
Download from Wow! eBook <www.wowebook.com>

Download from Wow! eBook <www.wowebook.com>

Programming Ruby 1.9 & 2.0
The Pragmatic Programmers’ Guide

Dave Thomas
with Chad Fowler

Andy Hunt

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Download from Wow! eBook <www.wowebook.com>

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and The Pragmatic Programmers, LLC
was aware of a trademark claim, the designations have been printed in initial capital letters or in all
capitals. The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic
Bookshelf, PragProg and the linking g device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no re-
sponsibility for errors or omissions, or for damages that may result from the use of information (in-
cluding program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create better
software and have more fun. For more information, as well as the latest Pragmatic titles, please visit
us at http://pragprog.com.

The team that produced this book includes:

Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-93778-549-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—June, 2013

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com

Contents

Foreword to the Third Edition ix

Preface xi

Road Map xv

Part I — Facets of Ruby

1. Getting Started 3
The Command Prompt 31.1

1.2 Installing Ruby 5
1.3 Running Ruby 9
1.4 Ruby Documentation: RDoc and ri 11

2. Ruby.new 15
Ruby Is an Object-Oriented Language 152.1

2.2 Some Basic Ruby 17
2.3 Arrays and Hashes 20
2.4 Symbols 21
2.5 Control Structures 23
2.6 Regular Expressions 24
2.7 Blocks and Iterators 25
2.8 Reading and ’Riting 27
2.9 Command-Line Arguments 28
2.10 Onward and Upward 28

3. Classes, Objects, and Variables 29
Objects and Attributes 323.1

3.2 Classes Working with Other Classes 37
3.3 Access Control 40
3.4 Variables 43

4. Containers, Blocks, and Iterators 45
Arrays 454.1

4.2 Hashes 47
4.3 Blocks and Iterators 52
4.4 Containers Everywhere 68

Download from Wow! eBook <www.wowebook.com>

5. Sharing Functionality: Inheritance, Modules, and Mixins 69
Inheritance and Messages 695.1

5.2 Modules 73
5.3 Mixins 75
5.4 Iterators and the Enumerable Module 77
5.5 Composing Modules 77
5.6 Inheritance, Mixins, and Design 80

6. Standard Types 83
6.1 Numbers 83
6.2 Strings 86
6.3 Ranges 90

7. Regular Expressions 93
What Regular Expressions Let You Do 937.1

7.2 Ruby’s Regular Expressions 94
7.3 Digging Deeper 96
7.4 Advanced Regular Expressions 105

8. More About Methods 115
8.1 Defining a Method 115
8.2 Calling a Method 118

9. Expressions 125
Operator Expressions 1269.1

9.2 Miscellaneous Expressions 127
9.3 Assignment 128
9.4 Conditional Execution 132
9.5 case Expressions 136
9.6 Loops 138
9.7 Variable Scope, Loops, and Blocks 142

10. Exceptions, catch, and throw 145
The Exception Class 14510.1

10.2 Handling Exceptions 146
10.3 Raising Exceptions 150
10.4 catch and throw 151

11. Basic Input and Output 153
What Is an IO Object? 15311.1

11.2 Opening and Closing Files 153
11.3 Reading and Writing Files 154
11.4 Talking to Networks 158
11.5 Parsing HTML 159

12. Fibers, Threads, and Processes 161
Fibers 16112.1

12.2 Multithreading 163
12.3 Controlling the Thread Scheduler 167

Contents • iv

Download from Wow! eBook <www.wowebook.com>

12.4 Mutual Exclusion 167
12.5 Running Multiple Processes 170

13. Unit Testing 175
The Testing Framework 17713.1

13.2 Structuring Tests 181
13.3 Organizing and Running Tests 183
13.4 RSpec and Shoulda 186
13.5 Test::Unit assertions 193

14. When Trouble Strikes! 195
Ruby Debugger 19514.1

14.2 Interactive Ruby 196
14.3 Editor Support 197
14.4 But It Doesn’t Work! 198
14.5 But It’s Too Slow! 201

Part II — Ruby in Its Setting

15. Ruby and Its World 209
Command-Line Arguments 20915.1

15.2 Program Termination 214
15.3 Environment Variables 214
15.4 Where Ruby Finds Its Libraries 216
15.5 RubyGems Integration 217
15.6 The Rake Build Tool 222
15.7 Build Environment 224

16. Namespaces, Source Files, and Distribution 225
16.1 Namespaces 225
16.2 Organizing Your Source 226
16.3 Distributing and Installing Your Code 233

17. Character Encoding 239
Encodings 24017.1

17.2 Source Files 240
17.3 Transcoding 245
17.4 Input and Output Encoding 246
17.5 Default External Encoding 248
17.6 Encoding Compatibility 249
17.7 Default Internal Encoding 250
17.8 Fun with Unicode 251

18. Interactive Ruby Shell 253
18.1 Command Line 253
18.2 Commands 260

19. Documenting Ruby 263
Adding RDoc to Ruby Code 26619.1

19.2 Adding RDoc to C Extensions 269

Contents • v

Download from Wow! eBook <www.wowebook.com>

19.3 Running RDoc 271
19.4 Ruby source file documented with RDoc 272
19.5 C source file documented with RDoc 274

20. Ruby and the Web 277
Writing CGI Scripts 27720.1

20.2 Using cgi.rb 277
20.3 Templating Systems 280
20.4 Cookies 284
20.5 Choice of Web Servers 286
20.6 Frameworks 287

21. Ruby and Microsoft Windows 289
21.1 Running Ruby Under Windows 289
21.2 Win32API 289
21.3 Windows Automation 290

Part III — Ruby Crystallized

22. The Ruby Language 297
Source File Encoding 29722.1

22.2 Source Layout 297
22.3 The Basic Types 299
22.4 Names 306
22.5 Variables and Constants 308
22.6 Expressions, Conditionals, and Loops 316
22.7 Method Definition 323
22.8 Invoking a Method 327
22.9 Aliasing 330
22.10 Class Definition 331
22.11 Module Definitions 333
22.12 Access Control 335
22.13 Blocks, Closures, and Proc Objects 335
22.14 Exceptions 339
22.15 catch and throw 341

23. Duck Typing 343
Classes Aren’t Types 34423.1

23.2 Coding like a Duck 348
23.3 Standard Protocols and Coercions 349
23.4 Walk the Walk, Talk the Talk 355

24. Metaprogramming 357
Objects and Classes 35724.1

24.2 Singletons 360
24.3 Inheritance and Visibility 365
24.4 Modules and Mixins 366
24.5 Metaprogramming Class-Level Macros 372
24.6 Two Other Forms of Class Definition 377

Contents • vi

Download from Wow! eBook <www.wowebook.com>

24.7 instance_eval and class_eval 379
24.8 Hook Methods 383
24.9 One Last Example 388
24.10 Top-Level Execution Environment 390
24.11 The Turtle Graphics Program 391

25. Reflection, ObjectSpace, and Distributed Ruby 393
Looking at Objects 39325.1

25.2 Looking at Classes 394
25.3 Calling Methods Dynamically 396
25.4 System Hooks 398
25.5 Tracing Your Program’s Execution 400
25.6 Behind the Curtain: The Ruby VM 402
25.7 Marshaling and Distributed Ruby 403
25.8 Compile Time? Runtime? Anytime! 408

26. Locking Ruby in the Safe 409
Safe Levels 41026.1

26.2 Tainted Objects 410
26.3 Trusted Objects 411
26.4 Definition of the safe levels 412

Part IV — Ruby Library Reference

27. Built-in Classes and Modules 417

28. Standard Library 729

A1. Support 829
Web Sites 829A1.1

A1.2 Usenet Newsgroup 830
A1.3 Mailing Lists 830
A1.4 Bug Reporting 830

A2. Bibliography 831

Index 833

Contents • vii

Download from Wow! eBook <www.wowebook.com>

Foreword to the Third Edition
I wrote forewords to the previous two editions of this book. For the first edition, I wrote
about motivation. For the second edition, I wrote about miracles.

For this third edition, I’d like to write about courage. I always admire brave people. People
around Ruby seem to be brave, like the authors of this book. They were brave to jump in to
a relatively unknown language like Ruby. They were brave to try new technology. They
could have happily stayed with an old technology, but they didn’t. They built their own
world using new bricks and mortar. They were adventurers, explorers, and pioneers. By
their effort, we have a fruitful result—Ruby.

Now, I feel that I’ve created my own universe with help from those brave people. At first, I
thought it was a miniature universe, like the one in “Fessenden’s Worlds.” But now it seems
like a real universe. Countless brave people are now working with Ruby. They challenge
new things every day, trying to make the world better and bigger. I am very glad I am part
of the Ruby world.

I suppose that even the world itself could not contain the books that should be written. But
now we have the first book, updated to the most recent. Enjoy.

Yukihiro Matsumoto, aka “Matz”
Japan, February 2009

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Preface
This book is a new version of the PickAxe, as Programming Ruby is known to Ruby program-
mers. It is a tutorial and reference for versions 1.9 and 2.0 of the Ruby programming language.

Ruby 1.9 was a significant departure from previous versions. There are major changes in
string handling, the scoping of block variables, and the threading model. It has a new virtual
machine. The built-in libraries have grown, adding many hundreds of new methods and
almost a dozen new classes. The language now supports scores of character encodings,
making Ruby one of the only programming languages to live fully in the whole world.

Ruby 2.0 is a (fairly minor) incremental improvement on Ruby 1.9.

Why Ruby?

When Andy and I wrote the first edition, we had to explain the background and appeal of
Ruby. Among other things, we wrote, “When we discovered Ruby, we realized that we’d
found what we’d been looking for. More than any other language with which we have
worked, Ruby stays out of your way. You can concentrate on solving the problem at hand,
instead of struggling with compiler and language issues. That’s how it can help you become
a better programmer: by giving you the chance to spend your time creating solutions for
your users, not for the compiler.”

That belief is even stronger today. More than thirteen years later, Ruby is still my language
of choice: I use it for client applications and web applications. I use it to run our publishing
business (our online store, http://pragprog.com, is more than 40,000 lines of Rails code), and I
use it for all those little programming jobs I do just to get things running smoothly.

In all those years, Ruby has progressed nicely. A large number of methods have been added
to the built-in classes and modules, and the size of the standard library (those libraries
included in the Ruby distribution) has grown tremendously. The community now has a
standard documentation system (RDoc), and RubyGems has become the system of choice
for packaging Ruby code for distribution. We have a best-of-breed web application frame-
work, Ruby on Rails, with others waiting in the wings. We are leading the world when it
comes to testing, with tools such as RSpec and Cucumber, and we’re working through the
hard problems of packaging and dependency management. We’ve matured nicely.

But Ruby is older than that. The first release of this book happened on Ruby’s 20th birthday
(it was created on February 24, 1993). The release of Ruby 2.0 is a celebration of that
anniversary.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Ruby Versions

This version of the PickAxe documents both Ruby 2.0 and Ruby 1.9.3.1

Exactly what version of Ruby did I use to write this book? Let’s ask Ruby:

$ ruby -v
ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

This illustrates an important point. Most of the code samples you see in this book are actually
executed each time I format the book. When you see some output from a program, that
output was produced by running the code and inserting the results into the book.

Changes in the Book

Throughout the book I’ve tried to mark differences between Ruby 1.9 and 2.0 using a small

New in 2.0⇣
symbol, like the one here. If you’re reading this as an ebook, you’ll see little arrows next to
this flag. Clicking those will take you to the next or previous 2.0 change. One change I didn’t
make: I decided to continue to use the word we when talking about the authors in the body
of the book. Many of the words come from the first edition, and I certainly don’t want to
claim any credit for Andy’s work on that book.

Changes in the Ruby 2.0 Printing

Compared to the major change that occurred between Ruby 1.8 and Ruby 1.9, the update to
Ruby 2 is fairly gentle. This book documents all the updated builtin class changes and the
new keyword arguments. It spends some time looking at lazy enumerators, and at the
updates to the regular expression engine. But, in general, users of Ruby 1.9 will feel right at
home, and folks still using Ruby 1.8 should consider skipping straight to Ruby 2.

Resources

Visit the Ruby website at http://www.ruby-lang.org to see what’s new. Chat with other Ruby
users on the newsgroup or mailing lists (see Appendix 1, Support, on page 829).

And I’d certainly appreciate hearing from you. Comments, suggestions, errors in the text,
and problems in the examples are all welcome. Email us at rubybook@pragprog.com.

If you find errors in the book, you can add them to the errata page.2 If you’re reading the
PDF version of the book, you can also report an erratum by clicking the link in the page
footers.

You’ll find links to the source code for almost all the book’s example code at http://www.prag-
prog.com/titles/ruby4.

1. Ruby version numbering used to follow the same scheme used for many other open source projects.
Releases with even minor version numbers—1.6, 1.8, and so on—were stable, public releases. These
are the releases that are prepackaged and made available on the various Ruby websites. Development
versions of the software had odd minor version numbers, such as 1.5 and 1.7. However, in 2007 Matz
broke with convention and made 1.9 a stable public release of Ruby.

2. http://www.pragprog.com/titles/ruby4/errata.html

Preface • xii

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://www.ruby-lang.org
http://www.pragprog.com/titles/ruby4
http://www.pragprog.com/titles/ruby4
http://www.pragprog.com/titles/ruby4/errata.html
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Acknowledgments

The first International Ruby Conference had something like 32 attendees. We could all fit
into the tiny hotel bar and talk the night away. Things have changed. The annual conference
now sells out many hundreds of seats within hours, and an increasing number of secondary
conferences have sprung up to meet the needs of folks who can’t get to RubyConf.

As the community has grown, so has Ruby. The language and its libraries are now many
times bigger than they were back when the first edition of this book came out.

And as the language has grown, so has this book. The PickAxe is now massive, mostly
because I still want to document every single built-in class, module, and method. But a book
of this size can never be a solo undertaking. This edition builds on the work from the first
two editions, which included major contributions from Chad Fowler and Andy Hunt. Just
as significant, all three editions have been works created by the Ruby community. On the
mailing lists, in the forums, and on this book’s errata pages, hundreds of people have con-
tributed ideas, code, and corrections to make it better. As always, I owe every one of you a
big “thank you!” for all you have done and for all that you do. The Ruby community is still
as vibrant, interesting, and (mostly) friendly as it ever was—that’s quite an achievement
given the explosive growth we’ve enjoyed.

For the third (tenth anniversary) printing, Wayne E. Seguin was kind enough to check the
section on the wonderful tool RVM, and Luis Lavena checked the section on installing under
Windows, as well as the chapter on running Ruby on Windows. And I’d like to call Anthony
Burns a hero for doing an amazing job of reading through the changes as I was writing them,
but that would take away from the fact that he’s a true hero.3

Getting this book into production has also been a challenge. Kim Wimpsett is the world’s
best copy editor—she’s the only copy editor I know who finds errors in code and fixes XML
markup. Any remaining errors in this book are a result of my mistyping her suggested cor-
rections. And, as we raced to get the book to the printer in time for RubyConf X, Janet Furlow
patiently kept us all on track.

Finally, I’m still deeply indebted to Yukihiro “Matz” Matsumoto, the creator of Ruby.
Throughout this prolonged period of growth and change, he has remained helpful, cheery,
and dedicated to polishing this gem of a language. The friendly and open spirit of the Ruby
community is a direct reflection of the person at its center.

Thank you all. Domo arigato gozaimasu.

Dave Thomas
The Pragmatic Programmers
dave@pragprog.com
June 2013

3. http://www.flickr.com/photos/pragdave/sets/72157625046498937/

report erratum • discuss

Acknowledgments • xiii

Download from Wow! eBook <www.wowebook.com>

http://www.flickr.com/photos/pragdave/sets/72157625046498937/
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Notation Conventions

Literal code examples are shown using a sans-serif font:

class SampleCode
def run
#...

end
end

Within the text, Fred#do_something is a reference to an instance method (in this case the method
do_something) of class Fred, Fred.new4 is a class method, and Fred::EOF is a class constant. The
decision to use a hash character to indicate instance methods was a tough one. It isn’t valid
Ruby syntax, but we thought that it was important to differentiate between the instance and
class methods of a particular class. When you see us write File.read, you know we’re talking
about the class method read. When instead we write File#read, we’re referring to the instance
method read. This convention is now standard in most Ruby discussions and documentation.

This book contains many snippets of Ruby code. Where possible, we’ve tried to show what
happens when they run. In simple cases, we show the value of expressions on the same line
as the expression. Here’s an example:

a = 1
b = 2
a + b # => 3

Here, you can see that the result of evaluating a + b is the value 3, shown to the right of the
arrow. Note that if you were to run this program, you wouldn’t see the value 3 output—
you’d need to use a method such as puts to write it out.

At times, we’re also interested in the values of assignment statements:

a = 1 # => 1
a + 2 # => 3

If the program produces more complex output, we show it after the program code:

3.times { puts "Hello!" }

produces:

Hello!
Hello!
Hello!

In some of the library documentation, we wanted to show where spaces appear in the output.
You’ll see these spaces as ␣ characters.

Command-line invocations are shown with literal text in a regular font, and parameters you
supply are shown in an italic font. Optional elements are shown in brackets.

ruby ‹ flags ›* progname ‹ arguments ›*

4. In some other Ruby documentation, you may see class methods written as Fred::new. This is perfectly
valid Ruby syntax; we just happen to think that Fred.new is less distracting to read.

Preface • xiv

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Road Map
The main text of this book has four separate parts, each with its own personality and each
addressing different aspects of the Ruby language.

In Part I, Facets of Ruby, you’ll find a Ruby tutorial. It starts with some notes on getting Ruby
running on your system followed by a short chapter on some of the terminology and concepts
that are unique to Ruby. This chapter also includes enough basic syntax so that the other
chapters will make sense. The rest of the tutorial is a top-down look at the language. There
we talk about classes and objects, types, expressions, and all the other things that make up
the language. We end with chapters on unit testing and digging yourself out when trouble
strikes.

One of the great things about Ruby is how well it integrates with its environment. Part II,
Ruby in Its Setting, investigates this. Here you’ll find practical information on using Ruby:
using the interpreter options, using irb, documenting your Ruby code, and packaging your
Ruby gems so that others can enjoy them. You’ll also find tutorials on some common Ruby
tasks: using Ruby with the Web and using Ruby in a Microsoft Windows environment
(including wonderful things such as native API calls, COM integration, and Windows
Automation). We’ll also touch on using Ruby to access the Internet.

Part III, Ruby Crystallized, contains more advanced material. Here you’ll find all the gory
details about the language, the concept of duck typing, the object model, metaprogramming,
tainting, reflection, and marshaling. You could probably speed-read this the first time through,
but we think you’ll come back to it as you start to use Ruby in earnest.

The Ruby Library Reference is Part IV. It’s big. We document more than 1,300 methods in 57
built-in classes and modules (up from 800 methods in 40 classes and modules in the previous
edition). On top of that, we now document the library modules that are included in the
standard Ruby distribution (98 of them).

So, how should you read this book? Well, depending on your level of expertise with pro-
gramming in general and OO in particular, you may initially want to read just a few portions
of the book. Here are our recommendations.

If you’re a beginner, you may want to start with the tutorial material in Part I. Keep the
library reference close at hand as you start to write programs. Get familiar with the basic
classes such as Array, Hash, and String. As you become more comfortable in the environment,
you may want to investigate some of the more advanced topics in Part III.

If you’re already comfortable with Perl, Python, Java, or Smalltalk, then we suggest reading
Chapter 1, Getting Started, on page 3, which talks about installing and running Ruby, fol-
lowed by the introduction in Chapter 2, Ruby.new, on page 15. From there, you may want

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

to take the slower approach and keep going with the tutorial that follows, or you can skip
ahead to the gritty details starting in Part III, followed by the library reference in Part IV.

Experts, gurus, and “I-don’t-need-no-stinking-tutorial” types can dive straight into the lan-
guage reference in Chapter 22, The Ruby Language, on page 297; skim the library reference;
and then use the book as a (rather attractive) coffee coaster.

Of course, nothing is wrong with just starting at the beginning and working your way
through page by page.

And don’t forget, if you run into a problem that you can’t figure out, help is available. For
more information, see Appendix 1, Support, on page 829.

Road Map • xvi

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Part I

Facets of Ruby

Download from Wow! eBook <www.wowebook.com>

CHAPTER 1

Getting Started
Before we start talking about the Ruby language, it would be useful if we helped you get
Ruby running on your computer. That way, you can try sample code and experiment on
your own as you read along. In fact, that’s probably essential if you want to learn Ruby—
get into the habit of writing code as you’re reading. We will also show you some different
ways to run Ruby.

1.1 The Command Prompt

(Feel free to skip to the next section if you’re already comfortable at your system’s command
prompt.)

Although there’s growing support for Ruby in IDEs, you’ll probably still end up spending
some time at your system’s command prompt, also known as a shell prompt or just plain
prompt. If you’re a Linux user, you’re probably already familiar with the prompt. If you don’t
already have a desktop icon for it, hunt around for an application called Terminal or xterm.
(On Ubuntu, you can navigate to it using Applications → Accessories → Terminal.) On
Windows, you’ll want to run cmd.exe, accessible by typing cmd into the dialog box that appears
when you select Start→ Run. On OS X, run Applications→ Utilities→ Terminal.app.

In all three cases, a fairly empty window will pop up. It will contain a banner and a prompt.
Try typing echo hello at the prompt and hitting Enter (or Return, depending on your keyboard).
You should see hello echoed back, and another prompt should appear.

Directories, Folders, and Navigation

It is beyond the scope of this book to teach the commands available at the prompt, but we
do need to cover the basics of finding your way around.

If you’re used to a GUI tool such as Explorer on Windows or Finder on OS X for navigating
to your files, then you’ll be familiar with the idea of folders—locations on your hard drive
that can hold files and other folders.

When you’re at the command prompt, you have access to these same folders. But, somewhat
confusingly, at the prompt these folders are called directories (because they contain lists of
other directories and files). These directories are organized into a strict hierarchy. On Unix-
based systems (including OS X), there’s one top-level directory, called / (a forward slash).
On Windows, there is a top-level directory for each drive on your system, so you’ll find the
top level for your C: drive at C:\ (that’s the drive letter C, a colon, and a backslash).

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

The path to a file or directory is the set of directories that you have to traverse to get to it
from the top-level directory, followed by the name of the file or directory itself. Each compo-
nent in this name is separated by a forward slash (on Unix) or a backslash (on Windows).
So, if you organized your projects in a directory called projects under the top-level directory
and if the projects directory had a subdirectory for your time_planner project, the full path to
the README file would be /projects/time_planner/readme.txt on Unix and C:\projects\time_plan-
ner\readme.txt on Windows.

Spaces in Directory Names and Filenames

Most operating systems now allow you to create folders with spaces in their names. This is great when
you’re working at the GUI level. However, from the command prompt, spaces can be a headache,
because the shell that interprets what you type will treat the spaces in file and folder names as being
parameter separators and not as part of the name. You can get around this, but it generally isn’t worth
the hassle. If you are creating new folders and files, it’s easiest to avoid spaces in their names.

To navigate to a directory, use the cd command. (Because the Unix prompt varies from system
to system, we’ll just use a single dollar sign to represent it here.)

$ cd /projects/time_planner (on Unix)
C:\> cd \projects\time_planner (on Windows)

On Unix boxes, you probably don’t want to be creating top-level directories. Instead, Unix
gives each user their own home directory. So, if your username is dave, your home directory
might be located in /usr/dave, /home/dave, or /Users/dave. At the shell prompt, the special char-
acter ~ (a single tilde) stands for the path to your home directory. You can always change
directories to your home directory using cd ~, which can also be abbreviated to just cd.

To find out the directory you’re currently in, you can type pwd (on Unix) or cd on Windows.
So, for Unix users, you could type this:

$ cd /projects/time_planner
$ pwd
/projects/time_planner
$ cd
$ pwd
/Users/dave

On Windows, there’s no real concept of a user’s home directory:

C:\> cd \projects\time_planner
C:\projects\time_planner> cd \projects
C:\projects>

You can create a new directory under the current directory using the mkdir command:

$ cd /projects
$ mkdir expense_tracker
$ cd expense_tracker
$ pwd
/projects/expense_tracker

Notice that to change to the new directory, we could just give its name relative to the current
directory—we don’t have to enter the full path.

Chapter 1. Getting Started • 4

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

We suggest you create a directory called pickaxe to hold the code you write while reading
this book:

$ mkdir ~/pickaxe (on Unix)
C:\> mkdir \pickaxe (on Windows)

Get into the habit of changing into that directory before you start work:

$ cd ~/pickaxe (on Unix)
C:\> cd \pickaxe (on Windows)

1.2 Installing Ruby

Ruby comes preinstalled on many Linux distributions, and Mac OS X includes Ruby (although
the version of Ruby that comes with OS X is normally several releases behind the current
Ruby version). Try typing ruby -v at a command prompt—you may be pleasantly surprised.

If you don’t already have Ruby on your system or if you’d like to upgrade to a newer version
(remembering that this book describes Ruby 1.9 and Ruby 2.0), you can install it pretty
simply. What you do next depends on your operating system.

Installing on Windows

There are two options for installing Ruby on Windows. The first is a simple installer pack-
age—download it, and you’ll have Ruby up and running in minutes. The second is slightly
more complex but gives you the flexibility of easily managing multiple Ruby environments
on the same computer at the same time. Whichever option you choose, you’ll first need to
download and install a working Ruby.

Install Ruby with RubyInstaller

The simple solution (and probably the right one to use if you’re not planning on running
multiple versions of Ruby at the same time) is Luis Lavena’s RubyInstaller.org.

Simply navigate to http://rubyinstaller.org, click the big DOWNLOAD button, and select the
Ruby version you want. Save the file to your downloads folder, and then run it once it has
downloaded. Click through the Windows nanny warnings, and you’ll come to a conventional
installer. Accept the defaults, and when the installer finishes, you’ll have an entry for Ruby
in your All Programs menu of the Start menu:

Select Start Command Prompt with Ruby to open a copy of the Windows command shell with
the environment set up to run Ruby.

report erratum • discuss

Installing Ruby • 5

Download from Wow! eBook <www.wowebook.com>

http://rubyinstaller.org
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

pik: Install Multiple Ruby Environments

The pik system by Gordon Thiesfeld allows you to manage multiple Ruby interpreters on
the same machine, switching between them easily. Obviously, this isn’t something everyone
needs, so you may want to skip to Source Code from This Book on page 9.

Before you start, make sure you have a working Ruby on your machine, using the instructions
from the previous section to download and use RubyInstaller if necessary.

Then, install pik. Visit http://github.com/vertiginous/pik/downloads. Look near the top for the list
of .msi files, and choose the latest. Double-click the filename to download and install it.

After a few seconds, the Pik Setup dialog box will appear. Accept the defaults, and pik will
be installed.

At this time, you’ll probably need to either log out and log back in or (possibly) restart
Windows to get pik successfully integrated into your environment.

Now bring up a Ruby command prompt (Start Command Prompt with Ruby), and type the
following at the prompt:

C:\Users\dave> pik add
** Adding: 193: ruby 1.9.3p0 (2011-10-30) [i386-mingw32]

You’ve now registered that Ruby interpreter with pik. At any other command prompt, you
can use the pik command to list the Ruby interpreters pik knows about and to tell pik to
make a particular interpreter current:

C:\>pik list
193: ruby 1.9.3p0 (2011-10-30) [i386-mingw32]

C:\>pik use 193

C:\>ruby -v
ruby 1.9.3p0 (2011-10-30) [i386-mingw32]

Having gotten one Ruby registered with pik, let’s install another. We’ll play with JRuby, an
implementation of Ruby written in Java. Before doing this, you’ll need to download the Java
runtime (Google is your friend). Once Java is installed, tell pik to install the JRuby interpreter:

C:\> pik install jruby
** Downloading: http://jruby.org......downloads/1.5.2/jruby-bin-1.5.2.zip
to: C:\Users\dave\.pik\downloads\jruby-bin-1.5.2.zip
** Extracting: C:\Users\dave\.pik\downloads\jruby-bin-1.5.2.zip
to: C:\Users\dave\.pik\rubies\JRuby-152
done

** Adding: 152: jruby 1.5.2 (ruby 1.8.7 patchlevel 249) (2010-08-20 1c5e29d)
(Java HotSpot(TM) Client VM 1.6.0_21) [x86-java]
Located at: C:\Users\dave\.pik\rubies\JRuby-152\bin

You now have two Ruby interpreters managed by pik. You can switch between them at the
command line:

C:\>pik list
152: jruby 1.5.2 (ruby 1.8.7 patchlevel 249) (2010-08-20 1c5e29d) (Java H...
193: ruby 1.9.3p0 (2011-10-30) [i386-mingw32]

Chapter 1. Getting Started • 6

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://github.com/vertiginous/pik/downloads
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

C:\>pik use 152
C:\>jruby -v
jruby 1.5.2 (ruby 1.8.7 patchlevel 249) (2010-08-20 1c5e29d)
(Java HotSpot(TM) Client VM 1.6.0_21) [x86-java]

C:\>pik use 193
C:\>ruby -v
ruby 1.9.3p0 (2011-10-30) [i386-mingw32]

If you plan on installing gems that have native code components (that is, they interface to
existing Windows libraries using C code), you’ll need a C development environment on
your machine, and you’ll need to download and install the Pik development kit.

Now that you’re all set up, skip forward to Source Code from This Book on page 9.

Installing on Linux and Mac OS X

One of the interesting things about the various Unix-like systems out there is that their
maintainers all have their own ideas about how to package tools such as Ruby. It is very
nice that they have gone to this trouble, but it also means that if you go with the flow, you’ll
need to learn their way of doing things. It also often means that you’ll be stuck with what
you’re given. So, we’re going to take a different approach. We’re going to use a system called
the Ruby Version Manager (RVM), written by Wayne E. Seguin. RVM is a tool that lets you
have multiple independent Ruby installations on the same machine. You can switch between
them using a single command. This is wonderful, because you can experiment with new
versions of Ruby while still keeping the old ones on your system. We use RVM to keep a
Ruby environment for the examples in this book that’s isolated from our daily work.1

Installing RVM

Although you can install RVM using RubyGems (assuming you already have a working
Ruby on your system), the preferred approach is to install it directly.

Most Unix-like systems will already have all the dependencies installed.2 The possible fly
in the ointment is Ubuntu, where the curl utility is not installed by default. Add it before you
start with this:

$ sudo apt-get update
$ sudo apt-get install curl

You install RVM by executing a script that you download from its repository in github.

$ curl -L https://get.rvm.io | bash -s stable

If this makes you nervous, you can always download the script first, inspect it, and then run
it.

$ curl -L get.rvm.io >rvm-installer
$ less rvm-installer
$ bash rvm-installer

1. RVM isn’t the only way of managing multiple Ruby installations. You might want to look at rbenv
(https://github.com/sstephenson/rbenv/) or chruby (https://github.com/postmodern/chruby).

2. http://rvm.io/rvm/prerequisites/

report erratum • discuss

Installing Ruby • 7

Download from Wow! eBook <www.wowebook.com>

https://github.com/sstephenson/rbenv/
https://github.com/postmodern/chruby
http://rvm.io/rvm/prerequisites/
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Behind the scenes, either option fetches a script from the RVM git repository and executes
it on your local box. The end result is that RVM is installed in a directory named .rvm beneath
your home directory. At the end of the process, RVM spits out a page or so of information.
You should read it.

You may need to knit RVM into your environment. To find out, have a look at the end of
~/.bashrc. If it doesn’t mention RVM, add the following:

source $HOME/.rvm/scripts/rvm

Once that’s done, start a new terminal window (because RVM gets loaded only when your
.bashrc file executes). Type rvm help, and you should get a summary of RVM usage.3

Before we use RVM to install Ruby, we have to let it install a few things that it will need. To
do that, we need to let RVM install various system libraries and utilities that are used when
building Ruby. First, we have to give it permission to manage packages:

dave@ubuntu:~$ rvm autolibs packages

If you run into problems, Wayne has a great set of hints on the RVM installation page.4

Installing Ruby 2.0 Under RVM

This is where we start to see the payoff. Let’s install Ruby 2.0. (Note that in the following
commands we do not type sudo. One of the joys of RVM is that it does everything inside
your home directory—you don’t have to be privileged to install or use new Ruby versions.)

$ rvm install 2.0.0

RVM first installs the system packages it needs (if any). At this stage, you may be prompted
to enter a password that gives you superuser privileges.5

RVM then downloads the appropriate source code and builds Ruby 2.0. It also installs a few
tools (including irb, RDoc, ri, and RubyGems). Be patient—the process may take five minutes
or so. Once it finishes, you’ll have Ruby 2.0 installed. To use it, type the following:

dave@ubuntu:~$ rvm use 2.0.0
info: Using ruby 2.0.0
dave@ubuntu:~$ ruby -v
ruby 2.0.0p0 (2013-02-24 revision 39474) [i686-linux]

This is probably more work than you were expecting. If all you wanted to do was install a
prepacked Ruby, we’d agree. But what you’ve really done here is given yourself an incredible
amount of flexibility. Maybe in the future a project comes along that requires that you use
Ruby 1.8.7. That’s not a problem—just use rvm install 1.8.7 to install it, and use rvm use 1.8.7
to switch to it.

The rvm use command applies only to the current terminal session. If you want to make it
apply to all your sessions, issue this command:

$ rvm use --default 2.0.0

3. The website, http://rvm.io/, has even more information.
4. http://rvm.io/rvm/install/
5. This is the only time you’ll need these privileges. Once your system has all the tools it needs, RVM can

do the rest of its work as a regular user.

Chapter 1. Getting Started • 8

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://rvm.io/
http://rvm.io/rvm/install/
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

The RubyGems that you install while you’re using an RVM-installed Ruby will be added to
that version of Ruby and not installed globally. Do not prepend the gem install command
with a sudo—bad things will happen.

Why Stop with Ruby 2.0?

As well as installing stable versions of the Matz Ruby interpreter, RVM will also manage interpreters
from different sources (JRuby, Rubinius, Ruby Enterprise Edition, and so on—rvm list known gives the
full list). It will also install versions of Ruby directly from the developers’ repository—versions that
are not official releases.

The Ruby developers use Subversion (often abbreviated as SVN) as their revision control system, so
you’ll need a Subversion client installed on your machine. Once done, you can use RVM to install the
very latest Ruby using rvm install ruby-head or the latest version of the 2.0 branch using rvm install 2.0-
head.

Source Code from This Book

If a code listing is preceded by a filename in a shaded bar, the source is available for down-
load.6 Sometimes, the listings of code in the book correspond to a complete source file. Other
times, the book shows just part of the source in a file—the program file may contain addi-
tional scaffolding to make the code run.

If you’re reading this as an ebook, you can download the code for an example by clicking
the heading.

1.3 Running Ruby

Now that Ruby is installed, you’d probably like to run some programs. Unlike compiled
languages, you have two ways to run Ruby—you can type in code interactively, or you can
create program files and run them. Typing in code interactively is a great way to experiment
with the language, but for code that’s more complex or that you will want to run more than
once, you’ll need to create program files and run them. But, before we go any further, let’s
test to see whether Ruby is installed. Bring up a fresh command prompt, and type this:7

$ ruby -v
ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

If you believe that you should have Ruby installed and yet you get an error saying something
like “ruby: command not found,” then it is likely that the Ruby program is not in your path
—the list of places that the shell searches for programs to run. If you used the Windows
One-Click Installer, make sure you rebooted before trying this command. If you’re on Linux
or OS X and you’re using RVM, make sure you type rvm use 2.0 before trying to use Ruby.

Interactive Ruby

One way to run Ruby interactively is simply to type ruby at the shell prompt. Here we typed
in the single puts expression and an end-of-file character (which is Ctrl+D on our system).

6. http://pragprog.com/titles/ruby4/code
7. Remember, you may need to use ruby1.9 as the command name if you installed using a package man-

agement system.

report erratum • discuss

Running Ruby • 9

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/code
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

This process works, but it’s painful if you make a typo, and you can’t really see what’s going
on as you type.

$ ruby
puts "Hello, world!"
^D
Hello, world!

For most folks, irb—Interactive Ruby—is the tool of choice for executing Ruby interactively.
irb is a Ruby shell, complete with command-line history, line-editing capabilities, and job
control. (In fact, it has its own chapter: Chapter 18, Interactive Ruby Shell, on page 253.) You
run irb from the command line. Once it starts, just type in Ruby code. It will show you the
value of each expression as it evaluates it. Exit an irb session by typing exit or by using the
Ctrl+D.

$ irb
2.0.0 :001 > def sum(n1, n2)
2.0.0 :002?> n1 + n2
2.0.0 :003?> end
=> nil
2.0.0 :004 > sum(3,4)
=> 7
2.0.0 :005 > sum("cat", "dog")
=> "catdog"
2.0.0 :006 > exit

We recommend that you get familiar with irb so you can try our examples interactively.

Ruby Programs

The normal way to write Ruby programs is to put them in one or more files. You’ll use a
text editor (Emacs, vim, Sublime, and so on) or an IDE (such as NetBeans) to create and
maintain these files. You’ll then run the files either from within the editor or IDE or from
the command line. I personally use both techniques, typically running from within the editor
for single-file programs and from the command line for more complex ones.

Let’s start by creating a simple Ruby program and running it. Open a command window,
and navigate to the pickaxe directory you created earlier:

$ cd ~/pickaxe (unix)
C:\> cd \pickaxe (windows)

Then, using your editor of choice, create the file myprog.rb, containing the following text.

gettingstarted/myprog.rb

puts "Hello, Ruby Programmer"
puts "It is now #{Time.now}"

(Note that the second string contains the text Time.now between curly braces, not parentheses.)

You can run a Ruby program from a file as you would any other shell script, Perl program,
or Python program. Simply run the Ruby interpreter, giving it the script name as an argument:

$ ruby myprog.rb
Hello, Ruby Programmer
It is now 2013-05-27 12:30:36 -0500

Chapter 1. Getting Started • 10

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/gettingstarted/myprog.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

On Unix systems, you can use the “shebang” notation as the first line of the program file:8

#!/usr/bin/ruby
puts "Hello, Ruby Programmer"
puts "It is now #{Time.now}"

If you make this source file executable (using, for instance, chmod +x myprog.rb), Unix lets you
run the file as a program:

$./myprog.rb
Hello, Ruby Programmer
It is now 2013-05-27 12:30:36 -0500

You can do something similar under Microsoft Windows using file associations, and you
can run Ruby GUI applications by double-clicking their names in Windows Explorer.

1.4 Ruby Documentation: RDoc and ri

As the volume of the Ruby libraries has grown, it has become impossible to document them
all in one book; the standard library that comes with Ruby now contains more than 9,000
methods. Fortunately, an alternative to paper documentation exists for these methods (and
classes and modules). Many are now documented internally using a system called RDoc.

If a source file is documented using RDoc, its documentation can be extracted and converted
into HTML and ri formats.

Several websites contain a complete set of the RDoc documentation for Ruby.9 Browse on
over, and you should be able to find at least some form of documentation for any Ruby
library. The sites are adding new documentation all the time.

The ri tool is a local, command-line viewer for this same documentation. Most Ruby distri-
butions now also install the resources used by the ri program.10

To find the documentation for a class, type ri ClassName. For example, the following is the
summary information for the GC class. (To get a list of classes with ri documentation, type
ri with no arguments.)

$ ri GC

The GC module provides an interface to Ruby's garbage collection mechanism. Some of
the underlying methods are also available via the ObjectSpace module.

You may obtain information about the operation of the GC through GC::Profiler.

Class methods:
count, disable, enable, malloc_allocated_size, malloc_allocations,
start, stat, stress, stress=

Instance methods:
garbage_collect

8. If your system supports it, you can avoid hard-coding the path to Ruby in the “shebang” line by using
#!/usr/bin/env ruby, which will search your path for ruby and then execute it.

9. Including http://www.ruby-doc.org and http://rubydoc.info
10. If you installed Ruby using rvm, there’s one additional step to get ri documentation available. At a

prompt, enter rvm docs generate.

report erratum • discuss

Ruby Documentation: RDoc and ri • 11

Download from Wow! eBook <www.wowebook.com>

http://www.ruby-doc.org
http://rubydoc.info
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

For information on a particular method, give its name as a parameter:

$ ri GC::enable
-- GC::enable
GC.enable => true or false

Enables garbage collection, returning true if garbage collection was disabled.

GC.disable #=> false
GC.enable #=> true
GC.enable #=> false

If the method you give ri occurs in more than one class or module, ri will list the alternatives.

$ ri assoc
Implementation from Array
--
ary.assoc(obj) -> new_ary or nil

--
Searches through an array whose elements are also arrays comparing obj
with the first element of each contained array using obj.==.

Returns the first contained array that matches (that is, the first associated
array), or nil if no match is found.

See also Array#rassoc

s1 = ["colors", "red", "blue", "green"]
s2 = ["letters", "a", "b", "c"]
s3 = "foo"
a = [s1, s2, s3]
a.assoc("letters") #=> ["letters", "a", "b", "c"]
a.assoc("foo") #=> nil

(from ruby site)
Implementation from ENV
--
ENV.assoc(name) -> Array or nil

--
Returns an Array of the name and value of the environment variable with
name or nil if the name cannot be found.

(from ruby site)
Implementation from Hash
--
hash.assoc(obj) -> an_array or nil

--
Searches through the hash comparing obj with the key using ==.
Returns the key-value pair (two elements array) or nil if no match is
found. See Array#assoc.

h = {"colors" => ["red", "blue", "green"],
"letters" => ["a", "b", "c"]}

h.assoc("letters") #=> ["letters", ["a", "b", "c"]]
h.assoc("foo") #=> nil

Chapter 1. Getting Started • 12

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

For general help on using ri, type ri --help. In particular, you might want to experiment with
the --format option, which tells ri how to render decorated text (such as section headings). If
your terminal program supports ANSI escape sequences, using --format=ansi will generate a
nice, colorful display. Once you find a set of options you like, you can set them into the RI
environment variable. Using our shell (zsh), this would be done using the following:

$ export RI="--format ansi --width 70"

If a class or module isn’t yet documented in RDoc format, ask the friendly folks over at sug-
gestions@ruby-doc.org to consider adding it.

All this command-line hacking may seem a tad off-putting if you’re not a regular visitor to
the shell prompt. But, in reality, it isn’t that difficult, and the power you get from being able
to string together commands this way is often surprising. Stick with it, and you’ll be well
on your way to mastering both Ruby and your computer.

report erratum • discuss

Ruby Documentation: RDoc and ri • 13

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 2

Ruby.new
Most books on programming languages look about the same. They start with chapters on
basic types: integers, strings, and so on. Then they look at expressions, before moving on to
if and while statements. Then, perhaps around Chapter 7 or 8, they’ll start mentioning classes.
We find that somewhat tedious.

Instead, when we designed this book, we had a grand plan (we were younger then). We
wanted to document the language from the top down, starting with classes and objects and
ending with the nitty-gritty syntax details. It seemed like a good idea at the time. After all,
most everything in Ruby is an object, so it made sense to talk about objects first.

Or so we thought.

Unfortunately, it turns out to be difficult to describe a language that way. If you haven’t
covered strings, if statements, assignments, and other details, it’s difficult to write examples
of classes. Throughout our top-down description, we kept coming across low-level details
we needed to cover so that the example code would make sense.

So, we came up with another grand plan (they don’t call us pragmatic for nothing). We’d
still describe Ruby starting at the top. But before we did that, we’d add a short chapter that
described all the common language features used in the examples along with the special
vocabulary used in Ruby, a kind of mini-tutorial to bootstrap us into the rest of the book.
And that mini-tutorial is this chapter.

2.1 Ruby Is an Object-Oriented Language

Let’s say it again. Ruby is a genuine object-oriented language. Everything you manipulate
is an object, and the results of those manipulations are themselves objects. However, many
languages make the same claim, and their users often have a different interpretation of what
object-oriented means and a different terminology for the concepts they employ.

So, before we get too far into the details, let’s briefly look at the terms and notation that we’ll
be using.

When you write object-oriented programs, you’re normally looking to model concepts from
the real world. During this modeling process you’ll discover categories of things that need
to be represented in code. In a jukebox, the concept of a “song” could be such a category. In
Ruby, you’d define a class to represent each of these entities. A class is a combination of state

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

(for example, the name of the song) and methods that use that state (perhaps a method to
play the song).

Once you have these classes, you’ll typically want to create a number of instances of each.
For the jukebox system containing a class called Song, you’d have separate instances for
popular hits such as “Ruby Tuesday,” “Enveloped in Python,” “String of Pearls,” “Small
Talk,” and so on. The word object is used interchangeably with class instance (and being lazy
typists, we’ll probably be using the word object more frequently).

In Ruby, these objects are created by calling a constructor, a special method associated with
a class. The standard constructor is called new.

song1 = Song.new("Ruby Tuesday")
song2 = Song.new("Enveloped in Python")
and so on

These instances are both derived from the same class, but they have unique characteristics.
First, every object has a unique object identifier (abbreviated as object ID). Second, you can
define instance variables, variables with values that are unique to each instance. These instance
variables hold an object’s state. Each of our songs, for example, will probably have an instance
variable that holds the song title.

Within each class, you can define instance methods. Each method is a chunk of functionality
that may be called in the context of the class and (depending on accessibility constraints)
from outside the class. These instance methods in turn have access to the object’s instance
variables and hence to the object’s state. A Song class, for example, might define an instance
method called play. If a variable referenced a particular Song instance, you’d be able to call
that instance’s play method and play that song.

Methods are invoked by sending a message to an object. The message contains the method’s
name, along with any parameters the method may need.1 When an object receives a message,
it looks into its own class for a corresponding method. If found, that method is executed. If
the method isn’t found...well, we’ll get to that later.

This business of methods and messages may sound complicated, but in practice it is very
natural. Let’s look at some method calls. In this code, we’re using puts, a standard Ruby
method that writes its argument(s) to the console, adding a newline after each:

puts "gin joint".length
puts "Rick".index("c")
puts 42.even?
puts sam.play(song)

produces:

9
2
true
duh dum, da dum de dum ...

Each line shows a method being called as an argument to puts. The thing before the period
is called the receiver, and the name after the period is the method to be invoked. The first
example asks a string for its length; the second asks a different string to find the index of the
letter c. The third line asks the number 42 if it is even (the question mark is part of the method

1. This idea of expressing method calls in the form of messages comes from Smalltalk.

Chapter 2. Ruby.new • 16

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

name even?). Finally, we ask Sam to play us a song (assuming there’s an existing variable
called sam that references an appropriate object).

It’s worth noting here a major difference between Ruby and most other languages. In (say)
Java, you’d find the absolute value of some number by calling a separate function and
passing in that number. You could write this:

num = Math.abs(num) // Java code

In Ruby, the ability to determine an absolute value is built into numbers—they take care of
the details internally. You simply send the message abs to a number object and let it do the
work:

num = -1234 # => -1234
positive = num.abs # => 1234

The same applies to all Ruby objects. In C you’d write strlen(name), but in Ruby it would be
name.length, and so on. This is part of what we mean when we say that Ruby is a genuine
object-oriented language.

2.2 Some Basic Ruby

Not many people like to read heaps of boring syntax rules when they’re picking up a new
language, so we’re going to cheat. In this section, we’ll hit some of the highlights—the stuff
you’ll just need to know if you’re going to write Ruby programs. Later, in Chapter 22, The
Ruby Language, on page 297, we’ll go into all the gory details.

Let’s start with a simple Ruby program. We’ll write a method that returns a cheery, person-
alized greeting. We’ll then invoke that method a couple of times:

def say_goodnight(name)
result = "Good night, " + name
return result

end

Time for bed...
puts say_goodnight("John-Boy")
puts say_goodnight("Mary-Ellen")

produces:

Good night, John-Boy
Good night, Mary-Ellen

As the example shows, Ruby syntax is clean. You don’t need semicolons at the ends of
statements as long as you put each statement on a separate line. Ruby comments start with
a# character and run to the end of the line. Code layout is pretty much up to you; indentation
is not significant (but using two-character indentation will make you friends in the commu-
nity if you plan on distributing your code).

Methods are defined with the keyword def, followed by the method name (in this case, the
name is say_goodnight) and the method’s parameters between parentheses. (In fact, the
parentheses are optional, but we like to use them.) Ruby doesn’t use braces to delimit the
bodies of compound statements and definitions. Instead, you simply finish the body with
the keyword end. Our method’s body is pretty simple. The first line concatenates the literal
string "Good night," and the parameter name and assigns the result to the local variable result.

report erratum • discuss

Some Basic Ruby • 17

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

The next line returns that result to the caller. Note that we didn’t have to declare the variable
result; it sprang into existence when we assigned to it.

Having defined the method, we invoke it twice. In both cases, we pass the result to the
method puts, which simply outputs its argument followed by a newline (moving on to the
next line of output):

Good night, John-Boy
Good night, Mary-Ellen

The line

puts say_goodnight("John-Boy")

contains two method calls, one to the method say_goodnight and the other to the method puts.
Why does one call have its arguments in parentheses while the other doesn’t? In this case,
it’s purely a matter of taste. The following lines are equivalent:

puts say_goodnight("John-Boy")
puts(say_goodnight("John-Boy"))

However, life isn’t always that simple, and precedence rules can make it difficult to know
which argument goes with which method invocation, so we recommend using parentheses
in all but the simplest cases.

This example also shows some Ruby string objects. Ruby has many ways to create a string
object, but probably the most common is to use string literals, which are sequences of characters
between single or double quotation marks. The difference between the two forms is the
amount of processing Ruby does on the string while constructing the literal. In the single-
quoted case, Ruby does very little. With a few exceptions, what you enter in the string literal
becomes the string’s value.

In the double-quoted case, Ruby does more work. First, it looks for substitutions (sequences
that start with a backslash character) and replaces them with some binary value. The most
common of these is \n, which is replaced with a newline character. When a string containing
a newline is output, that newline becomes a line break:

puts "And good night,\nGrandma"

produces:

And good night,
Grandma

The second thing that Ruby does with double-quoted strings is expression interpolation.
Within the string, the sequence #{expression} is replaced by the value of expression. We could
use this to rewrite our previous method:

def say_goodnight(name)
result = "Good night, #{name}"
return result

end
puts say_goodnight('Pa')

produces:

Good night, Pa

Chapter 2. Ruby.new • 18

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

When Ruby constructs this string object, it looks at the current value of name and substitutes
it into the string. Arbitrarily complex expressions are allowed in the #{...} construct. In the
following example, we invoke the capitalize method, defined for all strings, to output our
parameter with a leading uppercase letter:

def say_goodnight(name)
result = "Good night, #{name.capitalize}"
return result

end
puts say_goodnight('uncle')

produces:

Good night, Uncle

For more information on strings, as well as on the other Ruby standard types, see Chapter
6, Standard Types, on page 83.

Finally, we could simplify this method some more. The value returned by a Ruby method
is the value of the last expression evaluated, so we can get rid of the temporary variable and
the return statement altogether. This is idiomatic Ruby.

def say_goodnight(name)
"Good night, #{name.capitalize}"

end
puts say_goodnight('ma')

produces:

Good night, Ma

We promised that this section would be brief. We have just one more topic to cover: Ruby
names. For brevity, we’ll be using some terms (such as class variable) that we aren’t going to
define here. However, by talking about the rules now, you’ll be ahead of the game when we
actually come to discuss class variables and the like later.

Ruby uses a convention that may seem strange at first: the first characters of a name indicate
how the name is used. Local variables, method parameters, and method names should all
start with a lowercase letter2 or an underscore. Global variables are prefixed with a dollar
sign ($), and instance variables begin with an “at” sign (@). Class variables start with two
“at” signs (@@).3 Finally, class names, module names, and constants must start with an
uppercase letter. Samples of different names are given in Table 1, Example variable, class, and
constant names, on page 20.

Following this initial character, a name can be any combination of letters, digits, and
underscores (with the proviso that the character following an @ sign may not be a digit).
However, by convention, multiword instance variables are written with underscores between
the words, and multiword class names are written in MixedCase (with each word capitalized).
Method names may end with the characters ?, !, and =.

2. If your source files use non-ASCII characters (for example, because they’re written in UTF-8 encoding),
all non-ASCII characters are assumed to be lowercase letters.

3. Although we talk about global and class variables here for completeness, you’ll find they are rarely
used in Ruby programs. There’s a lot of evidence that global variables make programs harder to
maintain. Class variables are not as dangerous—it’s just that people tend not to use them much.

report erratum • discuss

Some Basic Ruby • 19

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

name fish_and_chips x_axis thx1138 _x _26Local Variable:
@name @point_1 @X @_ @plan9Instance Variable:
@@total @@symtab @@N @@x_pos @@SINGLEClass Variable:
$debug $CUSTOMER $_ $plan9 $GlobalGlobal Variable:
String ActiveRecord MyClassClass Name:
FEET_PER_MILE DEBUGConstant Name:

Table 1—Example variable, class, and constant names

2.3 Arrays and Hashes

Ruby’s arrays and hashes are indexed collections. Both store collections of objects, accessible
using a key. With arrays, the key is an integer, whereas hashes support any object as a key.
Both arrays and hashes grow as needed to hold new elements. It’s more efficient to access
array elements, but hashes provide more flexibility. Any particular array or hash can hold
objects of differing types; you can have an array containing an integer, a string, and a floating-
point number, as we’ll see in a minute.

You can create and initialize a new array object using an array literal—a set of elements
between square brackets. Given an array object, you can access individual elements by
supplying an index between square brackets, as the next example shows. Note that Ruby
array indices start at zero.

a = [1, 'cat', 3.14] # array with three elements
puts "The first element is #{a[0]}"
set the third element
a[2] = nil
puts "The array is now #{a.inspect}"

produces:

The first element is 1
The array is now [1, "cat", nil]

You may have noticed that we used the special value nil in this example. In many languages,
the concept of nil (or null) means “no object.” In Ruby, that’s not the case; nil is an object, just
like any other, that happens to represent nothing. Anyway, let’s get back to arrays and
hashes.

Sometimes creating arrays of words can be a pain, what with all the quotes and commas.
Fortunately, Ruby has a shortcut; %w does just what we want:

a = ['ant', 'bee', 'cat', 'dog', 'elk']
a[0] # => "ant"
a[3] # => "dog"
this is the same:
a = %w{ ant bee cat dog elk }
a[0] # => "ant"
a[3] # => "dog"

Ruby hashes are similar to arrays. A hash literal uses braces rather than square brackets.
The literal must supply two objects for every entry: one for the key, the other for the value.
The key and value are normally separated by =>.

Chapter 2. Ruby.new • 20

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

For example, you could use a hash to map musical instruments to their orchestral sections.

inst_section = {
'cello' => 'string',
'clarinet' => 'woodwind',
'drum' => 'percussion',
'oboe' => 'woodwind',
'trumpet' => 'brass',
'violin' => 'string'

}

The thing to the left of the => is the key, and the thing to the right is the corresponding value.
Keys in a particular hash must be unique; you can’t have two entries for “drum.” The keys
and values in a hash can be arbitrary objects. You can have hashes where the values are
arrays, other hashes, and so on.

Hashes are indexed using the same square bracket notation as arrays. In this code, we’ll use
the pmethod to write the values to the console. This works like puts but displays values such
as nil explicitly.

p inst_section['oboe']
p inst_section['cello']
p inst_section['bassoon']

produces:

"woodwind"
"string"
nil

As the previous example shows, a hash by default returns nilwhen indexed by a key it doesn’t
contain. Normally this is convenient, because nil means false when used in conditional
expressions. Sometimes you’ll want to change this default. For example, if you’re using a
hash to count the number of times each different word occurs in a file, it’s convenient to
have the default value be zero. Then you can use the word as the key and simply increment
the corresponding hash value without worrying about whether you’ve seen that word before.
This is easily done by specifying a default value when you create a new, empty hash. (Have
a look at the full source for the word frequency counter on page 49.)

histogram = Hash.new(0) # The default value is zero
histogram['ruby'] # => 0
histogram['ruby'] = histogram['ruby'] + 1
histogram['ruby'] # => 1

Array and hash objects have many useful methods; see the discussion on page 45, as well
as the reference sections for arrays on page 421 and for hashes on page 521.

2.4 Symbols

Often, when programming, you need to create a name for something significant. For example,
you might want to refer to the compass points by name, so you’d write this:

NORTH = 1
EAST = 2
SOUTH = 3
WEST = 4

report erratum • discuss

Symbols • 21

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Then, in the rest of your code, you could use the constants instead of the numbers:

walk(NORTH)
look(EAST)

Most of the time, the actual numeric values of these constants are irrelevant (as long as they
are unique). All you want to do is differentiate the four directions.

Ruby offers a cleaner alternative. Symbols are simply constant names that you don’t have to
predeclare and that are guaranteed to be unique. A symbol literal starts with a colon and is
normally followed by some kind of name:

walk(:north)
look(:east)

There’s no need to assign some kind of value to a symbol—Ruby takes care of that for you.
Ruby also guarantees that no matter where it appears in your program, a particular symbol
will have the same value. That is, you can write the following:

def walk(direction)
if direction == :north
...

end
end

Symbols are frequently used as keys in hashes. We could write our previous example as
this:

inst_section = {
:cello => 'string',
:clarinet => 'woodwind',
:drum => 'percussion',
:oboe => 'woodwind',
:trumpet => 'brass',
:violin => 'string'

}
inst_section[:oboe] # => "woodwind"
inst_section[:cello] # => "string"
Note that strings aren't the same as symbols...
inst_section['cello'] # => nil

In fact, symbols are so frequently used as hash keys that Ruby has a shortcut syntax: you
can use name: value pairs to create a hash if the keys are symbols:

inst_section = {
cello: 'string',
clarinet: 'woodwind',
drum: 'percussion',
oboe: 'woodwind',
trumpet: 'brass',
violin: 'string'

}
puts "An oboe is a #{inst_section[:oboe]} instrument"

produces:

An oboe is a woodwind instrument

Chapter 2. Ruby.new • 22

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

2.5 Control Structures

Ruby has all the usual control structures, such as if statements and while loops. Java, C, and
Perl programmers may well get caught by the lack of braces around the bodies of these
statements. Instead, Ruby uses the keyword end to signify the end of a body of all the control
structures:

today = Time.now

if today.saturday?
puts "Do chores around the house"

elsif today.sunday?
puts "Relax"

else
puts "Go to work"

end

produces:

Go to work

Similarly, while statements are terminated with end:

num_pallets = 0
weight = 0
while weight < 100 and num_pallets <= 5
pallet = next_pallet()
weight += pallet.weight
num_pallets += 1

end

Most statements in Ruby return a value, which means you can use them as conditions. For
example, the kernel method gets returns the next line from the standard input stream or nil
when the end of the file is reached. Because Ruby treats nil as a false value in conditions, you
could write the following to process the lines in a file:

while line = gets
puts line.downcase

end

Here, the assignment statement sets the variable line to either the next line of text or nil, and
then the while statement tests the value of the assignment, terminating the loop when it is nil.

Ruby statement modifiers are a useful shortcut if the body of an if or while statement is just a
single expression. Simply write the expression, followed by if or while and the condition. For
example, here’s a simple if statement:

if radiation > 3000
puts "Danger, Will Robinson"

end

Here it is again, rewritten using a statement modifier:

puts "Danger, Will Robinson" if radiation > 3000

report erratum • discuss

Control Structures • 23

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Similarly, this while loop:

square = 4
while square < 1000
square = square*square
end

becomes this more concise version:

square = 4
square = square*square while square < 1000

These statement modifiers should seem familiar to Perl programmers.

2.6 Regular Expressions

Most of Ruby’s built-in types will be familiar to all programmers. A majority of languages
have strings, integers, floats, arrays, and so on. However, regular expression support is
typically built into only scripting languages, such as Ruby, Perl, and awk. This is a shame,
because regular expressions, although cryptic, are a powerful tool for working with text.
And having them built in, rather than tacked on through a library interface, makes a big
difference.

Entire books have been written about regular expressions (for example, Mastering Regular
Expressions [Fri97]), so we won’t try to cover everything in this short section. Instead, we’ll
look at just a few examples of regular expressions in action. You’ll find full coverage of reg-
ular expressions in Chapter 7, Regular Expressions, on page 93.

A regular expression is simply a way of specifying a pattern of characters to be matched in
a string. In Ruby, you typically create a regular expression by writing a pattern between
slash characters (/pattern/). And, Ruby being Ruby, regular expressions are objects and can
be manipulated as such.

For example, you could write a pattern that matches a string containing the text Perl or the
text Python using the following regular expression:

/Perl|Python/

The forward slashes delimit the pattern, which consists of the two things we’re matching,
separated by a pipe character (|). This pipe character means “either the thing on the right or
the thing on the left,” in this case either Perl or Python. You can use parentheses within pat-
terns, just as you can in arithmetic expressions, so you could also have written this pattern
like this:

/P(erl|ython)/

You can also specify repetitionwithin patterns. /ab+c/matches a string containing an a followed
by one or more b’s, followed by a c. Change the plus to an asterisk, and /ab*c/ creates a regular
expression that matches one a, zero or more b’s, and one c.

You can also match one of a group of characters within a pattern. Some common examples
are character classes such as \s, which matches a whitespace character (space, tab, newline,
and so on); \d, which matches any digit; and \w, which matches any character that may appear
in a typical word. A dot (.) matches (almost) any character. A table of these character classes
appears in Table 2, Character class abbreviations, on page 101.

Chapter 2. Ruby.new • 24

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

We can put all this together to produce some useful regular expressions:

/\d\d:\d\d:\d\d/ # a time such as 12:34:56
/Perl.*Python/ # Perl, zero or more other chars, then Python
/Perl Python/ # Perl, a space, and Python
/Perl *Python/ # Perl, zero or more spaces, and Python
/Perl +Python/ # Perl, one or more spaces, and Python
/Perl\s+Python/ # Perl, whitespace characters, then Python
/Ruby (Perl|Python)/ # Ruby, a space, and either Perl or Python

Once you have created a pattern, it seems a shame not to use it. The match operator =~ can
be used to match a string against a regular expression. If the pattern is found in the string,
=~ returns its starting position; otherwise, it returns nil. This means you can use regular
expressions as the condition in if and while statements. For example, the following code
fragment writes a message if a string contains the text Perl or Python:

line = gets
if line =~ /Perl|Python/
puts "Scripting language mentioned: #{line}"

end

The part of a string matched by a regular expression can be replaced with different text using
one of Ruby’s substitution methods:

line = gets
newline = line.sub(/Perl/, 'Ruby') # replace first 'Perl' with 'Ruby'
newerline = newline.gsub(/Python/, 'Ruby') # replace every 'Python' with 'Ruby'

You can replace every occurrence of Perl and Python with Ruby using this:

line = gets
newline = line.gsub(/Perl|Python/, 'Ruby')

We’ll have a lot more to say about regular expressions as we go through the book.

2.7 Blocks and Iterators

This section briefly describes one of Ruby’s particular strengths. We’re about to look at code
blocks, which are chunks of code you can associate with method invocations, almost as if
they were parameters. This is an incredibly powerful feature. One of our reviewers comment-
ed at this point: “This is pretty interesting and important, so if you weren’t paying attention
before, you should probably start now.” We’d have to agree.

You can use code blocks to implement callbacks (but they’re simpler than Java’s anonymous
inner classes), to pass around chunks of code (but they’re more flexible than C’s function
pointers), and to implement iterators.

Code blocks are just chunks of code between braces or between do and end. This is a code
block:

{ puts "Hello" }

report erratum • discuss

Blocks and Iterators • 25

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

This is also a code block:

do
club.enroll(person)
person.socialize

end

Why are there two kinds of delimiter? It’s partly because sometimes one feels more natural
to write than another. It’s partly too because they have different precedences: the braces
bind more tightly than the do/end pairs. In this book, we try to follow what is becoming a
Ruby standard and use braces for single-line blocks and do/end for multiline blocks.

All you can do with a block is associate it with a call to a method. You do this by putting the
start of the block at the end of the source line containing the method call.

For example, in the following code, the block containing puts "Hi" is associated with the call
to the method greet (which we don’t show):

greet { puts "Hi" }

If the method has parameters, they appear before the block:

verbose_greet("Dave", "loyal customer") { puts "Hi" }

A method can then invoke an associated block one or more times using the Ruby yield
statement. You can think of yield as being something like a method call that invokes the block
associated with the call to the method containing the yield.

The following example shows this in action. We define a method that calls yield twice. We
then call this method, putting a block on the same line, after the call (and after any arguments
to the method).4

def call_block
puts "Start of method"
yield
yield
puts "End of method"

end

call_block { puts "In the block" }

produces:

Start of method
In the block
In the block
End of method

The code in the block (puts "In the block") is executed twice, once for each call to yield.

You can provide arguments to the call to yield, and they will be passed to the block. Within
the block, you list the names of the parameters to receive these arguments between vertical
bars (|params...|). The following example shows a method calling its associated block twice,
passing the block two arguments each time:

4. Some people like to think of the association of a block with a method as a kind of argument passing.
This works on one level, but it isn’t really the whole story. You may be better off thinking of the block
and the method as coroutines, which transfer control back and forth between themselves.

Chapter 2. Ruby.new • 26

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

def who_says_what
yield("Dave", "hello")
yield("Andy", "goodbye")

end

who_says_what {|person, phrase| puts "#{person} says #{phrase}"}

produces:

Dave says hello
Andy says goodbye

Code blocks are used throughout the Ruby library to implement iterators, which are methods
that return successive elements from some kind of collection, such as an array:

animals = %w(ant bee cat dog) # create an array
animals.each {|animal| puts animal } # iterate over the contents

produces:

ant
bee
cat
dog

Many of the looping constructs that are built into languages such as C and Java are simply
method calls in Ruby, with the methods invoking the associated block zero or more times:

['cat', 'dog', 'horse'].each {|name| print name, " " }
5.times { print "*" }
3.upto(6) {|i| print i }
('a'..'e').each {|char| print char }
puts

produces:

cat dog horse *****3456abcde

Here we ask an array to call the block once for each of its elements. Then, object 5 calls a
block five times. Rather than use for loops, in Ruby we can ask the number 3 to call a block,
passing in successive values until it reaches 6. Finally, the range of characters from a to e
invokes a block using the method each.

2.8 Reading and ’Riting

Ruby comes with a comprehensive I/O library. However, in most of the examples in this
book, we’ll stick to a few simple methods. We’ve already come across two methods that do
output: puts writes its arguments with a newline after each; print also writes its arguments
but with no newline. Both can be used to write to any I/O object, but by default they write
to standard output.

Another output method we use a lot is printf, which prints its arguments under the control
of a format string (just like printf in C or Perl):

printf("Number: %5.2f,\nString: %s\n", 1.23, "hello")

produces:

Number: 1.23,
String: hello

report erratum • discuss

Reading and ’Riting • 27

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

In this example, the format string "Number: %5.2f,\nString: %s\n" tells printf to substitute in a
floating-point number (with a minimum of five characters, two after the decimal point) and
a string. Notice the newlines (\n) embedded in the string; each moves the output onto the
next line.

You have many ways to read input into your program. Probably the most traditional is to
use the method gets, which returns the next line from your program’s standard input stream:

line = gets
print line

Because gets returns nil when it reaches the end of input, you can use its return value in a
loop condition. Notice that in the following code the condition to the while is an assignment:
we store whatever gets returns into the variable line and then test to see whether that returned
value was nil or false before continuing:

while line = gets
print line

end

2.9 Command-Line Arguments

When you run a Ruby program from the command line, you can pass in arguments. These
are accessible in two different ways.

First, the array ARGV contains each of the arguments passed to the running program. Create
a file called cmd_line.rb that contains the following:

puts "You gave #{ARGV.size} arguments"
p ARGV

When we run it with arguments, we can see that they get passed in:

$ ruby cmd_line.rb ant bee cat dog
You gave 4 arguments
["ant", "bee", "cat", "dog"]

Often, the arguments to a program are the names of files that you want to process. In this
case, you can use a second technique: the variable ARGF is a special kind of I/O object that
acts like all the contents of all the files whose names are passed on the command line (or
standard input if you don’t pass any filenames). We’ll look at that some more in ARGF, on
page 213.

2.10 Onward and Upward

That’s it. We’ve finished our lightning-fast tour of some of the basic features of Ruby. We
took a look at objects, methods, strings, containers, and regular expressions; saw some simple
control structures; and looked at some rather nifty iterators. We hope this chapter has given
you enough ammunition to be able to attack the rest of this book.

It’s time to move on and move up—up to a higher level. Next, we’ll be looking at classes
and objects, things that are at the same time both the highest-level constructs in Ruby and
the essential underpinnings of the entire language.

Chapter 2. Ruby.new • 28

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 3

Classes, Objects, and Variables
From the examples we’ve shown so far, you may be wondering about our earlier assertion
that Ruby is an object-oriented language. Well, this chapter is where we justify that claim.
We’re going to be looking at how you create classes and objects in Ruby and at some of the
ways that Ruby is more powerful than most object-oriented languages.

As we saw on page 15, everything we manipulate in Ruby is an object. And every object in
Ruby was generated either directly or indirectly from a class. In this chapter, we’ll look in
more depth at creating and manipulating those classes.

Let’s give ourselves a simple problem to solve. Let’s say that we’re running a secondhand
bookstore. Every week, we do stock control. A gang of clerks uses portable bar-code scanners
to record every book on our shelves. Each scanner generates a simple comma-separated
value (CSV) file containing one row for each book scanned. The row contains (among other
things) the book’s ISBN and price. An extract from one of these files looks something like
this:

tut_classes/stock_stats/data.csv

"Date","ISBN","Price"
"2013-04-12","978-1-9343561-0-4",39.45
"2013-04-13","978-1-9343561-6-6",45.67
"2013-04-14","978-1-9343560-7-4",36.95

Our job is to take all the CSV files and work out how many of each title we have, as well as
the total list price of the books in stock.

Whenever you’re designing OO systems, a good first step is to identify the things you’re
dealing with. Typically each type of thing becomes a class in your final program, and the
things themselves are instances of these classes.

It seems pretty clear that we’ll need something to represent each data reading captured by
the scanners. Each instance of this will represent a particular row of data, and the collection
of all of these objects will represent all the data we’ve captured.

Let’s call this class BookInStock. (Remember, class names start with an uppercase letter, and
method names normally start with a lowercase letter.)

class BookInStock
end

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/tut_classes/stock_stats/data.csv
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

As we saw in the previous chapter, we can create new instances of this class using new:

a_book = BookInStock.new
another_book = BookInStock.new

After this code runs, we’d have two distinct objects, both of class BookInStock. But, besides
that they have different identities, these two objects are otherwise the same—there’s nothing
to distinguish one from the other. And, what’s worse, these objects actually don’t hold any
of the information we need them to hold.

The best way to fix this is to provide the objects with an initialize method. This lets us set the
state of each object as it is constructed. We store this state in instance variables inside the
object. (Remember instance variables? They’re the ones that start with an @ sign.) Because
each object in Ruby has its own distinct set of instance variables, each object can have its
own unique state.

So, here’s our updated class definition:

class BookInStock
def initialize(isbn, price)
@isbn = isbn
@price = Float(price)

end
end

initialize is a special method in Ruby programs. When you call BookInStock.new to create a new
object, Ruby allocates some memory to hold an uninitialized object and then calls that object’s
initializemethod, passing in any parameters that were passed to new. This gives you a chance
to write code that sets up your object’s state.

For class BookInStock, the initialize method takes two parameters. These parameters act just
like local variables within the method, so they follow the local variable naming convention
of starting with a lowercase letter. But, as local variables, they would just evaporate once
the initialize method returns, so we need to transfer them into instance variables. This is very
common behavior in an initialize method—the intent is to have our object set up and usable
by the time initialize returns.

This method also illustrates something that often trips up newcomers to Ruby. Notice how
we say @isbn = isbn. It’s easy to imagine that the two variables here, @isbn and isbn, are
somehow related—it looks like they have the same name. But they don’t. The former is an
instance variable, and the “at” sign is actually part of its name.

Finally, this code illustrates a simple piece of validation. The Floatmethod takes its argument
and converts it to a floating-point number,1 terminating the program with an error if that
conversion fails. (Later in the book we’ll see how to handle these exceptional situations.)
What we’re doing here is saying that we want to accept any object for the price parameter as
long as that parameter can be converted to a float. We can pass in a float, an integer, and
even a string containing the representation of a float, and it will work. Let’s try this now.
We’ll create three objects, each with different initial state. The pmethod prints out an internal
representation of an object. Using it, we can see that in each case our parameters got trans-
ferred into the object’s state, ending up as instance variables:

1. Yes, we know. We shouldn’t be holding prices in inexact old floats. Ruby has classes that hold fixed-
point values exactly, but we want to look at classes, not arithmetic, in this section.

Chapter 3. Classes, Objects, and Variables • 30

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

class BookInStock
def initialize(isbn, price)
@isbn = isbn
@price = Float(price)

end
end

b1 = BookInStock.new("isbn1", 3)
p b1

b2 = BookInStock.new("isbn2", 3.14)
p b2

b3 = BookInStock.new("isbn3", "5.67")
p b3

produces:

#<BookInStock:0x007fac4910f3e0 @isbn="isbn1", @price=3.0>
#<BookInStock:0x007fac4910f0c0 @isbn="isbn2", @price=3.14>
#<BookInStock:0x007fac4910eda0 @isbn="isbn3", @price=5.67>

Why did we use the p method to write out our objects, rather than puts? Well, let’s repeat
the code using puts:

class BookInStock
def initialize(isbn, price)
@isbn = isbn
@price = Float(price)

end
end

b1 = BookInStock.new("isbn1", 3)
puts b1

b2 = BookInStock.new("isbn2", 3.14)
puts b2

b3 = BookInStock.new("isbn3", "5.67")
puts b3

produces:

#<BookInStock:0x007fb424847468>
#<BookInStock:0x007fb424847238>
#<BookInStock:0x007fb424847058>

Remember, puts simply writes strings to your program’s standard output. When you pass
it an object based on a class you wrote, it doesn’t really know what to do with it, so it uses
a very simple expedient: it writes the name of the object’s class, followed by a colon and the
object’s unique identifier (a hexadecimal number). It puts the whole lot inside #<...>.

Our experience tells us that during development we’ll be printing out the contents of a
BookInStock object many times, and the default formatting leaves something to be desired.
Fortunately, Ruby has a standard message, to_s, that it sends to any object it wants to render
as a string. So, when we pass one of our BookInStock objects to puts, the puts method calls to_s

report erratum • discuss

Chapter 3. Classes, Objects, and Variables • 31

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

in that object to get its string representation. So, let’s override the default implementation
of to_s to give us a better rendering of our objects:

class BookInStock
def initialize(isbn, price)
@isbn = isbn
@price = Float(price)

end
def to_s
"ISBN: #{@isbn}, price: #{@price}"

end
end

b1 = BookInStock.new("isbn1", 3)
puts b1
b2 = BookInStock.new("isbn2", 3.14)
puts b2
b3 = BookInStock.new("isbn3", "5.67")
puts b3

produces:

ISBN: isbn1, price: 3.0
ISBN: isbn2, price: 3.14
ISBN: isbn3, price: 5.67

There’s something going on here that’s both trivial and profound. See how the values we
set into the instance variables @isbn and @price in the initialize method are subsequently
available in the to_s method? That shows how instance variables work—they’re stored with
each object and available to all the instance methods of those objects.

3.1 Objects and Attributes

The BookInStock objects we’ve created so far have an internal state (the ISBN and price). That
state is private to those objects—no other object can access an object’s instance variables. In
general, this is a Good Thing. It means that the object is solely responsible for maintaining
its own consistency.

However, an object that is totally secretive is pretty useless—you can create it, but then you
can’t do anything with it. You’ll normally define methods that let you access and manipulate
the state of an object, allowing the outside world to interact with the object. These externally
visible facets of an object are called its attributes.

For our BookInStock objects, the first thing we may need is the ability to find out the ISBN and
price (so we can count each distinct book and perform price calculations). One way of doing
that is to write accessor methods:

class BookInStock
def initialize(isbn, price)
@isbn = isbn
@price = Float(price)

end
def isbn
@isbn

end

Chapter 3. Classes, Objects, and Variables • 32

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

def price
@price

end
..

end

book = BookInStock.new("isbn1", 12.34)
puts "ISBN = #{book.isbn}"
puts "Price = #{book.price}"

produces:

ISBN = isbn1
Price = 12.34

Here we’ve defined two accessor methods to return the values of the two instance variables.
The method isbn, for example, returns the value of the instance variable @isbn (because the
last thing executed in the method is the expression that simply evaluates the@isbn variable).

Because writing accessor methods is such a common idiom, Ruby provides a convenient
shortcut. attr_reader creates these attribute reader methods for you:

class BookInStock

attr_reader :isbn, :price

def initialize(isbn, price)
@isbn = isbn
@price = Float(price)

end

..
end

book = BookInStock.new("isbn1", 12.34)
puts "ISBN = #{book.isbn}"
puts "Price = #{book.price}"

produces:

ISBN = isbn1
Price = 12.34

This is the first time we’ve used symbols in this chapter. As we discussed on page 21, symbols
are just a convenient way of referencing a name. In this code, you can think of :isbn as
meaning the name isbn and think of plain isbn as meaning the value of the variable. In this
example, we named the accessor methods isbn and price. The corresponding instance variables
are @isbn and @price. These accessor methods are identical to the ones we wrote by hand
earlier.

There’s a common misconception, particularly among people who come from languages
such as Java and C#, that the attr_reader declaration somehow declares instance variables. It
doesn’t. It creates the accessor methods, but the variables themselves don’t need to be declared
—they just pop into existence when you use them. Ruby completely decouples instance
variables and accessor methods, as we’ll see in Virtual Attributes, on page 35.

report erratum • discuss

Objects and Attributes • 33

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Writable Attributes

Sometimes you need to be able to set an attribute from outside the object. For example, let’s
assume that we have to discount the price of some titles after reading in the raw scan data.

In languages such as C# and Java, you’d do this with setter functions:

class JavaBookInStock { // Java code
private double _price;
public double getPrice() {
return _price;

}
public void setPrice(double newPrice) {
_price = newPrice;

}
}
b = new JavaBookInStock(....);
b.setPrice(calculate_discount(b.getPrice()));

In Ruby, the attributes of an object can be accessed as if they were any other variable. We
saw this earlier with phrases such as book.isbn. So, it seems natural to be able to assign to
these variables when you want to set the value of an attribute. You do that by creating a
Ruby method whose name ends with an equals sign. These methods can be used as the target
of assignments:

class BookInStock

attr_reader :isbn, :price

def initialize(isbn, price)
@isbn = isbn
@price = Float(price)

end

def price=(new_price)
@price = new_price

end

...
end

book = BookInStock.new("isbn1", 33.80)
puts "ISBN = #{book.isbn}"
puts "Price = #{book.price}"
book.price = book.price * 0.75 # discount price
puts "New price = #{book.price}"

produces:

ISBN = isbn1
Price = 33.8
New price = 25.349999999999998

The assignment book.price = book.price * 0.75 invokes the method price= in the book object,
passing it the discounted price as an argument. If you create a method whose name ends
with an equals sign, that name can appear on the left side of an assignment.

Chapter 3. Classes, Objects, and Variables • 34

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Again, Ruby provides a shortcut for creating these simple attribute-setting methods. If you
want a write-only accessor, you can use the form attr_writer, but that’s fairly rare. You’re far
more likely to want both a reader and a writer for a given attribute, so you’ll use the handy-
dandy attr_accessor method:

class BookInStock
attr_reader :isbn
attr_accessor :price

def initialize(isbn, price)
@isbn = isbn
@price = Float(price)

end
...

end

book = BookInStock.new("isbn1", 33.80)
puts "ISBN = #{book.isbn}"
puts "Price = #{book.price}"
book.price = book.price * 0.75 # discount price
puts "New price = #{book.price}"

produces:

ISBN = isbn1
Price = 33.8
New price = 25.349999999999998

Virtual Attributes

These attribute-accessing methods do not have to be just simple wrappers around an object’s
instance variables. For example, you may want to access the price as an exact number of
cents, rather than as a floating-point number of dollars.2

class BookInStock

attr_reader :isbn
attr_accessor :price

def initialize(isbn, price)
@isbn = isbn
@price = Float(price)

end

def price_in_cents
Integer(price*100 + 0.5)

end
...

end

2. We multiply the floating-point price by 100 to get the price in cents but then add 0.5 before converting
to an integer. Why? Because floating-point numbers don’t always have an exact internal representation.
When we multiply 33.8 by 100, we get 3379.99999999999954525265. The Integermethod would truncate
this to 3379. Adding 0.5 before calling Integer rounds up the floating-point value, ensuring we get the
best integer representation. This is a good example of why you want to use BigDecimal, not Float, in
financial calculations.

report erratum • discuss

Objects and Attributes • 35

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

book = BookInStock.new("isbn1", 33.80)
puts "Price = #{book.price}"
puts "Price in cents = #{book.price_in_cents}"

produces:

Price = 33.8
Price in cents = 3380

We can take this even further and allow people to assign to our virtual attribute, mapping
the value to the instance variable internally:

class BookInStock

attr_reader :isbn
attr_accessor :price

def initialize(isbn, price)
@isbn = isbn
@price = Float(price)

end

def price_in_cents
Integer(price*100 + 0.5)

end

def price_in_cents=(cents)
@price = cents / 100.0

end
...

end

book = BookInStock.new("isbn1", 33.80)
puts "Price = #{book.price}"
puts "Price in cents = #{book.price_in_cents}"
book.price_in_cents = 1234
puts "Price = #{book.price}"
puts "Price in cents = #{book.price_in_cents}"

produces:

Price = 33.8
Price in cents = 3380
Price = 12.34
Price in cents = 1234

Here we’ve used attribute methods to create a virtual instance variable. To the outside world,
price_in_cents seems to be an attribute like any other. Internally, though, it has no corresponding
instance variable.

This is more than a curiosity. In his landmark book Object-Oriented Software Construction
[Mey97], Bertrand Meyer calls this the Uniform Access Principle. By hiding the difference
between instance variables and calculated values, you are shielding the rest of the world
from the implementation of your class. You’re free to change how things work in the future
without impacting the millions of lines of code that use your class. This is a big win.

Chapter 3. Classes, Objects, and Variables • 36

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Attributes, Instance Variables, and Methods

This description of attributes may leave you thinking that they’re nothing more than methods
—why’d we need to invent a fancy name for them? In a way, that’s absolutely right. An
attribute is just a method. Sometimes an attribute simply returns the value of an instance
variable. Sometimes an attribute returns the result of a calculation. And sometimes those
funky methods with equals signs at the end of their names are used to update the state of
an object. So, the question is, where do attributes stop and regular methods begin? What
makes something an attribute and not just a plain old method? Ultimately, that’s one of
those “angels on a pinhead” questions. Here’s a personal take.

When you design a class, you decide what internal state it has and also decide how that state
is to appear on the outside (to users of your class). The internal state is held in instance
variables. The external state is exposed through methods we’re calling attributes. And the
other actions your class can perform are just regular methods. It really isn’t a crucially
important distinction, but by calling the external state of an object its attributes, you’re
helping clue people in to how they should view the class you’ve written.

3.2 Classes Working with Other Classes

Our original challenge was to read in data from multiple CSV files and produce various
simple reports. So far, all we have is BookInStock, a class that represents the data for one book.

During OO design, you identify external things and make them classes in your code. But
there’s another source of classes in your designs. There are the classes that correspond to
things inside your code itself. For example, we know that the program we’re writing will
need to consolidate and summarize CSV data feeds. But that’s a very passive statement.
Let’s turn it into a design by asking ourselveswhat does the summarizing and consolidating.
And the answer (in our case) is a CSV reader. Let’s make it into a class as follows:

class CsvReader
def initialize
...

end

def read_in_csv_data(csv_file_name)
...

end

def total_value_in_stock
...

end

def number_of_each_isbn
...

end
end

report erratum • discuss

Classes Working with Other Classes • 37

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

We’d call it using something like this:

reader = CsvReader.new
reader.read_in_csv_data("file1.csv")
reader.read_in_csv_data("file2.csv")

: : :
puts "Total value in stock = #{reader.total_value_in_stock}"

We need to be able to handle multiple CSV files, so our reader object needs to accumulate
the values from each CSV file it is fed. We’ll do that by keeping an array of values in an
instance variable. And how shall we represent each book’s data? Well, we just finished
writing the BookInStock class, so that problem is solved. The only other question is how we
parse data in a CSV file. Fortunately, Ruby comes with a good CSV library (which has a brief
description on page 741). Given a CSV file with a header line, we can iterate over the
remaining rows and extract values by name:

tut_classes/stock_stats/csv_reader.rb

class CsvReader
def initialize
@books_in_stock = []

end

def read_in_csv_data(csv_file_name)
CSV.foreach(csv_file_name, headers: true) do |row|
@books_in_stock << BookInStock.new(row["ISBN"], row["Price"])

end
end

end

Just because you’re probably wondering what’s going on, let’s dissect that read_in_csv_data
method. On the first line, we tell the CSV library to open the file with the given name. The
headers: true option tells the library to parse the first line of the file as the names of the columns.

The library then reads the rest of the file, passing each row in turn to the block (the code
between do and end).3 Inside the block, we extract the data from the ISBN and Price columns
and use that data to create a new BookInStock object. We then append that object to an instance
variable called @books_in_stock. And just where does that variable come from? It’s an array
that we created in the initialize method.

Again, this is the pattern you want to aim for. Your initialize method sets up an environment
for your object, leaving it in a usable state. Other methods then use that state.

So, let’s turn this from a code fragment into a working program. We’re going to organize
our source into three files. The first, book_in_stock.rb, will contain the definition of the class
BookInStock. The second, csv_reader.rb, is the source for the CsvReader class. Finally, a third file,
stock_stats.rb, is the main driver program. We’ll start with book_in_stock.rb:

3. If you encounter an error along the lines of "‘Float’: can’t convert nil into Float (TypeError)" when you
run this code, you likely have extra spaces at the end of the header line in your CSV data file. The CSV
library is pretty strict about the formats it accepts.

Chapter 3. Classes, Objects, and Variables • 38

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/tut_classes/stock_stats/csv_reader.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

tut_classes/stock_stats/book_in_stock.rb

class BookInStock
attr_reader :isbn, :price

def initialize(isbn, price)
@isbn = isbn
@price = Float(price)

end
end

Here’s the csv_reader.rb file. The CsvReader class has two external dependencies: it needs the
standard CSV library, and it needs the BookInStock class that’s in the file book_in_stock.rb. Ruby
has a couple of helper methods that let us load external files. In this file, we use require to
load in the Ruby CSV library and require_relative to load in the book_in_stock file we wrote. (We
use require_relative for this because the location of the file we’re loading is relative to the file
we’re loading it from—they’re both in the same directory.)

tut_classes/stock_stats/csv_reader.rb

require 'csv'
require_relative 'book_in_stock'

class CsvReader
def initialize
@books_in_stock = []

end

def read_in_csv_data(csv_file_name)
CSV.foreach(csv_file_name, headers: true) do |row|
@books_in_stock << BookInStock.new(row["ISBN"], row["Price"])

end
end
def total_value_in_stock # later we'll see how to use inject to sum a collection
sum = 0.0
@books_in_stock.each {|book| sum += book.price}
sum

end

def number_of_each_isbn
...

end
end

And finally, here’s our main program, in the file stock_stats.rb:

tut_classes/stock_stats/stock_stats.rb

require_relative 'csv_reader'

reader = CsvReader.new

ARGV.each do |csv_file_name|
STDERR.puts "Processing #{csv_file_name}"
reader.read_in_csv_data(csv_file_name)

end

puts "Total value = #{reader.total_value_in_stock}"

report erratum • discuss

Classes Working with Other Classes • 39

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/tut_classes/stock_stats/book_in_stock.rb
http://media.pragprog.com/titles/ruby4/code/tut_classes/stock_stats/csv_reader.rb
http://media.pragprog.com/titles/ruby4/code/tut_classes/stock_stats/stock_stats.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Again, this file uses require_relative to bring in the library it needs (in this case, the csv_reader.rb
file). It uses the ARGV variable to access the program’s command-line arguments, loading
CSV data for each file specified on the command line.

We can run this program using the simple CSV data file as we showed on page 29:

$ ruby stock_stats.rb data.csv
Processing data.csv
Total value = 122.07000000000001

Do we need three source files for this? No. In fact, most Ruby developers would probably
start off by sticking all this code into a single file—it would contain both class definitions as
well as the driver code. But as your programs grow (and almost all programs grow over
time), you’ll find that this starts to get cumbersome. You’ll also find it harder to write auto-
mated tests against the code if it is in a monolithic chunk. Finally, you won’t be able to reuse
classes if they’re all bundled into the final program.

Anyway, let’s get back to our discussion of classes.

3.3 Access Control

When designing a class interface, it’s important to consider just how much of your class
you’ll be exposing to the outside world. Allow too much access into your class, and you risk
increasing the coupling in your application—users of your class will be tempted to rely on
details of your class’s implementation, rather than on its logical interface. The good news is
that the only easy way to change an object’s state in Ruby is by calling one of its methods.
Control access to the methods, and you’ve controlled access to the object. A good rule of
thumb is never to expose methods that could leave an object in an invalid state.

Ruby gives you three levels of protection:

• Public methods can be called by anyone—no access control is enforced. Methods are
public by default (except for initialize, which is always private).

• Protected methods can be invoked only by objects of the defining class and its subclasses.
Access is kept within the family.

• Private methods cannot be called with an explicit receiver—the receiver is always the
current object, also known as self. This means that private methods can be called only
in the context of the current object; you can’t invoke another object’s private methods.

The difference between “protected” and “private” is fairly subtle and is different in Ruby
than in most common OO languages. If a method is protected, it may be called by any instance
of the defining class or its subclasses. If a method is private, it may be called only within the
context of the calling object—it is never possible to access another object’s private methods
directly, even if the object is of the same class as the caller.

Ruby differs from other OO languages in another important way. Access control is determined
dynamically, as the program runs, not statically. You will get an access violation only when
the code attempts to execute the restricted method.

Chapter 3. Classes, Objects, and Variables • 40

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Specifying Access Control

You specify access levels to methods within class or module definitions using one or more
of the three functions public, protected, and private. You can use each function in two different
ways.

If used with no arguments, the three functions set the default access control of subsequently
defined methods. This is probably familiar behavior if you’re a C++ or Java programmer,
where you’d use keywords such as public to achieve the same effect:

class MyClass

def method1 # default is 'public'
#...

end

protected # subsequent methods will be 'protected'
def method2 # will be 'protected'
#...

end

private # subsequent methods will be 'private'
def method3 # will be 'private'
#...

end

public # subsequent methods will be 'public'
def method4 # so this will be 'public'
#...

end
end

Alternatively, you can set access levels of named methods by listing them as arguments to
the access control functions:

class MyClass
def method1
end
def method2
end
... and so on

public :method1, :method4
protected :method2
private :method3

end

It’s time for some examples. Perhaps we’re modeling an accounting system where every
debit has a corresponding credit. Because we want to ensure that no one can break this rule,
we’ll make the methods that do the debits and credits private, and we’ll define our external
interface in terms of transactions.

report erratum • discuss

Access Control • 41

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

class Account
attr_accessor :balance
def initialize(balance)
@balance = balance

end
end

class Transaction

def initialize(account_a, account_b)
@account_a = account_a
@account_b = account_b

end

private

def debit(account, amount)
account.balance -= amount

end
def credit(account, amount)
account.balance += amount

end

public

#...
def transfer(amount)
debit(@account_a, amount)
credit(@account_b, amount)

end
#...

end

savings = Account.new(100)
checking = Account.new(200)

trans = Transaction.new(checking, savings)
trans.transfer(50)

Protected access is used when objects need to access the internal state of other objects of the
same class. For example, we may want to allow individual Account objects to compare their
cleared balances but to hide those balances from the rest of the world (perhaps because we
present them in a different form):

class Account
attr_reader :cleared_balance # accessor method 'cleared_balance'
protected :cleared_balance # but make it protected

def greater_balance_than?(other)
@cleared_balance > other.cleared_balance

end
end

Because cleared_balance is protected, it’s available only within Account objects.

Chapter 3. Classes, Objects, and Variables • 42

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

3.4 Variables

Now that we’ve gone to the trouble to create all these objects, let’s make sure we don’t lose
them. Variables are used to keep track of objects; each variable holds a reference to an object.
Let’s confirm this with some code:

person = "Tim"
puts "The object in 'person' is a #{person.class}"
puts "The object has an id of #{person.object_id}"
puts "and a value of '#{person}'"

produces:

The object in 'person' is a String
The object has an id of 70230663692980
and a value of 'Tim'

On the first line, Ruby creates a new string object with the value Tim. A reference to this
object is placed in the local variable person. A quick check shows that the variable has indeed
taken on the personality of a string, with an object ID, a class, and a value.

So, is a variable an object? In Ruby, the answer is “no.” A variable is simply a reference to
an object. Objects float around in a big pool somewhere (the heap, most of the time) and are
pointed to by variables. Let’s make the example slightly more complicated:

person1 = "Tim"
person2 = person1
person1[0] = 'J'

puts "person1 is #{person1}"
puts "person2 is #{person2}"

produces:

person1 is Jim
person2 is Jim

What happened here? We changed the first character of person1 (Ruby strings are mutable,
unlike Java), but both person1 and person2 changed from Tim to Jim.

It all comes back to the fact that variables hold references to objects, not the objects themselves.
Assigning person1 to person2 doesn’t create any new objects; it simply copies person1’s object
reference to person2 so that both person1 and person2 refer to the same object.

Tim

Stringperson1

person1 = "Tim"

Tim

Stringperson1

person2

person2 = person1

Jim

Stringperson1

person2

person1[0] = "J"

report erratum • discuss

Variables • 43

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Assignment aliases objects, potentially giving you multiple variables that reference the same
object. But can’t this cause problems in your code? It can, but not as often as you’d think
(objects in Java, for example, work exactly the same way). In the previous example, for
instance, you could avoid aliasing by using the dup method of String, which creates a new
string object with identical contents:

person1 = "Tim"
person2 = person1.dup
person1[0] = "J"
puts "person1 is #{person1}"
puts "person2 is #{person2}"

produces:

person1 is Jim
person2 is Tim

You can also prevent anyone from changing a particular object by freezing it. Attempt to
alter a frozen object, and Ruby will raise a RuntimeError exception:

person1 = "Tim"
person2 = person1
person1.freeze # prevent modifications to the object
person2[0] = "J"

produces:

from prog.rb:4:in `<main>'
prog.rb:4:in `[]=': can't modify frozen String (RuntimeError)

There’s more to say about classes and objects in Ruby. We still have to look at class methods
and at concepts such as mixins and inheritance. We’ll do that in Chapter 5, Sharing Function-
ality: Inheritance, Modules, and Mixins, on page 69. But, for now, know that everything you
manipulate in Ruby is an object and that objects start life as instances of classes. And one of
the most common things we do with objects is create collections of them. But that’s the
subject of our next chapter.

Chapter 3. Classes, Objects, and Variables • 44

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 4

Containers, Blocks, and Iterators
Most real programs deal with collections of data: the people in a course, the songs in your
playlist, the books in the store. Ruby comes with two built-in classes to handle these collec-
tions: arrays and hashes.1 Mastery of these two classes is key to being an effective Ruby
programmer. This mastery may take some time, because both classes have large interfaces.

But it isn’t just these classes that give Ruby its power when dealing with collections. Ruby
also has a block syntax that lets you encapsulate chunks of code. When paired with collections,
these blocks become powerful iterator constructs. In this chapter, we’ll look at the two col-
lection classes as well as blocks and iterators.

4.1 Arrays

The class Array holds a collection of object references. Each object reference occupies a position
in the array, identified by a non-negative integer index.

You can create arrays by using literals or by explicitly creating an Array object. A literal array
is simply a list of objects between square brackets.2

a = [3.14159, "pie", 99]
a.class # => Array
a.length # => 3
a[0] # => 3.14159
a[1] # => "pie"
a[2] # => 99
a[3] # => nil

b = Array.new
b.class # => Array
b.length # => 0
b[0] = "second"
b[1] = "array"
b # => ["second", "array"]

1. Some languages call hashes associative arrays or dictionaries.
2. In the code examples that follow, we’re often going to show the value of expressions such as a[0] in a

comment at the end of the line. If you simply typed this fragment of code into a file and executed it
using Ruby, you’d see no output—you’d need to add something like a call to puts to have the values
written to the console.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Arrays are indexed using the [] operator. As with most Ruby operators, this is actually a
method (an instance method of class Array) and hence can be overridden in subclasses. As
the example shows, array indices start at zero. Index an array with a non-negative integer,
and it returns the object at that position or returns nil if nothing is there. Index an array with
a negative integer, and it counts from the end.

a = [1, 3, 5, 7, 9]
a[-1] # => 9
a[-2] # => 7
a[-99] # => nil

The following diagram shows this a different way.

"cat"a[2]

"elk"a[-3]

"elk", "fly", "gnu"a[-3..-1] []

positive

negative

0 1 2 3 4 5 6

-7 -6 -5 -4 -3 -2 -1

"elk", "fly"a[4..-2] []

"bat", "cat"a[1...3] []

"bat", "cat", "dog"a[1..3] []

"ant", "bat", "cat", "dog", "elk", "fly", "gnu"a = []

You can also index arrays with a pair of numbers, [start,count]. This returns a new array
consisting of references to count objects starting at position start:

a = [1, 3, 5, 7, 9]
a[1, 3] # => [3, 5, 7]
a[3, 1] # => [7]
a[-3, 2] # => [5, 7]

Finally, you can index arrays using ranges, in which start and end positions are separated
by two or three periods. The two-period form includes the end position; the three-period
form does not:

a = [1, 3, 5, 7, 9]
a[1..3] # => [3, 5, 7]
a[1...3] # => [3, 5]
a[3..3] # => [7]
a[-3..-1] # => [5, 7, 9]

The [] operator has a corresponding []= operator, which lets you set elements in the array.
If used with a single integer index, the element at that position is replaced by whatever is
on the right side of the assignment. Any gaps that result will be filled with nil:

a = [1, 3, 5, 7, 9] #=> [1, 3, 5, 7, 9]
a[1] = 'bat' #=> [1, "bat", 5, 7, 9]
a[-3] = 'cat' #=> [1, "bat", "cat", 7, 9]
a[3] = [9, 8] #=> [1, "bat", "cat", [9, 8], 9]
a[6] = 99 #=> [1, "bat", "cat", [9, 8], 9, nil, 99]

Chapter 4. Containers, Blocks, and Iterators • 46

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

If the index to []= is two numbers (a start and a length) or a range, then those elements in
the original array are replaced by whatever is on the right side of the assignment. If the
length is zero, the right side is inserted into the array before the start position; no elements
are removed. If the right side is itself an array, its elements are used in the replacement. The
array size is automatically adjusted if the index selects a different number of elements than
are available on the right side of the assignment.

a = [1, 3, 5, 7, 9] #=> [1, 3, 5, 7, 9]
a[2, 2] = 'cat' #=> [1, 3, "cat", 9]
a[2, 0] = 'dog' #=> [1, 3, "dog", "cat", 9]
a[1, 1] = [9, 8, 7] #=> [1, 9, 8, 7, "dog", "cat", 9]
a[0..3] = [] #=> ["dog", "cat", 9]
a[5..6] = 99, 98 #=> ["dog", "cat", 9, nil, nil, 99, 98]

Arrays have a large number of other useful methods. Using them, you can treat arrays as
stacks, sets, queues, dequeues, and FIFO queues.

For example, push and pop add and remove elements from the end of an array, so you can
use the array as a stack:

stack = []
stack.push "red"
stack.push "green"
stack.push "blue"
stack # => ["red", "green", "blue"]

stack.pop # => "blue"
stack.pop # => "green"
stack.pop # => "red"
stack # => []

Similarly, unshift and shift add and remove elements from the head of an array. Combine shift
and push, and you have a first-in first-out (FIFO) queue.

queue = []
queue.push "red"
queue.push "green"
queue.shift # => "red"
queue.shift # => "green"

The first and last methods return (but don’t remove) the n entries at the head or end of an
array.

array = [1, 2, 3, 4, 5, 6, 7]
array.first(4) # => [1, 2, 3, 4]
array.last(4) # => [4, 5, 6, 7]

The reference section lists the methods in class Array on page 421. It is well worth firing up
irb and playing with them.

4.2 Hashes

Hashes (sometimes known as associative arrays, maps, or dictionaries) are similar to arrays in
that they are indexed collections of object references. However, while you index arrays with
integers, you index a hash with objects of any type: symbols, strings, regular expressions,
and so on. When you store a value in a hash, you actually supply two objects—the index,

report erratum • discuss

Hashes • 47

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

which is normally called the key, and the entry to be stored with that key. You can subse-
quently retrieve the entry by indexing the hash with the same key value that you used to
store it.

The example that follows uses hash literals—a list of key value pairs between braces:

h = { 'dog' => 'canine', 'cat' => 'feline', 'donkey' => 'asinine' }

h.length # => 3
h['dog'] # => "canine"
h['cow'] = 'bovine'
h[12] = 'dodecine'
h['cat'] = 99
h # => {"dog"=>"canine", "cat"=>99, "donkey"=>"asinine", "cow"=>"bovine",

.. 12=>"dodecine"}

In the previous example, the hash keys were strings, and the hash literal used => to separate
the keys from the values. From Ruby 1.9, there is a new shortcut you can use if the keys are
symbols. In that case, you can still use => to separate keys from values:

h = { :dog => 'canine', :cat => 'feline', :donkey => 'asinine' }

but you can also write the literal by moving the colon to the end of the symbol and dropping
the =>:

h = { dog: 'canine', cat: 'feline', donkey: 'asinine' }

Compared with arrays, hashes have one significant advantage: they can use any object as
an index. And you’ll find something that might be surprising: Ruby remembers the order
in which you add items to a hash. When you subsequently iterate over the entries, Ruby will
return them in that order.

You’ll find that hashes are one of the most commonly used data structures in Ruby. The
reference section has a list of the methods implemented by class Hash on page 521.

Word Frequency: Using Hashes and Arrays

Let’s round off this section with a simple program that calculates the number of times each
word occurs in some text. (So, for example, in this sentence, the word the occurs two times.)

The problem breaks down into two parts. First, given some text as a string, return a list of
words. That sounds like an array. Then, build a count for each distinct word. That sounds
like a use for a hash—we can index it with the word and use the corresponding entry to
keep a count.

Let’s start with the method that splits a string into words:

tut_containers/word_freq/words_from_string.rb

def words_from_string(string)
string.downcase.scan(/[\w']+/)

end

This method uses two very useful string methods: downcase returns a lowercase version of
a string, and scan returns an array of substrings that match a given pattern. In this case, the
pattern is [\w']+, which matches sequences containing “word characters” and single quotes.

We can play with this method. Notice how the result is an array:

Chapter 4. Containers, Blocks, and Iterators • 48

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/tut_containers/word_freq/words_from_string.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

p words_from_string("But I didn't inhale, he said (emphatically)")

produces:

["but", "i", "didn't", "inhale", "he", "said", "emphatically"]

Our next task is to calculate word frequencies. To do this, we’ll create a hash object indexed
by the words in our list. Each entry in this hash stores the number of times that word occurred.
Let’s say we already have read part of the list, and we have seen the word the already. Then
we’d have a hash that contained this:

{ ..., "the" => 1, ... }

If the variable next_word contained the word the, then incrementing the count is as simple as
this:

counts[next_word] += 1

We’d then end up with a hash containing the following:

{ ..., "the" => 2, ... }

Our only problem is what to do when we encounter a word for the first time. We’ll try to
increment the entry for that word, but there won’t be one, so our program will fail. There
are a number of solutions to this. One is to check to see whether the entry exists before doing
the increment:

if counts.has_key?(next_word)
counts[next_word] += 1

else
counts[next_word] = 1

end

However, there’s a tidier way. If we create a hash object using Hash.new(0), the parameter, 0
in this case, will be used as the hash’s default value—it will be the value returned if you look
up a key that isn’t yet in the hash. Using that, we can write our count_frequency method:

tut_containers/word_freq/count_frequency.rb

def count_frequency(word_list)
counts = Hash.new(0)
for word in word_list
counts[word] += 1

end
counts

end

p count_frequency(["sparky", "the", "cat", "sat", "on", "the", "mat"])

produces:

{"sparky"=>1, "the"=>2, "cat"=>1, "sat"=>1, "on"=>1, "mat"=>1}

One little job left. The hash containing the word frequencies is ordered based on the first
time it sees each word. It would be better to display the results based on the frequencies of
the words. We can do that using the hash’s sort_by method. When you use sort_by, you give
it a block that tells the sort what to use when making comparisons. In our case, we’ll just
use the count. The result of the sort is an array containing a set of two-element arrays, with
each subarray corresponding to a key/entry pair in the original hash. This makes our whole
program:

report erratum • discuss

Hashes • 49

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/tut_containers/word_freq/count_frequency.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

require_relative "words_from_string.rb"
require_relative "count_frequency.rb"

raw_text = %{The problem breaks down into two parts. First, given some text
as a string, return a list of words. That sounds like an array. Then, build
a count for each distinct word. That sounds like a use for a hash---we can
index it with the word and use the corresponding entry to keep a count.}

word_list = words_from_string(raw_text)
counts = count_frequency(word_list)
sorted = counts.sort_by {|word, count| count}
top_five = sorted.last(5)

for i in 0...5 # (this is ugly code--read on
word = top_five[i][0] # for a better version)
count = top_five[i][1]
puts "#{word}: #{count}"

end

produces:

that: 2
sounds: 2
like: 2
the: 3
a: 6

At this point, a quick test may be in order. To do this, we’re going to use a testing framework
called Test::Unit that comes with the standard Ruby distributions. We won’t describe it fully
yet (we do that in Chapter 13, Unit Testing, on page 175). For now, we’ll just say that the
method assert_equal checks that its two parameters are equal, complaining bitterly if they
aren’t. We’ll use assertions to test our two methods, one method at a time. (That’s one reason
why we wrote them as separate methods—it makes them testable in isolation.)

Here are some tests for the word_from_string method:

require_relative 'words_from_string'
require 'test/unit'

class TestWordsFromString < Test::Unit::TestCase

def test_empty_string
assert_equal([], words_from_string(""))
assert_equal([], words_from_string(" "))

end

def test_single_word
assert_equal(["cat"], words_from_string("cat"))
assert_equal(["cat"], words_from_string(" cat "))

end

def test_many_words
assert_equal(["the", "cat", "sat", "on", "the", "mat"],

words_from_string("the cat sat on the mat"))
end

Chapter 4. Containers, Blocks, and Iterators • 50

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

def test_ignores_punctuation
assert_equal(["the", "cat's", "mat"],

words_from_string("<the!> cat's, -mat-"))
end

end

produces:

Run options:
Running tests:
....
Finished tests in 0.006458s, 619.3868 tests/s, 929.0802 assertions/s.
4 tests, 6 assertions, 0 failures, 0 errors, 0 skips

ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

The test starts by requiring the source file containing our words_from_string method, along
with the unit test framework itself. It then defines a test class. Within that class, any methods
whose names start with test are automatically run by the testing framework. The results
show that four test methods ran, successfully executing six assertions.

We can also test that our count of word frequency works:

require_relative 'count_frequency'
require 'test/unit'

class TestCountFrequency < Test::Unit::TestCase
def test_empty_list
assert_equal({}, count_frequency([]))

end
def test_single_word
assert_equal({"cat" => 1}, count_frequency(["cat"]))

end
def test_two_different_words
assert_equal({"cat" => 1, "sat" => 1}, count_frequency(["cat", "sat"]))

end
def test_two_words_with_adjacent_repeat
assert_equal({"cat" => 2, "sat" => 1}, count_frequency(["cat", "cat", "sat"]))

end
def test_two_words_with_non_adjacent_repeat
assert_equal({"cat" => 2, "sat" => 1}, count_frequency(["cat", "sat", "cat"]))

end
end

produces:

Run options:
Running tests:
.....
Finished tests in 0.006327s, 790.2639 tests/s, 790.2639 assertions/s.
5 tests, 5 assertions, 0 failures, 0 errors, 0 skips

ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

report erratum • discuss

Hashes • 51

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

4.3 Blocks and Iterators

In our program that wrote out the results of our word frequency analysis, we had the follow-
ing loop:

for i in 0..4
word = top_five[i][0]
count = top_five[i][1]
puts "#{word}: #{count}"

end

This works, and it looks comfortingly familiar: a for loop iterating over an array. What could
be more natural?

It turns out there is something more natural. In a way, our for loop is somewhat too intimate
with the array; it magically knows that we’re iterating over five elements, and it retrieves
values in turn from the array. To do this, it has to know that the structure it is working with
is an array of two-element subarrays. This is a whole lot of coupling.

Instead, we could write this code like this:

top_five.each do |word, count|
puts "#{word}: #{count}"

end

The method each is an iterator—a method that invokes a block of code repeatedly. In fact,
some Ruby programmers might write this more compactly as this:

puts top_five.map { |word, count| "#{word}: #{count}" }

Just how far you take this is a matter of taste. However you use them, iterators and code
blocks are among the more interesting features of Ruby, so let’s spend a while looking into
them.

Blocks

A block is simply a chunk of code enclosed between either braces or the keywords do and
end. The two forms are identical except for precedence, which we’ll see in a minute. All things
being equal, the current Ruby style seems to favor using braces for blocks that fit on one line
and do/end when a block spans multiple lines:

some_array.each {|value| puts value * 3 }

sum = 0
other_array.each do |value|
sum += value
puts value / sum

end

You can think of a block as being somewhat like the body of an anonymous method. Just
like a method, the block can take parameters (but, unlike a method, those parameters appear
at the start of the block between vertical bars). Both the blocks in the preceding example take
a single parameter, value. And, just like a method, the body of a block is not executed when
Ruby first sees it. Instead, the block is saved away to be called later.

Chapter 4. Containers, Blocks, and Iterators • 52

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Blocks can appear in Ruby source code only immediately after the invocation of some method.
If the method takes parameters, the block appears after these parameters. In a way, you can
almost think of the block as being one extra parameter, passed to that method. Let’s look at
a simple example that sums the squares of the numbers in an array:

sum = 0
[1, 2, 3, 4].each do |value|
square = value * value
sum += square

end
puts sum

produces:

30

The block is being called by the eachmethod once for each element in the array. The element
is passed to the block as the value parameter. But there’s something subtle going on, too.
Take a look at the sum variable. It’s declared outside the block, updated inside the block, and
then passed to puts after the each method returns.

This illustrates an important rule: if there’s a variable inside a block with the same name as
a variable in the same scope outside the block, the two are the same—there’s only one variable
sum in the preceding program. (You can override this behavior, as we’ll see later.)

If, however, a variable appears only inside a block, then that variable is local to the block—
in the preceding program, we couldn’t have written the value of square at the end of the code,
because square is not defined at that point. It is defined only inside the block itself.

Although simple, this behavior can lead to unexpected problems. For example, say our
program was dealing with drawing different shapes. We might have this:

square = Shape.new(sides: 4) # assume Shape defined elsewhere

.. lots of code

sum = 0

[1, 2, 3, 4].each do |value|
square = value * value
sum += square

end

puts sum

square.draw # BOOM!

This code would fail, because the variable square, which originally held a Shape object, will
have been overwritten inside the block and will hold a number by the time the each method
returns. This problem doesn’t bite often, but when it does, it can be very confusing.

Fortunately, Ruby has a couple of answers.

First, parameters to a block are always local to a block, even if they have the same name as
locals in the surrounding scope. (You’ll get a warning message if you run Ruby with the -w
option.)

report erratum • discuss

Blocks and Iterators • 53

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

value = "some shape"
[1, 2].each {|value| puts value }
puts value

produces:

1
2
some shape

Second, you can define block-local variables by putting them after a semicolon in the block’s
parameter list. So, in our sum-of-squares example, we should have indicated that the square
variable was block-local by writing it as follows:

square = "some shape"

sum = 0
[1, 2, 3, 4].each do |value; square|
square = value * value # this is a different variable
sum += square

end
puts sum
puts square

produces:

30
some shape

By making square block-local, values assigned inside the block will not affect the value of
the variable with the same name in the outer scope.

Implementing Iterators

A Ruby iterator is simply a method that can invoke a block of code.

We said that a block may appear only in the source adjacent to a method call and that the
code in the block is not executed at the time it is encountered. Instead, Ruby remembers the
context in which the block appears (the local variables, the current object, and so on) and
then enters the method. This is where the magic starts.

Within the method, the block may be invoked, almost as if it were a method itself, using the
yield statement. Whenever a yield is executed, it invokes the code in the block. When the block
exits, control picks back up immediately after the yield.3 Let’s start with a trivial example:

def two_times
yield
yield

end
two_times { puts "Hello" }

produces:

Hello
Hello

3. Programming-language buffs will be pleased to know that the keyword yield was chosen to echo the
yield function in Liskov’s language CLU, a language that is more than thirty years old and yet contains
features that still haven’t been widely exploited by the CLU-less.

Chapter 4. Containers, Blocks, and Iterators • 54

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

The block (the code between the braces) is associated with the call to the two_times method.
Within this method, yield is called two times. Each time, it invokes the code in the block, and
a cheery greeting is printed. What makes blocks interesting, however, is that you can pass
parameters to them and receive values from them. For example, we could write a simple
function that returns members of the Fibonacci series up to a certain value:4

def fib_up_to(max)
i1, i2 = 1, 1 # parallel assignment (i1 = 1 and i2 = 1)
while i1 <= max
yield i1
i1, i2 = i2, i1+i2

end
end

fib_up_to(1000) {|f| print f, " " }

puts

produces:

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

In this example, the yield statement has a parameter. This value is passed to the associated
block. In the definition of the block, the argument list appears between vertical bars. In this
instance, the variable f receives the value passed to yield, so the block prints successive
members of the series. (This example also shows parallel assignment in action. We’ll come
back to this later on page 130.) Although it is common to pass just one value to a block, this
is not a requirement; a block may have any number of arguments.

Some iterators are common to many types of Ruby collections. Let’s look at three: each, collect,
and find.

each is probably the simplest iterator—all it does is yield successive elements of its collection:

[1, 3, 5, 7, 9].each {|i| puts i }

produces:

1
3
5
7
9

The each iterator has a special place in Ruby; we’ll describe how it’s used as the basis of the
language’s for loop on page 140, and we’ll see on page 77 how defining an each method can
add a whole lot more functionality to the classes you write–for free.

A block may also return a value to the method. The value of the last expression evaluated
in the block is passed back to the method as the value of the yield. This is how the findmethod
used by class Array works.5 Its implementation would look something like the following:

4. The basic Fibonacci series is a sequence of integers, starting with two 1s, in which each subsequent
term is the sum of the two preceding terms. The series is sometimes used in sorting algorithms and in
analyzing natural phenomena.

5. The find method is actually defined in module Enumerable, which is mixed into class Array.

report erratum • discuss

Blocks and Iterators • 55

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

class Array
def find
each do |value|
return value if yield(value)

end
nil

end
end

[1, 3, 5, 7, 9].find {|v| v*v > 30 } # => 7

This uses each to pass successive elements of the array to the associated block. If the block
returns true (that is, a value other than nil or false), the method returns the corresponding
element. If no element matches, the method returns nil. The example shows the benefit of
this approach to iterators. The Array class does what it does best, accessing array elements,
and leaves the application code to concentrate on its particular requirement (in this case,
finding an entry that meets some criteria).

Another common iterator is collect (also known as map), which takes each element from the
collection and passes it to the block. The results returned by the block are used to construct
a new array. The following example uses the succ method, which increments a string value:

["H", "A", "L"].collect {|x| x.succ } # => ["I", "B", "M"]

Iterators are not limited to accessing existing data in arrays and hashes. As we saw in the
Fibonacci example, an iterator can return derived values. This capability is used by Ruby’s
input and output classes, which implement an iterator interface that returns successive lines
(or bytes) in an I/O stream:

f = File.open("testfile")
f.each do |line|
puts "The line is: #{line}"

end
f.close

produces:

The line is: This is line one
The line is: This is line two
The line is: This is line three
The line is: And so on...

Sometimes you want to keep track of how many times you’ve been through the block. The
with_index method is your friend. It is added as an additional method call after an iterator,
and adds a sequence number to each value returned by that iterator. The original value and
that sequence number are then passed to the block:

f = File.open("testfile")
f.each.with_index do |line, index|
puts "Line #{index} is: #{line}"

end
f.close

produces:

Line 0 is: This is line one
Line 1 is: This is line two

Chapter 4. Containers, Blocks, and Iterators • 56

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Line 2 is: This is line three
Line 3 is: And so on...

Let’s look at one more useful iterator. The (somewhat obscurely named) injectmethod (defined
in the module Enumerable) lets you accumulate a value across the members of a collection.
For example, you can sum all the elements in an array and find their product using code
such as this:

[1,3,5,7].inject(0) {|sum, element| sum+element} # => 16
[1,3,5,7].inject(1) {|product, element| product*element} # => 105

injectworks like this: the first time the associated block is called, sum is set to inject’s parameter,
and element is set to the first element in the collection. The second and subsequent times the
block is called, sum is set to the value returned by the block on the previous call. The final
value of inject is the value returned by the block the last time it was called. One more thing:
if inject is called with no parameter, it uses the first element of the collection as the initial
value and starts the iteration with the second value. This means that we could have written
the previous examples like this:

[1,3,5,7].inject {|sum, element| sum+element} # => 16
[1,3,5,7].inject {|product, element| product*element} # => 105

And, just to add to the mystique of inject, you can also give it the name of the method you
want to apply to successive elements of the collection. These examples work because, in
Ruby, addition and multiplication are simply methods on numbers, and :+ is the symbol
corresponding to the method +:

[1,3,5,7].inject(:+) # => 16
[1,3,5,7].inject(:*) # => 105

Enumerators—External Iterators

Let’s spend a paragraph comparing Ruby’s approach to iterators to that of languages such
as C++ and Java. In Ruby, the basic iterator is internal to the collection—it’s simply a method,
identical to any other, that happens to call yieldwhenever it generates a new value. The thing
that uses the iterator is just a block of code associated with a call to this method.

In other languages, collections don’t contain their own iterators. Instead, they implement
methods that generate external helper objects (for example, those based on Java’s Iterator
interface) that carry the iterator state. In this, as in many other ways, Ruby is a transparent
language. When you write a Ruby program, you concentrate on getting the job done, not on
building scaffolding to support the language itself.

It’s also worth spending another paragraph looking at why Ruby’s internal iterators aren’t
always the best solution. One area where they fall down badly is where you need to treat
an iterator as an object in its own right (for example, passing the iterator into a method that
needs to access each of the values returned by that iterator). It’s also difficult to iterate over
two collections in parallel using Ruby’s internal iterator scheme.

Fortunately, Ruby comes with a built-in Enumerator class, which implements external iterators
in Ruby for just such occasions.

You can create an Enumerator object by calling the to_enum method (or its synonym, enum_for)
on a collection such as an array or a hash:

report erratum • discuss

Blocks and Iterators • 57

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

a = [1, 3, "cat"]
h = { dog: "canine", fox: "vulpine" }

Create Enumerators
enum_a = a.to_enum
enum_h = h.to_enum

enum_a.next # => 1
enum_h.next # => [:dog, "canine"]
enum_a.next # => 3
enum_h.next # => [:fox, "vulpine"]

Most of the internal iterator methods—the ones that normally yield successive values to a
block—will also return an Enumerator object if called without a block:

a = [1, 3, "cat"]

enum_a = a.each # create an Enumerator using an internal iterator

enum_a.next # => 1
enum_a.next # => 3

Ruby has a method called loop that does nothing but repeatedly invoke its block. Typically,
your code in the block will break out of the loop when some condition occurs. But loop is
also smart when you use an Enumerator—when an enumerator object runs out of values inside
a loop, the loop will terminate cleanly. The following example shows this in action—the loop
ends when the three-element enumerator runs out of values.6

short_enum = [1, 2, 3].to_enum
long_enum = ('a'..'z').to_enum

loop do
puts "#{short_enum.next} - #{long_enum.next}"

end

produces:

1 - a
2 - b
3 - c

Enumerators Are Objects

Enumerators take something that’s normally executable code (the act of iterating) and turn
it into an object. This means you can do things programmatically with enumerators that
aren’t easily done with regular loops.

For example, the Enumerable module defines each_with_index. This invokes its host class’s each
Method, returning successive values along with an index:

result = []
['a', 'b', 'c'].each_with_index {|item, index| result << [item, index] }
result # => [["a", 0], ["b", 1], ["c", 2]]

6. You can also handle this in your own iterator methods by rescuing the StopIteration exception, but because
we haven’t talked about exceptions yet, we won’t go into details here.

Chapter 4. Containers, Blocks, and Iterators • 58

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

But what if you wanted to iterate and receive an index but use a different method than each
to control that iteration? For example, you might want to iterate over the characters in a
string. There’s no method called each_char_with_index built into the String class.

Enumerators to the rescue. The each_charmethod of strings will return an enumerator if you
don’t give it a block, and you can then call each_with_index on that enumerator:

result = []
"cat".each_char.each_with_index {|item, index| result << [item, index] }
result # => [["c", 0], ["a", 1], ["t", 2]]

In fact, this is such a common use of enumerators that Matz has given us with_index, which
makes the code read better:

result = []
"cat".each_char.with_index {|item, index| result << [item, index] }
result # => [["c", 0], ["a", 1], ["t", 2]]

You can also create the Enumerator object explicitly—in this case we’ll create one that calls
our string’s each_char method. We can call to_a on that enumerator to iterate over it:

enum = "cat".enum_for(:each_char)
enum.to_a # => ["c", "a", "t"]

If the method we’re using as the basis of our enumerator takes parameters, we can pass them
to enum_for:

enum_in_threes = (1..10).enum_for(:each_slice, 3)
enum_in_threes.to_a # => [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10]]

Enumerators Are Generators and Filters

(This is more advanced material that can be skipped on first reading.) As well as creating enumer-
ators from existing collections, you can create an explicit enumerator, passing it a block. The
code in the block will be used when the enumerator object needs to supply a fresh value to
your program. However, the block isn’t simply executed from top to bottom. Instead, the
block is executed in parallel with the rest of your program’s code. Execution starts at the top
and pauses when the block yields a value to your code. When the code needs the next value,
execution resumes at the statement following the yield. This lets you write enumerators that
generate infinite sequences (among other things):

triangular_numbers = Enumerator.new do |yielder|
number = 0
count = 1
loop do
number += count
count += 1
yielder.yield number

end
end

5.times { print triangular_numbers.next, " " }
puts

produces:

1 3 6 10 15

report erratum • discuss

Blocks and Iterators • 59

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Enumerator objects are also enumerable (that is to say, the methods available to enumerable
objects are also available to them). That means we can use Enumerable’s methods (such as
first) on them:

triangular_numbers = Enumerator.new do |yielder|
number = 0
count = 1
loop do
number += count
count += 1
yielder.yield number

end
end

p triangular_numbers.first(5)

produces:

[1, 3, 6, 10, 15]

You have to be slightly careful with enumerators that can generate infinite sequences. Some
of the regular Enumerator methods such as count and select will happily try to read the whole
enumeration before returning a result. If you want a version of select that works with infinite

⇡New in 2.0⇣
sequences, in Ruby 1.9 you’ll need to write it yourself. (Ruby 2 users have a better option,
which we discuss in a minute.) Here’s a version that gets passed an enumerator and a block
and returns a new enumerator containing values from the original for which the block returns
true. We’ll use it to return triangular numbers that are multiples of 10.

triangular_numbers = Enumerator.new do |yielder|
...
as before...
...

end

def infinite_select(enum, &block)
Enumerator.new do |yielder|
enum.each do |value|
yielder.yield(value) if block.call(value)

end
end

end

p infinite_select(triangular_numbers) {|val| val % 10 == 0}.first(5)

produces:

[10, 120, 190, 210, 300]

Here we use the &block notation to pass the block as a parameter to the infinite_select method.

As Brian Candler pointed out in the ruby-core mailing list (message 19679), you can make
this more convenient by adding filters such as infinite_select directly to the Enumerator class.
Here’s an example that returns the first five triangular numbers that are multiples of 10 and
that have the digit 3 in them:

Chapter 4. Containers, Blocks, and Iterators • 60

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

triangular_numbers = Enumerator.new do |yielder|
... as before

end

class Enumerator
def infinite_select(&block)
Enumerator.new do |yielder|
self.each do |value|
yielder.yield(value) if block.call(value)

end
end

end
end

p triangular_numbers
.infinite_select {|val| val % 10 == 0}
.infinite_select {|val| val.to_s =~ /3/ }
.first(5)

produces:

[300, 630, 1830, 3160, 3240]

Lazy Enumerators in Ruby 2

⇡New in 2.0⇣As we saw in the previous section, the problem with enumerators that generate infinite
sequences is that we have to write special, non-greedy, versions of methods such as select.
Fortunately, if you’re using Ruby 2.0, you have this support built in.

If you call Enumerator#lazy on any Ruby enumerator, you get back an instance of class Enumer-
ator::Lazy. This enumerator acts just like the original, but it reimplements methods such as
select and map so that they can work with infinite sequences. Putting it another way, none
of the lazy versions of the methods actually consume any data from the collection until that
data is requested, and then they only consume enough to satisfy that request.

To work this magic, the lazy versions of the various methods do not return arrays of data.
Instead, each returns a new enumerator that includes its own special processing—the select
method returns an enumerator that knows how to apply the select logic to its input collection,
the map enumerator knows how to handle the map logic, and so on. The result is that if you
chain a bunch of lazy enumerator methods, what you end up with is a chain of enumera-
tors—the last one in the chain takes values from the one before it, and so on.

Let’s play with this a little. To start, let’s add a helper method to the Integer class that generates
a stream of integers.

def Integer.all
Enumerator.new do |yielder, n: 0|
loop { yielder.yield(n += 1) }

end.lazy
end

p Integer.all.first(10)

produces:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

report erratum • discuss

Blocks and Iterators • 61

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

There are a couple of things to note here. First, see how I used a keyword parameter on the
block both to declare and initialize a local variable n.7 Second, see how we convert the basic
generator into a lazy enumerator with the call to lazy after the end of the block.

Calling the first method on this returns the numbers 1 through 10, but this doesn’t exercise
the method’s lazy characteristics. Let’s instead get the first 10 multiples of three.

p Integer
.all
.select {|i| (i % 3).zero? }
.first(10)

produces:

[3, 6, 9, 12, 15, 18, 21, 24, 27, 30]

Without the lazy enumerator, the call to selectwould effectively never return, as selectwould
try to read all the values from the generator. But the lazy version of select only consumes
values on demand, and in this case the subsequent call to first only asks for 10 values.

Let’s make this a little more complex—how about multiples of 3 whose string representations
are palindromes?

def palindrome?(n)
n = n.to_s
n == n.reverse

end

p Integer
.all
.select { |i| (i % 3).zero? }
.select { |i| palindrome?(i) }
.first(10)

produces:

[3, 6, 9, 33, 66, 99, 111, 141, 171, 222]

Remember that our lazy filter methods simply return new Enumerator objects? That means
we can split up the previous code:

multiple_of_three = Integer
.all
.select { |i| (i % 3).zero? }

p multiple_of_three.first(10)

m3_palindrome = multiple_of_three
.select { |i| palindrome?(i) }

p m3_palindrome.first(10)

produces:

[3, 6, 9, 12, 15, 18, 21, 24, 27, 30]
[3, 6, 9, 33, 66, 99, 111, 141, 171, 222]

7. It would be nice to be able to define a true block-local variable using the semicolon separator, but Ruby
doesn’t allow these variables to have initializers.

Chapter 4. Containers, Blocks, and Iterators • 62

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

You could also code up the various predicates as free-standing procs, if you feel it aids
readability or reusablility.

multiple_of_three = -> n { (n % 3).zero? }
palindrome = -> n { n = n.to_s; n == n.reverse }

p Integer
.all
.select(&multiple_of_three)
.select(&palindrome)
.first(10)

produces:

[3, 6, 9, 33, 66, 99, 111, 141, 171, 222]

If you’ve ever played with ActiveRelation in Rails, you’ll be familiar with this pattern—lazy
enumeration methods let us build up a complex filter one piece at a time.

Blocks for Transactions

Although blocks are often used as the target of an iterator, they have other uses. Let’s look
at a few.

You can use blocks to define a chunk of code that must be run under some kind of transac-
tional control. For example, you’ll often open a file, do something with its contents, and then
ensure that the file is closed when you finish. Although you can do this using conventional
linear code, a version using blocks is simpler (and turns out to be less error prone). A naive
implementation (ignoring error handling) could look something like the following:

class File
def self.open_and_process(*args)
f = File.open(*args)
yield f
f.close()

end
end

File.open_and_process("testfile", "r") do |file|
while line = file.gets
puts line

end
end

produces:

This is line one
This is line two
This is line three
And so on...

open_and_process is a class method—it may be called independently of any particular file object.
We want it to take the same arguments as the conventional File.open method, but we don’t
really care what those arguments are. To do this, we specified the arguments as *args,
meaning “collect the actual parameters passed to the method into an array named args.” We
then call File.open, passing it *args as a parameter. This expands the array back into individual

report erratum • discuss

Blocks and Iterators • 63

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

parameters. The net result is that open_and_process transparently passes whatever parameters
it receives to File.open.

Once the file has been opened, open_and_process calls yield, passing the open file object to the
block. When the block returns, the file is closed. In this way, the responsibility for closing
an open file has been shifted from the users of file objects to the file objects themselves.

The technique of having files manage their own life cycle is so useful that the class File supplied
with Ruby supports it directly. If File.open has an associated block, then that block will be
invoked with a file object, and the file will be closed when the block terminates. This is
interesting, because it means that File.open has two different behaviors. When called with a
block, it executes the block and closes the file. When called without a block, it returns the
file object. This is made possible by the method block_given?, which returns true if a block is
associated with the current method. Using this method, you could implement something
similar to the standard File.open (again, ignoring error handling) using the following:

class File
def self.my_open(*args)
result = file = File.new(*args)
If there's a block, pass in the file and close the file when it returns
if block_given?
result = yield file
file.close

end
result

end
end

This has one last twist: in the previous examples of using blocks to control resources, we
didn’t address error handling. If we wanted to implement these methods properly, we’d
need to ensure that we closed a file even if the code processing that file somehow aborted.
We do this using exception handling, which we talk about later on page 145.

Blocks Can Be Objects

Blocks are like anonymous methods, but there’s more to them than that. You can also convert
a block into an object, store it in variables, pass it around, and then invoke its code later.

Remember we said that you can think of blocks as being like an implicit parameter that’s
passed to a method? Well, you can also make that parameter explicit. If the last parameter
in a method definition is prefixed with an ampersand (such as &action), Ruby looks for a code
block whenever that method is called. That code block is converted to an object of class Proc
and assigned to the parameter. You can then treat the parameter as any other variable.

Here’s an example where we create a Proc object in one instance method and store it in an
instance variable. We then invoke the proc from a second instance method.

class ProcExample
def pass_in_block(&action)
@stored_proc = action

end
def use_proc(parameter)
@stored_proc.call(parameter)

end
end

Chapter 4. Containers, Blocks, and Iterators • 64

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

eg = ProcExample.new
eg.pass_in_block { |param| puts "The parameter is #{param}" }
eg.use_proc(99)

produces:

The parameter is 99

See how the call method on a proc object invokes the code in the original block?

Many Ruby programs store and later call blocks in this way—it’s a great way of implementing
callbacks, dispatch tables, and so on. But you can go one step further. If a block can be turned
into an object by adding an ampersand parameter to a method, what happens if that method
then returns the Proc object to the caller?

def create_block_object(&block)
block

end

bo = create_block_object { |param| puts "You called me with #{param}" }

bo.call 99
bo.call "cat"

produces:

You called me with 99
You called me with cat

In fact, this is so useful that Ruby provides not one but two built-in methods that convert a
block to an object.8 Both lambda and Proc.new take a block and return an object of class Proc.
The objects they return differ slightly in how they behave, but we’ll hold off talking about
that until later on page 336.

bo = lambda { |param| puts "You called me with #{param}" }
bo.call 99
bo.call "cat"

produces:

You called me with 99
You called me with cat

Blocks Can Be Closures

Remember I said that a block can use local variables from the surrounding scope? So, let’s
look at a slightly different example of a block doing just that:

def n_times(thing)
lambda {|n| thing * n }

end

p1 = n_times(23)
p1.call(3) # => 69
p1.call(4) # => 92
p2 = n_times("Hello ")
p2.call(3) # => "Hello Hello Hello "

8. There’s actually a third, proc, but it is effectively deprecated.

report erratum • discuss

Blocks and Iterators • 65

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

The method n_times returns a Proc object that references the method’s parameter, thing. Even
though that parameter is out of scope by the time the block is called, the parameter remains
accessible to the block. This is called a closure—variables in the surrounding scope that are
referenced in a block remain accessible for the life of that block and the life of any Proc object
created from that block.

Here’s another example—a method that returns a Proc object that returns successive powers
of 2 when called:

def power_proc_generator
value = 1
lambda { value += value }

end

power_proc = power_proc_generator

puts power_proc.call
puts power_proc.call
puts power_proc.call

produces:

2
4
8

An Alternative Notation

Ruby has another way of creating Proc objects. Rather than write this:

lambda { |params| ... }

you can now write the following:9

-> params { ... }

The parameters can be enclosed in optional parentheses. Here’s an example:

proc1 = -> arg { puts "In proc1 with #{arg}" }
proc2 = -> arg1, arg2 { puts "In proc2 with #{arg1} and #{arg2}" }
proc3 = ->(arg1, arg2) { puts "In proc3 with #{arg1} and #{arg2}" }

proc1.call "ant"
proc2.call "bee", "cat"
proc3.call "dog", "elk"

produces:

In proc1 with ant
In proc2 with bee and cat
In proc3 with dog and elk

The -> form is more compact than using lambda and seems to be in favor when you want to
pass one or more Proc objects to a method:

9. Let’s start by getting something out of the way. Why ->? For compatibility across all the different source
file encodings, Matz is restricted to using pure 7-bit ASCII for Ruby operators, and the choice of available
characters is severely limited by the ambiguities inherent in the Ruby syntax. He felt that -> was (kind
of) reminiscent of a Greek lambda character λ.

Chapter 4. Containers, Blocks, and Iterators • 66

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

def my_if(condition, then_clause, else_clause)
if condition
then_clause.call

else
else_clause.call

end
end

5.times do |val|
my_if val < 2,

-> { puts "#{val} is small" },
-> { puts "#{val} is big" }

end

produces:

0 is small
1 is small
2 is big
3 is big
4 is big

One good reason to pass blocks to methods is that you can reevaluate the code in those
blocks at any time. Here’s a trivial example of reimplementing a while loop using a method.
Because the condition is passed as a block, it can be evaluated each time around the loop:

def my_while(cond, &body)
while cond.call
body.call

end
end

a = 0

my_while -> { a < 3 } do
puts a
a += 1

end

produces:

0
1
2

Block Parameter Lists

Blocks written using the old syntax take their parameter lists between vertical bars. Blocks
written using the -> syntax take a separate parameter list before the block body. In both
cases, the parameter list looks just like the list you can give to methods. It can take default

⇡New in 2.0⇣
values, splat args (described later on page 120), keyword args, and a block parameter (a
trailing argument starting with an ampersand). You can write blocks that are just as versatile
as methods.10 Here’s a block using the original block notation:

10. Actually, they are more versatile, because these blocks are also closures, while methods are not.

report erratum • discuss

Blocks and Iterators • 67

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

proc1 = lambda do |a, *b, &block|
puts "a = #{a.inspect}"
puts "b = #{b.inspect}"
block.call

end

proc1.call(1, 2, 3, 4) { puts "in block1" }

produces:

a = 1
b = [2, 3, 4]
in block1

And here’s one using the new -> notation:

proc2 = -> a, *b, &block do
puts "a = #{a.inspect}"
puts "b = #{b.inspect}"
block.call

end

proc2.call(1, 2, 3, 4) { puts "in block2" }

produces:

a = 1
b = [2, 3, 4]
in block2

4.4 Containers Everywhere

Containers, blocks, and iterators are core concepts in Ruby. The more you write in Ruby,
the more you’ll find yourself moving away from conventional looping constructs. Instead,
you’ll write classes that support iteration over their contents. And you’ll find that this code
is compact, easy to read, and a joy to maintain. If this all seems too weird, don’t worry. After
a while, it’ll start to come naturally. And you’ll have plenty of time to practice as you use
Ruby libraries and frameworks.

Chapter 4. Containers, Blocks, and Iterators • 68

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 5

Sharing Functionality: Inheritance,
Modules, and Mixins

One of the accepted principles of good design is the elimination of unnecessary duplication.
We work hard to make sure that each concept in our application is expressed just once in
our code.1

We’ve already seen how classes help. All the methods in a class are automatically accessible
to instances of that class. But there are other, more general types of sharing that we want to
do. Maybe we’re dealing with an application that ships goods. Many forms of shipping are
available, but all forms share some basic functionality (weight calculation, perhaps). We
don’t want to duplicate the code that implements this functionality across the implementation
of each shipping type. Or maybe we have a more generic capability that we want to inject
into a number of different classes. For example, an online store may need the ability to cal-
culate sales tax for carts, orders, quotes, and so on. Again, we don’t want to duplicate the
sales tax code in each of these places.

In this chapter, we’ll look at two different (but related) mechanisms for this kind of sharing
in Ruby. The first, class-level inheritance, is common in object-oriented languages. We’ll then
look at mixins, a technique that is often preferable to inheritance. We’ll wind up with a dis-
cussion of when to use each.

5.1 Inheritance and Messages

In the previous chapter, we saw that when puts needs to convert an object to a string, it calls
that object’s to_s method. But we’ve also written our own classes that don’t explicitly
implement to_s. Despite this, objects of these classes respond successfully when we call to_s
on them. How this works has to do with inheritance, subclassing, and how Ruby determines
what method to run when you send a message to an object.

Inheritance allows you to create a class that is a refinement or specialization of another class.
This class is called a subclass of the original, and the original is a superclass of the subclass.
People also talk of child and parent classes.

1. Why? Because the world changes. And when you adapt your application to each change, you want to
know that you’ve changed exactly the code you need to change. If each real-world concept is imple-
mented at a single point in the code, this becomes vastly easier.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

The basic mechanism of subclassing is simple. The child inherits all of the capabilities of its
parent class—all the parent’s instance methods are available in instances of the child.

Let’s look at a trivial example and then later build on it. Here’s a definition of a parent class
and a child class that inherits from it:

class Parent
def say_hello
puts "Hello from #{self}"

end
end

p = Parent.new
p.say_hello

Subclass the parent...
class Child < Parent
end

c = Child.new
c.say_hello

produces:

Hello from #<Parent:0x007fb87110fd98>
Hello from #<Child:0x007fb87110fac8>

The parent class defines a single instance method, say_hello. We call it by creating a new
instance of the class and store a reference to that instance in the variable p.

We then create a subclass using class Child < Parent. The < notation means we’re creating a
subclass of the thing on the right; the fact that we use less-than presumably signals that the
child class is supposed to be a specialization of the parent.

Note that the child class defines no methods, but when we create an instance of it, we can
call say_hello. That’s because the child inherits all the methods of its parent. Note also that
when we output the value of self—the current object—it shows that we’re in an instance of
class Child, even though the method we’re running is defined in the parent.

The superclass method returns the parent of a particular class:

class Parent
end
class Child < Parent
end
Child.superclass # => Parent

But what’s the superclass of Parent?

class Parent
end
Parent.superclass # => Object

If you don’t define an explicit superclass when defining a class, Ruby automatically makes
the built-in class Object that class’s parent. Let’s go further:

Object.superclass # => BasicObject

Chapter 5. Sharing Functionality: Inheritance, Modules, and Mixins • 70

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Class BasicObject is used in certain kinds of metaprogramming, acting as a blank canvas.
What’s its parent?

BasicObject.superclass.inspect # => "nil"

So, we’ve finally reached the end. BasicObject is the root class of our hierarchy of classes.
Given any class in any Ruby application, you can ask for its superclass, then the superclass
of that class, and so on, and you’ll eventually get back to BasicObject.

We’ve seen that if you call a method in an instance of class Child and that method isn’t in
Child’s class definition, Ruby will look in the parent class. It goes deeper than that, because
if the method isn’t defined in the parent class, Ruby continues looking in the parent’s parent,
the parent’s parent’s parent, and so on, through the ancestors until it runs out of classes.

And this explains our original question. We can work out why to_s is available in just about
every Ruby object. to_s is actually defined in class Object. Because Object is an ancestor of
every Ruby class (except BasicObject), instances of every Ruby class have a to_smethod defined:

class Person
def initialize(name)
@name = name

end
end
p = Person.new("Michael")
puts p

produces:

#<Person:0x007fa08b8643f8>

We saw in the previous chapter that we can override the to_s method:

class Person
def initialize(name)
@name = name

end
def to_s
"Person named #{@name}"

end
end

p = Person.new("Michael")
puts p

produces:

Person named Michael

Armed with our knowledge of subclassing, we now know there’s nothing special about this
code. The putsmethod calls to_s on its arguments. In this case, the argument is a Person object.
Because class Person defines a to_s method, that method is called. If it hadn’t defined a to_s
method, then Ruby looks for (and finds) to_s in Person’s parent class, Object.

It is common to use subclassing to add application-specific behavior to a standard library
or framework class. If you’ve used Ruby on Rails,2 you’ll have subclassed ActionController
when writing your own controller classes. Your controllers get all the behavior of the base

2. http://www.rubyonrails.com

report erratum • discuss

Inheritance and Messages • 71

Download from Wow! eBook <www.wowebook.com>

http://www.rubyonrails.com
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

controller and add their own specific handlers to individual user actions. If you’ve used the
FXRuby GUI framework,3 you’ll have used subclassing to add your own application-specific
behavior to FX’s standard GUI widgets.

Here’s a more self-contained example. Ruby comes with a library called GServer that
implements basic TCP server functionality. You add your own behavior to it by subclassing
the GServer class. Let’s use that to write some code that waits for a client to connect on a
socket and then returns the last few lines of the system log file. This is an example of some-
thing that’s actually quite useful in long-running applications—by building in such a server,
you can access the internal state of the application while it is running (possibly even
remotely).

The GServer class handles all the mechanics of interfacing to TCP sockets. When you create
a GServer object, you tell it the port to listen on.4 Then, when a client connects, the GServer
object calls its serve method to handle that connection. Here’s the implementation of that
serve method in the GServer class:

def serve(io)
end

As you can see, it does nothing. That’s where our own LogServer class comes in:

tut_modules/gserver-logger.rb

require 'gserver'

class LogServer < GServer

def initialize
super(12345)

end

def serve(client)
client.puts get_end_of_log_file

end

private

def get_end_of_log_file
File.open("/var/log/system.log") do |log|
log.seek(-500, IO::SEEK_END) # back up 500 characters from end
log.gets # ignore partial line
log.read # and return rest

end
end

end

server = LogServer.new
server.start.join

I don’t want to focus too much on the details of running the server. Instead, let’s look at how
inheritance has helped us with this code. Notice that our LogServer class inherits from GServer.

3. http://www.fxruby.org/
4. You can tell it a lot more, as well. We chose to keep it simple here.

Chapter 5. Sharing Functionality: Inheritance, Modules, and Mixins • 72

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/tut_modules/gserver-logger.rb
http://www.fxruby.org/
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

This means that a log server is a kind of GServer, sharing all the GServer functionality. It also
means we can add our own specialized behavior.

The first such specialization is the initialize method. We want our log server to run on TCP
port 12345. That’s a parameter that would normally be passed to the GServer constructor. So,
within the initialize method of the LogServer, we want to invoke the initialize method of GServer,
our parent, passing it the port number. We do that using the Ruby keyword super. When
you invoke super, Ruby sends a message to the parent of the current object, asking it to invoke
a method of the same name as the method invoking super. It passes this method the param-
eters that were passed to super.

This is a crucial step and one often forgotten by folks new to OO. When you subclass
another class, you are responsible for making sure the initialization required by that class
gets run. This means that, unless you know it isn’t needed, you’ll need to put a call to super
somewhere in your subclass’s initialize method. (If your subclass doesn’t need an initialize
method, then there’s no need to do anything, because it will be the parent class’s initialize
method that gets run when your objects get created.)

So, by the time our initialize method finishes, our LogServer object will be a fully fledged TCP
server, all without us having to write any protocol-level code. Down at the end of our pro-
gram, we start the server and then call join to wait for the server to exit.

Our server receives connections from external clients. These invoke the serve method in the
server object. Remember that empty method in class GServer? Well, our LogServer class provides
its own implementation. And because it gets found by Ruby first when it’s looking for
methods to execute, it’s our code that gets run whenever GServer accepts a connection. And
our code reads the last few lines of the log file and returns them to the client:5

$ telnet 127.0.0.1 12345
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Jul 9 12:22:59 doc-72-47-70-67 com.apple.mdworker.pool.0[49913]: PSSniffer error
Jul 9 12:28:55 doc-72-47-70-67 login[82588]: DEAD_PROCESS: 82588 ttys004
Connection closed by foreign host.

The use of the servemethod shows a common idiom when using subclassing. A parent class
assumes that it will be subclassed and calls a method that it expects its children to implement.
This allows the parent to take on the brunt of the processing but to invoke what are effectively
hook methods in subclasses to add application-level functionality. As we’ll see at the end
of this chapter, just because this idiom is common doesn’t make it good design.

So, instead, let’s look at mixins, a different way of sharing functionality in Ruby code. But,
before we look at mixins, we’ll need to get familiar with Ruby modules.

5.2 Modules

Modules are a way of grouping together methods, classes, and constants. Modules give you
two major benefits:

• Modules provide a namespace and prevent name clashes.
• Modules support the mixin facility.

5. You can also access this server from a web browser by connecting to http://127.0.0.1:12345.

report erratum • discuss

Modules • 73

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Namespaces

As you start to write bigger Ruby programs, you’ll find yourself producing chunks of reusable
code—libraries of related routines that are generally applicable. You’ll want to break this
code into separate files so the contents can be shared among different Ruby programs.

Often this code will be organized into classes, so you’ll probably stick a class (or a set of
interrelated classes) into a file. However, there are times when you want to group things
together that don’t naturally form a class.

An initial approach may be to put all these things into a file and simply load that file into
any program that needs it. This is the way the C language works. However, this approach
has a problem. Say you write a set of the trigonometry functions, sin, cos, and so on. You
stuff them all into a file, trig.rb, for future generations to enjoy. Meanwhile, Sally is working
on a simulation of good and evil, and she codes a set of her own useful routines, including
be_good and sin, and sticks them into moral.rb. Joe, who wants to write a program to find out
how many angels can dance on the head of a pin, needs to load both trig.rb and moral.rb into
his program. But both define a method called sin. Bad news.

The answer is the module mechanism. Modules define a namespace, a sandbox in which your
methods and constants can play without having to worry about being stepped on by other
methods and constants. The trig functions can go into one module:

tut_modules/trig.rb

module Trig
PI = 3.141592654
def Trig.sin(x)
..
end

def Trig.cos(x)
..
end

end

and the good and bad “moral” methods can go into another:

tut_modules/moral.rb

module Moral
VERY_BAD = 0
BAD = 1
def Moral.sin(badness)
...

end
end

Module constants are named just like class constants, with an initial uppercase letter.6 The
method definitions look similar, too: module methods are defined just like class methods.

If a third program wants to use these modules, it can simply load the two files (using the
Ruby require statement). To reference the name sin unambiguously, our code can then qualify
the name using the name of the module containing the implementation we want, followed
by ::, the scope resolution operator:

6. But we will conventionally use all uppercase letters when writing them.

Chapter 5. Sharing Functionality: Inheritance, Modules, and Mixins • 74

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/tut_modules/trig.rb
http://media.pragprog.com/titles/ruby4/code/tut_modules/moral.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

tut_modules/pin_head.rb

require_relative 'trig'
require_relative 'moral'
y = Trig.sin(Trig::PI/4)
wrongdoing = Moral.sin(Moral::VERY_BAD)

As with class methods, you call a module method by preceding its name with the module’s
name and a period, and you reference a constant using the module name and two colons.

5.3 Mixins

Modules have another, wonderful use. At a stroke, they pretty much eliminate the need for
inheritance, providing a facility called a mixin.

In the previous section’s examples, we defined module methods, methods whose names
were prefixed by the module name. If this made you think of class methods, your next
thought may well be “What happens if I define instance methods within a module?” Good
question. A module can’t have instances, because a module isn’t a class. However, you can
include a module within a class definition. When this happens, all the module’s instance
methods are suddenly available as methods in the class as well. They get mixed in. In fact,
mixed-in modules effectively behave as superclasses.

module Debug
def who_am_i?
"#{self.class.name} (id: #{self.object_id}): #{self.name}"

end
end

class Phonograph
include Debug
attr_reader :name
def initialize(name)
@name = name

end
...

end

class EightTrack
include Debug
attr_reader :name
def initialize(name)
@name = name

end
...

end

ph = Phonograph.new("West End Blues")
et = EightTrack.new("Surrealistic Pillow")

ph.who_am_i? # => "Phonograph (id: 70266478767560): West End Blues"
et.who_am_i? # => "EightTrack (id: 70266478767520): Surrealistic Pillow"

By including the Debug module, both the Phonograph and EightTrack classes gain access to the
who_am_i? instance method.

report erratum • discuss

Mixins • 75

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/tut_modules/pin_head.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

We’ll make a couple of points about the include statement before we go on.

First, it has nothing to do with files. C programmers use a preprocessor directive called
#include to insert the contents of one file into another during compilation. The Ruby include
statement simply makes a reference to a module. If that module is in a separate file, you
must use require (or its less commonly used cousin, load) to drag that file in before using
include. Second, a Ruby include does not simply copy the module’s instance methods into the
class. Instead, it makes a reference from the class to the included module. If multiple classes
include that module, they’ll all point to the same thing. If you change the definition of a
method within a module, even while your program is running, all classes that include that
module will exhibit the new behavior.7

Mixins give you a wonderfully controlled way of adding functionality to classes. However,
their true power comes out when the code in the mixin starts to interact with code in the
class that uses it. Let’s take the standard Ruby mixin Comparable as an example. The Comparable
mixin adds the comparison operators (<, <=, ==, >=, and >), as well as the method between?,
to a class. For this to work, Comparable assumes that any class that uses it defines the operator
<=>. So, as a class writer, you define one method, <=>; include Comparable; and get six
comparison functions for free.

Let’s try this with a simple Person class. We’ll make people comparable based on their names:

class Person
include Comparable
attr_reader :name

def initialize(name)
@name = name

end
def to_s

"#{@name}"
end
def <=>(other)
self.name <=> other.name

end
end

p1 = Person.new("Matz")
p2 = Person.new("Guido")
p3 = Person.new("Larry")

Compare a couple of names
if p1 > p2
puts "#{p1.name}'s name > #{p2.name}'s name"

end

Sort an array of Person objects

puts "Sorted list:"
puts [p1, p2, p3].sort

7. Of course, we’re speaking only of methods here. Instance variables are always per object, for example.

Chapter 5. Sharing Functionality: Inheritance, Modules, and Mixins • 76

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

produces:

Matz's name > Guido's name
Sorted list:
Guido
Larry
Matz

We included Comparable in our Person class and then defined a <=> method. We were then
able to perform comparisons (such as p1 > p2) and even sort an array of Person objects.

Inheritance and Mixins

Some object-oriented languages (such as C++) support multiple inheritance, where a class can have
more than one immediate parent, inheriting functionality from each. Although powerful, this technique
can be dangerous, because the inheritance hierarchy can become ambiguous.

Other languages, such as Java and C#, support single inheritance. Here, a class can have only one
immediate parent. Although cleaner (and easier to implement), single inheritance also has drawbacks
—in the real world, objects often inherit attributes from multiple sources (a ball is both a bouncing
thing and a spherical thing, for example). Ruby offers an interesting and powerful compromise, giving
you the simplicity of single inheritance and the power of multiple inheritance. A Ruby class has only
one direct parent, so Ruby is a single-inheritance language. However, Ruby classes can include the
functionality of any number of mixins (a mixin is like a partial class definition). This provides a con-
trolled multiple-inheritance-like capability with none of the drawbacks.

5.4 Iterators and the Enumerable Module

The Ruby collection classes (Array, Hash, and so on) support a large number of operations
that do various things with the collection: traverse it, sort it, and so on. You may be thinking,
“Gee, it’d sure be nice if my class could support all these neat-o features, too!” (If you actu-
ally thought that, it’s probably time to stop watching reruns of 1960s television shows.)

Well, your classes can support all these neat-o features, thanks to the magic of mixins and
module Enumerable. All you have to do is write an iterator called each, which returns the
elements of your collection in turn. Mix in Enumerable, and suddenly your class supports
things such asmap, include?, and find_all?. If the objects in your collection implement meaningful
ordering semantics using the <=>method, you’ll also get methods such asmin,max, and sort.

5.5 Composing Modules

Enumerable is a standard mixin, implementing a bunch of methods in terms of the host class’s
each method. One of the methods defined by Enumerable is inject, which we saw previously
on page 57. This method applies a function or operation to the first two elements in the
collection and then applies the operation to the result of this computation and to the third
element, and so on, until all elements in the collection have been used.

Because inject is made available by Enumerable, we can use it in any class that includes the
Enumerable module and defines the method each. Many built-in classes do this.

[1, 2, 3, 4, 5].inject(:+) # => 15
('a'..'m').inject(:+) # => "abcdefghijklm"

We could also define our own class that mixes in Enumerable and hence gets inject support:

report erratum • discuss

Iterators and the Enumerable Module • 77

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

tut_modules/vowel_finder.rb

class VowelFinder
include Enumerable

def initialize(string)
@string = string

end
def each
@string.scan(/[aeiou]/) do |vowel|
yield vowel

end
end

end

vf = VowelFinder.new("the quick brown fox jumped")
vf.inject(:+) # => "euiooue"

Note we used the same pattern in the call to inject in these examples—we’re using it to perform
a summation. When applied to numbers, it returns the arithmetic sum; when applied to
strings, it concatenates them. We can use a module to encapsulate this functionality too:

module Summable
def sum
inject(:+)

end
end

class Array
include Summable

end

class Range
include Summable

end

require_relative "vowel_finder"
class VowelFinder
include Summable

end

[1, 2, 3, 4, 5].sum # => 15
('a'..'m').sum # => "abcdefghijklm"

vf = VowelFinder.new("the quick brown fox jumped")
vf.sum # => "euiooue"

Instance Variables in Mixins

People coming to Ruby from C++ often ask, “What happens to instance variables in a mixin?
In C++, I have to jump through some hoops to control how variables are shared in a multiple-
inheritance hierarchy. How does Ruby handle this?”

Well, for starters, it’s not really a fair question. Remember how instance variables work in
Ruby: the first mention of an @-prefixed variable creates the instance variable in the current
object, self.

Chapter 5. Sharing Functionality: Inheritance, Modules, and Mixins • 78

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/tut_modules/vowel_finder.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

For a mixin, this means the module you mix into your client class (the mixee?) may create
instance variables in the client object and may use attr_reader and friends to define accessors
for these instance variables. For instance, the Observable module in the following example
adds an instance variable @observer_list to any class that includes it:

tut_modules/observer_impl.rb

module Observable
def observers
@observer_list ||= []

end
def add_observer(obj)
observers << obj

end
def notify_observers
observers.each {|o| o.update }

end
end

However, this behavior exposes us to a risk. A mixin’s instance variables can clash with
those of the host class or with those of other mixins. The example that follows shows a class
that uses our Observer module but that unluckily also uses an instance variable called
@observer_list. At runtime, this program will go wrong in some hard-to-diagnose ways:

tut_modules/observer_impl_eg.rb

require_relative 'observer_impl'

class TelescopeScheduler

other classes can register to get notifications
when the schedule changes
include Observable

def initialize
@observer_list = [] # folks with telescope time

end
def add_viewer(viewer)
@observer_list << viewer

end

...
end

For the most part, mixin modules don’t use instance variables directly—they use accessors
to retrieve data from the client object. But if you need to create a mixin that has to have its
own state, ensure that the instance variables have unique names to distinguish them from
any other mixins in the system (perhaps by using the module’s name as part of the variable
name). Alternatively, the module could use a module-level hash, indexed by the current
object ID, to store instance-specific data without using Ruby instance variables:

module Test
State = {}
def state=(value)
State[object_id] = value

end

report erratum • discuss

Composing Modules • 79

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/tut_modules/observer_impl.rb
http://media.pragprog.com/titles/ruby4/code/tut_modules/observer_impl_eg.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

def state
State[object_id]

end
end

class Client
include Test

end

c1 = Client.new
c2 = Client.new
c1.state = 'cat'
c2.state = 'dog'
c1.state # => "cat"
c2.state # => "dog"

A downside of this approach is that the data associated with a particular object will not get
automatically deleted if the object is deleted. In general, a mixin that requires its own state
is not a mixin—it should be written as a class.

Resolving Ambiguous Method Names

One of the other questions folks ask about mixins is, how is method lookup handled? In
particular, what happens if methods with the same name are defined in a class, in that class’s
parent class, and in a mixin included into the class?

The answer is that Ruby looks first in the immediate class of an object, then in the mixins
included into that class, and then in superclasses and their mixins. If a class has multiple
modules mixed in, the last one included is searched first.

5.6 Inheritance, Mixins, and Design

Inheritance and mixins both allow you to write code in one place and effectively inject that
code into multiple classes. So, when do you use each?

As with most questions of design, the answer is, well...it depends. However, over the years
developers have come up with some pretty clear general guidelines to help us decide.

First let’s look at subclassing. Classes in Ruby are related to the idea of types. It would be
natural to say that "cat" is a string and [1,2] is an array. And that’s another way of saying that
the class of "cat" is String and the class of [1,2] is Array. When we create our own classes, you
can think of it as adding new types to the language. And when we subclass either a built-in
class or our own class, we’re creating a subtype.

Now, a lot of research has been done on type theories. One of the more famous results is the
Liskov Substitution Principle. Formally, this states, “Let q(x) be a property provable about
objects x of type T. Then q(y) should be true for objects y of type S where S is a subtype of
T.” What this means is that you should be able to substitute an object of a child class wher-
ever you use an object of the parent class—the child should honor the parent’s contract.
There’s another way of looking at this: we should be able to say that the child object is a kind
of the parent. We’re used to saying this in English: a car is a vehicle, a cat is an animal, and
so on. This means that a cat should, at the very least, be capable of doing everything we say
that an animal can do.

Chapter 5. Sharing Functionality: Inheritance, Modules, and Mixins • 80

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

So, when you’re looking for subclassing relationships while designing your application, be
on the lookout for these is-a relationships.

But...here’s the bad news. In the real world, there really aren’t that many true is a relationships.
Instead, it’s far more common to have has a or uses a relationships between things. The real
world is built using composition, not strict hierarchies.

In the past, we’ve tended to gloss over that fact when programming. Because inheritance
was the only scheme available for sharing code, we got lazy and said things like “My Person
class is a subclass of my DatabaseWrapper class.” (Indeed, the Rails framework makes just this
mistake.) But a person object is not a kind of database wrapper object. A person object uses
a database wrapper to provide persistence services.

Is this just a theoretical issue? No! Inheritance represents an incredibly tight coupling of two
components. Change a parent class, and you risk breaking the child class. But, even worse,
if code that uses objects of the child class relies on those objects also having methods defined
in the parent, then all that code will break, too. The parent class’s implementation leaks
through the child classes and out into the rest of the code. With a decent-sized program, this
becomes a serious inhibitor to change.

And that’s why we need to move away from inheritance in our designs. Instead, we need
to be using compositionwherever we see a case of A uses a B, or A has a B. Our persisted Person
object won’t subclass DataWrapper. Instead, it’ll construct a reference to a database wrapper
object and use that object reference to save and restore itself.

But that can also make code messy. And that’s where a combination of mixins and
metaprogramming comes to the rescue, because we can say this:

class Person
include Persistable
...

end

instead of this:

class Person < DataWrapper
...

end

If you’re new to object-oriented programming, this discussion may feel remote and abstract.
But as you start to code larger and larger programs, we urge you to think about the issues
discussed here. Try to reserve inheritance for the times where it is justified. And try to explore
all the cool ways that mixins let you write decoupled, flexible code.

report erratum • discuss

Inheritance, Mixins, and Design • 81

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 6

Standard Types
So far, we’ve been having fun implementing programs using arrays, hashes, and procs, but
we haven’t really covered the other basic types in Ruby: numbers, strings, ranges, and regular
expressions. Let’s spend a few pages on these basic building blocks now.

6.1 Numbers

Ruby supports integers and floating-point, rational, and complex numbers. Integers can be
any length (up to a maximum determined by the amount of free memory on your system).
Integers within a certain range (normally -230...230-1 or -262...262-1) are held internally in
binary form and are objects of class Fixnum. Integers outside this range are stored in objects
of class Bignum (currently implemented as a variable-length set of short integers). This process
is transparent, and Ruby automatically manages the conversion back and forth:

num = 10001
4.times do
puts "#{num.class}: #{num}"

num *= num
end

produces:

Fixnum: 10001
Fixnum: 100020001
Fixnum: 10004000600040001
Bignum: 100080028005600700056002800080001

You write integers using an optional leading sign, an optional base indicator (0 for octal, 0d
for decimal [the default], 0x for hex, or 0b for binary), followed by a string of digits in the
appropriate base. Underscore characters are ignored in the digit string (some folks use them
in place of commas in larger numbers).

123456 => 123456 # Fixnum
0d123456 => 123456 # Fixnum
123_456 => 123456 # Fixnum - underscore ignored
-543 => -543 # Fixnum - negative number
0xaabb => 43707 # Fixnum - hexadecimal
0377 => 255 # Fixnum - octal
-0b10_1010 => -42 # Fixnum - binary (negated)
123_456_789_123_456_789 => 123456789123456789 # Bignum

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

A numeric literal with a decimal point and/or an exponent is turned into a Float object, corre-
sponding to the native architecture’s double data type. You must both precede and follow
the decimal point with a digit (if you write 1.0e3 as 1.e3, Ruby will try to invoke the method
e3 on the object 1).

Ruby includes support for rational and complex numbers. Rational numbers are the ratio
of two integers—they are fractions—and hence have an exact representation (unlike floats).
Complex numbers represent points on the complex plane. They have two components, the
real and imaginary parts.

Ruby doesn’t have a literal syntax for representing rational and complex numbers. Instead,
you create them using explicit calls to the constructor methods Rational and Complex (although,
as we’ll see, you can use the mathn library to make working with rational numbers easier).

Rational(3, 4) * Rational(2, 3) # => (1/2)
Rational("3/4") * Rational("2/3") # => (1/2)

Complex(1, 2) * Complex(3, 4) # => (-5+10i)
Complex("1+2i") * Complex("3+4i") # => (-5+10i)

All numbers are objects and respond to a variety of messages (listed in full starting in the
reference section at the end of this book). So, unlike (say) C++, you find the absolute value
of a number by writing num.abs, not abs(num).

Finally, we’ll offer a warning for Perl users. Strings that contain just digits are not automati-
cally converted into numbers when used in expressions. This tends to bite most often when
reading numbers from a file. For example, we may want to find the sum of the two numbers
on each line for a file such as the following:

3 4
5 6
7 8

The following code doesn’t work:

some_file.each do |line|
v1, v2 = line.split # split line on spaces
print v1 + v2, " "

end

produces:

34 56 78

The problem is that the input was read as strings, not numbers. The plus operator concatenates
strings, so that’s what we see in the output. To fix this, use the Integer method to convert the
strings to integers:

some_file.each do |line|
v1, v2 = line.split
print Integer(v1) + Integer(v2), " "

end

produces:

7 11 15

Chapter 6. Standard Types • 84

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

How Numbers Interact

Most of the time, numbers work the way you’d expect. If you perform some operation
between two numbers of the same class, the answer will typically be a number of that same
class (although, as we’ve seen, fixnums can become bignums, and vice versa). If the two
numbers are different classes, the result will have the class of the more general one. If you
mix integers and floats, the result will be a float; if you mix floats and complex numbers, the
result will be complex.

1 + 2 # => 3
1 + 2.0 # => 3.0
1.0 + 2 # => 3.0
1.0 + Complex(1,2) # => (2.0+2i)
1 + Rational(2,3) # => (5/3)
1.0 + Rational(2,3) # => 1.6666666666666665

The return-type rule still applies when it comes to division. However, this often confuses
folks, because division between two integers yields an integer result:

1.0 / 2 # => 0.5
1 / 2.0 # => 0.5
1 / 2 # => 0

If you’d prefer that integer division instead return a fraction (a Rational number), require the
mathn library (described in the library section on page 768). This will cause arithmetic oper-
ations to attempt to find the most natural representation for their results. For integer division
where the result isn’t an integer, a fraction will be returned.

22 / 7 # => 3
Complex::I * Complex::I # => (-1+0i)

require 'mathn'
22 / 7 # => (22/7)
Complex::I * Complex::I # => -1

Note that 22/7 is effectively a rational literal oncemathn is loaded (albeit one that’s calculated
at runtime).

Looping Using Numbers

Integers also support several iterators. We’ve seen one already on page 83: 5.times. Others
include upto and downto for iterating up and down between two integers. Class Numeric also
provides the more general method step, which is more like a traditional for loop.

3.times { print "X " }
1.upto(5) {|i| print i, " " }
99.downto(95) {|i| print i, " " }
50.step(80, 5) {|i| print i, " " }

produces:

X X X 1 2 3 4 5 99 98 97 96 95 50 55 60 65 70 75 80

As with other iterators, if you leave the block off, the call returns an Enumerator object:

report erratum • discuss

Numbers • 85

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

10.downto(7).with_index {|num, index| puts "#{index}: #{num}"}

produces:

0: 10
1: 9
2: 8
3: 7

6.2 Strings

Ruby strings are simply sequences of characters.1 They normally hold printable characters,
but that is not a requirement; a string can also hold binary data. Strings are objects of class
String. Strings are often created using string literals—sequences of characters between
delimiters. Because binary data is otherwise difficult to represent within program source,
you can place various escape sequences in a string literal. Each is replaced with the corre-
sponding binary value as the program is compiled. The type of string delimiter determines
the degree of substitution performed. Within single-quoted strings, two consecutive back-
slashes are replaced by a single backslash, and a backslash followed by a single quote becomes
a single quote.

'escape using "\\"' # => escape using "\"
'That\'s right' # => That's right

Double-quoted strings support a boatload more escape sequences. The most common is
probably \n, the newline character. For a complete list, see Table 11, Substitutions in double-
quoted strings, on page 300. In addition, you can substitute the value of any Ruby code into
a string using the sequence #{ expr }. If the code is just a global variable, a class variable, or
an instance variable, you can omit the braces.

"Seconds/day: #{24*60*60}" # => Seconds/day: 86400
"#{'Ho! '*3}Merry Christmas!" # => Ho! Ho! Ho! Merry Christmas!
"Safe level is #$SAFE" # => Safe level is 0

The interpolated code can be one or more statements, not just an expression:

puts "now is #{ def the(a)
'the ' + a

end
the('time')

} for all bad coders..."

produces:

now is the time for all bad coders...

You have three more ways to construct string literals: %q, %Q, and here documents. %q and
%Q start delimited single- and double-quoted strings (you can think of %q as a thin quote,
as in ', and %Q as a thick quote, as in "):

%q/general single-quoted string/ # => general single-quoted string
%Q!general double-quoted string! # => general double-quoted string
%Q{Seconds/day: #{24*60*60}} # => Seconds/day: 86400

In fact, the Q is optional:

1. Prior to Ruby 1.9, strings were sequences of 8-bit bytes.

Chapter 6. Standard Types • 86

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

%!general double-quoted string! # => general double-quoted string
%{Seconds/day: #{24*60*60}} # => Seconds/day: 86400

The character following the q or Q is the delimiter. If it is an opening bracket [, brace {,
parenthesis (, or less-than sign <, the string is read until the matching close symbol is found.
Otherwise, the string is read until the next occurrence of the same delimiter. The delimiter
can be any nonalphanumeric or nonmultibyte character.

Finally, you can construct a string using a here document:

string = <<END_OF_STRING
The body of the string is the input lines up to
one starting with the same text that followed the '<<'

END_OF_STRING

A here document consists of lines in the source up to but not including the terminating string
that you specify after the << characters. Normally, this terminator must start in column one.
However, if you put a minus sign after the << characters, you can indent the terminator:

string = <<-END_OF_STRING
The body of the string is the input lines up to
one starting with the same text that followed the '<<'
END_OF_STRING

You can also have multiple here documents on a single line. Each acts as a separate string.
The bodies of the here documents are fetched sequentially from the source lines that follow:

print <<-STRING1, <<-STRING2
Concat
STRING1

enate
STRING2

produces:

Concat
enate

Note that Ruby does not strip leading spaces off the contents of the strings in these cases.

Strings and Encodings

Every string has an associated encoding. The default encoding of a string literal depends on
the encoding of the source file that contains it. With no explicit encoding, a source file (and

⇡New in 2.0⇣
its strings) will be US-ASCII in Ruby 1.9 and UTF-8 in Ruby 2.

plain_string = "dog"
puts RUBY_VERSION
puts "Encoding of #{plain_string.inspect} is #{plain_string.encoding}"

produces:

2.0.0
Encoding of "dog" is UTF-8

report erratum • discuss

Strings • 87

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

If you override the encoding, you’ll do that for all strings in the file:

#encoding: utf-8
plain_string = "dog"
puts "Encoding of #{plain_string.inspect} is #{plain_string.encoding}"
utf_string = "δog"
puts "Encoding of #{utf_string.inspect} is #{utf_string.encoding}"

produces:

Encoding of "dog" is UTF-8
Encoding of "δog" is UTF-8

We’ll have a lot more to say about encoding in Chapter 17, Character Encoding, on page 239.

Character Constants

Technically, Ruby does not have a class for characters—characters are simply strings of
length one. For historical reasons, character constants can be created by preceding the char-
acter (or sequence that represents a character) with a question mark:

?a # => "a" (printable character)
?\n # => "\n" (code for a newline (0x0a))
?\C-a # => "\u0001" (control a)
?\M-a # => "\xE1" (meta sets bit 7)
?\M-\C-a # => "\x81" (meta and control a)
?\C-? # => "\u007F" (delete character)

Do yourself a favor and forget this section. It’s far easier to use regular octal and hex escape
sequences than to remember these ones. Use "a" rather than ?a, and use "\n" rather than ?\n.

Working with Strings

String is probably the largest built-in Ruby class, with more than one hundred standard
methods. We won’t go through them all here; the library reference has a complete list. Instead,
we’ll look at some common string idioms—things that are likely to pop up during day-to-
day programming.

Maybe we’ve been given a file containing information on a song playlist. For historical reasons
(are there any other kind?), the list of songs is stored as lines in the file. Each line holds the
name of the file containing the song, the song’s duration, the artist, and the title, all in vertical
bar–separated fields. A typical file may start like this:

tut_stdtypes/songdata

/jazz/j00132.mp3 | 3:45 | Fats Waller | Ain't Misbehavin'
/jazz/j00319.mp3 | 2:58 | Louis Armstrong | Wonderful World
/bgrass/bg0732.mp3| 4:09 | Strength in Numbers | Texas Red

Looking at the data, it’s clear that we’ll be using some of class String’s many methods to
extract and clean up the fields before we use them. At a minimum, we’ll need to

• break each line into fields,
• convert the running times from mm:ss to seconds, and
• remove those extra spaces from the artists’ names.

Our first task is to split each line into fields, and String#splitwill do the job nicely. In this case,
we’ll pass split a regular expression, /\s*\|\s*/, that splits the line into tokens wherever split

Chapter 6. Standard Types • 88

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/tut_stdtypes/songdata
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

finds a vertical bar, optionally surrounded by spaces. And, because the line read from the
file has a trailing newline, we’ll use String#chomp to strip it off just before we apply the split.
We’ll store details of each song in a Struct that contains an attribute for each of the three fields.
(A Struct is simply a data structure that contains a given set of attributes—in this case the
title, name, and length. Struct is described in the reference section on page 693.)

Song = Struct.new(:title, :name, :length)

File.open("songdata") do |song_file|
songs = []

song_file.each do |line|
file, length, name, title = line.chomp.split(/\s*\|\s*/)
songs << Song.new(title, name, length)

end

puts songs[1]
end

produces:

#<struct Song title="Wonderful World", name="Louis Armstrong", length="2:58">

Unfortunately, whoever created the original file entered the artists’ names in columns, so
some of them contain extra spaces that we’d better remove before we go much further. We
have many ways of doing this, but probably the simplest is String#squeeze, which trims runs
of repeated characters. We’ll use the squeeze! form of the method, which alters the string in
place:

Song = Struct.new(:title, :name, :length)

File.open("songdata") do |song_file|
songs = []

song_file.each do |line|
file, length, name, title = line.chomp.split(/\s*\|\s*/)
name.squeeze!(" ")
songs << Song.new(title, name, length)

end

puts songs[1]
end

produces:

#<struct Song title="Wonderful World", name="Louis Armstrong", length="2:58">

Finally, we have the minor matter of the time format: the file says 2:58, and we want the
number of seconds, 178. We could use split again, this time splitting the time field around
the colon character:

"2:58".split(/:/) # => ["2", "58"]

Instead, we’ll use a related method. String#scan is similar to split in that it breaks a string into
chunks based on a pattern. However, unlike split, with scan you specify the pattern that you
want the chunks to match. In this case, we want to match one or more digits for both the
minutes and seconds components. The pattern for one or more digits is /\d+/:

report erratum • discuss

Strings • 89

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Song = Struct.new(:title, :name, :length)

File.open("songdata") do |song_file|
songs = []

song_file.each do |line|
file, length, name, title = line.chomp.split(/\s*\|\s*/)
name.squeeze!(" ")
mins, secs = length.scan(/\d+/)
songs << Song.new(title, name, mins.to_i*60 + secs.to_i)

end

puts songs[1]
end

produces:

#<struct Song title="Wonderful World", name="Louis Armstrong", length=178>

We could spend the next fifty pages looking at all the methods in class String. However, let’s
move on instead to look at a simpler data type: the range.

6.3 Ranges

Ranges occur everywhere: January to December, 0 to 9, rare to well done, lines 50 through
67, and so on. If Ruby is to help us model reality, it seems natural for it to support these
ranges. In fact, Ruby goes one better: it actually uses ranges to implement three separate
features: sequences, conditions, and intervals.

Ranges as Sequences

The first and perhaps most natural use of ranges is to express a sequence. Sequences have
a start point, an end point, and a way to produce successive values in the sequence. In Ruby,
these sequences are created using the .. and ... range operators. The two-dot form creates an
inclusive range, and the three-dot form creates a range that excludes the specified high value:

1..10
'a'..'z'
0..."cat".length

You can convert a range to an array using the to_a method and convert it to an Enumerator
using to_enum:2

(1..10).to_a # => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
('bar'..'bat').to_a # => ["bar", "bas", "bat"]
enum = ('bar'..'bat').to_enum
enum.next # => "bar"
enum.next # => "bas"

Ranges have methods that let you iterate over them and test their contents in a variety of
ways:

2. Sometimes people worry that ranges take a lot of memory. That’s not an issue: the range 1..100000 is
held as a Range object containing references to two Fixnum objects. However, convert a range into an
array, and all that memory will get used.

Chapter 6. Standard Types • 90

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

digits = 0..9
digits.include?(5) # => true
digits.max # => 9
digits.reject {|i| i < 5 } # => [5, 6, 7, 8, 9]
digits.inject(:+) # => 45

So far we’ve shown ranges of numbers and strings. However, as you’d expect from an object-
oriented language, Ruby ranges can be based on objects that you define. The only constraints
are that the objects must respond to succ by returning the next object in sequence and the
objects must be comparable using<=>. Sometimes called the spaceship operator,<=> compares
two values, returning -1, 0, or +1 depending on whether the first is less than, equal to, or
greater than the second.

In reality, this isn’t something you do very often, so examples tend to be a bit contrived.
Here’s one—a class that presents numbers that are powers of 2. Because it defines <=> and
succ, we can use objects of this class in ranges:

class PowerOfTwo
attr_reader :value
def initialize(value)
@value = value

end
def <=>(other)
@value <=> other.value

end
def succ
PowerOfTwo.new(@value + @value)

end
def to_s
@value.to_s

end
end

p1 = PowerOfTwo.new(4)
p2 = PowerOfTwo.new(32)

puts (p1..p2).to_a

produces:

4
8
16
32

Ranges as Conditions

As well as representing sequences, ranges can also be used as conditional expressions. Here,
they act as a kind of toggle switch—they turn on when the condition in the first part of the
range becomes true, and they turn off when the condition in the second part becomes true.
For example, the following code fragment prints sets of lines from standard input, where
the first line in each set contains the word start and the last line contains the word end:

while line = gets
puts line if line =~ /start/ .. line =~ /end/

end

report erratum • discuss

Ranges • 91

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Behind the scenes, the range keeps track of the state of each of the tests. We’ll show some
examples of this in the description of loops on page 138 and in the .language section on page
320.

Ranges as Intervals

A final use of the versatile range is as an interval test: seeing whether some value falls
within the interval represented by the range. We do this using===, the case equality operator:

(1..10) === 5 # => true
(1..10) === 15 # => false
(1..10) === 3.14159 # => true
('a'..'j') === 'c' # => true
('a'..'j') === 'z' # => false

This is most often used in case statements:

car_age = gets.to_f # let's assume it's 9.5
case car_age
when 0...1
puts "Mmm.. new car smell"

when 1...3
puts "Nice and new"

when 3...10
puts "Reliable but slightly dinged"

when 10...30
puts "Clunker"

else
puts "Vintage gem"

end

produces:

Reliable but slightly dinged

Note the use of exclusive ranges in the previous example. These are normally the correct
choice in case statements. If instead we had written the following, we’d get the wrong answer
because 9.5 does not fall within any of the ranges, so the else clause triggers:

car_age = gets.to_f # let's assume it's 9.5
case car_age
when 0..0
puts "Mmm.. new car smell"

when 1..2
puts "Nice and new"

when 3..9
puts "Reliable but slightly dinged"

when 10..29
puts "Clunker"

else
puts "Vintage gem"

end

produces:

Vintage gem

Chapter 6. Standard Types • 92

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 7

Regular Expressions
We probably spend most of our time in Ruby working with strings, so it seems reasonable
for Ruby to have some great tools for working with those strings. As we’ve seen, the String
class itself is no slouch—it has more than 100 methods. But there are still things that the basic
String class can’t do. For example, we might want to see whether a string contains two or
more repeated characters, or we might want to replace every word longer than fifteen
characters with its first five characters and an ellipsis. This is when we turn to the power of
regular expressions.

Now, before we get too far in, here’s a warning: there have been whole books written on
regular expressions.1 There is complexity and subtlety here that rivals that of the rest of
Ruby. So if you’ve never used regular expressions, don’t expect to read through this whole
chapter the first time. In fact, you’ll find two emergency exits in what follows. If you’re new
to regular expressions, I strongly suggest you read through to the first and then bail out.
When some regular expression question next comes up, come back here and maybe read
through to the next exit. Then, later, when you’re feeling comfortable with regular expressions,
you can give the whole chapter a read.

7.1 What Regular Expressions Let You Do

A regular expression is a pattern that can be matched against a string. It can be a simple
pattern, such as the stringmust contain the sequence of letters “cat”, or the pattern can be complex,
such as the stringmust start with a protocol identifier, followed by two literal forward slashes, followed
by..., and so on. This is cool in theory. But what makes regular expressions so powerful is
what you can do with them in practice:

• You can test a string to see whether it matches a pattern.
• You can extract from a string the sections that match all or part of a pattern.
• You can change the string, replacing parts that match a pattern.

Ruby provides built-in support that makes pattern matching and substitution convenient
and concise. In this section, we’ll work through the basics of regular expression patterns and
see how Ruby supports matching and replacing based on those patterns. In the sections that
follow, we’ll dig deeper into both the patterns and Ruby’s support for them.

1. Such as Mastering Regular Expressions: Powerful Techniques for Perl and Other Tools [Fri97]

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

7.2 Ruby’s Regular Expressions

There are many ways of creating a regular expression pattern. By far the most common is
to write it between forward slashes. Thus, the pattern /cat/ is a regular expression literal in
the same way that "cat" is a string literal.

/cat/ is an example of a simple, but very common, pattern. It matches any string that contains
the substring cat. In fact, inside a pattern, all characters except ., |, (,), [,], {, }, +, \, ^, $, *,
and ? match themselves. So, at the risk of creating something that sounds like a logic puzzle,
here are some patterns and examples of strings they match and don’t match:

Matches "dog and cat" and "catch" but not "Cat" or "c.a.t."/cat/
Matches "86512312" and "abc123" but not "1.23"/123/
Matches "hit a ball" but not "table"/t a b/

If you want to match one of the special characters literally in a pattern, precede it with a
backslash, so /*/ is a pattern that matches a single asterisk, and /\// is a pattern that matches
a forward slash.

Pattern literals are like double-quoted strings. In particular, you can use #{...} expression
substitutions in the pattern.

Matching Strings with Patterns

The Ruby operator =~ matches a string against a pattern. It returns the character offset into
the string at which the match occurred:

/cat/ =~ "dog and cat" # => 8
/cat/ =~ "catch" # => 0
/cat/ =~ "Cat" # => nil

You can put the string first if you prefer:2

"dog and cat" =~ /cat/ # => 8
"catch" =~ /cat/ # => 0
"Cat" =~ /cat/ # => nil

Because pattern matching returns nil when it fails and because nil is equivalent to false in a
boolean context, you can use the result of a pattern match as a condition in statements such
as if and while.

str = "cat and dog"

if str =~ /cat/
puts "There's a cat here somewhere"

end

produces:

There's a cat here somewhere

2. Some folks say this is inefficient, because the string will end up calling the regular expression code to
do the match. These folks are correct in theory but wrong in practice.

Chapter 7. Regular Expressions • 94

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

The following code prints lines in testfile that have the string on in them:

File.foreach("testfile").with_index do |line, index|
puts "#{index}: #{line}" if line =~ /on/

end

produces:

0: This is line one
3: And so on...

You can test to see whether a pattern does not match a string using !~:

File.foreach("testfile").with_index do |line, index|
puts "#{index}: #{line}" if line !~ /on/

end

produces:

1: This is line two
2: This is line three

Changing Strings with Patterns

The submethod takes a pattern and some replacement text.3 If it finds a match for the pattern
in the string, it replaces the matched substring with the replacement text.

str = "Dog and Cat"
new_str = str.sub(/Cat/, "Gerbil")
puts "Let's go to the #{new_str} for a pint."

produces:

Let's go to the Dog and Gerbil for a pint.

The sub method changes only the first match it finds. To replace all matches, use gsub. (The
g stands for global.)

str = "Dog and Cat"
new_str1 = str.sub(/a/, "*")
new_str2 = str.gsub(/a/, "*")
puts "Using sub: #{new_str1}"
puts "Using gsub: #{new_str2}"

produces:

Using sub: Dog *nd Cat
Using gsub: Dog *nd C*t

Both sub and gsub return a new string. (If no substitutions are made, that new string will just
be a copy of the original.)

If you want to modify the original string, use the sub! and gsub! forms:

str = "now is the time"
str.sub!(/i/, "*")
str.gsub!(/t/, "T")
puts str

produces:

now *s The Time

3. Actually, it does more than that, but we won’t get to that for a while.

report erratum • discuss

Ruby’s Regular Expressions • 95

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Unlike sub and gsub, sub! and gsub! return the string only if the pattern was matched. If no
match for the pattern is found in the string, they return nil instead. This means it can make
sense (depending on your need) to use the ! forms in conditions.

So, at this point you know how to use patterns to look for text in a string and how to substitute
different text for those matches. And, for many people, that’s enough. So if you’re itching
to get on to other Ruby topics, now is a good time to move on to the next chapter. At some
point, you’ll likely need to do something more complex with regular expressions (for
example, matching a time by looking for two digits, a colon, and two more digits). You can
then come back and read the next section.

Or, you can just stay right here as we dig deeper into patterns, matches, and replacements.

7.3 Digging Deeper

Like most things in Ruby, regular expressions are just objects—they are instances of the class
Regexp. This means you can assign them to variables, pass them to methods, and so on:

str = "dog and cat"
pattern = /nd/
pattern =~ str # => 5
str =~ pattern # => 5

You can also create regular expression objects by calling the Regexp class’s new method or by
using the %r{...} syntax. The %r syntax is particularly useful when creating patterns that
contain forward slashes:

/mm\/dd/ # => /mm\/dd/
Regexp.new("mm/dd") # => /mm\/dd/
%r{mm/dd} # => /mm\/dd/

Playing with Regular Expressions

If you’re like us, you’ll sometimes get confused by regular expressions. You create something that
shouldwork, but it just doesn’t seem to match. That’s when we fall back to irb. We’ll cut and paste the
regular expression into irb and then try to match it against strings. We’ll slowly remove portions until
we get it to match the target string and add stuff back until it fails. At that point, we’ll know what we
were doing wrong.

Regular Expression Options

A regular expression may include one or more options that modify the way the pattern
matches strings. If you’re using literals to create the Regexp object, then the options are one
or more characters placed immediately after the terminator. If you’re using Regexp.new, the
options are constants used as the second parameter of the constructor.

Case insensitive. The pattern match will ignore the case of letters in the pattern and string.i
(The old technique of setting $= to make matches case insensitive no longer works.)
Substitute once. Any #{...} substitutions in a particular regular expression literal will be
performed just once, the first time it is evaluated. Otherwise, the substitutions will be
performed every time the literal generates a Regexp object.

o

Chapter 7. Regular Expressions • 96

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Multiline mode. Normally, “.” matches any character except a newline. With the /m option,m
“.” matches any character.
Extended mode. Complex regular expressions can be difficult to read. The x option allows
you to insert spaces and newlines in the pattern to make it more readable. You can also
use # to introduce comments.

x

Another set of options allows you to set the language encoding of the regular expression. If
none of these options is specified, the regular expression will have US-ASCII encoding if it
contains only 7-bit characters. Otherwise, it will use the default encoding of the source file
containing the literal: n: no encoding (ASCII), e: EUC, s: SJIS, and u: UTF-8.

