Tests However, we can specify part of
a test name, and any test whose name matches that value will get run.
For example, since two of our tests’ names contain add, we can run
those two by running cargo test add:

$ cargo test add
Finished dev [unoptimized + debuginfo] target(s) in

0.0 secs
Running target/debug/deps/adder-06a75b4a1f2515e9

running 2 tests
test tests::add_two_and_two ... ok
test tests::add_three_and_two ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured

This ran all tests with add in the name. Also note that the module in
which tests appear becomes part of the test’s name, so we can run all
the tests in a module by filtering on the module’s name.

Ignore Some Tests Unless Specifically Requested

Sometimes a few specific tests can be very time-consuming to execute,
so you might want to exclude them during most runs of cargo test.
Rather than listing as arguments all tests you do want to run, we can
instead annotate the time consuming tests with the ignore attribute
to exclude them:

Filename: src/lib.rs

#[test]
fn it_works() {

assert!(true);
}

#[test]
#[ignore]
fn expensive_test() {

// code that takes an hour to run
}

We add the #[ignore] line to the test we want to exclude, after
#[test]. Now if we run our tests, we’ll see it_works runs, but expensive_
test does not:



281

$ cargo test
Compiling adder v0.1.0 (file:///projects/adder)
Finished dev [unoptimized + debuginfo] target(s) in

0.24 secs
Running target/debug/deps/adder-ce99bcc2479f4607

running 2 tests
test expensive_test ... ignored
test it_works ... ok

test result: ok. 1 passed; 0 failed; 1 ignored; 0 measured

Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured

expensive_test is listed as ignored. If we want to run only the ig-
nored tests, we can ask for them to be run with cargo test -- --
ignored:

$ cargo test -- --ignored
Finished dev [unoptimized + debuginfo] target(s) in

0.0 secs
Running target/debug/deps/adder-ce99bcc2479f4607

running 1 test
test expensive_test ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured

By controlling which tests run, you can make sure your cargo test
results will be fast. When you’re at a point that it makes sense to
check the results of the ignored tests and you have time to wait for
the results, you can choose to run cargo test -- --ignored instead.



282

5.3
Test Organization
As mentioned at the start of the chapter, testing is a large discipline,
and different people use different terminology and organization. The
Rust community tends to think about tests in terms of two main cate-
gories: unit tests and integration tests. Unit tests are smaller and more
focused, testing one module in isolation at a time, and can test private
interfaces. Integration tests are entirely external to your library, and
use your code in the same way any other external code would, using
only the public interface and exercising multiple modules per test.

Both kinds of tests are important to ensure that the pieces of your
library are doing what you expect them to separately and together.

Unit Tests

The purpose of unit tests is to test each unit of code in isolation from
the rest of the code, in order to be able to quickly pinpoint where code
is and is not working as expected. We put unit tests in the src directory,
in each file with the code that they’re testing. The convention is that we
create a module named tests in each file to contain the test functions,
and we annotate the module with cfg(test).

The Tests Module and #[cfg(test)] The #[cfg(test)] anno-
tation on the tests module tells Rust to compile and run the test code
only when we run cargo test, and not when we run cargo build.
This saves compile time when we only want to build the library, and
saves space in the resulting compiled artifact since the tests are not in-
cluded. We’ll see that since integration tests go in a different directory,
they don’t need the #[cfg(test)] annotation. Because unit tests go
in the same files as the code, though, we use #[cfg(test)]to specify
that they should not be included in the compiled result.

Remember that when we generated the new adder project in the
first section of this chapter, Cargo generated this code for us:

Filename: src/lib.rs

#[cfg(test)]
mod tests {

#[test]
fn it_works() {



283

}
}

This is the automatically generated test module. The attribute cfg
stands for configuration, and tells Rust that the following item should
only be included given a certain configuration. In this case, the config-
uration is test, provided by Rust for compiling and running tests. By
using this attribute, Cargo only compiles our test code if we actively
run the tests with cargo test. This includes any helper functions
that might be within this module, in addition to the functions anno-
tated with #[test].

Testing Private Functions There’s debate within the testing com-
munity about whether private functions should be tested directly or
not, and other languages make it difficult or impossible to test private
functions. Regardless of which testing ideology you adhere to, Rust’s
privacy rules do allow you to test private functions. Consider the code
in Listing 11-12 with the private function internal_adder:

Filename: src/lib.rs

pub fn add_two(a: i32) -> i32 {
internal_adder(a, 2)

}

fn internal_adder(a: i32, b: i32) -> i32 {
a + b

}

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn internal() {

assert_eq!(4, internal_adder(2, 2));
}

}

Listing 11-12: Testing a private function
Note that the internal_adder function is not marked as pub, but

because tests are just Rust code and the tests module is just another
module, we can import and call internal_adder in a test just fine. If



284

you don’t think private functions should be tested, there’s nothing in
Rust that will compel you to do so.

Integration Tests

In Rust, integration tests are entirely external to your library. They
use your library in the same way any other code would, which means
they can only call functions that are part of your library’s public API.
Their purpose is to test that many parts of your library work correctly
together. Units of code that work correctly by themselves could have
problems when integrated, so test coverage of the integrated code is
important as well. To create integration tests, you first need a tests
directory.

The tests Directory To write integration tests for our code, we need
to make a tests directory at the top level of our project directory, next
to src. Cargo knows to look for integration test files in this directory.
We can then make as many test files as we’d like in this directory, and
Cargo will compile each of the files as an individual crate.

Let’s give it a try! Keep the code from Listing 11-12 in src/lib.rs.
Make a tests directory, then make a new file named tests/integration_test.rs,
and enter the code in Listing 11-13.

Filename: tests/integration_test.rs

extern crate adder;

#[test]
fn it_adds_two() {

assert_eq!(4, adder::add_two(2));
}

Listing 11-13: An integration test of a function in the adder crate
We’ve added extern crate adder at the top, which we didn’t need

in the unit tests. This is because each test in the tests directory is
an entirely separate crate, so we need to import our library into each
of them. Integration tests use the library like any other consumer of it
would, by importing the crate and using only the public API.

We don’t need to annotate any code in tests/integration_test.rs
with #[cfg(test)]. Cargo treats the tests directory specially and
will only compile files in this directory if we run cargo test. Let’s try
running cargo test now:



285

cargo test
Compiling adder v0.1.0 (file:///projects/adder)
Finished dev [unoptimized + debuginfo] target(s) in

0.31 secs
Running target/debug/deps/adder-abcabcabc

running 1 test
test tests::internal ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured

Running target/debug/deps/integration_test-ce99bcc2479f4607

running 1 test
test it_adds_two ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured

Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured

Now we have three sections of output: the unit tests, the integration
test, and the doc tests. The first section for the unit tests is the same
as we have been seeing: one line for each unit test (we have one named
internal that we added in Listing 11-12), then a summary line for the
unit tests.

The integration tests section starts with the line that says Running
target/debug/deps/integration-test-ce99bcc2479f4607 (the hash
at the end of your output will be different). Then there’s a line for each
test function in that integration test, and a summary line for the results
of the integration test just before the Doc-tests adder section starts.

Note that adding more unit test functions in any src file will add
more test result lines to the unit tests section. Adding more test func-
tions to the integration test file we created will add more lines to the
integration test section. Each integration test file gets its own sec-
tion, so if we add more files in the tests directory, there will be more
integration test sections.

We can still run a particular integration test function by specifying
the test function’s name as an argument to cargo test. To run all of



286

the tests in a particular integration test file, use the --test argument
of cargo test followed by the name of the file:

$ cargo test --test integration_test
Finished dev [unoptimized + debuginfo] target(s) in

0.0 secs
Running target/debug/integration_test-952a27e0126bb565

running 1 test
test it_adds_two ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured

This tests only the file that we specified from the tests directory.

Submodules in Integration Tests As you add more integration
tests, you may want to make more than one file in the tests directory
to help organize them; for example, to group the test functions by the
functionality they’re testing. As we mentioned, each file in the tests
directory is compiled as its own separate crate.

Treating each integration test file as its own crate is useful to create
separate scopes that are more like the way end users will be using your
crate. However, this means files in the tests directory don’t share the
same behavior as files in src do that we learned about in Chapter 7
regarding how to separate code into modules and files.

The different behavior of files in the tests directory is usually most
noticeable if you have a set of helper functions that would be useful
in multiple integration test files, and you try to follow the steps from
Chapter 7 to extract them into a common module. For example, if
we create tests/common.rs and place this function named setup in it,
where we could put some code that we want to be able to call from
multiple test functions in multiple test files:

Filename: tests/common.rs

pub fn setup() {
// setup code specific to your library's tests would

go here
}

If we run the tests again, we’ll see a new section in the test output
for the common.rs file, even though this file doesn’t contain any test
functions, nor are we calling the setup function from anywhere:



287

running 1 test
test tests::internal ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured

Running target/debug/deps/common-b8b07b6f1be2db70

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured

Running target/debug/deps/integration_test-d993c68b431d39df

running 1 test
test it_adds_two ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured

Doc-tests adder

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured

Having common show up in the test results with running 0 tests
displayed for it is not what we wanted; we just wanted to be able to
share some code with the other integration test files.

In order to not have common show up in the test output, we need
to use the other method of extracting code into a file that we learned
about in Chapter 7: instead of creating tests/common.rs, we’ll create
tests/common/mod.rs. When we move the setup function code into
tests/common/mod.rs and get rid of the tests/common.rs file, the sec-
tion in the test output will no longer show up. Files in subdirectories
of the tests directory do not get compiled as separate crates or have
sections in the test output.

Once we have tests/common/mod.rs, we can use it from any of the
integration test files as a module. Here’s an example of calling the
setup function from the it_adds_two test in tests/integration_test.rs:

Filename: tests/integration_test.rs



288

extern crate adder;

mod common;

#[test]
fn it_adds_two() {

common::setup();
assert_eq!(4, adder::add_two(2));

}

Note the mod common; declaration is the same as the module declara-
tions we did in Chapter 7. Then in the test function, we can call the
common::setup() function.

Integration Tests for Binary Crates If our project is a binary
crate that only contains a src/main.rs and does not have a src/lib.rs,
we aren’t able to create integration tests in the tests directory and use
extern crate to import functions defined in src/main.rs. Only library
crates expose functions that other crates are able to call and use; binary
crates are meant to be run on their own.

This is one of the reasons Rust projects that provide a binary have
a straightforward src/main.rs that calls logic that lives in src/lib.rs.
With that structure, integration tests can test the library crate by using
extern crate to cover the important functionality. If the important
functionality works, the small amount of code in src/main.rs will work
as well, and that small amount of code does not need to be tested.

Summary
Rust’s testing features provide a way to specify how code should func-
tion to ensure it continues to work as we expect even as we make
changes. Unit tests exercise different parts of a library separately and
can test private implementation details. Integration tests cover the use
of many parts of the library working together, and they use the library’s
public API to test the code in the same way external code will use it.
Even though Rust’s type system and ownership rules help prevent some
kinds of bugs, tests are still important to help reduce logic bugs having
to do with how your code is expected to behave.

Let’s put together the knowledge from this chapter and other pre-
vious chapters and work on a project in the next chapter!



Chapter 6

An I/O Project Building
a Small Grep

This chapter is both a recap of the many skills you’ve learned so far and
an exploration of a few more standard library features. We’re going to
build a command-line tool that interacts with file and command line
input/output to practice some of the Rust you now have under your
belt.

Rust’s speed, safety, ‘single binary’ output, and cross-platform sup-
port make it a good language for creating command line tools, so for
our project we’ll make our own version of the classic command line tool
grep. Grep is an acronym for “Globally search a Regular Expression
and Print.” In the simplest use case, grep searches a specified file for
a specified string using the following steps:

• Take as arguments a filename and a string.

• Read the file.

• Find lines in the file that contain the string argument.

• Print out those lines.

We’ll also show how to use environment variables and print to standard
error instead of standard out; these techniques are commonly used in
command line tools.

One Rust community member, Andrew Gallant, has already cre-
ated a fully-featured, very fast version of grep, called ripgrep. By
comparison, our version of grep will be fairly simple, this chapter will



290

give you some of the background knowledge to help you understand a
real-world project like ripgrep.

This project will bring together a number of concepts you’ve learned
so far:

• Organizing code (using what we learned in modules, Chapter 7)

• Using vectors and strings (collections, Chapter 8)

• Handling errors (Chapter 9)

• Using traits and lifetimes where appropriate (Chapter 10)

• Writing tests (Chapter 11)

We’ll also briefly introduce closures, iterators, and trait objects, which
Chapters 13 and 17 will cover in detail.

Let’s create a new project with, as always, cargo new. We’re calling
our project greprs to distinguish from the grep tool that you may
already have on your system:

$ cargo new --bin greprs
Created binary (application) `greprs` project

$ cd greprs

6.1

Accepting Command Line Arguments
Our first task is to make greprs able to accept its two command line
arguments: the filename and a string to search for. That is, we want
to be able to run our program with cargo run, a string to search for,
and a path to a file to search in, like so:

$ cargo run searchstring example-filename.txt

Right now, the program generated by cargo new ignores any argu-
ments we give it. There are some existing libraries on crates.io that
can help us accept command line arguments, but since we’re learning,
let’s implement this ourselves.



291

Reading the Argument Values

In order to be able to get the values of command line arguments passed
to our program, we’ll need to call a function provided in Rust’s standard
library: std::env::args. This function returns an iterator of the
command line arguments that were given to our program. We haven’t
discussed iterators yet, and we’ll cover them fully in Chapter 13, but
for our purposes now we only need to know two things about iterators:

1. Iterators produce a series of values.

2. We can call the collect function on an iterator to turn it into a
vector containing all of the elements the iterator produces.

Let’s give it a try: use the code in Listing 12-1 to read any command
line arguments passed to our greprs program and collect them into a
vector.

Filename: src/main.rs

use std::env;

fn main() {
let args: Vec<String> = env::args().collect();
println!("{:?}", args);

}

Listing 12-1: Collect the command line arguments into a vector and
print them out

First, we bring the std::env module into scope with a use state-
ment so that we can use its args function. Notice the std::env::
args function is nested in two levels of modules. As we talked about in
Chapter 7, in cases where the desired function is nested in more than
one module, it’s conventional to bring the parent module into scope,
rather than the function itself. This lets us easily use other functions
from std::env. It’s also less ambiguous than adding use std::env::
args; then calling the function with just args; that might look like a
function that’s defined in the current module.

Note: std::env::args will panic if any argument con-
tains invalid Unicode. If you need to accept arguments con-
taining invalid Unicode, use std::env::args_os instead.
That function returns OsString values instead of String
values. We’ve chosen to use std::env::args here for sim-
plicity because OsString values differ per-platform and are
more complex to work with than String values.



292

On the first line of main, we call env::args, and immediately use
collect to turn the iterator into a vector containing all of the iterator’s
values. The collect function can be used to create many kinds of
collections, so we explicitly annotate the type of args to specify that
we want a vector of strings. Though we very rarely need to annotate
types in Rust, collect is one function you do often need to annotate
because Rust isn’t able to infer what kind of collection you want.

Finally, we print out the vector with the debug formatter, :?. Let’s
try running our code with no arguments, and then with two arguments:

$ cargo run
["target/debug/greprs"]

$ cargo run needle haystack
...snip...
["target/debug/greprs", "needle", "haystack"]

You may notice that the first value in the vector is “target/debug/greprs”,
which is the name of our binary. The reasons for this are out of the
scope of this chapter, but we’ll need to remember this as we save the
two arguments we need.

Saving the Argument Values in Variables

Printing out the value of the vector of arguments just illustrated that
we’re able to access the values specified as command line arguments
from our program. That’s not what we actually want to do, though,
we want to save the values of the two arguments in variables so that we
can use the values in our program. Let’s do that as shown in Listing
12-2:

Filename: src/main.rs

use std::env;

fn main() {
let args: Vec<String> = env::args().collect();

let query = &args[1];
let filename = &args[2];

println!("Searching for {}", query);
println!("In file {}", filename);



293

}

Listing 12-2: Create variables to hold the query argument and filename
argument

As we saw when we printed out the vector, the program’s name
takes up the first value in the vector at args[0], so we’re starting at
index 1. The first argument greprs takes is the string we’re searching
for, so we put a reference to the first argument in the variable query.
The second argument will be the filename, so we put a reference to the
second argument in the variable filename.

We’re temporarily printing out the values of these variables, again
to prove to ourselves that our code is working as we intend. Let’s try
running this program again with the arguments test and sample.txt:

$ cargo run test sample.txt
Finished dev [unoptimized + debuginfo] target(s) in

0.0 secs
Running `target/debug/greprs test sample.txt`

Searching for test
In file sample.txt

Great, it’s working! We’re saving the values of the arguments that we
need into the right variables. Later we’ll add some error handling to
deal with situations such as when the user provides no arguments, but
for now we’ll ignore that and work on adding file reading capabilities
instead.

6.2
Reading a File
Next, we’re going to read the file that we specify in the filename com-
mand line argument. First, we need a sample file to test it with---the
best kind of file to use to make sure that greprs is working is one with
a small amount of text over multiple lines with some repeated words.
Listing 12-3 has an Emily Dickinson poem that will work well! Create
a file called poem.txt at the root level of your project, and enter the
poem “I’m nobody! Who are you?”:

Filename: poem.txt



294

I'm nobody! Who are you?
Are you nobody, too?
Then there's a pair of us — don't tell!
They'd banish us, you know.

How dreary to be somebody!
How public, like a frog
To tell your name the livelong day
To an admiring bog!

Listing 12-3: The poem “I’m nobody! Who are you?” by Emily Dick-
inson that will make a good test case

With that in place, edit src/main.rs and add code to open the file
as shown in Listing 12-4:

Filename: src/main.rs

use std::env;
use std::fs::File;
use std::io::prelude::*;

fn main() {
let args: Vec<String> = env::args().collect();

let query = &args[1];
let filename = &args[2];

println!("Searching for {}", query);
println!("In file {}", filename);

let mut f = File::open(filename).expect("file not found")
;

let mut contents = String::new();
f.read_to_string(&mut contents).expect("something went

wrong reading the file");

println!("With text:\n{}", contents);
}

Listing 12-4: Reading the contents of the file specified by the second
argument

First, we add some more use statements to bring in relevant parts
of the standard library: we need std::fs::File for dealing with files,



295

and std::io::prelude::* contains various traits that are useful when
doing I/O, including file I/O. In the same way that Rust has a general
prelude that brings certain things into scope automatically, the std:
:io module has its own prelude of common things you’ll need when
working with I/O. Unlike the default prelude, we must explicitly use
the prelude in std::io.

In main, we’ve added three things: first, we get a mutable handle to
the file by calling the File::open function and passing it the value of
the filename variable. Second, we create a variable called contents
and set it to a mutable, empty String. This will hold the content of
the file after we read it in. Third, we call read_to_string on our file
handle and pass a mutable reference to contents as an argument.

After those lines, we’ve again added temporary println! that
prints out the value in contents after we’ve read the file so we can
check that our program is working so far.

Let’s try running this code with any string as the first command
line argument (since we haven’t implemented the searching part yet)
and our poem.txt file as the second argument:

$ cargo run the poem.txt
Finished dev [unoptimized + debuginfo] target(s) in

0.0 secs
Running `target/debug/greprs the poem.txt`

Searching for the
In file poem.txt
With text:
I'm nobody! Who are you?
Are you nobody, too?
Then there's a pair of us — don't tell!
They'd banish us, you know.

How dreary to be somebody!
How public, like a frog
To tell your name the livelong day
To an admiring bog!

Great! Our code read in and printed out the content of the file. We’ve
got a few flaws though: the main function has multiple responsibilities,
and we’re not handling errors as well as we could be. While our program
is still small, these flaws aren’t a big problem, but as our program
grows, it will be harder to fix them cleanly. It’s good practice to begin
refactoring early on when developing a program, as it’s much easier to



296

refactor smaller amounts of code, so we’ll do that now.

6.3
Refactoring to Improve Modularity and Error Han-
dling
There are four problems that we’d like to fix to improve our program,
and they have to do with the way the program is structured and how
it’s handling potential errors.

First, our main function now performs two tasks: it parses argu-
ments and opens up files. For such a small function, this isn’t a huge
problem. However, if we keep growing our program inside of main, the
number of separate tasks the main function handles will grow. As a
function gains responsibilities, it gets harder to reason about, harder
to test, and harder to change without breaking one of its parts. It’s
better to separate out functionality so that each function is responsible
for one task.

This also ties into our second problem: while query and filename
are configuration variables to our program, variables like f and contents
are used to perform our program’s logic. The longer main gets, the more
variables we’re going to need to bring into scope; the more variables we
have in scope, the harder it is to keep track of the purpose of each. It’s
better to group the configuration variables into one structure to make
their purpose clear.

The third problem is that we’ve used expect to print out an error
message if opening the file fails, but the error message only says file
not found. There are a number of ways that opening a file can fail
besides a missing file: for example, the file might exist, but we might
not have permission to open it. Right now, if we’re in that situation,
we’d print the file not found error message that would give the user
the wrong advice!

Fourth, we use expect repeatedly to deal with different errors, and
if the user runs our programs without specifying enough arguments,
they’ll get an “index out of bounds” error from Rust that doesn’t clearly
explain the problem. It would be better if all our error handling code
was in one place so that future maintainers only have one place to
consult in the code if the error handling logic needs to change. Having
all the error handling code in one place will also help us to ensure that
we’re printing messages that will be meaningful to our end users.

Let’s address these problems by refactoring our project.



297

Separation of Concerns for Binary Projects

The organizational problem of having the main function responsible
for multiple tasks is common to many binary projects, so the Rust
community has developed a kind of guideline process for splitting up
the separate concerns of a binary program when main starts getting
large. The process has the following steps:

1. Split your program into both a main.rs and a lib.rs and move
your program’s logic into lib.rs.

2. While your command line parsing logic is small, it can remain in
main.rs.

3. When the command line parsing logic starts getting complicated,
extract it from main.rs into lib.rs as well.

4. The responsibilities that remain in the main function after this
process should be:

• Calling the command line parsing logic with the argument
values

• Setting up any other configuration
• Calling a run function in lib.rs
• If run returns an error, handling that error

This pattern is all about separating concerns: main.rs handles running
the program, and lib.rs handles all of the logic of the task at hand.
Because we can’t test the main function directly, this structure lets us
test all of our program’s logic by moving it into functions in lib.rs. The
only code that remains in main.rs will be small enough to verify its
correctness by reading it. Let’s re-work our program by following this
process.

Extracting the Argument Parser

First, we’ll extract the functionality for parsing arguments. Listing 12-
5 shows the new start of main that calls a new function parse_config,
which we’re still going to define in src/main.rs for the moment:

Filename: src/main.rs



298

fn main() {
let args: Vec<String> = env::args().collect();

let (query, filename) = parse_config(&args);

// ...snip...
}

fn parse_config(args: &[String]) -> (&str, &str) {
let query = &args[1];
let filename = &args[2];

(query, filename)
}

Listing 12-5: Extract a parse_config function from main
We’re still collecting the command line arguments into a vector,

but instead of assigning the argument value at index 1 to the variable
query and the argument value at index 2 to the variable filename
within the main function, we pass the whole vector to the parse_config
function. The parse_config function then holds the logic that knows
which argument goes in which variable, and passes the values back to
main. We still create the query and filename variables in main, but
main no longer has the responsibility of knowing how the command line
arguments and variables correspond.

This may seem like overkill for our small program, but we’re refac-
toring in small, incremental steps. After making this change, run the
program again to verify that the argument parsing still works. It’s good
to check your progress often, as that will help you identify the cause of
problems when they occur.

Grouping Configuration Values We can take another small step
to improve this function further. At the moment, we’re returning a tu-
ple, but then we immediately break that tuple up into individual parts
again. This is a sign that perhaps we don’t have the right abstraction
yet.

Another indicator that there’s room for improvement is the config
part of parse_config, which implies that the two values we return
are related and are both part of one configuration value. We’re not
currently conveying this meaning in the structure of the data other
than grouping the two values into a tuple: we could put the two values



299

into one struct and give each of the struct fields a meaningful name.
This will make it easier for future maintainers of this code to understand
how the different values relate to each other and what their purpose is.

Note: some people call this anti-pattern of using primi-
tive values when a complex type would be more appropriate
primitive obsession.

Listing 12-6 shows the addition of a struct named Config defined to
have fields named query and filename. We’ve also changed the parse_
config function to return an instance of the Config struct, and up-
dated main to use the struct fields rather than having separate variables:

Filename: src/main.rs

# use std::env;
# use std::fs::File;
#
fn main() {

let args: Vec<String> = env::args().collect();

let config = parse_config(&args);

println!("Searching for {}", config.query);
println!("In file {}", config.filename);

let mut f = File::open(config.filename).expect("file
not found");

// ...snip...
}

struct Config {
query: String,
filename: String,

}

fn parse_config(args: &[String]) -> Config {
let query = args[1].clone();
let filename = args[2].clone();



300

Config { query, filename }
}

Listing 12-6: Refactoring parse_config to return an instance of a
Config struct

The signature of parse_config now indicates that it returns a
Config value. In the body of parse_config, where we used to return
string slices that reference String values in args, we’ve now chosen to
define Config to contain owned String values. The args variable in
main is the owner of the argument values and is only letting the parse_
config function borrow them, though, which means we’d violate Rust’s
borrowing rules if Config tried to take ownership of the values in args.

There are a number of different ways we could manage the String
data, and the easiest, though somewhat inefficient, route is to call the
clone method on the values. This will make a full copy of the data for
the Config instance to own, which does take more time and memory
than storing a reference to the string data. However, cloning the data
also makes our code very straightforward since we don’t have to manage
the lifetimes of the references, so in this circumstance giving up a little
performance to gain simplicity is a worthwhile trade-off.

The Tradeoffs of Using clone

There’s a tendency amongst many Rustaceans to avoid using
clone to fix ownership problems because of its runtime cost.
In Chapter 13 on iterators, you’ll learn how to use more
efficient methods in this kind of situation, but for now, it’s
okay to copy a few strings to keep making progress since we’ll
only make these copies once, and our filename and query
string are both very small. It’s better to have a working
program that’s a bit inefficient than try to hyper-optimize
code on your first pass. As you get more experienced with
Rust, it’ll be easier to go straight to the desirable method,
but for now it’s perfectly acceptable to call clone.

We’ve updated main so that it places the instance of Config that
parse_config returns into a variable named config, and updated the
code that previously used the separate query and filename variables
so that is now uses the fields on the Config struct instead.

Our code now more clearly conveys our intent that query and
filename are related and their purpose is to configure how the pro-
gram will work. Any code that uses these values knows to find them in
the config instance in the fields named for their purpose.



301

Creating a Constructor for Config So far, we’ve extracted the
logic responsible for parsing the command line arguments from main
into the parse_config function, which helped us to see that the query
and filename values were related and that relationship should be con-
veyed in our code. We then added a Config struct to name the related
purpose of query and filename, and to be able to return the values’
names as struct field names from the parse_config function.

So now that the purpose of the parse_config function is to create
a Config instance, we can change parse_config from being a plain
function into a function named new that is associated with the Config
struct. Making this change will make our code more idiomatic: we can
create instances of types in the standard library like String by calling
String::new, and by changing parse_config to be a new function
associated with Config, we’ll be able to create instances of Config
by calling Config::new. Listing 12-7 shows the changes we’ll need to
make:

Filename: src/main.rs

# use std::env;
#
fn main() {

let args: Vec<String> = env::args().collect();

let config = Config::new(&args);

// ...snip...
}

# struct Config {
# query: String,
# filename: String,
# }
#
// ...snip...

impl Config {
fn new(args: &[String]) -> Config {

let query = args[1].clone();
let filename = args[2].clone();

Config { query, filename }



302

}
}

Listing 12-7: Changing parse_config into Config::new
We’ve updated main where we were calling parse_config to instead

call Config::new. We’ve changed the name of parse_config to new
and moved it within an impl block, which makes the new function
associated with Config. Try compiling this again to make sure it works.

Fixing the Error Handling

Now we’ll work on fixing our error handling. Recall that we mentioned
attempting to access the values in the args vector at index 1 or index
2 will cause the program to panic if the vector contains fewer than 3
items. Try running the program without any arguments; it will look
like this:
$ cargo run

Finished dev [unoptimized + debuginfo] target(s) in
0.0 secs

Running `target/debug/greprs`
thread 'main' panicked at 'index out of bounds: the len
is 1
but the index is 1', /stable-dist-rustc/build/src/libcollections/
vec.rs:1307
note: Run with `RUST_BACKTRACE=1` for a backtrace.

index out of bounds: the len is 1 but the index is 1 is
an error message that is intended for programmers, and won’t really
help our end users understand what happened and what they should
do instead. Let’s fix that now.

Improving the Error Message In Listing 12-8, we’re adding a
check in the new function to check that the slice is long enough before
accessing index 1 and 2. If the slice isn’t long enough, we panic with a
better error message than the index out of bounds message:

Filename: src/main.rs

// ...snip...
fn new(args: &[String]) -> Config {

if args.len() < 3 {
panic!("not enough arguments");

}



303

// ...snip...

Listing 12-8: Adding a check for the number of arguments
This is similar to the Guess::new function we wrote in Listing 9-8,

where we called panic! if the value argument was out of the range of
valid values. Instead of checking for a range of values, we’re checking
that the length of args is at least 3, and the rest of the function can
operate under the assumption that this condition has been met. If
args has fewer than 3 items, this condition will be true, and we call
the panic! macro to end the program immediately.

With these extra few lines of code in new, let’s try running our
program without any arguments again and see what the error looks
like now:

$ cargo run
Finished dev [unoptimized + debuginfo] target(s) in

0.0 secs
Running `target/debug/greprs`

thread 'main' panicked at 'not enough arguments', src/main.
rs:29
note: Run with `RUST_BACKTRACE=1` for a backtrace.

This output is better, we now have a reasonable error message. How-
ever, we also have a bunch of extra information we don’t want to give
to our users. So perhaps using the technique we used in Listing 9-8
isn’t the best to use here; a call to panic! is more appropriate for
a programming problem rather than a usage problem anyway, as we
discussed in Chapter 9. Instead, we can use the other technique we
learned about in that chapter: returning a Result that can indicate
either success or an error.

Returning a Result from new Instead of Calling panic! We
can choose to instead return a Result value that will contain a Config
instance in the successful case, and will describe the problem in the
error case. When Config::new is communicating to main, we can use
Rust’s way of signaling that there was a problem using the Result type.
Then we can change main to convert an Err variant into a nicer error
for our users, without the surrounding text about thread ‘main’ and
RUST_BACKTRACE that a call to panic! causes.

Listing 12-9 shows the changes to the return value of Config::new
and the body of the function needed to return a Result:

Filename: src/main.rs



304

impl Config {
fn new(args: &[String]) -> Result<Config, &'static

str> {
if args.len() < 3 {

return Err("not enough arguments");
}

let query = args[1].clone();
let filename = args[2].clone();

Ok(Config { query, filename })
}

}

Listing 12-9: Return a Result from Config::new
Our new function now returns a Result, with a Config instance in

the success case and a &’static str in the error case. Recall from
“The Static Lifetime” section in Chapter 10 that &’static str is the
type of string literals, which is our error message type for now.

We’ve made two changes in the body of the new function: instead
of calling panic! when the user doesn’t pass enough arguments, we
now return an Err value, and we’ve wrapped the Config return value
in an Ok. These changes make the function conform to its new type
signature.

By having Config::new return an Err value, it allows the main
function to handle the Result value returned from the new function
and exit the process more cleanly in the error case.

Calling Config::new and Handling Errors In order to handle the
error case and print a user-friendly message, we need to update main
to handle the Result that Config::new is now returning as shown in
Listing 12-10. We’re also going to implement by hand something that
panic! handled for us: exiting the command line tool with an error
code of 1. A nonzero exit status is a convention to signal to the process
that called our program that our program ended with an error state.

Filename: src/main.rs

use std::process;

fn main() {
let args: Vec<String> = env::args().collect();



305

let config = Config::new(&args).unwrap_or_else(|err|
{

println!("Problem parsing arguments: {}", err);
process::exit(1);

});

// ...snip...

Listing 12-10: Exiting with an error code if creating a new Config fails
In this listing, we’re using a method we haven’t covered before:

unwrap_or_else, which is defined on Result<T, E> by the standard
library. Using unwrap_or_else allows us to define some custom, non-
panic! error handling. If the Result is an Ok value, this method’s
behavior is similar to unwrap: it returns the inner value Ok is wrapping.
However, if the value is an Err value, this method calls the code in
the closure, which is an anonymous function we define and pass as an
argument to unwrap_or_else. We’ll be covering closures in more detail
in Chapter 13. What you need to know for now is that unwrap_or_
else will pass the inner value of the Err, which in this case is the static
string not enough arguments that we added in Listing 12-9, to our
closure in the argument err that appears between the vertical pipes.
The code in the closure can then use the err value when it runs.

We’ve added a new use line to import process from the standard
library. The code in the closure that will get run in the error case is only
two lines: we print out the err value, then call std::process::exit
(we’ve added a new use line at the top to import process from the
standard library). process::exit will stop the program immediately
and return the number that was passed as the exit status code. This
is similar to the panic!-based handling we used in Listing 12-8, with
the exception that we no longer get all the extra output. Let’s try it:

$ cargo run
Compiling greprs v0.1.0 (file:///projects/greprs)
Finished dev [unoptimized + debuginfo] target(s) in

0.48 secs
Running `target/debug/greprs`

Problem parsing arguments: not enough arguments

Great! This output is much friendlier for our users.



306

Extracting a run Function

Now we’re done refactoring our configuration parsing; let’s turn to our
program’s logic. As we laid out in the process we discussed in the
“Separation of Concerns for Binary Projects” section, we’re going to
extract a function named run that will hold all of the logic currently in
the main function that isn’t setting up configuration or handling errors.
Once we’re done, main will be concise and easy to verify by inspection,
and we’ll be able to write tests for all of the other logic.

Listing 12-11 shows the extracted run function. For now, we’re mak-
ing only the small, incremental improvement of extracting the function
and still defining the function in src/main.rs:

Filename: src/main.rs

fn main() {
// ...snip...

println!("Searching for {}", config.query);
println!("In file {}", config.filename);

run(config);
}

fn run(config: Config) {
let mut f = File::open(config.filename).expect("file

not found");

let mut contents = String::new();
f.read_to_string(&mut contents).expect("something went

wrong reading the file");

println!("With text:\n{}", contents);
}

// ...snip...

Listing 12-11: Extracting a run function containing the rest of the
program logic

The run function now contains all the remaining logic from main
starting from reading the file. The run function takes the Config in-
stance as an argument.



307

Returning Errors from the run Function With the remaining
program logic separated into the run function rather than being in
main, we can improve the error handling like we did with Config:
:new in Listing 12-9. Instead of allowing the program to panic by
calling expect, the run function will return a Result<T, E> when
something goes wrong. This will let us further consolidate the logic
around handling errors in a user-friendly way into main. Listing 12-12
shows the changes to the signature and body of run:

Filename: src/main.rs

use std::error::Error;

// ...snip...

fn run(config: Config) -> Result<(), Box<Error>> {
let mut f = File::open(config.filename)?;

let mut contents = String::new();
f.read_to_string(&mut contents)?;

println!("With text:\n{}", contents);

Ok(())
}

Listing 12-12: Changing the run function to return Result
We’ve made three big changes here. First, we’re changing the return

type of the run function to Result<(), Box<Error>>. This function
previously returned the unit type, (), and we keep that as the value
returned in the Ok case.

For our error type, we’re using the trait object Box<Error> (and
we’ve brought std::error::Error into scope with a use statement at
the top). We’ll be covering trait objects in Chapter 17. For now, just
know that Box<Error> means the function will return a type that im-
plements the Error trait, but we don’t have to specify what particular
type the return value will be. This gives us flexibility to return error
values that may be of different types in different error cases.

The second change we’re making is removing the calls to expect in
favor of ?, like we talked about in Chapter 9. Rather than panic! on
an error, this will return the error value from the current function for
the caller to handle.

Thirdly, this function now returns an Ok value in the success case.



308

We’ve declared the run function’s success type as () in the signature,
which means we need to wrap the unit type value in the Ok value. This
Ok(()) syntax may look a bit strange at first, but using () like this is
the idiomatic way to indicate that we’re calling run for its side effects
only; it doesn’t return a value we need.

When you run this, it will compile, but with a warning:

warning: unused result which must be used, #[warn(unused_
must_use)] on by default

--> src/main.rs:39:5
|

39 | run(config);
| ^^^^^^^^^^^^

Rust is telling us that our code ignores the Result value, which might
be indicating that there was an error. We’re not checking to see if there
was an error or not, though, and the compiler is reminding us that we
probably meant to have some error handling code here! Let’s rectify
that now.

Handling Errors Returned from run in main We’ll check for
errors and handle them nicely using a similar technique to the way we
handled errors with Config::new in Listing 12-10, but with a slight
difference:

Filename: src/main.rs

fn main() {
// ...snip...

println!("Searching for {}", config.query);
println!("In file {}", config.filename);

if let Err(e) = run(config) {
println!("Application error: {}", e);

process::exit(1);
}

}

We use if let to check whether run returns an Err value, rather than
unwrap_or_else, and call process::exit(1) if it does. run doesn’t
return a value that we want to unwrap like Config::new returns the



309

Config instance. Because run returns a () in the success case, we only
care about detecting an error, so we don’t need unwrap_or_else to
return the unwrapped value as it would only be ().

The bodies of the if let and the unwrap_or_else functions are
the same in both cases though: we print out the error and exit.

Split Code into a Library Crate

This is looking pretty good so far! Now we’re going to split the src/main.rs
file up and put some code into src/lib.rs so that we can test it and have
a small main function.

Let’s move the following pieces of code from src/main.rs to a new
file, src/lib.rs:

• The run function definition

• The relevant use statements

• The definition of Config

• The Config::new function definition

The contents of src/lib.rs should now look like Listing 12-13:
Filename: src/lib.rs

use std::error::Error;
use std::fs::File;
use std::io::prelude::*;

pub struct Config {
pub query: String,
pub filename: String,

}

impl Config {
pub fn new(args: &[String]) -> Result<Config, &'static

str> {
if args.len() < 3 {

return Err("not enough arguments");
}

let query = args[1].clone();
let filename = args[2].clone();



310

Ok(Config { query, filename })
}

}

pub fn run(config: Config) -> Result<(), Box<Error>>{
let mut f = File::open(config.filename)?;

let mut contents = String::new();
f.read_to_string(&mut contents)?;

println!("With text:\n{}", contents);

Ok(())
}

Listing 12-13: Moving Config and run into src/lib.rs
We’ve made liberal use of pub here: on Config, its fields and its

new method, and on the run function. We now have a library crate
that has a public API that we can test.

Calling the Library Crate from the Binary Crate Now we need
to bring the code we moved to src/lib.rs into the scope of the binary
crate in src/main.rs by using extern crate greprs. Then we’ll add
a use greprs::Config line to bring the Config type into scope, and
prefix the run function with our crate name as shown in Listing 12-14:

Filename: src/main.rs

extern crate greprs;

use std::env;
use std::process;

use greprs::Config;

fn main() {
let args: Vec<String> = env::args().collect();

let config = Config::new(&args).unwrap_or_else(|err|
{

println!("Problem parsing arguments: {}", err);
process::exit(1);



311

});

println!("Searching for {}", config.query);
println!("In file {}", config.filename);

if let Err(e) = greprs::run(config) {
println!("Application error: {}", e);

process::exit(1);
}

}

Listing 12-14: Bringing the greprs crate into the scope of src/main.rs
With that, all the functionality should be connected and should

work. Give it a cargo run and make sure everything is wired up
correctly.

Whew! That was a lot of work, but we’ve set ourselves up for
success in the future. Now it’s much easier to handle errors, and we’ve
made our code more modular. Almost all of our work will be done in
src/lib.rs from here on out.

Let’s take advantage of this newfound modularity by doing some-
thing that would have been hard with our old code, but is easy with
our new code: write some tests!

6.4
Testing the Library’s Functionality
Now that we’ve extracted the logic into src/lib.rs and left all the ar-
gument parsing and error handling in src/main.rs, it’s much easier for
us to write tests for the core functionality of our code. We can call
our functions directly with various arguments and check return values
without having to call our binary from the command line.

In this section, we’re going to follow the Test Driven Development
(TDD) process. This is a software development technique that follows
this set of steps:

1. Write a test that fails, and run it to make sure it fails for the
reason you expected.

2. Write or modify just enough code to make the new test pass.



312

3. Refactor the code you just added or changed, and make sure the
tests continue to pass.

4. Repeat!

This is just one of many ways to write software, but TDD can help
drive the design of code. Writing the test before writing the code that
makes the test pass helps to maintain high test coverage throughout
the process.

We’re going to test drive the implementation of the part of our
greprs program that will actually do the searching for the query string
in the file contents and produce a list of lines that match the query.
We’re going to add this functionality in a function called search.

Writing a Failing Test

First, since we don’t really need them any more, let’s remove the
println! statements from both src/lib.rs and src/main.rs. Then we’ll
add a test module with a test function, like we did in Chapter 11.
The test function specifies the behavior we’d like the search function
to have: it will take a query and the text to search for the query in, and
will return only the lines from the text that contain the query. Listing
12-15 shows this test:

Filename: src/lib.rs

# fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a
str> {
# vec![]
# }
#
#[cfg(test)]
mod test {

use super::*;

#[test]
fn one_result() {

let query = "duct";
let contents = "\

Rust:
safe, fast, productive.
Pick three.";



313

assert_eq!(
vec!["safe, fast, productive."],
search(query, contents)

);
}

}

Listing 12-15: Creating a failing test for the search function we wish
we had

We’ve chosen to use “duct” as the string we’re looking for in this
test. The text we’re searching in is three lines, only one of which
contains “duct”. We assert that the value returned from the search
function contains only the one line we expect.

We aren’t able to run this test and watch it fail though, since this
test doesn’t even compile yet! We’re going to add just enough code
to get it to compile: a definition of the search function that always
returns an empty vector, as shown in Listing 12-16. Once we have this,
the test should compile and fail because an empty vector doesn’t match
a vector containing the one line “safe, fast, productive.”.

Filename: src/lib.rs

fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a
str> {

vec![]
}

Listing 12-16: Defining just enough of the search function that our
test will compile

Notice that we need an explicit lifetime ’a defined in the signature
of search and used with the contents argument and the return value.
Remember from Chapter 10 that the lifetime parameters specify which
argument lifetime is connected to the lifetime of the return value. In
this case, we’re indicating that the returned vector should contain string
slices that reference slices of the argument contents (rather than the
argument query).

In other words, we’re telling Rust that the data returned by the
search function will live as long as the data passed into the search
function in the contents argument. This is important! The data
referenced by a slice needs to be valid in order for the reference to be
valid; if the compiler assumed we were making string slices of query
rather than contents, it would do its safety checking incorrectly.

If we tried to compile this function without lifetimes, we would get
this error:



314

error[E0106]: missing lifetime specifier
--> src/lib.rs:5:47
|

5 | fn search(query: &str, contents: &str) -> Vec<&str>
{

| ^ expected
lifetime parameter
|
= help: this function's return type contains a borrowed

value, but the
signature does not say whether it is borrowed from `query`

or `contents`

Rust can’t possibly know which of the two arguments we need, so we
need to tell it. Because contents is the argument that contains all of
our text and we want to return the parts of that text that match, we
know contents is the argument that should be connected to the return
value using the lifetime syntax.

Other programming languages don’t require you to connect argu-
ments to return values in the signature, so this may still feel strange,
but will get easier over time. You may want to compare this example
with the Lifetime Syntax section in Chapter 10.

Now let’s try running our test:

$ cargo test
...warnings...

Finished dev [unoptimized + debuginfo] target(s) in
0.43 secs

Running target/debug/deps/greprs-abcabcabc

running 1 test
test test::one_result ... FAILED

failures:

---- test::one_result stdout ----
thread 'test::one_result' panicked at 'assertion failed:

`(left == right)`
(left: `["safe, fast, productive."]`, right: `[]`)', src/
lib.rs:16
note: Run with `RUST_BACKTRACE=1` for a backtrace.



315

failures:
test::one_result

test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured

error: test failed

Great, our test fails, exactly as we expected. Let’s get the test to pass!

Writing Code that Gets the Test to Pass

Currently, our test is failing because we always return an empty vector.
To fix that and implement search, our program needs to follow these
steps:

1. Iterate through each line of the contents.

2. Check if the line contains our query string.

• If it does, add it to the list of values we’re returning.
• If it doesn’t, do nothing.

3. Return the list of results that match.

Let’s take each step at a time, starting with iterating through lines.

Iterating Through Lines with the lines method Rust has a
helpful method to handle line-by-line iteration of strings, conveniently
named lines, that works as shown in Listing 12-17:

Filename: src/lib.rs

fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a
str> {

for line in contents.lines() {
// do something with line

}
}

Listing 12-17: Iterating through each line in contents
The lines method returns an iterator. We’ll be talking about iter-

ators in depth in Chapter 13, but we’ve already seen this way of using
an iterator in Listing 3-6, where we used a for loop with an iterator to
run some code on each item in a collection.



316

Searching Each Line for the Query Next, we’ll add functionality
to check if the current line contains the query string. Luckily, strings
have another helpful method named contains that does this for us!
Add the contains method to the search function as shown in Listing
12-18:

Filename: src/lib.rs

fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a
str> {

for line in contents.lines() {
if line.contains(query) {

// do something with line
}

}
}

Listing 12-18: Adding functionality to see if the line contains the string
in query

Storing Matching Lines Finally, we need a way to store the lines
that contain our query string. For that, we can make a mutable vector
before the for loop and call the push method to store a line in the
vector. After the for loop, we return the vector, as shown in Listing
12-19:

Filename: src/lib.rs

fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a
str> {

let mut results = Vec::new();

for line in contents.lines() {
if line.contains(query) {

results.push(line);
}

}

results
}

Listing 12-19: Storing the lines that match so that we can return them
Now the search function should be returning only the lines that

contain query, and our test should pass. Let’s run the tests:



317

$ cargo test
running 1 test
test test::one_result ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured

Running target/debug/greprs-2f55ee8cd1721808

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured

Doc-tests greprs

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured

Our test passed, great, it works!
Now that our test is passing, we could consider opportunities for

refactoring the implementation of the search function while keeping
the tests passing in order to maintain the same functionality while we
do so. This code isn’t bad, but it isn’t taking advantage of some useful
features of iterators. We’ll be coming back to this example in Chapter
13 where we’ll explore iterators in detail and see how to improve it.

Using the search Function in the run Function Now that we
have the search function working and tested, we need to actually call
search from our run function. We need to pass the config.query
value and the contents that run read from the file to the search
function. Then run will print out each line returned from search:

Filename: src/lib.rs

pub fn run(config: Config) -> Result<(), Box<Error>> {
let mut f = File::open(config.filename)?;

let mut contents = String::new();
f.read_to_string(&mut contents)?;

for line in search(&config.query, &contents) {
println!("{}", line);



318

}

Ok(())
}

We’re again using a for loop to get each line returned from search,
and the code that we run for each line prints it out.

Now our whole program should be working! Let’s try it out, first
with a word that should return exactly one line from the Emily Dick-
inson poem, “frog”:

$ cargo run frog poem.txt
Compiling greprs v0.1.0 (file:///projects/greprs)
Finished dev [unoptimized + debuginfo] target(s) in

0.38 secs
Running `target/debug/greprs frog poem.txt`

How public, like a frog

Cool! Next, how about a word that will match multiple lines, like “the”:

$ cargo run the poem.txt
Finished dev [unoptimized + debuginfo] target(s) in

0.0 secs
Running `target/debug/greprs the poem.txt`

Then there's a pair of us — don't tell!
To tell your name the livelong day

And finally, let’s make sure that we don’t get any lines when we search
for a word that isn’t anywhere in the poem, like “monomorphization”:

$ cargo run monomorphization poem.txt
Finished dev [unoptimized + debuginfo] target(s) in

0.0 secs
Running `target/debug/greprs monomorphization poem.

txt`

Excellent! We’ve built our own version of a classic tool, and learned a
lot about how to structure applications. We’ve also learned a bit about
file input and output, lifetimes, testing, and command line parsing.

Feel free to move on to Chapter 13 if you’d like at this point. To
round out this project chapter, though, we’re going to briefly demon-
strate how to work with environment variables and printing to standard
error, both of which are useful when writing command line programs.



319

6.5
Working with Environment Variables
We’re going to improve our tool with an extra feature: an option for
case insensitive searching turned on via an environment variable. We
could make this a command line option and require that users enter
it each time they want it to apply, but instead we’re going to use an
environment variable. This allows our users to set the environment
variable once and have all their searches be case insensitive in that
terminal session.

Writing a Failing Test for the Case-Insensitive search Function

First, let’s add a new function that we will call when the environment
variable is on.

We’re going to continue following the TDD process that we started
doing in the last section, and the first step is again to write a failing
test. We’ll add a new test for the new case insensitive search function,
and rename our old test from one_result to case_sensitive to be
clearer about the differences between the two tests, as shown in Listing
12-20:

Filename: src/lib.rs

#[cfg(test)]
mod test {

use super::*;

#[test]
fn case_sensitive() {

let query = "duct";
let contents = "\

Rust:
safe, fast, productive.
Pick three.
Duct tape.";

assert_eq!(
vec!["safe, fast, productive."],
search(query, contents)

);



320

}

#[test]
fn case_insensitive() {

let query = "rUsT";
let contents = "\

Rust:
safe, fast, productive.
Pick three.
Trust me.";

assert_eq!(
vec!["Rust:", "Trust me."],
search_case_insensitive(query, contents)

);
}

}

Listing 12-20: Adding a new failing test for the case insensitive function
we’re about to add

Note that we’ve edited the old test’s contents too. We’ve added a
new line with the text “Duct tape”, with a capital D, that shouldn’t
match the query “duct” when we’re searching for the query in a case
sensitive manner. We’ve changed this test to ensure that we don’t
accidentally break the case sensitive search functionality that we’ve
already implemented; this test should pass now and should continue to
pass as we work on the case insensitive search.

The new test for the case insensitive search uses “rUsT” with some
capital letters as its query. The expected return value from the search_
case_insensitive function we’re going to add is that the query “rust”
will match both the line containing “Rust:” with a capital R and also
the line “Trust me.” that contains “rust” with a lowercase r. This test
will fail to compile right now since we haven’t yet defined the search_
case_insensitive function; feel free to add a skeleton implementation
that always returns an empty vector in the same way that we did for
the search function in Listing 12-16 in order to see the test compile
and fail.

Implementing the search_case_insensitive Function

The search_case_insensitive function, shown in Listing 12-21, will
be almost the same as the search function. The difference is that



321

we’ll lowercase the query function and each line so that whatever the
case of the input arguments, they will be the same case when we check
whether the line contains the query.

Filename: src/lib.rs

fn search_case_insensitive<'a>(query: &str, contents: &'a
str) -> Vec<&'a str> {

let query = query.to_lowercase();
let mut results = Vec::new();

for line in contents.lines() {
if line.to_lowercase().contains(&query) {

results.push(line);
}

}

results
}

Listing 12-21: Defining the search_case_insensitive function to
lowercase both the query and the line before comparing them

First, we lowercase the query string, and store it in a shadowed
variable with the same name. Calling to_lowercase on the query is
necessary so that no matter if the user’s query is “rust”, “RUST”,
“Rust”, or “rUsT”, we’ll treat the query as if it was “rust” and be
insensitive to the case.

Note that query is now a String rather than a string slice, because
calling to_lowercase is creating new data, not referencing existing
data. If the query is “rUsT”, that string slice does not contain a lower-
case u or t for us to use, so we have to allocate a new String containing
“rust”. Because query is now a String, when we pass query as an ar-
gument to the contains method, we need to add an ampersand since
the signature of contains is defined to take a string slice.

Next, we add a call to to_lowercase on each line before we check
if it contains query. This will turn “Rust:” into “rust:” and “Trust
me.” into “trust me.” Now that we’ve converted both line and query
to all lowercase, we’ll find matches no matter what case the text in the
file has or the user entered in the query.

