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Preface  to the Fifth  Edition 

Since the previous edition of  Programming  in Prolog,  the Prolog language has 
been standardised by the International Organization for  Standardization (ISO). Al-
though not all Prolog systems conform  to the new standard, we felt  it was necessary 
to take the opportunity to update this book in accordance with the standard. We have 
also introduced some new material, clarified  some explanations, corrected a number 
of  minor errors, and removed appendices about Prolog systems that are now obsolete. 

This book can serve several purposes. The aim of  this book is not to teach the 
art of  programming as such. We feel  that programming cannot be learned simply by 
reading a book or by listening to a lecturer. You've got to do programming to learn it. 
We hope that beginners without a mathematical background can learn Prolog from 
this book, although in this case we would recommend that the beginner is taught by 
a programmer who knows Prolog, as part of  a course that introduces the student to 
programming as such. It is assumed that beginners can obtain the use of  a computer 
that has a Prolog system installed, and that they have been instructed in the use of 
the computer. Experienced programmers should not require extra assistance, but we 
hope they will not be dismayed at our intention to restrain mathematical elaboration. 

In our experience, novice programmers find  that Prolog programs seem to be 
more comprehensible than equivalent programs in conventional languages. However, 
the same people tend not to appreciate the limitations that conventional languages 
place on their use of  computing resources. On the other hand, programmers experi-
enced in conventional languages are better prepared to deal with abstract concepts 
such as variables and control flow.  But, in spite of  this prior experience, they may 
find  Prolog difficult  to adapt to, and they may need a lot of  convincing before  they 
consider Prolog a useful  programming tool. Of  course, we know of  many highly ex-
perienced programmers who have taken up Prolog with much enthusiasm. However, 
the aim of  this book is not to convert, but to teach. 

Programming  in Prolog  can be a useful  companion to two other books. The 
beginner might use Programming  in Prolog  as a tutorial preliminary to the more 
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concise and advanced text Clause  and  Effect.  The more experienced programmer 
might start with Clause  and  Effect  and be writing useful  programs within a few  hours, 
returning to Programming  in Prolog  to fill  in any gaps in understanding. Clause  and 
Effect  also conforms  to ISO Standard Prolog, and it may be beneficial  to use the 
reference  manual Prolog:  The  Standard  in conjunction with this book. Details of 
these books are: 

Clause  and  Effect,  by W.F. Clocksin. 
Springer-Verlag, 1997. ISBN 3-540-62971-8. 

Prolog:  The  Standard,  by P. Deransart, A. Ed-Dbali, and L. Cervoni. 
Springer-Verlag, 1996. ISBN 3-540-59304-7. 

Provided that the reader is equipped with a Prolog implementation that conforms  to 
the ISO standard, the book Prolog:  The  Standard  almost obviates the need for  an 
implementation-specific  reference  manual, although the latter would be useful  for 
documenting implementation-defined  parameters and limits. 

Like most other programming languages, Prolog exists in a number of  differ-
ent implementations, each with its own semantic and syntactic peculiarities. In this 
book we have adopted a core Prolog based on ISO Standard Prolog. Previous edi-
tions conformed  to a de facto  standard that became known as Edinburgh Prolog. In 
turn, Edinburgh Prolog was the main influence  on the specification  of  ISO Standard 
Prolog. The table shown below summarises the main changes that have been made 
in the use of  particular syntactic forms,  special atoms and built-in predicates since 
earlier versions of  this book in order to conform  to the Standard or otherwise reflect 
more recent practice. Most of  the differences  between the Edinburgh and ISO core 
versions are of  a purely cosmetic nature, though ISO Standard Prolog has gone in 
new directions in the way that input/output is handled. 

This book was designed to be read sequentially, although it will prove helpful 
to read Chap. 8 when the reader begins to write Prolog programs consisting of  more 
than about ten clauses. It shouldn't hurt to browse through the book, but do take care 
not to skip over the earlier chapters. 

Each chapter is divided into several sections, and we advise the reader to at-
tempt the exercises that are at the end of  many sections. The solutions to some of 
the exercises appear at the end of  the book. Chapter 1 is a tutorial introduction that 
is intended to give the reader a feel  for  what is required to program in Prolog. The 
fundamental  ideas of  Prolog are introduced, and the reader is advised to study them 
carefully.  Chapter 2 presents a more complete discussion of  points that are intro-
duced in Chapter 1. Chapter 3 deals with data structures and derives some small 
example programs. Chapter 4 treats the subject of  backtracking in more detail, and 
introduces the cut symbol, which is used to control backtracking. Chapter 5 intro-
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Edinburgh  Editions ISO  Edition 

"..." (string) notation Not used (can mean different  things) 
ASCII codes for  characters Single element atoms as characters 
get, getO, put get_char, put_char 
see, seeing, seen open, setjnput, currentjnput 
tell, telling, told open, set_output, current_output 
user userjnput and user_output 
integer number (floating-point  numbers are handled) 
reconsult consult (though not in the Standard) 
not V 
tab, skip not used 
display write_canonical 
assert asserta, assertz 
/ arithmetic operator / and / / operators 
name atom_chars, number_chars 

@<, @=< etc. introduced 
=:= and =\= introduced 

Table of  differences  between previous editions, which used the Edinburgh Prolog standard, 
and the present edition, which uses the ISO standard. 

duces the facilities  that are available for  input and output. Chapter 6 describes each 
built-in predicate in the standard core of  Prolog. Chapter 7 is a potpourri of  example 
programs collected from  many sources, together with an explanation of  how they 
are written. Chapter 8 offers  some advice on debugging Prolog programs. Chapter 
9 introduces the Grammar Rule syntax, and examines the design decisions for  some 
aspects of  analysing natural language by using Grammar Rules. Chapter 10 describes 
the relation of  Prolog to its origins in mathematical theorem proving and logic pro-
gramming. Chapter 11 specifies  a number of  projects on which interested readers 
may wish to practise their programming ability. 

During the past twenty years that previous editions of  this book have been in use, 
individuals too numerous to list by name have given us help, support, encourage-
ment, suggestions, and comments about this book. We are grateful  to our readers, 
students, teachers, colleagues, correspondents, editors, friends  and family  who have 
contributed in various and manifold  ways. Of  course, responsibility for  the errors and 
omissions that remain in this edition rests entirely with us. 

Oxford  and Edinburgh 
June 2003 

William  Clocksin 
Chris  Mellish 
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1 

Tutorial Introduction 

1.1 Prolog 

Prolog is a computer programming language. Since its beginnings around 1970, Pro-
log has been chosen by many programmers for  applications of  symbolic computa-
tion, including: 

• relational databases 

• mathematical logic 

• abstract problem solving 

• understanding natural language 

• design automation 

• symbolic equation solving 

• biochemical structure analysis 

• many areas of  artificial  intelligence 

Newcomers to Prolog find  that the task of  writing a Prolog program is not like spec-
ifying  an algorithm in the same way as in a conventional programming language. 
Instead, the Prolog programmer asks more about which formal  relationships and ob-
jects occur in the problem, and which relationships are "true" about the desired solu-
tion. So, Prolog can be viewed as a descriptive  language as well as a prescriptive  one. 
The Prolog approach is more about describing known facts  and relationships about 
a problem, and less about prescribing the sequence of  steps taken by a computer to 
solve the problem. When a computer is programmed in Prolog, the actual way the 
computer carries out the computation is specified  partly by the logical declarative se-
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mantics of  Prolog, partly by what new facts  Prolog can "infer"  from  the given ones, 
and only partly by explicit control information  supplied by the programmer. 

1.2 Objects and Relationships 

Prolog is a computer programming language that is used for  solving problems 
that involve objects and the relationships  between objects. When we say "John owns 
the book", we are declaring that a relationship, ownership, exists between one object 
"John" and another individual object "the book". Furthermore, the relationship has 
a specific  order: John owns the book, but the book doesn't own John! When we ask 
the question, "Does John own the book?" we are trying to find  out about a relation-
ship. Many problems can be expressed by specifying  objects and their relationships. 
Solving the problem amounts to asking the computer to find  out about objects and 
relationships that can be derived from  our program. 