Matching Against Patterns

Once you have a regular expression object, you can match it against a string using the (Reg-
exp#match(string)method or the match operators=~ (positive match) and !~ (negative match).
The match operators are defined for both String and Regexp objects. One operand of the match
operator must be a regular expression.

name = "Fats Waller"
name =~ /a/ # => 1
name =~ /z/ # => nil
/a/ =~ name # => 1
/a/.match(name) # => #<MatchData "a">
Regexp.new("all").match(name) # => #<MatchData "all">

The match operators return the character position at which the match occurred, while the
match method returns a MatchData object. In all forms, if the match fails, nil is returned.

After a successful match, Ruby sets a whole bunch of magic variables. For example, $&
receives the part of the string that was matched by the pattern, $` receives the part of the
string that preceded the match, and $' receives the string after the match. However, these
particular variables are considered to be fairly ugly, so most Ruby programmers instead use
theMatchData object returned from thematchmethod, because it encapsulates all the informa-
tion Ruby knows about the match. Given a MatchData object, you can call pre_match to return
the part of the string before the match, post_match for the string after the match, and index
using [0] to get the matched portion.

We can use these to write a show_regexp, a method that shows where a pattern matches:

tut_regexp/show_match.rb

def show_regexp(string, pattern)
match = pattern.match(string)
if match
"#{match.pre_match}->#{match[0]}<-#{match.post_match}"

else
"no match"

end
end

We could use this method like this:

show_regexp('very interesting', /t/) # => very in->t<-eresting
show_regexp('Fats Waller', /lle/) # => Fats Wa->lle<-r
show_regexp('Fats Waller', /z/) # => no match

report erratum • discuss

Digging Deeper • 97

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/tut_regexp/show_match.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Deeper Patterns

We said earlier that, within a pattern, all characters match themselves except . | () [] { } + \
^ $ * and ?. Let’s dig a bit deeper into this.

First, always remember that you need to escape any of these characters with a backslash if
you want them to be treated as regular characters to match:

show_regexp('yes | no', /\|/) # => yes ->|<- no
show_regexp('yes (no)', /\(no\)/) # => yes ->(no)<-
show_regexp('are you sure?', /e\?/) # => are you sur->e?<-

Now let’s see what some of these characters mean if you use them without escaping them.

Anchors

By default, a regular expression will try to find the first match for the pattern in a string.
Match /iss/ against the string “Mississippi,” and it will find the substring “iss” starting at
position 1 (the second character in the string). But what if you want to force a pattern to
match only at the start or end of a string?

The patterns ^ and $ match the beginning and end of a line, respectively. These are often
used to anchor a pattern match; for example, /^option/ matches the word option only if it
appears at the start of a line. Similarly, the sequence \A matches the beginning of a string,
and \z and \Z match the end of a string. (Actually, \Z matches the end of a string unless the
string ends with \n, in which case it matches just before the \n.)

str = "this is\nthe time"
show_regexp(str, /^the/) # => this is\n->the<- time
show_regexp(str, /is$/) # => this ->is<-\nthe time
show_regexp(str, /\Athis/) # => ->this<- is\nthe time
show_regexp(str, /\Athe/) # => no match

Similarly, the patterns \b and \B match word boundaries and nonword boundaries, respec-
tively. Word characters are ASCII letters, numbers, and underscores:

show_regexp("this is\nthe time", /\bis/) # => this ->is<-\nthe time
show_regexp("this is\nthe time", /\Bis/) # => th->is<- is\nthe time

Character Classes

A character class is a set of characters between brackets: [characters] matches any single char-
acter between the brackets, so [aeiou]matches a vowel, [,.:;!?]matches some punctuation, and
so on. The significance of the special regular expression characters—.|(){+^$*?—is turned
off inside the brackets. However, normal string substitution still occurs, so (for example) \b
represents a backspace character, and \n represents a newline (see Table 11, Substitutions in
double-quoted strings, on page 300). In addition, you can use the abbreviations shown in Table
2, Character class abbreviations, on page 101, so that \s matches any whitespace character, not
just a literal space:

show_regexp('Price $12.', /[aeiou]/) # => Pr->i<-ce $12.
show_regexp('Price $12.', /[\s]/) # => Price-> <-$12.
show_regexp('Price $12.', /[$.]/) # => Price ->$<-12.

Chapter 7. Regular Expressions • 98

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Within the brackets, the sequence c1-c2 represents all the characters from c1 to c2 in the current
encoding:

a = 'see [The PickAxe-page 123]'
show_regexp(a, /[A-F]/) # => see [The Pick->A<-xe-page 123]
show_regexp(a, /[A-Fa-f]/) # => s->e<-e [The PickAxe-page 123]
show_regexp(a, /[0-9]/) # => see [The PickAxe-page ->1<-23]
show_regexp(a, /[0-9][0-9]/) # => see [The PickAxe-page ->12<-3]

You can negate a character class by putting an up arrow (^, sometimes called a caret)
immediately after the opening bracket:

show_regexp('Price $12.', /[^A-Z]/) # => P->r<-ice $12.
show_regexp('Price $12.', /[^\w]/) # => Price-> <-$12.
show_regexp('Price $12.', /[a-z][^a-z]/) # => Pric->e <-$12.

Some character classes are used so frequently that Ruby provides abbreviations for them.
These abbreviations are listed in Table 2,Character class abbreviations, on page 101—they may
be used both within brackets and in the body of a pattern.

show_regexp('It costs $12.', /\s/) # => It-> <-costs $12.
show_regexp('It costs $12.', /\d/) # => It costs $->1<-2.

⇡New in 2.0⇣If you look at the table, you’ll see that some of the character classes have different interpre-
tations depending on the character set option defined for the regular expression. Basically,
these options tell the regexp engine whether (for example) word characters are just the ASCII
alphanumerics, or whether they should be extended to include Unicode letters, marks,
numbers, and connection punctuation. The options are set using the sequence (?option), where
the option is one of d (for Ruby 1.9 behavior), a for ASCII-only support, and u for full Unicode
support. If you don’t specify an option, it defaults to (?d).

show_regexp('über.', /(?a)\w+/) # => ü->ber<-.
show_regexp('über.', /(?d)\w+/) # => ü->ber<-.
show_regexp('über.', /(?u)\w+/) # => ->über<-.

show_regexp('über.', /(?d)\W+/) # => ->ü<-ber.
show_regexp('über.', /(?u)\W+/) # => über->.<-

The POSIX character classes, as shown in Table 3, Posix character classes, on page 114, corre-
spond to the ctype(3) macros of the same names. They can also be negated by putting an up
arrow (or caret) after the first colon:

show_regexp('Price $12.', /[aeiou]/) # => Pr->i<-ce $12.
show_regexp('Price $12.', /[[:digit:]]/) # => Price $->1<-2.
show_regexp('Price $12.', /[[:space:]]/) # => Price-> <-$12.
show_regexp('Price $12.', /[[:^alpha:]]/) # => Price-> <-$12.
show_regexp('Price $12.', /[[:punct:]aeiou]/) # => Pr->i<-ce $12.

If you want to include the literal characters] and - in a character class, escape them with \:

a = 'see [The PickAxe-page 123]'
show_regexp(a, /[\]]/) # => see [The PickAxe-page 123->]<-
show_regexp(a, /[0-9\]]/) # => see [The PickAxe-page ->1<-23]
show_regexp(a, /[\d\-]/) # => see [The PickAxe->-<-page 123]

report erratum • discuss

Digging Deeper • 99

Download from Wow! eBook <www.wowebook.com>

http://www.freebsd.org/cgi/man.cgi?query=ctype&sektion=3
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

You can create the intersection of character classes using &&. So, to match all lowercase ASCII
letters that aren’t vowels, you could use this:

str = "now is the time"
str.gsub(/[a-z&&[^aeiou]]/, '*') # => "*o* i* **e *i*e"

The \p construct gives you an encoding-aware way of matching a character with a particular
Unicode property (shown in Table 4, Unicode character properties, on page 114):

encoding: utf-8
string = "∂y/∂x = 2πx"
show_regexp(string, /\p{Alnum}/) # => ∂->y<-/∂x = 2πx
show_regexp(string, /\p{Digit}/) # => ∂y/∂x = ->2<-πx
show_regexp(string, /\p{Space}/) # => ∂y/∂x-> <-= 2πx
show_regexp(string, /\p{Greek}/) # => ∂y/∂x = 2->π<-x
show_regexp(string, /\p{Graph}/) # => ->∂<-y/∂x = 2πx

Finally, a period (.) appearing outside brackets represents any character except a newline
(though in multiline mode it matches a newline, too):

a = 'It costs $12.'
show_regexp(a, /c.s/) # => It ->cos<-ts $12.
show_regexp(a, /./) # => ->I<-t costs $12.
show_regexp(a, /\./) # => It costs $12->.<-

Repetition

When we specified the pattern that split the song list line, /\s*\|\s*/, we said we wanted to
match a vertical bar surrounded by an arbitrary amount of whitespace. We now know that
the \s sequences match a single whitespace character and \| means a literal vertical bar, so it
seems likely that the asterisks somehow mean “an arbitrary amount.” In fact, the asterisk is
one of a number of modifiers that allow you to match multiple occurrences of a pattern.

If r stands for the immediately preceding regular expression within a pattern, then

Matches zero or more occurrences of rr*
Matches one or more occurrences of rr+
Matches zero or one occurrence of rr?
Matches at least m and at most n occurrences of rr{m,n}
Matches at least m occurrences of rr{m,}
Matches at most n occurrences of rr{,n}
Matches exactly m occurrences of rr{m}

These repetition constructs have a high precedence—they bind only to the immediately
preceding matching construct in the pattern. /ab+/matches an a followed by one or more b’s,
not a sequence of ab’s.

These patterns are called greedy, because by default they will match as much of the string as
they can. You can alter this behavior and have them match the minimum by adding a
question mark suffix. The repetition is then called lazy—it stops once it has done the minimum
amount of work required.

Chapter 7. Regular Expressions • 100

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Logical intent
Characters matched

Sequence

Decimal digit
(?a), (?d)→ [0-9]
(?u)→ Decimal_Number

\d

Any character except a decimal digit\D
Hexadecimal digit character
[0-9a-fA-F]

\h

Any character except a hex digit\H
A generic linebreak sequence. May match the two characters \r\n. (new in ⇡2.0⇣)\R
Whitespace
(?a), (?d)→ [␣\t\r\n\f] (?a), (?d)→ [0-9]
(?u)→ [\t\n\r\x{000B}\x{000C}\x{0085}] plus Line_Separator, Paragraph_Separator,
Space_Separator

\s

Any character except whitespace\S
A “word” character (really, a programming language identifier)
(?a), (?d)→ [a-zA-Z0-9_]
(?u)→ Letter, Mark, Number ,Connector_Punctuation

\w

Any character except a word character\W
An extended Unicode grapheme (two or more characters that combine to form
a single visual character). (new in ⇡2.0⇣)

\X

Table 2—Character class abbreviations
For some of these classes, the meaning depends on the character set mode selected for the pattern. In these cases,
the dfferent options are shown like this:

(?a), (?d)→ [a-zA-Z0-9_]
(?u)→ Letter, Mark, Number, Connector_Punctuation

In this case, the first line applies to ASCII and default modes, and the second to unicode. In the second part of each
line, the […] is a conventional character class. Words in italic are Unicode character classes.

a = "The moon is made of cheese"
show_regexp(a, /\w+/) # => ->The<- moon is made of cheese
show_regexp(a, /\s.*\s/) # => The-> moon is made of <-cheese
show_regexp(a, /\s.*?\s/) # => The-> moon <-is made of cheese
show_regexp(a, /[aeiou]{2,99}/) # => The m->oo<-n is made of cheese
show_regexp(a, /mo?o/) # => The ->moo<-n is made of cheese
here's the lazy version
show_regexp(a, /mo??o/) # => The ->mo<-on is made of cheese

(There’s an additional modifier, +, that makes them greedy and also stops backtracking, but
that will have to wait until the advanced section of the chapter.)

Be very careful when using the * modifier. It matches zero or more occurrences. We often
forget about the zero part. In particular, a pattern that contains just a * repetition will always
match, whatever string you pass it. For example, the pattern /a*/ will always match, because
every string contains zero or more a’s.

report erratum • discuss

Digging Deeper • 101

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

a = "The moon is made of cheese"
both of these match an empty substring at the start of the string
show_regexp(a, /m*/) # => -><-The moon is made of cheese
show_regexp(a, /Z*/) # => -><-The moon is made of cheese

Alternation

We know that the vertical bar is special, because our line-splitting pattern had to escape it
with a backslash. That’s because an unescaped vertical bar, as in |, matches either the construct
that precedes it or the construct that follows it:

a = "red ball blue sky"
show_regexp(a, /d|e/) # => r->e<-d ball blue sky
show_regexp(a, /al|lu/) # => red b->al<-l blue sky
show_regexp(a, /red ball|angry sky/) # => ->red ball<- blue sky

There’s a trap for the unwary here, because | has a very low precedence. The last example
in the previous lines matches red ball or angry sky, not red ball sky or red angry sky. To match
red ball sky or red angry sky, you’d need to override the default precedence using grouping.

Grouping

You can use parentheses to group terms within a regular expression. Everything within the
group is treated as a single regular expression.

This matches an 'a' followed by one or more 'n's
show_regexp('banana', /an+/) # => b->an<-ana
This matches the sequence 'an' one or more times
show_regexp('banana', /(an)+/) # => b->anan<-a

a = 'red ball blue sky'
show_regexp(a, /blue|red/) # => ->red<- ball blue sky
show_regexp(a, /(blue|red) \w+/) # => ->red ball<- blue sky
show_regexp(a, /(red|blue) \w+/) # => ->red ball<- blue sky
show_regexp(a, /red|blue \w+/) # => ->red<- ball blue sky
show_regexp(a, /red (ball|angry) sky/) # => no match
a = 'the red angry sky'
show_regexp(a, /red (ball|angry) sky/) # => the ->red angry sky<-

Parentheses also collect the results of pattern matching. Ruby counts opening parentheses
and for each stores the result of the partial match between it and the corresponding closing
parenthesis. You can use this partial match both within the rest of the pattern and in your
Ruby program. Within the pattern, the sequence \1 refers to the match of the first group, \2
the second group, and so on. Outside the pattern, the special variables $1, $2, and so on,
serve the same purpose.

/(\d\d):(\d\d)(..)/ =~ "12:50am" # => 0
"Hour is #$1, minute #$2" # => "Hour is 12, minute 50"
/((\d\d):(\d\d))(..)/ =~ "12:50am" # => 0
"Time is #$1" # => "Time is 12:50"
"Hour is #$2, minute #$3" # => "Hour is 12, minute 50"
"AM/PM is #$4" # => "AM/PM is am"

If you’re using the MatchData object returned by the match method, you can index into it to
get the corresponding subpatterns:

Chapter 7. Regular Expressions • 102

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

md = /(\d\d):(\d\d)(..)/.match("12:50am")
"Hour is #{md[1]}, minute #{md[2]}" # => "Hour is 12, minute 50"
md = /((\d\d):(\d\d))(..)/.match("12:50am")
"Time is #{md[1]}" # => "Time is 12:50"
"Hour is #{md[2]}, minute #{md[3]}" # => "Hour is 12, minute 50"
"AM/PM is #{md[4]}" # => "AM/PM is am"

The ability to use part of the current match later in that match allows you to look for various
forms of repetition:

match duplicated letter
show_regexp('He said "Hello"', /(\w)\1/) # => He said "He->ll<-o"
match duplicated substrings
show_regexp('Mississippi', /(\w+)\1/) # => M->ississ<-ippi

Rather than use numbers, you can also use names to refer to previously matched content.
You give a group a name by placing ?<name> immediately after the opening parenthesis.
You can subsequently refer to this named group using \k<name> (or \k'name').

match duplicated letter
str = 'He said "Hello"'
show_regexp(str, /(?<char>\w)\k<char>/) # => He said "He->ll<-o"

match duplicated adjacent substrings
str = 'Mississippi'
show_regexp(str, /(?<seq>\w+)\k<seq>/) # => M->ississ<-ippi

The named matches in a regular expression are also available as local variables, but only if
you use a literal regexp and that literal appears on the left hand side of the =~ operator. (So
you can’t assign a regular expression object to a variable, match the contents of that variable
against a string, and expect the local variables to be set.)

/(?<hour>\d\d):(?<min>\d\d)(..)/ =~ "12:50am" # => 0
"Hour is #{hour}, minute #{min}" # => "Hour is 12, minute 50"

You can mix named and position-based references
"Hour is #{hour}, minute #{$2}" # => "Hour is 12, minute 50"
"Hour is #{$1}, minute #{min}" # => "Hour is 12, minute 50"

Pattern-Based Substitution

We’ve already seen how sub and gsub replace the matched part of a string with other text.
In those previous examples, the pattern was always fixed text, but the substitution methods
work equally well if the pattern contains repetition, alternation, and grouping.

a = "quick brown fox"
a.sub(/[aeiou]/, '*') # => "q*ick brown fox"
a.gsub(/[aeiou]/, '*') # => "q**ck br*wn f*x"
a.sub(/\s\S+/, '') # => "quick fox"
a.gsub(/\s\S+/, '') # => "quick"

The substitution methods can take a string or a block. If a block is used, it is passed the
matching substring, and the block’s value is substituted into the original string.

a = "quick brown fox"
a.sub(/^./) {|match| match.upcase } # => "Quick brown fox"

report erratum • discuss

Digging Deeper • 103

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

a.gsub(/[aeiou]/) {|vowel| vowel.upcase } # => "qUIck brOwn fOx"

Maybe we want to normalize names entered by users into a web application. They may enter
DAVE THOMAS, dave thomas, or dAvE tHoMas, and we’d like to store it as Dave Thomas.
The following method is a simple first iteration. The pattern that matches the first character
of a word is \b\w—look for a word boundary followed by a word character. Combine this
with gsub, and we can hack the names:

def mixed_case(name)
name.downcase.gsub(/\b\w/) {|first| first.upcase }

end
mixed_case("DAVE THOMAS") # => "Dave Thomas"
mixed_case("dave thomas") # => "Dave Thomas"
mixed_case("dAvE tHoMas") # => "Dave Thomas"

There’s an idiomatic way to write the substitution in Ruby 1.9, but we’ll have to wait until
The Symbol.to_proc Trick, on page 352 to see why it works:

def mixed_case(name)
name.downcase.gsub(/\b\w/, &:upcase)

end

mixed_case("dAvE tHoMas") # => "Dave Thomas"

You can also give sub and gsub a hash as the replacement parameter, in which case they will
look up matched groups and use the corresponding values as replacement text:

replacement = { "cat" => "feline", "dog" => "canine" }
replacement.default = "unknown"

"cat and dog".gsub(/\w+/, replacement) # => "feline unknown canine"

Backslash Sequences in the Substitution

Earlier we noted that the sequences \1, \2, and so on, are available in the pattern, standing
for the nth group matched so far. The same sequences can be used in the second argument
of sub and gsub.

puts "fred:smith".sub(/(\w+):(\w+)/, '\2, \1')
puts "nercpyitno".gsub(/(.)(.)/, '\2\1')

produces:

smith, fred
encryption

You can also reference named groups:

puts "fred:smith".sub(/(?<first>\w+):(?<last>\w+)/, '\k<last>, \k<first>')
puts "nercpyitno".gsub(/(?<c1>.)(?<c2>.)/, '\k<c2>\k<c1>')

produces:

smith, fred
encryption

Additional backslash sequences work in substitution strings: \& (last match), \+ (last matched
group), \` (string prior to match), \' (string after match), and \\ (a literal backslash).

Chapter 7. Regular Expressions • 104

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

It gets confusing if you want to include a literal backslash in a substitution. The obvious
thing to write is str.gsub(/\\/, '\\\\').

Clearly, this code is trying to replace each backslash in strwith two. The programmer doubled
up the backslashes in the replacement text, knowing that they’d be converted to \\ in syntax
analysis. However, when the substitution occurs, the regular expression engine performs
another pass through the string, converting \\ to \, so the net effect is to replace each single
backslash with another single backslash. You need to write gsub(/\\/, '\\\\\\\\\')!

str = 'a\b\c' # => "a\b\c"
str.gsub(/\\/, '\\\\\\\\') # => "a\\b\\c"

However, using the fact that \& is replaced by the matched string, you could also write this:

str = 'a\b\c' # => "a\b\c"
str.gsub(/\\/, '\&\&') # => "a\\b\\c"

If you use the block form of gsub, the string for substitution is analyzed only once (during
the syntax pass), and the result is what you intended:

str = 'a\b\c' # => "a\b\c"
str.gsub(/\\/) { '\\\\' } # => "a\\b\\c"

At the start of this chapter, we said that it contained two emergency exits. The first was after
we discussed basic matching and substitution. This is the second: you now know as much
about regular expressions as the vast majority of Ruby developers. Feel free to break away
and move on to the next chapter. But if you’re feeling brave....

7.4 Advanced Regular Expressions

You may never need the information in the rest of this chapter. But, at the same time,
knowing some of the real power in the Ruby regular expression implementation might just
dig you out of a hole.

Regular Expression Extensions

⇡New in 2.0⇣
Ruby uses the Onigmo4 regular expression library. This offers a large number of extensions
over traditional Unix regular expressions. Most of these extensions are written between the
characters (? and). The parentheses that bracket these extensions are groups, but they do
not necessarily generate backreferences—some do not set the values of \1, $1, and so on.

The sequence (?# comment) inserts a comment into the pattern. The content is ignored during
pattern matching. As we’ll see, commenting complex regular expressions can be as helpful
as commenting complex code.

(?:re) makes re into a group without generating backreferences. This is often useful when
you need to group a set of constructs but don’t want the group to set the value of $1 or
whatever. In the example that follows, both patterns match a date with either colons or
slashes between the month, day, and year. The first form stores the separator character
(which can be a slash or a colon) in $2 and $4, but the second pattern doesn’t store the sepa-
rator in an external variable.

date = "12/25/2010"

4. Onigmo is an extension of the Oniguruma regular expression engine.

report erratum • discuss

Advanced Regular Expressions • 105

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

date =~ %r{(\d+)(/|:)(\d+)(/|:)(\d+)}
[$1,$2,$3,$4,$5] # => ["12", "/", "25", "/", "2010"]

date =~ %r{(\d+)(?:/|:)(\d+)(?:/|:)(\d+)}
[$1,$2,$3] # => ["12", "25", "2010"]

Lookahead and Lookbehind

You’ll sometimes want to match a pattern only if the matched substring is preceded by or
followed by some other pattern. That is, you want to set some context for your match but
don’t want to capture that context as part of the match.

For example, you might want to match every word in a string that is followed by a comma,
but you don’t want the comma to form part of the match. Here you could use the charmingly
named zero-width positive lookahead extension. (?=re) matches re at this point but does not
consume it—you can look forward for the context of a match without affecting $&. In this
example, we’ll use scan to pick out the words:

str = "red, white, and blue"
str.scan(/[a-z]+(?=,)/) # => ["red", "white"]

You can also match before the pattern using (?<=re) (zero-width positive lookbehind). This lets
you look for characters that precede the context of a match without affecting $&. The following
example matches the letters dog but only if they are preceded by the letters hot:

show_regexp("seadog hotdog", /(?<=hot)dog/) # => seadog hot->dog<-

For the lookbehind extension, re either must be a fixed length or consist of a set of fixed-
length alternatives. That is, (?<=aa) and (?<=aa|bbb) are valid, but (?<=a+b) is not.

Both forms have negated versions, (?!re) and (?<!re), which are true if the context is not present
in the target string.

⇡New in 2.0⇣ The \K sequence is related to backtracking. If included in a pattern, it doesn’t affect the
matching process. However, when Ruby comes to store the entire matched string in $& or
\&, it only stores the text to the right of the \K.

show_regexp("thx1138", /[a-z]+\K\d+/) # => thx->1138<-

Controlling Backtracking

Say you’re given the problem of searching a string for a sequence of Xs not followed by an
O. You know that a string of Xs can be represented as X+, and you can use a lookahead to
check that it isn’t followed by an O, so you code up the pattern /(X+)(?!O)/. Let’s try it:

re = /(X+)(?!O)/

This one works
re =~ "test XXXY" # => 5
$1 # => "XXX"

But, unfortunately, so does this one
re =~ "test XXXO" # => 5
$1 # => "XX"

Chapter 7. Regular Expressions • 106

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Why did the second match succeed? Well, the regular expression engine saw the X+ in the
pattern and happily gobbled up all the Xs in the string. It then saw the pattern (?!O), saying
that it should not now be looking at an O. Unfortunately, it is looking at an O, so the match
doesn’t succeed. But the engine doesn’t give up. No sir! Instead it says, “Maybe I was wrong
to consume every singleX in the string. Let’s try consuming one less and see what happens.”
This is called backtracking—when a match fails, the engine goes back and tries to match a
different way. In this case, by backtracking past a single character, it now finds itself looking
at the last X in the string (the one before the finalO). And that X is not anO, so the negative
lookahead succeeds, and the pattern matches. Look carefully at the output of the previous
program: there are three Xs in the first match but only two in the second.

But this wasn’t the intent of our regexp. Once it finds a sequence of Xs, those Xs should be
locked away. We don’t want one of them being the terminator of the pattern. We can get
that behavior by telling Ruby not to backtrack once it finds a string ofXs. There are a couple
of ways of doing this.

The sequence (?>re) nests an independent regular expression within the first regular
expression. This expression is anchored at the current match position. If it consumes charac-
ters, these will no longer be available to the higher-level regular expression. This construct
therefore inhibits backtracking.

Let’s try it with our previous code:

re = /((?>X+))(?!O)/

This one works
re =~ "test XXXY" # => 5
$1 # => "XXX"

Now this doesn't match
re =~ "test XXXO" # => nil
$1 # => nil

And this finds the second string of Xs
re =~ "test XXXO XXXXY" # => 10
$1 # => "XXXX"

You can also control backtracking by using a third form of repetition. We’re already seen
greedy repetition, such as re+, and lazy repetition, re+?. The third form is called possessive.
You code it using a plus sign after the repetition character. It behaves just like greedy repe-
tition, consuming as much of the string as it can. But once consumed, that part of the string
can never be reexamined by the pattern—the regular expression engine can’t backtrack past
a possessive qualifier. This means we could also write our code as this:

re = /(X++)(?!O)/

re =~ "test XXXY" # => 5
$1 # => "XXX"

re =~ "test XXXO" # => nil
$1 # => nil

re =~ "test XXXO XXXXY" # => 10
$1 # => "XXXX"

report erratum • discuss

Advanced Regular Expressions • 107

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Backreferences and Named Matches

Within a pattern, the sequences \n (where n is a number), \k'n', and \k<n> all refer to the nth

captured subpattern. Thus, the expression /(...)\1/ matches six characters with the first three
characters being the same as the last three.

Rather than refer to matches by their number, you can give them names and then refer to
those names. A subpattern is named using either of the syntaxes (?<name>...) or (?'name'...).
You then refer to these named captures using either \k<name> or \k'name'.

For example, the following shows different ways of matching a time range (in the form
hh:mm-hh:mm) where the hour part is the same:

same = "12:15-12:45"
differ = "12:45-13:15"

use numbered backreference
same =~ /(\d\d):\d\d-\1:\d\d/ # => 0
differ =~ /(\d\d):\d\d-\1:\d\d/ # => nil

use named backreference
same =~ /(?<hour>\d\d):\d\d-\k<hour>:\d\d/ # => 0
differ =~ /(?<hour>\d\d):\d\d-\k<hour>:\d\d/ # => nil

Negative backreference numbers count backward from the place they’re used, so they are
relative, not absolute, numbers. The following pattern matches four-letter palindromes
(words that read the same forward and backward).

"abab" =~ /(.)(.)\k<-1>\k<-2>/ # => nil
"abba" =~ /(.)(.)\k<-1>\k<-2>/ # => 0

You can invoke a named subpattern using \g<name> or \g<number>. Note that this reexecutes
the match in the subpattern, in contrast to \k<name>, which matches whatever is matched
by the subpattern:

re = /(?<color>red|green|blue) \w+ \g<color> \w+/

re =~ "red sun blue moon" # => 0
re =~ "red sun white moon" # => nil

You can use \g recursively, invoking a pattern within itself. The following code matches a
string in which braces are properly nested:

re = /
\A
(?<brace_expression>
{
(
[^{}] # anything other than braces

| # ...or...
\g<brace_expression> # a nested brace expression

)*
}

)
\Z

/x

Chapter 7. Regular Expressions • 108

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

We use the x option to allow us to write the expression with lots of space, which makes it
easier to understand. We also indent it, just as we would indent Ruby code. And we can also
use Ruby-style comments to document the tricky stuff. You can read this regular expression
as follows: a brace expression is an open brace, then a sequence of zero or more characters
or brace expressions, and then a closing brace.

Nested Groups

The ability to invoke subpatterns recursively means that backreferences can get tricky. Ruby
solves this by letting you refer to a named or numbered group at a particular level of the
recursion—add a +n or -n for a capture at the given level relative to the current level.

Here’s an example from the Oniguruma cheat sheet. It matches palindromes:

/\A(?<a>|.|(?:(?.)\g<a>\k<b+0>))\z/

That’s pretty hard to read, so let’s spread it out:

tut_regexp/palindrome_re.rb

palindrome_matcher = /
\A
(?<palindrome>

nothing, or
| \w # a single character, or
| (?: # x <palindrome> x

(?<some_letter>\w)
\g<palindrome>
\k<some_letter+0>

)
)

\z
/x

palindrome_matcher.match "madam" # => madam
palindrome_matcher.match "m" # => m
palindrome_matcher.match "adam" # =>

A palindrome is an empty string, a string containing a single character, or a character followed
by a palindrome, followed by that same character. The notation \k<some_letter+0>means that
the letter matched at the end of the inner palindrome will be the same letter that was at the
start of it. Inside the nesting, however, a different letter may wrap the interior palindrome.

Conditional Groups

⇡New in 2.0⇣Just because it’s all been so easy so far, Onigmo adds a new twist to regular expressions—con-
ditional subexpressions.

Say you were validating a list of banquet attendees:

Mr Jones and Sally
Mr Bond and Ms Moneypenny
Samson and Delilah
Dr Jekyll and himself
Ms Hinky Smith and Ms Jones
Dr Wood and Mrs Wood
Thelma and Louise

report erratum • discuss

Advanced Regular Expressions • 109

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/tut_regexp/palindrome_re.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

The rule is that if the first person in the list has a title, then so should the second. This means
that the first and fourth lines in this list are invalid.

We can start with a pattern to match a line with an optional title and a name. We know we’ve
reached the end of the name when we find the word and with spaces around it.

re = %r{ (?:(Mrs | Mr | Ms | Dr)\s)? (.*?) \s and \s }x
"Mr Bond and Ms Monneypenny" =~ re # => 0
[$1, $2] # => ["Mr", "Bond"]
"Samson and Delilah" =~ re # => 0
[$1, $2] # => [nil, "Samson"]

We’ve defined the regexp with the x (extended) option so we can include whitespace. We
also used the ?: modifier on the group that defines the optional title followed by a space.
This stops that group getting captured into $1. We do however capture just the title part.

So now we need to match the second name. We can start with the same code as for the first.

re = %r{
(?:(Mrs | Mr | Ms | Dr)\s)? (.*?)
\s and \s
(?:(Mrs | Mr | Ms | Dr)\s)? (.+)

}x
"Mr Bond and Ms Monneypenny" =~ re # => 0
[$1, $2, $3, $4] # => ["Mr", "Bond", "Ms", "Monneypenny"]
"Samson and Delilah" =~ re # => 0
[$1, $2, $3, $4] # => [nil, "Samson", nil, "Delilah"]

Before we go any further, let’s clean up the duplication using a named group:

re = %r{
(?:(?<title>Mrs | Mr | Ms | Dr)\s)? (.*?)
\s and \s
(\g<title>\s)? (.+)

}x
re.match("Mr Bond and Ms Monneypenny") # => #<MatchData "Mr Bond and Ms

.. Monneypenny" title:"Ms">
re.match("Samson and Delilah") # => #<MatchData "Samson and Delilah"

.. title:nil>

But this code also matches a line where the first name has a title and the second doesn’t:

re = %r{
(?:(?<title>Mrs | Mr | Ms | Dr)\s)? (.*?)
\s and \s
(\g<title>\s)? (.+)

}x
re.match("Mr Smith and Sally") # => #<MatchData "Mr Smith and Sally" title:"Mr">

We need to make the second test for a title mandatory if the first test matches. That’s where
the conditional subpatterns come in.

The syntax (?(n)subpattern) will apply the subpattern match only if a previous group number
n also matched. You can also test named groups using the syntaxes (?(<name>)subpattern) or
(?('name')subpattern).

Chapter 7. Regular Expressions • 110

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

In our case, we want to apply a test for the second title if the first title is present. That first
title is matched by the group named title, so the condition group looks like (?<title>…):

re = %r{
(?:(?<title>Mrs | Mr | Ms | Dr)\s)? (.*?)
\s and \s
(?(<title>)\g<title>\s) (.+)

}x
re.match("Mr Smith and Sally") # => #<MatchData "Mr Smith and Sally" title:nil>

This didn’t work—the match succeeded when we expected it to fail. That’s because the
regular expression applied backtracking. It matched the optional first name, the and, and then
was told to match a second title (because group 1 matched the first). There’s no second title,
so the match failed. But rather than stopping, the engine went back to explore alternatives.

It noticed that the first title was optional, and so it tried matching the whole pattern again,
this time skipping the title. It successfully matched Mr Smith using the (.*?) group, and
matched Sallywith the second name group. So we want to tell it never to backtrack over the
first name—once it has found a title there, it has to use it. (?>…) to the rescue:

re = %r{
^(?>

(?:(?<title>Mrs | Mr | Ms | Dr)\s)? (.*?)
\s and \s
)
(?(<title>)\g<title>\s) (.+)

}x
re.match("Mr Smith and Sally") # => nil
re.match("Mr Smith and Ms Sally") # => #<MatchData "Mr Smith and Ms Sally"

.. title:"Ms">

The match failed, as we expected, but when we add a title to Sally, it succeeds.

Let’s try this on our list:

DATA.each do |line|
re = %r{ ^(?>

(?:(?<title>Mrs | Mr | Ms | Dr)\s)? (.*?) \s and \s
)

(?(<title>)\g<title>\s) (.+)
}x

if line =~ re
print "VALID: "

else
print "INVALID: "

end
puts line

end
__END__
Mr Jones and Sally
Mr Bond and Ms Moneypenny
Samson and Delilah
Dr Jekyll and himself
Ms Hinky Smith and Ms Jones
Dr Wood and Mrs Wood
Thelma and Louise

report erratum • discuss

Advanced Regular Expressions • 111

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

produces:

INVALID: Mr Jones and Sally
VALID: Mr Bond and Ms Moneypenny
VALID: Samson and Delilah
INVALID: Dr Jekyll and himself
VALID: Ms Hinky Smith and Ms Jones
VALID: Dr Wood and Mrs Wood
VALID: Thelma and Louise

Alternatives in Conditions
Being British, I have a national duty to emulate my compatriates on informercials and shout
“But Wait! There’s More!” Conditional subpatterns can also have an else clause.

(?(group_id) true-pattern | fail-pattern)

If the identified group was previously matched, the true pattern is applied. If it failed, the
fail pattern is applied.

Here’s a regular expression that deals with red or blue balls or buckets. The deal is that the
colors of the ball and bucket must be different.

re = %r{(?:(red)|blue) ball and (?(1)blue|red) bucket}

re.match("red ball and blue bucket") # => #<MatchData "red ball and blue bucket"
.. 1:"red">

re.match("blue ball and red bucket") # => #<MatchData "blue ball and red bucket"
.. 1:nil>

re.match("blue ball and blue bucket") # => nil

If the first group, the red alternative, matched, then the conditional subpattern is blue, oth-
erwise it is red.

Named Subroutines

There’s a trick that allows us to write subroutines inside regular expressions. Recall that we
can invoke a named group using \g<name>, and we define the group using (?<name>...).
Normally, the definition of the group is itself matched as part of executing the pattern.
However, if you add the suffix {0} to the group, it means “zero matches of this group,” so
the group is not executed when first encountered:

sentence = %r{
(?<subject> cat | dog | gerbil){0}
(?<verb> eats | drinks| generates){0}
(?<object> water | bones | PDFs){0}
(?<adjective> big | small | smelly){0}
(?<opt_adj> (\g<adjective>\s)?){0}

The\s\g<opt_adj>\g<subject>\s\g<verb>\s\g<opt_adj>\g<object>
}x

md = sentence.match("The cat drinks water")
puts "The subject is #{md[:subject]} and the verb is #{md[:verb]}"

md = sentence.match("The big dog eats smelly bones")
puts "The last adjective in the second sentence is #{md[:adjective]}"

Chapter 7. Regular Expressions • 112

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

sentence =~ "The gerbil generates big PDFs"
puts "And the object in the last sentence is #{$~[:object]}"

produces:

The subject is cat and the verb is drinks
The last adjective in the second sentence is smelly
And the object in the last sentence is PDFs

Setting Options

⇡New in 2.0⇣We saw earlier that you can control the characters matched by \b, \d, \s, and \w (along with
their negations). To do that, we embedded a sequence such as (?u) in our pattern. That
sequence sets an option inside the regular expression engine.

We also saw at the start of this chapter that you can add one or more of the options i (case
insensitive),m (multiline), and x (allow spaces) to the end of a regular expression literal. You
can also set these options within the pattern itself. As you’d expect, they are set using (?i),
(?m), and (?x). You can also put a minus sign in front of these three options to disable them.

Turns on the corresponding option. If used inside a group, the effect is limited
to that group.

(?adimux)

Turns off the i, m, or x option.(?-imx)
Turns on the option for re.(?adimux:re)
Turns off the option for re.(?-imx:re)

7.5 \z

So, that’s it. If you’ve made it this far, consider yourself a regular expression ninja. Get out
there and match some strings.

report erratum • discuss

\z • 113

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

POSIX Character Classes (Unicode)

Text in parentheses indicates the Unicode classes. These apply if the regular expression’s encoding is one of the
Unicode encodings.

Alphanumeric (Letter | Mark | Decimal_Number)[:alnum:]
Uppercase or lowercase letter (Letter | Mark)[:alpha:]
7-bit character including nonprinting[:ascii:]
Blank and tab (+ Space_Separator)[:blank:]
Control characters—at least 0x00–0x1f, 0x7f (Control | Format | Unassigned | Private_Use |[:cntrl:]
Surrogate)
Digit (Decimal_Number)[:digit:]
Printable character excluding space (Unicode also excludesControl, Unassigned, and Surrogate)[:graph:]
Lowercase letter (Lowercase_Letter)[:lower:]
Any printable character (including space)[:print:]
Printable character excluding space and alphanumeric (Connector_Punctuation | Dash_
Punctuation | Close_Punctuation | Final_Punctuation | Initial_Punctuation | Other_Punctuation
| Open_Punctuation)

[:punct:]

Whitespace (same as \s)[:space:]
Uppercase letter (Uppercase_Letter)[:upper:]
Hex digit (0–9, a–f, A–F)

Punctuation)

[:xdigit:]
Alphanumeric, underscore, and multibyte (Letter | Mark | Decimal_Number | Connector_[:word:]

Table 3—Posix character classes

Character Properties

Matches character with named property\p{name}
Matches any character except named property\p{^name}
Matches any character except named property\P{name}

Property names.
Spaces, underscores, and case are ignored in property names.

Alnum, Alpha, Blank, Cntrl, Digit, Graph, Lower, Print, Punct, Space, Upper,
XDigit, Word, ASCII

All encodings

Hiragana, KatakanaEUC and SJIS
Any, Assigned, C, Cc, Cf, Cn, Co, Cs, L, Ll, Lm, Lo, Lt, Lu, M, Mc, Me, Mn,
N, Nd, Nl, No, P, Pc, Pd, Pe, Pf, Pi, Po, Ps, S, Sc, Sk, Sm, So, Z, Zl, Zp, Zs,

UTF-n

Arabic, Armenian, Bengali, Bopomofo, Braille, Buginese, Buhid, Canadian_
Aboriginal, Cherokee, Common, Coptic, Cypriot, Cyrillic, Deseret, Devana-
gari, Ethiopic, Georgian, Glagolitic, Gothic, Greek, Gujarati, Gurmukhi, Han,
Hangul, Hanunoo, Hebrew, Hiragana, Inherited, Kannada, Katakana,
Kharoshthi, Khmer, Lao, Latin, Limbu, Linear_B, Malayalam, Mongolian,
Myanmar, New_Tai_Lue, Ogham, Old_Italic, Old_Persian, Oriya, Osmanya,
Runic, Shavian, Sinhala, Syloti_Nagri, Syriac, Tagalog, Tagbanwa, Tai_Le,
Tamil, Telugu, Thaana, Thai, Tibetan, Tifinagh, Ugaritic, Yi

Table 4—Unicode character properties

Chapter 7. Regular Expressions • 114

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 8

More About Methods
So far in this book, we’ve been defining and using methods without much thought. Now
it’s time to get into the details.

8.1 Defining a Method

As we’ve seen, a method is defined using the keyword def. Method names should begin with
a lowercase letter or underscore,1 followed by letters, digits, and underscores.

A method name may end with one of ?, !, or =. Methods that return a boolean result (so-
called predicate methods) are often named with a trailing ?:

1.even? # => false
2.even? # => true
1.instance_of?(Fixnum) # => true

Methods that are “dangerous,” or that modify their receiver, may be named with a trailing
exclamation mark, !. These are sometimes called bang methods. For instance, class String pro-
vides both chop and chop! methods. The first returns a modified string; the second modifies
the receiver in place.

Methods that can appear on the left side of an assignment (a feature we discussed back in
the chapter on classes on page 34) end with an equal sign (=).

?, !, and = are the only “weird” characters allowed as method name suffixes.

Now that we’ve specified a name for our new method, we may need to declare some
parameters. These are simply a list of local variable names in parentheses. (The parentheses
around a method’s arguments are optional; our convention is to use them when a method
has arguments and omit them when it doesn’t.)

def my_new_method(arg1, arg2, arg3) # 3 arguments
Code for the method would go here

end

1. You won’t get an immediate error if you start a method name with an uppercase letter, but when Ruby
sees you calling the method, it might guess that it is a constant, not a method invocation, and as a result
it may parse the call incorrectly. By convention, methods names starting with an uppercase letter are
used for type conversion. The Integer method, for example, converts its parameter to an integer.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

def my_other_new_method # No arguments
Code for the method would go here

end

Ruby lets you specify default values for a method’s arguments—values that will be used if
the caller doesn’t pass them explicitly. You do this using an equal sign (=) followed by a
Ruby expression. That expression can include references to previous arguments in the list:

def cool_dude(arg1="Miles", arg2="Coltrane", arg3="Roach")
"#{arg1}, #{arg2}, #{arg3}."

end

cool_dude # => "Miles, Coltrane, Roach."
cool_dude("Bart") # => "Bart, Coltrane, Roach."
cool_dude("Bart", "Elwood") # => "Bart, Elwood, Roach."
cool_dude("Bart", "Elwood", "Linus") # => "Bart, Elwood, Linus."

Here’s an example where the default argument references a previous argument:

def surround(word, pad_width=word.length/2)
"[" * pad_width + word + "]" * pad_width

end

surround("elephant") # => "[[[[elephant]]]]"
surround("fox") # => "[fox]"
surround("fox", 10) # => "[[[[[[[[[[fox]]]]]]]]]]"

The body of a method contains normal Ruby expressions. The return value of a method is
the value of the last expression executed or the argument of an explicit return expression.

Variable-Length Argument Lists

But what if you want to pass in a variable number of arguments or want to capture multiple
arguments into a single parameter? Placing an asterisk before the name of the parameter
after the “normal” parameters lets you do just that. This is sometimes called splatting an
argument (presumably because the asterisk looks somewhat like a bug after hitting the
windscreen of a fast-moving car).

def varargs(arg1, *rest)
"arg1=#{arg1}. rest=#{rest.inspect}"

end

varargs("one") # => arg1=one. rest=[]
varargs("one", "two") # => arg1=one. rest=["two"]
varargs "one", "two", "three" # => arg1=one. rest=["two", "three"]

In this example, the first argument is assigned to the first method parameter as usual.
However, the next parameter is prefixed with an asterisk, so all the remaining arguments
are bundled into a new Array, which is then assigned to that parameter.

Folks sometimes use a splat to specify arguments that are not used by the method but that
are perhaps used by the corresponding method in a superclass. (Note that in this example
we call super with no parameters. This is a special case that means “invoke this method in
the superclass, passing it all the parameters that were given to the original method.”)

Chapter 8. More About Methods • 116

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

class Child < Parent
def do_something(*not_used)
our processing
super

end
end

In this case, you can also leave off the name of the parameter and just write an asterisk:

class Child < Parent
def do_something(*)
our processing
super

end
end

You can put the splat argument anywhere in a method’s parameter list, allowing you to
write this:

def split_apart(first, *splat, last)
puts "First: #{first.inspect}, splat: #{splat.inspect}, " +

"last: #{last.inspect}"
end

split_apart(1,2)
split_apart(1,2,3)
split_apart(1,2,3,4)

produces:

First: 1, splat: [], last: 2
First: 1, splat: [2], last: 3
First: 1, splat: [2, 3], last: 4

If you cared only about the first and last parameters, you could define this method using
this:

def split_apart(first, *, last)

You can have only one splat argument in a method—if you had two, it would be ambiguous.
You also can’t put arguments with default values after the splat argument. In all cases, the
splat argument receives the values left over after assigning to the regular arguments.

Methods and Blocks

As we discussed in the section on blocks and iterators on page 52, when a method is called
it may be associated with a block. Normally, you call the block from within the method using
yield:

def double(p1)
yield(p1*2)

end

double(3) {|val| "I got #{val}" } # => "I got 6"
double("tom") {|val| "Then I got #{val}" } # => "Then I got tomtom"

report erratum • discuss

Defining a Method • 117

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

However, if the last parameter in a method definition is prefixed with an ampersand, any
associated block is converted to a Proc object, and that object is assigned to the parameter.
This allows you to store the block for use later.

class TaxCalculator
def initialize(name, &block)
@name, @block = name, block

end
def get_tax(amount)
"#@name on #{amount} = #{ @block.call(amount) }"

end
end

tc = TaxCalculator.new("Sales tax") {|amt| amt * 0.075 }

tc.get_tax(100) # => "Sales tax on 100 = 7.5"
tc.get_tax(250) # => "Sales tax on 250 = 18.75"

8.2 Calling a Method

You call a method by optionally specifying a receiver, giving the name of the method, and
optionally passing some parameters and an optional block. Here’s a code fragment that
shows us calling a method with a receiver, a parameter, and a block:

connection.download_mp3("jitterbug") {|p| show_progress(p) }

In this example, the object connection is the receiver, download_mp3 is the name of the method,
the string "jitterbug" is the parameter, and the stuff between the braces is the associated block.
During this method call, Ruby first sets self to the receiver and then invokes the method in
that object. For class and module methods, the receiver will be the class or module name.

File.size("testfile") # => 66
Math.sin(Math::PI/4) # => 0.7071067811865475

If you omit the receiver, it defaults to self, the current object.

class InvoiceWriter
def initialize(order)
@order = order

end
def write_on(output)
write_header_on(output) # called on current object.
write_body_on(output) # self is not changed, as
write_totals_on(output) # there is no receiver

end
def write_header_on(output)
...

end
def write_body_on(output)
...

end
def write_totals_on(output)
...

end
end

Chapter 8. More About Methods • 118

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

This defaulting mechanism is how Ruby implements private methods. Private methods may
not be called with a receiver, so they must be methods available in the current object. In the
previous example, we’d probably want to make the helper methods private, because they
shouldn’t be called from outside the InvoiceWriter class:

class InvoiceWriter
def initialize(order)
@order = order

end
def write_on(output)
write_header_on(output)
write_body_on(output)
write_totals_on(output)

end

private

def write_header_on(output)
...

end
def write_body_on(output)
...

end
def write_totals_on(output)
...

end
end

Passing Parameters to a Method

Any parameters follow the method name. If no ambiguity exists, you can omit the parentheses
around the argument list when calling a method.2 However, except in the simplest cases we
don’t recommend this—some subtle problems can trip you up.3 Our rule is simple: if you
have any doubt, use parentheses.

for some suitable value in obj:
a = obj.hash # Same as
a = obj.hash() # this.

obj.some_method "Arg1", arg2, arg3 # Same thing as
obj.some_method("Arg1", arg2, arg3) # with parentheses.

Older Ruby versions compounded the problem by allowing you to put spaces between the
method name and the opening parenthesis. This made it hard to parse: is the parenthesis
the start of the parameters or the start of an expression? As of Ruby 1.8, you get a warning
if you put a space between a method name and an open parenthesis.

Method Return Values

Every method you call returns a value (although there’s no rule that says you have to use
that value). The value of a method is the value of the last statement executed by the method:

2. Other Ruby documentation sometimes calls these method calls without parentheses commands.
3. In particular, you must use parentheses on a method call that is itself a parameter to another method

call (unless it is the last parameter).

report erratum • discuss

Calling a Method • 119

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

def meth_one
"one"

end
meth_one # => "one"

def meth_two(arg)
case
when arg > 0 then "positive"
when arg < 0 then "negative"
else "zero"
end

end
meth_two(23) # => "positive"
meth_two(0) # => "zero"

Ruby has a return statement, which exits from the currently executing method. The value of
a return is the value of its argument(s). It is idiomatic Ruby to omit the return if it isn’t needed,
as shown by the previous two examples.

This next example uses return to exit from a loop inside the method:

def meth_three
100.times do |num|
square = num*num
return num, square if square > 1000

end
end
meth_three # => [32, 1024]

As the last case illustrates, if you give return multiple parameters, the method returns them
in an array. You can use parallel assignment to collect this return value:

num, square = meth_three
num # => 32
square # => 1024

Splat! Expanding Collections in Method Calls

We’ve seen that if you prefix the name of a parameter with an asterisk, multiple arguments
in the call to the method will be passed as an array. Well, the same thing works in reverse.

When you call a method, you can convert any collection or enumerable object into its con-
stituent elements and pass those elements as individual parameters to the method. Do this
by prefixing array arguments with an asterisk:

def five(a, b, c, d, e)
"I was passed #{a} #{b} #{c} #{d} #{e}"

end

five(1, 2, 3, 4, 5) # => "I was passed 1 2 3 4 5"
five(1, 2, 3, *['a', 'b']) # => "I was passed 1 2 3 a b"
five(*['a', 'b'], 1, 2, 3) # => "I was passed a b 1 2 3"
five(*(10..14)) # => "I was passed 10 11 12 13 14"
five(*[1,2], 3, *(4..5)) # => "I was passed 1 2 3 4 5"

Chapter 8. More About Methods • 120

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

As of Ruby 1.9, splat arguments can appear anywhere in the parameter list, and you can
intermix splat and regular arguments.

Making Blocks More Dynamic

We’ve already seen how to associate a block with a method call:

collection.each do |member|
...

end

Normally, this is perfectly good enough—you associate a fixed block of code with a method
in the same way you’d have a chunk of code after an if or while statement. But sometimes
you’d like to be more flexible. Maybe we’re teaching math skills. The student could ask for
an n-plus table or an n-times table. If the student asked for a 2-times table, we’d output 2, 4,
6, 8, and so on. (This code does not check its inputs for errors.)

print "(t)imes or (p)lus: "
operator = gets
print "number: "
number = Integer(gets)

if operator =~ /^t/
puts((1..10).collect {|n| n*number }.join(", "))

else
puts((1..10).collect {|n| n+number }.join(", "))

end

produces:

(t)imes or (p)lus: t
number: 2
2, 4, 6, 8, 10, 12, 14, 16, 18, 20

This works, but it’s ugly, with virtually identical code on each branch of the if statement. It
would be nice if we could factor out the block that does the calculation:

print "(t)imes or (p)lus: "
operator = gets
print "number: "
number = Integer(gets)
if operator =~ /^t/
calc = lambda {|n| n*number }

else
calc = lambda {|n| n+number }

end
puts((1..10).collect(&calc).join(", "))

produces:

(t)imes or (p)lus: t
number: 2
2, 4, 6, 8, 10, 12, 14, 16, 18, 20

If the last argument to a method is preceded by an ampersand, Ruby assumes that it is a Proc
object. It removes it from the parameter list, converts the Proc object into a block, and associates
it with the method.

report erratum • discuss

Calling a Method • 121

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Hash and Keyword Arguments

People commonly use hashes as a way of passing optional named arguments to a method.
For example, we could consider adding a search facility to an MP3 playlist:

class SongList
def search(field, params)
...

end
end

list = SongList.new
list.search(:titles, { genre: "jazz", duration_less_than: 270 })

The first parameter tells the search what to return. The second parameter is a hash literal of
search parameters. (Note how we used symbols as the keys for this options hash. This has
become idiomatic in Ruby libraries and frameworks.) The use of a hash means we can sim-
ulate keywords: look for songs with a genre of “jazz” and a duration less than 4.5 minutes.

However, this approach is slightly clunky, and that set of braces could easily be mistaken
for a block associated with the method. So, Ruby has a shortcut. You can place key => value
pairs in an argument list, as long as they follow any normal arguments and precede any
splat and block arguments. All these pairs will be collected into a single hash and passed as
one argument to the method. No braces are needed.

list.search(:titles, genre: "jazz", duration_less_than: 270)

Keyword Argument Lists
⇡New in 2.0⇣ Let’s look inside our search method. It gets passed a field name and an options hash. Maybe

we want to default the duration to 120 seconds, and validate that no invalid options are
passed. Pre Ruby 2.0, the code would look something like:

def search(field, options)
options = { duration: 120 }.merge(options)
if options.has_key?(:duration)
duration = options[:duration]
options.delete(:duration)

end
if options.has_key?(:genre)
genre = options[:genre]
options.delete(:genre)

end
fail "Invalid options: #{options.keys.join(', ')}" unless options.empty?
rest of method

end

Do this enough times, and you end up writting a helper function to validate and extract hash
parameters to methods.

Ruby 2 to the rescue. You can now define keyword arguments to your methods. You still
pass in the hash, but Ruby now matches the hash contents to your keyword argument list.
It also validates that you don’t pass in any unknown arguments.

def search(field, genre: nil, duration: 120)
p [field, genre, duration]

end

Chapter 8. More About Methods • 122

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

search(:title)
search(:title, duration: 432)
search(:title, duration: 432, genre: "jazz")

produces:

[:title, nil, 120]
[:title, nil, 432]
[:title, "jazz", 432]

Pass in an invalid option, and Ruby complains:

def search(field, genre: nil, duration: 120)
p [field, genre, duration]

end

search(:title, duraton: 432)

produces:

prog.rb:5:in `<main>': unknown keyword: duraton (ArgumentError)

You can collect these extra hash arguments as a hash parameter—just prefix one element of
your argument list with two asterisks (a double splat).

def search(field, genre: nil, duration: 120, **rest)
p [field, genre, duration, rest]

end

search(:title, duration: 432, stars: 3, genre: "jazz", tempo: "slow")

produces:

[:title, "jazz", 432, {:stars=>3, :tempo=>"slow"}]

And, just to prove that all we’re passing in is a hash, here’s the same calling sequence:

def search(field, genre: nil, duration: 120, **rest)
p [field, genre, duration, rest]

end

options = { duration: 432, stars: 3, genre: "jazz", tempo: "slow" }
search(:title, options)

produces:

[:title, "jazz", 432, {:stars=>3, :tempo=>"slow"}]

A well-written Ruby program will typically contain many methods, each quite small, so it’s
worth getting familiar with the options available when defining and using them. At some
point you’ll probably want to read Method Arguments, on page 324 to see exactly how argu-
ments in a method call get mapped to the method’s formal parameters when you have
combinations of default parameters and splat parameters.

report erratum • discuss

Calling a Method • 123

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 9

Expressions
So far, we’ve been fairly cavalier in our use of expressions in Ruby. After all, a = b + c is
pretty standard stuff. You could write a whole heap of Ruby code without reading any of
this chapter.

But it wouldn’t be as much fun ;-).

One of the first differences with Ruby is that anything that can reasonably return a value
does: just about everything is an expression. What does this mean in practice?

Some obvious things include the ability to chain statements together:

a = b = c = 0 # => 0
[3, 1, 7, 0].sort.reverse # => [7, 3, 1, 0]

Perhaps less obvious, things that are normally statements in C or Java are expressions in
Ruby. For example, the if and case statements both return the value of the last expression
executed:

song_type = if song.mp3_type == MP3::Jazz
if song.written < Date.new(1935, 1, 1)

Song::TradJazz
else

Song::Jazz
end

else
Song::Other

end

rating = case votes_cast
when 0...10 then Rating::SkipThisOne
when 10...50 then Rating::CouldDoBetter
else Rating::Rave
end

We’ll talk more about if and case later on page 135.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

9.1 Operator Expressions

Ruby has the basic set of operators (+, -, *, /, and so on) as well as a few surprises. A complete
list of the operators, and their precedences, is given in Table 13, Ruby operators (high to low
precedence), on page 318.

In Ruby, many operators are implemented as method calls. For example, when you write
a*b+c, you’re actually asking the object referenced by a to execute the method *, passing in
the parameter b. You then ask the object that results from that calculation to execute the +
method, passing c as a parameter. This is the same as writing the following (perfectly valid)
Ruby:

a, b, c = 1, 2, 3
a * b + c # => 5
(a.*(b)).+(c) # => 5

Because everything is an object and because you can redefine instance methods, you can
always redefine basic arithmetic if you don’t like the answers you’re getting:

class Fixnum
alias old_plus + # We can reference the original '+' as 'old_plus'

def +(other) # Redefine addition of Fixnums. This is a BAD IDEA!
old_plus(other).succ

end
end

1 + 2 # => 4
a = 3
a += 4 # => 8
a + a + a # => 26

More useful is that classes you write can participate in operator expressions just as if they
were built-in objects. For example, the left shift operator, <<, is often used to mean append
to receiver. Arrays support this:

a = [1, 2, 3]
a << 4 # => [1, 2, 3, 4]

You can add similar support to your classes:

class ScoreKeeper
def initialize
@total_score = @count = 0

end
def <<(score)
@total_score += score
@count += 1
self

end
def average
fail "No scores" if @count.zero?
Float(@total_score) / @count

end
end

Chapter 9. Expressions • 126

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

scores = ScoreKeeper.new
scores << 10 << 20 << 40
puts "Average = #{scores.average}"

produces:

Average = 23.333333333333332

Note that there’s a subtlety in this code—the << method explicitly returns self. It does this
to allow the method chaining in the line scores << 10 << 20 << 40. Because each call to <<
returns the scores object, you can then call << again, passing in a new score.

As well as the obvious operators, such as +, *, and <<, indexing using square brackets is also
implemented as a method call. When you write this:

some_obj[1,2,3]

you’re actually calling a method named [] on some_obj, passing it three parameters. You’d
define this method using this:

class SomeClass
def [](p1, p2, p3)
...

end
end

Similarly, assignment to an element is implemented using the []= method. This method
receives each object passed as an index as its first nparameters and the value of the assignment
as its last parameter:

class SomeClass
def []=(*params)
value = params.pop
puts "Indexed with #{params.join(', ')}"
puts "value = #{value.inspect}"

end
end

s = SomeClass.new
s[1] = 2
s['cat', 'dog'] = 'enemies'

produces:

Indexed with 1
value = 2
Indexed with cat, dog
value = "enemies"

9.2 Miscellaneous Expressions

As well as the obvious operator expressions and method calls and the (perhaps) less obvious
statement expressions (such as if and case), Ruby has a few more things that you can use in
expressions.

report erratum • discuss

Miscellaneous Expressions • 127

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Command Expansion

If you enclose a string in backquotes (sometimes called backticks) or use the delimited form
prefixed by %x, it will (by default) be executed as a command by your underlying operating
system. The value of the expression is the standard output of that command. Newlines will
not be stripped, so it is likely that the value you get back will have a trailing return or linefeed
character.

`date` # => "Mon May 27 12:30:56 CDT 2013\n"
`ls`.split[34] # => "newfile"
%x{echo "hello there"} # => "hello there\n"

You can use expression expansion and all the usual escape sequences in the command string:

for i in 0..3
status = `dbmanager status id=#{i}`
...

end

The exit status of the command is available in the global variable $?.

Redefining Backquotes

In the description of the command output expression, we said that the string in backquotes
would “by default” be executed as a command. In fact, the string is passed to the method
called Object#` (a single backquote). If you want, you can override this. This example uses
$?, which contains the status of the last external process run:

alias old_backquote `
def `(cmd)
result = old_backquote(cmd)
if $? != 0
puts "*** Command #{cmd} failed: status = #{$?.exitstatus}"

end
result

end
print `ls -l /etc/passwd`
print `ls -l /etc/wibble`

produces:

-rw-r--r-- 1 root wheel 5086 Jul 20 2011 /etc/passwd
ls: /etc/wibble: No such file or directory
*** Command ls -l /etc/wibble failed: status = 1

9.3 Assignment

Just about every example we’ve given so far in this book has featured assignment. Perhaps
it’s about time we said something about it.

An assignment statement sets the variable or attribute on its left side (the lvalue) to refer to
the value on the right (the rvalue). It then returns that rvalue as the result of the assignment
expression. This means you can chain assignments, and you can perform assignments in
some unexpected places:

Chapter 9. Expressions • 128

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

a = b = 1 + 2 + 3
a # => 6
b # => 6
a = (b = 1 + 2) + 3
a # => 6
b # => 3

File.open(name = gets.chomp)

Ruby has two basic forms of assignment. The first assigns an object reference to a variable
or constant. This form of assignment is hardwired into the language:

instrument = "piano"
MIDDLE_A = 440

The second form of assignment involves having an object attribute or element reference on
the left side. These forms are special, because they are implemented by calling methods in
the lvalues, which means you can override them.

We’ve already seen how to define a writable object attribute. Simply define a method name
ending in an equals sign. This method receives as its parameter the assignment’s rvalue.
We’ve also seen that you can define [] as a method:

class ProjectList
def initialize
@projects = []

end
def projects=(list)
@projects = list.map(&:upcase) # store list of names in uppercase

end
def [](offset)
@projects[offset]

end
end

list = ProjectList.new
list.projects = %w{ strip sand prime sand paint sand paint rub paint }
list[3] # => "SAND"
list[4] # => "PAINT"

As this example shows, these attribute-setting methods don’t have to correspond with
internal instance variables, and you don’t need an attribute reader for every attribute writer
(or vice versa).

In older Rubys, the result of the assignment was the value returned by the attribute-setting
method. As of Ruby 1.8, the value of the assignment is always the value of the parameter;
the return value of the method is discarded. In the code that follows, older versions of Ruby
would set result to 99. Now result will be set to 2.

class Test
def val=(val)
@val = val
return 99

end
end

report erratum • discuss

Assignment • 129

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

t = Test.new
result = (t.val = 2)
result # => 2

Parallel Assignment

During your first week in a programming course (or the second semester if it was a party
school), you may have had to write code to swap the values in two variables:

int a = 1; # C, or Java, or ...
int b = 2;
int temp;

temp = a;
a = b;
b = temp;

You can do this much more cleanly in Ruby:

a, b = 1, 2 # a=1, b=2
a, b = b, a # b=2, a=1

Ruby lets you have a comma-separated list of rvalues (the things on the right of the assign-
ment). Once Ruby sees more than one rvalue in an assignment, the rules of parallel assignment
come into play. What follows is a description at the logical level: what happens inside the
interpreter is somewhat hairier. Users of older versions of Ruby should note that these rules
have changed in Ruby 1.9.

First, all the rvalues are evaluated, left to right, and collected into an array (unless they are
already an array). This array will be the eventual value returned by the overall assignment.

Next, the left side (lhs) is inspected. If it contains a single element, the array is assigned to
that element.

a=[1, 2, 3, 4]a = 1, 2, 3, 4
b=[1, 2, 3, 4]b = [1, 2, 3, 4]

If the lhs contains a comma, Ruby matches values on the rhs against successive elements on
the lhs. Excess elements are discarded.

a=1, b=2a, b = 1, 2, 3, 4
c=1c, = 1, 2, 3, 4

Splats and Assignment

If Ruby sees any splats on the right side of an assignment (that is, rvalues preceded by an
asterisk), each will be expanded inline into its constituent values during the evaluation of
the rvalues and before the assignment to lvalues starts:

a=1, b=2, c=3, d=4, e=5a, b, c, d, e = *(1..2), 3, *[4, 5]

Exactly one lvalue may be a splat. This makes it greedy—it will end up being an array, and
that array will contain as many of the corresponding rvalues as possible. So, if the splat is
the last lvalue, it will soak up any rvalues that are left after assigning to previous lvalues:

Chapter 9. Expressions • 130

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

a=1, b=[2, 3]a, *b = 1, 2, 3
a=1, b=[]a, *b = 1

If the splat is not the last lvalue, then Ruby ensures that the lvalues that follow it will all
receive values from rvalues at the end of the right side of the assignment—the splat lvalue
will soak up only enough rvalues to leave one for each of the remaining lvalues.

a=[1, 2, 3], b=4*a, b = 1, 2, 3, 4
c=1, d=[2, 3], e=4c, *d, e = 1, 2, 3, 4
f=1, g=[], h=2, i=3, j=4f, *g, h, i, j = 1, 2, 3, 4

As with method parameters, you can use a raw asterisk to ignore some rvalues:

first=1, last=6first, *, last = 1,2,3,4,5,6

Nested Assignments

The left side of an assignment may contain a parenthesized list of terms. Ruby treats these
terms as if they were a nested assignment statement. It extracts the corresponding rvalue,
assigning it to the parenthesized terms, before continuing with the higher-level assignment.

a=1, b=2, c=nil, d=3a, (b, c), d = 1,2,3,4
a=1, b=2, c=nil, d=3a, (b, c), d = [1,2,3,4]
a=1, b=2, c=3, d=4a, (b, c), d = 1,[2,3],4
a=1, b=2, c=3, d=5a, (b, c), d = 1,[2,3,4],5
a=1, b=2, c=[3, 4], d=5a, (b,*c), d = 1,[2,3,4],5

Other Forms of Assignment

In common with other languages, Ruby has a syntactic shortcut: a = a + 2 may be written as
a += 2. The second form is converted internally to the first. This means that operators you
have defined as methods in your own classes work as you’d expect:

class Bowdlerize
def initialize(string)
@value = string.gsub(/[aeiou]/, '*')

end
def +(other)
Bowdlerize.new(self.to_s + other.to_s)

end
def to_s
@value

end
end

a = Bowdlerize.new("damn ") # => d*mn
a += "shame" # => d*mn sh*m*

Something you won’t find in Ruby are the autoincrement (++) and autodecrement (–) operators
of C and Java. Use the += and -= forms instead.

report erratum • discuss

Assignment • 131

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

9.4 Conditional Execution

Ruby has several different mechanisms for conditional execution of code; most of them
should feel familiar, and many have some neat twists. Before we get into them, though, we
need to spend a short time looking at boolean expressions.

Boolean Expressions

Ruby has a simple definition of truth. Any value that is not nil or the constant false is true—
"cat", 99, 0, and :a_song are all considered true.

In this book, when we want to talk about a general true or false value, we use regular Roman
type: true and false. When we want to refer to the actual constants, we write true and false.

The fact that nil is considered to be false is convenient. For example, IO#gets, which returns
the next line from a file, returns nil at the end of file, enabling you to write loops such as this:

while line = gets
process line

end

However, C, C++, and Perl programmers sometimes fall into a trap. The number zero is not
interpreted as a false value. Neither is a zero-length string. This can be a tough habit to break.

And, Or, and Not

Ruby supports all the standard boolean operators. Both the keyword and and the operator
&& return their first argument if it is false. Otherwise, they evaluate and return their second
argument (this is sometimes known as shortcircuit evaluation). The only difference in the
two forms is precedence (and binds lower than &&).

nil && 99 # => nil
false && 99 # => false
"cat" && 99 # => 99

Thus, && and and both return a true value only if both of their arguments are true, as
expected.

Similarly, both or and || return their first argument unless it is false, in which case they
evaluate and return their second argument.

nil || 99 # => 99
false || 99 # => 99
"cat" || 99 # => "cat"

As with and, the only difference between or and || is their precedence. To make life interesting,
and and or have the same precedence, but && has a higher precedence than ||.

A common idiom is to use ||= to assign a value to a variable only if that variable isn’t already
set:

var ||= "default value"

This is almost, but not quite, the same as var = var || "default value". It differs in that no
assignment is made at all if the variable is already set. In pseudocode, this might be written
as var = "default value" unless var or as var || var = "default value".

Chapter 9. Expressions • 132

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

not and ! return the opposite of their operand (false if the operand is true and true if the
operand is false). And, yes, not and ! differ only in precedence.

All these precedence rules are summarized in Table 13,Ruby operators (high to low precedence),
on page 318.

defined?

The defined? operator returns nil if its argument (which can be an arbitrary expression) is not
defined; otherwise, it returns a description of that argument. If the argument is yield, defined?
returns the string “yield” if a code block is associated with the current context.

defined? 1 # => "expression"
defined? dummy # => nil
defined? printf # => "method"
defined? String # => "constant"
defined? $_ # => "global-variable"
defined? Math::PI # => "constant"
defined? a = 1 # => "assignment"
defined? 42.abs # => "method"
defined? nil # => "nil"

Comparing Objects

In addition to the boolean operators, Ruby objects support comparison using the methods
==, ===, <=>, =~, eql?, and equal? (see Table 5, Common comparison operators, on page 134).
All but <=> are defined in class Object but are often overridden by descendants to provide
appropriate semantics. For example, class Array redefines == so that two array objects are
equal if they have the same number of elements and the corresponding elements are equal.

Both == and =~ have negated forms, != and !~. Ruby first looks for methods called != or !~,
calling them if found. If not, it will then invoke either == or =~, negating the result.

In the following example, Ruby calls the == method to perform both comparisons:

class T
def ==(other)
puts "Comparing self == #{other}"
other == "value"

end
end

t = T.new
p(t == "value")
p(t != "value")

produces:

Comparing self == value
true
Comparing self == value
false

report erratum • discuss

Conditional Execution • 133

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

MeaningOperator

Test for equal value.==

Used to compare each of the items with the target in the when clause of a case
statement.

===

General comparison operator. Returns -1, 0, or +1, depending on whether its
receiver is less than, equal to, or greater than its argument.

<=>

Comparison operators for less than, less than or equal, greater than or equal,
and greater than.

<, <=, >=, >

Regular expression pattern match.=~

True if the receiver and argument have both the same type and equal values.
1 == 1.0 returns true, but 1.eql?(1.0) is false.

eql?

True if the receiver and argument have the same object ID.equal?

Table 5—Common comparison operators

If instead we explicitly define !=, Ruby calls it:

class T
def ==(other)
puts "Comparing self == #{other}"
other == "value"

end
def !=(other)
puts "Comparing self != #{other}"
other != "value"

end
end

t = T.new
p(t == "value")
p(t != "value")

produces:

Comparing self == value
true
Comparing self != value
false

You can use a Ruby range as a boolean expression. A range such as exp1..exp2 will evaluate
as false until exp1 becomes true. The range will then evaluate as true until exp2 becomes true.
Once this happens, the range resets, ready to fire again. We show some examples of this
later on page 138.

Prior to Ruby 1.8, you could use a bare regular expression as a boolean expression. This is
now deprecated. You can still use the ~ operator (described in the reference section on page
661) to match $_ against a pattern, but this will probably also disappear in the future.

Chapter 9. Expressions • 134

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

if and unless Expressions

An if expression in Ruby is pretty similar to if statements in other languages:

if artist == "Gillespie" then
handle = "Dizzy"

elsif artist == "Parker" then
handle = "Bird"

else
handle = "unknown"

end

The then keyword is optional if you lay out your statements on multiple lines:

if artist == "Gillespie"
handle = "Dizzy"

elsif artist == "Parker"
handle = "Bird"

else
handle = "unknown"

end

However, if you want to lay out your code more tightly, you must separate the boolean
expression from the following statements with the then keyword:1

if artist == "Gillespie" then handle = "Dizzy"
elsif artist == "Parker" then handle = "Bird"
else handle = "unknown"
end

You can have zero or more elsif clauses and an optional else clause. And notice that there’s
no e in the middle of elsif.

As we’ve said before, an if statement is an expression—it returns a value. You don’t have to
use the value of an if statement, but it can come in handy:

handle = if artist == "Gillespie"
"Dizzy"

elsif artist == "Parker"
"Bird"

else
"unknown"

end

Ruby also has a negated form of the if statement:

unless duration > 180
listen_intently

end

The unless statement does support else, but most people seem to agree that it’s clearer to
switch to an if statement in these cases.

1. Ruby 1.8 allowed you to use a colon character in place of the then keyword. This is no longer supported.

report erratum • discuss

Conditional Execution • 135

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Finally, for the C fans out there, Ruby also supports the C-style conditional expression:

cost = duration > 180 ? 0.35 : 0.25

A conditional expression returns the value of the expression either before or after the colon,
depending on whether the boolean expression before the question mark is true or false. In
the previous example, if the duration is greater than three minutes, the expression returns
0.35. For shorter durations, it returns 0.25. The result is then assigned to cost.

if and unless Modifiers

Ruby shares a neat feature with Perl. Statement modifiers let you tack conditional statements
onto the end of a normal statement:

mon, day, year = $1, $2, $3 if date =~ /(\d\d)-(\d\d)-(\d\d)/
puts "a = #{a}" if $DEBUG
print total unless total.zero?

For an if modifier, the preceding expression will be evaluated only if the condition is true.
unless works the other way around:

File.foreach("/etc/passwd") do |line|
next if line =~ /^#/ # Skip comments
parse(line) unless line =~ /^$/ # Don't parse empty lines

end

Because if itself is an expression, you can get really obscure with statements such as this:

if artist == "John Coltrane"
artist = "'Trane"

end unless use_nicknames == "no"

This path leads to the gates of madness.

9.5 case Expressions

The Ruby case expression is a powerful beast: a multiway if on steroids. And just to make it
even more powerful, it comes in two flavors.

The first form is fairly close to a series of if statements; it lets you list a series of conditions
and execute a statement corresponding to the first one that’s true:

case
when song.name == "Misty"
puts "Not again!"

when song.duration > 120
puts "Too long!"

when Time.now.hour > 21
puts "It's too late"

else
song.play

end

The second form of the case statement is probably more common. You specify a target at the
top of the case statement, and each when clause lists one or more comparisons to be tested
against that target:

Chapter 9. Expressions • 136

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

case command
when "debug"
dump_debug_info
dump_symbols

when /p\s+(\w+)/
dump_variable($1)

when "quit", "exit"
exit

else
print "Illegal command: #{command}"

end

As with if, case returns the value of the last expression executed, and you can use a then
keyword if the expression is on the same line as the condition:2

kind = case year
when 1850..1889 then "Blues"
when 1890..1909 then "Ragtime"
when 1910..1929 then "New Orleans Jazz"
when 1930..1939 then "Swing"
else "Jazz"
end

case operates by comparing the target (the expression after the keyword case) with each of
the comparison expressions after the when keywords. This test is done using comparison ===
target. As long as a class defines meaningful semantics for === (and all the built-in classes
do), objects of that class can be used in case expressions.

For example, regular expressions define === as a simple pattern match:

case line
when /title=(.*)/
puts "Title is #$1"

when /track=(.*)/
puts "Track is #$1"

end

Ruby classes are instances of class Class. The === operator is defined in Class to test whether
the argument is an instance of the receiver or one of its superclasses. So (abandoning the
benefits of polymorphism and bringing the gods of refactoring down around your ears),
you can test the class of objects:

case shape
when Square, Rectangle
...

when Circle
...

when Triangle
...

else
...

end

2. Ruby 1.8 lets you use a colon in place of the then keyword. Ruby 1.9 does not support this.

report erratum • discuss

case Expressions • 137

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

9.6 Loops

Don’t tell anyone, but Ruby has pretty primitive built-in looping constructs.

The while loop executes its body zero or more times as long as its condition is true. For
example, this common idiom reads until the input is exhausted:

while line = gets
...

end

The until loop is the opposite; it executes the body until the condition becomes true:

until play_list.duration > 60
play_list.add(song_list.pop)

end

As with if and unless, you can use both of the loops as statement modifiers:

a = 1
a *= 2 while a < 100
a # => 128
a -= 10 until a < 100
a # => 98

Back in the section on boolean expressions on page 134, we said that a range can be used as
a kind of flip-flop, returning true when some event happens and then staying true until a
second event occurs. This facility is normally used within loops. In the example that follows,
we read a text file containing the first ten ordinal numbers (“first,” “second,” and so on) but
print only the lines starting with the one that matches “third” and ending with the one that
matches “fifth”:

file = File.open("ordinal")
while line = file.gets
puts(line) if line =~ /third/ .. line =~ /fifth/

end

produces:

third
fourth
fifth

You may find folks who come from Perl writing the previous example slightly differently:

file = File.open("ordinal")
while file.gets
print if ~/third/ .. ~/fifth/

end

produces:

third
fourth
fifth

This uses some behind-the-scenes magic behavior: gets assigns the last line read to the
global variable $_, the ~ operator does a regular expression match against $_, and print with

Chapter 9. Expressions • 138

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

no arguments prints $_. This kind of code is falling out of fashion in the Ruby community
and may end up being removed from the language.

The start and end of a range used in a boolean expression can themselves be expressions.
These are evaluated each time the overall boolean expression is evaluated. For example, the
following code uses the fact that the variable $. contains the current input line number to
display line numbers 1 through 3 as well as those between a match of /eig/ and /nin/:

File.foreach("ordinal") do |line|
if (($. == 1) || line =~ /eig/) .. (($. == 3) || line =~ /nin/)
print line

end
end

produces:

first
second
third
eighth
ninth

You’ll come across a wrinkle when you use while and until as statement modifiers. If the
statement they are modifying is a begin...end block, the code in the block will always execute
at least one time, regardless of the value of the boolean expression:

print "Hello\n" while false
begin
print "Goodbye\n"

end while false

produces:

Goodbye

Iterators

If you read the beginning of the previous section, you may have been discouraged. “Ruby
has pretty primitive built-in looping constructs,” it said. Don’t despair, gentle reader, for we
have good news. Ruby doesn’t need any sophisticated built-in loops, because all the fun
stuff is implemented using Ruby iterators.

For example, Ruby doesn’t have a for loop—at least not the kind that iterates over a range
of numbers. Instead, Ruby uses methods defined in various built-in classes to provide
equivalent, but less error-prone, functionality.

Let’s look at some examples:

3.times do
print "Ho! "

end

produces:

Ho! Ho! Ho!

It’s easy to avoid fence-post and off-by-one errors; this loop will execute three times, period.
In addition to times, integers can loop over specific ranges by calling downto and upto, and all
numbers can loop using step. For instance, a traditional “for” loop that runs from 0 to 9
(something like for(i=0; i < 10; i++)) is written as follows:

report erratum • discuss

Loops • 139

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

0.upto(9) do |x|
print x, " "

end

produces:

0 1 2 3 4 5 6 7 8 9

A loop from 0 to 12 by 3 can be written as follows:

0.step(12, 3) {|x| print x, " " }

produces:

0 3 6 9 12

Similarly, iterating over arrays and other containers is easy if you use their each method:

[1, 1, 2, 3, 5].each {|val| print val, " " }

produces:

1 1 2 3 5

And once a class supports each, the additional methods in the Enumerable module become
available. (We talked about this back in the Modules chapter on page 77, and we document
it fully in Enumerable, on page 466.) For example, the File class provides an eachmethod, which
returns each line of a file in turn. Using the grep method in Enumerable, we could iterate over
only those lines that end with a d:

File.open("ordinal").grep(/d$/) do |line|
puts line

end

produces:

second
third

Last, and probably least, is the most basic loop of all. Ruby provides a built-in iterator called
loop:

loop do
block ...

end

The loop iterator calls the associated block forever (or at least until you break out of the loop,
but you’ll have to read ahead to find out how to do that).

for ... in

Earlier we said that the only built-in Ruby looping primitives were while and until. What’s
this for thing, then? Well, for is almost a lump of syntactic sugar.

When you write this:

for song in playlist
song.play

end

Chapter 9. Expressions • 140

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Ruby translates it into something like this:

playlist.each do |song|
song.play

end

The only difference between the for loop and the each form is the scope of local variables that
are defined in the body. This is discussed in Section 9.7, Variable Scope, Loops, and Blocks, on
page 142.

You can use for to iterate over any object that responds to the method each, such as an Array
or a Range:

for i in ['fee', 'fi', 'fo', 'fum']
print i, " "

end
for i in 1..3
print i, " "

end
for i in File.open("ordinal").find_all {|line| line =~ /d$/}
print i.chomp, " "

end

produces:

fee fi fo fum 1 2 3 second third

As long as your class defines a sensible each method, you can use a for loop to traverse its
objects:

class Periods
def each
yield "Classical"
yield "Jazz"
yield "Rock"

end
end

periods = Periods.new
for genre in periods
print genre, " "

end

produces:

Classical Jazz Rock

break, redo, and next

The loop control constructs break, redo, and next let you alter the normal flow through a loop
or iterator.3

break terminates the immediately enclosing loop; control resumes at the statement following
the block. redo repeats the current iteration of the loop from the start but without reevaluating
the condition or fetching the next element (in an iterator). next skips to the end of the loop,
effectively starting the next iteration:

3. Ruby 1.8 and earlier also supported the retry keyword as a looping mechanism. This has been removed
in Ruby 1.9.

report erratum • discuss

Loops • 141

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

while line = gets
next if line =~ /^\s*#/ # skip comments
break if line =~ /^END/ # stop at end

substitute stuff in backticks and try again
redo if line.gsub!(/`(.*?)`/) { eval($1) }

process line ...
end

These keywords can also be used within blocks. Although you can use them with any block,
they typically make the most sense when the block is being used for iteration:

i=0
loop do
i += 1
next if i < 3
print i
break if i > 4

end

produces:

345

A value may be passed to break and next. When used in conventional loops, it probably makes
sense only to do this with break, where it sets the value returned by the loop. (Any value
given to next is effectively lost.) If a conventional loop doesn’t execute a break, its value is nil.

result = while line = gets
break(line) if line =~ /answer/

end

process_answer(result) if result

If you want the nitty-gritty details of how break and next work with blocks and procs, take
a look at the reference description on page 338. If you are looking for a way of exiting from
nested blocks or loops, take a look at Object#catch on page 341.

9.7 Variable Scope, Loops, and Blocks

The while, until, and for loops are built into the language and do not introduce new scope;
previously existing locals can be used in the loop, and any new locals created will be available
afterward.

The scoping rules for blocks (such as those used by loop and each) are different. Normally,
the local variables created in these blocks are not accessible outside the block:

[1, 2, 3].each do |x|
y = x + 1

end
[x, y]

produces:

prog.rb:4:in `<main>': undefined local variable or method `x' for main:Object
(NameError)

Chapter 9. Expressions • 142

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

However, if at the time the block executes a local variable already exists with the same name
as that of a variable in the block, the existing local variable will be used in the block. Its value
will therefore be available after the block finishes. As the following example shows, this
applies to normal variables in the block but not to the block’s parameters:

x = "initial value"
y = "another value"
[1, 2, 3].each do |x|
y = x + 1

end
[x, y] # => ["initial value", 4]

Note that the assignment to the variable doesn’t have to be executed; the Ruby interpreter
just needs to have seen that the variable exists on the left side of an assignment:

a = "never used" if false
[99].each do |i|
a = i # this sets the variable in the outer scope

end
a # => 99

You can list block-local variables in the block’s parameter list, preceded by a semicolon. Contrast
this code, which does not use block-locals:

square = "yes"
total = 0

[1, 2, 3].each do |val|
square = val * val
total += square

end

puts "Total = #{total}, square = #{square}"

produces:

Total = 14, square = 9

with the following code, which uses a block-local variable, so square in the outer scope is not
affected by a variable of the same name within the block:

square = "yes"
total = 0

[1, 2, 3].each do |val; square|
square = val * val
total += square

end

puts "Total = #{total}, square = #{square}"

produces:

Total = 14, square = yes

If you are concerned about the scoping of variables with blocks, turn on Ruby warnings,
and declare your block-local variables explicitly.

report erratum • discuss

Variable Scope, Loops, and Blocks • 143

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 10

Exceptions, catch, and throw
So far, we’ve been developing code in Pleasantville, a wonderful place where nothing ever,
ever goes wrong. Every library call succeeds, users never enter incorrect data, and resources
are plentiful and cheap. Well, that’s about to change. Welcome to the real world!

In the real world, errors happen. Good programs (and programmers) anticipate them and
arrange to handle them gracefully. This isn’t always as easy as it may sound. Often the code
that detects an error does not have the context to know what to do about it. For example,
attempting to open a file that doesn’t exist is acceptable in some circumstances and is a fatal
error at other times. What’s your file-handling module to do?

The traditional approach is to use return codes. The openmethod could return some specific
value to say it failed. This value is then propagated back through the layers of calling routines
until someone wants to take responsibility for it. The problem with this approach is that
managing all these error codes can be a pain. If a function calls open, then read, and finally
close and if each can return an error indication, how can the function distinguish these error
codes in the value it returns to its caller?

To a large extent, exceptions solve this problem. Exceptions let you package information about
an error into an object. That exception object is then propagated back up the calling stack
automatically until the runtime system finds code that explicitly declares that it knows how
to handle that type of exception.

10.1 The Exception Class

Information about an exception is encapsulated in an object of class Exception or one of class
Exception’s children. Ruby predefines a tidy hierarchy of exceptions, shown in Figure 1,
Standard exception hierarchy, on page 146. As we’ll see later, this hierarchy makes handling
exceptions considerably easier.

When you need to raise an exception, you can use one of the built-in Exception classes, or you
can create one of your own. Make your own exceptions subclasses of StandardError or one of
its children. If you don’t, your exceptions won’t be caught by default.

Every Exception has associated with it a message string and a stack backtrace. If you define
your own exceptions, you can add extra information.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Exception
NoMemoryError
ScriptError

LoadError
Gem::LoadError

NotImplementedError
SyntaxError

SecurityError
SignalException

Interrupt
StandardError

ArgumentError
Gem::Requirement::BadRequirementError

EncodingError
Encoding::CompatibilityError
Encoding::ConverterNotFoundError
Encoding::InvalidByteSequenceError
Encoding::UndefinedConversionError

FiberError
IndexError

KeyError
StopIteration

IOError
EOFError

LocalJumpError
Math::DomainError
NameError

NoMethodError
RangeError

FloatDomainError
RegexpError
RuntimeError

Gem::Exception
SystemCallError
ThreadError
TypeError
ZeroDivisionError

SystemExit
Gem::SystemExitException

SystemStackError

Figure 1—Standard exception hierarchy

10.2 Handling Exceptions

Here’s some simple code that uses the open-uri library to download the contents of a web
page and write it to a file, line by line:

tut_exceptions/fetch_web_page/fetch1.rb

require 'open-uri'
web_page = open("http://pragprog.com/podcasts")
output = File.open("podcasts.html", "w")
while line = web_page.gets

Chapter 10. Exceptions, catch, and throw • 146

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/tut_exceptions/fetch_web_page/fetch1.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

output.puts line
end
output.close

What happens if we get a fatal error halfway through? We certainly don’t want to store an
incomplete page to the output file.

Let’s add some exception-handling code and see how it helps. To do exception handling,
we enclose the code that could raise an exception in a begin/end block and use one or more
rescue clauses to tell Ruby the types of exceptions we want to handle. Because we specified
Exception in the rescue line, we’ll handle exceptions of class Exception and all of its subclasses
(which covers all Ruby exceptions). In the error-handling block, we report the error, close
and delete the output file, and then reraise the exception:

tut_exceptions/fetch_web_page/fetch2.rb

require 'open-uri'
page = "podcasts"
file_name = "#{page}.html"
web_page = open("http://pragprog.com/#{page}")
output = File.open(file_name, "w")
begin
while line = web_page.gets
output.puts line

end
output.close

rescue Exception
STDERR.puts "Failed to download #{page}: #{$!}"
output.close
File.delete(file_name)
raise

end

When an exception is raised and independent of any subsequent exception handling, Ruby
places a reference to the associated exception object into the global variable $! (the exclamation
point presumably mirroring our surprise that any of our code could cause errors). In the
previous example, we used the $! variable to format our error message.

After closing and deleting the file, we call raise with no parameters, which reraises the
exception in $!. This is a useful technique, because it allows you to write code that filters
exceptions, passing on those you can’t handle to higher levels. It’s almost like implementing
an inheritance hierarchy for error processing.

You can have multiple rescue clauses in a begin block, and each rescue clause can specify
multiple exceptions to catch. At the end of each rescue clause, you can give Ruby the name
of a local variable to receive the matched exception. Most people find this more readable
than using $! all over the place:

begin
eval string

rescue SyntaxError, NameError => boom
print "String doesn't compile: " + boom

rescue StandardError => bang
print "Error running script: " + bang

end

report erratum • discuss

Handling Exceptions • 147

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/tut_exceptions/fetch_web_page/fetch2.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

How does Ruby decide which rescue clause to execute? It turns out that the processing is
pretty similar to that used by the case statement. For each rescue clause in the begin block,
Ruby compares the raised exception against each of the parameters in turn. If the raised
exception matches a parameter, Ruby executes the body of the rescue and stops looking. The
match is made using parameter===$!. For most exceptions, this means that the match will
succeed if the exception named in the rescue clause is the same as the type of the currently
thrown exception or is a superclass of that exception.1 If you write a rescue clause with no
parameter list, the parameter defaults to StandardError.

If no rescue clause matches or if an exception is raised outside a begin/end block, Ruby moves
up the stack and looks for an exception handler in the caller, then in the caller’s caller, and
so on.

Although the parameters to the rescue clause are typically the names of exception classes,
they can be arbitrary expressions (including method calls) that return an Exception class.

System Errors

System errors are raised when a call to the operating system returns an error code. On POSIX
systems, these errors have names such as EAGAIN and EPERM. (If you’re on a Unix box, you
could type man errno to get a list of these errors.)

Ruby takes these errors and wraps them each in a specific exception object. Each is a subclass
of SystemCallError, and each is defined in a module called Errno. This means you’ll find
exceptions with class names such as Errno::EAGAIN, Errno::EIO, and Errno::EPERM. If you want to
get to the underlying system error code, Errno exception objects each have a class constant
called (somewhat confusingly) Errno that contains the value.

Errno::EAGAIN::Errno # => 35
Errno::EPERM::Errno # => 1
Errno::EWOULDBLOCK::Errno # => 35

Note that EWOULDBLOCK and EAGAIN have the same error number. This is a feature of the
operating system of the computer used to produce this book—the two constants map to the
same error number. To deal with this, Ruby arranges things so that Errno::EAGAIN and
Errno::EWOULDBLOCK are treated identically in a rescue clause. If you ask to rescue one, you’ll
rescue either. It does this by redefining SystemCallError#=== so that if two subclasses of Sys-
temCallError are compared, the comparison is done on their error number and not on their
position in the hierarchy.

Tidying Up

Sometimes you need to guarantee that some processing is done at the end of a block of code,
regardless of whether an exception was raised. For example, you may have a file open on
entry to the block, and you need to make sure it gets closed as the block exits.

The ensure clause does just this. ensure goes after the last rescue clause and contains a chunk
of code that will always be executed as the block terminates. It doesn’t matter if the block
exits normally, if it raises and rescues an exception, or if it is terminated by an uncaught
exception—the ensure block will get run:

1. This comparison happens because exceptions are classes, and classes in turn are kinds of Module. The
=== method is defined for modules, returning true if the class of the operand is the same as or is a
descendant of the receiver.

Chapter 10. Exceptions, catch, and throw • 148

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

f = File.open("testfile")
begin
.. process

rescue
.. handle error

ensure
f.close

end

Beginners commonly make the mistake of putting the File.open inside the begin block. In this
case, that would be incorrect, because open can itself raise an exception. If that were to happen,
you wouldn’t want to run the code in the ensure block, because there’d be no file to close.

The else clause is a similar, although less useful, construct. If present, it goes after the rescue
clauses and before any ensure. The body of an else clause is executed only if no exceptions
are raised by the main body of code.

f = File.open("testfile")
begin
.. process

rescue
.. handle error

else
puts "Congratulations-- no errors!"

ensure
f.close

end

Play It Again

Sometimes you may be able to correct the cause of an exception. In those cases, you can use
the retry statement within a rescue clause to repeat the entire begin/end block. Clearly,
tremendous scope exists for infinite loops here, so this is a feature to use with caution (and
with a finger resting lightly on the interrupt key).

As an example of code that retries on exceptions, take a look at the following, adapted from
Minero Aoki’s net/smtp.rb library:

@esmtp = true

begin
First try an extended login. If it fails, fall back to a normal login
if @esmtp then @command.ehlo(helodom)

else @command.helo(helodom)
end

rescue ProtocolError
if @esmtp then
@esmtp = false
retry

else
raise

end
end

report erratum • discuss

Handling Exceptions • 149

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

This code tries first to connect to an SMTP server using the EHLO command, which is not
universally supported. If the connection attempt fails, the code sets the @esmtp variable to
false and retries the connection. If this fails a second time, the exception is raised up to the
caller.

10.3 Raising Exceptions

So far, we’ve been on the defensive, handling exceptions raised by others. It’s time to turn
the tables and go on the offensive. (Some say your gentle authors are always offensive, but
that’s a different book.)

You can raise exceptions in your code with the Object#raise method (or its somewhat judg-
mental synonym, Object#fail):

raise
raise "bad mp3 encoding"
raise InterfaceException, "Keyboard failure", caller

The first form simply reraises the current exception (or a RuntimeError if there is no current
exception). This is used in exception handlers that intercept an exception before passing it
on.

The second form creates a new RuntimeError exception, setting its message to the given string.
This exception is then raised up the call stack.

The third form uses the first argument to create an exception and then sets the associated
message to the second argument and the stack trace to the third argument. Typically the
first argument will be either the name of a class in the Exception hierarchy or a reference to
an instance of one of these classes.2 The stack trace is normally produced using the Object#caller
method.

Here are some typical examples of raise in action:

raise

raise "Missing name" if name.nil?

if i >= names.size
raise IndexError, "#{i} >= size (#{names.size})"

end

raise ArgumentError, "Name too big", caller

In the last example, we remove the current routine from the stack backtrace, which is often
useful in library modules. We do this using the callermethod, which returns the current stack
trace. We can take this further; the following code removes two routines from the backtrace
by passing only a subset of the call stack to the new exception:

raise ArgumentError, "Name too big", caller[1..-1]

2. Technically, this argument can be any object that responds to the message exception by returning an
object such that object.kind_of?(Exception) is true.

Chapter 10. Exceptions, catch, and throw • 150

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Adding Information to Exceptions

You can define your own exceptions to hold any information that you need to pass out from
the site of an error. For example, certain types of network errors may be transient depending
on the circumstances. If such an error occurs and the circumstances are right, you could set
a flag in the exception to tell the handler that it may be worth retrying the operation:

tut_exceptions/retry_exception.rb

class RetryException < RuntimeError
attr :ok_to_retry
def initialize(ok_to_retry)
@ok_to_retry = ok_to_retry

end
end

Somewhere down in the depths of the code, a transient error occurs:

tut_exceptions/read_data.rb

def read_data(socket)
data = socket.read(512)
if data.nil?
raise RetryException.new(true), "transient read error"

end
.. normal processing

end

Higher up the call stack, we handle the exception:

begin
stuff = read_data(socket)
.. process stuff

rescue RetryException => detail
retry if detail.ok_to_retry
raise

end

10.4 catch and throw

Although the exception mechanism of raise and rescue is great for abandoning execution
when things go wrong, it’s sometimes nice to be able to jump out of some deeply nested
construct during normal processing. This is where catch and throw come in handy. Here’s a
trivial example—this code reads a list of words one at a time and adds them to an array.
When done, it prints the array in reverse order. However, if any of the lines in the file doesn’t
contain a valid word, we want to abandon the whole process.

word_list = File.open("wordlist")
catch (:done) do
result = []
while line = word_list.gets
word = line.chomp
throw :done unless word =~ /^\w+$/
result << word

end
puts result.reverse

end

report erratum • discuss

catch and throw • 151

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/tut_exceptions/retry_exception.rb
http://media.pragprog.com/titles/ruby4/code/tut_exceptions/read_data.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

catch defines a block that is labeled with the given name (which may be a Symbol or a String).
The block is executed normally until a throw is encountered.

When Ruby encounters a throw, it zips back up the call stack looking for a catch block with a
matching symbol. When it finds it, Ruby unwinds the stack to that point and terminates the
block. So, in the previous example, if the input does not contain correctly formatted lines,
the throw will skip to the end of the corresponding catch, not only terminating the while loop
but also skipping the code that writes the reversed list. If the throw is called with the optional
second parameter, that value is returned as the value of the catch. In this example, our word
list incorrectly contains the line “*wow*.” Without the second parameter to throw, the corre-
sponding catch returns nil.

word_list = File.open("wordlist")
word_in_error = catch(:done) do
result = []
while line = word_list.gets
word = line.chomp
throw(:done, word) unless word =~ /^\w+$/
result << word

end
puts result.reverse

end
if word_in_error
puts "Failed: '#{word_in_error}' found, but a word was expected"

end

produces:

Failed: '*wow*' found, but a word was expected

The following example uses a throw to terminate interaction with the user if ! is typed in
response to any prompt:

tut_exceptions/catchthrow.rb

def prompt_and_get(prompt)
print prompt
res = readline.chomp
throw :quit_requested if res == "!"
res

end

catch :quit_requested do
name = prompt_and_get("Name: ")
age = prompt_and_get("Age: ")
sex = prompt_and_get("Sex: ")
..
process information

end

As this example illustrates, the throw does not have to appear within the static scope of the
catch.

Chapter 10. Exceptions, catch, and throw • 152

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/tut_exceptions/catchthrow.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 11

Basic Input and Output
Ruby provides what at first sight looks like two separate sets of I/O routines. The first is the
simple interface—we’ve been using it pretty much exclusively so far:

print "Enter your name: "
name = gets

A whole set of I/O-related methods is implemented in the Kernel module—gets, open, print,
printf, putc, puts, readline, readlines, and test—that makes it simple and convenient to write
straightforward Ruby programs. These methods typically do I/O to standard input and
standard output, which makes them useful for writing filters. You’ll find them documented
under class Object on page 599.

The second way, which gives you a lot more control, is to use IO objects.

11.1 What Is an IO Object?

Ruby defines a single base class, IO, to handle input and output. This base class is subclassed
by classes File and BasicSocket to provide more specialized behavior, but the principles are
the same. An IO object is a bidirectional channel between a Ruby program and some external
resource.1 An IO object may have more to it than meets the eye, but in the end you still simply
write to it and read from it.

In this chapter, we’ll be concentrating on class IO and its most commonly used subclass, class
File. For more details on using the socket classes for networking, see the library description
on page 807.

11.2 Opening and Closing Files

As you may expect, you can create a new file object using File.new:

file = File.new("testfile", "r")
... process the file
file.close

1. For those who just have to know the implementation details, this means that a single IO object can
sometimes be managing more than one operating system file descriptor. For example, if you open a
pair of pipes, a single IO object contains both a read pipe and a write pipe.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

The first parameter is the filename. The second is the mode string, which lets you open the
file for reading, writing, or both. (Here we opened testfile for reading with an "r". We could
also have used "w" for write or "r+" for read-write. The full list of allowed modes appears in
the reference section on page 494.) You can also optionally specify file permissions when
creating a file; see the description of File.new on page 494 for details. After opening the file,
we can work with it, writing and/or reading data as needed. Finally, as responsible software
citizens, we close the file, ensuring that all buffered data is written and that all related
resources are freed.

But here Ruby can make life a little bit easier for you. The method File.open also opens a file.
In regular use, it behaves just like File.new. However, if you associate a block with the call,
open behaves differently. Instead of returning a new File object, it invokes the block, passing
the newly opened File as a parameter. When the block exits, the file is automatically closed.

File.open("testfile", "r") do |file|
... process the file

end # <- file automatically closed here

This second approach has an added benefit. In the earlier case, if an exception is raised while
processing the file, the call to file.close may not happen. Once the file variable goes out of
scope, then garbage collection will eventually close it, but this may not happen for a while.
Meanwhile, resources are being held open.

This doesn’t happen with the block form of File.open. If an exception is raised inside the block,
the file is closed before the exception is propagated on to the caller. It’s as if the open method
looks like the following:

class File
def File.open(*args)
result = f = File.new(*args)
if block_given?
begin
result = yield f

ensure
f.close

end
end

result
end

end

11.3 Reading and Writing Files

The same methods that we’ve been using for “simple” I/O are available for all file objects.
So, gets reads a line from standard input (or from any files specified on the command line
when the script was invoked), and file.gets reads a line from the file object file.

For example, we could create a program called copy.rb:

tut_io/copy.rb

while line = gets
puts line

end

Chapter 11. Basic Input and Output • 154

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/tut_io/copy.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

If we run this program with no arguments, it will read lines from the console and copy them
back to the console. Note that each line is echoed once the Return key is pressed. (In this and
later examples, we show user input in a bold font.) The ^D is the end-of-file character on
Unix systems.

$ ruby copy.rb
These are lines
These are lines
that I am typing
that I am typing
^D

We can also pass in one or more filenames on the command line, in which case getswill read
from each in turn:

$ ruby copy.rb testfile
This is line one
This is line two
This is line three
And so on...

Finally, we can explicitly open the file and read from it:

File.open("testfile") do |file|
while line = file.gets
puts line

end
end

produces:

This is line one
This is line two
This is line three
And so on...

As well as gets, I/O objects enjoy an additional set of access methods, all intended to make
our lives easier.

Iterators for Reading

As well as using the usual loops to read data from an IO stream, you can also use various
Ruby iterators. IO#each_byte invokes a block with the next 8-bit byte from the IO object (in
this case, an object of type File). The chr method converts an integer to the corresponding
ASCII character:

File.open("testfile") do |file|
file.each_byte.with_index do |ch, index|
print "#{ch.chr}:#{ch} "
break if index > 10

end
end

produces:

T:84 h:104 i:105 s:115 :32 i:105 s:115 :32 l:108 i:105 n:110 e:101

report erratum • discuss

Reading and Writing Files • 155

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

IO#each_line calls the block with each line from the file. In the next example, we’ll make the
original newlines visible using String#dump so you can see that we’re not cheating:

File.open("testfile") do |file|
file.each_line {|line| puts "Got #{line.dump}" }

end

produces:

Got "This is line one\n"
Got "This is line two\n"
Got "This is line three\n"
Got "And so on...\n"

You can pass each_line any sequence of characters as a line separator, and it will break up the
input accordingly, returning the line ending at the end of each line of data. That’s why you
see the \n characters in the output of the previous example. In the next example, we’ll use
the character e as the line separator:

File.open("testfile") do |file|
file.each_line("e") {|line| puts "Got #{ line.dump }" }

end

produces:

Got "This is line"
Got " one"
Got "\nThis is line"
Got " two\nThis is line"
Got " thre"
Got "e"
Got "\nAnd so on...\n"

If you combine the idea of an iterator with the autoclosing block feature, you get IO.foreach.
This method takes the name of an I/O source, opens it for reading, calls the iterator once for
every line in the file, and then closes the file automatically:

IO.foreach("testfile") {|line| puts line }

produces:

This is line one
This is line two
This is line three
And so on...

Or, if you prefer, you can retrieve an entire file into a string or into an array of lines:

read into string
str = IO.read("testfile")
str.length # => 66
str[0, 30] # => "This is line one\nThis is line "

read into an array
arr = IO.readlines("testfile")
arr.length # => 4
arr[0] # => "This is line one\n"

Don’t forget that I/O is never certain in an uncertain world—exceptions will be raised on
most errors, and you should be ready to rescue them and take appropriate action.

Chapter 11. Basic Input and Output • 156

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Writing to Files

So far, we’ve been merrily calling puts and print, passing in any old object and trusting that
Ruby will do the right thing (which, of course, it does). But what exactly is it doing?

The answer is pretty simple. With a couple of exceptions, every object you pass to puts and
print is converted to a string by calling that object’s to_s method. If for some reason the to_s
method doesn’t return a valid string, a string is created containing the object’s class name
and ID, something like #<ClassName:0x123456>:

Note the "w", which opens the file for writing
File.open("output.txt", "w") do |file|
file.puts "Hello"
file.puts "1 + 2 = #{1+2}"

end

Now read the file in and print its contents to STDOUT
puts File.read("output.txt")

produces:

Hello
1 + 2 = 3

The exceptions are simple, too. The nil object will print as the empty string, and an array
passed to putswill be written as if each of its elements in turn were passed separately to puts.

What if you want to write binary data and don’t want Ruby messing with it? Well, normally
you can simply use IO#print and pass in a string containing the bytes to be written. However,
you can get at the low-level input and output routines if you really want—look at the docu-
mentation for IO#sysread and IO#syswrite on page 554.

And how do you get the binary data into a string in the first place? The three common ways
are to use a literal, poke it in byte by byte, or use Array#pack:2

str1 = "\001\002\003" # => "\u0001\u0002\u0003"
str2 = ""
str2 << 1 << 2 << 3 # => "\u0001\u0002\u0003"
[1, 2, 3].pack("c*") # => "\x01\x02\x03"

But I Miss My C++ iostream

Sometimes there’s just no accounting for taste. However, just as you can append an object
to an Array using the << operator, you can also append an object to an output IO stream:

endl = "\n"
STDOUT << 99 << " red balloons" << endl

produces:

99 red balloons

Again, the << method uses to_s to convert its arguments to strings before printing them.

Although we started off disparaging the poor << operator, there are actually some good
reasons for using it. Because other classes (such as String and Array) also implement a <<

2. The pack method takes an array of data and packs it into a string. See the description in the reference
section on page 432.

report erratum • discuss

Reading and Writing Files • 157

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

operator with similar semantics, you can quite often write code that appends to something
using << without caring whether it is added to an array, a file, or a string. This kind of flex-
ibility also makes unit testing easy. We discuss this idea in greater detail in the chapter on
duck typing on page 343.

Doing I/O with Strings

There are often times where you need to work with code that assumes it’s reading from or
writing to one or more files. But you have a problem: the data isn’t in files. Perhaps it’s
available instead via a SOAP service, or it has been passed to you as command-line param-
eters. Or maybe you’re running unit tests, and you don’t want to alter the real file system.

Enter StringIO objects. They behave just like other I/O objects, but they read and write strings,
not files. If you open a StringIO object for reading, you supply it with a string. All read oper-
ations on the StringIO object then read from this string. Similarly, when you want to write to
a StringIO object, you pass it a string to be filled.

require 'stringio'

ip = StringIO.new("now is\nthe time\nto learn\nRuby!")
op = StringIO.new("", "w")

ip.each_line do |line|
op.puts line.reverse

end
op.string # => "\nsi won\n\nemit eht\n\nnrael ot\n!ybuR\n"

11.4 Talking to Networks

Ruby is fluent in most of the Internet’s protocols, both low-level and high-level.

For those who enjoy groveling around at the network level, Ruby comes with a set of classes
in the socket library (described briefly in this book on page 807 and in detail on the web page
of the previous edition of this book at http://pragprog.com/book/ruby3/programming-ruby-1-9?tab=tab-
contents). These give you access to TCP, UDP, SOCKS, and Unix domain sockets, as well as
any additional socket types supported on your architecture. The library also provides helper
classes to make writing servers easier. Here’s a simple program that gets information about
our user website on a local web server using the HTTP OPTIONS request:

require 'socket'

client = TCPSocket.open('127.0.0.1', 'www')
client.send("OPTIONS /~dave/ HTTP/1.0\n\n", 0) # 0 means standard packet
puts client.readlines
client.close

produces:

HTTP/1.1 200 OK
Date: Mon, 27 May 2013 17:31:00 GMT
Server: Apache/2.2.22 (Unix) DAV/2 PHP/5.3.15 with Suhosin-Patch mod_ssl/2.2.22
OpenSSL/0.9.8r
Allow: GET,HEAD,POST,OPTIONS
Content-Length: 0
Connection: close
Content-Type: text/html

Chapter 11. Basic Input and Output • 158

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/book/ruby3/programming-ruby-1-9?tab=tab-contents
http://pragprog.com/book/ruby3/programming-ruby-1-9?tab=tab-contents
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

At a higher level, the lib/net set of library modules provides handlers for a set of application-
level protocols (currently FTP, HTTP, POP, SMTP, and telnet). These are documented in the
library section on page 772. For example, the following program lists the images that are
displayed on this book’s home page. (To save space, we show only the first three):

require 'net/http'

http = Net::HTTP.new('pragprog.com', 80)
response = http.get('/book/ruby3/programming-ruby-1-9')

if response.message == "OK"
puts response.body.scan(/<img alt=".*?" src="(.*?)"/m).uniq[0,3]

end

produces:

http://pragprog.com/assets/logo-c5c7f9c2f950df63a71871ba2f6bb115.gif
http://pragprog.com/assets/drm-free80-9120ffac998173dc0ba7e5875d082f18.png
http://imagery.pragprog.com/products/99/ruby3_xlargecover.jpg?1349967653

Although attractively simple, this example could be improved significantly. In particular,
it doesn’t do much in the way of error handling. It should really report “Not Found” errors
(the infamous 404) and should handle redirects (which happen when a web server gives the
client an alternative address for the requested page).

We can take this to a higher level still. By bringing the open-uri library into a program, the
Object#open method suddenly recognizes http:// and ftp:// URLs in the filename. Not just that
—it also handles redirects automatically.

require 'open-uri'

open('http://pragprog.com') do |f|
puts f.read.scan(/<img alt=".*?" src="(.*?)"/m).uniq[0,3]

end

produces:

http://pragprog.com/assets/logo-c5c7f9c2f950df63a71871ba2f6bb115.gif
http://pragprog.com/assets/drm-free80-9120ffac998173dc0ba7e5875d082f18.png
http://imagery.pragprog.com/products/353/jvrails2_xlargebeta.jpg?1368826914

11.5 Parsing HTML

Having read HTML from a website, you might want to parse information out of it. Often,
simple regular expressions do the job. In the example that follows, we’re using the %r{...}
regular expression literal, because the match contains a forward slash character, and regular
expressions are complex enough without having to add extra backslashes.

require 'open-uri'
page = open('http://pragprog.com/titles/ruby3/programming-ruby-1-9').read
if page =~ %r{<title>(.*?)</title>}m
puts "Title is #{$1.inspect}"

end

produces:

Title is "The Pragmatic Bookshelf | Programming Ruby 1.9"

report erratum • discuss

Parsing HTML • 159

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

But regular expressions won’t always work. For example, if someone had an extra space in
the <title> tag, the match would have failed. For real-world use, you probably want to use
a library that can parse HTML (and XML) properly. Although not part of Ruby, the Nokogiri
library is very popular.3 It’s a very rich library—we’ll only scratch the surface here. Docu-
mentation is available inside the gem.

require 'open-uri'
require 'nokogiri'

doc = Nokogiri::HTML(open("http://pragprog.com/"))

puts "Page title is " + doc.xpath("//title").inner_html

Output the first paragraph in the div with an id="copyright"
(nokogiri supports both xpath and css-like selectors)
puts doc.css('div#copyright p')

Output the second hyperlink in the site-links div using xpath and css
puts "\nSecond hyperlink is"
puts doc.xpath('id("site-links")//a[2]')
puts doc.css('#site-links a:nth-of-type(2)')

produces:

Page title is The Pragmatic Bookshelf
<p>

The Pragmatic Bookshelf™ is an imprint of
The Pragmatic Programmers, LLC.

Copyright © 1999–2013 The Pragmatic Programmers, LLC.
All Rights Reserved.

</p>

Second hyperlink is
About Us
About Us

Nokogiri can also update and create HTML and XML.

3. Install it using gem install nokogiri.

Chapter 11. Basic Input and Output • 160

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 12

Fibers, Threads, and Processes
Ruby gives you two basic ways to organize your program so that you can run different parts
of it apparently “at the same time.” Fibers let you suspend execution of one part of your
program and run some other part. For more decoupled execution, you can split up cooper-
ating tasks within the program, using multiple threads, or you can split up tasks between
different programs, using multiple processes. Let’s look at each in turn.

12.1 Fibers

Ruby 1.9 introduced fibers. Although the name suggests some kind of lightweight thread,
Ruby’s fibers are really just a very simple coroutine mechanism. They let you write programs
that look like you are using threads without incurring any of the complexity inherent in
threading. Let’s look at a simple example. We’d like to analyze a text file, counting the
occurrence of each word. We could do this (without using fibers) in a simple loop:

counts = Hash.new(0)
File.foreach("testfile") do |line|
line.scan(/\w+/) do |word|
word = word.downcase
counts[word] += 1

end
end
counts.keys.sort.each {|k| print "#{k}:#{counts[k]} "}

produces:

and:1 is:3 line:3 on:1 one:1 so:1 this:3 three:1 two:1

However, this code is messy—it mixes word finding with word counting. We could fix this
by writing a method that reads the file and yields each successive word. But fibers give us
a simpler solution:

words = Fiber.new do
File.foreach("testfile") do |line|
line.scan(/\w+/) do |word|
Fiber.yield word.downcase

end
end
nil

end

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

counts = Hash.new(0)
while word = words.resume
counts[word] += 1

end
counts.keys.sort.each {|k| print "#{k}:#{counts[k]} "}

produces:

and:1 is:3 line:3 on:1 one:1 so:1 this:3 three:1 two:1

The constructor for the Fiber class takes a block and returns a fiber object. For now, the code
in the block is not executed.

Subsequently, we can call resume on the fiber object. This causes the block to start execution.
The file is opened, and the scan method starts extracting individual words. However, at this
point, Fiber.yield is invoked. This suspends execution of the block—the resume method that
we called to run the block returns any value given to Fiber.yield.

Our main program enters the body of the loop and increments the count for the first word
returned by the fiber. It then loops back up to the top of the while loop, which again calls
words.resumewhile evaluating the condition. The resume call goes back into the block, contin-
uing just after it left off (at the line after the Fiber.yield call).

When the fiber runs out of words in the file, the foreach block exits, and the code in the fiber
terminates. Just as with a method, the return value of the fiber will be the value of the last
expression evaluated (in this case the nil).1 The next time resume is called, it returns this value
nil. You’ll get a FiberError if you attempt to call resume again after this.

Fibers are often used to generate values from infinite sequences on demand. Here’s a fiber
that returns successive integers divisible by 2 and not divisible by 3:

twos = Fiber.new do
num = 2
loop do
Fiber.yield(num) unless num % 3 == 0
num += 2

end
end
10.times { print twos.resume, " " }

produces:

2 4 8 10 14 16 20 22 26 28

Because fibers are just objects, you can pass them around, store them in variables, and so
on. Fibers can be resumed only in the thread that created them.

⇡New in 2.0⇣ Ruby 2.0 adds a new twist to this—you can now use lazy enumerators to gracefully handle
infinite lists. These are described Lazy Enumerators in Ruby 2, on page 61.

Fibers, Coroutines, and Continuations

The basic fiber support in Ruby is limited—fibers can yield control only back to the code
that resumed them. However, Ruby comes with two standard libraries that extend this
behavior. The fiber library (described in the library section on page 755) adds full coroutine

1. In fact, the nil is not strictly needed, as foreach will return nil when it terminates. The nil just makes it
explicit.

Chapter 12. Fibers, Threads, and Processes • 162

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

support. Once it is loaded, fibers gain a transfer method, allowing them to transfer control to
arbitrary other fibers.

A related but more general mechanism is the continuation. A continuation is a way of
recording the state of your running program (where it is, the current binding, and so on)
and then resuming from that state at some point in the future. You can use continuations to
implement coroutines (and other new control structures). Continuations have also been used
to store the state of a running web application between requests—a continuation is created
when the application sends a response to the browser; then, when the next request arrives
from that browser, the continuation is invoked, and the application continues from where
it left off. You enable continuations in Ruby by requiring the continuation library, described
in the library section on page 739.

12.2 Multithreading

Often the simplest way to do two things at once is to use Ruby threads. Prior to Ruby 1.9,
these were implemented as green threads—threads were switched within the interpreter.
In Ruby 1.9, threading is now performed by the operating system. This is an improvement,
but not quite as big an improvement as you might want. Although threads can now take
advantage of multiple processors (and multiple cores in a single processor), there’s a major
catch. Many Ruby extension libraries are not thread safe (because they were written for the
old threading model). So, Ruby compromises: it uses native operating system threads but
operates only a single thread at a time. You’ll never see two threads in the same application
running Ruby code truly concurrently. (You will, however, see threads busy doing, say, I/O
while another thread executes Ruby code. That’s part of the point.)

Creating Ruby Threads

Creating a new thread is pretty straightforward. The code that follows is a simple example.
It downloads a set of web pages in parallel. For each URL that it is asked to download, the
code creates a separate thread that handles the HTTP transaction.

require 'net/http'

pages = %w(www.rubycentral.org slashdot.org www.google.com)

threads = pages.map do |page_to_fetch|
Thread.new(page_to_fetch) do |url|
http = Net::HTTP.new(url, 80)
print "Fetching: #{url}\n"
resp = http.get('/')
print "Got #{url}: #{resp.message}\n"

end
end
threads.each {|thr| thr.join }

produces:

Fetching: www.rubycentral.org
Fetching: slashdot.org
Fetching: www.google.com
Got www.google.com: OK
Got slashdot.org: OK
Got www.rubycentral.org: OK

report erratum • discuss

Multithreading • 163

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Let’s look at this code in more detail, because a few subtle things are happening.

New threads are created with the Thread.new call. It is given a block that contains the code to
be run in a new thread. In our case, the block uses the net/http library to fetch the top page
from each of our nominated sites. Our tracing clearly shows that these fetches are going on
in parallel.

When we create the thread, we pass the required URL as a parameter. This parameter is
passed to the block as url. Why do we do this, rather than simply using the value of the
variable page_to_fetch within the block?

A thread shares all global, instance, and local variables that are in existence at the time the
thread starts. As anyone with a kid brother can tell you, sharing isn’t always a good thing.
In this case, all three threads would share the variable page_to_fetch. The first thread gets
started, and page_to_fetch is set to "www.rubycentral.org". In the meantime, the loop creating the
threads is still running. The second time around, page_to_fetch gets set to "slashdot.org". If the
first thread has not yet finished using the page_to_fetch variable, it will suddenly start using
this new value. These kinds of bugs are difficult to track down.

However, local variables created within a thread’s block are truly local to that thread—each
thread will have its own copy of these variables. In our case, the variable url will be set at
the time the thread is created, and each thread will have its own copy of the page address.
You can pass any number of arguments into the block via Thread.new.

This code also illustrates a gotcha. Inside the loop, the threads use print to write out the
messages, rather than puts. Why? Well, behind the scenes, puts splits its work into two chunks:
it writes its argument, and then it writes a newline. Between these two, a thread could get
scheduled, and the output would be interleaved. Calling printwith a single string that already
contains the newline gets around the problem.

Manipulating Threads

Another subtlety occurs on the last line in our download program. Why do we call join on
each of the threads we created?

When a Ruby program terminates, all threads are killed, regardless of their states. However,
you can wait for a particular thread to finish by calling that thread’s Thread#joinmethod. The
calling thread will block until the given thread is finished. By calling join on each of the
requester threads, you can make sure that all three requests have completed before you ter-
minate the main program. If you don’t want to block forever, you can give join a timeout
parameter—if the timeout expires before the thread terminates, the join call returns nil.
Another variant of join, the method Thread#value, returns the value of the last statement exe-
cuted by the thread.

In addition to join, a few other handy routines are used to manipulate threads. The current
thread is always accessible using Thread.current. You can obtain a list of all threads using
Thread.list, which returns a list of all Thread objects that are runnable or stopped. To determine
the status of a particular thread, you can use Thread#status and Thread#alive?.

You can adjust the priority of a thread using Thread#priority=. Higher-priority threads will
run before lower-priority threads. We’ll talk more about thread scheduling, and stopping
and starting threads, in just a bit.

Chapter 12. Fibers, Threads, and Processes • 164

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Thread Variables

A thread can normally access any variables that are in scope when the thread is created.
Variables local to the block containing the thread code are local to the thread and are not
shared. But what if you need per-thread variables that can be accessed by other threads—
including the main thread? Class Thread has a facility that allows thread-local variables to
be created and accessed by name. You simply treat the thread object as if it were a Hash,
writing to elements using []= and reading them back using []. In the example that follows,
each thread records the current value of the variable count in a thread-local variable with the
key mycount. To do this, the code uses the symbol :mycount when indexing thread objects. (A
race condition2 exists in this code, but we haven’t talked about synchronization yet, so we’ll
just quietly ignore it for now.)

count = 0
threads = 10.times.map do |i|
Thread.new do
sleep(rand(0.1))
Thread.current[:mycount] = count
count += 1

end
end

threads.each {|t| t.join; print t[:mycount], ", " }
puts "count = #{count}"

produces:

7, 0, 6, 8, 4, 5, 1, 9, 2, 3, count = 10

The main thread waits for the subthreads to finish and then prints that thread’s value of
count. Just to make it interesting, each thread waits a random time before recording the value.

Threads and Exceptions

What happens if a thread raises an unhandled exception depends on the setting of the
abort_on_exception flag (documented in the reference on page 702) and on the setting of the
interpreter’s $DEBUG flag (described in the Ruby options section on page 210).

If abort_on_exception is false and the debug flag is not enabled (the default condition), an
unhandled exception simply kills the current thread—all the rest continue to run. In fact,
you don’t even hear about the exception until you issue a join on the thread that raised it. In
the following example, thread 1 blows up and fails to produce any output. However, you
can still see the trace from the other threads.

2. A race condition occurs when two or more pieces of code (or hardware) both try to access some shared
resource, and the outcome changes depending on the order in which they do so. In the example here,
it is possible for one thread to set the value of its mycount variable to count, but before it gets a chance
to increment count, the thread gets descheduled and another thread reuses the same value of count.
These issues are fixed by synchronizing the access to shared resources (such as the count variable).

report erratum • discuss

Multithreading • 165

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

threads = 4.times.map do |number|
Thread.new(number) do |i|
raise "Boom!" if i == 1
print "#{i}\n"

end
end
puts "Waiting"
sleep 0.1
puts "Done"

produces:

0
2
Waiting
3
Done

You normally don’t sleep waiting for threads to terminate—you’d use join. If you join to a
thread that has raised an exception, then that exception will be raised in the thread that does
the joining:

threads = 4.times.map do |number|
Thread.new(number) do |i|
raise "Boom!" if i == 1
print "#{i}\n"

end
end

puts "Waiting"
threads.each do |t|
begin
t.join

rescue RuntimeError => e
puts "Failed: #{e.message}"

end
end
puts "Done"

produces:

0
Waiting
2
3
Failed: Boom!
Done

However, set abort_on_exception to true or use -d to turn on the debug flag, and an unhandled
exception kills the main thread, so the message Done never appears. (This is different from
Ruby 1.8, where the exception killed all running threads.)

Thread.abort_on_exception = true
threads = 4.times.map do |number|
Thread.new(number) do |i|
raise "Boom!" if i == 1
print "#{i}\n"

Chapter 12. Fibers, Threads, and Processes • 166

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

end
end
puts "Waiting"
threads.each {|t| t.join }
puts "Done"

produces:

0
2
prog.rb:4:in `block (2 levels) in <main>': Boom! (RuntimeError)

12.3 Controlling the Thread Scheduler

In a well-designed application, you’ll normally just let threads do their thing; building timing
dependencies into a multithreaded application is generally considered to be bad form,
because it makes the code far more complex and also prevents the thread scheduler from
optimizing the execution of your program.

The Thread class provides a number of methods that control the scheduler. Invoking Thread.stop
stops the current thread, and invoking Thread#run arranges for a particular thread to be run.
Thread.passdeschedules the current thread, allowing others to run, and Thread#join and#value
suspend the calling thread until a given thread finishes. These last two are the only low-
level thread control methods that the average program should use. In fact, we now consider
most of the other low-level thread control methods too dangerous to use correctly in programs
we write.3 Fortunately, Ruby has support for higher-level thread synchronization.

12.4 Mutual Exclusion

Let’s start by looking at a simple example of a race condition—multiple threads updating a
shared variable:

sum = 0
threads = 10.times.map do
Thread.new do
100_000.times do
new_value = sum + 1
print "#{new_value} " if new_value % 250_000 == 0
sum = new_value

end
end

end
threads.each(&:join)
puts "\nsum = #{sum}"

produces:

250000 250000 250000 250000 250000 500000 500000
sum = 599999

We create 10 threads, and each increments the shared sum variable 100,000 times. And yet,
when the threads all finish, the final value in sum is considerably less than 1,000,000. Clearly
we have a race condition. The reason is the print call that sits between the code that calculates
the new value and the code that stores it back into sum. In one thread, the updated value

3. And, worse, some of these primitives are unsafe in use. Charles Nutter of JRuby fame has a blog post
that illustrates one problem: http://blog.headius.com/2008/02/rubys-threadraise-threadkill-timeoutrb.html.

report erratum • discuss

Controlling the Thread Scheduler • 167

Download from Wow! eBook <www.wowebook.com>

http://blog.headius.com/2008/02/rubys-threadraise-threadkill-timeoutrb.html
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

gets calculated—let’s say that the value of sum is 99,999, so new_value will be 100,000. Before
storing the new value back into sum, we call print, and that causes another thread to be
scheduled (because we’re waiting for the I/O to complete). So a second thread also fetches
the value of 99,999 and increments it. It stores 100,000 into sum, then loops around again and
stores 100,001, and 100,002, and so on. Eventually the original thread continues running
because it finished writing its message. It immediate stores it’s value of 100,000 into the sum,
overwriting (and losing) all the values stored by the other thread(s). We lost data.

Fortunately, that’s easy to fix. We use the built-in class Mutex to create synchronized regions
—areas of code that only one thread may enter at a time.

Some grade schools coordinate students’ access to the bathrooms during class time using a
system of bathroom passes. Each room has two passes, one for girls and one for boys. To
visit the bathroom, you have to take the appropriate pass with you. If someone else already
has that pass, you have to cross your legs and wait for them to return. The bathroom pass
controls access to the critical resource—you have to own the pass to use the resource, and
only one person can own it at a time.

A mutex is like that bathroom pass. You create a mutex to control access to a resource and
then lock it when you want to use that resource. If no one else has it locked, your thread
continues to run. If someone else has already locked that particular mutex, your thread
suspends (crossing its legs) until they unlock it.

Here’s a version of our counting code that uses a mutex to ensure that only one thread
updates the count at a time:

sum = 0
mutex = Mutex.new
threads = 10.times.map do
Thread.new do
100_000.times do
mutex.lock #### one at a time, please
new_value = sum + 1 #
print "#{new_value} " if new_value % 250_000 == 0
sum = new_value #
mutex.unlock ####

end
end

end

threads.each(&:join)
puts "\nsum = #{sum}"

produces:

250000 500000 750000 1000000
sum = 1000000

This pattern is so common that the Mutex class provides Mutex#synchronize, which locks the
mutex, runs the code in a block, and then unlocks the mutex. This also ensures that the mutex
will get unlocked even if an exception is thrown while it is locked.

Chapter 12. Fibers, Threads, and Processes • 168

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

sum = 0
mutex = Mutex.new
threads = 10.times.map do
Thread.new do
100_000.times do
mutex.synchronize do ####
new_value = sum + 1 #
print "#{new_value} " if new_value % 250_000 == 0
sum = new_value #

end ####
end

end
end

threads.each(&:join)
puts "\nsum = #{sum}"

produces:

250000 500000 750000 1000000
sum = 1000000

Sometimes you want to claim a lock if a mutex is currently unlocked, but you don’t want to
suspend the current thread if it isn’t. The Mutex#try_lock method takes the lock if it can, but
returns false if the lock is already taken. The following code illustrates a hypothetical currency
converter. The ExchangeRates class caches rates from an online feed, and a background thread
updates that cache once an hour. This update takes a minute or so. In the main thread, we
interact with our user. However, rather than just go dead if we can’t claim the mutex that
protects the rate object, we use try_lock and print a status message if the update is in process.

rate_mutex = Mutex.new
exchange_rates = ExchangeRates.new
exchange_rates.update_from_online_feed

Thread.new do
loop do
sleep 3600
rate_mutex.synchronize do
exchange_rates.update_from_online_feed

end
end

end

loop do
print "Enter currency code and amount: "
line = gets
if rate_mutex.try_lock
puts(exchange_rates.convert(line)) ensure rate_mutex.unlock

else
puts "Sorry, rates being updated. Try again in a minute"

end
end

If you are holding the lock on a mutex and you want to temporarily unlock it, allowing
others to use it, you can call Mutex#sleep. We could use this to rewrite the previous example:

report erratum • discuss

Mutual Exclusion • 169

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

rate_mutex = Mutex.new
exchange_rates = ExchangeRates.new
exchange_rates.update_from_online_feed

Thread.new do
rate_mutex.lock
loop do
rate_mutex.sleep 3600
exchange_rates.update_from_online_feed

end
end

loop do
print "Enter currency code and amount: "
line = gets
if rate_mutex.try_lock
puts(exchange_rates.convert(line)) ensure rate_mutex.unlock

else
puts "Sorry, rates being updated. Try again in a minute"

end
end

Queues and Condition Variables

Most of the examples in this chapter use the Mutex class for synchronization. However, Ruby
comes with another library that is particularly useful when you need to synchronize work
between producers and consumers. The Queue class, located in the thread library, implements
a thread-safe queuing mechanism. Multiple threads can add and remove objects from each
queue, and each addition and removal is guaranteed to be atomic. For an example, see the
description of the thread library on page 813.

A condition variable is a controlled way of communicating an event (or a condition) between
two threads. One thread can wait on the condition, and the other can signal it. The thread
library extends threads with condition variables. Again, see the Monitor library for an
example.

12.5 Running Multiple Processes

Sometimes you may want to split a task into several process-sized chunks—maybe to take
advantage of all those cores in your shiny new processor. Or perhaps you need to run a
separate process that was not written in Ruby. Not a problem: Ruby has a number of methods
by which you may spawn and manage separate processes.

Spawning New Processes

You have several ways to spawn a separate process; the easiest is to run some command
and wait for it to complete. You may find yourself doing this to run some separate command
or retrieve data from the host system. Ruby does this for you with the system and backquote
(or backtick) methods:

system("tar xzf test.tgz") # => true
`date` # => "Mon May 27 12:31:17 CDT 2013\n"

Chapter 12. Fibers, Threads, and Processes • 170

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

The method Object#system executes the given command in a subprocess; it returns true if the
command was found and executed properly. It raises an exception if the command cannot
be found. It returns false if the command ran but returned an error. In case of failure, you’ll
find the subprocess’s exit code in the global variable $?.

One problem with system is that the command’s output will simply go to the same destination
as your program’s output, which may not be what you want. To capture the standard output
of a subprocess, you can use the backquote characters, as with `date` in the previous example.
Remember that you may need to use String#chomp to remove the line-ending characters from
the result.

OK, this is fine for simple cases—we can run some other process and get the return status.
But many times we need a bit more control than that. We’d like to carry on a conversation
with the subprocess, possibly sending it data and possibly getting some back. The method
IO.popen does just this. The popenmethod runs a command as a subprocess and connects that
subprocess’s standard input and standard output to a Ruby IO object. Write to the IO object,
and the subprocess can read it on standard input. Whatever the subprocess writes is available
in the Ruby program by reading from the IO object.

For example, on our systems one of the more useful utilities is pig, a program that reads
words from standard input and prints them in pig latin (or igpay atinlay). We can use this
when our Ruby programs need to send us output that our five-year-olds shouldn’t be able
to understand:

pig = IO.popen("local/util/pig", "w+")
pig.puts "ice cream after they go to bed"
pig.close_write
puts pig.gets

produces:

iceway eamcray afterway eythay ogay otay edbay

This example illustrates both the apparent simplicity and the more subtle real-world com-
plexities involved in driving subprocesses through pipes. The code certainly looks simple
enough: open the pipe, write a phrase, and read back the response. But it turns out that the
pig program doesn’t flush the output it writes. Our original attempt at this example, which
had a pig.puts followed by a pig.gets, hung forever. The pig program processed our input, but
its response was never written to the pipe. We had to insert the pig.close_write line. This sends
an end-of-file to pig’s standard input, and the output we’re looking for gets flushed as pig
terminates.

popen has one more twist. If the command you pass it is a single minus sign (-), popen will
fork a new Ruby interpreter. Both this and the original interpreter will continue running by
returning from the popen. The original process will receive an IO object back, and the child
will receive nil. This works only on operating systems that support the fork(2) call (and for
now this excludes Windows).

report erratum • discuss

Running Multiple Processes • 171

Download from Wow! eBook <www.wowebook.com>

http://www.freebsd.org/cgi/man.cgi?query=fork&sektion=2
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

pipe = IO.popen("-","w+")
if pipe
pipe.puts "Get a job!"
STDERR.puts "Child says '#{pipe.gets.chomp}'"

else
STDERR.puts "Dad says '#{gets.chomp}'"
puts "OK"

end

produces:

Dad says 'Get a job!'
Child says 'OK'

As well as the popen method, some platforms support Object#fork, Object#exec, and IO.pipe.
The filenaming convention of many IOmethods and Object#openwill also spawn subprocesses
if you put a | as the first character of the filename (see the introduction to class IO on page
536 for details). Note that you cannot create pipes using File.new; it’s just for files.

Independent Children

Sometimes we don’t need to be quite so hands-on; we’d like to give the subprocess its
assignment and then go on about our business. Later, we’ll check to see whether it has fin-
ished. For instance, we may want to kick off a long-running external sort:

exec("sort testfile > output.txt") if fork.nil?
The sort is now running in a child process
carry on processing in the main program

... dum di dum ...

then wait for the sort to finish
Process.wait

The call to Object#fork returns a process ID in the parent and returns nil in the child, so the
child process will perform the Object#exec call and run sort. Later, we issue a Process.wait call,
which waits for the sort to complete (and returns its process ID).

If you’d rather be notified when a child exits (instead of just waiting around), you can set
up a signal handler using Object#trap (described in the reference on page 630). Here we set
up a trap on SIGCLD, which is the signal sent on “death of child process”:

trap("CLD") do
pid = Process.wait
puts "Child pid #{pid}: terminated"

end

fork { exec("sort testfile > output.txt") }

Do other stuff...

produces:

Child pid 22026: terminated

For more information on using and controlling external processes, see the documentation
for Object#open and IO.popen, as well as the section on the Process module on page 637.

Chapter 12. Fibers, Threads, and Processes • 172

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Blocks and Subprocesses

IO.popen works with a block in pretty much the same way as File.open does. If you pass it a
command, such as date, the block will be passed an IO object as a parameter:

IO.popen("date") {|f| puts "Date is #{f.gets}" }

produces:

Date is Mon May 27 12:31:17 CDT 2013

The IO object will be closed automatically when the code block exits, just as it is with File.open.

If you associate a block with fork, the code in the block will be run in a Ruby subprocess, and
the parent will continue after the block:

fork do
puts "In child, pid = #$$"
exit 99

end
pid = Process.wait
puts "Child terminated, pid = #{pid}, status = #{$?.exitstatus}"

produces:

In child, pid = 22033
Child terminated, pid = 22033, status = 99

$? is a global variable that contains information on the termination of a subprocess. See the
section on Process::Status on page 644 for more information.

report erratum • discuss

Running Multiple Processes • 173

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 13

Unit Testing
Unit testing is testing that focuses on small chunks (units) of code, typically individual
methods or lines within methods. This is in contrast to most other forms of testing, which
consider the system as a whole.

Why focus in so tightly? It’s because ultimately all software is constructed in layers; code in
one layer relies on the correct operation of the code in the layers below. If this underlying
code turns out to contain bugs, then all higher layers are potentially affected. This is a big
problem. Fred may write some code with a bug one week, and then you may end up calling
it, indirectly, two months later. When your code generates incorrect results, it will take you
a while to track down the problem in Fred’s method. And when you ask Fred why he wrote
it that way, the likely answer will be “I don’t remember. That was months ago.”

If instead Fred had unit tested his code when he wrote it, two things would have happened.
First, he’d have found the bug while the code was still fresh in his mind. Second, because
the unit test was only looking at the code he’d just written, when the bug did appear, he’d
only have to look through a handful of lines of code to find it, rather than doing archaeology
on the rest of the code base.

Unit testing helps developers write better code. It helps before the code is actually written,
because thinking about testing leads you naturally to create better, more decoupled designs.
It helps as you’re writing the code, because it gives you instant feedback on how accurate
your code is. And it helps after you’ve written code, both because it gives you the ability to
check that the code still works and because it helps others understand how to use your code.

Unit testing is a Good Thing.

But why have a chapter on unit testing in the middle of a book on Ruby? Well, it’s because
unit testing and languages such as Ruby seem to go hand in hand. The flexibility of Ruby
makes writing tests easy, and the tests make it easier to verify that your code is working.
Once you get into the swing of it, you’ll find yourself writing a little code, writing a test or
two, verifying that everything is copacetic, and then writing some more code.

Unit testing is also pretty trivial—run a program that calls part of your application’s code,
get back some results, and then check the results are what you expected.

Let’s say we’re testing a Roman number class. So far, the code is pretty simple: it just lets us
create an object representing a certain number and display that object in Roman numerals:

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

unittesting/romanbug.rb

This code has bugs
class Roman
MAX_ROMAN = 4999

def initialize(value)
if value <= 0 || value > MAX_ROMAN
fail "Roman values must be > 0 and <= #{MAX_ROMAN}"

end
@value = value

end

FACTORS = [["m", 1000], ["cm", 900], ["d", 500], ["cd", 400],
["c", 100], ["xc", 90], ["l", 50], ["xl", 40],
["x", 10], ["ix", 9], ["v", 5], ["iv", 4],
["i", 1]]

def to_s
value = @value
roman = ""
for code, factor in FACTORS
count, value = value.divmod(factor)
roman << code unless count.zero?

end
roman

end
end

We could test this code by writing another program, like this:

require_relative 'romanbug'

r = Roman.new(1)
fail "'i' expected" unless r.to_s == "i"

r = Roman.new(9)
fail "'ix' expected" unless r.to_s == "ix"

However, as the number of tests in a project grows, this kind of ad hoc approach can start
to get complicated to manage. Over the years, various unit testing frameworks have emerged
to help structure the testing process. Ruby comes with Ryan Davis’ MiniTest.1

MiniTest is largely compatible with Test::Unit but without a lot of bells and whistles (test-
case runners, GUI support, and so on). However, because there are areas where it is different
and because there are tens of thousands of tests out there that assume the Test::Unit API,
Ryan has also added a compatibility layer to MiniTest. For a little bit more information on
the differences between the two, seeMiniTest::Unit vs. Test::Unit, on page 177. In this chapter,
we’ll be using the Test::Unit wrapper, because it automatically runs tests for us. But we’ll
also be using some of the new assertions available in MiniTest.

1. In Ruby 1.8, this was Nathaniel Talbott’s Test::Unit framework. MiniTest is a rewrite of this.

Chapter 13. Unit Testing • 176

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/unittesting/romanbug.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

MiniTest::Unit vs. Test::Unit

Folks have been using Test::Unit with Ruby for a good number of years now. However, the core team
decided to replace the testing framework that comes as standard with Ruby with something a little
leaner. Ryan Davis and Eric Hodel wrote MiniTest::Unit as a partial drop-in replacement for Test::Unit.

Most of the assertions in MiniTest mirror those in Test::Unit::TestCase. The major differences are the
absence of assert_not_raises and assert_not_throws and the renaming of all the negative assertions. In
Test::Unit you’d say assert_not_nil(x) and assert_not(x); in MiniTest you’d use refute_nil(x) and refute(x).

MiniTest also drops most of the little-used features of Test::Unit, including test cases, GUI runners,
and some assertions.

And, probably most significantly, MiniTest does not automatically invoke the test cases when you
execute a file that contains them.

So, you have three basic options with this style of unit testing:

• require "minitest/unit", and use the MiniTest functionality.

• require "test/unit", and use MiniTest with the Test::Unit compatibility layer. This adds in the
assertions in Additional Test::Unit assertions, on page 194, and enables the autorun functionality.

• You can install the test-unit gem and get all the original Test::Unit functionality back, along with
a bunch of new assertions.

13.1 The Testing Framework

The Ruby testing framework is basically three facilities wrapped into a neat package:

• It gives you a way of expressing individual tests.
• It provides a framework for structuring the tests.
• It gives you flexible ways of invoking the tests.

Assertions == Expected Results

Rather than have you write series of individual if statements in your tests, the testing
framework provides a set of assertions that achieve the same thing. Although a number of
different styles of assertion exist, they all follow basically the same pattern. Each gives you
a way of specifying a desired result and a way of passing in the actual outcome. If the actual
doesn’t equal the expected, the assertion outputs a nice message and records the failure.

For example, we could rewrite our previous test of the Roman class using the testing
framework. For now, ignore the scaffolding code at the start and end, and just look at the
assert_equal methods:

require_relative 'romanbug'
require 'test/unit'
class TestRoman < Test::Unit::TestCase

def test_simple
assert_equal("i", Roman.new(1).to_s)
assert_equal("ix", Roman.new(9).to_s)

end

end

report erratum • discuss

The Testing Framework • 177

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

produces:

Run options:
Running tests:
.
Finished tests in 0.006937s, 144.1545 tests/s, 288.3091 assertions/s.
1 tests, 2 assertions, 0 failures, 0 errors, 0 skips

ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

The first assertion says that we’re expecting the Roman number string representation of 1
to be “i,” and the second test says we expect 9 to be “ix.” Luckily for us, both expectations
are met, and the tracing reports that our tests pass. Let’s add a few more tests:

require_relative 'romanbug'
require 'test/unit'
class TestRoman < Test::Unit::TestCase
def test_simple
assert_equal("i", Roman.new(1).to_s)
assert_equal("ii", Roman.new(2).to_s)
assert_equal("iii", Roman.new(3).to_s)
assert_equal("iv", Roman.new(4).to_s)
assert_equal("ix", Roman.new(9).to_s)

end
end

produces:

Run options:
Running tests:
F
Finished tests in 0.006579s, 151.9988 tests/s, 303.9976 assertions/s.
1) Failure:

test_simple(TestRoman) [prog.rb:6]:
<"ii"> expected but was
<"i">.

1 tests, 2 assertions, 1 failures, 0 errors, 0 skips

ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

Uh-oh! The second assertion failed. See how the error message uses the fact that the assert
knows both the expected and actual values: it expected to get “ii” but instead got “i.”
Looking at our code, you can see a clear bug in to_s. If the count after dividing by the factor
is greater than zero, then we should output that many Roman digits. The existing code outputs
just one. The fix is easy:

def to_s
value = @value
roman = ""
for code, factor in FACTORS
count, value = value.divmod(factor)
roman << (code * count)

end
roman

end

Chapter 13. Unit Testing • 178

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Now let’s run our tests again:

require_relative 'roman3'
require 'test/unit'
class TestRoman < Test::Unit::TestCase
def test_simple
assert_equal("i", Roman.new(1).to_s)
assert_equal("ii", Roman.new(2).to_s)
assert_equal("iii", Roman.new(3).to_s)
assert_equal("iv", Roman.new(4).to_s)
assert_equal("ix", Roman.new(9).to_s)

end
end

produces:

Run options:
Running tests:
.
Finished tests in 0.006027s, 165.9200 tests/s, 829.6001 assertions/s.
1 tests, 5 assertions, 0 failures, 0 errors, 0 skips

ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

Looking good. We can now go a step further and remove some of that duplication:

require_relative 'roman3'
require 'test/unit'

class TestRoman < Test::Unit::TestCase

NUMBERS = { 1 => "i", 2 => "ii", 3 => "iii", 4 => "iv", 5 => "v", 9 => "ix" }

def test_simple
NUMBERS.each do |arabic, roman|
r = Roman.new(arabic)
assert_equal(roman, r.to_s)

end
end

end

produces:

Run options:
Running tests:
.
Finished tests in 0.006280s, 159.2357 tests/s, 955.4140 assertions/s.
1 tests, 6 assertions, 0 failures, 0 errors, 0 skips

ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

What else can we test? Well, the constructor checks that the number we pass in can be rep-
resented as a Roman number, throwing an exception if it can’t. Let’s test the exception:

report erratum • discuss

The Testing Framework • 179

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

require_relative 'roman3'
require 'test/unit'

class TestRoman < Test::Unit::TestCase

NUMBERS = { 1 => "i", 2 => "ii", 3 => "iii", 4 => "iv", 5 => "v", 9 => "ix" }

def test_simple
NUMBERS.each do |arabic, roman|
r = Roman.new(arabic)
assert_equal(roman, r.to_s)

end
end

def test_range
no exception for these two...
Roman.new(1)
Roman.new(4999)
but an exception for these
assert_raises(RuntimeError) { Roman.new(0) }
assert_raises(RuntimeError) { Roman.new(5000) }

end
end

produces:

Run options:
Running tests:
..
Finished tests in 0.006736s, 296.9121 tests/s, 1187.6485 assertions/s.
2 tests, 8 assertions, 0 failures, 0 errors, 0 skips

ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

We could do a lot more testing on our Roman class, but let’s move on to bigger and better
things. Before we go, though, we should say that we’ve only scratched the surface of the set
of assertions available inside the testing framework. For example, for every positive assertion,
such as assert_equal, there’s a negative refutation (in this case refute_equal). The additional
assertions you get if you load the Test::Unit shim (which we do in this chapter) are listed in
Additional Test::Unit assertions, on page 194, and a full list of the MiniTest assertions is given
in Section 13.5, Test::Unit assertions, on page 193.

The final parameter to every assertion is a message that will be output before any failure
message. This normally isn’t needed, because the failure messages are normally pretty rea-
sonable. The one exception is the test refute_nil (or assert_not_nil in Test::Unit), where the message
“Expected nil to not be nil” doesn’t help much. In that case, you may want to add some
annotation of your own. (This code assumes the existence of some kind of User class.)

require 'test/unit'
class ATestThatFails < Test::Unit::TestCase
def test_user_created
user = User.find(1)
refute_nil(user, "User with ID=1 should exist")

end
end

Chapter 13. Unit Testing • 180

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

produces:

Run options:
Running tests:
F
Finished tests in 0.007598s, 131.6136 tests/s, 131.6136 assertions/s.
1) Failure:

test_user_created(ATestThatFails) [prog.rb:11]:
User with ID=1 should exist.
Expected nil to not be nil.

1 tests, 1 assertions, 1 failures, 0 errors, 0 skips

ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

13.2 Structuring Tests

Earlier we asked you to ignore the scaffolding around our tests. Now it’s time to look at it.

You include the testing framework facilities in your unit test either with this:

require 'test/unit'

or, for raw MiniTest, with this:

require 'minitest/unit'

Unit tests seem to fall quite naturally into high-level groupings, called test cases, and lower-
level groupings, which are the test methods themselves. The test cases generally contain all
the tests relating to a particular facility or feature. Our Roman number class is fairly simple,
so all the tests for it will probably be in a single test case. Within the test case, you’ll probably
want to organize your assertions into a number of test methods, where each method contains
the assertions for one type of test; one method could check regular number conversions,
another could test error handling, and so on.

The classes that represent test cases must be subclasses of Test::Unit::TestCase. The methods
that hold the assertions must have names that start with test. This is important: the testing
framework uses reflection to find tests to run, and only methods whose names start with
test are eligible.

Quite often you’ll find all the test methods within a test case start by setting up a particular
scenario. Each test method then probes some aspect of that scenario. Finally, each method
may then tidy up after itself. For example, we could be testing a class that extracts jukebox
playlists from a database. (We’re using the low-level DBI library to access the database.)

require 'test/unit'
require_relative 'playlist_builder'

class TestPlaylistBuilder < Test::Unit::TestCase

def test_empty_playlist
db = DBI.connect('DBI:mysql:playlists')
pb = PlaylistBuilder.new(db)
assert_empty(pb.playlist)
db.disconnect

end

report erratum • discuss

Structuring Tests • 181

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

def test_artist_playlist
db = DBI.connect('DBI:mysql:playlists')
pb = PlaylistBuilder.new(db)
pb.include_artist("krauss")
refute_empty(pb.playlist, "Playlist shouldn't be empty")
pb.playlist.each do |entry|
assert_match(/krauss/i, entry.artist)

end
db.disconnect

end

def test_title_playlist
db = DBI.connect('DBI:mysql:playlists')
pb = PlaylistBuilder.new(db)
pb.include_title("midnight")
refute_empty(pb.playlist, "Playlist shouldn't be empty")
pb.playlist.each do |entry|
assert_match(/midnight/i, entry.title)

end
db.disconnect

end

...
end

produces:

Run options:
Running tests:
...
Finished tests in 0.008272s, 362.6692 tests/s, 5560.9284 assertions/s.
3 tests, 46 assertions, 0 failures, 0 errors, 0 skips

ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

Each test starts by connecting to the database and creating a new playlist builder. Each test
ends by disconnecting from the database. (The idea of using a real database in unit tests is
questionable, because unit tests are supposed to be fast running, context independent, and
easy to set up, but it illustrates a point.)

We can extract all this common code into setup and teardown methods. Within a TestCase
class, a method called setup will be run before each and every test method, and a method
called teardown will be run after each test method finishes. Let’s emphasize that: the setup
and teardown methods bracket each test, rather than being run once per test case. This is
shown in the code that follows.

require 'test/unit'
require_relative 'playlist_builder'

class TestPlaylistBuilder < Test::Unit::TestCase

def setup
@db = DBI.connect('DBI:mysql:playlists')
@pb = PlaylistBuilder.new(@db)

end

Chapter 13. Unit Testing • 182

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

def teardown
@db.disconnect

end

def test_empty_playlist
assert_empty(@pb.playlist)

end

def test_artist_playlist
@pb.include_artist("krauss")
refute_empty(@pb.playlist, "Playlist shouldn't be empty")
@pb.playlist.each do |entry|
assert_match(/krauss/i, entry.artist)

end
end

def test_title_playlist
@pb.include_title("midnight")
refute_empty(@pb.playlist, "Playlist shouldn't be empty")
@pb.playlist.each do |entry|
assert_match(/midnight/i, entry.title)

end
end

...
end

produces:

Run options:
Running tests:
...
Finished tests in 0.007683s, 390.4725 tests/s, 5987.2446 assertions/s.
3 tests, 46 assertions, 0 failures, 0 errors, 0 skips

ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

Inside the teardown method, you can detect whether the preceding test succeeded with the
passed? method.

13.3 Organizing and Running Tests

The test cases we’ve shown so far are all runnable Test::Unit programs. If, for example, the
test case for the Roman class was in a file called test_roman.rb, we could run the tests from
the command line using this:

$ ruby test_roman.rb
Run options:
Running tests:
..
Finished tests in 0.004540s, 440.5286 tests/s, 1762.1145 assertions/s.
2 tests, 8 assertions, 0 failures, 0 errors, 0 skips
ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

Test::Unit is clever enough to run the tests even though there’s no main program. It collects
all the test case classes and runs each in turn.

report erratum • discuss

Organizing and Running Tests • 183

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

If we want, we can ask it to run just a particular test method:

$ ruby test_roman.rb -n test_range
Run options: -n test_range
Running tests:
.
Finished tests in 0.004481s, 223.1645 tests/s, 446.3289 assertions/s.
1 tests, 2 assertions, 0 failures, 0 errors, 0 skips
ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

or tests whose names match a regular expression:

$ ruby test_roman.rb -n /range/
Run options: -n /range/
Running tests:
.
Finished tests in 0.005042s, 198.3340 tests/s, 396.6680 assertions/s.
1 tests, 2 assertions, 0 failures, 0 errors, 0 skips
ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

This last capability is a great way of grouping your tests. Use meaningful names, and you’ll
be able to run (for example) all the shopping-cart-related tests by simply running tests with
names matching /cart/.

Where to Put Tests

Once you get into unit testing, you may well find yourself generating almost as much test
code as production code. All of those tests have to live somewhere. The problem is that if
you put them alongside your regular production code source files, your directories start to
get bloated—effectively you end up with two files for every production source file.

A common solution is to have a test/ directory where you place all your test source files. This
directory is then placed parallel to the directory containing the code you’re developing. For
example, for our Roman numeral class, we may have this:

roman/
lib/

roman.rb
other files...

test/
test_roman.rb
other tests...

other stuff...

This works well as a way of organizing files but leaves you with a small problem: how do
you tell Ruby where to find the library files to test? For example, if our TestRoman test code
was in a test/ subdirectory, how does Ruby know where to find the roman.rb source file, the
thing we’re trying to test?

An option that doesn’t work reliably is to build the path into require statements in the test
code and run the tests from the test/ subdirectory:

Chapter 13. Unit Testing • 184

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

require 'test/unit'
require '../lib/roman'

class TestRoman < Test::Unit::TestCase
...

end

Why doesn’t it work? It’s because our roman.rb file may itself require other source files in the
library we’re writing. It’ll load them using require (without the leading ../lib/), and because
they aren’t in Ruby’s $LOAD_PATH, they won’t be found. Our test just won’t run. A second,
less immediate problem is that we won’t be able to use these same tests to test our classes
once installed on a target system, because then they’ll be referenced simply using
require 'roman'.

A better solution is to assume that your Ruby program is packaged according to the conven-
tions we’ll be discussing in Section 16.2, Organizing Your Source, on page 226. In this
arrangement, the top-level lib directory of your application is assumed to be in Ruby’s load
path by all other components of the application. Your test code would then be as follows:

require 'test/unit'
require 'roman'

class TestRoman < Test::Unit::TestCase
...

end

And you’d run it using this:

$ ruby -I path/to/app/lib path/to/app/test/test_roman.rb

The normal case, where you’re already in the application’s directory, would be as follows:

$ ruby -I lib test/test_roman.rb

This would be a good time to investigate using Rake to automate your testing.

Test Suites

After a while, you’ll grow a decent collection of test cases for your application. You may
well find that these tend to cluster: one group of cases tests a particular set of functions, and
another group tests a different set of functions. If so, you can group those test cases together
into test suites, letting you run them all as a group.

This is easy to do—just create a Ruby file that requires test/unit and then requires each of the
files holding the test cases you want to group. This way, you build yourself a hierarchy of
test material.

• You can run individual tests by name.
• You can run all the tests in a file by running that file.
• You can group a number of files into a test suite and run them as a unit.
• You can group test suites into other test suites.

This gives you the ability to run your unit tests at a level of granularity that you control,
testing just one method or testing the entire application.

report erratum • discuss

Organizing and Running Tests • 185

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

At this point, it’s worthwhile to think about naming conventions. Nathaniel Talbott, the
author of Test::Unit, uses the convention that test cases are in files named tc_xxx and test
suites are in files named ts_xxx. Most people seem to use test_ as the test-case filename prefix:

file ts_dbaccess.rb
require_relative 'test/unit'
require_relative 'test_connect'
require_relative 'test_query'
require_relative 'test_update'
require_relative 'test_delete'

Now, if you run Ruby on the file ts_dbaccess.rb, you execute the test cases in the four files
you’ve required.

13.4 RSpec and Shoulda

The built-in testing framework has a lot going for it. It is simple, and it is compatible in style
with frameworks from other languages (such as JUnit for Java and NUnit for C#).

However, there’s a growing movement in the Ruby community to use a different style of
testing. So-called behavior-driven development encourages people to write tests in terms of
your expectations of the program’s behavior in a given set of circumstances. In many ways,
this is like testing according to the content of user stories, a common requirements-gathering
technique in agile methodologies. With these testing frameworks, the focus is not on asser-
tions. Instead, you write expectations.

Although both RSpec and Shoulda allow this style of testing, they focus on different things.
RSpec is very much concerned with driving the design side of things. You can write and
execute specs with RSpec well before you’ve written a line of application code. These specs,
when run, will output the user stories that describe your application. Then, as you fill in the
code, the specs mutate into tests that validate that your code meets your expectations.

Shoulda, on the other hand, is really more focused on the testing side. Whereas RSpec is a
complete framework, Shoulda works inside a testing framework, Test::Unit or RSpec. You
can even mix Shoulda tests with regular Test::Unit and RSpec test methods.

Let’s start with a simple example of RSpec in action.

Starting to Score Tennis Matches

The scoring system used in lawn tennis originated in the Middle Ages. As players win suc-
cessive points, their scores are shown as 15, 30, and 40. The next point is a win unless your
opponent also has 40. If you’re both tied at 40, then different rules apply—the first player
with a clear two-point advantage is the winner.2

We have to write a class that handles this scoring system. Let’s use RSpec specifications to
drive the process. We install RSpec with gem install rspec. We’ll then create our first specification
file:

2. Some say the 0, 15, 30, 40 system is a corruption of the fact that scoring used to be done using the
quarters of a clock face. Us, we just think those medieval folks enjoyed a good joke.

Chapter 13. Unit Testing • 186

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

unittesting/bdd/1/ts_spec.rb

describe "TennisScorer", "basic scoring" do
it "should start with a score of 0-0"
it "should be 15-0 if the server wins a point"
it "should be 0-15 if the receiver wins a point"
it "should be 15-15 after they both win a point"
...

end

This file contains nothing more than a description of an aspect of the tennis scoring class
(that we haven’t yet written, by the way). It contains a description of the basic scoring system.
Inside the description are a set of four expectations (it "should start..." and so on). We can
run this specification using the rspec command:3

$ rspec ts_spec.rb

Pending:
TennisScorer basic scoring should start with a score of 0-0
Not yet implemented
./ts_spec.rb:2

TennisScorer basic scoring should be 15-0 if the server wins a point
Not yet implemented
./ts_spec.rb:3

TennisScorer basic scoring should be 0-15 if the receiver wins a point
Not yet implemented
./ts_spec.rb:4

TennisScorer basic scoring should be 15-15 after they both win a point
Not yet implemented
./ts_spec.rb:5

Finished in 0.00039 seconds
4 examples, 0 failures, 4 pending

That’s pretty cool. Executing the tests echoes our expectations back at us, telling us that each
has yet to be implemented. Coding, like life, is full of these disappointments. However,
unlike life, fixing things is just a few keystrokes away. Let’s start by meeting the first
expectation—when a game starts, the score should be 0 to 0. We’ll start by fleshing out the
test:

unittesting/bdd/2/ts_spec.rb

require_relative "tennis_scorer"

describe TennisScorer, "basic scoring" do
it "should start with a score of 0-0" do
ts = TennisScorer.new
ts.score.should == "0-0"

end

it "should be 15-0 if the server wins a point"
it "should be 0-15 if the receiver wins a point"
it "should be 15-15 after they both win a point"

end

3. We’re running these examples with RSpec2. This will probably be the default version by the time you
read this, but I had to use gem install rspec --pre because it was prerelease when I was writing this chapter.

report erratum • discuss

RSpec and Shoulda • 187

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/unittesting/bdd/1/ts_spec.rb
http://media.pragprog.com/titles/ruby4/code/unittesting/bdd/2/ts_spec.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Note that we’ve assumed we have a class TennisScorer in a file called tennis_scorer.rb. Our first
expectation now has a code block associated with it. Inside that block, we create a TennisScorer
and then use a funky RSpec syntax to validate that the score starts out at 0 to 0. This partic-
ular aspect of RSpec probably generates the most controversy—some people love it, others
find it awkward. Either way, ts.score.should == "0-0" is basically the same as an assertion in
Test::Unit.

We’ll beef up our TennisScorer class, but only enough to let it satisfy this assertion:

unittesting/bdd/2/tennis_scorer.rb

class TennisScorer
def score
"0-0"

end
end

We’ll run our spec again:

$ rspec ts_spec.rb
.***
Pending:
TennisScorer basic scoring should be 15-0 if the server wins a point
Not yet implemented
./ts_spec.rb:9

TennisScorer basic scoring should be 0-15 if the receiver wins a point
Not yet implemented
./ts_spec.rb:10

TennisScorer basic scoring should be 15-15 after they both win a point
Not yet implemented
./ts_spec.rb:11

Finished in 0.00054 seconds
4 examples, 0 failures, 3 pending

Note that we now have three pending expectations; the first one has been satisfied.

Let’s write the next expectation:

unittesting/bdd/3/ts_spec.rb

require_relative "tennis_scorer"

describe TennisScorer, "basic scoring" do
it "should start with a score of 0-0" do
ts = TennisScorer.new
ts.score.should == "0-0"

end

it "should be 15-0 if the server wins a point" do
ts = TennisScorer.new
ts.give_point_to(:server)
ts.score.should == "15-0"

end

it "should be 0-15 if the receiver wins a point"
it "should be 15-15 after they both win a point"

end

Chapter 13. Unit Testing • 188

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/unittesting/bdd/2/tennis_scorer.rb
http://media.pragprog.com/titles/ruby4/code/unittesting/bdd/3/ts_spec.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

This won’t run, because our TennisScorer class doesn’t implement a give_point_to method. Let’s
rectify that. Our code isn’t finished, but it lets the test pass:

unittesting/bdd/3/tennis_scorer.rb

class TennisScorer

OPPOSITE_SIDE_OF_NET = { :server => :receiver, :receiver => :server }

def initialize
@score = { :server => 0, :receiver => 0 }

end

def score
"#{@score[:server]*15}-#{@score[:receiver]*15}"

end

def give_point_to(player)
other = OPPOSITE_SIDE_OF_NET[player]
fail "Unknown player #{player}" unless other
@score[player] += 1

end
end

Again, we’ll run the specification:

$ rspec ts_spec.rb
..**
Pending:
TennisScorer basic scoring should be 0-15 if the receiver wins a point
Not yet implemented
./ts_spec.rb:15

TennisScorer basic scoring should be 15-15 after they both win a point
Not yet implemented
./ts_spec.rb:16

Finished in 0.00067 seconds
4 examples, 0 failures, 2 pending

We’re now meeting two of the four initial expectations. But, before we move on, note there’s
a bit of duplication in the specification: both our expectations create a new TennisScorer object.
We can fix that by using a before stanza in the specification. This works a bit like the setup
method in Test::Unit, allowing us to run code before expectations are executed. Let’s use
this feature and, at the same time, build out the last two expectations:

unittesting/bdd/4/ts_spec.rb

require_relative "tennis_scorer"

describe TennisScorer, "basic scoring" do
before(:each) do
@ts = TennisScorer.new

end

it "should start with a score of 0-0" do
@ts.score.should == "0-0"

end

report erratum • discuss

RSpec and Shoulda • 189

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/unittesting/bdd/3/tennis_scorer.rb
http://media.pragprog.com/titles/ruby4/code/unittesting/bdd/4/ts_spec.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

it "should be 15-0 if the server wins a point" do
@ts.give_point_to(:server) @ts.score.should ==
"15-0"

end

it "should be 0-15 if the receiver wins a point" do
@ts.give_point_to(:receiver) @ts.score.should ==
"0-15"

end

it "should be 15-15 after they both win a point" do
@ts.give_point_to(:receiver)
@ts.give_point_to(:server) @ts.score.should ==
"15-15"

end
end

Let’s run it:

$ rspec ts_spec.rb
....
Finished in 0.00088 seconds
4 examples, 0 failures

Finally, RSpec gives us an alternative way of setting up conditions for our tests. The let
method creates what looks like a variable (it’s actually a dynamically defined method) whose
value is given by evaluating a block. This lets us write the following:

unittesting/bdd/5/ts_spec.rb

require_relative "tennis_scorer"

describe TennisScorer, "basic scoring" do

let(:ts) { TennisScorer.new}

it "should start with a score of 0-0" do
ts.score.should == "0-0"

end

it "should be 15-0 if the server wins a point" do
ts.give_point_to(:server)
ts.score.should == "15-0"

end

it "should be 0-15 if the receiver wins a point" do
ts.give_point_to(:receiver)
ts.score.should == "0-15"

end

it "should be 15-15 after they both win a point" do
ts.give_point_to(:receiver)
ts.give_point_to(:server)
ts.score.should == "15-15"

end
end

Chapter 13. Unit Testing • 190

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/unittesting/bdd/5/ts_spec.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

We’re going to stop here, but I suggest that you might want to take this code and continue
to develop it. Write expectations such as these:

it "should be 40-0 after the server wins three points"
it "should be W-L after the server wins four points"
it "should be L-W after the receiver wins four points"
it "should be Deuce after each wins three points"
it "should be A-server after each wins three points and the server gets one more"

RSpec has a lot more depth than just the description of expectations. In particular, you can
use it with Cucumber, an entire language for describing and running complete user stories.
But that’s beyond the scope of this book.

Anyone for Shoulda?

RSpec is testing with attitude. On the other hand, Shoulda takes many of the ideas from
RSpec and humbly offers them to you for integration into your regular unit tests. For many
developers, particularly those with existing Test::Unit tests, this is a good compromise. You
get much of the descriptive power of RSpec-style expectations without having to commit to
the full framework.

Install Shoulda using gem install shoulda. Then, unlike RSpec, write a regular Test::Unit test
case. Inside it, though, you can use the Shoulda mini-language to describe your tests.

Let’s recast our final RSpec tennis scoring tests using Shoulda:

unittesting/bdd/4/ts_shoulda.rb

require 'test/unit'
require 'shoulda'
require_relative 'tennis_scorer.rb'

class TennisScorerTest < Test::Unit::TestCase

def assert_score(target)
assert_equal(target, @ts.score)

end

context "Tennis scores" do
setup do
@ts = TennisScorer.new

end

should "start with a score of 0-0" do
assert_score("0-0")

end

should "be 15-0 if the server wins a point" do
@ts.give_point_to(:server)
assert_score("15-0")

end

should "be 0-15 if the receiver wins a point" do
@ts.give_point_to(:receiver)
assert_score("0-15")

end

report erratum • discuss

RSpec and Shoulda • 191

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/unittesting/bdd/4/ts_shoulda.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

should "be 15-15 after they both win a point" do
@ts.give_point_to(:receiver)
@ts.give_point_to(:server)
assert_score("15-15")

end
end

end

$ ruby ts_shoulda.rb
Run options:
Running tests:
....
Finished tests in 0.008528s, 469.0432 tests/s, 469.0432 assertions/s.
4 tests, 4 assertions, 0 failures, 0 errors, 0 skips
ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

Behind the scenes, Shoulda is creating Test::Unit test methods for each should block in your
tests. This is why we can use regular Test::Unit assertions in Shoulda code. But Shoulda also
works hard to maintain the right context for our tests. For example, we can nest contexts
and their setup blocks, allowing us to have some initialization that’s common to all tests and
some that’s common to just a subset. We can apply this to our tennis example. We’ll write
nested contexts and put setup blocks at each level. When Shoulda executes our tests, it runs
all the appropriate setup blocks for the should blocks.

unittesting/bdd/4/ts_shoulda_1.rb

require 'test/unit'
require 'shoulda'
require_relative 'tennis_scorer.rb'

class TennisScorerTest < Test::Unit::TestCase
def assert_score(target)
assert_equal(target, @ts.score)

end
context "Tennis scores" do
setup do
@ts = TennisScorer.new

end
should "start with a score of 0-0" do
assert_score("0-0")

end
context "where the server wins a point" do
setup do
@ts.give_point_to(:server)

end
should "be 15-0" do
assert_score("15-0")

end
context "and the oponent wins a point" do
setup do
@ts.give_point_to(:receiver)

end
should "be 15-15" do
assert_score("15-15")

end

Chapter 13. Unit Testing • 192

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/unittesting/bdd/4/ts_shoulda_1.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

end
end
should "be 0-15 if the receiver wins a point" do
@ts.give_point_to(:receiver)
assert_score("0-15")

end
end

end

Let’s run it:

$ ruby ts_shoulda_1.rb
Run options:
Running tests:
....
Finished tests in 0.008962s, 446.3289 tests/s, 446.3289 assertions/s.
4 tests, 4 assertions, 0 failures, 0 errors, 0 skips
ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

Would we use these nested contexts for this tennis scoring example? We probably wouldn’t
as it stands, because the linear form is easier to read. But we use them all the time when we
have tests where we want to run through a complex scenario that builds from test to test.
This nesting lets us set up an environment, run some tests, then change the environment,
run more tests, change it again, run even more tests, and so on. It ends up making tests far
more compact and removes a lot of duplication.

13.5 Test::Unit assertions

assert | refute(boolean, ‹message ›)
Fails if boolean is (is not) false or nil.

assert_block { block }
Expects the block to return true.

assert_ | refute_ empty(collection, ‹message ›)
Expects empty? on collection to return true (false).

assert_ | refute_ equal(expected, actual, ‹message ›)
Expects actual to equal/not equal expected, using ==.

assert_ | refute_in_delta(expected_float, actual_float, delta, ‹message ›)
Expects that the actual floating-point value is (is not) within delta of the expected value.

assert_ | refute_ in_epsilon(expected_float, actual_float, epsilon=0.001, ‹message ›)
Calculates a delta value as epsilon * min(expected, actual) and then calls the _in_delta test.

assert_ | refute_ includes(collection, obj, ‹message ›)
Expects include?(obj) on collection to return true (false).

assert_ | refute_ instance_of(klass, obj, message)
Expects obj to be (not to be) a instance of klass.

assert_ | refute_ kind_of(klass, obj, ‹message ›)
Expects obj to be (not to be) a kind of klass.

report erratum • discuss

Test::Unit assertions • 193

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

assert_ | refute_ match(regexp, string, ‹message ›)
Expects string to (not) match regexp.

assert_ | refute_ nil(obj, ‹message ›)
Expects obj to be (not) nil.

assert_ | refute_ operator(obj1, operator, obj2, ‹message ›)
Expects the result of sending the message operator to obj1with parameter obj2 to be (not
to be) true.

assert_raises(Exception, ...) { block }
Expects the block to raise one of the listed exceptions.

assert_ | refute_ respond_to(obj, message, ‹message ›)
Expects obj to respond to (not respond to) message (a symbol).

assert_ | refute_ same(expected, actual, ‹message ›)
Expects expected.equal?(actual).

assert_send(send_array, ‹message ›)
Sends the message in send_array[1] to the receiver in send_array[0], passing the rest of
send_array as arguments. Expects the return value to be true.

assert_throws(expected_symbol, ‹message ›) { block }
Expects the block to throw the given symbol.

flunk(message="Epic Fail!")
Always fails.

skip(message)
Indicates that a test is deliberately not run.

pass
Always passes.

Additional Test::Unit assertions

assert_not_equal(expected, actual, ‹message ›)
Expects actual not to equal expected, using ==. Like refute_equal.

assert_not_match(regexp, string, ‹message ›)
Expects string not to match regexp. Like refute_match.

assert_not_nil(obj, ‹message ›)
Expects obj not to be nil. Like refute_nil.

assert_not_same(expected, actual, ‹message ›)
Expects !expected.equal?(actual). Like refute_same.

assert_nothing_raised(Exception, ...) { block }
Expects the block not to raise one of the listed exceptions.

assert_nothing_thrown(expected_symbol, ‹message ›) { block }
Expects the block not to throw the given symbol.

assert_raise(Exception, ...) { block }
Synonym for assert_raises.

Chapter 13. Unit Testing • 194

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 14

When Trouble Strikes!
It’s sad to say, but it is possible to write buggy programs using Ruby. Sorry about that. But
not to worry! Ruby has several features that will help debug your programs. We’ll look at
these features, and then we’ll show some common mistakes you can make in Ruby and how
to fix them.

14.1 Ruby Debugger

Ruby comes with a debugger, which is conveniently built into the base system. You can run
the debugger by invoking the interpreter with the -r debug option, along with any other Ruby
options and the name of your script:

ruby -r debug ‹ debug-options › ‹ programfile › ‹ program-arguments ›

The debugger supports the usual range of features you’d expect, including the ability to set
breakpoints, to step into and step over method calls, and to display stack frames and variables.
It can also list the instance methods defined for a particular object or class, and it allows you
to list and control separate threads within Ruby. All the commands that are available under
the debugger are listed in Table 6, Debugger commands, on page 205.

If your Ruby installation has readline support enabled, you can use cursor keys to move
back and forth in command history and use line-editing commands to amend previous input.

To give you an idea of what the Ruby debugger is like, here’s a sample session:

$ ruby -r debug t.rb
Debug.rb
Emacs support available.
t.rb:1:def fact(n)
(rdb:1) list 1-9
[1, 9] in t.rb
=> 1 def fact(n)

2 if n <= 0
3 1
4 else
5 n * fact(n-1)
6 end
7 end
8
9 p fact(5)

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

(rdb:1) b 2
Set breakpoint 1 at t.rb:2
(rdb:1) c
breakpoint 1, fact at t.rb:2
t.rb:2: if n <= 0
(rdb:1) disp n
1: n = 5
(rdb:1) del 1
(rdb:1) watch n==1
Set watchpoint 2
(rdb:1) c
watchpoint 2, fact at t.rb:fact
t.rb:1:def fact(n)
1: n = 1
(rdb:1) where
--> #1 t.rb:1:in `fact'

#2 t.rb:5:in `fact'
#3 t.rb:5:in `fact'
#4 t.rb:5:in `fact'
#5 t.rb:5:in `fact'
#6 t.rb:9

(rdb:1) del 2
(rdb:1) c
120

14.2 Interactive Ruby

If you want to play with Ruby, we recommend Interactive Ruby—irb, for short. irb is
essentially a Ruby “shell” similar in concept to an operating system shell (complete with job
control). It provides an environment where you can “play around” with the language in real
time. You launch irb at the command prompt:

irb ‹ irb-options › ‹ ruby_script › ‹ program-arguments ›

irb displays the value of each expression as you complete it. For instance:

irb(main):001:0> a = 1 +
irb(main):002:0* 2 * 3 /
irb(main):003:0* 4 % 5
=> 2
irb(main):004:0> 2+2
=> 4
irb(main):005:0> def test
irb(main):006:1> puts "Hello, world!"
irb(main):007:1> end
=> nil
irb(main):008:0> test
Hello, world!
=> nil
irb(main):009:0>

irb also allows you to create subsessions, each one of which may have its own context. For
example, you can create a subsession with the same (top-level) context as the original session
or create a subsession in the context of a particular class or instance. The sample session that
follows is a bit longer but shows how you can create subsessions and switch between them.

Chapter 14. When Trouble Strikes! • 196

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

$ irb
irb(main):001:0> irb
irb#1(main):001:0> jobs

#0->irb on main (#<Thread:0x401bd654>: stop)
#1->irb#1 on main (#<Thread:0x401d5a28>: running)
irb#1(main):002:0> fg 0

#<IRB::Irb:@scanner=#<RubyLex:0x401ca7>,@signal_status=:IN_EVAL,
 @context=#<IRB::Context:0x401ca86c>>
irb(main):002:0> class VolumeKnob

irb(main):003:1> end

=> nil
irb(main):004:0> irb VolumeKnob

irb#2(VolumeKnob):001:0> def initialize

irb#2(VolumeKnob):002:1> @vol=50

irb#2(VolumeKnob):003:1> end

=> nil
irb#2(VolumeKnob):004:0> def up

irb#2(VolumeKnob):005:1> @vol += 10

irb#2(VolumeKnob):006:1> end

=> nil
irb#2(VolumeKnob):007:0> fg 0

#<IRB::Irb:@scanner=#<RubyLex:0x401ca7>,@signal_status=:IN_EVAL,
 @context=#<IRB::Context:0x401ca86c>>
irb(main):005:0> jobs

#0->irb on main (#<Thread:0x401bd654>: running)
#1->irb#1 on main (#<Thread:0x401d5a28>: stop)
#2->irb#2 on VolumeKnob (#<Thread:0x401c400c>: stop)
irb(main):006:0> VolumeKnob.instance_methods

=> ["up"]
irb(main):007:0> v = VolumeKnob.new

#<VolumeKnob: @vol=50>
irb(main):008:0> irb v

irb#3(#<VolumeKnob:0x401e7d40>):001:0> up

=> 60
irb#3(#<VolumeKnob:0x401e7d40>):002:0> up

=> 70
irb#3(#<VolumeKnob:0x401e7d40>):003:0> up

=> 80
irb#3(VolumeKnob):004:0> fg 0

#<IRB::Irb:@scanner=#<RubyLex:0x401ca7>,@signal_status=:IN_EVAL,
 @context=#<IRB::Context:0x401ca86c>>
irb(main):009:0> kill 1,2,3

=> [1, 2, 3]
irb(main):010:0> jobs

#0->irb on main (#<Thread:0x401bd654>: running)
irb(main):011:0> exit

In this same irb session, we'll create
a new subsession in the context of
class VolumeKnob

We can use fg 0 to switch back to
the main session, take a look at all
current jobs, and see what instance
methods VolumeKnob defines

Make a new VolumeKnob object,
and create a new subsession with
that object as the context

Switch back to the main session, kill
the subsessions, and exit

For a full description of all the commands that irb supports, see Chapter 18, Interactive Ruby
Shell, on page 253.

As with the debugger, if your version of Ruby was built with GNU readline support, you
can use Emacs- or vi-style key bindings to edit individual lines or to go back and reexecute
or edit a previous line—just like a command shell.

irb is a great learning tool. It’s very handy if you want to try an idea quickly and see whether
it works.

14.3 Editor Support

The Ruby interpreter is designed to read a program in one pass; this means you can pipe an
entire program to the interpreter’s standard input, and it will work just fine.

We can take advantage of this feature to run Ruby code from inside an editor. In Emacs, for
instance, you can select a region of Ruby text and use the command Meta-| to execute Ruby.
The Ruby interpreter will use the selected region as standard input, and output will go to a

report erratum • discuss

Editor Support • 197

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

buffer named *Shell Command Output*. This feature has come in quite handy for us while
writing this book—just select a few lines of Ruby in the middle of a paragraph, and try it!

You can do something similar in the vi editor using :%!ruby, which replaces the program text
with its output, or :w␣!ruby, which displays the output without affecting the buffer. Other
editors have similar features.1

Some Ruby developers look for IDE support. Several decent alternatives are available.
Arachno RubyAptana, RubyMine, NetBeans, Ruby in Steel, Idea, and so on, all have their
devotees. It’s a rapidly changing field, so we recommend a quick web search rather than
rely on the advice here.

While we are on the subject, this would probably be a good place to mention that a Ruby
mode for Emacs is included in the Ruby source distribution as ruby-mode.el in themisc/ subdi-
rectory. Many other editors now include support for Ruby; check your documentation for
details.

14.4 But It Doesn’t Work!

So, you’ve read through enough of the book, you start to write your very own Ruby program,
and it doesn’t work. Here’s a list of common gotchas and other tips:

• First and foremost, run your scripts with warnings enabled (the -w command-line option).

• If you happen to forget a comma (,) in an argument list—especially to print—you can
produce some very odd error messages.

• An attribute setter is not being called. Within a class definition, Ruby will parse setter=
as an assignment to a local variable, not as a method call. Use the form self.setter= to
indicate the method call:

class Incorrect
attr_accessor :one, :two
def initialize
one = 1 # incorrect - sets local variable
self.two = 2

end
end

obj = Incorrect.new
obj.one # => nil
obj.two # => 2

• Objects that don’t appear to be properly set up may have been victims of an incorrectly
spelled initialize method:

class Incorrect
attr_reader :answer
def initialise # <-- spelling error
@answer = 42

end
end

1. Many developers use Sublime Text (http://www.sublimetext.com/), a cross-platform editor chock full of
features, including Ruby code execution.

Chapter 14. When Trouble Strikes! • 198

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://www.sublimetext.com/
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

ultimate = Incorrect.new
ultimate.answer # => nil

The same kind of thing can happen if you misspell the instance variable name:

class Incorrect
attr_reader :answer
def initialize
@anwser = 42 #<-- spelling error

end
end

ultimate = Incorrect.new
ultimate.answer # => nil

• A parse error at the last line of the source often indicates a missing end keyword,
sometimes quite a bit earlier.

• This ugly message—syntax error, unexpected $end, expecting keyword_end—means that you
have an end missing somewhere in your code. (The $end in the message means end-of-
file, so the message simply means that Ruby hit the end of your code before finding all
the end keywords it was expecting.) Try running with -w, which will warn when it finds
ends that aren’t aligned with their opening if/while/class.

• As of Ruby 1.9, block parameters are no longer in the same scope as local variables. This
may be incompatibile with older code. Run with the -w flag to spot these issues:

entry = "wibble"
[1, 2, 3].each do |entry|
do something with entry

end
puts "Last entry = #{entry}"

produces:

prog.rb:2: warning: shadowing outer local variable - entry
Last entry = wibble

• Watch out for precedence issues, especially when using {...} instead of do...end:

def one(arg)
if block_given?
"block given to 'one' returns #{yield}"

else
arg

end
end

def two
if block_given?
"block given to 'two' returns #{yield}"

end
end

result1 = one two {
"three"

}

report erratum • discuss

But It Doesn’t Work! • 199

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

result2 = one two do
"three"

end

puts "With braces, result = #{result1}"
puts "With do/end, result = #{result2}"

produces:

With braces, result = block given to 'two' returns three
With do/end, result = block given to 'one' returns three

• Output written to a terminal may be buffered. This means you may not see a message
you write immediately. In addition, if you write messages to both STDOUT and STDERR,
the output may not appear in the order you were expecting. Always use nonbuffered
I/O (set sync=true) for debug messages.

• If numbers don’t come out right, perhaps they’re strings. Text read from a file will be
a String and will not be automatically converted to a number by Ruby. A call to Integer
will work wonders (and will throw an exception if the input isn’t a well-formed integer).
The following is a common mistake Perl programmers make:

while line = gets
num1, num2 = line.split(/,/)
...

end

You can rewrite this as follows:

while line = gets
num1, num2 = line.split(/,/)
num1 = Integer(num1)
num2 = Integer(num2)
...

end

Or, you could convert all the strings using map:

while line = gets
num1, num2 = line.split(/,/).map {|val| Integer(val) }
...

end

• Unintended aliasing—if you are using an object as the key of a hash, make sure it doesn’t
change its hash value (or arrange to call Hash#rehash if it does):

arr = [1, 2]
hash = { arr => "value" }
hash[arr] # => "value"
arr[0] = 99
hash[arr] # => nil
hash.rehash # => {[99, 2]=>"value"}
hash[arr] # => "value"

• Make sure the class of the object you are using is what you think it is. If in doubt, use
puts my_obj.class.

Chapter 14. When Trouble Strikes! • 200

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

• Make sure your method names start with a lowercase letter and class and constant
names start with an uppercase letter.

• If method calls aren’t doing what you’d expect, make sure you’ve put parentheses
around the arguments.

• Make sure the open parenthesis of a method’s parameter list butts up against the end
of the method name with no intervening spaces.

• Use irb and the debugger.

• Use Object#freeze. If you suspect that some unknown portion of code is setting a variable
to a bogus value, try freezing the variable. The culprit will then be caught during the
attempt to modify the variable.

One major technique makes writing Ruby code both easier and more fun. Develop your
applications incrementally. Write a few lines of code, and then write tests (perhaps using
Test::Unit). Write a few more lines of code, and then exercise them. One of the major benefits
of a dynamically typed language is that things don’t have to be complete before you use
them.

14.5 But It’s Too Slow!

Ruby is an interpreted, high-level language, and as such it may not perform as fast as a
lower-level language such as C. In the following sections, we’ll list some basic things you
can do to improve performance; also take a look in the index under Performance for other
pointers.

Typically, slow-running programs have one or two performance graveyards, places where
execution time goes to die. Find and improve them, and suddenly your whole program
springs back to life. The trick is finding them. The Benchmark module and the Ruby profilers
can help.

Benchmark

You can use the Benchmark module, also described in the library section on page 733, to time
sections of code. For example, we may wonder what the overhead of method invocation is.
You can use Benchmark to find out.

require 'benchmark'
include Benchmark

LOOP_COUNT = 1_000_000

bmbm(12) do |test|
test.report("inline:") do
LOOP_COUNT.times do |x|
nothing

end
end
test.report("method:") do
def method
nothing

end

report erratum • discuss

But It’s Too Slow! • 201

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

LOOP_COUNT.times do |x|
method

end
end

end

produces:

Rehearsal --
inline: 0.100000 0.000000 0.100000 (0.102194)
method: 0.140000 0.000000 0.140000 (0.145651)
--------------------------------------- total: 0.240000sec

user system total real
inline: 0.090000 0.000000 0.090000 (0.098364)
method: 0.140000 0.000000 0.140000 (0.146260)

You have to be careful when benchmarking, because oftentimes Ruby programs can run
slowly because of the overhead of garbage collection. Because this garbage collection can
happen any time during your program’s execution, you may find that benchmarking gives
misleading results, showing a section of code running slowly when in fact the slowdown
was caused because garbage collection happened to trigger while that code was executing.
The Benchmark module has the bmbm method that runs the tests twice, once as a rehearsal
and once to measure performance, in an attempt to minimize the distortion introduced by
garbage collection. The benchmarking process itself is relatively well mannered—it doesn’t
slow down your program much.

The Profiler

Ruby comes with a code profiler (documented in the library section on page 791). The profiler
shows you the number of times each method in the program is called and the average and
cumulative time that Ruby spends in those methods.

You can add profiling to your code using the command-line option -r profile or from within
the code using require "profile". Here’s an example:

trouble/profileeg.rb

count = 0
words = File.open("/usr/share/dict/words")

while word = words.gets
word = word.chomp!
if word.length == 12
count += 1

end
end

puts "#{count} twelve-character words"

The first time we ran this (without profiling) against a dictionary of almost 235,000 words,
it took a noticeable time to complete. Wondering if we could improve on this, we added the
command-line option -r profile and tried again. Eventually we saw output that looked like
the following:

Chapter 14. When Trouble Strikes! • 202

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/trouble/profileeg.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

20460 twelve-character words
% cumulative self self total
time seconds seconds calls ms/call ms/call name
9.03 1.21 1.21 234936 0.01 0.01 String#chomp!
8.88 2.40 1.19 234937 0.01 0.01 IO#gets
7.61 3.42 1.02 234936 0.00 0.00 String#length
6.94 4.35 0.93 234936 0.00 0.00 Fixnum#==
0.82 4.46 0.11 20460 0.01 0.01 Fixnum#+
0.00 4.46 0.00 2 0.00 0.00 IO#set_encoding
0.00 4.46 0.00 1 0.00 0.00 IO#open
. . . .