Let’s see if this implementation passes the tests:



322

Finished dev [unoptimized + debuginfo] target(s) in
0.0 secs

Running target/debug/deps/greprs-e58e9b12d35dc861

running 2 tests
test test::case_insensitive ... ok
test test::case_sensitive ... ok

test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured

Running target/debug/greprs-8a7faa2662b5030a

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured

Doc-tests greprs

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured

Great! Now, let’s actually call the new search_case_insensitive
function from the run function. First, we’re going to add a configu-
ration option for switching between case sensitive and case insensitive
search to the Config struct:

Filename: src/lib.rs

pub struct Config {
pub query: String,
pub filename: String,
pub case_sensitive: bool,

}

We add the case_sensitive field that holds a boolean. Then we need
our run function to check the case_sensitive field’s value and use
that to decide whether to call the search function or the search_
case_insensitive function as shown in Listing 12-22:

Filename: src/lib.rs



323

# use std::error::Error;
# use std::fs::File;
# use std::io::prelude::*;
#
# fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a
str> {
# vec![]
# }
#
# fn search_case_insensitive<'a>(query: &str, contents:
&'a str) -> Vec<&'a str> {

# vec![]
# }
#
# struct Config {
# query: String,
# filename: String,
# case_sensitive: bool,
# }
#
pub fn run(config: Config) -> Result<(), Box<Error>>{

let mut f = File::open(config.filename)?;

let mut contents = String::new();
f.read_to_string(&mut contents)?;

let results = if config.case_sensitive {
search(&config.query, &contents)

} else {
search_case_insensitive(&config.query, &contents)

};

for line in results {
println!("{}", line);

}

Ok(())
}

Listing 12-22: Calling either search or search_case_insensitive
based on the value in config.case_sensitive



324

Finally, we need to actually check for the environment variable. The
functions for working with environment variables are in the env module
in the standard library, so we want to bring that module into scope with
a use std::env; line at the top of src/lib.rs. Then we’re going to use
the var method from the env module in Config::new to check for an
environment variable named CASE_INSENSITIVE, as shown in Listing
12-23:

Filename: src/lib.rs

use std::env;
# struct Config {
# query: String,
# filename: String,
# case_sensitive: bool,
# }

// ...snip...

impl Config {
pub fn new(args: &[String]) -> Result<Config, &'static

str> {
if args.len() < 3 {

return Err("not enough arguments");
}

let query = args[1].clone();
let filename = args[2].clone();

let case_sensitive = env::var("CASE_INSENSITIVE")
.is_err();

Ok(Config {
query: query,
filename: filename,
case_sensitive: case_sensitive,

})
}

}

Listing 12-23: Checking for an environment variable named CASE_
INSENSITIVE

Here, we create a new variable case_sensitive. In order to set



325

its value, we call the env::var function and pass it the name of the
environment variable we’re looking for, CASE_INSENSITIVE. env::var
returns a Result that will be the Ok variant containing the value if the
environment variable is set, and will be the Err variant if the environ-
ment variable is not set. We’re using the is_err method on the Result
to check to see if it’s an error (and therefore unset), which means we
should do a case sensitive search. If the CASE_INSENSITIVE environ-
ment variable is set to anything, is_err will return false and we will
do a case insensitive search. We don’t care about the value that the
environment variable is set to, just whether it’s set or unset, so we’re
checking is_err rather than unwrap, expect, or any of the other meth-
ods we’ve seen on Result. We pass the value in the case_sensitive
variable to the Config instance so that the run function can read that
value and decide whether to call search or search_case_insensitive
as we implemented in Listing 12-22.

Let’s give it a try! First, we’ll run our program without the envi-
ronment variable set and with the query “to”, which should match any
line that contains the word “to” in all lowercase:

$ cargo run to poem.txt
Finished dev [unoptimized + debuginfo] target(s) in

0.0 secs
Running `target/debug/greprs to poem.txt`

Are you nobody, too?
How dreary to be somebody!

Looks like that still works! Now, let’s run the program with CASE_
INSENSITIVE set to 1 but with the same query “to”, and we should get
lines that contain “to” that might have capital letters:

$ CASE_INSENSITIVE=1 cargo run to poem.txt
Finished dev [unoptimized + debuginfo] target(s) in

0.0 secs
Running `target/debug/greprs to poem.txt`

Are you nobody, too?
How dreary to be somebody!
To tell your name the livelong day
To an admiring bog!

Excellent, we also got lines containing “To”! Our greprs program can
now do case insensitive searching, controlled by an environment vari-
able. Now you know how to manage options set using either command
line arguments or environment variables!



326

Some programs allow both arguments and environment variables
for the same configuration. In those cases, the programs decide that
one or the other takes precedence. For another exercise on your own,
try controlling case insensitivity through a command line argument as
well as through the environment variable, and decide which should take
precedence if the program is run with contradictory values.

The std::env module contains many more useful features for deal-
ing with environment variables; check out its documentation to see
what’s available.

6.6
Write to stderr Instead of stdout
Right now, we’re writing all of our output to the terminal with println!.
Most terminals provide two kinds of output: “standard out” for general
information, and “standard error” for error messages. This distinction
is the behavior that’s expected of command line programs: it enables
users to choose to direct a program’s successful output to a file but still
print error messages to the screen, for example. println! is only ca-
pable of printing to standard out, though, so we have to use something
else in order to print to standard error.

We can verify that, the way we’ve written greprs so far, everything
is being written to standard out, including error messages that should
be written to standard error instead. We’ll do that by intentionally
causing an error, the one that happens when we run the program with-
out any arguments. We’re going to redirect standard output to a file,
but not standard error. The way command line programs are expected
to work is that, because the output is an error message, it should be
shown on the screen rather than being redirected to the file. Let’s see
that our program is not currently meeting this expectation by using >
and specifying a filename, output.txt, that we want to redirect standard
out to:

$ cargo run > output.txt

The > syntax tells the shell to write the contents of standard out to
output.txt instead of the screen. We didn’t see the error message we
were expecting printed on the screen, so that means it must have ended
up in the file. Let’s see what output.txt contains:



327

Application error: No search string or filename found

Yup, there’s our error message, which means it’s being printed to stan-
dard out. This isn’t what’s expected from command line programs. It’s
much more useful for error messages like this to be printed to standard
error, and only have data printed to standard out from a successful run
end up in the file when we redirect standard out in this way. Let’s
change how error messages are printed as shown in Listing 12-23. Be-
cause of the refactoring we did earlier in this chapter, all of the code
that prints error messages is in one place, in main:

Filename: src/main.rs

extern crate greprs;

use std::env;
use std::process;
use std::io::prelude::*;

use greprs::Config;

fn main() {
let args: Vec<String> = env::args().collect();
let mut stderr = std::io::stderr();

let config = Config::new(&args).unwrap_or_else(|err|
{

writeln!(
&mut stderr,
"Problem parsing arguments: {}",
err

).expect("Could not write to stderr");
process::exit(1);

});

if let Err(e) = greprs::run(config) {
writeln!(

&mut stderr,
"Application error: {}",
e

).expect("Could not write to stderr");



328

process::exit(1);
}

}

Listing 12-23: Writing error messages to stderr instead of stdout
using writeln!

Rust does not have a convenient function like println! for writing
to standard error. Instead, we use the writeln! macro, which is like
println! but takes an extra argument. The first thing we pass to
it is what to write to. We can acquire a handle to standard error
through the std::io::stderr function. We give a mutable reference
to stderr to writeln!; we need it to be mutable so we can write to
it! The second and third arguments to writeln! are like the first and
second arguments to println!: a format string and any variables we’re
interpolating.

Let’s try running the program again in the same way, without any
arguments and redirecting stdout with >:

$ cargo run > output.txt
Application error: No search string or filename found

Now we see our error on the screen, and output.txt contains nothing,
which is the behavior that’s expected of command line programs.

If we run the program again with arguments that don’t cause an
error, but still redirecting standard out to a file:

$ cargo run to poem.txt > output.txt

We won’t see any output to our terminal, and output.txt will contain
our results:

Filename: output.txt

Are you nobody, too?
How dreary to be somebody!

This demonstrates that we’re now using standard out for successful
output and standard error for error output as appropriate.

Summary
In this chapter, we’ve recapped on some of the major concepts so far
and covered how to do common I/O operations in a Rust context. By
using command line arguments, files, environment variables, and the



329

writeln! macro with stderr, you’re now prepared to write command
line applications. By using the concepts from previous chapters, your
code will be well-organized, be able to store data effectively in the
appropriate data structures, handle errors nicely, and be well tested.

Next, let’s explore some functional-language influenced Rust fea-
tures: closures and iterators.



330



Part III

Thinking in Rust





Chapter 1

Functional Language
features in Rust:
Iterators and Closures

Rust’s design has taken inspiration from a lot of existing languages
and techniques, and one significant influence is functional program-
ming. Programming in a functional style often includes using functions
as values in arguments or return values of other functions, assigning
functions to variables for later execution, and so forth. We won’t de-
bate here the issue of what, exactly, functional programming is or is
not, but will instead show off some features of Rust that are similar to
features in many languages often referred to as functional.

More specifically, we’re going to cover:

• Closures: a function-like construct you can store in a variable.

• Iterators: a way of processing a series of elements.

• How to use these features to improve on the I/O project from
Chapter 12.

• The performance of these features. Spoiler alert: they’re faster
than you might think!

There are other Rust features influenced by the functional style, like
pattern matching and enums, that we’ve covered in other chapters as
well. Mastering closures and iterators is an important part of writing



334

idiomatic, fast Rust code, so we’re devoting an entire chapter to them
here.

1.1
Closures: Anonymous Functions that can Capture
their Environment
Rust’s closures are anonymous functions that you can save in a variable
or pass as arguments to other functions. You can create the closure in
one place, and then call the closure to evaluate it in a different context.
Unlike functions, closures are allowed to capture values from the scope
in which they are called. We’re going to demonstrate how these features
of closures allow for code reuse and customization of behavior.

Creating an Abstraction of Behavior Using a Closure

Let’s work on an example that will show a situation where storing a
closure to be executed at a later time is useful. We’ll talk about the
syntax of closures, type inference, and traits along the way.

The hypothetical situation is this: we’re working at a startup that’s
making an app to generate custom exercise workout plans. The back-
end is written in Rust, and the algorithm that generates the workout
plan takes into account many different factors like the app user’s age,
their Body Mass Index, their preferences, their recent workouts, and an
intensity number they specify. The actual algorithm used isn’t impor-
tant in this example; what’s important is that this calculation takes a
few seconds. We only want to call this algorithm if we need to, and we
only want to call it once, so that we aren’t making the user wait more
than they need to. We’re going to simulate calling this hypothetical
algorithm by calling the simulated_expensive_calculation function
shown in Listing 13-1 instead, which will print calculating slowly.
.., wait for two seconds, and then return whatever number we passed
in:

Filename: src/main.rs

use std::thread;
use std::time::Duration;

fn simulated_expensive_calculation(intensity: i32) -> i32
{



335

println!("calculating slowly...");
thread::sleep(Duration::from_secs(2));
intensity

}

Listing 13-1: A function we’ll use to stand in for a hypothetical calcu-
lation that takes about two seconds to run

Next, we have a main function that contains the parts of the workout
app that are important for this example. This represents the code that
the app would call when a user asks for a workout plan. Because the
interaction with the app’s frontend isn’t relevant to the use of closures,
we’re going to hardcode values representing inputs to our program and
print the outputs.

The inputs to the program are:

• An intensity number from the user, specified when they request
a workout, so they can indicate whether they’d like a low intensity
workout or a high intensity workout

• A random number that will generate some variety in the workout
plans

The output the program prints will be the recommended workout plan.
Listing 13-2 shows the main function we’re going to use. We’ve

hardcoded the variable simulated_user_specified_value to 10 and
the variable simulated_random_number to 7 for simplicity’s sake; in an
actual program we’d get the intensity number from the app frontend
and we’d use the rand crate to generate a random number like we did
in the Guessing Game example in Chapter 2. The main function calls
a generate_workout function with the simulated input values:

Filename: src/main.rs

fn main() {
let simulated_user_specified_value = 10;
let simulated_random_number = 7;

generate_workout(simulated_user_specified_value, simulated_
random_number);
}
# fn generate_workout(intensity: i32, random_number: i32)
{}



336

Listing 13-2: A main function containing hardcoded values to simulate
user input and random number generation inputs to the generate_
workout function

That’s the context of what we’re working on. The generate_
workout function in Listing 13-3 contains the business logic of the app
that we’re most concerned with in this example. The rest of the code
changes in this example will be made to this function:

Filename: src/main.rs

# use std::thread;
# use std::time::Duration;
#
# fn simulated_expensive_calculation(num: i32) -> i32 {
# println!("calculating slowly...");
# thread::sleep(Duration::from_secs(2));
# num
# }
#
fn generate_workout(intensity: i32, random_number: i32)
{

if intensity < 25 {
println!(

"Today, do {} pushups!",
simulated_expensive_calculation(intensity)

);
println!(

"Next, do {} situps!",
simulated_expensive_calculation(intensity)

);
} else {

if random_number == 3 {
println!("Take a break today! Remember to stay

hydrated!");
} else {

println!(
"Today, run for {} minutes!",
simulated_expensive_calculation(intensity)

)
}

}



337

}

Listing 13-3: The business logic of the program that prints the work-
out plans based on the inputs and calls to the simulated_expensive_
calculation function

The code in Listing 13-3 has multiple calls to the slow calculation
function. The first if block calls simulated_expensive_calculation
twice, the if inside the outer else doesn’t call it at all, and the code
inside the else case inside the outer else calls it once.

The desired behavior of the generate_workout function is to first
check if the user wants a low intensity workout (indicated by a number
less than 25) or a high intensity workout (25 or more). Low inten-
sity workout plans will recommend a number of pushups and situps
based on the complex algorithm we’re simulating with the simulated_
expensive_calculation function, which needs the intensity number
as an input.

If the user wants a high intensity workout, there’s some additional
logic: if the value of the random number generated by the app happens
to be 3, the app will recommend a break and hydration instead. If not,
the user will get a high intensity workout of a number of minutes of
running that comes from the complex algorithm.

The data science team has let us know that there are going to be
some changes to the way we have to call the algorithm, so we want
to refactor this code to have only one place that calls the simulated_
expensive_calculation function to update when those changes hap-
pen. We also want to get rid of the spot where we’re currently calling
the function twice unnecessarily, and we don’t want to add any other
calls to that function in the process. That is, we don’t want to call it if
we’re in the case where the result isn’t needed at all, and we still want
to call it only once in the last case.

There are many ways we could restructure this program. The way
we’re going to try first is extracting the duplicated call to the expensive
calculation function into a variable, as shown in Listing 13-4:

Filename: src/main.rs

# use std::thread;
# use std::time::Duration;
#
# fn simulated_expensive_calculation(num: i32) -> i32 {
# println!("calculating slowly...");
# thread::sleep(Duration::from_secs(2));



338

# num
# }
#
fn generate_workout(intensity: i32, random_number: i32)
{

let expensive_result =
simulated_expensive_calculation(intensity);

if intensity < 25 {
println!(

"Today, do {} pushups!",
expensive_result

);
println!(

"Next, do {} situps!",
expensive_result

);
} else {

if random_number == 3 {
println!("Take a break today! Remember to stay

hydrated!");
} else {

println!(
"Today, run for {} minutes!",
expensive_result

)
}

}
}

Listing 13-4: Extracting the calls to simulated_expensive_calculation
to one place before the if blocks and storing the result in the expensive_
result variable

This change unifies all the calls to simulated_expensive_calculation
and solves the problem of the first if block calling the function twice
unnecessarily. Unfortunately, we’re now calling this function and wait-
ing for the result in all cases, which includes the inner if block that
doesn’t use the result value at all.

We want to be able to specify some code in one place in our program,
but then only execute that code if we actually need the result in some
other place in our program. This is a use case for closures!



339

Closures Store Code to be Executed Later

Instead of always calling the simulated_expensive_calculation func-
tion before the if blocks, we can define a closure and store the closure
in a variable instead of the result as shown in Listing 13-5. We can
actually choose to move the whole body of simulated_expensive_
calculation within the closure we’re introducing here:

Filename: src/main.rs

# use std::thread;
# use std::time::Duration;
#
let expensive_closure = |num| {

println!("calculating slowly...");
thread::sleep(Duration::from_secs(2));
num

};
# expensive_closure(5);

Listing 13-5: Defining a closure with the body that was in the expensive
function and store the closure in the expensive_closure variable

The closure definition is the part after the = that we’re assigning
to the variable expensive_closure. To define a closure, we start with
a pair of vertical pipes (|). Inside the pipes is where we specify the
parameters to the closure; this syntax was chosen because of its similar-
ity to closure definitions in Smalltalk and Ruby. This closure has one
parameter named num; if we had more than one parameter, we would
separate them with commas, like |param1, param2|.

After the parameters, we put curly braces that hold the body of
the closure. The curly braces are optional if the closure body only has
one line. After the curly braces, we need a semicolon to go with the
let statement. The value returned from the last line in the closure
body (num), since that line doesn’t end in a semicolon, will be the value
returned from the closure when it’s called, just like in function bodies.

Note that this let statement means expensive_closure contains
the definition of an anonymous function, not the resulting value of
calling the anonymous function. Recall the reason we’re using a closure
is because we want to define the code to call at one point, store that
code, and actually call it at a later point; the code we want to call is
now stored in expensive_closure.

Now that we have the closure defined, we can change the code in
the if blocks to call the closure in order to execute the code and get



340

the resulting value. Calling a closure looks very similar to calling a
function; we specify the variable name that holds the closure definition
and follow it with parentheses containing the argument values we want
to use for that call as shown in Listing 13-6:

Filename: src/main.rs

# use std::thread;
# use std::time::Duration;
#
fn generate_workout(intensity: i32, random_number: i32)
{

let expensive_closure = |num| {
println!("calculating slowly...");
thread::sleep(Duration::from_secs(2));
num

};

if intensity < 25 {
println!(

"Today, do {} pushups!",
expensive_closure(intensity)

);
println!(

"Next, do {} situps!",
expensive_closure(intensity)

);
} else {

if random_number == 3 {
println!("Take a break today! Remember to stay

hydrated!");
} else {

println!(
"Today, run for {} minutes!",
expensive_closure(intensity)

)
}

}
}

Listing 13-6: Calling the expensive_closure we’ve defined
Now we’ve achieved the goal of unifying where the expensive calcu-

lation is called to one place, and we’re only executing that code where



341

we need the results. However, we’ve reintroduced one of the problems
from Listing 13-3: we’re still calling the closure twice in the first if
block, which will call the expensive code twice and make the user wait
twice as long as they need to. We could fix this problem by creating a
variable local to that if block to hold the result of calling the closure,
but there’s another solution we can use since we have a closure. We’ll
get back to that solution in a bit; let’s first talk about why there aren’t
type annotations in the closure definition and the traits involved with
closures.

Closure Type Inference and Annotation

Closure are different than functions defined with the fn keyword in a
few ways. The first is that closures don’t require you to annotate the
types of the parameters or the return value like fn functions do.

Type annotations are required on functions because they’re are part
of an explicit interface exposed to your users. Defining this interface
rigidly is important for ensuring that everyone agrees on what types of
values a function uses and returns. Closures aren’t used in an exposed
interface like this, though: they’re stored in variables and used without
naming them and exposing them to be invoked by users of our library.

Additionally, closures are usually short and only relevant within a
narrow context rather than in any arbitrary scenario. Within these
limited contexts, the compiler is reliably able to infer the types of the
parameters and return type similarly to how it’s able to infer the types
of most variables. Being forced to annotate the types in these small,
anonymous functions would be annoying and largely redundant with
the information the compiler already has available.

Like variables, we can choose to add type annotations if we want
to increase explicitness and clarity in exchange for being more verbose
than is strictly necessary; annotating the types for the closure we de-
fined in Listing 13-4 would look like the definition shown here in Listing
13-7:

Filename: src/main.rs

# use std::thread;
# use std::time::Duration;
#
let expensive_closure = |num: i32| -> i32 {

println!("calculating slowly...");
thread::sleep(Duration::from_secs(2));



342

num
};

Listing 13-7: Adding optional type annotations of the parameter and
return value types in the closure

The syntax of closures and functions looks more similar with type
annotations. Here’s a vertical comparison of the syntax for the defini-
tion of a function that adds one to its parameter, and a closure that
has the same behavior. We’ve added some spaces here to line up the
relevant parts). This illustrates how closure syntax is similar to func-
tion syntax except for the use of pipes rather than parentheses and the
amount of syntax that is optional:

fn add_one_v1 (x: i32) -> i32 { x + 1 }
let add_one_v2 = |x: i32| -> i32 { x + 1 };
let add_one_v3 = |x| { x + 1 };
let add_one_v4 = |x| x + 1 ;

The first line shows a function definition, and the second line shows
a fully annotated closure definition. The third line removes the type
annotations from the closure definition, and the fourth line removes
the braces that are optional since the closure body only has one line.
These are all valid definitions that will produce the same behavior when
they’re called.

Closure definitions will have one concrete type inferred for each of
their parameters and for their return value. For instance, Listing 13-8
shows the definition of a short closure that just returns the value it gets
as a parameter. This closure isn’t very useful except for the purposes
of this example. Note that we haven’t added any type annotations to
the definition: if we then try to call the closure twice, using a String
as an argument the first time and an i32 the second time, we’ll get an
error:

Filename: src/main.rs

let example_closure = |x| x;

let s = example_closure(String::from("hello"));
let n = example_closure(5);

Listing 13-8: Attempting to call a closure whose types are inferred with
two different types

The compiler gives us this error:



343

error[E0308]: mismatched types
--> src/main.rs
|
| let n = example_closure(5);
| ^ expected struct `std::string:

:String`, found
integral variable
|
= note: expected type `std::string::String`

found type `{integer}`

The first time we call example_closure with the String value, the
compiler infers the type of x and the return type of the closure to be
String. Those types are then locked in to the closure in example_
closure, and we get a type error if we try to use a different type with
the same closure.

Using Closures with Generic Parameters and the Fn Traits

Returning to our workout generation app, in Listing 13-6 we left our
code still calling the expensive calculation closure more times than it
needs to. In each place throughout our code, if we need the results
of the expensive closure more than once, we could save the result in
a variable for reuse and use the variable instead of calling the closure
again. This could be a lot of repeated code saving the results in a
variety of places.

However, because we have a closure for the expensive calculation,
we have another solution available to us. We can create a struct that
will hold the closure and the resulting value of calling the closure. The
struct will only execute the closure if we need the resulting value, and
it will cache the resulting value so that the rest of our code doesn’t have
to be responsible for saving and reusing the result. You may know this
pattern as memoization or lazy evaluation.

In order to make a struct that holds a closure, we need to be able
to specify the type of the closure. Each closure instance has its own
unique anonymous type: that is, even if two closures have the same
signature, their types are still considered to be different. In order to
define structs, enums, or function parameters that use closures, we use
generics and trait bounds like we discussed in Chapter 10.

The Fn traits are provided by the standard library. All closures
implement one of the traits Fn, FnMut, or FnOnce. We’ll discuss the



344

difference between these traits in the next section on capturing the
environment; in this example, we can use the Fn trait.

We add types to the Fn trait bound to represent the types of the
parameters and return values that the closures must have in order to
match this trait bound. In this case, our closure has a parameter of
type i32 and returns an i32, so the trait bound we specify is Fn(i32)
-> i32.

Listing 13-9 shows the definition of the Cacher struct that holds a
closure and an optional result value:

Filename: src/main.rs

struct Cacher<T>
where T: Fn(i32) -> i32

{
calculation: T,
value: Option<i32>,

}

Listing 13-9: Defining a Cacher struct that holds a closure in calculation
and an optional result in value

The Cacher struct has a calculation field of the generic type T.
The trait bounds on T specify that T is a closure by using the Fn trait.
Any closure we want to store in the calculation field of a Cacher
instance must have one i32 parameter (specified within the parentheses
after Fn) and must return an i32 (specified after the ->).

The value field is of type Option<i32>. Before we execute the
closure, value will be None. If the code using a Cacher asks for the
result of the closure, we’ll execute the closure at that time and store
the result within a Some variant in the value field. Then if the code
asks for the result of the closure again, instead of executing the closure
again, we’ll return the result that we’re holding in the Some variant.

The logic around the value field that we’ve just described is defined
in Listing 13-10:

Filename: src/main.rs

# struct Cacher<T>
# where T: Fn(i32) -> i32
# {
# calculation: T,
# value: Option<i32>,
# }
#



345

impl<T> Cacher<T>
where T: Fn(i32) -> i32

{
fn new(calculation: T) -> Cacher<T> {

Cacher {
calculation,
value: None,

}
}

fn value(&mut self, arg: i32) -> i32 {
match self.value {

Some(v) => v,
None => {

let v = (self.calculation)(arg);
self.value = Some(v);
v

},
}

}
}

Listing 13-10: Implementations on Cacher of an associated function
named new and a method named value that manage the caching logic

The fields on the Cacher struct are private since we want Cacher
to manage their values rather than letting the calling code potentially
change the values in these fields directly. The Cacher::new function
takes a generic parameter T, which we’ve defined in the context of the
impl block to have the same trait bound as the Cacher struct. Cacher:
:new returns a Cacher instance that holds the closure specified in the
calculation field and a None value in the value field, since we haven’t
executed the closure yet.

When the calling code wants the result of evaluating the closure,
instead of calling the closure directly, it will call the value method.
This method checks to see if we already have a resulting value in self.
value in a Some; if we do, it returns the value within the Some without
executing the closure again.

If self.value is None, we call the closure stored in self.calculation,
save the result in self.value for future use, and return the value as
well.

Listing 13-11 shows how we can use this Cacher struct in the generate_
workout function from Listing 13-6:



346

Filename: src/main.rs

# use std::thread;
# use std::time::Duration;
#
# struct Cacher<T>
# where T: Fn(i32) -> i32
# {
# calculation: T,
# value: Option<i32>,
# }
#
# impl<T> Cacher<T>
# where T: Fn(i32) -> i32
# {
# fn new(calculation: T) -> Cacher<T> {
# Cacher {
# calculation,
# value: None,
# }
# }
#
# fn value(&mut self, arg: i32) -> i32 {
# match self.value {
# Some(v) => v,
# None => {
# let v = (self.calculation)(arg);
# self.value = Some(v);
# v
# },
# }
# }
# }
#
fn generate_workout(intensity: i32, random_number: i32)
{

let mut expensive_result = Cacher::new(|num| {
println!("calculating slowly...");
thread::sleep(Duration::from_secs(2));
num

});



347

if intensity < 25 {
println!(

"Today, do {} pushups!",
expensive_result.value(intensity)

);
println!(

"Next, do {} situps!",
expensive_result.value(intensity)

);
} else {

if random_number == 3 {
println!("Take a break today! Remember to stay

hydrated!");
} else {

println!(
"Today, run for {} minutes!",
expensive_result.value(intensity)

)
}

}
}

Listing 13-11: Using Cacher in the generate_workout function to ab-
stract away the caching logic

Instead of saving the closure in a variable directly, we save a new
instance of Cacher that holds the closure. Then, in each place we
want the result, we call the value method on the Cacher instance. We
can call the value method as many times as we want, or not call it
at all, and the expensive calculation will be run a maximum of once.
Try running this program with the main function from Listing 13-2,
and change the values in the simulated_user_specified_value and
simulated_random_number variables to verify that in all of the cases
in the various if and else blocks, calculating slowly... printed
by the closure only shows up once and only when needed.

The Cacher takes care of the logic necessary to ensure we aren’t
calling the expensive calculation more than we need to be so that
generate_workout can focus on the business logic. Caching values
is a more generally useful behavior that we might want to use in other
parts of our code with other closures as well. However, there are a few
problems with the current implementation of Cacher that would make
reusing it in different contexts difficult.



348

The first problem is a Cacher instance assumes it will always get
the same value for the parameter arg to the value method. That is,
this test of Cacher will fail:

#[test]
fn call_with_different_values() {

let mut c = Cacher::new(|a| a);

let v1 = c.value(1);
let v2 = c.value(2);

assert_eq!(v2, 2);
}

This test creates a new Cacher instance with a closure that returns the
value passed into it. We call the value method on this Cacher instance
with an arg value of 1 and then an arg value of 2, and we expect that
the call to value with the arg value of 2 returns 2.

Run this with the Cacher implementation from Listing 13-9 and
Listing 13-10 and the test will fail on the assert_eq! with this mes-
sage:

thread 'call_with_different_arg_values' panicked at 'assertion
failed:
`(left == right)` (left: `1`, right: `2`)', src/main.rs

The problem is that the first time we called c.value with 1, the Cacher
instance saved Some(1) in self.value. After that, no matter what we
pass in to the value method, it will always return 1.

Try modifying Cacher to hold a hash map rather than a single value.
The keys of the hash map will be the arg values that are passed in,
and the values of the hash map will be the result of calling the closure
on that key. Instead of looking at whether self.value directly has a
Some or a None value, the value function will look up the arg in the
hash map and return the value if it’s present. If it’s not present, the
Cacher will call the closure and save the resulting value in the hash
map associated with its arg value.

Another problem with the current Cacher implementation that re-
stricts its use is that it only accepts closures that take one parameter
of type i32 and return an i32. We might want to be able to cache the
results of closures that take a string slice as an argument and return
usize values, for example. Try introducing more generic parameters
to increase the flexibility of the Cacher functionality.



349

Closures Can Capture Their Environment

In the workout generator example, we only used closures as inline
anonymous functions. Closures have an additional ability we can use
that functions don’t have, however: they can capture their environment
and access variables from the scope in which they’re defined.

Listing 13-12 has an example of a closure stored in the variable
equal_to_x that uses the variable x from the closure’s surrounding
environment:

Filename: src/main.rs

fn main() {
let x = 4;

let equal_to_x = |z| z == x;

let y = 4;

assert!(equal_to_x(y));
}

Listing 13-12: Example of a closure that refers to a variable in its
enclosing scope

Here, even though x is not one of the parameters of equal_to_x,
the equal_to_x closure is allowed to use the x variable that’s defined
in the same scope that equal_to_x is defined in.

We can’t do the same with functions; let’s see what happens if we
try:

Filename: src/main.rs

fn main() {
let x = 4;

fn equal_to_x(z: i32) -> bool { z == x }

let y = 4;

assert!(equal_to_x(y));
}

We get an error:



350

error[E0434]: can't capture dynamic environment in a fn
item; use the || { ... }
closure form instead
-->
|

4 | fn equal_to_x(z: i32) -> bool { z == x }
| ^

The compiler even reminds us that this only works with closures!
When a closure captures a value from its environment, the closure

uses memory to store the values for use in the closure body. This
use of memory is overhead that we don’t want pay for in the more
common case where we want to execute code that doesn’t capture its
environment. Because functions are never allowed to capture their en-
vironment, defining and using functions will never incur this overhead.

Closures can capture values from their environment in three ways,
which directly map to the three ways a function can take a parame-
ter: taking ownership, borrowing immutably, and borrowing mutably.
These ways of capturing values are encoded in the three Fn traits as
follows:

• FnOnce takes ownership of the variables it captures from the en-
vironment and moves those variables into the closure when the
closure is defined. Therefore, a FnOnce closure cannot be called
more than once in the same context.

• Fn borrows values from the environment immutably.

• FnMut can change the environment since it mutably borrows val-
ues.

When we create a closure, Rust infers how we want to reference the
environment based on how the closure uses the values from the environ-
ment. In Listing 13-12, the equal_to_x closure borrows x immutably
(so equal_to_x has the Fn trait) since the body of the closure only
needs to read the value in x.

If we want to force the closure to take ownership of the values it uses
in the environment, we can use the move keyword before the parameter
list. This is mostly useful when passing a closure to a new thread in
order to move the data to be owned by the new thread. We’ll have
more examples of move closures in Chapter 16 when we talk about
concurrency, but for now here’s the code from Listing 13-12 with the



351

move keyword added to the closure definition and using vectors instead
of integers, since integers can be copied rather than moved:

Filename: src/main.rs

fn main() {
let x = vec![1, 2, 3];

let equal_to_x = move |z| z == x;

println!("can't use x here: {:?}", x);

let y = vec![1, 2, 3];

assert!(equal_to_x(y));
}

This example doesn’t compile:

error[E0382]: use of moved value: `x`
--> src/main.rs:6:40
|

4 | let equal_to_x = move |z| z == x;
| -------- value moved (into closure)
here

5 |
6 | println!("can't use x here: {:?}", x);

| ^ value used
here after move
|
= note: move occurs because `x` has type `std::vec::Vec<i32>`,

which does not
implement the `Copy` trait

The x value is moved into the closure when the closure is defined be-
cause of the move keyword. The closure then has ownership of x, and
main isn’t allowed to use x anymore. Removing the println! will fix
this example.

Most of the time when specifying one of the Fn trait bounds, you
can start with Fn and the compiler will tell you if you need FnMut or
FnOnce based on what happens in the closure body.

To illustrate situations where closures that can capture their envi-
ronment are useful as function parameters, let’s move on to our next
topic: iterators.



352

1.2
Processing a Series of Items with Iterators
The iterator pattern allows you to perform some task on a sequence of
items in turn. An iterator is responsible for the logic around iterating
over each item in the sequence and determining when the sequence has
finished. When we use iterators, we don’t have to reimplement that
logic ourselves.

In Rust, iterators are lazy, which means they have no effect until
we call methods on them that consume the iterator to use it up. For
example, the code in Listing 13-13 creates an iterator over the items in
the vector v1 by calling the iter method defined on Vec. This code by
itself doesn’t do anything useful:

let v1 = vec![1, 2, 3];

let v1_iter = v1.iter();

Listing 13-13: Creating an iterator; this by itself isn’t useful
After creating an iterator, we can choose to use it in a variety of

ways. In Listing 3-6, we actually used iterators with for loops to
execute some code on each item, though we glossed over what the call
to iter did until now. The example in Listing 13-14 separates the
creation of the iterator from the use of the iterator in the for loop.
The iterator is stored in the v1_iter variable, and no iteration takes
place at that time. Once the for loop is called using the iterator in
v1_iter, then each element in the iterator is used in one iteration of
the loop, which prints out each value:

let v1 = vec![1, 2, 3];

let v1_iter = v1.iter();

for val in v1_iter {
println!("Got: {}", val);

}

Listing 13-13: Making use of an iterator in a for loop
In languages that don’t have iterators provided by their standard

libraries, we would likely write this same functionality by starting a
variable at index 0, using that variable to index into the vector to get a
value, and incrementing the variable value in a loop until its value gets



353

up to the total number of items in the vector. Iterators take care of all
of that logic for us, which cuts down on the repetitive code we would
have to write and potentially mess up. In addition, the way iterators
are implemented gives us more flexibility to use the same logic with
many different kinds of sequences, not just data structures that we can
index into like vectors. Let’s see how iterators do that.

The Iterator trait and the next method

Iterators all implement a trait named Iterator that is defined in the
standard library. The definition of the trait looks like this:

trait Iterator {
type Item;

fn next(&mut self) -> Option<Self::Item>;

// methods with default implementations elided
}

You’ll notice some new syntax that we haven’t covered yet: type Item
and Self::Item, which are defining an associated type with this trait.
We’ll talk about associated types in depth in Chapter 19, but for now,
all you need to know is that this code says implementing Iterator
trait requires that you also define an Item type, and this Item type is
used in the return type of the next method. In other words, the Item
type will be the type of element that’s returned from the iterator.

The next method is the only method that the Iterator trait re-
quires implementers of the trait to define. next returns one item of
the iterator at a time wrapped in Some, and when iteration is over, it
returns None. We can call the next method on iterators directly if we’d
like; Listing 13-14 has a test that demonstrates the values we’d get on
repeated calls to next on the iterator created from the vector:

Filename: src/lib.rs

#[test]
fn iterator_demonstration() {

let v1 = vec![1, 2, 3];

let mut v1_iter = v1.iter();

assert_eq!(v1_iter.next(), Some(&1));



354

assert_eq!(v1_iter.next(), Some(&2));
assert_eq!(v1_iter.next(), Some(&3));
assert_eq!(v1_iter.next(), None);

}

Listing 13-14: Calling the next method on an iterator
Note that we needed to make v1_iter mutable: calling the next

method on an iterator changes the iterator’s state that keeps track of
where it is in the sequence. Put another way, this code consumes,
or uses up, the iterator. Each call to next eats up an item from the
iterator.

Also note that the values we get from the calls to next are im-
mutable references to the values in the vector. The iter method pro-
duces an iterator over immutable references. If we wanted to create an
iterator that takes ownership of v1 and returns owned values, we can
call into_iter instead of iter. Similarly, if we want to iterate over
mutable references, we can call iter_mut instead of iter.

Methods in the Iterator Trait that Consume the Iterator

The Iterator trait has a number of different methods with default
implementations provided for us by the standard library; you can find
out all about these methods by looking in the standard library API
documentation for the Iterator trait. Some of these methods call
the next method in their definition, which is why we’re required to
implement the next method when implementing the Iterator trait.

The methods that call the next method are called consuming adap-
tors, since calling them uses up the iterator. An example of a consuming
adaptor is the sum method. This method takes ownership of the iterator
and iterates through the items by repeatedly calling next, thus con-
suming the iterator. As it iterates through each item, it adds each item
to a running total and returns the total when iteration has completed.
Listing 13-15 has a test illustrating a use of the sum method:

Filename: src/lib.rs

#[test]
fn iterator_sum() {

let v1 = vec![1, 2, 3];

let v1_iter = v1.iter();



355

let total: i32 = v1_iter.sum();

assert_eq!(total, 6);
}

Listing 13-15: Calling the sum method to get the total of all items in
the iterator

We aren’t allowed to use v1_iter after the call to sum since sum
takes ownership of the iterator we call it on.

Methods in the Iterator Trait that Produce Other Iterators

Another kind of method defined on the Iterator trait are methods that
produce other iterators. These methods are called iterator adaptors
and allow us to change iterators into different kind of iterators. We
can chain multiple calls to iterator adaptors. Because all iterators are
lazy, however, we have to call one of the consuming adaptor methods
in order to get results from calls to iterator adaptors. Listing 13-16
shows an example of calling the iterator adaptor method map, which
takes a closure that map will call on each item in order to produce a
new iterator in which each item from the vector has been incremented
by 1. This code produces a warning, though:

Filename: src/main.rs

let v1: Vec<i32> = vec![1, 2, 3];

v1.iter().map(|x| x + 1);

Listing 13-16: Calling the iterator adapter map to create a new iterator
The warning we get is:

warning: unused result which must be used: iterator adaptors
are lazy and do
nothing unless consumed
--> src/main.rs:4:1
|

4 | v1.iter().map(|x| x + 1);
| ^^^^^^^^^^^^^^^^^^^^^^^^^
|
= note: #[warn(unused_must_use)] on by default

The code in Listing 13-16 isn’t actually doing anything; the closure
we’ve specified never gets called. The warning reminds us why: iterator
adaptors are lazy, and we probably meant to consume the iterator here.



356

In order to fix this warning and consume the iterator to get a useful
result, we’re going to use the collect method, which we saw briefly
in Chapter 12. This method consumes the iterator and collects the
resulting values into a data structure. In Listing 13-17, we’re going to
collect the results of iterating over the iterator returned from the call
to map into a vector that will contain each item from the original vector
incremented by 1:

Filename: src/main.rs

let v1: Vec<i32> = vec![1, 2, 3];

let v2: Vec<_> = v1.iter().map(|x| x + 1).collect();

assert_eq!(v2, vec![2, 3, 4]);

Listing 13-17: Calling the map method to create a new iterator, then
calling the collect method to consume the new iterator and create a
vector

Because map takes a closure, we can specify any operation that we
want to perform on each item that we iterate over. This is a great
example of how using closures lets us customize some behavior while
reusing the iteration behavior that the Iterator trait provides.

Also, to generalize this discussion a bit, would you ever use iter
without map? -->

Using Closures that Capture their Environment with Iterators

Now that we’ve introduced iterators, we can demonstrate a common
use of closures that capture their environment by using the filter
iterator adapter. The filter method on an iterator takes a closure
that takes each item from the iterator and returns a boolean. If the
closure returns true, the value will be included in the iterator produced
by filter. If the closure returns false, the value won’t be included in
the resulting iterator. Listing 13-18 demonstrates using filter with a
closure that captures the shoe_size variable from its environment in
order to iterate over a collection of Shoe struct instances in order to
return only shoes that are the specified size:

Filename: src/lib.rs

#[derive(PartialEq, Debug)]
struct Shoe {

size: i32,



357

style: String,
}

fn shoes_in_my_size(shoes: Vec<Shoe>, shoe_size: i32) -
> Vec<Shoe> {

shoes.into_iter()
.filter(|s| s.size == shoe_size)
.collect()

}

#[test]
fn filters_by_size() {

let shoes = vec![
Shoe { size: 10, style: String::from("sneaker")

},
Shoe { size: 13, style: String::from("sandal")

},
Shoe { size: 10, style: String::from("boot") },

];

let in_my_size = shoes_in_my_size(shoes, 10);

assert_eq!(
in_my_size,
vec![

Shoe { size: 10, style: String::from("sneaker")
},

Shoe { size: 10, style: String::from("boot")
},

]
);

}

Listing 13-18: Using the filter method with a closure that captures
shoe_size

The shoes_in_my_size function takes ownership of a vector of
shoes and a shoe size as parameters. It returns a vector containing
only shoes of the specified size. In the body of shoes_in_my_size, we
call into_iter to create an iterator that takes ownership of the vector.
Then we call filter to adapt that iterator into a new iterator that
only contains elements for which the closure returns true. The closure
we’ve specified captures the shoe_size parameter from the environ-



358

ment and uses the value to compare with each shoe’s size to only keep
shoes that are of the size specified. Finally, calling collect gathers the
values returned by the adapted iterator into a vector that the function
returns.

The test shows that when we call shoes_in_my_size, we only get
back shoes that have the same size as the value we specified.

Implementing the Iterator Trait to Create Our Own Iterators

We’ve shown that we can create an iterator by calling iter, into_
iter, or iter_mut on a vector. We can also create iterators from
the other collection types in the standard library, such as hash map.
Additionally, we can implement the Iterator trait in order to create
iterators that do anything we want. As previously mentioned, the only
method we’re required to provide a definition for is the next method.
Once we’ve done that, we can use all the other methods that have
default implementations provided by the Iterator trait on our iterator!

The iterator we’re going to create is one that will only ever count
from 1 to 5. First, we’ll create a struct to hold on to some values,
and then we’ll make this struct into an iterator by implementing the
Iterator trait and use the values in that implementation.

Listing 13-19 has the definition of the Counter struct and an asso-
ciated new function to create instances of Counter:

Filename: src/lib.rs

struct Counter {
count: u32,

}

impl Counter {
fn new() -> Counter {

Counter { count: 0 }
}

}

Listing 13-19: Defining the Counter struct and a new function that
creates instances of Counter with an initial value of 0 for count

The Counter struct has one field named count. This field holds
a u32 value that will keep track of where we are in the process of
iterating from 1 to 5. The count field is private since we want the
implementation of Counter to manage its value. The new function
enforces the behavior we want of always starting new instances with a
value of 0 in the count field.



359

Next, we’re going to implement the Iterator trait for our Counter
type by defining the body of the next method to specify what we want
to happen when this iterator is used, as shown in Listing 13-20:

Filename: src/lib.rs

# struct Counter {
# count: u32,
# }
#
impl Iterator for Counter {

type Item = u32;

fn next(&mut self) -> Option<Self::Item> {
self.count += 1;

if self.count < 6 {
Some(self.count)

} else {
None

}
}

}

Listing 13-20: Implementing the Iterator trait on our Counter struct
We set the associated Item type for our iterator to u32, meaning

the iterator will return u32 values. Again, don’t worry about associated
types yet, we’ll be covering them in Chapter 19. We want our iterator
to add one to the current state, which is why we initialized count to
0: we want our iterator to return one first. If the value of count is less
than six, next will return the current value wrapped in Some, but if
count is six or higher, our iterator will return None.

Using Our Counter Iterator’s next Method Once we’ve imple-
mented the Iterator trait, we have an iterator! Listing 13-21 shows
a test demonstrating that we can use the iterator functionality our
Counter struct now has by calling the next method on it directly, just
like we did with the iterator created from a vector in Listing 13-14:

Filename: src/lib.rs

# struct Counter {
# count: u32,
# }



360

#
# impl Iterator for Counter {
# type Item = u32;
#
# fn next(&mut self) -> Option<Self::Item> {
# self.count += 1;
#
# if self.count < 6 {
# Some(self.count)
# } else {
# None
# }
# }
# }
#
#[test]
fn calling_next_directly() {

let mut counter = Counter::new();

assert_eq!(counter.next(), Some(1));
assert_eq!(counter.next(), Some(2));
assert_eq!(counter.next(), Some(3));
assert_eq!(counter.next(), Some(4));
assert_eq!(counter.next(), Some(5));
assert_eq!(counter.next(), None);

}

Listing 13-21: Testing the functionality of the next method implemen-
tation

This test creates a new Counter instance in the counter variable
and then calls next repeatedly, verifying that we have implemented the
behavior we want this iterator to have of returning the values from 1
to 5.

Using Other Iterator Trait Methods on Our Iterator Because
we implemented the Iterator trait by defining the next method, we
can now use any Iterator trait method’s default implementations that
the standard library has defined, since they all use the next method’s
functionality.

For example, if for some reason we wanted to take the values that an
instance of Counter produces, pair those values with values produced
by another Counter instance after skipping the first value that instance



361

produces, multiply each pair together, keep only those results that are
divisible by three, and add all the resulting values together, we could
do so as shown in the test in Listing 13-22:

Filename: src/lib.rs

# struct Counter {
# count: u32,
# }
#
# impl Counter {
# fn new() -> Counter {
# Counter { count: 0 }
# }
# }
#
# impl Iterator for Counter {
# // Our iterator will produce u32s
# type Item = u32;
#
# fn next(&mut self) -> Option<Self::Item> {
# // increment our count. This is why we started
at zero.
# self.count += 1;
#
# // check to see if we've finished counting or
not.
# if self.count < 6 {
# Some(self.count)
# } else {
# None
# }
# }
# }
#
#[test]
fn using_other_iterator_trait_methods() {

let sum: u32 = Counter::new().zip(Counter::new().skip(
1))

.map(|(a, b)| a * b)

.filter(|x| x % 3 == 0)



362

.sum();
assert_eq!(18, sum);

}

Listing 13-22: Using a variety of Iterator trait methods on our Counter
iterator

Note that zip produces only four pairs; the theoretical fifth pair (
5, None) is never produced because zip returns None when either of
its input iterators return None.

All of these method calls are possible because we implemented the
Iterator trait by specifying how the next method works and the stan-
dard library provides default implementations for other methods that
call next.

1.3
Improving our I/O Project
We can improve our implementation of the I/O project in Chapter 12
by using iterators to make places in the code clearer and more concise.
Let’s take a look at how iterators can improve our implementation of
both the Config::new function and the search function.

Removing a clone Using an Iterator

In Listing 12-13, we had code that took a slice of String values and
created an instance of the Config struct by checking for the right num-
ber of arguments, indexing into the slice, and cloning the values so that
the Config struct could own those values. We’ve reproduced the code
here in Listing 13-23:

Filename: src/main.rs

impl Config {
fn new(args: &[String]) -> Result<Config, &'static

str> {
if args.len() < 3 {

return Err("not enough arguments");
}

let query = args[1].clone();
let filename = args[2].clone();



363

Ok(Config {
query, filename

})
}

}

Listing 13-23: Reproduction of the Config::new function from Listing
12-13

At the time, we said not to worry about the inefficient clone calls
here because we would remove them in the future. Well, that time is
now!

The reason we needed clone here in the first place is that we have a
slice with String elements in the parameter args, but the new function
does not own args. In order to be able to return ownership of a Config
instance, we need to clone the values that we put in the query and
filename fields of Config, so that the Config instance can own its
values.

With our new knowledge about iterators, we can change the new
function to take ownership of an iterator as its argument instead of
borrowing a slice. We’ll use the iterator functionality instead of the
code we had that checks the length of the slice and indexes into specific
locations. This will clear up what the Config::new function is doing
since the iterator will take care of accessing the values.

Once Config::new taking ownership of the iterator and not using
indexing operations that borrow, we can move the String values from
the iterator into Config rather than calling clone and making a new
allocation.

Using the Iterator Returned by env::args Directly In your
I/O project’s src/main.rs, let’s change the start of the main function
from this code that we had in Listing 12-23:

fn main() {
let args: Vec<String> = env::args().collect();
let mut stderr = std::io::stderr();

let config = Config::new(&args).unwrap_or_else(|err|
{

writeln!(
&mut stderr,



364

"Problem parsing arguments: {}",
err

).expect("Could not write to stderr");
process::exit(1);

});
// ...snip...

}

To the code in Listing 13-24:
Filename: src/main.rs

fn main() {
let mut stderr = std::io::stderr();

let config = Config::new(env::args()).unwrap_or_else(
|err| {

writeln!(
&mut stderr,
"Problem parsing arguments: {}",
err

).expect("Could not write to stderr");
process::exit(1);

});
// ...snip...

}

Listing 13-24: Passing the return value of env::args to Config::new
The env::args function returns an iterator! Rather than collecting

the iterator values into a vector and then passing a slice to Config::
new, now we’re passing ownership of the iterator returned from env::
args to Config::new directly.

Next, we need to update the definition of Config::new. In your
I/O project’s src/lib.rs, let’s change the signature of Config::new to
look like Listing 13-25:

Filename: src/lib.rs

impl Config {
fn new(args: std::env::Args) -> Result<Config, &'static

str> {
// ...snip...

Listing 13-25: Updating the signature of Config::new to expect an
iterator



365

The standard library documentation for the env::args function
shows that the type of the iterator it returns is std::env::Args. We’ve
updated the signature of the Config::new function so that the param-
eter args has the type std::env::Args instead of &[String].

Using Iterator Trait Methods Instead of Indexing Next, we’ll
fix the body of Config::new. The standard library documentation also
mentions that std::env::Args implements the Iterator trait, so we
know we can call the next method on it! Listing 13-26 has the new
code:

Filename: src/lib.rs

# struct Config {
# query: String,
# filename: String,
# }
#
impl Config {

fn new(mut args: std::env::Args) -> Result<Config,
&'static str> {

args.next();

let query = match args.next() {
Some(arg) => arg,
None => return Err("Didn't get a query string")

,
};

let filename = match args.next() {
Some(arg) => arg,
None => return Err("Didn't get a file name")

,
};

Ok(Config {
query, filename

})
}

}

Listing 13-26: Changing the body of Config::new to use iterator meth-
ods



366

Remember that the first value in the return value of env::args
is the name of the program. We want to ignore that and get to the
next value, so first we call next and do nothing with the return value.
Second, we call next on the value we want to put in the query field of
Config. If next returns a Some, we use a match to extract the value.
If it returns None, it means not enough arguments were given and we
return early with an Err value. We do the same thing for the filename
value.

Making Code Clearer with Iterator Adaptors

The other place in our I/O project we could take advantage of iter-
ators is in the search function, as implemented in Listing 12-19 and
reproduced here in Listing 13-27:

Filename: src/lib.rs

fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a
str> {

let mut results = Vec::new();

for line in contents.lines() {
if line.contains(query) {

results.push(line);
}

}

results
}

Listing 13-27: The implementation of the search function from Listing
12-19

We can write this code in a much shorter way by using iterator
adaptor methods instead. This also lets us avoid having a mutable in-
termediate results vector. The functional programming style prefers
to minimize the amount of mutable state to make code clearer. Re-
moving the mutable state might make it easier for us to make a future
enhancement to make searching happen in parallel, since we wouldn’t
have to manage concurrent access to the results vector. Listing 13-28
shows this change:

Filename: src/lib.rs



367

fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a
str> {

contents.lines()
.filter(|line| line.contains(query))
.collect()

}

Listing 13-28: Using iterator adaptor methods in the implementation
of the search function

Recall that the purpose of the search function is to return all lines
in contents that contain the query. Similarly to the filter exam-
ple in Listing 13-18, we can use the filter adaptor to keep only the
lines that line.contains(query) returns true for. We then collect the
matching lines up into another vector with collect. Much simpler!

The next logical question is which style you should choose in your
own code: the original implementation in Listing 13-27, or the version
using iterators in Listing 13-28. Most Rust programmers prefer to use
the iterator style. It’s a bit tougher to get the hang of at first, but
once you get a feel for the various iterator adaptors and what they
do, iterators can be easier to understand. Instead of fiddling with the
various bits of looping and building new vectors, the code focuses on
the high-level objective of the loop. This abstracts away some of the
commonplace code so that it’s easier to see the concepts that are unique
to this code, like the filtering condition each element in the iterator must
pass.

But are the two implementations truly equivalent? The intuitive
assumption might be that the more low-level loop will be faster. Let’s
talk about performance.

1.4
Comparing Performance: Loops versus Iterators
To determine which to use, we need to know which version of our
search functions is faster: the version with an explicit for loop or the
version with iterators.

We ran a benchmark by loading the entire contents of “The Adven-
tures of Sherlock Holmes” by Sir Arthur Conan Doyle into a String
and looking for the word “the” in the contents. Here were the results
of the benchmark on the version of search using the for loop and the
version using iterators:



368

test bench_search_for ... bench: 19,620,300 ns/iter (
+/- 915,700)
test bench_search_iter ... bench: 19,234,900 ns/iter (
+/- 657,200)

The iterator version ended up slightly faster! We’re not going to go
through the benchmark code here, as the point is not to prove that
they’re exactly equivalent, but to get a general sense of how these two
implementations compare performance-wise. For a more comprehen-
sive benchmark, you’d want to check various texts of various sizes,
different words, words of different lengths, and all kinds of other vari-
ations. The point is this: iterators, while a high-level abstraction, get
compiled down to roughly the same code as if you’d written the lower-
level code yourself. Iterators are one of Rust’s zero-cost abstractions,
by which we mean using the abstraction imposes no additional runtime
overhead in the same way that Bjarne Stroustrup, the original designer
and implementer of C++, defines zero-overhead:

In general, C++ implementations obey the zero-overhead
principle: What you don’t use, you don’t pay for. And fur-
ther: What you do use, you couldn’t hand code any better.