Some relationships don't always mention all the objects that are involved. For 
example, when we say "The jewel is valuable", we are specifying  a relationship, 
called "being valuable", which involves a jewel. We did not mention who finds  the 
jewel valuable, or why. It all depends on what you want to say. In Prolog, when 
you will be programming the computer about relationships like these, the amount of 
detail you provide also depends on what you want the computer to accomplish. 

This way of  talking about objects should not be confused  with another popular 
programming methodology called object-oriented programming. In object-oriented 
programming, an object is a data structure that can inherit fields  and executable meth-
ods from  a class hierarchy to which the object belongs. Although the origin of  object-
oriented programming can be traced back to the middle 1960s, it became popular in 
the 1980s and 1990s with the introduction of  Smalltalk-80, C++, and Java, among 
other languages. 

By contrast, Prolog developed along an independent track from  the early 1970s, 
and was inspired by logic programming research. Prolog should not be compared 
with object-oriented languages such as C++ and Java, because Prolog does a com-
pletely different  job, and uses the word "object" in a completely different  way. Pro-
log's flexibility  means that it is possible to write a Prolog program that interprets a 
Prolog-like object-oriented language, but that is a different  matter. So in Prolog, the 
word "object" does not refer  to a data structure that can inherit variables and methods 
from  a class, but it refers  to things that we can represent using terms. 

Prolog is a practical and efficient  implementation of  many aspects of  "intelli-
gent" program execution, such as non-determinism, parallelism, and pattern-directed 
procedure call. Prolog provides a uniform  data structure, called the term, from  which 
all data, as well as Prolog programs, are constructed. A Prolog program consists of 
a set of  clauses, where each clause is either a fact  about the given information  or a 
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rule about how the solution may relate to or be inferred  from  the given facts.  Thus, 
Prolog can be seen as a first  step towards the ultimate goal of  programming in logic. 
In this book we shall not be concerned greatly with the wider implications of  logic 
programming nor with why Prolog is not the ultimate logic programming language. 
Instead, we will be concerned with showing how useful  programs can be written 
using the Standard Prolog systems that exist today. 

There is one more point of  philosophy to mention, then we shall begin program-
ming. We are all familiar  with using rules to describe relationships between objects. 
For example, the rule, "Two people are sisters if  they are both female  and have the 
same parents" tells us something about what it means to be sisters. It also tells us 
how to find  out if  two people are sisters: simply check to see if  they are both female 
and have the same parents. What is important to notice about rules is that they are 
usually oversimplified,  but they are acceptable as definitions.  After  all, one cannot 
expect a definition  to tell us everything about something. 

For example, most people would agree there is much more to "being sisters" 
in real life  than the above rule implies. However, when we are solving a particular 
problem, we need to concentrate on just those rules that help to solve the problem. 
So, we ought to consider an imaginary and simplified  definition  if  it is sufficient  for 
our purposes. 

1.3 Programming 

In this chapter we shall show the essential elements of  the Prolog in real pro-
grams, but without becoming diverted by details, formal  rules, and exceptions. At 
this point, we are not trying to be complete or precise. We want to bring you quickly 
to the point where you can write useful  programs, so to do that we must concentrate 
on the basics: facts,  questions, variables, conjunctions, and rules. Other features  of 
Prolog, such as lists and recursion, will be treated in later chapters. 

Computer programming in Prolog consists of: 

• specifying  some facts  about objects and their relationships, 

• defining  some rules  about objects and their relationships, and 

• asking questions about objects and their relationships. 

For example, suppose we told a Prolog system our rule about sisters. We could then 
ask the question whether Mary and Jane are sisters. Prolog would search through 
what we told it about Mary and Jane, and come back with the answer yes or no, 
depending on what we told it earlier. So, we can consider Prolog as a storehouse of 
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facts  and rules, and it uses the facts  and rules to answer questions. Programming in 
Prolog consists of  supplying all these facts  and rules. Prolog can do much more than 
answer yes-or-no questions. The Prolog system enables a computer to be used as a 
storehouse of  facts  and rules, and it provides ways to make inferences  from  one fact 
to another, finding  the values of  variables that lead to a logical deduction. 

The usual way to use Prolog is interactively, which means that you and the 
computer cany out a kind of  conversation. The computer you use has a keyboard 
and a display.  You use the keyboard to type characters into the computer, and the 
computer uses the display to show results to you. Prolog will wait for  you to type in 
the facts  and rules that pertain to the problem you want to solve. Then, if  you ask 
the right kind of  questions, Prolog will work out the answers and show them on the 
display. 

We shall now introduce each of  the fundamentals  of  Prolog one by one. Don't 
worry about not having the complete story about each feature  of  Prolog straight away. 
There will be complete summaries and more examples worked out in later chapters. 

1.4 Facts 

We first  discuss facts  about objects. Suppose we want to tell Prolog the fact  that 
"John likes Mary". This fact  consists of  two objects, called "Mary" and "John", and 
a relationship, called "likes". In Prolog, we need to write facts  in a standard form, 
like this: 

likes(john, mary). 

The following  things are important: 

• The names of  all relationships and objects must begin with a lower-case letter. 
For example, likes, john, mary. 

• The relationship is written first,  and the objects are written separated by commas, 
and the objects are enclosed by a pair of  round brackets. 

• The dot character "." must come at the end of  a fact.  The dot is what some people 
also call a "period" or a "full  stop". 

When defining  relationships between objects using facts,  you should pay attention to 
what order the objects are written between the round brackets. The order is arbitrary, 
but you must decide on some; order and be consistent about it. For example, in the 
above fact,  we have put the "liker" in as the first  of  the two objects in round brackets, 
and we have but the object/that is liked in the second slot. So, the fact  likes(john, 
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mary) is not the same thing as likes(mary, john). The first  fact  says that John likes 
Mary, and the second fact  says that Mary likes John, according to our current arbi-
trary convention. If  we want to say that Mary likes John, then we must explicitly say 
so: 

likes(mary, john). 

Look at the following  examples of  facts,  together with possible interpretations in 
English: 

valuable(gold). Gold is valuable. 
female(jane). Jane is female. 
owns(jane, gold). Jane owns gold. 
father(john, mary). John is the father  of  Mary. 
gives(john, book, mary). John gives the book to Mary. 

Each time a name is used, the name refers  to a particular individual object. Because 
of  our familiarity  with English, it is fairly  clear that the names john and jane refer 
to individuals. But, in some other facts,  we have used the names gold and valuable 
and it is not obvious that they refer  to individuals. This sort of  name is called a "non-
count word" by logicians. When using names, we must decide on how to interpret 
the name. 

A name can have several interpretations. For example, the name gold could re-
fer  to a particular object. In this case we think of  the object as some particular lump 
of  gold that we denote by the name gold. So when we say valuable(gold), we would 
mean that this particular lump of  gold, which we have named gold, is valuable. On 
the other hand, we could interpret the name gold to be a word standing for  the chem-
ical element Gold having atomic number 79, and when we say valuable(gold), we 
would mean that the chemical element Gold is valuable. So, there is more than one 
way to interpret a name, and it is you, the programmer, who decides on the interpre-
tation. There should be no problem as long as you interpret names consistently. It is 
important to think about the distinctions between different  interpretations early, so 
that you are quite certain what the names mean in your program. 

Now for  some terminology. The names of  the objects that are enclosed within 
the round brackets in each fact  are called the arguments.  Note that computer pro-
grammers use the word "argument" in a technical sense that bears none of  the com-
mon connotations of  dispute, debate, discussion, theme, or topic. The name of  the 
relationship, which comes just before  the round brackets, is called the predicate. 
So, valuable is a predicate having one argument, and likes is a predicate having two 
arguments. 