The first thing to notice is that the timings shown are a lot slower than when the program
runs without the profiler. Profiling has a serious overhead, but the assumption is that it
applies across the board, and therefore the relative numbers are still meaningful. This par-
ticular program clearly spends a lot of time in the loop, which executes almost 235,000 times.
Each time, it invokes both gets and chomp!. We could probably improve performance if we
could either make the stuff in the loop less expensive or eliminate the loop altogether. One
way of doing the latter is to read the word list into one long string and then use a pattern to
match and extract all twelve character words:

trouble/profileeg1.rb

words = File.read("/usr/share/dict/words")
count = words.scan(/^............\n/).size

puts "#{count} twelve-character words"

Our profile numbers are now a lot better (and the program runs more than five times faster
when we take the profiling back out):

% ruby -r profile code/trouble/profileeg1.rb
20462 twelve-character words
% cumulative self self total
time seconds seconds calls ms/call ms/call name
100.00 0.26 0.26 1 260.00 260.00 String#scan
0.00 0.26 0.00 1 0.00 0.00 Fixnum#to_s
0.00 0.26 0.00 1 0.00 0.00 IO.read
0.00 0.26 0.00 1 0.00 0.00 TracePoint#enable
0.00 0.26 0.00 1 0.00 0.00 Array#size
0.00 0.26 0.00 2 0.00 0.00 IO#set_encoding
0.00 0.26 0.00 2 0.00 0.00 IO#write
0.00 0.26 0.00 1 0.00 0.00 IO#puts
0.00 0.26 0.00 1 0.00 0.00 Kernel#puts
0.00 0.26 0.00 1 0.00 0.00 TracePoint#disable
0.00 0.26 0.00 1 0.00 260.00 #toplevel

Remember to check the code without the profiler afterward, though—sometimes the slow-
down the profiler introduces can mask other problems.

Ruby is a wonderfully transparent and expressive language, but it does not relieve the pro-
grammer of the need to apply common sense: creating unnecessary objects, performing
unneeded work, and creating bloated code will slow down your programs regardless of the
language.

report erratum • discuss

But It’s Too Slow! • 203

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/trouble/profileeg1.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Code Execution Coverage

Ruby 1.9.2 comes with low-level code coverage built in to the interpreter (see the Coverage
module on page 740). It tracks which lines of code were executed in your code.

People are starting to build libraries that wrap this low-level functionality with filters, HTML
output, and the like. Two examples are Mark Bates’ CoverMe and Christoph Olszowka’s
simplecov.

Both are installed as gems, and both come with comprehensive instructions on how to inte-
grate them into your test environment.

For our simple tennis scoring example, the summary, written as an HTML file, is fairly
straightforward:

Click the name of a file, and you’ll get a display of which lines were executed:

Chapter 14. When Trouble Strikes! • 204

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

A null command repeats the last command.empty

Sets breakpoint at given line in file (default current file) or class.b[reak] [file|class:]line

Sets breakpoint at method in file or class.b[reak] [file|class:]name

Displays breakpoints and watchpoints.b[reak]

Stops when exception is raised.cat[ch] exception

Lists current catches.cat[ch]

Continues execution.c[ont]

Deletes breakpoint nnn (default all).del[ete] [nnn]

Displays value of nnn every time debugger gets control.disp[lay] expr

Shows current displays.disp[lay]

Moves down nnn levels in the call stack.down nnn=1

Synonym for where.f[rame]

Finishes execution of the current function.fin[ish]

Shows summary of commands.h[elp]

Lists source lines from start to end.l[ist] [start–end]

Displays instance methods of obj.m[ethod] i[nstance] obj

Displays instance methods of the class or module name.m[ethod] Name

Executes next nnn lines, stepping over methods.n[ext] nnn=1

Evaluates expr in the current context. exprmay include assignment to variables
and method invocations.

[p] expr

Exits the debugger.q[uit]

Executes next nnn lines, stepping into methods.s[tep] nnn=1

Lists all threads.th[read] l[ist]

Displays status of current thread.th[read] [c[ur[rent]]]

Makes thread nnn current and stops it.th[read] [c[ur[rent]]] nnn

Makes thread nnn current and stops it.th[read] stop nnn

Resumes thread nnn.th[read] resume nnn

Switches thread context to nnn.th[read] [sw[itch]] nnn

Toggles execution trace of current or all threads.tr[ace] (on|off) [all]

Removes display (default all).undisp[lay] [nnn]

Moves up nnn levels in the call stack.up nnn=1

Displays constants in class or module name.v[ar] c[onst] Name

Displays global variables.v[ar] g[lobal]

Displays local variables.v[ar] l[ocal]

Displays instance variables of obj.v[ar] i[stance] obj

Breaks when expression becomes true.wat[ch] expr

Displays current call stack.w[here]

Table 6—Debugger commands

report erratum • discuss

But It’s Too Slow! • 205

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Part II

Ruby in Its Setting

Download from Wow! eBook <www.wowebook.com>

CHAPTER 15

Ruby and Its World
It’s an unfortunate fact of life that our applications have to deal with the big, bad world. In
this chapter, we’ll look at how Ruby interacts with its environment. Microsoft Windows
users will probably also want to look at the platform-specific information on page 289.

15.1 Command-Line Arguments

“In the beginning was the command line.”1 Regardless of the system in which Ruby is
deployed, whether it be a super-high-end scientific graphics workstation or an embedded
PDA device, you have to start the Ruby interpreter somehow, and that gives us the oppor-
tunity to pass in command-line arguments.

A Ruby command line consists of three parts: options to the Ruby interpreter, optionally
the name of a program to run, and optionally a set of arguments for that program:

ruby ‹ options › ‹ – › ‹ programfile › ‹ arguments ›*

The Ruby options are terminated by the first word on the command line that doesn’t start
with a hyphen or by the special flag -- (two hyphens).

If no filename is present on the command line or if the filename is a single hyphen, Ruby
reads the program source from standard input.

Arguments for the program itself follow the program name. For example, the following:

$ ruby -w - "Hello World"

will enable warnings, read a program from standard input, and pass it the string "Hello World"
as an argument.

1. This is the title of a marvelous essay by Neal Stephenson (available online via http://www.cryptonomicon.com/
beginning.html).

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://www.cryptonomicon.com/beginning.html
http://www.cryptonomicon.com/beginning.html
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Command-Line Options

-0[octal]
The 0 flag (the digit zero) specifies the record separator character (\0, if no digit follows).
-00 indicates paragraph mode: records are separated by two successive default record
separator characters. \0777 reads the entire file at once (because it is an illegal character).
Sets $/.

-a
Autosplit mode when used with -n or -p; equivalent to executing $F = $_.split at the top
of each loop iteration.

-C directory
Changes working directory to directory before executing.

-c
Checks syntax only; does not execute the program.

--copyright
Prints the copyright notice and exits.

-d, --debug
Sets $DEBUG and $VERBOSE to true. This can be used by your programs to enable additional
tracing.

--disable-all
⇡New in 2.0⇣ Disable the rubygems and RUBYOPT options (see the following descriptions).

--disable-gems
Stops Ruby from automatically loading RubyGems from require. There is a corresponding
--enable-gems option.

--disable-rubyopt

⇡New in 2.0⇣
Prevents Ruby from examining the RUBYOPT environment variable. You should probably
set this in an environment you want to secure. There is a corresponding --enable-rubyopt
option.

--dump option…
Tells Ruby to dump various items of internal state. options… is a comma or space sepa-
rated list containing one or more of copyright, insns, parsetree, parsetree_with_comment, syntax,
usage, version, and yydebug. This is intended for Ruby core developers.

--enable-all
⇡New in 2.0⇣ Enable the rubygems and RUBYOPT options (see the following descriptions).

--enable-gems
Allows Ruby to automatically load RubyGems from require. There is a corresponding
--disable-gems option.

--enable-rubyopt

⇡New in 2.0⇣
Allows Ruby to use the RUBYOPT environment variable. (This is the default.) You should
probably disable this option in an environment you want to secure.

Chapter 15. Ruby and Its World • 210

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

-E encoding, --encoding encoding, --encoding=encoding
Specifies the default character encoding for data read from and written to the outside
world. This can be used to set both the external encoding (the encoding to be assumed
for file contents) and optionally the default internal encoding (the file contents are
transcoded to this when read and transcoded from this when written). The format of
the encoding parameter is -E external, -E external:internal, or -E :internal. See Chapter 17,
Character Encoding, on page 239 for details. See also -U.

-e 'command'
Executes command as one line of Ruby source. Several -e’s are allowed, and the commands
are treated as multiple lines in the same program. If programfile is omitted when -e is
present, execution stops after the -e commands have been run. Programs run using -e
have access to the old behavior of ranges and regular expressions in conditions—ranges
of integers compare against the current input line number, and regular expressions
match against $_.

--external-encoding=encoding
⇡New in 2.0⇣Specifies the default external coding for the program.

-F pattern
Specifies the input field separator ($;) used as the default for split (affects the -a option).

-h, --help
Displays a short help screen.

-I directories
Specifies directories to be prepended to $LOAD_PATH ($:). Multiple -I options may be
present. Multiple directories may appear following each -I, separated by a colon on
Unix-like systems and by a semicolon on DOS/Windows systems.

-i [extension]
Edits ARGV files in place. For each file named in ARGV, anything you write to standard
output will be saved back as the contents of that file. A backup copy of the file will be
made if extension is supplied.

$ ruby -pi.bak -e "gsub(/Perl/, 'Ruby')" *.txt

--internal-encoding=encoding
⇡New in 2.0⇣Specifies the default internal coding for the program.

-l
Enables automatic line-ending processing; sets $\ to the value of $/ and chops every
input line automatically.

-n
Assumes a while gets; ...; end loop around your program. For example, a simple grep
command could be implemented as follows:

$ ruby -n -e "print if /wombat/" *.txt

-p
Places your program code within the loop while gets; ...; print; end.

$ ruby -p -e "$_.downcase!" *.txt

report erratum • discuss

Command-Line Arguments • 211

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

-r library
Requires the named library or gem before executing.

-S
Looks for the program file using the RUBYPATH or PATH environment variable.

-s
Any command-line switches found after the program filename, but before any filename
arguments or before a --, are removed from ARGV and set to a global variable named for
the switch. In the following example, the effect of this would be to set the variable $opt
to "electric":

$ ruby -s prog -opt=electric ./mydata

-Tlevel
Sets the safe level, which among other things enables tainting and untrusted checks (see
Chapter 26, Locking Ruby in the Safe, on page 409). Sets $SAFE.

-U
Sets the default internal encoding to UTF-8. See Chapter 17, Character Encoding, on page
239 for details. See also -E.

-v, --verbose
Sets $VERBOSE to true, which enables verbose mode. Also prints the version number. In
verbose mode, compilation warnings are printed. If no program filename appears on
the command line, Ruby exits.

--version
Displays the Ruby version number and exits.

-w
Enables verbose mode. Unlike -v, reads program from standard input if no program
files are present on the command line. We recommend running your Ruby programs
with -w.

-W level
Sets the level of warnings issued. With a level of two (or with no level specified),
equivalent to -w—additional warnings are given. If level is 1, runs at the standard (default)
warning level. With -W0, absolutely no warnings are given (including those issued using
Object#warn).

-X directory
Changes working directory to directory before executing. This is the same as -C directory.

-x [directory]
Strips off text before #!ruby line and changes working directory to directory if given.

-y, --yydebug
Enables yacc debugging in the parser (waaay too much information).

Argument Processing: ARGV and ARGF

Any command-line arguments after the program filename are available to your Ruby program
in the global array ARGV. For instance, assume test.rb contains the following program:

ARGV.each {|arg| p arg }

Chapter 15. Ruby and Its World • 212

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Invoke it with the following command line:

$ ruby -w test.rb "Hello World" a1 1.6180

It’ll generate the following output:

"Hello World"
"a1"
"1.6180"

There’s a gotcha here for all you C programmers—ARGV[0] is the first argument to the program,
not the program name. The name of the current program is available in the global variable
$0, which is aliased to $PROGRAM_NAME. Notice that all the values in ARGV are strings.

If your program reads from standard input (or uses the special object ARGF, described in the
next section), the arguments in ARGV will be taken to be filenames, and Ruby will read from
these files. If your program takes a mixture of arguments and filenames, make sure you
empty the nonfilename arguments from the ARGV array before reading from the files.

ARGF

It is common for a command line program to take a list of zero or more file names to process.
It will then read through these files in turn, doing whatever it does.

Ruby provides a convenience object, referenced by the name ARGF, that handles access to
these files. When your program starts, ARGF is initialized with a reference ARGV. Because this
is a reference, changes to make to ARGV (for example when you remove options as you process
them) are seen by ARGF.

If you read from ARGF (for example by calling ARGF.gets) or from standard input (for example
by calling plain gets), Ruby will open the file whose name is the first element of ARGV and
perform the I/O on it. If, as you continue to read, you reach the end of that file, Ruby closes
it, shifts it out of the ARGV array, and then opens the next file in the list. At some point, when
you finishing reading from the last file, ARGVwill return an end-of-file condition (so getswill
return nil, for example). If ARGV is initially empty, ARGF will read from standard input.

You can get to the name of the file currently being read from using ARGF.filename, and you
can get the current File object as ARGF.file. ARGF keeps track of the total number of lines read
in ARGF.lineno—if you need the line number in the current file, use ARGV.file.lineno. Here’s a
program that uses this information:

while line = gets
printf "%d: %10s[%d] %s", ARGF.lineno, ARGF.filename, ARGF.file.lineno, line

end

If we run it, passing a couple of file names, it will copy the contents of those files.

$ ruby copy.rb testfile otherfile
1: testfile[1] This is line one
2: testfile[2] This is line two
3: testfile[3] This is line three
4: testfile[4] And so on...
5: otherfile[1] ANOTHER LINE ONE
6: otherfile[2] AND ANOTHER LINE TWO
7: otherfile[3] AND FINALLY THE LAST LINE

report erratum • discuss

Command-Line Arguments • 213

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

In-place Editing
In-place editing is a hack inherited from Perl. It allows you to alter the contents of files passed
in on the command line, retaining a backup copy of the original contents.

To turn on in-place editing, give Ruby the file extension to use for the backup file, either
with the -i [ext] command line option, or by calling ARGF.inplace_mode=ext in your code.

Now, as your code reads through each file given on the command line, Ruby will rename
the original file by appending the backup extension. It will then create a new file with the
original name, and open it for writing on standard output. This all means that if you code
a program such as this:

while line = gets
puts line.chomp.reverse

end

and you invoked it using

$ ruby -i.bak reverse.rb testfile otherfile

You’d find that testfile and otherfile would now have reversed lines, and that the original files
would be available in testfile.bak and otherfile.bak.

For finer control over the I/O to these files, you can use the methods provided by ARGF.
They’re rarely used, so rather than document them here, we’ll refer you to ri or the online
documentation.

15.2 Program Termination

The method Object#exit terminates your program, returning a status value to the operating
system. However, unlike some languages, exit doesn’t terminate the program immediately
—exit first raises a SystemExit exception, which you may catch, and then performs a number
of cleanup actions, including running any registered at_exit methods and object finalizers.
See the reference for Object#at_exit on page 612.

15.3 Environment Variables

You can access operating system environment variables using the predefined variable ENV.
It responds to the same methods as Hash.2

ENV['SHELL']
ENV['HOME']
ENV['USER']
ENV.keys.size
ENV.keys[0, 4]

The values of some environment variables are read by Ruby when it first starts. These vari-
ables modify the behavior of the interpreter.

The environment variables used by Ruby are listed in the following table.

2. ENV is not actually a hash, but if you need to, you can convert it into a Hash using ENV#to_hash.

Chapter 15. Ruby and Its World • 214

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

DescriptionVariable Name

Specifies the search path for dynamically loaded modules.DLN_LIBRARY_PATH
Points to user’s home directory. This is used when expanding ~ in file
and directory names.

HOME

Specifies the fallback pointer to the user’s home directory if $HOME is not
set. This is used only by Dir.chdir.

LOGDIR

Specifies the location of OpenSSL configuration file.OPENSSL_CONF
Specifies an additional search path for Ruby programs ($SAFEmust be 0).RUBYLIB
(Windows only) Mangles the RUBYLIB search path by adding this prefix
to each component.

RUBYLIB_PREFIX

Specifies additional command-line options to Ruby; examined after real
command-line options are parsed ($SAFE must be 0).

RUBYOPT

With -S option, specifies the search path for Ruby programs (defaults to
PATH).

RUBYPATH

Specifies shell to use when spawning a process under Windows; if not
set, will also check SHELL or COMSPEC.

RUBYSHELL

Overrides default name for Tcl shared library or DLL.RUBY_TCL_DLL
Overrides default name for Tk shared library or DLL. Both this and
RUBY_TCL_DLL must be set for either to be used.

RUBY_TK_DLL

⇡New in 2.0⇣Other environment variables affect the memory allocated by the Ruby virtual machine for
various tasks.3

DescriptionVariable Name

The VM stack size used at thread creation: 128KB (32 bit
CPU) or 256KB (64 bit CPU).

RUBY_THREAD_VM_STACK_SIZE

The machine stack size used at thread creation: 512KB
(32 bit CPU) or 1024KB (64 bit CPU).

RUBY_THREAD_MACHINE_STACK_SIZE

VM stack size used at fiber creation: 64KB or 128KB.RUBY_FIBER_VM_STACK_SIZE
The machine stack size used at fiber creation: 256KB or
256KB.

RUBY_FIBER_MACHINE_STACK_SIZE

The current value of these variables can be read using RubyVM::DEFAULT_PARAMS.

Writing to Environment Variables

A Ruby program may write to the ENV object. On most systems, this changes the values of
the corresponding environment variables. However, this change is local to the process that
makes it and to any subsequently spawned child processes. This inheritance of environment
variables is illustrated in the code that follows. A subprocess changes an environment variable,
and this change is inherited by a process that it then starts. However, the change is not visible
to the original parent. (This just goes to prove that parents never really know what their
children are doing.)

3. This applies to MRI only.

report erratum • discuss

Environment Variables • 215

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

puts "In parent, term = #{ENV['TERM']}"
fork do
puts "Start of child 1, term = #{ENV['TERM']}"
ENV['TERM'] = "ansi"
fork do
puts "Start of child 2, term = #{ENV['TERM']}"

end
Process.wait
puts "End of child 1, term = #{ENV['TERM']}"

end
Process.wait
puts "Back in parent, term = #{ENV['TERM']}"

produces:

In parent, term = xterm-256color
Start of child 1, term = xterm-256color
Start of child 2, term = ansi
End of child 1, term = ansi
Back in parent, term = xterm-256color

Setting an environment variable’s value to nil removes the variable from the environment.

15.4 Where Ruby Finds Its Libraries

You use require or load to bring a library into your Ruby program. Some of these libraries are
supplied with Ruby, some you may have installed from the Ruby Application Archive, some
may have been packaged as RubyGems (of which more later), and some you may have
written yourself. How does Ruby find them?

Let’s start with the basics. When Ruby is built for your particular machine, it predefines a
set of standard directories to hold library stuff. Where these are depends on the machine in
question. You can determine this from the command line with something like this:

$ ruby -e 'puts $:'

On our OS X box, with RVM installed, this produces the following list:

/Users/dave/.rvm/rubies/ruby-2.0.0-p0/lib/ruby/site_ruby/2.0.0
/Users/dave/.rvm/rubies/ruby-2.0.0-p0/lib/ruby/site_ruby/2.0.0/x86_64-darwin12.2.0
...

The site_ruby directories are intended to hold modules and extensions that you’ve added.
The architecture-dependent directories (x86_64-darwin... in this case) hold executables and
other things specific to this particular machine. All these directories are automatically
included in Ruby’s search for libraries.

Sometimes this isn’t enough. Perhaps you’re working on a large project written in Ruby and
you and your colleagues have built a substantial library of Ruby code. You want everyone
on the team to have access to all this code. You have a couple of options to accomplish this.
If your program runs at a safe level of zero (see Chapter 26, Locking Ruby in the Safe, on page
409), you can set the environment variable RUBYLIB to a list of one or more directories to be
searched.4 If your program is not setuid, you can use the command-line parameter -I to do
the same thing.

4. The separator between entries is a semicolon on Windows; for Unix, it’s a colon.

Chapter 15. Ruby and Its World • 216

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

The Ruby variable $: is an array of places to search for loaded files. As we’ve seen, this
variable is initialized to the list of standard directories, plus any additional ones you specified
using RUBYLIB and -I. You can always add directories to this array from within your running
program. Prior to Ruby 1.9, this used to be a common idiom:

$: << File.dirname(__FILE__)
require 'other_file'

This added the directory of the running file to the search path, so other_file.rb could be found
there by the subsequent require. Now we use require_relative instead.

require_relative 'other_file'

15.5 RubyGems Integration

This section is based on the start of the chapter on RubyGems written by Chad Fowler for the second edition
of this book.

RubyGems is a standardized packaging and installation framework for Ruby libraries and
applications. RubyGems makes it easy to locate, install, upgrade, and uninstall Ruby packages.

Before RubyGems came along, installing a new library involved searching the Web, down-
loading a package, and attempting to install it—only to find that its dependencies hadn’t
been met. If the library you want is packaged using RubyGems, however, you can now
simply ask RubyGems to install it (and all its dependencies). Everything is done for you.

In the RubyGems world, developers bundle their applications and libraries into single files
called gems. These files conform to a standardized format and typically are stored in reposi-
tories on the Internet (but you can also create your own repositories if you want).

The RubyGems system provides a command-line tool, appropriately named gem, for
manipulating these gem files. It also provides integration into Ruby so that your programs
can access gems as libraries.

Prior to Ruby 1.9, it was your responsibility to install the RubyGems software on your
computer. Now, however, Ruby comes with RubyGems baked right in.

Installing Gems on Your Machine

Your latest project calls for a lot of XML generation. You could just hard-code it, but you’ve
heard about Jim Weirich’s Builder library, which constructs XML directly from Ruby code.

Let’s start by seeing whether Builder is available as a gem:

$ gem query --details --remote --name-matches builder
AntBuilder (0.4.3)

Author: JRuby-extras
Homepage: http://jruby-extras.rubyforge.org/
AntBuilder: Use ant from JRuby. Only usable within JRuby

builder (2.1.2)
Author: Jim Weirich
Homepage: http://onestepback.org
Builders for MarkUp.

The --details option displays the descriptions of any gems it finds. The --remote option
searches the remote repository. And the --name-matches option says to search the central gem

report erratum • discuss

RubyGems Integration • 217

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

repository for any gem whose name matches the regular expression /builder/. (We could have
used the short-form options -d, -r, and -n.) The result shows a number of gems have builder
in their name; the one we want is just plain builder.

The number after the name shows the latest version. You can see a list of all available versions
using the --all option. We’ll also use the list command, as it lets us match on an exact name:

$ gem list --details --remote --all builder
*** REMOTE GEMS ***

builder (2.1.2, 2.1.1, 2.0.0, 1.2.4, 1.2.3, 1.2.2, 1.2.1, 1.2.0, 1.1.0, 0.1.1)
Author: Jim Weirich
Homepage: http://onestepback.org
Builders for MarkUp.

Because we want to install the most recent one, we don’t have to state an explicit version on
the install command; the latest is downloaded by default:

$ gem install builder
Successfully installed builder-2.1.2
1 gem installed
Installing ri documentation for builder-2.1.2...
Installing RDoc documentation for builder-2.1.2...

Several things happened here. First, we see that the latest version of the Builder gem (2.1.2)
has been installed. Next we see that RubyGems has determined that Jim has created docu-
mentation for his gem, so it sets about extracting it using RDoc.

If you’re running gem install on a Unix platform and you aren’t using rvm, you’ll need to
prefix the command with sudo, because by default the local gems are installed into shared
system directories.

During installation, you can add the -t option to the install command, causing RubyGems to
run the gem’s test suite (if one has been created). If the tests fail, the installer will prompt
you to either keep or discard the gem. This is a good way to gain a little more confidence
that the gem you’ve just downloaded works on your system the way the author intended.

Let’s see what gems we now have installed on our local box:

$ gem list
*** LOCAL GEMS ***
builder (2.1.2)

Reading the Gem Documentation

Being that this is your first time using Builder, you’re not exactly sure how to use it. Fortu-
nately, RubyGems installed the documentation for Builder on your machine. We just have
to find it.

As with most things in RubyGems, the documentation for each gem is stored in a central,
protected, RubyGems-specific place. This will vary by system and by where you may
explicitly choose to install your gems. The most reliable way to find the documents is to ask
the gem command where your RubyGems main directory is located:

$ gem environment gemdir
/usr/local/lib/ruby/gems/1.9.3

Chapter 15. Ruby and Its World • 218

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

RubyGems stores generated documentation beneath the doc/ subdirectory of this directory.

The easiest way to view gems’ RDoc documentation is to use RubyGems’ included gem
server utility. To start gem server, simply type this:

$ gem server
Server started at http://[::ffff:0.0.0.0]:8808
Server started at http://0.0.0.0:8808

gem server starts a web server running on whatever computer you run it on. By default, it
will start on port 8808 and will serve gems and their documentation from the default
RubyGems installation directory. Both the port and the gem directory are overridable via
command-line options, using the -p and -d options, respectively.

Once you’ve started the gem server, if you are running it on your local computer, you can
access the documentation for your installed gems by pointing your web browser to
http://localhost:8808. There, you will see a list of the gems you have installed with their
descriptions and links to their RDoc documentation. Click the rdoc link for Builder—the
result will look something like the following.

Using a Gem

Once a gem is installed, you use require to load it into your program:5

require 'builder'

xml = Builder::XmlMarkup.new(target: STDOUT, indent: 2)
xml.person(type: "programmer") do
xml.name do
xml.first "Dave"

end
xml.location "Texas"
xml.preference("ruby")

end

5. Prior to Ruby 1.9, before you could use a gem in your code, you first had to load a support library called
rubygems. Ruby now integrates that support directly, so this step is no longer needed.

report erratum • discuss

RubyGems Integration • 219

Download from Wow! eBook <www.wowebook.com>

http://localhost:8808
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

produces:

<person type="programmer">
<name>
<first>Dave</first>

</name>
<location>Texas</location>
<preference>ruby</preference>

</person>

Gems and Versions

Maybe you first started using Builder a few years ago. Back then the interface was a little
bit different—with versions prior to Build 1.0, you could say this:

xml = Builder::XmlMarkup.new(STDOUT, 2)
xml.person do
name("Dave Thomas")

end

Note that the constructor takes positional parameters. Also, in the do block, we can say just
name(...), whereas the current Builder requires xml.name(...). We could go through our old
code and update it all to work with the new-style Builder—that’s probably the best long-
term solution. But we can also let RubyGems handle the issue for us.

When we asked for a listing of the Builder gems in the repository, we saw that multiple
versions were available:6

$ gem list --details --remote --all builder
*** REMOTE GEMS ***
builder (2.1.2, 2.1.1, 2.0.0, 1.2.4, 1.2.3, 1.2.2, 1.2.1, 1.2.0, 1.1.0, 0.1.1)

When we installed Builder previously, we didn’t specify a version, so RubyGems automati-
cally installed the latest. But we can also get it to install a specific version or a version
meeting some given criteria. Let’s install the most recent release of Builder with a version
number less than 1:

$ gem install builder --version '< 1'
Successfully installed builder-0.1.1
1 gem installed
Installing ri documentation for builder-0.1.1...
Installing RDoc documentation for builder-0.1.1...

Have we just overwritten the 2.1.2 release of Builder that we’d previously installed? Let’s
find out by listing our locally installed gems:

$ gem list builder
*** LOCAL GEMS ***
builder (2.1.2, 0.1.1)

Now that we have both versions installed locally, how do we tell our legacy code to use the
old one while still having our new code use the latest version? It turns out that require auto-
matically loads the latest version of a gem, so the earlier code on page 219 will work fine. If
we want to specify a version number when we load a gem, we have to do a little bit more
work, making it explicit that we’re using RubyGems:

6. By the time this book reaches you, the list of available versions will likely have changed.

Chapter 15. Ruby and Its World • 220

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

gem 'builder', '< 1.0'
require 'builder'

xml = Builder::XmlMarkup.new(STDOUT, 2)
xml.person do
name("Dave Thomas")
location("Texas")

end

The magic is the gem line, which says, “When looking for the Builder gem, consider only
those versions less than 1.0.” The subsequent require honors this, so the code loads the correct
version of Builder and runs. The "< 1.0" part of the gem line is a version predicate. The
numbers that follow are of the form major.minor.patch_level. The various predicates that
RubyGems supports are:

DescriptionOperator

Exact version match. Major, minor, and patch level must be identical.=
Any version that is not the one specified.!=
Any version that is greater (even at the patch level) than the one specified.>
Any version that is less than the one specified.<
Any version greater than or equal to the specified version.>=
Any version less than or equal to the specified version.<=
“Boxed” version operator. Version must be greater than or equal to the specified
version and less than the specified version after having its minor version number

~>

increased by 1. This is to avoid API incompatibilities between minor version
releases.

Table 7—Version operators

You can specify multiple version predicates, so the following is valid:

gem 'builder', '> 0.1', '< 0.1.5'

Unfortunately, after all this work, there’s a problem. Older versions of Builder don’t run
under 1.9 anyway. You can still run this code in Ruby 1.8, but you’d have to update your
code to use the new-style Builder if you want to use Ruby 1.9.

Gems Can Be More Than Libraries

As well as installing libraries that can be used inside your application code, RubyGems can
also install utility programs that you can invoke from the command line. Often these utilities
are wrappers around the libraries included in the gem. For example, Marcel Molina’s AWS:S3
gem is a library that gives you programmatic access to Amazon’s S3 storage facility. As well
as the library itself, Marcel provided a command-line utility, s3sh, which lets you interact
with your S3 assets. When you install the gem, s3sh is automatically loaded into the same
bin/ directory that holds the Ruby interpreter.

There’s a small problem with these installed utilities. Although gems supports versioning
of libraries, it does not version command-line utilities. With these, it’s “last one in wins.”

report erratum • discuss

RubyGems Integration • 221

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

15.6 The Rake Build Tool

As well as the Builder gem, Jim Weirich wrote an incredibly useful utility program called
Rake. Prior to Ruby 1.9, you had to install Rake as a separate gem, but it is now included in
the base Ruby installation.

Rake was initially implemented as a Ruby version of Make, the common build utility.
However, calling Rake a build utility is to miss its true power. Really, Rake is an automation
tool—it’s a way of putting all those tasks that you perform in a project into one neat and
tidy place.

Let’s start with a trivial example. As you edit files, you often accumulate backup files in your
working directories. On Unix systems, these files often have the same name as the original
files, but with a tilde character appended. On Windows boxes, the files often have a .bak
extension.

We could write a trivial Ruby program that deletes these files. For a Unix box, it might look
something like this:

require 'fileutils'
files = Dir['*~']
FileUtils::rm files, verbose: true

The FileUtilsmodule defines methods for manipulating files and directories (see the description
in the library section on page 757). Our code uses its rmmethod. We use the Dir class to return
a list of filenames matching the given pattern and pass that list to rm.

Let’s package this code as a Rake task—a chunk of code that Rake can execute for us.

By default, Rake searches the current directory (and its parents) for a file called Rakefile. This
file contains definitions for the tasks that Rake can run.

So, put the following code into a file called Rakefile:

desc "Remove files whose names end with a tilde"
task :delete_unix_backups do
files = Dir['*~']
rm(files, verbose: true) unless files.empty?

end

Although it doesn’t have an .rb extension, this is actually just a file of Ruby code. Rake defines
an environment containing methods such as desc and task and then executes the Rakefile.

The descmethod provides a single line of documentation for the task that follows it. The task
method defines a Rake task that can be executed from the command line. The parameter is
the name of the task (a symbol), and the block that follows is the code to be executed. Here
we can just use rm—all the methods in FileUtils are automatically available inside Rake files.

We can invoke this task from the command line:

$ rake delete_unix_backups
(in /Users/dave/BS2/titles/ruby4/Book/code/rake)
rm entry~

Chapter 15. Ruby and Its World • 222

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

The first line shows us the name of the directory where Rake found the Rakefile (remember
that this might be in a directory above our current working directory). The next line is the
output of the rm method, in this case showing it deleted the single file entry~.

OK, now let’s write a second task in the same Rakefile. This one deletes Windows backup
files.

desc "Remove files with a .bak extension"
task :delete_windows_backups do
files = Dir['*.bak']
rm(files, verbose: true) unless files.empty?

end

We can run this with rake delete_windows_backups.

But let’s say that our application could be used on both platforms, and we wanted to let our
users delete backup files on either. We could write a combined task, but Rake gives us a
better way—it lets us compose tasks. Here, for example, is a new task:

desc "Remove Unix and Windows backup files"
task :delete_backups => [:delete_unix_backups, :delete_windows_backups] do
puts "All backups deleted"

end

The task’s name is delete_backups, and it depends on two other tasks. This isn’t some special
Rake syntax: we’re simply passing the task method a Ruby hash containing a single entry
whose key is the task name and whose value is the list of antecedent tasks. This causes Rake
to execute the two platform-specific tasks before executing the delete_backups task:

$ rake delete_backups
rm entry~
rm index.bak list.bak
All backups deleted

Our current Rakefile contains some duplication between the Unix and Windows deletion
tasks. As it is just Ruby code, we can simply define a Ruby method to eliminate this:

def delete(pattern)
files = Dir[pattern]
rm(files, verbose: true) unless files.empty?

end

desc "Remove files whose names end with a tilde"
task :delete_unix_backups do
delete "*~"

end

desc "Remove files with a .bak extension"
task :delete_windows_backups do
delete "*.bak"

end

desc "Remove Unix and Windows backup files"
task :delete_backups => [:delete_unix_backups, :delete_windows_backups] do
puts "All backups deleted"

end

report erratum • discuss

The Rake Build Tool • 223

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

If a Rake task is named default, it will be executed if you invoke Rake with no parameters.

You can find the tasks implemented by a Rakefile (or, more accurately, the tasks for which
there is a description) using this:

$ rake -T
(in /Users/dave/BS2/titles/ruby4/Book/code/rake)
rake delete_backups # Remove Unix and Windows backup files
rake delete_unix_backups # Remove files whose names end with a tilde
rake delete_windows_backups # Remove files with a .bak extension

This section only touches on the full power of Rake. It can handle dependencies between
files (for example, rebuilding an executable file if one of the source files has changed), it
knows about running tests and generating documentation, and it can even package gems
for you. Martin Fowler has written a good overview of Rake if you’re interested in digging
deeper.7 You might also want to investigate Sake,8 a tool that makes Rake tasks available no
matter what directory you’re in, or Thor,9 a tool that makes it easy to write Ruby command-
line tools.

15.7 Build Environment

When Ruby is compiled for a particular architecture, all the relevant settings used to build
it (including the architecture of the machine on which it was compiled, compiler options,
source code directory, and so on) are written to the module RbConfig within the library file
rbconfig.rb. After installation, any Ruby program can use this module to get details on how
Ruby was compiled:

require 'rbconfig'
include RbConfig
CONFIG["host"] # => "x86_64-apple-darwin12.2.0"
CONFIG["libdir"] # => "/Users/dave/.rvm/rubies/ruby-2.0.0-p0/lib"

Extension libraries use this configuration file in order to compile and link properly on any
given architecture. If you visit the online page for the previous edition of this book at
http://pragprog.com/titles/ruby3 and select the Contents/Extracts tab, you can download a free
chapter on writing extension libraries.

7. http://martinfowler.com/articles/rake.html
8. http://errtheblog.com/posts/60-sake-bomb
9. http://github.com/wycats/thor

Chapter 15. Ruby and Its World • 224

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby3
http://martinfowler.com/articles/rake.html
http://errtheblog.com/posts/60-sake-bomb
http://github.com/wycats/thor
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 16

Namespaces, Source Files, and Distribution
As your programs grow (and they all seem to grow over time), you’ll find that you’ll need
to start organizing your code—simply putting everything into a single huge file becomes
unworkable (and makes it hard to reuse chunks of code in other projects). So, we need to
find a way to split our project into multiple files and then to knit those files together as our
program runs.

There are two major aspects to this organization. The first is internal to your code: how do
you prevent different things with the same name from clashing? The second area is related:
how do you conveniently organize the source files in your project?

16.1 Namespaces

We’ve already encountered a way that Ruby helps you manage the names of things in your
programs. If you define methods or constants in a class, Ruby ensures that their names can
be used only in the context of that class (or its objects, in the case of instance methods):

class Triangle
SIDES = 3
def area
..

end
end

class Square
SIDES = 4
def initialize(side_length)
@side_length = side_length

end
def area
@side_length * @side_length

end
end

puts "A triangle has #{Triangle::SIDES} sides"

sq = Square.new(3)
puts "Area of square = #{sq.area}"

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

produces:

A triangle has 3 sides
Area of square = 9

Both classes define a constant called SIDES and an instance method area, but these things
don’t get confused. You access the instance method via objects created from the class, and
you access the constant by prefixing it with the name of the class followed by a double colon.
The double colon (::) is Ruby’s namespace resolution operator. The thing to the left must be
a class or module, and the thing to the right is a constant defined in that class or module.1

So, putting code inside a module or class is a good way of separating it from other code.
Ruby’s Math module is a good example—it defines constants such as Math::PI and Math::E and
methods such as Math.sin and Math.cos. You can access these constants and methods via the
Math module object:

Math::E # => 2.718281828459045
Math.sin(Math::PI/6.0) # => 0.49999999999999994

(Modules have another significant use—they implement Ruby’s mixin functionality, which
we discussed Section 5.3, Mixins, on page 75.)

Ruby has an interesting little secret. The names of classes and modules are themselves just
constants.2 And that means that if you define classes or modules inside other classes and
modules, the names of those inner classes are just contants that follow the same namespacing
rules as other constants:

module Formatters
class Html
...

end
class Pdf
...

end
end

html_writer = Formatters::Html.new

You can nest classes and modules inside other classes and modules to any depth you want
(although it’s rare to see them more than three deep).

So, now we know that we can use classes and modules to partition the names used by our
programs. The second question to answer is, what do we do with the source code?

16.2 Organizing Your Source

This section covers two related issues: how do we split our source code into separate files,
and where in the file system do we put those files?

Some languages, such as Java, make this easy. They dictate that each outer-level class should
be in its own file and that file should be named according to the name of the class. Other

1. The thing to the right of the :: can also be a class or module method, but this use is falling out of favor
—using a period makes it clearer that it’s just a regular old method call.

2. Remember that we said that most everything in Ruby is an object. Well, classes and modules are, too.
The name that you use for a class, such as String, is really just a Ruby constant containing the object
representing that class.

Chapter 16. Namespaces, Source Files, and Distribution • 226

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

languages, such as Ruby, have no rules relating source files and their content. In Ruby, you’re
free to organize your code as you like.

But, in the real world, you’ll find that some kind of consistency really helps. It will make it
easier for you to navigate your own projects, and it will also help when you read (or incor-
porate) other people’s code.

So, the Ruby community is gradually adopting a kind of de facto standard. In many ways,
it follows the spirit of the Java model, but without some of the inconveniences suffered by
our Java brethren. Let’s start with the basics.

Small Programs

Small, self-contained scripts can be in a single file. However, if you do this, you won’t easily
be able to write automated tests for your program, because the test code won’t be able to
load the file containing your source without the program itself running. So, if you want to
write a small program that also has automated tests, split that program into a trivial driver
that provides the external interface (the command-line part of the code) and one or more
files containing the rest. Your tests can then exercise these separate files without actually
running the main body of your program.

Let’s try this for real. Here’s a simple program that finds anagrams in a dictionary. Feed it
one or more words, and it gives you the anagrams of each. Here’s an example:

$ ruby anagram.rb teaching code
Anagrams of teaching: cheating, teaching
Anagrams of code: code, coed

If we were typing in this program for casual use, we might just enter it into a single file
(perhaps anagram.rb). It would look something like this:3

packaging/anagram.rb

#!/usr/bin/env ruby

require 'optparse'

dictionary = "/usr/share/dict/words"

OptionParser.new do |opts|

opts.banner = "Usage: anagram [options] word..."

opts.on("-d", "--dict path", String, "Path to dictionary") do |dict|
dictionary = dict

end

opts.on("-h", "--help", "Show this message") do
puts opts
exit

end

3. You might be wondering about the line word.unpack("c*").sort.pack("c*"). This uses the function unpack to
break a string into an array of characters, which are then sorted and packed back into a string.

report erratum • discuss

Organizing Your Source • 227

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/packaging/anagram.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

begin
ARGV << "-h" if ARGV.empty?
opts.parse!(ARGV)

rescue OptionParser::ParseError => e
STDERR.puts e.message, "\n", opts
exit(-1)

end
end

convert "wombat" into "abmotw". All anagrams share a signature
def signature_of(word)
word.unpack("c*").sort.pack("c*")

end

signatures = Hash.new

File.foreach(dictionary) do |line|
word = line.chomp
signature = signature_of(word)
(signatures[signature] ||= []) << word

end

ARGV.each do |word|
signature = signature_of(word)
if signatures[signature]
puts "Anagrams of #{word}: #{signatures[signature].join(', ')}"

else
puts "No anagrams of #{word} in #{dictionary}"

end
end

Then someone asks us for a copy, and we start to feel embarrassed. It has no tests, and it
isn’t particularly well packaged.

Looking at the code, there are clearly three sections. The first twenty-five or so lines do option
parsing, the next ten or so lines read and convert the dictionary, and the last few lines look
up each command-line argument and report the result. Let’s split our file into four parts:

• An option parser
• A class to hold the lookup table for anagrams
• A class that looks up words given on the command line
• A trivial command-line interface

The first three of these are effectively library files, used by the fourth.

Where do we put all these files? The answer is driven by some strong Ruby conventions,
first seen in Minero Aoki’s setup.rb and later enshrined in the RubyGems system. We’ll create
a directory for our project containing (for now) three subdirectories:

anagram/ <- top-level
bin/ <- command-line interface goes here
lib/ <- three library files go here
test/ <- test files go here

Chapter 16. Namespaces, Source Files, and Distribution • 228

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Now let’s look at the library files. We know we’re going to be defining (at least) three classes.
Right now, these classes will be used only inside our command-line program, but it’s con-
ceivable that other people might want to include one or more of our libraries in their own
code. This means that we should be polite and not pollute the top-level Ruby namespace
with the names of all our classes and so on. We’ll create just one top-level module, Anagram,
and then place all our classes inside this module. This means that the full name of (say) our
options-parsing class will be Anagram::Options.

This choice informs our decision on where to put the corresponding source files. Because
class Options is inside the module Anagram, it makes sense to put the corresponding file,
options.rb, inside a directory named anagram/ in the lib/ directory. This helps people who read
your code in the future; when they see a name like A::B::C, they know to look for c.rb in the
b/ directory in the a/ directory of your library. So, we can now flesh out our directory structure
with some files:

anagram/
bin/

anagram <- command-line interface
lib/

anagram/
finder.rb
options.rb
runner.rb

test/
... various test files

Let’s start with the option parser. Its job is to take an array of command-line options and
return to us the path to the dictionary file and the list of words to look up as anagrams. The
source, in lib/anagram/options.rb, looks like this: Notice how we define the Options class inside
a top-level Anagram module.

packaging/anagram/lib/anagram/options.rb

require 'optparse'

module Anagram
class Options
DEFAULT_DICTIONARY = "/usr/share/dict/words"
attr_reader :dictionary, :words_to_find

def initialize(argv)
@dictionary = DEFAULT_DICTIONARY
parse(argv)
@words_to_find = argv

end

private

def parse(argv)
OptionParser.new do |opts|
opts.banner = "Usage: anagram [options] word..."

opts.on("-d", "--dict path", String, "Path to dictionary") do |dict|
@dictionary = dict

end

report erratum • discuss

Organizing Your Source • 229

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/packaging/anagram/lib/anagram/options.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

opts.on("-h", "--help", "Show this message") do
puts opts
exit

end

begin
argv = ["-h"] if argv.empty?
opts.parse!(argv)

rescue OptionParser::ParseError => e
STDERR.puts e.message, "\n", opts
exit(-1)

end
end

end
end

end

Let’s write some unit tests. This should be fairly easy, because options.rb is self-contained—
the only dependency is to the standard Ruby OptionParser. We’ll use the Test::Unit framework,
extended with the Shoulda gem.4 We’ll put the source of this test in the file test/test_options.rb:

packaging/anagram/test/test_options.rb

require 'test/unit'
require 'shoulda'
require_relative '../lib/anagram/options'

class TestOptions < Test::Unit::TestCase

context "specifying no dictionary" do
should "return default" do
opts = Anagram::Options.new(["someword"])
assert_equal Anagram::Options::DEFAULT_DICTIONARY, opts.dictionary

end
end

context "specifying a dictionary" do
should "return it" do
opts = Anagram::Options.new(["-d", "mydict", "someword"])
assert_equal "mydict", opts.dictionary

end
end

context "specifying words and no dictionary" do
should "return the words" do
opts = Anagram::Options.new(["word1", "word2"])
assert_equal ["word1", "word2"], opts.words_to_find

end
end

context "specifying words and a dictionary" do
should "return the words" do
opts = Anagram::Options.new(["-d", "mydict", "word1", "word2"])

4. We talk about Shoulda in the Unit Testing chapter on page 186.

Chapter 16. Namespaces, Source Files, and Distribution • 230

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/packaging/anagram/test/test_options.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

assert_equal ["word1", "word2"], opts.words_to_find
end

end
end

The line to note in this file is as follows:

require_relative '../lib/anagram/options'

This is where we load the source of the Options class we just wrote. We use require_relative, as
it always loads from a path relative to the directory of the file that invokes it.

$ ruby test/test_options.rb
Run options:
Running tests:
....
Finished tests in 0.010588s, 377.7862 tests/s, 377.7862 assertions/s.
4 tests, 4 assertions, 0 failures, 0 errors, 0 skips
ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

The finder code (in lib/anagram/finder.rb) is modified slightly from the original version. To
make it easier to test, we’ll have the default constructor take a list of words, rather than a
filename. We’ll then provide an additional factory method, from_file, that takes a filename
and constructs a new Finder from that file’s contents:

packaging/anagram/lib/anagram/finder.rb

module Anagram
class Finder

def self.from_file(file_name)
new(File.readlines(file_name))

end

def initialize(dictionary_words)
@signatures = Hash.new
dictionary_words.each do |line|
word = line.chomp
signature = Finder.signature_of(word)
(@signatures[signature] ||= []) << word

end
end

def lookup(word)
signature = Finder.signature_of(word)
@signatures[signature]

end

def self.signature_of(word)
word.unpack("c*").sort.pack("c*")

end
end

end

Again, we embed the Finder class inside the top-level Anagram module. And, again, this code
is self-contained, allowing us to write some simple unit tests:

report erratum • discuss

Organizing Your Source • 231

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/packaging/anagram/lib/anagram/finder.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

packaging/anagram/test/test_finder.rb

require 'test/unit'
require 'shoulda'
require_relative '../lib/anagram/finder'

class TestFinder < Test::Unit::TestCase

context "signature" do
{ "cat" => "act", "act" => "act", "wombat" => "abmotw" }.each do
|word, signature|
should "be #{signature} for #{word}" do
assert_equal signature, Anagram::Finder.signature_of(word)

end
end

end

context "lookup" do
setup do
@finder = Anagram::Finder.new(["cat", "wombat"])

end

should "return word if word given" do
assert_equal ["cat"], @finder.lookup("cat")

end

should "return word if anagram given" do
assert_equal ["cat"], @finder.lookup("act")
assert_equal ["cat"], @finder.lookup("tca")

end

should "return nil if no word matches anagram" do
assert_nil @finder.lookup("wibble")

end
end

end

These go in test/test_finder.rb:

$ ruby test/test_finder.rb
Run options:
Running tests:
......
Finished tests in 0.009453s, 634.7191 tests/s, 740.5057 assertions/s.
6 tests, 7 assertions, 0 failures, 0 errors, 0 skips
ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

We now have all the support code in place. We just need to run it. We’ll make the command-
line interface—the thing the end user actually executes—really thin. It’s in the bin/ directory
in a file called anagram (no .rb extension, because that would be unusual in a command).5

5. If you’re on Windows, you might want to wrap the invocation of this in a .cmd file.

Chapter 16. Namespaces, Source Files, and Distribution • 232

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/packaging/anagram/test/test_finder.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

packaging/anagram/bin/anagram

#! /usr/local/rubybook/bin/ruby
require 'anagram/runner'

runner = Anagram::Runner.new(ARGV)
runner.run

The code that this script invokes (lib/anagram/runner.rb) knits our other libraries together:

packaging/anagram/lib/anagram/runner.rb

require_relative 'finder'
require_relative 'options'

module Anagram
class Runner
def initialize(argv)
@options = Options.new(argv)

end

def run
finder = Finder.from_file(@options.dictionary)
@options.words_to_find.each do |word|

anagrams = finder.lookup(word)
if anagrams
puts "Anagrams of #{word}: #{anagrams.join(', ')}"

else
puts "No anagrams of #{word} in #{@options.dictionary}"

end
end

end
end

end

In this case, the two libraries finder and options are in the same directory as the runner, so
require_relative finds them perfectly.

Now that all our files are in place, we can run our program from the command line:

$ ruby -I lib bin/anagram teaching code
Anagrams of teaching: cheating, teaching
Anagrams of code: code, coed

There’s nothing like a cheating coed teaching code.

16.3 Distributing and Installing Your Code

Now that we have our code a little tidier, it would be nice to be able to distribute it to others.
We could just zip or tar it up and send them our files, but then they’d have to run the code
the way we do, remembering to add the correct -I lib options and so on. They’d also have
some problems if they wanted to reuse one of our library files—it would be sitting in some
random directory on their hard drive, not in a standard location used by Ruby. Instead,
we’re looking for a way to take our little application and install it in a standard way.

Now, Ruby already has a standard installation structure on your computer. When Ruby is
installed, it puts its commands (ruby, ri, irb, and so on) into a directory of binary files. It puts

report erratum • discuss

Distributing and Installing Your Code • 233

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/packaging/anagram/bin/anagram
http://media.pragprog.com/titles/ruby4/code/packaging/anagram/lib/anagram/runner.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

its libraries into another directory tree and documentation somewhere else. So, one option
would be to write an installation script that you distribute with your code that copies com-
ponents of your application to the appropriate directories on the system that’s installing it.

Being a Good Packaging Citizen

So, I’ve ignored some stuff that you’d want to do before distributing your code to the world.
Your distributed directory tree really should have a README file, outlining what it does and
probably containing a copyright statement; an INSTALL file, giving installation instructions;
and a LICENSE file, giving the license it is distributed under.

You’ll probably want to distribute some documentation, too. This would go in a directory
called doc/, parallel with the bin and lib directories.

You might also want to distribute native C-language extensions with your library. These
extensions would go into your project’s ext/ directory.

Using RubyGems

The RubyGems package management system (which is also just called Gems) has become
the standard for distributing and managing Ruby code packages. As of Ruby 1.9, it comes
bundled with Ruby itself.6

RubyGems is also a great way to package your own code. If you want to make your code
available to the world, RubyGems is the way to go. Even if you’re just sending code to a few
friends or within your company, RubyGems gives you dependency and installation manage-
ment—one day you’ll be grateful for that.

RubyGems needs to know information about your project that isn’t contained in the directory
structure. Instead, you have to write a short RubyGems specification: a GemSpec. Create
this in a separate file named project-name.gemspec in the top-level directory of your application
(in our case, the file is anagram.gemspec):

packaging/anagram/anagram.gemspec

Gem::Specification.new do |s|
s.name = "anagram"
s.summary = "Find anagrams of words supplied on the command line"
s.description = File.read(File.join(File.dirname(__FILE__), 'README'))
s.requirements =

['An installed dictionary (most Unix systems have one)']
s.version = "0.0.1"
s.author = "Dave Thomas"
s.email = "dave@pragprog.com"
s.homepage = "http://pragdave.pragprog.com"
s.platform = Gem::Platform::RUBY
s.required_ruby_version = '>=1.9'
s.files = Dir['**/**']
s.executables = ['anagram']
s.test_files = Dir["test/test*.rb"]
s.has_rdoc = false

end

6. Prior to RubyGems, folks often distibuted a tool called setup.rb with their libraries. This would install
the library into the standard Ruby directory structure on a user’s machine.

Chapter 16. Namespaces, Source Files, and Distribution • 234

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/packaging/anagram/anagram.gemspec
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

The first line of the spec gives our gem a name. This is important—it will be used as part of
the package name, and it will appear as the name of the gem when installed. Although it
can be mixed case, we find that confusing, so do our poor brains a favor and use lowercase
for gem names.

The version string is significant, because RubyGems will use it both for package naming and
for dependency management. Stick to the x.y.z format.7

The platform field tells RubyGems that (in this case) our gem is pure Ruby code. It’s also
possible to package (for example) Windows .exe files inside a gem, in which case you’d use
Gem::Platform::Win32.

The next line is also important (and oft-forgotten by package developers). Because we use
require_relative, our gem will run only with Ruby 1.9 and newer.

We then tell RubyGems which files to include when creating the gem package. Here we’ve
been lazy and included everything. You can be more specific.

The s.executables line tells RubyGems to install the anagram command-line script when the
gem gets installed on a user’s machine.

To save space, we haven’t added RDoc documentation comments to our source files (RDoc
is described in Chapter 19, Documenting Ruby, on page 263). The last line of the spec tells
RubyGems not to try to extract documentation when the gem is installed.

Obviously I’ve skipped a lot of details here. A full description of GemSpecs is available
online,8 along with other documents on RubyGems.9

Packaging Your RubyGem

Once the gem specification is complete, you’ll want to create the packaged .gem file for dis-
tribution. This is as easy as navigating to the top level of your project and typing this:

$ gem build anagram.gemspec
WARNING: no rubyforge_project specified
Successfully built RubyGem
Name: anagram
Version: 0.0.1
File: anagram-0.0.1.gem

You’ll find you now have a file called anagram-0.0.1.gem.

$ ls *gem
anagram-0.0.1.gem

You can install it:

$ sudo gem install pkg/anagram-0.0.1.gem
Successfully installed anagram-0.0.1
1 gem installed

7. And read http://www.rubygems.org/read/chapter/7 for information on what the numbers mean.
8. http://www.rubygems.org/read/book/4
9. http://www.rubygems.org/

report erratum • discuss

Distributing and Installing Your Code • 235

Download from Wow! eBook <www.wowebook.com>

http://www.rubygems.org/read/chapter/7
http://www.rubygems.org/read/book/4
http://www.rubygems.org/
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

And check to see that it is there:

$ gem list anagram -d
*** LOCAL GEMS ***
anagram (0.0.1)

Author: Dave Thomas
Homepage: http://pragdave.pragprog.com
Installed at: /usr/local/lib/ruby/gems/1.9.0

Find anagrams of words supplied on the command line

Now you can send your .gem file to friends and colleagues or share it from a server. Or, you
could go one better and share it from a RubyGems server.

If you have RubyGems installed on your local box, you can share them over the network to
others. Simply run this:

$ gem server
Server started at http://[::ffff:0.0.0.0]:8808
Server started at http://0.0.0.0:8808

This starts a server (by default on port 8808, but the --port option overrides that). Other people
can connect to your server to list and retrieve RubyGems:

$ gem list --remote --source http://dave.local:8808
*** REMOTE GEMS ***
anagram (0.0.1)
builder (2.1.2, 0.1.1)
..

This is particularly useful in a corporate environment.

You can speed up the serving of gems by creating a static index—see the help for gem gener-
ate_index for details.

Serving Public RubyGems

RubyGems.org (http://rubygems.org) has become the main repository for public Ruby libraries
and projects. And, if you create a RubyGems.org account, you can push your .gem file to
their public servers.

$ gem push anagram-0.0.1.gem
Enter your RubyGems.org credentials.
Email: dave@pragprog.com
Password:
Pushing gem to RubyGems.org...
Successfully registered gem: anagram (0.0.1)

And, at that point, any Ruby user in the world can do this:

$ gem search -r anagram
*** REMOTE GEMS ***
anagram (0.0.1)

and, even better, can do this:

$ gem install anagram

Chapter 16. Namespaces, Source Files, and Distribution • 236

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://rubygems.org
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Adding Even More Automation

The Jeweler library10 can create a new project skeleton that follows the layout guidelines in
this chapter. It also provides a set of Rake tasks that will help create and manage your project
as a gem.

If you’re a Rails user, you’ll have come across bundler, a utility that manages the gems used
by your application. Bundler is more general than this: it can be used to manage the gems
used by any piece of Ruby code.

Some folks like the extra features of these utilities, while others prefer the leaner “roll-your-
own” approach. Whatever route you take, taking the time to package your applications and
libraries will pay you back many times over.

See You on GitHub

Finally, if you’re developing a Ruby application or library that you’ll be sharing, you’ll
probably want to store it on GitHub.11 Although it started as a public Git repository, GitHub
is now a community in its own right. It’s a home away from home for many in the Ruby
community.

10. http://github.com/technicalpickles/jeweler
11. http://github.com

report erratum • discuss

Distributing and Installing Your Code • 237

Download from Wow! eBook <www.wowebook.com>

http://github.com/technicalpickles/jeweler
http://github.com
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 17

Character Encoding
Prior to Ruby 1.9, Ruby programs were basically written using the ASCII character encoding.
You could always override this with the -K command-line option, but this led to inconsistencies
when manipulating strings and doing file I/O.

Ruby 1.9 changed all this. Ruby now supports the idea of character encodings. And, what’s
more, these encodings can be applied relatively independently to your program source files,
to objects in your running programs, and to the interpretation of I/O streams.

Before delving into the details, let’s spend a few minutes thinking about why we need to
separate the encodings of source files, variables, and I/O streams. Let’s imagine Yui is a
developer in Japan who wants to code in her native language. Her editor lets her write code
using Shift JIS (SJIS), a Japanese character encoding, so she writes her variable names using
katakana and kanji characters. But, by default, Ruby assumes that source files are written in
ASCII, and the SJIS characters would not be recognized as such. However, by setting the
encoding to be used when compiling the source file, Ruby can now parse her program.

She converts her program into a gem, and users around the world try it. Dan, in the United
States, doesn’t read Japanese, so the content of her source files makes no sense to him.
However, because the source files carry their encoding around with them, there’s no problem;
his Ruby happily compiles her code. But Dan wants to test her code against a file that contains
regular old ASCII characters. That’s no problem, because the file encoding is determined by
Dan’s locale, not by the encoding of the Ruby source. Similarly, Sophie in Paris uses the
same gem, but her data is encoded in ISO-8859-1 (which is basically ASCII plus a useful
subset of accented European characters in character positions above 127). Again, no problem.

Back in Japan, Yui has a new feature to add to her library. Users want to create short PDF
summaries of the data she reads, but the PDF-writing library she’s using supports only ISO-
8859-1 characters. So, regardless of the encoding of the source code of her program and the
files she reads, she needs to be able to create 8859-1 strings at runtime. Again, we need to
be able to decouple the encoding of individual objects from the encoding of everything else.

If this sounds complex, well...it is. But the good news is that the Ruby team spent a long time
thinking up ways to make it all relatively easy to use when you’re writing code. In this section,
we’ll look at how to work with the various encodings, and I’ll try to list some conventions
that will make your code work in the brave new multinational world.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

17.1 Encodings

At the heart of the Ruby encoding system is the new Encoding class.1 Objects of class Encoding
each represent a different character encoding. The Encoding.list method returns a list of the
built-in encodings, and the Encoding.aliasesmethod returns a hash where the keys are aliases
and the values are the corresponding base encoding. We can use these two methods to build
a table of known encoding names:

encoding/list_encodings.rb

encodings = Encoding
.list
.each.with_object({}) do |enc, full_list|

full_list[enc.name] = [enc.name]
end

Encoding.aliases.each do |alias_name, base_name|
fail "#{base_name} #{alias_name}" unless encodings[base_name]
encodings[base_name] << alias_name

end

puts(encodings
.values
.sort_by {|base_name, *| base_name.downcase}
.map do |base_name, *rest|
if rest.empty?
base_name

else
"#{base_name} (#{rest.join(', ')})"

end
end)

Table 8, Encodings and their aliases, on page 241 shows the output, wrapped into columns.

However, that’s not the full story. Encodings in Ruby can be dynamically loaded—Ruby
actually comes with more encodings than those shown in the output from this code.

Strings, regular expressions, symbols, I/O streams, and program source files are all associated
with one of these encoding objects.

Encodings commonly used in Ruby programs include ASCII (7-bit characters), ASCII-8BIT,2

UTF-8, and Shift JIS.

17.2 Source Files

First and foremost, there’s a simple rule: if you only ever use 7-bit ASCII characters in your
source, then the source file encoding is irrelevant. So, the simplest way to write Ruby source
files that just work everywhere is to stick to boring old ASCII.

1. For a nice, easy read on encodings, charcter sets, and Unicode, you could take a look at Joel Spolsky’s
2003 article on the Web at http://www.joelonsoftware.com/articles/Unicode.html.

2. There isn’t actually a character encoding called ASCII-8BIT. It’s a Ruby fantasy but a useful one. We’ll
talk about it shortly.

Chapter 17. Character Encoding • 240

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/encoding/list_encodings.rb
http://www.joelonsoftware.com/articles/Unicode.html
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Big5-HKSCS (Big5-HKSCS:2008)Big5ASCII-8BIT (BINARY)

CP50221CP50220Big5-UAO

CP852CP850 (IBM850)CP51932

CP950CP949CP855

EUC-JP (eucJP)Emacs-MuleCP951

EUC-TW (eucTW)EUC-KR (eucKR)EUC-JP-2004 (EUC-JISX0213)

GB18030GB12345eucJP-ms (euc-jp-ms)

GBK (CP936)GB2312 (EUC-CN, eucCN)GB1988

IBM775 (CP775)IBM737 (CP737)IBM437 (CP437)

IBM857 (CP857)IBM855IBM852

IBM862 (CP862)IBM861 (CP861)IBM860 (CP860)

IBM865 (CP865)IBM864 (CP864)IBM863 (CP863)

ISO-2022-JP (ISO2022-JP)IBM869 (CP869)IBM866 (CP866)

ISO-8859-1 (ISO8859-1)ISO-2022-JP-KDDIISO-2022-JP-2 (ISO2022-JP2)

ISO-8859-13 (ISO8859-13)ISO-8859-11 (ISO8859-11)ISO-8859-10 (ISO8859-10)

ISO-8859-16 (ISO8859-16)ISO-8859-15 (ISO8859-15)ISO-8859-14 (ISO8859-14)

ISO-8859-4 (ISO8859-4)ISO-8859-3 (ISO8859-3)ISO-8859-2 (ISO8859-2)

ISO-8859-7 (ISO8859-7)ISO-8859-6 (ISO8859-6)ISO-8859-5 (ISO8859-5)

KOI8-R (CP878)ISO-8859-9 (ISO8859-9)ISO-8859-8 (ISO8859-8)

macCroatianmacCentEuroKOI8-U

macIcelandmacGreekmacCyrillic

macRomaniamacRomanMacJapanese (MacJapan)

macUkrainemacTurkishmacThai

SJIS-KDDISJIS-DoCoMoShift_JIS

stateless-ISO-2022-JP-KDDIstateless-ISO-2022-JPSJIS-SoftBank

UTF-16US-ASCII (ASCII, ANSI_X3.4-1968, 646)TIS-620

UTF-32UTF-16LEUTF-16BE (UCS-2BE)

UTF-7 (CP65000)UTF-32LE (UCS-4LE)UTF-32BE (UCS-4BE)

UTF8-KDDIUTF8-DoCoMoUTF-8 (CP65001)

Windows-1250 (CP1250)UTF8-SoftBankUTF8-MAC (UTF-8-MAC, UTF-8-HFS)

Windows-1253 (CP1253)Windows-1252 (CP1252)Windows-1251 (CP1251)

Windows-1256 (CP1256)Windows-1255 (CP1255)Windows-1254 (CP1254)

Windows-31J (CP932, csWindows31J, SJIS, PCK)Windows-1258 (CP1258)Windows-1257 (CP1257)

Windows-874 (CP874)

Table 8—Encodings and their aliases

However, once a source file contains a byte whose top bit is set, you’ve just left the comfortable
world of ASCII and entered the wild and wacky nightmare of character encodings. Here’s
how it works.

If your source files are not written using 7-bit ASCII, you probably want to tell Ruby about
it. Because the encoding is an attribute of the source file, and not anything to do with the
environment where the file is used, Ruby has a way of setting the encoding on a file-by-file
basis using a new magic comment. If the first line of a file3 is a comment (or the second line if
the first line is a #! shebang line), Ruby scans it looking for the string coding:. If it finds it,
Ruby then skips any spaces and looks for the (case-insensitive) name of an encoding. Thus,
to specify that a source file is in UTF-8 encoding, you can write this:

coding: utf-8

As Ruby is just scanning for coding:, you could also write the following.

3. Or a string passed to eval

report erratum • discuss

Source Files • 241

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

encoding: ascii

Emacs users might like the fact that this also works:

-*- encoding: shift_jis -*-

(Your favorite editor may also support some kind of flag comment to set a file’s encoding.)

If there’s a shebang line, the encoding comment must be the second line of the file:

#!/usr/local/rubybook/bin/ruby
encoding: utf-8

Additionally, Ruby detects any files that start with a UTF-8 byte order mark (BOM). If Ruby
sees the byte sequence \xEF\xBB\xBF at the start of a source file, it assumes that file is UTF-8
encoded.

The special constant __ENCODING__ returns the encoding of the current source file.

Ruby 1.9 vs. Ruby 2.0

⇡New in 2.0⇣ In Ruby 1.9, the default source file encoding is US-ASCII. If your source files contain any
characters with byte value greater than 127, you’ll need to tell Ruby the encoding of the file,
or Ruby will report an error, probably saying something like “invalid multibyte char.” Here’s
an example where we typed some UTF-8 characters into a Ruby program:

π = 3.14159
puts "π = #{π}"

With Ruby 1.9, you’ll get an error unless you add the encoding: utf-8 comment at the top.

In Ruby 2.0, however, the default source file encoding is UTF-8, and the previous program
will run as it stands.

We can verify that Ruby correctly interprets π as a single character.

encoding: utf-8
PI = "π"
puts "The size of a string containing π is #{PI.size}"

produces:

The size of a string containing π is 1

Now, let’s get perverse. The two-byte sequence \xcf\x80 represents π in UTF-8 but is not a
valid byte sequence in the SJIS encoding. Let’s see what happens if we tell Ruby that this
same source file is SJIS encoded. (Remember, when we do this, we’re not changing the
actual bytes in the string—we’re just telling Ruby to interpret them with a different set of
encoding rules.)

encoding: sjis
PI = "π"
puts "The size of a string containing π is #{PI.size}"

produces:

puts "The size of a string containing π is #{PI.size}"
^

prog.rb:2: invalid multibyte char (Windows-31J)
prog.rb:3: syntax error, unexpected tCONSTANT, expecting end-of-input

Chapter 17. Character Encoding • 242

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

This time, Ruby complains because the file contains byte sequences that are illegal in the
given encoding. And, to make matters even more confusing, the parser swallowed up the
double quote after the π character, presumably while trying to build a valid SJIS character.
This led to the second error message, because the word The is now interpreted as program
text.

Source Elements That Have Encodings

String literals are always encoded using the encoding of the source file that contains them,
regardless of the content of the string:

encoding: utf-8
def show_encoding(str)
puts "'#{str}' (size #{str.size}) is #{str.encoding.name}"

end
show_encoding "cat" # latin 'c', 'a', 't'
show_encoding "∂og" # greek delta, latin 'o', 'g'

produces:

'cat' (size 3) is UTF-8
'∂og' (size 3) is UTF-8

Symbols and regular expression literals that contain only 7-bit characters are encoded using
US-ASCII. Otherwise, they will have the encoding of the file that contains them.

encoding: utf-8
def show_encoding(str)
puts "#{str.inspect} is #{str.encoding.name}"

end
show_encoding :cat
show_encoding :∂og

show_encoding /cat/
show_encoding /∂og/

produces:

:cat is US-ASCII
:∂og is UTF-8
/cat/ is US-ASCII
/∂og/ is UTF-8

You can create arbitrary Unicode characters in strings and regular expressions using the \u
escape. This has two forms: \uxxxx lets you encode a character using four hex digits, and the
delimited form \u{x... x... x...} lets you specify a variable number of characters, each with a
variable number of hex digits:

encoding: utf-8
"Greek pi: \u03c0" # => "Greek pi: π"
"Greek pi: \u{3c0}" # => "Greek pi: π"
"Greek \u{70 69 3a 20 3c0}" # => "Greek pi: π"

Literals containing a \u sequence will always be encoded UTF-8, regardless of the source file
encoding.

The String#bytes method is a convenient way to inspect the bytes in a string object. Notice
that in the following code, the 16-bit codepoint is converted to a two-byte UTF-8 encoding:

report erratum • discuss

Source Files • 243

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

encoding: utf-8
"pi: \u03c0".bytes # => [112, 105, 58, 32, 207, 128]

Eight-Bit Clean Encodings

Ruby supports a virtual encoding called ASCII-8BIT. Despite the ASCII in the name, this is
really intended to be used on data streams that contain binary data (which is why it has an
alias of BINARY}). However, you can also use this as an encoding for source files. If you do,
Ruby interprets all characters with codes below 128 as regular ASCII and all other characters
as valid constituents of variable names. This is basically a neat hack, because it allows you
to compile a file written in an encoding you don’t know—the characters with the high-order
bit set will be assumed to be printable.

encoding: ascii-8bit
π = 3.14159
puts "π = #{π}"
puts "Size of 'π' = #{'π'.size}"

produces:

π = 3.14159
Size of 'π' = 2

The last line of output illustrates why ASCII-8BIT is a dangerous encoding for source files.
Because it doesn’t know to use UTF-8 encoding, the π character looks to Ruby like two sep-
arate characters.

Source Encoding Is Per-File

Clearly, a large application will be built from many source files. Some of these files may
come from other people (possibly as libraries or gems). In these cases, you may not have
control over the encoding used in a file.

Ruby supports this by allowing different encodings in the files that make up a project. Each
file starts with the default encoding of US-ASCII. The file’s encoding may then be set with
either a coding: comment or a UTF-8 BOM.

Here’s a file called iso-8859-1.rb. Notice the explicit encoding.

encoding/iso-8859-1.rb

-*- encoding: iso-8859-1 -*-

STRING_ISO = "ol\351" # \x6f \x6c \xe9

And here’s its UTF-8 counterpart:

encoding/utf.rb

file: utf.rb, encoding: utf-8

STRING_U = "∂og" # \xe2\x88\x82\x6f\x67

Now let’s require both of these files into a third file. Just for the heck of it, let’s declare the
third file to have SJIS encoding:

encoding: sjis

require_relative 'iso-8859-1'
require_relative 'utf'

Chapter 17. Character Encoding • 244

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/encoding/iso-8859-1.rb
http://media.pragprog.com/titles/ruby4/code/encoding/utf.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

def show_encoding(str)
puts "'#{str.bytes.to_a}' (#{str.size} chars, #{str.bytesize} bytes) " +

"has encoding #{str.encoding.name}"
end

show_encoding(STRING_ISO)
show_encoding(STRING_U)
show_encoding("cat")

produces:

'[111, 108, 233]' (3 chars, 3 bytes) has encoding ISO-8859-1
'[226, 136, 130, 111, 103]' (3 chars, 5 bytes) has encoding UTF-8
'[99, 97, 116]' (3 chars, 3 bytes) has encoding Windows-31J

Each file has an independent encoding, and string literals in each retain their own encoding,
even when used in a different file. All the encoding directive does is tell Ruby how to interpret
the characters in the file and what encoding to use on literal strings and regular expressions.
Ruby will never change the actual bytes in a source file when reading them in.

17.3 Transcoding

As we’ve already seen, strings, symbols, and regular expressions are now labeled with their
encoding. You can convert a string from one encoding to another using the String#encode
method. For example, we can convert the word olé from UTF-8 to ISO-8859-1:

encoding: utf-8
ole_in_utf = "olé"
ole_in_utf.encoding # => #<Encoding:UTF-8>
ole_in_utf.bytes.to_a # => [111, 108, 195, 169]

ole_in_8859 = ole_in_utf.encode("iso-8859-1")
ole_in_8859.encoding # => #<Encoding:ISO-8859-1>
ole_in_8859.bytes.to_a # => [111, 108, 233]

You have to be careful when using encode—if the target encoding doesn’t contain characters
that appear in your source string, Ruby will throw an exception. For example, the π character
is available in UTF-8 but not in ISO-8859-1:

encoding: utf-8
pi = "pi = π"
pi.encode("iso-8859-1")

produces:

from prog.rb:3:in `<main>'
prog.rb:3:in `encode': U+03C0 from UTF-8 to ISO-8859-1
(Encoding::UndefinedConversionError)

You can, however, override this behavior, for example supplying a placeholder character to
use when no direct translation is possible. (See the description of String#encode in the reference
section on page 675 for more details.)

encoding: utf-8
pi = "pi = π"
puts pi.encode("iso-8859-1", :undef => :replace, :replace => "??")

report erratum • discuss

Transcoding • 245

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

produces:

pi = ??

Sometimes you’ll have a string containing binary data and you want that data to be inter-
preted as if it had a particular encoding. You can’t use the encode method for this, because
you don’t want to change the byte contents of the string—you’re just changing the encoding
associated with those bytes. Use the String#force_encoding method to do this:

encoding: ascii-8bit
str = "\xc3\xa9" # e-acute in UTF-8
str.encoding # => #<Encoding:ASCII-8BIT>
str.force_encoding("utf-8")
str.bytes.to_a # => [195, 169]
str.encoding # => #<Encoding:UTF-8>

Finally, you can use encode (with two parameters) to convert between two encodings if your
source string is ASCII-8BIT. This might happen if, for example, you’re reading data in
binary mode from a file and choose not to encode it at the time you read it. Here we fake
that out by creating an ASCII-8BIT string that contains an ISO-8859-1 sequence (our old
friend olé). We then convert the string to UTF-8. To do this, we have to tell encode the actual
encoding of the bytes by passing it a second parameter:

encoding: ascii-8bit
original = "ol\xe9" # e-acute in ISO-8859-1
original.bytes.to_a # => [111, 108, 233]
original.encoding # => #<Encoding:ASCII-8BIT>
new = original.encode("utf-8", "iso-8859-1")
new.bytes.to_a # => [111, 108, 195, 169]
new.encoding # => #<Encoding:UTF-8>

If you’re writing programs that will support multiple encodings, you probably want to read
Section 17.5, Default External Encoding, on page 248—it will greatly simplify your life.

17.4 Input and Output Encoding

Playing around with encodings within a program is all very well, but in most code we’ll
want to read data from and write data to external files. And, often, that data will be in a
particular encoding.

Ruby’s I/O objects support both encoding and transcoding of data. What does this mean?

Every I/O object has an associated external encoding. This is the encoding of the data being
read from or written to the outside world. Through a piece of magic I’ll describe later on
page 248, all Ruby programs run with the concept of a default external encoding. This is the
external encoding that will be used by I/O objects unless you override it when you create
the object (for example, by opening a file).

Now, your program may want to operate internally in a different encoding. For example,
some of my files may be encoded with ISO-8859-1, but we want our Ruby program to work
internally using UTF-8. Ruby I/O objects manage this by having an optional associated
internal encoding. If set, then input will be transcoded from the external to the internal
encodings on read operations, and output will be transcoded from internal to external
encoding on write operations.

Chapter 17. Character Encoding • 246

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Let’s start with the simple cases. On our OS X box, the default external encoding is UTF-8.
If we don’t override it, all our file I/O will therefore also be in UTF-8. We can query the
external encoding of an I/O object using the IO#external_encoding method:

f = File.open("/etc/passwd")
puts "File encoding is #{f.external_encoding}"
line = f.gets
puts "Data encoding is #{line.encoding}"

produces:

File encoding is UTF-8
Data encoding is UTF-8

Notice that the data is tagged with a UTF-8 encoding even though it (presumably) contains
just 7-bit ASCII characters. Only literals in your Ruby source files have the “change encoding
if they contain 8-bit data” rule.

You can force the external encoding associated with an I/O object when you open it—simply
add the name of the encoding, preceded by a colon, to the mode string. Note that this in no
way changes the data that’s read; it simply tags it with the encoding you specify:

f = File.open("/etc/passwd", "r:ascii")
puts "File encoding is #{f.external_encoding}"
line = f.gets
puts "Data encoding is #{line.encoding}"

produces:

File encoding is US-ASCII
Data encoding is US-ASCII

You can force Ruby to transcode—change the encoding—of data it reads and writes by
putting two encoding names in the mode string, again with a colon before each. For example,
the file iso-8859-1.txt contains the word olé in ISO-8859-1 encoding, so the e-acute (é) character
is encoded by the single byte \xe9. I can view this file’s contents in hex using the od command-
line tool. (Windows users can use the d command in debug to do the same.)

0000000 6f 6c e9 0a
0000004

If we try to read it with our default external encoding of UTF-8, we’ll encounter a problem:

f = File.open("iso-8859-1.txt")
puts f.external_encoding.name
line = f.gets
puts line.encoding
puts line

produces:

UTF-8
UTF-8
ol?

The problem is that the binary sequence for the e-acute isn’t the same in ISO-8859-1 and
UTF-8. Ruby just assumed the file contained UTF-8 characters, tagging the string it read
accordingly.

We can tell the program that the file contains ISO-8859-1:

report erratum • discuss

Input and Output Encoding • 247

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

f = File.open("iso-8859-1.txt", "r:iso-8859-1")
puts f.external_encoding.name
line = f.gets
puts line.encoding
puts line

produces:

ISO-8859-1
ISO-8859-1
ol?

This doesn’t help us much. The string is now tagged with the correct encoding, but our
operating system is still expecting UTF-8 output.

The solution is to map the ISO-8859-1 to UTF-8 on input:

f = File.open("iso-8859-1.txt", "r:iso-8859-1:utf-8")
puts f.external_encoding.name
line = f.gets
puts line.encoding
puts line

produces:

ISO-8859-1
UTF-8
olé

If you specify two encoding names when opening an I/O object, the first is the external
encoding, and the second is the internal encoding. Data is transcoded from the former to the
latter on reading and the opposite way on writing.

Binary Files

In the old days, we Unix users used to make little snide comments about the way that Win-
dows users had to open binary files using a special binary mode. Well, now the Windows
folks can get their own back. If you want to open a file containing binary data in Ruby, you
must now specify the binary flag, which will automatically select the 8-bit clean ASCII-8BIT
encoding. To make things explicit, you can use “binary” as an alias for the encoding:

f = File.open("iso-8859-1.txt", "rb")
puts "Implicit encoding is #{f.external_encoding.name}"
f = File.open("iso-8859-1.txt", "rb:binary")
puts "Explicit encoding is #{f.external_encoding.name}"
line = f.gets
puts "String encoding is #{line.encoding.name}"

produces:

Implicit encoding is ASCII-8BIT
Explicit encoding is ASCII-8BIT
String encoding is ASCII-8BIT

17.5 Default External Encoding

If you look at the text files on your computer, the chances are that they’ll all use the same
encoding. In the United States, that’ll probably be UTF-8 or ASCII. In Europe, it might be
UTF-8 or ISO-8859-x. If you use a Windows box, you may be using a different set of encodings

Chapter 17. Character Encoding • 248

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

(use the console chcp command to find your current code page). But whatever encoding you
use, the chances are good that you’ll stick with it for the majority of your work.

On Unix-like boxes, you’ll probably find you have the LANG environment variable set. On
one of our OS X boxes, it has the value en_US.UTF-8

This says that we’re using the English language in the U.S. territory and the default code set
is UTF-8. On startup, Ruby looks for this environment variable and, if present, sets the default
external encoding from the code set component. Thus, on this box, Ruby 1.9 programs run
with a default external encoding of UTF-8. If instead we were in Japan and the LANG variable
were set to ja_JP.sjis, the encoding would be set to Shift JIS. We can look at the default external
encoding by querying the Encoding class. While we’re at it, we’ll experiment with different
values in the LANG environment variable:

$ echo $LANG
en_US.UTF-8
$ ruby -e 'p Encoding.default_external.name'
"UTF-8"
$ LANG=ja_JP.sjis ruby -e 'p Encoding.default_external.name'
"Shift_JIS"
$ LANG= ruby -e 'p Encoding.default_external.name'
"US-ASCII"

The encoding set from the environment does not affect the encoding Ruby uses for source
files—it affects only the encoding of data read and written by your programs.

Finally, you can use the -E command-line option (or the long-form --encoding) to set the default
external encoding of your I/O objects, as shown in the following commands.

$ ruby -E utf-8 -e 'p Encoding.default_external.name'
"UTF-8"
$ ruby -E sjis -e 'p Encoding.default_external.name'
"Shift_JIS"
$ ruby -E sjis:iso-8859-1 -e 'p Encoding.default_internal.name'
"ISO-8859-1"

17.6 Encoding Compatibility

Before Ruby performs operations involving strings or regular expressions, it first has to
check that the operation makes sense. For example, it is valid to perform an equality test
between two strings with different encodings, but it is not valid to append one to the other.
The basic steps in this checking are as follows:

1. If the two objects have the same encoding, the operation is valid.
2. If the two objects each contain only 7-bit characters, the operation is permitted regardless

of the encodings.
3. If the encodings in the two objects are compatible (which we’ll discuss next), the opera-

tion is permitted.
4. Otherwise, an exception is raised.

Let’s say you have a set of text files containing markup. In some of the files, authors used
the sequence … to represent an ellipsis. In other files, which have UTF-8 encoding,
authors used an actual ellipsis character (\u2026). We want to convert both forms to three
periods.

report erratum • discuss

Encoding Compatibility • 249

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

We can start off with a simplistic solution:

encoding: utf-8
while line = gets
result = line.gsub(/…/, "...")

.gsub(/\u2026/, "...") # unicode ellipsis
puts result

end

In my environment, the content of files is by default assumed to be UTF-8. Feed our code
ASCII files and UTF-encoded files, and it works just fine. But what happens when we feed
it a file that contains ISO-8859-1 characters?

dots.rb:4:in `gsub': broken UTF-8 string (ArgumentError)

Ruby tried to interpret the input text, which is ISO-8859-1 encoded, as UTF-8. Because the
byte sequences in the file aren’t valid UTF, it failed.

There are three solutions to this problem. The first is to say that it makes no sense to feed
files with both ISO-8859 and UTF-8 encoding to the same program without somehow differ-
entiating them. That’s perfectly true. This approach means we’ll need some command-line
options, liberal use of force_encoding, and probably some kind of code to delegate the pattern
matching to different sets of patterns depending on the encoding of each file.

A second hack is to simply treat both the data and the program as ASCII-8BIT and perform
all the comparisons based on the underlying bytes. This isn’t particularly reliable, but it
might work in some circumstances.

The third solution is to choose a master encoding and to transcode strings into it before doing
the matches. Ruby provides built-in support for this with the default_internal encoding
mechanism.

17.7 Default Internal Encoding

By default, Ruby performs no automatic transcoding when reading and writing data.
However, two command-line options allow you to change this.

We’ve already seen the -E option, which sets the default encoding applied to the content of
external files. When you say -E xxx, the default external encoding is set to xxx. However, -E
takes a second option. In the same way that you can give File#open both external and internal
encodings, you can also set a default internal encoding using the option -E external:internal.

Thus, if all your files are written with ISO-8859-1 encoding but you want your program to
have to deal with their content as if it were UTF-8, you can use this:

$ ruby -E iso-8859-1:utf-8

You can specify just an internal encoding by omitting the external option but leaving the
colon:

$ ruby -E :utf-8

Indeed, because UTF-8 is probably the best of the available transcoding targets, Ruby has
the -U command-line option, which sets the internal encoding to UTF-8.

Chapter 17. Character Encoding • 250

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

You can query the default internal encoding in your code with the Encoding.default_internal
method. This returns nil if no default internal encoding has been set.

One last note before we leave this section: if you compare two strings with different encodings,
Ruby does not normalize them. Thus, "é" tagged with a UTF-8 encoding will not compare
equal to "é" tagged with ISO-8859-1, because the underlying bytes are different.

17.8 Fun with Unicode

As Daniel Berger pointed out,4 we can now do fun things with method and variable names:

encoding: utf-8
def ∑(*args)
args.inject(:+)

end

puts ∑ 1, 3, 5, 9

produces:

18

Of course, this way can lead to some pretty obscure and hard-to-use code. (For example, is
the summation character in the previous code a real summation, \u2211, or a Greek sigma,
\u03a3?) Just because we can do something doesn’t mean we necessarily should....

4. http://www.oreillynet.com/ruby/blog/2007/10/fun_with_unicode_1.html

report erratum • discuss

Fun with Unicode • 251

Download from Wow! eBook <www.wowebook.com>

http://www.oreillynet.com/ruby/blog/2007/10/fun_with_unicode_1.html
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 18

Interactive Ruby Shell
Back in Section 14.2, Interactive Ruby, on page 196 we introduced irb, a Ruby module that lets
you enter Ruby programs interactively and see the results immediately. This chapter goes
into more detail on using and customizing irb.

18.1 Command Line

irb is run from the command line:

irb ‹ irb-options › ‹ ruby_script › ‹ program arguments ›

The command-line options for irb are listed in Table 9, irb Command-line options, on page 255.
Typically, you’ll run irb with no options, but if you want to run a script and watch the blow-
by-blow description as it runs, you can provide the name of the Ruby script and any options
for that script.

Once started, irb displays a prompt and waits for you to type Ruby code. irb understands
Ruby, so it knows when statements are incomplete. When this happens, the cursor will be
indented on the next line. (In the examples that follow, we’ll use irb’s default prompt.)

ruby 2.0 > 1 + 2
=> 3
ruby 2.0 > 3 +
ruby 2.0 > 4
=> 7

You can leave irb by typing exit or quit or by entering an end-of-file character (unless
IGNORE_EOF mode is set).

During an irb session, the work you do is accumulated in irb’s workspace. Variables you
set, methods you define, and classes you create are all remembered and may be used subse-
quently in that session.

ruby 2.0 > def fib_up_to(n)
ruby 2.0 ?> f1, f2 = 1, 1
ruby 2.0 ?> while f1 <= n
ruby 2.0 ?> puts f1
ruby 2.0 ?> f1, f2 = f2, f1+f2
ruby 2.0 ?> end
ruby 2.0 ?> end
=> nil

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

ruby 2.0 > fib_up_to(4)
1
1
2
3
=> nil

Notice the nil return values. These are the results of defining the method and then running
it—our method printed the Fibonacci numbers but then returned nil.

A great use of irb is experimenting with code you’ve already written. Perhaps you want to
track down a bug, or maybe you just want to play. If you load your program into irb, you
can then create instances of the classes it defines and invoke its methods. For example, the
file code/irb/fibbonacci_sequence.rb contains the following method definition:

irb/fibonacci_sequence.rb

def fibonacci_sequence
Enumerator.new do |generator|
i1, i2 = 1, 1
loop do
generator.yield i1
i1, i2 = i2, i1+i2

end
end

end

We can load this into irb and play with the method:

ruby 2.0 > load 'code/irb/fibonacci_sequence.rb'
=> True
ruby 2.0 > fibonacci_sequence.first(10)
=> [1, 1, 2, 3, 5, 8, 13, 21, 34, 55]

In this example, we use load, rather than require, to include the file in our session. We do this
as a matter of practice: load allows us to load the same file multiple times, so if we find a bug
and edit the file, we could reload it into our irb session.

Tab Completion

If your Ruby installation has readline support, then you can use irb’s completion facility. Once
loaded (and we’ll get to how to load it shortly), completion changes the meaning of the Tab
key when typing expressions at the irb prompt. When you press Tab partway through a
word, irb will look for possible completions that make sense at that point. If there is only
one, irb will fill it in automatically. If there’s more than one valid option, irb initially does
nothing. However, if you hit Tab again, it will display the list of valid completions at that
point.

For example, the following snippet shows the middle of an irb session, where you just
assigned a string object to the variable a.

ruby 2.0 > a = "cat"
=> "cat"

You now want to try the method String#reverse on this object. You start by typing a.re and
hitting Tab twice.

Chapter 18. Interactive Ruby Shell • 254

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/irb/fibonacci_sequence.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

DescriptionOption

Displays backtrace information using the top n and last n entries.
The default value is 16.

--back-trace-limit n

:CONTEXT_MODE is describd later on page 259.--context-mode n
Sets $DEBUG to true (same as ruby -d).-d
Same as Ruby’s -E option.-E enc
Suppresses reading >~/.irbrc.-f
Displays usage information.-h, --help
Same as Ruby’s -I option.-I directories
Sets up irb to run in inf-ruby-mode under Emacs. Same as --prompt
inf-ruby --noreadline.

--inf-ruby-mode

Uses/doesn’t use Object#inspect to format output (--inspect is the
default, unless in math mode).

--inspect, --noinspect

Sets internal debug level to n (useful only for irb development).--irb_debug n
Math mode (fraction and matrix support is available).-m
Does not display a prompt. Same as --prompt null.--noprompt
Switches prompt. Predefined prompt modes are null, default,
classic, simple, xmp, and inf-ruby.

--prompt prompt-mode

Same as --prompt.--prompt-mode prompt-mode
Requires module. Same as ruby -r.-r module
Uses/doesn’t use readline extension module.--readline, --noreadline
Same as --prompt simple.--sample-book-mode
Same as --prompt simple.--simple-prompt
Nested irb sessions will all share the same context.--single-irb
Displays trace for execution of commands.--tracer
Same as Ruby’s -U option.-U
Prints the version of irb.-v, --version

Table 9—irb Command-line options

ruby 2.0 > a.re«Tab»«Tab»
a.replace a.respond_to? a.reverse a.reverse! a.respond_to_missing?

irb lists all the methods supported by the object in a whose names start with re. We see the
one we want, reverse, and enter the next character of its name, v, followed by the Tab key:

ruby 2.0 > a.rev«TAB»
ruby 2.0 > a.reverse
=> "tac"

irb responds to the Tab key by expanding the name as far as it can go, in this case completing
the word reverse. If we keyed Tab twice at this point, it would show us the current options,
reverse and reverse!. However, because reverse is the one we want, we instead hit Enter , and
the line of code is executed.

Tab completion isn’t limited to built-in names. If we define a class in irb, then tab completion
works when we try to invoke one of its methods:

report erratum • discuss

Command Line • 255

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

ruby 2.0 > class Test
ruby 2.0 ?> def my_method
ruby 2.0 ?> end
ruby 2.0 ?> end
=> nil
ruby 2.0 > t = Test.new
=> #<Test:0x000001009fc8c8>
ruby 2.0 > t.my«TAB»
ruby 2.0 > t.my_method
=> nil

Tab completion is implemented as an extension library. On some systems this is loaded by
default. On others you’ll need to load it when you invoke irb from the command line:

$ irb -r irb/completion

You can also load the completion library when irb is running:

ruby 2.0 > require 'irb/completion'

If you use tab completion all the time and if it doesn’t load by default, it’s probably most
convenient to put the require command into your .irbrc file:

Subsessions

irb supports multiple, concurrent sessions. One is always current; the others lie dormant
until activated. Entering the command irb within irb creates a subsession, entering the jobs
command lists all sessions, and entering fg activates a particular dormant session. This
example also illustrates the -r command-line option, which loads in the given file before irb
starts:

dave[ruby4/Book 13:44:16] irb -r ./code/irb/fibonacci_sequence.rb
ruby 2.0 > result = fibonacci_sequence.first(5)
=> [1, 1, 2, 3, 5]
ruby 2.0 > # Created nested irb session
ruby 2.0 > irb
ruby 2.0 > result = %w{ cat dog elk }
=> ["cat", "dog", "elk"]
ruby 2.0 > result.map(&:upcase)
=> ["CAT", "DOG", "ELK"]
ruby 2.0 > jobs
=> #0->irb on main (#<Thread:0x00000100887678>: stop)
#1->irb#1 on main (#<Thread:0x00000100952710>: running)
ruby 2.0 > fg 0
=> #<IRB::Irb: @context=#<IRB::Context:0x000001008ea6d8>, ...
ruby 2.0 > result
=> [1, 1, 2, 3, 5]
ruby 2.0 > fg 1
=> #<IRB::Irb: @context=#<IRB::Context:0x00000100952670>, ...
ruby 2.0 > result
=> ["cat", "dog", "elk"]
ruby 2.0 >

Chapter 18. Interactive Ruby Shell • 256

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Subsessions and Bindings

If you specify an object when you create a subsession, that object becomes the value of self
in that binding. This is a convenient way to experiment with objects. In the following
example, we create a subsession with the string “wombat” as the default object. Methods
with no receiver will be executed by that object.

ruby 2.0 > self
=> main
ruby 2.0 > irb "wombat"
ruby 2.0 > self
=> "wombat"
ruby 2.0 > upcase
=> "WOMBAT"
ruby 2.0 > size
=> 6
ruby 2.0 > gsub(/[aeiou]/, '*')
=> "w*mb*t"
ruby 2.0 > irb_exit
=> #<IRB::Irb: @context=#<IRB::Context:0x000001009dc4d8>, ...
ruby 2.0 > self
=> main
ruby 2.0 > upcase
NameError: undefined local variable or method `upcase' for main:Object

from (irb):4
from /Users/dave/.rvm/rubies/ruby 2.0/bin/irb:17:in `<main>'

irb is remarkably configurable. You can set configuration options with command-line options
from within an initialization file and while you’re inside irb itself.

Initialization File

irb uses an initialization file in which you can set commonly used options or execute any
required Ruby statements. When irb is run, it will try to load an initialization file from one
of the following sources in order: ~/.irbrc, .irbrc, irb.rc, _irbrc, and $irbrc.

Within the initialization file, you may run any arbitrary Ruby code. You can also set config-
uration values. The list of configuration variables is given in irb Configuration Options, on
page 259—the values that can be used in an initialization file are the symbols (starting with
a colon). You use these symbols to set values into the IRB.conf hash. For example, to make
SIMPLE the default prompt mode for all your irb sessions, you could have the following in
your initialization file:

IRB.conf[:PROMPT_MODE] = :SIMPLE

As an interesting twist on configuring irb, you can set IRB.conf[:IRB_RC] to a Proc object. This
proc will be invoked whenever the irb context is changed and will receive the configuration
for that context as a parameter. You can use this facility to change the configuration
dynamically based on the context. For example, the following .irbrc file sets the prompt so
that only the main prompt shows the irb level, but continuation prompts and the result still
line up:

report erratum • discuss

Command Line • 257

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

IRB.conf[:IRB_RC] = lambda do |conf|
leader = " " * conf.irb_name.length
conf.prompt_i = "#{conf.irb_name} --> "
conf.prompt_s = leader + ' \-" '
conf.prompt_c = leader + ' \-+ '
conf.return_format = leader + " ==> %s\n\n"
puts "Welcome!"

end

An irb session using this .irbrc file looks like the following:

$ irb
Welcome!
irb --> 1 + 2

==> 3

irb --> 2 +
\-+ 6
==> 8

Extending irb

Because the things you type into irb are interpreted as Ruby code, you can effectively extend
irb by defining new top-level methods. For example, you may want to time how long certain
things take. You can use the measure method in the Benchmark library to do this, but it’s
more convenient to wrap this in a helper method.

Add the following to your .irbrc file:

def time(&block)
require 'benchmark'
result = nil
timing = Benchmark.measure do
result = block.()

end
puts "It took: #{timing}"
result

end

The next time you start irb, you’ll be able to use this method to get timings:

ruby 2.0 > time { 1_000_000.times { "cat".upcase } }
It took: 0.320000 0.000000 0.320000 (0.323104)
=> 1000000

Interactive Configuration

Most configuration values are also available while you’re running irb. The list in irb Config-
uration Options, on page 259 shows these values as conf.xxx. For example, to change your
prompt back to SIMPLE, you could use the following:

ruby 2.0 > 1 +
ruby 2.0 > 2
=> 3
ruby 2.0 > conf.prompt_mode = :SIMPLE
=> :SIMPLE

Chapter 18. Interactive Ruby Shell • 258

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

>> 1 +
?> 2
=> 3

irb Configuration Options

In the descriptions that follow, a label of the form :XXX signifies a key used in the IRB.conf
hash in an initialization file, and conf.xxx signifies a value that can be set interactively. The
value in square brackets at the end of the description is the option’s default.

:AUTO_INDENT / auto_indent_mode
If true, irb will indent nested structures as you type them. [true]

:BACK_TRACE_LIMIT / back_trace_limit
Displays n initial and n final lines of backtrace. [16]

:CONTEXT_MODE
Specifies what binding to use for new workspaces: 0→proc at the top level, 1→binding in a
loaded, anonymous file, 2→per thread binding in a loaded file, 3→binding in a top-level
function. [3]

:DEBUG_LEVEL / debug_level
Sets the internal debug level to n. This is useful if you’re debugging irb’s lexer. [0]

:IGNORE_EOF / ignore_eof
Specifies the behavior of an end of file received on input. If true, it will be ignored; otherwise,
irb will quit. [false]

:IGNORE_SIGINT / ignore_sigint
If false, ^C (Ctrl+c) will quit irb. If true, ^C during input will cancel input and return to the
top level; during execution, ^C will abort the current operation. [true]

:INSPECT_MODE / inspect_mode
Specifies how values will be displayed: true means use inspect, false uses to_s, and nil uses
inspect in nonmath mode and to_s in math mode. [nil]

:IRB_RC
Can be set to a proc object that will be called when an irb session (or subsession) is started.
[nil]

last_value
The last value output by irb. [...]

:LOAD_MODULES / load_modules
A list of modules loaded via the -r command-line option. [[]]

:MATH_MODE / math_mode
If true, irb runs with the mathn library loaded (described in the library section on page 768)
and does not use inspect to display values. [false]

prompt_c
The prompt for a continuing statement (for example, immediately after an if). [depends]

prompt_i
The standard, top-level prompt. [depends]

:PROMPT_MODE / prompt_mode
The style of prompt to display. [:DEFAULT]

report erratum • discuss

Command Line • 259

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

prompt_s
The prompt for a continuing string. [depends]

:PROMPT
See Configuring the Prompt, on page 261. [...]

:RC / rc
If false, do not load an initialization file. [true]

return_format
The format used to display the results of expressions entered interactively. [depends]

:SAVE_HISTORY / save_history
The number of commands to save between irb sessions. [nil]

:SINGLE_IRB
If true, nested irb sessions will all share the same binding; otherwise, a new binding will be
created according to the value of :CONTEXT_MODE. [nil]

thread
A read-only reference to the currently executing Thread object. [current thread]

:USE_LOADER / use_loader
Specifies whether irb’s own file reader method is used with load/require. [false]

:USE_READLINE / use_readline
irb will use the readline library (described in the library section on page 795) if available, unless
this option is set to false, in which case readline will never be used, or nil, in which case
readline will not be used in inf-ruby-mode. [depends]

:USE_TRACER / use_tracer
If true, traces the execution of statements. [false]

:VERBOSE / verbose
In theory, switches on additional tracing when true; in practice, almost no extra tracing
results. [true]

18.2 Commands

At the irb prompt, you can enter any valid Ruby expression and see the results. You can also
use any of the following commands to control the irb session:1

help ClassName, string, or symbol
Displays the ri help for the given thing.

irb(main):001:0> help "String.encoding"
--- String#encoding
obj.encoding => encoding

Returns the Encoding object that represents the encoding of obj.

exit, quit, irb_exit, irb_quit
Quits this irb session or subsession. If you’ve used cb to change bindings (detailed in a
moment), exits from this binding mode.

1. For some inexplicable reason, many of these commands have up to nine different aliases. We don’t
bother to show all of them.

Chapter 18. Interactive Ruby Shell • 260

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

conf, context, irb_context
Displays current configuration. Modifying the configuration is achieved by invoking
methods of conf. The list in irb Configuration Options, on page 259 shows the available
conf settings.

For example, to set the default prompt to something subservient, you could use this:

irb(main):001:0> conf.prompt_i = "Yes, Master? "
=> "Yes, Master? "
Yes, Master? 1 + 2

cb, irb_change_binding ‹obj ›
Creates and enters a new binding (sometimes called a workspace) that has its own scope
for local variables. If obj is given, it will be used as self in the new binding.

pushb obj, popb
Pushes and pops the current binding.

bindings
Lists the current bindings.

irb_cwws
Prints the object that’s the binding of the current workspace.

irb ‹obj ›
Starts an irb subsession. If obj is given, it will be used as self.

jobs, irb_jobs
Lists irb subsessions.

fg n, irb_fg n
Switches into the specified irb subsession. nmay be any of the following: an irb subses-
sion number, a thread ID, an irb object, or the object that was the value of self when a
subsession was launched.

kill n, irb_kill n
Kills an irb subsession. n may be any of the values as described for irb_fg.

source filename
Loads and executes the given file, displaying the source lines.

Configuring the Prompt

You have a lot of flexibility in configuring the prompts that irb uses. Sets of prompts are
stored in the prompt hash, IRB.conf[:PROMPT].

For example, to establish a new prompt mode called MY_PROMPT, you could enter the
following (either directly at an irb prompt or in the .irbrc file):

IRB.conf[:PROMPT][:MY_PROMPT] = { # name of prompt mode
:PROMPT_I => '-->', # normal prompt
:PROMPT_S => '--"', # prompt for continuing strings
:PROMPT_C => '--+', # prompt for continuing statement
:RETURN => " ==>%s\n" # format to return value

}

report erratum • discuss

Commands • 261

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Once you’ve defined a prompt, you have to tell irb to use it. From the command line, you
can use the --prompt option. (Notice how the name of the prompt on the command line is
automatically converted to uppercase, with hyphens changing to underscores.)

$ irb --prompt my-prompt

If you want to use this prompt in all your future irb sessions, you can set it as a configuration
value in your .irbrc file:

IRB.conf[:PROMPT_MODE] = :MY_PROMPT

The symbols :PROMPT_I, :PROMPT_S, and :PROMPT_C specify the format for each of the prompt
strings. In a format string, certain % sequences are expanded:

DescriptionFlag

Current command.%N
to_s of the main object (self).%m
inspect of the main object (self).%M
Delimiter type. In strings that are continued across a line break, %l will display the
type of delimiter used to begin the string, so you’ll know how to end it. The delimiter
will be one of ", ', /,], or `.

%l

Indent level. The optional number n is used as a width specification to printf, as%ni
printf("%nd").
Current line number (n used as with the indent level).%nn
A literal percent sign.%%

Table 10—irb prompt string substitutions

For instance, the default prompt mode is defined as follows:

IRB.conf[:PROMPT][:DEFAULT] = {
:PROMPT_I => "%N(%m):%03n:%i> ",
:PROMPT_S => "%N(%m):%03n:%i%l ",
:PROMPT_C => "%N(%m):%03n:%i* ",
:RETURN => "=> %s\n"

}

Saving Your Session History

If you have readline support in irb (that is, you can hit the up arrow key and irb recalls the
previous command you entered), then you can also configure irb to remember the commands
you enter between sessions. Simply add the following to your .irbrc file:

IRB.conf[:SAVE_HISTORY] = 50 # save last 50 commands

Chapter 18. Interactive Ruby Shell • 262

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 19

Documenting Ruby
Ruby comes bundled with RDoc, a tool that extracts and formats documentation that’s
embedded in Ruby source code files. This tool is used to document the built-in Ruby classes
and modules. An increasing number of libraries and extensions are also documented this
way.1

⇡New in 2.0⇣
RDoc does two jobs. First, it analyzes Ruby and C source files, along with some other formats
such as Markdown, looking for information to document.2 Second, it takes this information
and converts it into something readable. The following image shows some RDoc output in
a browser window. The overlaid box shows the source program from which this output was
generated.

class Counter

 attr_reader :counter

 def initialize(initial_value=0)

 @counter = initial_value

 end

 def inc

 @counter += 1

 end

end

Even though the source contains no internal documentation, RDoc still manages to extract
interesting information from it. We have three panes at the top of the screen showing the
files, classes, and methods for which we have documentation. For class Counter, RDoc shows
us the attributes and methods (including the method signatures). And if we clicked a method
signature, RDoc would pop up a window containing the source code for the corresponding
method.

1. RDoc isn’t the only Ruby documentation tool. Those who like a more formal, tag-based scheme might
want to look at Yard at http://yardoc.org.

2. RDoc can also document Fortran 77 programs.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://yardoc.org
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

If our source code contains comments, RDoc can use them to spice up the documentation it
produces.

Implements a simple accumulator, whose

value is accessed via the attribute

counter. Calling the method Counter#inc

increments this value.

class Counter

 # The current value of the count

 attr_reader :counter

 # create a new Counter with the given

 # initial value

 def initialize(initial_value=0)

 @counter = initial_value

 end

 # increment the current value of the count

 def inc

 @counter += 1

 end

end

Notice how the comments before each element now appear in the RDoc output, reformatted
into HTML. Less obvious is that RDoc has detected hyperlink opportunities in our comments:
in the class-level comment, the reference to Counter#inc is a hyperlink to the method
description, and in the comment for the newmethod, the reference to class Counter hyperlinks
back to the class documentation. This is a key feature of RDoc: it is designed to be unintrusive
in the Ruby source files and to make up for this by trying to be clever when producing output.

RDoc can also be used to produce documentation that can be read by the ri command-line
utility. For example, if we ask RDoc to document the code in the previous example into ri
format, we can access the documentation from the command line:

$ ri Counter
-- Class: Counter

Implements a simple accumulator, whose value is
accessed via the attribute counter. Calling the
method Counter#inc increments this value.

Class methods:
new

Instance methods:
inc

Attributes:
counter

--- Counter#inc
inc()

increment the current value of the count

Chapter 19. Documenting Ruby • 264

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Ruby distributions have the built-in classes and modules (and some libraries) documented
this way.3 Here’s what you see if you type ri Proc:

$ ri Proc
Proc < Object
(from ruby core)
--
Proc objects are blocks of code that have been bound to a set of local
variables. Once bound, the code may be called in different contexts and still
access those variables.

def gen_times(factor)
return Proc.new {|n| n*factor }

end

times3 = gen_times(3)
times5 = gen_times(5)

times3.call(12) #=> 36
times5.call(5) #=> 25
times3.call(times5.call(4)) #=> 60

--
Class methods:
new

Instance methods:
===, [], arity, binding, call, curry, hash, inspect, lambda?, parameters,
source_location, to_proc, to_s, yield ==

⇡New in 2.0⇣Many projects include README files, files containing usage notes, Changelogs, and so on.
RDoc automatically finds and formats these. It calls the result a page. You access the list of
available pages from ri using the name of the project and a colon:

$ ri ruby:
Pages in ruby core

ChangeLog
NEWS
README
README.EXT
: :

To read a particular page, add its name after the colon:

$ ri ruby:NEWS
NEWS for Ruby 2.0.0

This document is a list of user visible feature changes made between releases
except for bug fixes.

3. If you’re using rvm, you’ll need to run rvm docs generate.

report erratum • discuss

Chapter 19. Documenting Ruby • 265

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

19.1 Adding RDoc to Ruby Code

RDoc parses Ruby source files to extract the major elements (such as classes, modules,
methods, attributes, and so on). You can choose to associate additional documentation with
these by simply adding a comment block before the element in the file.

One of the design goals of RDoc was to leave the source code looking totally natural. In most
cases, there is no need for any special markup in your code to get RDoc to produce decent
looking documentation. For example, comment blocks can be written fairly naturally:

Calculate the minimal-cost path though the graph using Debrinkski's algorithm,
with optimized inverse pruning of isolated leaf nodes.
def calculate_path
. . .

end

You can also use Ruby’s block-comments by including the documentation in a =begin...=end
block. If you use this (which is not generally done), the =begin line must be flagged with an
rdoc tag to distinguish the block from other styles of documentation.

=begin rdoc
Calculate the minimal-cost path though the graph using Debrinkski's algorithm,
with optimized inverse pruning of isolated leaf nodes.
=end
def calculate_path
. . .

end

Within a documentation comment, paragraphs are lines that share the left margin. Text
indented past this margin is formatted verbatim.

Nonverbatim text can be marked up. To set individual words in italic, bold, or typewriter
fonts, you can use _word_, *word*, and +word+, respectively. If you want to do this to multiple
words or text containing nonword characters, you can usemultiple words,more
words, and<tt>yetmore words</tt>. Putting a backslash before inline markup stops it from
being interpreted.

RDoc stops processing comments if it finds a comment line starting with #--. This can be
used to separate external from internal comments or to stop a comment from being associated
with a method, class, attribute, or module. Documenting can be turned back on by starting
a line with the comment #++:

Extract the age and calculate the
date of birth.
#--
FIXME: fails if the birthday falls on February 29th, or if the person
was born before epoch and the installed Ruby doesn't support negative time_t
#++
The DOB is returned as a Time object.
#--
But should probably change to use Date.

def get_dob(person)
...

end

Chapter 19. Documenting Ruby • 266

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Hyperlinks

Names of classes, source files, and any method names containing an underscore or preceded
by a hash character are automatically hyperlinked from comment text to their description.

In addition, hyperlinks starting with http:, mailto:, ftp:, and www: are recognized. An HTTP
URL that references an external image file is converted into an inline tag. Hyperlinks
starting with link: are assumed to refer to local files whose paths are relative to the --op
directory, where output files are stored.

Hyperlinks can also be of the form label[url], where the label is used in the displayed text and
url is used as the target. If the label contains multiple words, surround it in braces: {two
words}[url].

Lists

Lists are typed as indented paragraphs with the following:

• As asterisk (*) or hyphen (-) for bullet lists
• A digit followed by a period for numbered lists
• An uppercase or lowercase letter followed by a period for alpha lists

For example, you could produce something like the previous text with this:

Lists are typed as indented paragraphs with
* a * or - (for bullet lists),
* a digit followed by a period for
numbered lists,
* an uppercase or lowercase letter followed
by a period for alpha lists.

Note how subsequent lines in a list item are indented to line up with the text in the element’s
first line.

Labeled lists (sometimes called description lists) are typed using square brackets for the label:

[cat] Small domestic animal
[+cat+] Command to copy standard input
to standard output

Labeled lists may also be produced by putting a double colon after the label. This sets the
result in tabular form so the descriptions all line up in the output.

cat:: Small domestic animal
+cat+:: Command to copy standard input
to standard output

For both kinds of labeled lists, if the body text starts on the same line as the label, then the
start of that text determines the block indent for the rest of the body. The text may also start
on the line following the label, indented from the start of the label. This is often preferable
if the label is long. Both of the following are valid labeled list entries:

<tt>--output</tt> <i>name [, name]</i>::
specify the name of one or more output files. If multiple
files are present, the first is used as the index.
#

report erratum • discuss

Adding RDoc to Ruby Code • 267

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

<tt>--quiet:</tt>:: do not output the names, sizes, byte counts,
index areas, or bit ratios of units as
they are processed.

Headings

Headings are entered on lines starting with equals signs. The more equals signs, the higher
the level of heading:

= Level One Heading
== Level Two Heading
and so on...

Rules (horizontal lines) are entered using three or more hyphens:

and so it goes...

The next section...

Documentation Modifiers

Method parameter lists are extracted and displayed with the method description. If a method
calls yield, then the parameters passed to yield will also be displayed. For example:

def fred
...
yield line, address

This will be documented as follows:

fred() {|line, address| ... }

You can override this using a comment containing :yields: ... on the same line as the method
definition:

def fred # :yields: index, position
...
yield line, address

which will be documented as follows:

fred() {|index, position| ... }

:yields: is an example of a documentation modifier. These appear immediately after the start
of the document element they are modifying. Other modifiers include the following:

:nodoc: ‹all ›
Don’t include this element in the documentation. For classes and modules, the methods,
aliases, constants, and attributes directly within the affected class or module will also
be omitted from the documentation. By default, though, modules and classes within
that class or module will be documented. This is turned off by adding the all modifier.
For example, in the following code, only class SM::Input will be documented:

module SM #:nodoc:
class Input
end

end

Chapter 19. Documenting Ruby • 268

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

module Markup #:nodoc: all
class Output
end

end

:doc:
This forces a method or attribute to be documented even if it wouldn’t otherwise be.
This is useful if, for example, you want to include documentation of a particular private
method.

:notnew:
(Applicable only to the initialize instance method.) Normally RDoc assumes that the
documentation and parameters for #initialize are actually for the corresponding class’s
newmethod and so fakes out a newmethod for the class. The :notnew:modifier stops this.
Remember that #initialize is protected, so you won’t see the documentation unless you
use the -a command-line option.

Other Directives

Comment blocks can contain other directives:

:call-seq: lines...
Text up to the next blank comment line is used as the calling sequence when generating
documentation (overriding the parsing of the method parameter list). A line is considered
blank even if it starts with #. For this one directive, the leading colon is optional.

:include: filename
This includes the contents of the named file at this point. The file will be searched for
in the directories listed by the --include option or in the current directory by default. The
contents of the file will be shifted to have the same indentation as the : at the start of the
:include: directive.

:title: text
This sets the title for the document. It’s equivalent to the --title command-line parameter.
(The command-line parameter overrides any :title: directive in the source.)

:main: name
This is equivalent to the --main command-line parameter, setting the initial page displayed
for this documentation.

:stopdoc: / :startdoc:
This stops and starts adding new documentation elements to the current container. For
example, if a class has a number of constants that you don’t want to document, put a
:stopdoc: before the first and a :startdoc: after the last. If you don’t specify a :startdoc: by
the end of the container, this disables documentation for the entire class or module.

:enddoc:
This documents nothing further at the current lexical level.

A larger example of a file documented using RDoc is shown in Section 19.4, Ruby source file
documented with RDoc, on page 272.

19.2 Adding RDoc to C Extensions

RDoc understands many of the conventions used when writing extensions to Ruby in C.

report erratum • discuss

Adding RDoc to C Extensions • 269

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

If RDoc sees a C function named Init_Classname, it treats it as a class definition—any C comment
before the Init_ function will be used as the class’s documentation.

The Init_ function is normally used to associate C functions with Ruby method names. For
example, a Cipher extension may define a Ruby method salt=, implemented by the C function
salt_set using a call such as this:

rb_define_method(cCipher, "salt=", salt_set, 1);

RDoc parses this call, adding the salt= method to the class documentation. RDoc then
searches the C source for the C function salt_set. If this function is preceded by a comment
block, RDoc uses this for the method’s documentation.

This basic scheme works with no effort on your part beyond writing the normal documen-
tation in the comments for functions. However, RDoc cannot discern the calling sequence
for the corresponding Ruby method. In this example, the RDoc output will show a single
argument with the (somewhat meaningless) name “arg1.” You can override this using the
call-seq directive in the function’s comment. The lines following call-seq (up to a blank line)
are used to document the calling sequence of the method:

/*
* call-seq:
* cipher.salt = number
* cipher.salt = "string"
*
* Sets the salt of this cipher to either a binary +number+ or
* bits in +string+.
*/

static VALUE
salt_set(cipher, salt)
...

If a method returns a meaningful value, it should be documented in the call-seq following
the characters ->:

/*
* call-seq:
* cipher.keylen -> Fixnum or nil
*/

Although RDoc heuristics work well for finding the class and method comments for simple
extensions, they don’t always work for more complex implementations. In these cases, you
can use the directives Document-class: and Document-method: to indicate that a C comment
relates to a given class or method, respectively. The modifiers take the name of the Ruby
class or method that’s being documented:

/*
* Document-method: reset
*
* Clear the current buffer and prepare to add new
* cipher text. Any accumulated output cipher text
* is also cleared.
*/

Chapter 19. Documenting Ruby • 270

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Finally, it is possible in the Init_xxx function to associate a Ruby method with a C function in
a different C source file. RDoc would not find this function without your help: you add a
reference to the file containing the function definition by adding a special comment to the
rb_define_method call. The following example tells RDoc to look in the filemd5.c for the function
(and related comment) corresponding to the md5 method:

rb_define_method(cCipher, "md5", gen_md5, -1); /* in md5.c */

A C source file documented using RDoc is shown in Section 19.5, C source file documented
with RDoc, on page 274. Note that the bodies of several internal methods have been elided
to save space.

19.3 Running RDoc

You run RDoc from the command line:

$ rdoc ‹ options ›* ‹ filenames... ›*

Type rdoc --help for an up-to-date option summary.

Files are parsed, and the information they contain collected, before any output is produced.
This allows cross-references between all files to be resolved. If a name is a directory, it is
traversed. If no names are specified, all Ruby files in the current directory (and subdirectories)
are processed.

A typical use may be to generate documentation for a package of Ruby source (such as RDoc
itself):

$ rdoc

This command generates HTML documentation for the files in and below the current
directory. These will be stored in a documentation tree starting in the subdirectory doc/.

RDoc uses file extensions to determine how to process each file. Filenames ending with .rb
and .rbw are assumed to be Ruby source. Filenames ending .c are parsed as C files. .rdoc files

⇡New in 2.0⇣
are formatted as RDoc, and .md and .markdown as Markdown. All other files are assumed to
contain just markup (with or without leading # comment markers). If directory names are
passed to RDoc, they are scanned recursively for source files only. To include nonsource
files such as READMEs in the documentation process, their names must be given explicitly on
the command line.

When writing a Ruby library, you often have some source files that implement the public
interface, but the majority are internal and of no interest to the readers of your documentation.
In these cases, construct a .document file in each of your project’s directories. If RDoc enters
a directory containing a .document file, it will process only the files in that directory whose
names match one of the lines in that file. Each line in the file can be a filename, a directory
name, or a wildcard (a file system “glob” pattern). For example, to include all Ruby files
whose names start with main, along with the file constants.rb, you could use a .document file
containing this:

main*.rb
constants.rb

report erratum • discuss

Running RDoc • 271

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Some project standards ask for documentation in a top-level README file. You may find it
convenient to write this file in RDoc format and then use the :include: directive to incorporate
the README into the documentation for the main class.

Create Documentation for ri

RDoc is also used to create documentation that will be later displayed using ri.

When you run ri, it by default looks for documentation in three places:4

• The system documentation directory, which holds the documentation distributed with
Ruby and which is created by the Ruby install process

• The site directory, which contains sitewide documentation added locally

• The user documentation directory, stored under the user’s own home directory

You can find these three directories using ri --list-doc-dirs.

$ ri --list-doc-dirs
/Users/dave/.rvm/rubies/ruby-2.0.0-p0/share/ri/2.0.0/system
/Users/dave/.rvm/rubies/ruby-2.0.0-p0/share/ri/2.0.0/site
/Users/dave/.rdoc

To add documentation to ri, you need to tell RDoc which output directory to use. For your
own use, it’s easiest to use the --ri option, which installs the documentation into ~/.rdoc:

$ rdoc --ri file1.rb file2.rb

If you want to install sitewide documentation, use the --ri-site option:

$ rdoc --ri-site file1.rb file2.rb

The --ri-system option is normally used only to install documentation for Ruby’s built-in
classes and standard libraries. You can regenerate this documentation from the Ruby source
distribution (not from the installed libraries themselves):

$ cd ruby source base/lib
$ rdoc --ri-system

19.4 Ruby source file documented with RDoc

This module encapsulates functionality related to the
generation of Fibonacci sequences.
#--
Copyright (c) 2004 Dave Thomas, The Pragmatic Programmers, LLC.
Licensed under the same terms as Ruby. No warranty is provided.
module Fibonacci

Calculate the first _count_ Fibonacci numbers, starting with 1,1.
#
:call-seq:
Fibonacci.sequence(count) -> array
Fibonacci.sequence(count) {|val| ... } -> nil

4. You can override the directory location using the --op option to RDoc and subsequently using the --doc-dir
option with ri.

Chapter 19. Documenting Ruby • 272

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

#
If a block is given, supply successive values to the block and
return +nil+, otherwise return all values as an array.
def Fibonacci.sequence(count, &block)
result, block = setup_optional_block(block)
generate do |val|
break if count <= 0
count -= 1
block[val]

end
result

end

Calculate the Fibonacci numbers up to and including _max_.
#
:call-seq:
Fibonacci.upto(max) -> array
Fibonacci.upto(max) {|val| ... } -> nil
#
If a block is given, supply successive values to the
block and return +nil+, otherwise return all values as an array.
def Fibonacci.upto(max, &block)
result, block = setup_optional_block(block)
generate do |val|
break if val > max
block[val]

end
result

end

private

Yield a sequence of Fibonacci numbers to a block.
def Fibonacci.generate
f1, f2 = 1, 1
loop do
yield f1
f1, f2 = f2, f1+f2

end
end

If a block parameter is given, use it, otherwise accumulate into an
array. Return the result value and the block to use.
def Fibonacci.setup_optional_block(block)
if block.nil?
[result = [], lambda {|val| result << val }]

else
[nil, block]

end
end

end

report erratum • discuss

Ruby source file documented with RDoc • 273

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

19.5 C source file documented with RDoc

#include "ruby.h"
#include "cdjukebox.h"

static VALUE cCDPlayer;
static void cd_free(void *p) { ... }
static VALUE cd_alloc(VALUE klass) { ... }
static void progress(CDJukebox *rec, int percent) { ... }

/* call-seq:
* CDPlayer.new(unit) -> new_cd_player
*
* Assign the newly created CDPlayer to a particular unit
*/
static VALUE cd_initialize(VALUE self, VALUE unit) {
int unit_id;
CDJukebox *jb;

Data_Get_Struct(self, CDJukebox, jb);
unit_id = NUM2INT(unit);
assign_jukebox(jb, unit_id);
return self;

}

/* call-seq:
* player.seek(int_disc, int_track) -> nil
* player.seek(int_disc, int_track) {|percent| } -> nil
*
* Seek to a given part of the track, invoking the block
* with the percent complete as we go.
*/
static VALUE
cd_seek(VALUE self, VALUE disc, VALUE track) {
CDJukebox *jb;
Data_Get_Struct(self, CDJukebox, jb);
jukebox_seek(jb, NUM2INT(disc), NUM2INT(track), progress);
return Qnil;

}

/* call-seq:
* player.seek_time -> Float
*
* Return the average seek time for this unit (in seconds)
*/
static VALUE
cd_seek_time(VALUE self)
{
double tm;
CDJukebox *jb;
Data_Get_Struct(self, CDJukebox, jb);
tm = get_avg_seek_time(jb);
return rb_float_new(tm);

}

Chapter 19. Documenting Ruby • 274

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

/* Interface to the Spinzalot[http://spinzalot.cd]
* CD Player library.
*/
void Init_CDPlayer() {
cCDPlayer = rb_define_class("CDPlayer", rb_cObject);
rb_define_alloc_func(cCDPlayer, cd_alloc);
rb_define_method(cCDPlayer, "initialize", cd_initialize, 1);
rb_define_method(cCDPlayer, "seek", cd_seek, 2);
rb_define_method(cCDPlayer, "seek_time", cd_seek_time, 0);

}

report erratum • discuss

C source file documented with RDoc • 275

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 20

Ruby and the Web
Ruby is no stranger to the Internet. Not only can you write your own SMTP server, FTP
daemon, or web server in Ruby, but you can also use Ruby for more usual tasks such as CGI
programming or as a replacement for PHP.

Many options are available for using Ruby to implement web applications, and a single
chapter can’t do them all justice. Instead, we’ll try to touch some of the highlights and point
you toward libraries and resources that can help.

Let’s start with some simple stuff: running Ruby programs as Common Gateway Interface
(CGI) programs.

20.1 Writing CGI Scripts

You can use Ruby to write CGI scripts quite easily. To have a Ruby script generate HTML
output, all you need is something like this:

#!/usr/bin/ruby
print "Content-type: text/html\r\n\r\n"
print "<html><body>Hello World! It's #{Time.now}</body></html>\r\n"

Put this script in a CGI directory, mark it as executable, and you’ll be able to access it via
your browser. (If your web server doesn’t automatically add headers, you’ll need to add the
response header yourself, as shown in the following code.)

#!/usr/bin/ruby
print "HTTP/1.0 200 OK\r\n"
print "Content-type: text/html\r\n\r\n"
print "<html><body>Hello World! It's #{Time.now}</body></html>\r\n"

However, that’s hacking around at a pretty low level. You’d need to write your own request
parsing, session management, cookie manipulation, output escaping, and so on. Fortunately,
options are available to make this easier.

20.2 Using cgi.rb

Class CGI provides support for writing CGI scripts. With it, you can manipulate forms,
cookies, and the environment; maintain stateful sessions; and so on. It’s a fairly large class,
but we’ll take a quick look at its capabilities here.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Quoting

When dealing with URLs and HTML code, you must be careful to quote certain characters.
For instance, a slash character (/) has special meaning in a URL, so it must be “escaped” if
it’s not part of the path name. That is, any / in the query portion of the URL will be translated
to the string %2F and must be translated back to a / for you to use it. Space and ampersand
are also special characters. To handle this, CGIprovides the routines CGI.escape and CGI.unescape:

require 'cgi'
puts CGI.escape("Nicholas Payton/Trumpet & Flugel Horn")

produces:

Nicholas+Payton%2FTrumpet+%26+Flugel+Horn

More frequently, you may want to escape HTML special characters:

require 'cgi'
puts CGI.escapeHTML("a < 100 && b > 200")

produces:

a < 100 && b > 200

To get really fancy, you can decide to escape only certain HTML elements within a string:

require 'cgi'
puts CGI.escapeElement('<hr>Click Here
','A')

produces:

<hr>Click Here

Here only the <a...> element is escaped; other elements are left alone. Each of these methods
has an un- version to restore the original string:

require 'cgi'
puts CGI.unescapeHTML("a < 100 && b > 200")

produces:

a < 100 && b > 200

Query Parameters

HTTP requests from the browser to your application may contain parameters, either passed
as part of the URL or passed as data embedded in the body of the request.

Processing of these parameters is complicated by the fact that a value with a given name
may be returned multiple times in the same request. For example, say we’re writing a survey
to find out why folks like Ruby. The HTML for our form looks like the following.

<html>
<head>
<title>Test Form</title>

</head>

<body>
<p>
I like Ruby because:

</p>

Chapter 20. Ruby and the Web • 278

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

<form action="cgi-bin/survey.rb">
<p>
<input type="checkbox" name="reason" value="flexible" />
It's flexible

</p>
<p>
<input type="checkbox" name="reason" value="transparent" />
It's transparent

</p>
<p>
<input type="checkbox" name="reason" value="perlish" />
It's like Perl

</p>
<p>
<input type="checkbox" name="reason" value="fun" />
It's fun

</p>
<p>
Your name: <input type="text" name="name"/>

</p>
<input type="submit"/>

</form>
</body>

</html>

When someone fills in this form, they might check multiple reasons for liking Ruby (as
shown in the following screenshot):

In this case, the form data corresponding to the name reason will have three values, corre-
sponding to the three checked boxes.

Class CGI gives you access to form data in a couple of ways. First, we can just treat the CGI
object as a hash, indexing it with field names and getting back field values.

require 'cgi'
cgi = CGI.new
cgi['name'] # => "Dave Thomas"
cgi['reason'] # => "flexible"

However, this doesn’t work well with the reason field, because we see only one of the three
values. We can ask to see them all by using the CGI#params method. The value returned by
params acts like a hash containing the request parameters. You can both read and write this
hash (the latter allows you to modify the data associated with a request). Note that each of
the values in the hash is actually an array.

report erratum • discuss

Using cgi.rb • 279

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

cgi = CGI.new
cgi.params # => {"name"=>["Dave Thomas"], "reason"=>["flexible",

.. "transparent", "fun"]}
cgi.params['name'] # => ["Dave Thomas"]
cgi.params['reason'] # => ["flexible", "transparent", "fun"]

You can determine whether a particular parameter is present in a request using CGI#has_key?:

require 'cgi'
cgi = CGI.new
cgi.has_key?('name') # => true
cgi.has_key?('age') # => false

Generating HTML with CGI.rb

CGI contains a huge number of methods that can be used to create HTML—one method per
element. To enable these methods, you must create a CGI object by calling CGI.new, passing
in the required version of HTML. In these examples, we’ll use html4.

To make element nesting easier, these methods take their content as code blocks. The code
blocks should return a String, which will be used as the content for the element.

require 'cgi'
cgi = CGI.new("html4") # add HTML generation methods
cgi.out do
cgi.html do
cgi.head { cgi.title { "This Is a Test"} } +
cgi.body do
cgi.form do
cgi.hr +
cgi.h1 { "A Form: " } +
cgi.textarea("get_text") +
cgi.br +
cgi.submit

end
end

end
end

Although vaguely interesting, this method of generating HTML is fairly laborious and
probably isn’t used much in practice. Most people seem to write the HTML directly, use a
templating system, or use an application framework, such as Rails. Unfortunately, we don’t
have space here to discuss Rails—take a look at the online documentation at http://rubyonrails.org
—but we can look at templating (including erb, the templating engine used by Rails).

20.3 Templating Systems

Templating systems let you separate the presentation and logic of your application. It seems
that just about everyone who writes a web application using Ruby at some point also writes
a templating system; a quick review page written in 2008 by Vidar Hokstad1 lists nineteen.
For now, let’s just look at two: Haml and erb/eruby. Also, remember to look at Builder if
you need to generate XHTML or XML.

1. http://www.hokstad.com/mini-reviews-of-19-ruby-template-engines.html

Chapter 20. Ruby and the Web • 280

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://rubyonrails.org
http://www.hokstad.com/mini-reviews-of-19-ruby-template-engines.html
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Haml

Haml is a library that generates HTML documents from a template.2 Unlike many other
templating systems, Haml uses indentation to indicate nesting (yup, just like Python). For
example, you can represent a in Haml using this:

%ul
%li item one
%li item two

Install Haml using this:

$ gem install haml

The Haml input syntax is rich and powerful, and the example that follows touches on only
a subset of the features. Lines starting with % get converted to HTML tags, nested in the
output according to their indentation in the input. An equals sign means “substitute in the
value of the Ruby code that follows.” A minus sign executes Ruby code but doesn’t substitute
the value in—our example uses that to look over the reasons when constructing the table.

There are many ways of getting values passed in to the template. In this example, we chose
to pass in a hash as the second parameter to render. This results in local variables getting set
as the template is expanded, one variable for each key in the hash:

require 'haml'
engine = Haml::Engine.new(%{
%body
#welcome-box
%p= greeting

%p
As of
= Time.now
the reasons you gave were:

%table
%tr
%th Reason
%th Rank

- for reason in reasons
%tr
%td= reason[:reason_name]
%td= reason[:rank]

})

data = {
greeting: 'Hello, Dave Thomas',
reasons: [
{ reason_name: 'flexible', rank: '87' },
{ reason_name: 'transparent', rank: '76' },
{ reason_name: 'fun', rank: '94' },

]
}

puts engine.render(nil, data)

2. http://haml-lang.com/

report erratum • discuss

Templating Systems • 281

Download from Wow! eBook <www.wowebook.com>

http://haml-lang.com/
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

produces:

<body>
<div id='welcome-box'>
<p>Hello, Dave Thomas</p>

</div>
<p>
As of
2013-05-27 12:31:30 -0500
the reasons you gave were:

</p>
<table>
<tr>
<th>Reason</th>
<th>Rank</th>

</tr>
<tr>
<td>flexible</td>
<td>87</td>

</tr>
<tr>
<td>transparent</td>
<td>76</td>

</tr>
<tr>
<td>fun</td>
<td>94</td>

</tr>
</table>

</body>

erb and eruby

So far we’ve looked at using Ruby to create HTML output, but we can turn the problem
inside out; we can actually embed Ruby in an HTML document.

A number of packages allow you to embed Ruby statements in an HTML document–gener-
ically, this markup is known as “eRuby.” There are several different implementations of
eRuby , including erubis and erb. erubis is available as a gem, while erb is written in pure
Ruby and is included with the standard distribution. We’ll look at erb here.

Embedding Ruby in HTML is a very powerful concept—it basically gives us the equivalent
of a tool such as ASP, JSP, or PHP, but with the full power of Ruby.

Using erb

erb is a filter. Input text is passed through untouched, with the following exceptions:

DescriptionExpression

This executes the Ruby code between the delimiters.<% ruby code %>

This evaluates the Ruby expression and replaces the sequence with
the expression’s value.

<%= ruby expression %>

The Ruby code between the delimiters is ignored (useful for testing).<%# ruby code %>

Chapter 20. Ruby and the Web • 282

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

DescriptionExpression

A line that starts with a percent is assumed to contain just Ruby
code.

% line of ruby code

You can run erb from the command line:

erb ‹ options › ‹ document ›

If the document is omitted, erb will read from standard input. The command-line options for
erb are:

DescriptionOption

Sets $DEBUG to true-d
Sets the default external/internal encodings-E ext[:int]
Displays resulting Ruby script (with line numbers)-n
Loads the named library-r library
Doesn’t do erb processing on lines starting %-P
Sets the safe level-S level
Sets the trim mode-T mode
Sets default encoding to UTF-8-U
Enables verbose mode-v
Displays resulting Ruby script-x

Let’s look at some simple examples. We’ll run the erb executable on the following input:

web/f1.erb

% 99.downto(96) do |number|
<%= number %> bottles of beer...
% end

The lines starting with the percent sign simply execute the given Ruby. In this case, it’s a
loop that iterates the line between them. The sequence <%= number %> in the middle line
substitutes in the value of number into the output.

$ erb f1.erb
99 bottles of beer...
98 bottles of beer...
97 bottles of beer...
96 bottles of beer...

erb works by rewriting its input as a Ruby script and then executing that script. You can see
the Ruby that erb generates using the -n or -x option:

$ erb -x f1.erb
#coding:ASCII-8BIT
_erbout = ''; 99.downto(96) do |number|
_erbout.concat((number).to_s); _erbout.concat " bottles of beer...\n"
; end
_erbout.force_encoding(__ENCODING__)

Notice how erb builds a string, _erbout, containing both the static strings from the template
and the results of executing expressions (in this case the value of number).

report erratum • discuss

Templating Systems • 283

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/web/f1.erb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Embedding erb in Your Code

So far we’ve shown erb running as a command-line filter. However, the most common use
is to use it as a library in your own code. (This is what Rails does with its .erb templates.)

require 'erb'

SOURCE =
%{<% for number in min..max %>
The number is <%= number %>
<% end %>
}

erb = ERB.new(SOURCE)

min = 4
max = 6
puts erb.result(binding)

produces:

The number is 4

The number is 5

The number is 6

Notice how we can use local variables within the erb template. This works because we pass
the current binding to the result method. erb can use this binding to make it look as if the
template is being evaluated in the context of the calling code.

erb comes with excellent documentation: use ri to read it. One thing that Rails users should
know is that in the standard version of erb, you can’t use the -%> trick to suppress blank
lines. (In the previous example, that’s why we have the extra blank lines in the output.) Take
a look at the description of trim modes in the documentation of ERB.new for alternatives.

20.4 Cookies

Cookies are a way of letting web applications store their state on the user’s machine. Frowned
upon by some, cookies are still a convenient (if unreliable) way of remembering session
information.

The Ruby CGI class handles the loading and saving of cookies for you. You can access the
cookies associated with the current request using the CGI#cookies method, and you can set
cookies back into the browser by setting the cookie parameter of CGI#out to reference either
a single cookie or an array of cookies:

web/cookies.rb

#!/usr/bin/ruby
require 'cgi'

COOKIE_NAME = 'chocolate chip'

cgi = CGI.new
values = cgi.cookies[COOKIE_NAME]

Chapter 20. Ruby and the Web • 284

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/web/cookies.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

if values.empty?
msg = "It looks as if you haven't visited recently"

else
msg = "You last visited #{values[0]}"

end

cookie = CGI::Cookie.new(COOKIE_NAME, Time.now.to_s)
cookie.expires = Time.now + 30*24*3600 # 30 days
cgi.out("cookie" => cookie) { msg }

Sessions

Cookies by themselves still need a bit of work to be useful. We really want sessions: informa-
tion that persists between requests from a particular web browser. Sessions are handled by
class CGI::Session, which uses cookies but provides a higher-level abstraction.

As with cookies, sessions emulate a hashlike behavior, letting you associate values with
keys. Unlike cookies, sessions store the majority of their data on the server, using the
browser-resident cookie simply as a way of uniquely identifying the server-side data. Sessions
also give you a choice of storage techniques for this data: it can be held in regular files, in a
PStore (see the description on page 793), in memory, or even in your own customized store.

Sessions should be closed after use, because this ensures that their data is written out to the
store. When you’ve permanently finished with a session, you should delete it.

web/session.rb

require 'cgi'
require 'cgi/session'

cgi = CGI.new("html4")
sess = CGI::Session.new(cgi, "session_key" => "rubyweb",

"prefix" => "web-session.")

if sess['lastaccess']
msg = "<p>You were last here #{sess['lastaccess']}.</p>"

else
msg = "<p>Looks like you haven't been here for a while</p>"

end

count = (sess["accesscount"] || 0).to_i
count += 1

msg << "<p>Number of visits: #{count}</p>"

sess["accesscount"] = count
sess["lastaccess"] = Time.now.to_s
sess.close

cgi.out {
cgi.html {
cgi.body {
msg

}
}

}

report erratum • discuss

Cookies • 285

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/web/session.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

The code in the previous example used the default storage mechanism for sessions: persistent
data was stored in files in your default temporary directory (see Dir.tmpdir). The filenames
will all start with web-session. and will end with a hashed version of the session number. See
the documentation for CGI::Session for more information.

20.5 Choice of Web Servers

So far, we’ve been running Ruby scripts under the Apache web server. However, Ruby
comes bundled with WEBrick, a flexible, pure-Ruby HTTP server toolkit. WEBrick is an
extensible plug-in–based framework that lets you write servers to handle HTTP requests
and responses. The following is a basic HTTP server that serves documents and directory
indexes:

web/webrick1.rb

#!/usr/bin/ruby
require 'webrick'
include WEBrick

s = HTTPServer.new(Port: 2000,DocumentRoot: File.join(Dir.pwd, "/html"))

trap("INT") { s.shutdown }
s.start

The HTTPServer constructor creates a new web server on port 2000. The code sets the document
root to be the html/ subdirectory of the current directory. It then uses Object#trap to arrange
to shut down tidily on interrupts before starting the server running. If you point your
browser at http://localhost:2000, you should see a listing of your html subdirectory.

WEBrick can do far more than serve static content. You can use it just like a Java servlet
container. The following code mounts a simple servlet at the location /hello. As requests
arrive, the do_GET method is invoked. It uses the response object to display the user agent
information and parameters from the request.

web/webrick2.rb

#!/usr/bin/ruby

require 'webrick'
include WEBrick

s = HTTPServer.new(Port: 2000)

class HelloServlet < HTTPServlet::AbstractServlet
def do_GET(req, res)
res['Content-Type'] = "text/html"
res.body = %{
<html><body>
<p>Hello. You're calling from a #{req['User-Agent']}</p>
<p>I see parameters: #{req.query.keys.join(', ')}</p>

</body></html>}
end

end

s.mount("/hello", HelloServlet)
trap("INT"){ s.shutdown }
s.start

Chapter 20. Ruby and the Web • 286

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/web/webrick1.rb
http://localhost:2000
http://media.pragprog.com/titles/ruby4/code/web/webrick2.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

20.6 Frameworks

In reality, almost no one uses CGI to write web-based Ruby applications any more. Most of
the real action these days is with frameworks. Frameworks abstract away all this low-level
detail and also help you structure your code into something that is both easy to write and
(probably more importantly) easy to maintain.

At the time of writing, Ruby on Rails3 is the leading web framework for Ruby. It has an
incredibly active community and a vast set of plug-ins, so the chances are good you’ll find
a lot of preexisting code to help you kick-start your application. Other alternatives include
Camping, Padrino, Sinatra, and Ramaze.4 By the time you read this, the list will have grown.
And, if you fancy writing your own framework, consider making it independent of the
underlying web server by building it on top of Rack.5

3. http://www.rubyonrails.org
4. http://camping.rubyforge.org/files/README.html, http://padrinorb.com, http://www.sinatrarb.com/, and http://ramaze.net/
5. http://rack.rubyforge.org/

report erratum • discuss

Frameworks • 287

Download from Wow! eBook <www.wowebook.com>

http://www.rubyonrails.org
http://camping.rubyforge.org/files/README.html
http://padrinorb.com
http://www.sinatrarb.com/
http://ramaze.net/
http://rack.rubyforge.org/
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 21

Ruby and Microsoft Windows
Ruby runs in a number of environments. Some of these are Unix-based, and others are based
on the various flavors of Microsoft Windows. Ruby came from people who were Unix-centric,
but over the years it has developed a whole lot of useful features in the Windows world,
too. In this chapter, we’ll look at these features and share some secrets that let you use Ruby
effectively under Windows.

21.1 Running Ruby Under Windows

You’ll find two versions of the Ruby interpreter in the RubyInstaller distribution.

The ruby is meant to be used at a command prompt (a DOS shell), just as in the Unix version.
For applications that read and write to the standard input and output, this is fine. But this
also means that any time you run ruby, you’ll get a DOS shell even if you don’t want one—
Windows will create a new command prompt window and display it while Ruby is running.
This may not be appropriate behavior if, for example, you double-click a Ruby script that
uses a graphical interface (such as Tk) or if you are running a Ruby script as a background
task or from inside another program.

In these cases, you will want to use rubyw. It is the same as ruby except that it does not provide
standard in, standard out, or standard error and does not launch a DOS shell when run.

You can set up file associations using the assoc and ftype commands so that Ruby will auto-
matically run Ruby when you double-click the name of a Ruby script:

C:\> assoc .rb=RubyScript
C:\> ftype RubyScript="C:\ruby1.9\bin\ruby.exe" %1 %*

You may have to run the command prompt with elevated privileges to make this work. To
do this, right-click it in the Start menu, and select Run As Administrator.

If you don’t want to have to type the .rb, you can add Ruby scripts to your PATHEXT:

C:\> set PATHEXT=.rb;%PATHEXT%

21.2 Win32API

If you plan on doing Ruby programming that needs to access some Windows 32 API functions
directly or that needs to use the entry points in some other DLLs, we have good news for
you—the Win32API library.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

As an example, here’s some code that’s part of a larger Windows application used by our
book fulfillment system to download and print invoices and receipts. A web application
generates a PDF file, which the Ruby script running on Windows downloads into a local
file. The script then uses the print shell command under Windows to print this file.

arg = "ids=#{resp.intl_orders.join(",")}"
fname = "/temp/invoices.pdf"

site = Net::HTTP.new(HOST, PORT)
site.use_ssl = true
http_resp, = site.get2("/ship/receipt?" + arg,

'Authorization' => 'Basic ' +
["name:passwd"].pack('m').strip)

File.open(fname, "wb") {|f| f.puts(http_resp.body) }

shell = Win32API.new("shell32","ShellExecute",
['L','P','P','P','P','L'], 'L')

shell.Call(0, "print", fname, 0,0, SW_SHOWNORMAL)

You create aWin32API object that represents a call to a particular DLL entry point by specifying
the name of the function, the name of the DLL that contains the function, and the function
signature (argument types and return type). In the previous example, the variable shellwraps
the Windows function ShellExecute in the shell32 DLL. The second parameter is an array of
characters describing the types of the parameters the method takes: n and l represent numbers,
i represent integers, p represents pointers to data stored in a string, and v represents a void
type (used for export parameters only). These strings are case insensitive. So, our method
takes a number, four string pointers, and a number. The last parameter says that the method
returns a number. The resulting object is a proxy to the underlying ShellExecute function and
can be used to make the call to print the file that we downloaded.

Many of the arguments to DLL functions are binary structures of some form.Win32API handles
this by using Ruby String objects to pass the binary data back and forth. You will need to
pack and unpack these strings as necessary.

21.3 Windows Automation

If groveling around in the low-level Windows API doesn’t interest you, Windows Automation
may—you can use Ruby as a client for Windows Automation thanks to Masaki Suketa’s
Ruby extension called WIN32OLE. Win32OLE is part of the standard Ruby distribution.

Windows Automation allows an automation controller (a client) to issue commands and
queries against an automation server, such as Microsoft Excel, Word, and so on.

You can execute an automation server’s method by calling a method of the same name from
a WIN32OLE object. For instance, you can create a new WIN32OLE client that launches a fresh
copy of Internet Explorer and commands it to visit its home page:

win32/gohome.rb

require 'win32ole'
ie = WIN32OLE.new('InternetExplorer.Application')
ie.visible = true
ie.gohome

Chapter 21. Ruby and Microsoft Windows • 290

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/win32/gohome.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

You could also make it navigate to a particular page:

win32/navigate.rb

require 'win32ole'
ie = WIN32OLE.new('InternetExplorer.Application')
ie.visible = true
ie.navigate("http://www.pragprog.com")

Methods that aren’t known to WIN32OLE (such as visible, gohome, or navigate) are passed on to
the WIN32OLE#invoke method, which sends the proper commands to the server.

Getting and Setting Properties

An automation server’s properties are automatically set up as attributes of the WIN32OLE
object. This means you can set a property by assigning to an object attribute. For example,
to get and then set the Height property of Explorer, you could write this:

win32/get_set_height.rb

require 'win32ole'
ie = WIN32OLE.new('InternetExplorer.Application')
ie.visible = true
puts "Height = #{ie.Height}"
ie.Height = 300

The following example uses the automation interface built into the OpenOffice suite to create
a spreadsheet and populate some cells:1

win32/open_office.rb

require 'win32ole'

class OOSpreadsheet
def initialize
mgr = WIN32OLE.new('com.sun.star.ServiceManager')
desktop = mgr.createInstance("com.sun.star.frame.Desktop")
@doc = desktop.LoadComponentFromUrl("private:factory/scalc", "_blank", 0, [])
@sheet = @doc.sheets[0]

end

def get_cell(row, col)
@sheet.getCellByPosition(col, row, 0)

end

tl: top_left, br: bottom_right
def get_cell_range(tl_row, tl_col, br_row, br_col)
@sheet.getCellRangeByPosition(tl_row, tl_col, br_row, br_col, 0)

end
end

spreadsheet = OOSpreadsheet.new
cell = spreadsheet.get_cell(1, 0)
cell.Value = 1234

cells = spreadsheet.get_cell_range(1, 2, 5, 3)

1. See http://udk.openoffice.org/common/man/tutorial/office_automation.html for links to resources on automating
OpenOffice.

report erratum • discuss

Windows Automation • 291

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/win32/navigate.rb
http://media.pragprog.com/titles/ruby4/code/win32/get_set_height.rb
http://media.pragprog.com/titles/ruby4/code/win32/open_office.rb
http://udk.openoffice.org/common/man/tutorial/office_automation.html
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

cols = cells.Columns.count
rows = cells.Rows.count

cols.times do |col_no|
rows.times do |row_no|
cell = cells.getCellByPosition(col_no, row_no)
cell.Value = (col_no + 1)*(row_no+1)

end
end

Named Arguments

Other automation client languages such as Visual Basic have the concept of named arguments.
Suppose you had a Visual Basic routine with the following signature:

Song(artist, title, length): rem Visual Basic

Instead of calling it with all three arguments in the order specified, you could use named
arguments:

Song title := 'Get It On': rem Visual Basic

This is equivalent to the call Song(nil, "Get It On", nil).

In Ruby, you can use this feature by passing a hash with the named arguments:

Song.new('title' => 'Get It On')

for each

Where Visual Basic has a for each statement to iterate over a collection of items in a server, a
WIN32OLE object has an each method (which takes a block) to accomplish the same thing:

win32/win32each.rb

require 'win32ole'

excel = WIN32OLE.new("excel.application")

excel.Workbooks.Add
excel.Range("a1").Value = 10
excel.Range("a2").Value = 20
excel.Range("a3").Value = "=a1+a2"

excel.Range("a1:a3").each do |cell|
p cell.Value

end

Chapter 21. Ruby and Microsoft Windows • 292

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/win32/win32each.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Events

Your automation client written in Ruby can register itself to receive events from other pro-
grams. This is done using the WIN32OLE_EVENT class.

This example (based on code from the Win32OLE 0.1.1 distribution) shows the use of an
event sink that logs the URLs that a user browses to when using Internet Explorer:

win32/record_navigation.rb

require 'win32ole'

urls_visited = []
running = true

def default_handler(event, *args)
case event
when "BeforeNavigate"
puts "Now Navigating to #{args[0]}..."

end
end

ie = WIN32OLE.new('InternetExplorer.Application')
ie.visible = TRUE
ie.gohome
ev = WIN32OLE_EVENT.new(ie, 'DWebBrowserEvents')

ev.on_event {|*args| default_handler(*args)}
ev.on_event("NavigateComplete") {|url| urls_visited << url }
ev.on_event("Quit") do |*args|
puts "IE has quit"
puts "You Navigated to the following URLs: "
urls_visited.each_with_index do |url, i|
puts "(#{i+1}) #{url}"

end
running = false

end

hang around processing messages
WIN32OLE_EVENT.message_loop while running

Optimizing

As with most (if not all) high-level languages, it can be all too easy to churn out code that is
unbearably slow, but that can be easily fixed with a little thought.

With WIN32OLE, you need to be careful with unnecessary dynamic lookups. Where possible,
it is better to assign aWIN32OLE object to a variable and then reference elements from it, rather
than creating a long chain of “.” expressions.

For example, instead of writing this:

workbook.Worksheets(1).Range("A1").value = 1
workbook.Worksheets(1).Range("A2").value = 2
workbook.Worksheets(1).Range("A3").value = 4
workbook.Worksheets(1).Range("A4").value = 8

report erratum • discuss

Windows Automation • 293

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/win32/record_navigation.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

we can eliminate the common subexpressions by saving the first part of the expression to a
temporary variable and then make calls from that variable:

worksheet = workbook.Worksheets(1)

worksheet.Range("A1").value = 1
worksheet.Range("A2").value = 2
worksheet.Range("A3").value = 4
worksheet.Range("A4").value = 8

You can also create Ruby stubs for a particular Windows type library. These stubs wrap the
OLE object in a Ruby class with one method per entry point. Internally, the stub uses the
entry point’s number, not name, which speeds access.

Generate the wrapper class using the olegen.rb script, available in the Ruby source repository.2

Give it the name of type library to reflect on:

C:\> ruby olegen.rb 'Microsoft TAPI 3.0 Type Library' >tapi.rb

The external methods and events of the type library are written as Ruby methods to the
given file. You can then include it in your programs and call the methods directly.

More Help

If you need to interface Ruby to Windows NT, 2000, or XP, you may want to take a look at
Daniel Berger’s Win32Utils project (http://rubyforge.org/projects/win32utils/). There you’ll find
modules for interfacing to the Windows clipboard, event log, scheduler, and so on.

Also, the Fiddle library (described briefly in the library section on page 756) allows Ruby
programs to invoke methods in dynamically loaded shared objects. This means your Ruby
code can load and invoke entry points in a Windows DLL. For example, the following code
pops up a message box on a Windows machine and determines which button the user clicked.

win32/dl.rb

require 'fiddle'

user32 = DL.dlopen("user32.dll")
msgbox = Fiddle::Function.new(user32['MessageBoxA'],

[TYPE_LONG, TYPE_VOIDP, TYPE_VOIDP, TYPE_INT],
TYPE_INT)

MB_OKCANCEL = 1
msgbox.call(0, "OK?", "Please Confirm", MB_OKCANCEL)

This code wraps User32 DLL, creating a Ruby method that is a proxy to the underlying
MessageBoxA method. It also specifies the return and parameter types so that Ruby can cor-
rectly marshal them between its objects and the underlying operating system types.

The wrapper object is then used to call the message box entry point in the DLL. The return
values are the result (in this case, the identifier of the button pressed by the user) and an
array of the parameters passed in (which we ignore).

2. http://svn.ruby-lang.org/repos/ruby/trunk/ext/win32ole/sample/olegen.rb

Chapter 21. Ruby and Microsoft Windows • 294

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://rubyforge.org/projects/win32utils/
http://media.pragprog.com/titles/ruby4/code/win32/dl.rb
http://svn.ruby-lang.org/repos/ruby/trunk/ext/win32ole/sample/olegen.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Part III

Ruby Crystallized

Download from Wow! eBook <www.wowebook.com>

CHAPTER 22

The Ruby Language
This chapter is a bottom-up look at the Ruby language. Most of what appears here is the
syntax and semantics of the language itself—we mostly ignore the built-in classes and
modules (these are covered in depth in the reference material on page 417). However, Ruby
sometimes implements features in its libraries that in most languages would be part of the
basic syntax. Where it makes sense, we’ve included some of these methods here.

The contents of this chapter may look familiar—with good reason, as we’ve covered most
of this earlier. This chapter is a self-contained reference for the Ruby language.

22.1 Source File Encoding

Ruby 1.9 programs are by default written in 7-bit ASCII, also called US-ASCII. If a code set
other than 7-bit ASCII is to be used, place a comment containing coding: followed by the
name of an encoding on the first line of each source file containing non-ASCII characters.
The coding: comment can be on the second line of the file if the first line is a shebang comment.

⇡New in 2.0⇣
Ruby skips characters in the comment before the word coding:. Ruby 2 assumes the source
is written in UTF-8. This assumption can be overridden using the same style coding: comment.

#!/usr/bin/ruby# -*- encoding: iso-8859-1 -*-# coding: utf-8
fileencoding: us-ascii
ASCII source...ISO-8859-1 source...UTF-8 source...

22.2 Source Layout

Ruby is a line-oriented language. Ruby expressions and statements are terminated at the
end of a line unless the parser can determine that the statement is incomplete, such as if the
last token on a line is an operator or comma. A semicolon can be used to separate multiple
expressions on a line. You can also put a backslash at the end of a line to continue it onto
the next. Comments start with # and run to the end of the physical line. Comments are
ignored during syntax analysis.

a = 1
b = 2; c = 3
d = 4 + 5 +

6 + 7 # no '\' needed
e = 8 + 9 \

+ 10 # '\' needed

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Physical lines between a line starting with =begin and a line starting with =end are ignored
by Ruby and may be used to comment out sections of code or to embed documentation.

You can pipe programs to the Ruby interpreter’s standard input stream:

$ echo 'puts "Hello"' | ruby

If Ruby comes across a line anywhere in the source containing just __END__, with no leading
or trailing whitespace, it treats that line as the end of the program—any subsequent lines
will not be treated as program code. However, these lines can be read into the running pro-
gram using the global IO object DATA, described in the section about constants on page 315.

BEGIN and END Blocks

Every Ruby source file can declare blocks of code to be run as the file is being loaded (the
BEGIN blocks) and after the program has finished executing (the END blocks):

BEGIN {
 begin code
}

END {
 end code
}

A program may include multiple BEGIN and END blocks. BEGIN blocks are executed in the
order they are encountered. END blocks are executed in reverse order.

General Delimited Input

As well as the normal quoting mechanism, alternative forms of literal strings, arrays of

⇡New in 2.0⇣
strings and symbols, regular expressions, and shell commands are specified using a gener-
alized delimited syntax. All these literals start with a percent character, followed by a single
character that identifies the literal’s type. These characters are summarized in the following
table; the actual literals are described in the corresponding sections later in this chapter.

ExampleMeaningType

%q{\a and #{1+2} are literal}Single-quoted string%q
%Q{\a and #{1+2} are expanded}Double-quoted string%Q, %
%w[one two three]Array of strings%w, %W
%i[one two three]Array of symbols%i, %I (new in ⇡2.0⇣)

%r{cat|dog}Regular expression pattern%r
%s!a symbol!A symbol%s
%x(df -h)Shell command%x

Unlike their lowercase counterparts, %I, %Q, and %W will preform interpolation:

%i{ one digit#{1+1} three } # => [:one, :"digit\#{1+1}", :three]
%I{ one digit#{1+1} three } # => [:one, :digit2, :three]
%q{ one digit#{1+1} three } # => " one digit\#{1+1} three "
%Q{ one digit#{1+1} three } # => " one digit2 three "
%w{ one digit#{1+1} three } # => ["one", "digit\#{1+1}", "three"]
%W{ one digit#{1+1} three } # => ["one", "digit2", "three"]

Chapter 22. The Ruby Language • 298

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Following the type character is a delimiter, which can be any nonalphanumericic or non-
multibyte character. If the delimiter is one of the characters (, [, {, or <, the literal consists of
the characters up to the matching closing delimiter, taking account of nested delimiter pairs.
For all other delimiters, the literal comprises the characters up to the next occurrence of the
delimiter character.

%q/this is a string/
%q-string-
%q(a (nested) string)

Delimited strings may continue over multiple lines; the line endings and all spaces at the
start of continuation lines will be included in the string:

meth = %q{def fred(a)
a.each {|i| puts i }

end}

22.3 The Basic Types

The basic types in Ruby are numbers, strings, arrays, hashes, ranges, symbols, and regular
expressions.

Integer and Floating-Point Numbers

Ruby integers are objects of class Fixnum or Bignum. Fixnum objects hold integers that fit
within the native machine word minus 1 bit. Whenever a Fixnum exceeds this range, it is
automatically converted to a Bignum object, whose range is effectively limited only by available
memory. If an operation with a Bignum result has a final value that will fit in a Fixnum, the
result will be returned as a Fixnum.

Integers are written using an optional leading sign and an optional base indicator (0 or 0o
for octal, 0d for decimal, 0x for hex, or 0b for binary), followed by a string of digits in the
appropriate base. Underscore characters are ignored in the digit string.

123456 => 123456 # Fixnum
0d123456 => 123456 # Fixnum
123_456 => 123456 # Fixnum - underscore ignored
-543 => -543 # Fixnum - negative number
0xaabb => 43707 # Fixnum - hexadecimal
0377 => 255 # Fixnum - octal
0o377 => 255 # Fixnum - octal
-0b10_1010 => -42 # Fixnum - binary (negated)
123_456_789_123_456_789 => 123456789123456789 # Bignum

A numeric literal with a decimal point and/or an exponent is turned into a Float object, corre-
sponding to the native architecture’s double data type. You must follow the decimal point
with a digit; if you write 1.e3, Ruby tries to invoke the method e3 on the Fixnum 1. You must
place at least one digit before the decimal point.

12.34 # => 12.34
-0.1234e2 # => -12.34
1234e-2 # => 12.34

report erratum • discuss

The Basic Types • 299

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Rational and Complex Numbers

Classes that support rational numbers (ratios of integers) and complex numbers are built
into the Ruby interpreter. However, Ruby provides no language-level support for these
numeric types—there are no rational or complex literals, for example. See the descriptions
of Complex on page 451 and Rational on page 656 for more information.

Strings

Ruby provides a number of mechanisms for creating literal strings. Each generates objects
of type String. The different mechanisms vary in terms of how a string is delimited and how
much substitution is done on the literal’s content. Literal strings are encoded using the source
encoding of the file that contains them.

Single-quoted string literals ('stuff' and%q/stuff/) undergo the least substitution. Both convert
the sequence \\ into a single backslash, and a backslash can be used to escape the single quote
or the string delimiter. All other backslashes appear literally in the string.

'hello' # => hello
'a backslash \'\\\'' # => a backslash '\'
%q/simple string/ # => simple string
%q(nesting (really) works) # => nesting (really) works
%q(escape a\) with backslash) # => escape a) with backslash
%q no_blanks_here ; # => no_blanks_here

Double-quoted strings ("stuff", %Q/stuff/,} and %/stuff/) undergo additional substitutions; see
the following table.

Tab (0x09)\tBackspace (0x08)\bValue of code\#{code}
Unicode character\uxxxxControl-x\cxOctal nnn\nnn
Unicode characters\u{xx xx xx}Escape (0x1b)\ex\x
Vertical tab (0x0b)\vFormfeed (0x0c)\fControl-x\C-x
Hex nn\xnnNewline (0x0a)\nMeta-x\M-x

Return (0x0d)\rMeta-control-x\M-\C-x
Space (0x20)\sBell/alert (0x07)\a

Table 11—Substitutions in double-quoted strings

Here are some examples:

a = 123
"\123mile" # => Smile
"Greek pi: \u03c0" # => Greek pi: π
"Greek \u{70 69 3a 20 3c0}" # => Greek pi: π
"Say \"Hello\"" # => Say "Hello"
%Q!"I said 'nuts'\!," I said! # => "I said 'nuts'!," I said
%Q{Try #{a + 1}, not #{a - 1}} # => Try 124, not 122
%<Try #{a + 1}, not #{a - 1}> # => Try 124, not 122
"Try #{a + 1}, not #{a - 1}" # => Try 124, not 122
%{ #{ a = 1; b = 2; a + b } } # => 3

Last, and probably least (in terms of usage), you can get the string corresponding to an ASCII
character by preceding that character with a question mark.

Chapter 22. The Ruby Language • 300

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

ASCII character"a"?a
newline (0x0a)"\n"?\n
control a (0x65 & 0x9f) == 0x01"\u0001"?\C-a
meta sets bit 7"\xE1"?\M-a
meta and control a"\x81"?\M-\C-a
delete character"\u007F"?\C-?

Strings can continue across multiple input lines, in which case they will contain newline
characters. You can use here documents to express long string literals. When Ruby parses the
sequence <<identifier or <<quoted string, it replaces it with a string literal built from successive
logical input lines. It stops building the string when it finds a line that starts with identifier
or quoted string. You can put a minus sign immediately after the << characters, in which case
the terminator can be indented from the margin. If a quoted string was used to specify the
terminator, its quoting rules are applied to the here document; otherwise, double-quoting
rules apply.

print <<HERE
Double quoted \
here document.
It is #{Time.now}
HERE

print <<-'THERE'
This is single quoted.
The above used #{Time.now}
THERE

produces:

Double quoted here document.
It is 2013-05-27 12:31:31 -0500

This is single quoted.
The above used #{Time.now}

In the previous example the backslash after Double quoted caused the logical line to be contin-
ued with the contents of the next line.

Adjacent single- and double-quoted strings are concatenated to form a single String object:

'Con' "cat" 'en' "ate" # => "Concatenate"

A new String object is created every time a string literal is assigned or passed as a parameter.

3.times do
print 'hello'.object_id, " "

end

produces:

70214897722200 70214897722080 70214897721960

There’s more information in the documentation for class String on page 666.

report erratum • discuss

The Basic Types • 301

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Ranges

Outside the context of a conditional expression, expr..expr and expr...expr construct Range
objects. The two-dot form is an inclusive range; the one with three dots is a range that excludes
its last element. See the description of class Range on page 650 for details. Also see the
description of conditional expressions on page 320 for other uses of ranges.

Arrays

Literals of class Array are created by placing a comma-separated series of object references
between square brackets. A trailing comma is ignored.

arr = [fred, 10, 3.14, "This is a string", barney("pebbles"),]

Arrays of strings can be constructed using the shortcut notations%w and%W. The lowercase
form extracts space-separated tokens into successive elements of the array. No substitution
is performed on the individual strings. The uppercase version also converts the words to an
array but performs all the normal double-quoted string substitutions on each individual
word. A space between words can be escaped with a backslash. This is a form of general
delimited input, described earlier on page 298.

arr = %w(fred wilma barney betty great\ gazoo)
arr # => ["fred", "wilma", "barney", "betty", "great gazoo"]
arr = %w(Hey!\tIt is now -#{Time.now}-)
arr # => ["Hey!\tIt", "is", "now", "-#{Time.now}-"]
arr = %W(Hey!\tIt is now -#{Time.now}-)
arr # => ["Hey! It", "is", "now", "-2013-05-27 12:31:31 -0500-"]

Hashes

A literal Ruby Hash is created by placing a list of key/value pairs between braces. Keys and
values can be separated by the sequence =>.1

colors = { "red" => 0xf00, "green" => 0x0f0, "blue" => 0x00f }

If the keys are symbols, you can use this alternative notation:

colors = { red: 0xf00, green: 0x0f0, blue: 0x00f }

The keys and/or values in a particular hash need not have the same type.

Requirements for a Hash Key

Hash keys must respond to the message hash by returning a hash code, and the hash code
for a given key must not change. The keys used in hashes must also be comparable using
eql?. If eql? returns true for two keys, then those keys must also have the same hash code. This
means that certain classes (such as Array and Hash) can’t conveniently be used as keys, because
their hash values can change based on their contents.

If you keep an external reference to an object that is used as a key and use that reference to
alter the object, thus changing its hash code, the hash lookup based on that key may not
work. You can force the hash to be reindexed by calling its rehash method.

1. As of Ruby 1.9, a comma may no longer be used to separate keys and values in hash literals. A comma
still appears between each key/value pair.

Chapter 22. The Ruby Language • 302

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

arr = [1, 2, 3]
hash = { arr => 'value' }
hash[arr] # => "value"
arr[1] = 99
hash # => {[1, 99, 3]=>"value"}
hash[arr] # => nil
hash.rehash
hash[arr] # => "value"

Because strings are the most frequently used keys and because string contents are often
changed, Ruby treats string keys specially. If you use a String object as a hash key, the hash
will duplicate the string internally and will use that copy as its key. The copy will be frozen.
Any changes made to the original string will not affect the hash.

If you write your own classes and use instances of them as hash keys, you need to make sure
that either (a) the hashes of the key objects don’t change once the objects have been created
or (b) you remember to call the Hash#rehashmethod to reindex the hash whenever a key hash
is changed.

Symbols

A Ruby symbol is an identifier corresponding to a string of characters, often a name. You
construct the symbol for a name by preceding the name with a colon, and you can construct
the symbol for an arbitrary string by preceding a string literal with a colon. Substitution
occurs in double-quoted strings. A particular name or string will always generate the same
symbol, regardless of how that name is used within the program. You can also use the %s
delimited notation to create a symbol.

:Object
:my_variable
:"Ruby rules"
a = "cat"
:'catsup' # => :catsup
:"#{a}sup" # => :catsup
:'#{a}sup' # => :"\#{a}sup"

Other languages call this process interning and call symbols atoms.

Regular Expressions

⇡New in 2.0⇣Ruby 1.9 uses the Oniguruma regular expression engine. Ruby 2.0 uses an extension of this
engine called Onigmo. We show these extensions with the Ruby 2.0 flag.

See Chapter 7,Regular Expressions, on page 93 for a detailed description of regular expressions.

Regular expression literals are objects of type Regexp. They are created explicitly by calling
Regexp.new or implicitly by using the literal forms, /pattern/ and %r{pattern}. The %r construct
is a form of general delimited input (described earlier on page 298).

/pattern/
/pattern/options

%r{pattern}
%r{pattern}options

Regexp.new(’pattern’ ‹ , options ›)

report erratum • discuss

The Basic Types • 303

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

options is one or more of i (case insensitive), o (substitute once), m (. matches newline), and
x (allow spaces and comments). You can additionally override the default encoding of the
pattern with n (no encoding-ASCII), e (EUC), s (Shift_JIS), or u (UTF-8).

Regular Expression Patterns

⇡New in 2.0⇣ (This section contains minor differences from previous versions of this book. Ruby 1.9 uses
the Oniguruma regular expression engine.)2

⇡New in 2.0⇣ An asterisk at the end of an entry in the following list means that the match is extended
beyond ASCII characters if Unicode option is set.

characters
All except . | () [\ ^ { + $ * and ? match themselves. To match one of these characters,
precede it with a backslash.

\a \cx \e \f \r \t \unnnn \v \xnn \nnn \C-\M-x \C-x \M-x
Match the character derived according to Table 11, Substitutions in double-quoted strings,
on page 300.

^, $ Match the beginning/end of a line.

\A, \z, \Z
Match the beginning/end of the string. \Z ignores trailing \n.

\d, \h Match any decimal digit or hexadecimal digit ([0-9a-fA-F]).*

\s Matches any whitespace character: tab, newline, vertical tab, formfeed, return, and space.*

\w Matches any word character: alphanumerics and underscores.*

\D, \H, \S, \W
The negated forms of \d, \h, \s, and \w, matching characters that are not digits, hexadecimal
digits, whitespace, or word characters.*

\b, \B Match word/nonword boundaries.

\G The position where a previous repetitive search completed.

⇡New in 2.0⇣
\K Discards the portion of the match to the left of the \K.

⇡New in 2.0⇣
\R A generic end-of-line sequence.*

⇡New in 2.0⇣
\X A Unicode grapheme.*

\p{property}, \P{property}, \p{!property}
Match a character that is in/not in the given property (see Table 4, Unicode character
properties, on page 114).

. (period)
Appearing outside brackets, matches any character except a newline. (With the /m option,
it matches newline, too).

[characters]
Matches a single character from the specified set. See Character Classes, on page 98.

2. Some of the information here is based on http://www.geocities.jp/kosako3/oniguruma/doc/RE.txt.

Chapter 22. The Ruby Language • 304

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://www.geocities.jp/kosako3/oniguruma/doc/RE.txt
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

re* Matches zero or more occurrences of re.

re+ Matches one or more occurrences of re.

re{m,n} Matches at least m and at most n occurrences of re.

re{m,} Matches at least m occurrences of re.

re{,n} Matches at most n occurrences of re.

re{m} Matches exactly m occurrences of re.

re? Matches zero or one occurrence of re.

The ?, *, +, and {m,n}modifiers are greedy by default. Append a question mark to make
them minimal, and append a plus sign to make them possessive (that is, they are greedy
and will not backtrack).

re1 | re2
Matches either re1 or re2.

(...) Parentheses group regular expressions and introduce extensions.

#{...} Substitutes expression in the pattern, as with strings. By default, the substitution is
performed each time a regular expression literal is evaluated. With the /o option, it is
performed just the first time.

\1, \2, ... \n
Match the value matched by the nth grouped subexpression.

(?# comment)
Inserts a comment into the pattern.

(?:re) Makes re into a group without generating backreferences.

(?=re), (?!re)
Matches if re is/is not at this point but does not consume it.

(?<=re), (?<!re)
Matches if re is/is not before this point but does not consume it.

(?>re)
Matches re but inhibits subsequent backtracking.

(?adimux), (?-imx)

⇡New in 2.0⇣
Turn on/off the corresponding a, d, i, m, u, or x option. If used inside a group, the effect
is limited to that group.

(?adimux:re), (?-imx:re)
Turn on/off the i, m, or x option for re.

\n, \k'n', and \k<n>
The nth captured subpattern.

(?<name>...) or (?'name'...)
Name the string captured by the group.

\k<name> or \k'name'
The contents of the named group.

report erratum • discuss

The Basic Types • 305

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

\k<name>+/-n or \k'name'+/-n
The contents of the named group at the given relative nesting level.

\g<name> or \g<number>
Invokes the named or numbered group.

22.4 Names

Ruby names are used to refer to constants, variables, methods, classes, and modules. The
first character of a name helps Ruby distinguish its intended use. Certain names, listed in
the following table, are reserved words and should not be used as variable, method, class,
or module names.

beginandaliasENDBEGIN__LINE____FILE____ENCODING__

endelsifelsedodefined?defclasscasebreak

notnilnextmoduleinifforfalseensure

truethensuperselfreturnretryrescueredoor

yieldwhilewhenuntilunlessundef

Table 12—Reserved words

Method names are described later on page 323.

In these descriptions, uppercase letter means A through Z, and digit means 0 through 9. Low-
ercase letter means the characters a through z, as well as the underscore (_). In addition, any
non-7-bit characters that are valid in the current encoding are considered to be lowercase.3

A name is an uppercase letter, a lowercase letter, or an underscore, followed by name characters:
any combination of upper- and lowercase letters, underscores, and digits.

A local variable name consists of a lowercase letter followed by name characters. It is conven-
tional to use underscores rather than camelCase to write multiword names, but the interpreter
does not enforce this.

fred anObject _x three_two_one

If the source file encoding is UTF-8, ∂elta and été are both valid local variable names.

An instance variable name starts with an “at” sign (@) followed by name characters. It is gen-
erally a good idea to use a lowercase letter after the @. The @ sign forms part of the instance
variable name.

@name @_ @size

A class variable name starts with two “at” signs (@@) followed by name characters.

@@name @@_ @@Size

A constant name starts with an uppercase letter followed by name characters. Class names
and module names are constants and follow the constant naming conventions.

By convention, constant object references are normally spelled using uppercase letters and
underscores throughout, while class and module names are MixedCase:

3. Such names will not be usable from other source files with different encoding.

Chapter 22. The Ruby Language • 306

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

module Math
ALMOST_PI = 22.0/7.0

end
class BigBlob
end

Global variables, and some special system variables, start with a dollar sign ($) followed by
name characters. In addition, Ruby defines a set of two-character global variable names in
which the second character is a punctuation character. These predefined variables are listed
Predefined Variables, on page 311. Finally, a global variable name can be formed using $- fol-
lowed by a single letter or underscore. These latter variables typically mirror the setting of
the corresponding command-line option (see Execution Environment Variables, on page 313
for details):

$params $PROGRAM $! $_ $-a $-K

Variable/Method Ambiguity

When Ruby sees a name such as a in an expression, it needs to determine whether it is a
local variable reference or a call to a method with no parameters. To decide which is the
case, Ruby uses a heuristic. As Ruby parses a source file, it keeps track of symbols that have
been assigned to. It assumes that these symbols are variables. When it subsequently comes
across a symbol that could be a variable or a method call, it checks to see whether it has seen
a prior assignment to that symbol. If so, it treats the symbol as a variable; otherwise, it treats
it as a method call. As a somewhat pathological case of this, consider the following code
fragment, submitted by Clemens Hintze:

def a
puts "Function 'a' called"
99

end

for i in 1..2
if i == 2
puts "i==2, a=#{a}"

else
a = 1
puts "i==1, a=#{a}"

end
end

produces:

i==1, a=1
Function 'a' called
i==2, a=99

During the parse, Ruby sees the use of a in the first puts statement and, because it hasn’t yet
seen any assignment to a, assumes that it is a method call. By the time it gets to the second
puts statement, though, it has seen an assignment and so treats a as a variable.

Note that the assignment does not have to be executed—Ruby just has to have seen it. This
program does not raise an error.

a = 1 if false; a # => nil

report erratum • discuss

Names • 307

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

22.5 Variables and Constants

Ruby variables and constants hold references to objects. Variables themselves do not have
an intrinsic type. Instead, the type of a variable is defined solely by the messages to which
the object referenced by the variable responds. (When we say that a variable is not typed,
we mean that any given variable can at different times hold references to objects of many
different types.)

A Ruby constant is also a reference to an object. Constants are created when they are first
assigned to (normally in a class or module definition). Ruby, unlike less flexible languages,
lets you alter the value of a constant, although this will generate a warning message:

MY_CONST = 1
puts "First MY_CONST = #{MY_CONST}"

MY_CONST = 2 # generates a warning but sets MY_CONST to 2
puts "Then MY_CONST = #{MY_CONST}"

produces:

prog.rb:4: warning: already initialized constant MY_CONST
prog.rb:1: warning: previous definition of MY_CONST was here
First MY_CONST = 1
Then MY_CONST = 2

Note that although constants should not be changed, you can alter the internal states of the
objects they reference (you can freeze objects to prevent this). This is because assignment
potentially aliases objects, creating two references to the same object.

MY_CONST = "Tim"
MY_CONST[0] = "J" # alter string referenced by constant
MY_CONST # => "Jim"

Scope of Constants and Variables

Constants defined within a class or module may be accessed unadorned anywhere within
the class or module. Outside the class or module, they may be accessed using the scope
operator, ::, prefixed by an expression that returns the appropriate class or module object.
Constants defined outside any class or module may be accessed unadorned or by using the
scope operator with no prefix. Constants may not be defined in methods. Constants may be
added to existing classes and modules from the outside by using the class or module name
and the scope operator before the constant name.

OUTER_CONST = 99
class Const
def get_const
CONST

end
CONST = OUTER_CONST + 1

end
Const.new.get_const # => 100
Const::CONST # => 100
::OUTER_CONST # => 99
Const::NEW_CONST = 123

Chapter 22. The Ruby Language • 308

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Global variables are available throughout a program. Every reference to a particular global
name returns the same object. Referencing an uninitialized global variable returns nil.

Class variables are available throughout a class or module body. Class variables must be ini-
tialized before use. A class variable is shared among all instances of a class and is available
within the class itself.

class Song
@@count = 0

def initialize
@@count += 1

end

def Song.get_count
@@count

end
end

Class variables belong to the innermost enclosing class or module. Class variables used at
the top level are defined in Object and behave like global variables. In Ruby 1.9, class variables
are supposed to be private to the defining class, although as the following example shows,
there seems to be some leakage.

class Holder # => prog.rb:13: warning: class variable access from toplevel
@@var = 99

def Holder.var=(val)
@@var = val

end

def var
@@var

end
end

@@var = "top level variable"

a = Holder.new
a.var # => "top level variable"
Holder.var = 123
a.var # => 123

Class variables are inherited by children but propagate upward if first defined in a child:

class Top
@@A = "top A"
@@B = "top B"
def dump
puts values

end
def values
"#{self.class.name}: @@A = #@@A, @@B = #@@B"

end
end

report erratum • discuss

Variables and Constants • 309

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

class MiddleOne < Top
@@B = "One B"
@@C = "One C"
def values
super + ", C = #@@C"

end
end
class MiddleTwo < Top
@@B = "Two B"
@@C = "Two C"
def values
super + ", C = #@@C"

end
end
class BottomOne < MiddleOne; end
class BottomTwo < MiddleTwo; end

Top.new.dump
MiddleOne.new.dump
MiddleTwo.new.dump
BottomOne.new.dump
BottomTwo.new.dump

produces:

Top: @@A = top A, @@B = Two B
MiddleOne: @@A = top A, @@B = Two B, C = One C
MiddleTwo: @@A = top A, @@B = Two B, C = Two C
BottomOne: @@A = top A, @@B = Two B, C = One C
BottomTwo: @@A = top A, @@B = Two B, C = Two C

I recommend against using class variables for these reasons.

Instance variables are available within instance methods throughout a class body. Referencing
an uninitialized instance variable returns nil. Each object (instance of a class) has a unique
set of instance variables.

Local variables are unique in that their scopes are statically determined but their existence is
established dynamically.

A local variable is created dynamically when it is first assigned a value during program
execution. However, the scope of a local variable is statically determined to be the immedi-
ately enclosing block, method definition, class definition, module definition, or top-level
program. Local variables with the same name are different variables if they appear in disjoint
scopes.

Method parameters are considered to be variables local to that method.

Block parameters are assigned values when the block is invoked.

If a local variable is first assigned in a block, it is local to the block.

If a block uses a variable that is previously defined in the scope containing the block’s defi-
nition, then the block will share that variable with the scope. There are two exceptions to
this. Block parameters are always local to the block. In addition, variables listed after a
semicolon at the end of the block parameter list are also always local to the block.

Chapter 22. The Ruby Language • 310

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

a = 1
b = 2
c = 3

some_method { |b; c| a = b + 1; c = a + 1; d = c + 1 }

In this previous example, the variable a inside the block is shared with the surrounding
scope. The variables b and c are not shared, because they are listed in the block’s parameter
list, and the variable d is not shared because it occurs only inside the block.

A block takes on the set of local variables in existence at the time that it is created. This forms
part of its binding. Note that although the binding of the variables is fixed at this point, the
block will have access to the current values of these variables when it executes. The binding
preserves these variables even if the original enclosing scope is destroyed.

The bodies of while, until, and for loops are part of the scope that contains them; previously
existing locals can be used in the loop, and any new locals created will be available outside
the bodies afterward.

Predefined Variables

The following variables are predefined in the Ruby interpreter. In these descriptions, the
notation [r/o] indicates that the variables are read-only; an error will be raised if a program
attempts to modify a read-only variable. After all, you probably don’t want to change the
meaning of true halfway through your program (except perhaps if you’re a politician). Entries
marked [thread] are thread local.

Many global variables look something like Snoopy swearing: $_, $!, $&, and so on. This is for
“historical” reasons—most of these variable names come from Perl. If you find memorizing
all this punctuation difficult, you may want to take a look at the English library on page 749,
which gives the commonly used global variables more descriptive names.

In the tables of variables and constants that follow, we show the variable name, the type of
the referenced object, and a description.

Exception Information

$! → Exception
The exception object passed to raise. [thread]

$@ → Array
The stack backtrace generated by the last exception. See the description of Object#caller
on page 613 for details. [thread]

Pattern Matching Variables

These variables (except $=) are set to nil after an unsuccessful pattern match.

$& → String
The string matched (following a successful pattern match). This variable is local to the
current scope. [r/o, thread]

report erratum • discuss

Variables and Constants • 311

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

$+ → String
The contents of the highest-numbered group matched following a successful pattern
match. Thus, in "cat" =~ /(c|a)(t|z)/, $+will be set to “t.” This variable is local to the current
scope. [r/o, thread]

$` → String
The string preceding the match in a successful pattern match. This variable is local to
the current scope. [r/o, thread]

$' → String
The string following the match in a successful pattern match. This variable is local to
the current scope. [r/o, thread]

$1...$n → String
The contents of successive groups matched in a pattern match. In "cat" =~ /(c|a)(t|z)/, $1
will be set to “a” and $2 to “t.” This variable is local to the current scope. [r/o, thread]

$~ → MatchData
An object that encapsulates the results of a successful pattern match. The variables $&,
$`, $', and $1 to $9 are all derived from $~. Assigning to $~ changes the values of these
derived variables. This variable is local to the current scope. [thread]

The variable $=, has been removed from Ruby 1.9.

Input/Output Variables

$/ → String
The input record separator (newline by default). This is the value that routines such as
Object#gets use to determine record boundaries. If set to nil, gets will read the entire file.

$-0 → String
Synonym for $/.

$\ → String
The string appended to the output of every call to methods such as Object#print and
IO#write. The default value is nil.

$, → String
The separator string output between the parameters to methods such as Object#print and
Array#join. Defaults to nil, which adds no text.

$. → Fixnum
The number of the last line read from the current input file.

$; → String
The default separator pattern used by String#split. May be set using the -F command-line
option.

$< → ARGF.class
Synonym for ARGF. See ARGF, on page 213.

$> → IO
The destination stream for Object#print and Object#printf. The default value is STDOUT.

Chapter 22. The Ruby Language • 312

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

$_ → String
The last line read by Object#gets or Object#readline. Many string-related functions in the
Kernel module operate on $_ by default. The variable is local to the current scope. [thread]

$-F → String
Synonym for $;.

$stderr, $stdout, $stdin, → IO
The current standard error, standard output, and standard input streams.

The variables $defout and $deferr have been removed from Ruby 1.9.

Execution Environment Variables

$0 → String
The name of the top-level Ruby program being executed. Typically this will be the
program’s filename. On some operating systems, assigning to this variable will change
the name of the process reported (for example) by the ps(1) command.

$* → Array
An array of strings containing the command-line options from the invocation of the
program. Options used by the Ruby interpreter will have been removed. [r/o]

$" → Array
An array containing the filenames of modules loaded by require. [r/o]

$$ → Fixnum
The process number of the program being executed. [r/o]

$? → Process::Status
The exit status of the last child process to terminate. [r/o, thread]

$: → Array
An array of strings, where each string specifies a directory to be searched for Ruby
scripts and binary extensions used by the load and require methods. The initial value is
the value of the arguments passed via the -I command-line option, followed by an
installation-defined standard library location. As of Ruby 1.9.2, the current directory is
no longer added to $:. This variable may be updated from within a program to alter the
default search path; typically, programs use $: << dir to append dir to the path. [r/o]

$-a → Object
True if the -a option is specified on the command line. [r/o]

__callee__ → Symbol
The name of the lexically enclosing method.

$-d → Object
Synonym for $DEBUG.

$DEBUG → Object
Set to true if the -d command-line option is specified.

__ENCODING__ → String
The encoding of the current source file. [r/o]

report erratum • discuss

Variables and Constants • 313

Download from Wow! eBook <www.wowebook.com>

http://www.freebsd.org/cgi/man.cgi?query=ps&sektion=1
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

__FILE__ → String
The name of the current source file. [r/o]

$F → Array
The array that receives the split input line if the -a command-line option is used.

$FILENAME → String
The name of the current input file. Equivalent to $<.filename. [r/o]

$-i → String
If in-place edit mode is enabled (perhaps using the -i command-line option), $-i holds
the extension used when creating the backup file. If you set a value into $-i, enables in-
place edit mode, as described in the options descriptions on page 211.

$-I → Array
Synonym for $:. [r/o]

$-l → Object
Set to true if the -l option (which enables line-end processing) is present on the command
line. See the options description on page 211. [r/o]

__LINE__ → String
The current line number in the source file. [r/o]

$LOAD_PATH → Array
A synonym for $:. [r/o]

$LOADED_FEATURES → Array
Synonym for $". [r/o]

__method__ → Symbol
The name of the lexically enclosing method.

$PROGRAM_NAME → String
Alias for $0.

$-p → Object
Set to true if the -p option (which puts an implicit while gets...end loop around your pro-
gram) is present on the command line. See the options description on page 211. [r/o]

$SAFE → Fixnum
The current safe level (see Section 26.1, Safe Levels, on page 410). This variable’s value
may never be reduced by assignment. [thread]

$VERBOSE → Object
Set to true if the -v, --version, -W, or -w option is specified on the command line. Set to false
if no option, or -W1 is given. Set to nil if -W0 was specified. Setting this option to true
causes the interpreter and some library routines to report additional information. Setting
to nil suppresses all warnings (including the output of Object#warn).

$-v, $-w → Object
Synonyms for $VERBOSE.

$-W → Object
Return the value set by the -W command-line option.

Chapter 22. The Ruby Language • 314

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Standard Objects

ARGF → Object
Provides access to a list of files. Used by command line processing. See ARGF, on page
213.

ARGV → Array
A synonym for $*.