• Bjarne Stroustrup “Foundations of C++”

As another example, here is some code taken from an audio decoder.
The decoding algorithm uses the linear prediction mathematical opera-
tion to estimate future values based on a linear function of the previous
samples.

This code uses an iterator chain to do some math on three variables
in scope: a buffer slice of data, an array of 12 coefficients, and
an amount by which to shift data in qlp_shift. We’ve declared the
variables within this example but not given them any values; while
this code doesn’t have much meaning outside of its context, it’s still a
concise, real-world example of how Rust translates high-level ideas to
low-level code:
let buffer: &mut [i32];
let coefficients: [i64; 12];
let qlp_shift: i16;

for i in 12..buffer.len() {
let prediction = coefficients.iter()

.zip(&buffer[i - 12..i])



369

.map(|(&c, &s)| c * s
as i64)

.sum::<i64>() >> qlp_shift;
let delta = buffer[i];
buffer[i] = prediction as i32 + delta;

}

In order to calculate the value of prediction, this code iterates through
each of the 12 values in coefficients and uses the zip method to pair
the coefficient values with the previous 12 values in buffer. Then, for
each pair, we multiply the values together, sum all the results, and shift
the bits in the sum qlp_shift bits to the right.

Calculations in applications like audio decoders often prioritize per-
formance most highly. Here, we’re creating an iterator, using two adap-
tors, then consuming the value. What assembly code would this Rust
code compile to? Well, as of this writing, it compiles down to the same
assembly you’d write by hand. There’s no loop at all corresponding to
the iteration over the values in coefficients: Rust knows that there
are twelve iterations, so it “unrolls” the loop. Unrolling is an optimiza-
tion that removes the overhead of the loop controlling code and instead
generates repetitive code for each iteration of the loop.

All of the coefficients get stored in registers, which means it’s very
fast to access the values. There are no bounds checks on the array
access at runtime. All these optimizations Rust is able to apply make
the resulting code extremely efficient.

Now that you know this, go use iterators and closures without fear!
They make code feel higher-level, but don’t impose a runtime perfor-
mance penalty for doing so.

Summary
Closures and iterators are Rust features inspired by functional pro-
gramming language ideas. They contribute to Rust’s ability to clearly
express high-level ideas, at low level performance. The implementa-
tions of closures and iterators are such that runtime performance is
not affected. This is part of Rust’s goal to strive to provide zero-cost
abstractions.

Now that we’ve improved the expressiveness of our I/O project, let’s
look at some more features of cargo that would help us get ready to
share the project with the world.



370



Chapter 2

More about Cargo and
Crates.io

We’ve used some features of Cargo in this book so far, but only the
most basic ones. We’ve used Cargo to build, run, and test our code,
but it can do a lot more. Let’s go over some of its other features now.
Cargo can do even more than what we will cover in this chapter; for a
full explanation, see its documentation.

We’re going to cover:

• Customizing your build through release profiles

• Publishing libraries on crates.io

• Organizing larger projects with workspaces

• Installing binaries from crates.io

• Extending Cargo with your own custom commands

2.1
Release profiles
Cargo supports a notion of release profiles. These profiles control vari-
ous options for compiling your code and let you configure each profile
independently of the others. You’ve seen a hint of this feature in the
output of your builds:



372

$ cargo build
Finished dev [unoptimized + debuginfo] target(s) in

0.0 secs
$ cargo build --release

Finished release [optimized] target(s) in 0.0 secs

The “dev” and “release” notifications here indicate that the compiler
is using different profiles. Cargo supports four profiles:

• dev: used for cargo build

• release used for cargo build --release

• test used for cargo test

• doc used for cargo doc

We can customize our Cargo.toml file with [profile.*] sections to
tweak various compiler options for these profiles. For example, here’s
one of the default options for the dev and release profiles:

[profile.dev]
opt-level = 0

[profile.release]
opt-level = 3

The opt-level setting controls how many optimizations Rust will ap-
ply to your code. The setting goes from zero to three. Applying more
optimizations takes more time. When you’re compiling very often in
development, you’d usually want compiling to be fast at the expense of
the resulting code running slower. When you’re ready to release, it’s
better to spend more time compiling the one time that you build your
code to trade off for code that will run faster every time you use that
compiled code.

We could override these defaults by changing them in Cargo.toml.
For example, if we wanted to use optimization level 1 in development:

[profile.dev]
opt-level = 1

This overrides the default setting of 0, and now our development builds
will use more optimizations. Not as much as a release build, but a little
bit more.

For the full list of settings and the defaults for each profile, see
Cargo’s documentation.

http://doc.crates.io/


373

2.2
Publishing a Crate to Crates.io
We’ve added crates from crates.io as dependencies of our project. We
can choose to share our code for other people to use as well. Crates.io
distributes the source code of your packages, so it is primarily used to
distribute code that’s open source.

Rust and Cargo have some features that can make your published
package easier for people to find and use. We’ll talk about some of
those features, then cover how to publish a package.

Documentation Comments

In Chapter 3, we saw comments in Rust that start with //. Rust also
has a second kind of comment: the documentation comment. While
comments can be useful if someone is reading your code, you can gener-
ate HTML documentation that displays the contents of documentation
comments for public API items meant for someone who’s interested in
knowing how to use your crate, as opposed to how your crate is imple-
mented. Note that documentation is only generated for library crates,
since binary crates don’t have a public API that people need to know
how to use.

Documentation comments use /// instead of // and support Mark-
down notation inside. They go just before the item they are document-
ing. Here’s documentation comments for an add_one function:

Filename: src/lib.rs

/// Adds one to the number given.
///
/// # Examples
///
/// ```
/// let five = 5;
///
/// assert_eq!(6, add_one(five));
/// ```
pub fn add_one(x: i32) -> i32 {

x + 1
}

Listing 14-1: A documentation comment for a function



374

cargo doc runs a tool distributed with Rust, rustdoc, to generate
HTML documentation from these comments. To try this out locally,
you can run cargo doc --open, which will build the documentation
for your current crate (as well as all of your crate’s dependencies) and
open it in a web browser. Navigate to the add_one function and you’ll
see how the text in the documentation comments gets rendered.

Adding examples in code blocks in your documentation comments is
a way to clearly demonstrate how to use your library. There’s an addi-
tional bonus reason to do this: cargo test will run the code examples
in your documentation as tests! Nothing is better than documentation
with examples. Nothing is worse than examples that don’t actually
work because the code has changed since the documentation has been
written. Try running cargo test with the documentation for the add_
one function in Listing 14-1; you’ll see a section in the test results like
this:

Doc-tests add-one

running 1 test
test add_one_0 ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured

Try changing the function or the example to see that cargo test will
catch that the example no longer works!

There’s another style of doc comment, //!, to comment containing
items (e.g. crates, modules or functions), instead of the items following
it. These are typically used inside the crate root (lib.rs) or a mod-
ule’s root (mod.rs) to document the crate or the module as a whole,
respectively. Here’s the documentation within the libstd module that
contains the entire standard library:

//! # The Rust Standard Library
//!
//! The Rust Standard Library provides the essential runtime
//! functionality for building portable Rust software.

Exporting a Convenient Public API with pub use

In Chapter 7, we covered how to organize our code into modules with
the mod keyword, how to make items public with the pub keyword, and
how to bring items into a scope with the use keyword. When publishing



375

a crate for people unfamiliar with the implementation to use, it’s worth
taking time to consider if the structure of your crate that’s useful for
you as you’re developing is what would be useful for people depending
on your crate. If the structure isn’t convenient to use from another
library, you don’t have to rearrange your internal organization: you
can choose to re-export items to make a different public structure with
pub use.

For example, say that we made a library named art consisting
of a kinds module containing two enums named PrimaryColor and
SecondaryColor, and a utils module containing a function named
mix as shown in Listing 14-2:

Filename: src/lib.rs

//! # Art
//!
//! A library for modeling artistic concepts.

pub mod kinds {
/// The primary colors according to the RYB color model.

pub enum PrimaryColor {
Red,
Yellow,
Blue,

}

/// The secondary colors according to the RYB color
model.

pub enum SecondaryColor {
Orange,
Green,
Purple,

}
}

pub mod utils {
use kinds::*;

/// Combines two primary colors in equal amounts to
create

/// a secondary color.



376

pub fn mix(c1: PrimaryColor, c2: PrimaryColor) -> SecondaryColor
{

// ...snip...
# SecondaryColor::Green

}
}

Listing 14-2: An art library with items organized into kinds and utils
modules

In order to use this library, another crate would have use statements
as in Listing 14-3:

Filename: src/main.rs

extern crate art;

use art::kinds::PrimaryColor;
use art::utils::mix;

fn main() {
let red = PrimaryColor::Red;
let yellow = PrimaryColor::Yellow;
mix(red, yellow);

}

Listing 14-3: A program using the art crate’s items with its internal
structure exported

Users of this crate shouldn’t need to know that PrimaryColor and
SecondaryColor are in the kinds module, and mix is in the utils
module; that structure might be useful for internal organization but
doesn’t have much meaning from the outside looking in.

To change this, we can add the following pub use statements to the
code from Listing 14-2 to re-export the types at the top level, as shown
in Listing 14-4:

Filename: src/lib.rs

//! # Art
//!
//! A library for modeling artistic concepts.

pub use kinds::PrimaryColor;
pub use kinds::SecondaryColor;
pub use utils::mix;



377

pub mod kinds {
// ...snip...

Listing 14-4: Adding pub use statements to re-export items
Re-exports are listed and linked on the front page of the crate’s

API documentation. Users of the art crate can still see and choose to
use the internal structure as in Listing 14-3, or they can use the more
convenient structure from Listing 14-4, as shown in Listing 14-5:

Filename: src/main.rs

extern crate art;

use art::PrimaryColor;
use art::mix;

fn main() {
// ...snip...

}

Listing 14-5: Using the re-exported items from the art crate
Creating a useful public API structure is more of an art than a

science. Choosing pub use gives you flexibility in how you expose your
crate’s internal structure to users. Take a look at some of the code
of crates you’ve installed to see if their internal structure differs from
their public API.

Before Your First Publish

Before being able to publish any crates, you’ll need to create an account
on crates.io and get an API token. To do so, visit the home page and
log in via a GitHub account. A GitHub account is a requirement for
now, but the site might support other ways of creating an account in
the future. Once you’re logged in, visit your Account Settings page and
run the cargo login command with the API key as the page specifies,
which will look something like this:

$ cargo login abcdefghijklmnopqrstuvwxyz012345

This command will inform Cargo of your API token and store it locally
in ~/.cargo/config. Note that this token is a secret and should not be
shared with anyone else. If it gets shared with anyone for any reason,
you should regenerate it immediately.

https://crates.io
https://crates.io
https://crates.io/me


378

Before Publishing a New Crate

First, your crate will need a unique name. While you’re working on
a crate locally, you may name a crate whatever you’d like, but crate
names on crates.io are allocated on a first-come-first- serve basis. Once
a crate name is taken, it cannot be used for another crate, so check on
the site that the name you’d like is available.

If you try to publish a crate as generated by cargo new, you’ll get
a warning and then an error:

$ cargo publish
Updating registry `https://github.com/rust-lang/crates.

io-index`
warning: manifest has no description, license, license-
file, documentation,
homepage or repository.
...snip...
error: api errors: missing or empty metadata fields: description,
license.
Please see http://doc.crates.io/manifest.html#package-metadata
for how to
upload metadata

We can include more information about our package in Cargo.toml.
Some of these fields are optional, but a description and a license are
required in order to publish so that people will know what your crate
does and under what terms they may use it.

The description appears with your crate in search results and on
your crate’s page. Descriptions are usually a sentence or two. The
license field takes a license identifier value, and the possible values
have been specified by the Linux Foundation’s Software Package Data
Exchange (SPDX). If you would like to use a license that doesn’t appear
there, instead of the license key, you can use license-file to specify
the name of a file in your project that contains the text of the license
you want to use.

Guidance on which license is right for your project is out of scope
for this book. Many people in the Rust community choose to license
their projects in the same way as Rust itself, with a dual license of MIT/
Apache-2.0, which demonstrates that you can specify multiple license
identifiers separated by a slash. So the Cargo.toml for a project that is
ready to publish might look like this:

https://crates.io
http://spdx.org/licenses/
http://spdx.org/licenses/


379

[package]
name = "guessing_game"
version = "0.1.0"
authors = ["Your Name <you@example.com>"]
description = "A fun game where you guess what number the
computer has chosen."
license = "MIT/Apache-2.0"

[dependencies]

Be sure to check out the documentation on crates.io that describes
other metadata you can specify to ensure your crate can be discovered
and used more easily!

Publishing to Crates.io

Now that we’ve created an account, saved our API token, chosen a
name for our crate, and specified the required metadata, we’re ready
to publish! Publishing a crate is when a specific version is uploaded to
be hosted on crates.io.

Take care when publishing a crate, because a publish is perma-
nent. The version can never be overwritten, and the code cannot be
deleted. However, there is no limit to the number of versions which
can be published.

Let’s run the cargo publish command, which should succeed this
time since we’ve now specified the required metadata:

$ cargo publish
Updating registry `https://github.com/rust-lang/crates.

io-index`
Packaging guessing_game v0.1.0 (file:///projects/guessing_
game)
Verifying guessing_game v0.1.0 (file:///projects/guessing_
game)
Compiling guessing_game v0.1.0
(file:///projects/guessing_game/target/package/guessing_
game-0.1.0)
Finished dev [unoptimized + debuginfo] target(s) in 0.

19 secs
Uploading guessing_game v0.1.0 (file:///projects/guessing_
game)

http://doc.crates.io/manifest.html#package-metadata


380

Congratulations! You’ve now shared your code with the Rust commu-
nity, and anyone can easily add your crate as a dependency to their
project.

Publishing a New Version of an Existing Crate

When you’ve made changes to your crate and are ready to release a
new version, change the version value specified in your Cargo.toml.
Use the Semantic Versioning rules to decide what an appropriate next
version number is based on the kinds of changes you’ve made. Then
run cargo publish to upload the new version.

Removing Versions from Crates.io with cargo yank

Occasions may arise where you publish a version of a crate that actually
ends up being broken for one reason or another, such as a syntax error or
forgetting to include a file. For situations such as this, Cargo supports
yanking a version of a crate.

Marking a version of a crate as yanked means that no projects will
be able to start depending on that version, but all existing projects
that depend on that version will continue to be allowed to download
and depend on that version. One of the major goals of crates.io is to
act as a permanent archive of code so that builds of all projects will
continue to work, and allowing deletion of a version would go against
this goal. Essentially, a yank means that all projects with a Cargo.lock
will not break, while any future Cargo.lock files generated will not use
the yanked version.

A yank does not delete any code. The yank feature is not intended
for deleting accidentally uploaded secrets, for example. If that happens,
you must reset those secrets immediately.

To yank a version of a crate, run cargo yank and specify which
version you want to yank:

$ cargo yank --vers 1.0.1

You can also undo a yank, and allow projects to start depending on a
version again, by adding --undo to the command:

$ cargo yank --vers 1.0.1 --undo

http://semver.org/


381

2.3
Cargo Workspaces
In Chapter 12, we built a package that included both a binary crate and
a library crate. But what if the library crate continues to get bigger and
we want to split our package up further into multiple library crates? As
packages grow, separating out major components can be quite useful.
In this situation, Cargo has a feature called workspaces that can help
us manage multiple related packages that are developed in tandem.

A workspace is a set of packages that will all share the same Cargo.lock
and output directory. Let’s make a project using a workspace where
the code will be trivial so that we can concentrate on the structure of
a workspace. We’ll have a binary that uses two libraries: one that will
provide an add_one method and a second that will provide an add_two
method. Let’s start by creating a new crate for the binary:

$ cargo new --bin adder
Created binary (application) `adder` project

$ cd adder

We need to modify the binary package’s Cargo.toml to tell Cargo the
adder package is a workspace. Add this at the bottom of the file:

[workspace]

Like many Cargo features, workspaces support convention over con-
figuration: we don’t need to say anything more than this as long as
we follow the convention. The convention is that any crates that we
depend on as sub-directories will be part of the workspace. Let’s add a
path dependency to the adder crate by changing the [dependencies]
section of Cargo.toml to look like this:

[dependencies]
add-one = { path = "add-one" }

If we add dependencies that don’t have a path specified, those will be
normal dependencies that aren’t in this workspace.

Next, generate the add-one crate within the adder directory:

$ cargo new add-one
Created library `add-one` project

Your adder directory should now have these directories and files:



382

��� Cargo.toml
��� add-one
�   ��� Cargo.toml
�   ��� src
�   ��� lib.rs
��� src

��� main.rs

In add-one/src/lib.rs, let’s add an implementation of an add_one func-
tion:

Filename: add-one/src/lib.rs

pub fn add_one(x: i32) -> i32 {
x + 1

}

Open up src/main.rs for adder and add an extern crate line to bring
the new add-one library crate into scope, and change the main function
to use the add_one function:
extern crate add_one;

fn main() {
let num = 10;
println!("Hello, world! {} plus one is {}!", num, add_

one::add_one(num));
}

Let’s build it!
$ cargo build

Compiling add-one v0.1.0 (file:///projects/adder/add-
one)

Compiling adder v0.1.0 (file:///projects/adder)
Finished dev [unoptimized + debuginfo] target(s) in

0.68 secs

Note that running cargo build in the adder directory built both that
crate and the add-one crate in adder/add-one, but created only one
Cargo.lock and one target directory, both in the adder directory. See if
you can add an add-two crate in the same way.

Let’s now say that we’d like to use the rand crate in our add-one
crate. As usual, we’ll add it to the [dependencies] section in the
Cargo.toml for that crate:

Filename: add-one/Cargo.toml



383

[dependencies]

rand = "0.3.14"

And if we add extern crate rand; to add-one/src/lib.rs then run
cargo build, it will succeed:

$ cargo build
Updating registry `https://github.com/rust-lang/crates.

io-index`
Downloading rand v0.3.14
...snip...
Compiling rand v0.3.14
Compiling add-one v0.1.0 (file:///projects/adder/add-

one)
Compiling adder v0.1.0 (file:///projects/adder)
Finished dev [unoptimized + debuginfo] target(s) in

10.18 secs

The top level Cargo.lock now reflects the fact that add-one depends on
rand. However, even though rand is used somewhere in the workspace,
we can’t use it in other crates in the workspace unless we add rand to
their Cargo.toml as well. If we add extern crate rand; to src/main.rs
for the top level adder crate, for example, we’ll get an error:

$ cargo build
Compiling adder v0.1.0 (file:///projects/adder)

error[E0463]: can't find crate for `rand`
--> src/main.rs:1:1
|

1 | extern crate rand;
| ^^^^^^^^^^^^^^^^^^^ can't find crate

To fix this, edit Cargo.toml for the top level and indicate that rand is
a dependency for the adder crate.

For another enhancement, let’s add a test of the add_one::add_
one function within that crate:

Filename: add-one/src/lib.rs

pub fn add_one(x: i32) -> i32 {
x + 1

}



384

#[cfg(test)]
mod tests {

use super::*;

#[test]
fn it_works() {

assert_eq!(3, add_one(2));
}

}

Now run cargo test in the top-level adder directory:

$ cargo test
Compiling adder v0.1.0 (file:///projects/adder)
Finished dev [unoptimized + debuginfo] target(s) in

0.27 secs
Running target/debug/adder-f0253159197f7841

running 0 tests

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured

Wait a second, zero tests? We just added one! If we look at the output,
we can see that cargo test in a workspace only runs the tests for the
top level crate. To run tests for the other crates, we need to use the -
p argument to indicate we want to run tests for a particular package:

$ cargo test -p add-one
Finished dev [unoptimized + debuginfo] target(s) in

0.0 secs
Running target/debug/deps/add_one-abcabcabc

running 1 test
test tests::it_works ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured

Doc-tests add-one

running 0 tests



385

test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured

Similarly, if you choose to publish the workspace to crates.io, each crate
in the workspace will get published separately.

As your project grows, consider a workspace: smaller components
are easier to understand individually than one big blob of code. Keeping
the crates in a workspace can make coordination among them easier if
they work together and are often changed at the same time.

2.4
Installing Binaries from Crates.io with cargo install
The cargo install command allows you to install and use binary
crates locally. This isn’t intended to replace system packages; it’s meant
to be a convenient way for Rust developers to install tools that others
have shared on crates.io. Only packages which have binary targets can
be installed, and all binaries are installed into the installation root’s bin
folder. If you installed Rust using rustup.rs and don’t have any custom
configurations, this will be $HOME/.cargo/bin. Add that directory to
your $PATH to be able to run programs you’ve gotten through cargo
install.

For example, we mentioned in Chapter 12 that there’s a Rust im-
plementation of the grep tool for searching files called ripgrep. If we
want to install ripgrep, we can run:

$ cargo install ripgrep
Updating registry `https://github.com/rust-lang/crates.
io-index`
Downloading ripgrep v0.3.2
...snip...
Compiling ripgrep v0.3.2
Finished release [optimized + debuginfo] target(s)

in 97.91 secs
Installing ~/.cargo/bin/rg

The last line of the output shows the location and the name of the
installed binary, which in the case of ripgrep is named rg. As long as
the installation directory is in our $PATH as mentioned above, we can
then run rg --help and start using a faster, rustier tool for searching
files!



386

2.5
Extending Cargo with Custom Commands
Cargo is designed to be extensible with new subcommands without
having to modify Cargo itself. If a binary in your $PATH is named
cargo-something, you can run it as if it were a Cargo subcommand
by running cargo something. Custom commands like this are also
listed when you run cargo --list. It’s convenient to cargo install
extensions to Cargo then be able to run them just like the built-in
Cargo tools!

Summary
Sharing code with Cargo and crates.io is part of what makes the Rust
ecosystem useful for many different tasks. Rust’s standard library is
small and stable, but crates are easy to share, use, and improve on a
different timeline than the language itself. Don’t be shy about sharing
code that’s useful to you on crates.io; it’s likely that it will be useful to
someone else as well!



Chapter 3

Smart Pointers

Pointer is a generic programming term for something that refers to a lo-
cation that stores some other data. We learned about Rust’s references
in Chapter 4; they’re a plain sort of pointer indicated by the & sym-
bol and borrow the value that they point to. Smart pointers are data
structures that act like a pointer, but also have additional metadata
and capabilities, such as reference counting. The smart pointer pattern
originated in C++. In Rust, an additional difference between plain
references and smart pointers is that references are a kind of pointer
that only borrow data; by contrast, in many cases, smart pointers own
the data that they point to.

We’ve actually already encountered a few smart pointers in this
book, even though we didn’t call them that by name at the time. For
example, in a certain sense, String and Vec<T> from Chapter 8 are
both smart pointers. They own some memory and allow you to manip-
ulate it, and have metadata (like their capacity) and extra capabilities
or guarantees (String data will always be valid UTF-8). The charac-
teristics that distinguish a smart pointer from an ordinary struct are
that smart pointers implement the Deref and Drop traits, and in this
chapter we’ll be discussing both of those traits and why they’re impor-
tant to smart pointers.

Given that the smart pointer pattern is a general design pattern
used frequently in Rust, this chapter won’t cover every smart pointer
that exists. Many libraries have their own and you may write some
yourself. The ones we cover here are the most common ones from the
standard library:

• Box<T>, for allocating values on the heap



388

• Rc<T>, a reference counted type so data can have multiple owners

• RefCell<T>, which isn’t a smart pointer itself, but manages ac-
cess to the smart pointers Ref and RefMut to enforce the borrow-
ing rules at runtime instead of compile time

Along the way, we’ll also cover:

• The interior mutability pattern where an immutable type exposes
an API for mutating an interior value, and the borrowing rules
apply at runtime instead of compile time

• Reference cycles, how they can leak memory, and how to prevent
them

Let’s dive in!

3.1
Box<T> Points to Data on the Heap and Has a Known
Size
The most straightforward smart pointer is a box, whose type is written
Box<T>. Boxes allow you to put a single value on the heap (we talked
about the stack vs. the heap in Chapter 4). Listing 15-1 shows how to
use a box to store an i32 on the heap:

Filename: src/main.rs

fn main() {
let b = Box::new(5);
println!("b = {}", b);

}

Listing 15-1: Storing an i32 value on the heap using a box
This will print b = 5. In this case, we can access the data in the

box in a similar way as we would if this data was on the stack. Just
like any value that has ownership of data, when a box goes out of scope
like b does at the end of main, it will be deallocated. The deallocation
happens for both the box (stored on the stack) and the data it points
to (stored on the heap).

Putting a single value on the heap isn’t very useful, so you won’t
use boxes by themselves in the way that Listing 15-1 does very often. A
time when boxes are useful is when you want to ensure that your type



389

has a known size. For example, consider Listing 15-2, which contains
an enum definition for a cons list, a type of data structure that comes
from functional programming. Note that this won’t compile quite yet:

Filename: src/main.rs

enum List {
Cons(i32, List),
Nil,

}

Listing 15-2: The first attempt of defining an enum to represent a cons
list data structure of i32 values

We’re implementing a cons list that holds only i32 values. We could
have also chosen to implement a cons list independent of the type of
value by using generics as discussed in Chapter 10.

More Information About the Cons List

A cons list is a data structure that comes from the Lisp
programming language and its dialects. In Lisp, the cons
function (short for “construct function”) constructs a new
list from its two arguments, which usually are a single value
and another list.

The cons function concept has made its way into more
general functional programming jargon; “to cons x onto y”
informally means to construct a new container instance by
putting the element x at the start of this new container,
followed by the container y.

A cons list is produced by recursively calling the cons
function. The canonical name to denote the base case of
the recursion is Nil, which announces the end of the list.
Note that this is not the same as the “null” or “nil” concept
from Chapter 6, which is an invalid or absent value.

A cons list is a list where each element contains both a single value as
well as the remains of the list at that point. The remains of the list
are defined by nested cons lists. The end of the list is signified by the
value Nil. Cons lists aren’t used very often in Rust; Vec<T> is usually
a better choice. Implementing this data structure is a good example of
a situation where Box<T> is useful, though. Let’s find out why!

Using a cons list to store the list 1, 2, 3 would look like this:



390

use List::{Cons, Nil};

fn main() {
let list = Cons(1, Cons(2, Cons(3, Nil)));

}

The first Cons value holds 1 and another List value. This List value
is another Cons value that holds 2 and another List value. This is one
more Cons value that holds 3 and a List value, which is finally Nil,
the non-recursive variant that signals the end of the list.

If we try to compile the above code, we get the error shown in
Listing 15-3:

error[E0072]: recursive type `List` has infinite size
-->
|

1 | enum List {
| ^^^^^^^^^ recursive type has infinite size

2 | Cons(i32, List),
| --------------- recursive without indirection
|
= help: insert indirection (e.g., a `Box`, `Rc`, or `&`)

at some point to
make `List` representable

Listing 15-3: The error we get when attempting to define a recursive
enum

The error says this type ‘has infinite size’. Why is that? It’s because
we’ve defined List to have a variant that is recursive: it holds another
value of itself. This means Rust can’t figure out how much space it
needs in order to store a List value. Let’s break this down a bit: first
let’s look at how Rust decides how much space it needs to store a value
of a non-recursive type. Recall the Message enum we defined in Listing
6-2 when we discussed enum definitions in Chapter 6:

enum Message {
Quit,
Move { x: i32, y: i32 },
Write(String),
ChangeColor(i32, i32, i32),

}

When Rust needs to know how much space to allocate for a Message
value, it can go through each of the variants and see that Message:



391

:Quit does not need any space, Message::Move needs enough space
to store two i32 values, and so forth. Therefore, the most space a
Message value will need is the space it would take to store the largest
of its variants.

Contrast this to what happens when the Rust compiler looks at a
recursive type like List in Listing 15-2. The compiler tries to figure
out how much memory is needed to store a value of the List enum,
and starts by looking at the Cons variant. The Cons variant holds a
value of type i32 and a value of type List, so Cons needs an amount
of space equal to the size of an i32 plus the size of a List. To figure
out how much memory a List needs, it looks at its variants, starting
with the Cons variant. The Cons variant holds a value of type i32 and
a value of type List, and this continues infinitely, as shown in Figure
15-4.

Figure 15-4: An infinite List consisting of infinite Cons variants
Rust can’t figure out how much space to allocate for recursively

defined types, so the compiler gives the error in Listing 15-3. The error
did include this helpful suggestion:

= help: insert indirection (e.g., a `Box`, `Rc`, or `&`)
at some point to

make `List` representable

Because a Box<T> is a pointer, we always know how much space it
needs: a pointer takes up a usize amount of space. The value of the
usize will be the address of the heap data. The heap data can be any
size, but the address to the start of that heap data will always fit in
a usize. So if we change our definition from Listing 15-2 to look like
the definition here in Listing 15-5, and change main to use Box::new
for the values inside the Cons variants like so:

Filename: src/main.rs

enum List {
Cons(i32, Box<List>),
Nil,

}

use List::{Cons, Nil};

fn main() {
let list = Cons(1,



392

Box::new(Cons(2,
Box::new(Cons(3,

Box::new(Nil))))));
}

Listing 15-5: Definition of List that uses Box<T> in order to have a
known size

The compiler will be able to figure out the size it needs to store a
List value. Rust will look at List, and again start by looking at the
Cons variant. The Cons variant will need the size of i32 plus the space
to store a usize, since a box always has the size of a usize, no matter
what it’s pointing to. Then Rust looks at the Nil variant, which does
not store a value, so Nil doesn’t need any space. We’ve broken the
infinite, recursive chain by adding in a box. Figure 15-6 shows what
the Cons variant looks like now:

Figure 15-6: A List that is not infinitely sized since Cons holds a
Box

This is the main area where boxes are useful: breaking up an infinite
data structure so that the compiler can know what size it is. We’ll look
at another case where Rust has data of unknown size in Chapter 17
when we discuss trait objects.

Even though you won’t be using boxes very often, they are a good
way to understand the smart pointer pattern. Two of the aspects of
Box<T> that are commonly used with smart pointers are its implemen-
tations of the Deref trait and the Drop trait. Let’s investigate how
these traits work and how smart pointers use them.

3.2
The Deref Trait Allows Access to the Data Through
a Reference
The first important smart pointer-related trait is Deref, which allows us
to override *, the dereference operator (as opposed to the multiplication
operator or the glob operator). Overriding * for smart pointers makes
accessing the data behind the smart pointer convenient, and we’ll talk
about what we mean by convenient when we get to deref coercions later
in this section.

We briefly mentioned the dereference operator in Chapter 8, in the
hash map section titled “Update a Value Based on the Old Value”.
We had a mutable reference, and we wanted to change the value that



393

the reference was pointing to. In order to do that, first we had to
dereference the reference. Here’s another example using references to
i32 values:
let mut x = 5;
{

let y = &mut x;

*y += 1
}

assert_eq!(6, x);

We use *y to access the data that the mutable reference in y refers
to, rather than the mutable reference itself. We can then modify that
data, in this case by adding 1.

With references that aren’t smart pointers, there’s only one value
that the reference is pointing to, so the dereference operation is straight-
forward. Smart pointers can also store metadata about the pointer or
the data. When dereferencing a smart pointer, we only want the data,
not the metadata, since dereferencing a regular reference only gives us
data and not metadata. We want to be able to use smart pointers in
the same places that we can use regular references. To enable that, we
can override the behavior of the * operator by implementing the Deref
trait.

Listing 15-7 has an example of overriding * using Deref on a struct
we’ve defined to hold mp3 data and metadata. Mp3 is, in a sense, a
smart pointer: it owns the Vec<u8> data containing the audio. In
addition, it holds some optional metadata, in this case the artist and
title of the song in the audio data. We want to be able to conveniently
access the audio data, not the metadata, so we implement the Deref
trait to return the audio data. Implementing the Deref trait requires
implementing one method named deref that borrows self and returns
the inner data:

Filename: src/main.rs

use std::ops::Deref;

struct Mp3 {
audio: Vec<u8>,
artist: Option<String>,
title: Option<String>,



394

}

impl Deref for Mp3 {
type Target = Vec<u8>;

fn deref(&self) -> &Vec<u8> {
&self.audio

}
}

fn main() {
let my_favorite_song = Mp3 {

// we would read the actual audio data from an
mp3 file

audio: vec![1, 2, 3],
artist: Some(String::from("Nirvana")),
title: Some(String::from("Smells Like Teen Spirit")

),
};

assert_eq!(vec![1, 2, 3], *my_favorite_song);
}

Listing 15-7: An implementation of the Deref trait on a struct that
holds mp3 file data and metadata

Most of this should look familiar: a struct, a trait implementation,
and a main function that creates an instance of the struct. There is
one part we haven’t explained thoroughly yet: similarly to Chapter 13
when we looked at the Iterator trait with the type Item, the type
Target = T; syntax is defining an associated type, which is covered in
more detail in Chapter 19. Don’t worry about that part of the example
too much; it is a slightly different way of declaring a generic parameter.

In the assert_eq!, we’re verifying that vec![1, 2, 3] is the result
we get when dereferencing the Mp3 instance with *my_favorite_song,
which is what happens since we implemented the deref method to
return the audio data. If we hadn’t implemented the Deref trait for
Mp3, Rust wouldn’t compile the code *my_favorite_song: we’d get an
error saying type Mp3 cannot be dereferenced.

Without the Deref trait, the compiler can only dereference & ref-
erences, which my_favorite_song is not (it is an Mp3 struct). With
the Deref trait, the compiler knows that types implementing the Deref
trait have a deref method that returns a reference (in this case, &self.



395

audio because of our definition of deref in Listing 15-7). So in order
to get a & reference that * can dereference, the compiler expands *my_
favorite_song to this:

*(my_favorite_song.deref())

The result is the value in self.audio. The reason deref returns a
reference that we then have to dereference, rather than just returning
a value directly, is because of ownership: if the deref method directly
returned the value instead of a reference to it, the value would be
moved out of self. We don’t want to take ownership of my_favorite_
song.audio in this case and most cases where we use the dereference
operator.

Note that replacing * with a call to the deref method and then a
call to * happens once, each time the * is used. The substitution of
* does not recurse infinitely. That’s how we end up with data of type
Vec<u8>, which matches the vec![1, 2, 3] in the assert_eq! in
Listing 15-7.

Implicit Deref Coercions with Functions and Methods

Rust tends to favor explicitness over implicitness, but one case where
this does not hold true is deref coercions of arguments to functions
and methods. A deref coercion will automatically convert a reference
to any pointer into a reference to that pointer’s contents. A deref
coercion happens when the reference type of the argument passed into
the function differs from the reference type of the parameter defined in
that function’s signature. Deref coercion was added to Rust to make
calling functions and methods not need as many explicit references and
dereferences with & and *.

Using our Mp3 struct from Listing 15-7, here’s the signature of a
function to compress mp3 audio data that takes a slice of u8:

fn compress_mp3(audio: &[u8]) -> Vec<u8> {
// the actual implementation would go here

}

If Rust didn’t have deref coercion, in order to call this function with
the audio data in my_favorite_song, we’d have to write:

compress_mp3(my_favorite_song.audio.as_slice())

That is, we’d have to explicitly say that we want the data in the audio
field of my_favorite_song and that we want a slice referring to the



396

whole Vec<u8>. If there were a lot of places where we’d want to process
the audio data in a similar manner, .audio.as_slice() would be
wordy and repetitive.

However, because of deref coercion and our implementation of the
Deref trait on Mp3, we can call this function with the data in my_
favorite_song by using this code:

let result = compress_mp3(&my_favorite_song);

Just an & and the instance, nice! We can treat our smart pointer as
if it was a regular reference. Deref coercion means that Rust can use
its knowledge of our Deref implementation, namely: Rust knows that
Mp3 implements the Deref trait and returns &Vec<u8> from the deref
method. Rust also knows the standard library implements the Deref
trait on Vec<T> to return &[T] from the deref method (and we can
find that out too by looking at the API documentation for Vec<T>).
So, at compile time, Rust will see that it can use Deref::deref twice
to turn &Mp3 into &Vec<u8> and then into &[T] to match the signature
of compress_mp3. That means we get to do less typing! Rust will
analyze types through Deref::deref as many times as it needs to in
order to get a reference to match the parameter’s type, when the Deref
trait is defined for the types involved. This indirection is resolved at
compile time, so there is no run-time penalty for taking advantage of
deref coercion!

Similar to how we use the Deref trait to override * on &Ts, there is
also a DerefMut trait for overriding * on &mut T.

Rust does deref coercion when it finds types and trait implementa-
tions in three cases:

• From &T to &U when T: Deref<Target=U>.

• From &mut T to &mut U when T: DerefMut<Target=U>.

• From &mut T to &U when T: Deref<Target=U>.

The first two are the same, except for mutability: if you have a &T, and
T implements Deref to some type U, you can get a &U transparently.
Same for mutable references. The last one is more tricky: if you have a
mutable reference, it will also coerce to an immutable one. The other
case is not possible though: immutable references will never coerce to
mutable ones.

The reason that the Deref trait is important to the smart pointer
pattern is that smart pointers can then be treated like regular references



397

and used in places that expect regular references. We don’t have to
redefine methods and functions to take smart pointers explicitly, for
example.

3.3
The Drop Trait Runs Code on Cleanup
The other trait that’s important to the smart pointer pattern is the
Drop trait. Drop lets us run some code when a value is about to go
out of scope. Smart pointers perform important cleanup when being
dropped, like deallocating memory or decrementing a reference count.
More generally, data types can manage resources beyond memory, like
files or network connections, and use Drop to release those resources
when our code is done with them. We’re discussing Drop in the context
of smart pointers, though, because the functionality of the Drop trait
is almost always used when implementing smart pointers.

In some other languages, we have to remember to call code to free
the memory or resource every time we finish using an instance of a
smart pointer. If we forget, the system our code is running on might
get overloaded and crash. In Rust, we can specify that some code
should be run when a value goes out of scope, and the compiler will
insert this code automatically. That means we don’t need to remember
to put this code everywhere we’re done with an instance of these types,
but we still won’t leak resources!

The way we specify code should be run when a value goes out of
scope is by implementing the Drop trait. The Drop trait requires us to
implement one method named drop that takes a mutable reference to
self.

Listing 15-8 shows a CustomSmartPointer struct that doesn’t actu-
ally do anything, but we’re printing out CustomSmartPointer created.
right after we create an instance of the struct and Dropping CustomSmartPointer!
when the instance goes out of scope so that we can see when each piece
of code gets run. Instead of a println! statement, you’d fill in drop
with whatever cleanup code your smart pointer needs to run:

Filename: src/main.rs

struct CustomSmartPointer {
data: String,

}



398

impl Drop for CustomSmartPointer {
fn drop(&mut self) {

println!("Dropping CustomSmartPointer!");
}

}

fn main() {
let c = CustomSmartPointer { data: String::from("some

data") };
println!("CustomSmartPointer created.");
println!("Wait for it...");

}

Listing 15-8: A CustomSmartPointer struct that implements the Drop
trait, where we could put code that would clean up after the CustomSmartPointer.

The Drop trait is in the prelude, so we don’t need to import it. The
drop method implementation calls the println!; this is where you’d
put the actual code needed to close the socket. In main, we create a new
instance of CustomSmartPointer then print out CustomSmartPointer
created. to be able to see that our code got to that point at runtime.
At the end of main, our instance of CustomSmartPointer will go out
of scope. Note that we didn’t call the drop method explicitly.

When we run this program, we’ll see:

CustomSmartPointer created.
Wait for it...
Dropping CustomSmartPointer!

printed to the screen, which shows that Rust automatically called drop
for us when our instance went out of scope.

We can use the std::mem::drop function to drop a value earlier
than when it goes out of scope. This isn’t usually necessary; the whole
point of the Drop trait is that it’s taken care of automatically for us.
We’ll see an example of a case when we’ll need to drop a value earlier
than when it goes out of scope in Chapter 16 when we’re talking about
concurrency. For now, let’s just see that it’s possible, and std::mem::
drop is in the prelude so we can just call drop as shown in Listing 15-9:

Filename: src/main.rs

fn main() {
let c = CustomSmartPointer { data: String::from("some

data") };



399

println!("CustomSmartPointer created.");
drop(c);
println!("Wait for it...");

}

Listing 15-9: Calling std::mem::drop to explicitly drop a value before
it goes out of scope

Running this code will print the following, showing that the destruc-
tor code is called since Dropping CustomSmartPointer! is printed
between CustomSmartPointer created. and Wait for it...:
CustomSmartPointer created.
Dropping CustomSmartPointer!
Wait for it...

Note that we aren’t allowed to call the drop method that we defined di-
rectly: if we replaced drop(c) in Listing 15-9 with c.drop(), we’ll get
a compiler error that says explicit destructor calls not allowed.
We’re not allowed to call Drop::drop directly because when Rust in-
serts its call to Drop::drop automatically when the value goes out of
scope, then the value would get dropped twice. Dropping a value twice
could cause an error or corrupt memory, so Rust doesn’t let us. Instead,
we can use std::mem::drop, whose definition is:

pub mod std {
pub mod mem {

pub fn drop<T>(x: T) { }
}

}

This function is generic over any type T, so we can pass any value to it.
The function doesn’t actually have anything in its body, so it doesn’t
use its parameter. The reason this empty function is useful is that
drop takes ownership of its parameter, which means the value in x gets
dropped at the end of this function when x goes out of scope.

Code specified in a Drop trait implementation can be used for many
reasons to make cleanup convenient and safe: we could use it to create
our own memory allocator, for instance! By using the Drop trait and
Rust’s ownership system, we don’t have to remember to clean up after
ourselves since Rust takes care of it automatically. We’ll get compiler
errors if we write code that would clean up a value that’s still in use,
since the ownership system that makes sure references are always valid
will also make sure that drop only gets called one time when the value
is no longer being used.



400

Now that we’ve gone over Box<T> and some of the characteristics
of smart pointers, let’s talk about a few other smart pointers defined
in the standard library that add different kinds of useful functionality.

3.4
Rc<T>, the Reference Counted Smart Pointer
In the majority of cases, ownership is very clear: you know exactly
which variable owns a given value. However, this isn’t always the case;
sometimes, you may actually need multiple owners. For this, Rust has
a type called Rc<T>. Its name is an abbreviation for reference counting.
Reference counting means keeping track of the number of references to
a value in order to know if a value is still in use or not. If there are
zero references to a value, we know we can clean up the value without
any references becoming invalid.

To think about this in terms of a real-world scenario, it’s like a TV
in a family room. When one person comes in the room to watch TV,
they turn it on. Others can also come in the room and watch the TV.
When the last person leaves the room, they’ll turn the TV off since it’s
no longer being used. If someone turns off the TV while others are still
watching it, though, the people watching the TV would get mad!

Rc<T> is for use when we want to allocate some data on the heap
for multiple parts of our program to read, and we can’t determine at
compile time which part of our program using this data will finish using
it last. If we knew which part would finish last, we could make that
part the owner of the data and the normal ownership rules enforced at
compile time would kick in.

Note that Rc<T> is only for use in single-threaded scenarios; the
next chapter on concurrency will cover how to do reference counting in
multithreaded programs. If you try to use Rc<T> with multiple threads,
you’ll get a compile-time error.

Using Rc<T> to Share Data

Let’s return to our cons list example from Listing 15-5. In Listing 15-
11, we’re going to try to use List as we defined it using Box<T>. First
we’ll create one list instance that contains 5 and then 10. Next, we
want to create two more lists: one that starts with 3 and continues on
to our first list containing 5 and 10, then another list that starts with
4 and also continues on to our first list containing 5 and 10. In other



401

words, we want two lists that both share ownership of the third list,
which conceptually will be something like Figure 15-10:

Figure 15-10: Two lists, b and c, sharing ownership of a third list,
a

Trying to implement this using our definition of List with Box<T>
won’t work, as shown in Listing 15-11:

Filename: src/main.rs

enum List {
Cons(i32, Box<List>),
Nil,

}

use List::{Cons, Nil};

fn main() {
let a = Cons(5,

Box::new(Cons(10,
Box::new(Nil))));

let b = Cons(3, Box::new(a));
let c = Cons(4, Box::new(a));

}

Listing 15-11: Having two lists using Box<T> that try to share owner-
ship of a third list won’t work

If we compile this, we get this error:

error[E0382]: use of moved value: `a`
--> src/main.rs:13:30
|

12 | let b = Cons(3, Box::new(a));
| - value moved here

13 | let c = Cons(4, Box::new(a));
| ^ value used here after

move
|
= note: move occurs because `a` has type `List`, which

does not
implement the `Copy` trait

The Cons variants own the data they hold, so when we create the b list
it moves a to be owned by b. Then when we try to use a again when
creating c, we’re not allowed to since a has been moved.



402

We could change the definition of Cons to hold references instead,
but then we’d have to specify lifetime parameters and we’d have to
construct elements of a list such that every element lives at least as
long as the list itself. Otherwise, the borrow checker won’t even let us
compile the code.

Instead, we can change our definition of List to use Rc<T> instead
of Box<T> as shown here in Listing 15-12:

Filename: src/main.rs

enum List {
Cons(i32, Rc<List>),
Nil,

}

use List::{Cons, Nil};
use std::rc::Rc;

fn main() {
let a = Rc::new(Cons(5, Rc::new(Cons(10, Rc::new(Nil)

))));
let b = Cons(3, a.clone());
let c = Cons(4, a.clone());

}

Listing 15-12: A definition of List that uses Rc<T>
Note that we need to add a use statement for Rc because it’s not

in the prelude. In main, we create the list holding 5 and 10 and store
it in a new Rc in a. Then when we create b and c, we call the clone
method on a.

Cloning an Rc<T> Increases the Reference Count

We’ve seen the clone method previously, where we used it for making
a complete copy of some data. With Rc<T>, though, it doesn’t make
a full copy. Rc<T> holds a reference count, that is, a count of how
many clones exist. Let’s change main as shown in Listing 15-13 to have
an inner scope around where we create c, and to print out the results
of the Rc::strong_count associated function at various points. Rc::
strong_count returns the reference count of the Rc value we pass to
it, and we’ll talk about why this function is named strong_count in
the section later in this chapter about preventing reference cycles.

Filename: src/main.rs



403

# enum List {
# Cons(i32, Rc<List>),
# Nil,
# }
#
# use List::{Cons, Nil};
# use std::rc::Rc;
#
fn main() {

let a = Rc::new(Cons(5, Rc::new(Cons(10, Rc::new(Nil)
))));

println!("rc = {}", Rc::strong_count(&a));
let b = Cons(3, a.clone());
println!("rc after creating b = {}", Rc::strong_count(

&a));
{

let c = Cons(4, a.clone());
println!("rc after creating c = {}", Rc::strong_

count(&a));
}
println!("rc after c goes out of scope = {}", Rc::strong_

count(&a));
}

Listing 15-13: Printing out the reference count
This will print out:

rc = 1
rc after creating b = 2
rc after creating c = 3
rc after c goes out of scope = 2

We’re able to see that a has an initial reference count of one. Then each
time we call clone, the count goes up by one. When c goes out of scope,
the count is decreased by one, which happens in the implementation
of the Drop trait for Rc<T>. What we can’t see in this example is
that when b and then a go out of scope at the end of main, the count
of references to the list containing 5 and 10 is then 0, and the list is
dropped. This strategy lets us have multiple owners, as the count will
ensure that the value remains valid as long as any of the owners still
exist.

In the beginning of this section, we said that Rc<T> only allows you



404

to share data for multiple parts of your program to read through im-
mutable references to the T value the Rc<T> contains. If Rc<T> let us
have a mutable reference, we’d run into the problem that the borrowing
rules disallow that we discussed in Chapter 4: two mutable borrows to
the same place can cause data races and inconsistencies. But mutating
data is very useful! In the next section, we’ll discuss the interior muta-
bility pattern and the RefCell<T> type that we can use in conjunction
with an Rc<T> to work with this restriction on immutability.

3.5
RefCell<T> and the Interior Mutability Pattern
Interior mutability is a design pattern in Rust for allowing you to mu-
tate data even though there are immutable references to that data,
which would normally be disallowed by the borrowing rules. The inte-
rior mutability pattern involves using unsafe code inside a data struc-
ture to bend Rust’s usual rules around mutation and borrowing. We
haven’t yet covered unsafe code; we will in Chapter 19. The interior
mutability pattern is used when you can ensure that the borrowing
rules will be followed at runtime, even though the compiler can’t en-
sure that. The unsafe code involved is then wrapped in a safe API,
and the outer type is still immutable.

Let’s explore this by looking at the RefCell<T> type that follows
the interior mutability pattern.

RefCell<T> has Interior Mutability

Unlike Rc<T>, the RefCell<T> type represents single ownership over the
data that it holds. So, what makes RefCell<T> different than a type
like Box<T>? Let’s recall the borrowing rules we learned in Chapter 4:

1. At any given time, you can have either but not both of:

• One mutable reference.

• Any number of immutable references.

1. References must always be valid.

With references and Box<T>, the borrowing rules’ invariants are en-
forced at compile time. With RefCell<T>, these invariants are en-
forced at runtime. With references, if you break these rules, you’ll get



405

a compiler error. With RefCell<T>, if you break these rules, you’ll get
a panic!.

Static analysis, like the Rust compiler performs, is inherently con-
servative. There are properties of code that are impossible to detect by
analyzing the code: the most famous is the Halting Problem, which is
out of scope of this book but an interesting topic to research if you’re
interested.

Because some analysis is impossible, the Rust compiler does not try
to even guess if it can’t be sure, so it’s conservative and sometimes
rejects correct programs that would not actually violate Rust’s guar-
antees. Put another way, if Rust accepts an incorrect program, people
would not be able to trust in the guarantees Rust makes. If Rust rejects
a correct program, the programmer will be inconvenienced, but nothing
catastrophic can occur. RefCell<T> is useful when you know that the
borrowing rules are respected, but the compiler can’t understand that
that’s true.

Similarly to Rc<T>, RefCell<T> is only for use in single-threaded
scenarios. We’ll talk about how to get the functionality of RefCell<T>
in a multithreaded program in the next chapter on concurrency. For
now, all you need to know is that if you try to use RefCell<T> in a
multithreaded context, you’ll get a compile time error.

With references, we use the & and &mut syntax to create references
and mutable references, respectively. But with RefCell<T>, we use
the borrow and borrow_mut methods, which are part of the safe API
that RefCell<T> has. borrow returns the smart pointer type Ref,
and borrow_mut returns the smart pointer type RefMut. These two
types implement Deref so that we can treat them as if they’re regular
references. Ref and RefMut track the borrows dynamically, and their
implementation of Drop releases the borrow dynamically.

Listing 15-14 shows what it looks like to use RefCell<T> with func-
tions that borrow their parameters immutably and mutably. Note that
the data variable is declared as immutable with let data rather than
let mut data, yet a_fn_that_mutably_borrows is allowed to borrow
the data mutably and make changes to the data!

Filename: src/main.rs

use std::cell::RefCell;

fn a_fn_that_immutably_borrows(a: &i32) {
println!("a is {}", a);

}



406

fn a_fn_that_mutably_borrows(b: &mut i32) {
*b += 1;

}

fn demo(r: &RefCell<i32>) {
a_fn_that_immutably_borrows(&r.borrow());
a_fn_that_mutably_borrows(&mut r.borrow_mut());
a_fn_that_immutably_borrows(&r.borrow());

}

fn main() {
let data = RefCell::new(5);
demo(&data);

}

Listing 15-14: Using RefCell<T>, borrow, and borrow_mut
This example prints:

a is 5
a is 6

In main, we’ve created a new RefCell<T> containing the value 5, and
stored in the variable data, declared without the mut keyword. We
then call the demo function with an immutable reference to data: as
far as main is concerned, data is immutable!

In the demo function, we get an immutable reference to the value
inside the RefCell<T> by calling the borrow method, and we call a_
fn_that_immutably_borrows with that immutable reference. More
interestingly, we can get a mutable reference to the value inside the
RefCell<T> with the borrow_mut method, and the function a_fn_
that_mutably_borrows is allowed to change the value. We can see
that the next time we call a_fn_that_immutably_borrows that prints
out the value, it’s 6 instead of 5.

Borrowing Rules are Checked at Runtime on RefCell<T>

Recall from Chapter 4 that because of the borrowing rules, this code
using regular references that tries to create two mutable borrows in the
same scope won’t compile:



407

let mut s = String::from("hello");

let r1 = &mut s;
let r2 = &mut s;

We’ll get this compiler error:

error[E0499]: cannot borrow `s` as mutable more than once
at a time
-->
|

5 | let r1 = &mut s;
| - first mutable borrow occurs here

6 | let r2 = &mut s;
| ^ second mutable borrow occurs here

7 | }
| - first borrow ends here

In contrast, using RefCell<T> and calling borrow_mut twice in the
same scope will compile, but it’ll panic at runtime instead. This code:

use std::cell::RefCell;

fn main() {
let s = RefCell::new(String::from("hello"));

let r1 = s.borrow_mut();
let r2 = s.borrow_mut();

}

compiles but panics with the following error when we cargo run:

Finished dev [unoptimized + debuginfo] target(s) in
0.83 secs

Running `target/debug/refcell`
thread 'main' panicked at 'already borrowed: BorrowMutError',
/stable-dist-rustc/build/src/libcore/result.rs:868
note: Run with `RUST_BACKTRACE=1` for a backtrace.