The names of  the objects and relationships are completely arbitrary. Instead of  a term 
such as likes(john,mary), we could just as well represent this as a(b,c), and remember 
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that a means likes,  b means John,  and c means Mary.  However, we normally select 
names that help us to remember what they represent. So, we must decide in advance 
what our names mean, and what the order of  arguments shall be. Thereafter  we must 
remain consistent. 

Relationships can have an arbitrary number of  arguments. If  we want to define 
a predicate called play, where we mention two players and a game they play with 
each other, we need three arguments. Here are two examples of  this: 

play(john, mary, football). 
play(jane, jim, badminton). 

Using many arguments is important for  representing complicated interactions be-
tween relationships, as we shall see later. 

We may also declare facts  that are not true in the real world. We could write 

king(john, france). 

to specify  that John  is the present king  of  France.  In the real world this is obvi-
ously false,  not least because the French monarchy was suppressed sometime around 
1792 and John is an unlikely name for  a modern day French king. But Prolog does 
not know, and does not care. Facts in Prolog simply allow you to express arbitrary 
relationships between arbitrary objects. 

In Prolog, a collection of  facts  is called a database.  We shall use the word 
database  whenever we have collected together some facts  (and later, rules) that are 
used to solve a particular problem. 

1.5 Questions 

Once we have some facts,  we can ask some questions about them. In Prolog, a ques-
tion looks just like a fact,  except that we put a special symbol before  it. The special 
symbol is written as a question mark followed  by a hyphen. Consider the question: 

?- owns(mary, book). 

If  we interpret mary to be a person called  Mary,  and book to be some particular book, 
this question is asking Does Mary  own the book?,  or Is  it a fact  that Mary  owns the 
book?  We are not asking whether she owns all books, or books in general. 

When a question is asked of  a Prolog system, it will search through the database. 
It looks for  facts  that unify  the fact  in the question. Two facts  unify  if  their predicates 
are the same (spelled the saijne way), and if  their corresponding arguments each are 
the same. If  Prolog finds  a fact  that unifies  with the question, Prolog will respond 
yes. If  no such fact  exists in the database, Prolog will respond no. The response from 
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Prolog appears on the display of  your computer terminal on the line just below your 
question. Consider the following  database: 

likes(joe, fish). 
likes(joe, mary). 
likes(mary, book). 
likes(john, book). 
likes(john, france). 

If  we typed in all those facts  to the Prolog system, we could ask the following  ques-
tions, and Prolog would give the answers (shown from  now on in bold italic type) on 
the line just after  the question: 

?- Likes(joe, money). 
no 
?- likes(mary, joe). 
no 
?- likes(mary, book). 
yes 

The answers to the first  three questions should be clear to you. In Prolog, the answer 
no is used to mean nothing unifies  with the question. It is important to remember 
that no is not the same as false.  For example, suppose a database about some famous 
Greeks contains only the following  three facts: 

human(socrates). 
human(aristotle). 

athenian(socrates). 

We can ask some questions: 

?- athenian(socrates). 
yes 
?- athenian(aristotle). 
no 

Although it may be true in real history that Aristotle once lived in Athens, we cannot 
prove it simply from  the facts  shown in the database. 

Now what happens if  we ask a question about a relationship that is not in the 
database? Suppose we are using the above database about likes, and ask the perfectly 
sensible question: 

?- king(john, france). 
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The database says nothing about kings, even though john and france  are in the 
database. In most versions of  Prolog, the answer no will be given, because noth-
ing about kings can be proved from  the database. However, Standard Prolog now 
provides a choice of  behaviours if  the relationship is not in the database. The ques-
tion can simply say no as in many Prolog systems, or a warning can be given before 
saying no, or an error message can be printed. For example, using the above database 
about Greeks, suppose we ask 

?- greek(socrates). 

Although it is shown in the database that Socrates is an Athenian, this does not prove 
he is a Greek unless more information  is in the database. Nothing about Greeks is 
given in the database. So, a Standard Prolog system can say: 

Existence  error: procedure  greek 
no 

Precisely what behaviour will take place depends on how your Standard Prolog sys-
tem is set up, so we will not be concerned with these details for  now. 

The facts  and questions we have discussed so far  are not particularly interesting. 
All we can do is get back the same information  we put in. It would be more useful  to 
ask question such as, What  objects does  Mary  like?  and Who  lives in Athens? This is 
what variables  are for. 

1.6 Variables 

If  you want to find  out what things John likes, it is tiresome to ask Does John  like 
books?, Does John  like  Mary?,  and so forth,  with Prolog giving a yes-or-no answer 
each time. It is more sensible to ask Prolog to tell you something that John likes. We 
could phrase a question of  this form  as, Does John  like  X?.  When we ask a question, 
we do not know what the object is that X could stand  for.  We would like Prolog to 
tell us what the possibilities are. In Prolog we can not only name particular objects, 
but we can also use terms like X to stand for  objects that we are unwilling or unable 
to name. Terms of  this second kind are called variables. 

When Prolog uses a variable, the variable can be either instantiated  or not in-
stantiated.  A variable is instantiated when there is an object that the variable stands 
for.  A variable is not instantiated when what the variable stands for  is not yet known. 
Prolog can distinguish variables from  names of  particular objects because any name 
beginning with a capital letter is taken to be a variable. 
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When Prolog is asked a question containing a variable, Prolog searches through 
all its facts  to find  an object that the variable could stand for.  So when we ask Does 
John  like  X?,  Prolog searches through all its facts  to find  things that John likes. 

A variable, such as X, does not name a particular object in itself,  but it can 
be used to stand for  objects that we cannot name. For example, we cannot name 
something that John  likes  as an object, so Prolog adopts a way of  saying this. Instead 
of  asking a question like: 

?- likes(john, something that John  likes). 

Prolog lets us use variables, like this: 

?- Iikes0ohn, X). 

Variables can have longer names if  we wish. This question is acceptable to Prolog: 

?- likes(john, SomethingThatJohnLikes). 

Why? Because a variable can be any word that begins with a capital letter. Consider 
the following  database of  facts,  about what John likes followed  by a question: 

likes(john, flowers). 
likes(john, mary). 
likes(paul, mary). 

?- likesO'ohn, X). 

The question asks, Is  there anything that John  likes?  When asked the question, Pro-
log will respond: 

X  = flowers 

and then wait for  further  instructions, which we will talk about shortly. How does this 
work? When Prolog is asked this question, the variable X is initially not instantiated. 
Prolog searches though the database, looking for  a fact  that unifies  with the question. 
Now if  an uninstantiated variable appears as an argument, Prolog will allow that 
argument to unify  with any other argument in the same position in the fact.  What 
happens here is that Prolog searches for  any fact  where the predicate is likes, and the 
first  argument is john. The second argument in this case may be anything, because 
the question was asked with an uninstantiated variable as the second argument. When 
such a fact  is found,  then the variable X now stands for  the second argument in the 
fact,  whatever it may be. Prolog searches through the database in the order it was 
typed in (or top-to-bottom of  the page) so the fact  likes(john, flowers)  is found  first. 
Variable X now stands for  the object flowers.  We say that X is instantiated  to flowers. 
Prolog now marks  the place in the database where a unifier  is found.  The place-
marker is used for  reasons we discuss shortly. 



10 Chapter 1 Tutorial Introduction 

Once Prolog finds  a fact  that unifies  with a question, it displays the objects 
that the variables now stand for.  In this case, the only variable was X, and it unified 
with the object flowers,  so Prolog replies X=flowers.  Now Prolog waits for  further 
instructions, as we said above. If  you press the ENTER key (sometimes called 
the RETURN key), meaning you are satisfied  with just one answer, then Prolog will 
stop searching for  more. If  instead you press the semicolon key CO (followed  by the 
ENTER key tO), Prolog will resume its search through the database as before,  starting 
from  where it left  the place-marker,  to find  another possible answer to the question. 
When Prolog begins searching from  a place-marker instead of  from  the beginning of 
the database, we say that Prolog is attempting to re-satisfy  the question. 