ENV → Object
A hash-like object containing the program’s environment variables. An instance of class
Object, ENV implements the full set of Hash methods. Used to query and set the value of
an environment variable, as in ENV["PATH"] and ENV["term"]="ansi".

false → FalseClass
Singleton instance of class FalseClass. [r/o]

nil → NilClass
The singleton instance of class NilClass. The value of uninitialized instance and global
variables. [r/o]

self → Object
The receiver (object) of the current method. [r/o]

true → TrueClass
Singleton instance of class TrueClass. [r/o]

Global Constants

DATA → IO
If the main program file contains the directive __END__, then the constant DATA will be
initialized so that reading from it will return lines following __END__ from the source
file.

FALSE → FalseClass
Constant containing reference to false.

NIL → NilClass
Constant containing reference to nil.

RUBY_COPYRIGHT → String
The interpreter copyright.

RUBY_DESCRIPTION → String
Version number and architecture of the interpreter.

RUBY_ENGINE → String
The name of the Ruby interpreter. Returns "ruby" for Matz’s version. Other interpreters
include macruby, ironruby, jruby, and rubinius.

RUBY_PATCHLEVEL → String
The patch level of the interpreter.

RUBY_PLATFORM → String
The identifier of the platform running this program. This string is in the same form as
the platform identifier used by the GNU configure utility (which is not a coincidence).

report erratum • discuss

Variables and Constants • 315

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

RUBY_RELEASE_DATE → String
The date of this release.

RUBY_REVISION → String
The revision of the interpreter.

RUBY_VERSION → String
The version number of the interpreter.

STDERR → IO
The actual standard error stream for the program. The initial value of $stderr.

STDIN → IO
The actual standard input stream for the program. The initial value of $stdin.

STDOUT → IO
The actual standard output stream for the program. The initial value of $stdout.

SCRIPT_LINES__ → Hash
If a constant SCRIPT_LINES__ is defined and references a Hash, Ruby will store an entry
containing the contents of each file it parses, with the file’s name as the key and an array
of strings as the value. See Object#require on page 623 for an example.

TOPLEVEL_BINDING → Binding
A Binding object representing the binding at Ruby’s top level—the level where programs
are initially executed.

TRUE → TrueClass
A reference to the object true.

The constant __FILE__ and the variable $0 are often used together to run code only if it appears
in the file run directly by the user. For example, library writers often use this to include tests
in their libraries that will be run if the library source is run directly, but not if the source is
required into another program.

library code ...

if __FILE__ == $0
tests...

end

22.6 Expressions, Conditionals, and Loops

Single terms in an expression may be any of the following:

• Literal. Ruby literals are numbers, strings, arrays, hashes, ranges, symbols, and regular
expressions. These are described in Section 22.3, The Basic Types, on page 299.

• Shell command. A shell command is a string enclosed in backquotes or in a general
delimited string starting with%x. The string is executed using the host operating system’s
standard shell, and the resulting standard output stream is returned as the value of the
expression. The execution also sets the $? variable with the command’s exit status.

filter = "*.c"
files = `ls #{filter}`
files = %x{ls #{filter}}

Chapter 22. The Ruby Language • 316

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

• Variable reference or constant reference. A variable is referenced by citing its name.
Depending on scope (see Scope of Constants and Variables, on page 308), you reference a
constant either by citing its name or by qualifying the name, using the name of the class
or module containing the constant and the scope operator (::).

barney # variable reference
APP_NAMR # constant reference
Math::PI # qualified constant reference

• Method invocation. The various ways of invoking a method are described in Section 22.8,
Invoking a Method, on page 327.

Operator Expressions

Expressions may be combined using operators. The Ruby operators in precedence order are
listed in Table 13, Ruby operators (high to low precedence), on page 318. The operators with a ✓
in the Method column are implemented as methods and may be overridden.

More on Assignment

The assignment operator assigns one or more rvalues (the r stands for “right,” because rvalues
tend to appear on the right side of assignments) to one or more lvalues (“left” values). What
is meant by assignment depends on each individual lvalue.

As the following shows, if an lvalue is a variable or constant name, that variable or constant
receives a reference to the corresponding rvalue.

a = /regexp/
b, c, d = 1, "cat", [3, 4, 5]

If the lvalue is an object attribute, the corresponding attribute-setting method will be called
in the receiver, passing as a parameter the rvalue:

class A
attr_writer :value

end
obj = A.new
obj.value = "hello" # equivalent to obj.value=("hello")

If the lvalue is an array element reference, Ruby calls the element assignment operator ([]=)
in the receiver, passing as parameters any indices that appear between the brackets followed
by the rvalue. This is illustrated in the following table.

Actual Method CallElement Reference

var.[]=("one")var[] = "one"
var.[]=(1, "two")var[1] = "two"
var.[]=("a", /^cat/, "three")var["a", /^cat/] = "three"

If you are writing an []= method that accepts a variable number of indices, it might be con-
venient to define it using this:

def []=(*indices, value)
...

end

report erratum • discuss

Expressions, Conditionals, and Loops • 317

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

DescriptionOperatorMethod

Element reference, element set[] []=✓

Exponentiation**✓

Not, complement, unary plus and minus (method names
for the last two are +@ and -@)

! ~ + -✓

Multiply, divide, and modulo* / %✓

Plus and minus+ -✓

Right and left shift (<< is also used as the append opera-
tor)

>> <<✓

“And” (bitwise for integers)&✓

Exclusive “or” and regular “or” (bitwise for integers)^ |✓

Comparison operators<= < > >=✓

Equality and pattern match operators<=> == === != =~ !~✓

Logical “and”&&
Logical “or”||
Range (inclusive and exclusive).. ...
Ternary if-then-else? :
Assignment= %= /= -= += |= &= >>=

<<= *= &&= ||= **= ^=
Logical negationnot
Logical compositionor and
Expression modifiersif unless while until
Block expressionbegin/end

Table 13—Ruby operators (high to low precedence)

The value of an assignment expression is its rvalue. This is true even if the assignment is to
an attribute method that returns something different.

Parallel Assignment

An assignment expression may have one or more lvalues and one or more rvalues. This
section explains how Ruby handles assignment with different combinations of arguments:

• If any rvalue is prefixed with an asterisk and implements to_a, the rvalue is replaced
with the elements returned by to_a, with each element forming its own rvalue.

• If the assignment contains one lvalue and multiple rvalues, the rvalues are converted
to an array and assigned to that lvalue.

• If the assignment contains multiple lvalues and one rvalue, the rvalue is expanded if
possible into an array of rvalues as described in (1).

• Successive rvalues are assigned to the lvalues. This assignment effectively happens in
parallel so that (for example) a,b=b,a swaps the values in a and b.

• If there are more lvalues than rvalues, the excess will have nil assigned to them.

• If there are more rvalues than lvalues, the excess will be ignored.

Chapter 22. The Ruby Language • 318

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

• At most one lvalue can be prefixed by an asterisk. This lvalue will end up being an array
and will contain as many rvalues as possible. If there are lvalues to the right of the
starred lvalue, these will be assigned from the trailing rvalues, and whatever rvalues
are left will be assigned to the splat lvalue.

• If an lvalue contains a parenthesized list, the list is treated as a nested assignment
statement, and then it is assigned from the corresponding rvalue as described by these
rules.

See Parallel Assignment, on page 130 for examples of parallel assignment. The value of a par-
allel assignment is its array of rvalues.

Block Expressions

begin
body

end

Expressions may be grouped between begin and end. The value of the block expression is the
value of the last expression executed.

Block expressions also play a role in exception handling—see Section 22.14, Exceptions, on
page 339.

Boolean Expressions

Ruby predefines the constants false and nil. Both of these values are treated as being false in
a boolean context. All other values are treated as being true. The constant true is available
for when you need an explicit “true” value.

And, Or, Not

The and and && operators evaluate their first operand. If false, the expression returns the
value of the first operand; otherwise, the expression returns the value of the second operand:

expr1 and expr2

expr1 && expr2

The or and || operators evaluate their first operand. If true, the expression returns the value
of their first operand; otherwise, the expression returns the value of the second operand:

expr1 or expr2

expr1 || expr2

The not and ! operators evaluate their operand. If true, the expression returns false. If false,
the expression returns true.

The word forms of these operators (and, or, and not) have a lower precedence than the corre-
sponding symbol forms (&&, ||, and !). For details, see Table 13, Ruby operators (high to low
precedence), on page 318.

defined?

The defined? keyword returns nil if its argument, which can be an arbitrary expression, is not
defined. Otherwise, it returns a description of that argument. For examples, check out the
tutorial on page 133.

report erratum • discuss

Expressions, Conditionals, and Loops • 319

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Comparison Operators

The Ruby syntax defines the comparison operators ==, ===, <=>, <, <=, >, >=, and =~. All
these operators are implemented as methods. By convention, the language also uses the
standard methods eql? and equal? (see Table 5, Common comparison operators, on page 134).
Although the operators have intuitive meaning, it is up to the classes that implement them
to produce meaningful comparison semantics. The library reference on page 417 starting
describes the comparison semantics for the built-in classes. The module Comparable provides
support for implementing the operators ==, <, <=, >, and >=, as well as the method between?
in terms of <=>. The operator === is used in case expressions, described in case Expressions,
on page 321.

Both == and =~ have negated forms, != and !~. If an object defines these methods, Ruby will
call them. Otherwise, a != b is mapped to !(a == b), and a !~ b is mapped to !(a =~ b).

Ranges in Boolean Expressions

if expr1 .. expr2

while expr1 .. expr2

A range used in a boolean expression acts as a flip-flop. It has two states, set and unset, and
is initially unset.

1. For the three-dot form of a range, if the flip-flop is unset and expr1 is true, the flip-flop
becomes set and the the flip-flop returns true.

2. If the flip-flop is set, it will return true. However, if expr2 is not true, the flip-flop becomes
unset.

3. If the flip-flop is unset, it returns false.

The first step differs for the two-dot form of a range. If the flip-flop is unset and expr1 is true,
then Ruby only sets the flip-flop if expr2 is not also true.

The difference is illustrated by the following code:

a = (11..20).collect {|i| (i%4 == 0)..(i%3 == 0) ? i : nil}
a # => [nil, 12, nil, nil, nil, 16, 17, 18, nil, 20]

a = (11..20).collect {|i| (i%4 == 0)...(i%3 == 0) ? i : nil}
a # => [nil, 12, 13, 14, 15, 16, 17, 18, nil, 20]

Regular Expressions in Boolean Expressions

In versions of Ruby prior to 1.8, a single regular expression in boolean expression was
matched against the current value of the variable $_. This behavior is now supported only
if the condition appears in a command-line -e parameter:

$ ruby -ne 'print if /one/' testfile
This is line one

In regular code, the use of implicit operands and $_ is being slowly phased out, so it is better
to use an explicit match against a variable.

Chapter 22. The Ruby Language • 320

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

if and unless Expressions

unless boolean-expression ‹ then ›
body

if boolean-expression ‹ then ›
body

‹ else‹ elsif boolean-expression ‹ then ›
body ›

end
body ›*

‹ else
body ›

end

The then keyword separates the body from the condition.4 It is not required if the body starts
on a new line. The value of an if or unless expression is the value of the last expression evalu-
ated in whichever body is executed.

if and unless Modifiers

expression if boolean-expression

expression unless boolean-expression

This evaluates expression only if boolean-expression is true (for if) or false (for unless).

Ternary Operator

boolean-expression ? expr1 : expr2

This returns expr1 if boolean expression is true and expr2 otherwise.

case Expressions

Ruby has two forms of case statement. The first allows a series of conditions to be evaluated,
executing code corresponding to the first condition that is true:

case
when ‹ boolean-expression ›+ ‹ then ›

body

when ‹ boolean-expression ›+ ‹ then ›
body

...
‹ else

body ›
end

The second form of a case expression takes a target expression following the case keyword.
It searches for a match starting at the first (top left) comparison, using comparison === target:

case target

when ‹ comparison ›+ ‹ then ›
body

when ‹ comparison ›+ ‹ then ›
body

...
‹ else

body ›
end

4. Prior to Ruby 1.9, you could use a colon instead of then. This is no longer supported.

report erratum • discuss

Expressions, Conditionals, and Loops • 321

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

A comparison can be an array reference preceded by an asterisk, in which case it is
expanded into that array’s elements before the tests are performed on each. When a compar-
ison returns true, the search stops, and the body associated with the comparison is executed
(no break is required). case then returns the value of the last expression executed. If no com-
parison matches, this happens: if an else clause is present, its body will be executed; otherwise,
case silently returns nil.

The then keyword separates the when comparisons from the bodies and is not needed if the
body starts on a new line.

As an optimization in Matz’s Ruby 1.9 and later, comparisons between literal strings and
between numbers do not use ===.

Loops

while boolean-expression ‹ do ›
body

end

This executes body zero or more times as long as boolean-expression is true.

until boolean-expression ‹ do ›
body

end

This executes body zero or more times as long as boolean-expression is false.

In both forms, the do separates boolean-expression from the body and can be omitted when the
body starts on a new line:

for ‹ name ›+ in expression ‹ do ›
body

end

The for loop is executed as if it were the following each loop, except that local variables
defined in the body of the for loop will be available outside the loop, and those defined
within an iterator block will not.

expression.each do | ‹ name ›+ |
body

end

loop, which iterates its associated block, is not a language construct—it is a method in module
Kernel.

loop do
print "Input: "
break unless line = gets
process(line)

end

Chapter 22. The Ruby Language • 322

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

while and until Modifiers

expression while boolean-expression

expression until boolean-expression

If expression is anything other than a begin/end block, executes expression zero or more times
while boolean-expression is true (for while) or false (for until).

If expression is a begin/end block, the block will always be executed at least one time.

break, redo, and next

break, redo, and next alter the normal flow through a while, until, for, or iterator-controlled loop.5

break terminates the immediately enclosing loop—control resumes at the statement following
the block. redo repeats the loop from the start but without reevaluating the condition or
fetching the next element (in an iterator). The next keyword skips to the end of the loop,
effectively starting the next iteration.

break and next may optionally take one or more arguments. If used within a block, the given
argument(s) are returned as the value of the yield. If used within a while, until, or for loop, the
value given to break is returned as the value of the statement. If break is never called or if it
is called with no value, the loop returns nil.

match = for line in ARGF.readlines
next if line =~ /^#/
break line if line =~ /ruby/

end

22.7 Method Definition

def defname ‹ (‹ , arg ›*) ›
body

end

defname←methodname | expr.methodname

defname is both the name of the method and optionally the context in which it is valid.

A methodname is either a redefinable operator (see Table 13, Ruby operators (high to low prece-
dence), on page 318) or a name. Ifmethodname is a name, it should start with a lowercase letter
(or underscore) optionally followed by uppercase and lowercase letters, underscores, and
digits. A methodname may optionally end with a question mark (?), exclamation point (!), or
equal sign (=). The question mark and exclamation point are simply part of the name. The
equal sign is also part of the name but additionally signals that this method may be used as
an lvalue (see the description of writeable attributes on page 34).

A method definition using an unadorned method name within a class or module definition
creates an instance method. An instance method may be invoked only by sending its name
to a receiver that is an instance of the class that defined it (or one of that class’s subclasses).

5. The retry keyword is no longer permitted in a loop context.

report erratum • discuss

Method Definition • 323

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Outside a class or module definition, a definition with an unadorned method name is added
as a private method to class Object. It may be called in any context without an explicit
receiver.

A definition using a method name of the form expr.methodname creates a method associated
with the object that is the value of the expression; the method will be callable only by sup-
plying the object referenced by the expression as a receiver. This style of definition creates
per-object or singleton methods. You’ll find it most often inside class or module definitions,
where the expr is either self or the name of the class/module. This effectively creates a class
or module method (as opposed to an instance method).

class MyClass
def MyClass.method # definition
end

end

MyClass.method # call

obj = Object.new
def obj.method # definition
end

obj.method # call

def (1.class).fred # receiver may be an expression
end

Fixnum.fred # call

Method definitions may not contain class or module definitions. They may contain nested
instance or singleton method definitions. The internal method is defined when the enclosing
method is executed. The internal method does not act as a closure in the context of the
nested method—it is self-contained.

def toggle
def toggle
"subsequent times"

end
"first time"

end

toggle # => "first time"
toggle # => "subsequent times"
toggle # => "subsequent times"

The body of a method acts as if it were a begin/end block, in that it may contain exception-
handling statements (rescue, else, and ensure).

Method Arguments

⇡New in 2.0⇣
A method definition may have zero or more regular arguments, zero or more keyword
arguments, a optional splat argument, an optional double splat argument, and an optional
block argument. Arguments are separated by commas, and the argument list may be enclosed
in parentheses.

Chapter 22. The Ruby Language • 324

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

A regular argument is a local variable name, optionally followed by an equals sign and an
expression giving a default value. The expression is evaluated at the time the method is
called. The expressions are evaluated from left to right. An expression may reference a
parameter that precedes it in the argument list.

def options(a=99, b=a+1)
[a, b]

end
options # => [99, 100]
options(1) # => [1, 2]
options(2, 4) # => [2, 4]

Arguments without default values may appear after arguments with defaults. When such
a method is called, Ruby will use the default values only if fewer parameters are passed to
the method call than the total number of arguments.

def mixed(a, b=50, c=b+10, d)
[a, b, c, d]

end
mixed(1, 2) # => [1, 50, 60, 2]
mixed(1, 2, 3) # => [1, 2, 12, 3]
mixed(1, 2, 3, 4) # => [1, 2, 3, 4]

As with parallel assignment, one of the arguments may start with an asterisk. If the method
call specifies any parameters in excess of the regular argument count, all these extra
parameters will be collected into this newly created array.

def varargs(a, *b)
[a, b]

end
varargs(1) # => [1, []]
varargs(1, 2) # => [1, [2]]
varargs(1, 2, 3) # => [1, [2, 3]]

This argument need not be the last in the argument list. See the description of parallel
assignment to see how values are assigned to this parameter.

def splat(first, *middle, last)
[first, middle, last]

end
splat(1, 2) # => [1, [], 2]
splat(1, 2, 3) # => [1, [2], 3]
splat(1, 2, 3, 4) # => [1, [2, 3], 4]

If an array argument follows arguments with default values, parameters will first be used
to override the defaults. The remainder will then be used to populate the array.

def mixed(a, b=99, *c)
[a, b, c]

end
mixed(1) # => [1, 99, []]
mixed(1, 2) # => [1, 2, []]
mixed(1, 2, 3) # => [1, 2, [3]]
mixed(1, 2, 3, 4) # => [1, 2, [3, 4]]

report erratum • discuss

Method Definition • 325

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Keyword Arguments

⇡New in 2.0⇣ Ruby 2 methods may declare keyword arguments using the syntax name: default_value for
each. These arguments must follow any regular arguments in the list.

def header(name, level: 1, upper: false)
name = name.upcase if upper
"<h#{level}>#{name}</h#{level}>"

end

header("Introduction") # => "<h1>Introduction</h1>"
header("Getting started", level:2) # => "<h2>Getting started</h2>"
header("Conclusion", upper: true) # => "<h1>CONCLUSION</h1>"

If you call a method that has keyword arguments and do not provide corresponding values
in the method call’s parameter list, the default values will be used. If you pass keyword
parameters that are not defined as arguments, an error will be raised unless you also define
a double splat argument, **arg. The double splat argument will be set up as a hash containing
any uncollected keyword parameters passed to the method.

def header(name, level: 1, upper: false, **attrs)
name = name.upcase if upper
attr_string = attrs.map {|k,v| %{#{k}="#{v}"}}.join(' ')
"<h#{level} #{attr_string}>#{name}</h#{level}>"

end

header("TOC", class: "nav", level:2, id: 123)

Block Argument

The optional block argument must be the last in the list. Whenever the method is called,
Ruby checks for an associated block. If a block is present, it is converted to an object of class
Proc and assigned to the block argument. If no block is present, the argument is set to nil.

def example(&block)
puts block.inspect
end

example
example { "a block" }

produces:

nil
#<Proc:0x007fb2230004d8@prog.rb:6>

Undefining a Method

The keyword undef allows you to undefine a method.

undef name | symbol ...

An undefined method still exists; it is simply marked as being undefined. If you undefine
a method in a child class and then call that method on an instance of that child class, Ruby
will immediately raise a NoMethodError—it will not look for the method in the child’s parents.

Chapter 22. The Ruby Language • 326

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

22.8 Invoking a Method

‹ receiver. ›name‹ parameters › ‹ {block} ›
‹ receiver:: ›name‹ parameters › ‹ {block} ›

parameters← (‹ param ›* ‹ , hashlist › ‹ *array › ‹ &a_proc ›)

block← { blockbody } or do blockbody end

The parentheses around the parameters may be omitted if it is otherwise unambiguous.

Initial parameters are assigned to the actual arguments of the method. Following these
parameters may be a list of key => value or key: value pairs. These pairs are collected into a
single new Hash object and passed as a single parameter.

Any parameter may be a prefixed with an asterisk. If a starred parameter supports the to_a
method, that method is called, and the resulting array is expanded inline to provide
parameters to the method call. If a starred argument does not support to_a, it is simply passed
through unaltered.

def regular(a, b, *c)
"a=#{a}, b=#{b}, c=#{c}"

end
regular 1, 2, 3, 4 # => a=1, b=2, c=[3, 4]
regular(1, 2, 3, 4) # => a=1, b=2, c=[3, 4]
regular(1, *[2, 3, 4]) # => a=1, b=2, c=[3, 4]
regular(1, *[2, 3], 4) # => a=1, b=2, c=[3, 4]
regular(1, *[2, 3], *4) # => a=1, b=2, c=[3, 4]
regular(*[], 1, *[], *[2, 3], *[], 4) # => a=1, b=2, c=[3, 4]

⇡New in 2.0⇣Any parameter may be prefixed with two asterisks (a double splat). Such parameters are
treated as hashes, and their key-value pairs are added as additional parameters to the method
call.

def regular(a, b)
"a=#{a}, b=#{b}"

end
regular(99, a: 1, b: 2) # => a=99, b={:a=>1, :b=>2}

others = { c: 3, d: 4 }
regular(99, a: 1, b: 2, **others) # => a=99, b={:a=>1, :b=>2, :c=>3,

.. :d=>4}
regular(99, **others, a: 1, b: 2) # => a=99, b={:c=>3, :d=>4, :a=>1,

.. :b=>2}

rest = { e: 5 }

regular(99, **others, a: 1, b: 2) # => a=99, b={:c=>3, :d=>4, :a=>1,
.. :b=>2}

regular(99, **others, a: 1, b: 2, **rest) # => a=99, b={:c=>3, :d=>4, :a=>1,
.. :b=>2, :e=>5}

When a method defined with keyword arguments is called, Ruby matches the keys in the
passed hash with each argument, assigning values when it finds a match.

report erratum • discuss

Invoking a Method • 327

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

def keywords(a, b: 2, c: 3)
"a=#{a}, b=#{b}, c=#{c}"

end

keywords(99) # => a=99, b=2, c=3
keywords(99, c:98) # => a=99, b=2, c=98

args = { b: 22, c: 33}
keywords(99, **args) # => "a=99, b=22, c=33"
keywords(99, **args, b: 'override') # => "a=99, b=override, c=33"

If the passed hash contains any keys not defined as arguments, Ruby raises a runtime error
unlesss the method also declares a double splat argument. In that case, the double splat
receives the excess key-value pairs from the passed hash.

def keywords1(a, b: 2, c: 3)
"a=#{a}, b=#{b}, c=#{c}"

end

keywords1(99, d: 22, e: 33)

produces:

prog.rb:5:in `<main>': unknown keywords: d, e (ArgumentError)

def keywords2(a, b: 2, c: 3, **rest)
"a=#{a}, b=#{b}, c=#{c}, rest=#{rest}"

end

keywords2(99, d: 22, e: 33) # => a=99, b=2, c=3, rest={:d=>22, :e=>33}

A block may be associated with a method call using either a literal block (which must start
on the same source line as the last line of the method call) or a parameter containing a refer-
ence to a Proc or Method object prefixed with an ampersand character.

def some_method
yield

end

some_method { }
some_method do
end

a_proc = lambda { 99 }
some_method(&a_proc)

Ruby arranges for the value of Object#block_given? to reflect the availability of a block associ-
ated with the call, regardless of the presence of a block argument. A block argument will be
set to nil if no block is specified on the call to a method.

def other_method(&block)
puts "block_given = #{block_given?}, block = #{block.inspect}"

end
other_method { }
other_method

Chapter 22. The Ruby Language • 328

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

produces:

block_given = true, block = #<Proc:0x007fafc305c3d0@prog.rb:4>
block_given = false, block = nil

A method is called by passing its name to a receiver. If no receiver is specified, self is assumed.
The receiver checks for the method definition in its own class and then sequentially in its
ancestor classes. The instance methods of included modules act as if they were in anonymous
superclasses of the class that includes them. If the method is not found, Ruby invokes the
method method_missing in the receiver. The default behavior defined in Object#method_missing
is to report an error and terminate the program.

When a receiver is explicitly specified in a method invocation, it may be separated from the
method name using either a period (.) or two colons (::). The only difference between these
two forms occurs if the method name starts with an uppercase letter. In this case, Ruby will
assume that receiver::Thing is actually an attempt to access a constant called Thing in the
receiver unless the method invocation has a parameter list between parentheses. Using :: to
indicate a method call is mildly deprecated.

Foo.Bar() # method call
Foo.Bar # method call
Foo::Bar() # method call
Foo::Bar # constant access

The return value of a method is the value of the last expression executed. The method in the
following example returns the value of the if statement it contains, and that if statement
returns the value of one of its branches.

def odd_or_even(val)
if val.odd?
"odd"

else
"even"

end
end
odd_or_even(26) # => "even"
odd_or_even(27) # => "odd"

A return expression immediately exits a method.

return ‹ expr ›*

The value of a return is nil if it is called with no parameters, the value of its parameter if it is
called with one parameter, or an array containing all of its parameters if it is called with
more than one parameter.

super

super ‹ (‹ , param ›* ‹ , *array ›) › ‹ block ›

Within the body of a method, a call to super acts like a call to the original method, except that
the search for a method body starts in the superclass of the object that contained the original
method. If no parameters (and no parentheses) are passed to super, the original method’s
parameters will be passed; otherwise, the parameters to super will be passed.

report erratum • discuss

Invoking a Method • 329

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Operator Methods

expr operator

operator expr

expr1 operator expr2

If the operator in an operator expression corresponds to a redefinable method (see Table 13,
Ruby operators (high to low precedence), on page 318), Ruby will execute the operator expression
as if it had been written like this:

(expr1).operator() or

(expr1).operator(expr2)

Attribute Assignment

receiver.attrname = rvalue

When the form receiver.attrname appears as an lvalue, Ruby invokes a method named attrname=
in the receiver, passing rvalue as a single parameter. The value returned by this assignment
is always rvalue—the return value of the method is discarded. If you want to access the return
value (in the unlikely event that it isn’t the rvalue), send an explicit message to the method.

class Demo
attr_reader :attr
def attr=(val)
@attr = val
"return value"

end
end

d = Demo.new

In all these cases, @attr is set to 99
d.attr = 99 # => 99
d.attr=(99) # => 99
d.send(:attr=, 99) # => "return value"
d.attr # => 99

Element Reference Operator

receiver[‹ expr ›+]
receiver[‹ expr ›+] = rvalue

When used as an rvalue, element reference invokes the method [] in the receiver, passing as
parameters the expressions between the brackets.

When used as an lvalue, element reference invokes the method []= in the receiver, passing
as parameters the expressions between the brackets, followed by the rvalue being assigned.

22.9 Aliasing

alias new_name old_name

This creates a new name that refers to an existing method, operator, global variable, or reg-
ular expression backreference ($&, $`, $', and $+). Local variables, instance variables, class
variables, and constants may not be aliased. The parameters to aliasmay be names or symbols.

Chapter 22. The Ruby Language • 330

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

class Fixnum
alias plus +

end
1.plus(3) # => 4

alias $prematch $`
"string" =~ /i/ # => 3
$prematch # => "str"

alias :cmd :`
cmd "date" # => "Mon May 27 12:31:34 CDT 2013\n"

When a method is aliased, the new name refers to a copy of the original method’s body. If
the original method is subsequently redefined, the aliased name will still invoke the original
implementation.

def meth
"original method"

end
alias original meth
def meth
"new and improved"

end
meth # => "new and improved"
original # => "original method"

22.10 Class Definition

class ‹ scope:: › classname ‹ < superexpr ›
body

end

class << obj

body

end

A Ruby class definition creates or extends an object of class Class by executing the code in
body. In the first form, a named class is created or extended. The resulting Class object is
assigned to a constant named classname (keep reading for scoping rules). This name should
start with an uppercase letter. In the second form, an anonymous (singleton) class is associ-
ated with the specific object.

If present, superexpr should be an expression that evaluates to a Class object that will be the
superclass of the class being defined. If omitted, it defaults to class Object.

Within body, most Ruby expressions are executed as the definition is read. However:

• Method definitions will register the methods in a table in the class object.

• Nested class and module definitions will be stored in constants within the class, not as
global constants. These nested classes and modules can be accessed from outside the
defining class using :: to qualify their names.

module NameSpace
class Example
CONST = 123

report erratum • discuss

Class Definition • 331

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

end
end
obj = NameSpace::Example.new
a = NameSpace::Example::CONST

• The Module#include method will add the named modules as anonymous superclasses of
the class being defined.

The classname in a class definition may be prefixed by the names of existing classes or modules
using the scope operator (::). This syntax inserts the new definition into the namespace of
the prefixing module(s) and/or class(es) but does not interpret the definition in the scope of
these outer classes. A classnamewith a leading scope operator places that class or module in
the top-level scope.

In the following example, class C is inserted into module A’s namespace but is not interpreted
in the context of A. As a result, the reference to CONST resolves to the top-level constant of
that name, not A’s version. We also have to fully qualify the singleton method name, because
C on its own is not a known constant in the context of A::C.

CONST = "outer"

module A
CONST = "inner" # This is A::CONST

end

module A
class B
def B.get_const
CONST

end
end

end

A::B.get_const # => "inner"

class A::C
def (A::C).get_const
CONST

end
end

A::C.get_const # => "outer"

Remember that a class definition is executable code. Many of the directives used in class
definitions (such as attr and include) are actually simply private instance methods of class
Module (documented in the reference section on page 579). The value of a class definition is
the value of the last executed statement.

Chapter 24,Metaprogramming, on page 357 describes in more detail how Class objects interact
with the rest of the environment.

Creating Objects from Classes

obj = classexpr.new ‹ (‹ , args ›*) ›

Chapter 22. The Ruby Language • 332

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Class Class defines the instance method Class#new, which creates an instance of the class of
its receiver (classexpr). This is done by calling the method classexpr.allocate. You can override
this method, but your implementation must return an object of the correct class. It then
invokes initialize in the newly created object and passes it any arguments originally passed
to new.

If a class definition overrides the class method new without calling super, no objects of that
class can be created, and calls to new will silently return nil.

Like any other method, initialize should call super if it wants to ensure that parent classes have
been properly initialized. This is not necessary when the parent is Object, because class Object
does no instance-specific initialization.

Class Attribute Declarations

Class attribute declarations are not part of the Ruby syntax; they are simply methods defined
in class Module that create accessor methods automatically.

class name

 attr attribute ‹ , writable ›
 attr_reader ‹ attribute ›+

 attr_writer ‹ attribute ›+

 attr_accessor ‹ attribute ›+

end

22.11 Module Definitions

module name

body

end

A module is basically a class that cannot be instantiated. Like a class, its body is executed
during definition, and the resulting Module object is stored in a constant. A module may
contain class and instance methods and may define constants and class variables. As with
classes, a module’s class methods (sometimes called module methods) are invoked using the
Module object as a receiver, and constants are accessed using the :: scope resolution operator.
The name in a module definition may optionally be preceded by the names of enclosing
class(es) and/or module(s).

CONST = "outer"
module Mod
CONST = 1
def Mod.method1 # module method
CONST + 1

end
end
module Mod::Inner
def (Mod::Inner).method2
CONST + " scope"

end
end
Mod::CONST # => 1
Mod.method1 # => 2
Mod::Inner::method2 # => "outer scope"

report erratum • discuss

Module Definitions • 333

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Mixins: Including Modules

class|module name

 include expr

end

A module may be included within the definition of another module or class using the include
method. The module or class definition containing the include gains access to the constants,
class variables, and instance methods of the module it includes.

If a module is included within a class definition, the module’s constants, class variables, and
instance methods are made available via an anonymous (and inaccessible) superclass for
that class. Objects of the class will respond to messages sent to the module’s instance methods.
Calls to methods not defined in the class will be passed to the module(s) mixed into the class
before being passed to any parent class. A module may define an initialize method, which
will be called upon the creation of an object of a class that mixes in the module if either the
class does not define its own initialize method or the class’s initialize method invokes super.

A module may also be included at the top level, in which case the module’s constants, class
variables, and instance methods become available at the top level.

Module Functions

Instance methods defined in modules can be mixed-in to a class using include. But what if
you want to call the instance methods in a module directly?

module Math
def sin(x)
#

end
end
include Math # The only way to access Math.sin
sin(1)

The method Module#module_function solves this problem by taking module instance methods
and copying their definitions into corresponding module methods.

module Math
def sin(x)
#

end
module_function :sin

end
Math.sin(1)
include Math
sin(1)

The instance method and module method are two different methods: the method definition
is copied by module_function, not aliased.

You can also use module_function with no parameters, in which case all subsequent methods
will be module methods.

Chapter 22. The Ruby Language • 334

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

22.12 Access Control

private ‹ symbol ›*

protected ‹ symbol ›*

public ‹ symbol ›*

Ruby defines three levels of protection for module and class constants and methods:

• Public. Accessible to anyone.

• Protected. Can be invoked only by objects of the defining class and its subclasses.

• Private. Can be called only in functional form (that is, with an implicit receiver of self).
Private methods therefore can be called in the defining class and by that class’s
descendents and ancestors, but only within the same object. See Section 3.3, Access
Control, on page 40 for examples.

Each function can be used in two different ways:

• If used with no arguments, the three functions set the default access control of subse-
quently defined methods.

• With arguments, the functions set the access control of the named methods and constants.

Access control is enforced when a method is invoked.

22.13 Blocks, Closures, and Proc Objects

A code block is a set of Ruby statements and expressions between braces or a do/end pair.
The block may start with an argument list between vertical bars. A code block may appear
only immediately after a method invocation. The start of the block (the brace or the do) must
be on the same logical source line as the end of the invocation.

invocation do | a1, a2, ... |
end

invocation { | a1, a2, ... |
}

Braces have a high precedence; do has a low precedence. If the method invocation has
parameters that are not enclosed in parentheses, the brace form of a block will bind to the
last parameter, not to the overall invocation. The do form will bind to the invocation.

Within the body of the invoked method, the code block may be called using the yield keyword.
Parameters passed to yield will be assigned to arguments in the block. A warning will be
generated if yield passes multiple parameters to a block that takes just one. The return value
of the yield is the value of the last expression evaluated in the block or the value passed to a
next statement executed in the block.

A block is a closure; it remembers the context in which it was defined, and it uses that context
whenever it is called. The context includes the value of self, the constants, the class variables,
the local variables, and any captured block.

class BlockExample
CONST = 0
@@a = 3
def return_closure

report erratum • discuss

Access Control • 335

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

a = 1
@a = 2
lambda { [CONST, a, @a, @@a, yield] }

end
def change_values
@a += 1
@@a += 1

end
end

eg = BlockExample.new
block = eg.return_closure { "original" }

block.call # => [0, 1, 2, 3, "original"]
eg.change_values
block.call # => [0, 1, 3, 4, "original"]

Here, the return_closuremethod returns a lambda that encapsulates access to the local variable
a, instance variable @a, class variable @@a, and constant CONST. We call the block outside
the scope of the object that contains these values, but they are still available via the closure.
If we then call the object to change some values, the values accessed via the closure also
change.

Block Arguments

Block argument lists are very similar to method argument lists:

• You can specify default values.
• You can specify splat (starred) arguments.
• The last argument can be prefixed with an ampersand, in which case it will collect any

block passed when the original block is called.
• Block-local variables are declared by placing them after a semicolon in the argument

list.

These changes make it possible to useModule#define_method to create methods based on blocks
that have similar capabilities to methods created using def.

Proc Objects

Ruby’s blocks are chunks of code attached to a method. Blocks are not objects, but they can
be converted into objects of class Proc. There are four ways of converting a block into a Proc
object.

• By passing a block to a method whose last parameter is prefixed with an ampersand.
That parameter will receive the block as a Proc object.

def meth1(p1, p2, &block)
puts block.inspect

end
meth1(1,2) { "a block" }
meth1(3,4)

produces:

#<Proc:0x007f97cb12c400@prog.rb:4>
nil

Chapter 22. The Ruby Language • 336

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

• By calling Proc.new, again associating it with a block.6

block = Proc.new { "a block" }
block # => #<Proc:0x007fd4a4064638@prog.rb:1>

• By calling the method Object#lambda, associating a block with the call.

block = lambda { "a block" }
block # => #<Proc:0x007f9d4c12c5c8@prog.rb:1 (lambda)>

• Using the -> syntax.

lam = ->(p1, p2) { p1 + p2 }
lam.call(4, 3) # => 7

Note that there cannot be a space between -> and the opening parenthesis.

The first two styles of Proc object are identical in use. We’ll call these objects raw procs. The
third and fourth styles, generated by lambda and ->, add some functionality to the Proc object,
as we’ll see in a minute. We’ll call these objects lambdas.

Here’s the big thing to remember: raw procs are basically designed to work as the bodies of
control structures such as loops. Lambdas are intended to act like methods. So, lambdas are
stricter when checking the parameters passed to them, and a return in a lambda exits much
as it would from a method.

Calling a Proc

You call a proc by invoking its methods call, yield, or []. The three forms are identical. Each
takes arguments that are passed to the proc, just as if it were a regular method. If the proc
is a lambda, Ruby will check that the number of supplied arguments match the expected
parameters. You can also invoke a proc using the syntax name.(args...). This is mapped inter-
nally into name.call(args...).

Procs, break, and next

Within both raw procs and lambdas, executing next causes the block to exit back to the caller
of the block. The return value is the value (or values) passed to next, or nil if no values are
passed.

def ten_times
10.times do |i|
if yield(i)
puts "Caller likes #{i}"

end
end

end

ten_times do |number|
next(true) if number ==7

end

produces:

Caller likes 7

6. There’s also a built-in Object#proc method. In Ruby 1.8, this was equivalent to lambda. In Ruby 1.9 and
later, it is the same as Proc.new. Don’t use proc in new code.

report erratum • discuss

Blocks, Closures, and Proc Objects • 337

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Within a raw proc, a break terminates the method that invoked the block. The return value
of the method is any parameters passed to the break.

Return and Blocks

A return from inside a raw block that’s still in scope acts as a return from that scope. A return
from a block whose original context is no longer valid raises an exception (LocalJumpError or
ThreadError depending on the context). The following example illustrates the first case:

def meth1
(1..10).each do |val|
return val # returns from meth1

end
end
meth1 # => 1

The following example shows a return failing because the context of its block no longer
exists:

def meth2(&b)
b

end

res = meth2 { return }
res.call

produces:

from prog.rb:6:in `call'
from prog.rb:6:in `<main>'

prog.rb:5:in `block in <main>': unexpected return (LocalJumpError)

And here’s a return failing because the block is created in one thread and called in another:

def meth3
yield

end

t = Thread.new do
meth3 { return }

end

t.join

produces:

from prog.rb:2:in `meth3'
from prog.rb:6:in `block in <main>'

prog.rb:6:in `block (2 levels) in <main>': unexpected return (LocalJumpError)

This is also true if you create the raw proc using Proc.new.

def meth4
p = Proc.new { return 99 }
p.call
puts "Never get here"

end

meth4 # => 99

Chapter 22. The Ruby Language • 338

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

A lambda behaves more like a free-standing method body: a return simply returns from the
block to the caller of the block:

def meth5
p = lambda { return 99 }
res = p.call
"The block returned #{res}"

end

meth5 # => "The block returned 99"

Because of this, if you useModule#define_method, you’ll probably want to pass it a proc created
using lambda, not Proc.new, because returnwill work as expected in the former and will generate
a LocalJumpError in the latter.

22.14 Exceptions

Ruby exceptions are objects of class Exception and its descendents (a full list of the built-in
exceptions is given in Figure 1, Standard exception hierarchy, on page 146).

Raising Exceptions

The Object#raise method raises an exception:

raise
raise string

raise thing ‹ , string ‹ , stack trace › ›

The first form reraises the exception in $! or a new RuntimeError if $! is nil. The second form
creates a new RuntimeError exception, setting its message to the given string. The third form
creates an exception object by invoking the method exception on its first argument, setting
this exception’s message and backtrace to its second and third arguments. Class Exception
and objects of class Exception contain a factory method called exception, so an exception class
name or instance can be used as the first parameter to raise.

When an exception is raised, Ruby places a reference to the Exception object in the global
variable $!.

Handling Exceptions

Exceptions may be handled in the following ways:

• Within the scope of a begin/end block:

 begin
code...

code...

‹ rescue ‹ , parm ›* ‹ , => var › ‹ , then ›
error handling code... ›*

‹ else
no exception code... ›

‹ ensure
always executed code... ›

 end

• Within the body of a method:

report erratum • discuss

Exceptions • 339

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

def method name and args

code...

code...

‹ rescue ‹ , parm ›* ‹ , => var › ‹ , then ›
error handling code... ›*

‹ else
no exception code... ›

‹ ensure
always executed code... ›

end

• After the execution of a single statement:

statement ‹ rescue statement ›*

A block or method may have multiple rescue clauses, and each rescue clause may specify zero
or more exception parameters. A rescue clause with no parameter is treated as if it had a
parameter of StandardError. This means that some lower-level exceptions will not be caught
by a parameterless rescue class. If you want to rescue every exception, use this:

rescue Exception => e

When an exception is raised, Ruby scans the call stack until it finds an enclosing begin/end
block, method body, or statement with a rescuemodifier. For each rescue clause in that block,
Ruby compares the raised exception against each of the rescue clause’s parameters in turn;
each parameter is tested using parameter===$!. If the raised exception matches a rescue
parameter, Ruby executes the body of the rescue and stops looking. If a matching rescue clause
ends with => and a variable name, the variable is set to $!.

Although the parameters to the rescue clause are typically the names of exception classes,
they can be arbitrary expressions (including method calls) that return an appropriate class.

If no rescue clause matches the raised exception, Ruby moves up the stack looking for a
higher-level begin/end block that matches. If an exception propagates to the top level of the
main thread without being rescued, the program terminates with a message.

If an else clause is present, its body is executed if no exceptions were raised in code. Exceptions
raised during the execution of the else clause are not captured by rescue clauses in the same
block as the else.

If an ensure clause is present, its body is always executed as the block is exited (even if an
uncaught exception is in the process of being propagated).

Within a rescue clause, raise with no parameters will reraise the exception in $!.

Rescue Statement Modifier

A statement may have an optional rescue modifier followed by another statement (and by
extension another rescue modifier, and so on). The rescue modifier takes no exception
parameter and rescues StandardError and its children.

If an exception is raised to the left of a rescuemodifier, the statement on the left is abandoned,
and the value of the overall line is the value of the statement on the right:

values = ["1", "2.3", /pattern/]
result = values.map {|v| Integer(v) rescue Float(v) rescue String(v) }
result # => [1, 2.3, "(?-mix:pattern)"]

Chapter 22. The Ruby Language • 340

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Retrying a Block

The retry statement can be used within a rescue clause to restart the enclosing begin/end block
from the beginning.

22.15 catch and throw

The method Object#catch executes its associated block:

catch (object) do
code...

end

The method Object#throw interrupts the normal processing of statements:

throw(object ‹ , obj ›)

When a throw is executed, Ruby searches up the call stack for the first catch block with a
matching object. If it is found, the search stops, and execution resumes past the end of the
catch’s block. If the throw is passed a second parameter, that value is returned as the value of
the catch. Ruby honors the ensure clauses of any block expressions it traverses while looking
for a corresponding catch.

If no catch block matches the throw, Ruby raises an ArgumentError exception at the location of
the throw.

report erratum • discuss

catch and throw • 341

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 23

Duck Typing
You’ll have noticed that in Ruby we don’t declare the types of variables or methods—
everything is just some kind of object.

Now, it seems like folks react to this in two ways. Some like this kind of flexibility and feel
comfortable writing code with dynamically typed variables and methods. If you’re one of
those people, you might want to skip to Section 23.1,Classes Aren't Types, on page 344. Some,
though, get nervous when they think about all those objects floating around unconstrained.
If you’ve come to Ruby from a language such as C# or Java, where you’re used to giving all
your variables and methods a type, you may feel that Ruby is just too sloppy to use to write
“real” applications.

It isn’t.

We’d like to spend a couple of paragraphs trying to convince you that the lack of static typing
is not a problem when it comes to writing reliable applications. We’re not trying to criticize
other languages here. Instead, we’d just like to contrast approaches.

The reality is that the static type systems in most mainstream languages don’t really help
that much in terms of program security. If Java’s type system were reliable, for example, it
wouldn’t need to implement ClassCastException. The exception is necessary, though, because
there is runtime type uncertainty in Java (as there is in C++, C#, and others). Static typing
can be good for optimizing code, and it can help IDEs do clever things with tooltip help, but
we haven’t seen much evidence that it promotes more reliable code.

On the other hand, once you use Ruby for a while, you realize that dynamically typed vari-
ables actually add to your productivity in many ways. You’ll also be surprised to discover
that your fears about the type chaos were unfounded. Large, long-running Ruby programs
run significant applications and just don’t throw any type-related errors. Why is this?

Partly, it’s a question of common sense. If you coded in Java (pre–Java 1.5), all your containers
were effectively untyped: everything in a container was just an Object, and you cast it to the
required type when you extracted an element. And yet you probably never saw a ClassCast-
Exception when you ran these programs. The structure of the code just didn’t permit it. You
put Person objects in, and you later took Person objects out. You just don’t write programs
that would work in another way.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Well, it’s the same in Ruby. If you use a variable for some purpose, chances are very good
that you’ll be using it for the same purpose when you access it again three lines later. The
kind of chaos that could happen just doesn’t happen.

On top of that, folks who code Ruby a lot tend to adopt a certain style of coding. They write
lots of short methods and tend to test as they go along. The short methods mean that the
scope of most variables is limited; there just isn’t that much time for things to go wrong with
their type. And the testing catches the silly errors when they happen; typos and the like just
don’t get a chance to propagate through the code.

The upshot is that the “safety” in “type safety” is often illusory and that coding in a more
dynamic language such as Ruby is both safe and productive. So, if you’re nervous about the
lack of static typing in Ruby, we suggest you try to put those concerns on the back burner
for a little while and give Ruby a try. We think you’ll be surprised how rarely you see errors
because of type issues and how much more productive you feel once you start to exploit the
power of dynamic typing.

23.1 Classes Aren’t Types

The issue of types is actually somewhat deeper than an ongoing debate between strong
typing advocates and the hippie-freak dynamic typing crowd. The real issue is the question,
what is a type in the first place?

If you’ve been coding in conventional typed languages, you’ve probably been taught that
the type of an object is its class—all objects are instances of some class, and that class is the
object’s type. The class defines the operations (methods) the object can support, along with
the state (instance variables) on which those methods operate. Let’s look at some Java code:

Customer c;
c = database.findCustomer("dave"); /* Java */

This fragment declares the variable c to be of type Customer and sets it to reference the customer
object for Dave that we’ve created from some database record. So, the type of the object in
c is Customer, right?

Maybe. However, even in Java, the issue is slightly deeper. Java supports the concept of
interfaces, which are a kind of emasculated abstract base class. A Java class can be declared
as implementing multiple interfaces. Using this facility, you may have defined your classes
as follows:

public interface Customer {
long getID();
Calendar getDateOfLastContact();
// ...

}

public class Person
implements Customer {

public long getID() { ... }
public Calendar getDateOfLastContact() { ... }
// ...

}

Chapter 23. Duck Typing • 344

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

So, even in Java, the class is not always the type—sometimes the type is a subset of the class,
and sometimes objects implement multiple types.

In Ruby, the class is never (OK, almost never) the type. Instead, the type of an object is
defined more by what that object can do. In Ruby, we call this duck typing. If an object walks
like a duck and talks like a duck, then the interpreter is happy to treat it as if it were a duck.

Let’s look at an example. Perhaps we’ve written a method to write our customer’s name to
the end of an open file:

ducktyping/addcust.rb

class Customer
def initialize(first_name, last_name)
@first_name = first_name
@last_name = last_name

end
def append_name_to_file(file)
file << @first_name << " " << @last_name

end
end

Being good programmers, we’ll write a unit test for this. Be warned, though—it’s messy
(and we’ll improve on it shortly):

require 'test/unit'
require_relative 'addcust'

class TestAddCustomer < Test::Unit::TestCase
def test_add
c = Customer.new("Ima", "Customer")
f = File.open("tmpfile", "w") do |f|
c.append_name_to_file(f)

end
f = File.open("tmpfile") do |f|
assert_equal("Ima Customer", f.gets)

end
ensure
File.delete("tmpfile") if File.exist?("tmpfile")

end
end

produces:

Run options:
Running tests:
.
Finished tests in 0.007193s, 139.0241 tests/s, 139.0241 assertions/s.
1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

We have to do all that work to create a file to write to, then reopen it, and read in the contents
to verify the correct string was written. We also have to delete the file when we’ve finished
(but only if it exists).

Instead, though, we could rely on duck typing. All we need is something that walks like a
file and talks like a file that we can pass in to the method under test. And all that means in

report erratum • discuss

Classes Aren’t Types • 345

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/ducktyping/addcust.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

this circumstance is that we need an object that responds to the << method by appending
something. Do we have something that does this? How about a humble String?

require 'test/unit'
require_relative 'addcust'

class TestAddCustomer < Test::Unit::TestCase
def test_add
c = Customer.new("Ima", "Customer")
f = ""
c.append_name_to_file(f)
assert_equal("Ima Customer", f)

end
end

produces:

Run options:
Running tests:
.
Finished tests in 0.006737s, 148.4340 tests/s, 148.4340 assertions/s.
1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

The method under test thinks it’s writing to a file, but instead it’s just appending to a string.
At the end, we can then just test that the content is correct.

We didn’t have to use a string; an array would work just as well for the purposes of the test:

require 'test/unit'
require_relative 'addcust'

class TestAddCustomer < Test::Unit::TestCase
def test_add
c = Customer.new("Ima", "Customer")
f = []
c.append_name_to_file(f)
assert_equal(["Ima", " ", "Customer"], f)

end
end

produces:

Run options:
Running tests:
.
Finished tests in 0.006641s, 150.5797 tests/s, 150.5797 assertions/s.
1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

Indeed, this form may be more convenient if we wanted to check that the correct individual
things were inserted.

So, duck typing is convenient for testing, but what about in the body of applications them-
selves? Well, it turns out that the same thing that made the tests easy in the previous example
also makes it easy to write flexible application code.

Chapter 23. Duck Typing • 346

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

In fact, Dave had an interesting experience where duck typing dug him (and a client) out of
a hole. He’d written a large Ruby-based web application that (among other things) kept a
database table full of details of participants in a competition. The system provided a comma-
separated value (CSV) download capability so administrators could import this information
into their local spreadsheets.

Just before competition time, the phone starts ringing. The download, which had been
working fine up to this point, was now taking so long that requests were timing out. The
pressure was intense, because the administrators had to use this information to build
schedules and send out mailings.

A little experimentation showed that the problem was in the routine that took the results of
the database query and generated the CSV download. The code looked something like this:

def csv_from_row(op, row)
res = ""
until row.empty?
entry = row.shift.to_s
if /[,"]/ =~ entry
entry = entry.gsub(/"/, '""')
res << '"' << entry << '"'

else
res << entry

end
res << "," unless row.empty?

end
op << res << CRLF

end

result = ""
query.each_row {|row| csv_from_row(result, row)}

http.write result

When this code ran against moderate-size data sets, it performed fine. But at a certain input
size, it suddenly slowed right down. The culprit? Garbage collection. The approach was
generating thousands of intermediate strings and building one big result string, one line at
a time. As the big string grew, it needed more space, and garbage collection was invoked,
which necessitated scanning and removing all the intermediate strings.

The answer was simple and surprisingly effective. Rather than build the result string as it
went along, the code was changed to store each CSV row as an element in an array. This
meant that the intermediate lines were still referenced and hence were no longer garbage.
It also meant that we were no longer building an ever-growing string that forced garbage
collection. Thanks to duck typing, the change was trivial:

def csv_from_row(op, row)
as before

end

result = []
query.each_row {|row| csv_from_row(result, row)}

http.write result.join

report erratum • discuss

Classes Aren’t Types • 347

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

All that changed is that we passed an array into the csv_from_row method. Because it
(implicitly) used duck typing, the method itself was not modified; it continued to append
the data it generated to its parameter, not caring what type that parameter was. After the
method returned its result, we joined all those individual lines into one big string. This one
change reduced the time to run from more than three minutes to a few seconds.

23.2 Coding like a Duck

If you want to write your programs using the duck typing philosophy, you really need to
remember only one thing: an object’s type is determined by what it can do, not by its class.
(In fact, older versions of Ruby had a method Object#type that returned the class of an object.)

What does this mean in practice? At one level, it simply means that there’s often little value
testing the class of an object.

For example, you may be writing a routine to add song information to a string. If you come
from a C# or Java background, you may be tempted to write this:

def append_song(result, song)
test we're given the right parameters
unless result.kind_of?(String)
fail TypeError.new("String expected")

end
unless song.kind_of?(Song)
fail TypeError.new("Song expected")

end

result << song.title << " (" << song.artist << ")"
end

result = ""
append_song(result, song)

Embrace Ruby’s duck typing, and you’d write something far simpler:

def append_song(result, song)
result << song.title << " (" << song.artist << ")"

end

result = ""
append_song(result, song)

You don’t need to check the type of the arguments. If they support << (in the case of result)
or title and artist (in the case of song), everything will just work. If they don’t, your method
will throw an exception anyway (just as it would have done if you’d checked the types). But
without the check, your method is suddenly a lot more flexible. You could pass it an array,
a string, a file, or any other object that appends using <<, and it would just work.

Now sometimes you may want more than this style of laissez-faire programming. You may
have good reasons to check that a parameter can do what you need. Will you get thrown
out of the duck typing club if you check the parameter against a class? No, you won’t.1 But
you may want to consider checking based on the object’s capabilities, rather than its class:

1. The duck typing club doesn’t check to see whether you’re a member anyway....

Chapter 23. Duck Typing • 348

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

def append_song(result, song)
test we're given the right parameters
unless result.respond_to?(:<<)
fail TypeError.new("'result' needs `<<' capability")

end
unless song.respond_to?(:artist) && song.respond_to?(:title)
fail TypeError.new("'song' needs 'artist' and 'title'")

end

result << song.title << " (" << song.artist << ")"
end

result = ""
append_song(result, song)

However, before going down this path, make sure you’re getting a real benefit—it’s a lot of
extra code to write and to maintain.

23.3 Standard Protocols and Coercions

Although not technically part of the language, the interpreter and standard library use var-
ious protocols to handle issues that other languages would deal with using types.

Some objects have more than one natural representation. For example, you may be writing
a class to represent Roman numbers (I, II, III, IV, V, and so on). This class is not necessarily
a subclass of Integer, because its objects are representations of numbers, not numbers in their
own right. At the same time, they do have an integer-like quality. It would be nice to be able
to use objects of our Roman number class wherever Ruby was expecting to see an integer.

To do this, Ruby has the concept of conversion protocols—an object may elect to have itself
converted to an object of another class. Ruby has three standard ways of doing this.

We’ve already come across the first. Methods such as to_s and to_i convert their receiver into
strings and integers. These conversion methods are not particularly strict. If an object has
some kind of decent representation as a string, for example, it will probably have a to_s
method. Our Roman class would probably implement to_s in order to return the string repre-
sentation of a number (VII, for instance).

The second form of conversion function uses methods with names such as to_str and to_int.
These are strict conversion functions. You implement them only if your object can naturally
be used every place a string or an integer could be used. For example, our Roman number
objects have a clear representation as an integer and so should implement to_int. When it
comes to stringiness, however, we have to think a bit harder.

Roman numbers clearly have a string representation, but are they strings? Should we be
able to use them wherever we can use a string itself? No, probably not. Logically, they’re a
representation of a number. You can represent them as strings, but they aren’t plug-compat-
ible with strings. For this reason, a Roman number won’t implement to_str—it isn’t really a
string. Just to drive this home, Roman numerals can be converted to strings using to_s, but
they aren’t inherently strings, so they don’t implement to_str.

To see how this works in practice, let’s look at opening a file. The first parameter to File.new
can be either an existing file descriptor (represented by an integer) or a filename to open.
However, Ruby doesn’t simply look at the first parameter and check whether its type is

report erratum • discuss

Standard Protocols and Coercions • 349

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Fixnum or String. Instead, it gives the object passed in the opportunity to represent itself as a
number or a string. If it were written in Ruby, it may look something like this:

class File
def self.new(file, *args)
if file.respond_to?(:to_int)
IO.new(file.to_int, *args)

else
name = file.to_str
call operating system to open file 'name'

end
end

end

So, let’s see what happens if we want to pass a file descriptor integer stored as a Roman
number into File.new. Because our class implements to_int, the first respond_to? test will succeed.
We’ll pass an integer representation of our number to IO.open, and the file descriptor will be
returned, all wrapped up in a new IO object.

A small number of strict conversion functions are built into the standard library.

to_ary→ Array
This is used when interpreter needs a parameter to a method to be an array and when
expanding parameters and assignments containing the *xyz syntax.

class OneTwo
def to_ary
[1, 2]

end
end

ot = OneTwo.new
puts ot

produces:

1
2

to_a→ Array
This is used when interpreter needs to convert an object into an array for parameter
passing or multiple assignment.

class OneTwo
def to_a
[1, 2]

end
end

ot = OneTwo.new
a, b = *ot
puts "a = #{a}, b = #{b}"
printf("%d -- %d\n", *ot)

produces:

a = 1, b = 2
1 -- 2

Chapter 23. Duck Typing • 350

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

to_enum→ Enumerator
This converts an object (presumably a collection) to an enumerator. It’s never called
internally by the interpreter.

to_hash→ Hash
This is used when the interpreter expects to see Hash.

to_int→ Integer
This is used when the interpreter expects to see an integer value (such as a file descriptor
or as a parameter to Object#Integer).

to_io→ IO
Used when the interpreter is expecting I/O objects (for example, as parameters to the
methods IO#reopen or IO.select).

to_open→ IO
Called (if defined) on the first parameter to IO.open.

to_path→ String
Called by the interpreter when it is looking for a filename (for example, by File#open).

to_proc→ Proc
Used to convert an object prefixed with an ampersand in a method call.

class OneTwo
def to_proc
proc { "one-two" }

end
end
def silly
yield

end

ot = OneTwo.new
silly(&ot) # => "one-two"

to_regexp→ Regexp
Invoked by Regexp#try_convert to convert its argument to a regular expression.

to_str→ String
Used pretty much any place the interpreter is looking for a String value.

class OneTwo
def to_str
"one-two"

end
end

ot = OneTwo.new
puts("count: " + ot)
File.open(ot) rescue puts $!.message

produces:

count: one-two
No such file or directory - one-two

report erratum • discuss

Standard Protocols and Coercions • 351

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

to_sym→ Symbol
Expresses the receiver as a symbol. This is used by the interpreter when compiling
instruction sequences, but it’s probably not useful in user code.

Note that classes such as Integer and Fixnum implement the to_intmethod, and String implements
to_str. That way, you can call the strict conversion functions polymorphically:

it doesn't matter if obj is a Fixnum or a
Roman number, the conversion still succeeds
num = obj.to_int

The Symbol.to_proc Trick

Ruby implements the to_proc for objects of class symbol. Say you want to convert an array
of strings to uppercase. You could write this:

names = %w{ant bee cat}
result = names.map {|name| name.upcase}

That’s fairly concise, right? Return a new array where each element is the corresponding
element in the original, converted to uppercase. But you can instead write this:

names = %w{ant bee cat}
result = names.map(&:upcase)

Now that’s concise: apply the upcase method to each element of names.

So, how does it work? It relies on Ruby’s type coercions. Let’s start at the top.

When you say names.map(&xxx), you’re telling Ruby to pass the Proc object in xxx to the map
method as a block. If xxx isn’t already a Proc object, Ruby tries to coerce it into one by sending
it a to_proc message.

Now :upcase isn’t a Proc object—it’s a symbol. So when Ruby sees names.map(&:upcase), the
first thing it does is try to convert the symbol :upcase into a Proc by calling to_proc. And, by
an incredible coincidence, Ruby implements just such a method. If it was written in Ruby,
it would look something like this:

def to_proc
proc { |obj, *args| obj.send(self, *args) }

end

This method creates a Proc, which, when called on an object, sends that object the symbol
itself. So, when names.map(&:upcase) starts to iterate over the strings in names, it’ll call the
block, passing in the first name and invoking its upcase method.

It’s an incredibly elegant use of coercion and of closures. However, it comes at a price. The
use of dynamic method invocations mean that the version of our code that uses &:upcase is
about half as fast as the more explicitly coded block. This doesn’t worry me personally unless
I happen to be in a performance-critical section of my code.

Numeric Coercion

We previously said there were three types of conversion performed by the interpreter. We
covered loose and strict conversion. The third is numeric coercion.

Chapter 23. Duck Typing • 352

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Here’s the problem. When you write 1+2, Ruby knows to call the + on the object 1 (a Fixnum),
passing it the Fixnum 2 as a parameter. However, when you write 1+2.3, the same + method
now receives a Float parameter. How can it know what to do (particularly because checking
the classes of your parameters is against the spirit of duck typing)?

The answer lies in Ruby’s coercion protocol, based on the method coerce. The basic operation
of coerce is simple. It takes two numbers (its receiver and its parameter). It returns a two-
element array containing representations of these two numbers (but with the parameter first,
followed by the receiver). The coerce method guarantees that these two objects will have the
same class and therefore that they can be added (or multiplied, compared, or whatever).

1.coerce(2) # => [2, 1]
1.coerce(2.3) # => [2.3, 1.0]
(4.5).coerce(2.3) # => [2.3, 4.5]
(4.5).coerce(2) # => [2.0, 4.5]

The trick is that the receiver calls the coerce method of its parameter to generate this array.
This technique, called double dispatch, allows a method to change its behavior based not only
on its class but also on the class of its parameter. In this case, we’re letting the parameter
decide exactly what classes of objects should get added (or multiplied, divided, and so on).

Let’s say that we’re writing a new class that’s intended to take part in arithmetic. To partici-
pate in coercion, we need to implement a coerce method. This takes some other kind of
number as a parameter and returns an array containing two objects of the same class, whose
values are equivalent to its parameter and itself.

For our Roman number class, it’s fairly easy. Internally, each Roman number object holds
its real value as a Fixnum in an instance variable, @value. The coerce method checks to see
whether the class of its parameter is also an Integer. If so, it returns its parameter and its
internal value. If not, it first converts both to floating point.

class Roman
def initialize(value)
@value = value

end
def coerce(other)
if Integer === other
[other, @value]

else
[Float(other), Float(@value)]

end
end
.. other Roman stuff

end

iv = Roman.new(4)
xi = Roman.new(11)

3 * iv # => 12
1.2 * xi # => 13.2

Of course, class Roman as implemented doesn’t know how to do addition. You couldn’t have
written xi+3 in the previous example, because Roman doesn’t have a + method. And that’s
probably as it should be. But let’s go wild and implement addition for Roman numbers:

report erratum • discuss

Standard Protocols and Coercions • 353

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

class Roman
MAX_ROMAN = 4999

attr_reader :value
protected :value

def initialize(value)
if value <= 0 || value > MAX_ROMAN
fail "Roman values must be > 0 and <= #{MAX_ROMAN}"

end
@value = value

end

def coerce(other)
if Integer === other
[other, @value]

else
[Float(other), Float(@value)]

end
end

def +(other)
if Roman === other
other = other.value

end
if Fixnum === other && (other + @value) < MAX_ROMAN
Roman.new(@value + other)

else
x, y = other.coerce(@value)
x + y

end
end

FACTORS = [["m", 1000], ["cm", 900], ["d", 500], ["cd", 400],
["c", 100], ["xc", 90], ["l", 50], ["xl", 40],
["x", 10], ["ix", 9], ["v", 5], ["iv", 4],
["i", 1]]

def to_s
value = @value
roman = ""
for code, factor in FACTORS
count, value = value.divmod(factor)
roman << (code * count)

end
roman

end
end

iv = Roman.new(4)
xi = Roman.new(11)

iv + 3 # => vii
iv + 3 + 4 # => xi

Chapter 23. Duck Typing • 354

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

iv + 3.14159 # => 7.14159
xi + 4900 # => mmmmcmxi
xi + 4990 # => 5001

Finally, be careful with coerce—try always to coerce into a more general type, or you may
end up generating coercion loops. This is a situation where A tries to coerce to B and when
B tries to coerce back to A.

23.4 Walk the Walk, Talk the Talk

Duck typing can generate controversy. Every now and then a thread flares on the mailing
lists or someone blogs for or against the concept. Many of the contributors to these discussions
have some fairly extreme positions.

Ultimately, though, duck typing isn’t a set of rules; it’s just a style of programming. Design
your programs to balance paranoia and flexibility. If you feel the need to constrain the types
of objects that the users of a method pass in, ask yourself why. Try to determine what could
go wrong if you were expecting a String and instead get an Array. Sometimes, the difference
is crucially important. Often, though, it isn’t. Try erring on the more permissive side for a
while, and see whether bad things happen. If not, perhaps duck typing isn’t just for the birds.

report erratum • discuss

Walk the Walk, Talk the Talk • 355

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 24

Metaprogramming
The Jacquard loom, invented more than 200 years ago, was the first device controlled using
punched cards—rows of holes in each card were used to control the pattern woven into the
cloth. But imagine if instead of churning out fabric, the loom could punch more cards, and
those cards could be fed back into the mechanism. The machine could be used to create new
programming that it could then execute. And that would be metaprogramming—writing
code that writes code.

Programming is all about building layers of abstractions. As you solve problems, you’re
building bridges from the unrelenting and mechanical world of silicon to the more
ambiguous and fluid world we inhabit. Some programming languages—such as C—are
close to the machine. The distance from C code to the application domain can be large.
Other languages—Ruby, perhaps—provide higher-level abstractions and hence let you start
coding closer to the target domain. For this reason, most people consider a higher-level
language to be a better starting place for application development (although they’ll argue
about the choice of language).

But when you metaprogram, you are no longer limited to the set of abstractions built in to
your programming language. Instead, you create new abstractions that are integrated into
the host language. In effect, you’re creating a new, domain-specific programming language
—one that lets you express the concepts you need to solve your particular problem.

Ruby makes metaprogramming easy. As a result, most advanced Ruby programmers will
use metaprogramming techniques to simplify their code. This chapter shows how they do
it. It isn’t intended to be an exhaustive survey of metaprogramming techniques. Instead,
we’ll look at the underlying Ruby principles that make metaprogramming possible. From
there you’ll be able to invent your own metaprogramming idioms.

24.1 Objects and Classes

Classes and objects are obviously central to Ruby, but at first sight they can be a little confus-
ing. It seems like there are a lot of concepts: classes, objects, class objects, instance methods,
class methods, singleton classes, and virtual classes. In reality, however, Ruby has just a
single underlying class and object structure.

A Ruby object has three components: a set of flags, some instance variables, and an associated
class. A Ruby class is itself an object of class Class. It contains all the things an object has plus
a set of method definitions and a reference to a superclass (which is itself another class).

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

And, basically, that’s it. From here, you could work out the details of metaprogramming for
yourself. But, as always, the devil lurks in the details, so let’s dig a little deeper.

self and Method Calling

Ruby has the concept of the current object. This current object is referenced by the built-in,
read-only variable self. self has two significant roles in a running Ruby program.

First, self controls how Ruby finds instance variables. We already said that every object carries
around a set of instance variables. When you access an instance variable, Ruby looks for it
in the object referenced by self.

Second, self plays a vital role in method calling. In Ruby, each method call is made on some
object. This object is called the receiver of the call. When you make a call such as items.size,
the object referenced by the variable items is the receiver and size is the method to invoke.

If you make a method call such as puts "hi", there’s no explicit receiver. In this case, Ruby
uses the current object, self, as the receiver. It goes to self’s class and looks up the method (in
this case, puts). If it can’t find the method in the class, it looks in the class’s superclass and
then in that class’s superclass, stopping when it runs out of superclasses (which will happen
after it has looked in BasicObject).1

When you make a method call with an explicit receiver (for example, invoking items.size),
the process is surprisingly similar. The only change—but it’s a vitally important one—is the
fact that self is changed for the duration of the call. Before starting the method lookup process,
Ruby sets self to the receiver (the object referenced by items in this case). Then, after the call
returns, Ruby restores the value that self had before the call.

Let’s see how this works in practice. Here’s a simple program:

class Test
def one
@var = 99
two

end
def two
puts @var

end
end

t = Test.new
t.one

produces:

99

The call to Test.new on the second-to-last line creates a new object of class Test, assigning that
object to the variable t. Then, on the next line, we call the method t.one. To execute this call,
Ruby sets self to t and then looks in t’s class for the method one. Ruby finds the method
defined on line 2 and calls it.

1. If it can’t find the method in the object’s class hierarchy, Ruby looks for a method called method_missing
on the original receiver, starting back at the class of self and then looking up the superclass chain.

Chapter 24. Metaprogramming • 358

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Inside the method, we set the instance variable @var to 99. This instance variable will be
associated with the current object. What is that object? Well, the call to t.one set self to t, so
within the one method, self will be that particular instance of class Test.

On the next line, one calls two. Because there’s no explicit receiver, self is not changed. When
Ruby looks for the method two, it looks in Test, the class of t.

The method two references an instance variable @var. Again, Ruby looks for this variable in
the current object and finds the same variable that was set by the method one.

The call to puts at the end of two works the same way. Again, because there’s no explicit
receiver, self will be unchanged. Ruby looks for the puts method in the class of the current
object but can’t find it. It then looks in Test’s superclass, class Object. Again, it doesn’t find
puts. However, Object mixes in the module Kernel. We’ll talk more about this later; for now
we can say that mixed-in modules act as if they were superclasses. The Kernel module does
define puts, so the method is found and executed.

After two and one return, Ruby resets self to the value it had before the original call to t.one.

This explanation may seem labored, but understanding it is vital to mastering metaprogram-
ming in Ruby.

self and Class Definitions

We’ve seen that calling a method with an explicit receiver changes self. Perhaps surprisingly,
self is also changed by a class definition. This is a consequence of the fact that class definitions
are actually executable code in Ruby—if we can execute code, we need to have a current
object. A simple test shows what this object is:

class Test
puts "In the definition of class Test"
puts "self = #{self}"
puts "Class of self = #{self.class}"

end

produces:

In the definition of class Test
self = Test
Class of self = Class

Inside a class definition, self is set to the class object of the class being defined. This means
that instance variables set in a class definition will be available to class methods (because
self will be the same when the variables are defined and when the methods execute):

class Test
@var = 99
def self.value_of_var
@var

end
end

Test.value_of_var # => 99

The fact that self is set to the class during a class definition turns out to be a dramatically
elegant decision, but to see why, we’ll first need to have a look at singletons.

report erratum • discuss

Objects and Classes • 359

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

24.2 Singletons

Ruby lets you define methods that are specific to a particular object. These are called singleton
methods. Let’s start with a simple string object:

animal = "cat"
puts animal.upcase

produces:

CAT

This results in the following object structure.

value: "cat"

class
animal

String

super

class

methods:

- downcase()

- upcase()

...

class

Object

super

class

methods:

- clone()

- dup()

...

class

The animal variable points to an object containing (among other things) the value of the string
("cat") and a pointer to the object’s class, String.

When we call animal.upcase, Ruby goes to the object referenced by the animal variable and
then looks up the method upcase in the class object referenced from the animal object. Our
animal is a string and so has the methods of class String available.

Now let’s make it more interesting. We’ll define a singleton method on the string referenced
by animal:

animal = "cat"
def animal.speak
puts "The #{self} says miaow"

end

animal.speak
puts animal.upcase

produces:

The cat says miaow
CAT

We’ve already seen how the call to animal.speak works when we looked at how methods are
invoked. Ruby sets self to the string object "cat" referenced by animal and then looks for a
method speak in that object’s class. Surprisingly, it finds it. It’s initially surprising because
the class of "cat" is String, and String doesn’t have a speak method. So, does Ruby have some
kind of special-case magic for these methods that are defined on individual objects?

Chapter 24. Metaprogramming • 360

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Thankfully, the answer is “no.” Ruby’s object model is remarkably consistent. When we
defined the singleton method for the "cat" object, Ruby created a new anonymous class and
defined the speak method in that class. This anonymous class is sometimes called a singleton
class and other times an eigenclass. I prefer the former, because it ties in to the idea of singleton
methods.

Ruby makes this singleton class the class of the "cat" object and makes String (which was the
original class of "cat") the superclass of the singleton class. The picture looks like this:

value: "cat"

class
animal

anon

super

class

methods:

-speak()

class

String

super

class

methods:

- downcase()

- upcase()

...

class

Object

super

class

methods:

- clone()

- dup()

...

class

Now let’s follow the call to animal.speak. Ruby goes to the object referenced by animal and
then looks in its class for the method speak. The class of the animal object is the newly created
singleton class, and it contains the method we need.

What happens if we instead call animal.upcase? The processing starts the same way: Ruby
looks for the method upcase in the singleton class but fails to find it there. It then follows the
normal processing rules and starts looking up the chain of superclasses. The superclass of
the singleton is String, and Ruby finds the upcasemethod there. Notice that there is no special-
case processing here—Ruby method calls always work the same way.

Singletons and Classes

Earlier, we said that inside a class definition, self is set to the class object being defined. It
turns out that this is the basis for one of the more elegant aspects of Ruby’s object model.

report erratum • discuss

Singletons • 361

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Recall that we can define class methods in Ruby using either of the forms def self.xxx or
def ClassName.xxx:

class Dave
def self.class_method_one
puts "Class method one"

end
def Dave.class_method_two
puts "Class method two"

end
end

Dave.class_method_one
Dave.class_method_two

produces:

Class method one
Class method two

Now we know why the two forms are identical: inside the class definition, self is set to Dave.

But now that we’ve looked at singleton methods, we also know that, in reality, there is no
such thing as class methods in Ruby. Both of the previous definitions define singleton
methods on the class object. As with all other singleton methods, we can then call them via
the object (in this case, the class Dave).

Before we created the two singleton methods in class Dave, the class pointer in the class object
pointed to class Class. (That’s a confusing sentence. Another way of saying it is “Dave is a
class, so the class of Dave is class Class,” but that’s pretty confusing, too.) The situation looks
like this:

Dave

super

class

methods:

class

Object

super

class

methods:

- clone()

- dup()

...

class

Class

super

class

methods:

- new()

...

class

Module

super

class

methods:

- clone()

- dup()

...

class

Dave

Chapter 24. Metaprogramming • 362

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

The object diagram for class Dave after the methods are defined looks like this:

Dave

super

class

methods:

class

Object

super

class

methods:

- clone()

- dup()

...

class

anon

super

class

methods:

-class_method_one()

-class_method_two()

class

Class

super

class

methods:

- new()

...

class

Module

super

class

methods:

- clone()

- dup()

...

class

Dave

Do you see how the singleton class is created, just as it was for the animal example? The
class is inserted as the class of Dave, and the original class of Dave is made this new class’s
parent.

We can now tie together the two uses of self, the current object. We talked about how instance
variables are looked up in self, and we talked about how singleton methods defined on self
become class methods. Let’s use these facts to access instance variables for class objects:

class Test
@var = 99
def self.var
@var

end
def self.var=(value)
@var = value

end
end

puts "Original value = #{Test.var}"
Test.var = "cat"
puts "New value = #{Test.var}"

produces:

Original value = 99
New value = cat

Newcomers to Ruby commonly make the mistake of setting instance variables inline in the
class definition (as we did with @var in the previous code) and then attempting to access

report erratum • discuss

Singletons • 363

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

these variables from instance methods. As the code illustrates, this won’t work, because
instance variables defined in the class body are associated with the class object, not with
instances of the class.

Another Way to Access the Singleton Class

We’ve seen how you can create methods in an object’s singleton class by adding the object
reference to the method definition using something like def animal.speak.

You can do the same using Ruby’s class << an_object notation:

animal = "dog"
class << animal
def speak
puts "The #{self} says WOOF!"

end
end

animal.speak

produces:

The dog says WOOF!

Inside this kind of class definition, self is set to the singleton class for the given object (animal
in this case). Because class definitions return the value of the last statement executed in the
class body, we can use this fact to get the singleton class object:

animal = "dog"
def animal.speak
puts "The #{self} says WOOF!"

end

singleton = class << animal
def lie
puts "The #{self} lies down"

end
self # << return singleton class object

end

animal.speak
animal.lie
puts "Singleton class object is #{singleton}"
puts "It defines methods #{singleton.instance_methods - 'cat'.methods}"

produces:

The dog says WOOF!
The dog lies down
Singleton class object is #<Class:#<String:0x007fa6910471f0>>
It defines methods [:speak, :lie]

Note the notation that Ruby uses to denote a singleton class: #<Class:#<String:...>>.

Ruby goes to some trouble to stop you from using singleton classes outside the context of
their original object. For example, you can’t create a new instance of a singleton class:

singleton = class << "cat"; self; end
singleton.new

Chapter 24. Metaprogramming • 364

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

produces:

from prog.rb:2:in `<main>'
prog.rb:2:in `new': can't create instance of singleton class (TypeError)

Let’s tie together what we know about instance variables, self, and singleton classes. We
wrote class-level accessor methods on page 363 to let us get and set the value of an instance
variable defined in a class object. But Ruby already has attr_accessor, which defines getter
and setter methods. Normally, though, these are defined as instance methods and hence
will access values stored in instances of a class. To make them work with class-level instance
variables, we have to invoke attr_accessor in the singleton class:

class Test
@var = 99
class << self
attr_accessor :var

end
end

puts "Original value = #{Test.var}"
Test.var = "cat"
puts "New value = #{Test.var}"

produces:

Original value = 99
New value = cat

24.3 Inheritance and Visibility

There’s a wrinkle to when it comes to method definition and class inheritance, but it’s fairly
obscure. Within a class definition, you can change the visibility of a method in an ancestor
class. For example, you can do something like this:

class Base
def a_method
puts "Got here"

end
private :a_method

end

class Derived1 < Base
public :a_method

end

class Derived2 < Base
end

In this example, you would be able to invoke a_method in instances of class Derived1 but not
via instances of Base or Derived2.

So, how does Ruby pull off this feat of having one method with two different visibilities?
Simply put, it cheats.

If a subclass changes the visibility of a method in a parent, Ruby effectively inserts a hidden
proxy method in the subclass that invokes the original method using super. It then sets the
visibility of that proxy to whatever you requested. This means that the following code:

report erratum • discuss

Inheritance and Visibility • 365

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

class Derived1 < Base
public :a_method

end

is effectively the same as this:

class Derived1 < Base
def a_method(*)
super

end
public :a_method

end

The call to super can access the parent’s method regardless of its visibility, so the rewrite
allows the subclass to override its parent’s visibility rules. Pretty scary, eh?

24.4 Modules and Mixins

You know that when you include a module into a Ruby class, the instance methods in that
module become available as instance methods of the class.

module Logger
def log(msg)
STDERR.puts Time.now.strftime("%H:%M:%S: ") + "#{self} (#{msg})"

end
end

class Song
include Logger

end

s = Song.new
s.log("created")

produces:

12:31:37: #<Song:0x007f952b0478c0> (created)

Ruby implements include very simply: the module that you include is effectively added as a
superclass of the class being defined. It’s as if the module is the parent of the class that it is
mixed in to. And that would be the end of the description except for one small wrinkle.
Because the module is injected into the chain of superclasses, it must itself hold a link to the
original parent class. If it didn’t, there’d be no way of traversing the superclass chain to look
up methods. However, you can mix the same module into many different classes, and those
classes could potentially have totally different superclass chains. If there were just one
module object that we mixed in to all these classes, there’d be no way of keeping track of
the different superclasses for each.

To get around this, Ruby uses a clever trick. When you include a module in class Example,
Ruby constructs a new class object, makes it the superclass of Example, and then sets the
superclass of the new class to be the original superclass of Example. It then references the
module’s methods from this new class object in such a way that when you look a method
up in this class, it actually looks it up in the module:

Chapter 24. Metaprogramming • 366

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Song

super

class

methods:

- ...

class

anon2

super

class

methods:

class

Object

super

class

methods:

- clone()

- dup()

...

class

Logger

class

methods:

- log()

module

Album

super

class

methods:

- ...

class

anon1

super

class

methods:

class

Object

super

class

methods:

- clone()

- dup()

...

class

A nice side effect of this arrangement is that if you change a module after including it in a
class, those changes are reflected in the class (and the class’s objects). In this way, modules
behave just like classes.

module Mod
def greeting
"Hello"

end
end
class Example
include Mod

end

ex = Example.new
puts "Before change, greeting is #{ex.greeting}"

module Mod
def greeting
"Hi"

end
end

puts "After change, greeting is #{ex.greeting}"

produces:

Before change, greeting is Hello
After change, greeting is Hi

If a module itself includes other modules, a chain of proxy classes will be added to any class
that includes that module, one proxy for each module that is directly or indirectly included.

report erratum • discuss

Modules and Mixins • 367

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Finally, Ruby will include a module only once in an inheritance chain—including a module
that is already included by one of your superclasses has no effect.

prepend

⇡New in 2.0⇣ Ruby 2 introduced the prepend method. Logically, this behaves just like include, but the
methods in the prepended module take precedence over those in the host class. Ruby pulls
off this magic by inserting a dummy class in place of the original host class2 and then
inserting the prepended module between the two.

If a method inside a prepended module has the same name as one in the original class, it
will be invoked instead of the original. The prepended method can then call the original
using super.

module VanityPuts
def puts(*args)
args.each do |arg|
super("Dave says: #{arg}")

end
end

end

class Object
prepend VanityPuts

end

puts "Hello and", "goodbye"

produces:

Dave says: Hello and
Dave says: goodbye

However, there is a problem with this—the change we just made to class Object is global.
We’ll see how to fix that shortly when we look at refinements.

extend

The include method effectively adds a module as a superclass of self. It is used inside a class
definition to make the instance methods in the module available to instances of the class.

However, it is sometimes useful to add the instance methods to a particular object. You do
this using Object#extend. Here’s an example:

module Humor
def tickle
"#{self} says hee, hee!"

end
end

obj = "Grouchy"
obj.extend Humor
obj.tickle # => "Grouchy says hee, hee!"

2. Actually, it inserts the dummy class above the original class, and then moves the methods from the
original to the copy.

Chapter 24. Metaprogramming • 368

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Stop for a second to think about how this might be implemented.

When Ruby executes obj.tickle in this code example, it does the usual trick of looking in the
class of obj for a method called tickle. For extend to work, it has to add the instance methods
in the Humor module into the superclass chain for the class of obj. So, just as with singleton
method definitions, Ruby creates a singleton class for obj and then includes the module Humor
in that class. In fact, just to prove that this is all that happens, here’s the C implementation
of extend in the current Ruby 1.9 interpreter:

void rb_extend_object(VALUE obj, VALUE module) {
rb_include_module(rb_singleton_class(obj), module);

}

There is an interesting trick with extend. If you use it within a class definition, the module’s
methods become class methods. This is because calling extend is equivalent to self.extend, so
the methods are added to self, which in a class definition is the class itself.

Here’s an example of adding a module’s methods at the class level:

module Humor
def tickle
"#{self} says hee, hee!"

end
end
class Grouchy
extend Humor

end

Grouchy.tickle # => "Grouchy says hee, hee!"

Later on page 375, we’ll see how to use extend to add macro-style methods to a class.

Refinements

⇡New in 2.0⇣We previously looked at applying a change to a builtin class by defining the altered version
of a method in a module, and then prepending that module in the class. When we subse-
quently call the method on instances of the class, it finds the version in the module first.

This technique is time-honored—frameworks such as Ruby on Rails rely on it. But it comes
with a price—any changes we make like this are global. They apply not just to the code we
wrote for our application, but also to the code in all the libraries and gems we use, too. It is
possible that a change that made our code easier to write breaks someone else’s library code
that we rely on.3

Ruby 2.0 is experimenting with a new way of dealing with this problem. The technique is
called refinements.

Now, before going any further, here is the mandatory warning. Refinements are not yet
completely worked out. In fact, a fair amount of refinement functionality was removed just
a few weeks before Ruby 2.0 was released. So what we’re documenting here may well become

3. This is clearly a problem in theory. Does it happen in practice? Actually, surprisingly little. But you
can never be sure that things will quite work as you expect. Even if you don’t override these classes,
it is possible you’re using two separate libraries whose patches to third-party classes clash.

report erratum • discuss

Modules and Mixins • 369

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

outdated as new releases of Ruby change the spec. If you are writing code that uses refine-
ments, you’ll want to keep track of these changes.

A refinement is a way of packaging a set of changes to one or more classes. These refinements
are defined within a module.

If a Ruby source file then elects to use this module of refinements, the change will apply to
the source in that module past the point where the refinement is used. However code outside
this file is not affected.

Let’s make this concrete. Here’s our vanity version of puts rewritten using refinements.

module VanityPuts
refine Object do
private
def puts(*args)
args.each do |arg|
Kernel::puts("Dave says: #{arg}")

end
end

end
end

using VanityPuts

puts "Hello", "world"

produces:

prog.rb:2: warning: Refinements are experimental, and the behavior may change in
future versions of Ruby!
Dave says: Hello
Dave says: world

The refinement is contained in the module VanityPuts. The refine block takes a class and a
block. Within the block are the methods that you would like to update in that class. At this
point, no change is made—you have defined a method, but haven’t yet told Ruby to use it.

That’s what the using clause does. You give it a module containing one or more refinements,
and it marks the refined objects to say “for the rest of this source file, when you make a call
to an instance of Object, first check to see if the method can be found in the refinement. If so,
invoke it, otherwise invoke the original.

Let’s step it up a notch. We’ll define three source files. Here’s one that contains a refinement
definition:

metaprogramming/ref1/vanity_refinement.rb

module VanityPuts
refine Object do
private
def puts(*args)
args.each do |arg|
Kernel::puts("Dave says: #{arg}")

end
end

end
end

Chapter 24. Metaprogramming • 370

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/metaprogramming/ref1/vanity_refinement.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

And here’s a file that uses this refinement.

metaprogramming/ref1/file_using_refinement.rb

using VanityPuts

puts "I'm in #{File::basename(__FILE__)}"

def shout(msg)
puts(msg.upcase)

end

Finally, let’s run them from a third file:

require_relative 'vanity_refinement'

puts "About to require file using refinement"
require_relative 'file_using_refinement'
puts "Back from require"

shout("finished")

produces:

prog.rb:2: warning: Refinements are experimental, and the behavior may change in
future versions of Ruby!
About to require file using refinement
Dave says: I'm in file_using_refinement.rb
Back from require
Dave says: FINISHED

Notice how the puts calls in the main program are unadorned, but the calls in the file that
uses the refinement has the vanity prefix.

Refinements—use and scoping

You can define refinements in any module. A refinement may only refer to a class (not a
module).

The using call that activates a refinement module can only occur at the top-level scope or in
a string that is evaluated. using may not be called inside a class or module definition.4

The basic scoping rule is simple. A refinement is activated in a source file by calling using.
For the rest of that source file, the methods that are defined in that refinement are active.

Designing with Refinements

Refinements are too new for the community to have come to any kind of consensus on the
best way to use them. However, it seems likey that there are at least two basic use cases.

The first is the case where a developer wants to make changes to a third party class for their
own use. For example, a tool such as Rake, which issues a lot of calls to run external programs
using the system method might want to modify the built-in version of system so that it logs
errors differently. However, it does not want that logging to apply to other calls to system
that are not part of Rake. In this case, the code will use the refinement locally within its own
source files. It will be an implementation detail, hidden from users of the code.

4. This is the area where we’re likely to see changes in the future.

report erratum • discuss

Modules and Mixins • 371

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/metaprogramming/ref1/file_using_refinement.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

The second use case is where a library writer offers the refinement as part of their external
interface. For example, the Rails Active Support code defines methods such as hours,minutes,
and ago on numbers, allowing you to write 3.days.ago. Right now, those changes to numbers
are global. But, using refinements, the Rails team could code the new methods, but not add
them in to any system classes. Instead, their API would document how to add them for
yourself into just those source files that uses them. They might tell you to to write

using Rails::Extensions::Durations

in any source file that needs to use them.

Obviously there are many more use cases. And the two we’ve mentioned are not mutually
exclusive—the Rails framework, for example, is likely to want to use these duration-related
methods itself, as well as making them available via a documented refinement. So this is an
interesting time to work with Ruby—as a community we’ll be discussing how best to use
refinements for many years.

24.5 Metaprogramming Class-Level Macros

If you’ve used Ruby for any time at all, you’re likely to have used attr_accessor, the method
that defines reader and writer methods for instance variables:

class Song
attr_accessor :duration

end

If you’ve written a Ruby on Rails application, you’ve probably used has_many:

class Album < ActiveRecord::Base
has_many :tracks

end

These are both examples of class-level methods that generate code behind the scenes. Because
of the way they expand into something bigger, folks sometimes call these kinds of methods
macros.

Let’s create a trivial example and then build it up into something realistic. We’ll start by
implementing a simple method that adds logging capabilities to instances of a class. We
previously did this using a module—this time we’ll do it using a class-level method. Here’s
the first iteration:

class Example
def self.add_logging
def log(msg)
STDERR.puts Time.now.strftime("%H:%M:%S: ") + "#{self} (#{msg})"

end
end

add_logging
end

ex = Example.new
ex.log("hello")

produces:

12:31:38: #<Example:0x007fc14310fa20> (hello)

Chapter 24. Metaprogramming • 372

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Clearly, this is a silly piece of code. But bear with me—it’ll get better. And we can still learn
some stuff from it. First, notice that add_logging is a class method—it is defined in the class
object’s singleton class. That means we can call it later in the class definition without an
explicit receiver, because self is set to the class object inside a class definition.

Then, notice that the add_logging method contains a nested method definition. This inner
definition will get executed only when we call the add_logging method. The result is that log
will be defined as an instance method of class Example.

Let’s take one more step. We can define the add_logging method in one class and then use it
in a subclass. This works because the singleton class hierarchy parallels the regular class
hierarchy. As a result, class methods in a parent class are also available in the child class, as
the following example shows.

class Logger
def self.add_logging
def log(msg)
STDERR.puts Time.now.strftime("%H:%M:%S: ") + "#{self} (#{msg})"

end
end

end

class Example < Logger
add_logging

end

ex = Example.new
ex.log("hello")

produces:

12:31:38: #<Example:0x007fcc5c0473d0> (hello)

Think back to the two examples at the start of this section. Both work this way. attr_accessor
is an instance method defined in class Module and so is available in all module and class
definitions. has_many is a class method defined in the Base class within the Rails ActiveRecord
module and so is available to all classes that subclass ActiveRecord::Base.

This example is still not particularly compelling; it would still be easier to add the logmethod
directly as an instance method of our Logger class. But what happens if we want to construct
a different version of the log method for each class that uses it? For example, let’s add the
capability to add a short class-specific identifying string to the start of each log message. We
want to be able to say something like this:

class Song < Logger
add_logging "Song"

end

class Album < Logger
add_logging "CD"

end

To do this, let’s define the log method on the fly. We can no longer use a straightforward
def...end-style definition. Instead, we’ll use one of the cornerstones of metaprogramming,
define_method. This takes the name of a method and a block, defining a method with the given

report erratum • discuss

Metaprogramming Class-Level Macros • 373

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

name and with the block as the method body. Any arguments in the block definition become
parameters to the method being defined.

class Logger
def self.add_logging(id_string)
define_method(:log) do |msg|
now = Time.now.strftime("%H:%M:%S")
STDERR.puts "#{now}-#{id_string}: #{self} (#{msg})"

end
end

end

class Song < Logger
add_logging "Tune"

end

class Album < Logger
add_logging "CD"

end

song = Song.new
song.log("rock on")

produces:

12:31:38-Tune: #<Song:0x007f9afb90e1b8> (rock on)

There’s an important subtlety in this code. The body of the log method contains this line:

STDERR.puts "#{now}-#{id_string}: #{self} (#{msg})"

The value now is a local variable, and msg is the parameter to the block. But id_string is the
parameter to the enclosing add_logging method. It’s accessible inside the block because block
definitions create closures, allowing the context in which the block is defined to be carried
forward and used when the block is used. In this case, we’re taking a value from a class-
level method and using it in an instance method we’re defining. This is a common pattern
when creating these kinds of class-level macros.

As well as passing parameters from the class method into the body of the method being
defined, we can also use the parameter to determine the name of the method or methods to
create. Here’s an example that creates a new kind of attr_accessor that logs all assignments to
a given instance variable:

class AttrLogger
def self.attr_logger(name)
attr_reader name
define_method("#{name}=") do |val|
puts "Assigning #{val.inspect} to #{name}"
instance_variable_set("@#{name}", val)

end
end

end

class Example < AttrLogger
attr_logger :value

end

Chapter 24. Metaprogramming • 374

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

ex = Example.new
ex.value = 123
puts "Value is #{ex.value}"
ex.value = "cat"
puts "Value is now #{ex.value}"

produces:

Assigning 123 to value
Value is 123
Assigning "cat" to value
Value is now cat

Again, we use the fact that the block defining the method body is a closure, accessing the
name of the attribute in the log message string. Notice we also make use of the fact that
attr_reader is simply a class method—we can call it inside our class method to define the
reader method for our attribute. Note another common bit of metaprogramming—we use
instance_variable_set to set the value of an instance variable (duh). There’s a corresponding
_get method that fetches the value of a named instance variable.

Class Methods and Modules

You can define class methods in one class and then use them in subclasses of that class. But
it is often inappropriate to use subclassing, either because we already have to subclass some
other class or because our design aesthetic rebels against making Song a subclass of Logger.

In these cases, you can use a module to hold your metaprogramming implementation. As
we’ve seen, using extend inside a class definition will add the methods in a module as class
methods to the class being defined:

module AttrLogger
def attr_logger(name)
attr_reader name
define_method("#{name}=") do |val|
puts "Assigning #{val.inspect} to #{name}"
instance_variable_set("@#{name}", val)

end
end

end
class Example
extend AttrLogger
attr_logger :value

end

ex = Example.new
ex.value = 123
puts "Value is #{ex.value}"
ex.value = "cat"
puts "Value is now #{ex.value}"

produces:

Assigning 123 to value
Value is 123
Assigning "cat" to value
Value is now cat

report erratum • discuss

Metaprogramming Class-Level Macros • 375

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Things get a little trickier if you want to add both class methods and instance methods into
the class being defined. Here’s one technique, used extensively in the implementation of
Rails. It makes use of a Ruby hook method, included, which is called automatically by Ruby
when you include a module into a class. It is passed the class object of the class being defined.

module GeneralLogger
Instance method to be added to any class that includes us
def log(msg)
puts Time.now.strftime("%H:%M: ") + msg

end

module containing class methods to be added
module ClassMethods
def attr_logger(name)
attr_reader name
define_method("#{name}=") do |val|
log "Assigning #{val.inspect} to #{name}"
instance_variable_set("@#{name}", val)

end
end

end

extend host class with class methods when we're included
def self.included(host_class)
host_class.extend(ClassMethods)

end
end

class Example
include GeneralLogger

attr_logger :value
end

ex = Example.new
ex.log("New example created")
ex.value = 123
puts "Value is #{ex.value}"
ex.value = "cat"
puts "Value is #{ex.value}"

produces:

12:31: New example created
12:31: Assigning 123 to value
Value is 123
12:31: Assigning "cat" to value
Value is cat

Notice how the included callback is used to extend the host class with the methods defined
in the inner module ClassMethods.

Now, as an exercise, try executing the previous example in your head. For each line of code,
work out the value of self. Master this, and you’ve pretty much mastered this style of
metaprogramming in Ruby.

Chapter 24. Metaprogramming • 376

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

24.6 Two Other Forms of Class Definition

Just in case you thought we’d exhausted the ways of defining Ruby classes, let’s look at two
other options.

Subclassing Expressions

The first form is really nothing new—it’s simply a generalization of the regular class definition
syntax. You know that you can write this:

class Parent
...

end
class Child < Parent
...

end

What you might not know is that the thing to the right of the < needn’t be just a class name;
it can be any expression that returns a class object. In this code example, we have the constant
Parent. A constant is a simple form of expression, and in this case the constant Parent holds
the class object of the first class we defined.

Ruby comes with a class called Struct, which allows you to define classes that contain just
data attributes. For example, you could write this:

Person = Struct.new(:name, :address, :likes)

dave = Person.new('Dave', 'TX')
dave.likes = "Programming Languages"
puts dave

produces:

#<struct Person name="Dave", address="TX", likes="Programming Languages">

The return value from Struct.new(...) is a class object. By assigning it to the constant Person, we
can thereafter use Person as if it were any other class.

But say we wanted to change the to_s method of our structure.

We could do it by opening up the class and writing the following method.

Person = Struct.new(:name, :address, :likes)
class Person
def to_s
"#{self.name} lives in #{self.address} and likes #{self.likes}"

end
end

However, we can do this more elegantly (although at the cost of an additional class object)
by writing this:

class Person < Struct.new(:name, :address, :likes)
def to_s
"#{self.name} lives in #{self.address} and likes #{self.likes}"

end
end

report erratum • discuss

Two Other Forms of Class Definition • 377

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

dave = Person.new('Dave', 'Texas')
dave.likes = "Programming Languages"
puts dave

produces:

Dave lives in Texas and likes Programming Languages

Creating Singleton Classes

Let’s look at some Ruby code:

class Example
end
ex = Example.new

When we call Example.new, we’re invoking the method new on the class object Example. This
is a regular method call—Ruby looks for the method new in the class of the object (and the
class of Example is Class) and invokes it. So we can also invoke Class#new directly:

some_class = Class.new
puts some_class.class

produces:

Class

If you pass Class.new a block, that block is used as the body of the class:

some_class = Class.new do
def self.class_method
puts "In class method"

end
def instance_method
puts "In instance method"

end
end

some_class.class_method
obj = some_class.new
obj.instance_method

produces:

In class method
In instance method

By default, these classes will be direct descendents of Object. You can give them a different
parent by passing the parent’s class as a parameter:

some_class = Class.new(String) do
def vowel_movement
tr 'aeiou', '*'

end
end

obj = some_class.new("now is the time")
puts obj.vowel_movement

produces:

n*w *s th* t*m*

Chapter 24. Metaprogramming • 378

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

How Classes Get Their Names

You may have noticed that the classes created by Class.new have no name. However, if you assign the
class object for a class with no name to a constant, Ruby automatically names the class after the constant:

some_class = Class.new
obj = some_class.new
puts "Initial name is #{some_class.name}"
SomeClass = some_class
puts "Then the name is #{some_class.name}"
puts "also works via the object: #{obj.class.name}"

produces:

Initial name is
Then the name is SomeClass
also works via the object: SomeClass

We can use these dynamically constructed classes to extend Ruby in interesting ways. For
example, here’s a simple reimplementation of the Ruby Struct class:

def MyStruct(*keys)
Class.new do
attr_accessor *keys
def initialize(hash)
hash.each do |key, value|
instance_variable_set("@#{key}", value)

end
end

end
end

Person = MyStruct :name, :address, :likes
dave = Person.new(name: "dave", address: "TX", likes: "Stilton")
chad = Person.new(name: "chad", likes: "Jazz")
chad.address = "CO"

puts "Dave's name is #{dave.name}"
puts "Chad lives in #{chad.address}"

produces:

Dave's name is dave
Chad lives in CO

24.7 instance_eval and class_eval

The methods Object#instance_eval, Module#class_eval, and Module#module_eval let you set self to
be some arbitrary object, evaluate the code in a block with, and then reset self:

"cat".instance_eval do
puts "Upper case = #{upcase}"
puts "Length is #{self.length}"

end

produces:

Upper case = CAT
Length is 3

report erratum • discuss

instance_eval and class_eval • 379

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Both forms also take a string, but this is considered a little dangerous.

First, it is slow—calling eval effectively compiles the code in the string before executing it.
But, even worse, eval can be dangerous. If there’s any chance that external data—stuff that
comes from outside your application—can wind up inside the parameter to eval, then you
have a security hole, because that external data may end up containing arbitrary code that
your application will blindly execute.

That said, here’s an example using a string parameter:

"cat".instance_eval('puts "Upper=#{upcase}, length=#{self.length}"')

produces:

Upper=CAT, length=3

class_eval and instance_eval both set self for the duration of the block. However, they differ in
the way they set up the environment for method definition. class_eval sets things up as if you
were in the body of a class definition, so method definitions will define instance methods:

class MyClass
end

MyClass.class_eval do
def instance_method
puts "In an instance method"

end
end

obj = MyClass.new
obj.instance_method

produces:

In an instance method

In contrast, calling instance_eval on a class acts as if you were working inside the singleton
class of self. Therefore, any methods you define will become class methods.

class MyClass
end

MyClass.instance_eval do
def class_method
puts "In a class method"

end
end
MyClass.class_method

produces:

In a class method

It might be helpful to remember that, when defining methods, class_eval and instance_eval
have precisely the wrong names: class_evaldefines instance methods, and instance_evaldefines
class methods. Go figure.

Ruby has variants of these methods. Object#instance_exec, Module#class_exec, and Module#mod-
ule_exec behave identically to their _eval counterparts but take only a block (that is, they do
not take a string). Any arguments given to the methods are passed in as block parameters.

Chapter 24. Metaprogramming • 380

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

This is an important feature. Previously it was impossible to pass an instance variable into
a block given to one of the _evalmethods—because self is changed by the call, these variables
go out of scope. With the _exec form, you can now pass them in:

@animal = "cat"
"dog".instance_exec(@animal) do |other|
puts "#{other} and #{self}"

end

produces:

cat and dog

instance_eval and Constants

Ruby 1.9 changed the way Ruby looks up constants when executing a block using instance_eval
and class_eval. Ruby 1.9.2 then reverted the change. In Ruby 1.8 and Ruby 1.9.2, constants
are looked up in the lexical scope in which they were referenced. In Ruby 1.9.0, they are
looked up in the scope in which instance_eval is called. This (artificial) example shows the
behavior at the time I last built this book—it may well have changed again by the time you
run it....

module One
CONST = "Defined in One"
def self.eval_block(&block)
instance_eval(&block)

end
end

module Two
CONST = "Defined in Two"
def self.call_eval_block
One.eval_block do
CONST

end
end

end

Two.call_eval_block # => "Defined in Two"

In Ruby 1.9.0, this same code would evaluate to "Defined in One".

instance_eval and Domain-Specific Languages

It turns out that instance_eval has a pivotal role to play in a certain type of domain-specific
language (DSL). For example, we might be writing a simple DSL for turtle graphics.5 To
draw a set of three 5x5 squares, we might write the following:6

5. In turtle graphics systems, you imagine you have a turtle you can command to move forward n squares,
turn left, and turn right. You can also make the turtle raise and lower a pen. If the pen is lowered, a
line will be drawn tracing the turtle’s subsequent movements. Very few of these turtles exist in the
wild, so we tend to simulate them inside computers.

6. Yes, the forward(4) is correct in this code. The initial point is always drawn.

report erratum • discuss

instance_eval and class_eval • 381

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

3.times do
forward(8)
pen_down
4.times do
forward(4)
left

end
pen_up

end

Clearly, pen_down, forward, left, and pen_up can be implemented as Ruby methods. However,
to call them without a receiver like this, either we have to be within a class that defines them
(or is a child of such a class) or we have to make the methods global. instance_eval to the rescue.
We can define a class Turtle that defines the various methods we need as instance methods.
We’ll also define a walk method, which will execute our turtle DSL, and a draw method to
draw the resulting picture:

class Turtle
def left; ... end
def right; ... end
def forward(n); ... end
def pen_up; .. end
def pen_down; ... end
def walk(...); end
def draw; ... end

end

If we implement walk correctly, we can then write this:

turtle = Turtle.new
turtle.walk do
3.times do
forward(8)
pen_down
4.times do
forward(4)
left

end
pen_up

end
end
turtle.draw

So, what is the correct implementation of walk? Well, we clearly have to use instance_eval,
because we want the DSL commands in the block to call the methods in the turtle object. We
also have to arrange to pass the block given to the walk method to be evaluated by that
instance_eval call. Our implementation looks like this:

def walk(&block)
instance_eval(&block)

end

Notice how we captured the block into a variable and then expanded that variable back into
a block in the call to instance_eval.

Chapter 24. Metaprogramming • 382

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

See Section 24.11, The Turtle Graphics Program, on page 391 for a complete listing of the turtle
program.

Is this a good use of instance_eval? It depends on the circumstances. The benefit is that the
code inside the block looks simple—you don’t have to make the receiver explicit:

4.times do
turtle.forward(4)
turtle.left

end

There’s a drawback, though. Inside the block, scope isn’t what you think it is, so this code
wouldn’t work:

@size = 4
turtle.walk do
4.times do
turtle.forward(@size)
turtle.left

end
end

Instance variables are looked up in self, and self in the block isn’t the same as self in the code
that sets the instance variable@size. Because of this, most people are moving away from this
style of instance_evaled block.

24.8 Hook Methods

InClassMethods andModules, on page 375, we defined a method called included in our General-
Logger module. When this module was included in a class, Ruby automatically invoked this
included method, allowing our module to add class methods to the host class.

included is an example of a hook method (sometimes called a callback). A hook method is a
method that you write but that Ruby calls from within the interpreter when some particular
event occurs. The interpreter looks for these methods by name—if you define a method in
the right context with an appropriate name, Ruby will call it when the corresponding event
happens.

The methods that can be invoked from within the interpreter are:

Method-related hooks
method_added, method_missing, method_removed, method_undefined, singleton_method_added,
singleton_method_removed, singleton_method_undefined

Class and module-related hooks
append_features, const_missing, extend_object, extended, included, inherited, initialize_clone, initial-
ize_copy, initialize_dup

Object marshaling hooks
marshal_dump, marshal_load

Coercion hooks
coerce, induced_from, to_xxx

report erratum • discuss

Hook Methods • 383

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

We won’t discuss all of them in this chapter—instead, we’ll show just a few examples of use.
The reference section of this book describes the individual methods, and Chapter 23, Duck
Typing, on page 343 discusses the coercion methods in more detail.

The inherited Hook

If a class defines a class method called inherited, Ruby will call it whenever that class is sub-
classed (that is, whenever any class inherits from the original).

This hook is often used in situations where a base class needs to keep track of its children.
For example, an online store might offer a variety of shipping options. Each might be repre-
sented by a separate class, and each of these classes could be a subclass of a single Shipping
class. This parent class could keep track of all the various shipping options by recording
every class that subclasses it. When it comes time to display the shipping options to the user,
the application could call the base class, asking it for a list of its children:

class Shipping # Base class
@children = [] # this variable is in the class, not instances

def self.inherited(child)
@children << child

end

def self.shipping_options(weight, international)
@children.select {|child| child.can_ship(weight, international)}

end
end

class MediaMail < Shipping
def self.can_ship(weight, international)
!international

end
end

class FlatRatePriorityEnvelope < Shipping
def self.can_ship(weight, international)
weight < 64 && !international

end
end

class InternationalFlatRateBox < Shipping
def self.can_ship(weight, international)
weight < 9*16 && international

end
end

puts "Shipping 16oz domestic"
puts Shipping.shipping_options(16, false)

puts "\nShipping 90oz domestic"
puts Shipping.shipping_options(90, false)

puts "\nShipping 16oz international"
puts Shipping.shipping_options(16, true)

Chapter 24. Metaprogramming • 384

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

produces:

Shipping 16oz domestic
MediaMail
FlatRatePriorityEnvelope

Shipping 90oz domestic
MediaMail

Shipping 16oz international
InternationalFlatRateBox

Command interpreters often use this pattern: the base class keeps a track of available com-
mands, each of which is implemented in a subclass.

The method_missing Hook

Earlier, we saw how Ruby executes a method call by looking for the method, first in the
object’s class, then in its superclass, then in that class’s superclass, and so on. If the method
call has an explicit receiver, then private methods are skipped in this search. If the method
is not found by the time we run out of superclasses (because BasicObject has no superclass),
then Ruby tries to invoke the hook method method_missing on the original object. Again, the
same process is followed—Ruby first looks in the object’s class, then in its superclass, and
so on. However, Ruby predefines its own version of method_missing in class BasicObject, so
typically the search stops there. The built-in method_missing basically raises an exception
(either a NoMethodError or a NameError depending on the circumstances).

The key here is that method_missing is simply a Ruby method. We can override it in our own
classes to handle calls to otherwise undefined methods in an application-specific way.

method_missing has a simple signature, but many people get it wrong:

def method_missing(name, *args, &block) # ...

The name argument receives the name of the method that couldn’t be found. It is passed as
a symbol. The args argument is an array of the arguments that were passed in the original
call. And the oft-forgotten block argument will receive any block passed to the original
method.

def method_missing(name, *args, &block)
puts "Called #{name} with #{args.inspect} and #{block}"

end

wibble
wobble 1, 2
wurble(3, 4) { stuff }

produces:

Called wibble with [] and
Called wobble with [1, 2] and
Called wurble with [3, 4] and #<Proc:0x007fd7d910fb18@prog.rb:7>

Before we get too deep into the details, I’ll offer a tip about etiquette. There are two main
ways that people use method_missing. The first intercepts every use of an undefined method
and handles it. The second is more subtle; it intercepts all calls but handles only some of

report erratum • discuss

Hook Methods • 385

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

them. In the latter case, it is important to forward on the call to a superclass if you decide
not to handle it in your method_missing implementation:

class MyClass < OtherClass
def method_missing(name, *args, &block)
if <some condition>
handle call

else
super # otherwise pass it on

end
end

end

If you fail to pass on calls that you don’t handle, your application will silently ignore calls
to unknown methods in your class.

Let’s show a couple of uses of method_missing.

method_missing to Simulate Accessors

The OpenStruct class is distributed with Ruby. It allows you to write objects with attributes
that are created dynamically by assignment. (We describe it in more detail in the library
documentation on page 786.) For example, you could write this:

require 'ostruct'
obj = OpenStruct.new(name: "Dave")
obj.address = "Texas"
obj.likes = "Programming"

puts "#{obj.name} lives in #{obj.address} and likes #{obj.likes}"

produces:

Dave lives in Texas and likes Programming

Let’s use method_missing to write our own version of OpenStruct:

class MyOpenStruct < BasicObject
def initialize(initial_values = {})
@values = initial_values

end
def _singleton_class
class << self
self

end
end
def method_missing(name, *args, &block)
if name[-1] == "="
base_name = name[0..-2].intern
_singleton_class.instance_exec(name) do |name|
define_method(name) do |value|
@values[base_name] = value

end
end
@values[base_name] = args[0]

else
_singleton_class.instance_exec(name) do |name|

Chapter 24. Metaprogramming • 386

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

define_method(name) do
@values[name]

end
end
@values[name]

end
end

end

obj = MyOpenStruct.new(name: "Dave")
obj.address = "Texas"
obj.likes = "Programming"

puts "#{obj.name} lives in #{obj.address} and likes #{obj.likes}"

produces:

Dave lives in Texas and likes Programming

Notice how we base our class on BasicObject, a class introduced in Ruby 1.9. BasicObject is the
root of Ruby’s object hierarchy and contains only a minimal number of methods:

p BasicObject.instance_methods

produces:

[:==, :equal?, :!, :!=, :instance_eval, :instance_exec, :__send__, :__id__]

This is good, because it means that our MyOpenStruct class will be able to have attributes such
as display or class. If instead we’d based MyOpenStruct on class Object, then these names, along
with forty-nine others, would have been predefined and hence wouldn’t trigger
method_missing.

Notice also another common pattern inside method_missing. The first time we reference or
assign to an attribute of our object, we access or update the @values hash appropriately. But
we also define the method that the caller was trying to access. This means that the next time
this attribute is used, it will use the method and not invoke method_missing. This may or may
not be worth the trouble, depending on the access patterns to your object.

Also notice how we had to jump through some hoops to define the method. We want to
define the method only for the current object. This means we have to put the method into
the object’s singleton class. We can do that using instance_exec and define_method. But that
means we have to use the class << self trick to get the object’s singleton class. Through an
interesting implementation subtlety, define_method will always define an instance method,
independent of whether it is invoked via instance_exec or class_exec.

However, this code reveals a dark underbelly of using method_missing and BasicObject:

obj = MyOpenStruct.new(name: "Dave")
obj.address = "Texas"

o1 = obj.dup
o1.name = "Mike"
o1.address = "Colorado"

produces:

prog.rb:37:in `<main>': undefined method `name=' for nil:NilClass
(NoMethodError)

report erratum • discuss

Hook Methods • 387

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

The dup method is not defined by BasicObject; it appears in class Object. So when we called
dup, it was picked up by our method_missing handler, and we just returned nil (because we
don’t have yet have an attribute called dup). We could fix this so that it at least reports an
error:

def method_missing(name, *args, &block)
if name[-1] == "="
as before...

else
super unless @values.has_key? name
as before...

end
end

This class now reports an error if we call dup (or any other method) on it. However, we still
can’t dup or clone it (or inspect, convert to a string, and so on). Although BasicObject seems
like a natural fit for method_missing, you may find it to be more trouble than it’s worth.

method_missing as a Filter

As the previous example showed,method_missinghas some drawbacks if you use it to intercept
all calls. It is probably better to use it to recognize certain patterns of call, passing on those
it doesn’t recognize to its parent class to handle.

An example of this is the dynamic finder facility in the Ruby on Rails ActiveRecord module.
ActiveRecord is the object-relational library in Rails—it allows you to access relational
databases as if they were object stores. One particular feature allows you to find rows that
match the criteria of having given values in certain columns. For example, if an Active Record
class called Book were mapping a relational table called books and the books table included
columns called title and author, you could write this:

pickaxe = Book.find_by_title("Programming Ruby")
daves_books = Book.find_all_by_author("Dave Thomas")

Active Record does not predefine all these potential finder methods. Instead, it uses our old
friendmethod_missing. Inside that method, it looks for calls to undefined methods that match
the pattern /^find_(all_)?by_(.*)/.7 If the method being invoked does not match this pattern or
if the fields in the method name don’t correspond to columns in the database table, Active
Record calls super so that a genuine method_missing report will be generated.

24.9 One Last Example

Let’s bring together all the metaprogramming topics we’ve discussed in a final example by
writing a module that allows us to trace the execution of methods in any class that mixes
the module in. This would let us write the following:

7. It also looks for /^find_or_(initialize|create)_by_(.*)/.

Chapter 24. Metaprogramming • 388

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

require_relative 'trace_calls'
class Example
def one(arg)
puts "One called with #{arg}"

end
end

ex1 = Example.new
ex1.one("Hello") # no tracing from this call

class Example
include TraceCalls
def two(arg1, arg2)
arg1 + arg2

end
end

ex1.one("Goodbye") # but we see tracing from these two
puts ex1.two(4, 5)

produces:

One called with Hello
==> calling one with ["Goodbye"]
One called with Goodbye
<== one returned nil
==> calling two with [4, 5]
<== two returned 9
9

We can see immediately that there’s a subtlety here. When we mix the TraceCallsmodule into
a class, it has to add tracing to any existing instance methods in that class. It also has to
arrange to add tracing to any methods we subsequently add.

Let’s start with the full listing of the TraceCalls module:

metaprogramming/trace_calls.rb

module TraceCalls
def self.included(klass)
klass.instance_methods(false).each do |existing_method|
wrap(klass, existing_method)

end
def klass.method_added(method) # note: nested definition
unless @trace_calls_internal
@trace_calls_internal = true
TraceCalls.wrap(self, method)
@trace_calls_internal = false

end
end

end
def self.wrap(klass, method)
klass.instance_eval do
method_object = instance_method(method)

define_method(method) do |*args, &block|
puts "==> calling #{method} with #{args.inspect}"

report erratum • discuss

One Last Example • 389

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/metaprogramming/trace_calls.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

result = method_object.bind(self).call(*args, &block)
puts "<== #{method} returned #{result.inspect}"
result

end
end

end
end

When we include this module in a class, the included hook method gets invoked. It first uses
the instance_methods reflection method to find all the existing instance methods in the host
class (the false parameter limits the list to methods in the class itself, and not in its superclass-
es). For each existing method, the module calls a helper method, wrap, to add some tracing
code to it. We’ll talk about wrap shortly.

Next, the includedmethod uses another hook,method_added. This is called by Ruby whenever
a method is defined in the receiver. Note that we define this method in the class passed to
the included method. This means that the method will be called when methods are added to
this host class and not to the module. This is what allows us to include TraceCalls at the top
of a class and then add methods to that class—all those method definitions will be handled
by method_added.

Now look at the code inside the method_added method. We have to deal with a potential
problem here. As you’ll see when we look at the wrap method, we add tracing to a method
by creating a new version of the method that calls the old. Inside method_added, we call the
wrap function to add this tracing. But inside wrap, we’ll define a new method to handle this
wrapping, and that definition will invokemethod_added again, and then we’d call wrap again,
and so on, until the stack gets exhausted. To prevent this, we use an instance variable and
do the wrapping only if we’re not already doing it.

The wrap method takes a class object and the name of a method to wrap. It finds the original
definition of that method (using instance_method) and saves it. It then redefines this method.
This new method outputs some tracing and then calls the original, passing in the parameters
and block from the wrapper.8 Note how we call the method by binding the method object
to the current instance and then invoking that bound method.

The key to understanding this code, and most metaprogramming code, is to follow the basic
principles we worked out at the start of this chapter—how self changes as methods are called
and classes are defined and how methods are called by looking for them in the class of the
receiver. If you get stuck, do what we do and draw little boxes and arrows. We find it useful
to stick with the convention used in this chapter: class links go to the right, and superclass
links go up. Given an object, a method call is then a question of finding the receiver object,
going right once, and then following the superclass chain up as far as you need to go.

24.10 Top-Level Execution Environment

Finally, there’s one small detail we have to cover to complete the metaprogramming envi-
ronment. Many times in this book we’ve claimed that everything in Ruby is an object.
However, we’ve used one thing time and time again that appears to contradict this—the
top-level Ruby execution environment:

puts "Hello, World"

8. The ability of a block to take a block parameter was added in Ruby 1.9.

Chapter 24. Metaprogramming • 390

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Not an object in sight. We may as well be writing some variant of Fortran or Basic. But dig
deeper, and you’ll come across objects and classes lurking in even the simplest code.

We know that the literal "Hello, World" generates a Ruby String, so that’s one object. We also
know that the bare method call to puts is effectively the same as self.puts. But what is self?

self.class # => Object

At the top level, we’re executing code in the context of some predefined object. When we
define methods, we’re actually creating (private) instance methods for class Object. This is
fairly subtle; as they are in class Object, these methods are available everywhere. And because
we’re in the context of Object, we can use all of Object’s methods (including those mixed in
from Kernel) in function form. This explains why we can call Kernel methods such as puts at
the top level (and indeed throughout Ruby); it’s because these methods are part of every
object. Top-level instance variables also belong to this top-level object.

Metaprogramming is one of Ruby’s sharpest tools. Don’t be afraid to use it to raise up the
level at which you program. But, at the same time, use it only when necessary—overly
metaprogrammed applications can become pretty obscure pretty quickly.

24.11 The Turtle Graphics Program

class Turtle
directions: 0 = E, 1 = S, 2 = W, 3 = N
axis: 0 = x, 1 = y
def initialize
@board = Hash.new(" ")
@x = @y = 0
@direction = 0
pen_up

end

def pen_up
@pen_down = false

end

def pen_down
@pen_down = true
mark_current_location

end

def forward(n=1)
n.times { move }

end

def left
@direction -= 1
@direction = 3 if @direction < 0

end

def right
@direction += 1
@direction = 0 if @direction > 3

end

report erratum • discuss

The Turtle Graphics Program • 391

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

def walk(&block)
instance_eval(&block)

end

def draw
min_x, max_x = @board.keys.map{|x,y| x}.minmax
min_y, max_y = @board.keys.map{|x,y| y}.minmax
min_y.upto(max_y) do |y|
min_x.upto(max_x) do |x|
print @board[[x,y]]

end
puts

end
end
private

def move
increment = @direction > 1 ? -1 : 1
if @direction.even?
@x += increment

else
@y += increment

end
mark_current_location

end

def mark_current_location
@board[[@x,@y]] = "#" if @pen_down

end
end

turtle = Turtle.new
turtle.walk do
3.times do
forward(8)
pen_down
4.times do
forward(4)
left

end
pen_up

end
end
turtle.draw

produces:

#####
#
#
#
#####

Chapter 24. Metaprogramming • 392

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 25

Reflection, ObjectSpace, and
Distributed Ruby

One of the advantages of dynamic languages such as Ruby is the ability to introspect—to
examine aspects of a program from within the program itself. This is also called reflection.

When people introspect, we think about our thoughts and feelings. This is interesting, because
we’re using thought to analyze thought. It’s the same when programs use introspection—a
program can discover the following information about itself:

• What objects it contains
• Its class hierarchy
• The attributes and methods of objects
• Information on methods

Armed with this information, we can look at particular objects and decide which of their
methods to call at runtime—even if the class of the object didn’t exist when we first wrote
the code. We can also start doing clever things, perhaps modifying the program while it’s
running. Later in this chapter we’ll look at distributed Ruby and marshaling, two reflection-
based technologies that let us send objects around the world and through time.

25.1 Looking at Objects

Have you ever craved the ability to traverse all the living objects in your program? We have!
Ruby lets you perform this trick with ObjectSpace.each_object. We can use it to do all sorts of
neat tricks.

For example, to iterate over all objects of type Complex, you’d write the following:

a = Complex(1, 2)
b = Complex(99, -100)
ObjectSpace.each_object(Complex) {|x| puts x }

produces:

0+1i
99-100i
1+2i

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Where did that extra number, (0+1i), come from? We didn’t define it in our program. Well,
the Complex class defines a constant for I, the square root of -1. Since we are examining all
living objects in the system, these turn up as well.

Let’s try the same example with different values. This time, they’re objects of type Fixnum:

a = 102
b = 95
ObjectSpace.each_object(Fixnum) {|x| p x }

(Produces no output.)

Neither of the Fixnum objects we created showed up. That’s because ObjectSpace doesn’t know

⇡New in 2.0⇣
about objects with immediate values: Fixnum, Symbol, true, false, nil, and (on 64-bit platforms)
most Floats.

Looking Inside Objects

Once you’ve found an interesting object, you may be tempted to find out just what it can
do. Unlike static languages, where a variable’s type determines its class, and hence the
methods it supports, Ruby supports liberated objects. You really cannot tell exactly what an
object can do until you look under its hood.1 We talk about this in Chapter 23, Duck Typing,
on page 343.

For instance, we can get a list of all the methods to which an object will respond (these include
methods in an object’s class and that class’s ancestors):

r = 1..10 # Create a Range object
list = r.methods
list.length # => 111
list[0..3] # => [:==, :===, :eql?, :hash]

We can check to see whether an object responds to a particular method:

r = 1..10
r.respond_to?("frozen?") # => true
r.respond_to?(:has_key?) # => false
"me".respond_to?("==") # => true

We can ask for an object’s class and unique object ID and test its relationship to other classes:

num = 1
num.object_id # => 3
num.class # => Fixnum
num.kind_of? Fixnum # => true
num.kind_of? Numeric # => true
num.instance_of? Fixnum # => true
num.instance_of? Numeric # => false

25.2 Looking at Classes

Knowing about objects is one part of reflection, but to get the whole picture, you also need
to be able to look at classes—the methods and constants that they contain.

1. Or under its bonnet, for objects created to the east of the Atlantic

Chapter 25. Reflection, ObjectSpace, and Distributed Ruby • 394

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Looking at the class hierarchy is easy. You can get the parent of any particular class using
Class#superclass. For classes andmodules, the Module#ancestorsmethod lists both superclasses
and mixed-in modules:

klass = Fixnum
begin
print klass
klass = klass.superclass
print " < " if klass

end while klass
puts
p Fixnum.ancestors

produces:

Fixnum < Integer < Numeric < Object < BasicObject
[Fixnum, Integer, Numeric, Comparable, Object, Kernel, BasicObject]

If you want to build a complete class hierarchy, just run that code for every class in the system.
We can use ObjectSpace to iterate over all Class objects:

ObjectSpace.each_object(Class) do |klass|
...

end

Looking Inside Classes

We can find out a bit more about the methods and constants in a particular object. We can
ask for methods by access level, and we can ask for just singleton methods. We can also take
a look at the object’s constants, local, and instance variables:

class Demo
@@var = 99
CONST = 1.23

private
def private_method
end

protected
def protected_method
end

public
def public_method
@inst = 1
i = 1
j = 2
local_variables

end
def Demo.class_method
end

end

Demo.private_instance_methods(false) # => [:private_method]
Demo.protected_instance_methods(false) # => [:protected_method]
Demo.public_instance_methods(false) # => [:public_method]
Demo.singleton_methods(false) # => [:class_method]
Demo.class_variables # => [:@@var]
Demo.constants(false) # => [:CONST]

report erratum • discuss

Looking at Classes • 395

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

demo = Demo.new
demo.instance_variables # => []
Get 'public_method' to return its local variables
and set an instance variable
demo.public_method # => [:i, :j]
demo.instance_variables # => [:@inst]

You may be wondering what all the false parameters were in the previous code. As of Ruby
1.8, these reflection methods will by default recurse into parent classes, their parents, and
so on, up the ancestor chain. Passing in false stops this kind of prying.

Given a list of method names, we may now be tempted to try calling them. Fortunately,
that’s easy with Ruby.

25.3 Calling Methods Dynamically

The Object#send method lets you tell any object to invoke a method by name.

"John Coltrane".send(:length) # => 13
"Miles Davis".send("sub", /iles/, '.') # => "M. Davis"

Another way of invoking methods dynamically uses Method objects. A Method object is like
a Proc object: it represents a chunk of code and a context in which it executes. In this case,
the code is the body of the method, and the context is the object that created the method.
Once we have our Method object, we can execute it sometime later by sending it the message
call:

trane = "John Coltrane".method(:length)
miles = "Miles Davis".method("sub")

trane.call # => 13
miles.call(/iles/, '.') # => "M. Davis"

You can pass the Method object around as you would any other object, and when you invoke
Method#call, the method is run just as if you had invoked it on the original object. It’s like
having a C-style function pointer but in a fully object-oriented style.

You can use Method objects where you could use proc objects. For example, they work with
iterators:

def double(a)
2*a

end

method_object = method(:double)

[1, 3, 5, 7].map(&method_object) # => [2, 6, 10, 14]

Method objects are bound to one particular object. You can create unbound methods (of class
UnboundMethod) and then subsequently bind them to one or more objects. The binding creates
a new Method object. As with aliases, unbound methods are references to the definition of
the method at the time they are created:

Chapter 25. Reflection, ObjectSpace, and Distributed Ruby • 396

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

unbound_length = String.instance_method(:length)
class String
def length
99

end
end
str = "cat"
str.length # => 99
bound_length = unbound_length.bind(str)
bound_length.call # => 3

Because good things come in threes, here’s yet another way to invoke methods dynamically.
The evalmethod (and its variations such as class_eval,module_eval, and instance_eval) will parse
and execute an arbitrary string of legal Ruby source code.

trane = %q{"John Coltrane".length}
miles = %q{"Miles Davis".sub(/iles/, '.')}

eval trane # => 13
eval miles # => "M. Davis"

When using eval, it can be helpful to state explicitly the context in which the expression
should be evaluated, rather than using the current context. You obtain a context using
Object#binding at the desired point:

def get_a_binding
val = 123
binding

end

val = "cat"

the_binding = get_a_binding
eval("val", the_binding) # => 123
eval("val") # => "cat"

The first eval evaluates val in the context of the binding as it was when the method
get_a_binding was executing. In this binding, the variable val had a value of 123. The second
eval evaluates eval in the top-level binding, where it has the value "cat".

Performance Considerations

As we’ve seen in this section, Ruby gives us several ways to invoke an arbitrary method of
some object: Object#send, Method#call, and the various flavors of eval.

You may prefer to use any one of these techniques depending on your needs, but be aware
that, as the following benchmark shows, eval is significantly slower than the others (or, for
optimistic readers, send and call are significantly faster than eval).

require 'benchmark'
include Benchmark

test = "Stormy Weather"
m = test.method(:length)
n = 100000

report erratum • discuss

Calling Methods Dynamically • 397

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

bm(12) do |x|
x.report("call") { n.times { m.call } }
x.report("send") { n.times { test.send(:length) } }
x.report("eval") { n.times { eval "test.length" } }

end

produces:

user system total real
call 0.020000 0.000000 0.020000 (0.022150)
send 0.020000 0.000000 0.020000 (0.019678)
eval 1.230000 0.000000 1.230000 (1.237393)

25.4 System Hooks

A hook is a technique that lets you trap some Ruby event, such as object creation. Let’s take
a look at some common Ruby hook techniques.

Hooking Method Calls

The simplest hook technique in Ruby is to intercept calls to methods in system classes. Perhaps
you want to log all the operating system commands your program executes. Simply rename
the method Kernel.system, and substitute it with one of your own that both logs the command
and calls the original Kernel method:

class Object
alias_method :old_system, :system
def system(*args)
old_system(*args).tap do |result|
puts "system(#{args.join(', ')}) returned #{result.inspect}"

end
end

end

system("date")
system("kangaroo", "-hop 10", "skippy")

produces:

Mon May 27 12:31:42 CDT 2013
system(date) returned true
system(kangaroo, -hop 10, skippy) returned nil

The problem with this technique is that you’re relying on there not being an existing method
called old_system. A better alternative is to make use of method objects, which are effectively
anonymous:

class Object
old_system_method = instance_method(:system)
define_method(:system) do |*args|
old_system_method.bind(self).call(*args).tap do |result|
puts "system(#{args.join(', ')}) returned #{result.inspect}"

end
end

end

Chapter 25. Reflection, ObjectSpace, and Distributed Ruby • 398

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

system("date")
system("kangaroo", "-hop 10", "skippy")

produces:

Mon May 27 12:31:43 CDT 2013
system(date) returned true
system(kangaroo, -hop 10, skippy) returned nil

⇡New in 2.0⇣Ruby 2.0 gives us a new way of doing this. Modules can be used to include new instance
methods in some other module or class. Until now, these methods were added behind the
host module or class’s own methods—if the module defined a method with the same name
as one in the host, the host method would be called. Ruby 2 adds the prepend method on
page 585 to modules. This lets you insert the module’s methods before the host’s. Within the
module’s methods, calling super calls the host’s method of the same name. This gives us:

module SystemHook
private
def system(*args)
super.tap do |result|
puts "system(#{args.join(', ')}) returned #{result.inspect}"

end
end

end

class Object
prepend SystemHook

end

system("date")
system("kangaroo", "-hop 10", "skippy")

produces:

Mon May 27 12:31:43 CDT 2013
system(date) returned true
system(kangaroo, -hop 10, skippy) returned nil

Object Creation Hooks

Ruby lets you get involved when objects are created. If you can be present when every object
is born, you can do all sorts of interesting things: you can wrap them, add methods to them,
remove methods from them, and add them to containers to implement persistence—you
name it. We’ll show a simple example here. We’ll add a timestamp to every object as it’s
created. First, we’ll add a timestamp attribute to every object in the system. We can do this
by hacking class Object itself:

class Object
attr_accessor :timestamp

end

Then, we need to hook object creation to add this timestamp. One way to do this is to do
our method-renaming trick on Class#new, the method that’s called to allocate space for a new
object. The technique isn’t perfect—some built-in objects, such as literal strings, are constructed
without calling new—but it’ll work just fine for objects we write.

report erratum • discuss

System Hooks • 399

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

class Class
old_new = instance_method :new
define_method :new do |*args, &block|
result = old_new.bind(self).call(*args, &block)
result.timestamp = Time.now
result

end
end

Finally, we can run a test. We’ll create a couple of objects a few milliseconds apart and check
their timestamps:

class Test
end

obj1 = Test.new
sleep(0.002)
obj2 = Test.new
obj1.timestamp.to_f # => 1369675903.251721
obj2.timestamp.to_f # => 1369675903.2541282

25.5 Tracing Your Program’s Execution

While we’re having fun reflecting on all the objects and classes in our programs, let’s not
forget about the humble statements that make our code actually do things. It turns out that
Ruby lets us look at these statements, too.

First, you can watch the interpreter as it executes code. In older Rubies, you use set_trace_func,

⇡New in 2.0⇣
while in Ruby 2 you use the TracePoint class. Both are used to execute a proc with all sorts of
juicy debugging information whenever a new source line is executed, methods are called,
objects are created, and so on.

The reference section contains full descriptions of set_trace_func on page 624 and TracePoint on
page 722, but here’s a taste:

class Test
def test
a = 1

end
end

TracePoint.trace do |tp|
p tp

end
t = Test.new
t.test

produces:

#<TracePoint:c_return `trace'@prog.rb:7>
#<TracePoint:line@prog.rb:10>
#<TracePoint:c_call `new'@prog.rb:10>
#<TracePoint:c_call `initialize'@prog.rb:10>
#<TracePoint:c_return `initialize'@prog.rb:10>
#<TracePoint:c_return `new'@prog.rb:10>
#<TracePoint:line@prog.rb:11>

Chapter 25. Reflection, ObjectSpace, and Distributed Ruby • 400

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

#<TracePoint:call `test'@prog.rb:2>
#<TracePoint:line@prog.rb:3 in `test'>
#<TracePoint:return `test'@prog.rb:4>

The method trace_var (described in the reference section on page 630) lets you add a hook to
a global variable; whenever an assignment is made to the global, your proc is invoked.

How Did We Get Here?

That’s a fair question...one we ask ourselves regularly. Mental lapses aside, in Ruby you can
find out “how you got there” using the method caller, which returns an array of strings rep-
resenting the current call stack:

def cat_a
puts caller

end
def cat_b
cat_a

end
def cat_c
cat_b

end
cat_c

produces:

prog.rb:5:in `cat_b'
prog.rb:8:in `cat_c'
prog.rb:10:in `<main>'

Ruby 1.9 also introduces __callee__, which returns the name of the current method.

Source Code

Ruby executes programs from plain old files. You can look at these files to examine the source
code that makes up your program using one of a number of techniques.

The special variable __FILE__ contains the name of the current source file. This leads to a fairly
short (if cheating) Quine—a program that outputs its own source code:

print File.read(__FILE__)

produces:

print File.read(__FILE__)

As we saw in the previous section, the method Object#caller returns the call stack as a list.
Each entry in this list starts off with a filename, a colon, and a line number in that file. You
can parse this information to display source. In the following example, we have a main
program, main.rb, that calls a method in a separate file, sub.rb. That method in turns invokes
a block, where we traverse the call stack and write out the source lines involved. Notice the
use of a hash of file contents, indexed by the filename.

Here’s the code that dumps out the call stack, including source information:

report erratum • discuss

Tracing Your Program’s Execution • 401

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

ospace/caller/stack_dumper.rb

def dump_call_stack
file_contents = {}
puts "File Line Source Line"
puts "---------------+----+------------"
caller.each do |position|
next unless position =~ /\A(.*?):(\d+)/
file = $1
line = Integer($2)
file_contents[file] ||= File.readlines(file)
printf("%-15s:%3d - %s", File.basename(file), line,

file_contents[file][line-1].lstrip)
end

end

The (trivial) file sub.rb contains a single method:

ospace/caller/sub.rb

def sub_method(v1, v2)
main_method(v1*3, v2*6)

end

The following is the main program, which invokes the stack dumper after being called back
by the submethod.

require_relative 'sub'
require_relative 'stack_dumper'

def main_method(arg1, arg2)
dump_call_stack

end

sub_method(123, "cat")

produces:

File Line Source Line
---------------+----+------------
prog.rb : 5 - dump_call_stack
sub.rb : 2 - main_method(v1*3, v2*6)
prog.rb : 8 - sub_method(123, "cat")

The SCRIPT_LINES__ constant is closely related to this technique. If a program initializes a
constant called SCRIPT_LINES__ with a hash, that hash will receive a new entry for every file
subsequently loaded into the interpreter using require or load. The entry’s key is the name of
the file, and the value is the source of the file as an array of strings.

25.6 Behind the Curtain: The Ruby VM

Ruby 1.9 comes with a new virtual machine, called YARV. As well as being faster than the
old interpreter, YARV exposes some of its state via Ruby classes.

If you’d like to know what Ruby is doing with all that code you’re writing, you can ask
YARV to show you the intermediate code that it is executing. You can ask it to compile the

Chapter 25. Reflection, ObjectSpace, and Distributed Ruby • 402

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/ospace/caller/stack_dumper.rb
http://media.pragprog.com/titles/ruby4/code/ospace/caller/sub.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Ruby code in a string or in a file and then disassemble it and even run it.2 Here’s a trivial
example:

code = RubyVM::InstructionSequence.compile('a = 1; puts 1 + a')
puts code.disassemble

produces:

== disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========
local table (size: 2, argc: 0 [opts: 0, rest: -1, post: 0, block: -1] s1)
[2] a
0000 trace 1 (1)
0002 putobject_OP_INT2FIX_O_1_C_
0003 setlocal_OP__WC__0 2
0005 trace 1
0007 putself
0008 putobject_OP_INT2FIX_O_1_C_
0009 getlocal_OP__WC__0 2
0011 opt_plus <callinfo!mid:+, argc:1, ARGS_SKIP>
0013 opt_send_simple <callinfo!mid:puts, argc:1, FCALL|ARGS_SKIP>
0015 leave

Maybe you want to know how Ruby handles #{...} substitutions in strings. Ask the VM.

code = RubyVM::InstructionSequence.compile('a = 1; puts "a = #{a}."')
puts code.disassemble

produces:

== disasm: <RubyVM::InstructionSequence:<compiled>@<compiled>>==========
local table (size: 2, argc: 0 [opts: 0, rest: -1, post: 0, block: -1] s1)
[2] a
0000 trace 1 (1)
0002 putobject_OP_INT2FIX_O_1_C_
0003 setlocal_OP__WC__0 2
0005 trace 1
0007 putself
0008 putobject "a = "
0010 getlocal_OP__WC__0 2
0012 tostring
0013 putobject "."
0015 concatstrings 3
0017 opt_send_simple <callinfo!mid:puts, argc:1, FCALL|ARGS_SKIP>
0019 leave

For a full list of the opcodes, print out RubyVM::INSTRUCTION_NAMES.

25.7 Marshaling and Distributed Ruby

Ruby features the ability to serialize objects, letting you store them somewhere and reconstitute
them when needed. You can use this facility, for instance, to save a tree of objects that repre-
sent some portion of application state—a document, a CAD drawing, a piece of music, and
so on.

2. People often ask whether they can dump the opcodes out and later reload them. The answer is no—
the interpreter has the code to do this, but it is disabled because there is not yet an intermediate code
verifier for YARV.

report erratum • discuss

Marshaling and Distributed Ruby • 403

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Ruby calls this kind of serialization marshaling (think of railroad marshaling yards where
individual cars are assembled in sequence into a complete train, which is then dispatched
somewhere). Saving an object and some or all of its components is done using the method
Marshal.dump. Typically, you will dump an entire object tree starting with some given object.
Later, you can reconstitute the object using Marshal.load.

Here’s a short example. We have a class Chord that holds a collection of musical notes. We’d
like to save away a particularly wonderful chord so we can e-mail it to a couple hundred of
our closest friends so they can load it into their copy of Ruby and savor it too. Let’s start
with the classes for Note and Chord:

ospace/chord.rb

Note = Struct.new(:value) do
def to_s
value.to_s

end
end

class Chord
def initialize(arr)
@arr = arr

end

def play
@arr.join('-')

end
end

Now we’ll create our masterpiece and use Marshal.dump to save a serialized version to disk:

ospace/chord.rb

c = Chord.new([Note.new("G"),
Note.new("Bb"),
Note.new("Db"),
Note.new("E")])

File.open("posterity", "w+") do |f|
Marshal.dump(c, f)

end

Finally, our grandchildren read it in and are transported by our creation’s beauty:

chord = Marshal.load(File.open("posterity"))
chord.play # => "G-Bb-Db-E"

Custom Serialization Strategy

Not all objects can be dumped: bindings, procedure objects, instances of class IO, and singleton
objects cannot be saved outside the running Ruby environment (a TypeError will be raised if
you try). Even if your object doesn’t contain one of these problematic objects, you may want
to take control of object serialization yourself.

Marshal provides the hooks you need. In the objects that require custom serialization, simply
implement two instance methods: one called marshal_dump, which writes the object out to a
string, and one calledmarshal_load, which reads a string that you had previously created and

Chapter 25. Reflection, ObjectSpace, and Distributed Ruby • 404

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/ospace/chord.rb
http://media.pragprog.com/titles/ruby4/code/ospace/chord.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

uses it to initialize a newly allocated object. (In earlier Ruby versions you’d use methods
called _dump and _load, but the new versions play better with Ruby’s object allocation scheme.)
The instance methodmarshal_dump should return an object representing the state to be dumped.
When the object is subsequently reconstituted usingMarshal.load, the methodmarshal_loadwill
be called with this object and will use it to set the state of its receiver—it will be run in the
context of an allocated but not initialized object of the class being loaded.

For instance, here is a sample class that defines its own serialization. For whatever reasons,
Special doesn’t want to save one of its internal data members, @volatile. The author has
decided to serialize the two other instance variables in an array.

class Special
def initialize(valuable, volatile, precious)
@valuable = valuable
@volatile = volatile
@precious = precious

end

def marshal_dump
[@valuable, @precious]

end

def marshal_load(variables)
@valuable = variables[0]
@precious = variables[1]
@volatile = "unknown"

end

def to_s
"#@valuable #@volatile #@precious"

end
end

obj = Special.new("Hello", "there", "World")
puts "Before: obj = #{obj}"
data = Marshal.dump(obj)

obj = Marshal.load(data)
puts "After: obj = #{obj}"

produces:

Before: obj = Hello there World
After: obj = Hello unknown World

For more details, see the reference section on page 557.

YAML for Marshaling

The Marshal module is built into the interpreter and uses a binary format to store objects
externally. Although fast, this binary format has one major disadvantage: if the interpreter
changes significantly, the marshal binary format may also change, and old dumped files
may no longer be loadable.

report erratum • discuss

Marshaling and Distributed Ruby • 405

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

An alternative is to use a less fussy external format, preferably one using text rather than
binary files. One option, supplied as a standard library, is YAML.3

We can adapt our previous marshal example to use YAML. Rather than implement specific
loading and dumping methods to control the marshal process, we simply define the method
to_yaml_properties, which returns a list of instance variables to be saved:

ospace/yaml.rb

require 'yaml'

class Special
def initialize(valuable, volatile, precious)
@valuable = valuable
@volatile = volatile
@precious = precious

end

def to_yaml_properties
%w{ @precious @valuable }

end

def to_s
"#@valuable #@volatile #@precious"

end
end

obj = Special.new("Hello", "there", "World")

puts "Before: obj = #{obj}"
data = YAML.dump(obj)
obj = YAML.load(data)
puts "After: obj = #{obj}"

produces:

Before: obj = Hello there World
After: obj = Hello World

We can take a look at what YAML creates as the serialized form of the object—it’s pretty
simple:

obj = Special.new("Hello", "there", "World")
puts YAML.dump(obj)

produces:

--- !ruby/object:Special
precious: World
valuable: Hello

Distributed Ruby

Since we can serialize an object or a set of objects into a form suitable for out-of-process
storage, we can transmit objects from one process to another. Couple this capability with
the power of networking, and voilà—you have a distributed object system. To save you the

3. http://www.yaml.org. YAML stands for YAML Ain’t Markup Language, but that hardly seems important.

Chapter 25. Reflection, ObjectSpace, and Distributed Ruby • 406

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/ospace/yaml.rb
http://www.yaml.org
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

trouble of having to write the code, we suggest using Masatoshi Seki’s Distributed Ruby
library (drb), which is now available as a standard Ruby library.

Using drb, a Ruby process may act as a server, as a client, or as both. A drb server acts as a
source of objects, while a client is a user of those objects. To the client, it appears that the
objects are local, but in reality the code is still being executed remotely.

A server starts a service by associating an object with a given port. Threads are created
internally to handle incoming requests on that port, so remember to join the drb thread
before exiting your program:

require 'drb'

class TestServer
def add(*args)
args.inject {|n,v| n + v}

end
end

server = TestServer.new
DRb.start_service('druby://localhost:9000', server)
DRb.thread.join # Don't exit just yet!

A simple drb client simply creates a local drb object and associates it with the object on the
remote server; the local object is a proxy:

ospace/drb/drb_client.rb

require 'drb'
DRb.start_service()
obj = DRbObject.new(nil, 'druby://localhost:9000')
Now use obj
puts "Sum is: #{obj.add(1, 2, 3)}"

The client connects to the server and calls the method add, which uses the magic of inject to
sum its arguments. It returns the result, which the client prints out:

Sum is: 6

The initial nil argument to DRbObject indicates that we want to attach to a new distributed
object. We could also use an existing object.

Ho hum, you say. This sounds like Java’s RMI or CORBA or whatever. Yes, it is a functional
distributed object mechanism—but it is written in just a few hundred lines of Ruby code.
No C, nothing fancy, just plain old Ruby code. Of course, it has no naming service, trader
service, or anything like you’d see in CORBA, but it is simple and reasonably fast. On a
2.5GHz Power Mac system, this sample code runs at about 1,300 remote message calls per
second. And if you do need naming services, DRb has a ring server that might fit the bill.

And, if you like the look of Sun’s JavaSpaces, the basis of the JINI architecture, you’ll be
interested to know that drb is distributed with a short module that does the same kind of
thing. JavaSpaces is based on a technology called Linda. To prove that its Japanese author
has a sense of humor, Ruby’s version of Linda is known as Rinda.

report erratum • discuss

Marshaling and Distributed Ruby • 407

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/ospace/drb/drb_client.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

25.8 Compile Time? Runtime? Anytime!

The important thing to remember about Ruby is that there isn’t a big difference between
“compile time” and “runtime.” It’s all the same. You can add code to a running process. You
can redefine methods on the fly, change their scope from public to private, and so on. You
can even alter basic types, such as Class and Object.

Once you get used to this flexibility, it is hard to go back to a static language such as C++ or
even to a half-static language such as Java.

But then, why would you want to do that?

Chapter 25. Reflection, ObjectSpace, and Distributed Ruby • 408

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 26

Locking Ruby in the Safe
Walter Webcoder has a great idea for a portal site: the Web Arithmetic Page. Surrounded
by all sorts of cool mathematical links and banner ads that will make him rich is a simple
web form containing a text field and a button. Users type an arithmetic expression into the
field, click the button, and the answer is displayed. All the world’s calculators become
obsolete overnight; Walter cashes in and retires to devote his life to his collection of car
license plate numbers.

Implementing the calculator is easy, thinks Walter. He accesses the contents of the form field
using Ruby’s CGI library and uses the eval method to evaluate the string as an expression:

require 'cgi'

cgi = CGI.new("html4")

expr = cgi["expression"].to_s # Fetch the value of the form field "expression"

begin
result = eval(expr)

rescue Exception => detail
handle bad expressions

end

display result back to user...

Roughly seven seconds after Walter puts the application online, a twelve-year-old from
Waxahachie with glandular problems and no real life types system("rm *") into the form, and
like his computer’s files, Walter’s dreams come tumbling down.

Walter learned an important lesson. All external data is dangerous. Don’t let it close to interfaces
that can modify your system. In this case, the content of the form field was the external data,
and the call to evalwas the security breach, allowing arbitrary code to be executed on Walter’s
server.

Fortunately, Ruby provides support for reducing this risk. All information from the outside
world can be marked as tainted. When running in a safe mode, potentially dangerous
methods will raise a SecurityError if passed a tainted object.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

26.1 Safe Levels

The variable $SAFE determines Ruby’s level of paranoia.

Constraints$SAFE

No checking of the use of externally supplied (tainted) data is performed. This is
Ruby’s default mode.

0

Ruby disallows the use of tainted data by potentially dangerous operations.≥ 1
Ruby prohibits the loading of program files from globally writable locations.≥ 2
All newly created objects are considered tainted and untrusted.≥ 3
Ruby effectively partitions the running program in two. Nontrusted objects may not
be modified.

≥ 4

(For more details of the checks performed at each safe level, refer to Section 26.4, Definition
of the safe levels, on page 412.)

The default value of $SAFE is zero under most circumstances. However, if a Ruby script is
run setuid or setgid1 or if it run under mod_ruby, its safe level is automatically set to 1. The
safe level may also be set by using the -T command-line option and by assigning to $SAFE
within the program. It is not possible to lower the value of $SAFE by assignment.

The current value of $SAFE is inherited when new threads are created. However, within each
thread, the value of $SAFEmay be changed without affecting the value in other threads. This
facility may be used to implement secure “sandboxes,” areas where external code may run
safely without risk to the rest of your application or system. Do this by wrapping code that
you load from a file in its own, anonymous module. This will protect your program’s
namespace from any unintended alteration.

File.open(filename,"w") do |f|
f.print ... # write untrusted program into file.

end
Thread.start do
$SAFE = 4
load(filename, true)

end

With a $SAFE level of 4, you can load only wrapped files. See the description of Object#load
on page 619 for details.

The safe level in effect when a Proc object is created is stored with that object. The safe level
may be set during the execution of a proc object without affecting the safe level of the code
that invoked that proc. A proc may not be passed to a method if it is tainted and the current
safe level is greater than that in effect when the block was created.

26.2 Tainted Objects

Any Ruby object derived from some external source (for example, a string read from a file
or an environment variable) is automatically marked as being tainted. If your program uses
a tainted object to derive a new object, then that new object will also be tainted, as shown in

1. A Unix script may be flagged to be run under a different user or group ID than the person running it.
This allows the script to have privileges that the user does not have; the script can access resources that
the user would otherwise be prohibited from using. These scripts are called setuid or setgid.

Chapter 26. Locking Ruby in the Safe • 410

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

the following code. Any object with external data somewhere in its past will be tainted. This
tainting process is performed regardless of the current safe level. You can see whether an
object is tainted using Object#tainted?.

internal data

x1 = "a string"
x1.tainted? # => false

x2 = x1[2, 4]
x2.tainted? # => false

x1 =~ /([a-z])/ # => 0
$1.tainted? # => false

external data

y1 = ENV["HOME"]
y1.tainted? # => true

y2 = y1[2, 4]
y2.tainted? # => true

y1 =~ /([a-z])/ # => 2
$1.tainted? # => true

You can taint any object by invoking its taint method. If the safe level is less than 3, you can
remove the taint from an object by invoking untaint.2 This is not something to do lightly.

26.3 Trusted Objects

Ruby 1.9 adds trust, a new dimension to the concept of safety. All objects are marked as
being trusted or untrusted. In addition, running code can be trusted or not. And, when you’re
running untrusted code, objects that you create are untrusted, and the only objects that you
can modify are those that are marked untrusted. What this in effect means is that you can
create a sandbox to execute untrusted code, and code in that sandbox cannot affect objects
outside that sandbox.

Let’s get more specific. Objects created while Ruby’s safe level is less than 3 are trusted.
However, objects created while the safe level is 3 or 4 will be untrusted. Code running at
safe levels 3 and 4 is also considered to be untrusted. Because untrusted code can modify
only untrusted objects, code at safe levels 3 and 4 will not be able to modify objects created
at a lower safe level.

2. You can also use some devious tricks to do this without using untaint. We’ll leave it up to your darker
side to find them.

report erratum • discuss

Trusted Objects • 411

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

dog = "dog is trusted"
cat = lambda { $SAFE = 3; "cat is untrusted" }.call

puts "dog.untrusted? = #{dog.untrusted?}"
puts "cat.untrusted? = #{cat.untrusted?}"

running at safe level 1, these operations will succeed
puts dog.upcase!
puts cat.upcase!

running at safe level 4, we can modify the cat
lambda { $SAFE = 4; cat.downcase! }.call
puts "cat is now '#{cat}'"

but we can't modify the dog
lambda { $SAFE = 4; dog.downcase! }.call
puts "so we never get here"

produces:

from prog.rb:16:in `block in <main>'
from prog.rb:16:in `call'
from prog.rb:16:in `<main>'

dog.untrusted? = false
cat.untrusted? = true
DOG IS TRUSTED
CAT IS UNTRUSTED
cat is now 'cat is untrusted'
prog.rb:16:in `downcase!': Insecure: can't modify string (SecurityError)

You can set and unset the trusted status of an object using Object#untrust and Object#trust (but
you have to be at below safe level 4 to call untrust and below safe level 3 to call trust). The
method Object#untrusted? returns true if an object is untrusted.

26.4 Definition of the safe levels

$SAFE ≥ 1
• The environment variables RUBYLIB and RUBYOPT are not processed, and the current

directory is not added to the path.
• The command-line options -e, -i, -I, -r, -s, -S, and -x are not allowed.
• Can’t start processes from $PATH if any directory in it is world-writable.
• Can’t manipulate or chroot to a directory whose name is a tainted string.
• Can’t glob tainted strings.
• Can’t eval tainted strings.
• Can’t load or require a file whose name is a tainted string (unless the load is

wrapped).
• Can’t manipulate or query the status of a file or pipe whose name is a tainted string.
• Can’t execute a system command or exec a program from a tainted string.
• Can’t pass trap a tainted string.

$SAFE ≥ 2
• Can’t change, make, or remove directories, or use chroot.
• Can’t load a file from a world-writable directory.
• Can’t load a file from a tainted filename starting with ~.

Chapter 26. Locking Ruby in the Safe • 412

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

• Can’t use File#chmod, File#chown, File#lstat, File.stat, File#truncate, File.umask, File#flock,
IO#ioctl, IO#stat, Object#fork, Object#syscall, Object#trap. Process.setpgid, Process.setsid,
Process.setpriority, or Process.egid=.

• Can’t handle signals using trap.

$SAFE ≥ 3
• All objects are tainted when they are created.
• Can’t untaint objects.
• Can’t add trust to an object.
• Objects are created untrusted.

$SAFE ≥ 4
• Can’t modify a nontainted array, hash, or string.
• Can’t modify a global variable.
• Can’t access instance variables of nontainted objects.
• Can’t change an environment variable.
• Can’t close or reopen nontainted files.
• Can’t freeze nontainted objects.
• Can’t change visibility of methods (private/public/protected).
• Can’t make an alias in a nontainted class or module.
• Can’t get metainformation (such as method or variable lists).
• Can’t define, redefine, remove, or undef a method in a nontainted class or module.
• Can’t modify Object.
• Can’t remove instance variables or constants from nontainted objects.
• Can’t manipulate threads, terminate a thread other than the current thread, or set
abort_on_exception.

• Can’t have thread-local variables.
• Can’t raise an exception in a thread with a lower $SAFE value.
• Can’t move threads between ThreadGroups.
• Can’t invoke exit, exit!, or abort.
• Can load only wrapped files and can’t include modules in untainted classes and

modules.
• Can’t convert symbol identifiers to object references.
• Can’t write to files or pipes.
• Can’t use autoload.
• Can’t taint objects.
• Can’t untrust an object.

report erratum • discuss

Definition of the safe levels • 413

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Part IV

Ruby Library Reference

Download from Wow! eBook <www.wowebook.com>

CHAPTER 27

Built-in Classes and Modules
This chapter documents the classes and modules built into the standard Ruby language.
They are available to every Ruby program automatically; no require is required. This section
does not contain the various predefined variables and constants; they are listed in Predefined
Variables, on page 311.

In the descriptions that follow, we show sample invocations for each method.

String.new(val) → strnew

This description shows a class method that is called as String.new. The italic parameter indicates
that a single string is passed in, and the arrow indicates that another string is returned from
the method. Because this return value has a different name than that of the parameter, it
represents a different object.

When we illustrate instance methods, we show a sample call with a dummy object name in
italics as the receiver.

str.lines(sep=$/) {|line| … } → strlines

The parameter to String#lines is shown to have a default value; call lines with no parameter,
and the value of $/ will be used. This method is an iterator, so the call is followed by a block.
String#lines returns its receiver, so the receiver’s name (str in this case) appears again after
the arrow.

Some methods have optional parameters. We show these parameters between angle brackets,
‹xxx›. We use the notation ‹xxx›* to indicate zero or more occurrences of xxx, and we use
‹xxx›+ to indicate one or more occurrences of xxx.

str.index(string ‹ , offset›) → int or nilindex

Finally, for methods that can be called in several different forms, we list each form on a
separate line.

27.1 Alphabetical Listing

Standard classes are listed alphabetically, followed by the standard modules. Within each,
we list the class (or module) methods, followed by the instance methods.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Array (page 421): Class [], new, try_convert Instance &, *, +, -, <<, <=>, ==, [], []=, |, assoc, at, bsearch, combination, collect!,
compact, compact!, concat, count, cycle, delete, delete_at, delete_if, each, each_index, empty?, eql?, fetch, fill, find_index,
flatten, flatten!, frozen?, index, insert, join, keep_if, last, length, map!, pack, permutation, pop, product, push, rassoc, reject!,
repeated_combination, repeated_permutation, replace, reverse, reverse!, reverse_each, rindex, rotate, rotate!, sample, select!,
shift, shuffle, shuffle!, size, slice, slice!, sort!, sort_by!, to_a, to_ary, to_s, transpose, uniq, uniq!, unshift, values_at

BasicObject (page 439): Instance !, ==, !=, __id__, equal?, instance_eval, instance_exec, __send__ Private method_missing,
singleton_method_added, singleton_method_removed, singleton_method_undefined

Bignum (page 444): Instance Arithmeticoperations, Bitoperations, <=>, ==, [], abs, div, divmod, eql?, fdiv, magnitude, modulo,
remainder, size, to_f, to_s

Binding (page 447): Instance eval

Class (page 448): Class new Instance allocate, new, superclass Private inherited

Complex (page 451): Class polar, rect, rectangular Instance Arithmeticoperations, ==, abs, abs2, angle, arg, conj, conjugate,
denominator, eql?, fdiv, imag, imaginary, magnitude, numerator, phase, polar, quo, rationalize, rect, rectangular, real, real?, to
_f, to_i, to_r

Dir (page 456): Class [], chdir, chroot, delete, entries, exist?, exists?, foreach, getwd, glob, home, mkdir, new, open, pwd, rmdir,
unlink Instance close, each, path, pos, pos=, read, rewind, seek, tell, to_path

Encoding (page 462): Class aliases, compatible?, default_external, default_external=, default_internal, default_internal=, find,
list, locale_charmap, name_list Instance ascii_compatible?, dummy?, name, names, replicate

Enumerator (page 477): Class new Instance each, each_with_index, each_with_object, feed, next, next_values, peek, peek
_values, rewind, size, with_index, with_object

Exception (page 483): Class exception, new Instance ==, backtrace, exception, message, set_backtrace, status, success?, to
_s

FalseClass (page 486): Instance &, ^, |

Fiber (page 487): Class new, yield Instance resume

File (page 488): Class absolute_path, atime, basename, blockdev?, chardev?, chmod, chown, ctime, delete, directory?, dirname,
executable?, executable_real?, exist?, exists?, expand_path, extname, file?, fnmatch, fnmatch?, ftype, grpowned?, identical?,
join, lchmod, lchown, link, lstat, mtime, new, owned?, path, pipe?, readable?, readable_real?, readlink, realdirpath, realpath,
rename, setgid?, setuid?, size, size?, socket?, split, stat, sticky?, symlink, symlink?, truncate, umask, unlink, utime, world_readable?,
world_writable?, writable?, writable_real?, zero? Instance atime, chmod, chown, ctime, flock, lstat, mtime, path, size, to_path,
truncate

File::Stat (page 503): Instance <=>, atime, blksize, blockdev?, blocks, chardev?, ctime, dev, dev_major, dev_minor, directory?,
executable?, executable_real?, file?, ftype, gid, grpowned?, ino, mode, mtime, nlink, owned?, pipe?, rdev, rdev_major, rdev_
minor, readable?, readable_real?, setgid?, setuid?, size, size?, socket?, sticky?, symlink?, uid, world_readable?, world_writable?,
writable?, writable_real?, zero?

Fixnum (page 510): Instance Arithmeticoperations, Bitoperations, Comparisons, <=>, [], abs, div, even?, divmod, fdiv, magnitude,
modulo, odd?, size, succ, to_f, to_s, zero?

Float (page 513): Instance Arithmeticoperations, Comparisons, <=>, ==, abs, ceil, divmod, eql?, fdiv, finite?, floor, infinite?,
magnitude, modulo, nan?, quo, rationalize, round, to_f, to_i, to_int, to_r, to_s, truncate, zero?

Hash (page 521): Class [], new, try_convert Instance ==, [], []=, assoc, clear, compare_by_identity, compare_by_identity?,
default, default=, default_proc, default_proc=, delete, delete_if, each, each_key, each_pair, each_value, empty?, fetch, flatten,
has_key?, has_value?, include?, index, invert, keep_if, key, key?, keys, length, member?, merge, merge!, rassoc, rehash, reject,
reject!, replace, select, select!, shift, size, sort, store, to_a, to_h, to_hash, to_s, update, value?, values, values_at

Integer (page 532): Instance ceil, chr, denominator, downto, even?, floor, gcd, gcdlcm, integer?, lcm, next, numerator, odd?,
ord, pred, rationalize, round, succ, times, to_i, to_int, to_r, truncate, upto

IO (page 536): Class binread, binwrite, copy_stream, for_fd, foreach, new, open, pipe, popen, read, readlines, select, sysopen,
try_convert, write Instance <<, advise, autoclose=, autoclose?, binmode, binmode?, bytes, chars, close, close_on_exec?, close
_on_exec=, close_read, close_write, closed?, codepoints, each, each_byte, each_char, each_codepoint, each_line, eof, eof?,
external_encoding, fcntl, fdatasync, fileno, flush, fsync, getbyte, getc, gets, internal_encoding, ioctl, isatty, lineno, lineno=, lines,
pid, pos, pos=, print, printf, putc, puts, read, readbyte, readchar, readline, readlines, readpartial, read_nonblock, reopen, rewind,
seek, set_encoding, stat, sync, sync=, sysread, sysseek, syswrite, tell, to_i, to_io, tty?, ungetbyte, ungetc, write, write_nonblock

Chapter 27. Built-in Classes and Modules • 418

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

MatchData (page 559): Instance [], begin, captures, end, length, names, offset, post_match, pre_match, regexp, size, string,
to_a, to_s, values_at

Method (page 565): Instance [], ==, arity, call, eql?, name, owner, parameters, receiver, source_location, to_proc, unbind

Module (page 568): Class constants, nesting, new Instance <,<=,==,>,>=, <=>, ===, ancestors, autoload, autoload?, class_
eval, class_exec, class_variable_defined?, class_variable_get, class_variable_set, class_variables, const_defined?, const_get,
const_missing, const_set, constants, include?, included_modules, instance_method, instance_methods, method_defined?,
module_eval, module_exec, name, private_class_method, private_constant, private_instance_methods, private_method_
defined?, protected_instance_methods, protected_method_defined?, public_class_method, public_constant, public_instance
_method, public_instance_methods, public_method_defined?, remove_class_variable Private alias_method, append_features,
attr, attr_accessor, attr_reader, attr_writer, define_method, extend_object, extended, include, included, method_added, method
_removed, method_undefined, module_function, prepend, private, protected, public, refine, remove_const, remove_method,
undef_method

Mutex (page 588): Instance lock, locked?, owned?, sleep, synchronize, try_lock, unlock

NilClass (page 589): Instance &, ^, |, nil?, rationalize, to_a, to_c, to_f, to_h, to_i, to_r, to_s

Numeric (page 591): Instance +@, -@, <=>, %, abs, abs2, angle, arg, ceil, coerce, conj, conjugate, denominator, div, divmod,
eql?, fdiv, floor, i, imag, imaginary, integer?, magnitude, modulo, nonzero?, numerator, phase, polar, quo, real, real?, rect, rect-
angular, remainder, round, step, to_c, to_int, truncate, zero?

Object (page 599): Instance ===, <=>, =~, !~, class, clone, define_singleton_method, display, dup, enum_for, eql?, extend,
freeze, frozen?, hash, initialize_clone, initialize_copy, initialize_dup, inspect, instance_of?, instance_variable_defined?, instance
_variable_get, instance_variable_set, instance_variables, is_a?, kind_of?, method, methods, nil?, object_id, private_methods,
protected_methods, public_method, public_methods, public_send, respond_to?, respond_to_missing?, send, singleton_class,
singleton_methods, taint, tainted?, tap, to_enum, to_s, trust, untaint, untrust, untrusted? Private __callee__, __dir__, __method
__, ‘(backquote), Array, Complex, Float, Hash, Integer, Rational, String, abort, at_exit, autoload, autoload?, binding, block_given?,
caller, caller_locations, catch, chomp, chop, define_method, eval, exec, exit, exit!, fail, fork, format, gem, gem_original_require,
gets, global_variables, gsub, initialize, iterator?, lambda, load, local_variables, loop, open, p, print, printf, proc, putc, puts, raise,
rand, readline, readlines, remove_instance_variable, require, require_relative, select, set_trace_func, sleep, spawn, sprintf, srand,
sub, syscall, system, test, throw, trace_var, trap, untrace_var, using, warn

Proc (page 633): Class new Instance [], ==, ===, arity, binding, call, curry, lambda?, parameters, source_location, to_proc, to
_s, yield

Process::Status (page 644): Instance ==, &, >>, coredump?, exited?, exitstatus, pid, signaled?, stopped?, success?, stopsig,
termsig, to_i, to_s

Random (page 655): Class new, new_seed, rand, srand Instance bytes, rand, seed

Range (page 650): Class new Instance ==, ===, begin, bsearch, cover?, each, end, eql?, exclude_end?, first, include?, last, max,
member?, min, size, step

Rational (page 656): Instance Arithmeticoperations, Comparisons, <=>, ==, ceil, denominator, fdiv, floor, numerator, quo,
rationalize, round, to_f, to_i, to_r, truncate

Regexp (page 659): Class compile, escape, last_match, new, quote, try_convert, union Instance ==, ===, =~, ~, casefold?,
encoding, fixed_encoding?, match, named_captures, names, options, source, to_s

String (page 666): Class new, try_convert Instance %, *, +, <<, <=>, ==, =~, [], []=, ascii_only?, b, bytes, bytesize, byteslice,
capitalize, capitalize!, casecmp, center, chars, chr, clear, chomp, chomp!, chop, chop!, codepoints, concat, count, crypt, delete,
delete!, downcase, downcase!, dump, each_byte, each_char, each_codepoint, each_line, empty?, encode, encode!, encoding,
end_with?, eql?, force_encoding, getbyte, gsub, gsub!, hex, include?, index, insert, intern, length, lines, ljust, lstrip, lstrip!, match,
next, next!, oct, ord, partition, prepend, replace, reverse, reverse!, rindex, rjust, rpartition, rstrip, rstrip!, scan, setbyte, size, slice,
slice!, split, squeeze, squeeze!, start_with?, strip, strip!, sub, sub!, succ, succ!, sum, swapcase, swapcase!, to_c, to_f, to_i, to_r, to
_s, to_str, to_sym, tr, tr!, tr_s, tr_s!, unpack, upcase, upcase!, upto, valid_encoding?

Struct (page 693): Class new, new, [], members Instance ==, [], []=, each, each_pair, length, members, size, to_a, to_h, values,
values_at

Struct::Tms (page 697):

Symbol (page 698): Class all_symbols Instance <=>, ==, =~, [], capitalize, casecmp, downcase, empty?, encoding, id2name,
inspect, intern, length, match, next, size, slice, succ, swapcase, to_proc, to_s, to_sym, upcase

report erratum • discuss

Alphabetical Listing • 419

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Thread (page 702): Class abort_on_exception, abort_on_exception=, current, exclusive, exit, fork, kill, list, main, new, pass,
start, stop Instance [], []=, abort_on_exception, abort_on_exception=, add_trace_func, alive?, backtrace, backtrace_locations,
exit, group, join, keys, key?, kill, priority, priority=, raise, run, safe_level, set_trace_func, status, stop?, terminate, thread_variable?,
thread_variables, thread_variable_get, thread_variable_set, value, wakeup

ThreadGroup (page 710): Class new Instance add, enclose, enclosed?, list

Time (page 712): Class at, gm, local, mktime, new, now, utc Instance +, -, <=>, day-name?, asctime, ctime, day, dst?, getgm,
getlocal, getutc, gmt?, gmtime, gmt_offset, gmtoff, hour, isdst, localtime, mday, min, mon, month, nsec, round, sec, strftime,
subsec, succ, to_a, to_f, to_i, to_r, to_s, tv_nsec, tv_sec, tv_usec, usec, utc, utc?, utc_offset, wday, yday, year, zone

TracePoint (page 722): Class new, trace Instance binding, defined_class, disable, enable, enabled?, event, lineno, method_
id, path, raised_exception, return_value, self

TrueClass (page 725): Instance &, ^, |

UnboundMethod (page 726): Instance arity, bind, name, owner, parameters, source_location

Built-in Modules

Comparable (page 450): Instance Comparisons, between?

Enumerable (page 466): Instance all?, any?, chunk, collect, collect_concat, count, cycle, detect, drop, drop_while, each_cons,
each_entry, each_slice, each_with_index, each_with_object, entries, find, find_all, find_index, first, flat_map, grep, group_by,
include?, inject, lazy, map, max, max_by, member?, min, min_by, minmax, minmax_by, none?, one?, partition, reduce, reject,
reverse_each, select, slice_before, sort, sort_by, take, take_while, to_a, zip

Errno (page 482):

FileTest (page 509):

GC (page 517): Class count, disable, enable, start, stat, stress, stress= Instance garbage_collect

GC::Profiler (page 519): Class clear, disable, enable, enabled?, raw_data, report, result, total_time

Kernel (page 556):

Marshal (page 557): Class dump, load, restore

Math (page 562): Class acos, acosh, asin, asinh, atan, atanh, atan2, cbrt, cos, cosh, erf, erfc, exp, frexp, gamma, hypot, ldexp,
lgamma, log, log10, log2, sin, sinh, sqrt, tan, tanh

ObjectSpace (page 631): Class _id2ref, count_objects, define_finalizer, each_object, garbage_collect, undefine_finalizer

Process (page 637): Class abort, daemon, detach, egid, egid=, euid, euid=, exec, exit, exit!, fork, getpgid, getpgrp, getpriority,
getrlimit, getsid, gid, gid=, groups, groups=, initgroups, kill, maxgroups, maxgroups=, pid, ppid, setpgid, setpgrp, setpriority,
setrlimit, setsid, spawn, times, uid, uid=, wait, waitall, wait2, waitpid, waitpid2

Process::GID (page 643): Class change_privilege, eid, eid=, grant_privilege, re_exchange, re_exchangeable?, rid, sid_available?,
switch

Process::Sys (page 647): Class getegid, geteuid, getgid, getuid, issetugid, setegid, seteuid, setgid, setregid, setresgid, setresuid,
setreuid, setrgid, setruid, setuid

Process::UID (page 648): Class change_privilege, eid, eid=, grant_privilege, re_exchange, re_exchangeable?, rid, sid_available?,
switch

Signal (page 664): Class list, signame, trap

Chapter 27. Built-in Classes and Modules • 420

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Relies on: each, <=>ArrayClass

Arrays are ordered, integer-indexed collections of any object. Array indexes start at 0, as in
C or Java. A negative index is relative to the end of the array; that is, an index of -1 indicates
the last element of the array, -2 is the next-to-last element in the array, and so on.

Mixes In

Enumerable: all?, any?, chunk, collect, collect_concat, count, cycle, detect, drop, drop_while, each_
cons, each_entry, each_slice, each_with_index, each_with_object, entries, find, find_all, find_index,
first, flat_map, grep, group_by, include?, inject, lazy, map, max, max_by, member?, min, min_by,
minmax, minmax_by, none?, one?, partition, reduce, reject, reverse_each, select, slice_before, sort, sort
_by, take, take_while, to_a, zip

Class Methods

Array[‹obj›*] → an_array[]

Returns a new array populated with the given objects. Equivalent to the operator form
Array.[...].

Array.[](1, 'a', /^A/) # => [1, "a", /^A/]
Array[1, 'a', /^A/] # => [1, "a", /^A/]
[1, 'a', /^A/] # => [1, "a", /^A/]

Array.new → an_array
Array.new (size=0, obj=nil) → an_array

Array.new(array) → an_array
Array.new(size) {|i| … } → an_array

new

Returns a new array. In the first form, the new array is empty. In the second, it is created
with size copies of obj (that is, size references to the same obj). The third form creates a copy
of the array passed as a parameter (the array is generated by calling to_ary on the parameter).
In the last form, an array of the given size is created. Each element in this array is calculated
by passing the element’s index to the given block and storing the return value.

Array.new # => []
Array.new(2) # => [nil, nil]
Array.new(5, "A") # => ["A", "A", "A", "A", "A"]

only one instance of the default object is created
a = Array.new(2, Hash.new)
a[0]['cat'] = 'feline'
a # => [{"cat"=>"feline"}, {"cat"=>"feline"}]
a[1]['cat'] = 'Felix'
a # => [{"cat"=>"Felix"}, {"cat"=>"Felix"}]

a = Array.new(2) { Hash.new } # Multiple instances
a[0]['cat'] = 'feline'
a # => [{"cat"=>"feline"}, {}]

squares = Array.new(5) {|i| i*i}
squares # => [0, 1, 4, 9, 16]

report erratum • discuss

Array • 421

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

copy = Array.new(squares) # initialized by copying
squares[5] = 25
squares # => [0, 1, 4, 9, 16, 25]
copy # => [0, 1, 4, 9, 16]

Array.try_convert(obj) → an_array or niltry_convert

If obj is not already an array, attempts to convert it to one by calling its to_arymethod. Returns
nil if no conversion could be made.

class Stooges
def to_ary
["Larry", "Curly", "Moe"]

end
end
Array.try_convert(Stooges.new) # => ["Larry", "Curly", "Moe"]
Array.try_convert("Shemp") # => nil

Instance Methods

arr & other_array→ an_array&

Set Intersection—Returns a new array containing elements common to the two arrays, with
no duplicates. The rules for comparing elements are the same as for hash keys. If you need
setlike behavior, see the library class .Set on page 804.

[1, 1, 3, 5] & [1, 2, 3] # => [1, 3]

arr * int→ an_array
arr * str→ a_string

*

Repetition—With an argument that responds to to_str, equivalent to arr.join(str). Otherwise,
returns a new array built by concatenating int copies of arr.

[1, 2, 3] * 3 # => [1, 2, 3, 1, 2, 3, 1, 2, 3]
[1, 2, 3] * "--" # => "1--2--3"

arr + other_array→ an_array+

Concatenation—Returns a new array built by concatenating the two arrays together to pro-
duce a third array.

[1, 2, 3] + [4, 5] # => [1, 2, 3, 4, 5]

arr - other_array→ an_array-

Array Difference—Returns a new array that is a copy of the original array, removing any
items that also appear in other_array. If you need setlike behavior, see the library class Set on
page 804.

[1, 1, 2, 2, 3, 3, 4, 5] - [1, 2, 4] # => [3, 3, 5]

Chapter 27. Built-in Classes and Modules • 422

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

arr << obj→ arr<<

Append—Pushes the given object on to the end of this array. This expression returns the
array itself, so several appends may be chained together. See also Array#push.

[1, 2] << "c" << "d" << [3, 4] # => [1, 2, "c", "d", [3, 4]]

arr <=> other_array→ -1, 0, +1, or nil<=>

Comparison—Returns an integer -1, 0, or +1 if this array is less than, equal to, or greater than
other_array. Successive objects in each array are compared using <=>. If any pair are not
equal, then that inequality is the return value. If all pair are equal, then the longer array is
considered greater. Thus, two arrays are “equal” according to Array#<=> if and only if they
have the same length and the values of each corresponding element are equal. nil is returned
if the argument is not comparable to arr.

["a", "a", "c"] <=> ["a", "b", "c"] # => -1
[1, 2, 3, 4, 5, 6] <=> [1, 2] # => 1
[1, 2, 3, 4, 5, 6] <=> "wombat" # => nil

arr == obj→ true or false==

Equality—Two arrays are equal if they contain the same number of elements and if each
element is equal to (according to Object#==) the corresponding element in the other array.
If obj is not an array, attempt to convert it using to_ary and return obj==arr.

["a", "c"] == ["a", "c", 7] # => false
["a", "c", 7] == ["a", "c", 7] # => true
["a", "c", 7] == ["a", "d", "f"] # => false

arr[int] → obj or nil
arr[start, length] → an_array or nil

arr[range] → an_array or nil

[]

Element Reference—Returns the element at index int; returns a length element subarray
starting at index start; or returns a subarray specified by range. Negative indices count
backward from the end of the array (-1 is the last element). Returns nil if the index of the first
element selected is greater than the array size. If the start index equals the array size and a
length or range parameter is given, an empty array is returned. Equivalent to Array#slice.

a = ["a", "b", "c", "d", "e"]
a[2] + a[0] + a[1] # => "cab"
a[6] # => nil
a[1, 2] # => ["b", "c"]
a[1..3] # => ["b", "c", "d"]
a[4..7] # => ["e"]
a[6..10] # => nil
a[-3, 3] # => ["c", "d", "e"]
special cases
a[5] # => nil
a[5, 1] # => []
a[5..10] # => []

report erratum • discuss

Array • 423

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

arr[int] = obj→ obj
arr[start, length] = obj→ obj}

arr[range] = obj→ obj

[]=

Element Assignment—Sets the element at index int, replaces a subarray starting at index
start and continuing for length elements, or replaces a subarray specified by range. If int is
greater than the size of the array, the array grows automatically. A negative int counts
backward from the end of the array. Inserts elements if length is zero. If obj is an array, the
form with the single index inserts that array into arr, and the forms with a length or with a
range replace the given elements in arr with the array contents. An IndexError is raised if a
negative index points past the beginning of the array. (Prior to Ruby 1.9, assigning nil with
the second and third forms of element assignment deleted the corresponding array elements;
it now assigns nil to them.) See also Array#push and Array#unshift.

a = Array.new # => []
a[4] = "4"; a # => [nil, nil, nil, nil, "4"]
a[0] = [1, 2, 3]; a # => [[1, 2, 3], nil, nil, nil, "4"]
a[0, 3] = ['a', 'b', 'c']; a # => ["a", "b", "c", nil, "4"]
a[1..2] = [1, 2]; a # => ["a", 1, 2, nil, "4"]
a[0, 2] = "?"; a # => ["?", 2, nil, "4"]
a[0..2] = "A", "B", "C"; a # => ["A", "B", "C", "4"]
a[-1] = "Z"; a # => ["A", "B", "C", "Z"]
a[1..-1] = nil; a # => ["A", nil]

arr | other_array→ an_array|

Set Union—Returns a new array by joining this array with other_array, removing duplicates.
The rules for comparing elements are the same as for hash keys. If you need setlike behavior,
see the library class Set on page 804.

["a", "b", "c"] | ["c", "d", "a"] # => ["a", "b", "c", "d"]

arr.assoc(obj) → an_array or nilassoc

Searches through an array whose elements are also arrays comparing objwith the first element
of each contained array using obj.==. Returns the first contained array that matches (that is,
the first associated array) or nil if no match is found. See also Array#rassoc.

s1 = ["colors", "red", "blue", "green"]
s2 = ["letters", "a", "b", "c"]
s3 = "foo"
a = [s1, s2, s3]
a.assoc("letters") # => ["letters", "a", "b", "c"]
a.assoc("foo") # => nil

arr.at(int) → obj or nilat

Returns the element at index int. A negative index counts from the end of arr. Returns nil if
the index is out of range. See also Array#[].

Chapter 27. Built-in Classes and Modules • 424

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

a = ["a", "b", "c", "d", "e"]
a.at(0) # => "a"
a.at(-1) # => "e"

arr.bsearch {|val| … } → obj or nilbsearch

⇡New in 2.0⇣Assuming arr is sorted in ascending order, performs a binary search in O(log n) time. The
method operates in two modes depending on the values returned by the block:

To find the minimum value in arr greater than or equal to the required value, have the block
return false if its argument is less than that value, true otherwise.

arr = %w{ ant bee cat dog elk fox gnu }
arr.bsearch {|val| val >= "c" } # => "cat"
arr.bsearch {|val| val >= "cod" } # => "dog"
arr.bsearch {|val| val >= "kea" } # => nil

To find a value in the array that lies between two limits, write the block to return a positive
number if the argument is less than the lower bound, a negative number if it is greater than
the upper bound, or zero if it is inclusively between the bounds.

arr = [1, 1, 2, 3, 5, 8, 13, 21, 34]
res = arr.bsearch do |val|
case
when val < 19 then +1
when val > 23 then -1
else 0
end

end
res # => 21

arr.combination(size) → enumerator
arr.combination(size) {|array| … } → arr

combination

Constructs all combinations of the elements of arr of length size. If called with a block, passes
each combination to that block; otherwise, returns an enumerator object. An empty result
is generated if no combinations of the given length exist. See also Array#permutation.

a = ["a", "b", "c"]
a.combination(1).to_a # => [["a"], ["b"], ["c"]]
a.combination(2).to_a # => [["a", "b"], ["a", "c"], ["b", "c"]]
a.combination(3).to_a # => [["a", "b", "c"]]
a.combination(4).to_a # => []

arr.collect! {|obj| … } → arrcollect!

Invokes block once for each element of arr, replacing the element with the value returned by
block. See also Enumerable#collect.

a = ["a", "b", "c", "d"]
a.collect! {|x| x + "!" } # => ["a!", "b!", "c!", "d!"]
a # => ["a!", "b!", "c!", "d!"]

report erratum • discuss

Array • 425

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

arr.compact → an_arraycompact

Returns a copy of arr with all nil elements removed.

["a", nil, "b", nil, "c", nil].compact # => ["a", "b", "c"]

arr.compact! → arr or nilcompact!

Removes nil elements from arr. Returns nil if no changes were made.

["a", nil, "b", nil, "c"].compact! # => ["a", "b", "c"]
["a", "b", "c"].compact! # => nil

arr.concat(other_array) → arrconcat

Appends the elements in other_array to arr.

["a", "b"].concat(["c", "d"]) # => ["a", "b", "c", "d"]

arr.count(obj) → int
arr.count {|obj| … } → int

count

Returns the count of objects in arr that equal obj or for which the block returns a true value.
Shadows the corresponding method in Enumerable.

[1, 2, 3, 4].count(3) # => 1
[1, 2, 3, 4].count {|obj| obj > 2 } # => 2

arr.cycle {|obj| … } → nil or enumerator
arr.cycle(times) {|obj| … } → nil or enumerator

cycle

Returns nil if arr has no elements; otherwise, passes the elements, one at a time to the block.
When it reaches the end, it repeats. The number of times it repeats is set by the parameter.
If the parameter is missing, cycles forever. Returns an Enumerator object if no block is given.

[1,2,3].cycle(3) # => #<Enumerator: [1, 2, 3]:cycle(3)>
[1,2,3].cycle(3).to_a # => [1, 2, 3, 1, 2, 3, 1, 2, 3]

columns = [1, 2, 3]
data = %w{ a b c d e f g h }

columns.cycle do |column_number|
print column_number, ":", data.shift, "\t"
puts if column_number == columns.last
break if data.empty?

end

produces:

1:a 2:b 3:c
1:d 2:e 3:f
1:g 2:h

Chapter 27. Built-in Classes and Modules • 426

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

arr.delete(obj) → obj or nil
arr.delete(obj) { … } → obj or nil

delete

Deletes items from arr that are equal to obj. If the item is not found, returns nil. If the
optional code block is given, returns the result of block if the item is not found.

a = ["a", "b", "b", "b", "c"]
a.delete("b") # => "b"
a # => ["a", "c"]
a.delete("z") # => nil
a.delete("z") { "not found" } # => "not found"

arr.delete_at(index) → obj or nildelete_at

Deletes the element at the specified index, returning that element or nil if the index is out of
range. See also Array#slice!.

a = %w(ant bat cat dog)
a.delete_at(2) # => "cat"
a # => ["ant", "bat", "dog"]
a.delete_at(99) # => nil

arr.delete_if {|item| … } → arrdelete_if

Deletes every element of arr for which block evaluates to true.

a = ["a", "b", "c"]
a.delete_if {|x| x >= "b" } # => ["a"]

arr.each {|item| … } → arreach

Calls block once for each element in arr, passing that element as a parameter.

a = ["a", "b", "c"]
a.each {|x| print x, " -- " }

produces:

a -- b -- c --

arr.each_index {|index| … } → arreach_index

Same as Array#each but passes the index of the element instead of the element itself.

a = ["a", "b", "c"]
a.each_index {|x| print x, " -- " }

produces:

0 -- 1 -- 2 --

report erratum • discuss

Array • 427

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

arr.empty? → true or falseempty?

Returns true if arr array contains no elements.

[].empty? # => true
[1, 2, 3].empty? # => false

arr.eql?(other) → true or falseeql?

Returns true if arr and other are the same object or if other is an object of class Array with the
same length and content as arr. Elements in the arrays are compared using Object#eql?. See
also Array#<=>.