This runtime BorrowMutError is similar to the compiler error: it says
we’ve already borrowed s mutably once, so we’re not allowed to bor-
row it again. We aren’t getting around the borrowing rules, we’re
just choosing to have Rust enforce them at runtime instead of compile



408

time. You could choose to use RefCell<T> everywhere all the time,
but in addition to having to type RefCell a lot, you’d find out about
possible problems later (possibly in production rather than during de-
velopment). Also, checking the borrowing rules while your program is
running has a performance penalty.

Multiple Owners of Mutable Data by Combining Rc<T> and
RefCell<T>

So why would we choose to make the tradeoffs that using RefCell<T>
involves? Well, remember when we said that Rc<T> only lets you have
an immutable reference to T? Given that RefCell<T> is immutable, but
has interior mutability, we can combine Rc<T> and RefCell<T> to get
a type that’s both reference counted and mutable. Listing 15-15 shows
an example of how to do that, again going back to our cons list from
Listing 15-5. In this example, instead of storing i32 values in the cons
list, we’ll be storing Rc<RefCell<i32>> values. We want to store that
type so that we can have an owner of the value that’s not part of the
list (the multiple owners functionality that Rc<T> provides), and so we
can mutate the inner i32 value (the interior mutability functionality
that RefCell<T> provides):

Filename: src/main.rs

#[derive(Debug)]
enum List {

Cons(Rc<RefCell<i32>>, Rc<List>),
Nil,

}

use List::{Cons, Nil};
use std::rc::Rc;
use std::cell::RefCell;

fn main() {
let value = Rc::new(RefCell::new(5));

let a = Cons(value.clone(), Rc::new(Nil));
let shared_list = Rc::new(a);

let b = Cons(Rc::new(RefCell::new(6)), shared_list.
clone());



409

let c = Cons(Rc::new(RefCell::new(10)), shared_list.
clone());

*value.borrow_mut() += 10;

println!("shared_list after = {:?}", shared_list);
println!("b after = {:?}", b);
println!("c after = {:?}", c);

}

Listing 15-15: Using Rc<RefCell<i32>> to create a List that we can
mutate

We’re creating a value, which is an instance of Rc<RefCell<i32>>.
We’re storing it in a variable named value because we want to be able
to access it directly later. Then we create a List in a that has a Cons
variant that holds value, and value needs to be cloned since we want
value to also have ownership in addition to a. Then we wrap a in an
Rc<T> so that we can create lists b and c that start differently but both
refer to a, similarly to what we did in Listing 15-12.

Once we have the lists in shared_list, b, and c created, then we
add 10 to the 5 in value by dereferencing the Rc<T> and calling borrow_
mut on the RefCell.

When we print out shared_list, b, and c, we can see that they all
have the modified value of 15:

shared_list after = Cons(RefCell { value: 15 }, Nil)
b after = Cons(RefCell { value: 6 }, Cons(RefCell { value:
15 }, Nil))

c after = Cons(RefCell { value: 10 }, Cons(RefCell { value:
15 }, Nil))

This is pretty neat! By using RefCell<T>, we can have an outwardly
immutable List, but we can use the methods on RefCell<T> that
provide access to its interior mutability to be able to modify our data
when we need to. The runtime checks of the borrowing rules that
RefCell<T> does protect us from data races, and we’ve decided that
we want to trade a bit of speed for the flexibility in our data structures.

RefCell<T> is not the only standard library type that provides
interior mutability. Cell<T> is similar but instead of giving references
to the inner value like RefCell<T> does, the value is copied in and out
of the Cell<T>. Mutex<T> offers interior mutability that is safe to use
across threads, and we’ll be discussing its use in the next chapter on



410

concurrency. Check out the standard library docs for more details on
the differences between these types.

3.6
Creating Reference Cycles and Leaking Memory is
Safe
Rust makes a number of guarantees that we’ve talked about, for exam-
ple that we’ll never have a null value, and data races will be disallowed
at compile time. Rust’s memory safety guarantees make it more dif-
ficult to create memory that never gets cleaned up, which is known
as a memory leak. Rust does not make memory leaks impossible, how-
ever, preventing memory leaks is not one of Rust’s guarantees. In other
words, memory leaks are memory safe.

By using Rc<T> and RefCell<T>, it is possible to create cycles of
references where items refer to each other in a cycle. This is bad because
the reference count of each item in the cycle will never reach 0, and the
values will never be dropped. Let’s take a look at how that might
happen and how to prevent it.

In Listing 15-16, we’re going to use another variation of the List
definition from Listing 15-5. We’re going back to storing an i32 value
as the first element in the Cons variant. The second element in the Cons
variant is now RefCell<Rc<List>>: instead of being able to modify the
i32 value this time, we want to be able to modify which List a Cons
variant is pointing to. We’ve also added a tail method to make it
convenient for us to access the second item, if we have a Cons variant:

Filename: src/main.rs

#[derive(Debug)]
enum List {

Cons(i32, RefCell<Rc<List>>),
Nil,

}

impl List {
fn tail(&self) -> Option<&RefCell<Rc<List>>> {

match *self {
Cons(_, ref item) => Some(item),
Nil => None,



411

}
}

}

Listing 15-16: A cons list definition that holds a RefCell so that we
can modify what a Cons variant is referring to

Next, in Listing 15-17, we’re going to create a List value in the
variable a that initially is a list of 5, Nil. Then we’ll create a List
value in the variable b that is a list of the value 10 and then points to
the list in a. Finally, we’ll modify a so that it points to b instead of
Nil, which will then create a cycle:

Filename: src/main.rs

# #[derive(Debug)]
# enum List {
# Cons(i32, RefCell<Rc<List>>),
# Nil,
# }
#
# impl List {
# fn tail(&self) -> Option<&RefCell<Rc<List>>> {
# match *self {
# Cons(_, ref item) => Some(item),
# Nil => None,
# }
# }
# }
#
use List::{Cons, Nil};
use std::rc::Rc;
use std::cell::RefCell;

fn main() {

let a = Rc::new(Cons(5, RefCell::new(Rc::new(Nil)))
);

println!("a initial rc count = {}", Rc::strong_count(
&a));

println!("a next item = {:?}", a.tail());



412

let b = Rc::new(Cons(10, RefCell::new(a.clone())));

println!("a rc count after b creation = {}", Rc::strong_
count(&a));

println!("b initial rc count = {}", Rc::strong_count(
&b));

println!("b next item = {:?}", b.tail());

if let Some(ref link) = a.tail() {
*link.borrow_mut() = b.clone();

}

println!("b rc count after changing a = {}", Rc::strong_
count(&b));

println!("a rc count after changing a = {}", Rc::strong_
count(&a));

// Uncomment the next line to see that we have a cycle;
it will

// overflow the stack
// println!("a next item = {:?}", a.tail());

}

Listing 15-17: Creating a reference cycle of two List values pointing
to each other

We use the tail method to get a reference to the RefCell in a,
which we put in the variable link. Then we use the borrow_mut
method on the RefCell to change the value inside from an Rc that
holds a Nil value to the Rc in b. We’ve created a reference cycle that
looks like Figure 15-18:

Figure 15-18: A reference cycle of lists a and b pointing to each
other

If you uncomment the last println!, Rust will try and print this cy-
cle out with a pointing to b pointing to a and so forth until it overflows
the stack.

Looking at the results of the println! calls before the last one,
we’ll see that the reference count of both a and b are 2 after we change
a to point to b. At the end of main, Rust will try and drop b first,
which will decrease the count of the Rc by one. However, because a is
still referencing that Rc, its count is 1 rather than 0, so the memory the
Rc has on the heap won’t be dropped. It’ll just sit there with a count
of one, forever. In this specific case, the program ends right away, so



413

it’s not a problem, but in a more complex program that allocates lots
of memory in a cycle and holds onto it for a long time, this would be a
problem. The program would be using more memory than it needs to
be, and might overwhelm the system and cause it to run out of memory
available to use.

Now, as you can see, creating reference cycles is difficult and incon-
venient in Rust. But it’s not impossible: preventing memory leaks in
the form of reference cycles is not one of the guarantees Rust makes. If
you have RefCell<T> values that contain Rc<T> values or similar nested
combinations of types with interior mutability and reference counting,
be aware that you’ll have to ensure that you don’t create cycles. In the
example in Listing 15-14, the solution would probably be to not write
code that could create cycles like this, since we do want Cons variants
to own the list they point to.

With data structures like graphs, it’s sometimes necessary to have
references that create cycles in order to have parent nodes point to their
children and children nodes point back in the opposite direction to their
parents, for example. If one of the directions is expressing ownership
and the other isn’t, one way of being able to model the relationship of
the data without creating reference cycles and memory leaks is using
Weak<T>. Let’s explore that next!

Prevent Reference Cycles: Turn an Rc<T> into a Weak<T>

The Rust standard library provides Weak<T>, a smart pointer type for
use in situations that have cycles of references but only one direction
expresses ownership. We’ve been showing how cloning an Rc<T> in-
creases the strong_count of references; Weak<T> is a way to reference
an Rc<T> that does not increment the strong_count: instead it incre-
ments the weak_count of references to an Rc. When an Rc goes out of
scope, the inner value will get dropped if the strong_count is 0, even
if the weak_count is not 0. To be able to get the value from a Weak<T>,
we first have to upgrade it to an Option<Rc<T>> by using the upgrade
method. The result of upgrading a Weak<T> will be Some if the Rc value
has not been dropped yet, and None if the Rc value has been dropped.
Because upgrade returns an Option, we know Rust will make sure we
handle both the Some case and the None case and we won’t be trying
to use an invalid pointer.

Instead of the list in Listing 15-17 where each item knows only
about the next item, let’s say we want a tree where the items know
about their children items and their parent items.



414

Let’s start just with a struct named Node that holds its own i32
value as well as references to its children Node values:

Filename: src/main.rs

use std::rc::Rc;
use std::cell::RefCell;

#[derive(Debug)]
struct Node {

value: i32,
children: RefCell<Vec<Rc<Node>>>,

}

We want to be able to have a Node own its children, and we also want
to be able to have variables own each node so we can access them
directly. That’s why the items in the Vec are Rc<Node> values. We
want to be able to modify what nodes are another node’s children, so
that’s why we have a RefCell in children around the Vec. In Listing
15-19, let’s create one instance of Node named leaf with the value 3
and no children, and another instance named branch with the value 5
and leaf as one of its children:

Filename: src/main.rs

fn main() {
let leaf = Rc::new(Node {

value: 3,
children: RefCell::new(vec![]),

});

let branch = Rc::new(Node {
value: 5,
children: RefCell::new(vec![leaf.clone()]),

});
}

Listing 15-19: Creating a leaf node and a branch node where branch
has leaf as one of its children but leaf has no reference to branch

The Node in leaf now has two owners: leaf and branch, since we
clone the Rc in leaf and store that in branch. The Node in branch
knows it’s related to leaf since branch has a reference to leaf in
branch.children. However, leaf doesn’t know that it’s related to
branch, and we’d like leaf to know that branch is its parent.



415

To do that, we’re going to add a parent field to our Node struct def-
inition, but what should the type of parent be? We know it can’t con-
tain an Rc<T>, since leaf.parent would point to branch and branch.
children contains a pointer to leaf, which makes a reference cycle.
Neither leaf nor branch would get dropped since they would always
refer to each other and their reference counts would never be zero.

So instead of Rc, we’re going to make the type of parent use
Weak<T>, specifically a RefCell<Weak<Node>>:

Filename: src/main.rs

use std::rc::{Rc, Weak};
use std::cell::RefCell;

#[derive(Debug)]
struct Node {

value: i32,
parent: RefCell<Weak<Node>>,
children: RefCell<Vec<Rc<Node>>>,

}

This way, a node will be able to refer to its parent node if it has one,
but it does not own its parent. A parent node will be dropped even
if it has child nodes referring to it, as long as it doesn’t have a parent
node as well. Now let’s update main to look like Listing 15-20:

Filename: src/main.rs

fn main() {
let leaf = Rc::new(Node {

value: 3,
parent: RefCell::new(Weak::new()),
children: RefCell::new(vec![]),

});

println!("leaf parent = {:?}", leaf.parent.borrow()
.upgrade());

let branch = Rc::new(Node {
value: 5,
parent: RefCell::new(Weak::new()),
children: RefCell::new(vec![leaf.clone()]),

});



416

*leaf.parent.borrow_mut() = Rc::downgrade(&branch);

println!("leaf parent = {:?}", leaf.parent.borrow()
.upgrade());
}

Listing 15-20: A leaf node and a branch node where leaf has a Weak
reference to its parent, branch

Creating the leaf node looks similar; since it starts out without a
parent, we create a new Weak reference instance. When we try to get
a reference to the parent of leaf by using the upgrade method, we’ll
get a None value, as shown by the first println! that outputs:

leaf parent = None

Similarly, branch will also have a new Weak reference, since branch
does not have a parent node. We still make leaf be one of the children
of branch. Once we have a new Node instance in branch, we can
modify leaf to have a Weak reference to branch for its parent. We use
the borrow_mut method on the RefCell in the parent field of leaf,
then we use the Rc::downgrade function to create a Weak reference to
branch from the Rc in branch.

When we print out the parent of leaf again, this time we’ll get a
Some variant holding branch. Also notice we don’t get a cycle printed
out that eventually ends in a stack overflow like we did in Listing 15-14:
the Weak references are just printed as (Weak):

leaf parent = Some(Node { value: 5, parent: RefCell { value:
(Weak) },
children: RefCell { value: [Node { value: 3, parent: RefCell
{ value: (Weak) },
children: RefCell { value: [] } }] } })

The fact that we don’t get infinite output (or at least until the stack
overflows) is one way we can see that we don’t have a reference cycle
in this case. Another way we can tell is by looking at the values we
get from calling Rc::strong_count and Rc::weak_count. In Listing
15-21, let’s create a new inner scope and move the creation of branch
in there, so that we can see what happens when branch is created and
then dropped when it goes out of scope:

Filename: src/main.rs



417

fn main() {
let leaf = Rc::new(Node {

value: 3,
parent: RefCell::new(Weak::new()),
children: RefCell::new(vec![]),

});

println!(
"leaf strong = {}, weak = {}",
Rc::strong_count(&leaf),
Rc::weak_count(&leaf),

);

{
let branch = Rc::new(Node {

value: 5,
parent: RefCell::new(Weak::new()),
children: RefCell::new(vec![leaf.clone()]),

});
*leaf.parent.borrow_mut() = Rc::downgrade(&branch)

;

println!(
"branch strong = {}, weak = {}",
Rc::strong_count(&branch),
Rc::weak_count(&branch),

);

println!(
"leaf strong = {}, weak = {}",
Rc::strong_count(&leaf),
Rc::weak_count(&leaf),

);
}

println!("leaf parent = {:?}", leaf.parent.borrow()
.upgrade());

println!(
"leaf strong = {}, weak = {}",
Rc::strong_count(&leaf),



418

Rc::weak_count(&leaf),
);

}

Listing 15-21: Creating branch in an inner scope and examining strong
and weak reference counts of leaf and branch

Right after creating leaf, its strong count is 1 (for leaf itself)
and its weak count is 0. In the inner scope, after we create branch
and associate leaf and branch, branch will have a strong count of 1
(for branch itself) and a weak count of 1 (for leaf.parent pointing
to branch with a Weak<T>). leaf will have a strong count of 2, since
branch now has a clone the Rc of leaf stored in branch.children.
leaf still has a weak count of 0.

When the inner scope ends, branch goes out of scope, and its strong
count decreases to 0, so its Node gets dropped. The weak count of 1
from leaf.parent has no bearing on whether Node gets dropped or
not, so we don’t have a memory leak!

If we try to access the parent of leaf after the end of the scope,
we’ll get None again like we did before leaf had a parent. At the end
of the program, leaf has a strong count of 1 and a weak count of 0,
since leaf is now the only thing pointing to it again.

All of the logic managing the counts and whether a value should be
dropped or not was managed by Rc and Weak and their implementations
of the Drop trait. By specifying that the relationship from a child to its
parent should be a Weak<T> reference in the definition of Node, we’re
able to have parent nodes point to child nodes and vice versa without
creating a reference cycle and memory leaks.

Summary
We’ve now covered how you can use different kinds of smart pointers
to choose different guarantees and tradeoffs than those Rust makes
with regular references. Box<T> has a known size and points to data
allocated on the heap. Rc<T> keeps track of the number of references to
data on the heap so that data can have multiple owners. RefCell<T>
with its interior mutability gives us a type that can be used where we
need an immutable type, and enforces the borrowing rules at runtime
instead of at compile time.

We’ve also discussed the Deref and Drop traits that enable a lot of
smart pointers’ functionality. We explored how it’s possible to create
a reference cycle that would cause a memory leak, and how to prevent
reference cycles by using Weak<T>.



419

If this chapter has piqued your interest and you now want to imple-
ment your own smart pointers, check out The Nomicon for even more
useful information.

Next, let’s talk about concurrency in Rust. We’ll even learn about
a few new smart pointers that can help us with it.

https://doc.rust-lang.org/stable/nomicon/


420



Chapter 4

Fearless Concurrency

Ensuring memory safety isn’t Rust’s only goal: being a language that
is better equipped to handle concurrent and parallel programming has
always been another major goal of Rust. Concurrent programming,
where different parts of a program execute independently, and paral-
lel programming, where different parts of a program are executing at
the same time, are becoming more important as more computers have
multiple processors for our programs to take advantage of. Historically,
programming in these contexts has been difficult and error prone: Rust
hopes to change that.

Originally, we thought that memory safety and preventing concur-
rency problems were two separate challenges to be solved with different
methods. However, over time, we discovered that ownership and the
type system are a powerful set of tools that help in dealing with both
memory safety and concurrency problems! By leveraging ownership
and type checking, many concurrency errors are compile time errors
in Rust, rather than runtime errors. We’ve nicknamed this aspect of
Rust fearless concurrency. Fearless concurrency means Rust not only
allows you to have confidence that your code is free of subtle bugs, but
also lets you refactor this kind of code easily without worrying about
introducing new bugs.

Note: given that Rust’s slogan is fearless concurrency,
we’ll be referring to many of the problems here as concurrent
rather than being more precise by saying concurrent and/or
parallel, for simplicity’s sake. If this were a book specifically
about concurrency and/or parallelism, we’d be sure to be
more specific. For this chapter, please mentally substitute



422

concurrent and/or parallel whenever we say concurrent.

Many languages are strongly opinionated about the solutions they of-
fer you to deal with concurrent problems. That’s a very reasonable
strategy, especially for higher-level languages, but lower-level languages
don’t have that luxury. Lower-level languages are expected to enable
whichever solution would provide the best performance in a given situ-
ation, and they have fewer abstractions over the hardware. Rust, there-
fore, gives us a variety of tools for modeling our problems in whatever
way is appropriate for our situation and requirements.

Here’s what we’ll cover in this chapter:

• How to create threads to run multiple pieces of code at the same
time

• Message passing concurrency, where channels are used to send
messages between threads.

• Shared state concurrency, where multiple threads have access to
some piece of data.

• The Sync and Send traits, which allow Rust’s concurrency guar-
antees to be extended to user-defined types as well as types pro-
vided by the standard library.

4.1
Using Threads to Run Code Simultaneously
In most operating systems in use today, when your program executes,
the context in which the operating system runs your code is called a
process. The operating system runs many processes, and the operating
system managing these processes is what lets multiple programs execute
at the same time on your computer.

We can take the idea of processes each running a program down one
level of abstraction: your program can also have independent parts that
run simultaneously within the context of your program. The feature
that enables this functionality is called threads.

Splitting up the computation your program needs to do into multi-
ple threads can improve performance, since the program will be doing
multiple things at the same time. Programming with threads can add



423

complexity, however. Since threads run simultaneously, there’s no in-
herent guarantee about the order in which the parts of your code on dif-
ferent threads will run. This can lead to race conditions where threads
are accessing data or resources in an inconsistent order, deadlocks where
two threads both prevent each other from continuing, or bugs that only
happen in certain situations that are hard to reproduce reliably. Rust
lessens the effect of these and other downsides of using threads, but
programming in a multithreaded context still takes thought and code
structured differently than for programs only expected to run in a single
thread.

There are a few different ways that programming languages imple-
ment threads. Many operating systems provide an API for creating
new threads. In addition, many programming languages provide their
own special implementation of threads. Programming language pro-
vided threads are sometimes called lightweight or green threads. These
languages take a number of green threads and execute them in the
context of a different number of operating system threads. For this
reason, the model where a language calls the operating system APIs to
create threads is sometimes called 1:1, one OS thread per one language
thread. The green threaded model is called the M:N model, M green
threads per N OS threads, where M and N are not necessarily the same
number.

Each model has its own advantages and tradeoffs. The tradeoff
that’s most important to Rust is runtime support. Runtime is a con-
fusing term; it can have different meaning in different contexts. Here,
we mean some code included by the language in every binary. For some
languages, this code is large, and for others, this code is small. Col-
loquially, “no runtime” is often what people will say when they mean
“small runtime”, since every non-assembly language has some amount
of runtime. Smaller runtimes have fewer features but have the advan-
tage of resulting in smaller binaries. Smaller binaries make it easier to
combine the language with other languages in more contexts. While
many languages are okay with increasing the runtime in exchange for
more features, Rust needs to have nearly no runtime, and cannot com-
promise on being able to call into C in order to maintain performance.

The green threading model is a feature that requires a larger lan-
guage runtime in order to manage the threads. As such, the Rust
standard library only provides an implementation of 1:1 threading. Be-
cause Rust is such a low-level language, there are crates that implement
M:N threading if you would rather trade overhead for aspects such as
more control over which threads run when and lower costs of context



424

switching, for example.
Now that we’ve defined what threads are in Rust, let’s explore how

to use the thread-related API that the standard library provides for us.

Creating a New Thread with spawn

To create a new thread, we call the thread::spawn function and pass it
a closure (we talked about closures in Chapter 13), containing the code
we want to run in the new thread. The example in Listing 16-1 prints
some text from a new thread and other text from the main thread:

Filename: src/main.rs

use std::thread;

fn main() {
thread::spawn(|| {

for i in 1..10 {
println!("hi number {} from the spawned thread!",

i);
}

});

for i in 1..5 {
println!("hi number {} from the main thread!",

i);
}

}

Listing 16-1: Creating a new thread to print one thing while the main
thread is printing something else

Note that the way this function is written, when the main thread
ends, it will stop the new thread too. The output from this program
might be a little different every time, but it will look similar to this:

hi number 1 from the main thread!
hi number 1 from the spawned thread!
hi number 2 from the main thread!
hi number 2 from the spawned thread!
hi number 3 from the main thread!
hi number 3 from the spawned thread!
hi number 4 from the main thread!
hi number 4 from the spawned thread!



425

hi number 5 from the spawned thread!

The threads will probably take turns, but that’s not guaranteed. In
this run, the main thread printed first, even though the print statement
from the spawned thread appears first in the code we wrote. And even
though we told the spawned thread to print until i is 9, it only got to
5 before the main thread shut down. If you always only see one thread,
or if you don’t see any overlap, try increasing the numbers in the ranges
to create more opportunities for a thread to take a break and give the
other thread a turn.

Waiting for All Threads to Finish Using join Handles Not
only does the code in Listing 16-1 not allow the spawned thread to
finish most of the time since the main thread ends before the spawned
thread is done, there’s actually no guarantee that the spawned thread
will get to run at all! We can fix this by saving the return value of
thread::spawn, which is a JoinHandle. That looks like Listing 16-2:

Filename: src/main.rs

use std::thread;

fn main() {
let handle = thread::spawn(|| {

for i in 1..10 {
println!("hi number {} from the spawned thread!",

i);
}

});

for i in 1..5 {
println!("hi number {} from the main thread!",

i);
}

handle.join();
}

Listing 16-2: Saving a JoinHandle from thread::spawn to guarantee
the thread is run to completion

A JoinHandle is an owned value that can wait for a thread to
finish, which is what the join method does. By calling join on the
handle, the current thread will block until the thread that the handle



426

represents terminates. Since we’ve put the call to join after the main
thread’s for loop, running this example should produce output that
looks something like this:

hi number 1 from the main thread!
hi number 2 from the main thread!
hi number 1 from the spawned thread!
hi number 3 from the main thread!
hi number 2 from the spawned thread!
hi number 4 from the main thread!
hi number 3 from the spawned thread!
hi number 4 from the spawned thread!
hi number 5 from the spawned thread!
hi number 6 from the spawned thread!
hi number 7 from the spawned thread!
hi number 8 from the spawned thread!
hi number 9 from the spawned thread!

The two threads are still alternating, but the main thread waits because
of the call to handle.join() and does not end until the spawned thread
is finished.

If we instead move handle.join() before the for loop in main, like
this:

Filename: src/main.rs

use std::thread;

fn main() {
let handle = thread::spawn(|| {

for i in 1..10 {
println!("hi number {} from the spawned thread!",

i);
}

});

handle.join();

for i in 1..5 {
println!("hi number {} from the main thread!",

i);



427

}
}

The main thread will wait for the spawned thread to finish before the
main thread starts running its for loop, so the output won’t be inter-
leaved anymore:

hi number 1 from the spawned thread!
hi number 2 from the spawned thread!
hi number 3 from the spawned thread!
hi number 4 from the spawned thread!
hi number 5 from the spawned thread!
hi number 6 from the spawned thread!
hi number 7 from the spawned thread!
hi number 8 from the spawned thread!
hi number 9 from the spawned thread!
hi number 1 from the main thread!
hi number 2 from the main thread!
hi number 3 from the main thread!
hi number 4 from the main thread!

Thinking about a small thing such as where to call join can affect
whether your threads are actually running at the same time or not.

Using move Closures with Threads

There’s a feature of closures that we didn’t cover in Chapter 13 that’s
often useful with thread::spawn: move closures. We said this in Chap-
ter 13:

Creating closures that capture values from their environ-
ment is mostly used in the context of starting new threads.

Now we’re creating new threads, so let’s talk about capturing values in
closures!

Notice the closure that we pass to thread::spawn in Listing 16-1
takes no arguments: we’re not using any data from the main thread in
the spawned thread’s code. In order to use data in the spawned thread
that comes from the main thread, we need the spawned thread’s closure
to capture the values it needs. Listing 16-3 shows an attempt to create
a vector in the main thread and use it in the spawned thread, which
won’t work the way this example is written:

Filename: src/main.rs



428

use std::thread;

fn main() {
let v = vec![1, 2, 3];

let handle = thread::spawn(|| {
println!("Here's a vector: {:?}", v);

});

handle.join();
}

Listing 16-3: Attempting to use a vector created by the main thread
from another thread

The closure uses v, so the closure will capture v and make v part of
the closure’s environment. Because thread::spawn runs this closure
in a new thread, we can access v inside that new thread.

When we compile this example, however, we’ll get the following
error:

error[E0373]: closure may outlive the current function,
but it borrows `v`,
which is owned by the current function
-->
|

6 | let handle = thread::spawn(|| {
| ^^ may outlive borrowed

value `v`
7 | println!("Here's a vector: {:?}", v);
| - `v` is

borrowed here
|

help: to force the closure to take ownership of `v` (and
any other referenced
variables), use the `move` keyword, as shown:
| let handle = thread::spawn(move || {

When we capture something in a closure’s environment, Rust will try
to infer how to capture it. println! only needs a reference to v, so
the closure tries to borrow v. There’s a problem, though: we don’t
know how long the spawned thread will run, so we don’t know if the
reference to v will always be valid.



429

Consider the code in Listing 16-4 that shows a scenario where it’s
more likely that the reference to v won’t be valid:

Filename: src/main.rs

use std::thread;

fn main() {
let v = vec![1, 2, 3];

let handle = thread::spawn(|| {
println!("Here's a vector: {:?}", v);

});

drop(v); // oh no!

handle.join();
}

Listing 16-4: A thread with a closure that attempts to capture a refer-
ence to v from a main thread that drops v

This code could be run, and the spawned thread could immediately
get put in the background without getting a chance to run at all. The
spawned thread has a reference to v inside, but the main thread is
still running: it immediately drops v, using the drop function that we
discussed in Chapter 15 that explicitly drops its argument. Then, the
spawned thread starts to execute. v is now invalid, so a reference to it
is also invalid. Oh no!

To fix this problem, we can listen to the advice of the error message:

help: to force the closure to take ownership of `v` (and
any other referenced
variables), use the `move` keyword, as shown:

| let handle = thread::spawn(move || {

By adding the move keyword before the closure, we force the closure to
take ownership of the values it’s using, rather than inferring borrowing.
This modification to the code from Listing 16-3 shown in Listing 16-5
will compile and run as we intend:

Filename: src/main.rs

use std::thread;

fn main() {



430

let v = vec![1, 2, 3];

let handle = thread::spawn(move || {
println!("Here's a vector: {:?}", v);

});

handle.join();
}

Listing 16-5: Using the move keyword to force a closure to take owner-
ship of the values it uses

What about the code in Listing 16-4 where the main thread called
drop? If we add move to the closure, we’ve moved v into the closure’s
environment, and we can no longer call drop on it. We get this compiler
error instead:

error[E0382]: use of moved value: `v`
-->
|

6 | let handle = thread::spawn(move || {
| ------- value moved

(into closure) here
...
10 | drop(v); // oh no!

| ^ value used here after move
|
= note: move occurs because `v` has type `std::vec::

Vec<i32>`, which does
not implement the `Copy` trait

Rust’s ownership rules have saved us again!
Now that we have a basic understanding of threads and the thread

API, let’s talk about what we can actually do with threads.

4.2
Message Passing to Transfer Data Between Threads
One approach to concurrency that’s seen a rise in popularity as of late
is message passing, where threads or actors communicate by sending
each other messages containing data. Here’s the idea in slogan form:



431

Do not communicate by sharing memory; instead, share
memory by communicating.

--Effective Go

A major tool to accomplish this goal is the channel. A channel has
two halves, a transmitter and a receiver. One part of our code can
call methods on the transmitter with the data we want to send, and
another part can check the receiving end for arriving messages.

We’re going to work up to an example where we have one thread
that will generate values and send them down a channel. The main
thread will receive the values and print them out.

First, though, let’s start by creating a channel but not doing any-
thing with it in Listing 16-6:

Filename: src/main.rs

use std::sync::mpsc;

fn main() {
let (tx, rx) = mpsc::channel();

# tx.send(()).unwrap();
}

Listing 16-6: Creating a channel and assigning the two halves to tx
and rx

The mpsc::channel function creates a new channel. mpsc stands
for multiple producer, single consumer. In short, we can have multiple
sending ends of a channel that produce values, but only one receiving
end that consumes those values. We’re going to start with a single
producer for now, but we’ll add multiple producers once we get this
example working.

mpsc::channel returns a tuple: the first element is the sending end,
and the second element is the receiving end. For historical reasons,
many people use tx and rx to abbreviate transmitter and receiver,
so those are the names we’re using for the variables bound to each
end. We’re using a let statement with a pattern that destructures the
tuples; we’ll be discussing the use of patterns in let statements and
destructuring in Chapter 18.

Let’s move the transmitting end into a spawned thread and have it
send one string, shown in Listing 16-7:

Filename: src/main.rs

http://golang.org/doc/effective_go.html


432

use std::thread;
use std::sync::mpsc;

fn main() {
let (tx, rx) = mpsc::channel();

thread::spawn(move || {
let val = String::from("hi");
tx.send(val).unwrap();

});
}

Listing 16-7: Moving tx to a spawned thread and sending “hi”
We’re using thread::spawn to create a new thread, just as we did

in the previous section. We use a move closure to make tx move into
the closure so that the thread owns it.

The transmitting end of a channel has the send method that takes
the value we want to send down the channel. The send method re-
turns a Result<T, E> type, because if the receiving end has already
been dropped, there’s nowhere to send a value to, so the send oper-
ation would error. In this example, we’re simply calling unwrap to
ignore this error, but for a real application, we’d want to handle it
properly. Chapter 9 is where you’d go to review strategies for proper
error handling.

In Listing 16-8, let’s get the value from the receiving end of the
channel in the main thread:

Filename: src/main.rs

use std::thread;
use std::sync::mpsc;

fn main() {
let (tx, rx) = mpsc::channel();

thread::spawn(move || {
let val = String::from("hi");
tx.send(val).unwrap();

});

let received = rx.recv().unwrap();
println!("Got: {}", received);



433

}

Listing 16-8: Receiving the value “hi” in the main thread and printing
it out

The receiving end of a channel has two useful methods: recv and
try_recv. Here, we’re using recv, which is short for receive. This
method will block execution until a value is sent down the channel.
Once a value is sent, recv will return it in a Result<T, E>. When
the sending end of the channel closes, recv will return an error. The
try_recv method will not block; it instead returns a Result<T, E>
immediately.

If we run the code in Listing 16-8, we’ll see the value printed out
from the main thread:

Got: hi

How Channels Interact with Ownership

Let’s do an experiment at this point to see how channels and ownership
work together: we’ll try to use val in the spawned thread after we’ve
sent it down the channel. Try compiling the code in Listing 16-9:

Filename: src/main.rs

use std::thread;
use std::sync::mpsc;

fn main() {
let (tx, rx) = mpsc::channel();

thread::spawn(move || {
let val = String::from("hi");
tx.send(val).unwrap();
println!("val is {}", val);

});

let received = rx.recv().unwrap();
println!("Got: {}", received);

}

Listing 16-9: Attempting to use val after we have sent it down the
channel

Here, we try to print out val after we’ve sent it down the channel
via tx.send. This is a bad idea: once we’ve sent the value to another



434

thread, that thread could modify it or drop it before we try to use
the value again. This could cause errors or unexpected results due to
inconsistent or nonexistent data.

If we try to compile this code, Rust will error:

error[E0382]: use of moved value: `val`
--> src/main.rs:10:31
|

9 | tx.send(val).unwrap();
| --- value moved here

10 | println!("val is {}", val);
| ^^^ value used here

after move
|
= note: move occurs because `val` has type `std::string:

:String`, which does
not implement the `Copy` trait

Our concurrency mistake has caused a compile-time error! send takes
ownership of its parameter and moves the value so that the value is
owned by the receiver. This means we can’t accidentally use the value
again after sending it; the ownership system checks that everything is
okay.

In this regard, message passing is very similar to single ownership
in Rust. Message passing enthusiasts enjoy message passing for simi-
lar reasons that Rustaceans enjoy Rust’s ownership: single ownership
means certain classes of problems go away. If only one thread at a time
can use some memory, there’s no chance of a data race.

Sending Multiple Values and Seeing the Receiver Waiting

The code in Listing 16-8 compiled and ran, but it wasn’t very interest-
ing: it’s hard to see that we have two separate threads talking to each
other over a channel. Listing 16-10 has some modifications that will
prove to us that this code is running concurrently: the spawned thread
will now send multiple messages and pause for a second between each
message.

Filename: src/main.rs

use std::thread;
use std::sync::mpsc;
use std::time::Duration;



435

fn main() {
let (tx, rx) = mpsc::channel();

thread::spawn(move || {
let vals = vec![

String::from("hi"),
String::from("from"),
String::from("the"),
String::from("thread"),

];

for val in vals {
tx.send(val).unwrap();
thread::sleep(Duration::from_secs(1));

}
});

for received in rx {
println!("Got: {}", received);

}
}

Listing 16-10: Sending multiple messages and pausing between each
one

This time, we have a vector of strings in the spawned thread that we
want to send to the main thread. We iterate over them, sending each
individually and then pausing by calling the thread::sleep function
with a Duration value of one second.

In the main thread, we’re not calling the recv function explicitly
anymore: instead we’re treating rx as an iterator. For each value
received, we’re printing it out. When the channel is closed, iteration
will end.

When running the code in Listing 16-10, we’ll see this output, with
a one second pause in between each line:

Got: hi
Got: from
Got: the
Got: thread

We don’t have any pausing or code that would take a while in the for
loop in the main thread, so we can tell that the main thread is waiting



436

to receive values from the spawned thread.

Create Multiple Producers by Cloning the Transmitter

Near the start of this section, we mentioned that mpsc stood for multiple
producer, single consumer. We can expand the code from Listing 16-10
to create multiple threads that all send values to the same receiver. We
do that by cloning the transmitting half of the channel, as shown in
Listing 16-11:

Filename: src/main.rs

# use std::thread;
# use std::sync::mpsc;
# use std::time::Duration;
#
# fn main() {
// ...snip...
let (tx, rx) = mpsc::channel();

let tx1 = tx.clone();
thread::spawn(move || {

let vals = vec![
String::from("hi"),
String::from("from"),
String::from("the"),
String::from("thread"),

];

for val in vals {
tx1.send(val).unwrap();
thread::sleep(Duration::from_secs(1));

}
});

thread::spawn(move || {
let vals = vec![

String::from("more"),
String::from("messages"),
String::from("for"),
String::from("you"),

];



437

for val in vals {
tx.send(val).unwrap();
thread::sleep(Duration::from_secs(1));

}
});
// ...snip...
#
# for received in rx {
# println!("Got: {}", received);
# }
# }

Listing 16-11: Sending multiple messages and pausing between each
one

This time, before we create the first spawned thread, we call clone
on the sending end of the channel. This will give us a new sending
handle that we can pass to the first spawned thread. We’ll pass the
original sending end of the channel to a second spawned thread, and
each thread is sending different messages to the receiving end of the
channel.

If you run this, you’ll probably see output like this:

Got: hi
Got: more
Got: from
Got: messages
Got: for
Got: the
Got: thread
Got: you

You might see the values in a different order, though. It depends on
your system! This is what makes concurrency interesting as well as diffi-
cult. If you play around with thread::sleep, giving it different values
in the different threads, you can make the runs more non-deterministic
and create different output each time.

Now that we’ve seen how channels work, let’s look at shared-memory
concurrency.



438

4.3
Shared State Concurrency
While message passing is a fine way of dealing with concurrency, it’s
not the only one. Consider this slogan again:

Do not communicate by sharing memory; instead, share
memory by communicating.

What would “communicate by sharing memory” look like? And more-
over, why would message passing enthusiasts dislike it, and dislike it
enough to invert it entirely?

Remember how channels are sort of like single ownership? Shared
memory concurrency is sort of like multiple ownership: multiple threads
can access the same memory location at the same time. As we saw
with multiple ownership made possible by smart pointers in Chapter
15, multiple ownership can add additional complexity, since we need to
manage these different owners somehow.

Rust’s type system and ownership can help a lot here in getting this
management correct, though. For an example, let’s look at one of the
more common concurrency primitives for shared memory: mutexes.

Mutexes Allow Access to Data from One Thread at a Time

A mutex is a concurrency primitive for sharing memory. It’s short for
“mutual exclusion”, that is, it only allows one thread to access some
data at any given time. Mutexes have a reputation for being hard to
use, since there’s a lot you have to remember:

1. You have to remember to attempt to acquire the lock before using
the data.

2. Once you’re done with the data that’s being guarded by the
mutex, you have to remember to unlock the data so that other
threads can acquire the lock.

For a real-world example of a mutex, imagine a panel discussion at
a conference where there is only one microphone. Before a panelist
may speak, they have to ask or signal that they would like to use the
microphone. Once they get the microphone, they may talk for as long
as they would like, then hand the microphone to the next panelist
who would like to speak. It would be rude for a panelist to start



439

shouting without having the microphone or to steal the microphone
before another panelist was finished. No one else would be able to speak
if a panelist forgot to hand the microphone to the next person when
they finished using it. If the management of the shared microphone
went wrong in any of these ways, the panel would not work as planned!

Management of mutexes can be incredibly tricky to get right, and
that’s why so many people are enthusiastic about channels. However,
in Rust, we can’t get locking and unlocking wrong, thanks to the type
system and ownership.

The API of Mutex<T> Let’s look at an example of using a mutex in
Listing 16-12, without involving multiple threads for the moment:

Filename: src/main.rs

use std::sync::Mutex;

fn main() {
let m = Mutex::new(5);

{
let mut num = m.lock().unwrap();
*num = 6;

}

println!("m = {:?}", m);
}

Listing 16-12: Exploring the API of Mutex<T> in a single threaded
context for simplicity

Like many types, we create a Mutex<T> through an associated func-
tion named new. To access the data inside the mutex, we use the lock
method to acquire the lock. This call will block until it’s our turn to
have the lock. This call can fail if another thread was holding the lock
and then that thread panicked. In a similar way as we did in Listing
16-6 in the last section, we’re using unwrap() for now, rather than
better error handling. See Chapter 9 for better tools.

Once we have acquired the lock, we can treat the return value,
named num in this case, as a mutable reference to the data inside. The
type system is how Rust ensures that we acquire a lock before using
this value: Mutex<i32> is not an i32, so we must acquire the lock in
order to be able to use the i32 value. We can’t forget; the type system
won’t let us do otherwise.



440

As you may have suspected, Mutex<T> is a smart pointer. Well,
more accurately, the call to lock returns a smart pointer called MutexGuard.
This smart pointer implements Deref to point at our inner data, sim-
ilar to the other smart pointers we saw in Chapter 15. In addition,
MutexGuard has a Drop implementation that releases the lock. This
way, we can’t forget to release the lock. It happens for us automati-
cally when the MutexGuard goes out of scope, which it does at the end
of the inner scope in Listing 16-12. We can print out the mutex value
and see that we were able to change the inner i32 to 6.

Sharing a Mutex<T> Between Multiple Threads Let’s now try to
share a value between multiple threads using Mutex<T>. We’ll spin up
ten threads, and have them each increment a counter value by 1 so that
the counter goes from 0 to 10. Note that the next few examples will
have compiler errors, and we’re going to use those errors to learn more
about using Mutex<T> and how Rust helps us use it correctly. Listing
16-13 has our starting example:

Filename: src/main.rs

use std::sync::Mutex;
use std::thread;

fn main() {
let counter = Mutex::new(0);
let mut handles = vec![];

for _ in 0..10 {
let handle = thread::spawn(|| {

let mut num = counter.lock().unwrap();

*num += 1;
});
handles.push(handle);

}

for handle in handles {
handle.join().unwrap();

}

println!("Result: {}", *counter.lock().unwrap());
}



441

Listing 16-13: The start of a program having 10 threads each increment
a counter guarded by a Mutex<T>

We’re creating a counter variable to hold an i32 inside a Mutex<T>,
like we did in Listing 16-12. Next, we’re creating 10 threads by mapping
over a range of numbers. We use thread::spawn and give all the
threads the same closure: they’re each going to acquire a lock on the
Mutex<T> by calling the lock method and then add 1 to the value in
the mutex. When a thread finishes running its closure, num will go out
of scope and release the lock so that another thread can acquire it.

In the main thread, we’re collecting all the join handles like we did
in Listing 16-2, and then calling join on each of them to make sure all
the threads finish. At that point, the main thread will acquire the lock
and print out the result of this program.

We hinted that this example won’t compile, let’s find out why!

error[E0373]: closure may outlive the current function,
but it borrows
`counter`, which is owned by the current function

-->
|

9 | let handle = thread::spawn(|| {
| ^^ may outlive

borrowed value `counter`
10 | let mut num = counter.lock().unwrap();

| ------- `counter` is borrowed
here

|
help: to force the closure to take ownership of `counter`
(and any other
referenced variables), use the `move` keyword, as shown:

| let handle = thread::spawn(move || {

This is similar to the problem we solved in Listing 16-5. Given that we
spin up multiple threads, Rust can’t know how long the threads will
run and whether counter will still be valid when each thread tries to
borrow it. The help message has a reminder for how to solve this: we
can use move to give ownership to each thread. Let’s try it by making
this change to the closure:

thread::spawn(move || {

And trying to compile again. We’ll get different errors this time!



442

error[E0382]: capture of moved value: `counter`
-->
|

9 | let handle = thread::spawn(move || {
| ------- value moved

(into closure) here
10 | let mut num = counter.lock().unwrap();

| ^^^^^^^ value captured here
after move

|
= note: move occurs because `counter` has type `std:

:sync::Mutex<i32>`,
which does not implement the `Copy` trait

error[E0382]: use of moved value: `counter`
-->
|

9 | let handle = thread::spawn(move || {
| ------- value moved

(into closure) here
...
21 | println!("Result: {}", *counter.lock().unwrap(
));

| ^^^^^^^ value used here
after move

|
= note: move occurs because `counter` has type `std:

:sync::Mutex<i32>`,
which does not implement the `Copy` trait

error: aborting due to 2 previous errors

move didn’t fix this program like it fixed Listing 16-5. Why not? This
error message is a little confusing to read, because it’s saying that the
counter value is moved into the closure, then is captured when we call
lock. That sounds like what we wanted, but it’s not allowed.

Let’s reason this out. Instead of making 10 threads in a for loop,
let’s just make two threads without a loop and see what happens then.
Replace the first for loop in Listing 16-13 with this code instead:



443

let handle = thread::spawn(move || {
let mut num = counter.lock().unwrap();

*num += 1;
});
handles.push(handle);

let handle2 = thread::spawn(move || {
let mut num2 = counter.lock().unwrap();

*num2 += 1;
});
handles.push(handle2);

Here we’re making 2 threads, and we changed the variable names used
with the second thread to handle2 and num2. We’re simplifying our
example for the moment to see if we can understand the error message
we’re getting. This time, compiling gives us:

error[E0382]: capture of moved value: `counter`
-->
|

8 | let handle = thread::spawn(move || {
| ------- value moved

(into closure) here
...
16 | let mut num2 = counter.lock().unwrap();

| ^^^^^^^ value captured here
after move

|
= note: move occurs because `counter` has type `std:

:sync::Mutex<i32>`,
which does not implement the `Copy` trait

error[E0382]: use of moved value: `counter`
-->
|

8 | let handle = thread::spawn(move || {
| ------- value moved

(into closure) here
...



444

26 | println!("Result: {}", *counter.lock().unwrap(
));

| ^^^^^^^ value used here
after move

|
= note: move occurs because `counter` has type `std:

:sync::Mutex<i32>`,
which does not implement the `Copy` trait

error: aborting due to 2 previous errors

Aha! In the first error message, Rust is showing us that counter is
moved into the closure for the thread that goes with handle. That
move is preventing us from capturing counter when we try to call
lock on it and store the result in num2, which is in the second thread!
So Rust is telling us that we can’t move ownership of counter into
multiple threads. This was hard to see before since we were creating
multiple threads in a loop, and Rust can’t point to different threads in
different iterations of the loop.

Multiple Ownership with Multiple Threads In Chapter 15, we
were able to have multiple ownership of a value by using the smart
pointer Rc<T> to create a reference-counted value. We mentioned in
Chapter 15 that Rc<T> was only for single-threaded contexts, but let’s
try using Rc<T> in this case anyway and see what happens. We’ll wrap
the Mutex<T> in Rc<T> in Listing 16-14, and clone the Rc<T> before
moving ownership to the thread. We’ll switch back to the for loop for
creating the threads, and keep the move keyword with the closure:

Filename: src/main.rs

use std::rc::Rc;
use std::sync::Mutex;
use std::thread;

fn main() {
let counter = Rc::new(Mutex::new(0));
let mut handles = vec![];

for _ in 0..10 {
let counter = counter.clone();
let handle = thread::spawn(move || {



445

let mut num = counter.lock().unwrap();

*num += 1;
});
handles.push(handle);

}

for handle in handles {
handle.join().unwrap();

}

println!("Result: {}", *counter.lock().unwrap());
}

Listing 16-14: Attempting to use Rc<T> to allow multiple threads to
own the Mutex<T>

Once again, we compile and get... different errors! The compiler is
teaching us a lot!

error[E0277]: the trait bound `std::rc::Rc<std::sync::Mutex<i32>>:

std::marker::Send` is not satisfied
-->
|

11 | let handle = thread::spawn(move || {
| ^^^^^^^^^^^^^ the trait `std:

:marker::Send` is not
implemented for `std::rc::Rc<std::sync::Mutex<i32>>`
|
= note: `std::rc::Rc<std::sync::Mutex<i32>>` cannot

be sent between threads
safely
= note: required because it appears within the type
`[closure@src/main.rs:11:36: 15:10
counter:std::rc::Rc<std::sync::Mutex<i32>>]`
= note: required by `std::thread::spawn`

Wow, that’s quite wordy! Some important parts to pick out: the first
note says Rc<Mutex<i32>> cannot be sent between threads safely.
The reason for this is in the error message, which, once distilled, says
the trait bound Send is not satisfied. We’re going to talk about
Send in the next section; it’s one of the traits that ensures the types
we use with threads are meant for use in concurrent situations.



446

Unfortunately, Rc<T> is not safe to share across threads. When
Rc<T> manages the reference count, it has to add to the count for each
call to clone and subtract from the count when each clone is dropped.
Rc<T> doesn’t use any concurrency primitives to make sure that changes
to the count happen in an operation that couldn’t be interrupted by
another thread. This could lead to subtle bugs where the counts are
wrong, which could lead to memory leaks or dropping a value before
we’re done with it. So what if we had a type that was exactly like
Rc<T>, but made changes to the reference count in a thread-safe way?

Atomic Reference Counting with Arc<T> If you thought that
question sounded like a leading one, you’d be right. There is a type
like Rc<T> that’s safe to use in concurrent situations: Arc<T>. The ‘a’
stands for atomic, so it’s an atomically reference counted type. Atomics
are an additional kind of concurrency primitive that we won’t cover
here; see the standard library documentation for std::sync::atomic
for more details. The gist of it is this: atomics work like primitive
types, but are safe to share across threads.

Why aren’t all primitive types atomic, and why aren’t all standard
library types implemented to use Arc<T> by default? Thread safety
comes with a performance penalty that we only want to pay when we
need it. If we’re only doing operations on values within a single thread,
our code can run faster since it doesn’t need the guarantees that atomics
give us.

Back to our example: Arc<T> and Rc<T> are identical except for the
atomic internals of Arc<T>. Their API is the same, so we can change
the use line and the call to new. The code in Listing 16-15 will finally
compile and run:

Filename: src/main.rs

use std::sync::{Mutex, Arc};
use std::thread;

fn main() {
let counter = Arc::new(Mutex::new(0));
let mut handles = vec![];

for _ in 0..10 {
let counter = counter.clone();
let handle = thread::spawn(move || {



447

let mut num = counter.lock().unwrap();

*num += 1;
});
handles.push(handle);

}

for handle in handles {
handle.join().unwrap();

}

println!("Result: {}", *counter.lock().unwrap());
}

Listing 16-15: Using an Arc<T> to wrap the Mutex<T> to be able to
share ownership across multiple threads

This will print:

Result: 10

We did it! We counted from 0 to 10, which may not seem very im-
pressive, but we learned a lot about Mutex<T> and thread safety along
the way! The structure that we’ve built in this example could be used
to do more complicated operations than just incrementing a counter.
Calculations that can be divided up into independent parts could be
split across threads in this way, and we can use a Mutex<T> to allow
each thread to update the final result with its part.

You may have noticed that, since counter is immutable but we
could get a mutable reference to the value inside it, this means Mutex<T>
provides interior mutability, like the Cell family does. In the same way
that we used RefCell<T> in Chapter 15 to be able to mutate contents
inside an Rc<T>, we use Mutex<T> to be able to mutate contents inside
of an Arc<T>.

Recall that Rc<T> did not prevent every possible problem: we also
talked about the possibility of creating reference cycles where two Rc<T>
values refer to each other, which would cause a memory leak. We
have a similar problem with Mutex<T> that Rust also doesn’t prevent:
deadlocks. A deadlock is a situation in which an operation needs to
lock two resources, and two threads have each acquired one of the
locks and will now wait for each other forever. If you’re interested
in this topic, try creating a Rust program that has a deadlock, then
research deadlock mitigation strategies that apply to the use of mutexes
in any language and try implementing them in Rust. The standard



448

library API documentation for Mutex<T> and MutexGuard will have
useful information.

Rust’s type system and ownership has made sure that our threads
have exclusive access to the shared value when they’re updating it, so
the threads won’t overwrite each other’s answers in unpredictable ways.
It took us a while to work with the compiler to get everything right,
but we’ve saved future time that might be spent trying to reproduce
subtly incorrect scenarios that only happen when the threads run in a
particular order.

Let’s round out this chapter by talking about the Send and Sync
traits and how we could use them with custom types.

4.4
Extensible Concurrency with the Sync and Send Traits
One interesting aspect of Rust’s concurrency model is that the lan-
guage knows very little about concurrency. Almost everything we’ve
been talking about so far has been part of the standard library, not the
language itself. Because we don’t need the language to provide every-
thing we need to program in a concurrent context, we’re not limited to
the concurrency options that the standard library or language provide:
we can write our own or use ones others have written.

We said almost everything wasn’t in the language, so what is? There
are two traits, both in std::marker: Sync and Send.

Send for Indicating Ownership May Be Transferred to Another
Thread

The Send marker trait indicates that ownership of that type may be
transferred between threads. Almost every Rust type is Send, but there
are some exceptions. One type provided by the standard library that is
not Send is Rc<T>: if we clone an Rc<T> value and try to transfer own-
ership of the clone to another thread, both threads might update the
reference count at the same time. As we mentioned in the previous sec-
tion, Rc<T> is implemented for use in single-threaded situations where
you don’t want to pay the performance penalty of having a threadsafe
reference count.

Because Rc<T> is not marked Send, Rust’s type system and trait
bounds ensure that we can never forget and accidentally send an Rc<T>
value across threads unsafely. We tried to do this in Listing 16-14, and



449

we got an error that said the trait Send is not implemented for
Rc<Mutex<i32>>. When we switched to Arc<T>, which is Send, the
code compiled.