Suppose in response to Prolog's first  answer (X=flowers)  we asked it to carry 
on (by typing ED [J]). This means we want to satisfy  the question in another way; 
we want to find  another object that X could stand for.  This means that Prolog must 
forget  that X stands for  flowers,  and resume searching with X uninstantiated again. 
Because we are searching for  an alternative solution, the search is continued from 
the place-marker. The next unifying  fact  found  is likes(john, mary). The variable X 
is now instantiated  to mary, and Prolog puts a place-marker at the fact  likes(john, 
mary). Prolog will reply X=mary  and wait for  further  commands. If  we type another 
semicolon, Prolog will continue the search. In this example there is nothing more 
that John likes. So, Prolog will stop its search, and allow us to ask more questions or 
declare more facts. 

What happens if,  given the same facts  above, we ask the question: 

?-likes(X, mary). 

This question asks, Is  there an object that likes  Mary?  By now you should see that 
the objects in the example that like Mary are john and paul. Again, if  we wanted to 
see all of  them, we would type El d=D after  Prolog displays each one of  the answers: 

?-likes(X, mary). our question. 
X  = john ; first  answer. We type U [jj in reply. 
X  = paul;  second answer. Again we type 03 [J]-
no no more answers. 

1.7 Conjunctions 

Suppose we wish to answer questions about more complicated relationships such as, 
Do John  and  Mary  like  each other? One way to do this would be first  to ask if  John 
likes Mary, and if  Prolog tells us yes, then we ask if  Mary likes John. So, this problem 
consists of  two separate goals  that the Prolog system must try to satisfy.  Because a 
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combination like this is frequently  used by Prolog programmers, there is a special 
notation for  it. Suppose we have the following  database: 

likes(mary, chocolate). 
likes(mary, wine). 
likes(john, wine). 
likes(john, mary). 

We want to ask if  John and Mary like each other. To do this, we ask, Does John  like 
Mary?  and does  Mary  like  John?  The and expresses the idea that we are interested 
in the conjunction of  the two goals: we want to satisfy  them both one after  the other. 
We represent this by putting a comma between the goals: 

?- likes(john, mary), likes(mary, john). 

The comma is pronounced "and", and it serves to separate any number of  different 
goals that have to be satisfied  in order to answer a question. When a sequence of 
goals (separated by commas) is given to Prolog, Prolog attempts to satisfy  each goal 
in turn by searching for  a unifying  goal in the database. All goals have to be satisfied 
in order for  the sequence to be satisfied.  Using the above list of  facts,  what should 
Prolog display when given the above question? The answer is no. Why? It is a fact 
that John likes Mary, so the first  goal is true. However, the second goal cannot be 
proved, since there is nowhere in the list of  facts  where likes(mary, john) occurs. 
Since we wanted to know if  they both like each other, the whole question is answered 
no. 

Conjunctions and the use of  variables can be combined to ask quite interesting 
questions. Now that we know that it cannot be shown that John and Mary like each 
other, we ask: Is  there anything that John  and  Mary  both like?  This question also 
consists of  two goals: 

• First, find  out if  there is some X that Mary likes. 

• Then, find  out if  John likes whatever X is. 

In Prolog the two goals would be written as a conjunction like this: 

?- likes(mary, X), likes(john, X). 

Prolog answers the question by attempting to satisfy  the first  goal. If  the first  goal 
is in the database, then Prolog will mark the place in the database, and attempt to 
satisfy  the second goal. If  the second goal is satisfied,  then Prolog marks that goal's 
place in the database, and we have found  a solution that satisfies  both goals. It is 
most important to remember that each goal keeps its own place-marker. 

If  the second goal of  a conjunction is not satisfied,  then Prolog will attempt 
to re-satisfy  the previous goal (in this case the first  goal). Remember that Prolog 
searches the database completely for  each goal. If  a fact  in the database happens to 
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unify,  satisfying  the goal, then Prolog will mark the place in the database in case it 
has to re-satisfy  the goal at a later time. But when a goal needs to be re-satisfied, 
Prolog will begin the search from  the goal's own place-marker, rather than from  the 
start of  the database. Our above question is anything liked  by Mary  also liked  by 
John?  illustrates an example of  this "backtracking" behaviour in the following  way: 

1. The database is searched for  the first  goal. As the second argument (X) is unin-
stantiated, it may unify  with anything. The first  such unifying  fact  in our above 
database is likes(mary, chocolate). So, now X is instantiated to chocolate every-
where in the question where X appears. Prolog marks the place in the database 
where it found  the fact,  so it can return to this point in case it needs to re-satisfy 
the goal. Furthermore, Prolog needs to remember that X became instantiated 
here, so Prolog can "forget"  X if  it needs to re-satisfy  this goal. 

2. Now, the database is searched for  likes(john, chocolate). This is because the 
next goal is likes(john, X), and X currently stands for  chocolate. As you can see, 
no such fact  exists, so the goal fails.  Now when a goal fails,  we must try to re-
satisfy  the previous goal, so Prolog attempts to re-satisfy  likes(mary, X), but this 
time starting from  the place that was marked in the database. But first  Prolog 
needs to make X uninstantiated once more, so X may unify  with anything. 

3. The marked place is likes(mary, chocolate), so Prolog begins searching from 
after  that fact.  Because we have not reached the end of  the database yet, we have 
not exhausted the possibilities of  what Mary likes, and the next unifying  fact  is 
likes(mary, wine). The variable X is now instantiated to wine, and Prolog marks 
the place in case it must re-satisfy  what mary likes. 

4. As before,  Prolog now tries the second goal, searching this time for  likes(john, 
wine). Prolog is not trying to re-satisfy  this goal. It is entering the goal again 
(from  the left-hand  side, as it were), so it must start searching from  the beginning 
of  the database. After  not too much searching, the unifying  fact  is found,  and 
Prolog notifies  you. Since this goal was satisfied,  Prolog also marks its place in 
the database, in case you want to re-satisfy  the goal. There is a place-marker in 
the database for  each goal that Prolog is attempting to satisfy. 

5. At this point, both goals have been satisfied.  Variable X stands for  the name wine. 
The first  goal has a place-marker in the database at the fact  likes(mary, wine), 
and the second goal has a place-marker in the database at the fact  likes(john, 
wine). 

As with any other question, as soon as Prolog finds  one answer, it stops and waits 
for  further  instructions. If  we type CD OJ Prolog will search for  more things that 
both John and Mary like. We know now that this amounts to re-satisfying  both goals 
starting from  the place-markers they left  behind. 
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To sum up, we can imagine a conjunction of  goals to be arranged from  left  to 
right, separated by commas. Each goal may have a left-hand  neighbour and a right-
hand neighbour. Clearly, the left-most  goal does not have a left-hand  neighbour, and 
the right-most goal does not have a right-hand neighbour. When handling a conjunc-
tion of  goals, Prolog attempts to satisfy  each goal in turn, working from  left  to right. 
If  a goal becomes satisfied,  Prolog leaves a place-marker in the database that is asso-
ciated with the goal. Think of  this as drawing an arrow from  the goal to the place in 
the database where the solution is. Furthermore, any variables previously uninstanti-
ated might now be instantiated. This happened above at Step 1. If  a variable becomes 
instantiated, all occurrences of  the variable in the question become instantiated. Pro-
log then attempts to satisfy  the goal's right-hand neighbour, starting from  the top of 
the database. 

As each goal in turn becomes satisfied,  it leaves behind a place-marker in the 
database (draws another arrow from  the goal to the unifying  fact),  in case the goal 
needs to be re-satisfied  at a later time. Any time a goal fails  (cannot find  a unifying 
fact),  Prolog goes back and attempts to satisfy  its left-hand  neighbour, starting from 
its place-marker. Furthermore, Prolog must "uninstantiate" any variables that became 
instantiated at this goal. In other words, Prolog must "undo" all the variables when 
it re-satisfies  a goal. If  each goal, upon being entered from  its right, cannot be re-
satisfied,  then the failures  will cause Prolog to gradually creep to the left  as each 
goal fails.  If  the first  goal (the left-most  goal) fails,  then it does not have a left-
hand neighbour it can attempt to re-satisfy.  In this case, the entire conjunction fails. 
This behaviour, where Prolog repeatedly attempts to satisfy  and re-satisfy  goals in a 
conjunction, is called backtracking.  Backtracking is summarised in the next chapter, 
and is given a more complete and sophisticated treatment in Chapter 4. 