["a", "b", "c"].eql?(["a", "b", "c"]) # => true
["a", "b", "c"].eql?(["a", "b"]) # => false
["a", "b", "c"].eql?(["b", "c", "d"]) # => false

arr.fetch(index) → obj
arr.fetch(index, default) → obj
arr.fetch(index) {|i| … } → obj

fetch

Tries to return the element at position index. If the index lies outside the array, the first form
throws an IndexError exception, the second form returns default, and the third form returns
the value of invoking the block, passing in the index. Negative values of index count from
the end of the array.

a = [11, 22, 33, 44]
a.fetch(1) # => 22
a.fetch(-1) # => 44
a.fetch(-1, 'cat') # => 44
a.fetch(4, 'cat') # => "cat"
a.fetch(4) {|i| i*i } # => 16

arr.fill(obj) → arr
arr.fill(obj, start ‹ , length›) → arr

arr.fill(obj, range) → arr
arr.fill {|i| … } → arr

arr.fill(start ‹ , length›) {|i| … } → arr
arr.fill(range) {|i| … } → arr

fill

The first three forms set the selected elements of arr (which may be the entire array) to obj.
A start of nil is equivalent to zero. A length of nil is equivalent to arr.length. The last three forms
fill the array with the value of the block. The block is passed the absolute index of each element
to be filled.

a = ["a", "b", "c", "d"]
a.fill("x") # => ["x", "x", "x", "x"]
a.fill("z", 2, 2) # => ["x", "x", "z", "z"]
a.fill("y", 0..1) # => ["y", "y", "z", "z"]
a.fill {|i| i*i} # => [0, 1, 4, 9]
a.fill(-3) {|i| i+100} # => [0, 101, 102, 103]

Chapter 27. Built-in Classes and Modules • 428

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

arr.find_index(obj) → int or nil
arr.find_index {|item| … } → int or nil

arr.find_index → enumerator

find_index

Returns the index of the first object in arr that is == to obj or for which the block returns a
true value. Returns nil if no match is found. See also Enumerable#select and Array#rindex.

a = ["a", "b", "c", "b"]
a.find_index("b") # => 1
a.find_index("z") # => nil
a.find_index {|item| item > "a"} # => 1

arr.flatten(level = -1) → an_arrayflatten

Returns a new array that is a flattening of this array (recursively). That is, for every element
that is an array, extracts its elements into the new array. The level parameter controls how
deeply the flattening occurs. If less than zero, all subarrays are expanded. If zero, no flattening
takes place. If greater than zero, only that depth of subarray is expanded.

s = [1, 2, 3] # => [1, 2, 3]
t = [4, 5, 6, [7, 8]] # => [4, 5, 6, [7, 8]]
a = [s, t, 9, 10] # => [[1, 2, 3], [4, 5, 6, [7, 8]], 9, 10]
a.flatten(0) # => [[1, 2, 3], [4, 5, 6, [7, 8]], 9, 10]
a.flatten # => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
a.flatten(1) # => [1, 2, 3, 4, 5, 6, [7, 8], 9, 10]
a.flatten(2) # => [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

arr.flatten!(level = -1) → arr or nilflatten!

Same as Array#flatten but modifies the receiver in place. Returns nil if no modifications were
made (i.e., arr contains no subarrays).

a = [1, 2, [3, [4, 5]]]
a.flatten! # => [1, 2, 3, 4, 5]
a.flatten! # => nil
a # => [1, 2, 3, 4, 5]

arr.frozen? → true or falsefrozen?

Returns true if arr is frozen or if it is in the middle of being sorted.

arr.index(obj) → int or nil
arr.index {|item| … } → int or nil

index

Synonym for Array#find_index.

report erratum • discuss

Array • 429

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

MeaningDirective

Move to absolute position@

Sequence of bytes (space padded, count is width)A

Sequence of bytes (null padded, count is width)a

Bit string (most significant first)B

Bit string (least significant first)b

Unsigned byteC

Bytec

Double-precision float, native formatD, d

Double-precision float, little-endian byte orderE

Single-precision float, little-endian byte ordere

Single-precision float, native formatF, f

Double-precision float, network (big-endian) byte orderG

Single-precision float, network (big-endian) byte orderg

Hex string (high nibble first)H

Hex string (low nibble first)h

Unsigned integerI

Integeri

Unsigned longL

Longl

Quoted printable, MIME encoding (see RFC2045)M

Base64-encoded string; by default adds linefeeds every 60 characters; "m0" suppresses
linefeeds

m

Long, network (big-endian) byte orderN

Short, network (big-endian) byte ordern

Pointer to a structure (fixed-length string)P

Pointer to a null-terminated stringp

64-bit numberQ, q

Unsigned shortS

Shorts

UTF-8U

UU-encoded stringu

Long, little-endian byte orderV

Short, little-endian byte orderv

BER-compressed integer°w

Back up a byteX

Null bytex

Same as “a,” except a null byte is appended if the * modifier is givenZ

° The octets of a BER-compressed integer represent an unsigned integer in base 128,
most significant digit first, with as few digits as possible. Bit eight (the high bit) is set
on each byte except the last (Self-Describing Binary Data Representation, MacLeod).

Table 14—Template characters for Array.pack

Chapter 27. Built-in Classes and Modules • 430

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

arr.insert(index, ‹obj›+}) → arrinsert

If index is not negative, inserts the given values before the element with the given index. If
index is negative, adds the values after the element with the given index (counting from the
end).

a = %w{ a b c d }
a.insert(2, 99) # => ["a", "b", 99, "c", "d"]
a.insert(-2, 1, 2, 3) # => ["a", "b", 99, "c", 1, 2, 3, "d"]
a.insert(-1, "e") # => ["a", "b", 99, "c", 1, 2, 3, "d", "e"]

arr.join(separator=$,) → strjoin

Returns a string created by converting each element of the array to a string and concatenating
them, separated each by separator.

["a", "b", "c"].join # => "abc"
["a", "b", "c"].join("-") # => "a-b-c"

arr.keep_if {|obj| … } → array or enumeratorkeep_if

Modifies arr by removing all elements for which block is false (see also Enumerable#select and
Array.select!). Returns an Enumerator object if no block is given.

a = [1, 2, 3, 4, 5, 6, 7, 8, 9]
a.keep_if {|element| element < 6 } # => [1, 2, 3, 4, 5]
a # => [1, 2, 3, 4, 5]
a.keep_if(&:odd?) # => [1, 3, 5]
a # => [1, 3, 5]

arr.last → obj or nil
arr.last(count) → an_array

last

Returns the last element, or last count elements, of arr. If the array is empty, the first form
returns nil, and the second returns an empty array. (first is defined by Enumerable.)

["w", "x", "y", "z"].last # => "z"
["w", "x", "y", "z"].last(1) # => ["z"]
["w", "x", "y", "z"].last(3) # => ["x", "y", "z"]

arr.length → intlength

Returns the number of elements in arr.

[1, nil, 3, nil, 5].length # => 5

arr.map! {|obj| … } → arrmap!

Synonym for Array#collect!.

report erratum • discuss

Array • 431

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

arr.pack (template) → binary_stringpack

Packs the contents of arr into a binary sequence according to the directives in template (see
Table 14, Template characters for Array.pack, on page 430). Directives A, a, and Zmay be followed
by a count, which gives the width of the resulting field. The remaining directives also may
take a count, indicating the number of array elements to convert. If the count is an asterisk
(*), all remaining array elements will be converted. The directives s S i I l L may be followed
by an underscore (_) or bang (!) to use the underlying platform’s native size for the specified
type; otherwise, they use a platform-independent size. The directives s S i I l L q Q may be
followed by a less than sign to signify little endian or greater than sign for big endian. Spaces
are ignored in the template string. Comments starting with # to the next newline or end of
string are also ignored. See also String#unpack on page 690.

a = ["a", "b", "c"]
n = [65, 66, 67]
a.pack("A3A3A3") # => "a␣␣b␣␣c␣␣"
a.pack("a3a3a3") # => "a\0\0b\0\0c\0\0"
n.pack("ccc") # => "ABC"

arr.permutation(size=arr.size) → enumerator
arr.permutation(size=arr.size) {|array| … } → arr}

permutation

Constructs all permutations of the elements of arr of length size. If called with a block, passes
each permutation to that block; otherwise, returns an enumerator object. An empty result
is generated if no permutations of the given length exist. See also Array#combination.

words = {}
File.readlines("/usr/share/dict/words").map(&:chomp).each do |word|
words[word.downcase] = 1

end

%w{ c a m e l }.permutation do |letters|
anagram = letters.join
puts anagram if words[anagram]

end

produces:

camel
clame
cleam
macle

arr.pop(‹n›*) → obj or nilpop

Removes the last element (or the last n elements) from arr. Returns whatever is removed or
nil if the array is empty.

a = %w{ f r a b j o u s }
a.pop # => "s"
a # => ["f", "r", "a", "b", "j", "o", "u"]
a.pop(3) # => ["j", "o", "u"]
a # => ["f", "r", "a", "b"]

Chapter 27. Built-in Classes and Modules • 432

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

arr.product(‹arrays›*) → result_array
arr.product(‹arrays›*) ‹ {|combination| … }› → arr

product

Generates all combinations of selecting an element each from arr and from any arrays passed
as arguments. The number of elements in the result is the product of the lengths of arr and
the lengths of the arguments (so if any of these arrays is empty, the result will be an empty
array). Each element in the result is an array containing n+1 elements, where n is the number
of arguments. If a block is present, it will be passed each combination, and arrwill be returned.

suits = %w{ C D H S }
ranks = [*2..10, *%w{ J Q K A }]
card_deck = suits.product(ranks).shuffle
card_deck.first(13) # => [["S", 8], ["D", "K"], ["C", 9], ["S", "A"], ["H", "K"],

.. ["S", 4], ["S", 7], ["D", 2], ["H", 6], ["S", "Q"],
.. ["D", 3], ["D", 4], ["H", 10]]

arr.push(‹obj›*) → arrpush

Appends the given argument(s) to arr.

a = ["a", "b", "c"]
a.push("d", "e", "f") # => ["a", "b", "c", "d", "e", "f"]

arr.rassoc(key) → an_array or nilrassoc

Searches through the array whose elements are also arrays. Compares key with the second
element of each contained array using ==. Returns the first contained array that matches.
See also Array#assoc.

a = [[1, "one"], [2, "two"], [3, "three"], ["ii", "two"]]
a.rassoc("two") # => [2, "two"]
a.rassoc("four") # => nil

arr.reject! {|item| … } → arr or nilreject!

Equivalent to Array#delete_if but returns nil if arr is unchanged. Also see Enumerable#reject.

arr.repeated_combination(length) {|comb| … } → arr
arr.repeated_combination(length) → enum

repeated_combination

Creates the set of combinations of length length of the elements of arr. If length is greater than
arr.size, elements will be allowed to repeat. Passes each combination to the block, or returns
an enumerator if no block is given.

a = [1, 2, 3]
a.repeated_combination(2).to_a # => [[1, 1], [1, 2], [1, 3], [2, 2], [2, 3], [3,

.. 3]]
a.repeated_combination(3).to_a # => [[1, 1, 1], [1, 1, 2], [1, 1, 3], [1, 2, 2],

.. [1, 2, 3], [1, 3, 3], [2, 2, 2], [2, 2, 3],
.. [2, 3, 3], [3, 3, 3]]

report erratum • discuss

Array • 433

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

arr.repeated_permutation(length) {|comb| … } → arr
arr.repeated_permutation(length) → enum

repeated_permutation

Creates the set of permutations of length length of the elements of arr. If length is greater than
arr.size elements will be allowed to repeat. Passes each permutation to the block, or returns
an enumerator if no block given.

a = [:a, :b]
a.repeated_permutation(2).to_a # => [[:a, :a], [:a, :b], [:b, :a], [:b, :b]]
a.repeated_permutation(3).to_a # => [[:a, :a, :a], [:a, :a, :b], [:a, :b, :a],

.. [:a, :b, :b], [:b, :a, :a], [:b, :a, :b],
.. [:b, :b, :a], [:b, :b, :b]]

arr.replace(other_array) → arrreplace

Replaces the contents of arr with the contents of other_array, truncating or expanding arr if
necessary.

a = ["a", "b", "c", "d", "e"]
a.replace(["x", "y", "z"]) # => ["x", "y", "z"]
a # => ["x", "y", "z"]

arr.reverse → an_arrayreverse

Returns a new array using arr’s elements in reverse order.

["a", "b", "c"].reverse # => ["c", "b", "a"]
[1].reverse # => [1]

arr.reverse! → arrreverse!

Reverses arr in place.

a = ["a", "b", "c"]
a.reverse! # => ["c", "b", "a"]
a # => ["c", "b", "a"]
[1].reverse! # => [1]

arr.reverse_each ‹ {|item| … }›} } → arrreverse_each

Same as Array#each but traverses arr in reverse order.

a = ["a", "b", "c"]
a.reverse_each {|x| print x, " " }

produces:

c b a

Chapter 27. Built-in Classes and Modules • 434

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

arr.rindex(obj) → int or nil
arr.rindex {|item| … } → int or nil

rindex

Returns the index of the last object in arr that is == to obj or for which the block returns a
true value. Returns nil if no match is found. See also Enumerable#select and Array#index.

a = ["a", "b", "e", "b", "d"]
a.rindex("b") # => 3
a.rindex("z") # => nil
a.rindex {|item| item =~ /[aeiou]/} # => 2

arr.rotate(places=1) → new_arrayrotate

Returns a new array containing the elements of arr rotated placespositions (so that the element
that originally was at arr[places] is now at the front of the array. places may be negative.

a = [1, 2, 3, 4, 5]
a.rotate(2) # => [3, 4, 5, 1, 2]
a.rotate(-2) # => [4, 5, 1, 2, 3]

arr.rotate(places=1) → arrrotate!

Rotate arr in place.

arr.sample(n=1) → an_array or nilsample

Returns min(n, arr.size) random elements from arr or nil if arr is empty and n is not given.

a = ["a", "b", "c", "d"]
a.sample # => "c"
a.sample(3) # => ["b", "a", "c"]
a.sample(6) # => ["b", "d", "a", "c"]
b = []
b.sample # => nil

arr.select! {|obj| … } → array, nil, or enumeratorselect!

Modifies arr by removing all elements for which block is false (see also Enumerable#select and
Array#keep_if). Returns nil if no changes were made, returns an Enumerator object if no block
is given, or returns arr.

a = [1, 2, 3, 4, 5, 6, 7, 8, 9]
a.select! {|element| element < 6 } # => [1, 2, 3, 4, 5]
a # => [1, 2, 3, 4, 5]
a.select! {|element| element < 8 } # => nil
a # => [1, 2, 3, 4, 5]

arr.shift(n = 1) → obj or nilshift

Returns the first n elements (or the first element with no argument) of arr and removes it
(shifting all other elements down by one). Returns nil if the array is empty.

report erratum • discuss

Array • 435

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

args = ["-m", "-q", "-v", "filename"]
args.shift # => "-m"
args.shift(2) # => ["-q", "-v"]
args # => ["filename"]

arr.shuffle → an_array
arr.shuffle(random: rng)→ an_array

shuffle

⇡New in 2.0⇣
Returns an array containing the elements of arr in random order. You can pass it a random
number generator using the random: keyword parameter. Passing rngs with the same seed
makes the shuffle deterministic.

[1, 2, 3, 4, 5].shuffle # => [4, 5, 2, 1, 3]
[1, 2, 3, 4, 5].shuffle # => [5, 2, 1, 4, 3]
[1, 2, 3, 4, 5].shuffle(random: Random.new(123)) # => [2, 4, 5, 1, 3]
[1, 2, 3, 4, 5].shuffle(random: Random.new(123)) # => [2, 4, 5, 1, 3]

arr.shuffle! → an_array
arr.shuffle!(random: rng)→ an_array

shuffle!

Randomizes the order of the elements of arr in place.

arr.size → intsize

Synonym for Array#length.

arr.slice(int) → obj
arr.slice(start, length) → an_array

arr.slice(range) → an_array

slice

Synonym for Array#[].

a = ["a", "b", "c", "d", "e"]
a.slice(2) + a.slice(0) + a.slice(1) # => "cab"
a.slice(6) # => nil
a.slice(1, 2) # => ["b", "c"]
a.slice(1..3) # => ["b", "c", "d"]
a.slice(4..7) # => ["e"]
a.slice(6..10) # => nil
a.slice(-3, 3) # => ["c", "d", "e"]

special cases
a.slice(5) # => nil
a.slice(5, 1) # => []
a.slice(5..10) # => []

arr.slice!(int) → obj or nil
arr.slice!(start, length) → an_array or nil

arr.slice!(range) → an_array or nil

slice!

Deletes the element(s) given by an index (optionally with a length) or by a range. Returns
the deleted object, subarray, or nil if the index is out of range.

Chapter 27. Built-in Classes and Modules • 436

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

a = ["a", "b", "c"]
a.slice!(1) # => "b"
a # => ["a", "c"]
a.slice!(-1) # => "c"
a # => ["a"]
a.slice!(100) # => nil
a # => ["a"]

arr.sort! → arr
arr.sort! {|a,b| … } → arr

sort!

Sorts arr in place (see Enumerable#sort). arr is effectively frozen while a sort is in progress.

a = ["d", "a", "e", "c", "b"]
a.sort! # => ["a", "b", "c", "d", "e"]
a # => ["a", "b", "c", "d", "e"]

arr.sort_by! {|a| … } → arr
arr.sort_by! → enum

sort_by!

Sorts arr in place (see Enumerable#sort_by). arr is effectively frozen while a sort is in progress.

a = [5, 2, 7, 4, 8, 9]
Sort even numbers before odd, and then by rank
a.sort_by! {|e| [e & 1, e] } # => [2, 4, 8, 5, 7, 9]
a # => [2, 4, 8, 5, 7, 9]

arr.to_a → arr
array_subclass.to_a → array

to_a

If arr is an array, returns arr. If arr is a subclass of Array, invokes to_ary and uses the result to
create a new array object.

arr.to_ary → arrto_ary

Returns arr.

arr.to_s → strto_s

Returns a string representation of arr. (In Ruby 1.9, the array as a literal.)

[1, 3, 5, 7, 9].to_s # => "[1, 3, 5, 7, 9]"

arr.transpose → an_arraytranspose

Assumes that arr is an array of arrays and transposes the rows and columns.

a = [[1,2], [3,4], [5,6]]
a.transpose # => [[1, 3, 5], [2, 4, 6]]

report erratum • discuss

Array • 437

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

arr.uniq ‹ {|element| … }› → an_arrayuniq

Returns a new array by removing duplicate values in arr, where duplicates are detected by
comparing using eql? and hash. If the block is present, the comparisons are made based on
the values returned by that block for each element in the array.

a = %w{ C a a b b A c a }
a.uniq # => ["C", "a", "b", "A", "c"]
a.uniq {|element| element.downcase } # => ["C", "a", "b"]
a.uniq(&:upcase) # => ["C", "a", "b"]

arr.uniq! ‹ {|element| … }› → arr or niluniq!

Same as Array#uniq but modifies the receiver in place. Returns nil if no changes are made (that
is, no duplicates are found).

a = ["a", "a", "b", "b", "c"]
a.uniq! # => ["a", "b", "c"]
b = ["a", "b", "c"]
b.uniq! # => nil

arr.unshift(‹obj›+}) → arrunshift

Prepends object(s) to arr.

a = ["b", "c", "d"]
a.unshift("a") # => ["a", "b", "c", "d"]
a.unshift(1, 2) # => [1, 2, "a", "b", "c", "d"]

arr.values_at(‹selector›*) → an_arrayvalues_at

Returns an array containing the elements in arr corresponding to the given selector(s). The

⇡New in 2.0⇣
selectors may be either integer indices or ranges. Returns nil for selectors beyond the bounds
of the array.

a = %w{ a b c d e f }
a.values_at(1, 3, 5) # => ["b", "d", "f"]
a.values_at(1, 3, 5, 7) # => ["b", "d", "f", nil]
a.values_at(-1, -3, -5, -7) # => ["f", "d", "b", nil]
a.values_at(1..3, 2...5) # => ["b", "c", "d", "c", "d", "e"]
a.values_at(5..7, 1..2) # => ["f", nil, nil, "b", "c"]

Chapter 27. Built-in Classes and Modules • 438

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

BasicObjectClass

BasicObject is the root of Ruby’s class hierarchy. It deliberately has just a few methods,
allowing it to be conveniently used as the basis for a number of metaprogramming techniques.

If you write code in a direct descendent of BasicObject, you will not have unqualified access
to the methods in Kernel, which normally get mixed in to Object. This example illustrates how
to invoke Kernel methods explicitly:

class SimpleBuilder < BasicObject
def __puts_at_indent__(string)
::Kernel.puts " " * @indent + string

end
def method_missing(name, *args, &block)
@indent ||= 0
__puts_at_indent__("<#{name}>")
@indent += 2
__puts_at_indent__(args.join) unless args.empty?
yield if ::Kernel.block_given?
@indent -= 2
__puts_at_indent__("</#{name}>")

end
end

r = SimpleBuilder.new
r.person do
r.name "Dave"
r.address do
r.street "123 Main"
r.city "Pleasantville"

end
end

produces:

<person>
<name>
Dave

</name>
<address>
<street>
123 Main

</street>
<city>
Pleasantville

</city>
</address>

</person>

report erratum • discuss

BasicObject • 439

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Instance Methods

! obj→ true or false!

Returns false unless obj is false. Because it’s in BasicObject, ! is defined for all objects in Ruby.

obj == other_obj→ true or false==

Equality—At the BasicObject level, == returns true only if obj and other_obj are the same object.
Typically, this method is overridden in descendent classes to provide class-specific meaning.

obj != other→ true or false!=

Returns the opposite of BasicObject#==.

obj.__id__ → fixnum__id__

Synonym for Object#object_id. Prior to Ruby 1.9.3, this was an instance method of class Object.

obj.equal?(other_obj) → true or falseequal?

Alias for BasicObject#==.

obj.instance_eval(string ‹ , file ‹ , line››) → other_obj
obj.instance_eval {|obj| … } → other_obj}

instance_eval

Evaluates a string containing Ruby source code, or the given block, within the context of the
receiver (obj). To set the context, the variable self is set to obj while the code is executing,
giving the code access to obj’s instance variables. In the version of instance_eval that takes a
String, the optional second and third parameters supply a filename and starting line number
that are used when reporting compilation errors.

class Klass
def initialize
@secret = 99

end
end
k = Klass.new
k.instance_eval { @secret } # => 99

When metaprogramming, instance_eval is often used to execute the methods in a block in the
context of the caller:

class Recorder < BasicObject
attr_reader :__calls__
def method_missing(name, *args, &block)
@__calls__ ||= []
@__calls__ << [name, args]

end
def record(&block)
instance_eval(&block)

end
end

Chapter 27. Built-in Classes and Modules • 440

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

r = Recorder.new
r.record do
disable "safety"
pull "control rod", dir: "out"
run

end

p r.__calls__

produces:

[[:disable, ["safety"]], [:pull, ["control rod", {:dir=>"out"}]], [:run, []]]

obj.instance_exec(‹args›*) {|args| … } → other_objinstance_exec

Executes the block with self set to obj, passing args as parameters to the block.

class Dummy < BasicObject
def initialize
@iv = 33

end
def double_and_call(value, &block)
instance_exec(value*2, &block)

end
end

d = Dummy.new
d.double_and_call(22) do |param|
::Kernel::puts "Parameter = #{param}"
::Kernel::puts "@iv = #{@iv}"

end

produces:

Parameter = 44
@iv = 33

obj.__send__(symbol ‹ , args›*‹ , &block›) → other_obj__send__

Invokes the method identified by symbol, passing it any arguments and block.

class Klass < BasicObject
def hello(*args)
"Hello " + args.join(' ')

end
end
k = Klass.new
k.__send__ :hello, "gentle", "readers" # => "Hello gentle readers"

report erratum • discuss

BasicObject • 441

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Private Instance Methods

method_missing(symbol ‹ , *args›) → other_objmethod_missing

Invoked by Ruby when obj is sent a message it cannot handle. symbol is the symbol for the
method called, and args are any arguments that were passed to it.method_missing can be used
to implement proxies, delegators, and forwarders. It can also be used to simulate the existence
of methods in the receiver, as the example at the start of this section shows.

singleton_method_added(symbol)singleton_method_added

Invoked as a callback whenever a singleton method is added to the receiver.

module Chatty
def Chatty.singleton_method_added(id)
puts "Adding #{id} to #{self.name}"

end
def self.one() end
def two() end

end
def Chatty.three() end

produces:

Adding singleton_method_added to Chatty
Adding one to Chatty
Adding three to Chatty

You can add the hook to any object:

obj = "cat"

def obj.singleton_method_added(id)
puts "Adding #{id} to #{self}"

end

def obj.speak
puts "meow"

end

produces:

Adding singleton_method_added to cat
Adding speak to cat

singleton_method_removed(symbol)singleton_method_removed

Invoked as a callback whenever a singleton method is removed from the receiver.

module Chatty
def Chatty.singleton_method_removed(id)
puts "Removing #{id}"

end
def self.one() end
def two() end
def Chatty.three() end

Chapter 27. Built-in Classes and Modules • 442

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

class <<self
remove_method :three
remove_method :one

end
end

produces:

Removing three
Removing one

singleton_method_undefined(symbol)singleton_method_undefined

Invoked as a callback whenever a singleton method is undefined in the receiver.

module Chatty
def Chatty.singleton_method_undefined(id)
puts "Undefining #{id}"

end
def Chatty.one() end
class << self

undef_method(:one)
end

end

produces:

Undefining one

report erratum • discuss

BasicObject • 443

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Bignum < IntegerClass

Bignum objects hold integers outside the range of Fixnum—Bignum objects are created automat-
ically when integer calculations would otherwise overflow. When a calculation involving
Bignum objects returns a result that will fit in a Fixnum, the result is automatically converted.

For the purposes of the bitwise operations and [], a Bignum is treated as if it were an infinite-
length bitstring with 2’s complement representation.

While Fixnum values are immediate, Bignum objects are not—assignment and parameter
passing work with references to objects, not the objects themselves.

Instance Methods

Arithmetic operations

Performs various arithmetic operations on big.

Additionnumber+big
Subtractionnumber–big
Multiplicationnumber*big
Divisionnumber/big
Modulonumber%big
Exponentiationnumber**big
Unary minus-@big

Bit operations

Performs various operations on the binary representations of the Bignum.

Invert bits~ big
Bitwise ornumber|big
Bitwise andnumber&big
Bitwise exclusive ornumber^big
Left-shift number bitsnumber<<big
Right-shift number bits (with sign extension)number>>big

big <=> number→ -1, 0, +1, or nil<=>

Comparison—Returns -1, 0, or +1 depending on whether big is less than, equal to, or greater
than number. This is the basis for the tests in Comparable.

big == obj→ true or false==

Returns true only if obj has the same value as big. Contrast this with Bignum#eql?, which
requires obj to be a Bignum.

68719476736 == 68719476736.0 # => true

Chapter 27. Built-in Classes and Modules • 444

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

big[n] → 0, 1[]

Bit Reference—Returns the nth bit in the (assumed) binary representation of big, where big[0]
is the least significant bit.

a = 9**15 # that's 9 raised to the 15th power

50.downto(0) do |n|
print a[n]

end

produces:

000101110110100000111000011110010100111100010111001

big.abs → bignumabs

Returns the absolute value of big.

1234567890987654321.abs # => 1234567890987654321
-1234567890987654321.abs # => 1234567890987654321

big.div(number) → other_numberdiv

Synonym for Bignum#/.

-1234567890987654321.div(13731) # => -89910996357706
-1234567890987654321.div(13731.0) # => -89910996357706
-1234567890987654321.div(-987654321) # => 1249999989

big.divmod(number) → arraydivmod

See Numeric#divmod on page 595.

big.eql?(obj) → true or falseeql?

Returns true only if obj is a Bignum with the same value as big. Contrast this with Bignum#==,
which performs type conversions.

68719476736.eql? 68719476736 # => true
68719476736 == 68719476736 # => true
68719476736.eql? 68719476736.0 # => false
68719476736 == 68719476736.0 # => true

big.fdiv(number) → floatfdiv

Returns the floating-point result of dividing big by number. Alias for Bignum#quo.

-1234567890987654321.fdiv(13731) # => -89910996357705.52
-1234567890987654321.fdiv(13731.0) # => -89910996357705.52
-1234567890987654321.fdiv(-987654321) # => 1249999989.609375

report erratum • discuss

Bignum • 445

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

big.magnitude → bignummagnitude

Returns the magnitude of big (the distance of big from the origin of the number line). Synonym
for Bignum#abs. See also Complex#magnitude.

big.modulo(number) → numbermodulo

Synonym for Bignum#%.

big.remainder(number) → other_numberremainder

Returns the remainder after dividing big by number.

-1234567890987654321.remainder(13731) # => -6966
-1234567890987654321.remainder(13731.24) # => -9906.22531493148

big.size → integersize

Returns the number of bytes in the machine representation of big.

(256**10 - 1).size # => 12
(256**20 - 1).size # => 20
(256**40 - 1).size # => 40

big.to_f → floatto_f

Converts big to a Float. If big doesn’t fit in a Float, the result is infinity.

big.to_s(base=10) → strto_s

Returns a string containing the representation of big radix base (2 to 36).

12345654321.to_s # => "12345654321"
12345654321.to_s(2) # => "1011011111110110111011110000110001"
12345654321.to_s(8) # => "133766736061"
12345654321.to_s(16) # => "2dfdbbc31"
12345654321.to_s(26) # => "1dp1pc6d"
78546939656932.to_s(36) # => "rubyrules"

Chapter 27. Built-in Classes and Modules • 446

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

BindingClass

Objects of class Binding encapsulate the execution context at some particular place in the code
and retain this context for future use. Access to the variables, methods, value of self, and
possibly an iterator block accessible in this context are all retained. Binding objects can be

⇡New in 2.0⇣
created using Object#binding and are made available to the callback of Object#set_trace_func
and to the block passed to TracePoint.new.

These binding objects can be passed as the second argument of the Object#eval method,
establishing an environment for the evaluation.

class Demo
def initialize(n)
@secret = n

end
def get_binding
return binding()

end
end

k1 = Demo.new(99)
b1 = k1.get_binding
k2 = Demo.new(-3)
b2 = k2.get_binding

Pass to eval...
eval("@secret", b1) # => 99
Or eval via binding...
b2.eval("@secret") # => -3

eval("@secret") # => nil

Instance Methods

bind.eval(string ‹ , file ‹ , line››) → objeval

Evaluates the Ruby code in string using the context of bind. Equivalent to calling Object#eval
with a second argument of bind. See the start of this section for an example.

report erratum • discuss

Binding • 447

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Class < ModuleClass

Classes in Ruby are first-class objects—each is an instance of class Class.

When a new class is defined (typically using class SomeName ... end), an object of type Class is
created and assigned to a constant (SomeName, in this case). When Name.new is called to create
a new object, the new instance method in Class is run by default, which in turn invokes allocate
to allocate memory for the object, before finally calling the new object’s initialize method.

Class Methods

Class.new(super_class=Object) ‹ { … }› → clsnew

Creates a new anonymous (unnamed) class with the given superclass (or Object if no
parameter is given). If called with a block, that block is used as the body of the class. Within
the block, self is set to the class instance.

name = "Dave"
FriendlyClass = Class.new do
define_method :hello do
"Hello, #{name}"

end
end
f = FriendlyClass.new
f.hello # => "Hello, Dave"

Instance Methods

cls.allocate → objallocate

Allocates space for a new object of cls’s class. The returned object must be an instance of cls.
Calling new is basically the same as calling the class method allocate to create an object, fol-
lowed by calling initialize on that new object. You cannot override allocate in normal programs;
Ruby invokes it without going through conventional method dispatch.

class MyClass
def self.another_new(*args)
o = allocate
o.send(:initialize, *args)
o

end
def initialize(a, b, c)
@a, @b, @c = a, b, c

end
end

mc = MyClass.another_new(4, 5, 6)
mc.inspect # => "#<MyClass:0x007fbdab10f430 @a=4, @b=5, @c=6>"

cls.new(‹args›*) → objnew

Calls allocate to create a new object of cls’s class and then invokes the newly created object’s
initialize method, passing it args.

Chapter 27. Built-in Classes and Modules • 448

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

cls.superclass → super_class or nilsuperclass

Returns the superclass of cls or returns nil.

Class.superclass # => Module
Object.superclass # => BasicObject
BasicObject.superclass # => nil

Private Instance Methods

cls.inherited(sub_class)inherited

Invoked by Ruby when a subclass of cls is created. The new subclass is passed as a parameter.

class Top
def self.inherited(sub)
puts "New subclass: #{sub}"

end
end

class Middle < Top
end

class Bottom < Middle
end

produces:

New subclass: Middle
New subclass: Bottom

report erratum • discuss

Class • 449

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Relies on: <=>ComparableModule

The Comparablemixin is used by classes whose objects may be ordered. The class must define
the <=> operator, which compares the receiver against another object, returning -1, 0, or +1
depending on whether the receiver is less than, equal to, or greater than the other object.
Comparable uses <=> to implement the conventional comparison operators (<, <=, ==, >=,
and >) and the method between?.

class CompareOnSize
include Comparable
attr :str
def <=>(other)
str.length <=> other.str.length

end
def initialize(str)
@str = str

end
end

s1 = CompareOnSize.new("Z")
s2 = CompareOnSize.new([1,2])
s3 = CompareOnSize.new("XXX")

s1 < s2 # => true
s2.between?(s1, s3) # => true
s3.between?(s1, s2) # => false
[s3, s2, s1].sort # => ["Z", [1, 2], "XXX"]

Instance Methods

obj < other_object→ true or false
obj <= other_object→ true or false
obj == other_object→ true or false
obj >= other_object→ true or false
obj > other_object→ true or false

Comparisons

Compares two objects based on the receiver’s <=> method.

obj.between?(min, max) → true or falsebetween?

Returns false if obj <=> min is less than zero or if obj <=> max is greater than zero; returns
true otherwise.

3.between?(1, 5) # => true
6.between?(1, 5) # => false
'cat'.between?('ant', 'dog') # => true
'gnu'.between?('ant', 'dog') # => false

Chapter 27. Built-in Classes and Modules • 450

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Complex < NumericClass

Represents complex numbers, represented internally as numbers with a real part and an
imaginary part, both of which can be any scalar number. Note that scalar comparison oper-
ations (<=>, <, and so on) are not defined on complex numbers (which would argue that
Complex should not be a subclass of Numeric, but that ship has sailed). Also see the standard
library named complex on page 738 for a way to add complex number support to standard
math functions; also see the mathn library on page 768 for a way of integrating complex
numbers into regular arithmetic (so that the square root of -1 returns Complex::I).

v1 = Complex(2,3) # => (2+3i)
v2 = Complex("0+2i") # => (0+2i)
v1 + v2 # => (2+5i)
v1 * v2 # => (-6+4i)
v2**2 # => (-4+0i)
v2**2 == -4 # => true

Euler's theorem
include Math
E**(PI*Complex::I) # => (-1.0+1.2246467991473532e-16i)

Class Constants

The imaginary unit.Complex::I

Class Methods

Complex.polar(magnitude, angle) → complexpolar

Returns the complex number represented by the given polar coordinates.

Complex.polar(1.23, 0.5) # => 1.0794265511251584+0.5896934124831696i
Complex.polar(1, Math::PI/2) # => 6.123233995736766e-17+1.0i

Complex.rect(read, imag) → complexrect

Returns the complex number represented by the given real and imaginary parts.

Complex.rect(1.23, 0.5) # => 1.23+0.5i

Complex.rectangular(read, imag) → complexrectangular

Synonym for Complex.rect.

report erratum • discuss

Complex • 451

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Instance Methods

Arithmetic operations

Performs various arithmetic operations on complex.

Additionnumeric+complex
Subtractionnumeric–complex
Multiplicationnumeric*complex
Divisionnumeric/complex
Exponentiationnumeric**complex
Unary minus-@complex
Unary plus-+complex

complex == other→ true or false==

Returns true if complex does equals other, converting other to a complex number if necessary.

Complex::I == Complex(0,1) # => true
Complex::I == Complex(1,0) # => false
Complex(1,0) == 1 # => true
Complex(1,0) == "1" # => false

complex.abs → numberabs

Synonym for Complex#magnitude.

complex.abs2 → numberabs2

Returns the square of the absolute value (magnitude) of complex.

Complex::I.abs2 # => 1
Complex(1,1).abs2 # => 2

complex.angle → numberangle

Returns the angle between the x-axis and a line from the origin to complex. By convention,
Complex(0,0).angl} is 0.

Complex(1, 0).angle # => 0.0
Complex(1, 1).angle # => 0.7853981633974483
Complex(0, 1).angle # => 1.5707963267948966

complex.arg → numberarg

Synonym for Complex#angle.

complex.conj → a_complexconj

Synonym for Complex#conjugate.

Chapter 27. Built-in Classes and Modules • 452

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

complex.conjugate → a_complexconjugate

Returns the conjugate of complex (the reflection of complex around the x-axis).

Complex::I.conjugate # => (0-1i)
Complex(1,1).conjugate # => (1-1i)

complex.denominator → numberdenominator

Returns the lowest common multiple of the denominators of the real and imaginary parts
of complex.

Complex("1/3+1/4i").denominator # => 12
Complex(-2, 4).denominator # => 1

complex.eql(other) → true or falseeql?

Returns true only if other is a complex number with real and imaginary parts eql? to complex’s.

Complex(1, 0).eql?(Complex(1,0)) # => true
Complex(1, 0).eql?(Complex(1.0, 0)) # => false
Complex(1, 0).eql?(1) # => false
Complex(1, 0) == Complex(1,0) # => true
Complex(1, 0) == Complex(1.0, 0) # => true
Complex(1, 0) == 1 # => true

complex.fdiv(other) → a_complexfdiv

Returns complex / other after converting the real and imaginary parts of complex to floats.
(Contrast with Complex#quo.)

c1 = Complex(1, 2)
c2 = Complex(2, 2)
c1 /c2 # => ((3/4)+(1/4)*i)
c1.fdiv(c2) # => (0.75+0.25i)

complex.imag → numberimag

Returns the imaginary part of complex.

Complex(2, -3).imag # => -3

complex.imaginary → numberimaginary

Synonym for Complex#imag.

complex.magnitude → int or floatmagnitude

Returns the magnitude of complex (the distance of complex from the origin of the number
line). The positive square root of real2 + imag2.

report erratum • discuss

Complex • 453

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Complex(1, 1).magnitude # => 1.4142135623730951
Complex(3, 4).magnitude # => 5.0
Complex::I.magnitude # => 1

complex.numerator → a_complexnumerator

Returns the numerator, treating the real and complex parts of complex as fractions to be
combined over a common denominator.

c = Complex('2/3+3/4i')
c.numerator # => (8+9i)
c.denominator # => 12

complex.phase → [magnitude, angle]phase

Returns the phase angle of complex (the angle between the positive x-axis and the line from
the origin to (real, imag)), measured in radians.

Complex(3, 4).phase # => 0.9272952180016122
Complex(-3, 4).phase # => 2.214297435588181

complex.polar → [magnitude, angle]polar

Returns complex as polar coordinates.

Complex(1,1).polar # => [1.4142135623730951, 0.7853981633974483]
Complex(-2,-3).polar # => [3.605551275463989, -2.158798930342464]

complex.quo(other) → a_complexquo

Returns complex / other after converting the real and imaginary parts of complex to rational
numbers. (Contrast with Complex#fdiv.)

c1 = Complex(1, 2)
c2 = Complex(2, 2)
c1 /c2 # => ((3/4)+(1/4)*i)
c1.quo(c2) # => ((3/4)+(1/4)*i)

complex.rationalize(eps=nil) → rationalrationalize

Returns the real part of complex as a rational number, raising an exception if the imaginary
part is not zero. The argument is always ignored. Effectively a synonym for Complex.to_r.

Complex(2.5, 0).rationalize # => (5/2)

complex.rect → [complex.real, complex.imag]rect

Returns an array containing the real and imaginary components of complex.

Complex::I.rect # => [0, 1]

Chapter 27. Built-in Classes and Modules • 454

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

complex.rectangular → [complex.real, complex.imag]rectangular

Synonym for Complex#rect.

complex.real → numberreal

Returns the real part of complex.

Complex(2, 3).real # => 2

complex.real? → falsereal?

Complex numbers are never real numbers (even if their imaginary part is zero).

Complex(1, 1).real? # => false
Complex(1, 0).real? # => false

complex.to_f → floatto_f

Returns the real part of complex as a float, raising an exception if the imaginary part is not
zero.

Complex(2, 0).to_f # => 2.0

complex.to_i → integerto_i

Returns the real part of complex as an integer, raising an exception if the imaginary part is
not zero.

Complex(2.2, 0).to_i # => 2

complex.to_r → rationalto_r

Returns the real part of complex as a rational number, raising an exception if the imaginary
part is not zero.

Complex(2.5, 0).to_r # => (5/2)

report erratum • discuss

Complex • 455

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

DirClass

Objects of class Dir are directory streams representing directories in the underlying file system.
They provide a variety of ways to list directories and their contents. See also File on page 488.

The directory used in these examples contains the two regular files (config.h and main.rb), the
parent directory (..), and the directory itself (.).

Mixes In

Enumerable: all?, any?, chunk, collect, collect_concat, count, cycle, detect, drop, drop_while, each_
cons, each_entry, each_slice, each_with_index, each_with_object, entries, find, find_all, find_index,
first, flat_map, grep, group_by, include?, inject, lazy, map, max, max_by, member?, min, min_by,
minmax, minmax_by, none?, one?, partition, reduce, reject, reverse_each, select, slice_before, sort, sort
_by, take, take_while, to_a, zip

Class Methods

Dir[glob_pattern] → array[]

Equivalent to calling Dir.glob(glob_pattern,0).

Dir.chdir(‹ dir›) → 0
Dir.chdir(‹ dir›) {|path| … } → obj

chdir

Changes the current working directory of the process to the given string. When called
without an argument, changes the directory to the value of the environment variable HOME
or LOGDIR. Raises a SystemCallError (probably Errno::ENOENT) if the target directory does not
exist.

If a block is given, it is passed the name of the new current directory, and the block is executed
with that as the current directory. The original working directory is restored when the block
exits. The return value of chdir is the value of the block. chdir blocks can be nested, but in a
multithreaded program an error will be raised if a thread attempts to open a chdir block while
another thread has one open. This is because the underlying operating system only under-
stands the concept of a single current working directory at any one time.

Dir.chdir("/private/var/log") # => 0
Dir.pwd # => "/private/var/log"
Dir.chdir("/private/tmp") do
Dir.pwd # => "/private/tmp"
Dir.chdir("/usr") do
Dir.pwd # => "/usr"

end
Dir.pwd # => "/private/tmp"

end
Dir.pwd # => "/private/var/log"

Dir.chroot(dirname) → 0chroot

Changes this process’s idea of the file system root. Only a privileged process may make this
call. Not available on all platforms. On Unix systems, see chroot(2) for more information.

Chapter 27. Built-in Classes and Modules • 456

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://www.freebsd.org/cgi/man.cgi?query=chroot&sektion=2
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Dir.chdir("/production/secure/root")
Dir.chroot("/production/secure/root") #=> 0
Dir.pwd #=> "/"

Dir.delete(dirname) → 0delete

Deletes the named directory. Raises a subclass of SystemCallError if the directory isn’t empty.

Dir.entries(dirname) → arrayentries

Returns an array containing all of the filenames in the given directory. Will raise a System-
CallError if the named directory doesn’t exist.

Dir.entries("testdir") # => [".", "..", ".svn", "config.h", "main.rb"]

Dir.exist?(path) → true or falseexist?

Returns true if path exists and is a directory. Alias for File.directory?.

Dir.exist?("/tmp") # => true
Dir.exist?("/temp") # => false

Dir.exists?(path) → true or falseexists?

Alias for Dir.exist?.

Dir.foreach(dirname) {|filename| … } → nilforeach

Calls the block once for each entry in the dirname, passing the filename as a parameter.

Dir.foreach("testdir") {|x| puts "Got #{x}" }

produces:

Got .
Got ..
Got .svn
Got config.h
Got main.rb

Dir.getwd → dirnamegetwd

Returns a string containing the canonical path to the current working directory of this process.
Note that on some operating systems this name may not be the name you gave to Dir.chdir.
On OS X, for example, /tmp is a symlink.

Dir.chdir("/tmp") # => 0
Dir.getwd # => "/private/tmp"

report erratum • discuss

Dir • 457

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Dir.glob(glob_pattern, ‹ flags›) → array
Dir.glob(glob_pattern, ‹ flags›) {|filename| … } → false

glob

Returns the filenames found by expanding the pattern given in glob_pattern, either as elements
in array or as parameters to the block. Note that this pattern is not a regexp (it’s closer to a
shell glob). See File.fnmatch on page 491 for the meaning of the flags parameter. Case sensitiv-
ity depends on your system (so File::FNM_CASEFOLD is ignored). Metacharacters in the pattern
are as follows:

Any sequence of characters in a filename: * will match all files, c* will match all
files beginning with c, *c will match all files ending with c, and *c* will match all
files that have c in their name.

*

Matches zero or more directories (so **/fred matches a file named fred in or below
the current directory).

**

Matches any one character in a filename.?
Matches any one of chars. If the first character in chars is ^, matches any character[chars]
not in the remaining set.
Matches one of the patterns specified between braces. These patterns may contain{patt,...}
other metacharacters.
Removes any special significance in the next character.\

Dir.chdir("testdir") # => 0
Dir["config.?"] # => ["config.h"]
Dir.glob("config.?") # => ["config.h"]
Dir.glob("*.[a-z][a-z]") # => ["main.rb"]
Dir.glob("*.[^r]*") # => ["config.h"]
Dir.glob("*.{rb,h}") # => ["main.rb", "config.h"]
Dir.glob("*") # => ["config.h", "main.rb"]
Dir.glob("*", File::FNM_DOTMATCH) # => [".", "..", ".svn", "config.h", "main.rb"]

Dir.chdir("..") # => 0
Dir.glob("code/**/fib*.rb") # => ["code/irb/fibonacci_sequence.rb",

.. "code/rdoc/fib_example.rb"]
Dir.glob("**/rdoc/fib*.rb") # => ["code/rdoc/fib_example.rb"]

Dir.home(‹user_name›) → stringhome

Returns the home directory of the given user (or the current user if no argument is given).

Dir.home # => "/Users/dave"
Dir.home("nobody") # => "/var/empty"

Dir.mkdir(dirname ‹ , permissions›) → 0mkdir

Makes a new directory named dirname, with permissions specified by the optional parameter
permissions. The permissions may be modified by the value of File.umask and are ignored on
Windows. Raises a SystemCallError if the directory cannot be created. See also the discussion
of permissions on page 488.

Chapter 27. Built-in Classes and Modules • 458

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Dir.new(dirname ‹ , :encoding => enc›) → dirnew

Returns a new directory object for the named directory. The optional hash parameter lets
you specify the encoding used by filenames. If not given, it defaults to the file system local
on the current machine.

Dir.open(dirname ‹ , :encoding => enc›) → dir
Dir.open(dirname ‹ , :encoding => enc›) {|dir| … } → obj

open

With no block, open is a synonym for Dir.new. If a block is present, it is passed dir as a
parameter. The directory is closed at the end of the block, and Dir.open returns the value of
the block.

Dir.pwd → dirnamepwd

Synonym for Dir.getwd.

Dir.rmdir(dirname) → 0rmdir

Synonym for Dir.delete.

Dir.unlink(dirname) → 0unlink

Synonym for Dir.delete.

Instance Methods

dir.close → nilclose

Closes the directory stream. Any further attempts to access dir will raise an IOError.

d = Dir.new("testdir")
d.close # => nil

dir.each {|filename| … } → direach

Calls the block once for each entry in this directory, passing the filename of each entry as a
parameter to the block.

d = Dir.new("testdir")
d.each {|name| puts "Got #{name}" }

produces:

Got .
Got ..
Got .svn
Got config.h
Got main.rb

report erratum • discuss

Dir • 459

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

dir.path → dirnamepath

Returns the path parameter passed to dir’s constructor.

d = Dir.new("..")
d.path # => ".."

dir.pos → intpos

Synonym for Dir#tell.

dir.pos(int) → intpos=

Synonym for Dir#seek but returns the position parameter.

d = Dir.new("testdir") # => #<Dir:testdir>
d.read # => "."
i = d.pos # => 1
d.read # => ".."
d.pos = i # => 1
d.read # => ".."

dir.read → filename or nilread

Reads the next entry from dir and returns it as a string. Returns nil at the end of the stream.

d = Dir.new("testdir")
d.read # => "."
d.read # => ".."
d.read # => ".svn"

dir.rewind → dirrewind

Repositions dir to the first entry.

d = Dir.new("testdir")
d.read # => "."
d.rewind # => #<Dir:testdir>
d.read # => "."

dir.seek(int) → dirseek

Seeks to a particular location in dir. intmust be a value returned by Dir#tell (it is not necessar-
ily a simple index into the entries).

d = Dir.new("testdir") # => #<Dir:testdir>
d.read # => "."
i = d.tell # => 1
d.read # => ".."
d.seek(i) # => #<Dir:testdir>
d.read # => ".."

Chapter 27. Built-in Classes and Modules • 460

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

dir.tell → inttell

Returns the current position in dir. See also Dir#seek.

d = Dir.new("testdir")
d.tell # => 0
d.read # => "."
d.tell # => 1

dir.to_path → dirnameto_path

Synonym for Dir.path.

report erratum • discuss

Dir • 461

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

EncodingClass

An encoding describes how to map the binary data in the internal representation of strings
into characters. Ruby has support for a large number of encodings built in—others can be
loaded dynamically at runtime.

Encodings are identified by name (UTF-8 or ISO-8859-1, for example). They are represented
by encoding objects. The Encoding class contains predefined constants for these encoding objects.
Often there are multiple objects for the same encoding. For example, the constants Encod-
ing::IBM860 and Encoding::CP860 are both representations of the encoding named IBM860. In
the two-part table Table 15, Encoding names and class names, on page 463, the first column
shows the names of the encodings, and the second column lists the names on the constants
in the Encoding class for the corresponding encoding object(s). An entry such as ISO-8859-1 --
11 indicates that there are eleven separate encodings (with the obvious names).

Encodings are used when opening files, creating strings, and so on. The methods that accept
an encoding as a parameter will take either an encoding name or an encoding object. Use of
the object is marginally faster.

Chapter 17, Character Encoding, on page 239 is devoted to a discussion of encodings.

Class Methods

Encoding.aliases → hashaliases

Returns a hash whose keys are aliases for encodings and whose values are the corresponding
base encoding names.

Encoding.aliases["BINARY"] # => "ASCII-8BIT"

Encoding.compatible?(str1, str2) → enc or nilcompatible?

Determines whether two strings have compatible encodings (meaning, for example, that
you could concatenate them). Returns the encoding of the string that would result from the
concatenation or nil if the strings are not compatible.

encoding: utf-8
ascii1 = "ant"
ascii2 = "bee"
iso = "\xee"
iso.force_encoding(Encoding::ISO_8859_1)
utf = "∂og"

Encoding.compatible?(ascii1, ascii2) # => #<Encoding:UTF-8>
Encoding.compatible?(ascii1, iso) # => #<Encoding:ISO-8859-1>
Encoding.compatible?(ascii1, utf) # => #<Encoding:UTF-8>
Encoding.compatible?(iso, utf) # => nil

Chapter 27. Built-in Classes and Modules • 462

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Class name(s)EncodingClass name(s)Encoding

Big5, BIG5Big5ASCII_8BIT, BINARYASCII-8BIT
Big5_UAO, BIG5_UAOBig5-UAOBig5_HKSCS, BIG5_HKSCS,

Big5_HKSCS_2008, BIG5_HKSCS_2008
Big5-HKSCS

CP50221CP50221CP50220CP50220
CP850, IBM850CP850CP51932CP51932
CP855CP855CP852CP852
CP950CP950CP949CP949
Emacs_Mule, EMACS_MULEEmacs-MuleCP951CP951
EUC_JP_2004, EUC_JISX0213EUC-JP-2004EUC_JP, EucJP, EUCJPEUC-JP
EUC_TW, EucTW, EUCTWEUC-TWEUC_KR, EucKR, EUCKREUC-KR
GB12345GB12345EucJP_ms, EUCJP_MS, EUC_JP_MSeucJP-ms
GB1988GB1988GB18030GB18030
GBK, CP936GBKEUC_CN, EucCN, EUCCNGB2312
IBM737, CP737IBM737IBM437, CP437IBM437
IBM852IBM852IBM775, CP775IBM775
IBM857, CP857IBM857IBM855IBM855
IBM869, CP869IBM869IBM860 -- 6, CP8600 -- 6IBM860 -- 6
ISO_2022_JP_2, ISO2022_JP2ISO-2022-JP-2ISO_2022_JP, ISO2022_JPISO-2022-JP
ISO8859_1 -- 11ISO-8859-1 -- 11ISO_2022_JP_KDDIISO-2022-JP-KDDI
KOI8_R, CP878KOI8-RISO8859_13 -- 16ISO-8859-13 -- 16
MacCentEuro, MACCENTEUROmacCentEuroKOI8_UKOI8-U
MacCyrillic, MACCYRILLICmacCyrillicMacCroatian, MACCROATIANmacCroatian
MacIceland, MACICELANDmacIcelandMacGreek, MACGREEKmacGreek
MacRoman, MACROMANmacRomanMacJapanese, MACJAPANESE, MacJapan,

MACJAPAN
MacJapanese

MacThai, MACTHAImacThaiMacRomania, MACROMANIAmacRomania
MacUkraine, MACUKRAINEmacUkraineMacTurkish, MACTURKISHmacTurkish
SJIS_DoCoMo, SJIS_DOCOMOSJIS-DoCoMoShift_JIS, SHIFT_JISShift_JIS
SJIS_SoftBank, SJIS_SOFTBANKSJIS-SoftBankSJIS_KDDISJIS-KDDI
Stateless_ISO_2022_JP_KDDI, STATE-
LESS_ISO_2022_JP_KDDI

stateless-ISO-2022-JP-KDDIStateless_ISO_2022_JP, STATE-
LESS_ISO_2022_JP

stateless-ISO-2022-JP

US_ASCII, ASCII, ANSI_X3_4_1968US-ASCIITIS_620TIS-620
UTF_16BE, UCS_2BEUTF-16BEUTF_16UTF-16
UTF_32UTF-32UTF_16LEUTF-16LE
UTF_32LE, UCS_4LEUTF-32LEUTF_32BE, UCS_4BEUTF-32BE
UTF_8, CP65001UTF-8UTF_7, CP65000UTF-7
UTF8_KDDIUTF8-KDDIUTF8_DoCoMo, UTF8_DOCOMOUTF8-DoCoMo
UTF8_SoftBank, UTF8_SOFTBANKUTF8-SoftBankUTF8_MAC, UTF_8_MAC, UTF_8_HFSUTF8-MAC
Windows_31J, WINDOWS_31J, CP932,
CsWindows31J, CSWINDOWS31J, SJIS, PCK

Windows-31JWindows_1250 -- 1258, WINDOWS_1250 --
1258, CP1250 -- 1258

Windows-1250 -- 1258

Windows_874, WINDOWS_874, CP874Windows-874

Table 15—Encoding names and class names

report erratum • discuss

Encoding • 463

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Encoding.default_external → encdefault_external

Returns the default external encoding, used when reading and writing data from I/O streams.

Encoding.default_external # => #<Encoding:UTF-8>

Encoding.default_external = encdefault_external=

Sets the default external encoding.

Encoding.default_internal → enc or nildefault_internal

Returns the default internal encoding, used when transcoding data read and written. Returns
nil if no default encoding is set.

Encoding.default_internal = encdefault_internal=

Sets the default internal encoding.

Encoding.default_internal = 'utf-8'
Encoding.default_internal # => #<Encoding:UTF-8>

Encoding.find(name) → encfind

Returns the encoding object for the given encoding name or throws an ArgumentError.

Encoding.find("Shift_JIS") # => #<Encoding:Shift_JIS>

Encoding.list → arraylist

Returns a list of the encoding objects loaded into the current interpreter.

Encoding.locale_charmap → namelocale_charmap

Returns the name of the charmap of the current locale. This is normally set externally, often
in an environment variable or other operating-system context.

ENV["LANG"] # => "en_US.UTF-8"
Encoding.locale_charmap # => "UTF-8"

Encoding.name_list → arrayname_list

Returns a list of the names of loaded encodings.

Encoding.name_list.sort.first(5) # => ["646", "ANSI_X3.4-1968", "ASCII",
.. "ASCII-8BIT", "BINARY"]

Chapter 27. Built-in Classes and Modules • 464

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Instance Methods

enc.ascii_compatible? → true or falseascii_compatible?

Returns true if the lower 127 codepoints in the encoding overlay the ASCII character set.

Encoding::UTF_8.ascii_compatible? # => true
Encoding::SJIS.ascii_compatible? # => true
Encoding::UTF_7.ascii_compatible? # => false

enc.dummy? → true or falsedummy?

Dummy encodings are placeholders for encodings that cannot be handled properly by the
current mechanism of Ruby multinationalization, often because they are stateful.

Encoding::UTF_7.dummy? # => true
Encoding::UTF_8.dummy? # => false

enc.name → stringname

Returns the name of enc.

Encoding::UTF_8.name # => "UTF-8"
Encoding::CP65001.name # => "UTF-8"

enc.names → [‹string›+]names

Returns the name of enc, along with the names of enc’s aliases.

Encoding::ISO8859_1.names # => ["ISO-8859-1", "ISO8859-1"]
Encoding::ASCII.names # => ["US-ASCII", "ASCII", "ANSI_X3.4-1968", "646"]

enc.replicate(name) → new_encodingreplicate

Create a copy of the encoding enc with the given name (which must be unique).

report erratum • discuss

Encoding • 465

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Relies on: each, <=>EnumerableModule

The Enumerable mixin provides collection classes with traversal and searching methods and
with the ability to sort. The class must provide a method each, which yields successive
members of the collection. If Enumerable#max, min, sort, or sort_by is used, the objects in the
collection must also implement a meaningful <=> operator, because these methods rely on
an ordering between members of the collection.

Ruby 1.9 adds a substantial number of methods to this module, as well as changing the
semantics of many others. Even experienced Ruby programmers should probably read this
section carefully.

Instance Methods

enum.all? ‹ {|obj| … }› → true or falseall?

Passes each element of the collection to the given block. The method returns true if the block
never returns false or nil. If the block is not given, Ruby adds an implicit block of {|obj| obj}
(that is, all? will return true only if no collection member is false or nil).

[nil, true, 99].all? # => false

enum.any? ‹ {|obj| … }› → true or falseany?

Passes elements of the collection in turn to the given block. The method returns true (and
stops calling the block) if the block ever returns a value other than false or nil. If the block is
not given, Ruby adds an implicit block of {|obj|~obj} (that is, any? will return true if at least
one of the collection members is not false or nil). See also Enumerable#none? and Enumerable#one?.

[nil, true, 99].any? # => true

enum.chunk {|element| … } → enumerator
enum.chunk(state) {|element, state| … } → enumerator

chunk

Passes each element of enum to the block. Use the value returned from the block as a key,
and group successive elements with the same key together. The enumerator that is returned
will yield the key and the successive values corresponding to that key. Here’s a simple
example that returns sequences of words that have the same length:

enum = %w{ ant bee coyote dophin elk }.chunk(&:size)
enum.next # => [3, ["ant", "bee"]]
enum.next # => [6, ["coyote", "dophin"]]
enum.next # => [3, ["elk"]]

If the block returns the values nil or :_separator, the corresponding value is not stored in the
output enumerator, and a new output element is started.

enum = [1, 2, 3, 4, 5].chunk {|element| element.odd? ? :odd : :_separator}
enum.to_a # => [[:odd, [1]], [:odd, [3]], [:odd, [5]]]

The following example uses the fact that a failing pattern match returns nil:

Chapter 27. Built-in Classes and Modules • 466

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

This code reads its own source and returns each comment block
File.foreach(__FILE__).chunk do |line|
A comment is a group of consecutive
lines starting with '#'
line =~ /^\s*#/

end.each do |_, lines|
p lines

end

produces:

["# This code reads its own source and returns each comment block\n"]
[" # A comment is a group of consecutive\n", " # lines starting with '#'\n"]

If the block returns :_alone, this value is put into its own output element—it will not be
grouped with the previous element even if that element’s block also returned :_alone.

enum = [1, 2, 3].chunk { :_alone }
enum.to_a # => [[:_alone, [1]], [:_alone, [2]], [:_alone, [3]]]

If a state parameter is present, it is passed as the second parameter to every call to the block,
permitting state to be maintained across calls.

See also Enumerable.slice_before.

enum.collect {|obj| … } → array or enumeratorcollect

Returns a new array containing the results of running block once for every element in enum.
Returns an Enumerator object if no block is given.

(1..4).collect {|i| i*i } # => [1, 4, 9, 16]
(1..4).collect { "cat" } # => ["cat", "cat", "cat", "cat"]
(1..4).collect(&:even?) # => [false, true, false, true]

enum.collect_concat {|obj| … } → array
enum.collect_concat → enumerator

collect_concat

Synonym for (the better named) Enumerable.flat_map.

enum.count(obj) → int
enum.count {|obj| … } → int

count

Returns the count of objects in enum that equal obj or for which the block returns a true value.
Returns the count of all elements in enum if neither a block nor an argument is given.

(1..4).count # => 4
(1..4).count(3) # => 1
(1..4).count {|obj| obj > 2 } # => 2

enum.cycle {|obj| … } → nil or enumerator
enum.cycle(times) {|obj| … } → nil or enumerator

cycle

Returns nil if enum has no elements; otherwise, passes the elements, one at a time, to the
block, repeating when it reaches the end. The number of times it repeats is set by the

report erratum • discuss

Enumerable • 467

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

parameter. If the parameter is missing, cycles forever. Equivalent to enum.to_a.cycle. See also
Array#cycle. Returns an Enumerator object if no block is given.

('a'..'c').cycle(2) # => #<Enumerator: "a".."c":cycle(2)>
('a'..'c').cycle(2).to_a # => ["a", "b", "c", "a", "b", "c"]

enum.detect(ifnone = nil) {|obj| … } → obj or nil or enumeratordetect

Passes each entry in enum to block. Returns the first for which block is not false. Returns nil if
no object matches unless the proc ifnone is given, in which case it is called and its result is
returned. Returns an Enumerator object if no block is given.

(1..10).detect {|i| i % 5 == 0 and i % 7 == 0 } # => nil
(1..100).detect {|i| i % 5 == 0 and i % 7 == 0 } # => 35
sorry = lambda { "not found" }
(1..10).detect(sorry) {|i| i > 50} # => "not found"

enum.drop(n) → an_arraydrop

Returns an array containing all but the first n elements of enum.

[1, 1, 2, 3, 5, 8, 13].drop(4) # => [5, 8, 13]
[1, 1, 2, 3, 5, 8, 13].drop(99) # => []

enum.drop_while {|item| … } → an_array or enumeratordrop_while

Passes elements in turn to the block until the block does not return a true value. Starting
with that element, copies the remainder to an array and returns it. Returns an Enumerator
object if no block is given.

[1, 1, 2, 3, 5, 8, 13].drop_while {|item| item < 6 } # => [8, 13]

enum.each_cons(length) {|array| … } → nil or enumeratoreach_cons

Passes to the block each consecutive subarray of size length from enum. Returns an Enumerator
object if no block is given.

(1..4).each_cons(2) {|array| p array }

produces:

[1, 2]
[2, 3]
[3, 4]

enum.each_entry {|element| … } → enum
enum.each_entry → enumerator

each_entry

Repeatedly calls enum.each, passing the result to the block. If each returns a single value, it
is passed unchanged to the block. If a call to each returns multiple values, they are packaged
into an array and passed to the block.

Chapter 27. Built-in Classes and Modules • 468

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

class Generator
include Enumerable
def each
yield 1
yield 2, 3
yield 4

end
end
g = Generator.new
g.each {|entry| print entry, " : "}
puts
g.each_entry {|entry| print entry, " : "}

produces:

1 : 2 : 4 :
1 : [2, 3] : 4 :

enum.each_slice(length) {|array| … } → nil or enumeratoreach_slice

Divides enum into slices of size length, passing each in turn to the block. Returns an Enumerator
object if no block is given.

(1..10).each_slice(4) {|array| p array }

produces:

[1, 2, 3, 4]
[5, 6, 7, 8]
[9, 10]

enum.each_with_index(‹args›*) {|obj, index| … }
→ enum or enumerator

each_with_index

Calls block, passing in successive items from enum and the corresponding index. If any
arguments are given, they are passed to each during the iteration. Returns an Enumerator
object if no block is given.

%w(cat dog wombat).each_with_index do |item, index|
puts "#{item} is at position #{index}"

end

produces:

cat is at position 0
dog is at position 1
wombat is at position 2

enum.each_with_object(memo) → memo or enumeratoreach_with_object

Calls block with the item and the memo object, for each item in enum. Returns an Enumerator
object if no block is given.

hash = %w(cat dog wombat).each_with_object({}) do |item, memo|
memo[item] = item.upcase.reverse
end
hash # => {"cat"=>"TAC", "dog"=>"GOD", "wombat"=>"TABMOW"}

report erratum • discuss

Enumerable • 469

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

enum.entries → arrayentries

Synonym for Enumerable#to_a.

enum.find(ifnone = nil) {|obj| … } → obj or nilfind

Synonym for Enumerable#detect.

enum.find_all {|obj| … } → array or enumeratorfind_all

Returns an array containing all elements of enum for which block is not false (see also Enumer-
able#reject). Returns an Enumerator object if no block is given.

(1..10).find_all {|i| i % 3 == 0 } # => [3, 6, 9]

enum.find_index(obj) → int or nil
enum.find_index {|obj| … } → int or nil or enumerator

find_index

Returns the index of the first object in arr that is == to obj or for which the block returns a
true value. Returns nil otherwise. See also Enumerable#reject. Returns an Enumerator object if
no block is given.

%w{ant bat cat dog}.find_index {|item| item =~ /g/ } # => 3
%w{ant bat cat dog}.find_index {|item| item =~ /h/ } # => nil

enum.first → an_object or nil
enum.first(n) → an_array

first

With no parameters, returns the first item of enum or nil. With a parameter, returns the first
n items of enum.

%w{ant bat cat dog}.first # => "ant"
%w{ant bat cat dog}.first(2) # => ["ant", "bat"]

enum.flat_map {|obj| … } → array
enum.flat_map → enumerator

flat_map

Passes each element in enum to the block. If the returned value is an array (or is compatible
with an array), append each element to the result; otherwise, append the block return value
to the result. The effect is a single-level flattening of any returned value. If no block is given,
return an enumerator.

[1, 2, 3].flat_map {|e| [e, 100-e]} # => [1, 99, 2, 98, 3, 97]

enum.grep(pattern) → array
enum.grep(pattern) {|obj| … } → array

grep

Returns an array of every element in enum for which pattern === element. If the optional block
is supplied, each matching element is passed to it, and the block’s result is stored in the
output array.

Chapter 27. Built-in Classes and Modules • 470

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

(1..100).grep 38..44 # => [38, 39, 40, 41, 42, 43, 44]
c = IO.constants
c.grep(/SEEK/) # => [:SEEK_SET, :SEEK_CUR, :SEEK_END]
res = c.grep(/SEEK/) {|v| IO.const_get(v) }
res # => [0, 1, 2]
[123, 9**11, 12.34].grep(Integer) # => [123, 31381059609]

enum.group_by {|item| … } → hash or enumeratorgroup_by

Partitions enum by calling the block for each item and using the result returned by the block
to group the items into buckets. Returns a hash where the keys are the objects returned by
the block, and the values for a key are those items for which the block returned that object.
Returns an Enumerator object if no block is given.

p (1..5).group_by {|item| item.even? ? "even" : "odd" }

produces:

{"odd"=>[1, 3, 5], "even"=>[2, 4]}

enum.include?(obj) → true or falseinclude?

Returns true if any member of enum equals obj. Equality is tested using ==.

IO.constants.include? :SEEK_SET # => true
IO.constants.include? :SEEK_NO_FURTHER # => false

enum.inject(initial) {|memo, obj| … } → obj
enum.inject(initial, sym) → obj

enum.inject {|memo, obj| … } → obj
enum.inject(sym) → obj

inject

Combines the items in enum by iterating over them. For each item, passes an accumulator
object (calledmemo in the examples) and the item itself to the block or invokesmemo.send(sym,
obj). At each step, memo is set to the value returned by the block on the previous step. The
value returned by inject is the final value returned by the block. The first two forms let you
supply an initial value formemo. The second two forms use the first element of the collection
as the initial value (and skip that element while iterating). Some languages call this operation
foldl or reduce. Ruby supports the latter as an alias for inject.

Sum some numbers. These forms do the same thing
(5..10).inject(0) {|sum, n| sum + n } # => 45
(5..10).inject {|sum, n| sum + n } # => 45
(5..10).inject(0, :+) # => 45
(5..10).inject(:+) # => 45
Multiply some numbers
(5..10).inject(1) {|product, n| product * n } # => 151200
(5..10).inject(&:*) # => 151200

find the longest word
longest_word = %w{ cat sheep bear }.inject do |memo, word|
memo.length > word.length ? memo : word

end
longest_word # => "sheep"

report erratum • discuss

Enumerable • 471

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

find the length of the longest word
longest_length = %w{ cat sheep bear }.inject(0) do |memo, word|
memo >= word.length ? memo : word.length

end
longest_length # => 5

enum.lazy → lazy_enumlazy

⇡New in 2.0⇣ Returns a lazy enumerator for this enumerable object. See the description of lazy enumerators
on page 61 for more details.

enum.map {|obj| … } → arraymap

Synonym for Enumerable#collect.

enum.max → obj
enum.max {|a,b| … } → obj

max

Returns the object in enum with the maximum value. The first form assumes all objects
implement <=>; the second uses the block to return a <=> b.

a = %w(albatross dog horse)
a.max # => "horse"
a.max {|a,b| a.length <=> b.length } # => "albatross"

enum.max_by {|item| … } → obj or enumeratormax_by

Passes each item in the collection to the block. Returns the item corresponding to the largest
value returned by the block. Returns an Enumerator object if no block is given.

a = %w(albatross dog horse fox)
a.max_by {|item| item.length } # => "albatross"
a.max_by {|item| item.reverse } # => "fox"

enum.member?(obj) → true or falsemember?

Synonym for Enumerable#include?.

enum.min → obj
enum.min {|a,b| … } → obj

min

Returns the object in enum with the minimum value. The first form assumes all objects
implement Comparable; the second uses the block to return a <=> b.

a = %w(albatross dog horse)
a.min # => "albatross"
a.min {|a,b| a.length <=> b.length } # => "dog"

Chapter 27. Built-in Classes and Modules • 472

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

enum.min_by {|item| … } → obj or enumeratormin_by

Passes each item in the collection to the block. Returns the item corresponding to the smallest
value returned by the block. Returns an Enumerator object if no block is given.

a = %w(albatross dog horse fox)
a.min_by {|item| item.length } # => "dog"
a.min_by {|item| item.reverse } # => "horse"

enum.minmax → [min, max]
enum.minmax {|a,b| … } → [min, max]

minmax

Compares the elements of enum using either <=> or the given block, returning the minimum
and maximum values.

a = %w(albatross dog horse)
a.minmax # => ["albatross", "horse"]
a.minmax {|a,b| a.length <=> b.length } # => ["dog", "albatross"]

enum.minmax_by {|item| … } → [min, max] or enumeratorminmax_by

Passes each item in enum to the block. Returns the items corresponding to the smallest and
largest values returned by the block. Returns an Enumerator object if no block is given.

a = %w(albatross dog horse fox)
a.minmax_by {|item| item.length } # => ["dog", "albatross"]
a.minmax_by {|item| item.reverse } # => ["horse", "fox"]

enum.none? ‹ {|obj| … }› → true or falsenone?

Passes each element of the collection to the given block. The method returns true if the block
never returns a value other than false or nil. If the block is not given, Ruby adds an implicit
block of {|obj| obj} (that is, none? will return false if any of the collection members is not false
or nil). See also Enumerable#any? and Enumerable#one?.

[nil, true, 99].none? # => false

enum.one? ‹ {|obj| … }› → true or falseone?

Passes each element of the collection to the given block. The method returns true if the block
returns true exactly one time. If the block is not given, Ruby adds an implicit block of {|obj| obj}
(that is, one? will return true if at least one of the collection members is not false or nil). See
also Enumerable#any? and Enumerable#none?.

[nil, nil, 99].one? # => true

enum.partition {|obj| … } → [true_array, false_array] or enumeratorpartition

Returns two arrays, the first containing the elements of enum for which the block evaluates
to true and the second containing the rest. Returns an Enumerator object if no block is given.

(1..6).partition {|i| (i&1).zero?} # => [[2, 4, 6], [1, 3, 5]]

report erratum • discuss

Enumerable • 473

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

enum.reduce(initial) {|memo, obj| … } → obj
enum.reduce(initial, sym) → obj

enum.reduce {|memo, obj| … } → obj
enum.reduce(sym) → obj

reduce

Synonym for Enumerable#inject.

enum.reject {|obj| … } → array or enumeratorreject

Returns an array containing the elements of enum for which block is false (see also Enumer-
able#find_all). Returns an Enumerator object if no block is given.

(1..10).reject {|i| i % 3 == 0 } # => [1, 2, 4, 5, 7, 8, 10]

enum.reverse_each {|obj| … } → enumreverse_each

Invokes the block with the elements of enum in reverse order. Creates an intermediate array
internally, so this might be expensive on large collections. Returns an Enumerator object if no
block is given.

(1..5).reverse_each {|i| print i, " " }

produces:

5 4 3 2 1

enum.select {|obj| … } → arrayselect

Synonym for Enumerable#find_all.

enum.slice_before(pattern) → enumerator
enum.slice_before(‹state›) {|element, ‹state›| … } → enumerator

slice_before

Chunks enum into a set of arrays and returns an enumerator of those arrays. A new array is
started whenever the next element matches the pattern (using === when the block returns
true). Think of this as a generalized String#split method.

p DATA.map(&:chomp).slice_before(/\w:/).to_a
__END__
colors
red
yellow

pitches
high
low
middle

produces:

[["colors", " red", " yellow", "pitches", " high", " low", " middle"]]

Chapter 27. Built-in Classes and Modules • 474

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Collapse sequences of three or more consecutive things into first–last.

input = [1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 15]

def returning(value) # helper returns its parameter after calling the block
yield
value

end

State = Struct.new(:last_value) # Need to box the value to make it mutable

divide the input into runs of consecutive numbers
slices = input.slice_before(State.new(input.first)) do |value, state|
returning(value != state.last_value.succ) do
state.last_value = value

end
end

p(slices.map do |runs| # replace runs of 3 or more with first–last
runs.size < 3 ? runs : "#{ runs.first }-#{ runs.last }"

end.join(', '))

produces:

"1-5, 8, 9, 11-13, 15"

enum.sort → array
enum.sort {|a, b| … } → array

sort

Returns an array containing the items in enum sorted, either according to their own <=>
method or by using the results of the supplied block. The block should return -1, 0, or +1
depending on the comparison between a and b. See also Enumerable#sort_by.

(1..10).sort {|a,b| b <=> a} # => [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

enum.sort_by {|obj| … } → arraysort_by

Sorts enum using keys generated by mapping the values in enum through the given block,
using the result of that block for element comparison.

%w{ apple pear fig }.sort_by {|word| word.length} # => ["fig", "pear", "apple"]

Internally, sort_by generates an array of tuples containing the original collection element and
the mapped value. This makes sort_by fairly expensive when the keysets are simple.

require 'benchmark'
a = (1..100000).map {rand(100000)}
Benchmark.bm(10) do |b|
b.report("Sort") { a.sort }
b.report("Sort by") { a.sort_by {|val| val } }

end

produces:

user system total real
Sort 0.030000 0.000000 0.030000 (0.026899)
Sort by 0.140000 0.000000 0.140000 (0.145687)

report erratum • discuss

Enumerable • 475

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

However, in cases where comparing the keys is a nontrivial operation, the algorithm used
by sort_by is considerably faster.

sort_by can also be useful for multilevel sorts. One trick, which relies on the fact that arrays
are compared element by element, is to have the block return an array of each of the compar-
ison keys. For example, to sort a list of words first on their length and then alphabetically,
you could write the following:

words = %w{ puma cat bass ant aardvark gnu fish }
sorted = words.sort_by {|w| [w.length, w] }
sorted # => ["ant", "cat", "gnu", "bass", "fish", "puma", "aardvark"]

Returns an Enumerator object if no block is given.

enum.take(n) → arraytake

Returns an array containing the first n items from enum.

(1..7).take(3) # => [1, 2, 3]
{ 'a'=>1, 'b'=>2, 'c'=>3 }.take(2) # => [["a", 1], ["b", 2]]

enum.take_while {|item| … } → array or enumeratortake_while

Passes successive items to the block, adding them to the result array until the block returns
false or nil. Returns an Enumerator object if no block is given.

(1..7).take_while {|item| item < 3 } # => [1, 2]
[2, 4, 6, 9, 11, 16].take_while(&:even?) # => [2, 4, 6]

enum.to_a(*args) → arrayto_a

Returns an array containing the items in enum. This is done using the each method. Any
arguments passed to to_a are passed to each.

(1..7).to_a # => [1, 2, 3, 4, 5, 6, 7]
{ 'a'=>1, 'b'=>2, 'c'=>3 }.to_a # => [["a", 1], ["b", 2], ["c", 3]]

enum.zip(‹arg›+) → array
enum.zip(‹arg›+) {|arr| … } → nil

zip

Converts any arguments to arrays and then merges elements of enum with corresponding
elements from each argument. The result is an array containing the same number of elements
as enum. Each element is an n-element array, where n is one more than the count of arguments.
If the size of any argument is less than the number of elements in enum, nil values are supplied.
If a block given, it is invoked for each output array; otherwise, an array of arrays is returned.

a = [4, 5, 6]
b = [7, 8, 9]

(1..3).zip(a, b) # => [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
[1, 2].zip([3]) # => [[1, 3], [2, nil]]
(1..3).zip # => [[1], [2], [3]]

Chapter 27. Built-in Classes and Modules • 476

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Relies on: each, <=>EnumeratorClass

Enumerator allows you to capture the concept of an enumeration as an object. This allows you
to store enumerations in variables, pass them as parameters, and so on.

You can also create enumerators with the method Object#to_enum (or via its alias, enum_for).
By default, these methods look for an eachmethod in the object you’re enumerating, but this
can be overridden by passing the name of a method (and possibly parameters to be used)
that invokes a block for each item to be enumerated.

str = "quick brown fox"
case what_to_process # set elsewhere to :by_word
when :by_bytes
enum = str.to_enum(:each_byte)

when :by_word
enum = str.to_enum(:scan, /\w+/)

end
enum.each {|item| p item}

produces:

"quick"
"brown"
"fox"

Mixes In

Enumerable: all?, any?, chunk, collect, collect_concat, count, cycle, detect, drop, drop_while, each_
cons, each_entry, each_slice, each_with_index, each_with_object, entries, find, find_all, find_index,
first, flat_map, grep, group_by, include?, inject, lazy, map, max, max_by, member?, min, min_by,
minmax, minmax_by, none?, one?, partition, reduce, reject, reverse_each, select, slice_before, sort, sort
_by, take, take_while, to_a, zip

Class Methods

Enumerator.new(‹size=nil›) {|yielder| … } → enumnew

Constructs an enumerator based on the block. The block is passed an object of class Enumer-
ator::Yielder. You can use the << or yieldmethods of this yielder to supply values to be returned
by the enumerator. This process is performed lazily (similar to the way that fibers can be
used to generate sequences).

def multiples_of(n)
Enumerator.new do |yielder|
number = 0
loop do
yielder.yield number
number += n

end
end

end

twos = multiples_of(2)
threes = multiples_of(3)

report erratum • discuss

Enumerator • 477

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

5.times do
puts "#{twos.next} #{threes.next}"

end

produces:

0 0
2 3
4 6
6 9
8 12

⇡New in 2.0⇣ The optional argument specifies the value that will be returned by the size method for this
enumerator. If can be nil (meaning the size cannot be determined), a number, or a proc that
returns a number.

Instance Methods

enum.each {|item, ...| … } → objeach

Calls the block for each item in the enumeration. This does not create an intermediate array.
Instead, the original iterating method (the one used when creating the enumerator) is called,
passing it the block passed to this method. The block receives as many parameters as the
original method passes.

enum = (1..10).enum_for(:each_slice, 3)
enum.each { |item| p item }

produces:

[1, 2, 3]
[4, 5, 6]
[7, 8, 9]
[10]

Note that because Enumerator defines each and includes Enumerable, all the enumerable
methods are available too.

enum = "quick brown fox".enum_for(:scan, /\w+/)
enum.minmax # => ["brown", "quick"]

enum.each_with_index {|item, ..., index| … } → objeach_with_index

Same as each but appends an index argument when calling the block. Returns a new Enumer-
ator if no block is given.

enum = (1..10).enum_for(:each_slice, 3)
enum.each_with_index do |subarray, index|
puts "#{index}: #{subarray}"

end

produces:

0: [1, 2, 3]
1: [4, 5, 6]
2: [7, 8, 9]
3: [10]

Chapter 27. Built-in Classes and Modules • 478

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

enum.each_with_object(memo) {|item, memo| … } → memo or enumeratoreach_with_object

Calls block for each item in enum, passing it the item and the parameter passed initially to
each_with_object. Returns an Enumerator object if no block is given.

animals = %w(cat dog wombat).to_enum
hash = animals.each_with_object({}) do |item, memo|
memo[item] = item.upcase.reverse

end
hash # => {"cat"=>"TAC", "dog"=>"GOD", "wombat"=>"TABMOW"}

enum.feed(obj) → nilfeed

In a normal looping construct, the next keyword can take an optional parameter, which is
returned to the code that is controlling the iteration as the value returned by yield. enum.feed
does the same thing for enumerators, setting the value returned by yield in the underlying
enumerable to obj.

enum.next → objnext

Returns the next item in the enumeration. Raises StopIteration if you call it past the last item.
Internally this is implemented using fibers and so cannot be called across threads. See also
Enumerator.next_values.

array = [1, 2, 3, 4]
e1 = array.to_enum
e2 = array.to_enum
e1.next # => 1
e1.next # => 2
e2.next # => 1

If the underlying method called by the enumerator has side effects (such as moving your
position while reading a file), those side effects will be triggered. For this reason, next breaks
the abstraction provided by Enumerator.

f = File.open("testfile")
enum1 = f.to_enum(:each_byte)
enum2 = f.to_enum
enum1.next # => 84
enum1.next # => 104
enum2.next # => "is is line one\n"
f.gets # => "This is line two\n"
enum2.next # => "This is line three\n"

enum.next_values → arraynext_values

Enumerator.next returns successive values yielded by enum. However, it effectively uses raw
proc semantics and so is unable to distinguish the case when the iterator yields nil and the
case where the yield is passed no parameter. Similarly, it cannot distinguish yield 1,2 from
yield [1,2]—both are received as [1,2]. next_values overcomes this by always returning an array,
and that array contains exactly what was passed to the yield.

report erratum • discuss

Enumerator • 479

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

def each
yield 1
yield nil
yield 2, 3
yield [4,5]

end
enum = to_enum
enum.next # => 1
enum.next # => nil
enum.next # => [2, 3]
enum.next # => [4, 5]

enum = to_enum
enum.next_values # => [1]
enum.next_values # => [nil]
enum.next_values # => [2, 3]
enum.next_values # => [[4, 5]]

enum.peek → objpeek

Returns the value that would be returned by calling next but does not consume that value.
Raises a StopIteration exception if called past the end of enum.

enum = %w{ ant bee cat }.to_enum
enum.peek # => "ant"
enum.peek # => "ant"
enum.next # => "ant"
enum.peek # => "bee"

enum.peek_values → arraypeek_values

Returns the value that would be returned by calling next_values.

enum.rewind → enumrewind

Resets the sequence of values to be returned by next.

array = [1, 2, 3, 4]
e1 = array.to_enum
e2 = array.to_enum
e1.next # => 1
e1.next # => 2
e2.next # => 1
e1.rewind
e1.next # => 1
e2.next # => 2

Has no effect if the underlying method of the enumerator has side effects and therefore
cannot be rewound.

Chapter 27. Built-in Classes and Modules • 480

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

enum.size → int or nilsize

⇡New in 2.0⇣Returns the size of this collection, or nil if the size cannot be calculated (this may or may not
be the case with a lazy enumerator).

File.open("/etc/passwd").to_enum.size # => nil
(1..Float::INFINITY).size # => Infinity
loop.size # => Infinity
(1..10).find.size # => nil

enum.with_index {|item, ..., index| … } → objwith_index

Synonym for each_with_index.

enum.with_object(memo) {|item, memo| … } → memo or enumeratorwith_object

Synonym for each_with_object.

report erratum • discuss

Enumerator • 481

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

ErrnoModule

Ruby exception objects are subclasses of Exception. However, operating systems typically
report errors using plain integers. Module Errno is created dynamically to map these operating
system errors to Ruby classes, with each error number generating its own subclass of System-
CallError. Because the subclass is created in module Errno, its name will start Errno::.

Exception
StandardError

SystemCallError
Errno::XXX

The names of the Errno:: classes depend on the environment in which Ruby runs. On a typical
Unix or Windows platform, you’ll find Ruby has Errno classes such as Errno::EACCES,
Errno::EAGAIN, Errno::EINTR, and so on.

The integer operating system error number corresponding to a particular error is available
as the class constant Errno::error::Errno.

Errno::EACCES::Errno # => 13
Errno::EAGAIN::Errno # => 35
Errno::EINTR::Errno # => 4

The full list of operating system errors on your particular platform is available as the constants
of Errno. Any user-defined exceptions in this module (including subclasses of existing
exceptions) must also define an Errno constant.

Errno.constants[0..4] # => [:NOERROR, :EPERM, :ENOENT, :ESRCH, :EINTR]

As of Ruby 1.8, exceptions are matched in rescue clauses usingModule#===. The ===method
is overridden for class SystemCallError to compare based on the Errno value. Thus, if two distinct
Errno classes have the same underlying Errno value, they will be treated as the same exception
by a rescue clause.

Chapter 27. Built-in Classes and Modules • 482

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

ExceptionClass

Descendents of class Exception are used to communicate between raise methods and rescue
statements in begin/end blocks. Exception objects carry information about the exception—its
type (the exception’s class name), an optional descriptive string, and optional traceback
information.

The standard library defines the exceptions shown in Figure 1, Standard exception hierarchy,
on page 146. Note that Ruby 1.9 has changed the hierarchy slightly. In particular, SecurityError
is no longer a subclass of StandardError and so will not be rescued implicitly.

See also the description of Errno on page 482.

Class Methods

Exception.exception(‹message›) → excexception

Creates and returns a new exception object, optionally setting the message to message.

Exception.new(‹message›) → excnew

Creates and returns a new exception object, optionally setting the message to message.

Instance Methods

exc == other→ true or false==

Returns true only if other shares the same message and backtrace as exc.

exc.backtrace → arraybacktrace

Returns any backtrace associated with the exception. The backtrace is an array of strings,
each containing either filename:line: in ‘method’ or filename:line.

def a
raise "boom"

end
def b
a()

end
begin
b()

rescue => detail
print detail.backtrace.join("\n")

end

produces:

prog.rb:2:in `a'
prog.rb:5:in `b'
prog.rb:8:in `<main>'

report erratum • discuss

Exception • 483

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

exc.exception(‹message›) → exc or exceptionexception

With no argument, returns the receiver. Otherwise, creates a new exception object of the
same class as the receiver but with a different message.

exc.message → msgmessage

Returns the message associated with this exception.

exc.set_backtrace(array) → arrayset_backtrace

Sets the backtrace information associated with exc. The argument must be an array of String
objects in the format described in Exception#backtrace.

exc.status → statusstatus

(SystemExit only.) Returns the exit status associated with this SystemExit exception. Normally
this status is set using the Object#exit.

begin
exit(99)

rescue SystemExit => e
puts "Exit status is: #{e.status}"

end

produces:

Exit status is: 99

exc.success? → true or falsesuccess?

(SystemExit only.) Returns true if the exit status is nil or zero.

begin
exit(99)

rescue SystemExit => e
print "This program "
if e.success?
print "did"

else
print "did not"

end
puts " succeed"

end

produces:

This program did not succeed

Chapter 27. Built-in Classes and Modules • 484

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

exc.to_s → msgto_s

Returns the message associated with this exception (or the name of the exception if no message
is set).

begin
raise "The message"

rescue Exception => e
puts e.to_s
This is the same as the previous puts
puts e

end

produces:

The message
The message

report erratum • discuss

Exception • 485

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

FalseClassClass

The global value false is the only instance of class FalseClass and represents a logically false
value in boolean expressions. The class provides operators allowing false to participate cor-
rectly in logical expressions.

Instance Methods

false & obj→ false&

And—Returns false. obj is always evaluated because it is the argument to a method call—no
short-circuit evaluation is performed in this case. In other words, the following code, which
uses &&, will not invoke the lookup method.

def lookup(val)
puts "Looking up #{val}"
return true

end
false && lookup("cat")

However, this code, using &, will:

false & lookup("cat")

produces:

Looking up cat

false ^ obj→ true or false^

Exclusive Or—If obj is nil or false, returns false; otherwise, returns true.

false | obj→ true or false|

Or—Returns false if obj is nil or false; true otherwise.

Chapter 27. Built-in Classes and Modules • 486

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

FiberClass

A fiber is a lightweight asymetrical coroutine. Code in a fiber is created in a suspended state.
It runs when resumed and can suspend itself (passing a value back to the code that resumed
it). There is a full description of fibers in Section 12.1, Fibers, on page 161.

fibonaccis = Fiber.new do
n1 = n2 = 1
loop do
Fiber.yield n1
n1, n2 = n2, n1+n2

end
end
10.times { print fibonaccis.resume, ' ' }

produces:

1 1 2 3 5 8 13 21 34 55

Class Methods

Fiber.new { … } → fibernew

Uses the block as a new, suspended fiber.

Fiber.yield(‹val›*) → objyield

Suspends execution of the current fiber. Any parameters will be returned as the value of the
resume call that awoke the fiber. Similarly, any values passed to resumewill become the return
value of the subsequent yield.

f = Fiber.new do |first|
print first
letter = "A"
loop do
print Fiber.yield(letter)
letter = letter.succ

end
end

10.times { |number| print f.resume(number) }

produces:

0A1B2C3D4E5F6G7H8I9J

Instance Methods

fiber.resume(‹val›*) → objresume

⇡New in 2.0⇣
Resumes fiber. See Fiber.yield for a discussion and example of parameter passing. It is an error
to resume a fiber that is being used as a coroutine (one that calls transfer). See Fiber, on page
755.

report erratum • discuss

Fiber • 487

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

File < IOClass

A File is an abstraction of any file object accessible by the program and is closely associated
with class IO, described later on page 536. File includes the methods of module FileTest as class
methods, allowing you to write (for example) File.exist?("foo").

Files may be opened in binary mode (where the contents are transferred as 8-bit bytes in
binary encoding) or text mode (where the contents are interpreted as codepoints in a partic-
ular encoding). These options are controlled by the mode parameter when a file is opened.

Each file has three associated times: atime is the time the file was last accessed, ctime is the
time that the file status (not necessarily the file contents) were last changed, andmtime is the
time the file’s data was last modified. In Ruby, all these times are returned as Time objects.

In this section, permission bits are a platform-specific set of bits that indicate permissions of
a file. On Unix-based systems, permissions are viewed as a set of three octets, for the owner,
the group, and the rest of the world. For each of these entities, permissions may be set to
read, write, or execute the file.

OtherGroupOwner

xwrxwrxwr
124102040100200400

The permission bits 0644 (in octal) would thus be interpreted as read/write for owner and
read-only for group and other. Higher-order bits may also be used to indicate the type of
file (plain, directory, pipe, socket, and so on) and various other special features. If the per-
missions are for a directory, the meaning of the execute bit changes; when set, the directory
can be searched.

Non-POSIX operating systems may not support the full set of possible permissions. In this
case, the remaining permission bits will be synthesized to resemble typical values. For
instance, on Windows the default permission bits are 0644, which means read/write for
owner and read-only for all others. The only change that can be made is to make the file
read-only, which is reported as 0444.

The constant File::NULL is the name of your system’s null device. Reading from it returns end-
of-file, and writing to it is ignored.

See also Pathname on page 787 and IO on page 536.

Class Methods

File.absolute_path(filename ‹ , dirstring›) → filenameabsolute_path

Converts a path to an absolute path. Relative paths are referenced from the current working
directory of the process unless dirstring is given, in which case it will be used as the starting
point. Path names starting with ~ are not expanded, in contrast with File#expand_path.

puts File.absolute_path("bin")
puts File.absolute_path("../../bin", "/tmp/x")

produces:

/Users/dave/BS2/published/ruby4/Book/bin
/bin

Chapter 27. Built-in Classes and Modules • 488

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

File.atime(filename) → timeatime

Returns a Time object containing the last access time for the named file or returns epoch if
the file has not been accessed.

File.atime("testfile") # => 2013-05-27 12:32:02 -0500

File.basename(filename ‹ , suffix›) → stringbasename

Returns the last component of the filename given in filename. If suffix is given and is present
at the end of filename, it is removed. Any extension can be removed by giving an extension
of .*.

File.basename("/home/gumby/work/ruby.rb") # => "ruby.rb"
File.basename("/home/gumby/work/ruby.rb", ".rb") # => "ruby"
File.basename("/home/gumby/work/ruby.rb", ".*") # => "ruby"

File.blockdev?(filename) → true or falseblockdev?

Returns true if the named file is a block device and returns false if it isn’t or if the operating
system doesn’t support this feature.

File.blockdev?("testfile") # => false

File.chardev?(filename) → true or falsechardev?

Returns true if the named file is a character device and returns false if it isn’t or if the operating
system doesn’t support this feature.

File.chardev?("/dev/tty") # => true

File.chmod(permission ‹ , filename›+) → intchmod

Changes permission bits on the named file(s) to the bit pattern represented by permission.
Actual effects are operating system dependent (see the beginning of this section). On Unix
systems, see chmod(2) for details. Returns the number of files processed.

File.chmod(0644, "testfile", "some_other_file") # => 2

File.chown(owner, group ‹ , filename›+) → intchown

Changes the owner and/or group of the named file(s) to the given numeric owner and group
IDs. Only a process with superuser privileges may change the owner of a file. The current
owner of a file may change the file’s group to any group to which the owner belongs. A nil
or -1 owner or group ID is ignored. Returns the number of files processed.

File.chown(nil, 100, "testfile")

report erratum • discuss

File • 489

Download from Wow! eBook <www.wowebook.com>

http://www.freebsd.org/cgi/man.cgi?query=chmod&sektion=2
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

File.ctime(filename) → timectime

Returns a Time object containing the time that the file status associated with the named file
was changed.

File.ctime("testfile") # => 2013-05-27 12:32:04 -0500

File.delete(‹ filename›+) → intdelete

Deletes the named file(s). Returns the number of files processed. See also Dir.rmdir.

File.open("testrm", "w+") {}
File.delete("testrm") # => 1

File.directory?(path) → true or falsedirectory?

Returns true if the named file is a directory; returns false otherwise.

File.directory?(".") # => true

File.dirname(filename) → filenamedirname

Returns all components of the filename given in filename except the last one.

File.dirname("/home/gumby/work/ruby.rb") # => "/home/gumby/work"
File.dirname("ruby.rb") # => "."

File.executable?(filename) → true or falseexecutable?

Returns true if the named file is executable. The tests are made using the effective owner of
the process.

File.executable?("testfile") # => false

File.executable_real?(filename) → true or falseexecutable_real?

Same as File#executable? but tests using the real owner of the process.

File.exist?(filename) → true or falseexist?

Returns true if the named file or directory exists.

File.exist?("testfile") # => true

File.exists? (filename) → true or falseexists?

Synonym for File.exist?.

Chapter 27. Built-in Classes and Modules • 490

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

File.expand_path(filename ‹ , dirstring›) → filenameexpand_path

Converts a path name to an absolute path name. Relative paths are referenced from the
current working directory of the process unless dirstring is given, in which case it will be
used as the starting point. The given path name may start with a ~, which expands to the
process owner’s home directory (the environment variable HOMEmust be set correctly).~user
expands to the named user’s home directory. See also File#absolute_path.

File.expand_path("~/bin") # => "/Users/dave/bin"
File.expand_path("../../bin", "/tmp/x") # => "/bin"

File.extname(path) → stringextname

Returns the extension (the portion of filename in path after the period).

File.extname("test.rb") # => ".rb"
File.extname("a/b/d/test.rb") # => ".rb"
File.extname("test") # => ""

File.file?(filename) → true or falsefile?

Returns true if the named file is a regular file (not a device file, directory, pipe, socket, and
so on).

File.file?("testfile") # => true
File.file?(".") # => false

File.fnmatch(glob_pattern, path, ‹ flags›) → true or falsefnmatch

Returns true if path matches against glob_pattern. The pattern is not a regular expression;
instead, it follows rules similar to shell filename globbing. A glob_pattern may contain the
following metacharacters.

Matches zero or more characters in a file or directory name.*
Matches zero or more characters, ignoring name boundaries. Most often used to
scan subdirectories recursively.

**

Matches any single character.?
Matches any character from the given set of characters. A range of characters is
written as from-to. The set may be negated with an initial caret (^).

[charset]

Escapes any special meaning of the next character.\

flags is a bitwise OR of the FNM_xxx constants.

Expand braces in the pattern. (new in ⇡2.0⇣)FNM_EXTGLOB
A backslash does not escape special characters in globs, and a backslash inFNM_NOESCAPE
the pattern must match a backslash in the filename.
Forward slashes in the filename are treated as separating parts of a path
and so must be explicitly matched in the pattern.

FNM_PATHNAME

report erratum • discuss

File • 491

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

If this option is not specified, filenames containing leading periods must be
matched by an explicit period in the pattern. A leading period is one at the
start of the filename or (if FNM_PATHNAME is specified) following a slash.

FNM_DOTMATCH

Filename matches are case insensitive.FNM_CASEFOLD

See also Dir.glob on page 458.

File.fnmatch('cat', 'cat') # => true
File.fnmatch('cat', 'category') # => false
File.fnmatch('c?t', 'cat') # => true
File.fnmatch('c\?t', 'cat') # => false

File.fnmatch('c??t', 'cat') # => false
File.fnmatch('c*', 'cats') # => true
File.fnmatch('c/**/t', 'c/a/b/c/t') # => true
File.fnmatch('c**t', 'c/a/b/c/t') # => true
File.fnmatch('c**t', 'cat') # => true
File.fnmatch('**.txt', 'some/dir/tree/notes.txt') # => true
File.fnmatch('c*t', 'cat') # => true
File.fnmatch('c\at', 'cat') # => true
File.fnmatch('c\at', 'cat', File::FNM_NOESCAPE) # => false
File.fnmatch('a?b', 'a/b') # => true
File.fnmatch('a?b', 'a/b', File::FNM_PATHNAME) # => false

File.fnmatch('*', '.profile') # => false
File.fnmatch('*', '.profile', File::FNM_DOTMATCH) # => true
File.fnmatch('*', 'dave/.profile') # => true
File.fnmatch('*', 'dave/.profile', File::FNM_DOTMATCH) # => true
File.fnmatch('*', 'dave/.profile', File::FNM_PATHNAME) # => false
File.fnmatch('*/*', 'dave/.profile', File::FNM_PATHNAME) # => false
STRICT = File::FNM_PATHNAME | File::FNM_DOTMATCH
File.fnmatch('*/*', 'dave/.profile', STRICT) # => true

File.fnmatch?(glob_pattern, path, ‹ flags›) → (true or false)fnmatch?

Synonym for File#fnmatch.

File.ftype(filename) → filetypeftype

Identifies the type of the named file. The return string is one of file, directory, characterSpecial,
blockSpecial, fifo, link, socket, or unknown.

File.ftype("testfile") # => "file"
File.ftype("/dev/tty") # => "characterSpecial"
system("mkfifo wibble") # => true
File.ftype("wibble") # => "fifo"

File.grpowned?(filename) → true or falsegrpowned?

Returns true if the effective group ID of the process is the same as the group ID of the named
file. On Windows, returns false.

File.grpowned?("/etc/passwd") # => false

Chapter 27. Built-in Classes and Modules • 492

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

File.identical?(name1, name2) → true or falseidentical?

Returns true only if name1 and name2 refer to the same file. Two separate files with the same
content are not considered to be identical.

File.identical?("testfile", "./code/../testfile") # => true
File.symlink("testfile", "wibble")
File.identical?("testfile", "wibble") # => true
File.link("testfile", "wobble")
File.identical?("testfile", "wobble") # => true
File.identical?("wibble", "wobble") # => true

File.join(‹string›+) → filenamejoin

Returns a new string formed by joining the strings using File::SEPARATOR. The various separa-
tors are as follows:

Alternate path separator (\ on Windows, nil otherwise)ALT_SEPARATOR
Separator for filenames in a search path (such as : or ;)PATH_SEPARATOR
Separator for directory components in a filename (such as \ or /)SEPARATOR
Alias for SEPARATORSeparator

File.join("usr", "mail", "gumby") # => "usr/mail/gumby"

File.lchmod(permission, ‹ filename›+) → 0lchmod

Equivalent to File.chmod but does not follow symbolic links (so it will change the permissions
associated with the link, not the file referenced by the link). Often not available.

File.lchown(owner, group, ‹ filename›+) → 0lchown

Equivalent to File.chown but does not follow symbolic links (so it will change the owner
associated with the link, not the file referenced by the link). Often not available.

File.link(oldname, newname) → 0link

Creates a new name for an existing file using a hard link. Will not overwrite newname if it
already exists (in which case link raises a subclass of SystemCallError). Not available on all
platforms.

File.link("testfile", "testfile.2") # => 0
f = File.open("testfile.2")
f.gets # => "This is line one\n"
File.delete("testfile.2")

File.lstat(filename) → statlstat

Returns status information for file as an object of type File::Stat. Same as IO#stat on page 554
but does not follow the last symbolic link. Instead, reports on the link itself.

report erratum • discuss

File • 493

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

File.symlink("testfile", "link2test") # => 0
File.stat("testfile").size # => 66
File.lstat("link2test").size # => 8
File.stat("link2test").size # => 66

File.mtime(filename) → timemtime

Returns a Time object containing the modification time for the named file.

File.mtime("testfile") # => 2013-05-16 20:00:29 -0500
File.mtime("/tmp") # => 2013-05-27 11:52:10 -0500

File.new(filename, mode="r" ‹ , permission› ‹options›) → file
File.new(integer_fd ‹ , mode ‹ , options››) → file

new

If the first parameter is an integer (or can be converted to an integer using to_int), it is the file
descriptor or an already-open file. In that case, the call is passed to IO.new for processing.

More commonly, opens the file named by filename according to mode (the default is "r") and
returns a new File object. The mode contains information on the way the file is to be opened
and optionally on the encodings to be associated with the file data. Modes are most commonly
represented as a string but can be expressed as an integer. Mode strings have the form file-
mode[:external-encoding[:internal-encoding]]". The file-mode portion is one of the options listed in
the following table. The two encodings are the names (or aliases) of encodings supported
by your interpreter. See Chapter 17, Character Encoding, on page 239 for more information.

Read-only, starts at beginning of file (default mode).r
Read/write, starts at beginning of file.r+
Write-only, truncates an existing file to zero length or creates a new file for writing.w
Read/write, truncates existing file to zero length or creates a new file for reading andw+
writing.
Write-only, starts at end of file if file exists; otherwise, creates a new file for writing.a
Read/write, starts at end of file if file exists; otherwise, creates a new file for readinga+
and writing.
Binary file mode (may appear with any of the key letters listed earlier). As of Ruby 1.9,b
this modifier should be supplied on all ports opened in binary mode (on Unix as well
as on DOS/Windows). To read a file in binary mode and receive the data as a stream
of bytes, use the modestring "rb:ascii-8bit".

Table 16—Mode values

When expressed as an integer, the mode is specified by OR-ing together the values in the
following table. If your system does not support the underlying functionality, the constants
will not be defined. The descriptions below are just hints at the underlying functionality—
see the man page for open(2) for the details.

Opens the file in append mode; all writes will occur at end of file.File::APPEND
Generate a signal when input or output become possible.File::ASYNC

Chapter 27. Built-in Classes and Modules • 494

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Use Ruby’s binary mode.File::BINARY
Creates the file on open if it does not exist.File::CREAT
Try to minimize the effects of caching.File::DIRECT
Opens for synchronous I/O, blocking until buffered data (but not necessar-
ily inode information) is written.

File::DSYNC

When used with File::CREAT, opens will fail if the file exists.File::EXCL
Do not update the file’s last access time on reading.File::NOATIME
When opening a terminal device (see IO#isatty on page 549), does not allow
it to become the controlling terminal.

File::NOCTTY

Do not open the file if the name is a symbolic link.File::NOFOLLOW
Opens the file in nonblocking mode.File::NONBLOCK
Opens for reading only.File::RDONLY
Opens for reading and writing.File::RDWR
Opens for synchronous I/O, blocking until buffered data is written.File::SYNC
Opens the file and truncates it to zero length if the file exists.File::TRUNC
Opens for writing only.File::WRONLY

Optional permission bits may be given in permission. These bits are platform dependent; on
Unix systems, see open(2) for details.

If the final parameter is a hash, it is used to control options, as described in the following
table. The mode can be passed as one of the options of this hash.

If false, the underlying file will not be closed when this I/O object is
finalized.

autoclose:

Opens the IO object in binary mode if true (same as mode: "b").binmode:
Specifies both external and internal encodings as "external:internal" (same
format used in mode parameter.

encoding:

Specifies the external encoding.external_encoding:
Specifies the internal encoding.internal_encoding:
Specifies what would have been the mode parameter (so File.open("xx",
"r:utf-8") is the same as File.open("xx", mode: "r:utf-8").

mode:

Specifies what would have been the permission parameter.perm:
Open the file in text mode (the default).textmode:
In addition, the options parameter can use the key/value pairs that are
specified to String.encode to control the processing of text data. See Table
22, Options to encode and encode!, on page 675.

Table 17—File and I/O open options

See also IO.open on page 539 for a block form of File.new.

report erratum • discuss

File • 495

Download from Wow! eBook <www.wowebook.com>

http://www.freebsd.org/cgi/man.cgi?query=open&sektion=2
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

open for reading, default external encoding
f = File.new("testfile", "r")

open for reading, assume contents are utf-8
f = File.new("testfile", "r:utf-8")

Same, using an options hash
f = File.new("testfile", mode: "r", external_encoding: "utf-8")

Translate cr/lf to just lf (a String#encode option)
f = File.new("testfile", universal_newline: true)

open for read/write. external utf-8 data will be converted to iso-8859-1
when read, and converted from 8859-1 to utf-8 on writing
f = File.new("newfile", "w+:utf-8:iso-8859-1")

same as specifying "w+"
f = File.new("newfile", File::CREAT|File::TRUNC|File::RDWR, 0644)

File.owned?(filename) → true or falseowned?

Returns true if the effective user ID of the process is the same as the owner of the named file.

File.owned?("/etc/passwd") # => false

File.path(obj) → stringpath

Returns the path of obj. If obj responds to to_path, its value is returned. Otherwise, attempt
to convert obj to a string and return that value.

File.path("testfile") # => "testfile"
File.path("/tmp/../tmp/xxx") # => "/tmp/../tmp/xxx"
f = File.open("/tmp/../tmp/xxx")
File.path(f) # => "/tmp/../tmp/xxx"

File.pipe?(filename) → true or falsepipe?

Returns true if the OS supports pipes and the named file is one; false otherwise.

File.pipe?("testfile") # => false

File.readable?(filename) → true or falsereadable?

Returns true if the named file is readable by the effective user ID of this process.

File.readable?("testfile") # => true

File.readable_real?(filename) → true or falsereadable_real?

Returns true if the named file is readable by the real user ID of this process.

File.readable_real?("testfile") # => true

Chapter 27. Built-in Classes and Modules • 496

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

File.readlink(filename) → filenamereadlink

Returns the given symbolic link as a string. Not available on all platforms.

File.symlink("testfile", "link2test") # => 0
File.readlink("link2test") # => "testfile"

File.realdirpath(path ‹ , relative_to›) → stringrealdirpath

Converts path to a full file path, with all symlinks resolved and relative paths made absolute.
If a second parameter if present, it is used as the base for resolving leading relative path
segments. The actual file (the past component of the path) need not exist.

puts File.realdirpath("/var/log/system.log")
puts File.realdirpath("../Common/xml")
puts File.realdirpath("Sites", "/Users/dave")

produces:

/private/var/log/system.log
/Users/dave/BS2/published/ruby4/Common/xml
/Users/dave/Sites

File.realpath(path ‹ , relative_to›) → stringrealpath

Converts path to a full file path, with all symlinks resolved and relative paths made absolute.
If a second parameter if present, it is used as the base for resolving leading relative path
segments.

puts File.realpath("/var/log/system.log")
puts File.realpath("../PerBook/util/xml/ppbook.dtd")
puts File.realpath("Sites/index.html", "/Users/dave")

produces:

/private/var/log/system.log
/Users/dave/BS2/published/ruby4/PerBook/util/xml/ppbook.dtd
/Users/dave/Sites/index.html

File.rename(oldname, newname) → 0rename

Renames the given file or directory to the new name. Raises a SystemCallError if the file cannot
be renamed.

File.rename("afile", "afile.bak") # => 0

File.setgid?(filename) → true or falsesetgid?

Returns true if the named file’s set-group-id permission bit is set and returns false if it isn’t
or if the operating system doesn’t support this feature.

File.setgid?("/usr/sbin/lpc") # => false

report erratum • discuss

File • 497

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

File.setuid?(filename) → true or falsesetuid?

Returns true if the named file’s set-user-id permission bit is set and returns false if it isn’t or
if the operating system doesn’t support this feature.

File.setuid?("/bin/su") # => false

File.size(filename) → intsize

Returns the size of the file in bytes.

File.size("testfile") # => 66

File.size?(filename) → int or nilsize?

Returns nil if the named file is of zero length; otherwise, returns the size. Usable as a condition
in tests.

File.size?("testfile") # => 66
File.size?("/dev/zero") # => nil

File.socket?(filename) → true or falsesocket?

Returns true if the named file is a socket and returns false if it isn’t or if the operating system
doesn’t support this feature.

File.split(filename) → arraysplit

Splits the given string into a directory and a file component and returns them in a two-element
array. See also File.dirname and File.basename.

File.split("/home/gumby/.profile") # => ["/home/gumby", ".profile"]
File.split("ruby.rb") # => [".", "ruby.rb"]

File.stat(filename) → statstat

Returns a File::Stat object for the named file (see File::Stat on page 503).

stat = File.stat("testfile")
stat.mtime # => 2013-05-16 20:00:29 -0500
stat.ftype # => "file"

File.sticky?(filename) → true or falsesticky?

Returns true if the named file has its sticky bit set and returns false if it doesn’t or if the
operating system doesn’t support this feature.

Chapter 27. Built-in Classes and Modules • 498

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

File.symlink(oldname, newname) → 0 or nilsymlink

Creates a symbolic link called newname for the file oldname. Returns nil on all platforms that
do not support symbolic links.

File.symlink("testfile", "link2test") # => 0

File.symlink?(filename) → true or falsesymlink?

Returns true if the named file is a symbolic link and returns false if it isn’t or if the operating
system doesn’t support this feature.

File.symlink("testfile", "link2test") # => 0
File.symlink?("link2test") # => true

File.truncate(filename, int) → 0truncate

Truncates the file filename to be at most int bytes long. Not available on all platforms.

f = File.new("out", "w")
f.write("1234567890") # => 10
f.close # => nil
File.truncate("out", 5) # => 0
File.size("out") # => 5

File.umask(‹ int›) → intumask

Returns the current umask value for this process. If the optional argument is given, sets the
umask to that value and returns the previous value. Umask values are excluded from the
default permissions; so, a umask of 0222 would make a file read-only for everyone. See also
the discussion of permissions on page 488.

File.umask(0006) # => 18
File.umask # => 6

File.unlink(‹ filename›+) → intunlink

Synonym for File.delete. See also Dir.rmdir.

File.open("testrm", "w+") {} # => nil
File.unlink("testrm") # => 1

File.utime(accesstime, modtime ‹ , filename›+) → intutime

Changes the access and modification times on a number of files. The times must be instances
of class Time or integers representing the number of seconds since epoch. Returns the number
of files processed. Not available on all platforms.

File.utime(0, 0, "testfile") # => 1
File.mtime("testfile") # => 1969-12-31 18:00:00 -0600
File.utime(0, Time.now, "testfile") # => 1
File.mtime("testfile") # => 2013-05-27 12:32:07 -0500

report erratum • discuss

File • 499

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

File.world_readable?(filename) → perm_int or nilworld_readable?

If filename is readable by others, returns an integer representing the file permission bits of
filename. Returns nil otherwise. The meaning of the bits is platform dependent; on Unix sys-
tems, see stat(2).

File.world_readable?("/etc/passwd") # => 420
File.world_readable?("/etc/passwd").to_s(8) # => "644"

File.world_writable?(filename) → perm_int or nilworld_writable?

If filename is writable by others, returns an integer representing the file permission bits of
filename. Returns nil otherwise. The meaning of the bits is platform dependent; on Unix sys-
tems, see stat(2).

File.world_writable?("/etc/passwd") # => nil
File.world_writable?("/tmp") # => 511
File.world_writable?("/tmp").to_s(8) # => "777"

File.writable?(filename) → true or falsewritable?

Returns true if the named file is writable by the effective user ID of this process.

File.writable?("/etc/passwd") # => false
File.writable?("testfile") # => true

File.writable_real?(filename) → true or falsewritable_real?

Returns true if the named file is writable by the real user ID of this process.

File.zero?(filename) → true or falsezero?

Returns true if the named file is of zero length and returns false otherwise.

File.zero?("testfile") # => false
File.open("zerosize", "w") {}
File.zero?("zerosize") # => true

Instance Methods

file.atime → timeatime

Returns a Time object containing the last access time for file or returns epoch if the file has
not been accessed.

File.new("testfile").atime # => 1969-12-31 18:00:00 -0600

file.chmod(permission) → 0chmod

Changes permission bits on file to the bit pattern represented by permission. Actual effects
are platform dependent; on Unix systems, see chmod(2) for details. Follows symbolic links.
See the discussion of permissions on page 488. Also see File.lchmod.

Chapter 27. Built-in Classes and Modules • 500

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://www.freebsd.org/cgi/man.cgi?query=stat&sektion=2
http://www.freebsd.org/cgi/man.cgi?query=stat&sektion=2
http://www.freebsd.org/cgi/man.cgi?query=chmod&sektion=2
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

f = File.new("out", "w");
f.chmod(0644) # => 0

file.chown(owner, group) → 0chown

Changes the owner and group of file to the given numeric owner and group IDs. Only a
process with superuser privileges may change the owner of a file. The current owner of a
file may change the file’s group to any group to which the owner belongs. A nil or -1 owner
or group ID is ignored. Follows symbolic links. See also File.lchown.

File.new("testfile").chown(502, 400)

file.ctime → timectime

Returns a Time object containing the time that the file status associated with filewas changed.

File.new("testfile").ctime # => 2013-05-27 12:32:07 -0500

file.flock (locking_constant) → 0 or falseflock

Locks or unlocks a file according to locking_constant (a logical or of the following values).

Exclusive lock. Only one process may hold an exclusive lock for a given file at aLOCK_EX
time.
Don’t block when locking. May be combined with other lock options using | (or)LOCK_NB
Shared lock. Multiple processes may each hold a shared lock for a given file at theLOCK_SH
same time.
Unlock.LOCK_UN

Table 18—Lock-mode constants

Returns false if File::LOCK_NB is specified, and the operation would otherwise have blocked.
Not available on all platforms.

File.new("testfile").flock(File::LOCK_UN) # => 0

file.lstat → statlstat

Same as IO#stat but does not follow the last symbolic link. Instead, reports on the link itself.

File.symlink("testfile", "link2test") # => 0
File.stat("testfile").size # => 66
f = File.new("link2test")
f.lstat.size # => 8
f.stat.size # => 66

file.mtime → timemtime

Returns a Time object containing the modification time for file.

File.new("testfile").mtime # => 2013-05-27 12:32:07 -0500

report erratum • discuss

File • 501

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

file.path → filenamepath

Returns the path name used to create file as a string. Does not normalize the name.

File.new("testfile").path # => "testfile"
File.new("/tmp/../tmp/xxx", "w").path # => "/tmp/../tmp/xxx"

file.size(filename) → intsize

Returns the size of file in bytes.

File.open("testfile").size # => 66

file.to_path → filenameto_path

Alias for File#path.

file.truncate(int) → 0truncate

Truncates file to at most int bytes. The file must be opened for writing. Not available on all
platforms.

f = File.new("out", "w")
f.syswrite("1234567890") # => 10
f.truncate(5) # => 0
f.close() # => nil
File.size("out") # => 5

Chapter 27. Built-in Classes and Modules • 502

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

File::StatClass

Objects of class File::Stat encapsulate common status information for File objects. The informa-
tion is recorded at the moment the File::Stat object is created; changes made to the file after
that point will not be reflected. File::Stat objects are returned by IO#stat, File.stat, File#lstat, and
File.lstat. Many of these methods may return platform-specific values, and not all values are
meaningful on all systems. See also Object#test on page 628.

Mixes In

Comparable: <, <=, ==, >, >=, between?

Instance Methods

statfile <=> other_stat→ -1, 0, 1<=>

Compares File::Stat objects by comparing their respective modification times.

f1 = File.new("f1", "w")
sleep 1
f2 = File.new("f2", "w")
f1.stat <=> f2.stat # => -1
Methods in Comparable are also available
f1.stat > f2.stat # => false
f1.stat < f2.stat # => true

statfile.atime → timeatime

Returns a Time object containing the last access time for statfile or returns epoch if the file has
not been accessed.

File.stat("testfile").atime # => 1969-12-31 18:00:00 -0600
File.stat("testfile").atime.to_i # => 0

statfile.blksize → intblksize

Returns the native file system’s block size. Will return nil on platforms that don’t support
this information.

File.stat("testfile").blksize # => 4096

statfile.blockdev? → true or falseblockdev?

Returns true if the file is a block device and returns false if it isn’t or if the operating system
doesn’t support this feature.

File.stat("testfile").blockdev? # => false
File.stat("/dev/disk0").blockdev? # => true

report erratum • discuss

File::Stat • 503

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

statfile.blocks → intblocks

Returns the number of native file system blocks allocated for this file or returns nil if the
operating system doesn’t support this feature.

File.stat("testfile").blocks # => 8

statfile.chardev? → true or falsechardev?

Returns true if the file is a character device and returns false if it isn’t or if the operating system
doesn’t support this feature.

File.stat("/dev/tty").chardev? # => true
File.stat("testfile").chardev? # => false

statfile.ctime → timectime

Returns a Time object set to the time that the file status associated with statfile was changed.

File.stat("testfile").ctime # => 2013-05-27 12:32:07 -0500

statfile.dev → intdev

Returns an integer representing the device on which statfile resides. The bits in the device
integer will often encode major and minor device information.

File.stat("testfile").dev # => 16777219
"%x" % File.stat("testfile").dev # => "1000003"

statfile.dev_major → intdev_major

Returns the major part of File::Stat#dev or nil if the operating system doesn’t support this
feature.

File.stat("testfile").dev_major # => 1

statfile.dev_minor → intdev_minor

Returns the minor part of File::Stat#dev or nil if the operating system doesn’t support this
feature.

File.stat("testfile").dev_minor # => 3

statfile.directory? → true or falsedirectory?

Returns true if statfile is a directory and returns false otherwise.

File.stat("testfile").directory? # => false
File.stat(".").directory? # => true

Chapter 27. Built-in Classes and Modules • 504

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

statfile.executable? → true or falseexecutable?

Returns true if statfile is executable or if the operating system doesn’t distinguish executable
files from nonexecutable files. The tests are made using the effective owner of the process.

File.stat("testfile").executable? # => false

statfile.executable_real? → true or falseexecutable_real?

Same as executable? but tests using the real owner of the process.

statfile.file? → true or falsefile?

Returns true if statfile is a regular file (not a device file, pipe, socket, and so on).

File.stat("testfile").file? # => true

statfile.ftype → type_stringftype

Identifies the type of statfile. The return string is one of the following: file, directory, character-
Special, blockSpecial, fifo, link, socket, or unknown.

File.stat("/dev/tty").ftype # => "characterSpecial"

statfile.gid → intgid

Returns the numeric group ID of the owner of statfile.

File.stat("testfile").gid # => 20

statfile.grpowned? → true or falsegrpowned?

Returns true if the effective group ID of the process is the same as the group ID of statfile.
On Windows, returns false.

File.stat("testfile").grpowned? # => true
File.stat("/etc/passwd").grpowned? # => false

statfile.ino → intino

Returns the inode number for statfile.

File.stat("testfile").ino # => 29399443

statfile.mode → intmode

Returns an integer representing the permission bits of statfile. The meaning of the bits is
platform dependent; on Unix systems, see stat(2).

File.chmod(0644, "testfile") # => 1
File.stat("testfile").mode.to_s(8) # => "100644"

report erratum • discuss

File::Stat • 505

Download from Wow! eBook <www.wowebook.com>

http://www.freebsd.org/cgi/man.cgi?query=stat&sektion=2
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

statfile.mtime → timemtime

Returns a Time object containing the modification time for statfile.

File.stat("testfile").mtime # => 2013-05-27 12:32:07 -0500

statfile.nlink → intnlink

Returns the number of hard links to statfile.

File.stat("testfile").nlink # => 1
File.link("testfile", "testfile.bak") # => 0
File.stat("testfile").nlink # => 2

statfile.owned? → true or falseowned?

Returns true if the effective user ID of the process is the same as the owner of statfile.

File.stat("testfile").owned? # => true
File.stat("/etc/passwd").owned? # => false

statfile.pipe? → true or falsepipe?

Returns true if the operating system supports pipes and statfile is a pipe.

statfile.rdev → intrdev

Returns an integer representing the device type on which statfile (which should be a special
file) resides. Returns nil if the operating system doesn’t support this feature.

File.stat("/dev/disk0s1").rdev # => 16777217
File.stat("/dev/tty").rdev # => 33554432

statfile.rdev_major → intrdev_major

Returns the major part of File::Stat#rdev or nil if the operating system doesn’t support this
feature.

File.stat("/dev/disk0s1").rdev_major # => 1
File.stat("/dev/tty").rdev_major # => 2

statfile.rdev_minor → intrdev_minor

Returns the minor part of File::Stat#rdev or nil if the operating system doesn’t support this
feature.

File.stat("/dev/disk0s1").rdev_minor # => 1
File.stat("/dev/tty").rdev_minor # => 0

Chapter 27. Built-in Classes and Modules • 506

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

statfile.readable? → true or falsereadable?

Returns true if statfile is readable by the effective user ID of this process.

File.stat("testfile").readable? # => true

statfile.readable_real? → true or falsereadable_real?

Returns true if statfile is readable by the real user ID of this process.

File.stat("testfile").readable_real? # => true
File.stat("/etc/passwd").readable_real? # => true

statfile.setgid? → true or falsesetgid?

Returns true if statfile has the set-group-id permission bit set and returns false if it doesn’t or
if the operating system doesn’t support this feature.

File.stat("testfile").setgid? # => false
File.stat("/usr/sbin/postdrop").setgid? # => true

statfile.setuid? → true or falsesetuid?

Returns true if statfile has the set-user-id permission bit set and returns false if it doesn’t or if
the operating system doesn’t support this feature.

File.stat("testfile").setuid? # => false
File.stat("/usr/bin/su").setuid? # => true

statfile.size → intsize

Returns the size of statfile in bytes.

File.stat("/dev/zero").size # => 0
File.stat("testfile").size # => 66

statfile.size? → int or nilsize?

Returns nil if statfile is a zero-length file; otherwise, returns the file size. Usable as a condition
in tests.

File.stat("/dev/zero").size? # => nil
File.stat("testfile").size? # => 66

statfile.socket? → true or falsesocket?

Returns true if statfile is a socket and returns false if it isn’t or if the operating system doesn’t
support this feature.

File.stat("testfile").socket? # => false

report erratum • discuss

File::Stat • 507

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

statfile.sticky? → true or falsesticky?

Returns true if statfile has its sticky bit set and returns false if it doesn’t or if the operating
system doesn’t support this feature.

File.stat("testfile").sticky? # => false

statfile.symlink? → true or falsesymlink?

Returns true if statfile is a symbolic link; returns false if it isn’t or if the operating system
doesn’t support this feature. Because File.stat automatically follows symbolic links, symlink?
will always be false for an object returned by File.stat.

File.symlink("testfile", "alink") # => 0
File.stat("alink").symlink? # => false
File.lstat("alink").symlink? # => true

statfile.uid → intuid

Returns the numeric user ID of the owner of statfile.

File.stat("testfile").uid # => 501

statfile.world_readable?(filename) → perm_int or nilworld_readable?

If filename is readable by others, returns an integer representing the file permission bits of
filename. Returns nil otherwise. The meaning of the bits is platform dependent; on Unix sys-
tems, see stat(2).

File.stat("/etc/passwd").world_readable? # => 420
File.stat("/etc/passwd").world_readable?.to_s(8) # => "644"

statfile.world_writable?(filename) → perm_int or nilworld_writable?

If filename is writable by others, returns an integer representing the file permission bits of
filename. Returns nil otherwise. The meaning of the bits is platform dependent; on Unix sys-
tems, see stat(2).

File.stat("/etc/passwd").world_writable? # => nil
File.stat("/tmp").world_writable? # => 511
File.stat("/tmp").world_writable?.to_s(8) # => "777"

statfile.writable? → true or falsewritable?

Returns true if statfile is writable by the effective user ID of this process.

File.stat("testfile").writable? # => true

Chapter 27. Built-in Classes and Modules • 508

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://www.freebsd.org/cgi/man.cgi?query=stat&sektion=2
http://www.freebsd.org/cgi/man.cgi?query=stat&sektion=2
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

statfile.writable_real? → true or falsewritable_real?

Returns true if statfile is writable by the real user ID of this process.

File.stat("testfile").writable_real? # => true

statfile.zero? → true or falsezero?

Returns true if statfile is a zero-length file; returns false otherwise.

File.stat("testfile").zero? # => false

FileTestModule

FileTest implements file test operations similar to those used in File::Stat. The methods in FileTest
are duplicated in class File. Rather than repeat the documentation here, we list the names of
the methods and refer you to the documentation for File on page 488. FileTest appears to be a
somewhat vestigial module.

The FileTestmethods are: blockdev?, chardev?, directory?, executable?, executable_real?, exist?, exists?,
file?, grpowned?, identical?, owned?, pipe?, readable?, readable_real?, setgid?, setuid?, size, size?, socket?,
sticky?, symlink?, world_readable?, world_writable?, writable?, writable_real?, zero?

report erratum • discuss

FileTest • 509

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Fixnum < IntegerClass

A Fixnum holds integer values that can be represented in a native machine word (minus 1
bit). If any operation on a Fixnum exceeds this range, the value is converted to a Bignum.

Fixnum objects have immediate value. This means that when they are assigned or passed as
parameters, the actual object is passed, rather than a reference to that object. Assignment
does not alias Fixnum objects. Because there is effectively only one Fixnum object instance for
any given integer value, you cannot, for example, add a singleton method to a Fixnum.

Instance Methods

Arithmetic operations

Performs various arithmetic operations on fix.

Additionnumeric+fix
Subtractionnumeric–fix
Multiplicationnumeric*fix
Divisionnumeric/fix
Modulonumeric%fix
Exponentiationnumeric**fix
Unary minus-@fix

Bit operations

Performs various operations on the binary representations of the Fixnum.

Invert bits~ fix
Bitwise ornumeric|fix
Bitwise andnumeric&fix
Bitwise exclusive ornumeric^fix
Left-shift numeric bitsnumeric<<fix
Right-shift numeric bits (with sign extension)numeric>>fix

Comparisons

Compares fix to other numbers. Fixnum. <, <=, ==, >=, and >.

fix <=> numeric→ -1, 0, +1, or nil<=>

Comparison—Returns -1, 0, or +1 depending on whether fix is less than, equal to, or greater
than numeric. Although Fixnum’s grandparent mixes in Comparable, Fixnum does not use that
module for performing comparisons, instead implementing the comparison operators
explicitly.

42 <=> 13 # => 1
13 <=> 42 # => -1
-1 <=> -1 # => 0

Chapter 27. Built-in Classes and Modules • 510

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

fix[n] → 0, 1[]

Bit Reference—Returns the nth bit in the binary representation of fix, where fix[0] is the least
significant bit.

a = 0b11001100101010
30.downto(0) {|n| print a[n] }

produces:

0000000000000000011001100101010

fix.abs → intabs

Returns the absolute value of fix.

-12345.abs # => 12345
12345.abs # => 12345

fix.div(numeric) → integerdiv

Division that always produces an integral result. Not affected by the mathn library (unlike
Fixnum#/).

654321.div(13731) # => 47
654321.div(13731.34) # => 47

fix.even? → true or falseeven?

Returns true if fix is even.

1.even? # => false
2.even? # => true

fix.divmod(numeric) → arraydivmod

See Numeric#divmod on page 595.

fix.fdiv(numeric) → floatfdiv

Returns the floating-point result of dividing fix by numeric.

63.fdiv(9) # => 7.0
654321.fdiv(13731) # => 47.652829364212366
654321.fdiv(13731.24) # => 47.65199646936475

fix.magnitude → intmagnitude

Returns the magnitude of fix (the distance of fix from the origin of the number line). Synonym
for Fixnum#abs. See also Complex#magnitude.

report erratum • discuss

Fixnum • 511

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

fix.modulo(numeric) → numericmodulo

Synonym for Fixnum#%.

654321.modulo(13731) # => 8964
654321.modulo(13731.24) # => 8952.72000000001

fix.odd? → true or falseodd?

Returns true if fix is odd.

1.odd? # => true
2.odd? # => false

fix.size → intsize

Returns the number of bytes in the machine representation of a Fixnum.

1.size # => 8
-1.size # => 8
2147483647.size # => 8

fix.succ → intsucc

Returns fix + 1.

1.succ # => 2
-1.succ # => 0

fix.to_f → floatto_f

Converts fix to a Float.

fix.to_s(base=10) → stringto_s

Returns a string containing the representation of fix radix base (2 to 36).

12345.to_s # => "12345"
12345.to_s(2) # => "11000000111001"
12345.to_s(8) # => "30071"
12345.to_s(10) # => "12345"
12345.to_s(16) # => "3039"
12345.to_s(36) # => "9ix"
84823723233035811745497171.to_s(36) # => "anotherrubyhacker"

fix.zero? → true or falsezero?

Returns true if fix is zero.

42.zero? # => false
0.zero? # => true

Chapter 27. Built-in Classes and Modules • 512

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Float < NumericClass

Float objects hold real numbers using the native architecture’s double-precision floating-point
representation.

Class Constants

Precision of Float (in decimal digits).DIG
The smallest Float such that 1.0+EPSILON != 1.0.EPSILON
Positive infinity.INFINITY
The number of mantissa digits (base RADIX).MANT_DIG
The largest Float.MAX
The maximum integer x such that 10x is a finite Float.MAX_10_EXP
The maximum integer x such that FLT_RADIXx-1 is a finite Float.MAX_EXP
The smallest Float.MIN
The minimum integer x such that 10x is a finite Float.MIN_10_EXP
The minimum integer x such that FLT_RADIXx-1 is a finite Float.MIN_EXP
A value that is not a valid number.NAN
The radix of floating-point representations.RADIX
The rounding mode for floating-point operations. Possible values include -1 if the mode is
indeterminate, 0 if rounding is toward zero, 1 if rounding is to nearest representable value,
2 if rounding is toward infinity, and 3 if rounding is toward minus infinity.

ROUNDS

Instance Methods

Arithmetic operations

Performs various arithmetic operations on flt.

Additionnumeric+flt
Subtractionnumeric–flt
Multiplicationnumeric*flt
Divisionnumeric/flt
Modulonumeric%flt
Exponentiationnumeric**flt
Unary minus-@flt

Comparisons

Compares flt to other numbers. <, <=, ==, >=, >.

flt <=> numeric→ -1, 0, +1, or nil<=>

Returns -1, 0, or +1 depending on whether flt is less than, equal to, or greater than numeric.

flt == obj→ true or false==

Returns true only if obj has the same value as flt. Contrast this with Float#eql?, which requires
obj to be a Float.

report erratum • discuss

Float • 513

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

1.0 == 1.0 # => true
(1.0).eql?(1.0) # => true
1.0 == 1 # => true
(1.0).eql?(1) # => false

flt.abs → numericabs

Returns the absolute value of flt.

(-34.56).abs # => 34.56
-34.56.abs # => 34.56

flt.ceil → intceil

Returns the smallest integer greater than or equal to flt.

1.2.ceil # => 2
2.0.ceil # => 2
(-1.2).ceil # => -1
(-2.0).ceil # => -2

flt.divmod(numeric) → arraydivmod

See Numeric#divmod on page 595.

flt.eql?(obj) → true or falseeql?

Returns true only if obj is a Floatwith the same value as flt. Contrast this with Float#==, which
performs type conversions.

1.0.eql?(1) # => false
1.0 == 1 # => true

flt.fdiv(number) → floatfdiv

Returns the floating-point result of dividing flt by number. Alias for Float#quo.

63.0.fdiv(9) # => 7.0
1234.56.fdiv(3.45) # => 357.8434782608695

flt.finite? → true or falsefinite?

Returns true if flt is a valid IEEE floating-point number (it is not infinite, and nan? is false).

(42.0).finite? # => true
(1.0/0.0).finite? # => false

flt.floor → intfloor

Returns the largest integer less than or equal to flt.

Chapter 27. Built-in Classes and Modules • 514

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

1.2.floor # => 1
2.0.floor # => 2
(-1.2).floor # => -2
(-2.0).floor # => -2

flt.infinite? → nil, -1, +1infinite?

Returns nil, -1, or +1 depending on whether flt is finite, -infinity, or +infinity.

(0.0).infinite? # => nil
(-1.0/0.0).infinite? # => -1
(+1.0/0.0).infinite? # => 1

flt.magnitude → floatmagnitude

Returns the magnitude of flt (the distance of flt from the origin of the number line). Synonym
for Float#abs. See also Complex#magnitude.

flt.modulo(numeric) → numericmodulo

Synonym for Float#%.

6543.21.modulo(137) # => 104.21000000000004
6543.21.modulo(137.24) # => 92.92999999999961

flt.nan? → true or falsenan?

Returns true if flt is an invalid IEEE floating-point number.

(-1.0).nan? # => false
(0.0/0.0).nan? # => true

flt.quo(number) → floatquo

Returns the floating-point result of dividing flt by number.

63.0.quo(9) # => 7.0
1234.56.quo(3.45) # => 357.8434782608695

flt.rationalize(‹epsilon›) → rationalrationalize

Converts flt to a rational number with an approximate precision of epsilon. If epsilon is not
given, a value will be chosen that preserves as many significant digits of the mantissa as
possible.

1.3.rationalize # => (13/10)
1.333.rationalize # => (1333/1000)
1.33333333333333333.rationalize # => (4/3)
1.3333.rationalize(0.001) # => (4/3)
1.3333.rationalize(1) # => (1/1)
Math::PI.rationalize(0.01) # => (22/7)

report erratum • discuss

Float • 515

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

flt.round(digits=0) → numericround

Rounds flt to the nearest integer if the parameter is omitted or zero or rounds to the given
number of digits.

1.5.round # => 2
(-1.5).round # => -2
3.14159.round # => 3
3.14159.round(4) # => 3.1416
3.14159.round(2) # => 3.14

flt.to_f → fltto_f

Returns flt.

flt.to_i → intto_i

Returns flt truncated to an integer.

1.5.to_i # => 1
(-1.5).to_i # => -1

flt.to_int → intto_int

Synonym for Float#to_i.

flt.to_r → numberto_r

Converts flt to a rational number.

1.5.to_r # => 3/2
(1.0/3).to_r # => 6004799503160661/18014398509481984

flt.to_s → stringto_s

Returns a string containing a representation of flt. As well as a fixed or exponential form of
the number, the call may return NaN, Infinity, and -Infinity.

flt.truncate → inttruncate

Synonym for Float#to_i.

flt.zero? → true or falsezero?

Returns true if flt is 0.0.

Chapter 27. Built-in Classes and Modules • 516

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

GCModule

The GC module provides an interface to Ruby’s mark and sweep garbage collection mecha-
nism. Some of the underlying methods are also available via theObjectSpacemodule, described
later on page 631.

Class Methods

GC.count → intcount

Returns a count of the number of times GC has run in the current process.

GC.count # => 4
res = ""
10_000.times { res += "wibble" }
GC.count # => 42

GC.disable → true or falsedisable

Disables garbage collection, returning true if garbage collection was already disabled.

GC.disable # => false
GC.disable # => true

GC.enable → true or falseenable

Enables garbage collection, returning true if garbage collection was disabled.

GC.disable # => false
GC.enable # => true
GC.enable # => false

GC.start → nilstart

Initiates garbage collection, unless manually disabled.

GC.start # => nil

GC.stat → stats_hashstat

Returns a hash containing GC statistics. The contents of this hash are implementation
dependend. The method may not be present in all Ruby implementations.

GC.stat # => {:count=>4, :heap_used=>43, :heap_length=>43, :heap_increment=>0,
.. :heap_live_num=>13938, :heap_free_num=>8659, :heap_final_num=>41,
.. :total_allocated_object=>36625, :total_freed_object=>22687}

GC.stress → true or falsestress

Returns the current value of the stress flag (see GC.stress=).

report erratum • discuss

GC • 517

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

GC.stress = true or false→ true or falsestress=

Ruby will normally run garbage collection periodically. Setting the stress flag to true forces
garbage collection to occur every time Ruby allocates a new object. This is typically used
only for testing extensions (and Ruby itself).

GC.stress = true

Instance Methods

garbage_collect → nilgarbage_collect

Equivalent to GC.start.

include GC
garbage_collect # => nil

Chapter 27. Built-in Classes and Modules • 518

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

GC::ProfilerModule

Provides low-level information on the state of garbage collection.

GC::Profiler.enable
animal = "cat"
22.times { animal *= 2 }
printf "Took %0.4fs in GC\n", GC::Profiler.total_time
GC::Profiler.report
GC::Profiler.disable

produces:

Took 0.0040s in GC
GC 8 invokes.
Index Invoke Use Size Total Total GC Time(ms)

Time(sec) (byte) Size(byte) Object
1 0.034 334160 700040 17501 1.286000
2 0.039 329320 700040 17501 1.358000
3 0.045 329320 700040 17501 1.351000
4 0.056 329320 700040 17501 1.347000

Class Methods

GC::Profiler.clear → nilclear

Clears existing profile data.

GC::Profiler.disable → nildisable

Disables the collection of profile data.

GC::Profiler.enable → nilenable

Enables the collection of profile data.

GC::Profiler.enabled? → true or falseenabled?

Returns true if profile collection is enabled.

GC::Profiler.raw_data → array of hashesraw_data

⇡New in 2.0⇣Return raw profiling data, in time order, as an array of hashes, where each hash contains a
data sample.

GC::Profiler.enable

animal = "cat"
22.times { animal *= 2 }

p GC::Profiler.raw_data.size
p GC::Profiler.raw_data[0, 2]

report erratum • discuss

GC::Profiler • 519

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

produces:

5
[{:GC_TIME=>1.0999999999997123e-05, :GC_INVOKE_TIME=>0.03359,
:HEAP_USE_SIZE=>691000, :HEAP_TOTAL_SIZE=>700040, :HEAP_TOTAL_OBJECTS=>17501,
:GC_IS_MARKED=>false}, {:GC_TIME=>0.0014199999999999977,
:GC_INVOKE_TIME=>0.033891, :HEAP_USE_SIZE=>331080, :HEAP_TOTAL_SIZE=>700040,
:HEAP_TOTAL_OBJECTS=>17501, :GC_IS_MARKED=>0}]

GC::Profiler.report(to=STDOUT) → nilreport

Writes the profile result to the given stream.

GC::Profiler.result → stringresult

Returns a string containing a summary of the profile data.

GC::Profiler.total_time → floattotal_time

Returns the total time spend in garbage collection during this profile run.

Chapter 27. Built-in Classes and Modules • 520

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Relies on: each, <=>HashClass

A Hash is a collection of key/value pairs. It is similar to an Array, except that indexing is done
via arbitrary keys of any object type, not an integer index. The order in which keys and/or
values are returned by the various iterators over hash contents will generally be the order
that those entries were initially inserted into the hash.

Hashes have a default value. This value is returned when an attempt is made to access keys
that do not exist in the hash. By default, this value is nil.

Mixes In

Enumerable: all?, any?, chunk, collect, collect_concat, count, cycle, detect, drop, drop_while, each_
cons, each_entry, each_slice, each_with_index, each_with_object, entries, find, find_all, find_index,
first, flat_map, grep, group_by, include?, inject, lazy, map, max, max_by, member?, min, min_by,
minmax, minmax_by, none?, one?, partition, reduce, reject, reverse_each, select, slice_before, sort, sort
_by, take, take_while, to_a, zip

Class Methods

Hash[‹key => value›*] → hsh
Hash[obj] → hsh

[]

Creates a new hash populated with the given objects. Equivalent to creating a hash using
the literal { key => value, ...}. Keys and values occur in pairs, so there must be an even number
of arguments. In the second form, obj must respond to to_hash.

Hash["a", 100, "b", 200] # => {"a"=>100, "b"=>200}
Hash["a" => 100, "b" => 200] # => {"a"=>100, "b"=>200}
{ "a" => 100, "b" => 200 } # => {"a"=>100, "b"=>200}

Hash.new → hsh
Hash.new(obj) → hsh

Hash.new {|hash, key| … } → hsh

new

Returns a new, empty hash. If this hash is subsequently accessed by a key that doesn’t cor-
respond to a hash entry, the value returned depends on the style of new used to create the
hash. In the first form, the access returns nil. If obj is specified, this single object will be used
for all default values. If a block is specified, it will be called with the hash object and the key,
and it should return the default value. It is the block’s responsibility to store the value in the
hash if required.

h = Hash.new("Go Fish")
h["a"] = 100
h["b"] = 200
h["a"] # => 100
h["c"] # => "Go Fish"
The following alters the single default object
h["c"].upcase! # => "GO FISH"
h["d"] # => "GO FISH"
h.keys # => ["a", "b"]

report erratum • discuss

Hash • 521

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

While this creates a new default object each time
h = Hash.new {|hash, key| hash[key] = "Go Fish: #{key}" }
h["c"] # => "Go Fish: c"
h["c"].upcase! # => "GO FISH: C"
h["d"] # => "Go Fish: d"
h.keys # => ["c", "d"]

Hash.try_convert(obj) → a_hash or niltry_convert

If obj is not already a hash, attempts to convert it to one by calling its to_hashmethod. Returns
nil if no conversion could be made.

class ConfigFile
def initialize(name)
@content = File.read(name)

end
def to_hash
result = {}
@content.scan(/^(\w+):\s*(.*)/) do |name, value|
result[name] = value

end
result

end
end
config = ConfigFile.new("some_config")
Hash.try_convert(config) # => {"user_name"=>"dave", "password"=>"wibble"}

Instance Methods

hsh == obj→ true or false==

Equality—Two hashes are equal if they contain the same number of keys and the value
corresponding to each key in the first hash is equal (using ==) to the value for the same key
in the second. If obj is not a hash, attempts to convert it using to_hash and returns obj == hsh.

h1 = { "a" => 1, "c" => 2 }
h2 = { 7 => 35, "c" => 2, "a" => 1 }
h3 = { "a" => 1, "c" => 2, 7 => 35 }
h4 = { "a" => 1, "d" => 2, "f" => 35 }
h1 == h2 # => false
h2 == h3 # => true
h3 == h4 # => false

hsh[key] → value[]

Element Reference—Retrieves the value stored for key. If not found, returns the default value
(see Hash.new for details).

h = { "a" => 100, "b" => 200 }
h["a"] # => 100
h["c"] # => nil

Chapter 27. Built-in Classes and Modules • 522

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

hsh[key] = value→ value[]=

Element Assignment—Associates the value given by value with the key given by key. key
should not have its value changed while it is in use as a key (a String passed as a key will be
duplicated and frozen).

h = { "a" => 100, "b" => 200 }
h["a"] = 9
h["c"] = 4
h # => {"a"=>9, "b"=>200, "c"=>4}

hsh.assoc(key) → [key, val] or nilassoc

Returns the two element array [key, hsh[key]] or nil if key does not reference an entry in the
hash.

h = { "a" => 100, "b" => 200 } # => {"a"=>100, "b"=>200}
h.assoc("a") # => ["a", 100]
h.assoc("c") # => nil

hsh.clear → hshclear

Removes all key/value pairs from hsh.

h = { "a" => 100, "b" => 200 } # => {"a"=>100, "b"=>200}
h.clear # => {}

hsh.compare_by_identity → hshcompare_by_identity

Hashes normally compare key values using eql?, which returns true if two objects have the
same value. If you call compare_by_identity, keys will instead be considered to be equal only if
they are the same object. Note that when strings are used as keys, they are automatically
duplicated, so you will never be able to retrieve a string-keyed entry if keys are compared
using identity.

key = "key"
h = { key => 100, 99 => "ninety nine" }
h[key] # => 100
h["key"] # => 100
h[99] # => "ninety nine"
h.compare_by_identity
h[key] # => nil
h["key"] # => nil
h[99] # => "ninety nine"

hsh.compare_by_identity? → true or falsecompare_by_identity?

Returns true if hsh compares keys by identity.

report erratum • discuss

Hash • 523

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

hsh.default(key=nil) → objdefault

Returns the default value, the value that would be returned by hsh[key] if key did not exist
in hsh. See also Hash.new and Hash#default=.

h = Hash.new # => {}
h.default # => nil
h.default(2) # => nil

h = Hash.new("cat") # => {}
h.default # => "cat"
h.default(2) # => "cat"

h = Hash.new {|h,k| h[k] = k.to_i*10} # => {}
h.default # => nil
h.default(2) # => 20

hsh.default = obj→ hshdefault=

Sets the value returned for a key that does not exist in the hash. Use Hash#default_proc= to set
the proc to be called to calculate a default.

h = { "a" => 100, "b" => 200 }
h.default = "Go fish"
h["a"] # => 100
h["z"] # => "Go fish"
This doesn't do what you might hope... (but see default_proc=)
h.default = lambda { |hash, key| hash[key] = key + key }
h[2] # => #<Proc:0x007fd91290e870@prog.rb:6 (lambda)>
h["cat"] # => #<Proc:0x007fd91290e870@prog.rb:6 (lambda)>

hsh.default_proc → obj or nildefault_proc

If Hash.new was invoked with a block, returns that block; otherwise, returns nil.

h = Hash.new {|h,k| h[k] = k*k } # => {}
p = h.default_proc # => #<Proc:0x007fbfe2847a20@prog.rb:1>
a = [] # => []
p.call(a, 2)
a # => [nil, nil, 4]

hsh.default_proc = proc→ proc or nildefault_proc=

Sets the proc to be called to calculate values to be returned when a hash is accessed with a

⇡New in 2.0⇣
key it does not contain. Removes the default proc if passed nil.

h = { "a" => 100, "b" => 200 }
h.default = "Go fish"
h["a"] # => 100
h["z"] # => "Go fish"
h.default_proc = lambda { |hash, key| hash[key] = key + key }
h[2] # => 4
h["cat"] # => "catcat"

Chapter 27. Built-in Classes and Modules • 524

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

hsh.delete(key) → value
hsh.delete(key) {|key| … } → value

delete

Deletes from hsh the entry whose key is to key, returning the corresponding value. If the key
is not found, returns nil. If the optional code block is given and the key is not found, passes
it the key and returns the result of block.

h = { "a" => 100, "b" => 200 }
h.delete("a") # => 100
h.delete("z") # => nil
h.delete("z") {|el| "#{el} not found" } # => "z not found"

hsh.delete_if ‹ {|key, value| … }› → hsh or enumeratordelete_if

Deletes every key/value pair from hsh for which block is true. Returns an Enumerator object if
no block is given.

h = { "a" => 100, "b" => 200, "c" => 300 }
h.delete_if {|key, value| key >= "b" } # => {"a"=>100}

hsh.each {|key, value| … } → hsheach

Calls block once for each key in hsh, passing the key and value as parameters.

h = { "a" => 100, "b" => 200 }
h.each {|key, value| puts "#{key} is #{value}" }

produces:

a is 100
b is 200

hsh.each_key {|key| … } → hsheach_key

Calls block once for each key in hsh, passing the key as a parameter.

h = { "a" => 100, "b" => 200 }
h.each_key {|key| puts key }

produces:

a
b

hsh.each_pair {|key, value| … } → hsheach_pair

Synonym for Hash#each.

hsh.each_value {|value| … } → hsheach_value

Calls block once for each key in hsh, passing the value as a parameter.

h = { "a" => 100, "b" => 200 }
h.each_value {|value| puts value }

report erratum • discuss

Hash • 525

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

produces:

100
200

hsh.empty? → true or falseempty?

Returns true if hsh contains no key/value pairs.

{}.empty? # => true

hsh.fetch(key ‹ , default›) → obj
hsh.fetch(key) {|key| … } → obj}

fetch

Returns a value from the hash for the given key. If the key can’t be found, several options
exist. With no other arguments, it will raise an IndexError exception; if default is given, then
that will be returned; if the optional code block is specified, then that will be run and its
result returned. fetch does not evaluate any default values supplied when the hash was cre-
ated—it looks only for keys in the hash.

h = { "a" => 100, "b" => 200 }
h.fetch("a") # => 100
h.fetch("z", "go fish") # => "go fish"
h.fetch("z") {|el| "go fish, #{el}"} # => "go fish, z"

The following example shows that an exception is raised if the key is not found and a default
value is not supplied.

h = { "a" => 100, "b" => 200 }
h.fetch("z")

produces:

from prog.rb:2:in `<main>'
prog.rb:2:in `fetch': key not found: "z" (KeyError)

hsh.flatten(depth = 1) → an_arrayflatten

Converts hsh to an array and then invokes Array#flatten! on the result.

h = { feline: ["felix", "tom"], equine: "ed" }
h.flatten # => [:feline, ["felix", "tom"], :equine, "ed"]
h.flatten(1) # => [:feline, ["felix", "tom"], :equine, "ed"]
h.flatten(2) # => [:feline, "felix", "tom", :equine, "ed"]

hsh.has_key?(key) → true or falsehas_key?

Returns true if the given key is present in hsh.

h = { "a" => 100, "b" => 200 }
h.has_key?("a") # => true
h.has_key?("z") # => false

Chapter 27. Built-in Classes and Modules • 526

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

hsh.has_value?(value) → true or falsehas_value?

Returns true if the given value is present for some key in hsh.

h = { "a" => 100, "b" => 200 }
h.has_value?(100) # => true
h.has_value?(999) # => false

hsh.include?(key) → true or falseinclude?

Synonym for Hash#has_key?.

hsh.index(value) → keyindex

Deprecated—use Hash#key instead.

hsh.invert → other_hashinvert

Returns a new hash created by using hsh’s values as keys and using the keys as values. If
hsh has duplicate values, the result will contain only one of them as a key—which one is not
predictable.

h = { "n" => 100, "m" => 100, "y" => 300, "d" => 200, "a" => 0 }
h.invert # => {100=>"m", 300=>"y", 200=>"d", 0=>"a"}

hsh.keep_if {|key, value| … } → hsh or enumeratorkeep_if

Modifies hsh by removing all elements for which block is false (see also Enumerable#select and
Hash.select!.) Returns an Enumerator object if no block is given.

a = { a: 1, b: 2, c: 3}
a.keep_if {|key, value| key =~ /[bc]/ } # => {:b=>2, :c=>3}
a # => {:b=>2, :c=>3}
a.keep_if {|key, value| value.odd? } # => {:c=>3}
a # => {:c=>3}

hsh.key(value) → key or nilkey

Returns the key of the first hash entry whose value is value.

h = { a: 100, b: 200, c: 100 }
h.key(100) # => :a
h.key(200) # => :b
h.key(300) # => nil

hsh.key?(key) → true or falsekey?

Synonym for Hash#has_key?.

report erratum • discuss

Hash • 527

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

hsh.keys → arraykeys

Returns a new array populated with the keys from this hash. See also Hash#values.

h = { "a" => 100, "b" => 200, "c" => 300, "d" => 400 }
h.keys # => ["a", "b", "c", "d"]

hsh.length → fixnumlength

Returns the number of key/value pairs in the hash.

h = { "d" => 100, "a" => 200, "v" => 300, "e" => 400 }
h.length # => 4
h.delete("a") # => 200
h.length # => 3

hsh.member?(key) → true or falsemember?

Synonym for Hash#has_key?.

hsh.merge(other_hash) → result_hash
hsh.merge(other_hash) {|key, old_val, new_val| … } → result_hash

merge

Returns a new hash containing the contents of other_hash and the contents of hsh. With no
block parameter, overwrites entries in hsh with duplicate keys with those from other_hash.
If a block is specified, it is called with each duplicate key and the values from the two hashes.
The value returned by the block is stored in the new hash.

h1 = { "a" => 100, "b" => 200 }
h2 = { "b" => 254, "c" => 300 }
h1.merge(h2) # => {"a"=>100, "b"=>254, "c"=>300}
h1.merge(h2) {|k,o,n| o} # => {"a"=>100, "b"=>200, "c"=>300}
h1 # => {"a"=>100, "b"=>200}

hsh.merge!(other_hash) → hsh
hsh.merge!(other_hash) {|key, old_val, new_val| … } → hsh

merge!

Like Hash#merge but changes the contents of hsh.

h1 = { "a" => 100, "b" => 200 }
h2 = { "b" => 254, "c" => 300 }
h1.merge!(h2) # => {"a"=>100, "b"=>254, "c"=>300}
h1 # => {"a"=>100, "b"=>254, "c"=>300}

hsh.rassoc(val) → [key, val] or nilrassoc

Searches hsh for the first element whose value is val, returning the key and value as a two-
element array. Returns nil if the value does not occur in the hash.

h = { "a" => 100, "b" => 200, "c" => 100 }
h.rassoc(100) # => ["a", 100]
h.rassoc(200) # => ["b", 200]

Chapter 27. Built-in Classes and Modules • 528

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

hsh.rehash → hshrehash

Rebuilds the hash based on the current hash values for each key. If values of key objects
have changed since they were inserted, this method will reindex hsh. If Hash#rehash is called
while an iterator is traversing the hash, an IndexError will be raised in the iterator.

a = ["a", "b"]
c = ["c", "d"]
h = { a => 100, c => 300 }
h[a] # => 100
a[0] = "z"
h[a] # => nil
h.rehash # => {["z", "b"]=>100, ["c", "d"]=>300}
h[a] # => 100

hsh.reject {|key, value| … } → hashreject

Same as Hash#delete_if but uses (and returns) a copy of hsh. Equivalent to hsh.dup.delete_if.

hsh.reject! ‹ {|key, value| … }› → hsh or enumeratorreject!

Equivalent to Hash#delete_if but returns nil if no changes were made. Returns an Enumerator
object if no block is given.

hsh.replace(other_hash) → hshreplace

Replaces the contents of hsh with the contents of other_hash.

h = { "a" => 100, "b" => 200 }
h.replace({ "c" => 300, "d" => 400 }) # => {"c"=>300, "d"=>400}

hsh.select {|key, value| … } → hashselect

Returns a new hash consisting of [key, value] pairs for which the block returns true. Also see
Hash#values_at. (This behavior differs from Ruby 1.8, which returns an array of arrays.)

h = { "a" => 100, "b" => 200, "c" => 300 }
h.select {|k,v| k > "a"} # => {"b"=>200, "c"=>300}
h.select {|k,v| v < 200} # => {"a"=>100}

hsh.select! {|key, value| … } → hsh, nil, or enumeratorselect!

Modifies hsh by removing all elements for which block is false (see also Enumerable#select and
Hash#keep_if). Returns nil if no changes were made or returns an Enumerator object if no block
is given. Otherwise, returns hsh.

a = { a: 1, b:2, c: 3}
a.select! {|key, value| value < 2 } # => {:a=>1}
a # => {:a=>1}
a.select! {|key, value| value < 3 } # => nil
a # => {:a=>1}

report erratum • discuss

Hash • 529

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

hsh.shift → array or nilshift

Removes a key/value pair from hsh and returns it as the two-item array [key, value]. If the
hash is empty, returns the default value, calls the default proc (with a key value of nil), or
returns nil.

h = { 1 => "a", 2 => "b", 3 => "c" }
h.shift # => [1, "a"]
h # => {2=>"b", 3=>"c"}

hsh.size → fixnumsize

Synonym for Hash#length.

hsh.sort → array
hsh.sort {|a, b| … } → array

sort

Converts hsh to a nested array of [key, value] arrays and sorts it, using Array#sort. (Technically
this is just the sort method of Enumerable. It’s documented here because it’s unusual for sort
to return a different type.)

h = { "a" => 20, "b" => 30, "c" => 10 }
h.sort # => [["a", 20], ["b", 30], ["c", 10]]
h.sort {|a,b| a[1]<=>b[1] } # => [["c", 10], ["a", 20], ["b", 30]]

hsh.store(key, value) → valuestore

Synonym for Element Assignment (Hash#[]=).

hsh.to_a → arrayto_a

Converts hsh to a nested array of [key, value] arrays.

h = { "c" => 300, "a" => 100, "d" => 400, "c" => 300 }
h.to_a # => [["c", 300], ["a", 100], ["d", 400]]

hsh.to_h → hshto_h

⇡New in 2.0⇣ Returns the hash. Converts the receiver to a hash if send to a subclass of Hash.

hsh.to_hash → hshto_hash

See the discussion in the ducktyping chapter on page 351.

hsh.to_s → stringto_s

Converts hsh to a string by converting the hash to an array of [key, value] pairs and then
converting that array to a string using Array#join with the default separator.

h = { "c" => 300, "a" => 100, "d" => 400, "c" => 300 }
h.to_s # => "{\"c\"=>300, \"a\"=>100, \"d\"=>400}"

Chapter 27. Built-in Classes and Modules • 530

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

hsh.update(other_hash) → hsh
hsh.update(other_hash) {|key, old_val,new_val| … } → hsh

update

Synonym for Hash#merge!.

hsh.value?(value) → true or falsevalue?

Synonym for Hash#has_value?.

hsh.values → arrayvalues

Returns an array populated with the values from hsh. See also Hash#keys.

h = { "a" => 100, "b" => 200, "c" => 300 }
h.values # => [100, 200, 300]

hsh.values_at(‹key›+) → arrayvalues_at

Returns an array consisting of values for the given key(s). Will insert the default value for
keys that are not found.

h = { "a" => 100, "b" => 200, "c" => 300 }
h.values_at("a", "c") # => [100, 300]
h.values_at("a", "c", "z") # => [100, 300, nil]
h.default = "cat"
h.values_at("a", "c", "z") # => [100, 300, "cat"]

report erratum • discuss

Hash • 531

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Integer < NumericClass

Subclasses: Bignum, Fixnum

Integer is the basis for the two concrete classes that hold whole numbers, Bignum and Fixnum.

Instance Methods

int.ceil → integerceil

Synonym for Integer#to_i.

int.chr → string
int.chr(encoding) → string

chr

Returns a string containing the character represented by the receiver’s value. Values less
that 128 are always returned as ASCII. The encoding of strings representing higher values
can be set using the optional parameter.

65.chr # => "A"
?a.chr # => "a"
233.chr # => "\xE9"
233.chr(Encoding::UTF_8) # => "é"

int.denominator → integerdenominator

Converts the denominator of the rational representation of int.

1.denominator # => 1
1.5.denominator # => 2
num = 1.0/3
num.to_r # => (6004799503160661/18014398509481984)
num.denominator # => 18014398509481984

int.downto(integer) {|i| … } → intdownto

Iterates block, passing decreasing values from int down to and including integer.

5.downto(1) {|n| print n, ".. " }
print " Liftoff!\n"

produces:

5.. 4.. 3.. 2.. 1.. Liftoff!

int.even? → true or falseeven?

Returns true if int is even.

1.even? # => false
2.even? # => true

Chapter 27. Built-in Classes and Modules • 532

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

int.floor → integerfloor

Returns the largest integer less than or equal to int. Equivalent to Integer#to_i.

1.floor # => 1
(-1).floor # => -1

int.gcd(other_integer) → integergcd

Returns the greatest common denominator of int and other_integer.

10.gcd(15) # => 5
10.gcd(16) # => 2
10.gcd(17) # => 1

int.gcdlcm(other_integer) → [gcd, lcm]gcdlcm

Returns both the GCD and the LCM of int and other_integer.

10.gcdlcm(15) # => [5, 30]
10.gcdlcm(16) # => [2, 80]
10.gcdlcm(17) # => [1, 170]

int.integer? → trueinteger?

Always returns true.

int.lcm(other_integer) → integerlcm

Returns the lowest common multiple of int and other_integer.

10.lcm(15) # => 30
10.lcm(20) # => 20
10.lcm(-2) # => 10

int.next → integernext

Returns the Integer equal to int+1.

1.next # => 2
(-1).next # => 0

int.numerator → integernumerator

Converts the numerator of the rational representation of int.

1.numerator # => 1
1.5.numerator # => 3
num = 1.0/3
num.to_r # => (6004799503160661/18014398509481984)
num.numerator # => 6004799503160661

report erratum • discuss

Integer • 533

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

int.odd? → true or falseodd?

Returns true if int is odd.

1.odd? # => true
2.odd? # => false

int.ord → intord

The ord method was added to assist in the migration from Ruby 1.8 to 1.9. It allows ?A.ord to
return 65. If ?A returns a string, ord will be called on that string and return 65; if ?A returns
an integer, then Numeric#ord is called, which is basically a no-op.

int.pred → integerpred

Returns int - 1.

int.rationalize(eps=nil) → rationalrationalize

Returns the rational number int/1. The argument is always ignored. Effectively a synonym
for Integer.to_r.

99.rationalize # => (99/1)
-12345678.rationalize(99) # => (-12345678/1)

int.round → integerround

Synonym for Integer#to_i.

int.succ → integersucc

Synonym for Integer#next.

int.times {|i| … } → inttimes

Iterates block int times, passing in values from zero to int - 1.

5.times do |i|
print i, " "

end

produces:

0 1 2 3 4

int.to_i → intto_i

Returns int.

Chapter 27. Built-in Classes and Modules • 534

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

int.to_int → integerto_int

Synonym for Integer#to_i.

int.to_r → numberto_r

Converts int to a rational number.

1.to_r # => 1/1
-1.to_r # => -1/1

int.truncate → integertruncate

Synonym for Integer#to_i.

int.upto(integer) {|i| … } → intupto

Iterates block, passing in integer values from int up to and including integer.

5.upto(10) {|i| print i, " " }

produces:

5 6 7 8 9 10

report erratum • discuss

Integer • 535

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

IOClass

Subclasses: File

Class IO is the basis for all input and output in Ruby. An I/O stream may be duplexed (that
is, bidirectional) and so may use more than one native operating system stream.

Many of the examples in this section use class File, the only standard subclass of IO. The two
classes are closely associated.

As used in this section, portname may take any of the following forms:

• A plain string represents a filename suitable for the underlying operating system.

• A string starting with | indicates a subprocess. The remainder of the string following |
is invoked as a process with appropriate input/output channels connected to it.

• A string equal to |- will create another Ruby instance as a subprocess.

The IO class uses the Unix abstraction of file descriptors (fds), small integers that represent
open files. Conventionally, standard input has an fd of 0, standard output has an fd of 1,
and standard error has an fd of 2.

Ruby will convert path names between different operating system conventions if possible.
For instance, on Windows the filename /gumby/ruby/test.rbwill be opened as \gumby\ruby\test.rb.
When specifying a Windows-style filename in a double-quoted Ruby string, remember to
escape the backslashes.

"c:\\gumby\\ruby\\test.rb"

Our examples here will use the Unix-style forward slashes; File::SEPARATOR can be used to
get the platform-specific separator character.

I/O ports may be opened in any one of several different modes, which are shown in this
section as mode. This mode string must be one of the values listed in Table 16, Mode values,
on page 494. As of Ruby 1.9, the mode may also contain information on the external and
internal encoding of the data associated with the port. If an external encoding is specified,
Ruby assumes that the data it received from the operating system uses that encoding. If no
internal encoding is given, strings read from the port will have this encoding. If an internal
encoding is given, data will be transcoded from the external to the internal encoding, and
strings will have that encoding. The reverse happens on output.

Mixes In

Enumerable: all?, any?, chunk, collect, collect_concat, count, cycle, detect, drop, drop_while, each_
cons, each_entry, each_slice, each_with_index, each_with_object, entries, find, find_all, find_index,
first, flat_map, grep, group_by, include?, inject, lazy, map, max, max_by, member?, min, min_by,
minmax, minmax_by, none?, one?, partition, reduce, reject, reverse_each, select, slice_before, sort, sort
_by, take, take_while, to_a, zip

Chapter 27. Built-in Classes and Modules • 536

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Class Methods

IO.binread(name ‹ , length ‹ , offset››) → stringbinread

Opens name with mode rb:ASCII-8BIT, reads length bytes starting at offset, and then closes the
file. The bytes are returned in a string with ASCII-8BIT encoding. offset defaults to 0, and length
defaults to the number of bytes between offset and the end of the file.

IO.binread("testfile", 20) # => "This is line one\nThi"
IO.binread("testfile", 20, 20) # => "s is line two\nThis i"
str = IO.binread("testfile")
str.encoding # => #<Encoding:ASCII-8BIT>
str1 = IO.read("testfile")
str1.encoding # => #<Encoding:UTF-8>

IO.binwrite(portname, string ‹ , offset› ‹ , options›) → intbinwrite

Opens the file for writing with mode wb:ASCII-8BIT, optionally seeks to the given offset, and
then writes string. Returns the number of bytes written. The file is truncated before writing
if no offset is specified.

options is an optional hash used to pass parameters to the underlying open call used by write.
See IO.foreach for details.

IO.copy_stream(from, to ‹ , max_length ‹ , offset››) → integercopy_stream

Copies from to to. These may be specified either as filenames or as open I/O streams. You
may optionally specify a maximum length to copy and a byte offset to start the copy from.
Returns the number of bytes copied.

IO.copy_stream("testfile", "newfile", 10, 10)
ip = File.open("/etc/passwd")
op = File.open("extract", "w")
op.puts "First 20 characters of /etc/passwd"
IO.copy_stream(ip, op, 20)
op.puts "\nEnd of extract"
op.close
puts File.readlines("extract")

produces:

First 20 characters of /etc/passwd
##
User Database
#
End of extract

IO.for_fd(int, mode) → iofor_fd

Synonym for IO.new.

report erratum • discuss

IO • 537

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

IO.foreach(portname, separator=$/ ‹ , options›) {|line| … } → nil
IO.foreach(portname, limit ‹ , options›) {|line| … } → nil

IO.foreach(portname, separator, limit ‹ , options›) {|line| … } → nil

foreach

ignored if this one is present

Executes the block for every line in the named I/O port, where lines are separated by separator.
If separator is nil, the entire file is passed as a single string. If the limit argument is present
and positive, at most that many characters will be returned in each iteration. If only the
limit argument is given and that argument is negative, then encodings will be ignored while
looking for the record separator, which increases performance.

IO.foreach("testfile") {|x| puts "GOT: #{x}" }

produces:

GOT: This is line one
GOT: This is line two
GOT: This is line three
GOT: And so on...

options is an optional hash used to pass parameters to the underlying open call used by read.
It may contain one or more of the following:

The encoding for the string, either as "external" or "external:internal"encoding:
The mode string to be passed to openmode:
An array containing the arguments to be passed to open; other options areopen_args:

IO.foreach("testfile", nil, mode: "rb", encoding: "ascii-8bit") do |content|
puts content.encoding

end
IO.foreach("testfile", nil, open_args: ["r:iso-8859-1"]) do |content|
puts content.encoding

end

produces:

ASCII-8BIT
ISO-8859-1

IO.new(integer_fd, mode="r" ‹ , options›) → ionew

Returns a new IO object (a stream) for the given integer file descriptor and mode. The mode
and options may be given as for File.new (see Table 16,Mode values, on page 494, and see Table
17, File and I/O open options, on page 495). See also IO#fileno and IO.for_fd.

a = IO.new(2, "w") # '2' is standard error
STDERR.puts "Hello"
a.puts "World"

produces:

Hello
World

Chapter 27. Built-in Classes and Modules • 538

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

encoding: utf-8
b = IO.new(2, mode: "w", encoding: "utf-8", crlf_newline: true)
b.puts "olé"

produces:

olé

IO.open(‹args›+) → io
IO.open(‹args›+) {|io| … } → obj

open

IO.open creates a new IO object, passing args to that object’s initialize method. If no block is
given, simply returns that object. If a block is given, passes the IO object to the block. When
the block exits (even via exception or program termination), the io object will be closed. If
the block is present, IO.open returns the value of the block. The rough implementation is as
follows:

class IO
def open(*args)
file = return_value = self.new(*args)
begin

return_value = yield(file)
ensure

file.close
end if block_given?
return_value

end
end

Note that subclasses of IO such as File can use open even though their constructors take different
parameters. Calling File.open(...) will invoke File’s constructor, not IO’s.

IO.open(1, "w") do |io|
io.puts "Writing to stdout"

end

produces:

Writing to stdout

File.open("testfile", mode: "r", encoding: "utf-8") do |f|
puts f.read

end

produces:

This is line one
This is line two
This is line three
And so on...

report erratum • discuss

IO • 539

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

IO.pipe → [read_io, write_io]
IO.pipe(encoding_string ‹ , encoding_options›) → [read_io, write_io]

IO.pipe(external, internal ‹ , encoding_options›) → [read_io, write_io]
IO.pipe(... as above ...) {|read_io, write_io| … }

pipe

Creates a pair of pipe endpoints (connected to each other) and returns them as a two-element
array of IO objects. write_io is automatically placed into sync mode. Not available on all
platforms.

Encodings for the pipes can be specified as a string ("external" or "external:internal") or as two
arguments specifying the external and internal encoding names (or encoding objects). If both
external and internal encodings are present, the encoding_options parameter specifies conver-
sion options (see Table 22, Options to encode and encode!, on page 675).

If a block is given, it is passed the two I/O objects. They will be closed at the end of the block
if they are still open.

In the following example, the two processes close the ends of the pipe that they are not using.
This is not just a cosmetic nicety. The read end of a pipe will not generate an end-of-file
condition if any writers have the pipe still open. In the case of the parent process, the rd.read
will never return if it does not first issue a wr.close.

IO.pipe do |rd, wr|
if fork
wr.close
puts "Parent got: <#{rd.read}>"
rd.close
Process.wait

else
rd.close
puts "Sending message to parent"
wr.write "Hi Dad"
wr.close

end
end

produces:

Sending message to parent
Parent got: <Hi Dad>

IO.popen(cmd, mode="r") → io
IO.popen(cmd, mode="r") {|io| … } → obj

popen

Runs the specified command string as a subprocess; the subprocess’s standard input and
output will be connected to the returned IO object. The parameter cmdmay be a string or (in
Ruby 1.9) an array of strings. In the latter case, the array is used as the argv parameter for
the new process, and no special shell processing is performed on the strings. In addition, if
the array starts with a hash, it will be used to set environment variables in the subprocess,
and if it ends with a hash, the hash will be used to set execution options for the subprocess.
See Object#spawn for details. If cmd is a string, it will be subject to shell expansion. If the cmd
string starts with a minus sign (-) and the operating system supports fork(2), then the current
Ruby process is forked. The default mode for the new file object is r, but mode may be set to
any of the modes in Table 16, Mode values, on page 494.

Chapter 27. Built-in Classes and Modules • 540

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://www.freebsd.org/cgi/man.cgi?query=fork&sektion=2
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

If a block is given, Ruby will run the command as a child connected to Ruby with a pipe.
Ruby’s end of the pipe will be passed as a parameter to the block. In this case, IO.popen returns
the value of the block.

If a block is given with a cmd_string of "-", the block will be run in two separate processes:
once in the parent and once in a child. The parent process will be passed the pipe object as
a parameter to the block, the child version of the block will be passed nil, and the child’s
standard in and standard out will be connected to the parent through the pipe. Not available
on all platforms. Also see the Open3 library on page 782 and Object#exec on page 615.

pipe = IO.popen("uname")
p(pipe.readlines)
puts "Parent is #{Process.pid}"
IO.popen("date") {|pipe| puts pipe.gets }
IO.popen("-") {|pipe| STDERR.puts "#{Process.pid} is here, pipe=#{pipe}" }
Process.waitall

produces:

["Darwin\n"]
Parent is 23465
Mon May 27 12:32:20 CDT 2013
23465 is here, pipe=#<IO:0x007f935290e768>
23468 is here, pipe=

Here’s an example that uses the Ruby 1.9 options to merge standard error and standard
output into a single stream. Note that buffering means that the error output comes back
ahead of the standard output.

pipe = IO.popen(["bc", { STDERR => STDOUT }], "r+")
pipe.puts '1 + 3; bad_function()'
pipe.close_write
puts pipe.readlines

produces:

Runtime error (func=(main), adr=8): Function bad_function not defined.
4

IO.read(portname, ‹ length=$/ ‹ , offset›› ‹ , options›) → stringread

Opens the file, optionally seeks to the given offset, and then returns length bytes (defaulting
to the rest of the file). read ensures the file is closed before returning.

options is an optional hash used to pass parameters to the underlying open call used by read.
See IO.foreach for details.

IO.read("testfile") # => "This is line one\nThis is line two\nThis is
.. line three\nAnd so on...\n"

IO.read("testfile", 20) # => "This is line one\nThi"
IO.read("testfile", 20, 10) # => "ne one\nThis is line "

report erratum • discuss

IO • 541

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

IO.readlines(portname, separator=$/ ‹ , options›) → array
IO.readlines(portname, limit ‹ , options›) → array

IO.readlines(portname, separator, limit ‹ , options›) → array

readlines

Reads the entire file specified by portname as individual lines and returns those lines in an
array. Lines are separated by separator. If separator is nil, the entire file is passed as a single
string. If the limit argument is present and positive, at most that many characters will be
returned in each iteration. If only the limit argument is given and that argument is negative,
then encodings will be ignored while looking for the record separator, which increases per-
formance. options is an optional hash used to pass parameters to the underlying open call
used by read. See IO.foreach for details.

a = IO.readlines("testfile")
a[0] # => "This is line one\n"

IO.select(read_array ‹ , write_array ‹ , error_array ‹ , timeout›››) → array or nilselect

See Object#select on page 624.

IO.sysopen(path, ‹mode ‹ , perm››) → intsysopen

Opens the given path, returning the underlying file descriptor as a Fixnum.

IO.sysopen("testfile") # => 5

IO.try_convert(obj) → an_io or niltry_convert

If obj is not already an I/O object, attempts to convert it to one by calling its to_io method.
Returns nil if no conversion could be made.

class SillyIOObject
def to_io
STDOUT

end
end
IO.try_convert(SillyIOObject.new) # => #<IO:<STDOUT>>
IO.try_convert("Shemp") # => nil

IO.write(portname, string ‹ , offset› ‹ , options›) → intwrite

Opens the file for writing, optionally seeks to the given offset, and then writes string. Returns
the number of bytes written. The file is truncated before writing if no offset is specified.

options is an optional hash used to pass parameters to the underlying open call used by read.
See IO.foreach for details.

IO.write("somefile", "my string") # => 9
IO.read("somefile") # => "my string"
IO.write("somefile", "adden", 1) # => 5
IO.read("somefile") # => "maddening"

Chapter 27. Built-in Classes and Modules • 542

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Instance Methods

io << obj→ io<<

String Output—Writes obj to io. obj will be converted to a string using to_s.

STDOUT << "Hello " << "world!\n"

produces:

Hello world!

io.advise(advice, offset=0, length=0) → niladvise

Help your operating system optimize I/O by telling it how you plan to access this I/O object.
The first parameter is a symbol from this table:

No particular access pattern is being given.:normal
The portion will be read sequentially.:sequential
The portion will be read in random order.:random
The portion will be needed in the near future.:willneed
The portion will not be needed in the near future.:dontneed
The portion will not be reused in the near future.:noreuse

Table 19—advice parameter to advise

The second and third parameters denote the region of the file to be accessed. Their default
values of zeroes mean the entire file. See the posix_fadvise(2) man page for details.

io.autoclose = true or false→ ioautoclose=

Normally when an I/O object is finalized, the corresponding fd is automatically closed. By
setting autoclose=false, you prevent this behavior. This is useful if you’re using an I/O object
to access an fd that’s open elsewhere in your program, and you don’t want to affect that
other object.

io.autoclose? → true or falseautoclose?

Returns the state of the autoclose flag for io.

io.binmode → iobinmode

Puts io into binary mode. It is more common to use the "b"modifier in the mode string to set
binary mode when you open a file. Binary mode is required when reading or writing files
containing bit sequences that are not valid in the encoding of the file. Once a stream is in
binary mode, it cannot be reset to nonbinary mode.

report erratum • discuss

IO • 543

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

io.binmode? → true or falsebinmode?

Returns true if io is in binary mode.

f = File.open("/etc/passwd")
f.binmode? # => false
f = File.open("/etc/passwd", "rb:binary")
f.binmode? # => true

io.bytes → enumeratorbytes

Returns an enumerator that iterates over the bytes (not characters) in io, returning each as

⇡New in 2.0⇣
an integer. See also IO#getbyte. Deprecated in Ruby 2.0.

enum = File.open("testfile").bytes # => prog.rb:1: warning: IO#bytes is
.. deprecated; use #each_byte instead

enum.first(10) # => [84, 104, 105, 115, 32, 105, 115, 32,
.. 108, 105]

io.chars → enumeratorchars

⇡New in 2.0⇣
Returns an enumerator that allows iteration over the characters in io. Deprecated in Ruby 2.0.

enum = File.open("testfile").chars # => prog.rb:1: warning: IO#chars is
.. deprecated; use #each_char instead

enum.first(7) # => ["T", "h", "i", "s", " ", "i", "s"]

io.close → nilclose

Closes io and flushes any pending writes to the operating system. The stream is unavailable
for any further data operations; an IOError is raised if such an attempt is made. I/O streams
are automatically closed when they are claimed by the garbage collector.

io.close_on_exec? → true or falseclose_on_exec?

Returns the state of the close on exec flag for io. Raises NotImplemented if not available.

io.close_on_exec = true or false→ nilclose_on_exec=

Sets the close on exec flag for io. Raises NotImplemented if not available. I/O objects with this
flag set will be closed across exec() calls.

io.close_read → nilclose_read

Closes the read end of a duplex I/O stream (in other words, one that contains both a read
and a write stream, such as a pipe). Raises IOError if the stream is not duplexed.

f = IO.popen("/bin/sh","r+")
f.close_read
f.readlines

Chapter 27. Built-in Classes and Modules • 544

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

produces:

from prog.rb:3:in `<main>'
prog.rb:3:in `readlines': not opened for reading (IOError)

io.close_write → nilclose_write

Closes the write end of a duplex I/O stream (in other words, one that contains both a read
and a write stream, such as a pipe). Will raise IOError if the stream is not duplexed.

io.closed? → true or falseclosed?

Returns true if io is completely closed (for duplex streams, both reader and writer) and returns
false otherwise.

f = File.new("testfile")
f.close # => nil
f.closed? # => true
f = IO.popen("/bin/sh","r+")
f.close_write # => nil
f.closed? # => false
f.close_read # => nil
f.closed? # => true

io.codepoints {|codepoint| … } → io
io.codepoints → enumerator

codepoints

⇡New in 2.0⇣
Synonym for IO#each_codepoint. Deprecated in Ruby 2.0.

io.each(separator=$/) {|line| … } → io
io.each(limit) {|line| … } → io

io.each(separator, limit) {|line| … } → io
io.each(args..) → enum

each

Executes the block for every line in io, where lines are separated by separator. If separator is
nil, the entire file is passed as a single string. If the limit argument is present and positive, at
most that many characters will be returned in each iteration. If only the limit argument is
given and that argument is negative, then encodings will be ignored while looking for the
record separator, which increases performance. Returns an enumerator if no block is given.

f = File.new("testfile")
f.each {|line| puts "#{f.lineno}: #{line}" }

produces:

1: This is line one
2: This is line two
3: This is line three
4: And so on...

report erratum • discuss

IO • 545

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

io.each_byte {|byte| … } → nil
io.each_byte → enum

each_byte

Calls the given block once for each byte (a Fixnum in the range 0 to 255) in io, passing the byte
as an argument. The stream must be opened for reading, or IOerror will be raised. Returns
an enumerator if no block is given.

f = File.new("testfile")
checksum = 0
f.each_byte {|x| checksum ^= x } # => #<File:testfile>
checksum # => 12

io.each_char {|char| … } → nil
io.each_char → enum

each_char

Calls the given block, passing it each character (a string of length 1) in io. The stream must
be opened for reading, or an IOerrorwill be raised. Returns an enumerator if no block is given.

f = File.new("testfile")
result = []
f.each_char {|ch| result << ch} # => #<File:testfile>
result[0, 5] # => ["T", "h", "i", "s", " "]

io.each_codepoint {|codepoint| … } → io
io.each_codepoint → enumerator

each_codepoint

Iterates over the codepoints in io, returning each as an integer. With no block, an enumerator
is returned.

#encoding: utf-8
File.open("/tmp/testfile", "w:utf-8") { |f| f.puts "∂og" }
File.open("/tmp/testfile") do |f|
f.each_codepoint { |codepoint| printf "%#X ", codepoint }

end

produces:

0X2202 0X6F 0X67 0XA

io.each_line(...) {|line| … } → ioeach_line

Synonym for IO#each.

io.eof → true or falseeof

Returns true if io is at the end of the file. The stream must be opened for reading, or an IOError
will be raised.

f = File.open("testfile")
f.eof # => false
dummy = f.readlines
f.eof # => true

Chapter 27. Built-in Classes and Modules • 546

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

io.eof? → true or falseeof?

Synonym for IO#eof.

io.external_encoding → encodingexternal_encoding

Returns the encoding object representing the external encoding of this I/O object.

io = File.open("testfile", "r:utf-8:iso-8859-1")
io.external_encoding # => #<Encoding:UTF-8>
io.internal_encoding # => #<Encoding:ISO-8859-1>

io.fcntl(cmd, arg) → intfcntl

Provides a mechanism for issuing low-level commands to control or query file-oriented I/O
streams. Commands (which are integers), arguments, and the result are platform dependent.
If arg is a number, its value is passed directly. If it is a string, it is interpreted as a binary
sequence of bytes. On Unix platforms, see fcntl(2) for details. See the Fcntl module on page
754 for symbolic names for the first argument. Not implemented on all platforms.

io.fdatasync → 0fdatasync

Uses the operating system’s fdatasync(2) call to write all buffered data associated with io.
Raises an exception if the operating system does not support fdatasync(2).

io.fileno → intfileno

Returns an integer representing the numeric file descriptor for io.

STDIN.fileno # => 0
STDOUT.fileno # => 1

io.flush → ioflush

Flushes any buffered data within io to the underlying operating system (note that this is
Ruby internal buffering only; the OS may buffer the data as well).

STDOUT.print "no newline"
STDOUT.flush

produces:

no newline

io.fsync → 0 or nilfsync

Immediately writes all buffered data in io to disk. Returns nil if the underlying operating
system does not support fsync(2). Note that fsyncdiffers from using IO#sync=. The latter ensures
that data is flushed from Ruby’s buffers but does not guarantee that the underlying operating
system actually writes it to disk.

report erratum • discuss

IO • 547

Download from Wow! eBook <www.wowebook.com>

http://www.freebsd.org/cgi/man.cgi?query=fcntl&sektion=2
http://www.freebsd.org/cgi/man.cgi?query=fdatasync&sektion=2
http://www.freebsd.org/cgi/man.cgi?query=fdatasync&sektion=2
http://www.freebsd.org/cgi/man.cgi?query=fsync&sektion=2
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

io.getbyte → fixnum or nilgetbyte

Returns the next 8-bit byte (as opposed to an encoded character) from io or returns nil at the
end of the file. See also IO#bytes.

file = File.open("testfile")
file.getbyte # => 84
file.getbyte # => 104

io.getc → string or nilgetc

Gets the next character from io. Returns nil if called at the end of the file.

f = File.new("testfile")
f.getc # => "T"
f.getc # => "h"

io.gets(separator=$/) → string or nil
io.gets(limit) → string or nil

io.gets(separator, limit) → string or nil

gets

Reads the next “line” from the I/O stream; lines are separated by separator. A separator of nil
reads the entire contents, and a zero-length separator reads the input a paragraph at a time
(two or more successive newlines in the input separate paragraphs). If the limit argument is
present and positive, at most that many characters will be returned in each iteration. If only
the limit argument is given and that argument is negative, then encodings will be ignored
while looking for the record separator, which increases performance. The line read in will
be returned and also assigned to $_ (although the setting of $_ is considered ugly—it may
be removed in future). Returns nil if called at the end of the file.

file = File.new("testfile")
file.gets # => "This is line one\n"
$_ # => "This is line one\n"
file.gets(10) # => "This is li"
file.gets("line") # => "ne two\nThis is line"
file.gets("line", 4) # => " thr"

io.internal_encoding → encodinginternal_encoding

Returns the encoding object representing the internal encoding of this I/O object.

io = File.open("testfile", "r:utf-8:iso-8859-1")
io.external_encoding # => #<Encoding:UTF-8>
io.internal_encoding # => #<Encoding:ISO-8859-1>

io.ioctl(cmd, arg) → intioctl

Provides a mechanism for issuing low-level commands to control or query I/O devices. The
command (which is an integer), arguments, and results are platform dependent. If arg is a
number, its value is passed directly. If it is a string, it is interpreted as a binary sequence of
bytes. On Unix platforms, see ioctl(2) for details. Not implemented on all platforms.

Chapter 27. Built-in Classes and Modules • 548

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://www.freebsd.org/cgi/man.cgi?query=ioctl&sektion=2
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

io.isatty → true or falseisatty

Returns true if io is associated with a terminal device (tty) and returns false otherwise.