Any type that is composed entirely of Send types is automatically
marked as Send as well. Almost all primitive types are Send, aside from
raw pointers, which we’ll discuss in Chapter 19. Most standard library
types are Send, aside from Rc<T>.

Sync for Indicating Access from Multiple Threads is Safe

The Sync marker trait indicates that a type is safe to have references to
a value from multiple threads. Another way to say this is for any type
T, T is Sync if &T (a reference to T) is Send so that the reference can be
sent safely to another thread. In a similar manner as Send, primitive
types are Sync and types composed entirely of types that are Sync are
also Sync.

Rc<T> is also not Sync, for the same reasons that it’s not Send.
RefCell<T> (which we talked about in Chapter 15) and the family of
related Cell<T> types are not Sync. The implementation of the borrow
checking at runtime that RefCell<T> does is not threadsafe. Mutex<T>
is Sync, and can be used to share access with multiple threads as we
saw in the previous section.

Implementing Send and Sync Manually is Unsafe

Usually, we don’t need to implement the Send and Sync traits, since
types that are made up of Send and Sync traits are automatically also
Send and Sync. Because they’re marker traits, they don’t even have any
methods to implement. They’re just useful for enforcing concurrency-
related invariants.

Implementing the guarantees that these traits are markers for in-
volves implementing unsafe Rust code. We’re going to be talking about
using unsafe Rust code in Chapter 19; for now, the important infor-
mation is that building new concurrent types that aren’t made up of
Send and Sync parts requires careful thought to make sure the safety
guarantees are upheld. The Nomicon has more information about these
guarantees and how to uphold them.

Summary
This isn’t the last time we’ll see concurrency in this book; the project
in Chapter 20 will use these concepts in a more realistic situation than

https://doc.rust-lang.org/stable/nomicon/


450

the smaller examples we discussed in this chapter.
As we mentioned, since very little of how Rust deals with con-

currency has to be part of the language, there are many concurrency
solutions implemented as crates. These evolve more quickly than the
standard library; search online for the current state-of-the-art crates
for use in multithreaded situations.

Rust provides channels for message passing and smart pointer types
like Mutex<T> and Arc<T> that are safe to use in concurrent contexts.
The type system and the borrow checker will make sure the code we
write using these solutions won’t have data races or invalid references.
Once we get our code compiling, we can rest assured that our code will
happily run on multiple threads without the kinds of hard-to-track-
down bugs common in other programming languages. Concurrent pro-
gramming is no longer something to be afraid of: go forth and make
your programs concurrent, fearlessly!

Next, let’s talk about idiomatic ways to model problems and struc-
ture solutions as your Rust programs get bigger, and how Rust’s idioms
relate to those you might be familiar with from Object Oriented Pro-
gramming.



Chapter 5

Is Rust an
Object-Oriented
Programming Language?

Object-Oriented Programming is a way of modeling programs that orig-
inated with Simula in the 1960s and became popular with C++ in the
1990s. There are many competing definitions for what OOP is: under
some definitions, Rust is object-oriented; under other definitions, Rust
is not. In this chapter, we’ll explore some characteristics that are com-
monly considered to be object-oriented and how those characteristics
translate to idiomatic Rust.

5.1

What Does Object-Oriented Mean?
There isn’t consensus in the programming community about the fea-
tures a language needs to have in order to be called object-oriented.
Rust is influenced by many different programming paradigms; we ex-
plored the features it has that come from functional programming in
Chapter 13. Some of the characteristics that object-oriented program-
ming languages tend to share are objects, encapsulation, and inheri-
tance. Let’s take a look at what each of those mean and whether Rust
supports them.



452

Objects Contain Data and Behavior

The book “Design Patterns: Elements of Reusable Object-Oriented
Software,” colloquially referred to as “The Gang of Four book,” is a
catalog of object-oriented design patterns. It defines object-oriented
programming in this way:

Object-oriented programs are made up of objects. An
object packages both data and the procedures that operate on
that data. The procedures are typically called methods or
operations.

Under this definition, then, Rust is object-oriented: structs and enums
have data and impl blocks provide methods on structs and enums.
Even though structs and enums with methods aren’t called objects,
they provide the same functionality that objects do, using the Gang of
Four’s definition of objects.

Encapsulation that Hides Implementation Details

Another aspect commonly associated with object-oriented program-
ming is the idea of encapsulation: the implementation details of an
object aren’t accessible to code using that object. The only way to in-
teract with an object is through the public API the object offers; code
using the object should not be able to reach into the object’s internals
and change data or behavior directly. Encapsulation enables chang-
ing and refactoring an object’s internals without needing to change the
code that uses the object.

As we discussed in Chapter 7, we can use the pub keyword to decide
what modules, types, functions, and methods in our code should be
public, and by default, everything is private. For example, we can define
a struct AveragedCollection that has a field containing a vector of i32
values. The struct can also have a field that knows the average of the
values in the vector so that whenever anyone wants to know the average
of the values that the struct has in its vector, we don’t have to compute
it on-demand. AveragedCollection will cache the calculated average
for us. Listing 17-1 has the definition of the AveragedCollection
struct:

Filename: src/lib.rs

pub struct AveragedCollection {
list: Vec<i32>,



453

average: f64,
}

Listing 17-1: An AveragedCollection struct that maintains a list of
integers and the average of the items in the collection.

Note that the struct itself is marked pub so that other code may
use this struct, but the fields within the struct remain private. This is
important in this case because we want to ensure that whenever a value
is added or removed from the list, we also update the average. We do
this by implementing add, remove, and average methods on the struct
as shown in Listing 17-2:

Filename: src/lib.rs

# pub struct AveragedCollection {
# list: Vec<i32>,
# average: f64,
# }
impl AveragedCollection {

pub fn add(&mut self, value: i32) {
self.list.push(value);
self.update_average();

}

pub fn remove(&mut self) -> Option<i32> {
let result = self.list.pop();
match result {

Some(value) => {
self.update_average();
Some(value)

},
None => None,

}
}

pub fn average(&self) -> f64 {
self.average

}

fn update_average(&mut self) {
let total: i32 = self.list.iter().sum();
self.average = total as f64 / self.list.len() as



454

f64;
}

}

Listing 17-2: Implementations of the public methods add, remove, and
average on AveragedCollection

The public methods add, remove, and average are the only way to
modify an instance of a AveragedCollection. When an item is added
to list using the add method or removed using the remove method,
the implementations of those methods call the private update_average
method that takes care of updating the average field as well. Because
the list and average fields are private, there’s no way for external code
to add or remove items to the list field directly, which could cause
the average field to get out of sync. The average method returns
the value in the average field, which allows external code to read the
average but not modify it.

Because we’ve encapsulated the implementation details of AveragedCollection,
we can easily change aspects like the data structure in the future. For
instance, we could use a HashSet instead of a Vec for the list field. As
long as the signatures of the add, remove, and average public meth-
ods stay the same, code using AveragedCollection wouldn’t need to
change. This wouldn’t necessarily be the case if we exposed list to
external code: HashSet and Vec have different methods for adding and
removing items, so the external code would likely have to change if it
was modifying list directly.

If encapsulation is a required aspect for a language to be considered
object-oriented, then Rust meets that requirement. Using pub or not for
different parts of code enables encapsulation of implementation details.

Inheritance as a Type System and as Code Sharing

Inheritance is a mechanism that some programming languages provide
whereby an object can be defined to inherit from another object’s def-
inition, thus gaining the parent object’s data and behavior without
having to define those again. Inheritance is a characteristic that is part
of some people’s definitions of what an OOP language is.

If a language must have inheritance to be an object-oriented lan-
guage, then Rust is not object-oriented. There is not a way to define
a struct that inherits from another struct in order to gain the parent
struct’s fields and method implementations. However, if you’re used
to having inheritance in your programming toolbox, there are other
solutions in Rust depending on the reason you want to use inheritance.



455

There are two main reasons to reach for inheritance. The first is
to be able to re-use code: once a particular behavior is implemented
for one type, inheritance can enable re-using that implementation for
a different type. Rust code can be shared using default trait method
implementations instead, which we saw in Listing 10-14 when we added
a default implementation of the summary method on the Summarizable
trait. Any type implementing the Summarizable trait would have the
summary method available on it without any further code. This is simi-
lar to a parent class having an implementation of a method, and a child
class inheriting from the parent class also having the implementation
of the method due to the inheritance. We can also choose to override
the default implementation of the summary method when we implement
the Summarizable trait, which is similar to a child class overriding the
implementation of a method inherited from a parent class.

The second reason to use inheritance is with the type system: to
express that a child type can be used in the same places that the parent
type can be used. This is also called polymorphism, which means that
multiple objects can be substituted for each other at runtime if they
have the same shape.

While many people use “polymorphism” to describe in-
heritance, it’s actually a specific kind of polymorphism,
called “sub-type polymorphism.” There are other forms as
well; a generic parameter with a trait bound in Rust is
also polymorphism, more specifically “parametric polymor-
phism.” The exact details between the different kinds of poly-
morphism aren’t crucial here, so don’t worry too much about
the details: just know that Rust has multiple polymorphism-
related features, unlike many OOP languages.

To support this sort of pattern, Rust has trait objects so that we can
specify that we would like values of any type, as long as the values
implement a particular trait.

Inheritance has recently fallen out of favor as a programming de-
sign solution in many programming languages. Using inheritance to
re-use some code can require more code to be shared than you actu-
ally need. Subclasses shouldn’t always share all characteristics of their
parent class, but inheritance means the subclass gets all of its parent’s
data and behavior. This can make a program’s design less flexible, and
creates the possibility of calling methods on subclasses that don’t make
sense or cause errors since the methods don’t apply to the subclass but
must be inherited from the parent class. In addition, some languages



456

only allow a subclass to inherit from one class, further restricting the
flexibility of a program’s design.

For these reasons, Rust chose to take a different approach with trait
objects instead of inheritance. Let’s take a look at how trait objects
enable polymorphism in Rust.

5.2
Trait Objects for Using Values of Different Types
In Chapter 8, we said that a limitation of vectors is that vectors can
only store elements of one type. We had an example in Listing 8-1
where we defined a SpreadsheetCell enum that had variants to hold
integers, floats, and text so that we could store different types of data
in each cell and still have a vector represent a row of cells. This works
for cases in which the kinds of things we want to be able to treat
interchangeably are a fixed set of types that we know when our code
gets compiled.

Sometimes we want the set of types that we use to be extensible by
the programmers who use our library. For example, many Graphical
User Interface tools have a concept of a list of items that get drawn
on the screen by iterating through the list and calling a draw method
on each of the items. We’re going to create a library crate containing
the structure of a GUI library called rust_gui. Our GUI library could
include some types for people to use, such as Button or TextField.
Programmers that use rust_gui will want to create more types that
can be drawn on the screen: one programmer might add an Image,
while another might add a SelectBox. We’re not going to implement
a fully-fledged GUI library in this chapter, but we will show how the
pieces would fit together.

When we’re writing the rust_gui library, we don’t know all the
types that other programmers will want to create, so we can’t define
an enum containing all the types. What we do know is that rust_
gui needs to be able to keep track of a bunch of values of all these
different types, and it needs to be able to call a draw method on each
of these values. Our GUI library doesn’t need to know what will happen
exactly when we call the draw method, just that the value will have
that method available for us to call.

In a language with inheritance, we might define a class named
Component that has a method named draw on it. The other classes like
Button, Image, and SelectBox would inherit from Component and thus



457

inherit the draw method. They could each override the draw method
to define their custom behavior, but the framework could treat all of
the types as if they were Component instances and call draw on them.

Defining a Trait for the Common Behavior

In Rust, though, we can define a trait that we’ll name Draw and that
will have one method named draw. Then we can define a vector that
takes a trait object, which is a trait behind some sort of pointer, such
as a & reference or a Box<T> smart pointer. We’ll talk about the reason
trait objects have to be behind a pointer in Chapter 19.

We mentioned that we don’t call structs and enums “objects” to
distinguish structs and enums from other languages’ objects. The data
in the struct or enum fields and the behavior in impl blocks is separated,
as opposed to other languages that have data and behavior combined
into one concept called an object. Trait objects are more like objects
in other languages, in the sense that they combine the data made up
of the pointer to a concrete object with the behavior of the methods
defined in the trait. However, trait objects are different from objects
in other languages because we can’t add data to a trait object. Trait
objects aren’t as generally useful as objects in other languages: their
purpose is to allow abstraction across common behavior.

A trait defines behavior that we need in a given situation. We can
then use a trait as a trait object in places where we would use a concrete
type or a generic type. Rust’s type system will ensure that any value
we substitute in for the trait object will implement the methods of the
trait. Then we don’t need to know all the possible types at compile
time, and we can treat all the instances the same way. Listing 17-3
shows how to define a trait named Draw with one method named draw:

Filename: src/lib.rs

pub trait Draw {
fn draw(&self);

}

Listing 17-3: Definition of the Draw trait
This should look familiar since we talked about how to define traits

in Chapter 10. Next comes something new: Listing 17-4 has the defini-
tion of a struct named Screen that holds a vector named components
that are of type Box<Draw>. That Box<Draw> is a trait object: it’s a
stand-in for any type inside a Box that implements the Draw trait.

Filename: src/lib.rs



458

# pub trait Draw {
# fn draw(&self);
# }
#
pub struct Screen {

pub components: Vec<Box<Draw>>,
}

Listing 17-4: Definition of the Screen struct with a components field
that holds a vector of trait objects that implement the Draw trait

On the Screen struct, we’ll define a method named run, which will
call the draw method on each of its components as shown in Listing
17-5:

Filename: src/lib.rs

# pub trait Draw {
# fn draw(&self);
# }
#
# pub struct Screen {
# pub components: Vec<Box<Draw>>,
# }
#
impl Screen {

pub fn run(&self) {
for component in self.components.iter() {

component.draw();
}

}
}

Listing 17-5: Implementing a run method on Screen that calls the
draw method on each component

This is different than defining a struct that uses a generic type
parameter with trait bounds. A generic type parameter can only be
substituted with one concrete type at a time, while trait objects allow
for multiple concrete types to fill in for the trait object at runtime. For
example, we could have defined the Screen struct using a generic type
and a trait bound as in Listing 17-6:

Filename: src/lib.rs



459

# pub trait Draw {
# fn draw(&self);
# }
#
pub struct Screen<T: Draw> {

pub components: Vec<T>,
}

impl<T> Screen<T>
where T: Draw {
pub fn run(&self) {

for component in self.components.iter() {
component.draw();

}
}

}

Listing 17-6: An alternate implementation of the Screen struct and its
run method using generics and trait bounds

This only lets us have a Screen instance that has a list of compo-
nents that are all of type Button or all of type TextField. If you’ll only
ever have homogeneous collections, using generics and trait bounds is
preferable since the definitions will be monomorphized at compile time
to use the concrete types.

With the definition of Screen that holds a component list of trait
objects in Vec<Box<Draw>> instead, one Screen instance can hold a
Vec that contains a Box<Button> as well as a Box<TextField>. Let’s
see how that works, and then talk about the runtime performance im-
plications.

Implementations of the Trait from Us or Library Users

Now to add some types that implement the Draw trait. We’re going
to provide the Button type, and again, actually implementing a GUI
library is out of scope of this book, so the draw method won’t have any
useful implementation in its body. To imagine what the implementation
might look like, a Button struct might have fields for width, height,
and label, as shown in Listing 17-7:

Filename: src/lib.rs



460

# pub trait Draw {
# fn draw(&self);
# }
#
pub struct Button {

pub width: u32,
pub height: u32,
pub label: String,

}

impl Draw for Button {
fn draw(&self) {

// Code to actually draw a button
}

}

Listing 17-7: A Button struct that implements the Draw trait
The width, height, and label fields on Button will differ from

other components, such as a TextField type that might have width,
height, label, and placeholder fields instead. Each of the types
that we want to be able to draw on the screen will implement the Draw
trait with different code in the draw method that defines how to draw
that type like Button has here (without any actual GUI code that’s
out of scope of this chapter). In addition to implementing the Draw
trait, Button might also have another impl block containing methods
having to do with what happens if the button is clicked. These kinds
of methods won’t apply to types like TextField.

Someone using our library has decided to implement a SelectBox
struct that has width, height, and options fields. They implement
the Draw trait on the SelectBox type as well, as shown in Listing 17-8:

Filename: src/main.rs

extern crate rust_gui;
use rust_gui::Draw;

struct SelectBox {
width: u32,
height: u32,
options: Vec<String>,

}



461

impl Draw for SelectBox {
fn draw(&self) {

// Code to actually draw a select box
}

}

Listing 17-8: Another crate using rust_gui and implementing the Draw
trait on a SelectBox struct

The user of our library can now write their main function to create
a Screen instance and add a SelectBox and a Button to the screen by
putting each in a Box<T> to become a trait object. They can then call
the run method on the Screen instance, which will call draw on each
of the components. Listing 17-9 shows this implementation:

Filename: src/main.rs

use rust_gui::{Screen, Button};

fn main() {
let screen = Screen {

components: vec![
Box::new(SelectBox {

width: 75,
height: 10,
options: vec![

String::from("Yes"),
String::from("Maybe"),
String::from("No")

],
}),
Box::new(Button {

width: 50,
height: 10,
label: String::from("OK"),

}),
],

};

screen.run();
}

Listing 17-9: Using trait objects to store values of different types that
implement the same trait



462

Even though we didn’t know that someone would add the SelectBox
type someday, our Screen implementation was able to operate on the
SelectBox and draw it because SelectBox implements the Draw type,
which means it implements the draw method.

Only being concerned with the messages a value responds to, rather
than the value’s concrete type, is similar to a concept called duck typing
in dynamically typed languages: if it walks like a duck, and quacks like
a duck, then it must be a duck! In the implementation of run on
Screen in Listing 17-5, run doesn’t need to know what the concrete
type of each component is. It doesn’t check to see if a component is
an instance of a Button or a SelectBox, it just calls the draw method
on the component. By specifying Box<Draw> as the type of the values
in the components vector, we’ve defined that Screen needs values that
we can call the draw method on.

The advantage with using trait objects and Rust’s type system to
do duck typing is that we never have to check that a value implements
a particular method at runtime or worry about getting errors if a value
doesn’t implement a method but we call it. Rust won’t compile our
code if the values don’t implement the traits that the trait objects
need.

For example, Listing 17-10 shows what happens if we try to create
a Screen with a String as a component:

Filename: src/main.rs

extern crate rust_gui;
use rust_gui::Draw;

fn main() {
let screen = Screen {

components: vec![
Box::new(String::from("Hi")),

],
};

screen.run();
}

Listing 17-10: Attempting to use a type that doesn’t implement the
trait object’s trait

We’ll get this error because String doesn’t implement the Draw
trait:



463

error[E0277]: the trait bound `std::string::String: Draw`
is not satisfied

-->
|

4 | Box::new(String::from("Hi")),
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ the trait

`Draw` is not
implemented for `std::string::String`
|
= note: required for the cast to the object type `Draw`

This lets us know that either we’re passing something we didn’t mean
to pass to Screen and we should pass a different type, or we should
implement Draw on String so that Screen is able to call draw on it.

Trait Objects Perform Dynamic Dispatch

Recall in Chapter 10 when we discussed the process of monomorphiza-
tion that the compiler performs when we use trait bounds on generics:
the compiler generates non-generic implementations of functions and
methods for each concrete type that we use in place of a generic type
parameter. The code that results from monomorphization is doing
static dispatch: when the method is called, the code that goes with
that method call has been determined at compile time, and looking up
that code is very fast.

When we use trait objects, the compiler can’t perform monomor-
phization because we don’t know all the types that might be used with
the code. Instead, Rust keeps track of the code that might be used
when a method is called and figures out at runtime which code needs
to be used for a particular method call. This is known as dynamic dis-
patch, and there’s a runtime cost when this lookup happens. Dynamic
dispatch also prevents the compiler from choosing to inline a method’s
code, which prevents some optimizations. We did get extra flexibility
in the code that we wrote and were able to support, though, so it’s a
tradeoff to consider.

Object Safety is Required for Trait Objects

Not all traits can be made into trait objects; only object safe traits can.
A trait is object safe as long as both of the following are true:

• The trait does not require Self to be Sized



464

• All of the trait’s methods are object safe.

Self is a keyword that is an alias for the type that we’re implementing
traits or methods on. Sized is a marker trait like the Send and Sync
traits that we talked about in Chapter 16. Sized is automatically
implemented on types that have a known size at compile time, such as
i32 and references. Types that do not have a known size include slices
([T]) and trait objects.

Sized is an implicit trait bound on all generic type parameters by
default. Most useful operations in Rust require a type to be Sized, so
making Sized a default requirement on trait bounds means we don’t
have to write T: Sized with most every use of generics. If we want
to be able to use a trait on slices, however, we need to opt out of the
Sized trait bound, and we can do that by specifying T: ?Sized as a
trait bound.

Traits have a default bound of Self: ?Sized, which means that
they can be implemented on types that may or may not be Sized. If
we create a trait Foo that opts out of the Self: ?Sized bound, that
would look like the following:

trait Foo: Sized {
fn some_method(&self);

}

The trait Sized is now a supertrait of trait Foo, which means trait Foo
requires types that implement Foo (that is, Self) to be Sized. We’re
going to talk about supertraits in more detail in Chapter 19.

The reason a trait like Foo that requires Self to be Sized is not
allowed to be a trait object is that it would be impossible to implement
the trait Foo for the trait object Foo: trait objects aren’t sized, but Foo
requires Self to be Sized. A type can’t be both sized and unsized at
the same time!

For the second object safety requirement that says all of a trait’s
methods must be object safe, a method is object safe if either:

• It requires Self to be Sized or

• It meets all three of the following:

– It must not have any generic type parameters
– Its first argument must be of type Self or a type that deref-

erences to the Self type (that is, it must be a method rather
than an associated function and have self, &self, or &mut
self as the first argument)



465

– It must not use Self anywhere else in the signature except
for the first argument

Those rules are a bit formal, but think of it this way: if your method
requires the concrete Self type somewhere in its signature, but an
object forgets the exact type that it is, there’s no way that the method
can use the original concrete type that it’s forgotten. Same with generic
type parameters that are filled in with concrete type parameters when
the trait is used: the concrete types become part of the type that
implements the trait. When the type is erased by the use of a trait
object, there’s no way to know what types to fill in the generic type
parameters with.

An example of a trait whose methods are not object safe is the
standard library’s Clone trait. The signature for the clone method in
the Clone trait looks like this:

pub trait Clone {
fn clone(&self) -> Self;

}

String implements the Clone trait, and when we call the clone method
on an instance of String we get back an instance of String. Similarly,
if we call clone on an instance of Vec, we get back an instance of Vec.
The signature of clone needs to know what type will stand in for Self,
since that’s the return type.

If we try to implement Clone on a trait like the Draw trait from
Listing 17-3, we wouldn’t know whether Self would end up being a
Button, a SelectBox, or some other type that will implement the Draw
trait in the future.

The compiler will tell you if you’re trying to do something that vio-
lates the rules of object safety in regards to trait objects. For example,
if we had tried to implement the Screen struct in Listing 17-4 to hold
types that implement the Clone trait instead of the Draw trait, like
this:

pub struct Screen {
pub components: Vec<Box<Clone>>,

}

We’ll get this error:



466

error[E0038]: the trait `std::clone::Clone` cannot be made
into an object
-->
|

2 | pub components: Vec<Box<Clone>>,
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ the trait `std:

:clone::Clone` cannot be
made into an object
|
= note: the trait cannot require that `Self : Sized`

5.3

Object-Oriented Design Pattern Implementation
Let’s look at an example of the state design pattern and how to use it in
Rust. The state pattern is when a value has some internal state, and the
value’s behavior changes based on the internal state. The internal state
is represented by a set of objects that inherit shared functionality (we’ll
use structs and traits since Rust doesn’t have objects and inheritance).
Each state object is responsible for its own behavior and the rules for
when it should change into another state. The value that holds one of
these state objects doesn’t know anything about the different behavior
of the states or when to transition between states. In the future when
requirements change, we won’t need to change the code of the value
holding the state or the code that uses the value. We’ll only need to
update the code inside one of the state objects to change its rules, or
perhaps add more state objects.

In order to explore this idea, we’re going to implement a blog post
workflow in an incremental way. The workflow that we want our blog
posts to follow, once we’re done with the implementation, is:

1. A blog post starts as an empty draft.

2. Once the draft is done, we request a review of the post.

3. Once the post is approved, it gets published.

4. Only published blog posts return content to print so that we can’t
accidentally print the text of a post that hasn’t been approved.



467

Any other changes attempted on a post should have no effect. For
example, if we try to approve a draft blog post before we’ve requested
a review, the post should stay an unpublished draft.

Listing 17-11 shows this workflow in code form. This is an example
usage of the API we’re going to implement in a library crate named
blog:

Filename: src/main.rs

extern crate blog;
use blog::Post;

fn main() {
let mut post = Post::new();

post.add_text("I ate a salad for lunch today");
assert_eq!("", post.content());

post.request_review();
assert_eq!("", post.content());

post.approve();
assert_eq!("I ate a salad for lunch today", post.content(

));
}

Listing 17-11: Code that demonstrates the desired behavior we want
our blog crate to have

We want to be able to create a new draft blog post with Post::
new. Then, we want to add some text to the blog post while we’re in
the draft state. If we try to print out the post’s content immediately,
though, we shouldn’t get any text, since the post is still a draft. We’ve
added an assert_eq! here for demonstration purposes. Asserting that
a draft blog post returns an empty string from the content method
would make an excellent unit test in our library, but we’re not going
to write tests for this example.

Next, we want to be able to request a review of our post, and
content should still return an empty string while waiting for a review.
Lastly, when we approve the blog post, it should get published, which
means the text we added will be returned when we call content.

Notice that the only type we’re interacting with from the crate is
the Post type. The various states a post can be in (draft, waiting
for review, published) are managed internally to the Post type. The



468

states change due to the methods we call on the Post instance, but
we don’t have to manage the state changes directly. This also means
we won’t make a mistake with the states, like forgetting to request a
review before publishing.

Defining Post and Creating a New Instance in the Draft State

Let’s get started on the implementation of the library! We know we
want to have a public Post struct that holds some content, so let’s start
with the definition of the struct and an associated public new function
to create an instance of Post as shown in Listing 17-12. We’re also
going to have a private trait State. Post will hold a trait object of
Box<State> inside an Option in a private field named state. We’ll see
why the Option is necessary in a bit. The State trait defines all the
behavior different post states share, and the Draft, PendingReview,
and Published states will all implement the State trait. For now, the
trait does not have any methods, and we’re going to start by defining
just the Draft state since that’s the state we want to start in:

Filename: src/lib.rs

pub struct Post {
state: Option<Box<State>>,
content: String,

}

impl Post {
pub fn new() -> Post {

Post {
state: Some(Box::new(Draft {})),
content: String::new(),

}
}

}

trait State {}

struct Draft {}

impl State for Draft {}

Listing 17-12: Definition of a Post struct and a new function that
creates a new Post instance, a State trait, and a Draft struct that



469

implements State
When we create a new Post, we set its state field to a Some value

holding a Box pointing to a new instance of the Draft struct. This
ensures whenever we create a new instance of Post, it’ll start out as
a draft. Because the state field of Post is private, there’s no way to
create a Post in any other state!

Storing the Text of the Post Content

In the Post::new function, we set the content field to a new, empty
String. In Listing 17-11, we showed that we want to be able to call a
method named add_text and pass a &str to it to add that text to the
content of the blog post. We’re choosing to implement this as a method
rather than exposing the content field as pub because we want to be
able to control how the content field’s data is read by implementing a
method later. The add_text method is pretty straightforward though,
let’s add the implementation in Listing 17-13 to the impl Post block:

Filename: src/lib.rs

# pub struct Post {
# content: String,
# }
#
impl Post {

// ...snip...
pub fn add_text(&mut self, text: &str) {

self.content.push_str(text);
}

}

Listing 17-13: Implementing the add_text method to add text to a
post’s content

add_text takes a mutable reference to self, since we’re changing
the Post instance that we’re calling add_text on. We then call push_
str on the String in content and pass the text argument to add
to the saved content. This isn’t part of the state pattern since its
behavior doesn’t depend on the state that the post is in. The add_
text method doesn’t interact with the state field at all, but it is part
of the behavior we want to support.



470

Content of a Draft Post is Empty

After we’ve called add_text and added some content to our post, we
still want the content method to return an empty string slice since
the post is still in the draft state, as shown on line 8 of Listing 17-11.
For now, let’s implement the content method with the simplest thing
that will fulfill this requirement: always returning an empty string
slice. We’re going to change this later once we implement the ability
to change a post’s state to be published. With what we have so far,
though, posts can only be in the draft state, which means the post
content should always be empty. Listing 17-14 shows this placeholder
implementation:

Filename: src/lib.rs

# pub struct Post {
# content: String,
# }
#
impl Post {

// ...snip...
pub fn content(&self) -> &str {

""
}

}

Listing 17-14: Adding a placeholder implementation for the content
method on Post that always returns an empty string slice

With this added content method, everything in Listing 17-11 up
to line 8 works as we intend.

Requesting a Review of the Post Changes its State

Next up is requesting a review of a post, which should change its state
from Draft to PendingReview. We want post to have a public method
named request_review that will take a mutable reference to self.
Then we’re going to call an internal request_review method on the
state that we’re holding, and this second request_review method will
consume the current state and return a new state. In order to be able
to consume the old state, the second request_review method needs
to take ownership of the state value. This is where the Option comes
in: we’re going to take the Some value out of the state field and leave
a None in its place since Rust doesn’t let us have unpopulated fields



471

in structs. Then we’ll set the post’s state value to the result of this
operation. Listing 17-15 shows this code:

Filename: src/lib.rs

# pub struct Post {
# state: Option<Box<State>>,
# content: String,
# }
#
impl Post {

// ...snip...
pub fn request_review(&mut self) {

if let Some(s) = self.state.take() {
self.state = Some(s.request_review())

}
}

}

trait State {
fn request_review(self: Box<Self>) -> Box<State>;

}

struct Draft {}

impl State for Draft {
fn request_review(self: Box<Self>) -> Box<State> {

Box::new(PendingReview {})
}

}

struct PendingReview {}

impl State for PendingReview {
fn request_review(self: Box<Self>) -> Box<State> {

self
}

}

Listing 17-15: Implementing request_review methods on Post and
the State trait

We’ve added the request_review method to the State trait; all
types that implement the trait will now need to implement the request_



472

review method. Note that rather than having self, &self, or &mut
self as the first parameter of the method, we have self: Box<Self>.
This syntax means the method is only valid when called on a Box hold-
ing the type. This syntax takes ownership of Box<Self>, which is what
we want because we’re transforming the old state into a new state, and
we want the old state to no longer be valid.

The implementation for the request_review method on Draft is
to return a new, boxed instance of the PendingReview struct, which is
a new type we’ve introduced that represents the state when a post is
waiting for a review. The PendingReview struct also implements the
request_review method, but it doesn’t do any transformations. It
returns itself since requesting a review on a post that’s already in the
PendingReview state should stay in the PendingReview state.

Now we can start seeing the advantages of the state pattern: the
request_review method on Post is the same no matter what its state
value is. Each state is responsible for its own rules.

We’re going to leave the content method on Post as it is, returning
an empty string slice. We can now have a Post in the PendingReview
state, not just the Draft state, but we want the same behavior in the
PendingReview state. Listing 17-11 now works up until line 11!

Approving a Post Changes the Behavior of content

The approve method on Post will be similar to that of the request_
review method: it will set the state to the value that the current state
says it should have when that state is approved. We’ll need to add the
approve method to the State trait, and we’ll add a new struct that
implements State, the Published state. Listing 17-16 shows the new
code:

Filename: src/lib.rs

# pub struct Post {
# state: Option<Box<State>>,
# content: String,
# }
#
impl Post {

// ...snip...
pub fn approve(&mut self) {

if let Some(s) = self.state.take() {
self.state = Some(s.approve())



473

}
}

}

trait State {
fn request_review(self: Box<Self>) -> Box<State>;
fn approve(self: Box<Self>) -> Box<State>;

}

struct Draft {}

impl State for Draft {
# fn request_review(self: Box<Self>) -> Box<State>
{
# Box::new(PendingReview {})
# }
#

// ...snip...
fn approve(self: Box<Self>) -> Box<State> {

self
}

}

struct PendingReview {}

impl State for PendingReview {
# fn request_review(self: Box<Self>) -> Box<State>
{
# Box::new(PendingReview {})
# }
#

// ...snip...
fn approve(self: Box<Self>) -> Box<State> {

Box::new(Published {})
}

}

struct Published {}

impl State for Published {



474

fn request_review(self: Box<Self>) -> Box<State> {
self

}

fn approve(self: Box<Self>) -> Box<State> {
self

}
}

Listing 17-16: Implementing the approve method on Post and the
State trait

Similarly to request_review, if we call the approve method on a
Draft, it will have no effect since it will return self. When we call
approve on PendingReview, it returns a new, boxed instance of the
Published struct. The Published struct implements the State trait,
and for both the request_review method and the approve method,
it returns itself since the post should stay in the Published state in
those cases.

Now for updating the content method on Post: we want to return
the value in the post’s content field if its state is Published, otherwise
we want to return an empty string slice. Because the goal is to keep
all the rules like this in the structs that implement State, we’re going
to call a content method on the value in state and pass the post
instance (that is, self) as an argument. Then we’ll return the value
returned from the content method on the state value as shown in
Listing 17-17:

Filename: src/lib.rs

# trait State {
# fn content<'a>(&self, post: &'a Post) -> &'a str;
# }
# pub struct Post {
# state: Option<Box<State>>,
# content: String,
# }
#
impl Post {

// ...snip...
pub fn content(&self) -> &str {

self.state.as_ref().unwrap().content(&self)
}



475

// ...snip...
}

Listing 17-17: Updating the content method on Post to delegate to a
content method on State

We’re calling the as_ref method on the Option because we want a
reference to the value inside the Option. We’re then calling the unwrap
method, which we know will never panic because all the methods on
Post ensure that the state value will have a Some value in it when
those methods are done. This is one of the cases we talked about in
Chapter 12 where we know that a None value is never possible even
though the compiler isn’t able to understand that.

The content method on the State trait is where the logic for what
content to return will be. We’re going to add a default implementation
for the content method that returns an empty string slice. That lets
us not need to implement content on the Draft and PendingReview
structs. The Published struct will override the content method and
will return the value in post.content, as shown in Listing 17-18:

Filename: src/lib.rs

# pub struct Post {
# content: String
# }
trait State {

// ...snip...
fn content<'a>(&self, post: &'a Post) -> &'a str {

""
}

}

// ...snip...
struct Published {}

impl State for Published {
// ...snip...
fn content<'a>(&self, post: &'a Post) -> &'a str {

&post.content
}

}

Listing 17-18: Adding the content method to the State trait
Note that we need lifetime annotations on this method, like we

discussed in Chapter 10. We’re taking a reference to a post as an



476

argument, and we’re returning a reference to a part of that post, so
the lifetime of the returned reference is related to the lifetime of the
post argument.

Tradeoffs of the State Pattern

We’ve shown that Rust is capable of implementing the object-oriented
state pattern in order to encapsulate the different kinds of behavior
that a post should have that depends on the state that the post is in.
The methods on Post don’t know anything about the different kinds of
behavior. The way this code is organized, we have one place to look in
order to find out all the different ways that a published post behaves:
the implementation of the State trait on the Published struct.

An alternative implementation that didn’t use the state pattern
might have match statements in the methods on Post or even in the
code that uses Post (main in our case) that checks what the state of
the post is and changes behavior in those places instead. That would
mean we’d have a lot of places to look in order to understand all the
implications of a post being in the published state! This would get
worse the more states we added: each of those match statements would
need another arm. With the state pattern, the Post methods and the
places we use Post don’t need match statements and adding a new
state only involves adding a new struct and implementing the trait
methods on that one struct.

This implementation is easy to extend to add more functionality.
Here are some changes you can try making to the code in this section
to see for yourself what it’s like to maintain code using this pattern
over time:

• Only allow adding text content when a post is in the Draft state

• Add a reject method that changes the post’s state from PendingReview
back to Draft

• Require two calls to approve before changing the state to Published

A downside of the state pattern is that since the states implement
the transitions between the states, some of the states are coupled
to each other. If we add another state between PendingReview and
Published, such as Scheduled, we would have to change the code in
PendingReview to transition to Scheduled instead. It would be nicer
if PendingReview wouldn’t need to change because of the addition of
a new state, but that would mean switching to another design pattern.



477

There are a few bits of duplicated logic that are a downside of
this implementation in Rust. It would be nice if we could make default
implementations for the request_review and approve methods on the
State trait that return self, but this would violate object safety since
the trait doesn’t know what the concrete self will be exactly. We want
to be able to use State as a trait object, so we need its methods to be
object safe.

The other duplication that would be nice to get rid of is the simi-
lar implementations of the request_review and approve methods on
Post. They both delegate to the implementation of the same method
on the value in the Option in the state field, and set the new value of
the state field to the result. If we had a lot of methods on Post that
followed this pattern, we might consider defining a macro to eliminate
the repetition (see Appendix E on macros).

A downside of implementing this object-oriented pattern exactly
as it’s defined for object-oriented languages is that we’re not taking
advantage of Rust’s strengths as much as we could be. Let’s take a
look at some changes we can make to this code that can make invalid
states and transitions into compile time errors.

Encoding States and Behavior as Types We’re going to show
how to rethink the state pattern a bit in order to get a different set of
tradeoffs. Rather than encapsulating the states and transitions com-
pletely so that outside code has no knowledge of them, we’re going
to encode the states into different types. When the states are types,
Rust’s type checking will make any attempt to use a draft post where
we should only use published posts into a compiler error.

Let’s consider the first part of main from Listing 17-11:
Filename: src/main.rs

fn main() {
let mut post = Post::new();

post.add_text("I ate a salad for lunch today");
assert_eq!("", post.content());

}

We still want to create a new post in the draft state using Post::new,
and we still want to be able to add text to the post’s content. But
instead of having a content method on a draft post that returns an
empty string, we’re going to make it so that draft posts don’t have
the content method at all. That way, if we try to get a draft post’s



478

content, we’ll get a compiler error that the method doesn’t exist. This
will make it impossible for us to accidentally display draft post content
in production, since that code won’t even compile. Listing 17-19 shows
the definition of a Post struct, a DraftPost struct, and methods on
each:

Filename: src/lib.rs

pub struct Post {
content: String,

}

pub struct DraftPost {
content: String,

}

impl Post {
pub fn new() -> DraftPost {

DraftPost {
content: String::new(),

}
}

pub fn content(&self) -> &str {
&self.content

}
}

impl DraftPost {
pub fn add_text(&mut self, text: &str) {

self.content.push_str(text);
}

}

Listing 17-19: A Post with a content method and a DraftPost with-
out a content method

Both the Post and DraftPost structs have a private content field
that stores the blog post text. The structs no longer have the state
field since we’re moving the encoding of the state to the types of the
structs. Post will represent a published post, and it has a content
method that returns the content.

We still have a Post::new function, but instead of returning an
instance of Post, it returns an instance of DraftPost. It’s not possible



479

to create an instance of Post right now since content is private and
there aren’t any functions that return Post. DraftPost has an add_
text method defined on it so that we can add text to content as before,
but note that DraftPost does not have a content method defined! So
we’ve enforced that all posts start as draft posts, and draft posts don’t
have their content available for display. Any attempt to get around
these constraints will be a compiler error.

Implementing Transitions as Transformations into Different
Types So how do we get a published post then? The rule we want
to enforce is that a draft post has to be reviewed and approved before
it can be published. A post in the pending review state should still not
display any content. Let’s implement these constraints by adding an-
other struct, PendingReviewPost, defining the request_review method
on DraftPost to return a PendingReviewPost, and defining an approve
method on PendingReviewPost to return a Post as shown in Listing
17-20:

Filename: src/lib.rs

# pub struct Post {
# content: String,
# }
#
# pub struct DraftPost {
# content: String,
# }
#
impl DraftPost {

// ...snip...

pub fn request_review(self) -> PendingReviewPost {
PendingReviewPost {

content: self.content,
}

}
}

pub struct PendingReviewPost {
content: String,

}



480

impl PendingReviewPost {
pub fn approve(self) -> Post {

Post {
content: self.content,

}
}

}

Listing 17-20: A PendingReviewPost that gets created by calling request_
review on DraftPost, and an approve method that turns a PendingReviewPost
into a published Post

The request_review and approve methods take ownership of self,
thus consuming the DraftPost and PendingReviewPost instances and
transforming them into a PendingReviewPost and a published Post,
respectively. This way, we won’t have any DraftPost instances lin-
gering around after we’ve called request_review on them, and so
forth. PendingReviewPost doesn’t have a content method defined on
it, so attempting to read its content is a compiler error like it is with
DraftPost. Because the only way to get a published Post instance that
does have a content method defined is to call the approve method on
a PendingReviewPost, and the only way to get a PendingReviewPost
is to call the request_review method on a DraftPost, we’ve now en-
coded the blog post workflow into the type system.

This does mean we have to make some small changes to main. Be-
cause request_review and approve return new instances rather than
modifying the struct they’re called on, we need to add more let post
= shadowing assignments to save the returned instances. We also can’t
have the assertions about the draft and pending review post’s contents
being empty string anymore, nor do we need them: we can’t compile
code that tries to use the content of posts in those states any longer.
The updated code in main is shown in Listing 17-21:

Filename: src/main.rs

extern crate blog;
use blog::Post;

fn main() {
let mut post = Post::new();

post.add_text("I ate a salad for lunch today");



481

let post = post.request_review();

let post = post.approve();

assert_eq!("I ate a salad for lunch today", post.content(
));
}

Listing 17-21: Modifications to main to use the new implementation of
the blog post workflow

Having to change main to reassign post is what makes this imple-
mentation not quite following the object-oriented state pattern any-
more: the transformations between the states are no longer encapsu-
lated entirely within the Post implementation. However, we’ve gained
the property of having invalid states be impossible because of the type
system and type checking that happens at compile time! This ensures
that certain bugs, such as displaying the content of an unpublished
post, will be discovered before they make it to production.

Try the tasks suggested that add additional requirements that we
mentioned at the start of this section to see how working with this
version of the code feels.

Even though Rust is capable of implementing object-oriented de-
sign patterns, there are other patterns like encoding state into the type
system that are available in Rust. These patterns have different trade-
offs than the object-oriented patterns do. While you may be very fa-
miliar with object-oriented patterns, rethinking the problem in order
to take advantage of Rust’s features can give benefits like preventing
some bugs at compile-time. Object-oriented patterns won’t always be
the best solution in Rust, since Rust has features like ownership that
object-oriented languages don’t have.

Summary
No matter whether you think Rust is an object-oriented language or not
after reading this chapter, you’ve now seen that trait objects are a way
to get some object-oriented features in Rust. Dynamic dispatch can give
your code some flexibility in exchange for a bit of runtime performance.
This flexibility can be used to implement object-oriented patterns that
can help with the maintainability of your code. Rust also has different
features, like ownership, than object-oriented languages. An object-
oriented pattern won’t always be the best way to take advantage of
Rust’s strengths.



482

Next, let’s look at another feature of Rust that enables lots of flex-
ibility: patterns. We’ve looked at them briefly throughout the book,
but haven’t seen everything they’re capable of yet. Let’s go!



Part IV

Advanced Topics





Chapter 1

Patterns Match the
Structure of Values

Patterns are a special syntax within Rust for matching against the
structure of our types, complex or simple. A pattern is made up of
some combination of literals; destructured arrays, enums, structs, or
tuples; variables, wildcards, and placeholders. These pieces describe
the “shape” of the data we’re working with.

We use a pattern by taking some value and comparing it against
the pattern. If the pattern matches our value, we do something with
the value parts. Recall in Chapter 6 when we discussed the match
expression that uses patterns like a coin sorting machine. We can name
pieces within the shape, like we named the state that appeared on
quarters in Chapter 6, and if the data fits the shape, we can use the
named pieces.

This chapter is a reference on all things related to patterns. We’ll
cover the valid places to use patterns, the difference between refutable
and irrefutable patterns, and the different kinds of pattern syntax that
you might see.

1.1
All the Places Patterns May be Used
Patterns pop up in a number of places in Rust. You’ve been using them
a lot without realizing it! This section is a reference to all the places
where patterns are valid.



486

match Arms

As we discussed in Chapter 6, a common place patterns are used is in
the arms of match expressions. Formally, match expressions are defined
as the keyword match, a value to match on, and one or more match
arms that consist of a pattern and an expression to run if the value
matches that arm’s pattern:

match VALUE {
PATTERN => EXPRESSION,
PATTERN => EXPRESSION,
PATTERN => EXPRESSION,

}

Exhaustiveness and the Default Pattern _ match expressions
are required to be exhaustive. When we put all of the patterns in the
arms together, all possibilities for the value in the match expression
must be accounted for. One way to ensure you have every possibility
covered is to have a catch-all pattern for the last arm, like a variable
name. A name matching any value can never fail and thus covers every
case remaining after the previous arms’ patterns.

There’s an additional pattern that’s often used in the last match
arm: _. It matches anything, but it never binds any variables. This
can be useful when you only want to run code for some patterns but
ignore any other value, for example.

if let Expressions

We discussed if let expressions in Chapter 6, and how they’re mostly
a shorter way to write the equivalent of a match that only cares about
matching one case. if let can optionally have a corresponding else
with code to run if the pattern in the if let doesn’t match.

Listing 18-1 shows that it’s even possible to mix and match if let,
else if, and else if let. This code shows a series of checks of
a bunch of different conditions to decide what the background color
should be. For the purposes of the example, we’ve created variables
with hardcoded values that a real program might get by asking the
user. If the user has specified a favorite color, we’ll use that as the
background color. If today is Tuesday, the background color will be
green. If the user has specified their age as a string and we can parse
it as a number successfully, we’ll use either purple or orange depending



487

on the value of the parsed number. Finally, if none of these conditions
apply, the background color will be blue:

Filename: src/main.rs

fn main() {
let favorite_color: Option<&str> = None;
let is_tuesday = false;
let age: Result<u8, _> = "34".parse();

if let Some(color) = favorite_color {
println!("Using your favorite color, {}, as the

background", color);
} else if is_tuesday {

println!("Tuesday is green day!");
} else if let Ok(age) = age {

if age > 30 {
println!("Using purple as the background color")

;
} else {

println!("Using orange as the background color")
;

}
} else {

println!("Using blue as the background color");
}

}

Listing 18-1: Mixing if let, else if, else if let, and else
This conditional structure lets us support complex requirements.

With the hardcoded values we have here, this example will print Using
purple as the background color.

Note that if let can also introduce shadowed variables like match
arms can: if let Ok(age) = age introduces a new shadowed age
variable that contains the value inside the Ok variant. This also means
the if age > 30 condition needs to go within the block; we aren’t able
to combine these two conditions into if let Ok(age) = age && age
> 30 since the shadowed age that we want to compare to 30 isn’t valid
until the new scope starts with the curly brace.

Also note that conditionals with many cases like these are not as
powerful as match expression since exhaustiveness is not checked by the
compiler. If we leave off the last else block and miss handling some
cases, the compiler will not error. This example might be too complex



488

to rewrite as a readable match, so we should take extra care to check
that we’re handling all the cases since the compiler is not checking
exhaustiveness for us.

while let

A similar construction to if let is while let: this allows you to do a
while loop as long as a pattern continues to match. Listing 18-2 shows
an example using a while let loop to use a vector as a stack and print
out the values in the vector in the opposite order that we pushed the
values in:
let mut stack = Vec::new();

stack.push(1);
stack.push(2);
stack.push(3);

while let Some(top) = stack.pop() {
println!("{}", top);

}

Listing 18-2: Using a while let loop to print out values as long as
stack.pop() returns Some

This example will print 3, 2, then 1. The pop method takes the last
element out of the vector and returns Some(value). If the vector is
empty, it returns None. The while loop will continue running the code
in its block as long as pop is returning Some. Once it returns None, the
while loop stops. We can use while let to pop every element off our
stack.

for loops

Looping with for, as we discussed in Chapter 3, is the most common
loop construction in Rust code. What we didn’t talk about in that
chapter was that for takes a pattern. In Listing 18-3, we’re demon-
strating how we can use a pattern in a for loop to destructure a tuple.
The enumerate method adapts an iterator to produce a value and the
index of the value in the iterator in a tuple:

let v = vec![1, 2, 3];

for (index, value) in v.iter().enumerate() {



489

println!("{} is at index {}", value, index);
}

Listing 18-3: Using a pattern in a for loop to destructure the tuple
returned from enumerate into its pieces

This will print:

1 is at index 0
2 is at index 1
3 is at index 2

The first call to enumerate produces the tuple (0, 1). When this
value is matched to the pattern (index, value), index will be 0 and
value will be 1.

let Statements

match and if let are the places we’ve explicitly discussed using pat-
terns earlier in the book, but they aren’t the only places we’ve used
patterns. For example, consider this straightforward variable assign-
ment with let:

let x = 5;

We’ve done this hundreds of times throughout this book. You may not
have realized it, but you were using patterns! A let statement looks
like this, more formally:

let PATTERN = EXPRESSION;

We’ve seen statements like let x = 5; with a variable name in the
PATTERN slot; a variable name is just a particularly humble form of
pattern.

With let, we compare the expression against the pattern, and as-
sign any names we find. So for example, in our let x = 5; case, x is
a pattern that says “bind what matches here to the variable x.” And
since the name x is the whole pattern, this pattern effectively means
“bind everything to the variable x, whatever the value is.”

To see the pattern matching aspect of let a bit more clearly, con-
sider Listing 18-4 where we’re using a pattern with let to destructuring
a tuple:

let (x, y, z) = (1, 2, 3);



490

Listing 18-4: Using a pattern to destructure a tuple and create 3 vari-
ables at once

Here, we have a tuple that we’re matching against a pattern. Rust
will compare the value (1, 2, 3) to the pattern (x, y, z) and see
that the value matches the pattern. In this case, it will bind 1 to x, 2
to y, and 3 to z. You can think of this tuple pattern as nesting three
individual variable patterns inside of it.

We saw another example of destructuring a tuple in Chapter 16,
Listing 16-6, where we destructured the return value of mpsc::channel(
) into the tx (transmitter) and rx (receiver) parts.

Function Parameters

Similarly to let, function parameters can also be patterns. The code in
Listing 18-5 declaring a function named foo that takes one parameter
named x of type i32 should look familiar:

fn foo(x: i32) {
// code goes here

}

Listing 18-5: A function signature uses patterns in the parameters
The x part is a pattern! In a similar way as we did with let, we

could match a tuple in a function’s arguments. Listing 18-6 shows how
we could split apart the values in a tuple as part of passing the tuple
to a function:

Filename: src/main.rs

fn print_coordinates(&(x, y): &(i32, i32)) {
println!("Current location: ({}, {})", x, y);

}

fn main() {
let point = (3, 5);
print_coordinates(&point);

}

Listing 18-6: A function with parameters that destructure a tuple
This will print Current location: (3, 5). When we pass the

value &(3, 5) to print_coordinates, the values match the pattern
&(x, y). x gets the value 3, and y gets the value 5.

Because closures are similar to functions, as we discussed in Chapter
13, we can use patterns in closure parameter lists as well.



491

One difference between the places we can use patterns is that with
for loops, let, and in function parameters, the patterns must be ir-
refutable. Let’s discuss that next.

1.2
Refutability: Whether a Pattern Might Fail to Match
Patterns come in two forms: refutable and irrefutable. Patterns which
cannot fail to match for any possible value are said to be irrefutable,
and patterns which can fail to match for some possible value are said
to be refutable. let statements, function parameters, and for loops
are restricted to only accept irrefutable patterns, since there’s nothing
correct the program could do if the pattern fails to match. if let, and
while let expressions are restricted to only accept refutable patterns,
since they’re made to handle possible failure and we wouldn’t need their
functionality if the pattern could never fail.

In general, you shouldn’t have to worry about the distinction be-
tween refutable and irrefutable patterns; just be familiar with the con-
cept of refutability when you see it mentioned in an error message.
When you get an error message involving refutability, you’ll need to
change either the pattern or the construct you’re using the pattern
with, depending on your intentions for the behavior of the code.

Let’s look at some examples. Earlier in this chapter, we had let x
= 5;. x is indeed an irrefutable pattern we’re allowed to use: since it
matches anything, it can’t fail to match. In contrast, consider trying
to match one variant of an enum with let, such as matching only a
Some<T> value from the Option<T> enum as shown in Listing 18-7:

let Some(x) = some_option_value;

Listing 18-7: Attempting to use a refutable pattern with let
If some_option_value was a None value, some_option_value would

not match the pattern Some(x). The pattern Some(x) is refutable since
there exists a case in which it would fail to match a value. There’s
nothing valid that our code could do with this let statement if some_
option_value was the None value. Therefore, Rust will complain at
compile time that we’ve tried to use a refutable pattern where an ir-
refutable pattern is required:



492

error[E0005]: refutable pattern in local binding: `None`
not covered
--> <anon>:3:5
|

3 | let Some(x) = some_option_value;
| ^^^^^^^ pattern `None` not covered

We didn’t cover (and couldn’t cover!) every valid value with the pattern
Some(x), so Rust will rightfully complain.