When following  the examples, you may find  it helpful  to write, below each 
variable in a goal, the object that has been instantiated by the success of  the goal. 
You should also write in an arrow from  the goal to its place-marker in the database. 
An example of  this pencil-and-paper aid is shown below at four  "snapshots" during 
the evaluation of  the above example. In each snapshot, the complete database and 
question is shown, together with a numbered commentary. Goals which have been 
satisfied  are outlined in their own little box: 
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likes(mary,food). 

likes(mary,wine). 

likes(john,wine). 

likes(john,mary). 

1. The first  goal succeeds, instantiating X to food. 

2. Next, attempt to satisfy  the second goal: 

likes(mary,food). 

likes(mary,wine). 

likes(john,wine). 

likes(john,mary). 

3. The second goal fails. 

4. Next, backtrack: forget  the previous X, and attempt to re-satisfy  the first  goal. 
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X  = wine 

Throughout this book we will endeavour to show where backtracking occurs in the 
examples, and what effect  it has on solving the problems. Backtracking is so impor-
tant that the whole of  Chapter 4 is devoted to it. 
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Exercise 1.1: Continue the pencil-and-paper simulation of  the example given above, 
assuming that you have just typed a semicolon to initiate backtracking in order to 
find  out if  John and Mary both like anything else. 

1.8 Rules 

Suppose we wanted to state the fact  that John likes all people. One way to do this 
would be to write down separate facts,  like this: 

tikes(john, alfred). 
likes(john, bertrand). 
likes(john, charles). 
likes(john, david). 

for  every person in our database. This could become tedious, especially if  there are 
hundreds of  people in our Prolog program. Another way to say that John likes all 
people is to say, John  likes  any object provided  it is a person. This fact  is in the form 
of  a rule  about what John likes, instead of  listing all the people John likes. In a world 
where John could like every person, the rule is much more compact than a list of 
facts. 

In Prolog, rules are used when you want to say that a fact  depends  on a group 
of  other facts.  In English, we use the word "if"  to express a rule. For example, 

I  use an umbrella  if  there is rain. 

John  buys the wine if  it is less expensive than the beer. 

Rules are also used to express definitions,  for  example: 

X  is a bird  if: 
X  is an animal, and 
X  has feathers. 

or 

X  is a sister of  Y  if: 
X  is female,  and 
X  and  Y  have the same parents. 

In the above English definitions,  we have used variables X  and Y.  It is important 
to remember that a variable stands for  the same object wherever it occurs in a rule. 
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Otherwise we would be violating the spirit of  the definition.  For example, in the bird 
rule above, we could not show that Fred is a bird because Fido is an animal and Mary 
has feathers.  The same principle of  consistent interpretation of  variables is true also 
for  rules in Prolog. If  one X  stands for  Fred, then all the X's in the same rule must 
stand for  Fred. 

A rule is a general  statement  about objects and  their relationships.  For example, 
we can say that Fred is a bird if  Fred is an animal and Fred has feathers,  and we can 
also say that Bertram is a bird if  Bertram is an animal and Bertram has feathers.  So, 
we can allow a variable to stand for  a different  object in each different  use of  the rule. 
Within a use of  a rule, of  course, variables are interpreted consistently as pointed out 
above. 

Let us consider several examples, beginning with a rule using one variable and a 
conjunction. 

John  likes  anyone who likes  wine, 

or, in other words, 

John  likes  anything if  it likes  wine, 

or, with variables, 

John  likes  X  ifX  likes  wine. 

In Prolog, a rule consists of  a head  and a body.  The head and body are connected by 
the symbol ":-", which is made up of  a colon and a hyphen. The ":-" is pronounced 
if.  The above example is written in Prolog as: 

likes(john, X) :- likes(X, wine). 

Notice that rules also end with a dot (actually a "period" or "full  stop" character). The 
head of  this rule is likes(john, X). The head of  the rule describes what fact  the rule is 
intended to define.  The body, in this case likes(X, wine), describes the conjunction of 
goals that must be satisfied,  one after  the other, for  the head to be true. For example, 
we can make John more choosy about whom he likes, simply by adding more goals 
onto the body, separated by commas: 

likes(john, X) :- likes(X, wine), likes(X, food). 

or, in words, John  likes  anyone who likes  wine and  food.  Or, suppose John likes any 
female  who likes wine: 

likes(john, X) :- female(X), likes(X, wine). 

Whenever we look at a Prolog rule, we should take notice of  where the variables are. 
In the above rule, the variable X is used three times. Whenever X becomes instantiated 
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to some object, all X's are instantiated within the scope of  X. For some particular use 
of  a rule, the scope of  X is the whole rule, including the head, and extending to the 
dot"." at the end of  the rule. So, in the above rule, if  X happens to be instantiated to 
mary, then Prolog will try to satisfy  the goals female(mary)  and likes(mary, wine). 

Next, as an example of  a rule that uses more than one variable, consider a 
database consisting of  facts  about some of  the family  of  Queen Victoria. We shall 
use the predicate parents having three arguments such that: parents(X ,Y, Z) means 
The  parents ofX  are Y  and  Z.  The second argument is for  the mother, and the third 
argument is for  the father.  We shall also use the predicates female  and male in the 
obvious way. One part of  the database might look like this: 

male(albert). 
male(edward). 

female(alice). 
female(victoria). 

parents(edward, victoria, albert). 
parents(alice, victoria, albert). 

Now w^shall the rule about sister of  described earlier. The rule defines  the 
predicate sister_of,  having two arguments such that sister_of(X,  Y) is a fact  if  X is 
a sister of  Y. Notice that we have used the underscore character "_" in the predicate 
name. Although we have not yet given the complete rules for  how to construct names, 
it is permitted to include underscores in a name, and we shall summarise the rules in 
the next chapter. Now X is a sister of  Y if: 

• X is female, 

• X has mother M and father  F, and 

• Y has the same mother and father  as X does. 

This can be written as the following  Prolog rule: 

sister_of(X,  Y) :-
female(X), 
parents(X, M, F), 
parents(Y, M, F). 

Or if  you prefer,  you can write it out on one line like this: 

sister_of(X,  Y) :- female(X),  parents(X, M, F), parents(Y, M, F). 

We use the variable names M and F to indicate mother and father,  although we could 
have used Mother and Father had we been so inclined. Notice that we are using vari-
ables that do not appear in the head of  the rule. These variables, M and F, are treated 
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in the same way as any other variable. When Prolog uses the rule, variables M and 
F will initially be uninstantiated, so they will unify  with anything when it becomes 
time to satisfy  the goal parents(X,M,F). However, as soon as they are instantiated, 
then all  the M's and F's in this use of  the rule will become instantiated. The following 
example should help to explain how these variables are used. Let us ask the question: 

?- sister_of(alice, edward). 

When asked this question given the above database and rule for  sister_of,  Prolog 
proceeds as follows: 

1. First, the question unifies  with the head of  the only sister_of  rule above, so X 
in the rule becomes instantiated to alice, and Y becomes instantiated to edward. 
The place marker for  the question is put against this rule. Now Prolog attempts 
to satisfy  the three goals in the body, one by one. 

2. The first  goal is female(alice)  because X was instantiated to alice in the previous 
step. This goal is true from  the list of  facts,  so the goal succeeds. As it succeeds, 
Prolog marks the goal's place in the database (the third entry in the database). No 
new variables were instantiated, so no other note is made. Prolog now attempts 
to satisfy  the next goal. 