File.new("testfile").isatty # => false
File.new("/dev/tty").isatty # => true

io.lineno → intlineno

Returns the current line number in io, which must be opened for reading. lineno counts the
number of times gets is called, rather than the number of newlines encountered. The two
values will differ if gets is called with a separator other than newline. See also the $. variable.

f = File.new("testfile")
f.lineno # => 0
f.gets # => "This is line one\n"
f.lineno # => 1
f.gets # => "This is line two\n"
f.lineno # => 2

io.lineno = int→ intlineno=

Manually sets the current line number to the given value. $. is updated only on the next read.

f = File.new("testfile")
f.gets # => "This is line one\n"
$. # => 1
f.lineno = 1000
f.lineno # => 1000
$. # => 1
f.gets # => "This is line two\n"
$. # => 1001

io.lines(separator=$/) → enumerator
io.lines(limit) → enumerator

io.lines(separator, limit) → enumerator

lines

Returns an enumerator that allows iteration over the lines in io, where lines are terminated
by separator. If separator is nil, the entire file is passed as a single string. If the limit argument
is present and positive, at most that many characters will be returned in each iteration. If
only the limit argument is given and that argument is negative, then encodings will be ignored

⇡New in 2.0⇣
while looking for the record separator, which increases performance. Deprecated in Ruby 2.0.

io.pid → intpid

Returns the process ID of a child process associated with io. This will be set by IO.popen.

report erratum • discuss

IO • 549

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

pipe = IO.popen("-")
if pipe
STDERR.puts "In parent, child pid is #{pipe.pid}"
pipe.close

else
STDERR.puts "In child, pid is #{$$}"

end

produces:

In parent, child pid is 23528
In child, pid is 23528

io.pos → intpos

Returns the current offset (in bytes) of io.

f = File.new("testfile")
f.pos # => 0
f.gets # => "This is line one\n"
f.pos # => 17

io.pos = int→ 0pos=

Seeks to the given position (in bytes) in io.

f = File.new("testfile")
f.pos = 17
f.gets # => "This is line two\n"

io.print(‹obj=$_›*) → nilprint

Writes the given object(s) to io. The stream must be opened for writing. If the output record
separator ($\) is not nil, it will be appended to the output. If no arguments are given, prints
$_. Objects that aren’t strings will be converted by calling their to_s method. Returns nil.

STDOUT.print("This is ", 100, " percent.\n")

produces:

This is 100 percent.

io.printf(format ‹ , obj›*) → nilprintf

Formats and writes to io, converting parameters under control of the format string. See the
description Object#sprintf on page 626 for details.

io.putc(obj) → objputc

If obj is a string, write its first character. Otherwise treat obj as a number, and write its low-
order byte as a character. Note that this is not encoding safe, because the byte may be just
part of a multibyte sequence.

Chapter 27. Built-in Classes and Modules • 550

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

#encoding: utf-8
STDOUT.putc "ABC"
STDOUT.putc "∂og"
STDOUT.putc 65

produces:

A∂A

io.puts(‹obj›*) → nilputs

Writes the given objects to io as with IO#print. Writes a newline after any that do not already
end with a newline sequence. If called with an array argument, writes each element on a
new line. If called without arguments, outputs a single newline.

STDOUT.puts("this", "is", "a", "test")

produces:

this
is
a
test

io.read(‹ int ‹ , buffer››) → string or nilread

Reads at most int bytes from the I/O stream or to the end of the file if int is omitted. Returns
nil if called at the end of the file. If buffer (a string) is provided, it is resized accordingly, and
input is read directly into it.

f = File.new("testfile")
f.read(16) # => "This is line one"
str = "cat"
f.read(10, str) # => "\nThis is l"
str # => "\nThis is l"

io.readbyte → fixnumreadbyte

Returns the next 8-bit byte (as opposed to an encoded character) from io, raising EOFError at
end of file. See also IO#bytes.

io.readchar → stringreadchar

Reads a character as with IO#getc but raises an EOFError on end of file.

io.readline(separator=$/) → string or nil
io.readline(limit) → string or nil

io.readline(separator, limit) → string or nil

readline

Reads a line as with IO#gets but raises an EOFError on end of file.

report erratum • discuss

IO • 551

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

io.readlines(separator=$/) → array
io.readlines(limit) → array

io.readlines(separator, limit) → array

readlines

Returns all of the lines in io as an array. Lines are separated by the optional separator. If sepa-
rator is nil, the entire file is passed as a single string. If the limit argument is present and
positive, at most that many characters will be returned in each iteration. If only the limit
argument is given and that argument is negative, then encodings will be ignored while
looking for the record separator, which increases performance.

f = File.new("testfile")
f.readlines # => ["This is line one\n", "This is line two\n", "This is

.. line three\n", "And so on...\n"]
f = File.new("testfile")
f.readlines("line") # => ["This is line", " one\nThis is line", " two\nThis is

.. line", " three\nAnd so on...\n"]
f = File.new("testfile")
f.readlines(10) # => ["This is li", "ne one\n", "This is li", "ne two\n",

.. "This is li", "ne three\n", "And so on.", "..\n"]

io.readpartial(limit, result="") → resultreadpartial

Data read from files and devices is normally buffered. When reading line by line (for
example using IO#gets), Ruby will read many lines at a time into an internal buffer and then
return lines from that buffer. This buffering is normally transparent—Ruby will refill the
buffer automatically when required. However, when reading from a device or pipe (as
opposed to a file), you sometimes want to read whatever is in the buffer, reading from the
device or pipe only if the buffer is empty when the read starts. This is what readpartial does
—it returns any data available in local buffers immediately, only reading from the device
or pipe (potentially blocking) if the buffer is empty. Raises EOFError when it reached EOF.
See also IO#read_nonblock.

The following example comes from the internal documentation, with thanks to the anonymous
author:

r, w = IO.pipe # buffer pipe content
w << "abc" # "" "abc".
r.readpartial(4096) #=> "abc" "" ""
r.readpartial(4096) # blocks because buffer and pipe is empty.

r, w = IO.pipe # buffer pipe content
w << "abc" # "" "abc"
w.close # "" "abc" EOF
r.readpartial(4096) #=> "abc" "" EOF
r.readpartial(4096) # raises EOFError

r, w = IO.pipe # buffer pipe content
w << "abc\ndef\n" # "" "abc\ndef\n"
r.gets #=> "abc\n" "def\n" ""
w << "ghi\n" # "def\n" "ghi\n"
r.readpartial(4096) #=> "def\n" "" "ghi\n"
r.readpartial(4096) #=> "ghi\n" "" ""

Chapter 27. Built-in Classes and Modules • 552

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

io.readpartial(limit, result="") → resultread_nonblock

Effectively the same as IO#readpartial, except in cases where no buffered data is available. In
this case, it puts io into nonblocking mode before attempting to read data. This means that
the call may return EAGAIN and EINTR errors, which should be handled by the caller.

io.reopen(other_io) → io
io.reopen(path, mode) → io

reopen

Reassociates iowith the I/O stream given in other_io or to a new stream opened on path. This
may dynamically change the actual class of this stream.

f1 = File.new("testfile")
f2 = File.new("testfile")
f2.readlines[0] # => "This is line one\n"
f2.reopen(f1) # => #<File:testfile>
f2.readlines[0] # => "This is line one\n"

io.rewind → 0rewind

Positions io to the beginning of input, resetting lineno to zero.

f = File.new("testfile")
f.readline # => "This is line one\n"
f.rewind # => 0
f.lineno # => 0
f.readline # => "This is line one\n"

io.seek(int, whence=SEEK_SET) → 0seek

Seeks to a given offset int in the stream according to the value of whence.

Seeks to int plus current positionIO::SEEK_CUR
Seeks to int plus end of stream (you probably want a negative value for int)IO::SEEK_END
Seeks to the absolute location given by intIO::SEEK_SET

f = File.new("testfile")
f.seek(-13, IO::SEEK_END) # => 0
f.readline # => "And so on...\n"

io.set_encoding(external, internal=external‹ , options›) → io
io.set_encoding("external-name:internal-name"‹ , options›) → io

set_encoding

Sets the external and internal encodings for io. In the first form, encodings can be specified
by name (using strings) or as encoding objects. In the second form, the external and internal
encoding names are separated by a colon in a string. If present, options specifies the conversion
options.

f = File.new("testfile")
f.internal_encoding # => nil

report erratum • discuss

IO • 553

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

f.external_encoding # => #<Encoding:UTF-8>
f.set_encoding("ascii-8bit:iso-8859-1") # => #<File:testfile>
f.internal_encoding # => #<Encoding:ISO-8859-1>
f.external_encoding # => #<Encoding:ASCII-8BIT>

io.stat → statstat

Returns status information for io as an object of type File::Stat.

f = File.new("testfile")
s = f.stat
"%o" % s.mode # => "100644"
s.blksize # => 4096
s.atime # => 2013-05-27 12:32:23 -0500

io.sync → true or falsesync

Returns the current sync mode of io. When sync mode is true, all output is immediately
flushed to the underlying operating system and is not buffered by Ruby. See also IO#fsync.

io.sync = true or false→ true or falsesync=

Sets the sync mode to true or false. When sync mode is true, all output is immediately flushed
to the underlying operating system and is not buffered internally. Returns the new state.
See also IO#fsync.

f = File.new("testfile")
f.sync = true

io.sysread(int ‹ , buffer›) → stringsysread

Reads int bytes from io using a low-level read and returns them as a string. If buffer (a string)
is provided, input is read directly in to it. Do not mix with other methods that read from io,
or you may get unpredictable results. Raises SystemCallError on error and EOFError at the end
of the file.

f = File.new("testfile")
f.sysread(16) # => "This is line one"
str = "cat"
f.sysread(10, str) # => "\nThis is l"
str # => "\nThis is l"

io.sysseek(offset, whence=SEEK_SET) → intsysseek

Seeks to a given offset in the stream according to the value of whence (see IO#seek for values
of whence). Returns the new offset into the file.

f = File.new("testfile")
f.sysseek(-13, IO::SEEK_END) # => 53
f.sysread(10) # => "And so on."

Chapter 27. Built-in Classes and Modules • 554

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

io.syswrite(string) → intsyswrite

Writes the given string to io using a low-level write. Returns the number of bytes written.
Do not mix with other methods that write to io, or you may get unpredictable results. Raises
SystemCallError on error.

f = File.new("out", "w")
f.syswrite("ABCDEF") # => 6

io.tell → inttell

Synonym for IO#pos.

io.to_i → intto_i

Synonym for IO#fileno.

io.to_io → ioto_io

Returns io.

io.tty? → true or falsetty?

Synonym for IO#isatty.

io.ungetbyte(string or int) → nilungetbyte

Pushes back one or more bytes onto io, such that a subsequent buffered read will return
them. Has no effect with unbuffered reads (such as IO#sysread).

f = File.new("testfile") # => #<File:testfile>
c = f.getbyte # => 84
f.ungetbyte(c) # => nil
f.getbyte # => 84
f.ungetbyte("cat") # => nil
f.getbyte # => 99
f.getbyte # => 97

io.ungetc(string) → nilungetc

Pushes back one or more characters onto io, such that a subsequent buffered read will return
them. Has no effect with unbuffered reads (such as IO#sysread).

encoding: utf-8
f = File.new("testfile") # => #<File:testfile>
c = f.getc # => "T"
f.ungetc(c) # => nil
f.getc # => "T"
f.ungetc("∂og") # => nil
f.getc # => "∂"
f.getc # => "o"

report erratum • discuss

IO • 555

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

io.write(string) → intwrite

Writes the given string to io. The stream must be opened for writing. If the argument is not
a string, it will be converted to a string using to_s. Returns the number of bytes written.

count = STDOUT.write("This is a test\n")
puts "That was #{count} bytes of data"

produces:

This is a test
That was 15 bytes of data

io.write_nonblock(string) → intwrite_nonblock

Writes the given string to io after setting io into nonblocking mode. The stream must be
opened for writing. If the argument is not a string, it will be converted to a string using to_s.
Returns the number of bytes written. Your application should expect to receive errors typical
of nonblocking I/O (including EAGAIN and EINTR).

KernelModule

The Kernel module is included by class Object, so its methods are available in every Ruby
object. The Kernel methods are documented in class Object on page 599.

Chapter 27. Built-in Classes and Modules • 556

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

MarshalModule

The marshaling library converts collections of Ruby objects into a byte stream, allowing
them to be stored outside the currently active script. This data may subsequently be read
and the original objects reconstituted. Marshaling is described in Section 25.7, Marshaling
and Distributed Ruby, on page 403. Also see the YAML library on page 827.

Marshaled data has major and minor version numbers stored along with the object informa-
tion. In normal use, marshaling can load only data written with the same major version
number and an equal or lower minor version number. If Ruby’s “verbose” flag is set (nor-
mally using -d, -v, -w, or --verbose), the major and minor numbers must match exactly. Marshal
versioning is independent of Ruby’s version numbers. You can extract the version by reading
the first two bytes of marshaled data.

Some objects cannot be dumped: if the objects to be dumped include bindings, procedure
or method objects, instances of class IO, or singleton objects, or if you try to dump anonymous
classes or modules, a TypeError will be raised.

If your class has special serialization needs (for example, if you want to serialize in some
specific format) or if it contains objects that would otherwise not be serializable, you can
implement your own serialization strategy using the instance methods marshal_dump and
marshal_load. If an object to be marshaled responds to marshal_dump, that method is called
instead of _dump.marshal_dump can return an object of any class (not just a string). A class that
implements marshal_dump must also implement marshal_load, which is called as an instance
method of a newly allocated object and passed the object originally created bymarshal_dump.

The following code uses this to store a Time object in the serialized version of an object. When
loaded, this object is passed to marshal_load, which converts this time to a printable form,
storing the result in an instance variable.

class TimedDump
attr_reader :when_dumped
attr_accessor :other_data

def marshal_dump
[Time.now, @other_data]

end
def marshal_load(marshal_data)
@when_dumped = marshal_data[0].strftime("%I:%M%p")
@other_data = marshal_data[1]

end
end

t = TimedDump.new
t.other_data = "wibble"
t.when_dumped # => nil

str = Marshal.dump(t)

newt = Marshal.load(str)
newt.when_dumped # => "12:32PM"
newt.other_data # => "wibble"

report erratum • discuss

Marshal • 557

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Module Constants

Major part of marshal format version numberMAJOR_VERSION
Minor part of marshal format version numberMINOR_VERSION

Class Methods

dump(obj ‹ , io› , limit=-1) → iodump

Serializes obj and all descendent objects. If io is specified, the serialized data will be written
to it; otherwise, the data will be returned as a String. If limit is specified, the traversal of sub-
objects will be limited to that depth. If the limit is negative, no checking of depth will be
performed.

class Klass
def initialize(str)
@str = str

end
def say_hello
@str

end
end

o = Klass.new("hello\n")
data = Marshal.dump(o)
obj = Marshal.load(data)
obj.say_hello # => "hello\n"

load(from ‹ , proc›) → objload

Returns the result of converting the serialized data in from into a Ruby object (possibly with
associated subordinate objects). frommay be either an instance of IO or an object that responds
to to_str. If proc is specified, it will be passed each object as it is deserialized.

restore(from ‹ , proc›) → objrestore

A synonym for Marshal.load.

Chapter 27. Built-in Classes and Modules • 558

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

MatchDataClass

All pattern matches set the special variable $~ to a MatchData object containing information
about the match. The methods Regexp#match and Regexp.last_match also return a MatchData
object. The object encapsulates all the results of a pattern match, results normally accessed
through the special variables $&, $', $`, $1, $2, and so on—see the list on page 311 for details.

Instance Methods

match[i] → string
match[name] → string

match[start, length] → array
match[range] → array

[]

Match Reference—MatchData acts as an array and/or hash and may be accessed using the
normal indexing techniques. Numeric indices return the captures at the corresponding
position in the regular expression (starting at 1), and symbol indices return the corresponding
named capture.match[0] is equivalent to the special variable $& and returns the entire matched
string. See also MatchData#values_at.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")
m[0] # => "HX1138"
m[1, 2] # => ["H", "X"]
m[1..3] # => ["H", "X", "113"]
m[-3, 2] # => ["X", "113"]
m = /..(?<digit_prefix>\d+)\d/.match("THX1138.")
m[:digit_prefix] # => "113"

match.begin(n) → int
match.begin(name) → int

begin

Returns the offset in the original string of the start of the nth capture or the named capture.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")
m.begin(0) # => 1
m.begin(2) # => 2
m = /..(?<digit_prefix>\d+)\d/.match("THX1138.")
m.begin(:digit_prefix) # => 3

match.captures → arraycaptures

Returns the array of all the matching groups. Compare toMatchData#to_a, which returns both
the complete matched string and all the matching groups.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")
m.captures # => ["H", "X", "113", "8"]

captures is useful when extracting parts of a match in an assignment.

f1, f2, f3 = /(.)(.)(\d+)(\d)/.match("THX1138.").captures
f1 # => "H"
f2 # => "X"
f3 # => "113"

report erratum • discuss

MatchData • 559

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

match.end(n) → int
match.end(name) → int

end

Returns the offset in the original string of the end of the nth capture or the named capture.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")
m.end(0) # => 7
m.end(2) # => 3
m = /..(?<digit_prefix>\d+)\d/.match("THX1138.")
m.end(:digit_prefix) # => 6

match.length → intlength

Returns the number of elements in the match array.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")
m.length # => 5
m.size # => 5

match.names → arraynames

Returns the list of named captures in the regular expression that created match.

m = /(?<prefix>[A-Z]+)(?<hyphen>-?)(?<digits>\d+)/.match("THX1138.")
m.names # => ["prefix", "hyphen", "digits"]
m.captures # => ["THX", "", "1138"]
m[:prefix] # => "THX"

match.offset(n) → array
match.offset(name) → array

offset

Returns an array containing the beginning and ending offsets of the nth or named capture.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")
m.offset(0) # => [1, 7]
m.offset(4) # => [6, 7]
m = /..(?<digit_prefix>\d+)\d/.match("THX1138.")
m.offset(:digit_prefix) # => [3, 6]

match.post_match → stringpost_match

Returns the portion of the original string after the current match. (Same as the special variable
$'.)

m = /(.)(.)(\d+)(\d)/.match("THX1138: The Movie")
m.post_match # => ": The Movie"

match.pre_match → stringpre_match

Returns the portion of the original string before the current match. (Same as $`.)

m = /(.)(.)(\d+)(\d)/.match("THX1138.")
m.pre_match # => "T"

Chapter 27. Built-in Classes and Modules • 560

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

match.regexp → a_regexpregexp

Returns the regexp object for the regular expression that created match.

m = /(.)(.)(\d+)(\d)/.match("THX1138: The Movie")
m.regexp # => /(.)(.)(\d+)(\d)/

match.size → intsize

A synonym for MatchData#length.

match.string → stringstring

Returns a frozen copy of the string passed in to match.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")
m.string # => "THX1138."

match.to_a → arrayto_a

Returns the array of matches. Unlike MatchData#captures, returns the full string matched.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")
m.to_a # => ["HX1138", "H", "X", "113", "8"]

match.to_s → stringto_s

Returns the entire matched string.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")
m.to_s # => "HX1138"

match.values_at(‹ index›*) → arrayvalues_at

Returns the matches corresponding to the given indices.

m = /(.)(.)(\d+)(\d)/.match("THX1138.")
m.values_at(3,1,2) # => ["113", "H", "X"]
m.values_at(0, 4) # => ["HX1138", "8"]

report erratum • discuss

MatchData • 561

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

MathModule

The Math module contains module methods for basic trigonometric and transcendental
functions. See class Float on page 513 for a list of constants that define Ruby’s floating-point
accuracy.

Module Constants

An approximation of e (base of natural logarithms)E
An approximation of πPI

Class Methods

Math.acos(x) → floatacos

Computes the arc cosine of x. Returns 0..π.

Math.acosh(x) → floatacosh

Computes the inverse hyperbolic cosine of x.

Math.asin(x) → floatasin

Computes the arc sine of x. Returns -π⁄2..
π⁄2.

Math.asinh(x) → floatasinh

Computes the inverse hyperbolic sine of x.

Math.atan(x) → floatatan

Computes the arc tangent of x. Returns -π⁄2..
π⁄2.

Math.atanh(x) → floatatanh

Computes the inverse hyperbolic tangent of x.

Math.atan2(y, x) → floatatan2

Computes the arc tangent given y and x. Returns -π..π.

Math.cbrt(numeric) → floatcbrt

Returns the cube root of numeric.

Math.cos(x) → floatcos

Computes the cosine of x (expressed in radians). Returns -1..1.

Chapter 27. Built-in Classes and Modules • 562

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Math.cosh(x) → floatcosh

Computes the hyperbolic cosine of x (expressed in radians).

Math.erf(x) → floaterf

Returns the error function of x.

Math.erfc(x) → floaterfc

Returns the complementary error function of x.

Math.exp(x) → floatexp

Returns ex.

Math.frexp(numeric) → [fraction, exponent]frexp

Returns the normalized fraction (a Float) and exponent (a Fixnum) of numeric.

fraction, exponent = Math.frexp(1234) # => [0.6025390625, 11]
fraction * 2**exponent # => 1234.0

Math.gamma(x) → floatgamma

Returns the gamma function. For integral x, gamma(x) approximates factorial(x-1).

Math.gamma(2) # => 1.0
Math.gamma(3) # => 2.0
Math.gamma(4) # => 6.0
Math.gamma(10.34) # => 784993.6091493163

Math.hypot(x, y) → floathypot

Returns sqrt(x2 + y2), the hypotenuse of a right-angled triangle with sides x and y.

Math.hypot(3, 4) # => 5.0

Math.ldexp(float, n) → floatldexp

Returns the value of float × 2n.

fraction, exponent = Math.frexp(1234)
Math.ldexp(fraction, exponent) # => 1234.0

Math.lgamma(x) → [float, sign]lgamma

The first element of the returned array is the natural logarithm of the absolute value of the
gamma function of x. The second value is -1 if the gamma function returned a negative
number, +1 otherwise.

report erratum • discuss

Math • 563

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Math.log(numeric ‹ , base=E›) → floatlog

Returns logarithm of numeric. With no base parameter, returns the natural logarith.

Math.log10(numeric) → floatlog10

Returns the base 10 logarithm of numeric.

Math.log2(numeric) → floatlog2

Returns the base 2 logarithm of numeric.

Math.sin(numeric) → floatsin

Computes the sine of numeric (expressed in radians). Returns -1..1.

Math.sinh(float) → floatsinh

Computes the hyperbolic sine of numeric (expressed in radians).

Math.sqrt(float) → floatsqrt

Returns the non-negative square root of numeric. Raises ArgError if numeric is less than zero.

Math.tan(float) → floattan

Returns the tangent of numeric (expressed in radians).

Math.tanh(float) → floattanh

Computes the hyperbolic tangent of numeric (expressed in radians).

Chapter 27. Built-in Classes and Modules • 564

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

MethodClass

Method objects are created by Object#method. They are associated with a particular object
(not just with a class). They may be used to invoke the method within the object and as a
block associated with an iterator. They may also be unbound from one object (creating an
UnboundMethod) and bound to another.

def square(n)
n*n

end

meth = self.method(:square)

meth.call(9) # => 81
[1, 2, 3].collect(&meth) # => [1, 4, 9]

Instance Methods

meth[‹args›*] → object[]

Synonym for Method#call.

meth == other→ true or false==

Returns true if meth is the same method as other.

def fred()
puts "Hello"

end

alias bert fred # => nil

m1 = method(:fred)
m2 = method(:bert)

m1 == m2 # => true

meth.arity → fixnumarity

Returns a non-negative integer for methods that take a fixed number of arguments. For Ruby
methods that take a variable number of arguments, returns -n-1, where n is the number of
required arguments. For methods written in C, returns -1 if the call takes a variable number
of arguments. See also Method#parameters.

class C
def one; end
def two(a); end
def three(*a); end
def four(a, b); end
def five(a, b, *c); end
def six(a, b, *c, &d); end

end

report erratum • discuss

Method • 565

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

c = C.new
c.method(:one).arity # => 0
c.method(:two).arity # => 1
c.method(:three).arity # => -1
c.method(:four).arity # => 2
c.method(:five).arity # => -3
c.method(:six).arity # => -3

"cat".method(:size).arity # => 0
"cat".method(:replace).arity # => 1
"cat".method(:squeeze).arity # => -1
"cat".method(:count).arity # => -1

meth.call(‹args›*) → objectcall

Invokes the meth with the specified arguments, returning the method’s return value.

m = 12.method("+")
m.call(3) # => 15
m.call(20) # => 32

meth.eql?(other) → true or falseeql?

Returns true if meth is the same method as other.

def fred()
puts "Hello"

end

alias bert fred # => nil

m1 = method(:fred)
m2 = method(:bert)
m1.eql?(m2) # => true

meth.name → stringname

Returns the name of the method meth.

method = "cat".method(:upcase)
method.name # => :upcase

meth.owner → moduleowner

Returns the class or module in which meth is defined.

method = "cat".method(:upcase)
method.owner # => String

meth.parameters → arrayparameters

Returns an array describing the parameters taken by the method. Each entry in the array is
itself an array. The first entry of each subarray contains the role of the parameter (:req for

Chapter 27. Built-in Classes and Modules • 566

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

required, :opt for optional, :rest for a splat parameter, and :block for a block). If the parameter
has a name, it will be the second entry in the subarray.

def m(a, b=1, *c, &d)
end
method(:m).parameters # => [[:req, :a], [:opt, :b], [:rest, :c], [:block, :d]]

meth.receiver → objreceiver

Returns the object on which meth is defined.

method = "cat".method(:upcase)
method.receiver # => "cat"

meth.source_location → [filename, lineno] or nilsource_location

Returns the source filename and line number where meth was defined or nil if self was not
defined in Ruby source.

internal_method = "cat".method(:upcase)
internal_method.source_location # => nil

require 'set'
set = Set.new
ruby_method = set.method(:clear)
ruby_method.source_location[0] # => "/Users/dave/.rvm/rubies/ruby-2.0.0-p0/lib/r

.. uby/2.0.0/set.rb"
ruby_method.source_location[1] # => 131

meth.to_proc → prcto_proc

Returns a Proc object corresponding to this method. Because to_proc is called by the interpreter
when passing block arguments, method objects may be used following an ampersand to
pass a block to another method call. See the example at the start of this section.

meth.unbind → unbound_methodunbind

Dissociates meth from its current receiver. The resulting UnboundMethod can subsequently be
bound to a new object of the same class (see UnboundMethod on page 726).

report erratum • discuss

Method • 567

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

ModuleClass

Subclasses: Class

A Module is a collection of methods and constants. The methods in a module may be instance
methods or module methods. Instance methods appear as methods in a class when the
module is included; module methods do not. Conversely, module methods may be called
without creating an encapsulating object, and instance methods may not. See alsoModule#mod-
ule_function on page 584.

In the descriptions that follow, the parameter symbol refers to a name, which is either a
quoted string or a symbol (such as :name).

module Mod
include Math
CONST = 1
def meth
...

end
end
Mod.class # => Module
Mod.constants # => [:CONST, :DomainError, :PI, :E]
Mod.instance_methods # => [:meth]

Class Methods

Module.constants → array
Module.constants(include_parents) → array

constants

With no argument, returns a list of the top-level constants in the interpreter. With one
argument, returns the constants defined in class Module (and its parents if the argument is
true). This somewhat obscure interface is becauseModule is a kind of Class, and Class is a subclass
of Module. The first form of call is a true call to the class method constants, while the second
form actually proxies to the instance method form (see Module#constants later in this section).

module Mixin
CONST_MIXIN = 1

end
class Module
include Mixin
SPURIOUS_CONSTANT = 2

end
Module.constants.sort[1..3] # => [:ARGV, :ArgumentError, :Array]
Module.constants.include? :CONST_MIXIN # => false
Module.constants(false) # => [:SPURIOUS_CONSTANT]
Module.constants(true) # => [:SPURIOUS_CONSTANT, :CONST_MIXIN]

Module.nesting → arraynesting

Returns the list of modules nested at the point of call.

Chapter 27. Built-in Classes and Modules • 568

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

module M1
module M2
nest = Module.nesting
p nest
p nest[0].name

end
end

produces:

[M1::M2, M1]
"M1::M2"

Module.new → mod
Module.new {|mod| … } → mod

new

Creates a new anonymous module. If a block is given, it is passed the module object, and
the block is evaluated in the context of this module using module_eval.

Fred = Module.new do
def meth1
"hello"

end
def meth2
"bye"

end
end
a = "my string"
a.extend(Fred) # => "my string"
a.meth1 # => "hello"
a.meth2 # => "bye"

Instance Methods

mod relop module→ true, false or nil<, <=, ==, >, >=

Hierarchy Query—One module is considered greater than another if it is included in (or is
a parent class of) the other module. The other operators are defined accordingly. If there is
no relationship between the modules, all operators return nil.

module Mixin
end

module Parent
include Mixin

end

module Unrelated
end

Parent > Mixin # => false
Parent < Mixin # => true
Parent <= Parent # => true
Parent < Unrelated # => nil
Parent > Unrelated # => nil

report erratum • discuss

Module • 569

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

mod <=> other_mod→ -1, 0, +1<=>

Comparison—Returns -1 ifmod includes other_mod, 0 ifmod is the same module as other_mod,
and +1 if mod is included by other_mod or if mod has no relationship with other_mod.

mod === obj→ true or false===

Case Equality—Returns true if obj is an instance of mod or one of mod’s descendents. Of lim-
ited use for modules but can be used in case statements to test objects by class.

mod.ancestors → arrayancestors

Returns a list of modules included in mod (including mod itself).

module Mod
include Math
include Comparable

end

Mod.ancestors # => [Mod, Comparable, Math]
Math.ancestors # => [Math]

mod.autoload(name, file_name) → nilautoload

Registers file_name to be loaded (using Object#require) the first time that module name (which
may be a String or a Symbol) is accessed in the namespace of mod. Note that the autoloaded
file is evaluated in the top-level context. In this example, module_b.rb contains the following:

module A::B # in module_b.rb
def doit
puts "In Module A::B"

end
module_function :doit

end

Other code can then include this module automatically.

module A
autoload(:B, "module_b")

end

A::B.doit # autoloads "module_b"

produces:

In Module A::B

Chapter 27. Built-in Classes and Modules • 570

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

mod.autoload?(name) → file_name or nilautoload?

Returns the name of the file that will be autoloaded when the string or symbol name is refer-
enced in the context of mod or returns nil if there is no associated autoload.

module A
autoload(:B, "module_b")

end
A.autoload?(:B) # => "module_b"
A.autoload?(:C) # => nil

mod.class_eval(string ‹ , file_name ‹ , line_number››) → obj
mod.class_eval { … } → obj

class_eval

Synonym for Module#module_eval.

mod.class_exec(‹args›+) {|args| … } → objclass_exec

Synonym for Module#module_exec.

mod.class_variable_defined?(name) → true or falseclass_variable_defined?

Returns true if the named class variable is defined in mod. The two @ signs are a required
part of the name.

class One
@@var1 = "wibble"

end
One.class_variable_defined?(:@@var1) # => true
One.class_variable_defined?(:@@var2) # => false

mod.class_variable_get(name) → objclass_variable_get

Returns the value of the named class variable. The two @ signs must appear in the name.

class One
@@var1 = "wibble"

end
One.class_variable_get(:@@var1) # => "wibble"
One.class_variable_get("@@var1") # => "wibble"

mod.class_variable_set(name, value) → valueclass_variable_set

Sets the value of the named class variable. The two @ signs must appear in the name.

class One
@@var1 = "wibble"

end
One.class_variable_set(:@@var1, 99) # => 99
One.class_variable_get("@@var1") # => 99

report erratum • discuss

Module • 571

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

mod.class_variables → arrayclass_variables

Returns an array of the names of class variables in mod. (As of Ruby 1.9, class variables are
no longer shared with child classes, so this listing is restricted to the class variables defined
in mod.)

class One
@@var1 = 1

end
class Two < One
@@var2 = 2

end
One.class_variables # => [:@@var1]
Two.class_variables # => [:@@var2, :@@var1]

mod.const_defined?(symbol ‹search_parents=true›) → true or falseconst_defined?

Returns true if a constant with the given name is defined bymod or the parents ofmod (if the
second parameter is true).

Math.const_defined? "PI" # => true

mod.const_get(symbol) → objconst_get

⇡New in 2.0⇣
Returns the value of the named constant in mod. Ruby 2.0 allows this name to be qualified
by one or more module names.

Math.const_get :PI # => 3.141592653589793
Object.const_get("Math::PI") # => 3.141592653589793

mod.const_missing(symbol) → objconst_missing

Invoked when a reference is made to an undefined constant in mod. It is passed a symbol
for the undefined constant and returns a value to be used for that constant. The following
code is very poor style. If a reference is made to an undefined constant, it attempts to load
a file whose name is the lowercase version of the constant (thus, class Fred is assumed to be
in file fred.rb). If found, it returns the value of the loaded class. It therefore implements a
perverse kind of autoload facility.

def Object.const_missing(name)
@looked_for ||= {}
str_name = name.to_s
raise "Class not found: #{name}" if @looked_for[str_name]
@looked_for[str_name] = 1
file = str_name.downcase
require file
klass = const_get(name)
return klass if klass
raise "Class not found: #{name}"

end

Chapter 27. Built-in Classes and Modules • 572

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

mod.const_set(symbol, obj) → objconst_set

Sets the named constant to the given object, returning that object. Creates a new constant if
no constant with the given name previously existed.

Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0) # => 3.142857142857143
Math::HIGH_SCHOOL_PI - Math::PI # => 0.0012644892673496777

mod.constants(include_parents = true) → arrayconstants

Returns an array of the names of the constants accessible in mod. If the parameter is true,
this includes the names of constants in any included modules.

IO.constants(false) # => [:WaitReadable, :WaitWritable, :SEEK_SET, :SEEK_CUR,
.. :SEEK_END]

Now include stuff defined in module File::Constants
IO.constants(true)[1,6] # => [:WaitWritable, :SEEK_SET, :SEEK_CUR, :SEEK_END,

.. :RDONLY, :WRONLY]

mod.include?(other_mod) → true or falseinclude?

Returns true if other_mod is included in mod or one of mod’s ancestors.

module A
end

class B
include A

end

class C < B
end

B.include?(A) # => true
C.include?(A) # => true
A.include?(A) # => false

mod.included_modules → arrayincluded_modules

Returns the list of modules included in mod.

module Mixin
end

module Outer
include Mixin

end

Mixin.included_modules # => []
Outer.included_modules # => [Mixin]

report erratum • discuss

Module • 573

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

mod.instance_method(symbol) → unbound_methodinstance_method

Returns an UnboundMethod representing the given instance method in mod.

class Interpreter
def do_a() print "there, "; end
def do_d() print "Hello "; end
def do_e() print "!\n"; end
def do_v() print "Dave"; end

Dispatcher = {
'a' => instance_method(:do_a),
'd' => instance_method(:do_d),
'e' => instance_method(:do_e),
'v' => instance_method(:do_v)

}

def interpret(string)
string.each_char {|ch| Dispatcher[ch].bind(self).call }

end
end

interpreter = Interpreter.new
interpreter.interpret('dave')

produces:

Hello there, Dave!

mod.instance_methods(inc_super=true) → arrayinstance_methods

Returns an array containing the names of public and protected instance methods in the
receiver. For a module, these are the public methods; for a class, they are the instance (not
singleton) methods. With no argument or with an argument that is true, the methods inmod
and mod’s superclasses are returned. When called with a module as a receiver or with a
parameter that is false, the instance methods in mod are returned.

module A
def method1
end

end
class B
def method2
end

end
class C < B
def method3
end

end

A.instance_methods # => [:method1]
B.instance_methods(false) # => [:method2]
C.instance_methods(false) # => [:method3]
C.instance_methods(true).length # => 56

Chapter 27. Built-in Classes and Modules • 574

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

mod.method_defined?(symbol) → true or falsemethod_defined?

Returns true if the named method is defined by mod (or its included modules and, if mod is
a class, its ancestors). Public and protected methods are matched.

module A
def method1; end

end
class B
def method2; end

end
class C < B
include A
def method3; end

end

A.method_defined? :method1 # => true
C.method_defined? "method1" # => true
C.method_defined? "method2" # => true
C.method_defined? "method3" # => true
C.method_defined? "method4" # => false

mod.module_eval(string ‹ , file_name ‹ , line_number››) → obj
mod.module_eval { … } → obj

module_eval

Evaluates the string or block in the context of mod. This can be used to add methods to a
class. module_eval returns the result of evaluating its argument. The optional file_name and
line_number parameters set the text for error messages.

class Thing
end
a = %q{def hello() "Hello there!" end}
Thing.module_eval(a)
puts Thing.new.hello()
Thing.module_eval("invalid code", "dummy", 123)

produces:

Hello there!
dummy:123:in `<main>': undefined local variable

or method `code' for Thing:Class

mod.module_exec(‹args›+) {|args| … } → objmodule_exec

Behaves the same as the block form for Module#module_eval, except any parameters passed to
the method are in turn passed to the block. This gives you a way of passing in values that
would otherwise not be in scope in the block (because self is changed).

class Thing
end
name = :new_instance_variable
Thing.module_exec(name) do |iv_name|
attr_accessor iv_name

end

report erratum • discuss

Module • 575

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

t = Thing.new
t.new_instance_variable = "wibble"
p t

produces:

#<Thing:0x007f9b01847fa8 @new_instance_variable="wibble">

mod.name → stringname

Returns the name of the module mod.

mod.private_class_method(‹symbol›+) → nilprivate_class_method

Makes existing class methods private. Often used to hide the default constructor new.

class SimpleSingleton # Not thread safe
private_class_method :new
def SimpleSingleton.create(*args, &block)
@me = new(*args, &block) if ! @me
@me

end
end

mod.private_constant(‹symbol›+) → modprivate_constant

Makes the given constants (which must already have been defined) private to the module.
A private constant cannot be referenced using the module name as a scope, so they effectively
can only be accessed within the context of the module itself.

module A
B = "my constant"
private_constant :B
puts "Inside A, B = #{B.inspect}"

end

puts "Outside A, A::B = #{A::B.inspect}"

produces:

Inside A, B = "my constant"
prog.rb:7:in `<main>': private constant A::B referenced (NameError)

mod.private_instance_methods(inc_super=true) → arrayprivate_instance_methods

Returns a list of the private instance methods defined in mod. If the optional parameter is
true, the methods of any ancestors are included.

module Mod
def method1; end
private :method1
def method2; end

end
Mod.instance_methods # => [:method2]
Mod.private_instance_methods # => [:method1]

Chapter 27. Built-in Classes and Modules • 576

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

mod.private_method_defined?(symbol) → true or falseprivate_method_defined?

Returns true if the named private method is defined by mod (or its included modules and, if
mod is a class, its ancestors).

module A
def method1; end

end
class B
private
def method2; end

end
class C < B
include A
def method3; end

end

A.method_defined? :method1 # => true
C.private_method_defined? "method1" # => false
C.private_method_defined? "method2" # => true
C.method_defined? "method2" # => false

mod.protected_instance_methods(inc_super=true) → arrayprotected_instance_methods

Returns a list of the protected instance methods defined in mod. If the optional parameter is
true, the methods of any ancestors are included.

mod.protected_method_defined?(symbol) → true or falseprotected_method_defined?

Returns true if the named protected method is defined bymod (or its included modules and,
if mod is a class, its ancestors).

module A
def method1; end

end
class B
protected
def method2; end

end
class C < B
include A
def method3; end

end

A.method_defined? :method1 # => true
C.protected_method_defined? "method1" # => false
C.protected_method_defined? "method2" # => true
C.method_defined? "method2" # => true

mod.public_class_method(‹symbol›+) → nilpublic_class_method

Makes a list of existing class methods public.

report erratum • discuss

Module • 577

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

mod.public_constant(‹symbol›+) → modpublic_constant

Makes the given constants (which must already have been defined) public, overriding the
effect of a previous call to privante_constant.

module A
B = "my constant"
private_constant :B
puts "Inside A, B = #{B.inspect}"
public_constant :B

end

puts "Outside A, A::B = #{A::B.inspect}"

produces:

Inside A, B = "my constant"
Outside A, A::B = "my constant"

mod.public_instance_method(symbol) → unbound_methodpublic_instance_method

Returns an UnboundMethod representing the given public instance method in mod. See also
Module#instance_method, which ignores scope.

class Test
def method_a; end

private
def method_b; end

end
puts "method_a is #{Test.public_instance_method(:method_a)}"
puts "method_b is #{Test.public_instance_method(:method_b)}"

produces:

from prog.rb:7:in `<main>'
method_a is #<UnboundMethod: Test#method_a>
prog.rb:7:in `public_instance_method': method `method_b' for class `Test' is
private (NameError)

mod.public_instance_methods(inc_super=true) → arraypublic_instance_methods

Returns a list of the public instance methods defined in mod. If the optional parameter is
true, the methods of any ancestors are included.

mod.public_method_defined?(symbol) → true or falsepublic_method_defined?

Returns true if the named public method is defined by mod (or its included modules and, if
mod is a class, its ancestors).

Chapter 27. Built-in Classes and Modules • 578

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

module A
def method1; end

end
class B
protected
def method2; end

end
class C < B
include A
def method3; end

end

A.method_defined? :method1 # => true
C.public_method_defined? "method1" # => true
C.public_method_defined? "method2" # => false
C.method_defined? "method2" # => true

remove_class_variable(symbol) → objremove_class_variable

Removes the definition of the symbol, returning that variable’s value. Prior to Ruby 1.9, this
method was private.

class Dummy
@@var = 99

end
Dummy.class_eval { p defined? @@var }
puts Dummy.remove_class_variable(:@@var)
Dummy.class_eval { p defined? @@var }

produces:

prog.rb:4: warning: class variable access from toplevel
nil
prog.rb:6: warning: class variable access from toplevel
99
nil

Private Instance Methods

alias_method(new_id, old_id) → modalias_method

Makes new_id a new copy of the method old_id. This can be used to retain access to methods
that are overridden.

module Mod
alias_method :orig_exit, :exit
def exit(code=0)
puts "Exiting with code #{code}"
orig_exit(code)

end
end
include Mod
exit(99)

produces:

Exiting with code 99

report erratum • discuss

Module • 579

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

append_features(other_mod) → modappend_features

When this module is included in another, Ruby calls append_features in this module, passing
it the receiving module in other_mod. Ruby’s default implementation is to add the constants,
methods, and module variables of this module to other_mod if this module has not already
been added to other_mod or one of its ancestors. Prior to Ruby 1.8, user code often redefined
append_features, added its own functionality, and then invoked super to handle the real include.
Now you should instead implement the method Module#included on page 582.

attr(‹symbol›+) → nilattr

An alias for Module#attr_reader (as of Ruby 1.9).

attr_accessor(‹symbol›+) → nilattr_accessor

Creates a reader and a writer method for each symbol passed as an argument. These methods
provide access to the underlying instance variables of the name name (with a leading @ sign).

class Test
attr_accessor :name, :likes
def initialize(name, likes)
@name = name
@likes = likes

end
end
d = Test.new("Dave", "Ruby")
d.name = "Chad"
d.name # => "Chad"
d.likes # => "Ruby"

attr_reader(‹symbol›+) → nilattr_reader

Creates instance variables and corresponding methods that return their values.

class Test
attr_reader :name, :likes
def initialize(name, likes)
@name = name
@likes = likes

end
end

d = Test.new("Dave", "Ruby")
d.name # => "Dave"
d.likes # => "Ruby"

Chapter 27. Built-in Classes and Modules • 580

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

attr_writer(‹symbol›+) → nilattr_writer

Creates an accessor method to allow assignment to the attribute symbol.id2name.

class Test
attr_writer :name, :likes
def initialize(name, likes)
@name = name
@likes = likes

end
end
d = Test.new("Dave", "Ruby")
d.name = "Chad"
d # => #<Test:0x007fc52210f8a8 @name="Chad", @likes="Ruby">

define_method(symbol, method) → method
define_method(symbol) { … } → proc

define_method

Defines an instance method in the receiver. The method parameter can be a Proc, a Method, or
an UnboundMethod object. If a block is specified, it is used as the method body. This block is
evaluated using instance_eval. This is tricky to demonstrate because define_method is private.
(This is why we resort to the send hack in this example.) See also Object#define_singleton_method.

class A
def fred
puts "In Fred"

end
def create_method(name, &block)
self.class.send(:define_method, name, &block)

end
define_method(:wilma) { puts "Charge it!" }

end
class B < A
define_method(:barney, instance_method(:fred))

end
b = B.new
b.barney
b.wilma
b.create_method(:betty) { p self }
b.betty

produces:

In Fred
Charge it!
#<B:0x007fb6bb846600>

Note that it is possible to define methods with names that are not valid if you were to use
the def keyword. These methods cannot be invoked directly.

class Silly
define_method("Oh !@!#^!") { "As Snoopy says" }

end
Silly.new.send("Oh !@!#^!") # => "As Snoopy says"

report erratum • discuss

Module • 581

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

extend_object(obj) → objextend_object

Extends the specified object by adding this module’s constants and methods (which are
added as singleton methods). This is the callback method used by Object#extend.

module Picky
def Picky.extend_object(o)
if String === o
puts "Can't add Picky to a String"

else
puts "Picky added to #{o.class}"
super

end
end

end
(s = Array.new).extend Picky # Call Object.extend
(s = "quick brown fox").extend Picky

produces:

Picky added to Array
Can't add Picky to a String

extended(other_mod)extended

Callback invoked whenever the receiver is used to extend an object. The object is passed as
a parameter. This should be used in preference to Module#extend_object if your code wants to
perform some action when a module is used to extend an object.

module A
def A.extended(obj)
puts "#{self} extending '#{obj}'"

end
end
"cat".extend(A)

produces:

A extending 'cat'

include(‹other_mod›+) → modinclude

Includes the listed modules in self. Typically used to make the instance methods in the
included modules available in the receiver. Equivalent to the following code:

def include(*modules)
modules.reverse_each do |mod|
mod.append_features(self) # make the methods available
mod.included(self) # invoke a callback

end
end

⇡New in 2.0⇣ See also Module#prepend.

Chapter 27. Built-in Classes and Modules • 582

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

included(other_mod)included

Callback invoked whenever the receiver is included in another module or class. This should
be used in preference to Module#append_features if your code wants to perform some action
when a module is included in another.

module A
def A.included(mod)
puts "#{self} included in #{mod}"

end
end
module Enumerable
include A

end

produces:

A included in Enumerable

method_added(symbol)method_added

Invoked as a callback whenever a method is added to the receiver.

module Chatty
def Chatty.method_added(id)
puts "Adding #{id.id2name}"

end
def one; end

end
module Chatty
def two; end

end

produces:

Adding one
Adding two

method_removed(symbol)method_removed

Invoked as a callback whenever a method is removed from the receiver.

module Chatty
def Chatty.method_removed(id)
puts "Removing #{id.id2name}"

end
def one
end

end
module Chatty
remove_method(:one)

end

produces:

Removing one

report erratum • discuss

Module • 583

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

method_undefined(symbol)method_undefined

Invoked as a callback whenever a method is undefined in the receiver.

module Chatty
def Chatty.method_undefined(id)
puts "Undefining #{id.id2name}"

end
def one
end

end
module Chatty
undef_method(:one)

end

produces:

Undefining one

module_function(‹symbol›*) → modmodule_function

Creates module functions for the named methods. These functions may be called with the
module as a receiver. Module functions are copies of the original and so may be changed
independently. The instance-method versions are made private. If used with no arguments,
subsequently defined methods become module functions.

module Mod
def one
"This is one"

end
module_function :one

end

class Cls
include Mod
def call_one
one

end
end

Mod.one # => "This is one"
c = Cls.new
c.call_one # => "This is one"
module Mod
def one
"This is the new one"

end
end
Mod.one # => "This is one"
c.call_one # => "This is the new one"

Chapter 27. Built-in Classes and Modules • 584

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

prepend(‹other_mod›+) → modprepend

⇡New in 2.0⇣Includes the listed modules in self. Unlike Module#include. if the module contains methods
with the same names as those in the including module, the included modules methods take
precedence.

module Mod
def meth; "In module Mod"; end

end
class Cls1
def meth; "In class Cls1"; end
include Mod

end
class Cls2
def meth; "In class Cls2"; end
prepend Mod

end

⇡New in 2.0⇣See also Module#include.

private(‹symbol›*) → modprivate

With no arguments, sets the default visibility for subsequently defined methods to private.
With arguments, sets the named methods to have private visibility. See “Access Control”
on page 335.

module Mod
def a; end
def b; end

private

def c; end

private :a
end
Mod.private_instance_methods # => [:a, :c]

protected(‹symbol›*) → modprotected

With no arguments, sets the default visibility for subsequently defined methods to protected.
With arguments, sets the named methods to have protected visibility. See “Access Control”
on page 335.

public(‹symbol›*) → modpublic

With no arguments, sets the default visibility for subsequently defined methods to public.
With arguments, sets the named methods to have public visibility. See “Access Control” on
page 335.

report erratum • discuss

Module • 585

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

refine(class) { … } → refmodrefine

⇡New in 2.0⇣ Defines a refinement for the given class. This is activated from the top-level of a source file
with the Object#using method, which applies the methods defined in the block to the given
class for the remainder of that source file. The tutorial on page 369 has more information.
refine returns a special kind of module object that represents the change to be made to the
host class.

module SuperUpcase
refine String do
def upcase
"!#{super}!"

end
end

end

puts "wombat".upcase
using SuperUpcase
puts "wombat".upcase

produces:

WOMBAT
!WOMBAT!

remove_const(symbol) → objremove_const

Removes the definition of the given constant, returning that constant’s value. Predefined
classes and singleton objects (such as true) cannot be removed.

remove_method(symbol) → modremove_method

Removes the method identified by symbol from the current class. For an example, see Mod-
ule#undef_method.

undef_method(‹symbol›+) → modundef_method

Prevents the current class from responding to calls to the named method(s). Contrast this
with remove_method, which deletes the method from the particular class; Ruby will still search
superclasses and mixed-in modules for a possible receiver.

class Parent
def hello
puts "In parent"

end
end

class Child < Parent
def hello
puts "In child"

end
end

Chapter 27. Built-in Classes and Modules • 586

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

c = Child.new
c.hello

class Child
remove_method :hello # remove from child, still in parent

end
c.hello

class Child
undef_method :hello # prevent any calls to 'hello'

end
c.hello

produces:

In child
In parent
prog.rb:24:in `<main>': undefined method `hello' for #<Child:0x007fcfa4042ee8>
(NoMethodError)

report erratum • discuss

Module • 587

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

MutexClass

A mutex is a semaphore object that can be used to synchronize access to resources shared
across threads. We discussed mutexes (and other synchronization mechanisms) in Section
12.4, Mutual Exclusion, on page 167. Because the code examples tend to be long, we haven’t
duplicated them in this library description.

Instance Methods

mutex.lock → mutexlock

Takes a lock on mutex. Suspends if mutex is already locked by another thread and raises a

⇡New in 2.0⇣
ThreadError if the mutex is already locked by the calling thread or if called from a trap handler.

mutex.locked? → true or falselocked?

Returns the current locked state of mutex.

mutex.owned? → true or falseowned?

⇡New in 2.0⇣ Returns true if the mutex is held by the current thread. Experimental in Ruby 2.0.

mutex.sleep(time | nil) → seconds_sleptsleep

Releases the current thread’s lock onmutex, sleeps for time seconds (or forever if nil is passed),

⇡New in 2.0⇣
and then regains the lock. Returns the number of seconds actually slept. This may be less
than the number requested, so it is wise to check. May not be called from a trap handler.

mutex.synchronize { … } → objsynchronize

Locks mutex, executes the block, and then unlocks mutex. Returns the value returned by the

⇡New in 2.0⇣
block. May not be called from a trap handler.

mutex.try_lock → true or falsetry_lock

If mutex is not currently locked, locks it and returns true. Otherwise, returns false. (That is,

⇡New in 2.0⇣
try_lock is like lock, but it will never wait for a mutex to become available.) May not be called
from a trap handler.

mutex.unlock → mutexunlock

⇡New in 2.0⇣
Unlock mutex, which must be locked by the current thread. May not be called from a trap
handler.

Chapter 27. Built-in Classes and Modules • 588

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

NilClassClass

The class of the singleton object nil.

Instance Methods

nil & obj→ false&

And—Returns false. Because obj is an argument to a method call, it is always evaluated; there
is no short-circuit evaluation in this case.

nil && puts("logical and")
nil & puts("and")

produces:

and

nil ^ obj→ true or false^

Exclusive Or—Returns false if obj is nil or false and returns true otherwise.

nil | obj→ true or false|

Or—Returns false if obj is nil or false and returns true otherwise.

nil | false # => false
nil | 99 # => true

nil.nil? → truenil?

Always returns true.

int.rationalize(eps=nil) → Rational(0)rationalize

Returns Rational("0"). The argument is always ignored.

nil.rationalize # => (0/1)

nil.to_a → []to_a

Always returns an empty array.

nil.to_a # => []

nil.to_c → Complex(0,0)to_c

Always returns the origin of the complex plane.

nil.to_c # => (0+0i)

report erratum • discuss

NilClass • 589

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

nil.to_f → 0.0to_f

Always returns zero.

nil.to_f # => 0.0

nil.to_h → {}to_h

⇡New in 2.0⇣ Always returns an empty hash.

nil.to_h # => {}

nil.to_i → 0to_i

Always returns zero.

nil.to_i # => 0

nil.to_r → Rational(0,1)to_r

Always returns zero as a rational number.

nil.to_r # => (0/1)

nil.to_s → ""to_s

Always returns the empty string.

nil.to_s # => ""

Chapter 27. Built-in Classes and Modules • 590

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

NumericClass

Subclasses: Float, Integer

Numeric is the fundamental base type for the abstract class Integer and the concrete number
classes Bignum, Complex, Float, Fixnum, and Rational. Many methods in Numeric are overridden
in child classes, and Numeric takes some liberties by calling methods in these child classes.
Here’s a complete list of the methods defined in all five classes:

ComplexRationalFloatBignumFixnumIntegerNumeric

––✓✓✓–✓%
–––✓✓––&
✓✓✓✓✓––*
✓✓✓✓✓––**
✓✓✓✓✓––+
––––––✓+@
✓✓✓✓✓––-
✓–✓✓✓–✓-@
✓✓✓✓✓––/
––✓✓✓––<
–––✓✓––<<
––✓✓✓––<=
–✓✓✓✓–✓<=>
✓✓✓✓✓––==
––✓✓✓––===
––✓✓✓––>
––✓✓✓––>=
–––✓✓––>>
–––✓✓––[]
–––✓✓––^
✓–✓✓✓–✓abs
✓–––––✓abs2
✓–✓–––✓angle
✓–✓–––✓arg
–✓✓––✓✓ceil
–––––✓–chr
✓✓✓✓––✓coerce
✓–––––✓conj
✓–––––✓conjugate
✓✓✓––✓✓denominator
–––✓✓–✓div
––✓✓✓–✓divmod
–––––✓–downto
✓–✓✓––✓eql?
–––✓✓✓–even?
✓✓✓✓✓–✓fdiv
––✓––––finite?
–✓✓––✓✓floor
–––––✓–gcd
–––––✓–gcdlcm
––––––✓i
✓–––––✓imag

report erratum • discuss

Numeric • 591

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

ComplexRationalFloatBignumFixnumIntegerNumeric

✓–––––✓imaginary
––✓––––infinite?
–––––✓✓integer?
–––––✓–lcm
✓–✓✓✓–✓magnitude
––✓✓✓–✓modulo
––✓––––nan?
–––––✓–next
––––––✓nonzero?
✓✓✓––✓✓numerator
–––✓✓✓–odd?
–––––✓–ord
✓–✓–––✓phase
✓–––––✓polar
–––––✓–pred
✓✓✓–––✓quo
✓✓✓––✓–rationalize
✓–––––✓real
✓–––––✓real?
✓–––––✓rect
✓–––––✓rectangular
–––✓––✓remainder
–✓✓––✓✓round
–––✓✓––size
––––––✓step
––––✓✓–succ
–––––✓–times
✓–––––✓to_c
✓✓✓✓✓––to_f
✓✓✓––✓–to_i
––✓––✓✓to_int
✓✓✓––✓–to_r
✓✓✓✓✓––to_s
–✓✓––✓✓truncate
–––––✓–upto
––✓–✓–✓zero?
–––✓✓––|
–––✓✓––~

Table 20—Methods in the numeric classes

Mixes In

Comparable: <, <=, ==, >, >=, between?

Instance Methods

+num→ num+@

Unary Plus—Returns the receiver’s value.

Chapter 27. Built-in Classes and Modules • 592

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

–num→ numeric-@

Unary Minus—Returns the receiver’s value, negated.

num <=> other→ 0 or nil<=>

Returns zero if num equals other and returns nil otherwise.

num % numeric→ numeric%

Synonym for Numeric#module. Equivalent to num.divmod(numeric)[1].

num.abs → numericabs

Returns the absolute value of num.

12.abs # => 12
(-34.56).abs # => 34.56
-34.56.abs # => 34.56

num.abs2 → numericabs2

Returns the square of (the absolute value of) num.

12.abs2 # => 144
(-34.56).abs2 # => 1194.3936
-34.56.abs2 # => 1194.3936

num.angle → numericangle

For noncomplex numbers, returns π for negative numbers, 0 otherwise. See Complex for more
details.

num.arg → numericarg

Synonym for Numeric#angle.

num.ceil → intceil

Returns the smallest integer greater than or equal to num. Class Numeric achieves this by
converting itself to a Float and then invoking Float#ceil.

1.ceil # => 1
1.2.ceil # => 2
(-1.2).ceil # => -1
(-1.0).ceil # => -1

report erratum • discuss

Numeric • 593

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

num.coerce(numeric) → arraycoerce

coerce is both an instance method of Numeric and part of a type conversion protocol. When a
number is asked to perform an operation and it is passed a parameter of a class different
from its own, it must first coerce both itself and that parameter into a common class so that
the operation makes sense. For example, in the expression 1 + 2.5, the Fixnum 1 must be con-
verted to a Float to make it compatible with 2.5. This conversion is performed by coerce. For
all numeric objects, coerce is straightforward: if numeric is the same type as num, returns an
array containing numeric and num. Otherwise, returns an array with both numeric and num
represented as Float objects.

1.coerce(2.5) # => [2.5, 1.0]
1.2.coerce(3) # => [3.0, 1.2]
1.coerce(2) # => [2, 1]

If a numeric object is asked to operate on a non-numeric, it tries to invoke coerce on that
other object. For example, if you write this:

1 + "2"

then Ruby will effectively execute the code as follows:

n1, n2 = "2".coerce(1)
n2 + n1

In the more general case, this won’t work, because most non-numerics don’t define a coerce
method. However, you can use this (if you feel so inclined) to implement part of Perl’s
automatic conversion of strings to numbers in expressions.

class String
def coerce(other)
case other
when Integer
begin
return other, Integer(self)

rescue
return Float(other), Float(self)

end
when Float
return other, Float(self)

else super
end

end
end

1 + "2" # => 3
1 - "2.3" # => -1.2999999999999998
1.2 + "2.3" # => 3.5
1.5 - "2" # => -0.5

coerce is discussed in the tutorial on page 352.

Chapter 27. Built-in Classes and Modules • 594

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

num.conj → numconj

Synonym for Numeric#conjugate.

num.conjugate → numconjugate

Returns the complex conjugate of num. For noncomplex numbers, returns num.

num.denominator → integerdenominator

Returns the denominator of the rational representation of num.

1.denominator # => 1
1.5.denominator # => 2
num = 1.0/3
num.to_r # => (6004799503160661/18014398509481984)
num.denominator # => 18014398509481984

num.div(numeric) → intdiv

Uses / to perform division and then converts the result to an integer. Numeric does not define
the / operator; this is left to subclasses.

num.divmod(numeric) → arraydivmod

Returns an array containing the quotient and modulus obtained by dividing num by
numeric. If q,r = x.divmod(y), then q = floor(float(x) / float(y)) and x = q * y + r. The quotient is
rounded toward -infinity.

(a.remainder(b)a.modulo(b)a/ba.divmod(b)ba

The modulo operator % always has the sign of the divisor, whereas remainder has the sign of the dividend.

113[3, 1]413

1-3-4[-4, -3]-413

-13-4[-4, 3]4-13

-1-13[3, -1]-4-13

3.53.52.875[2, 3.5]411.5

3.5-0.5-2.875[-3, -0.5]-411.5

-3.50.5-2.875[-3, 0.5]4-11.5

-3.5-3.52.875[2, -3.5]-4-11.5

Table 21—Division, modulo, and remainder

num.eql?(numeric) → true or falseeql?

Returns true if num and numeric are the same type and have equal values.

1 == 1.0 # => true
1.eql?(1.0) # => false
(1.0).eql?(1.0) # => true

report erratum • discuss

Numeric • 595

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

num.fdiv(numeric) → numericfdiv

Synonym for Numeric#quo.

num.floor → intfloor

Returns the largest integer less than or equal to num. Numeric implements this by converting
int to a Float and invoking Float#floor.

1.floor # => 1
(-1).floor # => -1

num.i → Complex(0, num)i

Returns the complex number whose imaginary part is num.

num.imag → 0imag

Synonym for Numeric#imaginary.

num.image → 0imaginary

Returns the imaginary part of num. Always 0 unless num is a complex number.

1.imaginary # => 0

num.integer? → true or falseinteger?

Returns true if num is an Integer (including Fixnum and Bignum).

num.magnitude → int or floatmagnitude

Returns the magnitude of num (the distance of num from the origin of the number line). See
also Complex#magnitude.

3.magnitude # => 3
-3.0.magnitude # => 3.0

num.modulo(numeric) → numericmodulo

Equivalent to num.divmod(numeric)[1].

num.nonzero? → num or nilnonzero?

Returns num if num is not zero and returns nil otherwise. This behavior is useful when
chaining comparisons.

a = %w(z Bb bB bb BB a aA Aa AA A)
b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
b # => ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]

Chapter 27. Built-in Classes and Modules • 596

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

num.numerator → integernumerator

Returns the numerator of the rational representation of num.

1.numerator # => 1
1.5.numerator # => 3
num = 1.0/3
num.to_r # => (6004799503160661/18014398509481984)
num.numerator # => 6004799503160661

num.phase → [magnitude, angle]phase

Returns the phase angle of num. See Complex for more information. For noncomplex numbers,
returns 0 if num is nonnegative, π otherwise.

123.phase # => 0

num.polar → [magnitude, angle]polar

Returns num in polar form. See Complex for more information. For noncomplex numbers,
returns [num,0].

123.polar # => [123, 0]

num.quo(numeric) → numericquo

Equivalent to Numeric#/ but overridden in subclasses. The intent of quo is to return the most
accurate result of division (in context). Thus, 1.quo(2)will equal the rational number 1⁄2, while
1/2 equals 0.

num.real → numreal

Returns the real part of num. Always num unless num is a complex number.

1.real # => 1
1.5.real # => 1.5

num.real? → truereal?

All the built-in numeric classes except Complex represent scalar types and hence respond true
to real?.

1.real? # => true
1.0.real? # => true
Complex(1,0).real? # => false

num.rect → [num, 0]rect

Returns an array containing the real and imaginary components of num. See also Complex#rect.

1.5.rect # => [1.5, 0]

report erratum • discuss

Numeric • 597

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

num.rectangular → [num, 0]rectangular

Synonym for Numeric#rect.

num.remainder(numeric) → another_numericremainder

Returns num - (num/numeric).truncate. See Table 21,Division, modulo, and remainder, on page 595.

num.round → intround

Rounds num to the nearest integer.

num.step(end_num, step) {|i| … } → num
num.step(end_num, step) → enumerator

step

Invokes block with the sequence of numbers starting at num, incremented by step on each
call. The loop finishes when the value to be passed to the block is greater than end_num (if
step is positive) or less than end_num (if step is negative). If all the arguments are integers,
the loop operates using an integer counter. If any of the arguments are floating-point numbers,
all are converted to floats, and the loop is executed floor(n + n*Float::EPSILON)+1 times, where
n = (end_num - num)/step. Otherwise, the loop starts at num, uses either the < or > operator to
compare the counter against end_num, and increments itself using the + operator. Returns
an enumerator if no block is given.

1.step(10, 2) {|i| print i, " " }

produces:

1 3 5 7 9

Math::E.step(Math::PI, 0.2) {|f| print f, " " }

produces:

2.718281828459045 2.9182818284590453 3.118281828459045

num.to_c → complexto_c

Returns num as a complex number.

123.to_c # => 123+0i

num.to_int → intto_int

Invokes the child class’s to_i method to convert num to an integer.

num.truncate → inttruncate

Returns num truncated to an integer.

num.zero? → true or falsezero?

Returns true if num has a zero value.

Chapter 27. Built-in Classes and Modules • 598

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Object < BasicObjectClass

Subclasses:

Object is the parent class of (almost) all classes in Ruby. Its methods are therefore available
to all objects unless explicitly overridden.

Object mixes in the Kernel module, making the built-in kernel functions globally accessible.
Although the instance methods of Object are defined by the Kernel module, we have chosen
to document them here for clarity.

In the descriptions that follow, the parameter symbol refers to a name, which is either a
quoted string or a symbol (such as :name).

Instance Methods

obj === other_obj→ true or false===

Case Equality—A synonym forObject#== but typically overridden by descendents to provide
meaningful semantics in case statements.

obj <=> other_obj→ 0 or nil<=>

Comparison—For objects, returns 0 if other_obj is the same object as, or is equal to, obj. Oth-
erwise, returns nil (which should be interpreted to mean that there’s no meaning to the
comparison). Overridden by subclasses that have comparison semantics.

obj =~ other_obj→ nil=~

Pattern Match—Overridden by descendents (notably Regexp and String) to provide meaningful
pattern-match semantics.

obj !~ other_obj→ !(obj =~ other_obj)!~

Opposite of =~.

obj.class → klassclass

Returns the class object of obj. This method must always be called with an explicit receiver,
because class is also a reserved word in Ruby.

1.class # => Fixnum
self.class # => Object

obj.clone → other_objclone

Produces a shallow copy of obj—the instance variables of obj are copied, but not the objects
they reference. Copies the frozen and tainted state of obj, along with any associated singleton
class. See also the discussion under Object#dup.

report erratum • discuss

Object • 599

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

class Klass
attr_accessor :str

end
s1 = Klass.new # => #<Klass:0x007fc1bb10ee90>
s1.str = "Hello" # => "Hello"
s2 = s1.clone # => #<Klass:0x007fc1bb10e940 @str="Hello">
s2.str[1,4] = "i" # => "i"
s1.inspect # => "#<Klass:0x007fc1bb10ee90 @str=\"Hi\">"
s2.inspect # => "#<Klass:0x007fc1bb10e940 @str=\"Hi\">"

obj.define_singleton_method(symbol, method) → method
obj.define_singleton_method(symbol) { … } → proc

define_singleton_method

Defines a singleton method in the receiver. The method parameter can be a Proc, Method, or
UnboundMethod object. If a block is specified, it is used as the method body. This block is
evaluated using instance_eval. See also Module#define_method.

a = "cat"
a.define_singleton_method(:speak) do
"#{self} says miaow"

end
a.speak # => "cat says miaow"

define_singleton_method is also useful with Module#class_eval:

class Test
class_eval do
define_method(:one) { puts "instance method" }
define_singleton_method(:two) { puts "class method" }

end
end
t = Test.new
t.one
Test.two

produces:

instance method
class method

obj.display(port=$>) → nildisplay

Prints obj on the given port (default $>). Equivalent to the following:

def display(port=$>)
port.write self

end

For example:

1.display
"cat".display
[4, 5, 6].display

produces:

1cat[4, 5, 6]

Chapter 27. Built-in Classes and Modules • 600

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

obj.dup → other_objdup

Produces a shallow copy of obj—the instance variables of obj are copied, but not the objects
they reference. dup copies the tainted state of obj. See also the discussion under Object#clone.
In general, dup duplicates just the state of an object, while clone also copies the state, any
associated singleton class, and any internal flags (such as whether the object is frozen). The
taint status is copied by both dup and clone.

obj.enum_for(using=:each, ‹args›+ → enumerator
obj.enum_for(using=:each, ‹args›+ {|*args| … } → enumerator

enum_for

Synonym for Object#to_enum.

obj.eql?(other_obj) → true or falseeql?

Returns true if obj and other_obj have the same value. Used by Hash to test members for
equality. For objects of class Object, eql? is synonymous with==. Subclasses normally continue
this tradition, but there are exceptions. Numeric types, for example, perform type conversion
across ==, but not across eql?. This means the following:

1 == 1.0 # => true
1.eql? 1.0 # => false

obj.extend(‹mod›+) → objextend

Mix the instance methods from each of the given modules in to obj. See Chapter 24,
Metaprogramming, on page 357 for information on how this works. See alsoModule#extend_object.

module Mod
def hello
"Hello from Mod.\n"

end
end

class Klass
def hello
"Hello from Klass.\n"

end
end

k = Klass.new
k.hello # => "Hello from Klass.\n"
k.extend(Mod) # => #<Klass:0x007f9fe190f208>
k.hello # => "Hello from Mod.\n"

Writing obj.extend(Mod) is basically the same as the following:

class <<obj
include Mod

end

report erratum • discuss

Object • 601

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

obj.freeze → objfreeze

Prevents further modifications to obj. A RuntimeError will be raised if modification is
attempted. You cannot unfreeze a frozen object. See also Object#frozen?.

a = ["a", "b", "c"]
a.freeze
a << "z"

produces:

prog.rb:3:in `<main>': can't modify frozen Array (RuntimeError)

obj.frozen? → true or falsefrozen?

Returns the freeze status of obj.

a = ["a", "b", "c"]
a.freeze # => ["a", "b", "c"]
a.frozen? # => true

obj.hash → fixnumhash

Generates a Fixnum hash value for obj. This function must have the property that a.eql?(b)
implies a.hash == b.hash. The hash value is used by class Hash. Any hash value that exceeds
the capacity of a Fixnum will be truncated before being used. For instances of class Object, the
hash is also the object_id. This will not always be the case for subclasses.

obj.initialize_clone(other) → other_obj or objinitialize_clone

Invoked as a callback byObject#clone to initialize the cloned object. The default implementation
is to call initialize_copy.

obj.initialize_copy(other) → other_obj or objinitialize_copy

Part of the protocol used by Object#dup and#clone, initialize_copy is the fallback method invoked
by Object#initialize_clone and #initialize_dup. If you need specialized copy semantics depending
on whether clone or dup is called, override those more specific callbacks. If you want common
behavior, override initialize_copy.

These methods should copy across any state information that dup and clone cannot copy
themselves. For example, in the following code, a and b reference two instances of the con-
tainer class, but each instance shares a single string object:

class Container
attr_accessor :content

end
a = Container.new
a.content = "cat"
b = a.dup
a.content[1..-1] = "anary"
a.content # => "canary"
b.content # => "canary"

Chapter 27. Built-in Classes and Modules • 602

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

The next example uses initialize_copy to create a new string in the duplicated object.

class Container
attr_accessor :content
def initialize_copy(other)
@content = String.new(other.content)

end
end
a = Container.new
a.content = "cat"
b = a.dup
a.content[1..-1] = "anary"
a.content # => "canary"
b.content # => "cat"

obj.initialize_dup(other) → other_obj or objinitialize_dup

Invoked as a callback by Object#dup to initialize the duplicated object. The default implemen-
tation is to call initialize_copy.

obj.inspect → stringinspect

Returns a string containing a human-readable representation of obj. For objects of classes
written in Ruby, displays the values of instance variables along with the class name if any

⇡New in 2.0⇣
instance variables exist. Override this in subclasses to change their behavior when inspected.

[1, 2, 3..4, 'five'].inspect # => [1, 2, 3..4, "five"]
Time.new.inspect # => 2013-05-27 12:32:34 -0500
class Demo
def initialize; @a, @b = 1, 2; end

end
Demo.new.inspect # => #<Demo:0x007fb6d190f1e8 @a=1, @b=2>

obj.instance_of?(klass) → true or falseinstance_of?

Returns true if obj is an instance of the given class. See also Object#kind_of?.

obj.instance_variable_defined?(name) → true or falseinstance_variable_defined?

Returns true if the named variable is defined. Note that a common idiom, testing to see
whether @fred is nil, is incorrect in two ways: first the variable could be defined but set to nil,
and second it will generate a warning if debug mode is enabled.

class Fred
def initialize(p1, p2)
@a, @b = p1, p2

end
end
fred = Fred.new('cat', 99)
fred.instance_variable_defined?(:@a) # => true
fred.instance_variable_defined?("@b") # => true
fred.instance_variable_defined?(:@c) # => false

report erratum • discuss

Object • 603

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

obj.instance_variable_get(symbol) → other_objinstance_variable_get

Returns the value of the given instance variable (or throws a NameError exception). The @
part of the variable name should be included for regular instance variables.

class Fred
def initialize(p1, p2)
@a, @b = p1, p2

end
end
fred = Fred.new('cat', 99)
fred.instance_variable_get(:@a) # => "cat"
fred.instance_variable_get("@b") # => 99

obj.instance_variable_set(symbol, other_obj) → other_objinstance_variable_set

Sets the instance variable names by symbol to other_obj, thereby frustrating the efforts of the
class’s author to attempt to provide proper encapsulation.

class Fred
def initialize(p1, p2)
@a, @b = p1, p2

end
end
fred = Fred.new('cat', 99)
fred.instance_variable_set(:@a, 'dog')
fred.inspect # => #<Fred:0x007fcd9b047d40 @a="dog", @b=99>

obj.instance_variables → arrayinstance_variables

Returns an array of instance variable names for the receiver. Note that simply defining an
accessor does not create the corresponding instance variable.

class Fred
attr_accessor :a1
def initialize
@iv = 3

end
end
Fred.new.instance_variables # => [:@iv]

obj.is_a?(klass) → true or falseis_a?

Synonym for Object#kind_of?.

obj.kind_of?(klass) → true or falsekind_of?

Returns true if klass is the class of obj or if klass is one of the superclasses of obj or modules
included in obj.

Chapter 27. Built-in Classes and Modules • 604

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

module M
end
class A
include M

end
class B < A; end
class C < B; end

b = B.new
b.instance_of? A # => false
b.instance_of? B # => true
b.instance_of? C # => false
b.instance_of? M # => false
b.kind_of? A # => true
b.kind_of? B # => true
b.kind_of? C # => false
b.kind_of? M # => true

obj.method(symbol) → methmethod

Looks up the named method in obj, returning aMethod object (or raising NameError). TheMethod
object is a closure, so instance variables and the value of self remain available.

class Demo
def initialize(n)
@iv = n

end
def hello()
"Hello, @iv = #{@iv}"

end
end

k = Demo.new(99)
m = k.method(:hello)
m.call # => "Hello, @iv = 99"

l = Demo.new('Fred')
m = l.method("hello")
m.call # => "Hello, @iv = Fred"

obj.methods(regular=true) → arraymethods

If regular is true, returns a list of the names of methods publicly accessible in obj and obj’s
ancestors. Otherwise, returns a list of obj’s singleton methods.

class Klass
def my_method; end

end
k = Klass.new
def k.single; end
k.methods[0..6] # => [:single, :my_method, :nil?, :===, :=~, :!~, :eql?]
k.methods.length # => 56
k.methods(false) # => [:single]

report erratum • discuss

Object • 605

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

obj.nil? → true or falsenil?

All objects except nil return false.

obj.object_id → fixnumobject_id

Returns an integer identifier for obj. The same number will be returned on all calls to object_id
for a given object, and no two active objects will share an ID. Object#object_id is a different
concept from the :name notation, which returns the symbol ID of name. Replaces the depre-
cated Object#id.

obj.private_methods → arrayprivate_methods

Returns a list of private methods accessible within obj. This will include the private methods
in obj’s ancestors, along with any mixed-in module functions.

obj.protected_methods → arrayprotected_methods

Returns the list of protected methods accessible to obj.

obj.public_method(symbol) → methpublic_method

Looks up the named public method in obj, returning a Method object (or raising NameError if
the method is not found or if it is found but not public).

class Demo
def initialize(n)
@iv = n

end
def hello()
puts "Hello, @iv = #{@iv}"

end
end

k = Demo.new(99)
m = k.public_method(:hello)
m.call

l = Demo.new('Fred')
m = l.public_method(:initialize)
m.call

produces:

from prog.rb:15:in `<main>'
Hello, @iv = 99
prog.rb:15:in `public_method': method `initialize' for class `Demo' is private
(NameError)

obj.public_methods → arraypublic_methods

Synonym for Object#methods.

Chapter 27. Built-in Classes and Modules • 606

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

obj.public_send(name, ‹args›+) → objpublic_send

Invokes obj’s public method name, passing in any arguments. Returns the value returned by
the method. See also send, which will also call private and protected methods.

obj.respond_to?(symbol, include_priv=false) → true or falserespond_to?

⇡New in 2.0⇣
Returns true if obj responds to the given method. Private and protected methods are included
in the search only if the optional second parameter evaluates to true.

obj.respond_to_missing?(symbol, include_priv=false) → true or falserespond_to_missing?

A callback invoked by the interpreter if respond_to? is called and does not find a method. This
allows classes to indicate that they implement methods via method_missing.

class Example
def regular
end
def method_missing(name, *args, &block)
if name == :dynamic

do something
else
super

end
end
def respond_to_missing?(name, include_priv)
name == :dynamic

end
end

ex = Example.new
ex.respond_to?(:regular) # => true
ex.respond_to?(:dynamic) # => true
ex.respond_to?(:other) # => false

obj.send(symbol ‹ , args›*‹ , &block›) → other_objsend

Invokes the method identified by symbol, passing it any arguments and block. You can use
BasicObject#__send__ if the name send clashes with an existing method in obj.

class Klass
def hello(*args)
"Hello " + args.join(' ')

end
end
k = Klass.new
k.send :hello, "gentle", "readers" # => "Hello gentle readers"

obj.singleton_class → klasssingleton_class

Returns the singleton class of obj, creating one if necessary. TrueClass, FalseClass, and NilClass
are their own singleton classes. Fixnum has no singleton class.

report erratum • discuss

Object • 607

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

obj = "cat"
old_way = class << obj; self; end
new_way = obj.singleton_class

old_way # => #<Class:#<String:0x007fa2b1864060>>
new_way # => #<Class:#<String:0x007fa2b1864060>>
new_way == old_way # => true

obj.singleton_methods(all=true) → arraysingleton_methods

Returns an array of the names of singleton methods for obj. If the optional all parameter is
true, the list will include methods in modules included in obj. (The parameter defaults to
false in versions of Ruby prior to January 2004.)

module Other
def three(); end

end

class Single
def Single.four(); end

end

a = Single.new

def a.one(); end

class << a
include Other
def two(); end

end

Single.singleton_methods # => [:four]
a.singleton_methods(false) # => [:one, :two]
a.singleton_methods(true) # => [:one, :two, :three]
a.singleton_methods # => [:one, :two, :three]

obj.taint → objtaint

Marks obj as tainted. If the $SAFE level is greater than zero, some objects will be tainted on
creation. See Chapter 26, Locking Ruby in the Safe, on page 409.

obj.tainted? → true or falsetainted?

Returns true if the object is tainted.

a = "cat"
a.tainted? # => false
a.taint # => "cat"
a.tainted? # => true
a.untaint # => "cat"
a.tainted? # => false

Chapter 27. Built-in Classes and Modules • 608

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

obj.tap {|val| … } → objtap

Invokes the block, passing obj as a parameter. Returns obj. Allows you to write code that
takes part in a method chain but that does not affect the overall value of the chain.

puts "dog"
.reverse

.tap {|o| puts "Reversed: #{o}"}
.capitalize

produces:

Reversed: god
God

obj.to_enum(using=:each, ‹args›+) → enumerator
obj.to_enum(using=:each, ‹args›+ {|*args| … } → enumerator

to_enum

Returns an Enumerator object that will traverse the content of obj. By default, this enumerator
will invoke the eachmethod of self, but this can be overridden by passing a different method
name as the first parameter. Any additional arguments passed to to_enum will be passed to
the enumerator method.

by_bytes = "∂og".to_enum(:each_byte)
by_bytes.next # => 226
by_bytes.next # => 136
by_bytes.next # => 130
by_bytes.next # => 111

by_chars = "∂og".to_enum(:each_char)
by_chars.next # => "∂"
by_chars.next # => "o"
by_chars.next # => "g"

⇡New in 2.0⇣If the block is present, it is called to return the size of the collection without actually iterating
over each element. This facilitates calculating the size of lazily evaluated enumerations.

obj.to_s → stringto_s

Returns a string representing obj. The default to_s prints the object’s class and an encoding
of the object ID. As a special case, the top-level object that is the initial execution context of
Ruby programs returns “main.”

obj.trust → objtrust

Marks obj as trusted. (See the section on trust on page 411.)

obj.untaint → objuntaint

Removes the taint from obj.

report erratum • discuss

Object • 609

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

obj.untrust → objuntrust

Marks obj as untrusted. (See the section on trust on page 411.)

obj.untrusted? → true or falseuntrusted?

Returns true if obj is untrusted, false otherwise.

Private Instance Methods

__callee__ → symbol or nil__callee__

⇡New in 2.0⇣
Returns the name of the current method or nil outside the context of a method. If a method
is called by an aliased name, that alias is returned, and not the original name.

def fred
puts "I'm in #{__callee__.inspect}"

end
fred
puts "Then in #{__callee__.inspect}"

produces:

I'm in :fred
Then in nil

__dir__ → string__dir__

⇡New in 2.0⇣ The absolute path to the directory of the file containing the call to this method.

__method__ → symbol or nil__method__

Synonym for __callee__.

‘cmd‘ → string‘ (backquote)

Returns the standard output of running cmd in a subshell. The built-in syntax%x{...}described
in the tutorial on page 128 uses this method. Sets $? to the process status.

`date` # => "Mon May 27 12:32:35 CDT 2013\n"
`ls testdir`.split[1] # => "main.rb"
`echo oops && exit 99` # => "oops\n"
$?.exitstatus # => 99

Array(arg) → arrayArray

Returns arg as an Array. First tries to call arg.to_ary and then arg.to_a. If both fail, creates a
single element array containing arg (or an empty array if arg is nil).

Array(1..5) # => [1, 2, 3, 4, 5]

Chapter 27. Built-in Classes and Modules • 610

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Complex(real, imag=0) → complexComplex

Returns the complex number with the given real and imaginary parts.

Complex(1) # => 1+0i
Complex("1") # => 1+0i
Complex("1", "3/2") # => 1+3/2i
Complex("3+2i") # => 3+2i

Float(arg) → floatFloat

Returns arg converted to a float. Numeric types are converted directly; strings are converted
by interpreting their content as either a decimal or (with a loading 0x) a hexadecimal floating-
point constant—see the %a field specifier to sprintf; the rest are converted using arg.to_f.
Converting nil generates a TypeError.

Float(1) # => 1.0
Float("123.456") # => 123.456
Float("0x1.921fb54442d18p+1") # => 3.141592653589793

Hash(arg) → hashHash

⇡New in 2.0⇣Convert arg to a hash by calling its to_hash method.

Hash(nil) # => {}
Hash(x: 23, y: 67) # => {:x=>23, :y=>67}
h1 = { a:1, c:3 }
h2 = { b:2, d:4 }
Hash(**h1, **h2) # => {:a=>1, :c=>3, :b=>2, :d=>4}

Integer(arg) → intInteger

Converts arg to a Fixnum or Bignum. Numeric types are converted directly (floating-point
numbers are truncated). If arg is a String, leading radix indicators (0, 0b, and 0x) are honored.
Others are converted using to_int and to_i. This behavior is different from that of String#to_i.
Converting nil generates a TypeError.

Integer(123.999) # => 123
Integer("0x1a") # => 26

Rational(numerator, denominator=1) → rationalRational

Returns the rational number with the given representation.

Rational(1) # => 1/1
Rational("1") # => 1/1
Rational("1", "2") # => 1/2
Rational(1, 0.5) # => 2/1
Rational("3/2") # => 3/2
Rational("3/2", "4/5") # => 15/8

report erratum • discuss

Object • 611

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

String(arg) → stringString

Converts arg to a String by calling its to_s method.

String(self) # => "main"
String(self.class) # => "Object"
String(123456) # => "123456"

abort
abort(msg)

abort

Terminates execution immediately with an exit code of 1. The optional String parameter is
written to standard error before the program terminates.

at_exit { … } → procat_exit

Converts block to a Proc object and registers it for execution when the program exits. If mul-
tiple handlers are registered, they are executed in reverse order of registration.

def do_at_exit(str1)
at_exit { print str1 }

end
at_exit { puts "cruel world" }
do_at_exit("goodbye ")
exit

produces:

goodbye cruel world

autoload(name, file_name) → nilautoload

Registers file_name to be loaded (using Object#require) the first time that the module name
(which may be a String or a symbol) is accessed.

autoload(:MyModule, "/usr/local/lib/modules/my_module.rb")

Module.autoload lets you define namespace-specific autoload hooks:

module X
autoload :XXX, "xxx.rb"

end

Note that xxx.rb should define a class in the correct namespace. That is, in this example, xxx.rb
should contain the following:

class X::XXX
...

end

autoload?(name) → file_name or nilautoload?

Returns the name of the file that will be autoloaded when the string or symbol name is refer-
enced in the top-level context or returns nil if there is no associated autoload.

Chapter 27. Built-in Classes and Modules • 612

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

autoload(:Fred, "module_fred") # => nil
autoload?(:Fred) # => "module_fred"
autoload?(:Wilma) # => nil

binding → a_bindingbinding

Returns a Binding object, describing the variable and method bindings at the point of call.
This object can be used when calling eval to execute the evaluated command in this environ-
ment. Also see the description of class Binding on page 447.

def get_binding(param)
return binding

end
b = get_binding("hello")
eval("param", b) # => "hello"

block_given? → true or falseblock_given?

Returns true if yield executes a block in the current context.

def try
if block_given?
yield

else
"no block"

end
end

try # => "no block"
try { "hello" } # => "hello"
block = lambda { "proc object" }
try(&block) # => "proc object"

caller(‹start‹ , max_size››) → array
caller(‹range›) → array

caller

Returns the current execution stack—an array containing strings in the form file:line or file:line:
in ‘method’. The optional start parameter determines the number of initial stack entries to

⇡New in 2.0⇣
omit from the result. The optionalmax_size parameter sets the maximum size of the returned
array. Alternatively, passing a range parameter retrieves the given stack entries.

def a(skip)
caller(skip)

end
def b(skip)
a(skip)

end
def c(skip)
b(skip)

end
c(0) # => ["prog.rb:2:in `a'", "/tmp/prog.rb:5:in `b'", "/tmp/prog.rb:8:in

.. `c'", "/tmp/prog.rb:10:in `<main>'"]
c(1) # => ["prog.rb:5:in `b'", "/tmp/prog.rb:8:in `c'", "/tmp/prog.rb:11:in

report erratum • discuss

Object • 613

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

.. `<main>'"]
c(2) # => ["prog.rb:8:in `c'", "/tmp/prog.rb:12:in `<main>'"]
c(3) # => ["prog.rb:13:in `<main>'"]

caller_locations → array of caller sitescaller_locations

⇡New in 2.0⇣ Returns an array containing the call stack.

def outer
inner

end

def inner
p caller_locations

end

puts outer

produces:

["prog.rb:2:in `outer'", "/tmp/prog.rb:9:in `<main>'"]
prog.rb:2:in `outer'
prog.rb:9:in `<main>'

catch(object=Object.new) { … } → objcatch

catch executes its block. If a throw is encountered, Ruby searches up its stack for a catch block
with a parameter identical to the throw’s parameter. If found, that block is terminated, and
catch returns the value given as the second parameter to throw. If throw is not called, the block
terminates normally, and the value of catch is the value of the last expression evaluated. catch
expressions may be nested, and the throw call need not be in lexical scope. Prior to Ruby 1.9,
the parameters to catch and throw had to be symbols—they can now be any object. When
using literals, it probably makes sense to use only immediate objects.

def routine(n)
print n, ' '
throw :done if n <= 0
routine(n-1)

end
catch(:done) { routine(4) }

produces:

4 3 2 1 0

chomp(‹rs›) → $_ or ‹string›chomp

Equivalent to $_ = $_.chomp(rs), except no assignment is made if chomp doesn’t change $_. See
String#chomp on page 672. Available only if the -n or -p command-line options are present.

chop → stringchop

(Almost) equivalent to $_.dup.chop!, except that if chop performs no action, $_ is unchanged
and nil is not returned. See String#chop! on page 672. Available only if the -n or -p command-
line option is present.

Chapter 27. Built-in Classes and Modules • 614

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

define_method(symbol, method) → method
define_method(symbol) { … } → proc

define_method

⇡New in 2.0⇣Defines a global method. The behavior is analogous to Module#define_method.

define_method(:adder, -> (a, b) { a+b })

adder(1, 2) # => 3
adder("cat", "dog") # => "catdog"

Note that it is possible to define methods with names that are not valid if you were to use
the def keyword. These methods cannot be invoked directly.

class Silly
define_method("Oh !@!#^!") { "As Snoopy says" }

end
Silly.new.send("Oh !@!#^!") # => "As Snoopy says"

eval(string ‹ , binding ‹ , file ‹ , line›››) → objeval

Evaluates the Ruby expression(s) in string. If binding is given, the evaluation is performed
in its context. The binding must be a Binding object. If the optional file and line parameters
are present, they will be used when reporting syntax errors.

def get_binding(str)
return binding

end
str = "hello"
eval "str + ' Fred'" # => "hello Fred"
eval "str + ' Fred'", get_binding("bye") # => "bye Fred"

Local variables assigned within an eval are available after the eval only if they were defined
at the outer scope before the eval executed. In this way, eval has the same scoping rules as
blocks.

a = 1
eval "a = 98; b = 99"
puts a
puts b

produces:

98
prog.rb:4:in `<main>': undefined local variable or method `b' for main:Object
(NameError)

exec(‹env,› command ‹ , args›*, ‹options›)exec

Replaces the current process by running the given external command. If exec is given a single
argument, that argument is taken as a line that is subject to shell expansion before being
executed. If command contains a newline or any of the characters ?*?{}[]<>()~&|$;'`", or under
Windows if command looks like a shell-internal command (for example dir), command is run
under a shell. On Unix system, Ruby does this by prepending sh -c. Under Windows, it uses
the name of a shell in either RUBYSHELL or COMSPEC.

report erratum • discuss

Object • 615

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

If multiple arguments are given, the second and subsequent arguments are passed as
parameters to commandwith no shell expansion. If the first argument is a two-element array,
the first element is the command to be executed, and the second argument is used as the
argv[0] value, which may show up in process listings. In MSDOS environments, the command
is executed in a subshell; otherwise, one of the exec(2) system calls is used, so the running
command may inherit some of the environment of the original program (including open file
descriptors). Raises SystemCallError if the command couldn’t execute (typically Errno::ENOENT).

exec "echo *" # echoes list of files in current directory
never get here

exec "echo", "*" # echoes an asterisk
never get here

env, if present, is a hash that adds to the environment variables in the subshell. An entry
with a nil value clears the corresponding environment variable. The keys must be strings.
options, if present, is a hash that controls the setup of the subshell. The possible keys and
their meanings are listed under #spawn. See also Object#spawn and Object#system.

exit(true | false | status=1)exit

Initiates the termination of the Ruby script. If called in the scope of an exception handler,
raises a SystemExit exception. This exception may be caught. Otherwise, exits the process
using exit(2). The optional parameter is used to return a status code to the invoking environ-
ment. With an argument of true, exits with a status of zero. With an argument that is false (or
no argument), exits with a status of 1; otherwise, exits with the given status. The default exit
value is 1.

fork { exit 99 }
Process.wait
puts "Child exits with status: #{$?.exitstatus}"
begin
exit
puts "never get here"

rescue SystemExit
puts "rescued a SystemExit exception"

end
puts "after begin block"

produces:

Child exits with status: 99
rescued a SystemExit exception
after begin block

Just prior to termination, Ruby executes any at_exit functions and runs any object finalizers
(see ObjectSpace on page 631).

at_exit { puts "at_exit function" }
ObjectSpace.define_finalizer("xxx", lambda { |obj| puts "in finalizer" })
exit

produces:

at_exit function
in finalizer

Chapter 27. Built-in Classes and Modules • 616

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://www.freebsd.org/cgi/man.cgi?query=exec&sektion=2
http://www.freebsd.org/cgi/man.cgi?query=exit&sektion=2
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

exit!(true | false | status=1)exit!

Similar to Object#exit, but exception handling, at_exit functions, and finalizers are bypassed.

fail
fail(message)

fail(exception ‹ , message ‹ , array››)}

fail

Synonym for Object#raise.

fork ‹ { … }› → int or nilfork

Creates a subprocess. If a block is specified, that block is run in the subprocess, and the
subprocess terminates with a status of zero. Otherwise, the fork call returns twice, once in
the parent, returning the process ID of the child, and once in the child, returning nil. The
child process can exit using Object#exit! to avoid running any at_exit functions. The parent
process should use Process.wait to collect the termination statuses of its children or it should
call Process.detach to register disinterest in their status; otherwise, the operating system may
accumulate zombie processes.

fork do
3.times {|i| puts "Child: #{i}" }

end
3.times {|i| puts "Parent: #{i}" }
Process.wait

produces:

Parent: 0
Child: 0
Parent: 1
Child: 1
Parent: 2
Child: 2

format(format_string ‹ , arg›*) → stringformat

Synonym for Object#sprintf.

gem(gem_name ‹ , version›) → true or falsegem

Adds the given gem to the applications include path so that subsequent requires will search.
Defaults to the latest version of the gem if no version information is given. See Gems and
Versions, on page 220 for more information and examples.

gem_original_require ‹ filename›+gem_original_require

The version of Object#require that does not know about RubyGems.

report erratum • discuss

Object • 617

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

gets(separator=$/) → string or nilgets

Returns (and assigns to $_) the next line from the list of files in ARGV (or $*) or from standard
input if no files are present on the command line. Returns nil at end of file. The optional
argument specifies the record separator. The separator is included with the contents of each
record. A separator of nil reads the entire contents, and a zero-length separator reads the
input one paragraph at a time, where paragraphs are divided by two consecutive newlines.
If multiple filenames are present in ARGV, gets(nil) reads the contents one file at a time. Pro-
gramming using $_ as an implicit parameter is losing favor in the Ruby community.

ARGV << "testfile"
print while gets

produces:

This is line one
This is line two
This is line three
And so on...

global_variables → arrayglobal_variables

Returns an array of the names of global variables.

global_variables.grep /std/ # => [:$stdin, :$stdout, :$stderr]

gsub(pattern, replacement) → string
gsub(pattern) { … } → string

gsub

Equivalent to $_.gsub(...), except that $_ will be updated if substitution occurs. Available only
when the -n or -p command-line option is present.

initialize(‹ arg ›+)initialize

Called as the third and final step in object construction, initialize is responsible for setting up
the initial state of the new object. You use the initialize method the same way you’d use
constructors in other languages. If you subclass classes other than Object, you will probably
want to call super to invoke the parent’s initializer.

class A
def initialize(p1)
puts "Initializing A: p1 = #{p1}"
@var1 = p1

end
end
class B < A
attr_reader :var1, :var2
def initialize(p1, p2)
super(p1)
puts "Initializing B: p2 = #{p2}"
@var2 = p2

end
end

Chapter 27. Built-in Classes and Modules • 618

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

b = B.new("cat", "dog")
puts b.inspect

produces:

Initializing A: p1 = cat
Initializing B: p2 = dog
#<B:0x007f817990eaa0 @var1="cat", @var2="dog">

iterator? → true or falseiterator?

Deprecated synonym for Object#block_given?.

lambda { … } → proclambda

Creates a new procedure object from the given block. See the discussion in the tutorial on
page 336 for an explanation of the difference between procedure objects created using lambda
and those created using Proc.new. Note that lambda is now preferred over proc.

prc = lambda { "hello" }
prc.call # => "hello"

load(file_name, wrap=false) → trueload

Loads and executes the Ruby program in the file file_name. If the filename does not resolve
to an absolute path, the file is searched for in the library directories listed in $:. If the
optional wrap parameter is true, the loaded script will be executed under an anonymous
module, protecting the calling program’s global namespace. In no circumstance will any
local variables in the loaded file be propagated to the loading environment.

local_variables → arraylocal_variables

Returns the names of the current local variables.

fred = 1
for i in 1..10
...

end
local_variables # => [:fred, :i]

Note that local variables are associated with bindings.

def fred
a = 1
b = 2
binding

end
freds_binding = fred
eval("local_variables", freds_binding) # => [:a, :b]

loop ‹ { … }›loop

Repeatedly executes the block.

report erratum • discuss

Object • 619

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

loop do
print "Type something: "
line = gets
break if line.nil? || line =~ /^[qQ]/
...

end

loop silently rescues the StopIteration exception, which works well with external iterators.

enum1 = [1, 2, 3].to_enum
enum2 = [10, 20].to_enum
loop do
puts enum1.next + enum2.next
end

produces:

11
22

open(name ‹ , mode ‹ , permission››) → io or nil
open(name ‹ , mode ‹ , permission››) {|io| … } → obj

open

Creates an IO object connected to the given stream, file, or subprocess.

If name does not start with a pipe character (|), treats it as the name of a file to open using
the specified mode defaulting to "r" (see Table 16, Mode values, on page 494). If a file is being
created, its initial permissions may be set using the third parameter, which is an integer. If
this third parameter is present, the file will be opened using the low-level open(2) call rather
than the fopen(3) call.

If a block is specified, it will be invoked with the IO object as a parameter, which will be
closed when the block terminates. The call returns the value of the block in this case.

If name starts with a pipe character, a subprocess is created, connected to the caller by a pair
of pipes. The returned IO object may be used to write to the standard input and read from
the standard output of this subprocess. If the command following | is a single minus sign,
Ruby forks, and this subprocess is connected to the parent. In the subprocess, the open call
returns nil. If the command is not "--", the subprocess runs the command. If a block is associ-
ated with an open("|--") call, that block will be run twice—once in the parent and once in the
child. The block parameter will be an IO object in the parent and nil in the child. The parent’s
IO object will be connected to the child’s STDIN and STDOUT. The subprocess will be terminated
at the end of the block.

open("testfile", "r:iso-8859-1") do |f|
print f.gets

end

produces:

This is line one

Open a subprocess, and read its output:

cmd = open("|date")
print cmd.gets
cmd.close

Chapter 27. Built-in Classes and Modules • 620

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://www.freebsd.org/cgi/man.cgi?query=open&sektion=2
http://www.freebsd.org/cgi/man.cgi?query=fopen&sektion=3
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

produces:

Mon May 27 12:32:39 CDT 2013

Open a subprocess running the same Ruby program:

f = open("|-", "w+")
if f.nil?
puts "in Child"
exit

else
puts "Got: #{f.gets}"

end

produces:

Got: in Child

Open a subprocess using a block to receive the I/O object:

open("|-") do |f|
if f.nil?
puts "in Child"

else
puts "Got: #{f.gets}"

end
end

produces:

Got: in Child

p(‹obj›+) → objp

For each object, writes obj.inspect followed by the current output record separator to the
program’s standard output. Also see the PrettyPrint library on page 789. Returns obj.

Info = Struct.new(:name, :state)
p Info['dave', 'TX']

produces:

#<struct Info name="dave", state="TX">

print(‹obj›*) → nilprint

Prints each object in turn to STDOUT. If the output field separator ($,) is not nil, its contents
will appear between each field. If the output record separator ($\) is not nil, it will be
appended to the output. If no arguments are given, prints $_. Objects that aren’t strings will
be converted by calling their to_s print method.

print "cat", [1,2,3], 99, "\n"
$, = ", "
$\ = "\n"
print "cat", [1,2,3], 99

produces:

cat[1, 2, 3]99
cat, [1, 2, 3], 99

report erratum • discuss

Object • 621

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

printf(io, format ‹ , obj›*) → nil
printf(format ‹ , obj›*) → nil

printf

Equivalent to the following:

io.write(sprintf(format, obj, ...))
or
write(sprintf(format, obj, ...))

proc { … } → a_procproc

Creates a new procedure object from the given block. Use Object#lambda instead.

prc = proc {|name| "Goodbye, #{name}" }
prc.call('Dave') # => "Goodbye, Dave"

putc(obj) → objputc

Equivalent to STDOUT.putc(obj). If obj is a string, output its first character; otherwise, attempts
to convert obj to an integer and outputs the corresponding character code.

putc 65
putc 66.123
putc "CAT"
putc 12 # newline

produces:

ABC

puts(‹arg›*) → nilputs

Equivalent to STDOUT.puts(arg...).

raise
raise(message)

raise(exception ‹ , message ‹ , array››)

raise

With no arguments, raises the exception in $! or raises a RuntimeError if $! is nil. With a single
String argument (or an argument that responds to to_str), raises a RuntimeError with the string
as a message. Otherwise, the first parameter should be the name of an Exception class (or an
object that returns an Exception when its exception method is called). The optional second
parameter sets the message associated with the exception, and the third parameter is an
array of callback information. Exceptions are caught by the rescue clause of begin...end blocks.

raise "Failed to create socket"
raise ArgumentError, "No parameters", caller

rand(max=0) → number
rand(range) → number

rand

Converts max to an integer using max1 = max.to_i.abs. If the result is zero or nil, returns a
pseudorandom floating-point number greater than or equal to 0.0 and less than 1.0. Otherwise,

Chapter 27. Built-in Classes and Modules • 622

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

returns a pseudorandom integer greater than or equal to zero and less than max1. If a range
is passed, return a random number in that range. Object#srand may be used to ensure
repeatable sequences of random numbers between different runs of the program. See also
class Random on page 655.

srand 1234 # => 272125880215485747773990619030416710243
[rand, rand] # => [0.1915194503788923, 0.6221087710398319]
[rand(10), rand(1000)] # => [4, 664]
srand 1234 # => 1234
[rand, rand] # => [0.1915194503788923, 0.6221087710398319]
rand(5..10) # => 9
rand(1.1..1.2) # => 1.1612111893665362

readline(‹separator=$/›) → stringreadline

Equivalent to Object#gets, except readline raises EOFError at end of file.

readlines(‹separator=$/›) → arrayreadlines

Returns an array containing each of the lines returned by calling gets(separator).

remove_instance_variable(symbol) → other_objremove_instance_variable

Removes the named instance variable from obj, returning that variable’s value.

class Dummy
def initialize
@var = 99

end
def remove
remove_instance_variable(:@var)

end
def var_defined?
defined? @var

end
end
d = Dummy.new
d.var_defined? # => "instance-variable"
d.remove # => 99
d.var_defined? # => nil

require(library_name) → true or falserequire

Ruby tries to load library_name, returning true if successful. If the filename is not an absolute
path, it will be searched for in the directories listed in $:. If the file has the extension .rb, it is
loaded as a source file; if the extension is .so, ..o, or ..dll,1 Ruby loads the shared library as a
Ruby extension. Otherwise, Ruby tries adding .rb, ..so, and so on, to the name. The name of
the loaded feature is added to the array in $". A feature will not be loaded if its name already
appears in $".2 require returns true if the feature was successfully loaded.

1. Or whatever the default shared library extension is on the current platform
2. As of Ruby 1.9, this name is converted to an absolute path, so require 'a';require './a' will load a.rb once.

report erratum • discuss

Object • 623

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

require 'my-library.rb'
require 'db-driver'

require_relative(library_path) → true or falserequire_relative

Requires a library whose path is relative to the file containing the call. Thus, if the directory
/usr/local/mylib/bin contains the file myprog.rb and that program contains the following line:

require_relative "../lib/mylib"

then Ruby will look for mylib in /usr/local/mylib/lib.

require_relative cannot be called interactively in irb.

select(read_array ‹ , write_array ‹ , error_array ‹ , timeout›››) → array or nilselect

Performs a low-level select call, which waits for data to become available from input/output
devices. The first three parameters are arrays of IO objects or nil. The last is a timeout in sec-
onds, which should be an Integer or a Float. The call waits for data to become available for
any of the IO objects in read_array, for buffers to have cleared sufficiently to enable writing
to any of the devices in write_array, or for an error to occur on the devices in error_array. If
one or more of these conditions are met, the call returns a three-element array containing
arrays of the IO objects that were ready. Otherwise, if there is no change in status for timeout
seconds, the call returns nil. If all parameters are nil, the current thread sleeps forever.

select([STDIN], nil, nil, 1.5) # => nil

set_trace_func(proc) → proc
set_trace_func(nil) → nil

set_trace_func

⇡New in 2.0⇣ (This method has been replaced by the TracePoint class in Ruby 2.0.) Establishes proc as the
handler for tracing or disables tracing if the parameter is nil. proc takes up to six parameters:
an event name, a filename, a line number, an object ID, a binding, and the name of a class.
proc is invoked whenever an event occurs. Events are call (calls a Ruby method), c-call (calls
a C-language routine), c-return (returns from a C-language routine), class (starts a class or
module definition), end (finishes a class or module definition), line (executes code on a new
line), raise (raises an exception), and return (returns from a Ruby method). Tracing is disabled
within the context of proc. See the example in the tutorial on page 400 for more information.

sleep(numeric=0) → fixnumsleep

Suspends the current thread for numeric seconds (which may be a Float with fractional sec-
onds). Returns the actual number of seconds slept (rounded), which may be less than that
asked for if the thread was interrupted by a SIGALRM or if another thread calls Thread#run. An
argument of zero causes sleep to return immediately.

Time.now # => 2013-05-27 12:32:41 -0500
sleep 1.9 # => 2
Time.now # => 2013-05-27 12:32:43 -0500

Chapter 27. Built-in Classes and Modules • 624

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

spawn(‹env,› command ‹ , args›*, ‹options›) → pidspawn

Executes command in a subshell, returning immediately. (Compare with Object#system, which
waits for the command to complete before returning to the caller.) Returns the process ID
for the subprocess running the command.

The command can be a string, which is passed to the system shell for interpretation or a
command name followed by zero or more arguments. In this case, the command is executed
and passed the given arguments—the shell is not involved. The command name may be a
string or a two-element array, where the first element is the command itself and the second
is the argv[0] value to be passed to exec(2). The latter may be used to change the process name
on systems that support it.

pid = spawn("echo hello")
puts "Back in main program"
STDOUT.flush
rc, status = Process::waitpid2(pid)
puts "Status = #{status}"

produces:

Back in main program
hello
Status = pid 23941 exit 0

env, if present, is a hash that adds to the environment variables in the subshell. An entry
with a nil value clears the corresponding environment variable. The keys must be strings.

pid = spawn({"FRED" => "caveman"}, "echo FRED = $FRED")
Process::waitpid2(pid)

produces:

FRED = caveman

The options hash controls the setup of the subshell. Keys and their meanings are:

Effect on new processOption

If true or 0, the new process will be a process group leader. Otherwise,
the process will belong to group int.

:pgroup => true | 0 | int

Sets a resource limit. See Process.getrlimit for more information.:rlimit_xxx => val | [cur, max]

Clears all environment variables; then sets only those passed in the env
parameter.

:unsetenv_others => true

Changes to directory dir before running the process.:chdir => dir

Specifies the umask for the process.:umask => int

Sets the process’s standard input, output, or error to stream. See the
description that follows this table for information.

fd_desc => stream

By default, all file descriptors apart from 0, 1, and 2 are closed. You
can specify false to leave them open.

:close_others => true | false

Explicitly closes the file descriptor corresponding to io_obj in the child
process.

io_obj => :close

The fd_desc parameter identifies an I/O stream to be opened or assigned in the child process.
It can be one of :in, STDIN, or 0 to represent standard input; :out, STDOUT, or 1 for standard

report erratum • discuss

Object • 625

Download from Wow! eBook <www.wowebook.com>

http://www.freebsd.org/cgi/man.cgi?query=exec&sektion=2
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

output; or :err, STDERR, or 2 for standard error. It can also be an array containing one or more
of these, in which case all fds in the array will be opened on the same stream.

The stream parameter can be the following:

• One of :in, STDIN, or 0 to represent the current standard input; :out, STDOUT, or 1 for the
current standard output; or :err, STDERR, or 2 for the current standard error.

• A string representing the name of a file or device.

• An array. If it contains [:child, fd], redirects to the fd of the child process. Otherwise, the
first element is the name of a file or device, the optional second element is the mode,
and the optional third element the permission. See the description of File#new on page
494 for details.

This example shows the options in action:

reader, writer = IO.pipe
pid = spawn("echo '4*a(1)' | bc -l", [STDERR, STDOUT] => writer)
writer.close
Process::waitpid2(pid)
reader.gets # => "3.14159265358979323844\n"

sprintf(format_string ‹ , arguments›*) → stringsprintf

Returns the string resulting from applying format_string to any additional arguments.
Within the format string, any characters other than format sequences are copied to the result.

A format sequence consists of a percent sign; followed by optional flags, width, and precision
indicators; an optional name; and then terminated with a field type character. The field type
controls how the corresponding sprintf argument is to be interpreted, and the flags modify
that interpretation.

The flag characters are:

MeaningApplies ToFlag

Leaves a space at the start of positive numbers.bdEefGgiouXx␣ (space)
Specifies the absolute argument number for this field. Absolute and relative
argument numbers cannot be mixed in a sprintf string.

alldigit$

Uses an alternative format. For the conversions b, o, X, and x, prefixes the result
with b, 0, 0X, 0x, respectively. For E, e, f, G, and g, forces a decimal point to be
added, even if no digits follow. For G and g, does not remove trailing zeros.

beEfgGoxX#

Adds a leading plus sign to positive numbers.bdEefGgiouXx+
Left-justifies the result of this conversion.all-
Pads with zeros, not spaces.bdEefGgiouXx0 (zero)
Uses the next argument as the field width. If negative, left-justifies the result. If
the asterisk is followed by a number and a dollar sign, uses the indicated argu-
ment as the width.

all*

The field width is an optional integer, followed optionally by a period and a precision. The
width specifies the minimum number of characters that will be written to the result for this
field. For numeric fields, the precision controls the number of decimal places displayed. As
of Ruby 1.9, the number zero is converted to a zero-length string if a precision of 0 is given.
For string fields, the precision determines the maximum number of characters to be copied

Chapter 27. Built-in Classes and Modules • 626

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

from the string. (Thus, the format sequence %10.10s will always contribute exactly ten char-
acters to the result.)

The field type characters are:

ConversionField

Same as %a, but uses uppercase X and P.A
Converts a float into hexadecimal representation 0xsignificandpdecimal-exp.a
Converts argument as a binary number (0B0101 if # modifier used).B
Converts argument as a binary number (0b0101 if # modifier used).b
Argument is the numeric code for a single character.c
Converts argument as a decimal number.d
Equivalent to e but uses an uppercase E to indicate the exponent.E
Converts floating point-argument into exponential notation with one digit before the
decimal point. The precision determines the number of fractional digits (default six).

e

Converts floating-point argument as [|-]ddd.ddd, where the precision determines the
number of digits after the decimal point.

f

Equivalent to g but uses an uppercase E in exponent form.G
Converts a floating-point number using exponential form if the exponent is less than
-4 or greater than or equal to the precision, or in d.dddd form otherwise.

g

Identical to d.i
Converts argument as an octal number.o
The value of argument.inspect.p
Argument is a string to be substituted. If the format sequence contains a precision, at
most that many characters will be copied.

s

Treats argument as an unsigned decimal number.u
Converts argument to hexadecimal with uppercase letters. Negative numbers will be
displayed with two leading periods (representing an infinite string of leading FFs).

X

Converts argument to hexadecimal. Negative numbers will be displayed with two
leading periods (representing an infinite string of leading FFs).

x

Here are some examples of sprintf in action:

sprintf("%d %04x", 123, 123) # => "123␣007b"
sprintf("%08b '%4s'", 123, 123) # => "01111011␣'␣123'"
sprintf("%1$*2$s %2$d %1$s", "hello", 8) # => "␣␣␣hello␣8␣hello"
sprintf("%1$*2$s %2$d", "hello", -8) # => "hello␣␣␣␣-8"
sprintf("%+g:% g:%-g", 1.23, 1.23, 1.23) # => "+1.23:␣1.23:1.23"

In Ruby 1.9, you can pass a hash as the second argument and insert values from this hash
into the string. The notation <name> can be used between a percent sign and a field-type
character, in which case the name will be used to look up a value in the hash, and that value
will be formatted according to the field specification. The notation {name} is equivalent to
<name>s, substituting the corresponding value as a string. You can use width and other flag
characters between the opening percent sign and the {.

report erratum • discuss

Object • 627

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

sprintf("%<number>d %04<number>x", number: 123) # => "123␣007b"
sprintf("%08<number>b '%5{number}'", number: 123) # => "01111011␣'␣␣123'"
sprintf("%6<k>s: %<v>s", k: "Dave", v: "Ruby") # => "␣␣Dave:␣Ruby"
sprintf("%6{k}: %{v}", k: "Dave", v: "Ruby") # => "␣␣Dave:␣Ruby"

srand(‹number›) → old_seedsrand

Seeds the pseudorandom number generator to the value of number.to_i. If number is omitted
or zero, uses Random.new_seed. (This is also the behavior if Object#rand is called without pre-
viously calling srand but without the sequence.) By setting the seed to a known value, scripts
that use rand can be made deterministic during testing. The previous seed value is returned.
Also see Object#rand on page 622 and class Random on page 655.

sub(pattern, replacement) → $_
sub(pattern) { block } → $_

sub

Equivalent to $_.sub(args), except that $_will be updated if substitution occurs. Available only
if the -n or -p command-line option is present.

syscall(fixnum ‹ , args›*) → intsyscall

Calls the operating system function identified by fixnum. The arguments must be either String
objects or Integer objects that fit within a native long. Up to nine parameters may be passed.
The function identified by fixnum is system dependent. On some Unix systems, the numbers
may be obtained from a header file called syscall.h. System is not always available.

syscall 4, 1, "hello\n", 6 # '4' is write(2) on our system

system(‹env,› command ‹ , args›*, ‹options›) → true or false~or nilsystem

Executes command in a subshell, returning true if the command was found and ran success-
fully, false if the command exited with a nonzero exit status, and nil if the command failed
to execute. An error status is available in $?. The arguments are processed in the same way
as for Object#exec on page 615. env, if present, is a hash that adds to the environment variables
in the subshell. An entry with a nil value clears the corresponding environment variable. The
keys must be strings. options, if present, is a hash that controls the setup of the subshell. The
possible keys and their meanings are listed under the spawn method.

system("echo *")
system("echo", "*")
system({"WILMA" => "shopper"}, "echo $WILMA")

produces:

config.h main.rb
*
shopper

test(cmd, file1 ‹ , file2›) → objtest

Uses cmd to perform various tests on file1 (see the first table that follows) or on file1 and file2
(see the second table).

Chapter 27. Built-in Classes and Modules • 628

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

ReturnsDescriptionFlag

TimeLast access time for file1?A
true or falseTrue if file1 is a block device?b
true or falseTrue if file1 is a character device?c
TimeLast change time for file1?C
true or falseTrue if file1 exists and is a directory?d
true or falseTrue if file1 exists?e
true or falseTrue if file1 exists and is a regular file?f
true or falseTrue if file1 has the setgid bit set (false under NT)?g
true or falseTrue if file1 exists and has a group ownership equal to the caller’s group?G
true or falseTrue if file1 exists and has the sticky bit set?k
true or falseTrue if file1 exists and is a symbolic link?l
TimeLast modification time for file1?M
true or falseTrue if file1 exists and is owned by the caller’s effective UID?o
true or falseTrue if file1 exists and is owned by the caller’s real UID?O
true or falseTrue if file1 exists and is a fifo?p
true or falseTrue if file1 is readable by the effective UID/GID of the caller?r
true or falseTrue if file1 is readable by the real UID/GID of the caller?R
Integer or nilIf file1 has nonzero size, returns the size; otherwise, returns nil?s
true or falseTrue if file1 exists and is a socket?S
true or falseTrue if file1 has the setuid bit set?u
true or falseTrue if file1 exists and is writable by the effective UID/ GID?w
true or falseTrue if file1 exists and is writable by the real UID/GID?W
true or falseTrue if file1 exists and is executable by the effective UID/GID?x
true or falseTrue if file1 exists and is executable by the real UID/GID?X
true or falseTrue if file1 exists and has a zero length?z

DescriptionFlag

True if file1 is a hard link to file2?-
True if the modification times of file1 and file2 are equal?=
True if the modification time of file1 is prior to that of file2?<
True if the modification time of file1 is after that of file2?>

throw(symbol ‹ , obj›)throw

Transfers control to the end of the active catch block waiting for symbol. Raises NameError if
there is no catch block for the symbol. The optional second parameter supplies a return value
for the catch block, which otherwise defaults to nil. For examples, see Object#catch on page
614.

report erratum • discuss

Object • 629

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

trace_var(symbol, cmd) → nil
trace_var(symbol) {|val| … } → nil

trace_var

Controls tracing of assignments to global variables. The parameter symbol identifies the
variable (as either a string name or a symbol identifier). cmd (which may be a string or a Proc
object) or the block is executed whenever the variable is assigned and receives the variable’s
new value as a parameter. Only explicit assignments are traced. Also see Object#untrace_var.

trace_var :$dave, lambda {|v| puts "$dave is now '#{v}'" }
$dave = "hello"
$dave.sub!(/ello/, "i")
$dave += " Dave"

produces:

$dave is now 'hello'
$dave is now 'hi Dave'

trap(signal, proc) → obj
trap(signal) { … } → obj

trap

See the Signal module on page 664.

untrace_var(symbol ‹ , cmd›) → array or niluntrace_var

Removes tracing for the specified command on the given global variable and returns nil. If
no command is specified, removes all tracing for that variable.

using modusing

⇡New in 2.0⇣ Applies the refinements defined in the given module. The refinements apply to the current
file (or string if eval is being used) from the point where using is called.

module SuperUpcase
refine String do
def upcase
"!WOW! #{super} !WOW!"

end
end

end

"wombat".upcase # => "WOMBAT"
using SuperUpcase
"wombat".upcase # => "!WOW! WOMBAT !WOW!"

warn ‹msgs›+warn

Writes the given message to STDERR (unless $VERBOSE is nil, perhaps because the -W0 command-

⇡New in 2.0⇣
line option was given). If multiple messages are given, writes each on a new line.

warn "Danger, Will Robinson!"

produces:

Danger, Will Robinson!

Chapter 27. Built-in Classes and Modules • 630

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

ObjectSpaceModule

The ObjectSpacemodule contains a number of routines that interact with the garbage collection
facility and allow you to traverse all living objects with an iterator.

ObjectSpace also provides support for object finalizers. These are procs that will be called
when a specific object is about to be destroyed by garbage collection.

include ObjectSpace

a, b, c = "A", "B", "C"
puts "a's id is #{a.object_id}"
puts "b's id is #{b.object_id}"
puts "c's id is #{c.object_id}"

define_finalizer(a, lambda {|id| puts "Finalizer one on #{id}" })
define_finalizer(b, lambda {|id| puts "Finalizer two on #{id}" })
define_finalizer(c, lambda {|id| puts "Finalizer three on #{id}" })

produces:

a's id is 70124883293000
b's id is 70124883292960
c's id is 70124883292880
Finalizer three on 70124883292880
Finalizer two on 70124883292960
Finalizer one on 70124883293000

Class Methods

ObjectSpace._id2ref(object_id) → obj_id2ref

Converts an object ID to a reference to the object. May not be called on an object ID passed
as a parameter to a finalizer.

s = "I am a string" # => "I am a string"
oid = s.object_id # => 70207029149080
r = ObjectSpace._id2ref(oid) # => "I am a string"
r # => "I am a string"
r.equal?(s) # => true

ObjectSpace.count_objects → histogram_hashcount_objects

Returns a hash where the keys are the interpreter-specific internal object types and the values
are the number of objects of each type.

ObjectSpace.count_objects # => {:TOTAL=>17493, :FREE=>60, :T_OBJECT=>49,
.. :T_CLASS=>471, :T_MODULE=>21, :T_FLOAT=>4,
.. :T_STRING=>7748, :T_REGEXP=>64, :T_ARRAY=>1464,
.. :T_HASH=>57, :T_BIGNUM=>3, :T_FILE=>17,
.. :T_DATA=>701, :T_MATCH=>20, :T_COMPLEX=>1,
.. :T_RATIONAL=>2, :T_NODE=>6790, :T_ICLASS=>21}

report erratum • discuss

ObjectSpace • 631

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

ObjectSpace.define_finalizer(obj, a_proc=proc())define_finalizer

Adds a_proc as a finalizer, called when obj is about to be destroyed. Note that if you use
lambda to create the proc object, you must remember to include a parameter with the block.
If you don’t, the invocation of the lambda will silently fail when the finalizer is called because
of a mismatch in the expected and actual parameter count.

ObjectSpace.each_object(‹ class_or_mod›) {|obj| … }→ fixnumeach_object

Calls the block once for each living, nonimmediate object in this Ruby process. If class_or_
mod is specified, calls the block for only those classes or modules that match (or are a subclass
of) class_or_mod. Returns the number of objects found. Immediate objects (Fixnums, Symbols
true, false, and nil) are never returned. In the following example, each_object returns both the
numbers we defined and several constants defined in the Math module:

a = 102.7
b = 95 # Fixnum: won't be returned
c = 12345678987654321
count = ObjectSpace.each_object(Numeric) {|x| p x }
puts "Total count: #{count}"

produces:

(0+1i)
9223372036854775807
3
NaN
Infinity
1.7976931348623157e+308
2.2250738585072014e-308
274193223623034780067407936393989039126
12345678987654321
Total count: 9

ObjectSpace.garbage_collect → nilgarbage_collect

Initiates garbage collection (see module GC on page 517).

ObjectSpace.undefine_finalizer(obj)undefine_finalizer

Removes all finalizers for obj.

Chapter 27. Built-in Classes and Modules • 632

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

ProcClass

Proc objects are blocks of code that have been bound to a set of local variables. Once bound,
the code may be called in different contexts and still access those variables.

def gen_times(factor)
return Proc.new {|n| n*factor }

end

times3 = gen_times(3)
times5 = gen_times(5)

times3.call(12) # => 36
times5.call(5) # => 25
times3.call(times5.call(4)) # => 60

Class Methods

Proc.new { … } → a_proc
Proc.new → a_proc

new

Creates a new Proc object, bound to the current context. Proc.new may be called without a
block only within a method with an attached block, in which case that block is converted to
the Proc object.

def proc_from
Proc.new

end
proc = proc_from { "hello" }
proc.call # => "hello"

Instance Methods

prc[‹params›*] → obj[]

Synonym for Proc#call.

==

⇡New in 2.0⇣Removed in Ruby 2.0.

prc === other→ obj===

Equivalent to prc.call(other). Allows you to use procs in when clauses of case expressions, so
you can write stuff such as:

even = lambda {|num| num.even? }

(0..3).each do |num|
case num
when even then puts "#{num} is even"
else puts "#{num} is not even"
end

end

report erratum • discuss

Proc • 633

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

produces:

0 is even
1 is not even
2 is even
3 is not even

prc.arity → integerarity

Returns the number of arguments required by the block. If the block is declared to take no
arguments, returns 0. If the block is known to take exactly n arguments, returns n. If the
block has optional arguments, returns -(n+1), where n is the number of mandatory arguments.
A proc with no argument declarations also returns -1, because it can accept (and ignore) an
arbitrary number of parameters.

Proc.new {}.arity # => 0
Proc.new {||}.arity # => 0
Proc.new {|a|}.arity # => 1
Proc.new {|a,b|}.arity # => 2
Proc.new {|a,b,c|}.arity # => 3
Proc.new {|*a|}.arity # => -1
Proc.new {|a,*b|}.arity # => -2

In Ruby 1.9, arity is defined as the number of parameters that would not be ignored. In 1.8,
Proc.new {}.arity returns -1, and in 1.9 it returns 0.

prc.binding → bindingbinding

Returns the binding associated with prc.

def some_method
a = "wibble"
lambda {}

end

prc = some_method
eval "a", prc.binding # => "wibble"

prc.call(‹params›*) → objcall

Invokes the block, setting the block’s parameters to the values in params using something
close to method-calling semantics. Returns the value of the last expression evaluated in the
block.

a_proc = Proc.new {|a, *b| b.collect {|i| i*a }}
a_proc.call(9, 1, 2, 3) # => [9, 18, 27]
a_proc[9, 1, 2, 3] # => [9, 18, 27]

If the block being called accepts a single parameter and you give callmore than one parameter,
only the first will be passed to the block. This is a change from Ruby 1.8.

Chapter 27. Built-in Classes and Modules • 634

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

a_proc = Proc.new {|a| puts a}
a_proc.call(1,2,3)

produces:

1

If you want a block to receive an arbitrary number of arguments, define it to accept *args.

a_proc = Proc.new {|*a| p a}
a_proc.call(1,2,3)

produces:

[1, 2, 3]

Blocks created using Object#lambda check that they are called with exactly the right number
of parameters.

p_proc = Proc.new {|a,b| puts "Sum is: #{a + b}" }
p_proc.call(1,2,3)
p_proc = lambda {|a,b| puts "Sum is: #{a + b}" }
p_proc.call(1,2,3)

produces:

from prog.rb:4:in `call'
from prog.rb:4:in `<main>'

Sum is: 3
prog.rb:3:in `block in <main>': wrong number of arguments (3 for 2)
(ArgumentError)

prc.curry → curried_proccurry

If you have a proc that takes arguments, you normally have to supply all of those arguments
if you want the proc to execute successfully. However, it is also possible to consider an n
argument proc to be the same as a single-argument proc that returns a new proc that has
this first argument fixed and that takes n-1 arguments. If you repeat this process recursively
for each of these subprocs, you end up with a proc that will take from zero to n arguments.
If you pass it all n, it simply executes the proc with those arguments. If you pass it m argu-
ments (where m < n), it returns a new proc that has those arguments prebaked in and that
takes m-n arguments. In this way, it is possible to partially apply arguments to a proc.

add_three_numbers = lambda {|a,b,c| a + b + c}
add_10_to_two_numbers = add_three_numbers.curry[10]
add_33_to_one_number = add_10_to_two_numbers[23]

add_three_numbers[1,2,3] # => 6
add_10_to_two_numbers[1,2] # => 13
add_33_to_one_number[1] # => 34

prc.lambda? → true or falselambda?

Returns true if prc has lambda semantics (that is, if argument passing acts as it does with
method calls). See the discussion in Section 22.13, Blocks, Closures, and Proc Objects, on page
335.

report erratum • discuss

Proc • 635

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

prc.parameters → arrayparameters

Returns a description of the method’s parameter list. See Method#parameters for details.

lambda {|a, b=1, *c, &d| }.parameters # => [[:req, :a], [:opt, :b], [:rest, :c],
.. [:block, :d]]

prc.source_location → [filename, lineno] or nilsource_location

Returns the source filename and line number where prc was defined or nil if proc was not
defined in Ruby source.

variable = 123
prc = lambda { "some proc" }
prc.source_location # => ["prog.rb", 2]

prc.to_proc → prcto_proc

Part of the protocol for converting objects to Proc objects. Instances of class Proc simply return
themselves.

prc.to_s → stringto_s

Returns a description of prc, including information on where it was defined.

def create_proc
Proc.new

end

my_proc = create_proc { "hello" }
my_proc.to_s # => "#<Proc:0x007fc7f4864318@prog.rb:5>"

prc.yield(‹params›*) → objyield

Synonym for Proc#call.

Chapter 27. Built-in Classes and Modules • 636

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

ProcessModule

The Process module is a collection of methods used to manipulate processes. Programs that
want to manipulate real and effective user and group IDs should also look at the Process::GID
and Process::UID modules. Much of the functionality here is duplicated in the Process::Sys
module.

Module Constants

Process group priority.PRIO_PGRP
Process priority.PRIO_PROCESS
User priority.PRIO_USER
Does not block if no child has exited. Not available on all platforms.WNOHANG
Returns stopped children as well. Not available on all platforms.WUNTRACED
Used by getrlimit and setrlimit.RLIM[IT]_xxx

Class Methods

abort
abort(msg)

abort

Synonym for Object#abort.

Process.daemon(stay_in_dir = false, keep_stdio_open = false) → 0 or -1daemon

Puts the current process into the background (either by forking and calling Process.setsid or
by using the daemon(3) call if available). Sets the current working directory to / unless stay_
in_dir is true. Redirects standard input, output, and error to /dev/null unless keep_stdio_open is
true. Not available on all platforms.

Process.detach(pid) → threaddetach

Some operating systems retain the status of terminated child processes until the parent collects
that status (normally using some variant of wait()). If the parent never collects this status, the
child stays around as a zombie process. Process.detach prevents this by setting up a separate
Ruby thread whose sole job is to reap the status of the process pid when it terminates. Use
detach only when you do not intend to explicitly wait for the child to terminate. detach checks
the status only periodically (currently once each second).

In this first example, we don’t reap the first child process, so it appears as a zombie in the
process status display.

pid = fork { sleep 0.1 }
sleep 1
system("ps -o pid,state -p #{pid}")

produces:

dyld: DYLD_ environment variables being ignored because main executable (/bin/ps)
is setuid or setgid
PID STAT

24002 Z+

report erratum • discuss

Process • 637

Download from Wow! eBook <www.wowebook.com>

http://www.freebsd.org/cgi/man.cgi?query=daemon&sektion=3
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

In the next example, Process.detach is used to reap the child automatically—no child processes
are left running.

pid = fork { sleep 0.1 }
Process.detach(pid)
sleep 1
system("ps -o pid,state -p #{pid}")

produces:

dyld: DYLD_ environment variables being ignored because main executable (/bin/ps)
is setuid or setgid
PID STAT

Process.egid → integid

Returns the effective group ID for this process.

Process.egid # => 20

Process.egid= int→ integid=

Sets the effective group ID for this process.

Process.euid → inteuid

Returns the effective user ID for this process.

Process.euid # => 501

Process.euid= inteuid=

Sets the effective user ID for this process. Not available on all platforms.

Process.exec(‹env,› command ‹ , args›*, ‹options›)exec

Synonym for Object#exec.

Process.exit(int=0)exit

Synonym for Object#exit.

Process.exit!(true | false | status=1)exit!

Synonym for Object#exit!. No exit handlers are run. 0, 1, or status is returned to the underlying
system as the exit status.

Process.exit!(0)

Process.fork ‹ { … }› → int or nilfork

See Object#fork on page 617.

Chapter 27. Built-in Classes and Modules • 638

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Process.getpgid(int) → intgetpgid

Returns the process group ID for the given process ID. Not available on all platforms.

Process.getpgid(Process.ppid()) # => 21366

Process.getpgrp → intgetpgrp

Returns the process group ID for this process. Not available on all platforms.

Process.getpgid(0) # => 21366
Process.getpgrp # => 21366

Process.getpriority(kind, int) → intgetpriority

Gets the scheduling priority for specified process, process group, or user. The kind parameter
indicates the kind of entity to find: Process::PRIO_PGRP, Process::PRIO_USER, or Process::PRIO_PRO-
CESS. int is an ID indicating the particular process, process group, or user (an ID of 0 means
current). Lower priorities are more favorable for scheduling. Not available on all platforms.

Process.getpriority(Process::PRIO_USER, 0) # => 0
Process.getpriority(Process::PRIO_PROCESS, 0) # => 0

Process.getrlimit(name) → [current, max]getrlimit

Returns the current and maximum resource limit for the named resource. The name may be
a symbol or a string from the following list. It may also be an operating-specific integer
constant. The Processmodule defines constants corresponding to these integers: the constants
are named RLIMIT_ followed by one of the following: AS, CORE, CPU, DATA, FSIZE, MEMLOCK,
NOFILE, NPROC, RSS, or STACK. Consult your system’s getrlimit(2)man page for details. The return
array may contain actual values or one of the constants RLIM_INFINITY, RLIM_SAVED_CUR, or
RLIM_SAVED_MAX. Not available on all platforms. See also Process.setrlimit.

Process.getrlimit(:STACK) # => [8388608, 67104768]
Process.getrlimit("STACK") # => [8388608, 67104768]
Process.getrlimit(Process::RLIMIT_STACK) # => [8388608, 67104768]

Process.getsid → intgetsid

⇡New in 2.0⇣Returns the session id (if supported).

Process.gid → intgid

Returns the group ID for this process.

Process.gid # => 20

Process.gid= int→ intgid=

Sets the group ID for this process.

report erratum • discuss

Process • 639

Download from Wow! eBook <www.wowebook.com>

http://www.freebsd.org/cgi/man.cgi?query=getrlimit&sektion=2
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Process.groups → groupsgroups

Returns an array of integer supplementary group IDs. Not available on all platforms. See
also Process.maxgroups.

Process.groups # => [20, 405, 402, 401, 403, 12, 33, 61, 79, 80, 81, 98, 100,
.. 204, 404]

Process.groups = array→ groupsgroups=

Sets the supplementary group IDs from the given array, which may contain either numbers
or group names (as strings). Not available on all platforms. Available only to superusers.
See also Process.maxgroups.

Process.initgroups(user, base_group) → groupsinitgroups

Initializes the group access list using the operating system’s initgroups call. Not available on
all platforms. May require superuser privilege.

Process.initgroups("dave", 500)

Process.kill(signal, ‹pid›+) → intkill

Sends the given signal to the specified process ID(s) or to the current process if pid is zero.
signal may be an integer signal number or a string or symbol representing a POSIX signal
name (either with or without a SIG prefix). If signal is negative (or starts with a - sign), kills
process groups instead of processes. Not all signals are available on all platforms.

pid = fork do
Signal.trap(:USR1) { puts "Ouch!"; exit }
... do some work ...

end
...
Process.kill(:USR1, pid)
Process.wait

produces:

Ouch!

Process.maxgroups → countmaxgroups

The Process module has a limit on the number of supplementary groups it supports in the
calls Process.groups and Process.groups=. Themaxgroups call returns that limit, and themaxgroups=
call sets it.

Process.maxgroups # => 16

Process.maxgroups= limit→ countmaxgroups=

Sets the maximum number of supplementary group IDs that can be processed by the groups
and groups= methods. If a number larger than 4096 is given, 4096 will be used.

Chapter 27. Built-in Classes and Modules • 640

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Process.pid → intpid

Returns the process ID of this process. Not available on all platforms.

Process.pid # => 24032

Process.ppid → intppid

Returns the process ID of the parent of this process. Always returns 0 on Windows. Not
available on all platforms.

puts "I am #{Process.pid}"
Process.fork { puts "Parent is #{Process.ppid}" }

produces:

I am 24034
Parent is 24034

Process.setpgid(pid, int) → 0setpgid

Sets the process group ID of pid (0 indicates this process) to int. Not available on all platforms.

Process.setpgrp → 0setpgrp

Equivalent to setpgid(0,0). Not available on all platforms.

Process.setpriority(kind, int, int_priority) → 0setpriority

See Process#getpriority.

Process.setpriority(Process::PRIO_USER, 0, 19) # => 0
Process.setpriority(Process::PRIO_PROCESS, 0, 19) # => 0
Process.getpriority(Process::PRIO_USER, 0) # => 19
Process.getpriority(Process::PRIO_PROCESS, 0) # => 19

Process.setrlimit(name, soft_limit, hard_limit=soft_limit) → nilsetrlimit

Sets the limit for the named resource. See Process.getrlimit for a description of resource naming.
Your system’s setrlimit(2) man page will have a description of the limits. Not available on all
platforms.

Process.setsid → intsetsid

Establishes this process as a new session and process group leader, with no controlling tty.
Returns the session ID. Not available on all platforms.

Process.setsid # => 24039

Process.spawn(‹env,› command ‹ , args›*, ‹options›) → pidspawn

Synonym for Object#spawn.

report erratum • discuss

Process • 641

Download from Wow! eBook <www.wowebook.com>

http://www.freebsd.org/cgi/man.cgi?query=setrlimit&sektion=2
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Process.times → struct_tmstimes

Returns a Tms structure (see Struct::Tms on page 697) that contains user and system CPU times
for this process.

t = Process.times
[t.utime, t.stime] # => [0.03, 0.01]

Process.uid → intuid

Returns the user ID of this process.

Process.uid # => 501

Process.uid= int→ numericuid=

Sets the (integer) user ID for this process. Not available on all platforms.

Process.wait → intwait

Waits for any child process to exit and returns the process ID of that child. Also sets $? to
the Process::Status object containing information on that process. Raises a SystemError if there
are no child processes. Not available on all platforms.

Process.fork { exit 99 } # => 24046
Process.wait # => 24046
$?.exitstatus # => 99

Process.waitall → [[pid1,status], ...]waitall

Waits for all children, returning an array of pid/status pairs (where status is an object of class
Process::Status).

fork { sleep 0.2; exit 2 } # => 24049
fork { sleep 0.1; exit 1 } # => 24050
fork { exit 0 } # => 24051
Process.waitall # => [[24051, #<Process::Status: pid 24051 exit 0>],

.. [24050, #<Process::Status: pid 24050 exit 1>],
.. [24049, #<Process::Status: pid 24049 exit 2>]]

Process.wait2 → [pid, status]wait2

Waits for any child process to exit and returns an array containing the process ID and the
exit status (a Process::Status object) of that child. Raises a SystemError if no child processes exist.

Process.fork { exit 99 } # => 24054
pid, status = Process.wait2
pid # => 24054
status.exitstatus # => 99

Chapter 27. Built-in Classes and Modules • 642

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Process.waitpid(pid, int=0) → pidwaitpid

Waits for a child process to exit depending on the value of pid:

Any child whose progress group ID equals the absolute value of pid< -1
Any child (equivalent to wait)-1
Any child whose process group ID equals that of the current process0
The child with the given PID> 0

intmay be a logical or of the flag values Process::WNOHANG (do not block if no child available)
or Process::WUNTRACED (return stopped children that haven’t been reported). Not all flags are
available on all platforms, but a flag value of zero will work on all platforms.

include Process
pid = fork { sleep 2 } # => 24057
Time.now # => 2013-05-27 12:32:49 -0500
waitpid(pid, Process::WNOHANG) # => nil
Time.now # => 2013-05-27 12:32:49 -0500
waitpid(pid, 0) # => 24057
Time.now # => 2013-05-27 12:32:51 -0500

Process.waitpid2(pid, int=0) → [pid, status]waitpid2

Waits for the given child process to exit, returning that child’s process ID and exit status (a
Process::Status object). int may be a logical or of the values Process::WNOHANG (do not block if
no child available) or Process::WUNTRACED (return stopped children that haven’t been reported).
Not all flags are available on all platforms, but a flag value of zero will work on all platforms.

Process::GIDModule

Provides a higher-level (and more portable) interface to the underlying operating system’s
concepts of real, effective, and saved group IDs. Discussing the semantics of these IDs is
well beyond the scope of this book; readers who want to know more should consult POSIX
documentation or read the intro(2) man pages on a recent Unix platform. All these methods
throw NotImplementedError if the host operating does not support a sufficient set of calls. The
descriptions that follow are based on notes in ruby-talk:76218 by Hidetoshi Nagai.

Class Methods

Process::GID.change_privilege(gid) → gidchange_privilege

Sets the real, effective, and saved group IDs to gid, raising an exception on failure (in which
case the state of the IDs is not known). This method is not compatible with Process.gid=.

Process::GID.eid → egideid

Returns the effective group ID for this process. Synonym for Process.egid.

report erratum • discuss

Process::GID • 643

Download from Wow! eBook <www.wowebook.com>

http://www.freebsd.org/cgi/man.cgi?query=intro&sektion=2
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Process::GID.eid = egideid=

Synonym for Process::GID.grant_privilege.

Process::GID.grant_privilege(egid) → egidgrant_privilege

Sets the effective group ID to egid, raising an exception on failure. On some environments
this may also change the saved group ID (see re_exchangeable?).

Process::GID.re_exchange → egidre_exchange

Exchanges the real and effective group IDs, setting the saved group ID to the new effective
group ID. Returns the new effective group ID.

Process::GID.re_exchangeable → true or falsere_exchangeable?

Returns true if real and effective group IDs can be exchanged on the host operating system
and returns false otherwise.

Process::GID.rid → gidrid

Returns the real group ID for this process. Synonym for Process.gid.

Process::GID.sid_available? → true or falsesid_available?

Returns true if the underlying platform supports saved group IDs and returns false otherwise.
Currently, Ruby assumes support if the operating system has setresgid(2) or setegid(2) calls
or if the configuration includes the POSIX_SAVED_IDS flag.

Process::GID.switch → egid
Process::GID.switch { … } → obj

switch

Handles the toggling of group privilege. In the block form, automatically toggles the IDs
back when the block terminates (but only if the block doesn’t use other calls into Process::GID
calls, which would interfere). Without a block, returns the original effective group ID.

Process::StatusClass

Process::Status encapsulates the information on the status of a running or terminated system
process. The built-in variable $? is either nil or a Process::Status object.

fork { exit 99 } # => 24060
Process.wait # => 24060
$?.class # => Process::Status
$?.to_i # => 25344
$? >> 8 # => 99
$?.stopped? # => false
$?.exited? # => true
$?.exitstatus # => 99

Chapter 27. Built-in Classes and Modules • 644

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://www.freebsd.org/cgi/man.cgi?query=setresgid&sektion=2
http://www.freebsd.org/cgi/man.cgi?query=setegid&sektion=2
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

POSIX systems record information on processes using a 16-bit integer. The lower bits record
the process status (stopped, exited, signaled), and the upper bits possibly contain additional
information (for example, the program’s return code in the case of exited processes). Before
Ruby 1.8, these bits were exposed directly to the Ruby program. Ruby now encapsulates
these in a Process::Status object. To maximize compatibility, however, these objects retain a
bit-oriented interface. In the descriptions that follow, when we talk about the integer value
of stat, we’re referring to this 16-bit value.

Instance Methods

stat == other→ true or false==

Returns true if the integer value of stat equals other.

stat & num→ fixnum&

Logical AND of the bits in stat with num.

fork { exit 0x37 }
Process.wait
sprintf('%04x', $?.to_i) # => "3700"
sprintf('%04x', $? & 0x1e00) # => "1600"

stat >> num→ fixnum>>

Shifts the bits in stat right num places.

fork { exit 99 } # => 24066
Process.wait # => 24066
$?.to_i # => 25344
$? >> 8 # => 99

stat.coredump → true or falsecoredump?

Returns true if stat generated a core dump when it terminated. Not available on all platforms.

stat.exited? → true or falseexited?

Returns true if stat exited normally (for example using an exit call or finishing the program).

stat.exitstatus → fixnum or nilexitstatus

Returns the least significant 8 bits of the return code of stat. Available only if exited? is true.

fork { } # => 24069
Process.wait # => 24069
$?.exited? # => true
$?.exitstatus # => 0

fork { exit 99 } # => 24070
Process.wait # => 24070
$?.exited? # => true
$?.exitstatus # => 99

report erratum • discuss

Process::Status • 645

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

stat.pid → fixnumpid

Returns the ID of the process associated with this status object.

fork { exit } # => 24073
Process.wait # => 24073
$?.pid # => 24073

stat.signaled? → true or falsesignaled?

Returns true if stat terminated because of an uncaught signal.

pid = fork { sleep 100 }
Process.kill(9, pid) # => 1
Process.wait # => 24076
$?.signaled? # => true

stat.stopped? → true or falsestopped?

Returns true if this process is stopped. This is returned only if the corresponding wait call had
the WUNTRACED flag set.

stat.success? → nil, or true or falsesuccess?

Returns true if stat refers to a process that exited successfully, returns false if it exited with a
failure, and returns nil if stat does not refer to a process that has exited.

stat.stopsig → fixnum or nilstopsig

Returns the number of the signal that caused stat to stop (or nil if self{} is not stopped).

stat.termsig → fixnum or niltermsig

Returns the number of the signal that caused stat to terminate (or nil if self{} was not termi-
nated by an uncaught signal).

stat.to_i → fixnumto_i

Returns the bits in stat as a Fixnum. Poking around in these bits is platform dependent.

fork { exit 0xab } # => 24079
Process.wait # => 24079
sprintf('%04x', $?.to_i) # => "ab00"

stat.to_s → stringto_s

Equivalent to stat.to_i.to_s.

Chapter 27. Built-in Classes and Modules • 646

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Process::SysModule

Process::Sys provides system call–level access to the process user and group environment.
Many of the calls are aliases of those in the Process module and are packaged here for com-
pleteness. See also Process::GID and Process::UID for a higher-level (and more portable) interface.

Class Methods

Process::Sys.getegid → gidgetegid

Returns the effective group ID for this process. Synonym for Process.egid.

Process::Sys.getugid → uidgeteuid

Returns the effective user ID for this process. Synonym for Process.euid.

Process::Sys.getgid → gidgetgid

Returns the group ID for this process. Synonym for Process.gid.

Process::Sys.getuid → uidgetuid

Returns the user ID for this process. Synonym for Process.uid.

Process::Sys.issetugid → true or falseissetugid

Returns true if this process was made setuid or setgid as a result of the last execve() system
call and returns false if not. Raises NotImplementedError on systems that don’t support issetugid(2).

Process::Sys.setegid(gid)setegid

Sets the effective group ID to gid, failing if the underlying system call fails. Raises NotImple-
mentedError on systems that don’t support setegid(2).

Process::Sys.seteuid(uid)seteuid

Sets the effective user ID to uid, failing if the underlying system call fails. Raises NotImplement-
edError on systems that don’t support seteuid(2).

Process::Sys.setgid(gid)setgid

Sets the group ID to gid, failing if the underlying system call fails. Raises NotImplementedError
on systems that don’t support setgid(2).

Process::Sys.setregid(rgid, egid)setregid

Sets the real and effective group IDs to rgid and egid, failing if the underlying system call
fails. Raises NotImplementedError on systems that don’t support setregid(2).

report erratum • discuss

Process::Sys • 647

Download from Wow! eBook <www.wowebook.com>

http://www.freebsd.org/cgi/man.cgi?query=issetugid&sektion=2
http://www.freebsd.org/cgi/man.cgi?query=setegid&sektion=2
http://www.freebsd.org/cgi/man.cgi?query=seteuid&sektion=2
http://www.freebsd.org/cgi/man.cgi?query=setgid&sektion=2
http://www.freebsd.org/cgi/man.cgi?query=setregid&sektion=2
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Process::Sys.setresgid(rgid, egid, sgid)setresgid

Sets the real, effective, and saved group IDs to rgid, egid, and sgid, failing if the underlying
system call fails. Raises NotImplementedError on systems that don’t support setresgid(2).

Process::Sys.setresuid(ruid, euid, suid)setresuid

Sets the real, effective, and saved user IDs to ruid, euid, and suid, failing if the underlying
system call fails. Raises NotImplementedError on systems that don’t support setresuid(2).

Process::Sys.setreuid(ruid, euid)setreuid

Sets the real and effective user IDs to ruid and euid, failing if the underlying system call fails.
Raises NotImplementedError on systems that don’t support setreuid(2).

Process::Sys.setrgid(rgid)setrgid

Sets the real group ID to rgid, failing if the underlying system call fails. Raises NotImplement-
edError on systems that don’t support setrgid(2).

Process::Sys.setruid(ruid)setruid

Sets the real user ID to ruid, failing if the underlying system call fails. Raises NotImplemented-
Error on systems that don’t support setruid(2).

Process::Sys.setuid(uid)setuid

Sets the user ID to uid, failing if the underlying system call fails. Raises NotImplementedError
on systems that don’t support setuid(2).

Process::UIDModule

Provides a higher-level (and more portable) interface to the underlying operating system’s
concepts of real, effective, and saved user IDs. For more information, see the introduction
to Process::GID on page 648.

Class Methods

Process::UID.change_privilege(uid) → uidchange_privilege

Sets the real, effective, and saved user IDs to uid, raising an exception on failure (in which
case the state of the IDs is not known). Not compatible with Process.uid=.

Process::UID.eid → euideid

Returns the effective user ID for this process. Synonym for Process.euid.

Chapter 27. Built-in Classes and Modules • 648

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://www.freebsd.org/cgi/man.cgi?query=setresgid&sektion=2
http://www.freebsd.org/cgi/man.cgi?query=setresuid&sektion=2
http://www.freebsd.org/cgi/man.cgi?query=setreuid&sektion=2
http://www.freebsd.org/cgi/man.cgi?query=setrgid&sektion=2
http://www.freebsd.org/cgi/man.cgi?query=setruid&sektion=2
http://www.freebsd.org/cgi/man.cgi?query=setuid&sektion=2
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Process::UID.eid = euideid=

Synonym for Process::UID.grant_privilege.

Process::UID.grant_privilege(euid) → euidgrant_privilege

Sets the effective user ID to euid, raising an exception on failure. On some environments this
may also change the saved user ID.

Process::UID.re_exchange → euidre_exchange

Exchanges the real and effective user IDs, setting the saved user ID to the new effective user
ID. Returns the new effective user ID.

Process::UID.re_exchangeable → true or falsere_exchangeable?

Returns true if real and effective user IDs can be exchanged on the host operating system
and returns false otherwise.

Process::UID.rid → uidrid

Returns the real user ID for this process. Synonym for Process.uid.

Process::UID.sid_available? → true or falsesid_available?

Returns true if the underlying platform supports saved user IDs and returns false otherwise.
Currently, Ruby assumes support if the operating system has setresuid(2) or seteuid(2) calls
or if the configuration includes the POSIX_SAVED_IDS flag.

Process::UID.switch → euid
Process::UID.switch { … } → obj

switch

Handles the toggling of user privilege. In the block form, automatically toggles the IDs back
when the block terminates (as long as the block doesn’t use other Process::UID calls to
interfere). Without a block, returns the original effective user ID.

report erratum • discuss

Process::UID • 649

Download from Wow! eBook <www.wowebook.com>

http://www.freebsd.org/cgi/man.cgi?query=setresuid&sektion=2
http://www.freebsd.org/cgi/man.cgi?query=seteuid&sektion=2
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

RangeClass

A Range represents an interval—a set of values with a start and an end. Ranges may be con-
structed using the s..e and s...e literals or using Range.new. Ranges constructed using .. run
from the start to the end inclusively. Those created using ... exclude the end value. When
used as an iterator, ranges return each value in the sequence.

(-1..-5).to_a # => []
(-5..-1).to_a # => [-5, -4, -3, -2, -1]
('a'..'e').to_a # => ["a", "b", "c", "d", "e"]
('a'...'e').to_a # => ["a", "b", "c", "d"]

Ranges can be constructed using objects of any type, as long as the objects can be compared
using their <=> operator and they support the succ method to return the next object in
sequence.

class Xs # represent a string of 'x's
include Comparable
attr :length
def initialize(n)
@length = n

end
def succ
Xs.new(@length + 1)

end
def <=>(other)
@length <=> other.length

end
def inspect
'x' * @length

end
end

r = Xs.new(3)..Xs.new(6) # => xxx..xxxxxx
r.to_a # => [xxx, xxxx, xxxxx, xxxxxx]
r.member?(Xs.new(5)) # => true

In the previous code example, class Xs includes the Comparable module. This is because Enu-
merable#member? checks for equality using ==. Including Comparable ensures that the ==
method is defined in terms of the <=> method implemented in Xs.

Mixes In

Enumerable: all?, any?, chunk, collect, collect_concat, count, cycle, detect, drop, drop_while, each_
cons, each_entry, each_slice, each_with_index, each_with_object, entries, find, find_all, find_index,
first, flat_map, grep, group_by, include?, inject, lazy, map, max, max_by, member?, min, min_by,
minmax, minmax_by, none?, one?, partition, reduce, reject, reverse_each, select, slice_before, sort, sort
_by, take, take_while, to_a, zip

Chapter 27. Built-in Classes and Modules • 650

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Class Methods

Range.new(start, end, exclusive=false) → rngnew

Constructs a range using the given start and end. If the third parameter is omitted or is false,
the range will include the end object; otherwise, it will be excluded.

Instance Methods

rng == obj→ true or false==

Returns true if obj is a range whose beginning and end are the same as those in rng (compared
using ==) and whose exclusive flag is the same as rng.

rng === val→ true or false===

If rng excludes its end, returns rng.start ≤ val < rng.end. If rng is inclusive, returns rng.start ≤
val ≤ rng.end. Note that this implies that val need not be a member of the range itself (for
example, a float could fall between the start and end values of a range of integers). Imple-
mented by calling include?. Conveniently, the === operator is used by case statements.

case 74.95
when 1...50 then puts "low"
when 50...75 then puts "medium"
when 75...100 then puts "high"
end

produces:

medium

rng.begin → objbegin

Returns the first object of rng.

rng.bsearch {|val| … } → obj or nil>bsearch

⇡New in 2.0⇣The same basic functionality as Array#bsearch. However, the range variant is typically used
to search for something outside the range itself. For example, the range values could be used
as a parameter to a function, or to index into some other collection. Remember though that
the value returned by that function or collection must increase as its parameter increases.

Here’s a (poor) method that finds the number of binary digits required to represent a number:

def bit_size(n)
(0...(8*n.size)).bsearch { |bitno| (1 << bitno) > n }

end

[0x05, 0x50, 0x5a010000].each do |n|
printf "Bitsize of %b is %d\n", n, bit_size(n)

end

produces:

Bitsize of 101 is 3
Bitsize of 1010000 is 7
Bitsize of 1011010000000010000000000000000 is 31

report erratum • discuss

Range • 651

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

And here’s a somewhat surprising example that finds x for which sin(x) equals 0.5.

(0.0..Math::PI/2).bsearch {|x| Math.sin(x) >= 0.5} # => 0.5235987755982989

On my box, it has the answer correct to 1% within 14 iterations, and takes 62 iterations to
find it to the limit of Float precision.

rng.cover?(obj) → true or falsecover?

Returns true if obj lies between the start and end of the range. For ranges defined withmin..max,
this means min ≤ obj ≤ max. For ranges defined with min...max, it means min ≤ obj < max.

(1..10).cover?(0) # => false
(1..10).cover?(5) # => true
(1..10).cover?(9.5) # => true
(1..10).cover?(10) # => true
(1...10).cover?(10) # => false

rng.each {|i| … } → rngeach

Iterates over the elements rng, passing each in turn to the block. Successive elements are
generated using the succ method.

(10..15).each do |n|
print n, ' '

end

produces:

10 11 12 13 14 15

rng.end → objend

Returns the object that defines the end of rng.

(1..10).end # => 10
(1...10).end # => 10

rng.eql?(obj) → true or falseeql?

Returns true if obj is a range whose beginning and end are the same as those in rng (compared
using eql?) and whose exclusive flag is the same as rng.

rng.exclude_end? → true or falseexclude_end?

Returns true if rng excludes its end value.

rng.first(n = 1) → obj or arrayfirst

Returns the first (or first n) elements of rng.

('aa'..'bb').first # => "aa"
('aa'..'bb').first(5) # => ["aa", "ab", "ac", "ad", "ae"]

Chapter 27. Built-in Classes and Modules • 652

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

rng.include?(val) → true or falseinclude?

Returns true if val is one of the values in rng (that is, if Range#each would return val at some
point). If the range is defined to span numbers, this method returns true if the value lies
between the start and end of the range, even if it is not actually a member (that is, it has the
same behavior as Range#cover?). Otherwise, the parameter must be a member of the range.

r = 1..10
r.include?(5) # => true
r.include?(5.5) # => true
r.include?(10) # => true
r = 1...10
r.include?(10) # => false
r = 'a'..'z'
r.include?('b') # => true
r.include?('ruby') # => false

rng.last(n = 1) → obj or arraylast

Returns the last (or last n) elements of rng.

('aa'..'bb').last # => "bb"
('aa'..'bb').last(5) # => ["ax", "ay", "az", "ba", "bb"]

rng.max → obj
rng.max {|a,b| … } → obj

max

Returns the maximum value in the range. The block is used to compare values if present.

(-3..2).max # => 2
(-3..2).max {|a,b| a*a <=> b*b } # => -3

rng.member?(val) → true or falsemember?

Synonym for Range#include?.

rng.min → obj
rng.min {|a,b| … } → obj

min

Returns the minimum value in the range. The block is used to compare values if present.

(-3..2).min # => -3
(-3..2).min {|a,b| a*a <=> b*b } # => 0

rng.size → int or nilsize

⇡New in 2.0⇣Returns the number of elements in rng. In Ruby 2.0, only works for ranges of integers.

(1..26).size # => 26
('a'..'z').size # => nil

report erratum • discuss

Range • 653

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

rng.step(n=1) ‹ {|obj| … }› → rng or enumstep

Iterates over rng, passing each nth element to the block. If the range contains numbers,
addition by one is used to generate successive elements. Otherwise, step invokes succ to
iterate through range elements. If no block is given, an enumerator is returned. The following
code uses class Xs defined at the start of this section:

range = Xs.new(1)..Xs.new(10)
range.step(2) {|x| p x}
enum = range.step(3)
p enum.to_a

produces:

x
xxx
xxxxx
xxxxxxx
xxxxxxxxx
[x, xxxx, xxxxxxx, xxxxxxxxxx]

Here’s step with numbers:

(1..5).step(1).to_a # => [1, 2, 3, 4, 5]
(1..5).step(2).to_a # => [1, 3, 5]
(1..5).step(1.5).to_a # => [1.0, 2.5, 4.0]
(1.0..5.0).step(1).to_a # => [1.0, 2.0, 3.0, 4.0, 5.0]
(1.0..5.0).step(2).to_a # => [1.0, 3.0, 5.0]
(1.0..5.0).step(1.5).to_a # => [1.0, 2.5, 4.0]

Chapter 27. Built-in Classes and Modules • 654

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

RandomClass

A random number generator, based on the Mersenne Twister MT19937 (the period is 219937-1).
The global rand and srand methods are wrappers for this class.

Class Methods

Random.new(‹seed=Random.new_seed›) → randnew

Creates a new random random number generator with the given seed. The seed will be
converted to an integer.

Random.new_seed → bignumnew_seed

Returns a number that can be used as a seed. The value is derived from a system random
number generator if available; otherwise, it combines the time, the process ID, and a sequence
number.

Random.new_seed # => 205460400778463129775182461758071944669

Random.rand(max=0) → number
Random.rand(range) → number

rand

Synonym for Object#rand on page 622.

Random.rand(seed) → old_seedsrand

Synonym for Object#srand on page 628.

Instance Methods

rand.bytes(length) → stringbytes

Returns a binary-encoded string, length bytes long, containing random bits.

rand = Random.new
rand.bytes(10) # => "T\xAEP\xD5\0\xAD\x7F\x84b\xC9"

rand.rand(max=0) → number
rand.rand(range) → number

rand

Converts max to an integer using max1 = max.to_i.abs. If the result is zero or nil, returns a
pseudorandom floating-point number greater than or equal to 0.0 and less than 1.0. Otherwise,
returns a pseudorandom integer greater than or equal to zero and less than max1. If a range
is passed, return a random number in that range.

rand.seed → bignumseed

Returns the seed for this random number generator.

report erratum • discuss

Random • 655

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Rational < NumericClass

Rational numbers are expressed as the ratio of two integers. When the denominator exactly
divides the numerator, a rational number is effectively an integer. Rationals allow exact
representation of fractional numbers, but some real values cannot be expressed exactly and
so cannot be represented as rationals.

Class Rational is normally relatively independent of the other numeric classes, in that the
result of dividing two integers with the / operator will normally be a (truncated) integer (the
quo method will always return a rational result). However, if the mathn library is loaded into
a program, integer division may generate a Rational result. Also see the rational library on
page 794 for additional methods on rational numbers.

r1 = Rational("1/2") # => 1/2
r2 = 4.quo(5) # => 4/5
r1 * r2 # => 2/5

Instance Methods

Arithmetic operations

Performs various arithmetic operations on rat.

Additionnumeric+rat
Subtractionnumeric-rat
Multiplicationnumeric*rat
Divisionnumeric/rat
Modulonumeric%rat
Exponentiationnumeric**rat
Unary minus-@rat

Comparisons

Compares rat to other numbers: <, <=, ==, >=, and >.

rat <=> numeric→ -1, 0, +1, or nil<=>

Comparison—Returns -1, 0, or +1 depending on whether rat is less than, equal to, or greater
than numeric. Although Rational’s grandparent mixes in Comparable, Rational does not use that
module for performing comparisons, instead implementing the comparison operators
explicitly.

Rational("4/2") <=> Rational("98/49") # => 0
Rational("3/4") <=> 41 # => -1
Rational("0") <=> 0.0 # => 0

rat == numeric==

Returns true if rat has the same value as numeric. Comparisons against integers and rational
numbers are exact; comparisons against floats first convert rat to a float.

Chapter 27. Built-in Classes and Modules • 656

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

rat.ceil → numericceil

Returns the smallest integer greater than or equal to rat.

Rational("22/7").ceil # => 4
Rational("-22/7").ceil # => -3

rat.denominator → a_numberdenominator

Returns the denominator of rat.

Rational("2/3").denominator # => 3

rat.fdiv(numeric) → floatfdiv

Returns the floating-point result of dividing rat by numeric.

Rational("11/2") / 2 # => 11/4
Rational("11/2").fdiv 2 # => 2.75

rat.floor → numericfloor

Returns the largest integer less than or equal to rat.

Rational("22/7").floor # => 3
Rational("-22/7").floor # => -4

rat.numerator → a_numbernumerator

Returns the numerator of rat.

Rational("2/3").numerator # => 2

rat.quo(numeric) → numericquo

Synonym for Rational#/.

rat.rationalize → rat
rat.rationalize(epsilon) → rational

rationalize

With no argument, returns rat; otherwise, returns a new Rational with the given precision.

r = Math::PI.to_r # => (884279719003555/281474976710656)
r.rationalize # => (884279719003555/281474976710656)
r.rationalize(0.01) # => (22/7)

rat.round → numericround

Rounds rat to the nearest integer.

Rational("22/7").round # => 3
Rational("-22/7").round # => -3

report erratum • discuss

Rational • 657

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

rat.to_f → floatto_f

Returns the floating-point representation of rat.

Rational("37/4").to_f # => 9.25

rat.to_i → integerto_i

Returns the truncated integer value of rat.

Rational("19/10").to_i # => 1
Rational("-19/10").to_i # => -1

rat.to_r → ratto_r

Returns rat.

rat.truncate → numerictruncate

Returns rat truncated to an integer.

Rational("22/7").truncate # => 3
Rational("-22/7").truncate # => -3

Chapter 27. Built-in Classes and Modules • 658

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

RegexpClass

A Regexp holds a regular expression, used to match a pattern against strings. Regexps are
created using the /.../ and%r{...} literals and using the Regexp.new constructor. See the reference
on in Regular Expressions, on page 303 for more details.

Class Constants

Ignores spaces and newlines in regexpEXTENDED
Matches are case insensitiveIGNORECASE
Newlines treated as any other characterMULTILINE

Class Methods

Regexp.compile(pattern ‹ , options ‹ , lang››) → rxpcompile

Synonym for Regexp.new.

Regexp.escape(string) → escaped_stringescape

Escapes any characters that would have special meaning in a regular expression. For any
string, Regexp.new(Regexp.escape(str)) =~ str will be true.

Regexp.escape('\\[]*?{}.') # => \\\[\]*\?\{\}\.

Regexp.last_match → match
Regexp.last_match(int) → string

last_match

The first form returns the MatchData object generated by the last successful pattern match.
This is equivalent to reading the global variable $~. MatchData has its own reference on page
559.

The second form returns the nth field in this MatchData object.

/c(.)t/ =~ 'cat' # => 0
Regexp.last_match # => #<MatchData "cat" 1:"a">
Regexp.last_match(0) # => "cat"
Regexp.last_match(1) # => "a"
Regexp.last_match(2) # => nil

Regexp.new(string ‹ , options ‹ , lang››) → rxp
Regexp.new(regexp) → new_regexp

new

Constructs a new regular expression from the string or the regexp. In the latter case, that
regexp’s options are propagated, and new options may not be specified. If options is a number,
it should be one or more of Regexp::EXTENDED, Regexp::IGNORECASE, or Regexp::MULTILINE, or-ed
together. Otherwise, if the options parameter is not nil, the regexp will be case insensitive.
The lang can be set to "N" or "n" to force the regular expression to have ASCII-8BIT encoding;3

otherwise, the encoding of the string determines the encoding of the regular expression.

3. No other values are accepted as of Ruby 1.9.

report erratum • discuss

Regexp • 659

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

encoding: utf-8
r1 = Regexp.new('^[a-z]+:\\s+\w+') # => /^[a-z]+:\s+\w+/
r2 = Regexp.new('cat', true) # => /cat/i
r3 = Regexp.new('dog', Regexp::EXTENDED) # => /dog/x
r4 = Regexp.new(r2) # => /cat/i
r5 = Regexp.new("∂elta") # => /∂elta/
r1.encoding # => #<Encoding:US-ASCII>
r5.encoding # => #<Encoding:UTF-8>

Regexp.quote(string) → escaped_stringquote

Synonym for Regexp.escape.

Regexp.try_convert(obj) → a_regexp or niltry_convert

If obj is not already a regular expression, attempts to convert it to one by calling its to_regexp
method. Returns nil if no conversion could be made.

Regexp.try_convert("cat") # => nil
class String
def to_regexp
Regexp.new(self)

end
end
Regexp.try_convert("cat") # => /cat/

Regexp.union(‹pattern›*) → a_regexpunion

Returns a regular expression that will match any of the given patterns. With no patterns,
produces a regular expression that will never match. If a pattern is a string, it will be given
the default regular expression options. If a pattern is a regular expression, its options will
be honored in the final pattern. The patterns may also be passed in a single array.

Regexp.union("cat") # => /cat/
Regexp.union("cat", "dog") # => /cat|dog/
Regexp.union(%w{ cat dog }) # => /cat|dog/
Regexp.union("cat", /dog/i) # => /cat|(?i-mx:dog)/

Instance Methods

rxp == other_regexp→ true or false==

Equality—Two regexps are equal if their patterns are identical, they have the same character
set code, and their casefold? values are the same.

/abc/ == /abc/x # => false
/abc/ == /abc/i # => false
/abc/u == /abc/n # => false

Chapter 27. Built-in Classes and Modules • 660

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

rxp === string→ true or false===

Case Equality—Like Regexp#=~ but accepts nonstring arguments (returning false). Used in
case statements.

a = "HELLO"
case a
when /\A[a-z]*\z/; print "Lower case\n"
when /\A[A-Z]*\z/; print "Upper case\n"
else print "Mixed case\n"
end

produces:

Upper case

rxp =~ string→ int or nil=~

Match—Matches rxp against string, returning the offset of the start of the match or nil if the
match failed. Sets $~ to the corresponding MatchData or nil.

/SIT/ =~ "insensitive" # => nil
/SIT/i =~ "insensitive" # => 5

~ rxp→ int or nil~

Match—Matches rxp against the contents of $_. Equivalent to rxp =~ $_. You should be
ashamed if you use this:

$_ = "input data"
~ /at/ # => 7

rxp.casefold? → true or falsecasefold?

Returns the value of the case-insensitive flag. Merely setting the i option inside rxp does not
set this flag.

/cat/.casefold? # => false
/cat/i.casefold? # => true
/(?i:cat)/.casefold? # => false

rxp.encoding → an_encodingencoding

Returns the character encoding for the regexp.

/cat/.encoding # => #<Encoding:US-ASCII>
/cat/s.encoding # => #<Encoding:Windows-31J>
/cat/u.encoding # => #<Encoding:UTF-8>

rxp.fixed_encoding? → true or falsefixed_encoding?

A regular expression containing only 7-bit characters can be matched against a string in any
encoding. In this case, fixed_encoding? returns false. Otherwise, it returns true.

report erratum • discuss

Regexp • 661

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

/cat/.fixed_encoding? # => false
/cat/s.fixed_encoding? # => true
/cat/u.fixed_encoding? # => true

rxp.match(string, offset=0) → match or nil
rxp.match(string, offset=0) {|match| … } → obj

match

Returns aMatchData object describing the match or nil if there was no match. This is equivalent
to retrieving the value of the special variable $~ following a normal match. The match process
will start at offset into string. If a block is given and the match is successful, the block will be
invoked with the MatchData object, and the value returned by the block will be the value
returned by match.

md = /(.)(d)(.)/.match("abcdefabcdef")
md # => #<MatchData "cde" 1:"c" 2:"d" 3:"e">
md[1] # => "c"
md.begin(1) # => 2
md = /(.)(d)(.)/.match("abcdedcba", 4)
md # => #<MatchData "edc" 1:"e" 2:"d" 3:"c">
md.begin(1) # => 4

result = /(...)...(...)/.match("catanddog") do |md|
md[1] + "&" + md[2]

end
result # => "cat&dog"

rxp.named_captures → hashnamed_captures

Returns a hash whose keys are the names of captures and whose values are each an array
containing the number of the capture in rxp.

/(?<a>.).(?.)/.named_captures # => {"a"=>[1], "b"=>[2]}
/(?<a>.)(.)(?.)/.named_captures # => {"a"=>[1], "b"=>[2]}
/(?<a>.)(?.)(?<a>.)/.named_captures # => {"a"=>[1, 3], "b"=>[2]}

rxp.names → arraynames

Returns an array containing the names of captures in rxp.

/(.)(.)(.)/.names # => []
/(?<first>.).(?<last>.)/.names # => ["first", "last"]

rxp.options → intoptions

Returns the set of bits corresponding to the options used when creating this regexp (see
Regexp.new for details). Note that additional bits may be set in the returned options; these
are used internally by the regular expression code. These extra bits are ignored if the options
are passed to Regexp.new.

Let's see what the values are...
Regexp::IGNORECASE # => 1
Regexp::EXTENDED # => 2
Regexp::MULTILINE # => 4

Chapter 27. Built-in Classes and Modules • 662

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

/cat/.options # => 0
/cat/ix.options # => 3
Regexp.new('cat', true).options # => 1
Regexp.new('cat', 0, 'n').options # => 32

r = /cat/ix
Regexp.new(r.source, r.options) # => /cat/ix

rxp.source → stringsource

Returns the original string of the pattern.

/ab+c/ix.source # => "ab+c"

rxp.to_s → stringto_s

Returns a string containing the regular expression and its options (using the (?xx:yyy)notation).
This string can be fed back into Regexp.new to a regular expression with the same semantics
as the original. (However, Regexp#==may not return true when comparing the two, because
the source of the regular expression itself may differ, as the example shows.) Regexp#inspect
produces a generally more readable version of rxp.

r1 = /ab+c/ix # => /ab+c/ix
s1 = r1.to_s # => "(?ix-m:ab+c)"
r2 = Regexp.new(s1) # => /(?ix-m:ab+c)/
r1 == r2 # => false
r1.source # => "ab+c"
r2.source # => "(?ix-m:ab+c)"

report erratum • discuss

Regexp • 663

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

SignalModule

Many operating systems allow signals to be sent to running processes. Some signals have a
defined effect on the process, and others may be trapped at the code level and acted upon.
For example, your process may trap the USR1 signal and use it to toggle debugging, and it
may use TERM to initiate a controlled shutdown.

pid = fork do
Signal.trap("USR1") do
$debug = !$debug
puts "Debug now: #$debug"

end
Signal.trap(:TERM) do # symbols work too...
puts "Terminating..."
exit

end
. . . do some work . . .

end

Process.detach(pid)

Controlling program:
Process.kill("USR1", pid)
...
Process.kill(:USR1, pid)
...
Process.kill("TERM", pid)

produces:

Debug now: true
Debug now: false
Terminating...

The list of available signal names and their interpretation is system dependent. Signal
delivery semantics may also vary between systems; in particular, signal delivery may not
always be reliable.

Class Methods

Signal.list → hashlist

Returns a list of signal names mapped to the corresponding underlying signal numbers.

Signal.list # => {"ABRT"=>6, "ALRM"=>14, "BUS"=>10, "CHLD"=>20, "CLD"=>20,
.. "CONT"=>19, "EMT"=>7, "EXIT"=>0, "FPE"=>8, "HUP"=>1, "ILL"=>4,
.. "INFO"=>29, "INT"=>2, "IO"=>23, "IOT"=>6, "KILL"=>9, "PIPE"=>13,
.. "PROF"=>27, "QUIT"=>3, "SEGV"=>11, "STOP"=>17, "SYS"=>12,
.. "TERM"=>15, "TRAP"=>5, "TSTP"=>18, "TTIN"=>21, "TTOU"=>22,
.. "URG"=>16, "USR1"=>30, "USR2"=>31, "VTALRM"=>26, "WINCH"=>28,
.. "XCPU"=>24, "XFSZ"=>25}

Chapter 27. Built-in Classes and Modules • 664

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Signal.signame(num) → stringsigname

⇡New in 2.0⇣Return the (abbreviated) name of the signal with the given number. An ArgumentError is raised
if the number does not correspond to a signal.

Signal.signame(1) # => "HUP"
Signal.signame(15) # => "TERM"

Signal.trap(signal, command) → obj
Signal.trap(signal) { … } → obj

trap

Specifies the handling of signals. The first parameter is a signal name (a string or symbol
such as SIGALRM, SIGUSR1, and so on) or a signal number. The characters SIG may be omitted
from the signal name. The command or block specifies code to be run when the signal is
raised. If the command is nil, the string IGNORE or SIG_IGN, or the empty string, the signal will
be ignored. If the command is DEFAULT or SIG_DFL, the operating system’s default handler
will be invoked. If the command is EXIT, the script will be terminated by the signal. Otherwise,
the given command or block will be run.

The special signal name EXIT or signal number zero will be invoked just prior to program
termination.

⇡New in 2.0⇣Trap cannot be used with the signals BUS, FPE, ILL, SEGV, or VTALRM.

trap returns the previous handler for the given signal.

Signal.trap(0, lambda { |signo| puts "exit pid #{$$} with #{signo}" })
Signal.trap("CLD") { |signo| puts "Child died (#{signo})" }
if fork # parent
do_something # ...

else
puts "In child, PID=#{$$}"

end

produces:

In child, PID=24189
exit pid 24189 with 0
Child died (20)
exit pid 24188 with 0

Note that you must specify a block taking a parameter if you use lambda to create the proc
object.

report erratum • discuss

Signal • 665

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

StringClass

A String object holds and manipulates a sequence of characters. String objects may be created
using String.new or as literals (see Strings, on page 300).

Because of aliasing issues, users of strings should be aware of the methods that modify the
contents of a String object. Typically, methods with names ending in ! modify their receiver,
while those without a ! return a new String. However, exceptions exist, such as String#[]=.

In this description, I try to differentiate between the bytes in a string and the characters in
a string. Internally, a string is a sequence of 8-bit bytes. These are represented externally as
small Fixnums. At the same time, these byte sequences are interpreted as a sequence of char-
acters. This interpretation is controlled by the encoding of the string. In some encodings
(such as US-ASCII and ISO-8859), each byte corresponds to a single character. In other
encodings (such as UTF-8), a varying number of bytes comprise each character.

As of Ruby 1.9, String no longer mixes in Enumerable.

Mixes In

Comparable: <, <=, ==, >, >=, between?

Class Methods

String.new(val="") → strnew

Returns a new string object containing a copy of val (which should be a String or implement
to_str). Note that the new string object is created only when one of the strings is modified.

str1 = "wibble"
str2 = String.new(str1)
str1.object_id # => 70198849846720
str2.object_id # => 70198849846680
str1[1] = "o"
str1 # => "wobble"
str2 # => "wibble"

String.try_convert(obj) → a_string or niltry_convert

If obj is not already a string, attempts to convert it to one by calling its to_strmethod. Returns
nil if no conversion could be made.

String.try_convert("cat") # => "cat"
String.try_convert(0xbee) # => nil

Instance Methods

str % arg→ string%

Format—Uses str as a format specification and returns the result of applying it to arg. If the
format specification contains more than one substitution, then argmust be an Array containing
the values to be substituted. See Object#sprintf on page 626 for details of the format string.

Chapter 27. Built-in Classes and Modules • 666

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

puts "%05d" % 123
puts "%-5s: %08x" % ["ID", self.object_id]
puts "%-5<name>s: %08<value>x" % { name: "ID", value: self.object_id }

produces:

00123
ID : 3ff795471248
ID : 3ff795471248

str * int→ string*

Copies—Returns a new String containing int copies of the receiver.

"Ho! " * 3 # => "Ho! Ho! Ho! "

str + string→ string+

Concatenation—Returns a new String containing string concatenated to str. If both strings
contain non-7-bit characters, their encodings must be compatible.

"Hello from " + "RubyLand" # => "Hello from RubyLand"

str << fixnum→ str
str << obj→ str

<<

Append—Concatenates the given object to str. If the object is a Fixnum, it is considered to be
a codepoint in the encoding of str and converted to the appropriate character before being
appended.

a = "hello world"
a.force_encoding("utf-8")
a << 33 # => "hello world!"
a << " Says the " # => "hello world! Says the "
a << 8706 # => "hello world! Says the ∂"
a << "og" # => "hello world! Says the ∂og"

str <=> other_string→ -1, 0, +1, or nil<=>

Comparison—Returns -1 if str is less than, 0 if str is equal to, and +1 if str is greater than
other_string. If the strings are of different lengths and the strings are equal when compared
to the shortest length, then the longer string is considered greater than the shorter one. In
older versions of Ruby, setting $= allowed case-insensitive comparisons; you must now use
String#casecmp.

<=> is the basis for the methods<,<=,>,>=, and between?, included from module Comparable.
The method String#== does not use Comparable#==.

"abcdef" <=> "abcde" # => 1
"abcdef" <=> "abcdef" # => 0
"abcdef" <=> "abcdefg" # => -1
"abcdef" <=> "ABCDEF" # => 1

report erratum • discuss

String • 667

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

str == obj→ true or false==

Equality—If obj is a String, returns true if str has the same encoding, length, and content as
obj; returns false otherwise. If obj is not a String but responds to to_str, returns obj == str; other-
wise, returns false.

"abcdef" == "abcde" # => false
"abcdef" == "abcdef" # => true

str =~ regexp→ int or nil=~

Match—Equivalent to regexp =~ str. Prior versions of Ruby permitted an arbitrary operand
to =~; this is now deprecated. Returns the position where the match starts or returns nil if
there is no match or if regexp is not a regular expression.4

"cat o' 9 tails" =~ /\d/ # => 7
"cat o' 9 tails" =~ 9 # => nil

"cat o' 9 tails" =~ "\d"

produces:

from prog.rb:1:in `<main>'
prog.rb:1:in `=~': type mismatch: String given (TypeError)

str[int] → string or nil
str[int, int] → string or nil
str[range] → string or nil
str[regexp] → string or nil

str[regexp, int] → string or nil
str[regexp, name] → string or nil

str[string] → string or nil

[]

Element Reference—If passed a single int, returns the character at that position. (Prior to
Ruby 1.9, an integer character code was returned.) If passed two ints, returns a substring
starting at the offset given by the first, and a length given by the second. If given a range, a
substring containing characters at offsets given by the range is returned. In all three cases,
if an offset is negative, it is counted from the end of str. Returns nil if the initial offset falls
outside the string and the length is not given, the length is negative, or the beginning of the
range is greater than the end.

If regexp is supplied, the matching portion of str is returned. If a numeric parameter follows
the regular expression, that component of theMatchData is returned instead. If a String is given,
that string is returned if it occurs in str. If a name follows the regular expression, the corre-
sponding named match is returned. In all cases, nil is returned if there is no match.

a = "hello there"
a[1] # => "e"
a[1,3] # => "ell"
a[1..3] # => "ell"
a[1...3] # => "el"

4. Except for a strange corner case. If regexp is a string or can be coerced into a string, a TypeError exception
is raised.

Chapter 27. Built-in Classes and Modules • 668

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

a[-3,2] # => "er"
a[-4..-2] # => "her"
a[-2..-4] # => ""
a[/[aeiou](.)\1/] # => "ell"
a[/[aeiou](.)\1/, 0] # => "ell"
a[/[aeiou](.)\1/, 1] # => "l"
a[/[aeiou](.)\1/, 2] # => nil
a[/(..)e/] # => "the"
a[/(..)e/, 1] # => "th"
a[/(?<vowel>[aeiou])/, :vowel] # => "e"
a["lo"] # => "lo"
a["bye"] # => nil

str[int] = string
str[int, int] = string
str[range] = string
str[regexp] = string

str[regexp, int] = string
str[string] = string}

[]=

Element Assignment—Replaces some or all of the content of str. The portion of the string
affected is determined using the same criteria as String#[]. If the replacement string is not
the same length as the text it is replacing, the string will be adjusted accordingly. If the reg-
ular expression or string is used because the index doesn’t match a position in the string,
IndexError is raised. If the regular expression form is used, the optional second int allows you
to specify which portion of the match to replace (effectively using the MatchData indexing
rules). The forms that take a Fixnum will raise an IndexError if the value is out of range; the
Range form will raise a RangeError, and the Regexp and String forms will silently ignore the
assignment.

a = "hello"
(a→ "heulo")a[2] = "u"
(a→ "hexyz")a[2, 4] = "xyz"
(a→ "hxyzlo")a[-4, 2] = "xyz"
(a→ "hexyz")a[2..4] = "xyz"
(a→ "hxyzo")a[-4..-2] = "xyz"
(a→ "hxyz")a[/[aeiou](.)\1(.)/] = "xyz"
(a→ "hexyzlo")a[/[aeiou](.)\1(.)/, 1] = "xyz"
(a→ "hellxyz")a[/[aeiou](.)\1(.)/, 2] = "xyz"
(a→ "hexyzlo")a["l"] = "xyz"
(a→ "hexyzo")a["ll"] = "xyz"
(a→ "hexyzllo")a[2, 0] = "xyz"

str.ascii_only? → true or falseascii_only?

Returns true if the string contains no characters with a character code greater than 127 (that
is, it contains only 7-bit ASCII characters).

report erratum • discuss

String • 669

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

encoding: utf-8
"dog".ascii_only? # => true
"∂og".ascii_only? # => false
"\x00 to \x7f".ascii_only? # => true

str.b → stringb

⇡New in 2.0⇣ Returns a copy of the contents of str with ASCII-8BIT encoding. This is a convenient way to
get to the byte values of any string.

str = "∂øg"
str.length # => 3

bstr = str.b
bstr.length # => 6

str.bytes → enum | array
str.bytes {|byte| … } → str

bytes

⇡New in 2.0⇣ Returns an enumerator (Ruby 1.9) or array (Ruby 2.0) for the bytes (integers in the range 0
to 255) in str. With a block, passes each byte to the block and returns the original string. See
also String#codepoints and #chars.

encoding: utf-8
"dog".bytes # => [100, 111, 103]
"∂og".bytes # => [226, 136, 130, 111, 103]
result = []
"∂og".bytes {|b| result << b } # => "∂og"
result # => [226, 136, 130, 111, 103]

str.bytesize → intbytesize

Returns the number of bytes (not characters) in str. See also String#length.

encoding: utf-8
"dog".length # => 3
"dog".bytesize # => 3
"∂og".length # => 3
"∂og".bytesize # => 5

str.byteslice(offset, length=1) → string or nil
str.byteslice(range) → string or nil

byteslice

Returns the string consisting of length bytes starting at byte position offset, or between the
offsets given by the range. A negative offset counts from the end of the string. The returned
string retains the encoding of str, but may not be valid in that encoding.

encoding: utf-8
a = "∂dog"
a.bytes.to_a # => [226, 136, 130, 100, 111, 103]
a.byteslice(0) # => "\xE2"
a.byteslice(0, 2) # => "\xE2\x88"

Chapter 27. Built-in Classes and Modules • 670

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

a.byteslice(0, 3) # => "∂"
a.byteslice(-2, 2) # => "og"
a.byteslice(-2..-1) # => "og"

str.capitalize → stringcapitalize

Returns a copy of str with the first character converted to uppercase and the remainder to
lowercase.

"hello world".capitalize # => "Hello world"
"HELLO WORLD".capitalize # => "Hello world"
"123ABC".capitalize # => "123abc"

str.capitalize! → str or nilcapitalize!

Modifies str by converting the first character to uppercase and the remainder to lowercase.
Returns nil if no changes are made.

a = "hello world"
a.capitalize! # => "Hello world"
a # => "Hello world"
a.capitalize! # => nil

str.casecmp(string) → -1, 0, +1casecmp

Case-insensitive version of String#<=>.

"abcdef".casecmp("abcde") # => 1
"abcdef".casecmp("abcdef") # => 0
"aBcDeF".casecmp("abcdef") # => 0
"abcdef".casecmp("abcdefg") # => -1
"abcdef".casecmp("ABCDEF") # => 0

str.center(int, pad=" ") → stringcenter

If int is greater than the length of str, returns a new String of length int with str centered
between the given padding (defaults to spaces); otherwise, returns str.

"hello".center(4) # => "hello"
"hello".center(20) # => "␣␣␣␣␣␣␣hello␣␣␣␣␣␣␣␣"
"hello".center(4, "_-^-") # => "hello"
"hello".center(20, "_-^-") # => "_-^-_-^hello_-^-_-^-"
"hello".center(20, "-") # => "-------hello--------"

str.chars → enum | array
str.chars {|char| … } → str

chars

⇡New in 2.0⇣Returns an enumerator (Ruby 1.9) or array (Ruby 2.0) for the characters (single character
strings) in str. With a block, passes each character to the block and returns the original string.
See also String#bytes and String#codepoints.

report erratum • discuss

String • 671

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

encoding: utf-8
"dog".chars.to_a # => ["d", "o", "g"]
"∂og".chars.to_a # => ["∂", "o", "g"]
result = []
"∂og".chars {|b| result << b } # => "∂og"
result # => ["∂", "o", "g"]

str.chr → stringchr

Returns the first character of str.

encoding: utf-8
"dog".chr # => "d"
"∂og".chr # => "∂"

str.clear → strclear

Removes the content (but not the associated encoding) of str.

encoding: utf-8
str = "∂og"
str.clear # => ""
str.length # => 0
str.encoding # => #<Encoding:UTF-8>

str.chomp(rs=$/) → stringchomp

Returns a new Stringwith the given record separator removed from the end of str (if present).
If $/ has not been changed from the default Ruby record separator, then chomp also removes
carriage return characters (that is, it will remove \n, \r, and \r\n).