If we have a refutable pattern, instead of using let, we can use if
let. That way, if the pattern doesn’t match, the code inside the curly
braces won’t execute. That code will only make sense and run if the
value matches the pattern. Listing 18-8 shows how to fix the code in
Listing 18-7 with Some(x) matching some_option_value. Using the
refutable pattern Some(x) is allowed, since this example uses if let:

# let some_option_value: Option<i32> = None;
if let Some(x) = some_option_value {

println!("{}", x);
}

Listing 18-8: Using if let and a block with refutable patterns instead
of let

Consequently, if we give if let an irrefutable pattern that will
always match, such as x as shown in Listing 18-9:

if let x = 5 {
println!("{}", x);

};

Listing 18-9: Attempting to use an irrefutable pattern with if let
Rust will complain that it doesn’t make sense to use if let with

an irrefutable pattern:

error[E0162]: irrefutable if-let pattern
--> <anon>:2:8
|

2 | if let x = 5 {
| ^ irrefutable pattern

Generally, match arms use refutable patterns, except for the last arm
that might match any remaining values with an irrefutable pattern. A
match with only one arm whose pattern is irrefutable is allowed, but



493

it’s not particularly useful and could be replaced with a simpler let
statement. Both the expressions associated with a let statement and
a single arm irrefutable match will unconditionally be run, so the end
result is the same if their expressions are.

Now that we’ve discussed all the places that patterns can be used
and the difference between refutable and irrefutable patterns, let’s go
over all the syntax we can use to create patterns.

1.3
All the Pattern Syntax
We’ve seen some examples of different kinds of patterns throughout the
book. This section lists all the syntax valid in patterns and why you
might want to use each of them.

Literals

As we saw in Chapter 6, you can match against literals directly:

let x = 1;

match x {
1 => println!("one"),
2 => println!("two"),
3 => println!("three"),
_ => println!("anything"),

}

This prints one since the value in x is 1.

Named Variables

Named variables are irrefutable patterns that match any value.
As with all variables, variables declared as part of a pattern will

shadow variables with the same name outside of the match construct
since a match starts a new scope. In Listing 18-10, we declare a variable
named x with the value Some(5) and a variable y with the value 10.
Then we have a match expression on the value x. Take a look at the
patterns in the match arms and the println! at the end, and make a
guess about what will be printed before running this code or reading
further:

Filename: src/main.rs



494

fn main() {
let x = Some(5);
let y = 10;

match x {
Some(50) => println!("Got 50"),
Some(y) => println!("Matched, y = {:?}", y),
_ => println!("Default case, x = {:?}", x),

}

println!("at the end: x = {:?}, y = {:?}", x, y);
}

Listing 18-10: A match statement with an arm that introduces a shad-
owed variable y

Let’s walk through what happens when the match statement runs.
The first match arm has the pattern Some(50), and the value in x
(Some(5)) does not match Some(50), so we continue. In the second
match arm, the pattern Some(y) introduces a new variable name y
that will match any value inside a Some value. Because we’re in a new
scope inside the match expression, this is a new variable, not the y we
declared at the beginning that has the value 10. The new y binding
will match any value inside a Some, which is what we have in x, so we
execute the expression for that arm and print Matched, y = 5 since
this y binds to the inner value of the Some in x, which is 5.

If x had been a None value instead of Some(5), we would have
matched the underscore since the other two arms’ patterns would not
have matched. In the expression for that match arm, since we did not
introduce an x variable in the pattern of the arm, this x is still the
outer x that has not been shadowed. In this hypothetical case, the
match would print Default case, x = None.

Once the match expression is over, its scope ends, and so does the
scope of the inner y. The last println! produces at the end: x =
Some(5), y = 10.

In order to make a match expression that compares the values of the
outer x and y rather than introducing a shadowed variable, we would
need to use a match guard conditional instead. We’ll be talking about
match guards later in this section.



495

Multiple patterns

In match expressions only, you can match multiple patterns with |,
which means or:

let x = 1;

match x {
1 | 2 => println!("one or two"),
3 => println!("three"),
_ => println!("anything"),

}

This prints one or two.

Matching Ranges of Values with ...

You can match an inclusive range of values with ...:

let x = 5;

match x {
1 ... 5 => println!("one through five"),
_ => println!("something else"),

}

If x is 1, 2, 3, 4, or 5, the first arm will match.
Ranges are only allowed with numeric values or char values. Here’s

an example using ranges of char values:

let x = 'c';

match x {
'a' ... 'j' => println!("early ASCII letter"),
'k' ... 'z' => println!("late ASCII letter"),
_ => println!("something else"),

}

This will print early ASCII letter.

Destructuring to Break Apart Values

Patterns can be used to destructure structs, enums, tuples, and refer-
ences. Destructuring means to break a value up into its component



496

pieces. Listing 18-11 shows a Point struct with two fields, x and y,
that we can break apart by using a pattern with a let statement:

Filename: src/main.rs

struct Point {
x: i32,
y: i32,

}

fn main() {
let p = Point { x: 0, y: 7 };

let Point { x, y } = p;
assert_eq!(0, x);
assert_eq!(7, y);

}

Listing 18-11: Destructuring using struct field shorthand
This creates the variables x and y that match the x and y of p.

The names of the variables must match the names of the fields to use
this shorthand. If we wanted to use names different than the variable
names, we can specify field_name: variable_name in the pattern.
In Listing 18-12, a will have the value in the Point instance’s x field
and b will have the value in the y field:

Filename: src/main.rs

struct Point {
x: i32,
y: i32,

}

fn main() {
let p = Point { x: 0, y: 7 };

let Point { x: a, y: b } = p;
assert_eq!(0, a);
assert_eq!(7, b);

}

Listing 18-12: Destructuring struct fields into variables with different
names than the fields

We can also use destructuring with literal values in order to test
and use inner parts of a value. Listing 18-13 shows a match statement



497

that determines whether a point lies directly on the x axis (which is
true when y = 0), on the y axis (x = 0), or neither:

# struct Point {
# x: i32,
# y: i32,
# }
#
fn main() {

let p = Point { x: 0, y: 7 };

match p {
Point { x, y: 0 } => println!("On the x axis at

{}", x),
Point { x: 0, y } => println!("On the y axis at

{}", y),
Point { x, y } => println!("On neither axis: ({},

{})", x, y),
}

}

Listing 18-13: Destructuring and matching literal values in one pattern
This will print On the y axis at 7 since the value p matches the

second arm by virtue of x having the value 0.
We used destructuring on enums in Chapter 6, such as in Listing

6-5 where we destructured an Option<i32> using a match expression
and added one to the inner value of the Some variant.

When the value we’re matching against a pattern contains a refer-
ence, we can specify a & in the pattern in order to separate the reference
and the value. This is especially useful in closures used with iterators
that iterate over references to values when we want to use the values in
the closure rather than the references. Listing 18-14 shows how to iter-
ate over references to Point instances in a vector, and destructure both
the reference and the struct in order to be able to perform calculations
on the x and y values easily:

# struct Point {
# x: i32,
# y: i32,
# }
#
let points = vec![



498

Point { x: 0, y: 0 },
Point { x: 1, y: 5 },
Point { x: 10, y: -3 },

];
let sum_of_squares: i32 = points

.iter()

.map(|&Point {x, y}| x * x + y * y)

.sum();

Listing 18-14: Destructuring a reference to a struct into the struct field
values

Because iter iterates over references to the items in the vector, if
we forgot the & in the closure arguments in the map, we’d get a type
mismatch error like this:

error[E0308]: mismatched types
-->
|

14 | .map(|Point {x, y}| x * x + y * y)
| ^^^^^^^^^^^^ expected &Point, found

struct `Point`
|
= note: expected type `&Point`

found type `Point`

This says Rust was expecting our closure to match &Point, but we
tried to match the value with a pattern that was a Point value, not a
reference to a Point.

We can mix, match, and nest destructuring patterns in even more
complex ways: we can do something complicated like this example
where we nest structs and tuples inside of a tuple and destructure all
the primitive values out:

# struct Point {
# x: i32,
# y: i32,
# }
#
let ((feet, inches), Point {x, y}) = ((3, 10), Point {
x: 3, y: -10 });

This lets us break complex types into their component parts.



499

Ignoring Values in a Pattern

There are a few ways to ignore entire values or parts of values: using the
_ pattern, using the _ pattern within another pattern, using a name
that starts with an underscore, or using .. to ignore all remaining
parts of a value. Let’s explore how and why to do each of these.

Ignoring an Entire Value with _ We’ve seen the use of underscore
as a wildcard pattern that will match any value but not bind to the
value. While the underscore pattern is especially useful as the last arm
in a match expression, we can use it in any pattern, such as function
arguments as shown in Listing 18-15:

fn foo(_: i32) {
// code goes here

}

Listing 18-15: Using _ in a function signature
Normally, you would change the signature to not have the unused

parameter. In cases such as implementing a trait, where you need a
certain type signature, using an underscore lets you ignore a parameter,
and the compiler won’t warn about unused function parameters like it
would if we had used a name instead.

Ignoring Parts of a Value with a Nested _ We can also use _
inside of another pattern to ignore just part of a value. In Listing 18-
16, the first match arm’s pattern matches a Some value but ignores the
value inside of the Some variant as specified by the underscore:

let x = Some(5);

match x {
Some(_) => println!("got a Some and I don't care what's

inside"),
None => (),

}

Listing 18-16: Ignoring the value inside of the Some variant by using a
nested underscore

This is useful when the code associated with the match arm doesn’t
use the nested part of the variable at all.



500

We can also use underscores in multiple places within one pattern,
as shown in Listing 18-17 where we’re ignoring the second and fourth
values in a tuple of five items:

let numbers = (2, 4, 8, 16, 32);

match numbers {
(first, _, third, _, fifth) => {

println!("Some numbers: {}, {}, {}", first, third,
fifth)

},
}

Listing 18-17: Ignoring multiple parts of a tuple
This will print Some numbers: 2, 8, 32, and the values 4 and 16

will be ignored.

Ignoring an Unused Variable by Starting its Name with an
Underscore Usually, Rust will warn you if you create a variable but
don’t use it anywhere, since that could be a bug. If you’re prototyping
or just starting a project, though, you might create a variable that
you’ll use eventually, but temporarily it will be unused. If you’re in this
situation and would like to tell Rust not to warn you about the unused
variable, you can start the name of the variable with an underscore.
This works just like a variable name in any pattern, only Rust won’t
warn you if the variable goes unused. In Listing 18-18, we do get a
warning about not using the variable y, but we don’t get a warning
about not using the variable _x:

fn main() {
let _x = 5;
let y = 10;

}

Listing 18-18: Starting a variable name with an underscore in order to
not get unused variable warnings

Note that there is a subtle difference between using only _ and using
a name that starts with an underscore like _x: _x still binds the value
to the variable, but _ doesn’t bind at all.

Listing 18-19 shows a case where this distinction matters: s will
still be moved into _s, which prevents us from using s again:



501

let s = Some(String::from("Hello!"));

if let Some(_s) = s {
println!("found a string");

}

println!("{:?}", s);

Listing 18-19: An unused variable starting with an underscore still
binds the value, which may take ownership of the value

Using underscore by itself, however, doesn’t ever bind to the value.
Listing 18-20 will compile without any errors since s does not get moved
into _:

let s = Some(String::from("Hello!"));

if let Some(_) = s {
println!("found a string");

}

println!("{:?}", s);

Listing 18-20: Using underscore does not bind the value
This works just fine. Because we never bind s to anything, it’s not

moved.

Ignoring Remaining Parts of a Value with .. With values that
have many parts, we can extract only a few parts and avoid having to
list underscores for each remaining part by instead using ... The .
. pattern will ignore any parts of a value that we haven’t explicitly
matched in the rest of the pattern. In Listing 18-21, we have a Point
struct that holds a coordinate in three dimensional space. In the match
expression, we only want to operate on the x coordinate and ignore the
values in the y and z fields:

struct Point {
x: i32,
y: i32,
z: i32,

}

let origin = Point { x: 0, y: 0, z: 0 };



502

match origin {
Point { x, .. } => println!("x is {}", x),

}

Listing 18-21: Ignoring all fields of a Point except for x by using ..
Using .. is shorter to type than having to list out y: _ and z: _

. The .. pattern is especially useful when working with structs that
have lots of fields in situations where only one or two fields are relevant.

.. will expand to as many values as it needs to be. Listing 18-22
shows a use of .. with a tuple:

fn main() {
let numbers = (2, 4, 8, 16, 32);

match numbers {
(first, .., last) => {

println!("Some numbers: {}, {}", first, last)
;

},
}

}

Listing 18-22: Matching only the first and last values in a tuple and
ignoring all other values with ..

Here, we have the first and last value matched, with first and
last. The .. will match and ignore all of the things in the middle.

Using .. must be unambiguous, however. Listing 18-23 shows an
example where it’s not clear to Rust which values we want to match
and which values we want to ignore:

fn main() {
let numbers = (2, 4, 8, 16, 32);

match numbers {
(.., second, ..) => {

println!("Some numbers: {}", second)
},

}
}

Listing 18-23: An attempt to use .. in a way that is ambiguous
If we compile this example, we get this error:



503

error: `..` can only be used once per tuple or tuple struct
pattern
--> src/main.rs:5:22
|

5 | (.., second, ..) => {
| ^^

It’s not possible to determine how many values in the tuple should be
ignored before one value is matched with second, and then how many
further values are ignored after that. We could mean that we want to
ignore 2, bind second to 4, then ignore 8, 16, and 32, or we could mean
that we want to ignore 2 and 4, bind second to 8, then ignore 16 and
32, and so forth. The variable name second doesn’t mean anything
special to Rust, so we get a compiler error since using .. in two places
like this is ambiguous.

ref and ref mut to Create References in Patterns

Usually, when you match against a pattern, the variables that the pat-
tern introduces are bound to a value. This means you’ll end up moving
the value into the match (or wherever you’re using the pattern) since
the ownership rules apply. Listing 18-24 shows an example:

let robot_name = Some(String::from("Bors"));

match robot_name {
Some(name) => println!("Found a name: {}", name),
None => (),

}

println!("robot_name is: {:?}", robot_name);

Listing 18-24: Creating a variable in a match arm pattern takes own-
ership of the value

This example will fail to compile since the value inside the Some
value in robot_name is moved within the match when name binds to
that value.

Using & in a pattern matches an existing reference in the value,
as we saw in the “Destructuring to Break Apart Values” section. If
you want to create a reference instead in order to borrow the value in
a pattern variable, use the ref keyword before the new variable, as
shown in Listing 18-25:



504

let robot_name = Some(String::from("Bors"));

match robot_name {
Some(ref name) => println!("Found a name: {}", name)

,
None => (),

}

println!("robot_name is: {:?}", robot_name);

Listing 18-25: Creating a reference so that a pattern variable does not
take ownership of a value

This example will compile because the value in the Some variant in
robot_name is not moved into the Some(ref name) arm of the match;
the match only took a reference to the data in robot_name rather than
moving it.

To create a mutable reference, use ref mut for the same reason as
shown in Listing 18-26:

let mut robot_name = Some(String::from("Bors"));

match robot_name {
Some(ref mut name) => *name = String::from("Another

name"),
None => (),

}

println!("robot_name is: {:?}", robot_name);

Listing 18-26: Creating a mutable reference to a value as part of a
pattern using ref mut

This example will compile and print robot_name is: Some(“Another
name”). Since name is a mutable reference, within the match arm code,
we need to dereference using the * operator in order to be able to
mutate the value.

Extra Conditionals with Match Guards

You can introduce match guards as part of a match arm by specifying
an additional if conditional after the pattern. The conditional can use
variables created in the pattern. Listing 18-27 has a match expression
with a match guard in the first arm:



505

let num = Some(4);

match num {
Some(x) if x < 5 => println!("less than five: {}",

x),
Some(x) => println!("{}", x),
None => (),

}

Listing 18-27: Adding a match guard to a pattern
This example will print less than five: 4. If num was instead

Some(7), this example would print 7. Match guards allow you to ex-
press more complexity than patterns alone give you.

In Listing 18-10, we saw that since patterns shadow variables, we
weren’t able to specify a pattern to express the case when a value was
equal to a variable outside the match. Listing 18-28 shows how we can
use a match guard to accomplish this:

fn main() {
let x = Some(5);
let y = 10;

match x {
Some(50) => println!("Got 50"),
Some(n) if n == y => println!("Matched, n = {:?}",

n),
_ => println!("Default case, x = {:?}", x),

}

println!("at the end: x = {:?}, y = {:?}", x, y);
}

Listing 18-28: Using a match guard to test for equality with an outer
variable

This will now print Default case, x = Some(5). Because the
second match arm is not introducing a new variable y that shadows
the outer y in the pattern, we can use y in the match guard. We’re still
destructuring x to get the inner value n, and then we can compare n
and y in the match guard.

If you’re using a match guard with multiple patterns specified by |,
the match guard condition applies to all of the patterns. Listing 18-29
shows a match guard that applies to the value matched by all three
patterns in the first arm:



506

let x = 4;
let y = false;

match x {
4 | 5 | 6 if y => println!("yes"),
_ => println!("no"),

}

Listing 18-29: Combining multiple patterns with a match guard
This prints no since the if condition applies to the whole pattern 4

| 5 | 6, not only to the last value 6. In other words, the precedence
of a match guard in relation to a pattern behaves like this:

(4 | 5 | 6) if y => ...

rather than this:
4 | 5 | (6 if y) => ...

@ Bindings

In order to test a value in a pattern but also be able to create a variable
bound to the value, we can use @. Listing 18-30 shows an example where
we want to test that a Message::Hello id field is within the range 3.
..7 but also be able to bind to the value so that we can use it in the
code associated with the arm:
enum Message {

Hello { id: i32 },
}

let msg = Message::Hello { id: 5 };

match msg {
Message::Hello { id: id @ 3...7 } => {

println!("Found an id in range: {}", id)
},
Message::Hello { id: 10...12 } => {

println!("Found an id in another range")
},
Message::Hello { id } => {

println!("Found some other id: {}", id)
},



507

}

Listing 18-30: Using @ to bind to a value in a pattern while also testing
it

This example will print Found an id in range: 5. By specifying
id @ before the range, we’re capturing whatever value matched the
range while also testing it. In the second arm where we only have a
range specified in the pattern, the code associated with the arm doesn’t
know if id is 10, 11, or 12, since we haven’t saved the id value in a
variable: we only know that the value matched something in that range
if that arm’s code is executed. In the last arm where we’ve specified a
variable without a range, we do have the value available to use in the
arm’s code, but we haven’t applied any other test to the value. Using
@ lets us test a value and save it in a variable within one pattern.

Summary
Patterns are a useful feature of Rust that help to distinguish between
different kinds of data. When used in match statements, Rust makes
sure that your patterns cover every possible value. Patterns in let
statements and function parameters make those constructs more pow-
erful, enabling the destructuring of values into smaller parts at the
same time as assigning to variables.

Now, for the penultimate chapter of the book, let’s take a look at
some advanced parts of a variety of Rust’s features.



508



Chapter 2

Advanced Features

We’ve come a long way! By now, we’ve learned 99% of the things
you’ll need to know when writing Rust. Before we do one more project
in Chapter 20, let’s talk about a few things that you may run into that
last 1% of the time. Feel free to skip this chapter and come back to it
once you run into these things in the wild; the features we’ll learn to
use here are useful in very specific situations. We don’t want to leave
these features out, but you won’t find yourself reaching for them often.

In this chapter, we’re going to cover:

• Unsafe Rust: for when you need to opt out of some of Rust’s
guarantees and tell the compiler that you will be responsible for
upholding the guarantees instead

• Advanced Lifetimes: Additional lifetime syntax for complex sit-
uations

• Advanced Traits: Associated Types, default type parameters,
fully qualified syntax, supertraits, and the newtype pattern in
relation to traits

• Advanced Types: some more about the newtype pattern, type
aliases, the “never” type, and dynamically sized types

• Advanced Functions and Closures: function pointers and return-
ing closures

It’s a panoply of Rust features with something for everyone! Let’s dive
in!



510

2.1
Unsafe Rust
In all of the previous chapters in this book, we’ve been discussing code
written in Rust that has memory safety guarantees enforced at compile
time. However, Rust has a second language hiding out inside of it,
unsafe Rust, which does not enforce these memory safety guarantees.
Unsafe Rust works just like regular Rust does, but it gives you extra
superpowers not available in safe Rust code.

Unsafe Rust exists because, by nature, static analysis is conserva-
tive. When trying to determine if code upholds some guarantees or not,
it’s better to reject some programs that are valid than it is to accept
some programs that are invalid. There are some times when your code
might be okay, but Rust thinks it’s not! In these cases, you can use
unsafe code to tell the compiler, “trust me, I know what I’m doing.”
The downside is that you’re on your own; if you get unsafe code wrong,
problems due to memory unsafety like null pointer dereferencing can
occur.

There’s another reason that Rust needs to have unsafe code: the
underlying hardware of computers is inherently not safe. If Rust didn’t
let you do unsafe operations, there would be some tasks that you simply
could not do. But Rust needs to be able to let you do low-level systems
programming like directly interacting with your operating system, or
even writing your own operating system! That’s part of the goals of
the language. We need some way to do these kinds of things.

Unsafe Superpowers

We switch into unsafe Rust by using the unsafe keyword and starting
a new block that holds the unsafe code. There are four actions that
you can take in unsafe Rust that you can’t in safe Rust. We call these
the “unsafe superpowers.” We haven’t seen most of these features yet
since they’re only usable with unsafe!

1. Dereferencing a raw pointer

2. Calling an unsafe function or method

3. Accessing or modifying a mutable static variable

4. Implementing an unsafe trait



511

It’s important to understand that unsafe doesn’t turn off the bor-
row checker or disable any other of Rust’s safety checks: if you use
a reference in unsafe code, it will still be checked. The only thing
the unsafe keyword does is give you access to these four features that
aren’t checked by the compiler for memory safety. You still get some
degree of safety inside of an unsafe block! Furthermore, unsafe does
not mean the code inside the block is dangerous or definitely will have
memory safety problems: the intent is that you as the programmer will
ensure that the code inside an unsafe block will have valid memory,
since you’ve turned off the compiler checks.

People are fallible, however, and mistakes will happen. By requiring
these four unsafe operations to be inside blocks annotated with unsafe,
if you make a mistake and get an error related to memory safety, you’ll
know that it has to be related to one of the places that you opted
into this unsafety. That makes the cause of memory safety bugs much
easier to find, since we know Rust is checking all of the other code
for us. To get this benefit of only having a few places to investigate
memory safety bugs, it’s important to contain your unsafe code to as
small of an area as possible. Any code inside of an unsafe block is
suspect when debugging a memory problem: keep unsafe blocks small
and you’ll thank yourself later since you’ll have less code to investigate.

In order to isolate unsafe code as much as possible, it’s a good
idea to enclose unsafe code within a safe abstraction and provide a
safe API, which we’ll be discussing once we get into unsafe functions
and methods. Parts of the standard library are implemented as safe
abstractions over unsafe code that has been audited. This prevents
uses of unsafe from leaking out into all the places that you or your
users might want to make use of the functionality implemented with
unsafe code, since using a safe abstraction is safe.

Let’s talk about each of the four unsafe superpowers in turn, and
along the way we’ll look at some abstractions that provide a safe inter-
face to unsafe code.

Dereferencing a Raw Pointer

Way back in Chapter 4, we first learned about references. We also
learned that the compiler ensures that references are always valid. Un-
safe Rust has two new types similar to references called raw pointers.
Just like references, we can have an immutable raw pointer and a mu-
table raw pointer. In the context of raw pointers, “immutable” means
that the pointer can’t be directly dereferenced and assigned to. Listing
19-1 shows how to create raw pointers from references:



512

let mut num = 5;

let r1 = &num as *const i32;
let r2 = &mut num as *mut i32;

Listing 19-1: Creating raw pointers from references
The *const T type is an immutable raw pointer, and *mut T is a

mutable raw pointer. We’ve created raw pointers by using as to cast
an immutable and a mutable reference into their corresponding raw
pointer types. Unlike references, these pointers may or may not be
valid.

Listing 19-2 shows how to create a raw pointer to an arbitrary lo-
cation in memory. Trying to use arbitrary memory is undefined: there
may be data at that address, there may not be any data at that address,
the compiler might optimize the code so that there is no memory access,
or your program might segfault. There’s not usually a good reason to
be writing code like this, but it is possible:

let address = 0x012345;
let r = address as *const i32;

Listing 19-2: Creating a raw pointer to an arbitrary memory address
Note there’s no unsafe block in either Listing 19-1 or 19-2. You can

create raw pointers in safe code, but you can’t dereference raw pointers
and read the data being pointed to. Using the dereference operator, *,
on a raw pointer requires an unsafe block, as shown in Listing 19-3:

let mut num = 5;

let r1 = &num as *const i32;
let r2 = &mut num as *mut i32;

unsafe {
println!("r1 is: {}", *r1);
println!("r2 is: {}", *r2);

}

Listing 19-3: Dereferencing raw pointers within an unsafe block
Creating a pointer can’t do any harm; it’s only when accessing the

value that it points at that you might end up dealing with an invalid
value.

Note also that in Listing 19-1 and 19-3 we created a *const i32
and a *mut i32 that both pointed to the same memory location, that



513

of num. If we had tried to create an immutable and a mutable reference
to num instead of raw pointers, this would not have compiled due to
the rule that says we can’t have a mutable reference at the same time
as any immutable references. With raw pointers, we are able to create
a mutable pointer and an immutable pointer to the same location, and
change data through the mutable pointer, potentially creating a data
race. Be careful!

With all of these dangers, why would we ever use raw pointers? One
major use case is interfacing with C code, as we’ll see in the next section
on unsafe functions. Another case is to build up safe abstractions that
the borrow checker doesn’t understand. Let’s introduce unsafe func-
tions then look at an example of a safe abstraction that uses unsafe
code.

Calling an Unsafe Function or Method

The second operation that requires an unsafe block is calling an un-
safe function. Unsafe functions and methods look exactly like regular
functions and methods, but they have an extra unsafe out front. Bod-
ies of unsafe functions are effectively unsafe blocks. Here’s an unsafe
function named dangerous:

unsafe fn dangerous() {}

unsafe {
dangerous();

}

If we try to call dangerous without the unsafe block, we’ll get an error:

error[E0133]: call to unsafe function requires unsafe function
or block
--> <anon>:4:5
|

4 | dangerous();
| ^^^^^^^^^^^ call to unsafe function

By inserting the unsafe block around our call to dangerous, we’re
asserting to Rust that we’ve read the documentation for this function,
we understand how to use it properly, and we’ve verified that everything
is correct.



514

Creating a Safe Abstraction Over Unsafe Code As an example,
let’s check out some functionality from the standard library, split_
at_mut, and explore how we might implement it ourselves. This safe
method is defined on mutable slices, and it takes one slice and makes
it into two by splitting the slice at the index given as an argument, as
demonstrated in Listing 19-4:

let mut v = vec![1, 2, 3, 4, 5, 6];

let r = &mut v[..];

let (a, b) = r.split_at_mut(3);

assert_eq!(a, &mut [1, 2, 3]);
assert_eq!(b, &mut [4, 5, 6]);

Listing 19-4: Using the safe split_at_mut function
This function can’t be implemented using only safe Rust. An at-

tempt might look like Listing 19-5. For simplicity, we’re implementing
split_at_mut as a function rather than a method, and only for slices
of i32 values rather than for a generic type T:

fn split_at_mut(slice: &mut [i32], mid: usize) -> (&mut
[i32], &mut [i32]) {

let len = slice.len();

assert!(mid <= len);

(&mut slice[..mid],
&mut slice[mid..])

}

Listing 19-5: An attempted implementation of split_at_mut using
only safe Rust

This function first gets the total length of the slice, then asserts
that the index given as a parameter is within the slice by checking that
the parameter is less than or equal to the length. The assertion means
that if we pass an index that’s greater than the length of the slice to
split at, the function will panic before it attempts to use that index.

Then we return two mutable slices in a tuple: one from the start of
the initial slice to the mid index, and another from mid to the end of
the slice.

If we try to compile this, we’ll get an error:



515

error[E0499]: cannot borrow `*slice` as mutable more than
once at a time
--> <anon>:6:11
|

5 | (&mut slice[..mid],
| ----- first mutable borrow occurs here

6 | &mut slice[mid..])
| ^^^^^ second mutable borrow occurs here

7 | }
| - first borrow ends here

Rust’s borrow checker can’t understand that we’re borrowing different
parts of the slice; it only knows that we’re borrowing from the same
slice twice. Borrowing different parts of a slice is fundamentally okay;
our two &mut [i32]s aren’t overlapping. However, Rust isn’t smart
enough to know this. When we know something is okay, but Rust
doesn’t, it’s time to reach for unsafe code.

Listing 19-6 shows how to use an unsafe block, a raw pointer, and
some calls to unsafe functions to make the implementation of split_
at_mut work:

use std::slice;

fn split_at_mut(slice: &mut [i32], mid: usize) -> (&mut
[i32], &mut [i32]) {

let len = slice.len();
let ptr = slice.as_mut_ptr();

assert!(mid <= len);

unsafe {
(slice::from_raw_parts_mut(ptr, mid),
slice::from_raw_parts_mut(ptr.offset(mid as isize)

, len - mid))
}

}

Listing 19-6: Using unsafe code in the implementation of the split_
at_mut function

Recall from Chapter 4 that slices are a pointer to some data and
the length of the slice. We’ve often used the len method to get the
length of a slice; we can use the as_mut_ptr method to get access to



516

the raw pointer of a slice. In this case, since we have a mutable slice to
i32 values, as_mut_ptr returns a raw pointer with the type *mut i32,
which we’ve stored in the variable ptr.

The assertion that the mid index is within the slice stays the same.
Then, the slice::from_raw_parts_mut function does the reverse from
the as_mut_ptr and len methods: it takes a raw pointer and a length
and creates a slice. We call slice::from_raw_parts_mut to create
a slice that starts from ptr and is mid items long. Then we call the
offset method on ptr with mid as an argument to get a raw pointer
that starts at mid, and we create a slice using that pointer and the
remaining number of items after mid as the length.

Because slices are checked, they’re safe to use once we’ve created
them. The function slice::from_raw_parts_mut is an unsafe func-
tion because it takes a raw pointer and trusts that this pointer is valid.
The offset method on raw pointers is also unsafe, since it trusts that
the location some offset after a raw pointer is also a valid pointer. We’ve
put an unsafe block around our calls to slice::from_raw_parts_mut
and offset to be allowed to call them, and we can tell by looking at
the code and by adding the assertion that mid must be less than or
equal to len that all the raw pointers used within the unsafe block
will be valid pointers to data within the slice. This is an acceptable
and appropriate use of unsafe.

Note that the resulting split_at_mut function is safe: we didn’t
have to add the unsafe keyword in front of it, and we can call this
function from safe Rust. We’ve created a safe abstraction to the unsafe
code by writing an implementation of the function that uses unsafe
code in a safe way by only creating valid pointers from the data this
function has access to.

In contrast, the use of slice::from_raw_parts_mut in Listing 19-7
would likely crash when the slice is used. This code takes an arbitrary
memory location and creates a slice ten thousand items long:

use std::slice;

let address = 0x012345;
let r = address as *mut i32;

let slice = unsafe {
slice::from_raw_parts_mut(r, 10000)

};

Listing 19-7: Creating a slice from an arbitrary memory location



517

We don’t own the memory at this arbitrary location, and there’s
no guarantee that the slice this code creates contains valid i32 values.
Attempting to use slice as if it was a valid slice would be undefined
behavior.

extern Functions for Calling External Code are Unsafe Some-
times, your Rust code may need to interact with code written in an-
other language. To do this, Rust has a keyword, extern, that facil-
itates creating and using a Foreign Function Interface (FFI). Listing
19-8 demonstrates how to set up an integration with a function named
some_function defined in an external library written in a language
other tha Rust. Functions declared within extern blocks are always
unsafe to call from Rust code:

Filename: src/main.rs

extern "C" {
fn some_function();

}

fn main() {
unsafe { some_function() };

}

Listing 19-8: Declaring and calling an extern function defined in an-
other language

Within the extern “C” block, we list the names and signatures of
functions defined in a library written in another language that we want
to be able to call.“C” defines which application binary interface (ABI)
the external function uses. The ABI defines how to call the function at
the assembly level. The “C” ABI is the most common, and follows the
C programming language’s ABI.

Calling an external function is always unsafe. If we’re calling into
some other language, that language does not enforce Rust’s safety guar-
antees. Since Rust can’t check that the external code is safe, we are
responsible for checking the safety of the external code and indicating
we have done so by using an unsafe block to call external functions.

Calling Rust Functions from Other Languages The extern key-
word is also used for creating an interface that allows other languages to
call Rust functions. Instead of an extern block, we can add the extern
keyword and specifying the ABI to use just before the fn keyword. We
also add the #[no_mangle] annotation to tell the Rust compiler not to



518

mangle the name of this function. The call_from_c function in this
example would be accessible from C code, once we’ve compiled to a
shared library and linked from C:

#[no_mangle]
pub extern "C" fn call_from_c() {

println!("Just called a Rust function from C!");
}

This usage of extern does not require unsafe

Accessing or Modifying a Mutable Static Variable

We’ve gone this entire book without talking about global variables.
Many programming languages support them, and so does Rust. How-
ever, global variables can be problematic: for example, if you have two
threads accessing the same mutable global variable, a data race can
happen.

Global variables are called static in Rust. Listing 19-9 shows an
example declaration and use of a static variable with a string slice as a
value:

Filename: src/main.rs

static HELLO_WORLD: &str = "Hello, world!";

fn main() {
println!("name is: {}", HELLO_WORLD);

}

Listing 19-9: Defining and using an immutable static variable
static variables are similar to constants: their names are also in

SCREAMING_SNAKE_CASE by convention, and we must annotate the vari-
able’s type, which is &’static str in this case. Only references with
the ’static lifetime may be stored in a static variable. Because of this,
the Rust compiler can figure out the lifetime by itself and we don’t need
to annotate it explicitly. Accessing immutable static variables is safe.
Values in a static variable have a fixed address in memory, and using
the value will always access the same data. Constants, on the other
hand, are allowed to duplicate their data whenever they are used.

Another way in which static variables are different from constants
is that static variables can be mutable. Both accessing and modifying
mutable static variables is unsafe. Listing 19-10 shows how to declare,
access, and modify a mutable static variable named COUNTER:

Filename: src/main.rs



519

static mut COUNTER: u32 = 0;

fn add_to_count(inc: u32) {
unsafe {

COUNTER += inc;
}

}

fn main() {
add_to_count(3);

unsafe {
println!("COUNTER: {}", COUNTER);

}
}

Listing 19-10: Reading from or writing to a mutable static variable is
unsafe

Just like with regular variables, we specify that a static variable
should be mutable using the mut keyword. Any time that we read
or write from COUNTER has to be within an unsafe block. This code
compiles and prints COUNTER: 3 as we would expect since it’s single
threaded, but having multiple threads accessing COUNTER would likely
result in data races.

Mutable data that is globally accessible is difficult to manage and
ensure that there are no data races, which is why Rust considers mu-
table static variables to be unsafe. If possible, prefer using the concur-
rency techniques and threadsafe smart pointers we discussed in Chapter
16 to have the compiler check that data accessed from different threads
is done safely.

Implementing an Unsafe Trait

Finally, the last action we’re only allowed to take when we use the
unsafe keyword is implementing an unsafe trait. We can declare that
a trait is unsafe by adding the unsafe keyword before trait, and
then implementing the trait must be marked as unsafe too, as shown
in Listing 19-11:

unsafe trait Foo {
// methods go here

}



520

unsafe impl Foo for i32 {
// method implementations go here

}

Listing 19-11: Defining and implementing an unsafe trait
Like unsafe functions, methods in an unsafe trait have some invari-

ant that the compiler cannot verify. By using unsafe impl, we’re
promising that we’ll uphold these invariants.

As an example, recall the Sync and Send marker traits from Chapter
16, and that the compiler implements these automatically if our types
are composed entirely of Send and Sync types. If we implement a
type that contains something that’s not Send or Sync such as raw
pointers, and we want to mark our type as Send or Sync, that requires
using unsafe. Rust can’t verify that our type upholds the guarantees
that a type can be safely sent across threads or accessed from multiple
threads, so we need to do those checks ourselves and indicate as such
with unsafe.

Using unsafe to take one of these four actions isn’t wrong or frowned
upon, but it is trickier to get unsafe code correct since the compiler
isn’t able to help uphold memory safety. When you have a reason to
use unsafe code, however, it’s possible to do so, and having the ex-
plicit unsafe annotation makes it easier to track down the source of
problems if they occur.

2.2
Advanced Lifetimes
Back in Chapter 10, we learned how to annotate references with life-
time parameters to help Rust understand how the lifetimes of different
references relate. We saw how most of the time, Rust will let you elide
lifetimes, but every reference has a lifetime. There are three advanced
features of lifetimes that we haven’t covered though: lifetime subtyping,
lifetime bounds, and trait object lifetimes.

Lifetime Subtyping

Imagine that we want to write a parser. To do this, we’ll have a struc-
ture that holds a reference to the string that we’re parsing, and we’ll
call that struct Context. We’ll write a parser that will parse this string



521

and return success or failure. The parser will need to borrow the con-
text to do the parsing. Implementing this would look like the code in
Listing 19-12, which won’t compile because we’ve left off the lifetime
annotations for now:
struct Context(&str);

struct Parser {
context: &Context,

}

impl Parser {
fn parse(&self) -> Result<(), &str> {

Err(&self.context.0[1..])
}

}

Listing 19-12: Defining a Context struct that holds a string slice, a
Parser struct that holds a reference to a Context instance, and a
parse method that always returns an error referencing the string slice

For simplicity’s sake, our parse function returns a Result<(),
&str>. That is, we don’t do anything on success, and on failure we
return the part of the string slice that didn’t parse correctly. A real im-
plementation would have more error information than that, and would
actually return something created when parsing succeeds, but we’re
leaving those parts of the implementation off since they aren’t relevant
to the lifetimes part of this example. We’re also defining parse to al-
ways produce an error after the first byte. Note that this may panic if
the first byte is not on a valid character boundary; again, we’re simpli-
fying the example in order to concentrate on the lifetimes involved.

So how do we fill in the lifetime parameters for the string slice
in Context and the reference to the Context in Parser? The most
straightforward thing to do is to use the same lifetime everywhere, as
shown in Listing 19-13:

struct Context<'a>(&'a str);

struct Parser<'a> {
context: &'a Context<'a>,

}

impl<'a> Parser<'a> {



522

fn parse(&self) -> Result<(), &str> {
Err(&self.context.0[1..])

}
}

Listing 19-13: Annotating all references in Context and Parser with
the same lifetime parameter

This compiles fine. Next, in Listing 19-14, let’s write a function that
takes an instance of Context, uses a Parser to parse that context, and
returns what parse returns. This won’t quite work:

fn parse_context(context: Context) -> Result<(), &str>
{

Parser { context: &context }.parse()
}

Listing 19-14: An attempt to add a parse_context function that takes
a Context and uses a Parser

We get two quite verbose errors when we try to compile the code
with the addition of the parse_context function:

error: borrowed value does not live long enough
--> <anon>:16:5
|

16 | Parser { context: &context }.parse()
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ does not live long

enough
17 | }

| - temporary value only lives until here
|

note: borrowed value must be valid for the anonymous lifetime
#1 defined on the
body at 15:55...

--> <anon>:15:56
|

15 | fn parse_context(context: Context) -> Result<(),
&str> {

| _________________________________________________
_______^
16 | | Parser { context: &context }.parse()
17 | | }

| |_^



523

error: `context` does not live long enough
--> <anon>:16:24
|

16 | Parser { context: &context }.parse()
| ^^^^^^^ does not live long

enough
17 | }

| - borrowed value only lives until here
|

note: borrowed value must be valid for the anonymous lifetime
#1 defined on the
body at 15:55...
--> <anon>:15:56
|

15 | fn parse_context(context: Context) -> Result<(),
&str> {

| _________________________________________________
_______^
16 | | Parser { context: &context }.parse()
17 | | }

| |_^

These errors are saying that both the Parser instance we’re creating
and the context parameter live from the line that the Parser is created
until the end of the parse_context function, but they both need to
live for the entire lifetime of the function.

In other words, Parser and context need to outlive the entire func-
tion and be valid before the function starts as well as after it ends in
order for all the references in this code to always be valid. Both the
Parser we’re creating and the context parameter go out of scope at
the end of the function, though (since parse_context takes ownership
of context).

Let’s look at the definitions in Listing 19-13 again, especially the
signature of the parse method:

fn parse(&self) -> Result<(), &str> {

Remember the elision rules? If we annotate the lifetimes of the refer-
ences, the signature would be:



524

fn parse<'a>(&'a self) -> Result<(), &'a str> {

That is, the error part of the return value of parse has a lifetime
that is tied to the Parser instance’s lifetime (that of &self in the
parse method signature). That makes sense, as the returned string
slice references the string slice in the Context instance that the Parser
holds, and we’ve specified in the definition of the Parser struct that the
lifetime of the reference to Context that Parser holds and the lifetime
of the string slice that Context holds should be the same.

The problem is that the parse_context function returns the value
returned from parse, so the lifetime of the return value of parse_
context is tied to the lifetime of the Parser as well. But the Parser
instance created in the parse_context function won’t live past the end
of the function (it’s temporary), and the context will go out of scope
at the end of the function (parse_context takes ownership of it).

We’re not allowed to return a reference to a value that goes out of
scope at the end of the function. Rust thinks that’s what we’re trying
to do because we annotated all the lifetimes with the same lifetime
parameter. That told Rust the lifetime of the string slice that Context
holds is the same as that of the lifetime of the reference to Context
that Parser holds.

The parse_context function can’t see that within the parse func-
tion, the string slice returned will outlive both Context and Parser,
and that the reference parse_context returns refers to the string slice,
not to Context or Parser.

By knowing what the implementation of parse does, we know that
the only reason that the return value of parse is tied to the Parser
is because it’s referencing the Parser’s Context, which is referencing
the string slice, so it’s really the lifetime of the string slice that parse_
context needs to care about. We need a way to tell Rust that the
string slice in Context and the reference to the Context in Parser
have different lifetimes and that the return value of parse_context is
tied to the lifetime of the string slice in Context.

We could try only giving Parser and Context different lifetime
parameters as shown in Listing 19-15. We’ve chosen the lifetime pa-
rameter names ’s and ’c here to be clearer about which lifetime goes
with the string slice in Context and which goes with the reference to
Context in Parser. Note that this won’t completely fix the problem,
but it’s a start and we’ll look at why this isn’t sufficient when we try
to compile.



525

struct Context<'s>(&'s str);

struct Parser<'c, 's> {
context: &'c Context<'s>,

}

impl<'c, 's> Parser<'c, 's> {
fn parse(&self) -> Result<(), &'s str> {

Err(&self.context.0[1..])
}

}

fn parse_context(context: Context) -> Result<(), &str>
{

Parser { context: &context }.parse()
}

Listing 19-15: Specifying different lifetime parameters for the references
to the string slice and to Context

We’ve annotated the lifetimes of the references in all the same places
that we annotated them in Listing 19-13, but used different parameters
depending on whether the reference goes with the string slice or with
Context. We’ve also added an annotation to the string slice part of
the return value of parse to indicate that it goes with the lifetime of
the string slice in Context.

Here’s the error we get now:

error[E0491]: in type `&'c Context<'s>`, reference has
a longer lifetime than the data it references
--> src/main.rs:4:5
|

4 | context: &'c Context<'s>,
| ^^^^^^^^^^^^^^^^^^^^^^^^
|

note: the pointer is valid for the lifetime 'c as defined
on the struct at 3:0
--> src/main.rs:3:1
|

3 | / struct Parser<'c, 's> {
4 | | context: &'c Context<'s>,
5 | | }



526

| |_^
note: but the referenced data is only valid for the lifetime
's as defined on the struct at 3:0
--> src/main.rs:3:1
|

3 | / struct Parser<'c, 's> {
4 | | context: &'c Context<'s>,
5 | | }

| |_^

Rust doesn’t know of any relationship between ’c and ’s. In order
to be valid, the referenced data in Context with lifetime ’s needs to
be constrained to guarantee that it lives longer than the reference to
Context that has lifetime ’c. If ’s is not longer than ’c, then the
reference to Context might not be valid.

Which gets us to the point of this section: Rust has a feature called
lifetime subtyping, which is a way to specify that one lifetime parameter
lives at least as long as another one. In the angle brackets where we
declare lifetime parameters, we can declare a lifetime ’a as usual, and
declare a lifetime ’b that lives at least as long as ’a by declaring ’b
with the syntax ’b: ’a.

In our definition of Parser, in order to say that ’s (the lifetime of
the string slice) is guaranteed to live at least as long as ’c (the lifetime
of the reference to Context), we change the lifetime declarations to
look like this:

# struct Context<'a>(&'a str);
#
struct Parser<'c, 's: 'c> {

context: &'c Context<'s>,
}

Now, the reference to Context in the Parser and the reference to the
string slice in the Context have different lifetimes, and we’ve ensured
that the lifetime of the string slice is longer than the reference to the
Context.

That was a very long-winded example, but as we mentioned at the
start of this chapter, these features are pretty niche. You won’t often
need this syntax, but it can come up in situations like this one, where
you need to refer to something you have a reference to.



527

Lifetime Bounds

In Chapter 10, we discussed how to use trait bounds on generic types.
We can also add lifetime parameters as constraints on generic types.
For example, let’s say we wanted to make a wrapper over references.
Remember RefCell<T> from Chapter 15? This is how the borrow
and borrow_mut methods work; they return wrappers over references
in order to keep track of the borrowing rules at runtime. The struct
definition, without lifetime parameters for now, would look like Listing
19-16:
struct Ref<T>(&T);

Listing 19-16: Defining a struct to wrap a reference to a generic type;
without lifetime parameters to start

However, using no lifetime bounds at all gives an error because Rust
doesn’t know how long the generic type T will live:

error[E0309]: the parameter type `T` may not live long
enough
--> <anon>:2:19
|

2 | struct Ref<'a, T>(&'a T);
| ^^^^^^
|
= help: consider adding an explicit lifetime bound `T:
'a`...

note: ...so that the reference type `&'a T` does not outlive
the data it points at
--> <anon>:2:19
|

2 | struct Ref<'a, T>(&'a T);
| ^^^^^^

This is the same error that we’d get if we filled in T with a concrete
type, like struct Ref(&i32); all references in struct definitions need
a lifetime parameter. However, because we have a generic type pa-
rameter, we can’t add a lifetime parameter in the same way. Defining
Ref as struct Ref<’a>(&’a T) will result in an error because Rust
can’t determine that T lives long enough. Since T can be any type, T
could itself be a reference or it could be a type that holds one or more
references, each of which have their own lifetimes.

Rust helpfully gave us good advice on how to specify the lifetime
parameter in this case:



528

consider adding an explicit lifetime bound `T: 'a` so that
the reference type
`&'a T` does not outlive the data it points to.

The code in Listing 19-17 works because T: ’a syntax specifies that T
can be any type, but if it contains any references, T must live as long
as ’a:

struct Ref<'a, T: 'a>(&'a T);

Listing 19-17: Adding lifetime bounds on T to specify that any refer-
ences in T live at least as long as ’a

We could choose to solve this in a different way as shown in List-
ing 19-18 by bounding T on ’static. This means if T contains any
references, they must have the ’static lifetime:

struct StaticRef<T: 'static>(&'static T);

Listing 19-18: Adding a ’static lifetime bound to T to constrain T to
types that have only ’static references or no references

Types with no references count as T: ’static. Because ’static
means the reference must live as long as the entire program, a type
that contains no references meets the criteria of all references living as
long as the entire program (since there are no references). Think of
it this way: if the borrow checker is concerned about references living
long enough, then there’s no real distinction between a type that has
no references and a type that has references that live forever; both of
them are the same for the purpose of determining whether or not a
reference has a shorter lifetime than what it refers to.

Trait Object Lifetimes

In Chapter 17, we learned about trait objects that consist of putting a
trait behind a reference in order to use dynamic dispatch. However, we
didn’t discuss what happens if the type implementing the trait used in
the trait object has a lifetime. Consider Listing 19-19, where we have
a trait Foo and a struct Bar that holds a reference (and thus has a
lifetime parameter) that implements trait Foo, and we want to use an
instance of Bar as the trait object Box<Foo>:

trait Foo { }

struct Bar<'a> {



529

x: &'a i32,
}

impl<'a> Foo for Bar<'a> { }

let num = 5;

let obj = Box::new(Bar { x: &num }) as Box<Foo>;

Listing 19-19: Using a type that has a lifetime parameter with a trait
object

This code compiles without any errors, even though we haven’t said
anything about the lifetimes involved in obj. This works because there
are rules having to do with lifetimes and trait objects:

• The default lifetime of a trait object is ’static.

• If we have &’a X or &’a mut X, then the default is ’a.

• If we have a single T: ’a clause, then the default is ’a.

• If we have multiple T: ’a-like clauses, then there is no default;
we must be explicit.

When we must be explicit, we can add a lifetime bound on a trait object
like Box<Foo> with the syntax Box<Foo + ’a> or Box<Foo + ’static>,
depending on what’s needed. Just as with the other bounds, this means
that any implementer of the Foo trait that has any references inside
must have the lifetime specified in the trait object bounds as those
references.

Next, let’s take a look at some other advanced features dealing with
traits!

2.3

Advanced Traits
We covered traits in Chapter 10, but like lifetimes, we didn’t get to
all the details. Now that we know more Rust, we can get into the
nitty-gritty.



530

Associated Types

Associated types are a way of associating a type placeholder with a trait
such that the trait method definitions can use these placeholder types
in their signatures. The implementer of a trait will specify the concrete
type to be used in this type’s place for the particular implementation.

We’ve described most of the things in this chapter as being very
rare. Associated types are somewhere in the middle; they’re more rare
than the rest of the book, but more common than many of the things
in this chapter.

An example of a trait with an associated type is the Iterator trait
provided by the standard library. It has an associated type named Item
that stands in for the type of the values that we’re iterating over. We
mentioned in Chapter 13 that the definition of the Iterator trait is as
shown in Listing 19-20:

pub trait Iterator {
type Item;
fn next(&mut self) -> Option<Self::Item>;

}

Listing 19-20: The definition of the Iterator trait that has an associ-
ated type Item

This says that the Iterator trait has an associated type named
Item. Item is a placeholder type, and the return value of the next
method will return values of type Option<Self::Item>. Implementers
of this trait will specify the concrete type for Item, and the next method
will return an Option containing a value of whatever type the imple-
menter has specified.

Associated Types Versus Generics When we implemented the
Iterator trait on the Counter struct in Listing 13-6, we specified that
the Item type was u32:

impl Iterator for Counter {
type Item = u32;

fn next(&mut self) -> Option<Self::Item> {

This feels similar to generics. So why isn’t the Iterator trait defined
as shown in Listing 19-21?



531

pub trait Iterator<T> {
fn next(&mut self) -> Option<T>;

}

Listing 19-21: A hypothetical definition of the Iterator trait using
generics

The difference is that with the definition in Listing 19-21, we could
also implement Iterator<String> for Counter, or any other type
as well, so that we’d have multiple implementations of Iterator for
Counter. In other words, when a trait has a generic parameter, we can
implement that trait for a type multiple times, changing the generic
type parameters’ concrete types each time. Then when we use the
next method on Counter, we’d have to provide type annotations to
indicate which implementation of Iterator we wanted to use.

With associated types, we can’t implement a trait on a type multiple
times. Using the actual definition of Iterator from Listing 19-20, we
can only choose once what the type of Item will be, since there can
only be one impl Iterator for Counter. We don’t have to specify
that we want an iterator of u32 values everywhere that we call next
on Counter.

The benefit of not having to specify generic type parameters when
a trait uses associated types shows up in another way as well. Consider
the two traits defined in Listing 19-22. Both are defining a trait having
to do with a graph structure that contains nodes of some type and
edges of some type. GGraph is defined using generics, and AGraph is
defined using associated types:

trait GGraph<Node, Edge> {
// methods would go here

}

trait AGraph {
type Node;
type Edge;

// methods would go here
}

Listing 19-22: Two graph trait definitions, GGraph using generics and
AGraph using associated types for Node and Edge

Let’s say we wanted to implement a function that computes the dis-
tance between two nodes in any types that implement the graph trait.



532

With the GGraph trait defined using generics, our distance function
signature would have to look like Listing 19-23:

# trait GGraph<Node, Edge> {}
#
fn distance<N, E, G: GGraph<N, E>>(graph: &G, start: &N,
end: &N) -> u32 {
# 0
}

Listing 19-23: The signature of a distance function that uses the trait
GGraph and has to specify all the generic parameters

Our function would need to specify the generic type parameters N, E,
and G, where G is bound by the trait GGraph that has type N as its Node
type and type E as its Edge type. Even though distance doesn’t need
to know the types of the edges, we’re forced to declare an E parameter,
because we need to to use the GGraph trait and that requires specifying
the type for Edge.