3. Now Prolog searches for  parents(alice, M, F), where M and F will unify  with 
any arguments because they are uninstantiated. A unifying  fact  is parents(alice, 
victoria, albert), so the goal succeeds. Prolog marks the place in the database 
(sixth down from  the top) and records that M became instantiated to victoria, and 
F to albert. (You may write these under the goal in the rule if  you want to keep 
track of  them on paper). Prolog now attempts to satisfy  the next goal. 

4. Now Prolog searches for  parents(edward, victoria, albert) because Y is known 
as edward from  the question, and M and F were known to stand for  victoria and 
albert from  the previous goal. The goal succeeds, because a unifying  fact  is 
found  (fifth  down from  the top). Since it is the last goal in the conjunction, the 
entire goal succeeds, and the fact  sister_of(alice,  edward) is established as true. 
Prolog answers yes. 

Suppose we want to know if  Alice is the sister of  anyone. The appropriate question 
in Prolog is 

?- sister_of(alice,  X). 

For this question, Prolog proceeds as follows: 

1. The question unifies  with the head of  the only sister_of  rule. Variable X in the 
rule becomes instantiated to alice. As variable X in the question is uninstanti-
ated, then variable Y in the question will also be uninstantiated. However, these 
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variables now become shared.  We can also say that these variables are confer-
ences, because each one references  the other. As soon as one of  the variables 
becomes instantiated to an object, the other variable becomes instantiated to the 
same object. At the moment, as we said, they are not instantiated. Coreferencing 
variables are explained more in the next chapter. 

2. The first  goal is female(alice),  which succeeds as before. 

3. The second goal is parents(alice, M, F), and it unifies  with parents(alice, victo-
ria, albert). Variables M and F are now known. 

4. As Y is not yet known, the third goal is therefore  parents(Y, victoria, albert). 
This goal unifies  with the fact  parents(edward, victoria, albert). Variable Y is 
now known to be edward. 

5. Since all goals succeed, the entire rule succeeds, with X known to be alice (given 
in the question), and Y as edward. Since Y (in the rule) is shared with X (in 
the question), then X is also instantiated to edward. Prolog displays the reply 
X=edward. 

As usual, Prolog waits for  you to tell it if  you want to find  all the solutions to the 
question. As it turns out, this question has more than one solution. How Prolog finds 
the remaining solutionfs]  is set as an exercise at the end of  this chapter. 

As we have seen thus far,  there are two ways to provide information  about a 
given predicate such as likes. We can provide both facts  and rules. In general, a 
predicate is defined  by a mixture of  facts  and rules. These are called the clauses for 
a predicate. We shall use the word clause whenever we refer  to either a fact  or a rule. 

As a further  example, this time not dealing with monarchs, consider the rule: A 
person may steal something if  the person is a thief  and  the person likes  the thing.  In 
Prolog, this is written: 

may_steal(P, T) :- thief(P),  likes(P, T). 

Here we use the predicate may_steal, which has two arguments P and T to represent 
the idea that some person P may steal thing T. This rule depends on clauses for  thief 
and likes. These could be represented as a mixture of  facts  and rules, whatever is 
most appropriate. For example, consider the following  Prolog database, which has 
been made up from  clauses discussed earlier. We have added some clause numbers 
enclosed between /*. . .*/ brackets. This is how we write a comment. Comments 
are ignored by Prolog, but we may add them to our programs for  convenience. In the 
discussion that follows,  we shall refer  to the clause number comments. 
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/ * ! * / thief(john). 

/*2*/ likes(mary, chocolate). 
/*3*/ likes(mary, wine). 
/ * 4 * / likes(john, X) :- likes(X, wine). 

/*5*/ may_steal(X, Y) :- thief(X), likes(X, Y) 

Notice that the definition  of  likes has three separate clauses: two facts  and a rule. Let 
us follow  what happens when the question What  may John  steal?  is asked. First, this 
question translates into Prolog as: 

?- may_steal(john, X). 

To answer this question, Prolog searches as follows: 

1. First, Prolog searches in the database for  a clause about may_steal, and finds  one 
in the form  of  a rule at clause number 5. Prolog marks the place in the database. 
Since it is a rule, its body must be satisfied  to establish whether the head is true. 
So the X in the rule is instantiated to john from  the question. Again we find  that 
we have to unify  two uninstantiated variables (X in the question and Y in the rule), 
so they will share. The goals of  a rule must succeed for  the rule to succeed: the 
first  goal, thief(john)  is now searched for. 

2. The goal succeeds, since thief(john)  is in the database (clause 1). Prolog marks 
the place in the database, and no variables have become newly instantiated. Pro-
log then attempts to satisfy  the second goal using clause 5. Since X still stands 
for  john, Prolog now searches for  likes(john, Y). Notice that Y is still instantiated 
at this point. 

3. The goal likes(john, Y) unifies  with the head of  the rule (at clause 4). The Y in 
the goal shares with the X in the head, and both remain uninstantiated. To satisfy 
this rule, likes(X, wine) is now searched for. 

4. The goal succeeds, because it unifies  with likes(mary, wine), the fact  at clause 
3. So, X now stands for  mary. Since the goal in clause 4 succeeds, the whole rule 
succeeds. The fact  likes(john, mary) is established from  clause 4 because Y in 
clause 5 shares with X; it is also instantiated to mary. 

5. Clause 5 now succeeds, with Y instantiated to mary. As Y was shared with the 
second argument of  the original question, X in the question is now instantiated to 
mary. 

We chose this example to show how easy it is to generate strange and unexpected 
answers, such as "John may steal Mary". This conclusion is a logical deduction from 
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the program, but it might not make much sense to us. Sometimes this can indicate 
a problem with the program. The reasoning behind establishing that John may steal 
Mary is: 

In  order  to steal something, first  John  must be a thief.  From  clause 1, this is 
a fact.  Next  John  must like  the thing. From  clause 4, we see that John  likes 
anything that likes  wine. From  clause 3, we see that Mary  likes  wine. There-
fore,  John  likes  Mary.  Therefore,  both conditions  for  stealing  something can 
be satisfied,  so John  may steal Mary. 

Notice that the fact  (clause 2) that Mary likes chocolate, is irrelevant to this particular 
question. 

In this example we have repeatedly used the variables X and Y in different 
clauses. For example, in the may_steal rule, X stands for  the object that can steal 
something. But in the likes rule, X stands for  the object that is liked. In order for  this 
program to make sense, Prolog must be able to tell that X can stand for  two different 
things in two different  uses of  the clauses. Remember that knowing the scope of  a 
variable can resolve any confusion.  We could have used more mnemonic names to 
attempt to prevent any confusion,  but we use simple names such as X to demonstrate 
the scoping principle. 

1.9 Summary and Exercises 

At this point we have covered most of  the basic core of  Prolog. In particular, we have 
looked at 

• Asserting facts  about objects. 

• Asking questions about the facts. 

• Using variables and what their scopes are. 

• Conjunction as a way of  saying "and". 

• Representing relationships in the form  of  rules. 

• An introduction to backtracking. 

With this small number of  building blocks, it is possible to write useful  programs for 
manipulating simple databases, and it would probably be a good idea if  you did so 
by working out the exercises below. 
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When you begin to write programs for  a Prolog system that is available to you, 
you should consult its reference  manual to see how to begin a programming session. 
You will also find  some practical tips in Chapter 8. 

After  you have this much of  Prolog under your control, you should carry on 
into the next chapter, which makes clear some of  the points we did not mention in 
this chapter. Also, we shall show how to work with numbers in Prolog. The features 
covered in the next few  chapters are where the expressiveness and convenience of 
Prolog become apparent. 

Exercise 1.2 When the sister_of  rule is applied to the database of  part of  Queen Vic-
toria's family  discussed previously, more than one answer can be obtained. Explain 
how all the answers can be obtained, and what they are. 