"hello".chomp # => "hello"
"hello\n".chomp # => "hello"
"hello\r\n".chomp # => "hello"
"hello\n\r".chomp # => "hello\n"
"hello\r".chomp # => "hello"
"hello \n there".chomp # => "hello \n there"
"hello".chomp("llo") # => "he"

str.chomp!(rs=$/) → str or nilchomp!

Modifies str in place as described for String#chomp, returning str or returning nil if no modifi-
cations were made.

str.chop → stringchop

Returns a new String with the last character removed. If the string ends with \r\n, both char-
acters are removed. Applying chop to an empty string returns an empty string. String#chomp
is often a safer alternative, because it leaves the string unchanged if it doesn’t end in a record
separator.

Chapter 27. Built-in Classes and Modules • 672

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

"string\r\n".chop # => "string"
"string\n\r".chop # => "string\n"
"string\n".chop # => "string"
"string".chop # => "strin"
"x".chop.chop # => ""

str.chop! → str or nilchop!

Processes str as for String#chop, returning str or returning nil if str is the empty string. See also
String#chomp!.

str.codepoints → enum | array
str.codepoints {|integer| … } → str

codepoints

⇡New in 2.0⇣Returns an enumerator (Ruby 1.9) or array (Ruby 2.0) for the codepoints (integers represen-
tation of the characters) in str. With a block, passes each integer to the block and returns the
original string. See also String#bytes and String#chars.

encoding: utf-8
"dog".codepoints.to_a # => [100, 111, 103]
"∂og".codepoints.to_a # => [8706, 111, 103]
result = []
"∂og".codepoints {|b| result << b } # => "∂og"
result # => [8706, 111, 103]

str.concat(int) → str
str.concat(obj) → str

concat

Synonym for String#<<.

str.count(‹string›+) → intcount

Each string parameter defines a set of characters to count. The intersection of these sets
defines the characters to count in str. Any parameter that starts with a caret (^) is negated.
The sequence c1-c2 means all characters between c1 and c2.

a = "hello world"
a.count "lo" # => 5
a.count "lo", "o" # => 2
a.count "hello", "^l" # => 4
a.count "ej-m" # => 4

str.crypt(settings) → stringcrypt

Applies a one-way cryptographic hash to str by invoking the standard library function crypt.
The argument is to some extent system dependent. On traditional Unix boxes, it is often a
two-character salt string. On more modern boxes, it may also control things such as DES
encryption parameters. See the man page for crypt(3) for details.

report erratum • discuss

String • 673

Download from Wow! eBook <www.wowebook.com>

http://www.freebsd.org/cgi/man.cgi?query=crypt&sektion=3
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

standard salt
"secret".crypt("sh") # => "shRK3aVg8FsI2"
On OSX: DES, 2 interactions, 24-bit salt
"secret".crypt("_...0abcd") # => "_...0abcdROn65JNDj12"

str.delete(‹string›+) → new_stringdelete

Returns a copy of str with all characters in the intersection of its arguments deleted. Uses
the same rules for building the set of characters as String#count.

"hello".delete("l","lo") # => "heo"
"hello".delete("lo") # => "he"
"hello".delete("aeiou", "^e") # => "hell"
"hello".delete("ej-m") # => "ho"

str.delete!(‹string›+) → str or nildelete!

Performs a delete operation in place, returning str or returning nil if str was not modified.

a = "hello"
a.delete!("l","lo") # => "heo"
a # => "heo"
a.delete!("l") # => nil

str.downcase → stringdowncase

Returns a copy of str with all uppercase letters replaced with their lowercase counterparts.
The operation is locale insensitive—only charactersA toZ are affected. Multibyte characters
are skipped.

"hEllO".downcase # => "hello"

str.downcase! → str or nildowncase!

Replaces uppercase letters in strwith their lowercase counterparts. Returns nil if no changes
were made.

str.dump → stringdump

Produces a version of str with all nonprinting characters replaced by \nnn notation and all
special characters escaped.

str.each_byte → enum
str.each_byte {|byte| … } → str

each_byte

Synonym for String#bytes. The each_byte form is falling out of favor.

str.each_char → enum
str.each_char {|char| … } → str

each_char

Synonym for String#chars. The each_char form is falling out of favor.

Chapter 27. Built-in Classes and Modules • 674

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

str.each_codepoint → enum
str.each_codepoint {|integer| … } → str

each_codepoint

Synonym for String#codepoints.

str.each_line(sep=$/) → enum
str.each_line(sep=$/) {|substr| … } → str}

each_line

Synonym for String#lines. The each_line form is falling out of favor.

str.empty? → true or falseempty?

Returns true if str has a length of zero.

"hello".empty? # => false
"".empty? # => true

str.encode → a_string
str.encode(to_encoding ‹ , options›) → a_string

str.encode(to_encoding, from_encoding, ‹ , options›) → a_string

encode

Transcodes str, returning a new string encoded with to_encoding. If no encoding is given,
transcodes using default_internal encoding. The source encoding is either the current encoding
of the string or from_encoding. May raise a RuntimeError if characters in the original string
cannot be represented in the target encoding. The options parameter defines the behavior for
invalid transcodings and other boundary conditions. It can be a hash (recommended) or an
or-ing of integer values. Encodings can be passed as Encoding objects or as names.

MeaningOption

Specifies the string to use if :invalid or :undef options are present.
If not specified, uFFFD is used for Unicode encodings and ? for
others.

:replace => string

Replaces invalid characters in the source string with the
replacement string. If :invalid is not specified or nil, raises an
exception.

:invalid => :replace

Replaces characters that are not available in the destination
encoding with the replacement string. If :undef not specified or
nil, raises an exception.

:undef => :replace

Converts crlf and cr line endings to lf.:universal_newline => true
Converts lf to crlf.:crlf_newline => true
Converts lf to cr.:cr_newline => true
After encoding, escape characters that would otherwise have
special meaning in XML PCDATA or attributes. In all cases,

:xml => :text | :attr

converts & to &, < to <, > to >, and undefined characters
to a hexadecimal entity (&#xhh;). For :attr, also converts " to
".

Table 22—Options to encode and encode!

report erratum • discuss

String • 675

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

encoding: utf-8
ole_in_utf = "olé"
ole_in_utf.encoding # => #<Encoding:UTF-8>
ole_in_utf.dump # => "ol\u{e9}"

ole_in_8859 = ole_in_utf.encode("iso-8859-1")
ole_in_8859.encoding # => #<Encoding:ISO-8859-1>
ole_in_8859.dump # => "ol\xE9"

Using a default internal encoding of ISO-8859-1 and a source file encoding of UTF-8:

#!/usr/local/rubybook/bin/ruby -E:ISO-8859-1
encoding: utf-8
utf_string = "olé"
utf_string.encoding # => #<Encoding:UTF-8>
iso_string = utf_string.encode
iso_string.encoding # => #<Encoding:ISO-8859-1>

Attempt to transcode a string with characters not available in the destination encoding:

encoding: utf-8
utf = "∂og"
utf.encode("iso-8859-1")

produces:

from prog.rb:3:in `<main>'
prog.rb:3:in `encode': U+2202 from UTF-8 to ISO-8859-1
(Encoding::UndefinedConversionError)

You can replace the character in error with something else:

encoding: utf-8
utf = "∂og"
utf.encode("iso-8859-1", undef: :replace) # => "?og"
utf.encode("iso-8859-1", undef: :replace, replace: "X") # => "Xog"

str.encode! → str
str.encode!(to_encoding ‹ , options›) → str

str.encode!(to_encoding, from_encoding, ‹ , options›) → str

encode!

Transcodes str in place.

str.encoding → an_encodingencoding

Returns the encoding of str.

encoding: utf-8
"cat".encoding # => #<Encoding:UTF-8>

str.end_with?(‹suffix›+) → true or falseend_with?

Returns true if str ends with any of the given suffixes.

"Apache".end_with?("ache") # => true
"ruby code".end_with?("python", "perl", "code") # => true

Chapter 27. Built-in Classes and Modules • 676

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

str.eql?(obj) → true or falseeql?

Returns true if obj is a String with identical contents to str.

"cat".eql?("cat") # => true

str.force_encoding(encoding) → strforce_encoding

Sets the encoding associated with str to encoding. Note that this does not change the under-
lying bytes in str—it simply tells Ruby how to interpret those bytes as characters.

encoding: utf-8
∂og_in_bytes = [226, 136, 130, 111, 103] # utf-8 byte sequence
str = ∂og_in_bytes.pack("C*")
str.encoding # => #<Encoding:ASCII-8BIT>
str.length # => 5
str.force_encoding("utf-8")
str.encoding # => #<Encoding:UTF-8>
str.length # => 3
str # => "∂og"

str.getbyte(offset) → int or nilgetbyte

Returns the byte at offset (starting from the end of the string if the offset is negative). Returns
nil if the offset lies outside the string.

encoding: utf-8
str = "∂og"
str.bytes.to_a # => [226, 136, 130, 111, 103]
str.getbyte(0) # => 226
str.getbyte(1) # => 136
str.getbyte(-1) # => 103
str.getbyte(99) # => nil

str.gsub(pattern, replacement) → string
str.gsub(pattern) {|match| … } → string

str.gsub(pattern) → enum

gsub

Returns a copy of str with all occurrences of pattern replaced with either replacement or the
value of the block. The pattern will typically be a Regexp; if it is a String, then no regular
expression metacharacters will be interpreted (that is, /\d/ will match a digit, but '\d' will
match a backslash followed by a d).

If a string is used as the replacement, special variables from the match (such as $& and $1)
cannot be substituted into it, because substitution into the string occurs before the pattern
match starts. However, the sequences \1, \2, and so on, may be used to interpolate successive
numbered groups in the match, and \k<name> will substitute the corresponding named
captures. These sequences are shown in the following table.

report erratum • discuss

String • 677

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Text That Is SubstitutedSequence

The value matched by the nth grouped subexpression\1, \2, ... \9
The last match\&
The part of the string before the match\`
The part of the string after the match\'
The highest-numbered group matched\+
The named capture\k<name>

Table 23—Backslash sequences in substitution

In the block form, the current match is passed in as a parameter, and variables such as $1,
$2, $`, $&, and $'will be set appropriately. The value returned by the block will be substituted
for the match on each call.

The result inherits any tainting in the original string or any supplied replacement string.

"hello".gsub(/[aeiou]/, '*') # => "h*ll*"
"hello".gsub(/([aeiou])/, '<\1>') # => "h<e>ll<o>"
"hello".gsub(/./) {|s| s[0].to_s + ' '} # => "h e l l o "
"hello".gsub(/(?<double>l)/, '-\k<double>-') # => "he-l--l-o"

If no block or replacement string is given, an enumerator is returned.

"hello".gsub(/../).to_a # => ["he", "ll"]

If a hash is given as the replacement, successive matched groups are looked up as keys, and
the corresponding values are substituted into the string.

repl = Hash.new("?")
repl["a"] = "*"
repl["t"] = "T"
"cat".gsub(/(.)/, repl) # => "?*T"

str.gsub!(pattern, replacement) → string
str.gsub!(pattern) {|match| … } → string

str.gsub!(pattern) → enum

gsub!

Performs the substitutions of String#gsub in place, returning str, or returning nil if no substi-
tutions were performed. If no block or replacement string is given, an enumerator is returned.

str.hex → inthex

Treats leading characters from str as a string of hexadecimal digits (with an optional sign
and an optional 0x) and returns the corresponding number. Zero is returned on error.

"0x0a".hex # => 10
"-1234".hex # => -4660
"0".hex # => 0
"wombat".hex # => 0

Chapter 27. Built-in Classes and Modules • 678

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

str.include?(string) → true or falseinclude?

Returns true if str contains the given string.

"hello".include? "lo" # => true
"hello".include? "ol" # => false
"hello".include? ?h # => true

str.index(string ‹ , offset›) → int or nil
str.index(regexp ‹ , offset›) → int or nil

index

Returns the index of the first occurrence of the given substring or pattern in str. Returns nil
if not found. If the second parameter is present, it specifies the position in the string to begin
the search.

"hello".index('e') # => 1
"hello".index('lo') # => 3
"hello".index('a') # => nil
"hello".index(/[aeiou]/, -3) # => 4

str.insert(index, string) → strinsert

Inserts string before the character at the given index, modifying str. Negative indices count
from the end of the string and insert after the given character. After the insertion, str will
contain string starting at index.

"abcd".insert(0, 'X') # => "Xabcd"
"abcd".insert(3, 'X') # => "abcXd"
"abcd".insert(4, 'X') # => "abcdX"
"abcd".insert(-3, 'X') # => "abXcd"
"abcd".insert(-1, 'X') # => "abcdX"

str.intern → symbolintern

Returns the Symbol corresponding to str, creating the symbol if it did not previously exist.
Can intern any string, not just identifiers. See Symbol#id2name on page 700.

"Koala".intern # => :Koala
sym = "$1.50 for a soda!?!?".intern
sym.to_s # => "$1.50 for a soda!?!?"

str.length → intlength

Returns the number of characters in str. See also String#bytesize.

str.lines(sep=$/) → enum | array
str.lines(sep=$/) {|substr| … } → str}

lines

Splits str using the supplied parameter as the record separator ($/ by default) and passing
each substring in turn to the supplied block. If a zero-length record separator is supplied,

report erratum • discuss

String • 679

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

the string is split into paragraphs, each terminated by multiple \n characters. With no block,

⇡New in 2.0⇣
returns a enumerator (Ruby 1.9) or an array (Ruby 2.0).

print "Example one\n"
"hello\nworld".lines {|s| p s}
print "Example two\n"
"hello\nworld".lines('l') {|s| p s}
print "Example three\n"
"hello\n\n\nworld".lines('') {|s| p s}

produces:

Example one
"hello\n"
"world"
Example two
"hel"
"l"
"o\nworl"
"d"
Example three
"hello\n\n\n"
"world"

str.ljust(width, padding=" ") → stringljust

If width is greater than the length of str, returns a new String of length width with str left jus-
tified and padded with copies of padding; otherwise, returns a copy of str.

"hello".ljust(4) # => "hello"
"hello".ljust(20) # => "hello␣␣␣␣␣␣␣␣␣␣␣␣␣␣

.. ␣"
"hello".ljust(20, "*") # => "hello***************"
"hello".ljust(20, " dolly") # => "hello␣dolly␣dolly␣do"

str.lstrip → stringlstrip

Returns a copy of strwith leading whitespace characters removed. Also see String#rstrip and
String#strip.

" hello ".lstrip # => "hello␣␣"
"\000 hello ".lstrip # => "\0␣hello␣␣"
"hello".lstrip # => "hello"

str.lstrip! → str or nillstrip!

Removes leading whitespace characters from str, returning nil if no change was made. See
also String#rstrip! and String#strip!.

" hello ".lstrip! # => "hello␣␣"
"hello".lstrip! # => nil

Chapter 27. Built-in Classes and Modules • 680

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

str.match(pattern) → match_data or nil
str.match(pattern) {|matchdata| … } → obj

match

Converts pattern to a Regexp (if it isn’t already one) and then invokes its match method on str.
If a block is given, the block is passed the MatchData object, and the matchmethod returns the
value of the block.

'seed'.match('(.)\1') # => #<MatchData "ee" 1:"e">
'seed'.match('(.)\1')[0] # => "ee"
'seed'.match(/(.)\1/)[0] # => "ee"
'seed'.match('ll') # => nil
'seed'.match('ll') {|md| md[0].upcase } # => nil
'seed'.match('xx') # => nil

str.next → stringnext

Synonym for String#succ.

str.next! → strnext!

Synonym for String#succ!.

str.oct → intoct

Treats leading characters of str as a string of octal digits (with an optional sign) and returns
the corresponding number. Returns 0 if the conversion fails.

"123".oct # => 83
"-377".oct # => -255
"bad".oct # => 0
"0377bad".oct # => 255

str.ord → intord

Returns the integer code point of the first character of str.

encoding: utf-8
"d".ord # => 100
"dog".ord # => 100
"∂".ord # => 8706

str.partition(pattern) → [before, match, after]partition

Searches str for pattern (which may be a string or a regular expression). Returns a three-ele-
ment array containing the part of the string before the pattern, the part that matched the
pattern, and the part after the match. If the pattern does not match, the entire string will be
returned as the first element of the array, and the other two entries will be empty strings.

"THX1138".partition("11") # => ["THX", "11", "38"]
"THX1138".partition(/\d\d/) # => ["THX", "11", "38"]
"THX1138".partition("99") # => ["THX1138", "", ""]

report erratum • discuss

String • 681

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

str.prepend(other) → strprepend

Inserts other at the beginning of str.

str = "1138"
str.prepend("THX") # => "THX1138"
str # => "THX1138"

str.replace(string) → strreplace

Replaces the contents, encoding, and taintedness of str with the corresponding values in
string.

s = "hello" # => "hello"
s.replace "world" # => "world"

str.reverse → stringreverse

Returns a new string with the characters from str in reverse order.

Every problem contains its own solution...
"stressed".reverse # => "desserts"

str.reverse! → strreverse!

Reverses str in place.

str.rindex(string ‹ , int›) → int or nil
str.rindex(regexp ‹ , int›) → int or nil

rindex

Returns the index of the last occurrence of the given substring, character, or pattern in str.
Returns nil if not found. If the second parameter is present, it specifies the position in the
string to end the search—characters beyond this point will not be considered.

"hello".rindex('e') # => 1
"hello".rindex('l') # => 3
"hello".rindex('a') # => nil
"hello".rindex(/[aeiou]/, -2) # => 1

str.rjust(width, padding=" ") → stringrjust

If width is greater than the length of str, returns a new String of length width with str right
justified and padded with copies of padding; otherwise, returns a copy of str.

"hello".rjust(4) # => "hello"
"hello".rjust(20) # => "␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣h

.. ello"
"hello".rjust(20, "-") # => "---------------hello"
"hello".rjust(20, "padding") # => "paddingpaddingphello"

Chapter 27. Built-in Classes and Modules • 682

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

str.rpartition(pattern) → [before, match, after]rpartition

Searches str for pattern (which may be a string or a regular expression), starting at the end
of the string. Returns a three-element array containing the part of the string before the pattern,
the part that matched the pattern, and the part after the match. If the pattern does not match,
the entire string will be returned as the last element of the array, and the other two entries
will be empty strings.

"THX1138".rpartition("1") # => ["THX1", "1", "38"]
"THX1138".rpartition(/1\d/) # => ["THX1", "13", "8"]
"THX1138".rpartition("99") # => ["", "", "THX1138"]

str.rstrip → stringrstrip

Returns a copy of str, stripping first trailing null characters and then stripping trailing
whitespace characters. See also String#lstrip and String#strip.

" hello ".rstrip # => "␣␣hello"
" hello \000 ".rstrip # => "␣␣hello"
" hello \000".rstrip # => "␣␣hello"
"hello".rstrip # => "hello"

str.rstrip! → str or nilrstrip!

Removes trailing null characters and then removes trailing whitespace characters from str.
Returns nil if no change was made. See also String#lstrip! and #strip!.

" hello ".rstrip! # => "␣␣hello"
"hello".rstrip! # => nil

str.scan(pattern) → array
str.scan(pattern) {|match, ...| … } → str}

scan

Both forms iterate through str, matching the pattern (which may be a Regexp or a String). For
each match, a result is generated and either added to the result array or passed to the block.
If the pattern contains no groups, each individual result consists of the matched string, $&.
If the pattern contains groups, each individual result is itself an array containing one entry
per group. If the pattern is a String, it is interpreted literally (in other words, it is not taken
to be a regular expression pattern).

a = "cruel world"
a.scan(/\w+/) # => ["cruel", "world"]
a.scan(/.../) # => ["cru", "el ", "wor"]
a.scan(/(...)/) # => [["cru"], ["el "], ["wor"]]
a.scan(/(..)(..)/) # => [["cr", "ue"], ["l ", "wo"]]

And the block form:

a.scan(/\w+/) {|w| print "<<#{w}>> " }
puts
a.scan(/(.)(.)/) {|a,b| print b, a }
puts

report erratum • discuss

String • 683

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

produces:

<<cruel>> <<world>>
rceu lowlr

str.setbyte(offset, byte) → bytesetbyte

Sets the byte at offset (starting from the end of the string if the offset is negative) to byte.
Cannot be used to change the length of the string. Does not change the encoding of the string.

str = "defog"
a utf-8 delta character
str.setbyte(0, 226) # => 226
str.setbyte(1, 136) # => 136
str.setbyte(2, 130) # => 130
str # => "∂og"
str.length # => 3
str.force_encoding("utf-8")
str.length # => 3
str # => "∂og"

str.size → intsize

Synonym for String#length.

str.slice(int) → string or nil
str.slice(int, int) → string or nil
str.slice(range) → string or nil
str.slice(regexp) → string or nil

str.slice(match_string) → string or nil

slice

Synonym for String#[].

a = "hello there"
a.slice(1) # => "e"
a.slice(1,3) # => "ell"
a.slice(1..3) # => "ell"
a.slice(-3,2) # => "er"
a.slice(-4..-2) # => "her"
a.slice(-2..-4) # => ""
a.slice(/th[aeiou]/) # => "the"
a.slice("lo") # => "lo"
a.slice("bye") # => nil

str.slice!(int) → string or nil
str.slice!(int, int) → string or nil
str.slice!(range) → string or nil
str.slice!(regexp) → string or nil

str.slice!(match_string) → string or nil

slice!

Deletes the specified portion from str and returns the portion deleted. The forms that take
a Fixnum will raise an IndexError if the value is out of range; the Range form will raise a
RangeError, and the Regexp and String forms will silently not change the string.

Chapter 27. Built-in Classes and Modules • 684

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

string = "this is a string"
string.slice!(2) # => "i"
string.slice!(3..6) # => " is "
string.slice!(/s.*t/) # => "sa st"
string.slice!("r") # => "r"
string # => "thing"

str.split(pattern=$;, ‹ limit›) → arraysplit

Divides str into substrings based on a delimiter, returning an array of these substrings.

If pattern is a String, then its contents are used as the delimiter when splitting str. If pattern is
a single space, str is split on whitespace, with leading whitespace and runs of contiguous
whitespace characters ignored.

If pattern is a Regexp, str is divided where the pattern matches. Whenever the pattern
matches a zero-length string, str is split into individual characters. If pattern includes groups,
these groups will be included in the returned values.

If pattern is omitted, the value of $; is used. If $; is nil (which is the default), str is split on
whitespace as if “␣” were specified.

If the limit parameter is omitted, trailing empty fields are suppressed. If limit is a positive
number, at most that number of fields will be returned (if limit is 1, the entire string is returned
as the only entry in an array). If negative, there is no limit to the number of fields returned,
and trailing null fields are not suppressed.

" now's the time".split # => ["now's", "the", "time"]
" now's the time".split(' ') # => ["now's", "the", "time"]
" now's the time".split(/ /) # => ["", "now's", "", "", "the", "time"]
"a@1bb@2ccc".split(/@\d/) # => ["a", "bb", "ccc"]
"a@1bb@2ccc".split(/@(\d)/) # => ["a", "1", "bb", "2", "ccc"]
"1, 2.34,56, 7".split(/,\s*/) # => ["1", "2.34", "56", "7"]
"hello".split(//) # => ["h", "e", "l", "l", "o"]
"hello".split(//, 3) # => ["h", "e", "llo"]
"hi mom".split(/\s*/) # => ["h", "i", "m", "o", "m"]
"".split # => []
"mellow yellow".split("ello") # => ["m", "w y", "w"]
"1,2,,3,4,,".split(',') # => ["1", "2", "", "3", "4"]
"1,2,,3,4,,".split(',', 4) # => ["1", "2", "", "3,4,,"]
"1,2,,3,4,,".split(',', -4) # => ["1", "2", "", "3", "4", "", ""]

str.squeeze(‹string›*) → squeezed_stringsqueeze

The parameter(s) specify a set of characters using the procedure described for String#count
on page 673. Returns a new string where runs of the same character that occur in this set are
replaced by a single character. If no arguments are given, all runs of identical characters are
replaced by a single character.

"yellow moon".squeeze # => "yelow mon"
" now is the".squeeze(" ") # => " now is the"
"putters putt balls".squeeze("m-z") # => "puters put balls"

report erratum • discuss

String • 685

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

str.squeeze!(‹string›*) → str or nilsqueeze!

Squeezes str in place, returning str. Returns nil if no changes were made.

str.start_with?(‹prefix›+) → true or falsestart_with?

Returns true if str starts with any of the given prefixes.

"Apache".start_with?("Apa") # => true
"ruby code".start_with?("python", "perl", "ruby") # => true

str.strip → stringstrip

Returns a new string, stripping leading whitespace and trailing null and whitespace characters
from str.

" hello ".strip # => "hello"
"\tgoodbye\r\n".strip # => "goodbye"
"goodbye \000".strip # => "goodbye"
"goodbye \000 ".strip # => "goodbye"

str.strip! → str or nilstrip!

Removes leading whitespace and trailing null and whitespace characters from str. Returns
nil if str was not altered.

str.sub(pattern, replacement) → string
str.sub(pattern) {|match| … } → string

sub

Returns a copy of str with the first occurrence of pattern replaced with either replacement or
the value of the block. See the description of String#gsub on page 677 for a description of the
parameters.

"hello".sub(/[aeiou]/, '*') # => "h*llo"
"hello".sub(/([aeiou])/, '<\1>') # => "h<e>llo"
"hello".sub(/./) {|s| s[0].to_s + ' '} # => "h ello"
"hello".sub(/(?<double>l)/, '-\k<double>-') # => "he-l-lo"

str.sub!(pattern, replacement) → str or nil
str.sub!(pattern) {|match| … } → str or nil

sub!

Performs the substitutions of String#sub in place, returning str. Returns nil if no substitutions
were performed.

str.succ → stringsucc

Returns the successor to str. The successor is calculated by incrementing characters starting
from the rightmost alphanumeric (or the rightmost character if there are no alphanumerics)
in the string. Incrementing a digit always results in another digit, and incrementing a letter
results in another letter of the same case. Incrementing nonalphanumerics uses the underlying
character set’s collating sequence.

Chapter 27. Built-in Classes and Modules • 686

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

If the increment generates a “carry,” the character to the left of it is incremented. This process
repeats until there is no carry, adding a character if necessary. An exception is when the
carry is generated by a sequence of digits in a string containing digits, nonalpha characters,
and more digits, in which case the carry applies to the digits. This allows for incrementing
(for example) numbers with decimal places.

"abcd".succ # => "abce"
"THX1138".succ # => "THX1139"
"<<koala>>".succ # => "<<koalb>>"
"1999zzz".succ # => "2000aaa"
"ZZZ9999".succ # => "AAAA0000"
"***".succ # => "**+"
"1.9".succ # => "2.0"
"1//9".succ # => "2//0"
"1/9/9/9".succ # => "2/0/0/0"
"1x9".succ # => "1y0"

str.succ! → strsucc!

Equivalent to String#succ but modifies the receiver in place.

str.sum(n=16) → intsum

Returns a basic n-bit checksum of the characters in str, where n is the optional parameter,
defaulting to 16. The result is simply the sum of the binary value of each character in str
modulo 2n-1. This is not a particularly good checksum—see the digest libraries on page 747
for better alternatives.

"now is the time".sum # => 1408
"now is the time".sum(8) # => 128

str.swapcase → stringswapcase

Returns a copy of str with uppercase alphabetic characters converted to lowercase and
lowercase characters converted to uppercase. The mapping depends on the string encoding,
but not all encodings produce expected results.

encoding: utf-8
"Hello".swapcase # => "hELLO"
"cYbEr_PuNk11".swapcase # => "CyBeR_pUnK11"
"∂Og".swapcase # => "∂oG"

str.swapcase! → str or nilswapcase!

Equivalent to String#swapcase but modifies str in place, returning str. Returns nil if no changes
were made.

report erratum • discuss

String • 687

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

str.to_c → complexto_c

Returns the result of interpreting leading characters in str as a complex number. Extraneous
characters past the end of a valid number are ignored. If there is not a valid number at the
start of str, Complex(0,0) is returned. The method never raises an exception.

"123".to_c # => 123+0i
"4+5/6i".to_c # => 4+5/6i
"thx1138".to_c # => 0+0i

str.to_f → floatto_f

Returns the result of interpreting leading characters in str as a floating-point number.
Extraneous characters past the end of a valid number are ignored. If there is not a valid
number at the start of str, 0.0 is returned. The method never raises an exception (use
Object#Float to validate numbers).

"123.45e1".to_f # => 1234.5
"45.67 degrees".to_f # => 45.67
"thx1138".to_f # => 0.0

str.to_i(base=10) → intto_i

Returns the result of interpreting leading characters in str as an integer base base (2 to 36).
Given a base of zero, to_i looks for leading 0, 0b, 0o, 0d, or 0x and sets the base accordingly.
Leading spaces are ignored, and leading plus or minus signs are honored. Extraneous char-
acters past the end of a valid number are ignored. If there is not a valid number at the start
of str, 0 is returned. The method never raises an exception.

"12345".to_i # => 12345
"99 red balloons".to_i # => 99
"0a".to_i # => 0
"0a".to_i(16) # => 10
"0x10".to_i # => 0
"0x10".to_i(0) # => 16
"-0x10".to_i(0) # => -16
"hello".to_i(30) # => 14167554
"1100101".to_i(2) # => 101
"1100101".to_i(8) # => 294977
"1100101".to_i(10) # => 1100101
"1100101".to_i(16) # => 17826049

str.to_r → rationalto_r

Returns the result of interpreting leading characters in str as a rational number. Extraneous
characters past the end of a valid number are ignored. If there is not a valid number at the
start of str, Rational(0,1) is returned. The method never raises an exception.

"123".to_r # => 123/1
"5/6".to_r # => 5/6
"5/six".to_r # => 5/1
"thx1138".to_r # => (0/1)

Chapter 27. Built-in Classes and Modules • 688

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

str.to_s → strto_s

Returns the receiver.

str.to_str → strto_str

Synonym for String#to_s. to_str is used by methods such as String#concat to convert their
arguments to a string. Unlike to_s, which is supported by almost all classes, to_str is normally
implemented only by those classes that act like strings. Of the built-in classes, only Exception
and String implement to_str.

str.to_s → symbolto_sym

Returns the symbol for str. This can create symbols that cannot be represented using the :xxx
notation. A synonym for String#intern.

s = 'cat'.to_sym # => :cat
s == :cat # => true
'cat and dog'.to_sym # => :"cat and dog"
s == :'cat and dog' # => false

str.tr(from_string, to_string) → stringtr

Returns a copy of str with the characters in from_string replaced by the corresponding char-
acters in to_string. If to_string is shorter than from_string, it is padded with its last character.
Both strings may use the c1–c2 notation to denote ranges of characters, and from_string may
start with a ^, which denotes all characters except those listed.

"hello".tr('aeiou', '*') # => "h*ll*"
"hello".tr('^aeiou', '*') # => "*e**o"
"hello".tr('el', 'ip') # => "hippo"
"hello".tr('a-y', 'b-z') # => "ifmmp"

str.tr!(from_string, to_string) → str or niltr!

Translates str in place, using the same rules as String#tr. Returns str or returns nil if no changes
were made.

str.tr_s(from_string, to_string) → stringtr_s

Processes a copy of str as described under String#tr and then removes duplicate characters
in regions that were affected by the translation.

"hello".tr_s('l', 'r') # => "hero"
"hello".tr_s('el', '*') # => "h*o"
"hello".tr_s('el', 'hx') # => "hhxo"

report erratum • discuss

String • 689

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

str.tr_s!(from_string, to_string) → str or niltr_s!

Performs String#tr_s processing on str in place, returning str. Returns nil if no changes were
made.

str.unpack(format) → arrayunpack

Decodes str (which may contain binary data) according to the format string, returning an
array of the extracted values. The format string consists of a sequence of single-character
directives, summarized in Table 24,Directives for unpack, on page 692. Each directive may be
followed by a number, indicating the number of times to repeat this directive. An asterisk
(*) will use up all remaining elements. The directives sSiIlL may each be followed by an
underscore (_) or bang (!} to use the underlying platform’s native size for the specified type;
otherwise, it uses a platform-independent consistent size. The directives s S i I l L q Q may be
followed by a less than sign to signify little endian or greater than sign for big endian. Spaces
are ignored in the format string. Comments starting with # to the next newline or end of
string are also ignored. The encoding of the string is ignored; unpack treats the string as a
sequence of bytes. See also Array#pack on page 432.

"abc \0\0abc \0\0".unpack('A6Z6') # => ["abc", "abc "]
"abc \0\0".unpack('a3a3') # => ["abc", " \0\0"]
"aa".unpack('b8B8') # => ["10000110", "01100001"]
"aaa".unpack('h2H2c') # => ["16", "61", 97]
"\xfe\xff\xfe\xff".unpack('sS') # => [-2, 65534]
"now=20is".unpack('M*') # => ["now is"]
"whole".unpack('xax2aX2aX1aX2a') # => ["h", "e", "l", "l", "o"]

str.upcase → stringupcase

Returns a copy of str with all lowercase letters replaced with their uppercase counterparts.
The mapping depends on the string encoding, but not all encodings produce expected results.

encoding: utf-8
"hEllO".upcase # => "HELLO"
"∂og".upcase # => "∂OG"

str.upcase! → str or nilupcase!

Upcases the contents of str, returning nil if no changes were made.

str.upto(string, exclude_end=false) {|s| … } → str or enumeratorupto

Iterates through successive values, starting at str and ending at string inclusive (or omitting
string if the second parameter is true). Passes each value in turn to the block. The String#succ
method is used to generate each value. Returns an Enumerator object if no block is given.

"a8".upto("b6") {|s| print s, ' ' }
puts
for s in "a8".."b6"
print s, ' '

end

Chapter 27. Built-in Classes and Modules • 690

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

produces:

a8 a9 b0 b1 b2 b3 b4 b5 b6
a8 a9 b0 b1 b2 b3 b4 b5 b6

"a8".upto("b6", true).to_a # => ["a8", "a9", "b0", "b1", "b2", "b3", "b4", "b5"]

If the two strings contain just the digits 0 to 9, then successive numeric values (as strings)
are generated. Leading zeros are handled appropriately.

"99".upto("103").to_a # => ["99", "100", "101", "102", "103"]
"00008".upto("00012").to_a # => ["00008", "00009", "00010", "00011", "00012"]

str.valid_encoding? → true or falsevalid_encoding?

Returns true if str contains a valid byte sequence in its current encoding.

encoding: binary
str = "\xE2"
str.force_encoding("utf-8")
str.valid_encoding? # => false
str = "\xE2\x88\x82"
str.force_encoding("utf-8")
str.valid_encoding? # => true

report erratum • discuss

String • 691

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

ReturnsFunctionFormat

StringSequence of bytes with trailing nulls and ASCII spaces removed.A
StringSequence of bytes.a
StringExtracts bits from each byte (MSB first).B
StringExtracts bits from each byte (LSB first).b
FixnumExtracts a byte as an unsigned integer.C
FixnumExtracts a byte as an integer.c
FloatTreat sizeof(double) bytes as a native double.d,D
FloatTreats sizeof(double) bytes as a double in little-endian byte order.E
FloatTreats sizeof(float) bytes as a float in little-endian byte order.e
FloatTreats sizeof(float) bytes as a native float.f,F
FloatTreats sizeof(double) bytes as a double in network byte order.G
FloatTreats sizeof(float) bytes as a float in network byte order.g
StringExtracts hex nibbles from each byte (most significant first).H
StringExtracts hex nibbles from each byte (least significant first).h
IntegerTreats sizeof(int)° successive bytes as an unsigned native integer.I
IntegerTreats sizeof(int)° successive bytes as a signed native integer.i
IntegerTreats four° successive bytes as an unsigned native long integer.L
IntegerTreats four° successive characters as a signed native long integer.l
StringExtracts a quoted-printable string.M
StringExtracts a Base64-encoded string. By default, accepts \n and \r. "m0" rejects these.m
FixnumTreats four bytes as an unsigned long in network byte order.N
FixnumTreats two bytes as an unsigned short in network byte order.n
StringTreats sizeof(char *) bytes as a pointer and returns len bytes from the referenced location.P
StringTreats sizeof(char *) bytes as a pointer to a null-terminated string.p
IntegerTreats eight bytes as an unsigned quad word (64 bits).Q
IntegerTreats eight bytes as a signed quad word (64 bits).q
FixnumTreats two° bytes characters as an unsigned short in native byte order.S
FixnumTreats two° successive bytes as a signed short in native byte order.s
IntegerExtracts UTF-8 characters as unsigned integers.U
StringExtracts a UU-encoded string.u
FixnumTreats four bytes as an unsigned long in little-endian byte order.V
FixnumTreats two bytes as an unsigned short in little-endian byte order.v
IntegerBER-compressed integer (see Array#pack for more information).w
—Skips backward one byte.X
—Skips forward one byte.x
StringString with trailing nulls removed.Z
—Skips to the byte offset given by the length argument.@

° May be modified by appending _ or ! to the directive.

Table 24—Directives for String#unpack

Chapter 27. Built-in Classes and Modules • 692

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

StructClass

Subclasses: Struct::Tms

A Struct is a convenient way to bundle a number of attributes together, using accessor
methods, without having to write an explicit class.

The Struct class is a generator of specific classes, each one of which is defined to hold a set
of variables and their accessors. In these examples, we’ll call the generated class Customer,
and we’ll show an example instance of that class as joe.

Also see OpenStruct on page 786.

In the descriptions that follow, the parameter symbol refers to a name, which is either a
quoted string or a Symbol (such as :name).

Mixes In

Enumerable: all?, any?, chunk, collect, collect_concat, count, cycle, detect, drop, drop_while, each_
cons, each_entry, each_slice, each_with_index, each_with_object, entries, find, find_all, find_index,
first, flat_map, grep, group_by, include?, inject, lazy, map, max, max_by, member?, min, min_by,
minmax, minmax_by, none?, one?, partition, reduce, reject, reverse_each, select, slice_before, sort, sort
_by, take, take_while, to_a, zip

Class Methods

Struct.new(‹string› ‹ , symbol›+) → Customer
Struct.new(‹string› ‹ , symbol›+) { … } → Customer

new

Creates a new class, named by string, containing accessor methods for the given symbols. If
the name string is omitted, an anonymous structure class will be created. Otherwise, the
name of this struct will appear as a constant in class Struct, so it must be unique for all Structs
in the system and should start with a capital letter. Assigning a structure class to a constant
effectively gives the class the name of the constant.

Struct.new returns a new Class object, which can then be used to create specific instances of
the new structure. The remaining methods listed next (class and instance) are defined for
this generated class. See the description that follows for an example.

Create a structure with a name in Struct
Struct.new("Customer", :name, :address) # => Struct::Customer
Struct::Customer.new("Dave", "123 Main") # => #<struct Struct::Customer

.. name="Dave", address="123 Main">

Create a structure named by its constant
Customer = Struct.new(:name, :address) # => Customer
Customer.new("Dave", "123 Main") # => #<struct Customer name="Dave",

.. address="123 Main">

A block passed to the constructor is evaluated in the context of the new struct’s class and
hence allows you conveniently to add instance methods to the new struct.

report erratum • discuss

Struct • 693

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Customer = Struct.new(:name, :address) do
def to_s
"#{self.name} lives at #{self.address}"

end
end
Customer.new("Dave", "123 Main").to_s # => "Dave lives at 123 Main"

Customer.new(‹obj›+) → joenew

Creates a new instance of a structure (the class created by Struct.new). The number of actual
parameters must be less than or equal to the number of attributes defined for this class; unset
parameters default to nil. Passing too many parameters will raise an ArgumentError.

Customer = Struct.new(:name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)
joe.name # => "Joe Smith"
joe.zip # => 12345

Customer[‹obj›+] → joe[]

Synonym for new (for the generated structure).

Customer = Struct.new(:name, :address, :zip)

joe = Customer["Joe Smith", "123 Maple, Anytown NC", 12345]
joe.name # => "Joe Smith"
joe.zip # => 12345

Customer.members → arraymembers

Returns an array of symbols representing the names of the instance variables.

Customer = Struct.new("Customer", :name, :address, :zip)
Customer.members # => [:name, :address, :zip]

Instance Methods

joe == other_struct→ true or false==

Equality—Returns true if other_struct is equal to this one: they must be of the same class as
generated by Struct.new, and the values of all instance variables must be equal (according to
Object#==).

Customer = Struct.new(:name, :address, :zip)

joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)
joejr = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)
jane = Customer.new("Jane Doe", "456 Elm, Anytown NC", 12345)

joe == joejr # => true
joe == jane # => false

Chapter 27. Built-in Classes and Modules • 694

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

joe[symbol] → obj
joe[integer] → obj

[]

Attribute Reference—Returns the value of the instance variable named by symbol or indexed
(0..length-1) by int. Raises NameError if the named variable does not exist or raises IndexError
if the index is out of range.

Customer = Struct.new(:name, :address, :zip)
joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)
joe["name"] # => "Joe Smith"
joe[:name] # => "Joe Smith"
joe[0] # => "Joe Smith"

joe[symbol] = obj→ obj
joe[int] = obj→ obj

[]=

Attribute Assignment—Assigns to the instance variable named by symbol or int the value
obj and returns it. Raises a NameError if the named variable does not exist or raises an IndexError
if the index is out of range.

Customer = Struct.new(:name, :address, :zip)
joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)
joe["name"] = "Luke"
joe[:zip] = "90210"
joe.name # => "Luke"
joe.zip # => "90210"

joe.each {|obj| … } → joeeach

Calls block once for each instance variable, passing the value as a parameter.

Customer = Struct.new(:name, :address, :zip)
joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)
joe.each {|x| puts(x) }

produces:

Joe Smith
123 Maple, Anytown NC
12345

joe.each_pair {|symbol, obj| … } → joeeach_pair

Calls block once for each instance variable, passing the name (as a symbol) and the value as
parameters.

Customer = Struct.new(:name, :address, :zip)
joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)
joe.each_pair {|name, value| puts("#{name} => #{value}") }

produces:

name => Joe Smith
address => 123 Maple, Anytown NC
zip => 12345

report erratum • discuss

Struct • 695

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

joe.length → intlength

Returns the number of attributes.

Customer = Struct.new(:name, :address, :zip)
joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)
joe.length # => 3

joe.members → arraymembers

Returns the names of the instance variables as an array of symbols.

Customer = Struct.new(:name, :address, :zip)
joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)
joe.members # => [:name, :address, :zip]

joe.size → intsize

Synonym for Struct#length.

joe.to_a → arrayto_a

Returns the values for this instance as an array.

Customer = Struct.new(:name, :address, :zip)
joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)
joe.to_a[1] # => "123 Maple, Anytown NC"

joe.to_h → hashto_h

Returns a hash of key/values pairs in this struct.

Customer = Struct.new(:name, :address, :zip)
joe = Customer.new("Joe Smith", "123 Maple, Anytown NC", 12345)
joe.to_h # => {:name=>"Joe Smith", :address=>"123 Maple, Anytown NC",

.. :zip=>12345}

joe.values → arrayvalues

Synonym for to_a.

joe.values_at(‹selector›*) → arrayvalues_at

Returns an array containing the elements in joe corresponding to the given indices. The
selectors may be integer indices or ranges.

Lots = Struct.new(:a, :b, :c, :d, :e, :f)
l = Lots.new(11, 22, 33, 44, 55, 66)
l.values_at(1, 3, 5) # => [22, 44, 66]
l.values_at(0, 2, 4) # => [11, 33, 55]
l.values_at(-1, -3, -5) # => [66, 44, 22]

Chapter 27. Built-in Classes and Modules • 696

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Struct::Tms < StructClass

Windows)

This structure is returned by Process.times. It holds information on process times on those
platforms that support it. Not all values are valid on all platforms. This structure contains
the following instance variables and the corresponding accessors:

Amount of user CPU time, in secondsutime
Amount of system CPU time, in secondsstime
Total of completed child processes’ user CPU time, in seconds (always 0 on Windows)cutime
Total of completed child processes’ system CPU time, in seconds (always 0 oncstime

See also Struct on page 693 and Process.times on page 642.

def eat_cpu
10_000.times { File.open("/etc/passwd").close }

end
3.times { fork { eat_cpu } }
eat_cpu
Process.waitall
t = Process::times
[t.utime, t.stime] # => [0.13, 0.24]
[t.cutime, t.cstime] # => [0.27, 0.68]

report erratum • discuss

Struct::Tms • 697

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

SymbolClass

Symbol objects represent names inside the Ruby interpreter. They are generated using the
:name or :"arbitrary text" literal syntax and by using the various to_sym methods. The same
Symbol object will be created for a given name string for the duration of a program’s execution,
regardless of the context or meaning of that name. Symbols can be arbitrary sequences of
characters. Like strings, a symbol literal containing any characters with the top bit set will
have an encoding determined by the encoding of the source file containing the definition.

Ruby 1.9 added string-like functionality to symbols.

Mixes In

Comparable: <, <=, ==, >, >=, between?

Class Methods

Symbol.all_symbols → arrayall_symbols

Returns an array of all the symbols currently in Ruby’s symbol table.

list = Symbol.all_symbols
list.size # => 2240
list.grep(/attr_/) # => [:attr_reader, :attr_writer, :attr_accessor, :attr_name]

Instance Methods

sym <=> other_sym→ -1, 0, +1, or nil<=>

Compares sym to other_sym after converting each to strings. <=> is the basis for the methods
<, <=, >, >=, and between?, included from module Comparable. The method Symbol#== does
not use Comparable#==.

:abcdef <=> :abcde # => 1
:abcdef <=> :abcdef # => 0
:abcdef <=> :abcdefg # => -1
:abcdef <=> :ABCDEF # => 1

sym == obj→ true or false==

Returns true only if sym and obj are symbols with the same object_id.

:abcdef == :abcde # => false
:abcdef == :abcdef # => true

sym =~ obj→ int or nil=~

Converts sym to a string and matches it against obj.

:abcdef =~ /.[aeiou]/ # => 3
:abcdef =~ /xx/ # => nil

Chapter 27. Built-in Classes and Modules • 698

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

sym[int] → string or nil
sym[int, int] → string or nil
sym[range] → string or nil
sym[regexp] → string or nil

sym[regexp, int] → string or nil
sym[string] → string or nil

[]

Converts sym to a string and then indexes it using the same parameters as String#[].

:"hello there"[1] # => "e"
:"hello there"[1,3] # => "ell"
:"hello there"[1..3] # => "ell"
:"hello there"[-3,2] # => "er"
:"hello there"[-4..-2] # => "her"
:"hello there"[-2..-4] # => ""
:"hello there"[/[aeiou](.)\1/] # => "ell"
:"hello there"[/[aeiou](.)\1/, 1] # => "l"

sym.capitalize → symbolcapitalize

Returns a symbol with the first character of sym converted to uppercase and the remainder
to lowercase.

:hello.capitalize # => :Hello
:"HELLO WORLD".capitalize # => :"Hello world"
:"123ABC".capitalize # => :"123abc"

sym.casecmp(other) → -1, 0, +1, or nilcasecmp

Case-insensitive version of Symbol#<=>. Returns nil if other is not a symbol.

:abcdef.casecmp(:abcde) # => 1
:abcdef.casecmp(:abcdef) # => 0
:abcdef.casecmp(:ABCDEF) # => 0
:aBcDeF.casecmp(:abcdef) # => 0
:abcdef.casecmp(:abcdefg) # => -1
:abcdef.casecmp("abcdef") # => nil

sym.downcase → symboldowncase

Returns a symbol with all the characters of sym converted to lowercase.

:Hello.downcase # => :hello
:"HELLO WORLD".downcase # => :"hello world"
:"123ABC".downcase # => :"123abc"

sym.empty → true or falseempty?

Returns true if the string representation of sym is empty.

:hello.empty? # => false
:"".empty? # => true

report erratum • discuss

Symbol • 699

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

sym.encoding → encencoding

Returns the encoding of sym.

encoding: utf-8
:hello.encoding # => #<Encoding:US-ASCII>
:"∂og".encoding # => #<Encoding:UTF-8>

sym.id2name → stringid2name

Returns the string representation of sym.

:fred.id2name # => "fred"
:"99 red balloons!".id2name # => "99 red balloons!"

sym.inspect → stringinspect

Returns the representation of sym as a symbol literal.

:fred.inspect # => :fred
:"99 red balloons!".inspect # => :"99 red balloons!"

sym.intern → symintern

Synonym for Symbol#to_sym.

sym.length → intlength

Returns the number of characters in the string representation sym.

encoding: utf-8
:dog.length # => 3
:∂og.length # => 3

sym.match(regexp) → int or nilmatch

Converts self to a string and then matches it against regexp. Unlike String#match, does not
support blocks or non-regexp parameters.

:hello.match(/(.)\1/) # => 2
:hello.match(/ll/) # => 2

sym.next → symbolnext

Synonym for Symbol#succ.

sym.size → intsize

Synonym for Symbol#length.

Chapter 27. Built-in Classes and Modules • 700

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

sym.slice(int) → string or nil
sym.slice(int, int) → string or nil
sym.slice(range) → string or nil
sym.slice(regexp) → string or nil

sym.slice(match_string) → string or nil

slice

Synonym for Symbol#[].

sym.succ → symbolsucc

Returns the successor to sym using the same rules as String#succ.

:abcd.succ # => :abce
:THX1138.succ # => :THX1139
:"1999zzz".succ # => :"2000aaa"

sym.swapcase → symbolswapcase

Returns a symbol with the case of all the characters of sym swapped.

:Hello.swapcase # => :hELLO
:"123ABC".swapcase # => :"123abc"

sym.to_proc → procto_proc

Allows a symbol to be used when a block is expected. The symbol acts as a method invoked
on each parameter to the block. SeeThe Symbol.to_proc Trick, on page 352 for more information.

%w{ant bee cat}.map(&:reverse) # => ["tna", "eeb", "tac"]

sym.to_s → stringto_s

Synonym for Symbol#id2name.

sym.to_sym → symto_sym

Symbols are symbol-like!

sym.upcase → symbolupcase

Returns a symbol with all the characters of sym in uppercase.

:Hello.upcase # => :HELLO
:"123Abc".upcase # => :"123ABC"

report erratum • discuss

Symbol • 701

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

ThreadClass

Thread encapsulates the behavior of a thread of execution, including the main thread of the
Ruby script. See the tutorial beginning Chapter 12, Fibers, Threads, and Processes, on page 161.

In the descriptions that follow, the parameter symbol refers to a name that is either a quoted
string or a symbol (such as :name).

Class Methods

Thread.abort_on_exception → true or falseabort_on_exception

Returns the status of the global abort on exception condition. The default is false. When set to
true or if the global $DEBUG flag is true (perhaps because the command-line option -d was
specified), all threads will abort (the process will exit(0)) if an exception is raised in any thread.
See also Thread.abort_on_exception=.

Thread.abort_on_exception= true or false→ true or falseabort_on_exception=

When set to true, all threads will abort if an exception is raised. Returns the new state.

Thread.abort_on_exception = true
t1 = Thread.new do
puts "In new thread"
raise "Exception from thread"

end
sleep(0.1)
puts "not reached"

produces:

In new thread
prog.rb:4:in `block in <main>': Exception from thread (RuntimeError)

Thread.current → threadcurrent

Returns the currently executing thread.

Thread.current # => #<Thread:0x007fb2340c0ce0 run>

Thread.exclusive { … } → objexclusive

Executes the block and returns whatever the block returns. Internally uses a Mutex so that
only one thread can be executing code under the control of Thread.exclusive at a time.

Thread.exitexit

Terminates the currently running thread and schedules another thread to be run. If this
thread is already marked to be killed, exit returns the Thread. If this is the main thread, or the
last thread, exits the process.

Chapter 27. Built-in Classes and Modules • 702

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Thread.fork { … } → threadfork

Synonym for Thread.start.

Thread.kill(thread)kill

Causes the given thread to exit (see Thread.exit).

count = 0
a = Thread.new { loop { count += 1 } }
sleep(0.1) # => 0
Thread.kill(a) # => #<Thread:0x007fefc210f400 run>
count # => 910465
give it time to die...
sleep 0.01
a.alive? # => false

Thread.list → arraylist

Returns an array of Thread objects for all threads that are either runnable or stopped.

Thread.new { sleep(200) }
Thread.new { 1000000.times {|i| i*i } }
Thread.new { Thread.stop }
Thread.list.each {|thr| p thr }

produces:

#<Thread:0x007fa3b90c0cd8 run>
#<Thread:0x007fa3b910f810 sleep>
#<Thread:0x007fa3b910f630 run>
#<Thread:0x007fa3b902b728 sleep>

Thread.main → threadmain

Returns the main thread for the process.

Thread.main # => #<Thread:0x007ffc9b8c0ce0 run>

Thread.new(‹arg›*) {|args| … } → threadnew

Creates and runs a new thread to execute the instructions given in block. Any arguments
passed to Thread.new are passed into the block.

x = Thread.new { sleep 0.1; print "x"; print "y"; print "z" }
a = Thread.new { print "a"; print "b"; sleep 0.2; print "c" }
x.join; a.join # wait for threads to finish

produces:

abxyzc

Thread.passpass

Invokes the thread scheduler to pass execution to another thread.

report erratum • discuss

Thread • 703

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

a = Thread.new { print "a"; Thread.pass; print "b" }
b = Thread.new { print "x"; Thread.pass; print "y" }
a.join; b.join

produces:

axby

Thread.start(‹args›*) {|args| … } → threadstart

Basically the same as Thread.new. However, if class Thread is subclassed, then calling start in
that subclass will not invoke the subclass’s initialize method.

Thread.stopstop

Stops execution of the current thread, putting it into a sleep state, and schedules execution
of another thread. Resets the critical condition to false.

a = Thread.new { print "a"; Thread.stop; print "c" }
sleep 0.01
print "b"
a.wakeup
a.join

produces:

abc

Instance Methods

thr[symbol] → obj or nil[]

⇡New in 2.0⇣
Attribute Reference—Returns the value of a fiber-local variable, using either a symbol or a
string name. If the specified variable does not exist, returns nil. Every thread has an implicit
root fiber, so this method is always available. See also Thread#thread_variable_get.

a = Thread.new { Thread.current["name"] = "A"; Thread.stop }
b = Thread.new { Thread.current[:name] = "B"; Thread.stop }
c = Thread.new { Thread.current["name"] = "C"; Thread.stop }
sleep 0.01 # let them all run
Thread.list.each {|x| puts "#{x.inspect}: #{x[:name]}" }

produces:

#<Thread:0x007fd5fc0c0ce0 run>:
#<Thread:0x007fd5fc10eda0 sleep>: A
#<Thread:0x007fd5fc10ebc0 sleep>: B
#<Thread:0x007fd5fc02b898 sleep>: C

thr[symbol] = obj→ obj[]=

Attribute Assignment—Sets or creates the value of a fiber-local variable, using either a
symbol or a string. See also Thread#thread_variable_set.

Chapter 27. Built-in Classes and Modules • 704

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

thr.abort_on_exception → true or falseabort_on_exception

Returns the status of the thread-local abort on exception condition for thr. The default is false.
See also Thread.abort_on_exception=.

thr.abort_on_exception= true or false→ true or falseabort_on_exception=

When set to true, causes all threads (including the main program) to abort if an exception is
raised in thr. The process will effectively exit(0).

thr.add_trace_func(proc) → proc
thr.add_trace_func(nil) → nil

add_trace_func

⇡New in 2.0⇣
Adds a trace function to thr (see Thread#set_trace_func). (This method has been replaced by
the TracePoint class in Ruby 2.0.)

thr.alive? → true or falsealive?

Returns true if thr is running or sleeping.

thr = Thread.new { }
thr.join # => #<Thread:0x007fd26312c248 dead>
Thread.current.alive? # => true
thr.alive? # => false

thr.backtrace → arraybacktrace

Returns the backtrace of thr.

thr = Thread.new do
print "starting\n"
def sleeper(n)
print "sleeping\n"
sleep n

end
sleeper(10)

end
p thr.status
p thr.backtrace
Thread.pass
p thr.status
p thr.backtrace

produces:

"run"
starting
sleeping
["prog.rb:5:in `sleep'", "/tmp/prog.rb:5:in `sleeper'", "/tmp/prog.rb:7:in `block
in <main>'"]
"sleep"
["prog.rb:5:in `sleep'", "/tmp/prog.rb:5:in `sleeper'", "/tmp/prog.rb:7:in `block
in <main>'"]

report erratum • discuss

Thread • 705

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

thr.backtrace → arraybacktrace_locations

⇡New in 2.0⇣ Analog of the global caller_locations method.

thr = Thread.new do
print "starting\n"
def sleeper(n)
print "sleeping\n"
sleep n

end
sleeper(10)

end
p thr.backtrace_locations

produces:

[]
starting
sleeping

thr.exit → thr or nilexit

Terminates thr and schedules another thread to be run. If this thread is already marked to
be killed, exit returns the Thread. If this is the main thread, or the last thread, exits the process.

thr.group → thread_groupgroup

Returns the ThreadGroup owning thr, or nil.

thread = Thread.new { sleep 99 }
Thread.current.group.list # => [#<Thread:0x007f836a0c0ce8 run>,

.. #<Thread:0x007f836a83f820 run>]
new_group = ThreadGroup.new
thread.group.list # => [#<Thread:0x007f836a0c0ce8 run>,

.. #<Thread:0x007f836a83f820 run>]
new_group.add(thread)
thread.group.list # => [#<Thread:0x007f836a83f820 run>]
Thread.current.group.list # => [#<Thread:0x007f836a0c0ce8 run>]

thr.join → thr
thr.join(limit) → thr

join

The calling thread will suspend execution and run thr. Does not return until thr exits or until
limit seconds have passed. If the time limit expires, nil will be returned; otherwise, thr is
returned.

Any threads not joined will be killed when the main program exits. If thr had previously
raised an exception and the abort_on_exception and $DEBUG flags are not set (so the exception
has not yet been processed), it will be processed at this time.

⇡New in 2.0⇣ You cannot join to the current or main thread.

a = Thread.new { print "a"; sleep(10); print "b"; print "c" }
x = Thread.new { print "x"; Thread.pass; print "y"; print "z" }
x.join # Let x thread finish, a will be killed on exit.

Chapter 27. Built-in Classes and Modules • 706

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

produces:

axyz

The following example illustrates the limit parameter:

y = Thread.new { loop { sleep 0.1; print "tick...\n" }}
y.join(0.25)
puts "Gave up waiting..."

produces:

tick...
tick...
Gave up waiting...

thr.keys → arraykeys

⇡New in 2.0⇣
Returns an array of the names of the fiber-local variables (as symbols).

thr = Thread.new do
Thread.current[:cat] = 'meow'
Thread.current["dog"] = 'woof'

end
thr.join # => #<Thread:0x007feeb312c0d8 dead>
thr.keys # => [:cat, :dog]

thr.key?(symbol) → true or falsekey?

Returns true if the given string (or symbol) exists as a thread-local variable.

me = Thread.current
me[:oliver] = "a"
me.key?(:oliver) # => true
me.key?(:stanley) # => false

thr.killkill

Synonym for Thread#exit.

thr.priority → intpriority

Returns the priority of thr. The default is zero; higher-priority threads will run before lower-
priority threads.

Thread.current.priority # => 0

thr.priority= int→ thrpriority=

Sets the priority of thr to integer. Higher-priority threads will run before lower-priority
threads. If you find yourself messing with thread priorities to get things to work, you’re
doing something wrong.

report erratum • discuss

Thread • 707

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

count_high = count_low = 0
Thread.new do
Thread.current.priority = 1
loop { count_high += 1 }

end
Thread.new do
Thread.current.priority = -1
loop { count_low += 1 }

end

sleep 0.1
count_high # => 3651144
count_low # => 1829723

thr.raise
thr.raise(message)

thr.raise(exception ‹ , message ‹ , array››)

raise

Raises an exception (see Object#raise on page 622 for details) from thr. The caller does not have
to be thr.

Thread.abort_on_exception = true
a = Thread.new { sleep(200) }
a.raise("Gotcha")
a.join

produces:

from prog.rb:2:in `block in <main>'
prog.rb:2:in `sleep': Gotcha (RuntimeError)

thr.run → thrrun

Wakes up thr, making it eligible for scheduling. If not in a critical section, then invokes the
scheduler.

thr.safe_level → intsafe_level

Returns the safe level in effect for thr. Setting thread-local safe levels can help when imple-
menting sandboxes that run insecure code.

thr = Thread.new { $SAFE = 3; sleep }
Thread.current.safe_level # => 0
thr.safe_level # => 0

thr.set_trace_func(proc) → proc
thr.set_trace_func(nil) → nil

set_trace_func

Analog to the global set_trace_func method, but for a particular thread.

Chapter 27. Built-in Classes and Modules • 708

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

thr.status → string, false or nilstatus

Returns the status of thr: sleep if thr is sleeping or waiting on I/O, run if thr is executing,
aborting if thr will raise an exception when joined, false if thr terminated normally, and nil if
thr terminated with an exception.

a = Thread.new { raise("die now") }
b = Thread.new { Thread.stop }
c = Thread.new { Thread.exit }
c.join # => #<Thread:0x007fc28082b6e0 dead>
sleep 0.1 # => 0
a.status # => nil
b.status # => "sleep"
c.status # => false
Thread.current.status # => "run"

thr.stop? → true or falsestop?

Returns true if thr is dead or sleeping.

a = Thread.new { Thread.stop }
b = Thread.current
Thread.pass
a.stop? # => false
b.stop? # => false

thr.terminateterminate

Synonym for Thread#exit.

thr.thread_variable?(name) → true or falsethread_variable?

⇡New in 2.0⇣Determines if there is a thread-local (as opposed to fiber local) variable with the given name.

thr.thread_variables → arraythread_variables

⇡New in 2.0⇣Returns the names of current thread local variables.

thr = Thread.current
thr.thread_variables # => []
thr.thread_variable_set(:option, "X12") # => "X12"
thr.thread_variable_set(:speed, 123) # => 123
thr[:fiber_not_thread] = :other
thr.thread_variables # => [:option, :speed]

fiber variables are in a different bucket
thr.keys # => [:__recursive_key__,

.. :fiber_not_thread]

thr.thread_variable_get(name) → obj or nilthread_variable_get

⇡New in 2.0⇣Return the value of the thread-local variable with the given name.

report erratum • discuss

Thread • 709

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

thr.thread_variable_get(name, val) → valthread_variable_set

⇡New in 2.0⇣ Set the value of the thread-local variable with the given name to the given value.

thr.value → objvalue

⇡New in 2.0⇣
Waits for thr to complete (via Thread#join) and returns its value. Because value uses join, you
cannot get the value of the current or main thread.

a = Thread.new { 2 + 2 }
a.value # => 4

thr.wakeup → thrwakeup

Marks thr as eligible for scheduling (it may still remain blocked on I/O, however). Does not
invoke the scheduler (see Thread#run).

ThreadGroupClass

A ThreadGroup keeps track of a number of threads. A Thread can belong to only one ThreadGroup
at a time; adding a thread to a group will remove it from its current group. Newly created
threads belong to the group of the thread that created them.

Class Constants

Default thread group.Default

Class Methods

ThreadGroup.new → thgrpnew

Returns a newly created ThreadGroup. The group is initially empty.

Instance Methods

thgrp.add(thread) → thgrpadd

Adds the given thread to this group, removing it from any other group.

puts "Default group is #{ThreadGroup::Default.list}"
tg = ThreadGroup.new
t1 = Thread.new { sleep }
t2 = Thread.new { sleep }
puts "t1 is #{t1}, t2 is #{t2}"
tg.add(t1)
puts "Default group now #{ThreadGroup::Default.list}"
puts "tg group now #{tg.list}"

produces:

Default group is [#<Thread:0x007fee488c0cd8 run>]
t1 is #<Thread:0x007fee4890f1d0>, t2 is #<Thread:0x007fee4890eff0>
Default group now [#<Thread:0x007fee488c0cd8 run>, #<Thread:0x007fee4890eff0
sleep>]
tg group now [#<Thread:0x007fee4890f1d0 sleep>]

Chapter 27. Built-in Classes and Modules • 710

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

thgrp.enclose → thgrpenclose

Prevents threads being added to and removed from thgrp. New threads may still be started.

thread = Thread.new { sleep 99 }
group = ThreadGroup.new
group.add(thread)
group.enclose
ThreadGroup::Default.add(thread) # This will raise an exception

produces:

from prog.rb:5:in `<main>'
prog.rb:5:in `add': can't move from the enclosed thread group (ThreadError)

thgrp.enclose → true or falseenclosed?

Returns true if this thread group has been enclosed.

thgrp.list → arraylist

Returns an array of all existing Thread objects that belong to this group.

ThreadGroup::Default.list # => [#<Thread:0x007f82e98c0cd0 run>]

report erratum • discuss

ThreadGroup • 711

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

TimeClass

Time is an abstraction of dates and times. Time is stored internally as the number of seconds
and microseconds since the epoch, January 1, 1970 00:00 UTC. On some operating systems,
this offset is allowed to be negative. Also see the Date library module on page 744.The Time
class treats Greenwich mean time (GMT) and Coordinated Universal Time (UTC)5 as
equivalent. GMT is the older way of referring to these baseline times but persists in the
names of calls on POSIX systems.

All times are stored with some number of microseconds, so times that are apparently equal
when displayed may be different when compared.

As of Ruby 1.9.2, the range of dates that can be represented is no longer limited by the
underlying operating system’s time representation (so there’s no year 2038 problem). As a
result, the year passed to the methods gm, local, new, mktime, and utc must now include the
century—a year of 90 now represents 90 and not 1990.

Mixes In

Comparable: <, <=, ==, >, >=, between?

Class Methods

Time.at(time) → time
Time.at(seconds ‹ , microseconds›) → time

at

Creates a new Time object with the value given by time or the given number of seconds (and
optional microseconds) from epoch. Microseconds may be a float—this allows setting times
with nanosecond granularity on systems that support it. A nonportable feature allows the
offset to be negative on some systems.

Time.at(0) # => 1969-12-31 18:00:00 -0600
Time.at(946702800) # => 1999-12-31 23:00:00 -0600
Time.at(-284061600) # => 1960-12-31 00:00:00 -0600
t = Time.at(946702800, 123.456)
t.usec # => 123
t.nsec # => 123456

Time.gm(year ‹ , month ‹ , day ‹ , hour ‹ , min ‹ , sec ‹ , usec››››››) → time
Time.gm(sec, min, hour, day, month, year, wday, yday, isdst, tz) → time

gm

Creates a time based on given values, interpreted as UTC. The year must be specified. Other
values default to the minimum value for that field (and may be nil or omitted). Months may
be specified by numbers from 1 to 12 or by the three-letter English month names. Hours are
specified on a 24-hour clock (0..23). Raises an ArgumentError if any values are out of range.
Will also accept ten arguments in the order output by Time#to_a.

Time.gm(2000,"jan",1,20,15,1) # => 2000-01-01 20:15:01 UTC

5. Yes, UTC really does stand for Coordinated Universal Time. There was a committee involved.

Chapter 27. Built-in Classes and Modules • 712

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Time.local(sec, min, hour, day, month, year, wday, yday, isdst, tz) → time
Time.local(year ‹ , month ‹ , day ‹ , hour ‹ , min ‹ , sec ‹ , usec››››››) → time

local

Same as Time.gm but interprets the values in the local time zone. The first form accepts ten
arguments in the order output by Time#to_a.

Time.local(2000,"jan",1,20,15,1) # => 2000-01-01 20:15:01 -0600

Time.mktime(year ‹ , month ‹ , day ‹ , hour ‹ , min ‹ , sec ‹ , usec››››››) → time
Time.mktime(sec, min, hour, day, month, year, wday, yday, isdst, tz) → time

mktime

Synonym for Time.local.

Time.new → time
Time.new(year ‹ , month ‹ , day ‹ , hour ‹ , min ‹ , sec ‹ , utc_offset››››››)

new

The first form returns a Time object initialized to the current system time. The object created
will be created using the resolution available on your system clock and so may include
fractional seconds.

a = Time.new # => 2013-05-27 12:33:12 -0500
b = Time.new # => 2013-05-27 12:33:12 -0500
a == b # => false
"%.6f" % a.to_f # => "1369675992.686567"
"%.6f" % b.to_f # => "1369675992.686600"

The second form creates a Time object for the given date and time. The optional utc_offset
may be a number representing seconds or a string such as "+06:00".

Time.new(2010, 12, 25, 8, 0, 0, "-06:00") # => 2010-12-25 08:00:00 -0600

Time.now → timenow

Synonym for Time.new.

Time.utc(year ‹ , month ‹ , day ‹ , hour ‹ , min ‹ , sec ‹ , usec››››››) → time
Time.utc(sec, min, hour, day, month, year, wday, yday, isdst, tz) → time

utc

Synonym for Time.gm.

Time.utc(2000,"jan",1,20,15,1) # => 2000-01-01 20:15:01 UTC

Instance Methods

time + numeric→ time+

Addition—Adds some number of seconds (possibly fractional) to time and returns that value
as a new time.

t = Time.now # => 2013-05-27 12:33:12 -0500
t + (60 * 60 * 24) # => 2013-05-28 12:33:12 -0500

report erratum • discuss

Time • 713

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

time - time→ float
time - numeric→ time

-

Difference—Returns a new time that represents the difference between two times or subtracts
the given number of seconds in numeric from time.

t = Time.now # => 2013-05-27 12:33:12 -0500
t2 = t + 2592000 # => 2013-06-26 12:33:12 -0500
t2 - t # => 2592000.0
t2 - 2592000 # => 2013-05-27 12:33:12 -0500

time <=> other_time→ -1, 0, +1
time <=> other→ nil}

<=>

Comparison—Compares timewith other_time or with numeric, which is the number of seconds
(possibly fractional) since epoch. As of Ruby 1.9, nil is returned for comparison against any-
thing other than a Time object.

t = Time.now # => 2013-05-27 12:33:13 -0500
t2 = t + 2592000 # => 2013-06-26 12:33:13 -0500
t <=> t2 # => -1
t2 <=> t # => 1
t <=> t # => 0

time.monday? → true or false
time.tuesday? → true or false

time.wednesday? → true or false
time.thursday? → true or false
time.friday? → true or false

time.saturday? → true or false
time.sunday? → true or false

day-name?

Returns true if the time is on the given day.

time.asctime → stringasctime

Returns a canonical string representation of time.

Time.now.asctime # => "Mon May 27 12:33:13 2013"

time.ctime → stringctime

Synonym for Time#asctime.

time.day → intday

Returns the day of the month (1..n) for time.

t = Time.now # => 2013-05-27 12:33:13 -0500
t.day # => 27

Chapter 27. Built-in Classes and Modules • 714

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

time.dst? → true or falsedst?

Synonym for Time#isdst.

Time.local(2000, 7, 1).dst? # => true
Time.local(2000, 1, 1).dst? # => false

time.getgm → timegetgm

Returns a new Time object representing time in UTC.

t = Time.local(2000,1,1,20,15,1) # => 2000-01-01 20:15:01 -0600
t.gmt? # => false
y = t.getgm # => 2000-01-02 02:15:01 UTC
y.gmt? # => true
t == y # => true

time.getlocal → time
time.getlocal(utc_offset) → time

getlocal

Returns a new Time object representing time in local time (using the local time zone in effect
for this process) or with the given offset from UTC.

t = Time.gm(2000,1,1,20,15,1) # => 2000-01-01 20:15:01 UTC
t.gmt? # => true
l = t.getlocal # => 2000-01-01 14:15:01 -0600
l.gmt? # => false
t == l # => true
t.getlocal("-06:00") # => 2000-01-01 14:15:01 -0600
t.getlocal(-21600) # => 2000-01-01 14:15:01 -0600

time.getutc → timegetutc

Synonym for Time#getgm.

time.gmt? → true or falsegmt?

Returns true if time represents a time in UTC.

t = Time.now # => 2013-05-27 12:33:13 -0500
t.gmt? # => false
t = Time.gm(2000,1,1,20,15,1) # => 2000-01-01 20:15:01 UTC
t.gmt? # => true

time.gmtime → timegmtime

Converts time to UTC, modifying the receiver.

t = Time.now # => 2013-05-27 12:33:13 -0500
t.gmt? # => false
t.gmtime # => 2013-05-27 17:33:13 UTC
t.gmt? # => true

report erratum • discuss

Time • 715

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

time.gmt_offset → intgmt_offset

Returns the offset in seconds between the time zone of time and UTC.

t = Time.gm(2000,1,1,20,15,1) # => 2000-01-01 20:15:01 UTC
t.gmt_offset # => 0
l = t.getlocal # => 2000-01-01 14:15:01 -0600
l.gmt_offset # => -21600

time.gmtoff → intgmtoff

Synonym for Time#gmt_offset.

time.hour → inthour

Returns the hour of the day (0..23) for time.

t = Time.now # => 2013-05-27 12:33:13 -0500
t.hour # => 12

time.isdst → true or falseisdst

Returns true if time occurs during daylight saving time in its time zone.

Time.local(2000, 7, 1).isdst # => true
Time.local(2000, 1, 1).isdst # => false

time.localtime → time
time.localtime(utc_offset) → time

localtime

Converts time to local time (using the local time zone in effect for this process or the given
offset from UTC), modifying the receiver.

t = Time.gm(2000, "jan", 1, 20, 15, 1)
t.gmt? # => true
t.localtime # => 2000-01-01 14:15:01 -0600
t.gmt? # => false
t = Time.gm(2000, "jan", 1, 20, 15, 1)
t.localtime(7200) # => 2000-01-01 22:15:01 +0200

time.mday → intmday

Synonym for Time#day.

time.min → intmin

Returns the minute of the hour (0..59) for time.

t = Time.now # => 2013-05-27 12:33:13 -0500
t.min # => 33

Chapter 27. Built-in Classes and Modules • 716

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

time.mon → intmon

Returns the month of the year (1..12) for time.

t = Time.now # => 2013-05-27 12:33:14 -0500
t.mon # => 5

time.month → intmonth

Synonym for Time#mon.

time.nsec → intnsec

Returns just the number of nanoseconds for time.

t = Time.now # => 2013-05-27 12:33:14 -0500
"%10.6f" % t.to_f # => "1369675994.128473"
t.nsec # => 128473000
t.usec # => 128473

time.round(digits=0) → new_timeround

Returns a new time with the fractional seconds rounded to the specified number of decimal
digits. (This may affect the rest of the time fields if the rounding causes the number of seconds
to increment.)

require 'time'
t = Time.utc(2010, 10, 11, 12, 13, 59.75)

t.iso8601(3) # => "2010-10-11T12:13:59.750Z"
t.round(2).iso8601(3) # => "2010-10-11T12:13:59.750Z"
t.round(1).iso8601(3) # => "2010-10-11T12:13:59.800Z"
t.round.iso8601(3) # => "2010-10-11T12:14:00.000Z"

time.sec → intsec

Returns the second of the minute (0..60)6 for time.

t = Time.now # => 2013-05-27 12:33:14 -0500
t.sec # => 14

6. Yes, seconds really can range from zero to 60. This allows the system to inject leap seconds every now
and then to correct for the fact time measured by atomic clocks differs from time measured by a spinning
earth.

report erratum • discuss

Time • 717

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

time.strftime(format) → stringstrftime

minutes. Two colons in the flag adds a seconds field.

Formats time according to the directives in the given format string. Directives look like:

%‹ flags ›‹ width › conversion

The optional flags may be one or more of:

Don’t pad numbers with spaces-
Pad numbers with spaces_
Pad numbers with zeroes0
Convert field to uppercase^
Reverse the case of the field#
Use colons for the %z conversion. One colon in the flag puts a colon between hours and:

The width specifies the minimum result width for the field.

The available conversions are:

MeaningFormat

Literal %%%

The abbreviated weekday name (“Sun”)%a

The full weekday name (“Sunday”)%A

The abbreviated month name (“Jan”)%b

The full month name (“January”)%B

The preferred local date and time representation%c

The two digit century (currently 20)%C

Day of the month (01..31)%d

Date (%m/%d/%y)%D

Day of the month, blank padded (␣1..31)%e

ISO8601 date (%Y-%m-%d)%F

Last 2 digits of ISO8601 week-based year%g

ISO8601 week-based year%G

The abbreviated month name (“Jan”)%h

Hour of the day, 24-hour clock (00..23)%H

Hour of the day, 12-hour clock (01..12)%I

Day of the year (001..366)%j

Hour of the day, 24-hour clock, blank padded (␣0..23)%k

Hour of the day, 12-hour clock, blank padded (␣1..12)%l

Milliseconds of the second%L

Month of the year (01..12)%m

Minute of the hour (00..59)%M

Newline%n

Fractional seconds%N

Meridian indicator (“AM” or “PM”)%p

Meridian indicator (“am” or “pm”)%P

12 hour time (%I:%M:%S %p)%r

Chapter 27. Built-in Classes and Modules • 718

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

MeaningFormat

24 hour time (%H:%M)%R

Number of seconds since 1970-01-01 00:00:00 UTC%s

Second of the minute (00..60)%S

Tab%t

24 hour time (%H:%M:%S)%T

Day of the week (Monday is 1, 1..7)%u

Week number of the current year, starting with the first Sunday as the first day of the first week (00..53)%U

Day of the week (Sunday is 0, 0..6)%w

VMS date (%e-%^b-%4Y)%v

ISO8601 week number (01..53)%V

Week number of the current year, starting with the first Monday as the first day of the first week
(00..53)

%W

Preferred representation for the date alone, no time%x

Preferred representation for the time alone, no date%X

Year without a century (00..99)%y

Year with century%Y

Time zone offset (+/-hhmm). Use %:z or %::z to format with colons%z

Time zone name%Z

Literal % character%%

Table 25—Time#strftime directives

Any text not listed as a directive will be passed through to the output string.

t = Time.now
t.strftime("Printed on %m/%d/%Y") # => "Printed on 05/27/2013"
t.strftime("at %I:%M%P") # => "at 12:33pm"
force the am/pm flag to upper case
t.strftime("at %I:%M%^P") # => "at 12:33PM"

time.subsec → tationalsubsec

Return just the fractional number of seconds in time as a rational. (Compare with Time#usec,
which returns an integer.)

t = Time.now
t.usec # => 436218
t.subsec # => (218109/500000)

time.succ → later_timesucc

Deprecated. Use time + 1.

time.to_a → arrayto_a

Returns a ten-element array of values for time: {[sec, min, hour, day, month, year, wday, yday, isdst,
zone]}. See the individual methods for an explanation of the valid ranges of each value. The
ten elements can be passed directly to the methods Time.utc or Time.local to create a new Time.

Time.now.to_a # => [14, 33, 12, 27, 5, 2013, 1, 147, true, "CDT"]

report erratum • discuss

Time • 719

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

time.to_f → floatto_f

Returns the value of time as a floating-point number of seconds since epoch. Consider using
Time#to_r if accuracy is required.

Time.now.to_f # => 1369675994.585341

time.to_i → intto_i

Returns the value of time as an integer number of seconds since epoch.

Time.now.to_i # => 1369675994

time.to_r → rationalto_r

Returns a rational number containing time as a number of seconds since epoch (including
fractional seconds).

Time.now.to_r # => (54787039789213/40000)

time.to_s → stringto_s

Returns a string representing time. Equivalent to calling Time#strftime with a format string
of "%Y-%m-%d %H:%M:%S %z" (with UTC replacing the time zone for a UTC time).

Time.now.to_s # => "2013-05-27 12:33:14 -0500"
Time.utc(2011, 12, 25, 1, 2, 3).to_s # => "2011-12-25 01:02:03 UTC"

time.tv_nsec → inttv_nsec

Synonym for Time#nsec.

time.tv_sec → inttv_sec

Synonym for Time#to_i.

time.tv_usec → inttv_usec

Synonym for Time#usec.

time.usec → intusec

Returns just the number of microseconds for time. (Compare with Time#subsec, which returns
a rational.)

t = Time.now # => 2013-05-27 12:33:14 -0500
"%10.6f" % t.to_f # => "1369675994.878664"
t.nsec # => 878664000
t.usec # => 878664

Chapter 27. Built-in Classes and Modules • 720

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

time.utc → timeutc

Synonym for Time#gmtime.

t = Time.now # => 2013-05-27 12:33:14 -0500
t.utc? # => false
t.utc # => 2013-05-27 17:33:14 UTC
t.utc? # => true

time.utc? → true or falseutc?

Returns true if time represents a time in UTC.

t = Time.now # => 2013-05-27 12:33:15 -0500
t.utc? # => false
t = Time.gm(2000,"jan",1,20,15,1) # => 2000-01-01 20:15:01 UTC
t.utc? # => true

time.utc_offset → intutc_offset

Synonym for Time#gmt_offset.

time.wday → intwday

Returns an integer representing the day of the week, 0..6, with Sunday == 0.

t = Time.now # => 2013-05-27 12:33:15 -0500
t.wday # => 1

time.yday → intyday

Returns an integer representing the day of the year, 1..366.

t = Time.now # => 2013-05-27 12:33:15 -0500
t.yday # => 147

time.year → intyear

Returns the year for time (including the century).

t = Time.now # => 2013-05-27 12:33:15 -0500
t.year # => 2013

time.zone → stringzone

Returns the name of the time zone used for time.

t = Time.gm(2000, "jan", 1, 20, 15, 1)
t.zone # => "UTC"
t = Time.local(2000, "jan", 1, 20, 15, 1)
t.zone # => "CST"

report erratum • discuss

Time • 721

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

TracePointClass

⇡New in 2.0⇣ Using tracepoints you can trace the execution of certain events in your running program.
The TracePoint class obsoletes the prior set_trace_func method.

When you create a trace point object, you give it the names of one or more events that you
want to monitor. You also pass it a block. Whenever a monitored event fires, the block is
invoked, passing in the trace point object, which now contains a description of that particular
event event. Trace point objects are initially disabled—you need to enable them before they
start firing.

tp = TracePoint.new(:line, :call, :return) do |tp|
p tp

end

tp.enable

def add(a,b)
a + b

end

p add(1,2)

tp.disable

produces:

#<TracePoint:line@prog.rb:7>
#<TracePoint:line@prog.rb:11>
#<TracePoint:call `add'@prog.rb:7>
#<TracePoint:line@prog.rb:8 in `add'>
#<TracePoint:return `add'@prog.rb:9>
3
#<TracePoint:line@prog.rb:13>

The events you can capture are:

block entry:b_call
block exit:b_return
call a C-language routine:c_call
return from a C-language routine:c_return
call a Ruby method:call
start class/module definition:class
end a class/module definition:end
execute a ne source code line:line
raise an exception:raise
return from a Ruby method:return
start a thread:thread_begin
end a thread:thread_end

Chapter 27. Built-in Classes and Modules • 722

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Class Methods

TracePoint.new(‹event_names›*) {|tp| … } → tpnew

Creates a new tracer for the given event names (or all events if no list is given). The returned
object is both used to enable and disable this tracer and as the object thatis passed to the
block when the events trigger. See the sample code at the start of this section to see this in
action, and the table that follows it for a list of event names.

TracePoint.trace(‹event_names›*) {|tp| … } → tptrace

Sets up a trace point handler an immediately enables it.

tp = TracePoint.trace do |tp|
p tp

end
a = 1
b = 2
tp.disable

produces:

#<TracePoint:c_return `trace'@prog.rb:1>
#<TracePoint:line@prog.rb:4>
#<TracePoint:line@prog.rb:5>
#<TracePoint:line@prog.rb:6>
#<TracePoint:c_call `disable'@prog.rb:6>

Instance Methods

tp.binding→ binding_of_eventbinding

The binding at the time of the event.

tp.defined_class→ singleton classdefined_class

The class or module in which the event occurred.

tp.disable→ true or falsedisable

Disable this tracer, returning true if the tracer was enabled at the time.

tp.enable→ true or falseenable

Enable this tracer, returning true if the tracer was already enabled.

tp.enabled?→ true or falseenabled?

Returns true if the tracer is enabled.

tp.event→ symbolevent

Returns the name of the event. See the table at the start of this section.

report erratum • discuss

TracePoint • 723

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

tp.lineno→ fixnumlineno

The source line number where the event occurred.

tp.method_id→ symbolmethod_id

The name of the method in which the event occurred.

tp.path→ stringpath

The full path to the Ruby source file in which the event occurred.

tp.raised_exception→ Exceptionraised_exception

The exception raised for a :raise event.

tp.return_value→ objreturn_value

The value returned by a :return event.

tp.self→ objself

The value of self at the time the event occurred.

Chapter 27. Built-in Classes and Modules • 724

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

TrueClassClass

The global value true is the only instance of class TrueClass and represents a logically true
value in boolean expressions. The class provides operators allowing true to be used in logical
expressions.

Instance Methods

true & obj→ true or false&

And—Returns false if obj is nil or false and returns true otherwise.

true ^ obj→ true or false^

Exclusive Or—Returns true if obj is nil or false and returns false otherwise.

true | obj→ true|

Or—Returns true. Because obj is an argument to a method call, it is always evaluated; short-
circuit evaluation is not performed in this case.

true | puts("or")
true || puts("logical or")

produces:

or

report erratum • discuss

TrueClass • 725

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

UnboundMethodClass

Ruby supports two forms of objectified methods. Class Method is used to represent methods
that are associated with a particular object: these method objects are bound to that object.
Bound method objects for an object can be created using Object#method.

Ruby also supports unbound methods, which are method objects that are not associated
with a particular object. These can be created either by calling unbind on a bound method
object or by calling Module#instance_method.

Unbound methods can be called only after they are bound to an object. That object must be
a kind_of? the method’s original class.

class Square
def area
@side * @side

end
def initialize(side)
@side = side

end
end

area_unbound = Square.instance_method(:area)

s = Square.new(12)
area = area_unbound.bind(s)
area.call # => 144

Unbound methods are a reference to the method at the time it was objectified: subsequent
changes to the underlying class will not affect the unbound method.

class Test
def test
:original

end
end
um = Test.instance_method(:test)
class Test
def test
:modified

end
end
t = Test.new
t.test # => :modified
um.bind(t).call # => :original

Instance Methods

umeth.arity → fixnumarity

See Method#arity on page 565.

Chapter 27. Built-in Classes and Modules • 726

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

umeth.bind(obj) → methodbind

Bind umeth to obj. The class of objmust be the same as or a descendent of the class from which
umeth was originally obtained.

Line 1 class A
- def test

puts "In test, class = #{self.class}"-

- end
5 end
- class B < A
- end
-

end
class C < B

-

10

- um = B.instance_method(:test)
- bm = um.bind(C.new)
- bm.call
- bm = um.bind(B.new)

15 bm.call
-

bm.call
bm = um.bind(A.new)

-

produces:

from prog.rb:16:in `<main>'
In test, class = C
In test, class = B
prog.rb:16:in `bind': bind argument must be an instance of B (TypeError)

umeth.name → stringname

Returns the name of the method umeth.

um = String.instance_method(:upcase)
um.name # => :upcase

umeth.owner → moduleowner

Returns the class or module in which umeth is defined.

um = String.instance_method(:upcase)
um.owner # => String

umeth.parameters → arrayparameters

Returns a description of the method’s parameter list. See Method#parameters for details.

umeth.source_location → [filename, lineno] or nilsource_location

Returns the source filename and line number where umeth was defined or nil if self was not
defined in Ruby source. See Method#source_location for an example.

report erratum • discuss

UnboundMethod • 727

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CHAPTER 28

Standard Library
The Ruby interpreter comes with a large number of classes, modules, and methods built in
—they are available as part of the running program. When you need a facility that isn’t part
of the built-in repertoire, you’ll often find it in a library that you can require into your program.
Sometimes you’ll need to download one of these libraries (perhaps as a Ruby gem).

However, Ruby also ships as standard with a large number of libraries. Some of these are
written in pure Ruby and will be available on all Ruby platforms. Others are Ruby extensions,
and some of these will be present only if your system supports the resources that they need.
All can be included into your Ruby program using require. And, unlike libraries you may
find on the Internet, you can pretty much guarantee that all Ruby users will have these
libraries already installed on their machines.

Ruby 1.9 has more than 100 standard libraries included in the distribution. For each of these
libraries, this section shows a one- or a two-page summary. For each library, we give some
introductory notes and typically an example or two of use. You won’t find detailed method
descriptions here; for that, consult the library’s own documentation.

It’s all very well suggesting that you “consult the library’s own documentation,” but where
can you find it? The answer is that it depends. Some libraries have already been documented
using RDoc (see Chapter 19, Documenting Ruby, on page 263). That means you can use the ri
command to get the documentation.

If there’s no RDoc documentation available, the next place to look is the library. If you have
a source distribution of Ruby, these library files are in the ext/ and lib/ subdirectories. If instead
you have a binary-only installation, you can still find the source of pure-Ruby library modules
(normally in the lib/ruby/1.9/ directory under your Ruby installation). Often, library source
directories contain documentation that the author has not yet converted to RDoc format.

If you still can’t find documentation, turn to your search engine of choice. Many of the Ruby
standard libraries are also hosted as external projects. The authors develop them stand-alone
and then periodically integrate the code into the standard Ruby distribution. For example,
if you want detailed information on the API for the YAML library, Try searching for yaml
ruby—you’ll probably end up at http://www.yaml.org/YAML_for_ruby.html.

The next port of call is the ruby-talk mailing list. Ask a (polite) question there, and chances
are that you’ll get a knowledgeable response within hours. See the tips in Section A1.3,
Mailing Lists, on page 830 for pointers on how to subscribe.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://www.yaml.org/YAML_for_ruby.html
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

And if you still can’t find documentation, you can always follow Obi Wan’s advice and do
what we did when documenting Ruby—use the source. You’d be surprised at how easy it
is to read the actual source of Ruby libraries and work out the details of usage.

There are some libraries that we don’t document, either because they are pretty low level or
because we cover them extensively elsewhere in the book. These libraries include:

• debug—the Ruby debugger, covered in Section 14.1, Ruby Debugger, on page 195.
•⇡New in 2.0⇣ iconv—has been removed from Ruby 2.0. Use String#encode.
• mkmf—covered in the online guide to extending Ruby.
• objspace—extensions to theObjectSpace class designed to be used by the Ruby core team.
• psych—an interface to libyaml. You’ll probably just use the YAML library.
• racc—this is the runtime used by the Racc parser generator. If you need this library,

you’ll also need the external Racc system.
• rake—see Section 15.6, The Rake Build Tool, on page 222.
• rdoc—see Chapter 19, Documenting Ruby, on page 263.
• rubygems—covered in Section 15.5, RubyGems Integration, on page 217 and in Using
RubyGems, on page 234.

28.1 Library Changes in Ruby 1.9

These are the library changes in Ruby 1.9:

• Much of the Complex and Rational libraries are now built in to the interpreter. However,
requiring the external libraries adds some functionally. In the case of Rational, this
functionality is minimal.

• The CMath library has been added.
• The Enumerator library is now built in.
• The Fiber library has been added (it adds coroutine support to fibers).
• The Fiddle library (an interface to libffi, which supports calling functions in shared

librries) is documented as a replacement for DL.
• ftools has been removed (and replaced by fileutils).
• The Generator library has been removed (use fibers).
• Notes on using irb from inside applications have been added.
• jcode has been removed in favor of built-in encoding support.
• The json library has been added.
• The matrix library no longer requires that you include mathn.
• The mutex library is now built in.
• parsedate has been removed. The Date class handles most of its functionality.
• readbytes has been removed. Class IO now supports the method directly.
• A description of Ripper has been added.
• A description of SecureRandom has been added.
• The shell library has been omitted, because it seems more like a curiosity than something

folks would use (and it’s broken under 1.9).
• The soap library has been removed.
• I’ve omitted the sync library. It is broken under 1.9, and the monitor library seems to

be cleaner.
• Win32API is now deprecated in favor of using the DL library.

Chapter 28. Standard Library • 730

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Generate Sets of Unique AbbreviationsAbbrevLibrary

Given a set of strings, calculates the set of unambiguous abbreviations for those strings and
returns a hash where the keys are all the possible abbreviations and the values are the full
strings. Thus, given input of “car” and “cone,” the keys pointing to “car” would be “ca” and
“car,” and those pointing to “cone” would be “co,” “con,” and “cone.”

An optional pattern or a string may be specified—only those input strings matching the
pattern, or beginning with the string, are considered for inclusion in the output hash.

Including the Abbrev library also adds an abbrev method to class Array.

• Shows the abbreviation set of some words:

require 'abbrev'

Abbrev::abbrev(%w{ruby rune}) # => {"ruby"=>"ruby", "rub"=>"ruby",
.. "rune"=>"rune", "run"=>"rune"}

• A trivial command loop using abbreviations:

require 'abbrev'

COMMANDS = %w{ sample send start status stop }.abbrev

while line = gets
line = line.chomp

case COMMANDS[line]
when "sample" then # ...
when "send" then # ...
...
else
STDERR.puts "Unknown command: #{line}"

end
end

report erratum • discuss

Abbrev • 731

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Base64 Conversion FunctionsBase64Library

Performs encoding and decoding of binary data using a Base64 representation. This allows
you to represent any binary data in purely printable characters. The encoding is specified
in RFC 2045 and RFC 4648.1

• Encodes and decodes strings. Note the newlines inserted into the Base64 string.

require 'base64'
str = "Now is the time for all good coders\nto learn Ruby"
converted = Base64.encode64(str)
puts converted
puts Base64.decode64(converted)

produces:

Tm93IGlzIHRoZSB0aW1lIGZvciBhbGwgZ29vZCBjb2RlcnMKdG8gbGVhcm4g
UnVieQ==
Now is the time for all good coders
to learn Ruby

• Now uses RFC 4648 variants:

require 'base64'
str = "Now is the time for all good coders\nto learn Ruby"
converted = Base64.strict_encode64(str)
puts converted
puts Base64.strict_decode64(converted)

produces:

Tm93IGlzIHRoZSB0aW1lIGZvciBhbGwgZ29vZCBjb2RlcnMKdG8gbGVhcm4gUnVieQ==
Now is the time for all good coders
to learn Ruby

1. http://www.faqs.org/rfcs/rfc2045.html and http://www.faqs.org/rfcs/rfc4648.html

Chapter 28. Standard Library • 732

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://www.faqs.org/rfcs/rfc2045.html
http://www.faqs.org/rfcs/rfc4648.html
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Time Code ExecutionBenchmarkLibrary

Allows code execution to be timed and the results tabulated. The Benchmarkmodule is easier
to use if you include it in your top-level environment.

See also: Profile (page 791)

• Compares the costs of four kinds of method dispatch:

require 'benchmark'
include Benchmark
string = "Stormy Weather"
m = string.method(:length)
bm(6) do |x|
x.report("direct") { 100_000.times { string.length } }
x.report("call") { 100_000.times { m.call } }
x.report("send") { 100_000.times { string.send(:length) } }
x.report("eval") { 100_000.times { eval "string.length" } }

end

produces:

user system total real
direct 0.010000 0.000000 0.010000 (0.012705)
call 0.020000 0.000000 0.020000 (0.022576)
send 0.020000 0.000000 0.020000 (0.020664)
eval 1.220000 0.000000 1.220000 (1.224656)

• Which is better: reading all of a dictionary and splitting it or splitting it line by line? Use
bmbm to run a rehearsal before doing the timing:

require 'benchmark'
include Benchmark
bmbm(6) do |x|
x.report("all") do

str = File.read("/usr/share/dict/words")
words = str.scan(/[-\w']+/)

end
x.report("lines") do
words = []
File.foreach("/usr/share/dict/words") do |line|
words << line.chomp

end
end

end

produces:

Rehearsal --
all 0.200000 0.010000 0.210000 (0.218034)
lines 0.150000 0.020000 0.170000 (0.165469)
--------------------------------- total: 0.380000sec

user system total real
all 0.180000 0.010000 0.190000 (0.185983)
lines 0.290000 0.010000 0.300000 (0.302548)

report erratum • discuss

Benchmark • 733

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Large-Precision Decimal NumbersBigDecimalLibrary

Ruby’s standard Bignum class supports integers with large numbers of digits. The BigDecimal
class supports decimal numbers with large numbers of decimal places. The standard library
supports all the normal arithmetic operations. BigDecimal also comes with some extension
libraries.

bigdecimal/ludcmp
Performs an LU decomposition of a matrix.

bigdecimal/math
Provides the transcendental functions sqrt, sin, cos, atan, exp, and log, along with functions
for computing PI and E. All functions take an arbitrary precision argument.

bigdecimal/jacobian
Constructs the Jacobian (a matrix enumerating the partial derivatives) of a given function.
Not dependent on BigDecimal.

bigdecimal/newton
Solves the roots of nonlinear function using Newton’s method. Not dependent on
BigDecimal.

bigdecimal/nlsolve
Wraps the bigdecimal/newton library for equations of big decimals.

You can find English-language documentation in the file ext/bigdecimal/bigdecimal_en.html in
the Ruby source distribution.

• # Calculate the area of a circle using BigDecimal numbers

require 'bigdecimal'
require 'bigdecimal/math'
include BigMath

pi = BigMath::PI(20) # 20 is the number of decimal digits

radius = BigDecimal("2.14156987652974674392")

area = pi * radius**2

area.to_s # => "0.144083540446856044176720033806679561688599846410
.. 445032583215824758780405545861780909930190528E2"

• # The same with regular floats

radius = 2.14156987652974674392

Math::PI * radius**2 # => 14.408354044685602

Chapter 28. Standard Library • 734

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CGI Programming SupportCGILibrary

The CGI class provides support for programs used as Common Gateway Interface (CGI)
scripts in a web server. CGI objects are initialized with data from the environment and from
the HTTP request, and they provide convenient accessors to form data and cookies. They
can also manage sessions using a variety of storage mechanisms. Class CGI also provides
basic facilities for HTML generation and class methods to escape and unescape requests and
HTML.

See also: CGI::Session (page 737)

• Escapes and unescapes special characters in URLs and HTML. Numeric entities less
than 256 will be encoded based on the encoding of the input string. Other numeric
entities will be left unchanged.

require 'cgi'
CGI.escape('c:\My Files') # => c%3A%5CMy+Files
CGI.unescape('c%3a%5cMy+Files') # => c:\My Files
CGI::escapeHTML('"a"<b & c') # => "a"<b & c
CGI.unescapeHTML('"a"<=>b') # => "a"<=>b
CGI.unescapeHTML('AA') # => AA
str = '2πr'
str.force_encoding("utf-8")
CGI.unescapeHTML(str) # => 2πr

• Access information from the incoming request:

require 'cgi'
c = CGI.new
c.auth_type # => "basic"
c.user_agent # => "Mozscape Explorari V5.6"

• Access form fields from an incoming request. Assume that the following script, installed
as test.cgi, was linked to using http://mydomain.com/test.cgi?fred=10&barney=cat:

require 'cgi'
c = CGI.new
c['fred'] # => "10"
c.keys # => ["fred", "barney"]
c.params # => {"fred"=>["10"], "barney"=>["cat"]}

• If a form contains multiple fields with the same name, the corresponding values will
be returned to the script as an array. The [] accessor returns just the first of these—index
the result of the params method to get them all.

In this example, assume the form has three fields called “name”:

require 'cgi'
c = CGI.new
c['name'] # => "fred"
c.params['name'] # => ["fred", "wilma", "barney"]
c.keys # => ["name"]
c.params # => {"name"=>["fred", "wilma", "barney"]}

report erratum • discuss

CGI • 735

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

• Sends a response to the browser. (Not many folks use this form of HTML generation–use
one of the templating libraries described in Section 20.3, Templating Systems, on page
280.

require 'cgi'
cgi = CGI.new("html5")
cgi.http_header("type" => "text/html", "expires" => Time.now + 30)
cgi.out do
cgi.html do
cgi.head{ cgi.title{"Hello World!"} } +
cgi.body do
cgi.pre do
CGI::escapeHTML(
"params: " + cgi.params.inspect + "\n" +
"cookies: " + cgi.cookies.inspect + "\n")

end
end

end
end

• Stores a cookie in the client browser:

require 'cgi'
cgi = CGI.new("html5")
cookie = CGI::Cookie.new('name' => 'mycookie',

'value' => 'chocolate chip',
'expires' => Time.now + 3600)

cgi.out('cookie' => cookie) do
cgi.head + cgi.body { "Cookie stored" }

end

• Retrieves a previously stored cookie:

require 'cgi'
cgi = CGI.new("html5")
cookie = cgi.cookies['mycookie']

cgi.out('cookie' => cookie) do
cgi.head + cgi.body { "Flavor: " + cookie[0] }

end

Chapter 28. Standard Library • 736

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CGI SessionsCGI::SessionLibrary

A CGI::Sessionmaintains a persistent state for web users in a CGI environment. Sessions may
be memory resident or may be stored on disk. See the discussion in Sessions, on page 285 for
details.

See also: CGI (page 735)

sl_cgi_session/session.rb

Store the timestamp of last access, along with the access count
using a session object

require 'cgi'
require 'cgi/session'

cgi = CGI.new("html3")
sess = CGI::Session.new(cgi,

"session_key" => "rubyweb",
"prefix" => "web-session.")

if sess['lastaccess']
msg = "<p>You were last here #{sess['lastaccess']}.</p>"

else
msg = "<p>Looks like you haven't been here for a while</p>"

end

count = (sess["accesscount"] || 0).to_i
count += 1

msg << "<p>Number of visits: #{count}</p>"

sess["accesscount"] = count
sess["lastaccess"] = Time.now.to_s
sess.close

cgi.out {
cgi.html {
cgi.body {
msg

}
}

}

report erratum • discuss

CGI::Session • 737

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/sl_cgi_session/session.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Complex Transcendental FunctionsCMathLibrary

As of Ruby 1.9, the Complex class is built in to the interpreter. There is no need to require the
complex library to create and manipulate complex numbers. However, if you want the
transcendental functions defined by Math to work with complex numbers, you must also
require the cmath library. The functions affected are as follows: acosh, acos, asinh, asin, atan2,
atanh, atan, cosh, cos, exp, log10, log, sinh, sin, sqrt, tanh, and tan.

The complex library makes these complex functions the default (so, if you require 'complex',
you can use Math::sin and not CMath::sin).

• require 'cmath'
point = Complex(2, 3)
CMath::sin(point) # => (9.15449914691143-4.168906959966565i)
CMath::cos(point) # => (-4.189625690968807-9.109227893755337i)

Complex NumbersComplexLibrary

Loads the cmath library, which defines the transcendental functions for complex numbers.
It then arranges things so that these complex-aware functions are the ones invoked when
you use Math::. The net effect is that, after requiring complex, you can use functions such as
Math::sin on any numeric value, including complex numbers.

• Using transcendental numbers with complex arguments will, by default, cause an error:

point = Complex(2, 3)
Math::sin(point)

produces:

from prog.rb:2:in `sin'
from prog.rb:2:in `<main>'

prog.rb:2:in `to_f': can't convert 2+3i into Float (RangeError)

• However...

require 'complex'
point = Complex(2, 3)
Math::sin(point) # => (9.15449914691143-4.168906959966565i)

Chapter 28. Standard Library • 738

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

ContinuationsContinuationLibrary

Continuation objects are generated by the Object#callcc method, which becomes available only
when the continuation library is loaded. They hold a return address and execution context,
allowing a nonlocal return to the end of the callcc block from anywhere within a program.
Continuations are somewhat analogous to a structured version of C’s setjmp/longjmp (although
they contain more state, so you may consider them closer to threads). This (somewhat con-
trived) example allows the inner loop to abandon processing early.

• Does a nonlocal exit when a condition is met:

require 'continuation'
callcc do |cont|
for i in 0..4
print "\n#{i}: "
for j in i*5...(i+1)*5
cont.call() if j == 7
printf "%3d", j

end
end

end
print "\n"

produces:

0: 0 1 2 3 4
1: 5 6

• The call stack for methods is preserved in continuations:

require 'continuation'
def strange
callcc {|continuation| return continuation}
print "Back in method, "

end
print "Before method. "
continuation = strange()
print "After method. "
continuation.call if continuation

produces:

Before method. After method. Back in method, After method.

report erratum • discuss

Continuation • 739

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Experimental Code Coverage AnalysiscoverageLibrary

The coverage module counts the number of times each line of Ruby code is executed in one
or more source files and provides a summary as a hash. The keys of the hash are the names
of files that were analyzed, and the values are each an array containing counts (on a per-line
basis).

Here’s a simple implementation of the Fizz Buzz program:

sl_coverage/fizzbuzz.rb

1.upto(100).with_object('') do |i, x|
if i % 3 == 0
x += 'Fizz'

end
if i % 5 == 0
x += 'Buzz'

end
if x.empty?
puts i

else
puts x

end
end

And here’s a program that loads and runs that program, using the coverage library to report
on execution counts. (Note that it discards the output of the FizzBuzz program, simply to
save space on this page.)

require 'coverage'
Coverage.start
STDOUT.reopen("/dev/null")
require_relative 'fizzbuzz.rb'
Coverage.result.each do |file_name, counts|
File.readlines(file_name).each.with_index do |code_line, line_number|
count = counts[line_number] || "--"
STDERR.printf "%3s: %s", count, code_line

end
end

produces:

1: 1.upto(100).with_object('') do |i, x|
100: if i % 3 == 0
33: x += 'Fizz'
--: end
100: if i % 5 == 0
20: x += 'Buzz'
--: end
100: if x.empty?
53: puts i
--: else
47: puts x
--: end
--: end

Chapter 28. Standard Library • 740

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/sl_coverage/fizzbuzz.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Comma-Separated ValuesCSVLibrary

Comma-separated data files are often used to transfer tabular information (and are a lingua
franca for importing and exporting spreadsheet and database information). As of Ruby 1.9,
the old library has been replaced by James Edward Gray II’s FasterCSV version. It has a few
incompatibilities with the original. In particular, CSV.open now works like File.open, not
File.foreach, and options are passed as a hash and not positional parameters.

Ruby’s CSV library deals with arrays (corresponding to the rows in the CSV file) and strings
(corresponding to the elements in a row). If an element in a row is missing, it will be repre-
sented as a nil in Ruby.

The files used in these examples are as follows:

sl_csv/csvfile

12,eggs,2.89,
2,"shirt, blue",21.45,special
1,"""Hello Kitty"" bag",13.99

sl_csv/csvfile_hdr

Count,Description,Price
12,eggs,2.89,
2,"shirt, blue",21.45,special
1,"""Hello Kitty"" bag",13.99

• Reads a file containing CSV data and processes line by line:

require 'csv'
CSV.foreach("csvfile") do |row|
qty = row[0].to_i
price = row[2].to_f
printf "%20s: $%5.2f %s\n", row[1], qty*price, row[3] || " ---"

end

produces:

eggs: $34.68 ---
shirt, blue: $42.90 special

"Hello Kitty" bag: $13.99 ---

• Processes a CSV file that contains a header line. Automatically converts fields that look
like numbers.

require 'csv'
total_cost = 0
CSV.foreach("csvfile_hdr", headers: true, converters: :numeric) do |data|
total_cost += data["Count"] * data["Price"]

end
puts "Total cost is #{total_cost}"

produces:

Total cost is 91.57

• Writes CSV data to an existing open stream (STDOUT in this case). Uses | as the column
separator.

report erratum • discuss

CSV • 741

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/sl_csv/csvfile
http://media.pragprog.com/titles/ruby4/code/sl_csv/csvfile_hdr
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

require 'csv'
CSV(STDOUT, col_sep: "|") do |csv|
csv << [1, "line 1", 27]
csv << [2, nil, 123]
csv << [3, "|bar|", 32.5]

end

produces:

1|line 1|27
2||123
3|"|bar|"|32.5

• Accesses a CSV file as a two-dimensional table:

require 'csv'

table = CSV.read("csvfile_hdr",
headers: true,
header_converters: :symbol)

puts "Row count = #{table.count}"
puts "First row = #{table[0].fields}"
puts "Count of eggs = #{table[0][:count]}"
table << [99, "red balloons", 1.23]
table[:in_stock] = [10, 5, 10, 10]
puts "\nAfter adding a row and a column, the new table is:"
puts table

produces:

Row count = 3
First row = ["12", "eggs", "2.89", nil]
Count of eggs = 12

After adding a row and a column, the new table is:
count,description,price,,in_stock
12,eggs,2.89,,10
2,"shirt, blue",21.45,special,5
1,"""Hello Kitty"" bag",13.99,10
99,red balloons,1.23,,10

Chapter 28. Standard Library • 742

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

CRT Screen HandlingCursesLibrary

Only if: curses or
ncurses installed in
target environment

The Curses library is a thin wrapper around the C curses or ncurses libraries, giving applica-
tions a device-independent way to draw on consoles and other terminal-like devices. As a
nod toward object-orientation, curses windows and mouse events are represented as Ruby
objects. Otherwise, the standard curses calls and constants are simply defined in the Curses
module.

sl_curses/pong_paddle.rb

Draw the paddle for game of 'pong' that moves in response to up and down keys
require 'curses'
include Curses

class Paddle
HEIGHT = 4
PADDLE = " \n" + "|\n"*HEIGHT + " "
def initialize
@top = (Curses::lines - HEIGHT)/2
draw

end
def up
@top -= 1 if @top > 1

end
def down
@top += 1 if (@top + HEIGHT + 1) < lines

end
def draw
setpos(@top-1, 0)
addstr(PADDLE)
refresh

end
end

init_screen
begin
cbreak
noecho
stdscr.keypad(true)
paddle = Paddle.new

loop do
case ch = getch
when "Q", "q" then break
when Key::UP, 'U', 'u' then paddle.up
when Key::DOWN, 'D', 'd' then paddle.down
else
beep

end
paddle.draw

end
ensure
close_screen

end

report erratum • discuss

Curses • 743

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/sl_curses/pong_paddle.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Date and Time ManipulationDate/DateTimeLibrary

The date library implements classes Date and DateTime, which provide a comprehensive set
of facilities for storing, manipulating, and converting dates with or without time components.
The classes can represent and manipulate civil, ordinal, commercial, Julian, and standard
dates, starting January 1, 4713 BCE. The DateTime class extends Date with hours, minutes,
seconds, and fractional seconds, and it provides some support for time zones. The classes
also provide support for parsing and formatting date and datetime strings. The classes have
a rich interface—consult the ri documentation for details. The introductory notes in the file
lib/date.rb in the Ruby source tree are also well worth reading.

• Experiment with various representations:

require 'date'

d = Date.new(2000, 3, 31)
[d.year, d.yday, d.wday] # => [2000, 91, 5]
[d.month, d.mday] # => [3, 31]
[d.cwyear, d.cweek, d.cwday] # => [2000, 13, 5]
[d.jd, d.mjd] # => [2451635, 51634]
d1 = Date.commercial(2000, 13, 7)
d1.to_s # => "2000-04-02"
[d1.cwday, d1.wday] # => [7, 0]

• Essential information about Christmas:

require 'date'

now = DateTime.now
year = now.year
year += 1 if now.month == 12 && now.day > 25
xmas = DateTime.new(year, 12, 25)

diff = xmas - now

puts "It's #{diff.to_i} days to Christmas"
puts "Christmas #{year} falls on a #{xmas.strftime('%A')}"

produces:

It's 211 days to Christmas
Christmas 2013 falls on a Wednesday

Chapter 28. Standard Library • 744

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Interface to DBM DatabasesDBMLibrary

Only if: a DBM library
is installed in target
environment

DBM files implement simple, hashlike persistent stores. Many DBM implementations exist:
the Ruby library can be configured to use one of the DBM libraries db, dbm (ndbm), gdbm,
and qdbm. The interface to DBM files is similar to class Hash, except that DBM keys and
values will be strings. This can cause confusion, as the conversion to a string is performed
silently when the data is written. The DBM library is a wrapper around the lower-level access
method. For true low-level access, see also the GDBM and SDBM libraries.

See also: gdbm (page 760) sdbm (page 803)

The following creates a simple DBM file and then reopens it read-only and reads some data.
Note the conversion of a date object to its string form.

sl_dbm/dbm1.rb

require 'dbm'
require 'date'

DBM.open("data.dbm") do |dbm|
dbm['name'] = "Walter Wombat"
dbm['dob'] = Date.new(1997, 12,25)

end

DBM.open("data.dbm", nil, DBM::READER) do |dbm|
p dbm.keys
p dbm['dob']
p dbm['dob'].class

end

Produces:

["name", "dob"]
"1997-12-25"
String

report erratum • discuss

DBM • 745

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/sl_dbm/dbm1.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Delegate Calls to Other ObjectDelegatorLibrary

Object delegation is a way of composing objects—extending an object with the capabilities of
another—at runtime. The Ruby Delegator class implements a simple but powerful delegation
scheme, where requests are automatically forwarded from a master class to delegates or
their ancestors and where the delegate can be changed at runtime with a single method call.

See also: Forwardable (page 759)

• For simple cases where the class of the delegate is fixed, make the master class a subclass
of DelegateClass, passing the name of the class to be delegated as a parameter. In the
master class’s initialize method, pass the object to be delegated to the superclass.

require 'delegate'

class Words < DelegateClass(Array)
def initialize(list = "/usr/share/dict/words")
words = File.read(list).split
super(words)

end
end

words = Words.new
words[9999] # => "anticontagionist"
words.size # => 235886
words.grep(/matz/) # => ["matzo", "matzoon", "matzos", "matzoth"]

• Use SimpleDelegator to delegate to a particular object (which can be changed):

require 'delegate'

words = File.read("/usr/share/dict/words").split
names = File.read("/usr/share/dict/propernames").split

stats = SimpleDelegator.new(words)
stats.size # => 235886
stats[226] # => "abidingly"
stats.__setobj__(names)
stats.size # => 1308
stats[226] # => "Deirdre"

Chapter 28. Standard Library • 746

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

MD5, RIPEMD-160 SHA1, and SHA2 DigestsDigestLibrary

The Digest module is the home for a number of classes that implement message digest algo-
rithms: MD5, RIPEMD-160, SHA1, and SHA2 (256, 384, and 512 bit). The interface to all these
classes is identical.

• You can create a binary or hex digest for a given string by calling the class method digest
or hexdigest.

• You can also create an object (optionally passing in an initial string) and determine the
object’s hash by calling the digest or hexdigest instance methods. You can then append
to the string using the update method and then recover an updated hash value.

• Calculates some MD5 and SHA1 hashes:

require 'digest/md5'
require 'digest/sha1'

for hash_class in [Digest::MD5, Digest::SHA1]

puts "Using #{hash_class.name}"

Calculate directly
puts hash_class.hexdigest("hello world")

Or by accumulating
digest = hash_class.new
digest << "hello"
digest << " "
digest << "world"
puts digest.hexdigest
puts digest.base64digest # new in 1.9.2
puts

end

produces:

Using Digest::MD5
5eb63bbbe01eeed093cb22bb8f5acdc3
5eb63bbbe01eeed093cb22bb8f5acdc3
XrY7u+Ae7tCTyyK7j1rNww==

Using Digest::SHA1
2aae6c35c94fcfb415dbe95f408b9ce91ee846ed
2aae6c35c94fcfb415dbe95f408b9ce91ee846ed
Kq5sNclPz7QV2+lfQIuc6R7oRu0=

report erratum • discuss

Digest • 747

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Distributed Ruby Objects (drb)dRubyLibrary

dRuby allows Ruby objects to be distributed across a network connection. Although expressed
in terms of clients and servers, once the initial connection is established, the protocol is
effectively symmetrical: either side can invoke methods in objects on the other side. Normally,
objects passed and returned by remote calls are passed by value; including the DRbUndumped
module in an object forces it to be passed by reference (useful when implementing callbacks).

See also: Rinda (page 798) XMLRPC (page 826)

• This server program is observable—it notifies all registered listeners of changes to a count
value:

sl_drb/drb_server1.rb

require 'drb'
require 'drb/observer'

class Counter
include DRb::DRbObservable

def run
5.times do |count|
changed
notify_observers(count)

end
end

end

counter = Counter.new
DRb.start_service('druby://localhost:9001', counter)
DRb.thread.join

• This client program interacts with the server, registering a listener object to receive
callbacks before invoking the server’s run method:

sl_drb/drb_client1.rb

require 'drb'

class Listener
include DRbUndumped

def update(value)
puts value

end
end

DRb.start_service
counter = DRbObject.new(nil, "druby://localhost:9001")

listener = Listener.new
counter.add_observer(listener)
counter.run

Chapter 28. Standard Library • 748

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/sl_drb/drb_server1.rb
http://media.pragprog.com/titles/ruby4/code/sl_drb/drb_client1.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

English Names for Global SymbolsEnglishLibrary

Includes the English library file in a Ruby script, and you can reference the global variables
such as $_ using less-cryptic names, listed in the following table. Prior to Ruby 1.9, the name
$PROGRAM_NAME was declared using English. It is now predefined in the Ruby interpreter.

$LAST_READ_LINE$_$ARGV\toprule $*
$LOADED_FEATURES$"$CHILD_STATUS$?
$MATCH$&$DEFAULT_INPUT$<
NR.$DEFAULT_OUTPUT$>
OFS,$ERROR_INFO$!
ORS\$ERROR_POSITION$@
$OUTPUT_FIELD_SEPARATOR$,$FIELD_SEPARATOR$;

TOR
$OUTPUT_RECORD_SEPARA-$\FS;

$PID$$$IGNORECASE$=
$POSTMATCH$'$INPUT_LINE_NUMBER$.
$PREMATCH$`$INPUT_RECORD_SEPARATOR$/
$PROCESS_ID$$$LAST_MATCH_INFO$~
RS/$LAST_PAREN_MATCH$+

The following code shows some regular variable names along with their English counterparts.

require 'English'

$OUTPUT_FIELD_SEPARATOR = ' -- '
"waterbuffalo" =~ /buff/
print $., $INPUT_LINE_NUMBER, "\n"
print $', $POSTMATCH, "\n"
print $$, $PID

produces:

0 -- 0 --
alo -- alo --
24658 -- 24658

report erratum • discuss

English • 749

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Lightweight Templating for HTMLerbLibrary

ERb is a lightweight templating system, allowing you to intermix Ruby code and plain text.
This is sometimes a convenient way to create HTML documents but also is usable in other
plain-text situations. See Section 20.3, Templating Systems, on page 280 for other templating
solutions.

ERB breaks its input text into chunks of regular text and program fragments. It then builds
a Ruby program that, when run, outputs the result text and executes the program fragments.
Program fragments are enclosed between <% and %> markers. The exact interpretation of
these fragments depends on the character following the opening <%:

ActionSequence

Inserts the given Ruby code at this point in the generated program.
If it outputs anything, include this output in the result.

<% ruby code %>

Evaluate expression and insert its value in the output of the gener-
ated program.

<%= ruby expression %>

Comment (ignored).<%# ... %>
Replaced in the output by <% and%> respectively.<%% and %%>

Table 26—Directives for ERB

The following code uses <%…%> blocks to execute a Ruby loop, and <%=…%> to substitute
a value into the output.

require 'erb'
input = %{<% high.downto(low) do |n| # set high, low externally %>
<%= n %> green bottles, hanging on the wall
<%= n %> green bottles, hanging on the wall
And if one green bottle should accidentally fall
There'd be <%= n-1 %> green bottles, hanging on the wall

<% end %>}
high,low = 10, 8
erb = ERB.new(input)
erb.run(binding)

produces:

10 green bottles, hanging on the wall
10 green bottles, hanging on the wall
And if one green bottle should accidentally fall
There'd be 9 green bottles, hanging on the wall
. . .

An optional second parameter to ERB.new sets the safe level for evaluating expressions. If nil,
expressions are evaluated in the current thread; otherwise, a new thread is created, and its
$SAFE level is set to the parameter value.

The optional third parameter to ERB.new allows some control of the interpretation of the input
and of the way whitespace is added to the output. If the third parameter is a string and that
string contains a percent sign, then ERb treats lines starting with a percent sign specially.
Lines starting with a single percent sign are treated as if they were enclosed in<%...%>. Lines

Chapter 28. Standard Library • 750

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

starting with a double percent sign are copied to the output with a single leading percent
sign.

require 'erb'
str = %{\
% 2.times do |i|
This is line <%= i %>

%end
%%%done}
ERB.new(str, 0, '%').run

produces:

This is line 0
This is line 1

%%done

If the third parameter contains the string <>, then a newline will not be written if an input
line starts with an ERB directive and ends with %>. If the trim parameter contains >>, then
a newline will not be written if an input line ends %>.

require 'erb'
str1 = %{\
* <%= "cat" %>
<%= "dog" %>
}
ERB.new(str1, 0, ">").run
ERB.new(str1, 0, "<>").run

produces:

* catdog* cat
dog

The erb library also defines the helper module ERB::Util that contains two methods: html_escape
(aliased as h) and url_encode (aliased as u). These are equivalent to the CGImethods escapeHTML
and escape, respectively (except escape encodes spaces as plus signs, and url_encode uses%20).

require 'erb'
include ERB::Util
str1 = %{\
h(a) = <%= h(a) %>
u(a) = <%= u(a) %>
}
a = "< a & b >"
ERB.new(str1).run(binding)

produces:

h(a) = < a & b >
u(a) = %3C%20a%20%26%20b%20%3E

You may find the command-line utility erb is supplied with your Ruby distribution. This
allows you to run erb substitutions on an input file; see erb --help for details.

report erratum • discuss

erb • 751

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Access User and Group Information in /etc/passwdEtcLibrary

Only if: Unix or Cygwin

The Etc module provides a number of methods for querying the passwd and group facilities
on Unix systems.

• Finds out information about the currently logged-in user:

require 'etc'

name = Etc.getlogin
info = Etc.getpwnam(name)
info.name # => "dave"
info.uid # => 501
info.dir # => "/Users/dave"
info.shell # => "/bin/zsh"

group = Etc.getgrgid(info.gid)
group.name # => "staff"

• Returns the names of users on the system used to create this book:

require 'etc'

users = []
Etc.passwd {|passwd| users << passwd.name }
users[1,5].join(", ") # => "_appleevents, _appowner, _appserver, _ard,

.. _assetcache"

• Returns the IDs of groups on the system used to create this book:

require 'etc'

ids = []
Etc.group {|entry| ids << entry.gid }
ids[1,5].join(", ") # => "55, 87, 81, 79, 33"

Chapter 28. Standard Library • 752

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Expect Method for IO ObjectsexpectLibrary

The expect library adds the method expect to all IO objects. This allows you to write code that
waits for a particular string or pattern to be available from the I/O stream. The expectmethod
is particularly useful with pty objects (see the Pty library on page 794) and with network
connections to remote servers, where it can be used to coordinate the use of external interac-
tive processes.

If the global variable $expect_verbose is true, the expectmethod writes all characters read from
the I/O stream to STDOUT.

See also: pty (page 794)

• Connects to the local FTP server, logs in, and prints out the name of the user’s directory.
(Note that it would be a lot easier to do this using the net/ftp library.)

This code might be specific to the particular ftp daemon.

require 'expect'
require 'socket'

$expect_verbose = true

socket = TCPSocket.new('localhost', 'ftp')

socket.expect("ready")
socket.puts("user testuser")
socket.expect("331 User testuser accepted, provide password.")
socket.puts("pass wibble")
socket.expect("logged in.\r\n")
socket.puts("pwd")
puts(socket.gets)
socket.puts "quit"

produces:

220 ::1 FTP server (tnftpd 20100324+GSSAPI) ready.
331 User testuser accepted, provide password.
230 User testuser logged in.
257 "/Users/testuser" is the current directory.

report erratum • discuss

expect • 753

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Symbolic Names for IO#fcntl CommandsFcntlLibrary

The Fcntl module provides symbolic names for each of the host system’s available fcntl(2)
constants (defined in fcntl.h). That is, if the host system has a constant named F_GETLK defined
in fcntl.h, then the Fcntl module will have a corresponding constant Fcntl::F_GETLK with the
same value as the header file’s #define.

• Different operating system will have different Fcntl constants available. The value asso-
ciated with a constant of a given name may also differ across platforms. Here are the
values on our Mac OS X system:

require 'fcntl'

Fcntl.constants.sort.each do |name|
printf "%10s: 0x%06x\n", name, Fcntl.const_get(name)
end

produces:

FD_CLOEXEC: 0x000001
F_DUPFD: 0x000000
F_GETFD: 0x000001
F_GETFL: 0x000003
F_GETLK: 0x000007
F_RDLCK: 0x000001
F_SETFD: 0x000002
F_SETFL: 0x000004
F_SETLK: 0x000008
F_SETLKW: 0x000009
F_UNLCK: 0x000002
F_WRLCK: 0x000003

O_ACCMODE: 0x000003
O_CREAT: 0x000200
O_EXCL: 0x000800

O_NDELAY: 0x000004
O_NOCTTY: 0x020000

O_NONBLOCK: 0x000004
O_RDONLY: 0x000000
O_RDWR: 0x000002
O_TRUNC: 0x000400
O_WRONLY: 0x000001

Chapter 28. Standard Library • 754

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://www.freebsd.org/cgi/man.cgi?query=fcntl&sektion=2
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Coroutines Using FibersFiberLibrary

The Fiber class that is built into Ruby provides a generator-like capability—fibers may be
created and resumed from some controlling program. If you want to extend the Fiber class
to provide full, symmetrical coroutines, you need first to require the fiber library. This adds
two instance methods, transfer and alive?, to Fiber objects and adds the singleton method current
to the Fiber class.

• It is difficult to come up with a meaningful, concise example of symmetric coroutines
that can’t more easily be coded with asymetric (plain old) fibers. So, here’s an artificial
example:

require 'fiber'

take items two at a time off a queue, calling the producer
if not enough are available
consumer = Fiber.new do |producer, queue|
5.times do
while queue.size < 2
queue = producer.transfer(consumer, queue)

end
puts "Consume #{queue.shift} and #{queue.shift}"

end
end

add items three at a time to the queue
producer = Fiber.new do |consumer, queue|
value = 1
loop do
puts "Producing more stuff"
3.times { queue << value; value += 1}
puts "Queue size is #{queue.size}"
consumer.transfer queue

end
end

consumer.transfer(producer, [])

produces:

Producing more stuff
Queue size is 3
Consume 1 and 2
Producing more stuff
Queue size is 4
Consume 3 and 4
Consume 5 and 6
Producing more stuff
Queue size is 3
Consume 7 and 8
Producing more stuff
Queue size is 4
Consume 9 and 10

report erratum • discuss

Fiber • 755

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Access Dynamically Loaded Libraries (.dll and .so)FiddleLibrary

The Fiddlemodule is a wrapper around libffi, a library that provides access to shared libraries.
On Windows boxes, it can be used to interface with functions in DLLs. Under Unix it can
load shared libraries. Because Ruby does not have typed method parameters or return values,
you must define the types expected by the methods you call by specifying their signatures.

• Here’s a trivial C program that we’ll build as a shared library:

sl_fiddle/lib.c

#include <stdio.h>
int print_msg(char *text, int number) {
int count = printf("Text: %s (%d)\n", text, number);
fflush(stdout);
return count;

}

• Generates a proxy to access the print_msg method in the shared library. The way this
book is built, the shared library is in the same directory as the Ruby code; this directory
must be added to the directories searched when looking for dynamic objects. You can
do this by setting the DYLD_LIBRARY_PATH environment variable.

require 'fiddle'
include Fiddle
lib = Fiddle.dlopen("lib.so")
print_msg = Fiddle::Function.new(lib['print_msg'], # entry point

[TYPE_VOIDP, TYPE_INT], # parameter types
TYPE_INT) # return type

msg_size = print_msg.call("Answer", 42)
puts "Just wrote #{msg_size} bytes"

produces:

Text: Answer (42)
Just wrote 18 bytes

Chapter 28. Standard Library • 756

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/sl_fiddle/lib.c
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

File and Directory ManipulationFileUtilsLibrary

FileUtils is a collection of methods for manipulating files and directories. Although generally
applicable, the model is particularly useful when writing installation scripts and Rake tasks.

Many methods take a src parameter and a dest parameter. If dest is a directory, src may be a
single filename or an array of filenames. For example, the following copies the files a, b, and
c to /tmp:

cp(%w{ a b c }, "/tmp")

Most functions take a set of options. These may be zero or more of the following:

MeaningOption

Traces execution of each function (by default to STDERR, although this can be:verbose
overridden by setting the class variable @fileutils_output.
Does not perform the action of the function (useful for testing scripts).:noop

Overrides some default conservative behavior of the method (for example, over-
writing an existing file).

:force

(Setuid and setgid flags are always cleared.)
Attempts to preserve atime, mtime, and mode information from src in dest.:preserve

For maximum portability, use forward slashes to separate the directory components of file-
names, even on Windows.

FileUtils contains three submodules that duplicate the top-level methods but that have different
default options: module FileUtils::Verbose sets the verbose option, module FileUtils::NoWrite sets
noop, and FileUtils::DryRun sets verbose and noop.

See also: un (page 821)

require 'fileutils'
include FileUtils::Verbose
cd("/tmp") do
cp("/etc/passwd", "tmp_passwd")
chmod(0666, "tmp_passwd")
cp_r("/usr/include/net/", "headers")
rm("tmp_passwd") # Tidy up
rm_rf("headers")

end

produces:

cd /tmp
cp /etc/passwd tmp_passwd
chmod 666 tmp_passwd
cp -r /usr/include/net/ headers
rm tmp_passwd
rm -rf headers
cd -

report erratum • discuss

FileUtils • 757

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Traverse Directory TreesFindLibrary

The Find module supports the top-down traversal of a set of file paths, given as arguments
to the find method. If an argument is a file, its name is passed to the block associated with
the call. If it’s a directory, then its name and the name of all its files and subdirectories will
be passed in. If no block is associated with the call, an Enumerator is returned.

Within the block, the method prune may be called, which skips the current file or directory,
restarting the loop with the next directory. If the current file is a directory, that directory
will not be recursively entered. In the following example, we don’t list the contents of the
local Subversion cache directories:

require 'find'
Find.find("/etc/passwd", "code/ducktyping") do |f|
type = case

when File.file?(f) then "File: "
when File.directory?(f) then "Dir: "
else "?"
end

puts "#{type} #{f}"
Find.prune if f =~ /.svn/

end

produces:

File: /etc/passwd
Dir: code/ducktyping
Dir: code/ducktyping/.svn
File: code/ducktyping/addcust.rb
File: code/ducktyping/roman3.rb
File: code/ducktyping/testaddcust1.rb
File: code/ducktyping/testaddcust2.rb
File: code/ducktyping/testaddcust3.rb

Chapter 28. Standard Library • 758

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Object DelegationForwardableLibrary

Forwardable provides a mechanism to allow classes to delegate named method calls to other
objects.

See also: Delegator (page 746)

• This simple symbol table uses a hash, exposing a subset of the hash’s methods:

require 'forwardable'

class SymbolTable
extend Forwardable
def_delegator(:@hash, :[], :lookup)
def_delegator(:@hash, :[]=, :add)
def_delegators(:@hash, :size, :has_key?)
def initialize
@hash = Hash.new

end
end

st = SymbolTable.new
st.add('cat', 'feline animal') # => "feline animal"
st.add('dog', 'canine animal') # => "canine animal"
st.add('cow', 'bovine animal') # => "bovine animal"

st.has_key?('cow') # => true
st.lookup('dog') # => "canine animal"

• Forwards can also be defined for individual objects by extending them with the Single-
Forwardable module. It’s hard to think of a good reason to use this feature, so here’s a
silly one:

require 'forwardable'

TRICKS = ["roll over", "play dead"]

dog = "rover"
dog.extend SingleForwardable
dog.def_delegator(:TRICKS, :each, :can)

dog.can do |trick|
puts trick

end

produces:

roll over
play dead

report erratum • discuss

Forwardable • 759

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Interface to GDBM DatabaseGDBMLibrary

Only if: gdbm library
available

Interfaces to the gdbm database library.2 Although the DBM library provides generic access
to gdbm databases, it doesn’t expose some features of the full gdbm interface, such as the
cache size, synchronization mode, reorganization, and locking. Only one process may have
a GDBM database open for writing (unless locking is disabled).

See also: DBM (page 745) SDBM (page 803)

• Stores some values into a database and then reads them back. The second parameter to
the open method specifies the file mode, and the next parameter uses two flags that (1)
create the database if it doesn’t exist and (2) force all writes to be synced to disk. Create
on open is the default Ruby gdbm behavior.

require 'gdbm'

GDBM.open("data.dbm", 0644, GDBM::WRCREAT | GDBM::SYNC) do |dbm|
dbm['name'] = "Walter Wombat"
dbm['dob'] = "1969-12-25"
dbm['uses'] = "Ruby"

end

GDBM.open("data.dbm") do |dbm|
p dbm.keys
p dbm['dob']
dbm.delete('dob')
p dbm.keys

end

• Opens a database read-only. The attempt to delete a key would fail.

require 'gdbm'

GDBM.open("data.dbm", 0, GDBM::READER) do |dbm|
p dbm.keys
dbm.delete('name') # !! fails !!

end

2. http://www.gnu.org/software/gdbm/gdbm.html

Chapter 28. Standard Library • 760

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://www.gnu.org/software/gdbm/gdbm.html
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Parse Command-Line OptionsGetoptLongLibrary

Class GetoptLong supports GNU-style command-line option parsing. Options may be a minus
sign (-) followed by a single character or may be two minus signs (–) followed by a name (a
long option). Long options may be abbreviated to their shortest unambiguous lengths.

A single internal option may have multiple external representations. For example, the option
to control verbose output could be any of -v, --verbose, or --details. Some options may also take
an associated value.

Each internal option is passed to GetoptLong as an array, containing strings representing the
option’s external forms and a flag. The flag specifies howGetoptLong is to associate an argument
with the option (NO_ARGUMENT, REQUIRED_ARGUMENT, or OPTIONAL_ARGUMENT).

If the environment variable POSIXLY_CORRECT is set, all options must precede nonoptions on
the command line. Otherwise, the default behavior ofGetoptLong is to reorganize the command
line to put the options at the front. This behavior may be changed by setting the attribute
GetoptLong#ordering= to one of PERMUTE, REQUIRE_ORDER, or RETURN_IN_ORDER. The environment
variable POSIXLY_CORRECT may not be overridden.

See also: OptionParser (page 784)

Call using "ruby example.rb --size 10k -v -q a.txt b.doc"

require 'getoptlong'

Fake out an initial command line
ARGV.clear.push *%w(--size 10k -v -q a.txt b.doc)

specify the options we accept and initialize
the option parser

opts = GetoptLong.new(
["--size", "-s", GetoptLong::REQUIRED_ARGUMENT],
["--verbose", "-v", GetoptLong::NO_ARGUMENT],
["--query", "-q", GetoptLong::NO_ARGUMENT],
["--check", "--valid", "-c", GetoptLong::NO_ARGUMENT]

)

process the parsed options

opts.each do |opt, arg|
puts "Option: #{opt}, arg #{arg.inspect}"

end

puts "Remaining args: #{ARGV.join(', ')}"

produces:

Option: --size, arg "10k"
Option: --verbose, arg ""
Option: --query, arg ""
Remaining args: a.txt, b.doc

report erratum • discuss

GetoptLong • 761

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Generic TCP ServerGServerLibrary

This is a simple framework for writing TCP servers. To use it, subclass the GServer class, set
the port (and potentially other parameters) in the constructor, and then implement a serve
method to handle incoming requests.

GServer manages a thread pool for incoming connections, so your serve method may be
running in multiple threads in parallel.

You can run multiple GServer copies on different ports in the same application.

• When a connection is made on port 2000, responds with the current time as a string.
Terminates after handling three requests.

require 'gserver'
class TimeServer < GServer
def initialize
super(2000)
@count = 3

end
def serve(client)
client.puts Time.now
@count -= 1
stop if @count.zero?

end
end
server = TimeServer.new
server.start.join

• You can test this server by reading from localhost on port 2000. We use curl to do this—
you could also use telnet:

$ curl -s localhost:2000
2013-05-27 12:33:22 -0500

Add console support to IO objectsIO/consoleLibrary

Require io/console, and I/O objects associated with terminals gain the methods IO#raw, IO#raw!,
IO#getch, IO#echo=, IO#echo?, IO#noecho, IO#winsize, IO#winsize=, IO#iflush, IO#oflush, and IO#ioflush.
The IO class also gains a singleton method, IO.console, which returns an I/O object connected
to the controlling terminal of the process.

• Prompt for a password with no echo.

require 'io/console'
password = STDIN.noecho do
print "Your password: "
gets

end

• What’s the size of the controlling terminal?

require "io/console"
IO.console.winsize # => [22, 137]

Chapter 28. Standard Library • 762

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Turn blocking I/O on and offIO/nonblockLibrary

If a program requires io/nonblock, I/O objects gain the methods IO#nonblock, IO#nonblock?, and
IO#nonblock=. The first takes a block, and runs that block with the given file description in
nonblocking mode. The second lets you query the blocking status of a file descriptor, and
the last lets you turn blocking on and off. You’ll probably want to investigate IO.select, as
you’ll need it to tell when the file cn be read or written.

Check for Pending Data to Be ReadIO/WaitLibrary

Only if: FIONREAD
feature in ioctl(2)

Including the library io/wait adds the methods IO#nread, IO#ready?, and IO#wait to the standard
IO class. These allow an IO object opened on a stream (not a file) to be queried to see whether
data is available to be read without reading it and to wait for a given number of bytes to
become available.

• Sets up a pipe between two processes and writes 10 bytes at a time into it. Periodically
sees how much data is available.

require 'io/wait'

reader, writer = IO.pipe

if (pid = fork)
writer.close
8.times do
sleep 0.03
if reader.ready?
len = reader.nread
puts "#{len} bytes available: #{reader.sysread(len)}"

else
puts "No data available"

end
end
Process.waitpid(pid)

else
reader.close
5.times do |n|
sleep 0.04
writer.write n.to_s * 10

end
writer.close

end

produces:

No data available
10 bytes available: 0000000000
10 bytes available: 1111111111
10 bytes available: 2222222222
No data available
10 bytes available: 3333333333
10 bytes available: 4444444444
No data available

report erratum • discuss

IO/nonblock • 763

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Represent and Manipulate IP AddressesIPAddrLibrary

Class IPAddr holds and manipulates Internet Protocol (IP) addresses. Each address contains
three parts: an address, a mask, and an address family. The family will typically be AF_INET
for IPv4 and IPv6 addresses. The class contains methods for extracting parts of an address,
checking for IPv4-compatible addresses (and IPv4-mapped IPv6 addresses), testing whether
an address falls within a subnet, and performing many other functions. It is also interesting
in that it contains as data its own unit tests.

require 'ipaddr'

v4 = IPAddr.new('192.168.23.0/24')
v4 # => #<IPAddr: IPv4:192.168.23.0/ 255.255.255.0>
v4.mask(16) # => #<IPAddr: IPv4:192.168.0.0/ 255.255.0.0>
v4.reverse # => "0.23.168.192.in-addr.arpa"
v6 = IPAddr.new('3ffe:505:2::1')
v6 # => #<IPAddr: IPv6:3ffe:0505:0002:0000:0000:0000:0000:0001/

.. ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff>
v6.mask(48) # => #<IPAddr: IPv6:3ffe:0505:0002:0000:0000:0000:0000:0000/

.. ffff:ffff:ffff:0000:0000:0000:0000:0000>

the value for 'family' is OS dependent. This
value is for OS X
v6.family # => 30

other = IPAddr.new("192.168.23.56")
v4.include?(other) # => true

Chapter 28. Standard Library • 764

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Interactive RubyirbLibrary

The irb library is most commonly associated with the console command irb. However, you
can also start an irb session from within your running application. A common technique is
to trap a signal and start irb in the handler.

The following program sets up a signal handler that runs irb when the user hits ^C. The user
can change the value of the instance variable @value. When they exit from irb, the original
program continues to run with that new value.

sl_irb/run_irb.rb

require 'irb'

trap "INT" do
IRB.start

end

count = 0
loop do
count += 1
puts count
puts "Value = #{@value}" if defined? @value
sleep 1

end

Here’s a simple session using it:

$ ruby code/sl_irb/run_irb.rb
1
2
3
^Cruby-1.9.2-p0 > @value = "wibble"
=> "wibble"
ruby-1.9.2-p0 > exit
4
Value = wibble
5
Value = wibble
. . .

report erratum • discuss

irb • 765

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/sl_irb/run_irb.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Generate and Parse JSON FormatjsonLibrary

JSON is a language-independent data interchange format based on key/value pairs (hashes
in Ruby) and sequences of values (arrays in Ruby).3 JSON is frequently used to exchange
data between JavaScript running in browsers and server-based applications. JSON is not a
general-purpose object marshaling format. Although you can add to_json methods to your
own classes, you will lose interoperability.

See also: yaml (page 827)

• Serializes a data structure into a string and writes that to a file:

require 'json'
data = { name: 'dave', address: ['tx', 'usa'], age: 17 }
serialized = data.to_json
serialized # => {"name":"dave","address":["tx","usa"],"age":17}
File.open("data", "w") {|f| f.puts serialized}

• Reads the serialized data from the file and reconstitutes it:

require 'json'
serialized = File.read("data")
data = JSON.parse(serialized)
data # => {"name"=>"dave", "address"=>["tx", "usa"], "age"=>17}

• The methods j and jj convert their argument to JSON and write the result to STDOUT (jj
prettyprints). This can be useful in irb.

require 'json'
data = { name: 'dave', address: ['tx', 'usa'], age: 17 }
puts "Regular"
j data
puts "Pretty"
jj data

produces:

Regular
{"name":"dave","address":["tx","usa"],"age":17}
Pretty
{
"name": "dave",
"address": [
"tx",
"usa"

],
"age": 17

}

3. http://www.ietf.org/rfc/rfc4627.txt

Chapter 28. Standard Library • 766

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://www.ietf.org/rfc/rfc4627.txt
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Application LoggingLoggerLibrary

Writes log messages to a file or stream. Supports automatic time- or size-based rolling of log
files. Messages can be assigned severities, and only those messages at or above the logger’s
current reporting level will be logged.

• During development, you may want to see all messages:

require 'logger'
log = Logger.new(STDOUT)
log.level = Logger::DEBUG
log.datetime_format = "%H:%M:%S"
log.info("Application starting")
3.times do |i|
log.debug("Executing loop, i = #{i}")
temperature = some_calculation(i) # defined externally
if temperature > 50
log.warn("Possible overheat. i = #{i}")

end
end

log.info("Application terminating")

produces:

I, [12:33:23#24712] INFO -- : Application starting
D, [12:33:23#24712] DEBUG -- : Executing loop, i = 0
D, [12:33:23#24712] DEBUG -- : Executing loop, i = 1
D, [12:33:23#24712] DEBUG -- : Executing loop, i = 2
W, [12:33:23#24712] WARN -- : Possible overheat. i = 2
I, [12:33:23#24712] INFO -- : Application terminating

• In deployment, you can turn off anything below INFO:

require 'logger'
log = Logger.new(STDOUT)
log.level = Logger::INFO
log.datetime_format = "%H:%M:%S"

as above...

produces:

I, [12:33:23#24714] INFO -- : Application starting
W, [12:33:23#24714] WARN -- : Possible overheat. i = 2
I, [12:33:23#24714] INFO -- : Application terminating

• Logs to a file, which is rotated when it gets to about 10KB. Keeps up to five old files.

require 'logger'
log = Logger.new("application.log", 5, 10*1024)

log.info("Application starting")
...

report erratum • discuss

Logger • 767

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Unified NumbersmathnLibrary

The mathn library attempts to bring some unity to numbers under Ruby, making classes
Bignum, Complex, Fixnum, Integer, and Rational work and play better together. It automatically
includes the libraries complex, rational, matrix, and prime.

• Types will tend to convert between themselves in a more natural way (so, for example,
Complex::I squared will evaluate to -1, rather than Complex[-1,0]).

• Division will tend to produce more accurate results. The conventional division operator
(/) is redefined to use quo, which doesn’t round.

• Related to the previous point, rational numbers will be used in preference to floats when
possible. Dividing one by two results in the rational number 1⁄2, rather than 0.5 (or 0,
the result of normal integer division).

See also: Matrix (page 769) Rational (page 794) Complex (page 738) Prime (page 790)

• Without mathn:

require 'matrix'
36/16 # => 2
Math.sqrt(36/16) # => 1.4142135623730951

Complex::I * Complex::I # => (-1+0i)

(36/16)**-2 # => 1/4
(-36/16)**-2 # => 1/9

(36/16)**(1/2) # => 1
(-36/16)**(1/2) # => 1

(36/16)**(-1/2) # => 1/2
(-36/16)**(-1/2) # => -1/3

Matrix.diagonal(6,7,8)/3 # => Matrix[[2, 0, 0], [0, 2, 0], [0, 0, 2]]

• With mathn:

36/16 # => 9/4
Math.sqrt(36/16) # => 3/2

Complex::I * Complex::I # => -1

(36/16)**-2 # => 16/81
(-36/16)**-2 # => 16/81

(36/16)**(1/2) # => 3/2
(-36/16)**(1/2) # => (9.184850993605148e-17+1.5i)

(36/16)**(-1/2) # => 2/3
(-36/16)**(-1/2) # => (4.082155997157844e-17-0.6666666666666666i)

Matrix.diagonal(6,7,8)/3 # => Matrix[[2, 0, 0], [0, 7/3, 0], [0, 0, 8/3]]

Chapter 28. Standard Library • 768

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Matrix and Vector ManipulationMatrixLibrary

The matrix library defines classes Matrix and Vector, representing rectangular matrices and
vectors. As well as the normal arithmetic operations, they provide methods for matrix-spe-
cific functions (such as rank, inverse, and determinants) and a number of constructor methods
(for creating special-case matrices—zero, identity, diagonal, singular, and vector).

As of Ruby 1.9, matrices use quo internally for division, so rational numbers may be returned
as a result of integer division. In prior versions of Ruby, you’d need to include the mathn
library to achieve this.

require 'matrix'

m1 = Matrix[[2, 1], [-1, 1]]

m1[0,1] # => 1

m1.inv # => Matrix[[1/3, -1/3], [1/3, 2/3]]

m1 * m1.inv # => Matrix[[1/1, 0/1], [0/1, 1/1]]

m1.determinant # => 3

m1.singular? # => false

v1 = Vector[3, 4] # => Vector[3, 4]

v1.covector # => Matrix[[3, 4]]

m1 * v1 # => Vector[10, 1]

m2 = Matrix[[1,2,3], [4,5,6], [7,8,9]]

m2.minor(1, 2, 1, 2) # => Matrix[[5, 6], [8, 9]]

Unit Testing FrameworkMiniTestLibrary

New in Ruby 1.9, MiniTest is now the standard unit testing framework supplied with Ruby.
The minitest library contains classes for unit tests, mock objects, and a (trivial) subset of
RSpec-style testing syntax.

The unit testing framework is similar to the original Test::Unit framework. However, if you
want functionality that is the same as Test::Unit, use the Test::Unit wrappers for MiniTest—
simply require "test/unit" as normal.

Chapter 13, Unit Testing, on page 175 contains a tutorial on unit testing with Ruby.

report erratum • discuss

Matrix • 769

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Monitor-Based SynchronizationMonitorLibrary

Monitors are a mutual-exclusion mechanism. They allow separate threads to define shared
resources that will be accessed exclusively, and they provide a mechanism for a thread to
wait for resources to become available in a controlled way.

The monitor library actually defines three separate ways of using monitors: by subclassing,
as a mixin, and as a extension to a particular object. In this section, we show the mixin form
of Monitor. The subclassing form is effectively identical. In both it and when including Moni-
torMixin in an existing class, it is essential to invoke super in the class’s initialize method.

See also: Thread (page 702)

This example would be better written using fibers.
require 'monitor'
require 'mathn'

numbers = []
numbers.extend(MonitorMixin)
number_added = numbers.new_cond

consumer = Thread.new do # Reporter thread
5.times do
numbers.synchronize do
number_added.wait_while { numbers.empty? }
puts numbers.shift

end
end

end

generator = Thread.new do # Prime number generator thread
primes = Prime.each
5.times do
numbers.synchronize do
numbers << primes.next
number_added.signal

end
end

end

generator.join
consumer.join

produces:

2
3
5
7
11

Chapter 28. Standard Library • 770

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Mutex Mix-InMutex_mLibrary

mutex_m is a variant of class Mutex on page 588 that allows mutex facilities to be mixed into
any object.

The Mutex_m module defines methods that correspond to those in Mutex but with the prefix
mu_ (so that lock is defined as mu_lock and so on). These are then aliased to the original Mutex
names.

See also: Mutex (page 588) Thread (page 702)

require 'mutex_m'

class Counter
include Mutex_m
attr_reader :count
def initialize
@count = 0
super

end
def tick
lock
@count += 1
unlock

end
end

c = Counter.new

t1 = Thread.new { 100_000.times { c.tick } }
t2 = Thread.new { 100_000.times { c.tick } }

t1.join
t2.join

c.count # => 200000

report erratum • discuss

Mutex_m • 771

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

FTP ClientNet::FTPLibrary

The net/ftp library implements a File Transfer Protocol (FTP) client. As well as data transfer
commands (getbinaryfile, gettextfile, list, putbinaryfile, and puttextfile), the library supports the full
complement of server commands (acct, chdir, delete, mdtm, mkdir, nlst, rename, rmdir, pwd, size,
status, and system). Anonymous and password-authenticated sessions are supported. Con-
nections may be active or passive.

See also: open-uri (page 781)

require 'net/ftp'

ftp = Net::FTP.new('ftp.ruby-lang.org')
ftp.login
ftp.chdir('pub/ruby/doc')
puts ftp.list('*txt')
ftp.getbinaryfile('MD5SUM.txt', 'md5sum.txt', 1024)
ftp.close
puts File.read('md5sum.txt')

produces:

-rw-rw-r-- 1 1027 100 12149 Sep 10 06:02 MD5SUM.txt
-rw-rw-r-- 1 1027 100 13565 Sep 10 06:03 SHA1SUM.txt
d529768c828c930c49b3766d13dc1f2c ruby-man-1.4.6-jp.tar.gz
8eed63fec14a719df26247fb8384db5e ruby-man-1.4.6.tar.gz
623b5d889c1f15b8a50fe0b3b8ba4b0f ruby-man-ja-1.6.6-20011225-rd.tar.gz
5f37ef2d67ab1932881cd713989af6bf ruby-man-ja-html-20050214.tar.bz2
e9949b2023a63b6259b02bed4fb13064 ruby-man-ja-html-20050214.tar.gz
. . .

Chapter 28. Standard Library • 772

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

HTTP ClientNet::HTTPLibrary

The net/http library provides a simple client to fetch headers and web page contents using
the HTTP and HTTPS protocols.

The get post and head methods return a response object, with the content of the response
accessible through the response’s body method.

See also: OpenSSL (page 783) open-uri (page 781) URI (page 822)

• Opens a connection and fetches a page, displaying the response code and message,
header information, and some of the body:

require 'net/http'

Net::HTTP.start('www.pragprog.com') do |http|
response = http.get('/categories/new')
puts "Code = #{response.code}"
puts "Message = #{response.message}"
response.each {|key, val| printf "%-14s = %-40.40s\n", key, val }
p response.body[0, 55]

end

produces:

Code = 302
Message = Found
content-type = text/html; charset=utf-8
date = Mon, 27 May 2013 17:36:21 GMT
location = http://pragprog.com/categories/new
server = nginx/1.2.6
status = 302 Found
x-request-id = 1c76c5446f0a1dd001ceb768f2611364
x-runtime = 0.004833
x-ua-compatible = IE=Edge,chrome=1
content-length = 100
connection = keep-alive
"<html><body>You are being <a href=\"http://pragprog.com/"

• Fetches a single page, displaying the response code and message, header information,
and some of the body:

require 'net/http'

response = Net::HTTP.get_response('www.pragprog.com',
'/categories/new')

puts "Code = #{response.code}"
puts "Message = #{response.message}"
response.each {|key, val| printf "%-14s = %-40.40s\n", key, val }
p response.body[0, 55]

produces:

Code = 302
Message = Found
content-type = text/html; charset=utf-8
date = Mon, 27 May 2013 17:36:21 GMT

report erratum • discuss

Net::HTTP • 773

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

location = http://pragprog.com/categories/new
server = nginx/1.2.6
status = 302 Found
x-request-id = ab9de753032bb022cbd33fefbe030f56
x-runtime = 0.005468
x-ua-compatible = IE=Edge,chrome=1
content-length = 100
connection = keep-alive
"<html><body>You are being <a href=\"http://pragprog.com/"

• Follows redirections (the open-uri library does this automatically). This code comes from
the RDoc documentation.

require 'net/http'
require 'uri'

def fetch(uri_str, limit=10)
fail 'http redirect too deep' if limit.zero?
puts "Trying: #{uri_str}"
response = Net::HTTP.get_response(URI.parse(uri_str))
case response
when Net::HTTPSuccess then response
when Net::HTTPRedirection then fetch(response['location'], limit-1)
else response.error!
end

end

response = fetch('http://www.ruby-lang.org')
p response.body[0, 50]

produces:

Trying: http://www.ruby-lang.org
"<html>\n <head>\n <script type=\"text/javascript\""

• Searches our site for things about Ruby and lists the authors. (This would be tidier using
Hpricot.)

require 'net/http'

uri = URI.parse('http://pragprog.com/search')
response = Net::HTTP.post_form(uri, "q" => "ruby")
puts response.body.scan(%r{<p class="by-line">by (.*?)</p>})[0,3]

produces:

Caleb Tennis
Maik Schmidt
Bruce Tate

Chapter 28. Standard Library • 774

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Access an IMAP Mail ServerNet::IMAPLibrary

The Internet Mail Access Protocol (IMAP) is used to allow mail clients to access mail servers.
It supports plain-text login and the IMAP login and CRAM-MD5 authentication mechanisms.
Once connected, the library supports threading, so multiple interactions with the server may
take place at the same time.

The examples that follow are taken with minor modifications from the RDoc documentation
in the library source file.

The TMail gem provides an interface for creating and parsing email messages.

See also: Net::POP (page 776)

• Lists senders and subjects of messages to “dave” in the inbox:

require 'net/imap'

imap = Net::IMAP.new('my.mailserver.com')
imap.authenticate('LOGIN', 'dave', 'secret')
imap.examine('INBOX')
puts "Message count: #{ imap.responses["EXISTS"]}"
imap.search(["TO", "dave"]).each do |message_id|
envelope = imap.fetch(message_id, "ENVELOPE")[0].attr["ENVELOPE"]

puts "#{envelope.from[0].name}: \t#{envelope.subject}"
end

• Moves all email messages with a date in April 2008 from the folder Mail/sent-mail to
Mail/sent-apr08:

require 'net/imap'
imap = Net::IMAP.new('my.mailserver.com')
imap.authenticate('LOGIN', 'dave', 'secret')
imap.select('Mail/sent-mail')
if not imap.list('Mail/', 'sent-apr08')
imap.create('Mail/sent-apr08')

end
imap.search(["BEFORE", "01-May-2008",

"SINCE", "1-Apr-2008"]).each do |message_id|
imap.copy(message_id, "Mail/sent-apr08")
imap.store(message_id, "+FLAGS", [:Deleted])

end
imap.expunge

report erratum • discuss

Net::IMAP • 775

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Access a POP Mail ServerNet::POPLibrary

The net/pop library provides a simple client to fetch and delete mail on a Post Office Protocol
(POP) server.

The class Net::POP3 is used to access a POP server, returning a list of Net::POPMail objects, one
per message stored on the server. These POPMail objects are then used to fetch and/or delete
individual messages.

The library also provides class APOP, an alternative to the POP3 class that performs encrypted
authentication.

require 'net/pop'
pop = Net::POP3.new('server.ruby-stuff.com')
pop.start('joe', 'secret') do |server|
msg = server.mails[0]

Print the 'From:' header line
from = msg.header.split("\r\n").grep(/^From: /)[0]
puts from
puts
puts "Full message:"
text = msg.pop
puts text

end

produces:

From: dave@facet.ruby-stuff.com (Dave Thomas)

Full message:
Return-Path: <dave@facet.ruby-stuff.com>
Received: from facet.ruby-stuff.com (facet.ruby-stuff.com [10.96.0.122])

by pragprog.com (8.11.6/8.11.6) with ESMTP id i2PJMW701809
for <joe@carat.ruby-stuff.com>; Thu, 25 Mar 2008 13:22:32 -0600

Received: by facet.ruby-stuff.com (Postfix, from userid 502)
id 4AF228B1BD; Thu, 25 Mar 2008 13:22:36 -0600 (CST)

To: joe@carat.ruby-stuff.com
Subject: Try out the new features!
Message-Id: <20080325192236.4AF228B1BD@facet.ruby-stuff.com>
Date: Thu, 25 Mar 2008 13:22:36 -0600 (CST)
From: dave@facet.ruby-stuff.com (Dave Thomas)
Status: RO

Ruby 1.9 has even more new features, both in
the core language and in the supplied libraries.

Try it out!

Chapter 28. Standard Library • 776

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Simple SMTP ClientNet::SMTPLibrary

The net/smtp library provides a simple client to send electronic mail using the Simple Mail
Transfer Protocol (SMTP). It does not assist in the creation of the message payload—it simply
delivers messages once an RFC 822 message has been constructed. The TMail gem provides
an interface for creating and parsing email messages.

• Sends an e-mail from a string:

require 'net/smtp'

msg = "Subject: Test\n\nNow is the time\n"
Net::SMTP.start('pragprog.com') do |smtp|
smtp.send_message(msg, 'dave@pragprog.com', ['dave'])

end

• Sends an e-mail using an SMTP object and an adapter:

require 'net/smtp'

Net::SMTP::start('pragprog.com', 25, "pragprog.com") do |smtp|
smtp.open_message_stream('dave@pragprog.com', # from

['dave'] # to
) do |stream|

stream.puts "Subject: Test1"
stream.puts
stream.puts "And so is this"

end
end

• Sends an e-mail to a server requiring CRAM-MD5 authentication:

require 'net/smtp'

msg = "Subject: Test\n\nNow is the time\n"
Net::SMTP.start('pragprog.com', 25, 'pragprog.com',

'user', 'password', :cram_md5) do |smtp|
smtp.send_message(msg, 'dave@pragprog.com', ['dave'])

end

report erratum • discuss

Net::SMTP • 777

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Telnet ClientNet::TelnetLibrary

The net/telnet library provides a complete implementation of a telnet client and includes
features that make it a convenient mechanism for interacting with nontelnet services.

• Connects to localhost, runs the date command, and disconnects:

require 'net/telnet'
tn = Net::Telnet.new({})
tn.login "testuser", "wibble"
tn.cmd "date" # => "date\nMon May 27 12:33:29 CDT 2013\nlight-boy:~ testuser$ "

• The methods new, cmd, login, and waitfor take an optional block. If present, the block is
passed output from the server as it is received by the routine. This can be used to provide
real-time output, rather than waiting (for example) for a login to complete before dis-
playing the server’s response.

require 'net/telnet'
tn = Net::Telnet.new({}) {|str| print str }
tn.login("testuser", "wibble") {|str| print str }
tn.cmd("date") {|str| print str }

produces:

Trying localhost...
Connected to localhost.

Darwin/BSD (light-boy.local) (ttys007)

login: testuser
Password:
Last login: Mon May 27 12:33:29 on ttys007
light-boy:~ testuser$ date
Mon May 27 12:33:29 CDT 2013
light-boy:~ testuser$

• Query a WHOIS server on port 43.

require 'net/telnet'
tn = Net::Telnet.new('Host' => 'whois.domain.com',

'Port' => '43',
'Timeout' => 5,
'Telnetmode' => false)

tn.write("pragprog.com\r\n")
puts tn.sock.grep(/ on /)

produces:

Record last updated on 15-Oct-2012.
Record expires on 19-Jan-2016.
Record created on 19-Jan-1999.

Chapter 28. Standard Library • 778

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Interface to Network Kanji FilterNKFLibrary

The NKF module is a wrapper around Itaru Ichikawa’s Network Kanji Filter (NKF) library
(version 1.7). It provides functions to guess at the encoding of JIS, EUC, and SJIS streams
and to convert from one encoding to another. Even though Ruby 1.9 now supports these
encodings natively, this library is still useful for guessing encodings.

• As of Ruby 1.9, NFK uses the built-in encoding objects:

require 'nkf'
NKF::AUTO # => nil
NKF::JIS # => #<Encoding:ISO-2022-JP (dummy)>
NKF::EUC # => #<Encoding:EUC-JP>
NKF::SJIS # => #<Encoding:Shift_JIS>

• Guesses at the encoding of a string. (Thanks to Nobu Nakada for the examples on this
page.)

require 'nkf'
p NKF.guess("Yukihiro Matsumoto")
p NKF.guess("\eB^DbHf$-$R$m\e(B")
p NKF.guess("\244\336\244\304\244\342\244\310\244\346\244\255\244\322\244\355")
p NKF.guess("\202\334\202\302\202\340\202\306\202\344\202\253\202\320\202\353")

produces:

#<Encoding:US-ASCII>
#<Encoding:ISO-2022-JP (dummy)>
#<Encoding:EUC-JP>
#<Encoding:Shift_JIS>

• The NFK.nkf method takes two parameters. The first is a set of options, passed on to the
NKF library. The second is the string to translate. The following examples assume that
your console is set up to accommodate Japanese characters. The text at the end of the
three ruby commands is Yukihiro Matsumoto in Hiragana.

report erratum • discuss

NKF • 779

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

The Observer PatternObservableLibrary

The Observer pattern, also known as Publish/Subscribe, provides a simple mechanism for
one object (the source) to inform a set of interested third-party objects when its state changes
(seeDesign Patterns [GHJV95]). In the Ruby implementation, the notifying class mixes in the
moduleObservable, which provides the methods for managing the associated observer objects.
The observers must implement the update method to receive notifications.

require 'observer'

class CheckWaterTemperature # Periodically check the water
include Observable

def run
last_temp = nil
loop do
temp = Temperature.fetch # external class...
puts "Current temperature: #{temp}"
if temp != last_temp
changed # notify observers
notify_observers(Time.now, temp)
last_temp = temp

end
end

end
end

class Warner
def initialize(&limit)
@limit = limit

end
def update(time, temp) # callback for observer
if @limit.call(temp)
puts "--- #{time.to_s}: Temperature outside range: #{temp}"

end
end

end

checker = CheckWaterTemperature.new
checker.add_observer(Warner.new {|t| t < 80})
checker.add_observer(Warner.new {|t| t > 120})
checker.run

produces:

Current temperature: 83
Current temperature: 75
--- 2013-05-27 12:33:30 -0500: Temperature outside range: 75
Current temperature: 90
Current temperature: 134
--- 2013-05-27 12:33:30 -0500: Temperature outside range: 134
Current temperature: 134
Current temperature: 112
Current temperature: 79
--- 2013-05-27 12:33:30 -0500: Temperature outside range: 79

Chapter 28. Standard Library • 780

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Treat FTP and HTTP Resources as Filesopen-uriLibrary

The open-uri library extends Object#open, allowing it to accept URIs for FTP and HTTP as
well as local filenames. Once opened, these resources can be treated as if they were local
files, accessed using conventional IO methods. The URI passed to open is either a string con-
taining an HTTP or FTP URL or a URI object (see the URI library on page 822). When opening
an HTTP resource, the method automatically handles redirection and proxies. When using
an FTP resource, the method logs in as an anonymous user.

The IO object returned by open in these cases is extended to support methods that return
metainformation from the request: content_type, charset, content_encoding, last_modified, status,
base_uri, meta.

See also: URI (page 822)

require 'open-uri'
require 'pp'

open('http://ruby-lang.org') do |f|
puts "URI: #{f.base_uri}"
puts "Content-type: #{f.content_type}, charset: #{f.charset}"
puts "Encoding: #{f.content_encoding}"
puts "Last modified: #{f.last_modified}"
puts "Status: #{f.status.inspect}"
pp f.meta
puts "----"
3.times {|i| puts "#{i}: #{f.gets}" }

end

produces:

URI: http://www.ruby-lang.org/
Content-type: text/html, charset: iso-8859-1
Encoding: []
Last modified: 2013-05-22 16:31:36 -0500
Status: ["200", "OK"]
{"date"=>"Mon, 27 May 2013 17:33:23 GMT",
"server"=>"nginx/0.7.67",
"content-type"=>"text/html",
"content-length"=>"748",
"last-modified"=>"Wed, 22 May 2013 21:31:36 GMT",
"accept-ranges"=>"bytes",
"via"=>"1.1 www.ruby-lang.org"}

0: <html>
1: <head>
2: <script type="text/javascript">

report erratum • discuss

open-uri • 781

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Run Subprocess and Connect to All StreamsOpen3Library

Runs a command in a subprocess. Data written to stdin can be read by the subprocess, and
data written to standard output and standard error in the subprocess will be available on
the stdout and stderr streams. The subprocess is actually run as a grandchild, and as a result,
Process#waitall cannot be used to wait for its termination (hence the sleep in the following
example). Note also that you probably cannot assume that the application’s output and error
streams will not be buffered, so output may not arrive when you expect it to arrive.

require 'open3'

def read_from(label, stream)
while line = stream.gets
puts "#{label}: #{line}"

end
end

Open3.popen3('bc') do | stdin, stdout, stderr |
t1 = Thread.new { read_from('STDOUT', stdout) }
t2 = Thread.new { read_from('STDERR', stderr) }
stdin.puts "3 * 4"
stdin.puts "1 / 0"
stdin.puts "2 ^ 5"
stdin.close
t1.join
t2.join

end

produces:

STDOUT: 12
STDERR: Runtime error (func=(main), adr=3): Divide by zero
STDOUT: 32

Chapter 28. Standard Library • 782

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

SSL LibraryOpenSSLLibrary

Only if: OpenSSL
library available

The Ruby OpenSSL extension wraps the freely available OpenSSL library.4 It provides the
Secure Sockets Layer and Transport Layer Security (SSL and TLS) protocols, allowing for
secure communications over networks. The library provides functions for certificate creation
and management, message signing, and encryption/decryption. It also provides wrappers
to simplify access to HTTPS servers, along with secure FTP. The interface to the library is
large (roughly 330 methods), but the average Ruby user will probably use only a small
subset of the library’s capabilities.

See also: Net::FTP (page 772) Net::HTTP (page 773) Socket (page 807)

• Accesses a secure website using HTTPS. Note that SSL is used to tunnel to the site, but
the requested page also requires standard HTTP basic authorization.

require 'net/https'

USER = "xxx"
PW = "yyy"

site = Net::HTTP.new("www.securestuff.com", 443)
site.use_ssl = true
response = site.get2("/cgi-bin/cokerecipe.cgi",

'Authorization' => 'Basic ' +
["#{USER}:#{PW}"].pack('m').strip)

• Creates a socket that uses SSL. This isn’t a good example of accessing a website. How-
ever, it illustrates how a socket can be encrypted.

require 'socket'
require 'openssl'

socket = TCPSocket.new("www.secure-stuff.com", 443)

ssl_context = OpenSSL::SSL::SSLContext.new()

unless ssl_context.verify_mode
warn "warning: peer certificate won't be verified this session."
ssl_context.verify_mode = OpenSSL::SSL::VERIFY_NONE

end
sslsocket = OpenSSL::SSL::SSLSocket.new(socket, ssl_context)
sslsocket.sync_close = true
sslsocket.connect

sslsocket.puts("GET /secret-info.shtml")
while line = sslsocket.gets
p line

end

4. http://www.openssl.org

report erratum • discuss

OpenSSL • 783

Download from Wow! eBook <www.wowebook.com>

http://www.openssl.org
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Option ParsingOptionParserLibrary

OptionParser is a flexible and extensible way to parse command-line arguments. It has a par-
ticularly rich abstraction of the concept of an option.

• An option can have multiple short names (options preceded by a single hyphen) and
multiple long names (options preceded by two hyphens). Thus, an option that displays
help may be available as -h, -?, --help, and --about. Users may abbreviate long option names
to the shortest nonambiguous prefix.

• An option may be specified as having no argument, an optional argument, or a required
argument. Arguments can be validated against patterns or lists of valid values.

• Arguments may be returned as objects of any type (not just strings). The argument type
system is extensible (we add Date handling in the example).

• Arguments can have one or more lines of descriptive text, used when generating usage
information.

Options are specified using the on and def methods. These methods take a variable number
of arguments that cumulatively build a definition of each option. The arguments accepted
by these methods are:

"-x" "-xARG" "-x=ARG" "-x[OPT]" "-x[=OPT]" "-x PLACE"
Option has short name x. First form has no argument, next two have mandatory argument,
next two have optional argument, last specifies argument follows option. The short names
may also be specified as a range (such as "-[a-c]").

"--switch" "--switch=ARG" "--switch=[OPT]" "--switch PLACE"
Option has long name switch. First form has no argument, next has a mandatory argument,
the next has an optional argument, and the last specifies the argument follows the switch.

"--no-switch"
Defines a option whose default value is false.

"=ARG" "=[OPT]"
Argument for this option is mandatory or optional. For example, the following code says
there’s an option known by the aliases -x, -y, and -z that takes a mandatory argument, shown
in the usage as N:

opt.on("-x", "-y", "-z", "=N")

"description"
Any string that doesn’t start - or = is used as a description for this option in the summary.
Multiple descriptions may be given; they’ll be shown on additional lines.

/pattern/
Any argument must match the given pattern.

array
Argument must be one of the values from array.

proc or method
Argument type conversion is performed by the given proc or method (rather than using the
block associated with the on or def method call).

Chapter 28. Standard Library • 784

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

ClassName
Argument must match that defined for ClassName, which may be predefined or added
using OptionParser.accept. Built-in argument classes are

Object: Any string. No conversion. This is the default.

String: Any nonempty string. No conversion.

Integer: Ruby/C-like integer with optional sign (0ddd is octal, 0bddd binary, 0xddd hex-
adecimal). Converts to Integer.

Float: Float number format. Converts to Float.

Numeric: Generic numeric format. Converts to Integer for integers, Float for floats.

Array: Argument must be of list of strings separated by a comma.

OptionParser::DecimalInteger: Decimal integer. Converted to Integer.

OptionParser::OctalInteger: Ruby/C-like octal/hexadecimal/binary integer.

OptionParser::DecimalNumeric: Decimal integer/float number. Integers converted to
Integer, floats to Float.

TrueClass, FalseClass: Boolean switch.

See also: GetoptLong (page 761)

require 'optparse'
require 'date'

Add Dates as a new option type
OptionParser.accept(Date, /(\d+)-(\d+)-(\d+)/) do |d, mon, day, year|
Date.new(year.to_i, mon.to_i, day.to_i)

end

opts = OptionParser.new
opts.on("-x") {|val| puts "-x seen" }
opts.on("-s", "--size VAL", Integer) {|val| puts "-s #{val}" }
opts.on("-a", "--at DATE", Date) {|val| puts "-a #{val}" }

my_argv = ["--size", "1234", "-x", "-a", "12-25-2008", "fred", "wilma"]

rest = opts.parse(*my_argv)
puts "Remainder = #{rest.join(', ')}"
puts opts.to_s

produces:

-s 1234
-x seen
-a 2008-12-25
Remainder = fred, wilma
Usage: prog [options]

-x
-s, --size VAL
-a, --at DATE

report erratum • discuss

OptionParser • 785

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Open (dynamic) StructureOpenStructLibrary

An open structure is an object whose attributes are created dynamically when first assigned.
In other words, if obj is an instance of an OpenStruct, then the statement obj.abc=1 will create
the attribute abc in obj and then assign the value 1 to it.

require 'ostruct'

os = OpenStruct.new("f1" => "one", :f2 => "two")
os.f3 = "cat"
os.f4 = 99
os.f1 # => "one"
os.f2 # => "two"
os.f3 # => "cat"
os.f4 # => 99

OpenStruct uses method_missing to intercept calls. This might cause a problem, because calls to
a method defined in class Objectwill not invokemethod_missing—they’ll simply call the method
in Object. In practice, this isn’t a problem, because you typically call a setter before calling a
getting, and when you do call the setter method, ostruct will defined getter and setter
methods, overriding those in Object. Here’s a typical example; because we call ice.freeze= first,
the freeze= and freeze methods will be dynamically created in the ostruct, and the getter will
work as expected.

require 'ostruct'

ice = OpenStruct.new
ice.freeze = "yes"
ice.freeze # => #<OpenStruct freeze="yes">

However, if you don’t first call the setter, the freeze getter will not invoke method_missing—
it’ll simply call the underlying freeze method in Object.

require 'ostruct'

ice = OpenStruct.new
p ice.freeze
ice.freeze = "yes"

produces:

#<OpenStruct>
prog.rb:5:in `<main>': can't modify frozen OpenStruct (TypeError)

Chapter 28. Standard Library • 786

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Representation of File PathsPathnameLibrary

A Pathname represents the absolute or relative name of a file. It has two distinct uses. First,
it allows manipulation of the parts of a file path (extracting components, building new paths,
and so on). Second (and somewhat confusingly), it acts as a façade for some methods in
classes Dir, File, and module FileTest, forwarding on calls for the file named by the Pathname
object.

See also: File (page 488)

• Path name manipulation:

require 'pathname'

p1 = Pathname.new("/usr/bin")
p2 = Pathname.new("ruby")
p3 = p1 + p2
p4 = p2 + p1
p3.parent # => #<Pathname:/usr/bin>
p3.parent.parent # => #<Pathname:/usr>
p1.absolute? # => true
p2.absolute? # => false
p3.split # => [#<Pathname:/usr/bin>, #<Pathname:ruby>]

p5 = Pathname.new("testdir")
puts p5.realpath
puts p5.children

produces:

/Users/dave/BS2/published/ruby4/Book/testdir
testdir/.svn
testdir/config.h
testdir/main.rb

• Path name as proxy for file and directory status requests:

require 'pathname'

p1 = Pathname.new("/usr/bin/ruby")
p1.file? # => true
p1.directory? # => false
p1.executable? # => true
p1.size # => 34752

p2 = Pathname.new("testfile") # => #<Pathname:testfile>

p2.read # => "This is line one\nThis is line two\nThis is
.. line three\nAnd so on...\n"

p2.readlines # => ["This is line one\n", "This is line two\n",
.. "This is line three\n", "And so on...\n"]

report erratum • discuss

Pathname • 787

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Pretty-print ObjectsPPLibrary

PP uses the PrettyPrint library to format the results of inspecting Ruby objects. As well as the
methods in the class, it defines a global function, pp, which works like the existing p method
but formats its output.

PP has a default layout for all Ruby objects. However, you can override the way it handles
a class by defining the method pretty_print, which takes a PP object as a parameter. It should
use that PP object’s methods text, breakable, nest, group, and pp to format its output (see PrettyPrint
for details).

See also: JSON (page 766) PrettyPrint (page 789) YAML (page 827)

• Compares “p” and “pp”:

require 'pp'

Customer = Struct.new(:name, :sex, :dob, :country)
cust = Customer.new("Walter Wall", "Male", "12/25/1960", "Niue")

puts "Regular print"
p cust

puts "\nPretty print"
pp cust

produces:

Regular print
#<struct Customer name="Walter Wall", sex="Male", dob="12/25/1960",
country="Niue">

Pretty print
#<struct Customer
name="Walter Wall",
sex="Male",
dob="12/25/1960",
country="Niue">

• You can tell PP not to display an object if it has already displayed it:

require 'pp'

a = "string"
b = [a]
c = [b, b]
PP.sharing_detection = false
pp c

PP.sharing_detection = true
pp c

produces:

[["string"], ["string"]]
[["string"], [...]]

Chapter 28. Standard Library • 788

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

General Pretty PrinterPrettyPrintLibrary

PrettyPrint implements a pretty printer for structured text. It handles details of wrapping,
grouping, and indentation. The PP library uses PrettyPrint to generate more legible dumps of
Ruby objects.

See also: PP (page 788)

The following program prints a chart of Ruby’s classes, showing subclasses as a bracketed
list following the parent. To save some space, we show just the classes in the Numeric branch
of the tree.

require 'prettyprint'

@children = Hash.new { |h,k| h[k] = Array.new }
ObjectSpace.each_object(Class) do |cls|
@children[cls.superclass] << cls if cls <= Numeric

end
def print_children_of(printer, cls)
printer.text(cls.name)
kids = @children[cls].sort_by(&:name)
unless kids.empty?
printer.group(0, " [", "]") do
printer.nest(3) do
printer.breakable
kids.each_with_index do |k, i|
printer.breakable unless i.zero?
print_children_of(printer, k)

end
end
printer.breakable

end
end

end
printer = PrettyPrint.new(STDOUT, 30)
print_children_of(printer, Object)
printer.flush

produces:

Object [
Numeric [

Complex
Float
Integer [

Bignum
Fixnum

]
Rational

]
]

report erratum • discuss

PrettyPrint • 789

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Prime NumbersprimeLibrary

Provides facilities for generating prime numbers, as well as factoring numbers. Note that
the Prime class is a singleton.

See also: mathn (page 768)

• The prime library extends the number classes to include new functionality and adds a
new class Prime:

require 'prime'
60 = 2**2 * 3 * 5
60.prime? # => false
60.prime_division # => [[2, 2], [3, 1], [5, 1]]

• You can also use it to generate sequences of primes:

require 'prime'
Prime.each {|p| break if p > 20; print p, " " }

produces:

2 3 5 7 11 13 17 19

• Because Prime.each returns an enumerator if no block is present, we can write the previous
example more concisely.

require 'prime'
puts Prime.each.take_while {|p| p <= 20 }.join(" ")

produces:

2 3 5 7 11 13 17 19

Chapter 28. Standard Library • 790

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Profile Execution of a Ruby ProgramProfileLibrary

The profile library is a trivial wrapper around the Profiler module, making it easy to profile
the execution of an entire program. Profiling can be enabled from the command line using
the -r profile option or from within a source program by requiring the profile module.

Unlike Ruby 1.8, Ruby 1.9 does not profile primitive methods such as Fixnum#== and Fixnum#+.
This helps boost Ruby’s performance.

See also: Benchmark (page 733) Profiler__ (page 792)

require 'profile'
def ackerman(m, n)
if m == 0 then n+1
elsif n == 0 and m > 0 then ackerman(m-1, 1)
else ackerman(m-1, ackerman(m, n-1))
end

end
ackerman(3, 3)

produces:

% cumulative self self total
time seconds seconds calls ms/call ms/call name
100.00 0.04 0.04 2432 0.02 0.64 Object#ackerman
0.00 0.04 0.00 1 0.00 0.00 TracePoint#enable
0.00 0.04 0.00 1 0.00 0.00 Module#method_added
0.00 0.04 0.00 1 0.00 0.00 TracePoint#disable
0.00 0.04 0.00 1 0.00 40.00 #toplevel

report erratum • discuss

Profile • 791

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Control Execution ProfilingProfiler__Library

The Profiler__module can be used to collect a summary of the number of calls to, and the time
spent in, methods in a Ruby program. The output is sorted by the total time spent in each
method. The profile library is a convenience wrapper that profiles an entire program.

See also: Benchmark (page 733) profile (page 791)

require 'profiler'

...Omit definition of connection and fetching methods...

def calc_discount(qty, price)
case qty
when 0..10 then 0.0
when 11..99 then price * 0.05
else price * 0.1
end

end

def calc_sales_totals(rows)
total_qty = total_price = total_disc = 0
rows.each do |row|
total_qty += row.qty
total_price += row.price
total_disc += calc_discount(row.qty, row.price)

end
end

connect_to_database
rows = read_sales_data

Profiler__::start_profile
calc_sales_totals(rows)
Profiler__::stop_profile
Profiler__::print_profile(STDOUT)

produces:

% cumulative self self total
time seconds seconds calls ms/call ms/call name
28.57 0.02 0.02 648 0.03 0.03 Range#include?
28.57 0.04 0.02 1 20.00 70.00 Array#each
14.29 0.05 0.01 325 0.03 0.37 Object#calc_sales_totals
14.29 0.06 0.01 324 0.03 0.12 Object#calc_discount
14.29 0.07 0.01 648 0.02 0.05 Range#===
0.00 0.07 0.00 1 0.00 0.00 TracePoint#enable
0.00 0.07 0.00 648 0.00 0.00 Float#<=>
0.00 0.07 0.00 648 0.00 0.00 Fixnum#<=>
0.00 0.07 0.00 648 0.00 0.00 SalesData#price
0.00 0.07 0.00 3 0.00 0.00 Fixnum#+
0.00 0.07 0.00 648 0.00 0.00 SalesData#qty
0.00 0.07 0.00 1 0.00 0.00 TracePoint#disable
0.00 0.07 0.00 1 0.00 70.00 #toplevel

Chapter 28. Standard Library • 792

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Persistent Object StoragePStoreLibrary

The PStore class provides transactional, file-based, persistent storage of Ruby objects. Each
PStore can store several object hierarchies. Each hierarchy has a root, identified by a key (often
a string). At the start of a PStore transaction, these hierarchies are read from a disk file and
made available to the Ruby program. At the end of the transaction, the hierarchies are
written back to the file. Any changes made to objects in these hierarchies are therefore saved
on disk, to be read at the start of the next transaction that uses that file.

In normal use, a PStore object is created and then is used one or more times to control a
transaction. Within the body of the transaction, any object hierarchies that had previously
been saved are made available, and any changes to object hierarchies, and any new hierar-
chies, are written back to the file at the end.

The following example stores two hierarchies in a PStore. The first, identified by the key
"names", is an array of strings. The second, identified by "tree", is a simple binary tree.

require 'pstore'
require 'pp'
class T
def initialize(val, left=nil, right=nil)
@val, @left, @right = val, left, right

end
def to_a
[@val, @left.to_a, @right.to_a]

end
end

def T(*args)
T.new(*args)

end

store = PStore.new("/tmp/store")
store.transaction do

store['names'] = ['Douglas', 'Barenberg', 'Meyer']
store['tree'] = T('top',

T('A', T('B')),
T('C', T('D', nil, T('E'))))

end

now read it back in
store.transaction do

puts "Roots: #{store.roots.join(', ')}"
puts store['names'].join(', ')
pp store['tree'].to_a

end

produces:

Roots: names, tree
Douglas, Barenberg, Meyer
["top",
["A", ["B", [], []], []],
["C", ["D", [], ["E", [], []]], []]]

report erratum • discuss

PStore • 793

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Pseudo-Terminal Interface: Interact with External ProcessesPTYLibrary

Only if: Unix with pty
support

Many Unix platforms support a pseudo-terminal—a device pair where one end emulates a
process running on a conventional terminal, and the other end can read and write that ter-
minal as if it were a user looking at a screen and typing on a keyboard.

The PTY library provides the method spawn, which starts the given command (by default a
shell), connecting it to one end of a pseudo-terminal. It then returns the reader and writer
streams connected to that terminal, allowing your process to interact with the running process.

Working with pseudo-terminals can be tricky. See IO#expect on page 753 for a convenience
method that makes life easier. You might also want to track down Ara T. Howard’s Session
module for an even simpler approach to driving subprocesses.5

See also: expect (page 753)

This example runs irb in a subshell and asks it to convert the string “cat” to uppercase:

require 'pty'
require 'expect'

$expect_verbose = true

PTY.spawn("irb") do |reader, writer, pid|
reader.expect(/> /)
writer.puts "'cat'.upcase"
reader.expect("=> ")
answer = reader.gets
puts "Answer = #{answer}"

end

produces:

2.0.0p0 :001 > 'cat'.upcase
=> Answer = "CAT"

Rational NumbersRationalLibrary

The Rational class is now built in to Ruby. The vestigial Rational library simply defines a few
aliases for backward compatibility. For the classes Fixnum and Bignum, the following aliases
are defined:

Floating-point division
quof is an alias for fdiv.

Rational division
rdiv is an alias for quo.

Exponentiation
power! and rpower are aliases for **.

5. Currently found at http://www.codeforpeople.com/lib/ruby/session/

Chapter 28. Standard Library • 794

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://www.codeforpeople.com/lib/ruby/session/
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Interface to GNU Readline LibraryReadlineLibrary

Only if: GNU readline
present

The Readline module allows programs to prompt for and receive lines of user input. The
module allows lines to be edited during entry, and command history allows previous com-
mands to be recalled and edited. The history can be searched, allowing the user to (for
example) recall a previous command containing the text ruby. Command completion allows
context-sensitive shortcuts: tokens can be expanded in the command line under control of
the invoking application. In typical GNU fashion, the underlying readline library supports
more options than any user could need and emulates both vi and emacs key bindings.

This meaningless program implements a trivial interpreter that can increment and decrement
a value. It uses the Abbrev on page 731 module to expand abbreviated commands when the
Tab key is pressed.

sl_readline/readline.rb

require 'abbrev'
require 'readline'
include Readline

ABBREV = %w{ exit inc dec }.abbrev
Readline.completion_proc = -> string { ABBREV[string] }

value = 0
loop do
cmd = readline("wibble [#{value}]: ", true) || "exit"
case cmd.strip
when "exit" then break
when "inc" then value += 1
when "dec" then value -= 1
else puts "Invalid command #{cmd}"
end

end

wibble [0]: inc
wibble [1]: <up-arrow> => inc
wibble [2]: d<tab> => dec
wibble [1]: in<esc><p> => inc
wibble [2]: exit

DNS Client LibraryResolvLibrary

The resolv library is a pure-Ruby implementation of a DNS client—it can be used to convert
domain names into corresponding IP addresses. It also supports reverse lookups and the
resolution of names in the local hosts file.

Loading the additional library resolv-replace insinuates the resolv library into Ruby’s socket
library on page 807.

Basic name lookups are already built-in to the standard socket libraries. The resolv library
exists because, prior to Ruby 1.9, calling the operating system to do a name lookup would
suspend all interpreter threads. That is no longer the case.

report erratum • discuss

Readline • 795

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/sl_readline/readline.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

XML Processing LibraryREXMLLibrary

REXML is a pure-Ruby XML processing library, including DTD-compliant document parsing,
XPath querying, and document generation. It supports both tree-based and stream-based
document processing. Because it is written in Ruby, it is available on all platforms supporting
Ruby. REXML has a full and complex interface—this section contains a few small examples.