Contrast with the definition of distance in Listing 19-24 that uses
the AGraph trait from Listing 19-22 with associated types:

# trait AGraph {
# type Node;
# type Edge;
# }
#
fn distance<G: AGraph>(graph: &G, start: &G::Node, end:
&G::Node) -> u32 {
# 0
}

Listing 19-24: The signature of a distance function that uses the trait
AGraph and the associated type Node

This is much cleaner. We only need to have one generic type pa-
rameter, G, with the trait bound AGraph. Since distance doesn’t use
the Edge type at all, it doesn’t need to be specified anywhere. To use
the Node type associated with AGraph, we can specify G::Node.

Trait Objects with Associated Types You may have been won-
dering why we didn’t use a trait object in the distance functions in
Listing 19-23 and Listing 19-24. The signature for the distance func-
tion using the generic GGraph trait does get a bit more concise using a
trait object:



533

# trait GGraph<Node, Edge> {}
#
fn distance<N, E>(graph: &GGraph<N, E>, start: &N, end:
&N) -> u32 {

# 0
}

This might be a more fair comparison to Listing 19-24. Specifying the
Edge type is still required, though, which means Listing 19-24 is still
preferable since we don’t have to specify something we don’t use.

It’s not possible to change Listing 19-24 to use a trait object for the
graph, since then there would be no way to refer to the AGraph trait’s
associated type.

It is possible in general to use trait objects of traits that have asso-
ciated types, though; Listing 19-25 shows a function named traverse
that doesn’t need to use the trait’s associated types in other arguments.
We do, however, have to specify the concrete types for the associated
types in this case. Here, we’ve chosen to accept types that implement
the AGraph trait with the concrete type of usize as their Node type
and a tuple of two usize values for their Edge type:

# trait AGraph {
# type Node;
# type Edge;
# }
#
fn traverse(graph: &AGraph<Node=usize, Edge=(usize, usize)
>) {}

While trait objects mean that we don’t need to know the concrete
type of the graph parameter at compile time, we do need to constrain
the use of the AGraph trait in the traverse function by the concrete
types of the associated types. If we didn’t provide this constraint, Rust
wouldn’t be able to figure out which impl to match this trait object
to, because the associated types can be part of the signatures of the
methods that Rust needs to look up in the vtable.

Operator Overloading and Default Type Parameters

The <PlaceholderType=ConcreteType> syntax is used in another way
as well: to specify the default type for a generic type. A great example
of a situation where this is useful is operator overloading.



534

Rust does not allow you to create your own operators or overload
arbitrary operators, but the operations and corresponding traits listed
in std::ops can be overloaded by implementing the traits associated
with the operator. For example, Listing 19-25 shows how to overload
the + operator by implementing the Add trait on a Point struct so that
we can add two Point instances together:

Filename: src/main.rs

use std::ops::Add;

#[derive(Debug,PartialEq)]
struct Point {

x: i32,
y: i32,

}

impl Add for Point {
type Output = Point;

fn add(self, other: Point) -> Point {
Point {

x: self.x + other.x,
y: self.y + other.y,

}
}

}

fn main() {
assert_eq!(Point { x: 1, y: 0 } + Point { x: 2, y:

3 },
Point { x: 3, y: 3 });

}

Listing 19-25: Implementing the Add trait to overload the + operator
for Point instances

We’ve implemented the add method to add the x values of two Point
instances together and the y values of two Point instances together to
create a new Point. The Add trait has an Output associated type that’s
used to determine the type returned from add. result of the operation.

Let’s look at the Add trait in a bit more detail. Here’s its definition:



535

trait Add<RHS=Self> {
type Output;

fn add(self, rhs: RHS) -> Self::Output;
}

This should look familiar; it’s a trait with one method and an associated
type. The new part is the RHS=Self in the angle brackets: this syntax
is called default type parameters. RHS is a generic type parameter (short
for “right hand side”) that’s used for the type of the rhs parameter in
the add method. If we don’t specify a concrete type for RHS when we
implement the Add trait, the type of RHS will default to the type of
Self (the type that we’re implementing Add on).

Let’s look at another example of implementing the Add trait. Imag-
ine we have two structs holding values in different units, Millimeters
and Meters. We can implement Add for Millimeters in different ways
as shown in Listing 19-26:

use std::ops::Add;

struct Millimeters(u32);
struct Meters(u32);

impl Add for Millimeters {
type Output = Millimeters;

fn add(self, other: Millimeters) -> Millimeters {
Millimeters(self.0 + other.0)

}
}

impl Add<Meters> for Millimeters {
type Output = Millimeters;

fn add(self, other: Meters) -> Millimeters {
Millimeters(self.0 + (other.0 * 1000))

}
}

Listing 19-26: Implementing the Add trait on Millimeters to be able
to add Millimeters to Millimeters and Millimeters to Meters

If we’re adding Millimeters to other Millimeters, we don’t need
to parameterize the RHS type for Add since the default Self type is what



536

we want. If we want to implement adding Millimeters and Meters,
then we need to say impl Add<Meters> to set the value of the RHS type
parameter.

Default type parameters are used in two main ways:

1. To extend a type without breaking existing code.

2. To allow customization in a way most users don’t want.

The Add trait is an example of the second purpose: most of the time,
you’re adding two like types together. Using a default type parameter
in the Add trait definition makes it easier to implement the trait since
you don’t have to specify the extra parameter most of the time. In
other words, we’ve removed a little bit of implementation boilerplate.

The first purpose is similar, but in reverse: since existing imple-
mentations of a trait won’t have specified a type parameter, if we want
to add a type parameter to an existing trait, giving it a default will let
us extend the functionality of the trait without breaking the existing
implementation code.

Fully Qualified Syntax for Disambiguation

Rust cannot prevent a trait from having a method with the same name
as another trait’s method, nor can it prevent us from implementing both
of these traits on one type. We can also have a method implemented
directly on the type with the same name as well! In order to be able
to call each of the methods with the same name, then, we need to tell
Rust which one we want to use. Consider the code in Listing 19-27
where traits Foo and Bar both have method f and we implement both
traits on struct Baz, which also has a method named f:

Filename: src/main.rs

trait Foo {
fn f(&self);

}

trait Bar {
fn f(&self);

}

struct Baz;



537

impl Foo for Baz {
fn f(&self) { println!("Baz’s impl of Foo"); }

}

impl Bar for Baz {
fn f(&self) { println!("Baz’s impl of Bar"); }

}

impl Baz {
fn f(&self) { println!("Baz's impl"); }

}

fn main() {
let b = Baz;
b.f();

}

Listing 19-27: Implementing two traits that both have a method with
the same name as a method defined on the struct directly

For the implementation of the f method for the Foo trait on Baz,
we’re printing out Baz’s impl of Foo. For the implementation of
the f method for the Bar trait on Baz, we’re printing out Baz’s impl
of Bar. The implementation of f directly on Baz prints out Baz’s
impl. What should happen when we call b.f()? In this case, Rust
will always use the implementation on Baz directly and will print out
Baz’s impl.

In order to be able to call the f method from Foo and the f method
from Baz rather than the implementation of f directly on Baz, we need
to use the fully qualified syntax for calling methods. It works like this:
for any method call like:

receiver.method(args);

We can fully qualify the method call like this:

<Type as Trait>::method(receiver, args);

So in order to disambiguate and be able to call all the f methods defined
in Listing 19-27, we specify that we want to treat the type Baz as each
trait within angle brackets, then use two colons, then call the f method
and pass the instance of Baz as the first argument. Listing 19-28 shows
how to call f from Foo and then f from Bar on b:

Filename: src/main.rs



538

# trait Foo {
# fn f(&self);
# }
# trait Bar {
# fn f(&self);
# }
# struct Baz;
# impl Foo for Baz {
# fn f(&self) { println!("Baz’s impl of Foo"); }
# }
# impl Bar for Baz {
# fn f(&self) { println!("Baz’s impl of Bar"); }
# }
# impl Baz {
# fn f(&self) { println!("Baz's impl"); }
# }
#
fn main() {

let b = Baz;
b.f();
<Baz as Foo>::f(&b);
<Baz as Bar>::f(&b);

}

Listing 19-28: Using fully qualified syntax to call the f methods defined
as part of the Foo and Bar traits

This will print:

Baz's impl
Baz’s impl of Foo
Baz’s impl of Bar

We only need the Type as part if it’s ambiguous, and we only need the
<> part if we need the Type as part. So if we only had the f method
directly on Baz and the Foo trait implemented on Baz in scope, we
could call the f method in Foo by using Foo::f(&b) since we wouldn’t
have to disambiguate from the Bar trait.

We could also have called the f defined directly on Baz by using
Baz::f(&b), but since that definition of f is the one that gets used
by default when we call b.f(), it’s not required to fully specify that
implementation if that’s what we want to call.



539

Supertraits to Use One Trait’s Functionality Within Another
Trait

Sometimes, we may want a trait to be able to rely on another trait also
being implemented wherever our trait is implemented, so that our trait
can use the other trait’s functionality. The required trait is a supertrait
of the trait we’re implementing.

For example, let’s say we want to make an OutlinePrint trait
with an outline_print method that will print out a value outlined in
asterisks. That is, if our Point struct implements Display to result in
(x, y), calling outline_print on a Point instance that has 1 for x
and 3 for y would look like:

**********
* *
* (1, 3) *
* *
**********

In the implementation of outline_print, since we want to be able
to use the Display trait’s functionality, we need to be able to say
that the OutlinePrint trait will only work for types that also imple-
ment Display and provide the functionality that OutlinePrint needs.
We can do that in the trait definition by specifying OutlinePrint:
Display. It’s like adding a trait bound to the trait. Listing 19-29
shows an implementation of the OutlinePrint trait:

use std::fmt::Display;

trait OutlinePrint: Display {
fn outline_print(&self) {

let output = self.to_string();
let len = output.len();
println!("{}", "*".repeat(len + 4));
println!("*{}*", " ".repeat(len + 2));
println!("* {} *", output);
println!("*{}*", " ".repeat(len + 2));
println!("{}", "*".repeat(len + 4));

}
}

Listing 19-29: Implementing the OutlinePrint trait that requires the
functionality from Display



540

Because we’ve specified that OutlinePrint requires the Display
trait, we can use to_string in outline_print (to_string is auto-
matically implemented for any type that implements Display). If we
hadn’t added the : Display after the trait name and we tried to use
to_string in outline_print, we’d get an error that no method named
to_string was found for the type &Self in the current scope.

If we try to implement OutlinePrint on a type that doesn’t imple-
ment Display, such as the Point struct:

# trait OutlinePrint {}
struct Point {

x: i32,
y: i32,

}

impl OutlinePrint for Point {}

We’ll get an error that Display isn’t implemented and that Display
is required by OutlinePrint:

error[E0277]: the trait bound `Point: std::fmt::Display`
is not satisfied

--> src/main.rs:20:6
|

20 | impl OutlinePrint for Point {}
| ^^^^^^^^^^^^ the trait `std::fmt::Display` is

not implemented for
`Point`
|
= note: `Point` cannot be formatted with the default

formatter; try using
`:?` instead if you are using a format string
= note: required by `OutlinePrint`

Once we implement Display on Point and satisfy the constraint that
OutlinePrint requires, like so:

# struct Point {
# x: i32,
# y: i32,
# }
#



541

use std::fmt;

impl fmt::Display for Point {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result

{
write!(f, "({}, {})", self.x, self.y)

}
}

then implementing the OutlinePrint trait on Point will compile suc-
cessfully and we can call outline_print on a Point instance to display
it within an outline of asterisks.

The Newtype Pattern to Implement External Traits on Ex-
ternal Types

In Chapter 10, we mentioned the orphan rule, which says we’re allowed
to implement a trait on a type as long as either the trait or the type
are local to our crate. One way to get around this restriction is to use
the newtype pattern, which involves creating a new type using a tuple
struct with one field as a thin wrapper around the type we want to
implement a trait for. Then the wrapper type is local to our crate, and
we can implement the trait on the wrapper. “Newtype” is a term orig-
inating from the Haskell programming language. There’s no runtime
performance penalty for using this pattern. The wrapper type is elided
at compile time.

For example, if we wanted to implement Display on Vec, we can
make a Wrapper struct that holds an instance of Vec. Then we can
implement Display on Wrapper and use the Vec value as shown in
Listing 19-30:

Filename: src/main.rs

use std::fmt;

struct Wrapper(Vec<String>);

impl fmt::Display for Wrapper {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result

{
write!(f, "[{}]", self.0.join(", "))

}
}



542

fn main() {
let w = Wrapper(vec![String::from("hello"), String:

:from("world")]);
println!("w = {}", w);

}

Listing 19-30: Creating a Wrapper type around Vec<String> to be able
to implement Display

The implementation of Display uses self.0 to access the inner
Vec, and then we can use the functionality of the Display type on
Wrapper.

The downside is that since Wrapper is a new type, it doesn’t have
the methods of the value it’s holding; we’d have to implement all the
methods of Vec like push, pop, and all the rest directly on Wrapper to
delegate to self.0 in order to be able to treat Wrapper exactly like
a Vec. If we wanted the new type to have every single method that
the inner type has, implementing the Deref trait that we discussed in
Chapter 15 on the wrapper to return the inner type can be a solution.
If we don’t want the wrapper type to have all the methods of the inner
type, in order to restrict the wrapper type’s behavior for example, we’d
have to implement just the methods we do want ourselves.

That’s how the newtype pattern is used in relation to traits; it’s
also a useful pattern without having traits involved. Let’s switch focus
now to talk about some advanced ways to interact with Rust’s type
system.

2.4
Advanced Types
The Rust type system has some features that we’ve mentioned or used
without discussing. We started talking about the newtype pattern in
regards to traits; we’ll start with a more general discussion about why
newtypes are useful as types. We’ll then move to type aliases, a feature
that is similar to newtypes but has slightly different semantics. We’ll
also discuss the ! type and dynamically sized types.

Using the Newtype Pattern for Type Safety and Abstraction

The newtype pattern that we started discussing at the end of the “Ad-
vanced Traits” section, where we create a new type as a tuple struct



543

with one field that wraps a type can also be useful for statically enforc-
ing that values are never confused, and is often used to indicate the
units of a value. We actually had an example of this in Listing 19-26:
the Millimeters and Meters structs both wrap u32 values in a new
type. If we write a function with a parameter of type Millimeters, we
won’t be able to compile a program that accidentally tries to call that
function with a value of type Meters or a plain u32.

Another reason to use the newtype pattern is to abstract away some
implementation details of a type: the wrapper type can expose a differ-
ent public API than the private inner type would if we used it directly
in order to restrict the functionality that is available, for example. New
types can also hide internal generic types. For example, we could pro-
vide a People type that wraps a HashMap<i32, String> that stores
a person’s ID associated with their name. Code using People would
only interact with the public API we provide, such as a method to add
a name string to the People collection, and that code wouldn’t need
to know that we assign an i32 ID to names internally. The newtype
pattern is a lightweight way to achieve encapsulation to hide implemen-
tation details that we discussed in Chapter 17.

Type Aliases Create Type Synonyms

The newtype pattern involves creating a new struct to be a new, sep-
arate type. Rust also provides the ability to declare a type alias with
the type keyword to give an existing type another name. For example,
we can create the alias Kilometers to i32 like so:

type Kilometers = i32;

This means Kilometers is a synonym for i32; unlike the Millimeters
and Meters types we created in Listing 19-26, Kilometers is not a
separate, new type. Values that have the type Kilometers will be
treated exactly the same as values of type i32:

type Kilometers = i32;

let x: i32 = 5;
let y: Kilometers = 5;

println!("x + y = {}", x + y);

Since Kilometers is an alias for i32, they’re the same type. We can
add values of type i32 and Kilometers together, and we can pass



544

Kilometers values to functions that take i32 parameters. We don’t
get the type checking benefits that we get from the newtype pattern
that we discussed in the previous section.

The main use case for type synonyms is to reduce repetition. For
example, we may have a lengthy type like this:

Box<FnOnce() + Send + 'static>

Writing this out in function signatures and as type annotations all over
the place can be tiresome and error-prone. Imagine having a project
full of code like that in Listing 19-31:

let f: Box<FnOnce() + Send + 'static> = Box::new(|| println!(
"hi"));

fn takes_long_type(f: Box<FnOnce() + Send + 'static>) {
// ...

}

fn returns_long_type() -> Box<FnOnce() + Send + 'static>
{

// ...
# Box::new(|| ())
}

Listing 19-31: Using a long type in many places
A type alias makes this code more manageable by reducing the

amount of repetition this project has. Here, we’ve introduced an alias
named Thunk for the verbose type, and we can replace all uses of the
type with the shorter Thunk as shown in Listing 19-32:

type Thunk = Box<FnOnce() + Send + 'static>;

let f: Thunk = Box::new(|| println!("hi"));

fn takes_long_type(f: Thunk) {
// ...

}

fn returns_long_type() -> Thunk {
// ...



545

# Box::new(|| ())
}

Listing 19-32: Introducing a type alias Thunk to reduce repetition
Much easier to read and write! Choosing a good name for a type

alias can help communicate your intent as well (thunk is a word for
code to be evaluated at a later time, so it’s an appropriate name for a
closure that gets stored).

Another common use of type aliases is with the Result<T, E> type.
Consider the std::io module in the standard library. I/O operations
often return a Result<T, E>, since their operations may fail to work.
There’s a std::io::Error struct that represents all of the possible I/O
errors. Many of the functions in std::io will be returning Result<T,
E> where the E is std::io::Error, such as these functions in the Write
trait:
use std::io::Error;
# use std::fmt::Arguments;

pub trait Write {
fn write(&mut self, buf: &[u8]) -> Result<usize, Error>;
fn flush(&mut self) -> Result<(), Error>;

fn write_all(&mut self, buf: &[u8]) -> Result<(), Error>;
fn write_fmt(&mut self, fmt: Arguments) -> Result<(

), Error>;
}

We’re writing Result<..., Error> a lot. As such, std::io has this
type alias declaration:

type Result<T> = Result<T, std::io::Error>;

Because this is in the std::io module, the fully qualified alias that we
can use is std::io::Result<T>; that is, a Result<T, E> with the E
filled in as std::io::Error. The Write trait function signatures end
up looking like this:

pub trait Write {
fn write(&mut self, buf: &[u8]) -> Result<usize>;
fn flush(&mut self) -> Result<()>;

fn write_all(&mut self, buf: &[u8]) -> Result<()>;



546

fn write_fmt(&mut self, fmt: Arguments) -> Result<(
)>;
}

The type alias helps in two ways: this is easier to write and it gives us
a consistent interface across all of std::io. Because it’s an alias, it is
just another Result<T, E>, which means we can use any methods that
work on Result<T, E> with it, and special syntax like ?.

The Never Type, !, that Never Returns

Rust has a special type named !. In type theory lingo, it’s called the
bottom type, but we prefer to call it the never type. The name describes
what it does: it stands in the place of the return type when a function
will never return. For example:

fn bar() -> ! {

This is read as “the function bar returns never,” and functions that
return never are called diverging functions. We can’t create values of
the type !, so bar can never possibly return. What use is a type you
can never create values for? If you think all the way back to Chapter
2, we had some code that looked like this, reproduced here in Listing
19-33:

# let guess = "3";
# loop {
let guess: u32 = match guess.trim().parse() {

Ok(num) => num,
Err(_) => continue,

};
# break;
# }

Listing 19-33: A match with an arm that ends in continue
At the time, we skipped over some details in this code. In Chapter

6, we learned that match arms must return the same type. This doesn’t
work:

let guess = match guess.trim().parse() {
Ok(_) => 5,
Err(_) => "hello",

}



547

What would the type of guess be here? It’d have to be both an integer
and a string, and Rust requires that guess can only have one type. So
what does continue return? Why are we allowed to return a u32
from one arm in Listing 19-33 and have another arm that ends with
continue?

As you may have guessed, continue has a value of !. That is, when
Rust goes to compute the type of guess, it looks at both of the match
arms. The former has a value of u32, and the latter has a value of !.
Since ! can never have a value, Rust is okay with this, and decides that
the type of guess is u32. The formal way of describing this behavior of
! is that the never type unifies with all other types. We’re allowed to
end this match arm with continue because continue doesn’t actually
return a value; it instead moves control back to the top of the loop, so
in the Err case, we never actually assign a value to guess.

Another use of the never type is panic!. Remember the unwrap
function that we call on Option<T> values to produce a value or panic?
Here’s its definition:
impl<T> Option<T> {

pub fn unwrap(self) -> T {
match self {

Some(val) => val,
None => panic!("called `Option::unwrap()` on

a `None` value"),
}

}
}

Here, the same thing happens as in the match in Listing 19-33: we know
that val has the type T, and panic! has the type !, so the result of
the overall match expression is T. This works because panic! doesn’t
produce a value; it ends the program. In the None case, we won’t be
returning a value from unwrap, so this code is valid.

One final expression that has the type ! is a loop:

print!("forever ");

loop {
print!("and ever ");

}

Here, the loop never ends, so the value of the expression is !. This
wouldn’t be true if we included a break, however, as the loop would
terminate when it gets to the break.



548

Dynamically Sized Types & Sized

Because Rust needs to know things like memory layout, there’s a par-
ticular corner of its type system that can be confusing, and that’s the
concept of dynamically sized types. Sometimes referred to as ‘DSTs’ or
‘unsized types’, these types let us talk about types whose size we can
only know at runtime.

Let’s dig into the details of a dynamically sized type that we’ve
been using this whole book: str. That’s right, not &str, but str on
its own. str is a DST; we can’t know how long the string is until
runtime. Since we can’t know that, we can’t create a variable of type
str, nor can we take an argument of type str. Consider this code,
which does not work:

let s1: str = "Hello there!";
let s2: str = "How's it going?";

These two str values would need to have the exact same memory lay-
out, but they have different lengths: s1 needs 12 bytes of storage, and
s2 needs 15. This is why it’s not possible to create a variable holding
a dynamically sized type.

So what to do? Well, you already know the answer in this case:
the types of s1 and s2 are &str rather than str. If you think back to
Chapter 4, we said this about &str:

... it’s a reference to an internal position in the String
and the number of elements that it refers to.

So while a &T is a single value that stores the memory address of where
the T is located, a &str is two values: the address of the str and how
long it is. As such, a &str has a size we can know at compile time:
it’s two times the size of a usize in length. That is, we always know
the size of a &str, no matter how long the string it refers to is. This
is the general way in which dynamically sized types are used in Rust;
they have an extra bit of metadata that stores the size of the dynamic
information. This leads us to the golden rule of dynamically sized types:
we must always put values of dynamically sized types behind a pointer
of some kind.

While we’ve talked a lot about &str, we can combine str with all
kinds of pointers: Box<str>, for example, or Rc<str>. In fact, you’ve
already seen this before, but with a different dynamically sized type:
traits. Every trait is a dynamically sized type we can refer to by using
the name of the trait. In Chapter 17, we mentioned that in order to use



549

traits as trait objects, we have to put them behind a pointer like &Trait
or Box<Trait> (Rc<Trait> would work too). Traits being dynamically
sized is the reason we have to do that!

The Sized Trait To work with DSTs, Rust has a trait that deter-
mines if a type’s size is known at compile time or not, which is Sized.
This trait is automatically implemented for everything the compiler
knows the size of at compile time. In addition, Rust implicitly adds a
bound on Sized to every generic function. That is, a generic function
definition like this:

fn generic<T>(t: T) {

is actually treated as if we had written this:

fn generic<T: Sized>(t: T) {

By default, generic functions will only work on types that have a known
size at compile time. There is, however, special syntax you can use to
relax this restriction:

fn generic<T: ?Sized>(t: &T) {

A trait bound on ?Sized is the opposite of a trait bound on Sized;
that is, we would read this as ”T may or may not be Sized“. This
syntax is only available for Sized, no other traits.

Also note we switched the type of the t parameter from T to &T:
since the type might not be Sized, we need to use it behind some kind
of pointer. In this case, we’ve chosen a reference.

Next let’s talk about functions and closures!

2.5
Advanced Functions & Closures
Finally, let’s discuss some advanced features having to do with func-
tions and closures: function pointers, diverging functions, and returning
closures.

Function pointers

We’ve talked about how to pass closures to functions, but you can pass
regular functions to functions too! Functions have the type fn, with



550

a lower case ‘f’ not to be confused with the Fn closure trait. fn is
called a function pointer. The syntax for specifying that a parameter
is a function pointer is similar to that of closures, as shown in Listing
19-34:

Filename: src/main.rs

fn add_one(x: i32) -> i32 {
x + 1

}

fn do_twice(f: fn(i32) -> i32, arg: i32) -> i32 {
f(arg) + f(arg)

}

fn main() {
let answer = do_twice(add_one, 5);

println!("The answer is: {}", answer);
}

Listing 19-34: Using the fn type to accept a function pointer as an
argument

This prints The answer is: 12. We specify that the parameter f
in do_twice is an fn that takes one parameter of type i32 and returns
an i32. We can then call f in the body of do_twice. In main, we can
pass the function name add_one as the first argument to do_twice.

Unlike closures, fn is a type rather than a trait, so we specify fn
as the parameter type directly rather than declaring a generic type
parameter with one of the Fn traits as a trait bound.

Function pointers implement all three of the closure traits (Fn,
FnMut, and FnOnce), so we can always pass a function pointer as an ar-
gument when calling a function that expects a closure. Prefer to write
functions using a generic type and one of the closure traits, so that your
functions can accept either functions or closures. An example of a case
where you’d only want to accept fn is when interfacing with external
code that doesn’t have closures: C functions can accept functions as
arguments, but C doesn’t have closures.

For example, if we wanted to use the map function to turn a vector
of numbers into a vector of strings, we could use a closure:



551

let list_of_numbers = vec![1, 2, 3];
let list_of_strings: Vec<String> = list_of_numbers

.iter()

.map(|i| i.to_string())

.collect();

Or we could name a function as the argument to map instead of the
closure:
let list_of_numbers = vec![1, 2, 3];
let list_of_strings: Vec<String> = list_of_numbers

.iter()

.map(ToString::to_string)

.collect();

Note that we do have to use the fully qualified syntax that we talked
about in the “Advanced Traits” section because there are multiple func-
tions available named to_string; here, we’re using the to_string
function defined in the ToString trait, which the standard library has
implemented for any type that implements Display.

Some people prefer this style, some people prefer the closure. They
end up with the same code, so use whichever feels more clear to you.

Returning Closures

Because closures are represented by traits, returning closures is a little
tricky; we can’t do it directly. In most cases where we may want to
return a trait, we can instead use the concrete type that implements
the trait of what we’re returning as the return value of the function.
We can’t do that with closures, though. They don’t have a concrete
type that’s returnable; we’re not allowed to use the function pointer fn
as a return type, for example.

This code that tries to return a closure directly won’t compile:

fn returns_closure() -> Fn(i32) -> i32 {
|x| x + 1

}

The compiler error is:

error[E0277]: the trait bound `std::ops::Fn(i32) -> i32
+ 'static:
std::marker::Sized` is not satisfied
--> <anon>:2:25



552

|
2 | fn returns_closure() -> Fn(i32) -> i32 {

| ^^^^^^^^^^^^^^ the trait `std:
:marker::Sized` is
not implemented for `std::ops::Fn(i32) -> i32 + 'static`
|
= note: `std::ops::Fn(i32) -> i32 + 'static` does not

have a constant size
known at compile-time
= note: the return type of a function must have a statically

known size

The Sized trait again! Rust doesn’t know much space it’ll need to
store the closure. We saw a solution to this in the previous section,
though: we can use a trait object:

fn returns_closure() -> Box<Fn(i32) -> i32> {
Box::new(|x| x + 1)

}

For more about trait objects, refer back to Chapter 18.

Summary
Whew! Now we’ve gone over features of Rust that aren’t used very
often, but are available if you need them. We’ve introduced a lot of
complex topics so that when you encounter them in error message sug-
gestions or when reading others’ code, you’ll at least have seen these
concepts and syntax once before.

Now, let’s put everything we’ve learned throughout the book into
practice with one more project!



Chapter 3

Final Project: Building
a Multithreaded Web
Server

It’s been a long journey, but here we are! It’s the end of the book.
Parting is such sweet sorrow. But before we go, let’s build one more
project together, to show off some of the things we learned in these
final chapters, as well as re-cap some of the earlier ones.

Here’s what we’re going to make: a web server that says hello:



554

To do this, we will:

1. Learn a little bit about TCP and HTTP

2. Listen for TCP connections on a socket

3. Parse a tiny number of HTTP requests

4. Create a proper HTTP response

5. Improve the throughput of our server with a thread pool

Before we get started, however, there’s one thing we should mention:
if you were writing this code in production, there are a lot of better
ways to write it. Specifically, there are a number of robust crates on
crates.io that provide much more complete web server and thread pool
implementations than we are going to build.

However, for this chapter, our intention is to learn, not to take the
easy route. Since Rust is a systems programming language, we’re able
to choose what level of abstraction we want to work with. We’re able
to go to a lower level than is possible or practical in other languages if
we so choose. So we’ll be writing a basic HTTP server and thread pool
ourselves in order to learn the general ideas and techniques behind the
crates we might use in the future.



555

3.1
A Single Threaded Web Server
First, let’s get a single threaded web server working. We’re going to
work with the raw bytes of TCP and HTTP requests and responses to
send HTML from our server to a web browser. Let’s start with a quick
overview of the protocols involved.

The Hypertext Transfer Protocol (HTTP) that powers the web is
built on top of the Transmission Control Protocol (TCP). We won’t
get into the details too much, but here’s a short overview: TCP is a
low-level protocol, and HTTP builds a higher-level protocol on top of
TCP. Both protocols are what’s called a request-response protocol, that
is, there is a client that initiates requests, and a server that listens to
requests and provides a response to the client. The contents of those
requests and responses are defined by the protocols themselves.

TCP describes the low-level details of how information gets from
one server to another, but doesn’t specify what that information is;
it’s just a bunch of ones and zeroes. HTTP builds on top of TCP by
defining what the content of the requests and responses should be. As
such, it’s technically possible to use HTTP with other protocols, but
in the vast majority of cases, HTTP sends its data over TCP.

So the first thing we need to build for our web server is to be able
to listen to a TCP connection. The standard library has a std::net
module that lets us do this. Let’s make a new project:

$ cargo new hello --bin
Created binary (application) `hello` project

$ cd hello

And put the code in Listing 20-1 in src/main.rs to start. This code
will listen at the address 127.0.0.1:8080 for incoming TCP streams.
When it gets an incoming stream, it will print Connection established!:

Filename: src/main.rs

use std::net::TcpListener;

fn main() {
let listener = TcpListener::bind("127.0.0.1:8080").

unwrap();

for stream in listener.incoming() {



556

let stream = stream.unwrap();

println!("Connection established!");
}

}

Listing 20-1: Listening for incoming streams and printing a message
when we receive a stream

A TcpListener allows us to listen for TCP connections. We’ve
chosen to listen to the address 127.0.0.1:8080. The part before the
colon is an IP address representing our own computer, and 8080 is the
port. We’ve chosen this port because HTTP is normally accepted on
port 80, but connecting to port 80 requires administrator privileges.
Regular users can listen on ports higher than 1024; 8080 is easy to
remember since it’s the HTTP port 80 repeated.

The bind function is sort of like new in that it returns a new
TcpListener instance, but bind is a more descriptive name that fits
with the domain terminology. In networking, people will often talk
about “binding to a port”, so the function that the standard library
defined to create a new TcpListener is called bind.

The bind function returns a Result<T, E>. Binding may fail, for
example, if we had tried to connect to port 80 without being an ad-
ministrator. Another example of a case when binding would fail is if
we tried to have two programs listening to the same port, which would
happen if we ran two instances of our program. Since we’re writing a
basic server here, we’re not going to worry about handling these kinds
of errors, and unwrap lets us just stop the program if they happen.

The incoming method on TcpListener returns an iterator that
gives us a sequence of streams (more specifically, streams of type TcpStream).
A stream represents an open connection between the client and the
server. A connection is the name for the full request/response process
when a client connects to the server, the server generates a response,
and the server closes the connection. As such, the TcpStream will let
us read from itself to see what the client sent, and we can write our
response to it. So this for loop will process each connection in turn
and produce a series of streams for us to handle.

For now, handling a stream means calling unwrap to terminate our
program if the stream has any errors, then printing a message. Er-
rors can happen because we’re not actually iterating over connections,
we’re iterating over connection attempts. The connection might not
work for a number of reasons, many of them operating-system spe-
cific. For example, many operating systems have a limit to the number



557

of simultaneous open connections; new connection attempts will then
produce an error until some of the open connections are closed.

Let’s try this code out! First invoke cargo run in the terminal,
then load up 127.0.0.1:8080 in a web browser. The browser will
show an error message that will say something similar to “Connection
reset”, since we’re not currently sending any data back. If we look at
our terminal, though, we’ll see a bunch of messages that were printed
when the browser connected to the server!

Running `target/debug/hello`
Connection established!
Connection established!
Connection established!

We got multiple messages printed out for one browser request; these
connections might be the browser making a request for the page and a
request for a favicon.ico icon that appears in the browser tab, or the
browser might be retrying the connection. Our browser is expecting
to speak HTTP, but we aren’t replying with anything, just closing the
connection by moving on to the next loop iteration. When stream goes
out of scope and dropped at the end of the loop, its connection gets
closed as part of the drop implementation for TcpStream. Browsers
sometimes deal with closed connections by retrying, since the problem
might be temporary. The important thing is that we’ve successfully
gotten a handle on a TCP connection!

Remember to stop the program with CTRL-C when you’re done run-
ning a particular version of the code, and restart cargo run after you’ve
made each set of code changes in order to be running the newest code.

Reading the Request

Let’s read in the request from our browser! Since we’re adding more
functionality that has the purpose of handling the connection, let’s start
a new function to have a nice separation of the concerns around setting
up the server and connections versus processing each connection. In
this new handle_connection function, we’ll read data from the stream
and print it out in order to see the data that the browser is sending us.
Change the code to look like Listing 20-2:

Filename: src/main.rs

use std::io::prelude::*;
use std::net::TcpListener;



558

use std::net::TcpStream;

fn main() {
let listener = TcpListener::bind("127.0.0.1:8080").

unwrap();

for stream in listener.incoming() {
let stream = stream.unwrap();

handle_connection(stream);
}

}

fn handle_connection(mut stream: TcpStream) {
let mut buffer = [0; 512];

stream.read(&mut buffer).unwrap();

println!("Request: {}", String::from_utf8_lossy(&buffer[.
.]));
}

Listing 20-2: Reading from the TcpStream and printing out the data
We added std::io::prelude to the beginning in order to bring

traits into scope that let us read from and write to the stream. Instead
of printing a message that we got a connection in the for loop in main,
we’re calling the new handle_connection function and passing the
stream to it.

In handle_connection, we made the stream parameter mutable
with the mut keyword. We’re going to be reading data from the stream,
so it’s going to get modified.

Next, we need to actually read from the stream. We do this in two
steps: first, we declare a buffer on the stack to hold the data that we
read in. We’ve made the buffer 512 bytes in size, which is big enough
to hold the data of a basic request. That’s sufficient for our purposes
in this chapter. If we wanted to handle requests of an arbitrary size,
managing the buffer would need to be more complicated, but we’re
keeping it simple for now. We then pass the buffer to stream.read,
which will read bytes from the TcpStream and put them in the buffer.

Then we convert the bytes in the buffer to a string and print out
that string. The String::from_utf8_lossy function takes a &[u8]
and produces a String. The ‘lossy’ part of the name comes from the



559

behavior when this function sees invalid UTF-8 sequences: it replaces
the invalid sequences with �, U+FFFD REPLACEMENT CHARACTER. You
might see the replacement characters for remaining characters in the
buffer that aren’t filled by request data.

Let’s give this a try! Start up the program and make a request
in a web browser again. Note that we’ll still get an error page in the
browser, but the output of our program in the terminal will now look
similar to this:

$ cargo run
Compiling hello v0.1.0 (file:///projects/hello)
Finished dev [unoptimized + debuginfo] target(s) in

0.42 secs
Running `target/debug/hello`

Request: GET / HTTP/1.1
Host: 127.0.0.1:8080
User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64; rv:52.
0) Gecko/20100101
Firefox/52.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.
9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Connection: keep-alive
Upgrade-Insecure-Requests: 1
������������������������������������

You’ll probably get slightly different output depending on your browser.
You also might see this request repeated again. Now that we’re printing
out the request data, we can see why we’re getting multiple connections
from one browser request by looking at the path after Request: GET.
If the repeated connections are all requesting /, we know the browser
is trying to fetch / repeatedly since it’s not getting a response from us.

Let’s break down this request data to understand what the browser
is asking of us. HTTP is a text-based protocol, and a request takes
this format:

Method Request-URI HTTP-Version CRLF
headers CRLF
message-body

The first line is called the request line, and it holds information about
what the client is requesting. The first part of the request line is a



560

method, like GET or POST, that describes how the client is making this
request.

Then comes the request’s URI, which stands for Uniform Resource
Identifier. URIs are almost, but not quite the same as URLs (Uniform
Resource Locators), which is what we typically call the addresses that
we enter into a web browser. The HTTP spec uses the term URI, and
the difference between URIs and URLs isn’t important for our purposes
of this chapter, so we can just mentally substitute URL for URI here.

Next, we have the HTTP version that the client used, and then the
request line ends in a CRLF sequence. The CRLF sequence can also
be written as \r\n: \r is a carriage return and \n is a line feed. These
terms come from the typewriter days! The CRLF sequence separates
the request line from the rest of the request data.

Taking a look at the request line data we saw printed out by our
code:

GET / HTTP/1.1

GET is the method, / is the Request URI, and HTTP/1.1 is the version.
The remaining lines starting from Host: onward are headers; GET

requests have no body.
Try making a request from a different browser, or asking for a dif-

ferent address like 127.0.0.1:8080/test to see how the request data
changes, if you’d like.

Now that we know what the browser is asking for, let’s send some
data back!

Writing a Response

Let’s send data back to our browser in response to its request. Re-
sponses have this format:

HTTP-Version Status-Code Reason-Phrase CRLF
headers CRLF
message-body

The first line is called a status line and contains the HTTP version
used in the response, a numeric status code that summarizes the result
of the request, and a reason phrase that provides a text description of
the status code. After the CRLF sequence comes any headers, another
CRLF sequence, and the body of the response.

Here’s an example response that uses version 1.1 of HTTP, has a
status code of 200, a reason phrase of OK, no headers, and no body:



561

HTTP/1.1 200 OK\r\n\r\n

This text is a tiny successful HTTP response. Let’s write this to the
stream! Remove the println! that was printing the request data, and
add the code in Listing 20-3 in its place:

Filename: src/main.rs

# use std::io::prelude::*;
# use std::net::TcpStream;
fn handle_connection(mut stream: TcpStream) {

let mut buffer = [0; 512];

stream.read(&mut buffer).unwrap();

let response = "HTTP/1.1 200 OK\r\n\r\n";

stream.write(response.as_bytes()).unwrap();
stream.flush().unwrap();

}

Listing 20-3: Writing a tiny successful HTTP response to the stream
The first new line defines the response variable that holds the data

of the tiny success response we’re sending back. Then, we call as_
bytes on our response because the write method on stream takes a
&[u8] and sends those bytes directly down the connection.

The write operation could fail, so write returns a Result<T, E>;
we’re continuing to use unwrap to make progress on the core ideas in
this chapter rather than error handling. Finally, flush will wait until
all of the bytes are written to the connection; TcpStream contains an
internal buffer to minimize calls into the underlying operating system.

With these changes, let’s run our code and make a request! We’re
no longer printing any data to the terminal, so we won’t see any output
there other than the output from Cargo. When we load 127.0.0.1:
8080 in a web browser, though, we get a blank page instead of an error.
How exciting! You’ve just hand-coded an HTTP request and response.

Returning Real HTML

Let’s return more than a blank page. Create a new file, hello.html, in
the root of your project directory, that is, not in the src directory. You
can put any HTML you want in it; Listing 20-4 shows what the authors
used for theirs:

Filename: hello.html



562

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Hello!</title>

</head>
<body>
<h1>Hello!</h1>
<p>Hi from Rust</p>

</body>
</html>

Listing 20-4: A sample HTML file to return in a response
This is a minimal HTML 5 document with a heading and a little

paragraph. Let’s modify handle_connection as shown in Listing 20-5
to read the HTML file, add it to the response as a body, and send it:

Filename: src/main.rs

# use std::io::prelude::*;
# use std::net::TcpStream;
use std::fs::File;

// ...snip...

fn handle_connection(mut stream: TcpStream) {
let mut buffer = [0; 512];
stream.read(&mut buffer).unwrap();

let mut file = File::open("hello.html").unwrap();

let mut contents = String::new();
file.read_to_string(&mut contents).unwrap();

let response = format!("HTTP/1.1 200 OK\r\n\r\n{}",
contents);

stream.write(response.as_bytes()).unwrap();
stream.flush().unwrap();

}

Listing 20-5: Sending the contents of hello.html as the body of the
response



563

We’ve added a line at the top to bring the standard library’s File
into scope, and the file opening and reading code should look familiar
since we had similar code in Chapter 12 when we read the contents of
a file for our I/O project in Listing 12-4.

Next, we’re using format! to add the file’s contents as the body of
the success response that we write to the stream.

Run it with cargo run, load up 127.0.0.1:8080 in your browser,
and you should see your HTML rendered!

Note that we’re currently ignoring the request data in buffer and
sending back the contents of the HTML file unconditionally. Try re-
questing 127.0.0.1:8080/something-else in your browser and you’ll
get back your HTML for that request too. Sending back the same re-
sponse for all requests is pretty limited and not what most web servers
do; let’s examine the request and only send back the HTML file for a
well-formed request to /.

Validating the Request and Selectively Responding

Right now, our web server will return the HTML in the file no matter
what the client requested. Let’s check that the browser is requesting /,
and instead return an error if the browser requests anything else. Let’s
modify handle_connection as shown in Listing 20-6, which adds part
of the code we’ll need. This part checks the content of the request we
received against what we know a request for / looks like and adds if
and else blocks where we’ll add code to treat requests differently:

Filename: src/main.rs

# use std::io::prelude::*;
# use std::net::TcpStream;
# use std::fs::File;
// ...snip...

fn handle_connection(mut stream: TcpStream) {
let mut buffer = [0; 512];
stream.read(&mut buffer).unwrap();

let get = b"GET / HTTP/1.1\r\n";

if buffer.starts_with(get) {
let mut file = File::open("hello.html").unwrap(

);



564

let mut contents = String::new();
file.read_to_string(&mut contents).unwrap();

let response = format!("HTTP/1.1 200 OK\r\n\r\n{}",
contents);

stream.write(response.as_bytes()).unwrap();
stream.flush().unwrap();

} else {
// some other request

};
}

Listing 20-6: Matching the request against the content we expect for a
request to / and setting up conditionally handling requests to / differ-
ently than other requests

Here, we hardcoded the data corresponding to the request that we’re
looking for in the variable get. Because we’re reading raw bytes into
the buffer, we use a byte string, created with b"", to make get a byte
string too. Then, we check to see if buffer starts with the bytes in
get. If it does, we’ve gotten a well-formed request to /, which is the
success case that we want to handle in the if block. The if block
contains the code we added in Listing 20-5 that returns the contents of
our HTML file.

If buffer does not start with the bytes in get, we’ve gotten some
other request. We’ll respond to all other requests using the code we’re
about to add in the else block.

If you run this code and request 127.0.0.1:8080, you’ll get the
HTML that’s in hello.html. If you make any other request, such as
127.0.0.1:8080/something-else, you’ll get a connection error like
we saw when running the code in Listing 20-1 and Listing 20-2.

Let’s add code to the else block as shown in Listing 20-7 to return
a response with the status code 404, which signals that the content
for the request was not found. We’ll also return HTML for a page to
render in the browser indicating as such to the end user:

Filename: src/main.rs

# use std::io::prelude::*;
# use std::net::TcpStream;
# use std::fs::File;



565

# fn handle_connection(mut stream: TcpStream) {
# if true {
// ...snip...

} else {
let header = "HTTP/1.1 404 NOT FOUND\r\n\r\n";
let mut file = File::open("404.html").unwrap();
let mut contents = String::new();

file.read_to_string(&mut contents).unwrap();

let response = format!("{}{}", header, contents);

stream.write(response.as_bytes()).unwrap();
stream.flush().unwrap();

}
# }

Listing 20-7: Responding with status code 404 and an error page if
anything other than / was requested

Here, our response has a header with status code 404 and the reason
phrase NOT FOUND. We still aren’t returning any headers, and the body
of the response will be the HTML in the file 404.html. Also create a
404.html file next to hello.html for the error page; again feel free to use
any HTML you’d like or use the example HTML in Listing 20-8:

Filename: 404.html
<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8">
<title>Hello!</title>

</head>
<body>
<h1>Oops!</h1>
<p>Sorry, I don't know what you're asking for.</p>

</body>
</html>

Listing 20-8: Sample content for the page to send back with any 404
response

With these changes, try running your server again. Requesting 127.
0.0.1:8080 should return the contents of hello.html, and any other



566

request, like 127.0.0.1:8080/foo, should return the error HTML from
404.html!

There’s a lot of repetition between the code in the if and the else
blocks: they’re both reading files and writing the contents of the files to
the stream. The only differences between the two cases are the status
line and the filename. Let’s pull those differences out into an if and
else of one line each that will assign the values of the status line and the
filename to variables; we can then use those variables unconditionally
in the code to read the file and write the response. The resulting code
after this refactoring is shown in Listing 20-9:

Filename: src/main.rs

# use std::io::prelude::*;
# use std::net::TcpStream;
# use std::fs::File;
// ...snip...

fn handle_connection(mut stream: TcpStream) {
# let mut buffer = [0; 512];
# stream.read(&mut buffer).unwrap();
#
# let get = b"GET / HTTP/1.1\r\n";

// ...snip...

let (status_line, filename) = if buffer.starts_with(
get) {

("HTTP/1.1 200 OK\r\n\r\n", "hello.html")
} else {

("HTTP/1.1 404 NOT FOUND\r\n\r\n", "404.html")
};

let mut file = File::open(filename).unwrap();
let mut contents = String::new();

file.read_to_string(&mut contents).unwrap();

let response = format!("{}{}", status_line, contents)
;

stream.write(response.as_bytes()).unwrap();
stream.flush().unwrap();



567

}

Listing 20-9: Refactoring so that the if and else blocks only contain
the code that differs between the two cases

Here, the only thing the if and else blocks do is return the appro-
priate values for the status line and filename in a tuple; we then use
destructuring to assign these two bits to filename and header using a
pattern in the let statement like we discussed in Chapter 18.

The duplicated code to read the file and write the response is
now outside the if and else blocks, and uses the status_line and
filename variables. This makes it easier to see exactly what’s different
between the two cases, and makes it so that we only have one place to
update the code if we want to change how the file reading and response
writing works. The behavior of the code in Listing 20-9 will be exactly
the same as that in Listing 20-8.

Awesome! We have a simple little web server in about 40 lines of
Rust code that responds to one request with a page of content and
responds to all other requests with a 404 response.

Since this server runs in a single thread, though, it can only serve one
request at a time. Let’s see how that can be a problem by simulating
some slow requests.

3.2
How Slow Requests Affect Throughput
Right now, the server will process each request in turn. That works
for services like ours that aren’t expected to get very many requests,
but as applications get more complex, this sort of serial execution isn’t
optimal.

Because our current program processes connections sequentially, it
won’t process a second connection until it’s completed processing the
first. If we get one request that takes a long time to process, requests
coming in during that time will have to wait until the long request is
finished, even if the new requests can be processed quickly. Let’s see
this in action.

Simulating a Slow Request in the Current Server Implemen-
tation

Let’s see the effect of a request that takes a long time to process on
requests made to our current server implementation. Listing 20-10



568

shows the code to respond to another request, /sleep, that will cause
the server to sleep for five seconds before responding. This will simulate
a slow request so that we can see that our server processes requests
serially.

Filename: src/main.rs

use std::thread;
use std::time::Duration;
# use std::io::prelude::*;
# use std::net::TcpStream;
# use std::fs::File;
// ...snip...

fn handle_connection(mut stream: TcpStream) {
# let mut buffer = [0; 512];
# stream.read(&mut buffer).unwrap();

// ...snip...

let get = b"GET / HTTP/1.1\r\n";
let sleep = b"GET /sleep HTTP/1.1\r\n";

let (status_line, filename) = if buffer.starts_with(
get) {

("HTTP/1.1 200 OK\r\n\r\n", "hello.html")
} else if buffer.starts_with(sleep) {

thread::sleep(Duration::from_secs(5));
("HTTP/1.1 200 OK\r\n\r\n", "hello.html")

} else {
("HTTP/1.1 404 NOT FOUND\r\n\r\n", "404.html")

};

// ...snip...
}

Listing 20-10: Simulating a slow request by recognizing /sleep and
sleeping for 5 seconds

This code is a bit messy, but it’s good enough for our simulation
purposes! We created a second request sleep, whose data we’ll recog-
nize. We added an else if after the if block to check for the request
to /sleep, and when we see that request, we’ll sleep for five seconds
before rendering the hello page.

You can really see how primitive our server is here; real libraries



569

would handle the recognition of multiple requests in a less verbose way!
Start the server with cargo run, and then open up two browser win-

dows: one for http://localhost:8080/ and one for http://localhost:
8080/sleep. If you hit / a few times, as before, you’ll see it respond
quickly. But if you hit /sleep, and then load up /, you’ll see that /
waits until sleep has slept for its full five seconds before going on.

There are multiple ways we could change how our web server works
in order to avoid having all requests back up behind a slow request; the
one we’re going to implement is a thread pool.

Improving Throughput with a Thread Pool

A thread pool is a group of spawned threads that are ready to handle
some task. When the program receives a new task, one of the threads
in the pool will be assigned the task and will go off and process it. The
remaining threads in the pool are available to handle any other tasks
that come in while the first thread is processing. When the first thread
is done processing its task, it gets returned to the pool of idle threads
ready to handle a new task.

A thread pool will allow us to process connections concurrently: we
can start processing a new connection before an older connection is
finished. This increases the throughput of our server.

Here’s what we’re going to implement: instead of waiting for each
request to process before starting on the next one, we’ll send the pro-
cessing of each connection to a different thread. The threads will come
from a pool of four threads that we’ll spawn when we start our program.
The reason we’re limiting the number of threads to a small number is
that if we created a new thread for each request as the requests come in,
someone making ten million requests to our server could create havoc
by using up all of our server’s resources and grinding the processing of
all requests to a halt.

Rather than spawning unlimited threads, we’ll have a fixed number
of threads waiting in the pool. As requests come in, we’ll send the
requests to the pool for processing. The pool will maintain a queue of
incoming requests. Each of the threads in the pool will pop a request off
of this queue, handle the request, and then ask the queue for another
request. With this design, we can process N requests concurrently,
where N is the number of threads. This still means that N long-running
requests can cause requests to back up in the queue, but we’ve increased
the number of long-running requests we can handle before that point
from one to N.



570

This design is one of many ways to improve the throughput of our
web server. This isn’t a book about web servers, though, so it’s the
one we’re going to cover. Other options are the fork/join model and
the single threaded async I/O model. If you’re interested in this topic,
you may want to read more about other solutions and try to implement
them in Rust; with a low-level language like Rust, all of these options
are possible.

3.3
Designing the Thread Pool Interface
Let’s talk about what using the pool should look like. The authors
often find that when trying to design some code, writing the client
interface first can really help guide your design. Write the API of the
code to be structured in the way you’d want to call it, then implement
the functionality within that structure rather than implementing the
functionality then designing the public API.

Similar to how we used Test Driven Development in the project
in Chapter 12, we’re going to use Compiler Driven Development here.
We’re going to write the code that calls the functions we wish we had,
then we’ll lean on the compiler to tell us what we should change next.
The compiler error messages will guide our implementation.

Code Structure if We Could Use thread::spawn

First, let’s explore what the code to create a new thread for every
connection could look like. This isn’t our final plan due to the prob-
lems with potentially spawning an unlimited number of threads that we
talked about earlier, but it’s a start. Listing 20-11 shows the changes
to main to spawn a new thread to handle each stream within the for
loop:

Filename: src/main.rs

# use std::thread;
# use std::io::prelude::*;
# use std::net::TcpListener;
# use std::net::TcpStream;
#
fn main() {

let listener = TcpListener::bind("127.0.0.1:8080").



571

unwrap();

for stream in listener.incoming() {
let stream = stream.unwrap();

thread::spawn(|| {
handle_connection(stream);

});
}

}
# fn handle_connection(mut stream: TcpStream) {}

Listing 20-11: Spawning a new thread for each stream
As we learned in Chapter 16, thread::spawn will create a new

thread and then run the code in the closure in it. If you run this
code and load /sleep and then / in two browser tabs, you’ll indeed
see the request to / doesn’t have to wait for /sleep to finish. But as
we mentioned, this will eventually overwhelm the system since we’re
making new threads without any limit.