Exercise 1.3 This exercise has been inspired by one in Robert Kowalski's book Logic 
for  Problem Solving,  published by North Holland in 1979. Suppose someone has 
already written Prolog clauses that define  the following  relationships: 

The exercise is to write Prolog clauses to define  the following  relationships: 

For example, we could write a rule for  aunt, provided we were supplied with (or 
wrote) rules for  female,  sibling, and parent. 

aunt(X, Y) :- female(X),  sibling(X, Z), parent(Z, Y). 

This could also be written: 

aunt(X, Y) :- sister_of(X,  I), parent(Z, Y). 

father(X,  Y) /* X is the father  of  Y */ 
mother(X, Y) /* X is the mother of  Y */ 
male(X) /* X is male */ 
female(X)  /* X is female  */ 
parent(X, Y) /* X is a parent of  Y */ 
diff(X,  Y) /* X and Y are different  */ 

is_mother(X) 
is_father(X) 
is_son(X) 

/* X is a mother */ 
/* X is a father  */ 
/* X is a son */ 
/*X is a sister ofY*/ 
/* X is a grandfather  ofY  */ 
/* X is a sibling ofY*/ 

sister_of(X,  Y) 
grandpa_of(X,  Y) 
sibling(X, Y) 

provided that we wrote the sisterof  rule. 
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Exercise 1.4 Using the sister_of  rule defined  in the text, explain why it is possible 
for  some object to be her own sister. How would you change the rule if  you did not 
want this property? Hint: assume that the predicate diff  of  Exercise 1.3 is already 
defined. 



A Closer Look 

In this chapter we provide a more complete discussion of  the parts of  Prolog that were 
introduced in the previous chapter. Prolog provides ways to structure data as well as 
ways to structure the order in which attempts are made to satisfy  goals. Structuring 
data involves knowing the syntax by which we can denote data. Structuring the order 
in which goals are solved involves knowing about backtracking. 

2.1 Syntax 

The syntax of  a language describes how we are allowed to fit  words together. In 
English, the syntax of  the sentence "I see a zebra" is correct, but the syntax of  "zebra 
see I a" is not correct. In the first  chapter, we did not discuss the syntax of  Prolog 
explicitly, but we simply showed what some parts of  Prolog looked like. Here we 
will summarise the syntax of  those parts of  Prolog we have seen thus far. 

Prolog programs are built from  terms. A term is either a constant,  a variable,  or 
a structure.  We saw each of  these terms in the previous chapter, but we did not know 
them by these names. Each term is written as a sequence of  characters.  Characters 
are divided into four  categories as follows: 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

a b c d e f g h i j k l m n o p q r s t u v w x y z 

0 1 2 3 4 5 6 7 8 9 

+ - * / \ ~ A < > : . ? @ # $ 8. 

The first  row consists of  upper-case letters. The second row consists of  lower-case 
letters. The third row consists of  digits. The fourth  row consists of  sign characters. 
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There are actually more sign characters than those shown in the fourth  row, but oth-
ers have special uses discussed below. Each kind of  term, whether it is a constant, 
variable, or structure, has different  rules for  how characters are put together to form 
its name. Now we shall summarise each kind of  term. 

2.1.1 Constants 

Constants name specific  objects or specific  relationships. There are two kinds of 
constants: atoms, and numbers. Examples of  atoms are the names that were given in 
the last chapter: 

likes mary john book wine owns jewels can_steal 

The special symbols that Prolog uses to denote questions "?-" and rules ":-" are 
also atoms. There are two kinds of  atoms: those made up of  letters and digits, and 
those made up from  signs. The first  kind must normally begin with a lower-case 
letter, as did all the ones we saw in the previous chapter. Those atoms made from 
signs normally are made up from  signs only. Sometimes it may be necessary to have 
an atom beginning with a capital letter or a digit. If  an atom is enclosed in single 
quotes ""', then the atom may have any characters in its name. Finally, the underline 
character "_" may be inserted in the middle of  an atom to improve legibility. The 
following  are further  examples of  atoms: 

a void = 'george-smith' --> george_smith ieh2304 

The following  are not examples of  atoms: 

2304ieh george-smith Void _alpha 

Numbers are the other kind of  constant. We have not discussed how to do arithmetic 
in Prolog, but this will be introduced later in this chapter. Here are some examples of 
numbers: 

-17 -2.67e2 0 1 99.9 512 8192 14765 67344 6.02e-23 

Most of  these are familiar.  The "e" notation is used to denote a power of  10. So, for 
example, the number -2.67e2 is -2.67 x 102 or just -267; 6.02e-23 is 6.02x 10"2 3 . 

In addition to these numbers, Prolog programmers have added libraries to define 
features  such as arithmetic operations on rational numbers and numbers of  arbitrary 
precision, but we will not be needing these in this book. 
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2.1.2 Variables 

The second kind of  term used in Prolog is the variable.  Variables look like atoms, 
except they have names beginning with a capital letter or an underline sign "_". 
A variable should be thought of  as standing for  some object that we are unable or 
unwilling to name at the time we write the program. This corresponds roughly to the 
use of  a pronoun in English. In the example Prolog clauses we have seen so far,  we 
have used variables with names such as X, Y, and Z. However, the names can be as 
long as you like, for  example: 

Answer Input Gross_Pay _3_blind_mice A_very_long_variable_name 

Sometimes one needs to use a variable, but its name will never be used. For example, 
if  we want to find  out if  anyone likes John, but we do not need to know just who it is, 
we can use the anonymous variable.  The anonymous variable is written as a single 
underline character. Our example is written in Prolog as: 

?- likes(_, john). 

Several anonymous variables in the same clause need not be given consistent inter-
pretations. This is a characteristic peculiar to the anonymous variable. It is used to 
save having to dream up different  variable names when they will not be used else-
where in the clause. 

2.1.3 Structures 

The third kind of  term with which Prolog programs are written is the structure.  Struc-
tures are called "compound terms" in Standard Prolog, but in this book we use the 
word "structure" because it is shorter and more easily distinguished from  other kinds 
of  terms. A structure is a single object consisting of  a collection of  other objects, 
called components. The components are grouped together into a single structure for 
convenience in handling them. 

One example of  a structure in real life  is an index card for  a library book. The 
index card will contain several components: the author's name, the title of  the book, 
the date when it was published, the location where it can be found  in the library, and 
so forth.  Some of  the components can be broken down into further  components. For 
example, the author's name consists of  some initials and a surname. 

Structures help to organise the data in a program because they permit a group 
of  related information  to be treated as a single object (a library card) instead of  as 
separate entities. The way that you decompose data into components depends on 
what problem you want to solve, and later on we will give advice on how to do this. 
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Structures are also useful  when there is a common kind of  object, of  which 
many may exist. Books, for  example. In Chapter 1 we discussed the fact 

owns(john, book). 

to denote that John owns some particular book. If  we later said 

owns(mary, book). 

this means that Mary owns the same object that John owns, because it has the same 
name. There is no other way of  telling objects apart, except by their name. We could 
say: 

owns(john, wuthering_heights). 
owns(mary, moby_dick). 

to specify  more carefully  what books John and Mary own. However, in large pro-
grams, it may become confusing  to have many different  constants with no context to 
tell what they mean. Someone reading this Prolog program may not know that we 
meant wuthering_heights to be the name of  the book written by the author Emily 
Bronte who flourished  in Yorkshire, England during the 19th Century. Perhaps they 
will think that John has named his pet rabbit "wuthering-heights", say. Structures 
can help to provide this context. 

A structure is written in Prolog by specifying  its functor  and its components. 
The functor  names the general kind of  structure, and corresponds to a datatype in an 
ordinary programming language. The components are enclosed in round brackets and 
separated by commas. The functor  is written just before  the opening round bracket. 
Consider the following  fact,  that John owns the book called Wuthering  Heights,  by 
Emily Bronte: 

owns(john, book(wuthering*_heights, bronte)). 

Inside the owns fact  we have a structure by the name of  book, which has two compo-
nents, a title and an author. Since the book structure appears inside  the fact  as one of 
the fact's  arguments, it is acting as an object, taking part in a relationship. If  we like, 
we can also have another structure for  the author's name, because there were three 
Bronte writers we wish to distinguish: 

owns(john, book(wuthering_heights, author(emily, bronte))). 