• Assume the file demo.xml contains this:

<classes language="ruby">
<class name="Numeric">
Numeric represents all numbers.
<class name="Float">
Floating point numbers have a fraction and a mantissa.

</class>
<class name="Integer">
Integers contain exact integral values.
<class name="Fixnum">
Fixnums are stored as machine ints.

</class>
<class name="Bignum">
Bignums store arbitraty-sized integers.

</class>
</class>

</class>
</classes>

• Reads and processes the XML:

require 'rexml/document'

xml = REXML::Document.new(File.open("code/sl_rexml/demo.xml"))

puts "Root element: #{xml.root.name}"
print "The names of all classes: "
xml.elements.each("//class") {|c| print c.attributes["name"], " " }

print "\nDescription of Fixnum: "
p xml.elements["//class[@name='Fixnum']"].text

produces:

Root element: classes
The names of all classes: Numeric Float Integer Fixnum Bignum
Description of Fixnum: "\n Fixnums are stored as machine ints.\n "

• Reads in a document, adds and deletes elements, and manipulates attributes before
writing it back out:

require 'rexml/document'
include REXML

xml = Document.new(File.open("code/sl_rexml/demo.xml"))

cls = Element.new("class")
cls.attributes["name"] = "Rational"

Chapter 28. Standard Library • 796

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

cls.text = "Represents complex numbers"

Remove Integer's children, and add our new node as
the one after Integer
int = xml.elements["//class[@name='Integer']"]
int.delete_at(1)
int.delete_at(2)
int.next_sibling = cls

Change all the 'name' attributes to class_name
xml.elements.each("//class") do |c|
c.attributes['class_name'] = c.attributes['name']
c.attributes.delete('name')

end

and write it out with a XML declaration at the front
xml << XMLDecl.new
xml.write(STDOUT, 2)

produces:

<?xml version='1.0'?>
<classes language='ruby'>
<class class_name='Numeric'>

Numeric represents all numbers.
<class class_name='Float'>

Floating point numbers have a fraction and a mantissa.
</class>
<class class_name='Integer'>

Integers contain exact integral values.
</class>
<class class_name='Rational'>
Represents complex numbers

</class>
</class>

</classes>

report erratum • discuss

REXML • 797

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Tuplespace ImplementationRindaLibrary

Tuplespaces are a distributed blackboard system. Processes may add tuples to the blackboard,
and other processes may remove tuples from the blackboard that match a certain pattern.
Originally presented by David Gelernter, tuplespaces offer an interesting scheme for dis-
tributed cooperation among heterogeneous processes.

Rinda, the Ruby implementation of tuplespaces, offers some interesting additions to the
concept. In particular, the Rinda implementation uses the === operator to match tuples. This
means that tuples may be matched using regular expressions, the classes of their elements,
and the element values.

See also: DRb (page 748)

• The blackboard is a DRb server that offers a shared tuplespace:

require 'rinda/tuplespace'
MY_URI = "druby://127.0.0.1:12131"
DRb.start_service(MY_URI, Rinda::TupleSpace.new)
DRb.thread.join

• The arithmetic agent accepts messages containing an arithmetic operator and two
numbers. It stores the result back on the blackboard.

require 'rinda/rinda'
MY_URI = "druby://127.0.0.1:12131"
DRb.start_service
ts = Rinda::TupleSpaceProxy.new(DRbObject.new(nil, MY_URI))
loop do
op, v1, v2 = ts.take([%r{^[-+/*]$}, Numeric, Numeric])
ts.write(["result", v1.send(op, v2)])

end

• The client places tuples on the blackboard and reads back the result of each:

require 'rinda/rinda'
MY_URI = "druby://127.0.0.1:12131"
DRb.start_service
ts = Rinda::TupleSpaceProxy.new(DRbObject.new(nil, MY_URI))

queries = [["+", 1, 2], ["*", 3, 4], ["/", 8, 2]]
queries.each do |q|
ts.write(q)
ans = ts.take(["result", nil])
puts "#{q[1]} #{q[0]} #{q[2]} = #{ans[1]}"

end

produces:

1 + 2 = 3
3 * 4 = 12
8 / 2 = 4

Chapter 28. Standard Library • 798

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Parse Ruby SourceRipperLibrary

The ripper library gives you access to Ruby’s parser. It can tokenize input, return lexical
tokens, and return a nested S-expression. It also supports event-based parsing.

• Tokenize a line of Ruby code:

require "ripper"
content = "a=1;b=2;puts a+b"
p Ripper.tokenize(content)

produces:

["a", "=", "1", ";", "b", "=", "2", ";", "puts", " ", "a", "+", "b"]

• Does a lexical analysis, returning token types, values, and line and column numbers:

require "ripper"
require "pp"
content = "a=1;b=2;puts a+b"
pp Ripper.lex(content)[0,5]

produces:

[[[1, 0], :on_ident, "a"],
[[1, 1], :on_op, "="],
[[1, 2], :on_int, "1"],
[[1, 3], :on_semicolon, ";"],
[[1, 4], :on_ident, "b"]]

• Returns the sexp representing a chunk of code:

require "ripper"
require "pp"
content = "a=1;b=2;puts a+b"
pp Ripper.sexp(content)

produces:

[:program,
[[:assign, [:var_field, [:@ident, "a", [1, 0]]], [:@int, "1", [1, 2]]],
[:assign, [:var_field, [:@ident, "b", [1, 4]]], [:@int, "2", [1, 6]]],
[:command,
[:@ident, "puts", [1, 8]],
[:args_add_block,
[[:binary,
[:var_ref, [:@ident, "a", [1, 13]]],
:+,
[:var_ref, [:@ident, "b", [1, 15]]]]],

false]]]]

• As a (silly) example of event-based lexical analysis, here’s a program that finds class
definitions and their associated comment blocks. For each, it outputs the class name
and the comment. It might be considered the zeroth iteration of an RDoc-like program.

The parameter to parse is an accumulator—it is passed between event handlers and can
be used to construct the result.

report erratum • discuss

Ripper • 799

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

require 'ripper'

This class handles parser events, extracting
comments and attaching them to class definitions
class BabyRDoc < Ripper::Filter
def initialize(*)
super
reset_state

end

def on_default(event, token, output)
reset_state
output

end

def on_sp(token, output)
output

end
alias on_nil on_sp

def on_comment(comment, output)
@comment << comment.sub(/^\s*#\s*/, " ")
output

end

def on_kw(name, output)
@expecting_class_name = (name == 'class')
output

end

def on_const(name, output)
if @expecting_class_name
output << "#{name}:\n"
output << @comment

end
reset_state
output

end

private

def reset_state
@comment = ""
@expecting_class_name = false

end
end

BabyRDoc.new(File.read(__FILE__)).parse(STDOUT)

produces:

BabyRDoc:
This class handles parser events, extracting
comments and attaching them to class definitions

Chapter 28. Standard Library • 800

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

RSS Feed Generation and ParsingRSSLibrary

Rich Site Summary or RDF Site Summary or Really Simple Syndication—take your pick.
RSS is the protocol of choice for disseminating news on the Internet. The Ruby RSS library
supports creating and parsing streams compliant with RSS 0.9, RSS 1.0, and RSS 2.0.

• Reads and summarizes the latest stories from http://ruby-lang.org:

require 'rss/2.0'
require 'open-uri'

open('http://ruby-lang.org/en/feeds/news.rss') do |http|
response = http.read
result = RSS::Parser.parse(response, false)
puts "Channel: " + result.channel.title
result.items.each_with_index do |item, i|
puts "#{i+1}. #{item.title}" if i < 3

end
end

produces:

Channel: Ruby News
1. Ruby 1.9.3-p429 is released
2. Ruby 2.0.0-p195 is released
3. Object taint bypassing in DL and Fiddle in Ruby (CVE-2013-2065)

• Generates some RSS information:

require 'rss/0.9'

rss = RSS::Rss.new("0.9")
chan = RSS::Rss::Channel.new
chan.title = "The Daily Dave"
chan.description = "Dave's Feed"
chan.language = "en-US"
chan.link = "http://pragdave.pragprog.com"
rss.channel = chan

image = RSS::Rss::Channel::Image.new
image.url = "http://pragprog.com/pragdave.gif"
image.title = "PragDave"
image.link = chan.link
chan.image = image

3.times do |i|
item = RSS::Rss::Channel::Item.new
item.title = "My News Number #{i}"
item.link = "http://pragprog.com/pragdave/story_#{i}"
item.description = "This is a story about number #{i}"
chan.items << item

end

puts rss.to_s

report erratum • discuss

RSS • 801

Download from Wow! eBook <www.wowebook.com>

http://ruby-lang.org
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Input Format ConversionScanfLibrary

Implements a version of the C library scanf function, which extracts values from a string
under the control of a format specifier.

The Ruby version of the library adds a scanf method to both class IO and class String. The
version in IO applies the format string to the next line read from the receiver. The version in
String applies the format string to the receiver. The library also adds the global method
Object#scanf, which uses as its source the next line of standard input.

Scanf has one main advantage over using regular expressions to break apart a string: a reg-
ular expression extracts strings, whereas scanf will return objects converted to the correct
type.

• Splits a date string into its constituents:

require 'scanf'

date = "2010-12-15"
year, month, day = date.scanf("%4d-%2d-%2d")
year # => 2010
month # => 12
day # => 15
year.class # => Fixnum

• The block form of scanf applies the format multiple times to the input string, returning
each set of results to the block. The numbers are returned as integers, not strings:

require 'scanf'

data = "cat:7 dog:9 cow:17 walrus:31"

data.scanf("%[^:]:%d ") do |animal, value|
puts "A #{animal.strip} has #{value}"
end

produces:

A cat has 7
A dog has 9
A cow has 17
A walrus has 31

• Extracts hex numbers:

require 'scanf'

data = "decaf bad"
data.scanf("%3x%2x%x") # => [3564, 175, 2989]

Chapter 28. Standard Library • 802

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Interface to SDBM DatabaseSDBMLibrary

The SDBM database implements a simple key/value persistence mechanism. Because the
underlying SDBM library itself is provided with Ruby, there are no external dependencies,
and SDBM should be available on all platforms supported by Ruby. SDBM database keys
and values must be strings. SDBM databases are effectively hashlike.

See also: DBM (page 745) GDBM (page 760)

The example that follows stores a record in a new database and then fetches it back. Unlike
the DBM library, all values to SDBM must be strings (or implement to_str).

require 'sdbm'
require 'date'

SDBM.open("data.dbm") do |dbm|
dbm['name'] = "Walter Wombat"
dbm['dob'] = Date.new(1997, 12,25).to_s
dbm['uses'] = "Ruby"

end

SDBM.open("data.dbm", nil) do |dbm|
p dbm.keys
p dbm['dob']

end

produces:

["name", "dob", "uses"]
"1997-12-25"

Access to Secure Random Number GeneratorsSecureRandomLibrary

Provides access to one of your operating system’s secure random number generators. If the
OpenSSL library is installed, the module uses its random_bytesmethod. Otherwise, the module
looks for and uses /dev/urandom or the CryptGenRandom method in the Windows API.

• Generates some random numbers:

require 'securerandom'
Random floats such that 0.0 <= rand < 1.0
SecureRandom.random_number(0) # => 0.26256698786247024
SecureRandom.random_number(0) # => 0.6885743213737645

Random integers such that 0 <= rand < 1000
SecureRandom.random_number(1000) # => 112
SecureRandom.random_number(1000) # => 273

• Generates ten random bytes, returning the result as a hex string, a Base64 string, and a
string of binary data. A different random string is returned for each call.

require 'securerandom'
SecureRandom.hex(10) # => "bf4262e94d093ffbb4a7"
SecureRandom.base64(10) # => "X/8YpCbCEyO2zA=="
SecureRandom.random_bytes(10) # => "\x7FO\0r\r\xC1?\xB7b#"

report erratum • discuss

SDBM • 803

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Implement Various Forms of SetSetLibrary

A Set is a collection of unique values (where uniqueness is determined using eql? and hash).
Convenience methods let you build sets from enumerable objects.

• Basic set operations:

require 'set'

set1 = Set.new([:bear, :cat, :deer])

set1.include?(:bat) # => false
set1.add(:fox) # => #<Set: {:bear, :cat, :deer, :fox}>

partition = set1.classify {|element| element.to_s.length }

partition # => {4=>#<Set: {:bear, :deer}>, 3=>#<Set: {:cat, :fox}>}

set2 = [:cat, :dog, :cow].to_set
set1 | set2 # => #<Set: {:bear, :cat, :deer, :fox, :dog, :cow}>
set1 & set2 # => #<Set: {:cat}>
set1 - set2 # => #<Set: {:bear, :deer, :fox}>
set1 ^ set2 # => #<Set: {:dog, :cow, :bear, :deer, :fox}>

• Partitions the users in our /etc/passwd file into subsets where members of each subset
have adjacent user IDs:

require 'etc'
require 'set'

users = []
Etc.passwd {|u| users << u }

related_users = users.to_set.divide do |u1, u2|
(u1.uid - u2.uid).abs <= 1

end

related_users.each do |relatives|
relatives.each {|u| print "#{u.uid}/#{u.name} " }
puts "\n======="

end

produces:

235/_assetcache 234/_krb_anonymous 233/_krb_kerberos 232/_krb_changepw
231/_krb_kadmin 230/_krb_krbtgt 229/_avbdeviced 228/_netstatistics 227/_dovenull

=======
93/_calendar 92/_securityagent 91/_tokend
=======
202/_coreaudiod 203/_screensaver 201/Guest 200/_softwareupdate
=======
...

Chapter 28. Standard Library • 804

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Manipulate Shell Lines Using POSIX SemanticsShellwordsLibrary

Given a string representative of a shell command line, splits it into word tokens according
to POSIX semantics. Also allows you to create properly escaped shell lines from individual
words.

• Spaces between double or single quotes are treated as part of a word.

• Double quotes may be escaped using a backslash.

• Spaces escaped by a backslash are not used to separate words.

• Otherwise, tokens separated by whitespace are treated as words.

require 'shellwords'
include Shellwords

line = %{Code Ruby Be Happy!}
shellwords(line) # => ["Code", "Ruby", "Be", "Happy!"]

line = %{"Code Ruby" 'Be Happy'!}
shellwords(line) # => ["Code Ruby", "Be Happy!"]

line = %q{Code\ Ruby "Be Happy"!}
shellwords(line) # => ["Code Ruby", "Be Happy!"]

shelljoin(["Code Ruby", "Be Happy"]) # => Code\ Ruby Be\ Happy

In addition, the library adds shellsplit and shelljoin methods to classes String and Array, respec-
tively:

require 'shellwords'
include Shellwords
%{Code\\ Ruby Be Happy!}.shellsplit # => ["Code Ruby", "Be", "Happy!"]
["Code Ruby", "Be Happy"].shelljoin # => "Code\\ Ruby Be\\ Happy"

report erratum • discuss

Shellwords • 805

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

The Singleton PatternSingletonLibrary

The Singleton design pattern ensures that only one instance of a particular class may be
created for the lifetime of a program (see Design Patterns [GHJV95]).

The singleton library makes this simple to implement. Mix the Singleton module into each
class that is to be a singleton, and that class’s new method will be made private. In its place,
users of the class call the method instance, which returns a singleton instance of that class.

In this example, the two instances of MyClass are the same object:

require 'singleton'

class MyClass

attr_accessor :data
include Singleton

end

a = MyClass.instance # => #<MyClass:0x007feb190604d0>
b = MyClass.instance # => #<MyClass:0x007feb190604d0>
a.data = 123 # => 123
b.data # => 123
a.object_id # => 70323856933480
b.object_id # => 70323856933480

Chapter 28. Standard Library • 806

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

IP, TCP, Unix, and SOCKS Socket AccessSocketLibrary

The socket extension defines nine classes for accessing the socket-level communications of
the underlying system. All of these classes are (indirect) subclasses of class IO, meaning that
IO’s methods can be used with socket connections.

The hierarchy of socket classes reflects the reality of network programming and hence is
somewhat confusing. The BasicSocket class largely contains methods common to data transfer
for all socket-based connections. It is subclassed to provide protocol-specific implementations:
IPSocket and UNIXSocket (for domain sockets). These in turn are subclassed by TCPSocket, UDP-
Socket, and SOCKSSocket.

BasicSocket is also subclassed by class Socket, which is a more generic interface to socket-ori-
ented networking. Although classes such as TCPSocket are specific to a protocol, Socket objects
can, with some work, be used regardless of protocol.

TCPSocket, SOCKSSocket, and UNIXSocket are each connection oriented. Each has a corresponding
xxxxServer class, which implements the server end of a connection.

The socket libraries are something that you may never use directly. However, if you do use
them, you’ll need to know the details. For that reason, we’ve put a reference section online
at http://pragprog.com/book/ruby3/programming-ruby-1-9?tab=tab-contents.

The following code shows a trivial UDP server and client:

Simple logger prints messages received on UDP port 12121
require 'socket'
socket = UDPSocket.new
socket.bind("127.0.0.1", 12121)
loop do
msg, sender = socket.recvfrom(100)
host = sender[3]
puts "#{Time.now}: #{host} '#{msg}'"
STDOUT.flush

end

Exercise the logger
require 'socket'
log = UDPSocket.new
log.connect("127.0.0.1", 12121)
log.print "Up and Running!"
process ... process ..
log.print "Done!"

produces:

2013-05-27 12:33:39 -0500: 127.0.0.1 'Up and Running!'
2013-05-27 12:33:39 -0500: 127.0.0.1 'Done!'

report erratum • discuss

Socket • 807

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/book/ruby3/programming-ruby-1-9?tab=tab-contents
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Treat Strings as IO ObjectsStringIOLibrary

In some ways, the distinction between strings and file contents is artificial: the contents of
a file are basically a string that happens to live on disk, not in memory. The StringIO library
aims to unify the two concepts, making strings act as if they were opened IO objects. Once a
string is wrapped in a StringIO object, it can be read from and written to as if it were an open
file. This can make unit testing a lot easier. It also lets you pass strings into classes and
methods that were originally written to work with files. StringIO objects take their encoding
from the string you pass in or the default external encoding is that no string is passed.

• Reads and writes from a string:

require 'stringio'

sio = StringIO.new("time flies like an arrow")
sio.read(5) # => "time "
sio.read(5) # => "flies"
sio.pos = 19
sio.read(5) # => "arrow"
sio.rewind # => 0
sio.write("fruit") # => 5
sio.pos = 16
sio.write("a banana") # => 8
sio.rewind # => 0
sio.read # => "fruitflies like a banana"

• Uses StringIO as a testing aid:

require 'stringio'
require 'csv'
require 'test/unit'

class TestCSV < Test::Unit::TestCase
def test_simple
StringIO.open do |op|
CSV(op) do |csv|
csv << [1, "line 1", 27]
csv << [2, nil, 123]

end
assert_equal("1,line 1,27\n2,,123\n", op.string)

end
end

end

produces:

Run options:
Running tests:
.
Finished tests in 0.004047s, 247.0966 tests/s, 247.0966 assertions/s.
1 tests, 1 assertions, 0 failures, 0 errors, 0 skips

ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

Chapter 28. Standard Library • 808

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Basic String TokenizerStringScannerLibrary

StringScanner objects progress through a string, matching (and optionally returning) tokens
that match a given pattern. Unlike the built-in scan methods, StringScanner objects maintain
a current position pointer in the string being examined, so each call resumes from the position
in the string where the previous call left off. Pattern matches are anchored to this previous
point.

• Implements a simple language:

require 'strscan'

Handle the language:
set <var> = <value>
get <var>

values = {}

while line = gets

scanner = StringScanner.new(line.chomp)

scanner.scan(/(get|set)\s+/) or fail "Missing command"
cmd = scanner[1]

var_name = scanner.scan(/\w+/) or fail "Missing variable"

case cmd
when "get"
puts "#{var_name} => #{values[var_name].inspect}"

when "set"
scanner.skip(/\s+=\s+/) or fail "Missing '='"
value = scanner.rest
values[var_name] = value

else
fail cmd

end
end

Run this from the command line, typing in phrases from the language:

$ ruby strscan.rb
set a = dave
set b = hello
get b
b => "hello"
get a
a => "dave"

report erratum • discuss

StringScanner • 809

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Interface to Unix System LoggingSyslogLibrary

Only if: Unix system
with syslog

The Syslog class is a simple wrapper around the Unix syslog(3) library. It allows messages to
be written at various severity levels to the logging daemon, where they are disseminated

⇡New in 2.0⇣
according to the configuration in syslog.conf. Ruby 2.0 adds support for Syslog::Logger, which
is compatible with the Logger API.

The following examples assume the log file is /var/log/system.log.

• Adds to our local system log. We’ll log all the levels configured for the user facility for
our system (which is every level except debug and info messages).

require 'syslog'
log = Syslog.open("test") # "test" is the app name
log.debug("Warm and fuzzy greetings from your program")
log.info("Program starting")
log.notice("I said 'Hello!'")
log.warning("If you don't respond soon, I'm quitting")
log.err("You haven't responded after %d milliseconds", 7)
log.alert("I'm telling your mother...")
log.emerg("I'm feeling totally crushed")
log.crit("Aarrgh....")
system("tail -6 /var/log/system.log")

produces:

Sep 16 12:48:44 dave-4 test[35121]: Warm and fuzzy greetings from your program
Sep 16 12:48:44 dave-4 test[35121]: Program starting
Sep 16 12:48:44 dave-4 test[35121]: I said 'Hello!'
Sep 16 12:48:44 dave-4 test[35121]: If you don't respond soon, I'm quitting
Sep 16 12:48:44 dave-4 test[35121]: You haven't responded after 7 milliseconds
Sep 16 12:48:44 dave-4 test[35121]: I'm telling your mother...
Sep 16 12:48:44 dave-4 test[35121]: I'm feeling totally crushed
Sep 16 12:48:44 dave-4 test[35121]: Aarrgh....

• Logs only errors and above:

require 'syslog'
log = Syslog.open("test")
log.mask = Syslog::LOG_UPTO(Syslog::LOG_ERR)
log.debug("Warm and fuzzy greetings from your program")
log.info("Program starting")
log.notice("I said 'Hello!'")
log.warning("If you don't respond soon, I'm quitting")
log.err("You haven't responded after %d milliseconds", 7)
log.alert("I'm telling your mother...")
log.emerg("I'm feeling totally crushed")
log.crit("Aarrgh....")

system("tail -4 /var/log/system.log")

produces:

Sep 16 12:48:44 dave-4 test[35124]: You haven't responded after 7 milliseconds
Sep 16 12:48:44 dave-4 test[35124]: I'm telling your mother...
Sep 16 12:48:44 dave-4 test[35124]: I'm feeling totally crushed
Sep 16 12:48:44 dave-4 test[35124]: Aarrgh....

Chapter 28. Standard Library • 810

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://www.freebsd.org/cgi/man.cgi?query=syslog&sektion=3
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Temporary File SupportTempfileLibrary

Class Tempfile creates managed temporary files. Although they behave the same as any other
IO objects, temporary files are automatically deleted when the Ruby program terminates.
Once a Tempfile object has been created, the underlying file may be opened and closed a
number of times in succession.

Tempfile does not directly inherit from IO. Instead, it delegates calls to a File object. From the
programmer’s perspective, apart from the unusual new, open, and close semantics, a Tempfile
object behaves as if it were an IO object.

If you don’t specify a directory to hold temporary files when you create them, the tmpdir
library will be used to find a system-dependent location.

See also: tmpdir (page 818)

require 'tempfile'
tf = Tempfile.new("afile")
tf.path # => "/var/folders/44/j19_ml3n3dx7bwrb_qmbcjyc0000gn/T/afile20130527-24

.. 867-1greefy"
tf.puts("Cosi Fan Tutte")
tf.close
tf.open
tf.gets # => "Cosi Fan Tutte\n"
tf.close(true)

report erratum • discuss

Tempfile • 811

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Unit Testing FrameworkTest::UnitLibrary

Test::Unit is a unit testing framework based on the original SUnit Smalltalk framework. It
provides a structure in which unit tests may be organized, selected, and run. Tests can be
run from the command line or using one of several GUI-based interfaces.

Chapter 13, Unit Testing, on page 175 contains a tutorial on Test::Unit.

Maybe we have a simple playlist class, designed to store and retrieve songs:

require_relative 'song.rb'
require 'forwardable'

class Playlist
extend Forwardable
def_delegator(:@list, :<<, :add_song)
def_delegators(:@list, :size, :empty?)
def initialize
@list = []

end
def find(title)
@list.find {|song| song.title == title}

end
end

We can write unit tests to exercise this class. The Test::Unit framework is smart enough to run
the tests in a test class if no main program is supplied.

require 'test/unit'
require_relative 'playlist.rb'

class TestPlaylist < Test::Unit::TestCase
def test_adding
pl = Playlist.new
assert_empty(pl)
assert_nil(pl.find("My Way"))
pl.add_song(Song.new("My Way", "Sinatra"))
assert_equal(1, pl.size)
s = pl.find("My Way")
refute_nil(s)
assert_equal("Sinatra", s.artist)
assert_nil(pl.find("Chicago"))
.. and so on

end
end

produces:

Run options:
Running tests:
.
Finished tests in 0.004140s, 241.5459 tests/s, 1690.8213 assertions/s.
1 tests, 7 assertions, 0 failures, 0 errors, 0 skips

ruby -v: ruby 2.0.0p0 (2013-02-24 revision 39474) [x86_64-darwin12.2.0]

Chapter 28. Standard Library • 812

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Utility Functionality for ThreadingthreadLibrary

The thread library adds some utility functions and classes for supporting threads. Much of
this has been superseded by the Monitor class, but the thread library contains two classes,
Queue and SizedQueue, that are still useful. Both classes implement a thread-safe queue that
can be used to pass objects between producers and consumers in multiple threads. The Queue
object implements a unbounded queue. A SizedQueue is told its capacity; any producer that
tries to add an object when the queue is at that capacity will block until a consumer has
removed an object.

The following example was provided by Robert Kellner. It has three consumers taking objects
from an unsized queue. Those objects are provided by two producers, which each add three
items.

require 'thread'
queue = Queue.new

consumers = (1..3).map do |i|
Thread.new("consumer #{i}") do |name|
begin
obj = queue.deq
print "#{name}: consumed #{obj.inspect}\n"

end until obj == :END_OF_WORK
end

end

producers = (1..2).map do |i|
Thread.new("producer #{i}") do |name|
3.times do |j|
queue.enq("Item #{j} from #{name}")

end
end

end

producers.each(&:join)
consumers.size.times { queue.enq(:END_OF_WORK) }
consumers.each(&:join)

produces:

consumer 1: consumed "Item 0 from producer 1"
consumer 1: consumed "Item 1 from producer 1"
consumer 1: consumed "Item 2 from producer 1"
consumer 1: consumed "Item 0 from producer 2"
consumer 2: consumed "Item 1 from producer 2"
consumer 3: consumed "Item 2 from producer 2"
consumer 1: consumed :END_OF_WORK
consumer 3: consumed :END_OF_WORK
consumer 2: consumed :END_OF_WORK

report erratum • discuss

thread • 813

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Wait for Multiple Threads to TerminateThreadsWaitLibrary

Class ThreadsWait handles the termination of a group of thread objects. It provides methods
to allow you to check for termination of any managed thread and to wait for all managed
threads to terminate.

The following example kicks off a number of threads that each wait for a slightly shorter
length of time before terminating and returning their thread number. Using ThreadsWait, we
can capture these threads as they terminate, either individually or as a group.

require 'thwait'

group = ThreadsWait.new

construct threads that wait for 1 second, .9 second, etc.
add each to the group

9.times do |i|
thread = Thread.new(i) {|index| sleep 1.0 - index/10.0; index }
group.join_nowait(thread)

end

any threads finished?
group.finished? # => false

wait for one to finish
group.next_wait.value # => 8

wait for 5 more to finish
5.times { group.next_wait } # => 5

wait for next one to finish
group.next_wait.value # => 2

and then wait for all the rest
group.all_waits # => nil

Chapter 28. Standard Library • 814

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Extended Functionality for Class TimeTimeLibrary

The time library adds functionality to the built-in class Time, supporting date and/or time
formats used by RFC 2822 (e-mail), RFC 2616 (HTTP), and ISO 8601 (the subset used by XML
schema).

require 'time'

Convert external formats into Time objects

Time.rfc2822("Thu, 1 Apr 2010 16:32:45 CST") # => 2010-04-01 17:32:45 -0500
Time.rfc2822("Thu, 1 Apr 2010 16:32:45 -0600") # => 2010-04-01 17:32:45 -0500

Time.httpdate("Thu, 01 Apr 2010 16:32:45 GMT") # => 2010-04-01 11:32:45 -0500
Time.httpdate("Thursday, 01-Apr-04 16:32:45 GMT") # => 2004-04-01 16:32:45 UTC
Time.httpdate("Thu Apr 1 16:32:45 2010") # => 2010-04-01 16:32:45 UTC

Time.xmlschema("2010-04-01T16:32:45") # => 2010-04-01 16:32:45 -0500
Time.xmlschema("2010-04-01T16:32:45.12-06:00") # => 2010-04-01 22:32:45 UTC

Convert time objects into external formats

Time.now.rfc2822 # => "Mon, 27 May 2013 12:33:41 -0500"
Time.now.httpdate # => "Mon, 27 May 2013 17:33:41 GMT"
Time.now.xmlschema # => "2013-05-27T12:33:41-05:00"

report erratum • discuss

Time • 815

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Run a Block with TimeoutTimeoutLibrary

The Timeout.timeout method takes a parameter representing a timeout period in seconds, an
optional exception parameter, and a block. The block is executed, and a timer is run concur-
rently. If the block terminates before the timeout, timeout returns the value of the block.
Otherwise, the exception (default Timeout::Error) is raised.

require 'timeout'

for snooze in 1..2
puts "About to sleep for #{snooze}"
begin
Timeout::timeout(1.5) do |timeout_length|
puts "Timeout period is #{timeout_length}"
sleep(snooze)
puts "That was refreshing"

end
rescue Timeout::Error
puts "Woken up early!!"

end
end

produces:

About to sleep for 1
Timeout period is 1.5
That was refreshing
About to sleep for 2
Timeout period is 1.5
Woken up early!!

Be careful when using timeouts—you may find them interrupting system calls that you
cannot reliably restart, resulting in possible data loss.

Chapter 28. Standard Library • 816

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Wrapper for Tcl/TkTkLibrary

Only if: Tk library
installed

Of all the Ruby options for creating GUIs, the Tk library is probably the most widely sup-
ported, running on Windows, Linux, Mac OS X, and other Unix-like platforms.6 Although
it doesn’t produce the prettiest interfaces, Tk is functional and relatively simple to program.

sl_tk/curves.rb

encoding: utf-8
require 'tk'
include Math

def plot(val)
Integer(val * 180 + 200)

end

TkRoot.new do |root|
title "Curves"
geometry "400x400"

TkCanvas.new(root) do |canvas|
width 400
height 400
pack('side'=>'top', 'fill'=>'both', 'expand'=>'yes')

points = []
a = 2
b = 3
0.0.step(8, 0.1) do |t|
x = Math.sin(a*t)
y = Math.cos(b*t)
points << plot(x) << plot(y)

end
TkcLine.new(canvas, *(points), smooth: 'on', width: 10, fill: 'blue')

end
end
Tk.mainloop

produces:

6. All these environments require that the Tcl/Tk libraries are installed before the Ruby Tk extension can
be used.

report erratum • discuss

Tk • 817

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/sl_tk/curves.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

System-Independent Temporary Directory LocationtmpdirLibrary

The tmpdir library adds the tmpdir method to class Dir. This method returns the path to a
temporary directory that should be writable by the current process. (This will not be true if
none of the well-known temporary directories is writable and if the current working direc-
tory is also not writable.) Candidate directories include those referenced by the environment
variables TMPDIR, TMP, TEMP, and USERPROFILE; the directory /tmp; and (on Windows boxes) the
temp subdirectory of the Windows or System directory.

require 'tmpdir'

Dir.tmpdir # => "/var/folders/44/j19_ml3n3dx7bwrb_qmbcjyc0000gn/T"

ENV['TMPDIR'] = "/wibble" # doesn't exist
ENV['TMP'] = "/sbin" # not writable
ENV['TEMP'] = "/Users/dave/tmp" # just right

Dir.tmpdir # => "/Users/dave/tmp"

The mktmpdir method can be used to create a new temporary directory:

require 'tmpdir'

name = Dir.mktmpdir

.. process, process, process ..

Dir.rmdir(name)

Chapter 28. Standard Library • 818

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Trace Program ExecutionTracerLibrary

The tracer library uses Object#set_trace_func to trace all or part of a Ruby program’s execution.
The traced lines show the thread number, file, line number, class, event, and source line. The
events shown are - for a change of line, < for a call, > for a return, C for a class definition,
and E for the end of a definition.

• You can trace an entire program by including the tracer library from the command line:

class Account
def initialize(balance)
@balance = balance

end
def debit(amt)
if @balance < amt
fail "Insufficient funds"

else
@balance -= amt

end
end

end
acct = Account.new(100)
acct.debit(40)

$ ruby -r tracer account.rb
#0:prog.rb:15::-: acct = Account.new(100)
#0:prog.rb:3:Account:>: def initialize(balance)
#0:prog.rb:4:Account:-: @balance = balance
#0:prog.rb:5:Account:<: end
#0:prog.rb:16::-: acct.debit(40)
#0:prog.rb:6:Account:>: def debit(amt)
#0:prog.rb:7:Account:-: if @balance < amt
#0:prog.rb:10:Account:-: @balance -= amt
#0:prog.rb:12:Account:<: end

• You can also use tracer objects to trace just a portion of your code and use filters to select
what to trace:

require 'tracer'
tracer = Tracer.new
tracer.add_filter lambda {|event, *rest| event == "line" }
acct = Account.new(100)
tracer.on { acct.debit(40) }

produces:

#0:prog.rb:18::-: tracer.on { acct.debit(40) }
#0:prog.rb:6:Account:-: if @balance < amt
#0:prog.rb:9:Account:-: @balance -= amt

report erratum • discuss

Tracer • 819

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Topological SortTSortLibrary

Given a set of dependencies between nodes (where each node depends on zero or more
other nodes and there are no cycles in the graph of dependencies), a topological sort will
return a list of the nodes ordered such that no node follows a node that depends on it. One
use for this is scheduling tasks, where the order means that you complete the dependencies
before you start any task that depends on them. The make program uses a topological sort
to order its execution.

In the Ruby implementation, you mix in the TSort module and define two methods:
tsort_each_node, which yields each node in turn, and tsort_each_child, which, given a node,
yields each of that node’s dependencies.

• Given the set of dependencies among the steps for making a piña colada, what is the
optimum order for undertaking the steps?

require 'tsort'

class Tasks
include TSort
def initialize
@dependencies = {}

end
def add_dependency(task, *relies_on)
@dependencies[task] = relies_on

end
def tsort_each_node(&block)
@dependencies.each_key(&block)

end
def tsort_each_child(node, &block)
deps = @dependencies[node]
deps.each(&block) if deps

end
end

tasks = Tasks.new
tasks.add_dependency(:add_rum, :open_blender)
tasks.add_dependency(:add_pc_mix, :open_blender)
tasks.add_dependency(:add_ice, :open_blender)
tasks.add_dependency(:close_blender, :add_rum, :add_pc_mix, :add_ice)
tasks.add_dependency(:blend_mix, :close_blender)
tasks.add_dependency(:pour_drink, :blend_mix)
tasks.add_dependency(:pour_drink, :open_blender)
puts tasks.tsort

produces:

open_blender
add_rum
add_pc_mix
add_ice
close_blender
blend_mix
pour_drink

Chapter 28. Standard Library • 820

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Command-Line Interface to FileUtilsunLibrary

Why un? When you invoke it from the command line with the -r option to Ruby, it spells
-run. This pun gives a hint as to the intent of the library: it lets you run commands (in this
case, a subset of the methods in FileUtils) from the command line. In theory this gives you an
operating system–independent set of file manipulation commands, possibly useful when
writing portable Makefiles.

See also: FileUtils (page 757)

• The available commands are as follows:

$ ruby -run -e cp – ‹ options ›* source dest

$ ruby -run -e ln – ‹ options ›* target linkname

$ ruby -run -e mv – ‹ options ›* source dest

$ ruby -run -e rm – ‹ options ›* file

$ ruby -run -e mkdir – ‹ options ›* dirs

$ ruby -run -e rmdir – ‹ options ›* dirs

$ ruby -run -e install – ‹ options ›* source dest

$ ruby -run -e chmod – ‹ options ›* octal_mode file

$ ruby -run -e touch – ‹ options ›* file

Note the use of -- to tell the Ruby interpreter that options to the program follow.

You can get a list of all available commands with this:

$ ruby -run -e help

For help on a particular command, append the command’s name:

$ ruby -run -e help mkdir

report erratum • discuss

un • 821

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

RFC 2396 Uniform Resource Identifier (URI) SupportURILibrary

URI encapsulates the concept of a Uniform Resource Identifier (URI), a way of specifying
some kind of (potentially networked) resource. URIs are a superset of URLs: URLs (such as
the addresses of web pages) allow specification of addresses by location, and URIs also allow
specification by name.

URIs consist of a scheme (such as http, mailto, ftp, and so on), followed by structured data
identifying the resource within the scheme.

URI has factory methods that take a URI string and return a subclass of URI specific to the
scheme. The library explicitly supports the ftp, http, https, ldap, andmailto schemes; others will
be treated as generic URIs. The module also has convenience methods to escape and unescape
URIs. The class Net::HTTP accepts URI objects where a URL parameter is expected.

See also: open-uri (page 781) Net::HTTP (page 773)

require 'uri'

uri = URI.parse("http://pragprog.com:1234/mypage.cgi?q=ruby")
uri.class # => URI::HTTP
uri.scheme # => "http"
uri.host # => "pragprog.com"
uri.port # => 1234
uri.path # => "/mypage.cgi"
uri.query # => "q=ruby"

uri = URI.parse("mailto:ruby@pragprog.com?Subject=help&body=info")
uri.class # => URI::MailTo
uri.scheme # => "mailto"
uri.to # => "ruby@pragprog.com"
uri.headers # => [["Subject", "help"], ["body", "info"]]

uri = URI.parse("ftp://dave@anon.com:/pub/ruby;type=i")
uri.class # => URI::FTP
uri.scheme # => "ftp"
uri.host # => "anon.com"
uri.port # => 21
uri.path # => "pub/ruby"
uri.typecode # => "i"

Chapter 28. Standard Library • 822

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Support for Weak ReferencesWeakRefLibrary

In Ruby, objects are not eligible for garbage collection if references still exist to them. Nor-
mally, this is a Good Thing—it would be disconcerting to have an object simply evaporate
while you were using it. However, sometimes you may need more flexibility. For example,
you might want to implement an in-memory cache of commonly used file contents. As you
read more files, the cache grows. At some point, you may run low on memory. The garbage
collector will be invoked, but the objects in the cache are all referenced by the cache data
structures and so will not be deleted.

A weak reference behaves like any normal object reference with one important exception—
the referenced object may be garbage collected, even while references to it exist. In the cache
example, if the cached files were accessed using weak references, once memory runs low,
they will be garbage collected, freeing memory for the rest of the application.

• Weak references introduce a slight complexity. Because the object referenced can be
deleted by garbage collection at any time, code that accesses these objects must take
care to ensure that the references are valid. Two techniques can be used. First, the code
can reference the objects normally. Any attempt to reference an object that has been
garbage collected will raise a WeakRef::RefError exception.

require 'weakref'
Generate lots of small strings. Hopefully the early ones will have
been garbage collected...
refs = (1..10000).map {|i| WeakRef.new("#{i}") }
puts "Last element is #{refs.last}"
puts "First element is #{refs.first}"

produces:

Last element is 10000
prog.rb:6:in `<main>': Invalid Reference - probably recycled (WeakRef::RefError)

• Alternatively, use the WeakRef#weakref_alive? method to check that a reference is valid
before using it. Garbage collection must be disabled during the test and subsequent
reference to the object. In a single-threaded program, you could use something like this:

ref = WeakRef.new(some_object)

.. some time later

gc_was_disabled = GC.disable
if ref.weakref_alive?
do stuff with 'ref'

end
GC.enable unless gc_was_disabled

report erratum • discuss

WeakRef • 823

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Web Server ToolkitWEBrickLibrary

WEBrick is a pure-Ruby framework for implementing HTTP-based servers. The Ruby stan-
dard library includes WEBrick services that implement a standard web server (serving files
and directory listings) and servlets supporting CGI, erb, file download, and the mounting
of Ruby lambdas.

The Web programming chapter has more examples of WEBrick on page 286.

• The following code mounts two Ruby procs on a web server.

Requests to http://localhost:2000/hello run one proc, and the other proc is invoked by
requests to http://localhost:2000/bye.

#!/usr/bin/ruby

require 'webrick'
include WEBrick

hello_proc = lambda do |req, resp|
resp['Content-Type'] = "text/html"
resp.body = %{

<html><body>
Hello. You're calling from a #{req['User-Agent']}
<p>
I see parameters: #{req.query.keys.join(', ')}

</body></html>
}

end

bye_proc = lambda do |req, resp|
resp['Content-Type'] = "text/html"
resp.body = %{

<html><body>
<h3>Goodbye!</h3>

</body></html>
}

end

hello = HTTPServlet::ProcHandler.new(hello_proc)
bye = HTTPServlet::ProcHandler.new(bye_proc)

s = HTTPServer.new(:Port => 2000)
s.mount("/hello", hello)
s.mount("/bye", bye)

trap("INT"){ s.shutdown }
s.start

Chapter 28. Standard Library • 824

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Windows AutomationWIN32OLELibrary

Only if: Windows

This is an interface to Windows automation, allowing Ruby code to interact with Windows
applications. The Ruby interface to Windows is discussed in more detail in Chapter 21,Ruby
and Microsoft Windows, on page 289.

• Opens Internet Explorer and asks it to display our home page:

require 'win32ole'

ie = WIN32OLE.new('InternetExplorer.Application')
ie.visible = true
ie.navigate("http://www.pragprog.com")

• Creates a new chart in Microsoft Excel and then rotates it. This code is one of the samples
that comes with the library.

require 'win32ole'

-4100 is the value for the Excel constant xl3DColumn.
ChartTypeVal = -4100;

Creates OLE object to Excel
#excel = WIN32OLE.new("excel.application.5")
excel = WIN32OLE.new("excel.application")

Create and rotate the chart

excel.visible = TRUE;
excel.Workbooks.Add();
excel.Range("a1").value = 3;
excel.Range("a2").value = 2;
excel.Range("a3").value = 1;
excel.Range("a1:a3").Select();
excelchart = excel.Charts.Add();
excelchart.type = ChartTypeVal;

i = 30
i.step(180, 10) do |rot|
excelchart['Rotation'] = rot;

excelchart.rotation=rot;
end
Done, bye

excel.ActiveWorkbook.Close(0);
excel.Quit();

report erratum • discuss

WIN32OLE • 825

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Remote Procedure Calls using XML-RPCXMLRPCLibrary

XMLRPC allows clients to invoke methods on networked servers using the XML-RPC pro-
tocol. Communications take place over HTTP. The server may run in the context of a web
server, in which case ports 80 or 443 (for SSL) will typically be used. The server may also be
run stand-alone. The Ruby XML-RPC server implementation supports operation as a CGI
script, as a mod_ruby script, as a WEBrick handler, and as a stand-alone server. Basic
authentication is supported, and clients can communicate with servers via proxies. Servers
may throw FaultException errors—these generate the corresponding exception on the client
(or optionally may be flagged as a status return to the call).

See also: dRuby (page 748) WEBrick (page 824)

• The following simple server accepts a temperature in Celsius and converts it to
Fahrenheit. It runs within the context of the WEBrick web server.

sl_xmlrpc/xmlserver.rb

require 'webrick'
require 'xmlrpc/server'
xml_servlet = XMLRPC::WEBrickServlet.new
xml_servlet.add_handler("convert_celcius") do |celcius|
celcius*1.8 + 32

end
xml_servlet.add_multicall # Add support for multicall
server = WEBrick::HTTPServer.new(:Port => 2000)
server.mount("/RPC2", xml_servlet)
trap("INT"){ server.shutdown }
server.start

• This client makes calls to the temperature conversion server. Note that in the output
we show both the server’s logging and the client program’s output.

require 'xmlrpc/client'
server = XMLRPC::Client.new("localhost", "/RPC2", 2000)
puts server.call("convert_celcius", 0)
puts server.call("convert_celcius", 100)
puts server.multicall(['convert_celcius', -10], ['convert_celcius', 200])

produces:

[2013-05-27 12:33:44] INFO WEBrick 1.3.1
[2013-05-27 12:33:44] INFO ruby 2.0.0 (2013-02-24) [x86_64-darwin12.2.0]
[2013-05-27 12:33:44] INFO WEBrick::HTTPServer#start: pid=24895 port=2000
localhost - - [27/May/2013:12:33:45 CDT] "POST /RPC2 HTTP/1.1" 200 124
- -> /RPC2
localhost - - [27/May/2013:12:33:45 CDT] "POST /RPC2 HTTP/1.1" 200 125
- -> /RPC2
localhost - - [27/May/2013:12:33:45 CDT] "POST /RPC2 HTTP/1.1" 200 290
- -> /RPC2
32.0
212.0
14.0
392.0

Chapter 28. Standard Library • 826

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/sl_xmlrpc/xmlserver.rb
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Object Serialization/DeserializationYAMLLibrary

The YAML library (also described in the tutorial on page 405) serializes and deserializes Ruby
object trees to and from an external, readable, plain-text format. YAML can be used as a
portable object marshaling scheme, allowing objects to be passed in plain text between sep-
arate Ruby processes. In some cases, objects may also be exchanged between Ruby programs
and programs in other languages that also have YAML support. While Ruby 1.9.2 can use

⇡New in 2.0

libyaml if it is available, Ruby 2.0 makes it a requirement, and bundles it with the interpreter.

See also: json (page 766)

• YAML can be used to store an object tree in a flat file:

require 'yaml'
tree = { name: 'ruby',

uses: ['scripting', 'web', 'testing', 'etc']
}

File.open("tree.yml", "w") {|f| YAML.dump(tree, f)}

• Once stored, it can be read by another program:

require 'yaml'
tree = YAML.load_file("tree.yml")
tree[:uses][1] # => "web"

• The YAML format is also a convenient way to store configuration information for pro-
grams. Because it is readable, it can be maintained by hand using a normal editor and
then read as objects by programs. For example, a configuration file may contain the
following:

sl_yaml/config.yml

username: dave
prefs:
background: dark
foreground: cyan
timeout: 30

We can use this in a program:

require 'yaml'

config = YAML.load_file("code/sl_yaml/config.yml")
config["username"] # => "dave"
config["prefs"]["timeout"] * 10 # => 300

report erratum • discuss

YAML • 827

Download from Wow! eBook <www.wowebook.com>

http://media.pragprog.com/titles/ruby4/code/sl_yaml/config.yml
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Read and Write Compressed FilesZlibLibrary

Only if: zlib library
available

The Zlibmodule is home to a number of classes for compressing and decompressing streams
and for working with gzip-format compressed files. They also calculate zip checksums.

• Compresses /etc/passwd as a gzip file and then reads the result back:

require 'zlib'

These methods can take a filename
Zlib::GzipWriter.open("passwd.gz") do |gz|
gz.write(File.read("/etc/passwd"))

end

system("ls -l /etc/passwd passwd.gz")
puts

or a stream
File.open("passwd.gz") do |f|
gzip = Zlib::GzipReader.new(f)
data = gzip.read.split(/\n/)
puts data[15,3]

end

produces:

-rw-r--r-- 1 root wheel 5086 Jul 20 2011 /etc/passwd
-rw-rw-r-- 1 dave staff 1621 May 27 12:33 passwd.gz

_installassistant:*:25:25:Install Assistant:/var/empty:/usr/bin/false
_lp:*:26:26:Printing Services:/var/spool/cups:/usr/bin/false
_postfix:*:27:27:Postfix Mail Server:/var/spool/postfix:/usr/bin/false

• Compresses data sent between two processes:

require 'zlib'

rd, wr = IO.pipe

if fork
rd.close
zipper = Zlib::Deflate.new
zipper << "This is a string "
data = zipper.deflate("to compress", Zlib::FINISH)
wr.write(data)
wr.close
Process.wait

else
wr.close
text = Zlib.inflate(rd.read)
puts "We got: #{text}"

end

produces:

We got: This is a string to compress

Chapter 28. Standard Library • 828

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

APPENDIX 1

Support
One of the major features of open source projects is the technical support. Articles in the
media often criticize open source efforts for not having the same tech support that a commer-
cial product has. And boy is that a good thing! Instead of dialing up some overworked and
understaffed help desk and being treated to music for an hour or so without ever getting the
answer you need, we have a better solution: the Ruby community. The author of Ruby, the
authors of this book, and many other Ruby users are willing and able to lend you a hand,
should you need it.

The syntax of Ruby remains fairly stable, but as with all evolving software, new features are
added every now and again. As a result, both printed books and the online documentation
can fall behind. All software has bugs, and Ruby is no exception. There aren’t many, but
they do crop up.

If you experience a problem with Ruby, feel free to ask in the mailing lists. Generally you’ll
get timely answers from knowledgeable folks. However, as with all large communities, you
may also find people with a less-than-perfect understanding of Ruby responding. As with
all things on the Internet, use your judgment.

Before posting, do the right thing and search the Web for similar questions—by now most
common questions have already been answered in the mailing lists or on someone’s blog.
But if you can’t find the answer you need, ask, and a correct answer will usually show up
with remarkable speed and precision.

A1.1 Web Sites

Because the Web changes too fast, we’ve kept this list short. Visit one of the sites here, and
you’ll find a wealth of links to other online Ruby resources.

The official Ruby home page is http://www.ruby-lang.org.

You’ll find many open source Ruby projects on Github (http://github.com) and RubyForge
(http://www.rubyforge.org). http://rubygems.org is the official RubyGems repository.1 (GitHub used
to be another source of RubyGems—this is no longer the case.)

http://www.ruby-doc.org is a portal to various sources of Ruby documentation. Much of it comes
from previous editions of this book.

1. In March 2010, RubyGems.org, GemCutter.org, and RubyForge.org became a single, unified server of
gems.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://www.ruby-lang.org
http://github.com
http://www.rubyforge.org
http://rubygems.org
http://www.ruby-doc.org
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

While you’re surfing, drop in on http://www.pragprog.com and see what we’re up to.

A1.2 Usenet Newsgroup

Ruby has its own newsgroup, comp.lang.ruby. Traffic on this group is archived and mirrored
to the ruby-talk mailing list. It can be read via Google Groups.

A1.3 Mailing Lists

You’ll find many mailing lists talking about Ruby. The first three here are in English, and
the remainder are mostly Japanese but with some English-language posts.

English-language discussion of Ruby (mirrored to comp.lang.ruby)ruby-talk@ruby-lang.org

Documentation standards and toolsruby-doc@ruby-lang.org

English discussion of core implementation topicsruby-core@ruby-lang.org

Japanese language discussion of Rubyruby-list@ruby-lang.org

List for Ruby developersruby-dev@ruby-lang.org

List for people writing extensions for or with Rubyruby-ext@ruby-lang.org

Ruby in mathematicsruby-math@ruby-lang.org

See the “Mailing Lists” topic under http://www.ruby-lang.org/ for details on joining a list.

The mailing lists are archived and can be searched here: http://blade.nagaokaut.ac.jp/ruby/ruby-
talk/index.shtml or here: http://www.ruby-talk.org

A1.4 Bug Reporting

If you think you’ve spotted a bug in Ruby, you may want to browse the Ruby Issue Tracking
system at http://redmine.ruby-lang.org/. You may also want to check to see whether a new version
of Ruby is available—perhaps the bug you’ve found has already been fixed.

Before submitting a bug, it might be a good idea to post a question about it to the ruby-talk
mailing list. Often, one person’s bug is another person’s language feature. Also, Ruby can
be complicated, and sometimes its behavior can be subtle.

Once you’ve decided you have a genuine bug, submit a bug report via the Ruby Issue
Tracking site mentioned previosuly. When reporting a suspected bug, it’s a good idea to
include the output of running ruby -v along with any problematic source code. People will
also need to know the operating system you’re running. If you compiled your own version
of Ruby, it may be a good idea to attach your rbconfig.rb file as well.

If you have a problem using irb, be aware of its limitations (see the reference section on page
253. See what happens using just Ruby itself.

Appendix 1. Support • 830

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://www.pragprog.com
http://www.ruby-lang.org/
http://blade.nagaokaut.ac.jp/ruby/ruby-talk/index.shtml
http://blade.nagaokaut.ac.jp/ruby/ruby-talk/index.shtml
http://www.ruby-talk.org
http://redmine.ruby-lang.org/
http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

APPENDIX 2

Bibliography

[Fri97] Jeffrey E. F. Friedl. Mastering Regular Expressions. O’Reilly & Associates, Inc., Sebastopol,
CA, 1997.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

[Mey97] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, Englewood Cliffs,
NJ, Second, 1997.

report erratum • discussDownload from Wow! eBook <www.wowebook.com>

http://pragprog.com/titles/ruby4/errata/add
http://forums.pragprog.com/forums/ruby4

Index

SYMBOLS
! (logical not), 133, 319
! method, class BasicObject, 440
!= (not equal), 133, 320
!= method, class BasicObject, 440
!~ (does not match), 95, 97, 133, 320
!~ method, class Object, 599
(comment), 297
(instance method), xiv
#! (setting encoding), 241
#! (shebang), 11
#{...} (substitute in pattern), 94, 305
#{...} (substitute in string), 86, 300
$ (global variable prefix), 307, 311
$ (in pattern), 98, 304
$! variable, 147, 311, 339–340
$" variable, 313, 623
$$ variable, 313
$& variable, 97, 311, 559
$' variable, 97, 312, 560
$* variable, 313, 618
$+ variable, 312
$, variable, 312, 431, 621
$-0 variable, 312
$-F variable, 313
$-I variable, 314
$-W variable, 314
$-a variable, 313
$-d variable, 313
$-i variable, 314
$-l variable, 314
$-p variable, 314
$-v variable, 314
$-w variable, 314
$. variable, 312, 549
$/ variable, 210–211, 312, 672, 679

$: variable, 211, 217, 313, 623
$; variable, 211, 312, 685
$< variable, 312
$= variable, 96, 312
$> variable, 312
$? variable, 128, 171, 173, 313, 316,

610, 628, 642, 644
$@ variable, 311
$\ variable, 211, 312, 550, 621
$` variable, 97, 312, 560
$~ variable, 312, 559, 659, 661–662
% method

class Bignum, 444
class Fixnum, 510
class Float, 513
class Numeric, 593
class Rational, 656
class String, 666

%{...} (string literal), 86, 300
& (block parameter to method), 64,

118, 328
& method

class Array, 422
class Bignum, 444
class FalseClass, 486
class Fixnum, 510
class NilClass, 589
class Process::Status, 645
class TrueClass, 725

&& (logical and), 132, 319
(...) (in pattern), 102, 305
(?...) (regexp extensions), 105, 305
* (array argument), 325
* (in pattern), 100, 305
* method

class Array, 422
class Bignum, 444
class Complex, 452
class Fixnum, 510
class Float, 513

class Rational, 656
class String, 667

** method
class Bignum, 444, 794
class Complex, 452
class Fixnum, 510, 794
class Float, 513
class Rational, 656

+ (in pattern), 100, 305
+ method

class Array, 422
class Bignum, 444
class Complex, 452
class Fixnum, 510
class Float, 513
class Rational, 656
class String, 667
class Time, 713

+@ method
class Complex, 452
class Numeric, 592

- method
class Array, 422
class Bignum, 444
class Complex, 452
class Fixnum, 510
class Float, 513
class Rational, 656
class Time, 714

-> (create proc), 66, 337
-@ method

class Bignum, 444
class Complex, 452
class Fixnum, 510
class Float, 513
class Numeric, 593
class Rational, 656

. (in pattern), 100, 304

.() (proc call), 337

.. and ... (range), 90, 320
/ method

class Bignum, 444
class Complex, 452

Download from Wow! eBook <www.wowebook.com>

class Fixnum, 510
class Float, 513
class Rational, 656

/.../ (regexp), 303
: (hash keys), 48
: (symbol creation), 21, 303
: (then replacement), 135, 137
:: (scope resolution), 74, 308, 317,

329, 331, 333
; (line separator), 297
< (superclass), 331
< method

class Fixnum, 510
class Float, 513
class Rational, 656
module Comparable, 450

<, <=, ==, >, >= method, class Mod-
ule, 569

<< (here document), 87, 301
<< (singleton object), 331, 364
<< method

class Array, 423
class Bignum, 444
class Fixnum, 510
class IO, 157, 543
class String, 667

<= method
class Fixnum, 510
class Float, 513
class Rational, 656
module Comparable, 450

<=> (comparison operator), 91,
134, 450, 466

<=> method
class Array, 423
class Bignum, 444
class File::Stat, 503
class Fixnum, 510
class Float, 513
class Module, 570
class Numeric, 593
class Object, 599
class Rational, 656
class String, 667
class Symbol, 698
class Time, 714

= (assignment), 128, 317
== (equals), 134
== method

class Array, 423
class BasicObject, 440
class Bignum, 444
class Complex, 452
class Exception, 483
class Fixnum, 510
class Float, 513
class Hash, 522
class Method, 565
class Proc, 633

class Process::Status, 645
class Range, 651
class Rational, 656
class Regexp, 660
class String, 668
class Struct, 694
class Symbol, 698
module Comparable, 450

=== (case equals), 92, 134, 137, 148,
321

=== method
class Module, 570
class Object, 599
class Proc, 633
class Range, 651
class Regexp, 661

=> (hash creation), 48, 302
=> (in argument list), 122, 327
=> (rescue clause), 147, 340
=begin...=end, 298

embedded documentation, 266
=~ (match), 94, 97, 134
=~ method

class Object, 599
class Regexp, 661
class String, 668
class Symbol, 698

> method
class Fixnum, 510
class Float, 513
class Rational, 656
module Comparable, 450

>= method
class Fixnum, 510
class Float, 513
class Rational, 656
module Comparable, 450

>> method
class Bignum, 444
class Fixnum, 510
class Process::Status, 645

? (character literal), 88, 300
? (in pattern), 100, 305
? (ternary operator), 136
@ (instance variable prefix), 306
@@ (class variable prefix), 306
[] method, class Array, 46
[] method

class Array, 421, 423
class Bignum, 445
class Dir, 456
class Fixnum, 511
class Hash, 521–522
class MatchData, 97, 559
class Method, 565
class Proc, 633
class String, 668
class Struct, 694–695

class Symbol, 699
class Thread, 704

[]= method
class Array, 46, 424
class Hash, 523
class String, 669
class Struct, 695
class Thread, 704

[...] (array literal), 20, 302
[...] (bracket expression), 304
[...] (character class), 98
\ (line continuation), 297
\& (in substitution), 104
\' (in substitution), 104
\+ (in substitution), 104
\` (in substitution), 104
^ (in pattern), 98–99, 304
^ method

class Bignum, 444
class FalseClass, 486
class Fixnum, 510
class NilClass, 589
class TrueClass, 725

$_ variable, 138, 211, 313, 320, 548,
618

__ENCODING__ constant, 242, 313
__FILE__ constant, 314, 316, 401
__LINE__ constant, 314
__callee__ method, class Object, 313,

401, 610
__dir__ method, class Object, 610
__id__ method, class BasicObject, 440
__method__method, classObject, 314,

610
__send__ method, class BasicObject,

441
_id2refmethod, module ObjectSpace,

631
` (backquote) method, class Object,

128
` (backquote) method, class Object,

128, 170
` (backquote) method, class Object,

610
{...} (hash literal), 21, 302
{...} (in pattern), 100, 305
| (in file name), 172
| (in pattern), 102, 305
| method

class Array, 424
class Bignum, 444
class FalseClass, 486
class Fixnum, 510
class NilClass, 589
class TrueClass, 725

|| (logical or), 132, 319

Index • 834

Download from Wow! eBook <www.wowebook.com>

||= (conditional assignment), 132
~ method

class Bignum, 444
class Fixnum, 510
class Regexp, 661

DIGITS
$0 variable, 213, 313, 316
-0[octal] (Ruby option), 210
$1...$9 (in pattern) variable, 102, 305
$1...$n variable, 312
\1...\9 (in substitution), 104
\1...\n (in pattern), 102, 305

A
-a (Ruby option), 210, 313
\A (in pattern), 304
Abbrev module, 731, 795
Abbreviations, calculating, 731
abort method

class Object, 612
module Process, 637

abort_on_exception method, class
Thread, 165, 702, 705

abort_on_exception= method, class
Thread, 702, 705

abs method
class Bignum, 445
class Complex, 452
class Fixnum, 511
class Float, 514
class Numeric, 593

abs2 method
class Complex, 452
class Numeric, 593

absolute_path method, class File, 488
Access control, 40, 335

method, 576–577, 585
overriding in subclass, 365

Accessor method, 32
acosmethod, module Math, 562, 738
acoshmethod, moduleMath, 562, 738
ActiveRecord class, 388
ActiveRelation (Rails), 63
Ad hoc testing, 176
add method, class ThreadGroup, 710
add_observermethod, moduleObserv-
able, 780

add_trace_func method, class Thread,
705

advise method, class IO, 543
AF_INET class, 764
Alias, 44, 200, 308, 330
alias_method method

class Module, 579
class Object, 398

aliases method, class Encoding, 240,
462

alive? method
class Fiber, 755
class Thread, 705

all?method, module Enumerable, 466
all_symbolsmethod, class Symbol, 698
allocate method, class Class, 448
Amazon S3, 221
Anagram module, 229
ancestorsmethod, class Module, 395,

570
and (logical and), 132, 319
angle method

class Complex, 452
class Numeric, 593

any? method, module Enumerable,
466

Aoki, Minero, 149, 228
API, Microsoft Windows, 289
APOP authentication, 776
append_featuresmethod, classModule,

580
arg method

class Complex, 452
class Numeric, 593

ARGF constant, 28, 213, 315
Argument, method, 115–116
ArgumentError exception, 341
ARGV constant, 28, 211–212, 315,

618, 761, 784
Arithmetic, 768, 794
Arithmetic operations method

class Bignum, 444
class Complex, 452
class Fixnum, 510
class Float, 513
class Rational, 656

arity method
class Method, 565
class Proc, 634
class UnboundMethod, 726

Array
creating, 45
expanding as method parame-

ter, 120, 327
indexing, 46
literal, 20, 302
method argument, 325

Array class, 350, 421
&, 422
*, 422
+, 422
-, 422
<<, 423
<=>, 423
==, 423
[], 46

[], 421, 423
[]=, 46, 424
|, 424
assoc, 424
at, 424
bsearch, 425
collect!, 425
combination, 425
compact, 426
compact!, 426
concat, 426
count, 426
cycle, 426, 468
delete, 427
delete_at, 427
delete_if, 427
each, 427
each_index, 427
empty?, 428
eql?, 428
fetch, 428
fill, 428
find_index, 429
first, 47
flatten, 429
flatten!, 429, 526
frozen?, 429
index, 429
insert, 431
join, 431
keep_if, 431
last, 47, 431
length, 431
map!, 431
new, 421
pack, 157, 432
permutation, 432
pop, 47, 432
product, 433
push, 47, 433
rassoc, 433
reject!, 433
repeated_combination, 433
repeated_permutation, 434
replace, 434
reverse, 434
reverse!, 434
reverse_each, 434
rindex, 435
rotate, 435
rotate!, 435
sample, 435
scanf, 802
select!, 435
shift, 47, 435
shuffle, 436
shuffle!, 436
size, 436
slice, 436
slice!, 436
sort!, 437
sort_by!, 437
to_a, 437
to_ary, 437

Index • 835

Download from Wow! eBook <www.wowebook.com>

to_s, 437
transpose, 437
try_convert, 422
uniq, 438
uniq!, 438
unshift, 47, 438
values_at, 438

Array method, class Object, 610
ASCII

character literal, 88, 300
convert integer to, 532

ASCII-8BIT encoding, 244, 248
ascii_compatible?method, class Encod-
ing, 465

ascii_only? method, class String, 669
asctime method, class Time, 714
asin method, module Math, 562, 738
asinhmethod, moduleMath, 562, 738
assert_equal method, 177
Assignment, 128, 317

attribute, 330
nested, 131
parallel, 130, 318

assoc method
class Array, 424
class Hash, 523

AST, dumping, 210
Asynchronous I/O, 763
at method

class Array, 424
class Time, 712

at_exit method, class Object, 612
atanmethod, module Math, 562, 738
atan2method, moduleMath, 562, 738
atanhmethod, moduleMath, 562, 738
atime method

class File, 489, 500
class File::Stat, 503

attr method, 333
class Module, 580

attr_accessor method, 35, 333, 365,
372–373

class Module, 580
writing own, 374

attr_reader method, 33, 333
class Module, 580

attr_writer method, 333
class Module, 581

Attribute, 32
assignment, 198, 330
defining special accessors, 374
virtual, 35
writable, 34

autoclose: option (file open), 495
autoclose= method, class IO, 543
autoclose? method, class IO, 543

autoload method
class Module, 570
class Object, 612

autoload? method
class Module, 571
class Object, 612

Automation, Windows, 290, 825
Autosplit mode, 210
AWS::S3 gem, 221

B
\B (in pattern), 304
\b (in pattern), 304
b method, class String, 670
Backreferences (in regular expres-

sions), 102, 104–105, 305, 330
backtrace method

class Exception, 483
class Thread, 705

backtrace_locations method, class
Thread, 706

Backtracking (regular expression),
106

Backup files, creating, 211, 214
Bang method, 115
Base (numeric), 446, 512, 688
Base64 module, 732
base_uri method, 781
basename method, class File, 489
BasicObject class, 71, 358, 387

!, 440
!=, 440
==, 440
__id__, 440
__send__, 441
equal?, 440
instance_eval, 440
instance_exec, 441
method_missing, 442
singleton_method_added, 442
singleton_method_removed, 442
singleton_method_undefined, 443

BasicSocket class, 153, 807
Bates, Mark, 204
BDD, 186
BEGIN {...}, 298
begin method

class MatchData, 559
class Range, 651

=begin...=end, 298
begin...end, 139, 147, 319, 339
Behavior-driven development, 186
Benchmarkmodule, 201, 258, 397, 733
Berger, Daniel, 294
between? method, module Compara-
ble, 450

BigDecimal class, 35, 734

BigMath module, 734
Bignum class, 83, 444, 510, 734, 768

%, 444
&, 444
*, 444
**, 444, 794
+, 444
-, 444
-@, 444
/, 444
<<, 444
<=>, 444
==, 444
>>, 444
[], 445
^, 444
|, 444
~, 444
abs, 445
Arithmetic operations, 444
Bit operations, 444
div, 445
divmod, 445
eql?, 445
fdiv, 445, 794
literal, 83, 299
magnitude, 446
modulo, 446
power!, 794
quo, 794
quof, 794
rdiv, 794
remainder, 446
rpower, 794
size, 446
to_f, 446
to_s, 446

Binary data, 157, 432, 690
and encodings, 244, 248

Binary notation, 83, 299
bind method, class UnboundMethod,

727
Binding

in block, 311
in erb, 284

Binding class, 316, 447
eval, 447

binding method
class Object, 397, 447, 613
class Proc, 634
class TracePoint, 723

binmode: option (file open), 495
binmode method, class IO, 543
binmode? method, class IO, 544
binread method, class IO, 537
binwrite method, class IO, 537
Bit operations method

class Bignum, 444
class Fixnum, 510

blksize method, class File::Stat, 503

Index • 836

Download from Wow! eBook <www.wowebook.com>

Block, 25, 52, 335
break and next, 337
calling, 337
as closure, 66
creating object from, 336
and files, 154
fork, popen, and subprocess,

173, 540, 620, 782
as iterator, 54
with method, 396
as parameter to method, 117,

326, 328
parameters, 26
return from, 338
as transaction, 63
variable scope, 53, 142, 164, 310

block_given?method, class Object, 64,
328, 613

blockdev? method
class File, 489
class File::Stat, 503

blocks method, class File::Stat, 504
BOM, 242
Boolean expressions, 319
Bottlenecks, 201
break, 141, 323, 337
Breakpoint, 195
bsearch method

class Array, 425
class Range, 651

Buffering problems, 200
Bug reporting, 830
Builder, 217, 280
bundler, 237
Burns, Anthony, xiii
Byte Order Mark, 242
Bytecodes, dumping, 210
Bytes and encodings, 244, 248
bytes method

class IO, 544, 548, 551
class Random, 655
class String, 243, 670

bytesize method, class String, 670
byteslice method, class String, 670

C
-c (Ruby option), 210
-C directory (Ruby option), 210
call method

class Method, 396, 566
class Proc, 65, 634

:call-seq: (RDoc), 269–270
callcc method, class Object, 739
__callee__ method, class Object, 313,

401, 610
callermethod, class Object, 150, 401,

613

caller_locations method, class Object,
614

Calling a block, 337
CamelCase, 306
Candler, Brian, 60
capitalize method

class String, 671
class Symbol, 699

capitalize! method, class String, 671
capturesmethod, classMatchData, 559
case expression, 136, 321
Case insensitive

regexp, 96
string comparison, 671
symbol comparison, 699

casecmp method
class String, 671
class Symbol, 699

casefold? method, class Regexp, 661
catchmethod, class Object, 142, 151,

341, 614
cbrt method, module Math, 562
ceil method

class Float, 514
class Integer, 532
class Numeric, 593
class Rational, 657

center method, class String, 671
CGI class, 277, 735

cookies, 284
has_key?, 280
params, 279

CGI programming, 277–287
cookies, 284
embedding Ruby (erb), 282
forms, 279
generate HTML, 280
query parameters, 278
quoting, 278
session, 285
WEBrick, 286

CGI::Session class, 737
change_privilege method

module Process::GID, 643
module Process::UID, 648

changedmethod, module Observable,
780

changed?method, moduleObservable,
780

Character
class in regexp, 98
convert integer to, 532
literal, 88, 300

chardev? method
class File, 489
class File::Stat, 504

chars method
class IO, 544
class String, 671

charset method, 781
chdir method, class Dir, 215, 456
Checksum, 687, 747
chmod method, class File, 489, 500
chomp method

class Object, 614
class String, 89, 672

chomp! method, class String, 672
chop method

class Object, 614
class String, 672

chop! method, class String, 673
chown method, class File, 489, 501
chr method

class IO, 155
class Integer, 532
class String, 672

chroot method, class Dir, 456
chunk method, module Enumerable,

466
Class

attribute, 32, 333
defining, 331
eigneclass, 361
generator, 693
hierarchy, 569
instance, 16, 332
listing hierarchy, 395
method, 362, 369
mixing in module, 334
naming, 19
singleton, 361, 378
vs type, 344
unnamed, 448

Class class, 357, 448
allocate, 448
directory?, 457
exit, 214
inherited, 384, 449
new, 333, 378, 448
superclass, 70, 395, 449

class method, class Object, 599
class_evalmethod, classModule, 379,

571, 600
class_execmethod, classModule, 380,

571
class_variable_defined? method, class
Module, 571

class_variable_get method, class Mod-
ule, 571

class_variable_set method, class Mod-
ule, 571

class_variables method, class Module,
572

Classes
ActiveRecord, 388

Index • 837

Download from Wow! eBook <www.wowebook.com>

AF_INET, 764
Array, 350, 421
BasicObject, 71, 358, 387
BasicSocket, 153, 807
BigDecimal, 35, 734
Bignum, 83, 444, 510, 734, 768
Binding, 316, 447
CGI, 277, 735
CGI::Session, 737
Class, 357, 448
Complex, 300, 451, 738, 768
Continuation, 739
CSV, 38, 741
CSV::Row, 741
Date, 712, 744
DateTime, 744
DBM, 745
Delegator, 746
Dir, 456, 787
DRb, 748
Encoding, 240, 462, 675
Enumerator, 57, 85, 351, 477, 609
Enumerator::Lazy, 61
Enumerator::Yielder, 477
Exception, 145, 339, 483
FalseClass, 486
Fiber, 162, 487, 755
File, 153, 488, 509, 539, 787
File::Stat, 503
Fixnum, 83, 510, 768
Float, 84, 513
GetoptLong, 761
GServer, 762
Hash, 351, 521
Integer, 351, 532, 768
IO, 153, 351, 536, 753, 802, 807–

808
IPAddr, 764
IPSocket, 807
JSON, 766
Logger, 767
MatchData, 97, 102, 559, 659,

662, 668
Matrix, 769
Method, 396, 565, 581, 600, 726
MiniTest::Unit, 769
Module, 568
Monitor, 770, 813
Mutex, 168, 588, 771
Net::FTP, 772
Net::HTTP, 773, 822
Net::IMAP, 775
Net::POP3, 776
Net::SMTP, 777
Net::Telnet, 778
NilClass, 589
Numeric, 591
Object, 70, 391, 599
OpenStruct, 386, 693, 786
Pathname, 787
PP, 788
PrettyPrint, 621, 788–789
Proc, 64, 118, 336, 351, 567, 581,

600, 633

Process::Status, 173, 642, 644
PStore, 793
Pysch, 827
Queue, 170, 813
Random, 655
Range, 302, 650
Rational, 300, 656, 768, 794
Regexp, 96, 351, 659
RubyVM, 402
SDBM, 803
Set, 422, 424, 804
SimpleDelegator, 746
SizedQueue, 813
Socket, 807
SOCKSSocket, 807
String, 86, 88, 300, 351, 666, 802
StringIO, 158, 808
StringScanner, 809
Struct, 377, 379, 693
Struct::Tms, 697
Symbol, 352, 679, 698
Syslog, 810
TCPSocket, 807
Tempfile, 811
Test::Unit, 812
Thread, 702
ThreadGroup, 706, 710
ThreadsWait, 814
Time, 488, 712, 815
Tk, 817
TracePoint, 400, 722
TrueClass, 725
UDPSocket, 807
UnboundMethod, 396, 565, 567,

574, 578, 581, 600, 726
UNIXSocket, 807
URI, 822
Vector, 769
WeakRef, 823
YAML, 405, 557, 827

clear method
class Hash, 523
class String, 672
module GC::Profiler, 519

Client/Server, 407, 748, 762
clone method, class Object, 599
close method

class Dir, 459
class IO, 544

close_on_exec= method, class IO, 544
close_on_exec? method, class IO, 544
close_read method, class IO, 544
close_write method, class IO, 545
closed? method, class IO, 545
CMath library, 738
Code coverage, 204, 740
Code profiler, 202
codepoints method

class IO, 545
class String, 673

Coding system (ASCII, EUC, SJIS,
UTF-8), 239–251, 779

coerce method, 353
class Numeric, 353, 594

Coercion, 352
collect method, module Enumerable,

56, 467
collect! method, class Array, 425
collect_concat method, module Enu-
merable, 467

combination method, class Array, 425
Comma-separated data, 741
Command (type of method), 119
Command expansion, 128
Command line, 3, 155, 209

arguments, 28, 212
editing with readline, 795
options, 210–212
parsing, 761, 784, 805

Comment, 297
for RDoc, 264
regular expression, 105, 305

compact method, class Array, 426
compact! method, class Array, 426
Comparablemodule, 76, 450, 510, 656

<, 450
<=, 450
==, 450
>, 450
>=, 450
between?, 450
Comparisons, 450

compare_by_identity method, class
Hash, 523

compare_by_identity? method, class
Hash, 523

Comparison operators, 320
Comparisons method

class Fixnum, 510
class Float, 513
class Rational, 656
module Comparable, 450

compatible? method, class Encoding,
462

compile method, class Regexp, 659
Completion, tab, 254
Complex class, 300, 451, 738, 768

*, 452
**, 452
+, 452
+@, 452
-, 452
-@, 452
/, 452
==, 452
abs, 452
abs2, 452
angle, 452
arg, 452

Index • 838

Download from Wow! eBook <www.wowebook.com>

Arithmetic operations, 452
conj, 452
conjugate, 453
denominator, 453
eql?, 453
fdiv, 453
imag, 453
imaginary, 453
magnitude, 453
numerator, 454
phase, 454
polar, 451, 454
quo, 454
rationalize, 454
real, 455
real?, 455
rect, 451, 454
rectangular, 451, 455
to_f, 455
to_i, 455
to_r, 455
transcendental functions, 738

Complex method, 84
class Object, 611

Compression, gzip, 828
COMSPEC (environment variable),

215, 615
concat method

class Array, 426
class String, 673

Conditional expression, 136, 321
Config module, 224
conj method

class Complex, 452
class Numeric, 595

conjugate method
class Complex, 453
class Numeric, 595

Console I/O, 762
const_defined? method, class Module,

572
const_get method, class Module, 572
const_missing method, class Module,

572
const_set method, class Module, 573
Constant, 308

class name, 306
listing in module, 395
name, 306
scope, 308

Constants
__ENCODING__, 242, 313
__FILE__, 314, 316, 401
__LINE__, 314
ARGF, 28, 213, 315
ARGV, 28, 211–212, 315, 618,

761, 784
DATA, 298, 315
Errno, 148
FALSE, 315

false, 132, 315, 319
File::NULL, 488
NIL, 315
nil, 20, 132, 315, 319
RUBY_COPYRIGHT, 315
RUBY_DESCRIPTION, 315
RUBY_ENGINE, 315
RUBY_PATCHLEVEL, 315
RUBY_PLATFORM, 315
RUBY_RELEASE_DATE, 316
RUBY_REVISION, 316
RUBY_VERSION, 316
SCRIPT_LINES__, 316, 402
STDERR, 316
STDIN, 316, 620
STDOUT, 316, 620–621
TOPLEVEL_BINDING, 316
TRUE, 316
true, 132, 315, 319

constantsmethod, class Module, 568,
573

Constructor, 16, 30
initialize method, 618

Contact, authors’ email, xii
content_encoding method, 781
content_type method, 781
Continuation, 163
Continuation class, 739
Control character

\n etc., 300
\n etc., 88

Conventions, typographic, xiv
Conversion protocols, 349
cookies method, class CGI, 284
Coordinated Universal Time, 712
copy_stream method, class IO, 537
--copyright (Ruby option), 210
coredump?method, class Process::Sta-
tus, 645

Coroutine, 161–162
cos method, module Math, 562, 738
coshmethod, module Math, 563, 738
count method

class Array, 426
class String, 673
module Enumerable, 467
module GC, 517

count_objects method, module Ob-
jectSpace, 631

count_observersmethod, module Ob-
servable, 780

Coupling, 40
cover? method, class Range, 652
Coverage library, 740
CoverMe (code coverage), 204
CPU times, 697
CRAM-MD5 authentication, 775

crypt method, class String, 673
Cryptographic Hashes, 747
CSV class, 38, 741
CSV::Row class, 741
ctime method

class File, 490, 501
class File::Stat, 504
class Time, 714

Current directory, 457
current method

class Fiber, 755
class Thread, 702

curry method, class Proc, 635
Curses module, 743
cycle method

class Array, 426, 468
module Enumerable, 467

D
\D (in pattern), 304
\d (in pattern), 304
-d, --debug (Ruby option), 165, 210,

313, 557
daemonmethod, module Process, 637
DATA constant, 298, 315
Date class, 712, 744, see also Time

class
DateTime class, 744
Davis, Ryan, 176–177
day method, class Time, 714
day-name? method, class Time, 714
DBM class, 745
Debug mode, 165, 210
$DEBUG variable, 210, 313, 702, 706
Debugger, 195

commands, 205
Decimal notation, 83, 299
default method, class Hash, 524
Default parameters, 116, 325
Default rake task, 224
Default value, hash, 521
default= method, class Hash, 524
default_external method, class Encod-
ing, 464

default_external=method, class Encod-
ing, 464

default_internal method, class Encod-
ing, 251, 464

default_internal=method, class Encod-
ing, 464

default_proc method, class Hash, 524
default_proc=method, class Hash, 524
$deferr, $defout variable, 313
define_finalizer method, module Ob-
jectSpace, 632

Index • 839

Download from Wow! eBook <www.wowebook.com>

define_method method
classModule, 336, 339, 373, 387,

581
class Object, 615

define_singleton_methodmethod, class
Object, 600

defined? operator, 133, 319
defined_classmethod, class TracePoint,

723
Delegation, 746, 759
Delegator class, 746
delete method

class Array, 427
class Dir, 457
class File, 490
class Hash, 525
class String, 674

delete! method, class String, 674
delete_at method, class Array, 427
delete_if method

class Array, 427
class Hash, 525

delete_observer method, module Ob-
servable, 780

delete_observers method, module
Observable, 780

Delimited string, 298
denominator method

class Complex, 453
class Integer, 532
class Numeric, 595
class Rational, 657

Dependency, RubyGems, 217
desc method, 222
detach method, module Process, 637
detect method, module Enumerable,

468
Determinant, matrix, 769
dev method, class File::Stat, 504
dev_majormethod, class File::Stat, 504
dev_minormethod, class File::Stat, 504
Digest module, 747
Dir class, 456, 787, see also Find

module
[], 456
chdir, 215, 456
chroot, 456
close, 459
delete, 457
each, 459
entries, 457
exist?, 457
exists?, 457
foreach, 457
getwd, 457
glob, 458
home, 458
match modes, 491

mkdir, 458
new, 459
open, 459
path, 460
pos, 460
pos=, 460
pwd, 459
read, 460
rewind, 460
rmdir, 459
seek, 460
tell, 461
tmpdir, 286, 818
to_path, 461
unlink, 459

__dir__ method, class Object, 610
Directories

pathname, 787
search path, 216
temporary, 818
working, 210

directory? method
class Class, 457
class File, 490
class File::Stat, 504

dirname method, class File, 490
disable method

class TracePoint, 723
module GC, 517
module GC::Profiler, 519

--disable-all (Ruby option), 210
--disable-gems (Ruby option), 210
--disable-rubyopt (Ruby option), 210
Dispatch table, 396
display method, class Object, 600
Distributed Ruby, 406, 748, 798, 826
div method

class Bignum, 445
class Fixnum, 511
class Numeric, 595

Division, accuracy, 768, 794
divmod method

class Bignum, 445
class Fixnum, 511
class Float, 514
class Numeric, 595

DL, see Fiddle library
DL module, 294
DLL, accessing API, 289, 756
DLN_LIBRARY_PATH (environment

variable), 215
DNS, 795
do (in loops), 322
:doc: (RDoc), 269
Document Type Definition, 796
Document-class: (RDoc), 270
Document-method: (RDoc), 270

Documentation
embedded, 263, 298
modifiers, 268

Domain Name System, 795
Double dispatch, 353
Double-quoted string, 86, 300
downcase method

class String, 48, 674
class Symbol, 699

downcase! method, class String, 674
Download

Ruby, 5
source from book, 9

downtomethod, class Integer, 139, 532
DRb class, 748, see also Distributed

Ruby
DRbUndumped module, 748
drop method, module Enumerable,

468
drop_while method, module Enumer-
able, 468

dst? method, class Time, 715
DTD, 796
Duck typing, 343–355
dummy? method, class Encoding, 465
--dump (Ruby option), 210, 557
dump method

class String, 674
module Marshal, 404, 558

dup method, class Object, 601
Dynamic

compilation, 615
linking, 756
method invocation, 396

E
-e 'command' (Ruby option), 211
-E encoding (Ruby option), 211
-E encoding (Ruby option), 249–250
each method, 55, 477

class Array, 427
class Dir, 459
class Enumerator, 478
class Hash, 525
class IO, 545
class Range, 652
class Struct, 695
module Enumerable, 55, 466

each_byte method
class IO, 155, 546
class String, 674

each_char method
class IO, 546
class String, 674

each_codepoint method
class IO, 546
class String, 675

Index • 840

Download from Wow! eBook <www.wowebook.com>

each_cons method, module Enumer-
able, 468

each_entry method, module Enumer-
able, 468

each_index method, class Array, 427
each_key method, class Hash, 525
each_line method

class IO, 156, 546
class String, 675

each_object method, module Ob-
jectSpace, 393, 395, 632

each_pair method
class Hash, 525
class Struct, 695

each_slice method, module Enumer-
able, 469

each_value method, class Hash, 525
each_with_index method

class Enumerator, 59, 478
module Enumerable, 58–59, 469

each_with_object method
class Enumerator, 479
module Enumerable, 469

Echo (console), 762
echo= method, class IO, 762
echo? method, class IO, 762
Editor, run Ruby in, 197
egid method, module Process, 638
egid= method, module Process, 638
eid method

module Process::GID, 643
module Process::UID, 648

eid= method
module Process::GID, 644
module Process::UID, 649

8-bit clean encoding, 244, 248
Element reference ([]), 330
else

with case, 321
and exceptions, 149, 340
with if, 321

elsif, 321
Emacs, 197–198

and encoding, 242
key binding in readline, 795

Email
address for feedback, xii
date/time formats, 815
fetching with IMAP, 775
fetching with POP, 776
sending with SMTP, 777

Embedded documentation, 263, 298
empty? method

class Array, 428
class Hash, 526
class String, 675
class Symbol, 699

enable method
class TracePoint, 723
module GC, 517
module GC::Profiler, 519

--enable-all (Ruby option), 210
--enable-gems (Ruby option), 210
--enable-rubyopt (Ruby option), 210
enabled? method

class TracePoint, 723
module GC::Profiler, 519

enclose method, class ThreadGroup,
711

enclosed?method, class ThreadGroup,
711

encodemethod, class String, 245, 675
encode! method, class String, 676
Encoding, 239–251

character, 779
compatibility, 249
default external, 248
default internal, 250
8-bit clean, 244, 248
external, 246
internal, 246
listing known, 240
literal, 243
in mode string, 494
regular expression, 97
regular expression, string, and

symbol, 243
setting using comment, 241
source file, 240, 244, 297
transcoding, 245, 247, 250
Unicode literal, 243

encoding: option (file open), 495
Encoding class, 240, 462, 675

aliases, 240, 462
ascii_compatible?, 465
compatible?, 462
default_external, 464
default_external=, 464
default_internal, 251, 464
default_internal=, 464
dummy?, 465
find, 464
list, 240, 464
locale_charmap, 464
name, 465
name_list, 464
names, 465
replicate, 465

encoding method
class Regexp, 661
class String, 676
class Symbol, 700

Encryption, 673
__END__, 298, 315
END {...}, 298

end method
class MatchData, 560
class Range, 652

End of line, 156
end_with? method, class String, 676
:enddoc: (RDoc), 269
English library, 749
English names for $ variables, 311,

749
ensure (exceptions), 148, 340
entries method

class Dir, 457
module Enumerable, 470

enum_for method, class Object, 57,
477, 601

Enumerable module, 77, 466
all?, 466
any?, 466
chunk, 466
collect, 56, 467
collect_concat, 467
convert to Set, 804
count, 467
cycle, 467
detect, 468
drop, 468
drop_while, 468
each, 55, 466
each_cons, 468
each_entry, 468
each_slice, 469
each_with_index, 58–59, 469
each_with_object, 469
entries, 470
find, 470
find_all, 470
find_index, 470
first, 470
flat_map, 470
grep, 470
group_by, 471
include?, 471
inject, 57, 471, 474
lazy, 472
map, 56, 472
max, 472
max_by, 472
member?, 472
min, 472
min_by, 473
minmax, 473
minmax_by, 473
none?, 473
one?, 473
partition, 473
reduce, 474
reject, 433, 474
reverse_each, 474
select, 474
slice_before, 474
sort, 475
sort_by, 475

Index • 841

Download from Wow! eBook <www.wowebook.com>

take, 476
take_while, 476
to_a, 476
with_index, 56, 59
zip, 476

Enumerator, lazy, 61
Enumerator class, 57, 85, 351, 477, 609

each, 478
each_with_index, 59, 478
each_with_object, 479
feed, 479
lazy, 61
new, 477
next, 479
next_values, 479
peek, 480
peek_values, 480
rewind, 480
size, 481
with_index, 481
with_object, 481

Enumerator::Lazy class, 61
Enumerator::Yielder class, 477
ENV variable, 214, 315
Environment variables, 214

COMSPEC, 215, 615
DLN_LIBRARY_PATH, 215
HOME, 215, 456, 491
LANG, 249
LOGDIR, 215, 456
OPENSSL_CONF, 215
PATH, 212
POSIXLY_CORRECT, 761
RI, 13
RUBY_FIBER_MACHINE_STACK_SIZE,

215
RUBY_FIBER_VM_STACK_SIZE, 215
RUBY_TCL_DLL, 215
RUBY_THREAD_MA-
CHINE_STACK_SIZE, 215

RUBY_THREAD_VM_STACK_SIZE,
215

RUBY_TK_DLL, 215
RUBYLIB, 215–216, 412
RUBYLIB_PREFIX, 215
RUBYOPT, 210, 215, 412
RUBYPATH, 212, 215
RUBYSHELL, 215, 615
SHELL, 215
unsetting, 216

eof method, class IO, 546
eof? method, class IO, 547
EOFError exception, 552
Epoch, 712
eql? method, 134, 523

class Array, 428
class Bignum, 445
class Complex, 453
class Float, 514
class Method, 566
class Numeric, 595

class Object, 601
class Range, 652
class String, 677

equal? method, 134
class BasicObject, 440

erb, 282–284, 750
ERB::Util module, 751
erf method, module Math, 563
erfc method, module Math, 563
Errno constant, 148
Errno module, 148, 482–483
Errors in book, reporting, xii
escape method, class Regexp, 659
Etc module, 752
EUC, 97, 779
euid method, module Process, 638
euid= method, module Process, 638
eval method

class Binding, 447
class Object, 397, 447, 615

even? method
class Fixnum, 511
class Integer, 532

event method, class TracePoint, 723
Example code, download, 9
Exception, 145–152, 339

handling, 147
hierarchy, 146
raising, 150, 622
stored in $!, 311
testing, 179
in thread, 165, 702

Exception class, 145, 339, 483
==, 483
backtrace, 483
exception, 483–484
message, 484
new, 483
set_backtrace, 484
status, 484
success?, 484
to_s, 485

exception method, class Exception,
483–484

Exceptions
ArgumentError, 341
EOFError, 552
FaultException, 826
FiberError, 162
IndexError, 428, 669
LocalJumpError, 338
NameError, 385
NoMethodError, 326, 385
RangeError, 669
RuntimeError, 44, 150, 339
SecurityError, 409
StandardError, 145, 148, 340
StopIteration, 58, 479, 620
SystemCallError, 148, 482, 616

SystemExit, 214, 484, 616
ThreadError, 338, 588
Timeout::Error, 816
TypeError, 404, 611, 668
WeakRef::RefError, 823

exclude_end? method, class Range,
652

exclusive method, class Thread, 702
exec method

class Object, 172, 541, 615
module Process, 638

executable? method
class File, 490
class File::Stat, 505

executable_real? method
class File, 490
class File::Stat, 505

Execution
environment, 390
profiler, 202
tracing, 400

exist? method
class Dir, 457
class File, 490

exists? method
class Dir, 457
class File, 490

exit method
class Class, 214
class Object, 484, 616
class Thread, 702, 706
module Process, 638

exit! method
class Object, 617
module Process, 638

exited? method, class Process::Status,
645

exitstatus method, class Process::Sta-
tus, 645

exp method, module Math, 563, 738
expand_path method, class File, 491
expect method, class IO, 753, 794
$expect_verbose variable, 753
Expression, 125–143, 316–323

boolean, 132, 319
case, 136, 321
if, 135, 321
range as boolean, 134
substitution in string, 300
ternary, 136, 321

extendmethod, class Object, 368, 601
Extend Ruby, documentation

(RDoc), 269
extend_object method, class Module,

582
extended method, class Module, 582
Extended mode (regexp), 97
External iterator, 57

Index • 842

Download from Wow! eBook <www.wowebook.com>

--external-encoding=encoding (Ruby
option), 211

external_encoding method, class IO,
247, 547

external_encoding: option (file open),
495

extname method, class File, 491

F
-F pattern (Ruby option), 211, 312
$F variable, 210, 314
fail method, class Object, 150, 617
FALSE constant, 315
false constant, 132, 315, 319
FalseClass class, 486

&, 486
^, 486
|, 486

FaultException exception, 826
fcntl method, class IO, 547
Fcntl module, 547, 754
FD (file descriptor), 542
fdatasync method, class IO, 547
fdiv method

class Bignum, 445, 794
class Complex, 453
class Fixnum, 511, 794
class Float, 514
class Numeric, 596
class Rational, 657

feed method, class Enumerator, 479
Feedback, email address, xii
fetch method

class Array, 428
class Hash, 526

ffi, 756
Fiber class, 162, 487, 755

alive?, 755
coroutine, 161–162
current, 755
new, 487
resume, 162, 487
transfer, 163, 755
yield, 162, 487

FiberError exception, 162
Fibonacci series, 55
Fiddle library, 756
File

associations under Windows,
289

and blocks, 154
descriptor, 542
directory traversal, 758
encoding of data, 246
expanding names, 488, 491
FNM_xxx filename match con-

stants, 491
including source, 211, 216

lock modes, 501
match modes, 491
modes, 494
open modes, 494
opening, 153
owner, 489, 501, 505, 507–508
path name, 536, 787
permission, 488, 499
reading, 154
temporary, 811
tests, 628
writing, 157

File class, 153, 488, 509, 539, 787
absolute_path, 488
atime, 489, 500
basename, 489
blockdev?, 489
chardev?, 489
chmod, 489, 500
chown, 489, 501
ctime, 490, 501
delete, 490
directory?, 490
dirname, 490
executable?, 490
executable_real?, 490
exist?, 490
exists?, 490
expand_path, 491
extname, 491
file?, 491
flock, 501
fnmatch, 458, 491
fnmatch?, 492
ftype, 492
grpowned?, 492
identical?, 493
join, 493
lchmod, 493
lchown, 493
link, 493
lstat, 493, 501
mtime, 494, 501
new, 153, 494
open, 64, 154, 351
owned?, 496
path, 496, 502
pipe?, 496
readable?, 496
readable_real?, 496
readlink, 497
realdirpath, 497
realpath, 497
rename, 497
setgid?, 497
setuid?, 498
size, 498, 502
size?, 498
socket?, 498
split, 498
stat, 498
sticky?, 498
symlink, 499

symlink?, 499
to_path, 502
truncate, 499, 502
umask, 499
unlink, 499
utime, 499
world_readable?, 500
world_writable?, 500
writable?, 500
writable_real?, 500
zero?, 500

File::NULL constant, 488
File::Stat class, 503

<=>, 503
atime, 503
blksize, 503
blockdev?, 503
blocks, 504
chardev?, 504
ctime, 504
dev, 504
dev_major, 504
dev_minor, 504
directory?, 504
executable?, 505
executable_real?, 505
file?, 505
ftype, 505
gid, 505
grpowned?, 505
ino, 505
mode, 505
mtime, 506
nlink, 506
owned?, 506
pipe?, 506
rdev, 506
rdev_major, 506
rdev_minor, 506
readable?, 507
readable_real?, 507
setgid?, 507
setuid?, 507
size, 507
size?, 507
socket?, 507
sticky?, 508
symlink?, 508
uid, 508
world_readable?, 508
world_writable?, 508
writable?, 508
writable_real?, 509
zero?, 509

file? method
class File, 491
class File::Stat, 505

$FILENAME variable, 314
fileno method, class IO, 547
FileTest module, 509, 787
FileUtils module, 222, 757, 821
fill method, class Array, 428

Index • 843

Download from Wow! eBook <www.wowebook.com>

Financial calculations, 35
find method

class Encoding, 464
module Enumerable, 470

Find module, 758
find_all method, module Enumerable,

470
find_index method

class Array, 429
module Enumerable, 470

finite? method, class Float, 514
first method

class Array, 47
class Range, 652
module Enumerable, 470

fixed_encoding?method, class Regexp,
661

Fixnum class, 83, 510, 768
%, 510
&, 510
*, 510
**, 510, 794
+, 510
-, 510
-@, 510
/, 510
<, 510
<<, 510
<=, 510
<=>, 510
==, 510
>, 510
>=, 510
>>, 510
[], 511
^, 510
|, 510
~, 510
abs, 511
Arithmetic operations, 510
Bit operations, 510
Comparisons, 510
div, 511
divmod, 511
even?, 511
fdiv, 511, 794
literal, 83, 299
magnitude, 511
modulo, 512
odd?, 512
power!, 794
quo, 794
quof, 794
range of, 83
rdiv, 794
rpower, 794
size, 512
succ, 512
to_f, 512
to_s, 512
zero?, 512

flat_mapmethod, module Enumerable,
470

flatten method
class Array, 429
class Hash, 526

flatten! method, class Array, 429, 526
Float class, 84, 513

%, 513
*, 513
**, 513
+, 513
-, 513
-@, 513
/, 513
<, 513
<=, 513
<=>, 513
==, 513
>, 513
>=, 513
abs, 514
Arithmetic operations, 513
ceil, 514
Comparisons, 513
divmod, 514
eql?, 514
fdiv, 514
finite?, 514
floor, 514
infinite?, 515
literal, 84, 299
magnitude, 515
modulo, 515
nan?, 515
quo, 515
rationalize, 515
round, 516
to_f, 516
to_i, 516
to_int, 516
to_r, 516
to_s, 516
truncate, 516
zero?, 516

Float method, 30
class Object, 611, 688

flock method, class File, 501
floor method

class Float, 514
class Integer, 533
class Numeric, 596
class Rational, 657

flush method, class IO, 547
FNM_xxx, filename match constants,

491
fnmatch method, class File, 458, 491
fnmatch? method, class File, 492
foldl method, 471
for...in loop, 140, 322
for_fd method, class IO, 537

force_encoding method, class String,
246, 677

foreach method
class Dir, 457
class IO, 156, 538

fork method
class Object, 172–173, 617
class Thread, 703
module Process, 638

format method, class Object, 617
Forms (Web), 279
Fortran, documentation, 263
Forwardable module, 759
Forwarding method calls, 746, 759
Fowler, Chad, xiii, 217
freeze method, class Object, 201, 602
frexp method, module Math, 563
frozen? method

class Array, 429
class Object, 602

fsync method, class IO, 547
ftools library, 730
ftype method

class File, 492
class File::Stat, 505

Function pointer, 396

G
\G (in pattern), 304
gamma method, module Math, 563
Garbage collection, 347, 517, 631,

823
garbage_collect method

module GC, 518
module ObjectSpace, 632

GC module, 517
count, 517
disable, 517
enable, 517
garbage_collect, 518
start, 517
stat, 517
stress, 517
stress=, 518

GC::Profiler module, 519
clear, 519
disable, 519
enable, 519
enabled?, 519
raw_data, 519
report, 520
result, 520
total_time, 520

gcd method, class Integer, 533
gcdlcm method, class Integer, 533
gdbm, 745, 760
Gelernter, David, 798
gem server, 219

Index • 844

Download from Wow! eBook <www.wowebook.com>

gem method, class Object, 617
gem server, 236
gem_original_require method, class
Object, 617

gem_server, 218
GemCutter.org, 829
Gemspec, 234
gemspec, 234
General delimited string, 298
Generator library, 730
get method, 773
getbyte method

class IO, 544, 548
class String, 677

getc method, class IO, 548
getch method, class IO, 762
getegidmethod, module Process::Sys,

647
geteuidmethod, module Process::Sys,

647
getgid method, module Process::Sys,

647
getgm method, class Time, 715
getlocal method, class Time, 715
GetoptLong class, 761
getpgidmethod, module Process, 639
getpgrpmethod, module Process, 639
getpriority method, module Process,

639
getrlimitmethod, module Process, 639
gets method

class IO, 548
class Object, 28, 313, 618

getsid method, module Process, 639
Getter method, 32
getuid method, module Process::Sys,

647
getutc method, class Time, 715
getwd method, class Dir, 457
gid method

class File::Stat, 505
module Process, 639

gid= method, module Process, 639
glob method, class Dir, 458
global_variables method, class Object,

618
gm method, class Time, 712
GMT, 712
gmt? method, class Time, 715
gmt_offset method, class Time, 716
gmtime method, class Time, 715
gmtoff method, class Time, 716
GNU readline, 795

grant_privilege method
module Process::GID, 644
module Process::UID, 649

Gray II, James Edward, 741
Greedy patterns, 100
Greenwich Mean Time, 712
grep method, module Enumerable,

470
group method, class Thread, 706
group_by method, module Enumer-
able, 471

Grouping (regular expression), 102
groups method, module Process, 640
groups=method, module Process, 640
grpowned? method

class File, 492
class File::Stat, 505

GServer class, 762
GServer library, 72
gsub method

class Object, 618
class String, 95, 677

gsub! method, class String, 95, 678
GUI programming, 817
GZip compression, 828

H
\h (in pattern), 304
-h, --help (Ruby option), 211
Haml templates, 281
has_key? method

class CGI, 280
class Hash, 526

has_many method, 372
has_value? method, class Hash, 527
Hash, 47

=> and : in literals, 48, 302
creating, 48
default value, 21
functions, 747
indexing, 48
key requirements, 302
literal, 21, 302
as method parameter, 122, 327
symbol as keys, 22

Hash class, 351, 521
==, 522
[], 521–522
[]=, 523
assoc, 523
clear, 523
compare_by_identity, 523
compare_by_identity?, 523
default, 524
default=, 524
default_proc, 524
default_proc=, 524
delete, 525

delete_if, 525
each, 525
each_key, 525
each_pair, 525
each_value, 525
empty?, 526
fetch, 526
flatten, 526
has_key?, 526
has_value?, 527
include?, 527
index, 527
invert, 527
keep_if, 527
key, 527
key?, 527
keys, 528
length, 528
member?, 528
merge, 528
merge!, 528
new, 521
rassoc, 528
rehash, 303, 529
reject, 529
reject!, 529
replace, 529
select, 529
select!, 529
shift, 530
size, 530
sort, 530
sort_by, 49
store, 530
to_a, 530
to_h, 530
to_hash, 530
to_s, 530
try_convert, 522
update, 531
value?, 531
values, 531
values_at, 531

Hash functions, 747
Hash method, class Object, 611
hash method, class Object, 602
head method, 773
Heading, RDoc, 268
Here document, 87, 301
hex method, class String, 678
Hex notation, 83, 299
Hintze, Clemens, 307
Hodel, Eric, 177
Hokstad, Vidar, 280
HOME (environment variable), 215,

456, 491
home method, class Dir, 458
Hook methods, 383–388, 398
hour method, class Time, 716
Howard, Ara T., 794

Index • 845

Download from Wow! eBook <www.wowebook.com>

HTML
generate with Builder, 280
parsing, 159

HTML documentation with RDoc,
263

HTTP, options, 158
HTTPS protocol, 783
Hunt, Andrew, xiii
Hyperlink in documentation, 267
hypot method, module Math, 563

I
/i regexp option, 96
-i [extension] (Ruby option), 314
-I directories (Ruby option), 313
-i [extension] (Ruby option), 211, 214
-I directories (Ruby option), 211
i method, class Numeric, 596
Ichikawa, Itaru, 779
id2name method, class Symbol, 700
_id2refmethod, module ObjectSpace,

631
__id__ method, class BasicObject, 440
IDE support, 198
identical? method, class File, 493
Identifier, object ID, 16, 394
-Idirectories (Ruby option), 216
IEEE floating point, 513
if expression, 135, 321

as modifier, 136, 321
iflush method, class IO, 762
imag method

class Complex, 453
class Numeric, 596

imaginary method
class Complex, 453
class Numeric, 596

in (for loop), 322
In-place edit mode, 211, 214
:include: (RDoc), 269
include method, 76

class Module, 334, 582
include? method

class Hash, 527
class Module, 573
class Range, 653
class String, 679
module Enumerable, 471

included method, class Module, 376,
583

included_modules method, class Mod-
ule, 573

Incremental development, 201
Indentation, 17

checking with -w, 199
index, 52

index method
class Array, 429
class Hash, 527
class String, 679

IndexError exception, 428, 669
Indexing

array, 46
hash, 48

Infinite sequence, 59
infinite? method, class Float, 515
Inheritance, 69, 331

and access control, 365
method lookup, 329
single versus multiple, 77

inheritedmethod, class Class, 384, 449
initgroups method, module Process,

640
initialize method, 30, 40, 332

class Object, 618
initialize_clone method, class Object,

602
initialize_copy method, class Object,

602
initialize_dupmethod, classObject, 603
inject method, 57

module Enumerable, 57, 471, 474
ino method, class File::Stat, 505
insert method

class Array, 431
class String, 679

inspect method
class Object, 603, 788
class Symbol, 700

Install Ruby
Linux and OS X, 7
Windows, 5

Installation script, 757, 821
Instance, method notation (#), xiv
instance_eval method

class BasicObject, 440
class Object, 379

instance_exec method, 387
class BasicObject, 441
class Object, 380

instance_methodmethod, classModule,
390, 574, 726

instance_methods method, class Mod-
ule, 574

instance_of?method, class Object, 603
instance_variable_defined? method,

class Object, 603
instance_variable_get method, class
Object, 604

instance_variable_set method, 375
class Object, 604

instance_variables method, class Ob-
ject, 604

Integer class, 351, 532, 768, see al-
so Bignum, Fixum
ceil, 532
chr, 532
denominator, 532
downto, 139, 532
even?, 532
floor, 533
gcd, 533
gcdlcm, 533
integer?, 533
lcm, 533
next, 533
numerator, 533
odd?, 534
ord, 534
pred, 534
rationalize, 534
round, 534
succ, 534
times, 139, 534
to_i, 534
to_int, 535
to_r, 535
truncate, 535
upto, 139, 535

Integer method, class Object, 611
integer? method

class Integer, 533
class Numeric, 596

intern method
class String, 679
class Symbol, 700

Internal iterator, 57
--internal-encoding=encoding (Ruby

option), 211
internal_encoding: option (file open),

495
internal_encoding method, class IO,

548
Interpreter, 402

running, 209
“Invalid multibyte char” error, 242
Inverse, matrix, 769
invert method, class Hash, 527
I/O, 153–160

binary data, 157
buffering problems, 200
encoding, 246
nonblocking (nowait), 763

IO class, 153, 351, 536, 753, 802, 807–
808
<<, 157, 543
advise, 543
autoclose=, 543
autoclose?, 543
binmode, 543
binmode?, 544
binread, 537
binwrite, 537
bytes, 544, 548, 551

Index • 846

Download from Wow! eBook <www.wowebook.com>

chars, 544
chr, 155
close, 544
close_on_exec=, 544
close_on_exec?, 544
close_read, 544
close_write, 545
closed?, 545
codepoints, 545
copy_stream, 537
each, 545
each_byte, 155, 546
each_char, 546
each_codepoint, 546
each_line, 156, 546
echo=, 762
echo?, 762
eof, 546
eof?, 547
expect, 753, 794
external_encoding, 247, 547
fcntl, 547
fdatasync, 547
fileno, 547
flush, 547
for_fd, 537
foreach, 156, 538
fsync, 547
getbyte, 544, 548
getc, 548
getch, 762
gets, 548
iflush, 762
internal_encoding, 548
ioctl, 548
ioflush, 762
isatty, 549
lineno, 549
lineno=, 549
lines, 549
new, 494, 538
noecho, 762
nonblock, 763
nonblock=, 763
nonblock?, 763
nread, 763
oflush, 762
open, 351, 539
pid, 549
pipe, 172, 540
popen, 171, 540
pos, 550
pos=, 550
print, 550
printf, 550
putc, 550
puts, 551
raw, 762
raw!, 762
read, 541, 551
read_nonblock, 553
readbyte, 551
readchar, 551
readline, 551

readlines, 542, 552
readpartial, 552
ready?, 763
reopen, 351, 553
rewind, 553
seek, 553
select, 351, 542
set_encoding, 553
stat, 554
StringIO, 808
sync, 554
sync=, 554
sysopen, 542
sysread, 554
sysseek, 554
syswrite, 555
tell, 555
to_i, 555
to_io, 555
try_convert, 542
tty?, 555
ungetbyte, 555
ungetc, 555
wait, 763
winsize, 762
winsize=, 762
write, 542, 556
write_nonblock, 556

io/console library, 762
io/nonblock library, 763
io/wait library, 763
ioctl method, class IO, 548
ioflush method, class IO, 762
IP address representation, 764
IPAddr class, 764
IPSocket class, 807
irb, 10, 196, 253–262

command-line options, 255
commands, 260
configuration, 258
embedding, 765
extending, 258
load files into, 254
prompt, 257, 261
subsession, 256
tab completion, 254

.irbrc, _irbrc, irb.rc, $irbrc, 256–257
is_a? method, class Object, 604
isatty method, class IO, 549
isdst method, class Time, 716
ISO 8601 date, 815
issetugid method, module Pro-
cess::Sys, 647

Iterator, 25, 54, 139
external, internal, 57
for reading files, 155

iterator? method, class Object, 619

J
j method, 766
Jacquard loom, 357
jcode library, 730
Jeweler (gem generator), 237
JIS, 779
join method

class Array, 431
class File, 493
class Thread, 164, 706

JRuby, 6, 9
JSON class, 766

K
\K (in pattern), 106, 304
Kanji, 779
keep_if method

class Array, 431
class Hash, 527

Kellner, Robert, 813
Kernel module, 556, see also Object

class
key method, class Hash, 527
key? method

class Hash, 527
class Thread, 707

keys method
class Hash, 528
class Thread, 707

Keyword argument, 122
Keywords (reserved in language),

306
kill method

class Thread, 703, 707
module Process, 640

kind_of? method, class Object, 604

L
-l (Ruby option), 211, 314
lambda method

class Object, 65, 337, 339, 619,
635

vs. Proc.new, 337
lambda? method, class Proc, 635
LANG (environment variable), 249
last method

class Array, 47, 431
class Range, 653

last_matchmethod, class Regexp, 659
last_modified method, 781
Lavena, Luis, 5
Layout, source code, 297
Lazy enumeration, see Enumerator,

lazy
Lazy evaluation of values, 59

Index • 847

Download from Wow! eBook <www.wowebook.com>

lazy method
class Enumerator, 61
module Enumerable, 472

Lazy patterns, 100
lchmod method, class File, 493
lchown method, class File, 493
lcm method, class Integer, 533
ldexp method, module Math, 563
Leap seconds, 717
length method

class Array, 431
class Hash, 528
class MatchData, 560
class String, 679
class Struct, 696
class Symbol, 700

lgamma method, module Math, 563
libffi, 756
Library, standard, 729–829
libyaml, 827
Line continuation, 297
lineno method

class IO, 549
class TracePoint, 724

lineno= method, class IO, 549
lines method

class IO, 549
class String, 679

link method, class File, 493
Liskov Substitution Principle, 80
List, RDoc, 267
list method

class Encoding, 240, 464
class Thread, 703
class ThreadGroup, 711
module Signal, 664

Literal
array, 302
ASCII, 88, 300
Bignum, 83, 299
character, 88, 300
Fixnum, 83, 299
Float, 84, 299
hash, 302
range, 90, 302
regular expression, 94, 303
String, 86, 300
symbol, 21, 303

ljust method, class String, 680
_load, 557
load method, 76

class Object, 216, 313, 410, 619
module Marshal, 404–405, 558

$LOAD_PATH variable, 185, 211, 255,
314

$LOADED_FEATURES variable, 314
local method, class Time, 713

local_variables method, class Object,
619

locale_charmap method, class Encod-
ing, 464

LocalJumpError exception, 338
localtime method, class Time, 716
lock method, class Mutex, 588
locked? method, class Mutex, 588
Locking (file with flock), 501
log method, module Math, 564, 738
log10method, moduleMath, 564, 738
log2 method, module Math, 564
LOGDIR (environment variable), 215,

456
Logger (syslog), 810
Logger class, 767
Look ahead and behind, 106
Loop, 532, 534–535, 598
loop method, 140, 322

class Object, 58, 140, 619
lstat method, class File, 493, 501
lstrip method, class String, 680
lstrip! method, class String, 680
Lvalue, 128, 317

M
/m regexp option, 97
Magic comment (set encoding us-

ing), 241
magnitude method

class Bignum, 446
class Complex, 453
class Fixnum, 511
class Float, 515
class Numeric, 596

Mailing lists, 830
:main: (RDoc), 269
main method, class Thread, 703
Main program, 390
map method, module Enumerable,

56, 472
map! method, class Array, 431
Marshal module, 403, 557, see al-
so YAML and JSON
dump, 404, 558
limitations, 557
load, 404–405, 558
restore, 558

marshal_dump method, 404, 557
marshal_load method, 557
match method

class Regexp, 97, 662
class String, 681
class Symbol, 700

MatchData class, 97, 102, 559, 659,
662, 668
[], 97, 559
begin, 559
captures, 559
end, 560
length, 560
names, 560
offset, 560
post_match, 560
pre_match, 560
regexp, 561
size, 561
string, 561
to_a, 561
to_s, 561
values_at, 561

Math module, 226, 562, 738
acos, 562, 738
acosh, 562, 738
asin, 562, 738
asinh, 562, 738
atan, 562, 738
atan2, 562, 738
atanh, 562, 738
cbrt, 562
cos, 562, 738
cosh, 563, 738
erf, 563
erfc, 563
exp, 563, 738
frexp, 563
gamma, 563
hypot, 563
ldexp, 563
lgamma, 563
log, 564, 738
log10, 564, 738
log2, 564
sin, 564, 738
sinh, 564, 738
sqrt, 564, 738
tan, 564, 738
tanh, 564, 738

mathn library, 85, 656, 768
Matrix class, 769
Matsumoto, Yukihiro, ix, xiii
max method

class Range, 653
module Enumerable, 472

max_bymethod, module Enumerable,
472

maxgroups method, module Process,
640

maxgroups=method, module Process,
640

MD5 hash, 747
mday method, class Time, 716
measure method, 258
member? method

class Hash, 528

Index • 848

Download from Wow! eBook <www.wowebook.com>

class Range, 653
module Enumerable, 472

members method, class Struct, 694,
696

Memory (controlling allocation),
215

merge method, class Hash, 528
merge! method, class Hash, 528
Message

receiver, 16
sending, 16

Message box, Windows, 294
messagemethod, class Exception, 484
Meta character, 88, 300
meta method, 781
Metaprogramming, 357–391

BasicObject, 439
Method, 115–123

access control, 40, 576–577, 585
aliasing, 330
ambiguity, 80
arguments, 324
array parameter, 120
block as parameter, 117
calling, 118, 327, 358
calling dynamically, 396
class, 362, 369
defining, 115–116, 323
getter, 32
instance, 16
with iterator, 396
keyword argument, 122
module, 74
naming, 19, 115, 323
nested method definition, 324
object, 396, 605–606
as operator, 126
parameters, 115–116
private, 119
renaming, 398
return value, 116, 119, 329
setter, 34
singleton, 360
undefining, 326
vs. variable name, 307
variable-length arguments, 116

Method class, 396, 565, 581, 600, 726
==, 565
[], 565
arity, 565
call, 396, 566
eql?, 566
name, 566
owner, 566
parameters, 566
receiver, 567
source_location, 567
to_proc, 567
unbind, 567

methodmethod, class Object, 565, 605

__method__method, classObject, 314,
610

method_added method, class Module,
390, 583

method_defined?method, classModule,
575

method_id method, class TracePoint,
724

method_missing method, 607
class BasicObject, 442
class Object, 329, 358, 385

method_removed method, class Mod-
ule, 583

method_undefinedmethod, classMod-
ule, 584

methods method, class Object, 394,
605

Meyer, Bertrand, 36
Microsoft Windows, 289–294

accessing API, 289
automation, 290, 825
file associations, 289
message box, 294
printing under, 290
running Ruby, 289

min method
class Range, 653
class Time, 716
module Enumerable, 472

min_bymethod, module Enumerable,
473

MiniTest::Unit class, 769
minmaxmethod, module Enumerable,

473
minmax_bymethod, module Enumer-
able, 473

MixedCase, 19, 306
mkdir method, class Dir, 458
mktime method, class Time, 713
mod_ruby, safe level, 410
mode: option (file open), 495
mode method, class File::Stat, 505
Module, 225–226

constant, 74
defining, 333
function, 334
include, 76
instance variable, 78
load, 76
as mixin, 75, 334, 366
as namespace, 74
naming, 19
require, 76
wrap, 410

Module class, 568
<, <=, ==, >, >=, 569
<=>, 570
===, 570
alias_method, 579

ancestors, 395, 570
append_features, 580
attr, 580
attr_accessor, 580
attr_reader, 580
attr_writer, 581
autoload, 570
autoload?, 571
class_eval, 379, 571, 600
class_exec, 380, 571
class_variable_defined?, 571
class_variable_get, 571
class_variable_set, 571
class_variables, 572
const_defined?, 572
const_get, 572
const_missing, 572
const_set, 573
constants, 568, 573
define_method, 336, 339, 373,

387, 581
extend_object, 582
extended, 582
include, 334, 582
include?, 573
included, 376, 583
included_modules, 573
instance_method, 390, 574, 726
instance_methods, 574
method_added, 390, 583
method_defined?, 575
method_removed, 583
method_undefined, 584
module_eval, 379, 575
module_exec, 380, 575
module_function, 334, 584
name, 576
nesting, 568
new, 569
prepend, 585
private, 585
private_class_method, 576
private_constant, 576
private_instance_methods, 576
private_method_defined?, 577
protected, 585
protected_instance_methods, 577
protected_method_defined?, 577
public, 585
public_class_method, 577
public_constant, 578
public_instance_method, 578
public_instance_methods, 578
public_method_defined?, 578
refine, 586
remove_class_variable, 579
remove_const, 586
remove_method, 586
undef_method, 586

module_eval method, class Module,
379, 575

module_exec method, class Module,
380, 575

Index • 849

Download from Wow! eBook <www.wowebook.com>

module_functionmethod, classModule,
334, 584

Modules, 73
Abbrev, 731, 795
Anagram, 229
Base64, 732
Benchmark, 201, 258, 397, 733
BigMath, 734
Comparable, 76, 450, 510, 656
Config, 224
Curses, 743
Digest, 747
DL, 294
DRbUndumped, 748
Enumerable, 77, 466
ERB::Util, 751
Errno, 148, 482–483
Etc, 752
Fcntl, 547, 754
FileTest, 509, 787
FileUtils, 222, 757, 821
Find, 758
Forwardable, 759
GC, 517
GC::Profiler, 519
Kernel, 556
Marshal, 403, 557
Math, 226, 562, 738
MonitorMixin, 770
Mutex_m, 771
NKF, 779
ObjectSpace, 631
Observable, 780
Open3, 541, 782
Process, 172, 637, 647
Process::GID, 643, 647
Process::Sys, 647
Process::UID, 647–648
Profile, 202
Profiler, 791
Profiler__, 792
PTY, 794
REXML, 796
Rinda, 798
Ripper, 799
RSS, 801
SecureRandom, 803
Session, 794
Shellwords, 805
Signal, 630, 664
SingleForwardable, 759
Singleton, 806
Timeout, 816
TraceCalls, 389
TSort, 820
XMLRPC, 826
Zlib, 828

modulo method
class Bignum, 446
class Fixnum, 512
class Float, 515
class Numeric, 596

Molina, Marcel, 221

mon method, class Time, 717
Monitor class, 770, 813
MonitorMixin module, 770
Monkeypatching, 369

limiting scope, 369
month method, class Time, 717
mtime method

class File, 494, 501
class File::Stat, 506

Multiline mode (regexp), 97
Multiple inheritance, 77
Music on hold, 829
Mutex class, 168, 588, 771

lock, 588
locked?, 588
owned?, 588
sleep, 169, 588
synchronize, 168, 588
try_lock, 169, 588
unlock, 588

mutex library, 730
Mutex_m module, 771

N
-n (Ruby option), 211
\n (newline), 18, 300
Nagai, Hidetoshi, 643
Nakada, Nobuyoshi, 779
name method

class Encoding, 465
class Method, 566
class Module, 576
class UnboundMethod, 727

name_listmethod, class Encoding, 464
Named groups (regular expres-

sions), 103
named_capturesmethod, class Regexp,

662
NameError exception, 385
names method

class Encoding, 465
class MatchData, 560
class Regexp, 662

Naming conventions, 19, 306
file pathnames, 536
method names, 115
Test::Unit, 186

nan? method, class Float, 515
ndbm, 745
Nested assignment, 131
nesting method, class Module, 568
net/http library, 164
Net::FTP class, 772
Net::HTTP class, 773, 822
Net::IMAP class, 775
Net::POP3 class, 776

Net::SMTP class, 777
Net::Telnet class, 778
Network protocols

DNS, 795
ftp, 772, 781, 822
generic server for, 762
HTTP, 773, 781, 822
http, 158
HTTPS, 783, 822
IMAP, 775
IP address representation, 764
IPv4/IPv6, 764
LDAP, 822
POP, 776
SMTP, 777
socket, 158, 807
telnet, 778

newmethod, 16, see alsoConstructor
class Array, 421
class Class, 333, 378, 448
class Dir, 459
class Enumerator, 477
class Exception, 483
class Fiber, 487
class File, 153, 494
class Hash, 521
class IO, 494, 538
class Module, 569
class Proc, 65, 619, 633
class Random, 655
class Range, 651
class Regexp, 659
class String, 666
class Struct, 693–694
class Thread, 164, 703
class ThreadGroup, 710
class Time, 713
class TracePoint, 723

new_seed method, class Random, 655
Newline (\n), 18, 300
Newsgroup, 830
next, 141, 323, 337
next method

class Enumerator, 479
class Integer, 533
class String, 681
class Symbol, 700

next! method, class String, 681
next_valuesmethod, class Enumerator,

479
nfk method, module NKF, 779
NIL constant, 315
nil constant, 20, 132, 315, 319
nil? method

class NilClass, 589
class Object, 606

NilClass class, 589
&, 589
^, 589
|, 589

Index • 850

Download from Wow! eBook <www.wowebook.com>

nil?, 589
rationalize, 589
to_a, 589
to_c, 589
to_f, 590
to_h, 590
to_i, 590
to_r, 590
to_s, 590

NKF module, 779
nfk, 779

nlink method, class File::Stat, 506
No-wait mode I/O, 763
No-wait mode I/O I/O, 763
:nodoc: (RDoc), 268
Noecho (console), 762
noecho method, class IO, 762
nokogiri (HTML parsing), 159
NoMethodError exception, 326, 385
nonblock method, class IO, 763
nonblock= method, class IO, 763
nonblock? method, class IO, 763
none? method, module Enumerable,

473
nonzero? method, class Numeric, 596
not (logical not), 133, 319
Notation, xiv

binary, decimal, hex, octal, 83,
299

notify_observersmethod, module Ob-
servable, 780

:notnew: (RDoc), 269
now method, class Time, 713
nread method, class IO, 763
nsec method, class Time, 717
Numbers, 83

prime, 790
unifying, 768

numerator method
class Complex, 454
class Integer, 533
class Numeric, 597
class Rational, 657

Numeric class, 591
%, 593
+@, 592
-@, 593
<=>, 593
abs, 593
abs2, 593
angle, 593
arg, 593
ceil, 593
coerce, 353, 594
conj, 595
conjugate, 595
denominator, 595
div, 595

divmod, 595
eql?, 595
fdiv, 596
floor, 596
i, 596
imag, 596
imaginary, 596
integer?, 596
magnitude, 596
mathn, 768
modulo, 596
nonzero?, 596
numerator, 597
phase, 597
polar, 597
prime, 790
quo, 597
Rational, 794
real, 597
real?, 597
rect, 597
rectangular, 598
remainder, 598
round, 598
step, 139, 598
to_c, 598
to_int, 598
truncate, 598
zero?, 598

O
/o regexp option, 96
Object, 16

aliasing, 44, 200, 308
constituents of, 357
creation, 30, 332, 399
current (self), 358
extending, 368
finalizer, 631
ID, 16, 394
immediate, 394, 510
listing active, 393
listing methods in, 394
object_id, 631
persistence, 793
tainting, 410

Object class, 70, 391, 599
!~, 599
<=>, 599
===, 599
=~, 599
__callee__, 313, 401, 610
__dir__, 610
__method__, 314, 610
` (backquote), 128
` (backquote), 128, 170
` (backquote), 610
abort, 612
alias_method, 398
Array, 610
at_exit, 612
autoload, 612
autoload?, 612

binding, 397, 447, 613
block_given?, 64, 328, 613
callcc, 739
caller, 150, 401, 613
caller_locations, 614
catch, 142, 151, 341, 614
chomp, 614
chop, 614
class, 599
clone, 599
Complex, 611
define_method, 615
define_singleton_method, 600
display, 600
dup, 601
enum_for, 57, 477, 601
eql?, 601
eval, 397, 447, 615
exec, 172, 541, 615
exit, 484, 616
exit!, 617
extend, 368, 601
fail, 150, 617
Float, 611, 688
fork, 172–173, 617
format, 617
freeze, 201, 602
frozen?, 602
gem, 617
gem_original_require, 617
gets, 28, 313, 618
global_variables, 618
gsub, 618
Hash, 611
hash, 602
initialize, 618
initialize_clone, 602
initialize_copy, 602
initialize_dup, 603
inspect, 603, 788
instance_eval, 379
instance_exec, 380
instance_of?, 603
instance_variable_defined?, 603
instance_variable_get, 604
instance_variable_set, 604
instance_variables, 604
Integer, 611
is_a?, 604
iterator?, 619
kind_of?, 604
lambda, 65, 337, 339, 619, 635
load, 216, 313, 410, 619
local_variables, 619
loop, 58, 140, 619
method, 565, 605
method_missing, 329, 358, 385
methods, 394, 605
nil?, 606
object_id, 606
open, 159, 620, 781
p, 621
pp, 788
print, 312, 621

Index • 851

Download from Wow! eBook <www.wowebook.com>

printf, 27, 312, 622
private_methods, 606
proc, 337, 622
protected_methods, 606
public_method, 606
public_methods, 606
public_send, 607
putc, 622
puts, 622
raise, 150, 339, 622
rand, 622
Rational, 611
readline, 313, 623
readlines, 623
remove_instance_variable, 623
require, 216, 313, 570, 623
require_relative, 231, 624
respond_to?, 394, 607
respond_to_missing?, 607
scanf, 802
select, 624
send, 396, 607
set_trace_func, 400, 447, 624, 819
singleton_class, 607
singleton_methods, 608
sleep, 624
spawn, 625
split, 210
sprintf, 626
srand, 628
String, 612
sub, 628
syscall, 628
system, 171, 628
taint, 608
tainted?, 608
tap, 609
test, 628
throw, 151, 341, 629
to_enum, 57, 477, 609
to_s, 31, 609
trace_var, 630
trap, 172, 630
trust, 412, 609
type, 348
untaint, 609
untrace_var, 630
untrust, 412, 610
untrusted?, 412, 610
using, 630
warn, 212, 314, 630

Object-oriented terminology, 15
object_id method, class Object, 606
ObjectSpace module, 631

_id2ref, 631
count_objects, 631
define_finalizer, 632
each_object, 393, 395, 632
garbage_collect, 632
undefine_finalizer, 632

Observable module, 780
add_observer, 780
changed, 780

changed?, 780
count_observers, 780
delete_observer, 780
delete_observers, 780
notify_observers, 780

Observer pattern, 780
oct method, class String, 681
Octal notation, 83, 299
odd? method

class Fixnum, 512
class Integer, 534

offset method, class MatchData, 560
oflush method, class IO, 762
olegen.rb, 294
Olszowka, Christoph, 204
Once option (regexp), 96
one? method, module Enumerable,

473
Onigmo, 105, 303
Oniguruma, 105, 303–304
Opcodes, 402
open method

class Dir, 459
class File, 64, 154, 351
class IO, 351, 539
class Object, 159, 620, 781

open-uri library, 146, 159, 781
Open3 module, 541, 782
OpenSSL library, 783
OPENSSL_CONF (environment vari-

able), 215
OpenStruct class, 386, 693, 786
Operating system errors, 482
Operator

as method call, 126, 330
precedence, 318

OptionParser library, 230, 784
options method, class Regexp, 662
or (logical or), 132, 319
ord method

class Integer, 534
class String, 681

owned? method
class File, 496
class File::Stat, 506
class Mutex, 588

owner method
class Method, 566
class UnboundMethod, 727

P
-p (Ruby option), 211, 314
\P (in pattern), 304
\p (in pattern), 304
p method, 30

class Object, 621

pack method, class Array, 157, 432
Packaging, 226–237

creating gem, 235
distributing code, 233

Paragraph mode, 210
Parallel assignment, 130, 318
Parameter

default, 116
to block, 26

parameters method
class Method, 566
class Proc, 636
class UnboundMethod, 727

params method, class CGI, 279
Parse error, 199
Parse Ruby with Ripper, 799
Parse tree, dumping, 210
parsedate library, 730
partition method

class String, 681
module Enumerable, 473

pass method, class Thread, 703
PATH (environment variable), 212
path method

class Dir, 460
class File, 496, 502
class TracePoint, 724

Pathname class, 787
Patterns

observer, 780
singleton, 806

peek method, class Enumerator, 480
peek_valuesmethod, class Enumerator,

480
Performance, 201, 347, 733

dynamic method invocation,
397

profiling, 202, 791–792
windows automation, 293

Perlisms, 138
perm: option (file open), 495
permutation method, class Array, 432
Persistent object storage, 793
phase method

class Complex, 454
class Numeric, 597

pid method
class IO, 549
class Process::Status, 646
module Process, 641

Pig latin, 171
pik, 6
pipe method, class IO, 172, 540
pipe? method

class File, 496
class File::Stat, 506

Index • 852

Download from Wow! eBook <www.wowebook.com>

polar method
class Complex, 451, 454
class Numeric, 597

pop method, class Array, 47, 432
popen method, class IO, 171, 540
pos method

class Dir, 460
class IO, 550

pos= method
class Dir, 460
class IO, 550

POSIX
character classes, 99
error codes, 148

POSIXLY_CORRECT (environment
variable), 761

Possessive patterns, 107
post method, 773
post_match method

class MatchData, 560
class Regexp, 97

power! method
class Bignum, 794
class Fixnum, 794

PP class, 788
pp method, class Object, 788
ppid method, module Process, 641
Pragmatic Programmer, email ad-

dress, xii
pre_match method

class MatchData, 560
class Regexp, 97

Precedence
do...end vs {}, 199, 335
of operators, 318

pred method, class Integer, 534
prepend method

class Module, 585
class String, 682

Pretty printing, 788–789
pretty_print method, 788
PrettyPrint class, 621, 788–789
prime library, 790
Print, under Windows, 290
print method

class IO, 550
class Object, 312, 621

printf method
class IO, 550
class Object, 27, 312, 622

priority method, class Thread, 707
priority= method, class Thread, 707
private method, 41

class Module, 585
private_class_method method, class
Module, 576

private_constantmethod, classModule,
576

private_instance_methods method,
class Module, 576

private_method_defined?method, class
Module, 577

private_methodsmethod, class Object,
606

Proc class, 64, 118, 336, 351, 567, 581,
600, 633
==, 633
===, 633
[], 633
arity, 634
binding, 634
call, 65, 634
curry, 635
lambda?, 635
new, 65, 619, 633
parameters, 636
source_location, 636
to_proc, 636
to_s, 636
yield, 636

proc method
class Object, 337, 622
return from, 339
safe level, 410
vs. lambda, 337

Process, 170–173, 549, see also $$
variable

block, 173
creating, 170, 536, 540, 620, 782
ermination, 612
exec, 615
ID, 549
priority, 639, 641
Ruby subprocess, 171, 173,

536, 540, 782
setting name, 313
termination, 172, 214, 617, 638,

642
times, 697

Process class, times, 697
Process module, 172, 637, 647

abort, 637
daemon, 637
detach, 637
egid, 638
egid=, 638
euid, 638
euid=, 638
exec, 638
exit, 638
exit!, 638
fork, 638
getpgid, 639
getpgrp, 639
getpriority, 639
getrlimit, 639
getsid, 639
gid, 639

gid=, 639
groups, 640
groups=, 640
initgroups, 640
kill, 640
maxgroups, 640
maxgroups=, 640
pid, 641
ppid, 641
setpgid, 641
setpgrp, 641
setpriority, 641
setrlimit, 641
setsid, 641
spawn, 641
times, 642
uid, 642
uid=, 642
wait, 172, 642
wait2, 642
waitall, 642
waitpid, 643
waitpid2, 643

Process::GID module, 643, 647
change_privilege, 643
eid, 643
eid=, 644
grant_privilege, 644
re_exchange, 644
re_exchangeable?, 644
rid, 644
sid_available?, 644
switch, 644

Process::Status class, 173, 642, 644
&, 645
==, 645
>>, 645
coredump?, 645
exited?, 645
exitstatus, 645
pid, 646
signaled?, 646
stopped?, 646
stopsig, 646
success?, 646
termsig, 646
to_i, 646
to_s, 646

Process::Sys module, 647
getegid, 647
geteuid, 647
getgid, 647
getuid, 647
issetugid, 647
setegid, 647
seteuid, 647
setgid, 647
setregid, 647
setresgid, 648
setresuid, 648
setreuid, 648
setrgid, 648

Index • 853

Download from Wow! eBook <www.wowebook.com>

setruid, 648
setuid, 648

Process::UID module, 647–648
change_privilege, 648
eid, 648
eid=, 649
grant_privilege, 649
re_exchange, 649
re_exchangeable?, 649
rid, 649
sid_available?, 649
switch, 649

product method, class Array, 433
Profile module, 202
Profiler module, 791
Profiler__ module, 792
$PROGRAM_NAME variable, 213, 314,

749
Promp, 3
protected method, 41

class Module, 585
protected_instance_methods method,

class Module, 577
protected_method_defined? method,

class Module, 577
protected_methods method, class Ob-
ject, 606

Protocols, 349
Pseudo terminal, 794
PStore class, 793
PTY module, 794
public method, 41

class Module, 585
public_class_method method, class
Module, 577

public_constantmethod, class Module,
578

public_instance_methodmethod, class
Module, 578

public_instance_methodsmethod, class
Module, 578

public_method method, class Object,
606

public_method_defined?method, class
Module, 578

public_methods method, class Object,
606

public_sendmethod, class Object, 607
Publish/subscribe, 780
push method, class Array, 47, 433
putc method

class IO, 550
class Object, 622

puts method, 31
class IO, 551
class Object, 622

pwd method, class Dir, 459
Pysch class, 827

Q
qdbm, 745
Queue class, 170, 813
quo method

class Bignum, 794
class Complex, 454
class Fixnum, 794
class Float, 515
class Numeric, 597
class Rational, 657

quof method
class Bignum, 794
class Fixnum, 794

quote method, class Regexp, 660
Quoting

characters in regexp, 94, 659
URLs and HTML, 278

%q{...}, %Q{...} (string literal), 86,
300

R
\R (in pattern), 304
-r library (Ruby option), 212, 821
Race condition, 165
Rails, ActiveRelation, 63
Rails, Web framework, 280

templates with erb, 282
raise method

class Object, 150, 339, 622
class Thread, 708

raised_exception method, class Trace-
Point, 724

Rake, 222–224
default task, 224
dependencies, 223
Rakefile, 222

randmethod, see also SecureRandom
class Object, 622
class Random, 655

Random class, 655
bytes, 655
new, 655
new_seed, 655
rand, 655
seed, 655
srand, 655

Range, 90
as condition, 91, 134, 138, 320
as interval, 92
literal, 90, 302
as sequence, 90

Range class, 302, 650
==, 651
===, 651
begin, 651
bsearch, 651

cover?, 652
each, 652
end, 652
eql?, 652
exclude_end?, 652
first, 652
include?, 653
last, 653
max, 653
member?, 653
min, 653
new, 651
size, 653
step, 654

RangeError exception, 669
Rank, matrix, 769
rassoc method

class Array, 433
class Hash, 528

Rational class, 300, 656, 768, 794
%, 656
*, 656
**, 656
+, 656
-, 656
-@, 656
/, 656
<, 656
<=, 656
<=>, 656
==, 656
>, 656
>=, 656
Arithmetic operations, 656
ceil, 657
Comparisons, 656
denominator, 657
fdiv, 657
floor, 657
numerator, 657
quo, 657
rationalize, 657
round, 657
to_f, 658
to_i, 658
to_r, 658
truncate, 658

Rational method, 84
class Object, 611

rationalize method
class Complex, 454
class Float, 515
class Integer, 534
class NilClass, 589
class Rational, 657

raw method, class IO, 762
Raw mode (console), 762
raw! method, class IO, 762
raw_datamethod, module GC::Profiler,

519
rbconfig.rb, 224

Index • 854

Download from Wow! eBook <www.wowebook.com>

rdev method, class File::Stat, 506
rdev_major method, class File::Stat,

506
rdev_minor method, class File::Stat,

506
rdiv method

class Bignum, 794
class Fixnum, 794

RDoc, 11, 263–272
C extensions, 269
:call-seq:, 269–270
comment format, 266
:doc:, 269
Document-class:, 270
Document-method:, 270
documentation, 272
documentation modifiers, 268
embedding in Ruby, 266
:enddoc:, 269
heading, 268
hyperlink, 267
:include:, 269
lists, 267
:main:, 269
:nodoc:, 268
:notnew:, 269
including README, 272
rules, 268
running, 271
:startdoc:, 269
:stopdoc:, 269
:title:, 269
yield parameters, 268
:yields:, 268

rdtool, 298
re_exchange method

module Process::GID, 644
module Process::UID, 649

re_exchangeable? method
module Process::GID, 644
module Process::UID, 649

read method
class Dir, 460
class IO, 541, 551

read_nonblock method, class IO, 553
readable? method

class File, 496
class File::Stat, 507

readable_real? method
class File, 496
class File::Stat, 507

readbyte method, class IO, 551
readbytes library, 730
readchar method, class IO, 551
readline library, 254, 795
readline method

class IO, 551
class Object, 313, 623

readlines method
class IO, 542, 552
class Object, 623

readlink method, class File, 497
README, 272
readpartial method, class IO, 552
ready? method, class IO, 763
real method

class Complex, 455
class Numeric, 597

real? method
class Complex, 455
class Numeric, 597

realdirpath method, class File, 497
Really Simple Syndication, 801
realpath method, class File, 497
Receiver, 16, 118, 329
receiver method, class Method, 567
rect method

class Complex, 451, 454
class Numeric, 597

rectangular method
class Complex, 451, 455
class Numeric, 598

RedMine (bug reporting), 830
redo, 141, 323
reduce method, module Enumerable,

474
REE, 9
Reference

to object, 43
weak, 823

refine method, class Module, 586
Refinements, 369
Reflection, 393–402

into objects, 394
refute_nil method, 180
Regexp class, 96, 351, 659

==, 660
===, 661
=~, 661
~, 661
casefold?, 661
compile, 659
encoding, 661
escape, 659
fixed_encoding?, 661
last_match, 659
match, 97, 662
named_captures, 662
names, 662
new, 659
options, 662
post_match, 97
pre_match, 97
quote, 660
source, 663
to_s, 663

try_convert, 351, 660
union, 660

regexp method, class MatchData, 561
Regular expression, 93–113, 303–

306
alternation, 102
anchor, 98
backtracking, 106–107
character class, 98
as condition, 320
encoding, 97, 243
extensions, 105, 305
greedy and lazy, 100
grouping, 102
intersection of character class,

100
literal, 94, 303
look ahead/behind, 106
named groups, 103
nested, 107
Onigmo, 105
Oniguruma, 304
options, 96, 113, 305, 659
pattern match variables, 311
possessive, 107
quoting within, 94
repetition, 100
substitution, 678
Unicode property, 100

rehash method, class Hash, 303, 529
reject method

class Hash, 529
module Enumerable, 433, 474

reject! method
class Array, 433
class Hash, 529

remainder method
class Bignum, 446
class Numeric, 598

remove_class_variable method, class
Module, 579

remove_const method, class Module,
586

remove_instance_variable method,
class Object, 623

remove_methodmethod, classModule,
586

rename method, class File, 497
reopen method, class IO, 351, 553
repeated_combination method, class
Array, 433

repeated_permutation method, class
Array, 434

replace method
class Array, 434
class Hash, 529
class String, 682

replicate method, class Encoding, 465
report method, module GC::Profiler,

520

Index • 855

Download from Wow! eBook <www.wowebook.com>

require method, 76, 219
class Object, 216, 313, 570, 623

require_relative method, class Object,
231, 624

rescue, 147, 340, 482
as modifier, 340

Reserved words, 306
resolv library, 795
respond_to? method, class Object,

394, 607
respond_to_missing? method, class
Object, 607

restoremethod, module Marshal, 558
result method, module GC::Profiler,

520
resume method, class Fiber, 162, 487
retry, 141

in exceptions, 149, 151, 341
in loops, 323

return, see alsoMethod, return value
from block, 338
from lambda/proc, 339
from Proc, 338

return_value method, class TracePoint,
724

reverse method
class Array, 434
class String, 682

reverse! method
class Array, 434
class String, 682

reverse_each method
class Array, 434
module Enumerable, 474

rewind method
class Dir, 460
class Enumerator, 480
class IO, 553

REXML module, 796
RFC 2045/4648 (base 64), 732
RFC 2396 (URI), 822
RFC 2616 (HTTP), 815
RFC 2822 (e-mail), 815
ri, 11, 263–272

sample output, 265
RI (environment variable), 13
Rich Site Summary, 801
rid method

module Process::GID, 644
module Process::UID, 649

Rinda module, 798
rindex method

class Array, 435
class String, 682

RIPEMD-160 hash, 747
Ripper module, 799
rjust method, class String, 682

rmdir method, class Dir, 459
Roll, log files, 767
Roman numerals, 175

example, 349
rotate method, class Array, 435
rotate! method, class Array, 435
round method

class Float, 516
class Integer, 534
class Numeric, 598
class Rational, 657
class Time, 717

rpartition method, class String, 683
rpower method

class Bignum, 794
class Fixnum, 794

RSpec, 186
RSS module, 801
rstrip method, class String, 683
rstrip! method, class String, 683
Rubinius, 9
Ruby

bug reporting, 830
debugger, 195
distributed, 406
download, 5
install on Linux and OS X, 7
install on Windows, 5
language reference, 297–341
and Perl, 138
versions, xii
Web sites, xii, 829

Ruby Documentation Project, 13,
829

Ruby Enterprise Edition, 9
Ruby mode (Emacs), 197
Ruby on Rails, 287
ruby-doc.org, 13
ruby-mode.el, 198
ruby.exe and rubyw.exe, 289
RUBY_COPYRIGHT constant, 315
RUBY_DESCRIPTION constant, 315
RUBY_ENGINE constant, 315
RUBY_FIBER_MACHINE_STACK_SIZE (en-

vironment variable), 215
RUBY_FIBER_VM_STACK_SIZE (environ-

ment variable), 215
RUBY_PATCHLEVEL constant, 315
RUBY_PLATFORM constant, 315
RUBY_RELEASE_DATE constant, 316
RUBY_REVISION constant, 316
RUBY_TCL_DLL (environment vari-

able), 215
RUBY_THREAD_MACHINE_STACK_SIZE

(environment variable), 215

RUBY_THREAD_VM_STACK_SIZE (environ-
ment variable), 215

RUBY_TK_DLL (environment variable),
215

RUBY_VERSION constant, 316
RubyForge, 829
RubyGems, 217–221, 234–236

create .gem, 235
disable automatic requiring,

210
documentation, 218
enable automatic requiring,

210
finding, 217
gem server, 219
gem server, 236
gemspec, 234
generate with Jeweler, 237
installing, 218
installing applications, 221
list installed, 218
naming, 235
repository, 829
RubyGems.org, 829
server, 218
serving from RubyGems.org,

236
test on install, 218
versioning, 220–221, 235

RubyGems.org, 236
RUBYLIB (environment variable),

215–216, 412
RUBYLIB_PREFIX (environment vari-

able), 215
RUBYOPT (environment variable),

210, 215, 412
RUBYPATH (environment variable),

212, 215
RUBYSHELL (environment variable),

215, 615
RubyVM class, 402
Rule, RDoc, 268
run method, class Thread, 708
RuntimeError exception, 44, 150, 339
Rvalue, 128, 317
RVM, 7, 216
rvm, generating documentation, 11
%r{...} (regexp), 96, 303

S
-S (Ruby option), 212
-s (Ruby option), 212
\S (in pattern), 304
\s (in pattern), 304
S3 (Amazon), 221
s3sh, 221
Safe level, 409–412

list of constraints, 412

Index • 856

Download from Wow! eBook <www.wowebook.com>

and proc, 410
setting using -T, 212
and tainting, 410

$SAFE variable, 212, 314, 410, 608,
750

safe_level method, class Thread, 708
sample method, class Array, 435
Sandbox, 410–411

chroot, 456
scanmethod, class String, 48, 89, 683,

809
scanf library, 802
scanf method

class Array, 802
class Object, 802
class String, 802

Scheduler, thread, 167
Schwartzian transform, 476
Scope, of monkeypatching, 369
Scope of variables, 53, 142, 308
SCRIPT_LINES__ constant, 316, 402
SDBM class, 803
Search path, 216
sec method, class Time, 717
SecureRandom module, 803
SecurityError exception, 409
seed method, class Random, 655
seek method

class Dir, 460
class IO, 553

Seguin, Wayne E., 7
Seki, Masatoshi, 407
select method

class Hash, 529
class IO, 351, 542
class Object, 624
module Enumerable, 474

select! method
class Array, 435
class Hash, 529

self method, class TracePoint, 724
self variable, 78, 118, 315, 329, 358

and instance variables, 358
and method calls, 358
in class definition, 359

Send message, 16
send method, class Object, 396, 607
__send__ method, class BasicObject,

441
Sequence, infinite, 59
Server, 762
Session leader process, 641
Session module, 794
Session, HTTP, 285
Set class, 422, 424, 804

set_backtracemethod, class Exception,
484

set_encoding method, class IO, 553
set_trace_func method

class Object, 400, 447, 624, 819
class Thread, 708

setbyte method, class String, 684
setegidmethod, module Process::Sys,

647
seteuidmethod, module Process::Sys,

647
setgid, setuid, 410
setgid method, module Process::Sys,

647
setgid? method

class File, 497
class File::Stat, 507

setpgidmethod, module Process, 641
setpgrpmethod, module Process, 641
setpriority method, module Process,

641
setregidmethod, module Process::Sys,

647
setresgid method, module Pro-
cess::Sys, 648

setresuid method, module Pro-
cess::Sys, 648

setreuidmethod, module Process::Sys,
648

setrgidmethod, module Process::Sys,
648

setrlimitmethod, module Process, 641
setruidmethod, module Process::Sys,

648
setsid method, module Process, 641
setuid method, module Process::Sys,

648
setuid? method

class File, 498
class File::Stat, 507

setup method, 182
SHA1/2 hash, 747
Shallow copy, 601
Shared library, accessing, 756
Shebang (#!), 11

set encoding using, 241
SHELL (environment variable), 215
shell library, 730
Shell prompt, 3
Shellwords module, 805
shift method

class Array, 47, 435
class Hash, 530

Shoulda, 191
shuffle method, class Array, 436
shuffle! method, class Array, 436

sid_available? method
module Process::GID, 644
module Process::UID, 649

Signal
handling, 172
sending, 640
SIGALRM, 624
SIGCLD, 172

Signal module, 630, 664
list, 664
signame, 665
trap, 665

signaled? method, class Process::Sta-
tus, 646

signamemethod, module Signal, 665
simplecov (code coverage), 204
SimpleDelegator class, 746
sin method, module Math, 564, 738
Single inheritance, 77
Single-quoted string, 86, 300
SingleForwardable module, 759
Singleton module, 806
Singleton pattern, 806
singleton_class method, class Object,

607
singleton_method_addedmethod, class
BasicObject, 442

singleton_method_removed method,
class BasicObject, 442

singleton_method_undefined method,
class BasicObject, 443

singleton_methods method, class Ob-
ject, 608

sinh method, module Math, 564, 738
site_ruby directory, 216
size method

class Array, 436
class Bignum, 446
class Enumerator, 481
class File, 498, 502
class File::Stat, 507
class Fixnum, 512
class Hash, 530
class MatchData, 561
class Range, 653
class String, 684
class Struct, 696
class Symbol, 700

size? method
class File, 498
class File::Stat, 507

SizedQueue class, 813
SJIS, 97
sleep method

class Mutex, 169, 588
class Object, 624

slice method
class Array, 436

Index • 857

Download from Wow! eBook <www.wowebook.com>

class String, 684
class Symbol, 701

slice! method
class Array, 436
class String, 684

slice_beforemethod, module Enumer-
able, 474

Smalltalk, 16
soap library, 730
Socket class, 807
socket? method

class File, 498
class File::Stat, 507

SOCKSSocket class, 807
sort method

class Hash, 530
module Enumerable, 475

sort! method, class Array, 437
sort, Schwartzian transform, 476
Sort, topological, 820
sort_by method

class Hash, 49
module Enumerable, 475

sort_by! method, class Array, 437
Source code

from book, 9
coverage, 740
layout, 297
reflecting on, 401

source method, class Regexp, 663
source_location method

class Method, 567
class Proc, 636
class UnboundMethod, 727

spawn method, 794
class Object, 625
module Process, 641

Splat (in assignment), 130
Splat argument, 116, 120
split method

class File, 498
class Object, 210
class String, 88, 685

Spolsky, Joel, 240
sprintf method

class Object, 626
field types, 627
flag characters, 626

sqrt method, module Math, 564, 738
squeeze method, class String, 89, 685
squeeze! method, class String, 686
srand method

class Object, 628
class Random, 655

Stack, unwinding, 148, 152, 340
Stack frame, 195
Stack size, 215

Standard Library, 729–829
StandardError exception, 145, 148, 340
start method

class Thread, 704
module GC, 517

start_with? method, class String, 686
:startdoc: (RDoc), 269
stat method

class File, 498
class IO, 554
module GC, 517

Statement modifier
if/unless, 136, 321
rescue, 340
while/until, 138, 323

status method, 781
class Exception, 484
class Thread, 709

STDERR constant, 316
$stderr variable, 313
STDIN constant, 316, 620
$stdin variable, 313
STDOUT constant, 316, 620–621
$stdout variable, 313
step method

class Numeric, 139, 598
class Range, 654

Stephenson, Neal, 209
sticky? method

class File, 498
class File::Stat, 508

stop method, class Thread, 704
stop? method, class Thread, 709
:stopdoc: (RDoc), 269
StopIteration exception, 58, 479, 620
stopped?method, class Process::Status,

646
stopsig method, class Process::Status,

646
store method, class Hash, 530
stress method, module GC, 517
stress= method, module GC, 518
strftime method, class Time, 718
String, 86

#{ ... }, 86
%... delimiters, 298
control characters \n etc., 300
conversion for output, 157, 621
encoding, 243
expression interpolation, 18
here document, 87, 301
literal, 18, 86, 300
literal concatenation, 301

String class, 86, 88, 300, 351, 666, 802
%, 666
*, 667
+, 667

<<, 667
<=>, 667
==, 668
=~, 668
[], 668
[]=, 669
ascii_only?, 669
b, 670
bytes, 243, 670
bytesize, 670
byteslice, 670
capitalize, 671
capitalize!, 671
casecmp, 671
center, 671
chars, 671
chomp, 89, 672
chomp!, 672
chop, 672
chop!, 673
chr, 672
clear, 672
codepoints, 673
concat, 673
count, 673
crypt, 673
delete, 674
delete!, 674
downcase, 48, 674
downcase!, 674
dump, 674
each_byte, 674
each_char, 674
each_codepoint, 675
each_line, 675
empty?, 675
encode, 245, 675
encode!, 676
encoding, 676
end_with?, 676
eql?, 677
force_encoding, 246, 677
getbyte, 677
gsub, 95, 677
gsub!, 95, 678
hex, 678
include?, 679
index, 679
insert, 679
intern, 679
length, 679
lines, 679
ljust, 680
lstrip, 680
lstrip!, 680
match, 681
new, 666
next, 681
next!, 681
oct, 681
ord, 681
partition, 681
prepend, 682
replace, 682

Index • 858

Download from Wow! eBook <www.wowebook.com>

reverse, 682
reverse!, 682
rindex, 682
rjust, 682
rpartition, 683
rstrip, 683
rstrip!, 683
scan, 48, 89, 683, 809
scanf, 802
setbyte, 684
size, 684
slice, 684
slice!, 684
split, 88, 685
squeeze, 89, 685
squeeze!, 686
start_with?, 686
strip, 686
strip!, 686
sub, 95, 686
sub!, 95, 686
succ, 686
succ!, 687
sum, 687
swapcase, 687
swapcase!, 687
to_c, 688
to_f, 688
to_i, 688
to_r, 688
to_s, 689
to_str, 689
to_sym, 689
tr, 689
tr!, 689
tr_s, 689
tr_s!, 690
try_convert, 666
unpack, 690
upcase, 690
upcase!, 690
upto, 690
valid_encoding?, 691

String method, class Object, 612
string method, class MatchData, 561
StringIO class, 158, 808
StringScanner class, 809
strip method, class String, 686
strip! method, class String, 686
Struct class, 377, 379, 693

==, 694
[], 694–695
[]=, 695
each, 695
each_pair, 695
length, 696
members, 694, 696
new, 693–694
OpenStruct, 786
size, 696
subclassing, 377
to_a, 696

to_h, 696
values, 696
values_at, 696

Struct::Tms class, 697
Stub, WIN32OLE, 294
sub method

class Object, 628
class String, 95, 686

sub! method, class String, 95, 686
Subnet, testing address in, 764
subsec method, class Time, 719
succ method

class Fixnum, 512
class Integer, 534
class String, 686
class Symbol, 701
class Time, 719
for generating sequences, 91

succ! method, class String, 687
success? method

class Exception, 484
class Process::Status, 646

Suites, test, 185
Suketa, Masaki, 290
sum method, class String, 687
super, 73, 329, 618
Superclass, 358, 395
superclass method, class Class, 70,

395, 449
swapcase method

class String, 687
class Symbol, 701

swapcase! method, class String, 687
switch method

module Process::GID, 644
module Process::UID, 649

Symbol
encoding, 243
as hash key, 22
literal, 21, 303

Symbol class, 352, 679, 698
<=>, 698
==, 698
=~, 698
[], 699
all_symbols, 698
capitalize, 699
casecmp, 699
downcase, 699
empty?, 699
encoding, 700
id2name, 700
inspect, 700
intern, 700
length, 700
match, 700
next, 700
size, 700
slice, 701

succ, 701
swapcase, 701
to_proc, 352, 701
to_s, 701
to_sym, 701
upcase, 701

symlink method, class File, 499
symlink? method

class File, 499
class File::Stat, 508

sync library, 730
sync method, class IO, 554
sync= method, class IO, 554
synchronizemethod, classMutex, 168,

588
syscall.h, 628
syscall method, class Object, 628
Syslog class, 810
sysopen method, class IO, 542
sysread method, class IO, 554
sysseek method, class IO, 554
systemmethod, class Object, 171, 628
SystemCallError exception, 148, 482,

616
SystemExit exception, 214, 484, 616
syswrite method, class IO, 555

T
-T level (Ruby option), 212, 410
Tab completion, irb, 254
taint method, class Object, 608
Tainted objects, 410, 608
tainted? method, class Object, 608
take method, module Enumerable,

476
take_while method, module Enumer-
able, 476

Talbott, Nathaniel, 176, 186
tan method, module Math, 564, 738
tanhmethod, module Math, 564, 738
tap method, class Object, 609
task method, 222
TCPSocket class, 807
teardown method, 182
Technical support, 829
tell method

class Dir, 461
class IO, 555

Tempfile class, 811
Templates, 280–284

eruby, 282, 750
Haml, 281

Temporary directory, 818
Temporary file, 811

Index • 859

Download from Wow! eBook <www.wowebook.com>

Terminal, 3
pseudo, 794

terminate method, class Thread, 709
termsigmethod, class Process::Status,

646
Ternary operator, 136, 321
Test case, 181
test method, class Object, 628
Test suites, 185
Test::Unit class, 812
Testing, 175–193

ad hoc, 176
assertions, 177, 193–194
cases, 181
exceptions, 179
for feedback, 175
Framework, 177–193
gem, 218
naming conventions, 186
Roman numerals, 175
RSpec, 186
setup, 182, 192
Shoulda, 191
using StringIO, 808
structuring tests, 181
suites, 185
teardown, 182
what is a unit test?, 175
where to put files, 184

textmode: option (file open), 495
then, 321
Thiesfeld, Gordon, 6
Thread, 161–170

condition variable, 170
creating, 163
exception, 165
group, 710
queue, 813
race condition, 165
scheduling, 167
synchronization, 167–170, 770–

771, 813
variable, 165
variable scope, 164
waiting for multiple, 814

Thread class, 702
[], 704
[]=, 704
abort_on_exception, 165, 702, 705
abort_on_exception=, 702, 705
add_trace_func, 705
alive?, 705
backtrace, 705
backtrace_locations, 706
current, 702
exclusive, 702
exit, 702, 706
fork, 703
group, 706
join, 164, 706
key?, 707

keys, 707
kill, 703, 707
list, 703
main, 703
new, 164, 703
pass, 703
priority, 707
priority=, 707
Queue, 813
raise, 708
run, 708
safe_level, 708
set_trace_func, 708
SizedQueue, 813
start, 704
status, 709
stop, 704
stop?, 709
terminate, 709
thread_variable?, 709
thread_variable_get, 709
thread_variable_set, 710
thread_variables, 709
value, 164, 710
wakeup, 710

thread library, 170
thread_variable?method, class Thread,

709
thread_variable_get method, class
Thread, 709

thread_variable_set method, class
Thread, 710

thread_variablesmethod, class Thread,
709

ThreadError exception, 338, 588
ThreadGroup class, 706, 710

add, 710
enclose, 711
enclosed?, 711
list, 711
new, 710

ThreadsWait class, 814
throwmethod, class Object, 151, 341,

629
Time class, 488, 712, 815

+, 713
-, 714
<=>, 714
asctime, 714
at, 712
ctime, 714
day, 714
day-name?, 714
dst?, 715
extensions to, 815
getgm, 715
getlocal, 715
getutc, 715
gm, 712
gmt?, 715
gmt_offset, 716

gmtime, 715
gmtoff, 716
hour, 716
isdst, 716
local, 713
localtime, 716
mday, 716
min, 716
mktime, 713
mon, 717
month, 717
new, 713
now, 713
nsec, 717
round, 717
sec, 717
strftime, 718
subsec, 719
succ, 719
to_a, 719
to_f, 720
to_i, 720
to_r, 720
to_s, 720
tv_nsec, 720
tv_sec, 720
tv_usec, 720
usec, 720
utc, 713, 721
utc?, 721
utc_offset, 721
wday, 721
yday, 721
year, 721
zone, 721

time library, 815
Timeout module, 816
Timeout::Error exception, 816
times method

class Integer, 139, 534
class Process, 697
module Process, 642

:title: (RDoc), 269
Tk class, 817
TMail, 775, 777
tmpdir library, 818
tmpdir method, class Dir, 286, 818
to_a method, 318, 327, 350

class Array, 437
class Hash, 530
class MatchData, 561
class NilClass, 589
class Struct, 696
class Time, 719
module Enumerable, 476

to_ary method, 350, 422–423, 437
class Array, 437

to_c method
class NilClass, 589
class Numeric, 598
class String, 688

Index • 860

Download from Wow! eBook <www.wowebook.com>

to_enum method, 90, 351
class Object, 57, 477, 609

to_f method
class Bignum, 446
class Complex, 455
class Fixnum, 512
class Float, 516
class NilClass, 590
class Rational, 658
class String, 688
class Time, 720

to_h method
class Hash, 530
class NilClass, 590
class Struct, 696

to_hash method, 351, 522
class Hash, 530

to_i method
class Complex, 455
class Float, 516
class IO, 555
class Integer, 534
class NilClass, 590
class Process::Status, 646
class Rational, 658
class String, 688
class Time, 720

to_int method, 349, 351
class Float, 516
class Integer, 535
class Numeric, 598

to_io method, 351, 542
class IO, 555

to_open method, 351
to_path method, 351, 496

class Dir, 461
class File, 502

to_proc method, 351
class Method, 567
class Proc, 636
class Symbol, 352, 701

to_r method
class Complex, 455
class Float, 516
class Integer, 535
class NilClass, 590
class Rational, 658
class String, 688
class Time, 720

to_regexp method, 351, 660
to_s method, 349

class Array, 437
class Bignum, 446
class Exception, 485
class Fixnum, 512
class Float, 516
class Hash, 530
class MatchData, 561
class NilClass, 590
class Object, 31, 609
class Proc, 636

class Process::Status, 646
class Regexp, 663
class String, 689
class Symbol, 701
class Time, 720
print, 157, 621

to_str method, 349, 351, 666
class String, 689

to_sym method, 352
class String, 689
class Symbol, 701

to_yaml_properties method, 406
Top-level environment, 390
TOPLEVEL_BINDING constant, 316
Topological sort, 820
total_timemethod, module GC::Profil-
er, 520

tr method, class String, 689
tr! method, class String, 689
tr_s method, class String, 689
tr_s! method, class String, 690
trace method, class TracePoint, 723
trace_var method, class Object, 630
TraceCalls module, 389
TracePoint class, 400, 722

binding, 723
defined_class, 723
disable, 723
enable, 723
enabled?, 723
event, 723
lineno, 724
method_id, 724
new, 723
path, 724
raised_exception, 724
return_value, 724
self, 724
trace, 723

tracer library, 819
Tracing, 400
Transactions, 63
Transcendental functions, 562
Transcoding, 245
transfer method, class Fiber, 163, 755
Transparent language, 83
transpose method, class Array, 437
trap method

class Object, 172, 630
module Signal, 665

Triangular numbers, 59
Trigonometric functions, 562
Troubleshooting, 198
TRUE constant, 316
true constant, 132, 315, 319
TrueClass class, 725

&, 725

^, 725
|, 725

truncate method
class File, 499, 502
class Float, 516
class Integer, 535
class Numeric, 598
class Rational, 658

trust method, class Object, 412, 609
Trusted objects, 411
try_convert method

class Array, 422
class Hash, 522
class IO, 542
class Regexp, 351, 660
class String, 666

try_lockmethod, classMutex, 169, 588
TSort module, 820
tsort_each_child method, 820
tsort_each_node method, 820
tty? method, class IO, 555
Tuning (memory use), 215
Turtle graphics, 381
tv_nsec method, class Time, 720
tv_sec method, class Time, 720
tv_usec method, class Time, 720
type method, class Object, 348
TypeError exception, 404, 611, 668
Typographic conventions, xiv

U
-U (Ruby option), 212, 250
UDPSocket class, 807
uid method

class File::Stat, 508
module Process, 642

uid= method, module Process, 642
umask method, class File, 499
un library, 821
Unary minus, unary plus, 592
unbind method, class Method, 567
UnboundMethod class, 396, 565, 567,

574, 578, 581, 600, 726
arity, 726
bind, 727
name, 727
owner, 727
parameters, 727
source_location, 727

undef_method method, class Module,
586

undefine_finalizer method, module
ObjectSpace, 632

ungetbyte method, class IO, 555
ungetc method, class IO, 555

Index • 861

Download from Wow! eBook <www.wowebook.com>

Unicode
literal, 243
property (in regular expres-

sion), 100
Uniform Access Principle, 36
union method, class Regexp, 660
uniq method, class Array, 438
uniq! method, class Array, 438
UNIXSocket class, 807
unlink method

class Dir, 459
class File, 499

unlock method, class Mutex, 588
unpack method, class String, 690
unshift method, class Array, 47, 438
untaint method, class Object, 609
untrace_varmethod, class Object, 630
untrustmethod, class Object, 412, 610
untrusted?method, class Object, 412,

610
upcase method

class String, 690
class Symbol, 701

upcase! method, class String, 690
update, Observable callback, 780
update method, class Hash, 531
upto method

class Integer, 139, 535
class String, 690

URI class, 822
URI, opening as file, 781
usec method, class Time, 720
Usenet, 830
using method, class Object, 630
UTC, 712
utc method, class Time, 713, 721
utc? method, class Time, 721
utc_offset method, class Time, 721
UTF Byte Order Mark, 242
UTF8, 97
utime method, class File, 499
%u{...} (Unicode sequence), 300
\u{xxx} (Unicode literal), 243

V
-v, --verbose (Ruby option), 314
-v, --verbose (Ruby option), 212, 557
valid_encoding? method, class String,

691
value method, class Thread, 164, 710
value? method, class Hash, 531
values method

class Hash, 531
class Struct, 696

values_at method
class Array, 438
class Hash, 531
class MatchData, 561
class Struct, 696

Variable
class, 309
class name, 306
global, 307, 309
instance, 16, 30, 78, 306, 310,

395
local, 306
vs. method name, 307
naming, 19, 306
predefined, 311
as reference, 43, 308
scope, 142, 164, 308
thread, 165
weak reference, 823

Variable-length argument list, 116
Variables

$!, 147, 311, 339–340
$", 313, 623
$$, 313
$&, 97, 311, 559
$', 97, 312, 560
$*, 313, 618
$+, 312
$,, 312, 431, 621
$-0, 312
$-F, 313
$-I, 314
$-W, 314
$-a, 313
$-d, 313
$-i, 314
$-l, 314
$-p, 314
$-v, 314
$-w, 314
$., 312, 549
$/, 210–211, 312, 672, 679
$:, 211, 217, 313, 623
$;, 211, 312, 685
$<, 312
$=, 96, 312
$>, 312
$?, 128, 171, 173, 313, 316, 610,

628, 642, 644
$@, 311
$\, 211, 312, 550, 621
$`, 97, 312, 560
$~, 312, 559, 659, 661–662
$_, 138, 211, 313, 320, 548, 618
$0, 213, 313, 316
$1...$9 (in pattern), 102, 305
$1...$n, 312
$DEBUG, 210, 313, 702, 706
$deferr, $defout, 313
ENV, 214, 315
$expect_verbose, 753
$F, 210, 314
$FILENAME, 314

$LOAD_PATH, 185, 211, 255, 314
$LOADED_FEATURES, 314
predefined, 311
$PROGRAM_NAME, 213, 314, 749
$SAFE, 212, 314, 410, 608, 750
self, 78, 118, 315, 329, 358
$stderr, 313
$stdin, 313
$stdout, 313
$VERBOSE, 210, 212, 314, 630

Vector class, 769
$VERBOSE variable, 210, 212, 314, 630
--version (Ruby option), 212
Versions of Ruby, xii
vi and vim, 197

key bindings in readline, 795
Virtual attribute, 35
Virtual machine, 402

W
-w (Ruby option), 212, 314, 557
-W level (Ruby option), 630
\W (in pattern), 304
\w (in pattern), 304
-W level (Ruby option), 212, 314
wait method

class IO, 763
module Process, 172, 642

wait2 method, module Process, 642
waitall method, module Process, 642
waitpidmethod, module Process, 643
waitpid2method, module Process, 643
wakeup method, class Thread, 710
Walk directory tree, 758
warn method, class Object, 212, 314,

630
Warnings, 212

ARGV[0] is not $0, 213
be careful with tainted data,

409
strings aren’t numbers, 84, 200

wday method, class Time, 721
Weak reference, 823
WeakRef class, 823

weakref_alive?, 823
WeakRef::RefError exception, 823
weakref_alive?method, classWeakRef,

823
Web framework, Ruby on Rails,

280, 282, 287
Web server, WEBrick, 286, 824
Web sites for Ruby, xii, 829
Webcoder, Walter, 409
WEBrick, 286, 824
Weirich, Jim, 217, 222
when (in case), 321

Index • 862

Download from Wow! eBook <www.wowebook.com>

while loop, 138, 322
as modifier, 138, 323

Win32API library, 289, 730
WIN32OLE library, 290, 825
winsize method, class IO, 762
winsize= method, class IO, 762
with_index method

class Enumerator, 481
module Enumerable, 56, 59

with_objectmethod, class Enumerator,
481

Words
array of, 20, 302
frequency, 48

Working directory, 210, 457
world_readable? method

class File, 500
class File::Stat, 508

world_writable? method
class File, 500
class File::Stat, 508

writable? method
class File, 500
class File::Stat, 508

writable_real? method
class File, 500
class File::Stat, 509

write method, class IO, 542, 556
write_nonblock method, class IO, 556
%w{...} (array of words), 20, 302
%W{..} (array of words), 302

X
/x regexp option, 97
\X (in pattern), 304
$x (variables, English names), 749
-x [directory] (Ruby option), 212
-X directory (Ruby option), 212
XML, 796, 826

generate with Builder, 217, 280
XMLRPC module, 826
%x{...} (command expansion), 128,

316, 610

Y
-y, --yydebug (Ruby option), 212
YAML class, 405, 557, 827

YARV, 402
yday method, class Time, 721
year method, class Time, 721
yield, 54, 335

arguments, 26, 55
and RDoc, 268

yield method, 337
class Fiber, 162, 487
class Proc, 636

:yields: (RDoc), 268

Z
\Z (in pattern), 304
\z (in pattern), 304
zero? method

class File, 500
class File::Stat, 509
class Fixnum, 512
class Float, 516
class Numeric, 598

Zip compression, 828
zipmethod, module Enumerable, 476
Zlib module, 828
zone method, class Time, 721

Index • 863

Download from Wow! eBook <www.wowebook.com>

Put Fun in Functional Programming
Looking for functional programming that’s closer to Ruby, but with a battle-proven environ-
ment that’s unrivaled for massive scalability, concurrency, distribution and fault tolerance?
Maybe the time is right for the Next Big Thing. Maybe it’s Elixir, running on the Erlang VM.

You want to explore functional programming, but are
put off by the academic feel (tell me about monads just
one more time). You know you need concurrent appli-
cations, but also know these are almost impossible to
get right. Meet Elixir, a functional, concurrent language
built on the rock-solid Erlang VM. Elixir’s pragmatic
syntax and built-in support for metaprogramming will
make you productive and keep you interested for the
long haul. This book is the introduction to Elixir for
experienced programmers.

Dave Thomas
(240 pages) ISBN: 9781937785581. $36
http://pragprog.com/book/elixir

A multi-user game, web site, cloud application, or
networked database can have thousands of users all
interacting at the same time. You need a powerful, in-
dustrial-strength tool to handle the really hard prob-
lems inherent in parallel, concurrent environments.
You need Erlang. In this second edition of the best-
selling Programming Erlang, you’ll learn how to write
parallel programs that scale effortlessly on multicore
systems.

“A gem; a sensible, practical introduction to functional

programming.”

—Gilad Bracha – Co-author of the Java language and
Java Virtual Machine specifications, creator of the
Newspeak language, member of the Dart language team

Joe Armstrong
(510 pages) ISBN: 9781937785536. $42
http://pragprog.com/book/jaerlang2

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/book/elixir
http://pragprog.com/book/jaerlang2

Rails and More Rails
Start with the classic book for web development with Rails, then see how the realm of experts
is fast becoming the stuff of day-to-day development.

Rails just keeps on changing. Both Rails 3 and 4, as
well as Ruby 1.9 and 2.0, bring hundreds of improve-
ments, including new APIs and substantial perfor-
mance enhancements. The fourth edition of this award-
winning classic has been reorganized and refocused
so it’s more useful than ever before for developers new
to Ruby and Rails.

Rails 4 introduces a number of user-facing changes,
and the ebook has been updated to match all the latest
changes and new best practices in Rails. This includes
full support for Ruby 2.0, controller concerns, Russian
Doll caching, strong parameters, Turbolinks, new test
and bin directory layouts, and much more.

(Looking for earlier versions? Rails 3.2 Edition is still
available in ebook and paper).

Sam Ruby
(490 pages) ISBN: 9781937785567. $43.95
http://pragprog.com/book/rails4

Get ready to see Rails as you’ve never seen it before.
Learn how to extend the framework, change its behav-
ior, and replace whole components to bend it to your
will. Eight different test-driven tutorials will help you
understand Rails’ inner workings and prepare you to
tackle complicated projects with solutions that are
well-tested, modular, and easy to maintain.

This second edition of the bestselling Crafting Rails

Applications has been updated to Rails 4 and discusses
new topics such as streaming, mountable engines, and
thread safety.

José Valim
(200 pages) ISBN: 9781937785550. $36
http://pragprog.com/book/jvrails2

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/book/rails4
http://pragprog.com/book/jvrails2

Go Beyond Code
There’s more to life than just coding: expand your mind with the joy of pure math, and extend
your body’s health and wellness.

Mathematics is beautiful—and it can be fun and excit-
ing as well as practical. Good Math is your guide to
some of the most intriguing topics from two thousand
years of mathematics: from Egyptian fractions to Tur-
ing machines; from the real meaning of numbers to
proof trees, group symmetry, and mechanical compu-
tation. If you’ve ever wondered what lay beyond the
proofs you struggled to complete in high school geom-
etry, or what limits the capabilities of the computer on
your desk, this is the book for you.

Mark C. Chu-Carroll
(250 pages) ISBN: 9781937785338. $34
http://pragprog.com/book/mcmath

To keep doing what you love, you need to maintain
your own systems, not just the ones you write code
for. Regular exercise and proper nutrition help you
learn, remember, concentrate, and be creative—skills
critical to doing your job well. Learn how to change
your work habits, master exercises that make working
at a computer more comfortable, and develop a plan
to keep fit, healthy, and sharp for years to come.

This book is intended only as an informative guide for

those wishing to know more about health issues. In no

way is this book intended to replace, countermand, or

conflict with the advice given to you by your own

healthcare provider including Physician, Nurse Practi-

tioner, Physician Assistant, Registered Dietician, and

other licensed professionals.

Joe Kutner
(220 pages) ISBN: 9781937785314. $36
http://pragprog.com/book/jkthp

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/book/mcmath
http://pragprog.com/book/jkthp

Testing is only the beginning
Start with Test Driven Development, Domain Driven Design, and Acceptance Test Driven
Planning in Ruby. Then add Shoulda, Cucumber, Factory Girl, and Rcov for the ultimate
in Ruby and Rails development.

Behaviour-Driven Development (BDD) gives you the
best of Test Driven Development, Domain Driven De-
sign, and Acceptance Test Driven Planning techniques,
so you can create better software with self-document-
ing, executable tests that bring users and developers
together with a common language.

Get the most out of BDD in Ruby with The RSpec Book,
written by the lead developer of RSpec, David Chelim-
sky.

David Chelimsky, Dave Astels, Zach Dennis, Aslak
Hellesøy, Bryan Helmkamp, Dan North
(450 pages) ISBN: 9781934356371. $38.95
http://pragprog.com/book/achbd

Rails Test Prescriptions is a comprehensive guide to
testing Rails applications, covering Test-Driven Devel-
opment from both a theoretical perspective (why to
test) and from a practical perspective (how to test effec-
tively). It covers the core Rails testing tools and proce-
dures for Rails 2 and Rails 3, and introduces popular
add-ons, including RSpec, Shoulda, Cucumber, Factory
Girl, and Rcov.

Noel Rappin
(368 pages) ISBN: 9781934356647. $34.95
http://pragprog.com/book/nrtest

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/book/achbd
http://pragprog.com/book/nrtest

What you Need to Know
Each new version of the Web brings its own gold rush. Here are your tools.

HTML5 and CSS3 are the future of web development,
but you don’t have to wait to start using them. Even
though the specification is still in development, many
modern browsers and mobile devices already support
HTML5 and CSS3. This book gets you up to speed on
the new HTML5 elements and CSS3 features you can
use right now, and backwards compatible solutions
ensure that you don’t leave users of older browsers
behind.

Brian P. Hogan
(266 pages) ISBN: 9781934356685. $33
http://pragprog.com/book/bhh5

Modern web development takes more than just HTML
and CSS with a little JavaScript mixed in. Clients want
more responsive sites with faster interfaces that work
on multiple devices, and you need the latest tools and
techniques to make that happen. This book gives you
more than 40 concise, tried-and-true solutions to to-
day’s web development problems, and introduces new
workflows that will expand your skillset.

Brian P. Hogan, Chris Warren, Mike Weber, Chris
Johnson, Aaron Godin
(344 pages) ISBN: 9781934356838. $35
http://pragprog.com/book/wbdev

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/book/bhh5
http://pragprog.com/book/wbdev

Seven in Seven
Go beyond learning a new language, learn seven. And get up to speed on the latest seven
NoSQL databases.

You should learn a programming language every year,
as recommended by The Pragmatic Programmer. But
if one per year is good, how about Seven Languages in

Seven Weeks? In this book you’ll get a hands-on tour
of Clojure, Haskell, Io, Prolog, Scala, Erlang, and Ruby.
Whether or not your favorite language is on that list,
you’ll broaden your perspective of programming by
examining these languages side-by-side. You’ll learn
something new from each, and best of all, you’ll learn
how to learn a language quickly.

Bruce A. Tate
(330 pages) ISBN: 9781934356593. $34.95
http://pragprog.com/book/btlang

Data is getting bigger and more complex by the day,
and so are your choices in handling it. From traditional
RDBMS to newer NoSQL approaches, Seven Databases

in Seven Weeks takes you on a tour of some of the
hottest open source databases today. In the tradition
of Bruce A. Tate’s Seven Languages in Seven Weeks,
this book goes beyond your basic tutorial to explore
the essential concepts at the core of each technology.

Eric Redmond and Jim R. Wilson
(354 pages) ISBN: 9781934356920. $35
http://pragprog.com/book/rwdata

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/book/btlang
http://pragprog.com/book/rwdata

Be Agile
Don’t just “do” agile; you want to be agile. We’ll show you how.

Here are three simple truths about software develop-
ment:

1. You can’t gather all the requirements up front. 2.
The requirements you do gather will change. 3. There
is always more to do than time and money will allow.

Those are the facts of life. But you can deal with those
facts (and more) by becoming a fierce software-delivery
professional, capable of dispatching the most dire of
software projects and the toughest delivery schedules
with ease and grace.

Jonathan Rasmusson
(280 pages) ISBN: 9781934356586. $34.95
http://pragprog.com/book/jtrap

You know the Agile and Lean development buzzwords,
you’ve read the books. But when systems need a seri-
ous overhaul, you need to see how it works in real life,
with real situations and people. Lean from the Trenches

is all about actual practice. Every key point is illustrat-
ed with a photo or diagram, and anecdotes bring you
inside the project as you discover why and how one
organization modernized its workplace in record time.

Henrik Kniberg
(178 pages) ISBN: 9781934356852. $30
http://pragprog.com/book/hklean

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/book/jtrap
http://pragprog.com/book/hklean

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles continue the
well-known Pragmatic Programmer style and continue to garner awards and rave reviews. As devel-
opment gets more and more difficult, the Pragmatic Programmers will be there with more titles and
products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
http://pragprog.com/book/ruby4
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with our wiki,
and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available for purchase
at our store: http://pragprog.com/book/ruby4

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://pragprog.com/write-for-usWrite for Us:

+1 800-699-7764Or Call:

Download from Wow! eBook <www.wowebook.com>

http://pragprog.com/book/ruby4
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/book/ruby4
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us

	Cover
	Table of Contents
	Foreword to the Third Edition
	Preface
	Why Ruby?
	Ruby Versions
	Changes in the Book
	Resources
	Acknowledgments
	Notation Conventions

	Road Map
	Part I—Facets of Ruby
	1. Getting Started
	The Command Prompt
	Installing Ruby
	Running Ruby
	Ruby Documentation: RDoc and ri

	2. Ruby.new
	Ruby Is an Object-Oriented Language
	Some Basic Ruby
	Arrays and Hashes
	Symbols
	Control Structures
	Regular Expressions
	Blocks and Iterators
	Reading and 'Riting
	Command-Line Arguments
	Onward and Upward

	3. Classes, Objects, and Variables
	Objects and Attributes
	Classes Working with Other Classes
	Access Control
	Variables

	4. Containers, Blocks, and Iterators
	Arrays
	Hashes
	Blocks and Iterators
	Containers Everywhere

	5. Sharing Functionality: Inheritance, Modules, and Mixins
	Inheritance and Messages
	Modules
	Mixins
	Iterators and the Enumerable Module
	Composing Modules
	Inheritance, Mixins, and Design

	6. Standard Types
	Numbers
	Strings
	Ranges

	7. Regular Expressions
	What Regular Expressions Let You Do
	Ruby's Regular Expressions
	Digging Deeper
	Advanced Regular Expressions

	8. More About Methods
	Defining a Method
	Calling a Method

	9. Expressions
	Operator Expressions
	Miscellaneous Expressions
	Assignment
	Conditional Execution
	case Expressions
	Loops
	Variable Scope, Loops, and Blocks

	10. Exceptions, catch, and throw
	The Exception Class
	Handling Exceptions
	Raising Exceptions
	catch and throw

	11. Basic Input and Output
	What Is an IO Object?
	Opening and Closing Files
	Reading and Writing Files
	Talking to Networks
	Parsing HTML

	12. Fibers, Threads, and Processes
	Fibers
	Multithreading
	Controlling the Thread Scheduler
	Mutual Exclusion
	Running Multiple Processes

	13. Unit Testing
	The Testing Framework
	Structuring Tests
	Organizing and Running Tests
	RSpec and Shoulda
	Test::Unit assertions

	14. When Trouble Strikes!
	Ruby Debugger
	Interactive Ruby
	Editor Support
	But It Doesn't Work!
	But It's Too Slow!

	Part II—Ruby in Its Setting
	15. Ruby and Its World
	Command-Line Arguments
	Program Termination
	Environment Variables
	Where Ruby Finds Its Libraries
	RubyGems Integration
	The Rake Build Tool
	Build Environment

	16. Namespaces, Source Files, and Distribution
	Namespaces
	Organizing Your Source
	Distributing and Installing Your Code

	17. Character Encoding
	Encodings
	Source Files
	Transcoding
	Input and Output Encoding
	Default External Encoding
	Encoding Compatibility
	Default Internal Encoding
	Fun with Unicode

	18. Interactive Ruby Shell
	Command Line
	Commands

	19. Documenting Ruby
	Adding RDoc to Ruby Code
	Adding RDoc to C Extensions
	Running RDoc
	Ruby source file documented with RDoc
	C source file documented with RDoc

	20. Ruby and the Web
	Writing CGI Scripts
	Using cgi.rb
	Templating Systems
	Cookies
	Choice of Web Servers
	Frameworks

	21. Ruby and Microsoft Windows
	Running Ruby Under Windows
	Win32API
	Windows Automation

	Part III—Ruby Crystallized
	22. The Ruby Language
	Source File Encoding
	Source Layout
	The Basic Types
	Names
	Variables and Constants
	Expressions, Conditionals, and Loops
	Method Definition
	Invoking a Method
	Aliasing
	Class Definition
	Module Definitions
	Access Control
	Blocks, Closures, and Proc Objects
	Exceptions
	catch and throw

	23. Duck Typing
	Classes Aren't Types
	Coding like a Duck
	Standard Protocols and Coercions
	Walk the Walk, Talk the Talk

	24. Metaprogramming
	Objects and Classes
	Singletons
	Inheritance and Visibility
	Modules and Mixins
	Metaprogramming Class-Level Macros
	Two Other Forms of Class Definition
	instance_eval and class_eval
	Hook Methods
	One Last Example
	Top-Level Execution Environment
	The Turtle Graphics Program

	25. Reflection, ObjectSpace, and Distributed Ruby
	Looking at Objects
	Looking at Classes
	Calling Methods Dynamically
	System Hooks
	Tracing Your Program's Execution
	Behind the Curtain: The Ruby VM
	Marshaling and Distributed Ruby
	Compile Time? Runtime? Anytime!

	26. Locking Ruby in the Safe
	Safe Levels
	Tainted Objects
	Trusted Objects
	Definition of the safe levels

	Part IV—Ruby Library Reference
	27. Built-in Classes and Modules
	Array
	BasicObject
	Bignum
	Binding
	Class
	Comparable
	Complex
	Dir
	Encoding
	Enumerable
	Enumerator
	Errno
	Exception
	FalseClass
	Fiber
	File
	File::Stat
	FileTest
	Fixnum
	Float
	GC
	GC::Profiler
	Hash
	Integer
	IO
	Kernel
	Marshal
	MatchData
	Math
	Method
	Module
	Mutex
	NilClass
	Numeric
	Object
	ObjectSpace
	Proc
	Process
	Process::GID
	Process::Status
	Process::Sys
	Process::UID
	Range
	Random
	Rational
	Regexp
	Signal
	String
	Struct
	Struct::Tms
	Symbol
	Thread
	ThreadGroup
	Time
	TracePoint
	TrueClass
	UnboundMethod

	28. Standard Library
	Abbrev
	Base64
	Benchmark
	BigDecimal
	CGI
	CGI::Session
	CMath
	Complex
	Continuation
	coverage
	CSV
	Curses
	Date/DateTime
	DBM
	Delegator
	Digest
	dRuby
	English
	erb
	Etc
	expect
	Fcntl
	Fiber
	Fiddle
	FileUtils
	Find
	Forwardable
	GDBM
	GetoptLong
	GServer
	IO/console
	IO/nonblock
	IO/Wait
	IPAddr
	irb
	json
	Logger
	mathn
	Matrix
	MiniTest
	Monitor
	Mutex_m
	Net::FTP
	Net::HTTP
	Net::IMAP
	Net::POP
	Net::SMTP
	Net::Telnet
	NKF
	Observable
	open-uri
	Open3
	OpenSSL
	OptionParser
	OpenStruct
	Pathname
	PP
	PrettyPrint
	prime
	Profile
	Profiler__
	PStore
	PTY
	Rational
	Readline
	Resolv
	REXML
	Rinda
	Ripper
	RSS
	Scanf
	SDBM
	SecureRandom
	Set
	Shellwords
	Singleton
	Socket
	StringIO
	StringScanner
	Syslog
	Tempfile
	Test::Unit
	thread
	ThreadsWait
	Time
	Timeout
	Tk
	tmpdir
	Tracer
	TSort
	un
	URI
	WeakRef
	WEBrick
	WIN32OLE
	XMLRPC
	YAML
	Zlib

	A1. Support
	Web Sites
	Usenet Newsgroup
	Mailing Lists
	Bug Reporting

	A2. Bibliography
	Index
	– SYMBOLS –
	– DIGITS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Y –
	– Z –