Creating a Similar Interface for ThreadPool

We want our thread pool to work in a similar, familiar way so that
switching from threads to a thread pool doesn’t require large changes
to the code we want to run in the pool. Listing 20-12 shows the hy-
pothetical interface for a ThreadPool struct we’d like to use instead of
thread::spawn:

Filename: src/main.rs

# use std::thread;
# use std::io::prelude::*;
# use std::net::TcpListener;
# use std::net::TcpStream;
# struct ThreadPool;
# impl ThreadPool {
# fn new(size: u32) -> ThreadPool { ThreadPool }
# fn execute<F>(&self, f: F)
# where F: FnOnce() + Send + 'static {}
# }
#
fn main() {



572

let listener = TcpListener::bind("127.0.0.1:8080").
unwrap();

let pool = ThreadPool::new(4);

for stream in listener.incoming() {
let stream = stream.unwrap();

pool.execute(|| {
handle_connection(stream);

});
}

}
# fn handle_connection(mut stream: TcpStream) {}

Listing 20-12: How we want to be able to use the ThreadPool we’re
going to implement

We use ThreadPool::new to create a new thread pool with a con-
figurable number of threads, in this case four. Then, in the for loop,
pool.execute will work in a similar way to thread::spawn.

Compiler Driven Development to Get the API Compiling

Go ahead and make the changes in Listing 20-12 to src/main.rs, and
let’s use the compiler errors to drive our development. Here’s the first
error we get:

$ cargo check
Compiling hello v0.1.0 (file:///projects/hello)

error[E0433]: failed to resolve. Use of undeclared type
or module `ThreadPool`

--> src\main.rs:10:16
|

10 | let pool = ThreadPool::new(4);
| ^^^^^^^^^^^^^^^ Use of undeclared type

or module
`ThreadPool`

error: aborting due to previous error

Great, we need a ThreadPool. Let’s switch the hello crate from a
binary crate to a library crate to hold our ThreadPool implementa-
tion, since the thread pool implementation will be independent of the



573

particular kind of work that we’re doing in our web server. Once we’ve
got the thread pool library written, we could use that functionality to
do whatever work we want to do, not just serve web requests.

So create src/lib.rs that contains the simplest definition of a ThreadPool
struct that we can have for now:

Filename: src/lib.rs

pub struct ThreadPool;

Then create a new directory, src/bin, and move the binary crate rooted
in src/main.rs into src/bin/main.rs. This will make the library crate
be the primary crate in the hello directory; we can still run the binary
in src/bin/main.rs using cargo run though. After moving the main.rs
file, edit it to bring the library crate in and bring ThreadPool into
scope by adding this at the top of src/bin/main.rs:

Filename: src/bin/main.rs

extern crate hello;
use hello::ThreadPool;

And try again in order to get the next error that we need to address:

$ cargo check
Compiling hello v0.1.0 (file:///projects/hello)

error: no associated item named `new` found for type `hello:
:ThreadPool` in the
current scope

--> src\main.rs:13:16
|

13 | let pool = ThreadPool::new(4);
| ^^^^^^^^^^^^^^^
|

Cool, the next thing is to create an associated function named new for
ThreadPool. We also know that new needs to have one parameter that
can accept 4 as an argument, and new should return a ThreadPool
instance. Let’s implement the simplest new function that will have
those characteristics:

Filename: src/lib.rs

pub struct ThreadPool;

impl ThreadPool {



574

pub fn new(size: u32) -> ThreadPool {
ThreadPool

}
}

We picked u32 as the type of the size parameter, since we know that
a negative number of threads makes no sense. u32 is a solid default.
Once we actually implement new for real, we’ll reconsider whether this
is the right choice for what the implementation needs, but for now,
we’re just working through compiler errors.

Let’s check the code again:

$ cargo check
Compiling hello v0.1.0 (file:///projects/hello)

warning: unused variable: `size`, #[warn(unused_variables)
] on by default
--> src/lib.rs:4:16
|

4 | pub fn new(size: u32) -> ThreadPool {
| ^^^^

error: no method named `execute` found for type `hello:
:ThreadPool` in the
current scope
--> src/main.rs:18:14
|

18 | pool.execute(|| {
| ^^^^^^^

Okay, a warning and an error. Ignoring the warning for a moment,
the error is because we don’t have an execute method on ThreadPool.
Let’s define one, and we need it to take a closure. If you remember
from Chapter 13, we can take closures as arguments with three differ-
ent traits: Fn, FnMut, and FnOnce. What kind of closure should we
use? Well, we know we’re going to end up doing something similar
to thread::spawn; what bounds does the signature of thread::spawn
have on its argument? Let’s look at the documentation, which says:

pub fn spawn<F, T>(f: F) -> JoinHandle<T>
where

F: FnOnce() -> T + Send + 'static,
T: Send + 'static



575

F is the parameter we care about here; T is related to the return value
and we’re not concerned with that. Given that spawn uses FnOnce as
the trait bound on F, it’s probably what we want as well, since we’ll
eventually be passing the argument we get in execute to spawn. We
can be further confident that FnOnce is the trait that we want to use
since the thread for running a request is only going to execute that
request’s closure one time.

F also has the trait bound Send and the lifetime bound ’static,
which also make sense for our situation: we need Send to transfer the
closure from one thread to another, and ’static because we don’t know
how long the thread will execute. Let’s create an execute method on
ThreadPool that will take a generic parameter F with these bounds:

Filename: src/lib.rs

# pub struct ThreadPool;
impl ThreadPool {

// ...snip...

pub fn execute<F>(&self, f: F)
where

F: FnOnce() + Send + 'static
{

}
}

The FnOnce trait still needs the () after it since this FnOnce is repre-
senting a closure that takes no parameters and doesn’t return a value.
Just like function definitions, the return type can be omitted from the
signature, but even if we have no parameters, we still need the paren-
theses.

Again, since we’re working on getting the interface compiling, we’re
adding the simplest implementation of the execute method, which does
nothing. Let’s check again:

$ cargo check
Compiling hello v0.1.0 (file:///projects/hello)

warning: unused variable: `size`, #[warn(unused_variables)
] on by default
--> src/lib.rs:4:16
|

4 | pub fn new(size: u32) -> ThreadPool {



576

| ^^^^

warning: unused variable: `f`, #[warn(unused_variables)
] on by default
--> src/lib.rs:8:30
|

8 | pub fn execute<F>(&self, f: F)
| ^

Only warnings now! It compiles! Note that if you try cargo run and
making a request in the browser, though, you’ll see the errors in the
browser again that we saw in the beginning of the chapter. Our library
isn’t actually calling the closure passed to execute yet!

A saying you might hear about languages with strict
compilers like Haskell and Rust is “if the code compiles, it
works.” This is a good time to remember that this is just a
phrase and a feeling people sometimes have, it’s not actually
universally true. Our project compiles, but it does absolutely
nothing! If we were building a real, complete project, this
would be a great time to start writing unit tests to check that
the code compiles and has the behavior we want.

3.4
Creating the Thread Pool and Storing Threads
The warnings are because we aren’t doing anything with the parameters
to new and execute. Let’s implement the bodies of both of these with
the actual behavior we want.

Validating the Number of Threads in the Pool

To start, let’s think about new. We mentioned before that we picked
an unsigned type for the size parameter since a pool with a negative
number of threads makes no sense. However, a pool with zero threads
also makes no sense, yet zero is a perfectly valid u32. Let’s check that
size is greater than zero before we return a ThreadPool instance and
panic if we get zero by using the assert! macro as shown in Listing
20-13:

Filename: src/lib.rs



577

# pub struct ThreadPool;
impl ThreadPool {

/// Create a new ThreadPool.
///
/// The size is the number of threads in the pool.
///
/// # Panics
///
/// The `new` function will panic if the size is zero.

pub fn new(size: u32) -> ThreadPool {
assert!(size > 0);

ThreadPool
}

// ...snip...
}

Listing 20-13: Implementing ThreadPool::new to panic if size is zero
We’ve taken this opportunity to add some documentation for our

ThreadPool with doc comments. Note that we followed good docu-
mentation practices and added a section that calls out the situations
in which our function can panic as we discussed in Chapter 14. Try
running cargo doc --open and clicking on the ThreadPool struct to
see what the generate docs for new look like!

Instead of adding the use of the assert! macro as we’ve done here,
we could make new return a Result instead like we did with Config:
:new in the I/O project in Listing 12-9, but we’ve decided in this case
that trying to create a thread pool without any threads should be an
unrecoverable error. If you’re feeling ambitious, try to write a version
of new with this signature to see how you feel about both versions:

fn new(size: u32) -> Result<ThreadPool, PoolCreationError>
{

Storing Threads in the Pool

Now that we know we have a valid number of threads to store in the
pool, we can actually create that many threads and store them in the
ThreadPool struct before returning it.



578

This raises a question: how do we “store” a thread? Let’s take
another look at the signature of thread::spawn:

pub fn spawn<F, T>(f: F) -> JoinHandle<T>
where

F: FnOnce() -> T + Send + 'static,
T: Send + 'static

spawn returns a JoinHandle<T>, where T is the type that’s returned
from the closure. Let’s try using JoinHandle too and see what happens.
In our case, the closures we’re passing to the thread pool will handle
the connection and not return anything, so T will be the unit type ().

This won’t compile yet, but let’s consider the code shown in Listing
20-14. We’ve changed the definition of ThreadPool to hold a vector
of thread::JoinHandle<()> instances, initialized the vector with a
capacity of size, set up a for loop that will run some code to create
the threads, and returned a ThreadPool instance containing them:

Filename: src/lib.rs

use std::thread;

pub struct ThreadPool {
threads: Vec<thread::JoinHandle<()>>,

}

impl ThreadPool {
// ...snip...
pub fn new(size: u32) -> ThreadPool {

assert!(size > 0);

let mut threads = Vec::with_capacity(size);

for _ in 0..size {
// create some threads and store them in the

vector
}

ThreadPool {
threads

}
}



579

// ...snip...
}

Listing 20-14: Creating a vector for ThreadPool to hold the threads
We’ve brought std::thread into scope in the library crate, since

we’re using thread::JoinHandle as the type of the items in the vector
in ThreadPool.

After we have a valid size, we’re creating a new vector that can
hold size items. We haven’t used with_capacity in this book yet; it
does the same thing as Vec::new, but with an important difference: it
pre-allocates space in the vector. Since we know that we need to store
size elements in the vector, doing this allocation up-front is slightly
more efficient than only writing Vec::new, since Vec::new resizes itself
as elements get inserted. Since we’ve created a vector the exact size
that we need up front, no resizing of the underlying vector will happen
while we populate the items.

That is, if this code works, which it doesn’t quite yet! If we check
this code, we get an error:

$ cargo check
Compiling hello v0.1.0 (file:///projects/hello)

error[E0308]: mismatched types
--> src\main.rs:70:46
|

70 | let mut threads = Vec::with_capacity(size)
;

| ^^^^
expected usize, found u32

error: aborting due to previous error

size is a u32, but Vec::with_capacity needs a usize. We have two
options here: we can change our function’s signature, or we can cast
the u32 as a usize. If you remember when we defined new, we didn’t
think too hard about what number type made sense, we just chose one.
Let’s give it some more thought now. Given that size is the length of
a vector, usize makes a lot of sense. They even almost share a name!
Let’s change the signature of new, which will get the code in Listing
20-14 to compile:

fn new(size: usize) -> ThreadPool {

If run cargo check again, you’ll get a few more warnings, but it should
succeed.



580

We left a comment in the for loop in Listing 20-14 regarding the
creation of threads. How do we actually create threads? This is a
tough question. What should go in these threads? We don’t know
what work they need to do at this point, since the execute method
takes the closure and gives it to the pool.

Let’s refactor slightly: instead of storing a vector of JoinHandle<(
)> instances, let’s create a new struct to represent the concept of a
worker. A worker will be what receives a closure in the execute
method, and it will take care of actually calling the closure. In ad-
dition to letting us store a fixed size number of Worker instances that
don’t yet know about the closures they’re going to be executing, we
can also give each worker an id so we can tell the different workers in
the pool apart when logging or debugging.

Let’s make these changes:

1. Define a Worker struct that holds an id and a JoinHandle<()>

2. Change ThreadPool to hold a vector of Worker instances

3. Define a Worker::new function that takes an id number and re-
turns a Worker instance with that id and a thread spawned with
an empty closure, which we’ll fix soon

4. In ThreadPool::new, use the for loop counter to generate an id,
create a new Worker with that id, and store the worker in the
vector

If you’re up for a challenge, try implementing these changes on your
own before taking a look at the code in Listing 20-15.

Ready? Here’s Listing 20-15 with one way to make these modifica-
tions:

Filename: src/lib.rs

use std::thread;

pub struct ThreadPool {
workers: Vec<Worker>,

}

impl ThreadPool {
// ...snip...
pub fn new(size: usize) -> ThreadPool {

assert!(size > 0);



581

let mut workers = Vec::with_capacity(size);

for id in 0..size {
workers.push(Worker::new(id));

}

ThreadPool {
workers

}
}
// ...snip...

}

struct Worker {
id: usize,
thread: thread::JoinHandle<()>,

}

impl Worker {
fn new(id: usize) -> Worker {

let thread = thread::spawn(|| {});

Worker {
id,
thread,

}
}

}

Listing 20-15: Modifying ThreadPool to hold Worker instances instead
of threads directly

We’ve chosen to change the name of the field on ThreadPool from
threads to workers since we’ve changed what we’re holding, which is
now Worker instances instead of JoinHandle<()> instances. We use
the counter in the for loop as an argument to Worker::new, and we
store each new Worker in the vector named workers.

The Worker struct and its new function are private since exter-
nal code (like our server in src/bin/main.rs) doesn’t need to know
the implementation detail that we’re using a Worker struct within
ThreadPool. The Worker::new function uses the given id and stores
a JoinHandle<()> created by spawning a new thread using an empty



582

closure.
This code compiles and is storing the number of Worker instances

that we specified as an argument to ThreadPool::new, but we’re still
not processing the closure that we get in execute. Let’s talk about
how to do that next.

3.5
Sending Requests to Threads Via Channels
The next problem to tackle is that our closures do absolutely nothing.
We’ve been working around the problem that we get the actual closure
we want to execute in the execute method, but it feels like we need to
know the actual closures when we create the ThreadPool.

Let’s think about what we really want to do though: we want the
Worker structs that we just created to fetch jobs from a queue that the
ThreadPool holds, and run those jobs in a thread.

In Chapter 16, we learned about channels. Channels are a great
way to communicate between two threads, and they’re perfect for this
use-case. The channel will function as the queue of jobs, and execute
will send a job from the ThreadPool to the Worker instances that are
checking for jobs in the thread they’ve spawned. Here’s the plan:

1. ThreadPool will create a channel and hold on to the sending side.

2. Each Worker will hold on to the receiving side of the channel.

3. A new Job struct will hold the closures we want to send down
the channel.

4. The execute method of ThreadPool will send the job it wants
to execute down the sending side of the channel.

5. In a thread, the Worker will loop over its receiving side of the
channel and execute the closures of any jobs it receives.

Let’s start by creating a channel in ThreadPool::new and holding the
sending side in the ThreadPool instance, as shown in Listing 20-16.
Job is the type of item we’re going to be sending down the channel; it’s
a struct that doesn’t hold anything for now:

Filename: src/lib.rs



583

# use std::thread;
// ...snip...
use std::sync::mpsc;

pub struct ThreadPool {
workers: Vec<Worker>,
sender: mpsc::Sender<Job>,

}

struct Job;

impl ThreadPool {
// ...snip...
pub fn new(size: usize) -> ThreadPool {

assert!(size > 0);

let (sender, receiver) = mpsc::channel();

let mut workers = Vec::with_capacity(size);

for id in 0..size {
workers.push(Worker::new(id));

}

ThreadPool {
workers,
sender,

}
}
// ...snip...

}
#
# struct Worker {
# id: usize,
# thread: thread::JoinHandle<()>,
# }
#
# impl Worker {
# fn new(id: usize) -> Worker {
# let thread = thread::spawn(|| {});



584

#
# Worker {
# id,
# thread,
# }
# }
# }

Listing 20-16: Modifying ThreadPool to store the sending end of a
channel that sends Job instances

In ThreadPool::new, we create our new channel, and then have the
pool hang on to the sending end. This will successfully compile, still
with warnings.

Let’s try passing a receiving end of the channel into each worker
when the thread pool creates them. We know we want to use the
receiving end of the channel in the thread that the workers spawn, so
we’re going to reference the receiver parameter in the closure. The
code shown here in Listing 20-17 won’t quite compile yet:

Filename: src/lib.rs

impl ThreadPool {
// ...snip...
pub fn new(size: usize) -> ThreadPool {

assert!(size > 0);

let (sender, receiver) = mpsc::channel();

let mut workers = Vec::with_capacity(size);

for id in 0..size {
workers.push(Worker::new(id, receiver));

}

ThreadPool {
workers,
sender,

}
}
// ...snip...

}



585

// ...snip...

impl Worker {
fn new(id: usize, receiver: mpsc::Receiver<Job>) ->

Worker {
let thread = thread::spawn(|| {

receiver;
});

Worker {
id,
thread,

}
}

}

Listing 20-17: Passing the receiving end of the channel to the workers
These are small and straightforward changes: we pass in the receiv-

ing end of the channel into Worker::new, and then we use it inside of
the closure.

If we try to check this, we get this error:

$ cargo check
Compiling hello v0.1.0 (file:///projects/hello)

error[E0382]: use of moved value: `receiver`
--> src/lib.rs:27:42
|

27 | workers.push(Worker::new(id, receiver)
);

| ^^^^^^^^
value moved here in

previous iteration of loop
|
= note: move occurs because `receiver` has type
`std::sync::mpsc::Receiver<Job>`, which does not implement

the `Copy` trait

The code as written won’t quite work since it’s trying to pass receiver
to multiple Worker instances. Recall from Chapter 16 that the channel
implementation provided by Rust is multiple producer, single consumer,
so we can’t just clone the consuming end of the channel to fix this.
We also don’t want to clone the consuming end even if we wanted to;



586

sharing the single receiver between all of the workers is the mechanism
by which we’d like to distribute the jobs across the threads.

Additionally, taking a job off the channel queue involves mutating
receiver, so the threads need a safe way to share receiver and be
allowed to modify it. If the modifications weren’t threadsafe, we might
get race conditions such as two threads executing the same job if they
both take the same job off the queue at the same time.

So remembering the threadsafe smart pointers that we discussed in
Chapter 16, in order to share ownership across multiple threads and
allow the threads to mutate the value, we need to use Arc<Mutex<T>>.
Arc will let multiple workers own the receiver, and Mutex will make
sure that only one worker is getting a job from the receiver at a time.
Listing 20-18 shows the changes we need to make:

Filename: src/lib.rs

# use std::thread;
# use std::sync::mpsc;
use std::sync::Arc;
use std::sync::Mutex;

// ...snip...

# pub struct ThreadPool {
# workers: Vec<Worker>,
# sender: mpsc::Sender<Job>,
# }
# struct Job;
#
impl ThreadPool {

// ...snip...
pub fn new(size: usize) -> ThreadPool {

assert!(size > 0);

let (sender, receiver) = mpsc::channel();

let receiver = Arc::new(Mutex::new(receiver));

let mut workers = Vec::with_capacity(size);

for id in 0..size {
workers.push(Worker::new(id, receiver.clone(



587

)));
}

ThreadPool {
workers,
sender,

}
}

// ...snip...
}
# struct Worker {
# id: usize,
# thread: thread::JoinHandle<()>,
# }
#
impl Worker {

fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>)
-> Worker {

// ...snip...
# let thread = thread::spawn(|| {
# receiver;
# });
#
# Worker {
# id,
# thread,
# }

}
}

Listing 20-18: Sharing the receiving end of the channel between the
workers by using Arc and Mutex

In ThreadPool::new, we put the receiving end of the channel in
an Arc and a Mutex. For each new worker, we clone the Arc to bump
the reference count so the workers can share ownership of the receiving
end.

With these changes, the code compiles! We’re getting there!
Let’s finally implement the execute method on ThreadPool. We’re

also going to change the Job struct: instead of being a struct, Job is
going to be a type alias for a trait object that holds the type of closure
that execute receives. We discussed how type aliases can help make



588

long types shorter, and this is such a case! Take a look at Listing 20-19:
Filename: src/lib.rs

// ...snip...
# pub struct ThreadPool {
# workers: Vec<Worker>,
# sender: mpsc::Sender<Job>,
# }
# use std::sync::mpsc;
# struct Worker {}

type Job = Box<FnOnce() + Send + 'static>;

impl ThreadPool {
// ...snip...

pub fn execute<F>(&self, f: F)
where

F: FnOnce() + Send + 'static
{

let job = Box::new(f);

self.sender.send(job).unwrap();
}

}

// ...snip...

Listing 20-19: Creating a Job type alias for a Box that holds each
closure, then sending the job down the channel

After creating a new Job instance using the closure we get in execute,
we send that job down the sending end of the channel. We’re call-
ing unwrap on send since sending may fail if the receiving end has
stopped receiving new messages, which would happen if we stop all
of our threads from executing. This isn’t possible right now, though,
since our threads continue executing as long as the pool exists. We use
unwrap since we know the failure case won’t happen even though the
compiler can’t tell that, which is an appropriate use of unwrap as we
discussed in Chapter 9.

Are we done yet? Not quite! In the worker, we’ve still got a closure
being passed to thread::spawn that only references the receiving end
of the channel. Instead, we need the closure to loop forever, asking the



589

receiving end of the channel for a job, and running the job when it gets
one. Let’s make the change shown in Listing 20-20 to Worker::new:

Filename: src/lib.rs

// ...snip...

impl Worker {
fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>)

-> Worker {
let thread = thread::spawn(move || {

loop {
let job = receiver.lock().unwrap().recv(

).unwrap();

println!("Worker {} got a job; executing.
", id);

(*job)();
}

});

Worker {
id,
thread,

}
}

}

Listing 20-20: Receiving and executing the jobs in the worker’s thread
Here, we first call lock on the receiver to acquire the mutex, then

unwrap to panic on any errors. Acquiring a lock might fail if the mutex
is in a state called poisoned, which can happen if some other thread
panicked while holding the lock rather than releasing it. If this thread
can’t get the lock for that reason, calling unwrap to have this thread
panic is the correct action to take as well. Feel free to change this
unwrap to an expect with an error message that is meaningful to you
if you’d like.

If we get the lock on the mutex, then we call recv to receive a Job
from the channel. A final unwrap moves past those errors as well. recv
will return Err if the thread holding the sending side of the channel has
shut down, similar to how the send method returns Err if the receiving
side shuts down.



590

The call to recv blocks; that is, if there’s no job yet, this thread
will sit here until a job becomes available. The Mutex<T> makes sure
that only one Worker thread at a time is trying to request a job.

Theoretically, this code should compile. Unfortunately, the Rust
compiler isn’t perfect yet, and we get this error:

error[E0161]: cannot move a value of type std::ops::FnOnce(
) +
std::marker::Send: the size of std::ops::FnOnce() + std:
:marker::Send cannot be
statically determined

--> src/lib.rs:63:17
|

63 | (*job)();
| ^^^^^^

This error is fairly cryptic, and that’s because the problem is fairly
cryptic. In order to call a FnOnce closure that is stored in a Box<T>
(which is what our Job type alias is), the closure needs to be able to
move itself out of the Box<T> since when we call the closure, it takes
ownership of self. In general, moving a value out of a Box<T> isn’t
allowed since Rust doesn’t know how big the value inside the Box<T>
is going to be; recall in Chapter 15 that we used Box<T> precisely
because we had something of an unknown size that we wanted to store
in a Box<T> to get a value of a known size.

We saw in Chapter 17, Listing 17-15 that we can write methods that
use the syntax self: Box<Self> so that the method takes ownership
of a Self value that is stored in a Box<T>. That’s what we want to do
here, but unfortunately the part of Rust that implements what happens
when we call a closure isn’t implemented using self: Box<Self>. So
Rust doesn’t yet understand that it could use self: Box<Self> in
this situation in order to take ownership of the closure and move the
closure out of the Box<T>.

In the future, the code in Listing 20-20 should work just fine. Rust is
still a work in progress with places that the compiler could be improved.
There are people just like you working to fix this and other issues! Once
you’ve finished the book, we would love for you to join in.

But for now, let’s work around this problem. Luckily, there’s a
trick that involves telling Rust explicitly that we’re in a case where
we can take ownership of the value inside the Box<T> using self:
Box<Self>, and once we have ownership of the closure, we can call it.
This involves defining a new trait that has a method call_box that



591

uses self: Box<Self> in its signature, defining that trait for any type
that implements FnOnce(), changing our type alias to use the new trait,
and changing Worker to use the call_box method. These changes are
shown in Listing 20-21:

Filename: src/lib.rs

trait FnBox {
fn call_box(self: Box<Self>);

}

impl<F: FnOnce()> FnBox for F {
fn call_box(self: Box<F>) {

(*self)()
}

}

type Job = Box<FnBox + Send + 'static>;

// ...snip...

impl Worker {
fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>)

-> Worker {
let thread = thread::spawn(move || {

loop {
let job = receiver.lock().unwrap().recv(

).unwrap();

println!("Worker {} got a job; executing.
", id);

job.call_box();
}

});

Worker {
id,
thread,

}
}

}



592

Listing 20-21: Adding a new trait FnBox to work around the current
limitations of Box<FnOnce()>

First, we create a new trait named FnBox. This trait has one
method, call_box, similar to the call methods on the other Fn* traits,
except this method takes self: Box<Self> in order to take ownership
of self and move the value out of the Box<T>.

Next, we implement the FnBox trait for any type F that implements
the FnOnce() trait. Effectively, this means that any FnOnce() closures
can use our call_box method. The implementation of call_box uses
(*self)() to move the closure out of the Box<T> and call the closure.

Instead of FnOnce(), we now want our Job type alias to be a Box
of anything that implements our new trait FnBox. This will allow us
to use call_box in Worker when we get a Job value. Because we
implemented the FnBox trait for any FnOnce() closure, we don’t have
to change anything about the actual values we’re sending down the
channel.

Finally, in the closure run in the thread in Worker::new, we use
call_box instead of invoking the closure directly. Now Rust is able to
understand that what we want to do is fine.

This is a very sneaky, complicated trick. Don’t worry too much if it
doesn’t make perfect sense; someday, it will be completely unnecessary.

With this trick, our thread pool is in a working state! Give it a
cargo run, and make some requests:

$ cargo run
Compiling hello v0.1.0 (file:///projects/hello)

warning: field is never used: `workers`
--> src/lib.rs:7:5
|

7 | workers: Vec<Worker>,
| ^^^^^^^^^^^^^^^^^^^^
|
= note: #[warn(dead_code)] on by default

warning: field is never used: `id`
--> src/lib.rs:61:5
|

61 | id: usize,
| ^^^^^^^^^
|
= note: #[warn(dead_code)] on by default



593

warning: field is never used: `thread`
--> src/lib.rs:62:5
|

62 | thread: thread::JoinHandle<()>,
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
= note: #[warn(dead_code)] on by default

Finished dev [unoptimized + debuginfo] target(s) in
0.99 secs

Running `target/debug/hello`
Worker 0 got a job; executing.

Worker 2 got a job; executing.
Worker 1 got a job; executing.
Worker 3 got a job; executing.
Worker 0 got a job; executing.
Worker 2 got a job; executing.
Worker 1 got a job; executing.
Worker 3 got a job; executing.
Worker 0 got a job; executing.
Worker 2 got a job; executing.

Success! We now have a thread pool executing connections asyn-
chronously. We never create more than four threads, so our system
won’t get overloaded if the server gets a lot of requests. If we make a
request to /sleep, the server will be able to serve other requests by
having another thread run them.

What about those warnings, though? Don’t we use the workers,
id, and thread fields? Well, right now, we’re using all three of these
fields to hold onto some data, but we don’t actually do anything with
the data once we’ve set up the thread pool and started running the
code that sends jobs down the channel to the threads. If we didn’t
hold onto these values, though, they’d go out of scope: for example,
if we didn’t return the Vec<Worker> value as part of the ThreadPool,
the vector would get cleaned up at the end of ThreadPool::new.

So are these warnings wrong? In one sense yes, the warnings are
wrong, since we are using the fields to store data we need to keep
around. In another sense, no, the warnings aren’t wrong, and they’re
telling us that we’ve forgotten to do something: we never do anything
to clean up our thread pool once it’s done being used, we just use CTRL-
C to stop the program and let the operating system clean up after us.



594

Let’s implement a graceful shutdown that cleans up everything we’ve
created instead.

3.6
Graceful Shutdown and Cleanup
The code in Listing 20-21 is responding to requests asynchronously
through the use of a thread pool, as we intended. We get some warnings
about fields that we’re not using in a direct way, which are a reminder
that we’re not cleaning anything up. When we use CTRL-C to halt the
main thread, all the other threads are stopped immediately as well,
even if they’re in the middle of serving a request.

We’re now going to implement the Drop trait for ThreadPool to
call join on each of the threads in the pool so that the threads will
finish the requests they’re working on. Then we’ll implement a way
for the ThreadPool to tell the threads they should stop accepting new
requests and shut down. To see this code in action, we’ll modify our
server to only accept two requests before gracefully shutting down its
thread pool.

Let’s start with implementing Drop for our thread pool. When the
pool is dropped, we should join on all of our threads to make sure
they finish their work. Listing 20-22 shows a first attempt at a Drop
implementation; this code won’t quite work yet:

Filename: src/lib.rs

impl Drop for ThreadPool {
fn drop(&mut self) {

for worker in &mut self.workers {
println!("Shutting down worker {}", worker.

id);

worker.thread.join().unwrap();
}

}
}

Listing 20-22: Joining each thread when the thread pool goes out of
scope

We loop through each of the thread pool workers, using &mut be-
cause self is itself a mutable reference and we also need to be able
to mutate worker. We print out a message saying that this particular



595

worker is shutting down, and then we call join on that worker’s thread.
If the call to join fails, we unwrap the error to panic and go into an
ungraceful shutdown.

Here’s the error we get if we compile this code:

error[E0507]: cannot move out of borrowed content
--> src/lib.rs:65:13
|

65 | worker.thread.join().unwrap();
| ^^^^^^ cannot move out of borrowed content

Because we only have a mutable borrow of each worker, we can’t call
join: join takes ownership of its argument. In order to solve this,
we need a way to move the thread out of the Worker instance that
owns thread so that join can consume the thread. We saw a way
to do this in Listing 17-15: if the Worker holds an Option<thread::
JoinHandle<()> instead, we can call the take method on the Option
to move the value out of the Some variant and leave a None variant in
its place. In other words, a Worker that is running will have a Some
variant in thread, and when we want to clean up a worker, we’ll replace
Some with None so the worker doesn’t have a thread to run.

So we know we want to update the definition of Worker like this:
Filename: src/lib.rs

# use std::thread;
struct Worker {

id: usize,
thread: Option<thread::JoinHandle<()>>,

}

Now let’s lean on the compiler to find the other places that need to
change. We get two errors:

error: no method named `join` found for type
`std::option::Option<std::thread::JoinHandle<()>>` in the
current scope

--> src/lib.rs:65:27
|

65 | worker.thread.join().unwrap();
| ^^^^

error[E0308]: mismatched types
--> src/lib.rs:89:21



596

|
89 | thread,

| ^^^^^^ expected enum `std::option::Option`,
found

struct `std::thread::JoinHandle`
|
= note: expected type `std::option::Option<std::thread:

:JoinHandle<()>>`
found type `std::thread::JoinHandle<_>`

The second error is pointing to the code at the end of Worker::new; we
need to wrap the thread value in Some when we create a new Worker:

Filename: src/lib.rs

impl Worker {
fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Job>>>)

-> Worker {
// ...snip...

Worker {
id,
thread: Some(thread),

}
}

}

The first error is in our Drop implementation, and we mentioned that
we’ll be calling take on the Option value to move thread out of worker.
Here’s what that looks like:

Filename: src/lib.rs

impl Drop for ThreadPool {
fn drop(&mut self) {

for worker in &mut self.workers {
println!("Shutting down worker {}", worker.

id);

if let Some(thread) = worker.thread.take()
{

thread.join().unwrap();
}

}



597

}
}

As we saw in Chapter 17, the take method on Option takes the Some
variant out and leaves None in its place. We’re using if let to destruc-
ture the Some and get the thread, then call join on the thread. If a
worker’s thread is already None, then we know this worker has already
had its thread cleaned up so we don’t do anything in that case.

With this, our code compiles without any warnings. Bad news
though, this code doesn’t function the way we want it to yet. The
key is the logic in the closures that the spawned threads of the Worker
instances run: calling join won’t shut down the threads since they
loop forever looking for jobs. If we try to drop our ThreadPool with
this implementation, the main thread will block forever waiting for the
first thread to finish.

To fix this, we’re going to modify the threads to listen for either
a Job to run or a signal that they should stop listening and exit the
infinite loop. So instead of Job instances, our channel will send one of
these two enum variants:

Filename: src/lib.rs

# struct Job;
enum Message {

NewJob(Job),
Terminate,

}

This Message enum will either be a NewJob variant that holds the Job
the thread should run, or it will be a Terminate variant that will cause
the thread to exit its loop and stop.

We need to adjust the channel to use values of type Message rather
than type Job, as shown in Listing 20-23:

Filename: src/lib.rs

pub struct ThreadPool {
workers: Vec<Worker>,
sender: mpsc::Sender<Message>,

}

// ...snip...

impl ThreadPool {



598

// ...snip...
pub fn new(size: usize) -> ThreadPool {

assert!(size > 0);

let (sender, receiver) = mpsc::channel();

// ...snip...
}

pub fn execute<F>(&self, f: F)
where

F: FnOnce() + Send + 'static
{

let job = Box::new(f);

self.sender.send(Message::NewJob(job)).unwrap()
;

}
}

// ...snip...

impl Worker {
fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Message>>>)

->
Worker {

let thread = thread::spawn(move ||{
loop {

let message = receiver.lock().unwrap().
recv().unwrap();

match message {
Message::NewJob(job) => {

println!("Worker {} got a job;
executing.", id);

job.call_box();
},
Message::Terminate => {



599

println!("Worker {} was told to
terminate.", id);

break;
},

}
}

});

Worker {
id,
thread: Some(thread),

}
}

}

Listing 20-23: Sending and receiving Message values and exiting the
loop if a Worker receives Message::Terminate

We need to change Job to Message in the definition of ThreadPool,
in ThreadPool::new where we create the channel, and in the signature
of Worker::new. The execute method of ThreadPool needs to send
jobs wrapped in the Message::NewJob variant. Then, in Worker::new
where we receive a Message from the channel, we’ll process the job
if we get the NewJob variant and break out of the loop if we get the
Terminate variant.

With these changes, the code will compile again and continue to
function in the same way as it has been. We’ll get a warning, though,
because we aren’t using the Terminate variant in any messages. Let’s
change our Drop implementation to look like Listing 20-24:

Filename: src/lib.rs

impl Drop for ThreadPool {
fn drop(&mut self) {

println!("Sending terminate message to all workers.
");

for _ in &mut self.workers {
self.sender.send(Message::Terminate).unwrap(

);
}



600

println!("Shutting down all workers.");

for worker in &mut self.workers {
println!("Shutting down worker {}", worker.

id);

if let Some(thread) = worker.thread.take()
{

thread.join().unwrap();
}

}
}

}

Listing 20-24: Sending Message::Terminate to the workers before call-
ing join on each worker thread

We’re now iterating over the workers twice, once to send one Terminate
message for each worker, and once to call join on each worker’s thread.
If we tried to send a message and join immediately in the same loop,
it’s not guaranteed that the worker in the current iteration will be the
one that gets the message from the channel.

To understand better why we need two separate loops, imagine a
scenario with two workers. If we iterated through each worker in one
loop, on the first iteration where worker is the first worker, we’d send a
terminate message down the channel and call join on the first worker’s
thread. If the first worker was busy processing a request at that mo-
ment, the second worker would pick up the terminate message from
the channel and shut down. We’re waiting on the first worker to shut
down, but it never will since the second thread picked up the termi-
nate message. We’re now blocking forever waiting for the first worker
to shut down, and we’ll never send the second message to terminate.
Deadlock!

To prevent this, we first put all of our Terminate messages on the
channel, and then we join on all the threads. Because each worker
will stop receiving requests on the channel once it gets a terminate
message, we can be sure that if we send the same number of terminate
messages as there are workers, each worker will receive a terminate
message before we call join on its thread.

In order to see this code in action, let’s modify main to only accept
two requests before gracefully shutting the server down as shown in
Listing 20-25:

Filename: src/bin/main.rs



601

fn main() {
let listener = TcpListener::bind("127.0.0.1:8080").

unwrap();
let pool = ThreadPool::new(4);

let mut counter = 0;

for stream in listener.incoming() {
if counter == 2 {

println!("Shutting down.");
break;

}

counter += 1;

let stream = stream.unwrap();

pool.execute(|| {
handle_connection(stream);

});
}

}

Listing 20-25: Shut down the server after serving two requests by exit-
ing the loop

Only serving two requests isn’t behavior you’d like a production
web server to have, but this will let us see the graceful shutdown and
cleanup working since we won’t be stopping the server with CTRL-C.

We’ve added a counter variable that we’ll increment every time
we receive an incoming TCP stream. If that counter reaches 2, we’ll
stop serving requests and instead break out of the for loop. The
ThreadPool will go out of scope at the end of main, and we’ll see
the drop implementation run.

Start the server with cargo run, and make three requests. The
third request should error, and in your terminal you should see output
that looks like:

$ cargo run
Compiling hello v0.1.0 (file:///projects/hello)
Finished dev [unoptimized + debuginfo] target(s) in

1.0 secs



602

Running `target/debug/hello`
Worker 0 got a job; executing.
Worker 3 got a job; executing.
Shutting down.
Sending terminate message to all workers.
Shutting down all workers.
Shutting down worker 0
Worker 1 was told to terminate.
Worker 2 was told to terminate.
Worker 0 was told to terminate.
Worker 3 was told to terminate.
Shutting down worker 1
Shutting down worker 2
Shutting down worker 3

You may get a different ordering, of course. We can see how this
works from the messages: workers zero and three got the first two
requests, and then on the third request, we stop accepting connections.
When the ThreadPool goes out of scope at the end of main, its Drop
implementation kicks in, and the pool tells all workers to terminate.
The workers each print a message when they see the terminate message,
and then the thread pool calls join to shut down each worker thread.

One interesting aspect of this particular execution: notice that we
sent the terminate messages down the channel, and before any worker
received the messages, we tried to join worker zero. Worker zero had not
yet gotten the terminate message, so the main thread blocked waiting
for worker zero to finish. In the meantime, each of the workers received
the termination messages. Once worker zero finished, the main thread
waited for the rest of the workers to finish, and they had all received
the termination message and were able to shut down at that point.

Congrats! We now have completed our project, and we have a basic
web server that uses a thread pool to respond asynchronously. We’re
able to perform a graceful shutdown of the server, which cleans up all
the threads in the pool. Here’s the full code for reference:

Filename: src/bin/main.rs

extern crate hello;
use hello::ThreadPool;

use std::io::prelude::*;
use std::net::TcpListener;



603

use std::net::TcpStream;
use std::fs::File;
use std::thread;
use std::time::Duration;

fn main() {
let listener = TcpListener::bind("127.0.0.1:8080").

unwrap();
let pool = ThreadPool::new(4);

let mut counter = 0;

for stream in listener.incoming() {
if counter == 2 {

println!("Shutting down.");
break;

}

counter += 1;

let stream = stream.unwrap();

pool.execute(|| {
handle_connection(stream);

});
}

}

fn handle_connection(mut stream: TcpStream) {
let mut buffer = [0; 512];
stream.read(&mut buffer).unwrap();

let get = b"GET / HTTP/1.1\r\n";
let sleep = b"GET /sleep HTTP/1.1\r\n";

let (status_line, filename) = if buffer.starts_with(
get) {

("HTTP/1.1 200 OK\r\n\r\n", "hello.html")
} else if buffer.starts_with(sleep) {

thread::sleep(Duration::from_secs(5));



604

("HTTP/1.1 200 OK\r\n\r\n", "hello.html")
} else {

("HTTP/1.1 404 NOT FOUND\r\n\r\n", "404.html")
};

let mut file = File::open(filename).unwrap();
let mut contents = String::new();

file.read_to_string(&mut contents).unwrap();

let response = format!("{}{}", status_line, contents)
;

stream.write(response.as_bytes()).unwrap();
stream.flush().unwrap();

}

Filename: src/lib.rs

use std::thread;
use std::sync::mpsc;
use std::sync::Arc;
use std::sync::Mutex;

enum Message {
NewJob(Job),
Terminate,

}

pub struct ThreadPool {
workers: Vec<Worker>,
sender: mpsc::Sender<Message>,

}

trait FnBox {
fn call_box(self: Box<Self>);

}

impl<F: FnOnce()> FnBox for F {
fn call_box(self: Box<F>) {

(*self)()



605

}
}

type Job = Box<FnBox + Send + 'static>;

impl ThreadPool {
/// Create a new ThreadPool.
///
/// The size is the number of threads in the pool.
///
/// # Panics
///
/// The `new` function will panic if the size is zero.

pub fn new(size: usize) -> ThreadPool {
assert!(size > 0);

let (sender, receiver) = mpsc::channel();

let receiver = Arc::new(Mutex::new(receiver));

let mut workers = Vec::with_capacity(size);

for id in 0..size {
workers.push(Worker::new(id, receiver.clone(

)));
}

ThreadPool {
workers,
sender,

}
}

pub fn execute<F>(&self, f: F)
where

F: FnOnce() + Send + 'static
{

let job = Box::new(f);



606

self.sender.send(Message::NewJob(job)).unwrap()
;

}
}

impl Drop for ThreadPool {
fn drop(&mut self) {

println!("Sending terminate message to all workers.
");

for _ in &mut self.workers {
self.sender.send(Message::Terminate).unwrap(

);
}

println!("Shutting down all workers.");

for worker in &mut self.workers {
println!("Shutting down worker {}", worker.

id);

if let Some(thread) = worker.thread.take()
{

thread.join().unwrap();
}

}
}

}

struct Worker {
id: usize,
thread: Option<thread::JoinHandle<()>>,

}

impl Worker {
fn new(id: usize, receiver: Arc<Mutex<mpsc::Receiver<Message>>>)

->
Worker {

let thread = thread::spawn(move ||{



607

loop {
let message = receiver.lock().unwrap().

recv().unwrap();

match message {
Message::NewJob(job) => {

println!("Worker {} got a job;
executing.", id);

job.call_box();
},
Message::Terminate => {

println!("Worker {} was told to
terminate.", id);

break;
},

}
}

});

Worker {
id,
thread: Some(thread),

}
}

}

There’s more we could do here! If you’d like to continue enhancing this
project, here are some ideas:

• Add more documentation to ThreadPool and its public methods

• Add tests of the library’s functionality

• Change calls to unwrap to more robust error handling

• Use ThreadPool to perform some other task rather than serving
web requests

• Find a thread pool crate on crates.io and implement a similar web
server using the crate instead and compare its API and robustness
to the thread pool we implemented



608

Summary
Well done! You’ve made it to the end of the book! We’d like to thank
you for joining us on this tour of Rust. You’re now ready to go out
and implement your own Rust projects or help with other people’s.
Remember there’s a community of other Rustaceans who would love to
help you with any challenges you encounter on your Rust journey.



Appendix

The following sections contain reference material you may find useful
in your Rust journey.

Appendix A: Keywords
The following keywords are reserved by the Rust language and may
not be used as identifiers such as names of functions, variables, param-
eters, struct fields, modules, crates, constants, macros, static values,
attributes, types, traits, or lifetimes.

Keywords Currently in Use

• as - primitive casting, disambiguating the specific trait containing
an item, or renaming items in use and extern crate statements

• break - exit a loop immediately

• const - constant items and constant raw pointers

• continue - continue to the next loop iteration

• crate - external crate linkage or a macro variable representing
the crate in which the macro is defined

• else - fallback for if and if let control flow constructs

• enum - defining an enumeration

• extern - external crate, function, and variable linkage

• false - boolean false literal



610

• fn - function definition and function pointer type

• for - iterator loop, part of trait impl syntax, and higher-ranked
lifetime syntax

• if - conditional branching

• impl - inherent and trait implementation block

• in - part of for loop syntax

• let - variable binding

• loop - unconditional, infinite loop

• match - pattern matching

• mod - module declaration

• move - makes a closure take ownership of all its captures

• mut - denotes mutability in references, raw pointers, and pattern
bindings

• pub - denotes public visibility in struct fields, impl blocks, and
modules

• ref - by-reference binding

• return - return from function

• Self - type alias for the type implementing a trait

• self - method subject or current module

• static - global variable or lifetime lasting the entire program
execution

• struct - structure definition

• super - parent module of the current module

• trait - trait definition

• true - boolean true literal

• type - type alias and associated type definition



611

• unsafe - denotes unsafe code, functions, traits, and implementa-
tions

• use - import symbols into scope

• where - type constraint clauses

• while - conditional loop

Keywords Reserved for Future Use

These keywords do not have any functionality, but are reserved by Rust
for potential future use.

• abstract

• alignof

• become

• box

• do

• final

• macro

• offsetof

• override

• priv

• proc

• pure

• sizeof

• typeof

• unsized

• virtual

• yield



612

Appendix B: Operators
Unary operator expressions

Rust defines the following unary operators. They are all written as
prefix operators, before the expression they apply to.

• - : Negation. Signed integer types and floating-point types sup-
port negation. It is an error to apply negation to unsigned types;
for example, the compiler rejects -1u32.

• * : Dereference. When applied to a pointer, it denotes the
pointed-to location. For pointers to mutable locations, the re-
sulting value can be assigned to. On non-pointer types, it calls
the deref method of the std::ops::Deref trait, or the deref_
mut method of the std::ops::DerefMut trait (if implemented by
the type and required for an outer expression that will or could
mutate the dereference), and produces the result of dereferenc-
ing the & or &mut borrowed pointer returned from the overload
method.

• ! : Logical negation. On the boolean type, this flips between
true and false. On integer types, this inverts the individual
bits in the two’s complement representation of the value.

• & and &mut : Borrowing. When applied to a value, these operators
produce a reference (pointer) to that value. The value is also
placed into a borrowed state for the duration of the reference.
For a shared borrow (&), this implies that the value may not be
mutated, but it may be read or shared again. For a mutable
borrow (&mut), the value may not be accessed in any way until
the borrow expires.

Binary operator expressions

Binary operators expressions are given in order of operator precedence.

Arithmetic operators Binary arithmetic expressions are syntactic
sugar for calls to built-in traits, defined in the std::ops module of the
std library. This means arithmetic operators can be overridden for
user-defined types. The default meaning of the operators on standard
types is given here.



613

• + : Addition and array/string concatenation. Calls the add method
on the std::ops::Add trait.

• - : Subtraction. Calls the sub method on the std::ops::Sub
trait.

• * : Multiplication. Calls the mul method on the std::ops::Mul
trait.

• / : Quotient. Calls the div method on the std::ops::Div trait.

• % : Remainder. Calls the rem method on the std::ops::Rem
trait.

Note that Rust does not have a built-in operator for exponential (power)
calculation; see the pow method on the numeric types.

Bitwise operators Like the arithmetic operators, bitwise operators
are syntactic sugar for calls to methods of built-in traits. This means
bitwise operators can be overridden for user-defined types. The default
meaning of the operators on standard types is given here. Bitwise &,
| and ^ applied to boolean arguments are equivalent to logical &&, ||
and != evaluated in non-lazy fashion.

• & : Bitwise AND. Calls the bitand method of the std::ops::
BitAnd trait.

• | : Bitwise inclusive OR. Calls the bitor method of the std::
ops::BitOr trait.

• ^ : Bitwise exclusive OR. Calls the bitxor method of the std::
ops::BitXor trait.

• << : Left shift. Calls the shl method of the std::ops::Shl trait.

• >> : Right shift (arithmetic). Calls the shr method of the std::
ops::Shr trait.

Lazy boolean operators The operators || and && may be applied
to operands of boolean type. The || operator denotes logical ‘or’, and
the && operator denotes logical ‘and’. They differ from | and & in that
the right-hand operand is only evaluated when the left-hand operand
does not already determine the result of the expression. That is, || only
evaluates its right-hand operand when the left-hand operand evaluates
to false, and && only when it evaluates to true.



614

Comparison operators Comparison operators are, like the arith-
metic operators and bitwise operators, syntactic sugar for calls to built-
in traits. This means that comparison operators can be overridden for
user-defined types. The default meaning of the operators on standard
types is given here.

• == : Equal to. Calls the eq method on the std::cmp::PartialEq
trait.

• != : Unequal to. Calls the ne method on the std::cmp::PartialEq
trait.

• < : Less than. Calls the lt method on the std::cmp::PartialOrd
trait.

• > : Greater than. Calls the gt method on the std::cmp::
PartialOrd trait.

• <= : Less than or equal. Calls the le method on the std::cmp:
:PartialOrd trait.

• >= : Greater than or equal. Calls the ge method on the std::
cmp::PartialOrd trait.

Type cast expressions A type cast expression is denoted with the
binary operator as.

Executing an as expression casts the value on the left-hand side to
the type on the right-hand side.

An example of an as expression:

# fn sum(values: &[f64]) -> f64 { 0.0 }
# fn len(values: &[f64]) -> i32 { 0 }

fn average(values: &[f64]) -> f64 {
let sum: f64 = sum(values);
let size: f64 = len(values) as f64;
sum / size

}

Some of the conversions which can be done through the as operator
can also be done implicitly at various points in the program, such as
argument passing and assignment to a let binding with an explicit
type. Implicit conversions are limited to “harmless” conversions that
do not lose information and which have minimal or no risk of surprising
side-effects on the dynamic execution semantics.



615

Assignment expressions An assignment expression consists of a
pattern followed by an equals sign (=) and an expression.

Evaluating an assignment expression either copies or moves its right-
hand operand to its left-hand operand.
# let mut x = 0;
# let y = 0;
x = y;

Compound assignment expressions The +, -, *, /, %, &, |, ^, <<,
and >> operators may be composed with the = operator. The expression
lval OP= val is equivalent to lval = lval OP val. For example, x
= x + 1 may be written as x += 1.

Any such expression always has the unit type.

Operator precedence The precedence of Rust binary operators is
ordered as follows, going from strong to weak:
as :
* / %
+ -
<< >>
&
^
|
== != < > <= >=
&&
||
.. ...
<-
=

Operators at the same precedence level are evaluated left-to-right. Unary
operators have the same precedence level and are stronger than any of
the binary operators.

Appendix F: Translations of the Book
For resources in languages other than English. Most are still in progress;
see the Translations label to help or let us know about a new transla-
tion!

https://github.com/rust-lang/book/issues?q=is%3Aopen+is%3Aissue+label%3ATranslations


616

• Português

• Tiếng việt

• ����, alternate

• ���������� ����

• Español

• Italiano

Appendix G - Newest Features
This appendix documents features that have been added to stable Rust
since the main part of the book was completed.

Field init shorthand
We can initialize a data structure (struct, enum, union) with named
fields, by writing fieldname as a shorthand for fieldname: fieldname.
This allows a compact syntax for initialization, with less duplication:

#[derive(Debug)]
struct Person {

name: String,
age: u8,

}

fn main() {
let name = String::from("Peter");
let age = 27;

// Using full syntax:
let peter = Person { name: name, age: age };

let name = String::from("Portia");
let age = 27;

// Using field init shorthand:
let portia = Person { name, age };

println!("{:?}", portia);

https://coreh.github.io/rust-book-pt-br/
https://rust-vietnam.github.io/book/
http://www.broadview.com.cn/article/144
https://github.com/KaiserY/trpl-zh-cn
https://github.com/pavloslav/rust-book-uk-ua
https://github.com/z1mvader/book
https://github.com/CodelessFuture/trpl2-it


617

}

Returning from loops
One of the uses of a loop is to retry an operation you know can fail,
such as checking if a thread completed its job. However, you might
need to pass the result of that operation to the rest of your code. If
you add it to the break expression you use to stop the loop, it will be
returned by the broken loop:

fn main() {
let mut counter = 0;

let result = loop {
counter += 1;

if counter == 10 {
break counter * 2;

}
};

assert_eq!(result, 20);
}


	I Getting started
	Introduction
	Contributing to the book
	
	

	Guessing Game
	Setting Up a New Project
	Processing a Guess
	Generating a Secret Number
	Comparing the Guess to the Secret Number
	Allowing Multiple Guesses with Looping
	Summary

	Common Programming Concepts
	
	
	
	
	

	Understanding Ownership
	
	
	

	Using Structs to Structure Related Data
	
	
	

	Enums and Pattern Matching
	
	
	


	II Basic Rust Literacy
	Using Modules to Reuse and Organize Code
	
	
	

	Common Collections
	
	
	

	Error Handling
	
	
	

	Generic Types, Traits, and Lifetimes
	Removing Duplication by Extracting a Function
	
	
	

	Testing
	
	
	

	An I/O Project Building a Small Grep
	
	
	
	
	
	


	III Thinking in Rust
	Functional Language features in Rust: Iterators and Closures
	
	
	
	

	More about Cargo and Crates.io
	
	
	
	
	

	Smart Pointers
	
	
	
	
	
	

	Fearless Concurrency
	
	
	
	

	Is Rust an Object-Oriented Programming Language?
	
	
	


	IV Advanced Topics
	Patterns Match the Structure of Values
	
	
	

	Advanced Features
	
	
	
	
	

	Final Project: Building a Multithreaded Web Server
	
	
	
	
	
	