Structures may participate in the process of  question-answering using variables. For 
example, we may ask if  John owns any book by any of  the Bronte sisters: 

?- owns(john, book(X, author(Y, bronte))). 
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If  this is true, X will then be instantiated to the title that was found,  and Y will be 
instantiated to the first  name of  the author. Or, we may not need to use the variables, 
so we can use anonymous ones: 

?- owns(john, book(_, author(_, bronte))). 

Remember that the anonymous variables never co-refer  with any other variable, even 
other anonymous variables. 

We could improve the book structure by adding another argument indicating 
which copy the book is. For example, a third argument, where we would insert an 
integer, would provide a way of  uniquely identifying  a book: 

owns(john, book(ulysses, author(james, joyce), 3129)). 

which we could use to represent John  owns the 3,129th copy of  Ulysses,  by James 
Joyce. 

If  you have guessed that the syntax for  structures is the same as for  Prolog 
facts,  you are correct. A predicate (used in facts  and rules) is actually the functor 
of  a structure. The arguments of  a fact  or rule are actually the components of  a 
structure. There are many advantages to representing Prolog programs themselves as 
structures. It is not important to know why just now, but do keep in mind that all parts 
of  Prolog, even Prolog programs themselves, are made up of  constants, variables, and 
structures. 

2.2 Characters 

The names of  constants and variables are built up from  strings of  characters. Al-
though each kind of  name (atom, integer, variable) has special rules about what char-
acters may make it up, it is helpful  to know what all the characters are that Prolog 
recognises. This is because a character can be treated as an item of  data in its own 
right. In Standard Prolog, a character is actually an atom of  length 1. It is most 
common to use input and output operations on characters; this will be discussed in 
Chapter 5. 

Prolog recognises two kinds of  characters: printing characters and non-printing 
characters. Printing characters cause a symbol to appear on your computer terminal's 
display. Non-printing characters do not cause a symbol to appear, but cause an action 
to be carried out. Such actions include printing a blank space, beginning new lines of 
text, or perhaps making a beeping sound. The following  are all the printing characters 
that can be used 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
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a b c d e f g h i j k l m n o p q r s t u v w x y z 

0 1 2 3 4 5 6 7 8 9 

! " # $ % & ' ( ) = - ~ A | \ { } [ ] _ ' @ + ; * : < > , . ? / 

You should recognise this as a more complete set than the one given at the begin-
ning of  this chapter. Some of  the characters have special meanings. For example, the 
round brackets are used to enclose the components of  a structure. However, we shall 
see in later chapters that all the characters may be treated as information  by Prolog 
programs. Characters may be printed, read from  the keyboard, compared, and take 
part in arithmetic operations. 

2.3 Operators 

Sometimes it is convenient to write some functors  as operators.  This is a form  of 
syntax that makes some structures easier to read. For example, arithmetic operations 
are commonly written as operators. When we write the arithmetic expression "x + y 
* z", we call the "plus" sign and the "multiply" sign operators.  If  we had to write the 
arithmetic expression "x + y * z" in the normal way for  structures, it would look like 
this: +(x,*(y,z)), and this would be a legal Prolog term. The operators are sometimes 
easier to use, however, because we have grown accustomed to using them in arith-
metic expressions ever since our schooldays. Also, the structure form  requires that 
round brackets be placed around the functor's  components, which may be awkward 
at times. 

It is important to note that the operators do not "cause" any arithmetic to be 
carried out. So in Prolog, 3+4 does not mean the same thing as 7. The term 3+4 is 
another way to write the term +(3,4), which is a data structure. Later we shall explain 
a way in which structures can be interpreted as though they represent arithmetic 
expressions, and evaluated according to the rules of  arithmetic. 

First we need to know how to read arithmetic expressions that have operators in 
them. To do this, we need to know three things about each operator: its position, its 
precedence,  and its associativity.  In this section we will describe how to use Prolog 
operators with these three things in mind, but we will not go into very much detail at 
this point. Although many different  kinds of  operators can be made up, we shall deal 
only with the familiar  atoms +, -, *, and / . 

The syntax of  a term with operators depends in part on the position of  the opera-
tor. Operators like plus (+), hyphen (-), asterisk (*), and slash (/) are written between 
their arguments, so we call them infix  operators. It is also possible to put operators 
before  their arguments, as in "-x + y", where the hyphen before  the x is used in 
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arithmetic to denote negation. Operators that come before  their arguments are called 
prefix  operators. Finally, some operators may come after  their argument. For exam-
ple, the factorial  operator, used by mathematicians, comes after  the number you want 
to find  the factorial  of.  In mathematical notation, the factorial  of  x is written "x!", 
where the exclamation sign is used to denote factorial.  Operators that are written af-
ter their arguments are called postfix  operators. So, the position of  an operator tells 
where it is written with relationship to its arguments. It turns out that the operators 
that we will use in the next section are all infix  operators. 

Now precedence. When we see the term "x + y * z", and assume that it can be 
interpreted as an arithmetic expression, we know that to evaluate it, we must multiply 
y and z first,  then add x. This is because we were taught in school that mutiplications 
and divisions are done before  additions and subtractions, except where brackets are 
used for  grouping. On the other hand, the structure form  +(x,*(y,z)) makes explicit 
the rule that the multiplication is done before  the addition. This is because the "*" 
structure is an argument of  the "+" structure, so if  we actually wanted the computer 
to carry out the calculation, the "*" has to be carried out first  in order for  "+" to know 
what its arguments are. So when using operators, we need rules that tell us the order 
in which operations are carried out. This is what precedence  tells us about. 

The precedence of  an operator is used to indicate which operation is carried 
out first.  Each operator that is used in Prolog has a precedence  class associated with 
it. The precedence class is an integer that is associated with an operator. The exact 
value of  the integer depends on the particular version of  Prolog you are using, and 
we will give details in Chapter 5. However, it is always true that an operator with a 
higher precedence has a precedence class that is closer to 1. If  precedence classes 
range from  1 to 255, then an operator in the first  precedence class is carried out 
first,  before  operators belonging to the 129th (say) precedence class. In Prolog the 
multiplication and division operators are in a higher precedence class than addition 
and subtraction, so the term a-b/c is the same as the term -(a,/(b,c)). The exact 
association of  operators to precedence classes is not important at the moment, but it 
is worth remembering the relative order in which operations are carried out. 

Finally, consider how different  operators associate. How they associate comes 
to our attention when we have several operators of  the same precedence. When we 
see the expression "8/2/2", does this mean "(8/2)/2" or "8/(2/2)"? In the first  case, 
the expression could be interpreted to mean 2, and in the second case, 8. To be able 
to distinguish between these two cases, we must be able to tell whether an operator 
is left  associative or right  associative. A left  associative operator must have the same 
or lower precedence operations on the left,  and lower precedence operations on the 
right. For example, all the arithmetic operations (add, subtract, multiply, and divide) 
are left  associative. This means that expressions like "8/4/4" are read as "(8/4)/4". 
Also, "5+8/2/2" is read as "5+((8/2)/2)'\ 
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In practice, people tend to use round brackets for  expressions that may be dif-
ficult  to understand because of  the precedence and associativity rules. In this book 
we will also try to make it as clear as possible by using lots of  round brackets, but 
it is still important to know the syntax rules for  operators so your understanding of 
operators is complete. 

Remember that a structure made up of  arithmetic operators is like any other 
structure. No arithmetic is actually carried out until commanded by the "is" predicate 
described in Section 2.5. 

2.4 Equality and Unification 

One noteworthy predicate is equality, which is an infix  operator written as "=". When 
an attempt is made to satisfy  the goal 

?- X = Y. 

(pronounced "X equals Y"), Prolog attempts to unify  X and Y, and the goal succeeds 
if  they unify.  We can think of  this act as trying  to make  X and  Y equal. The equality 
predicate is built-in,  which means that it is already defined  in the Prolog system. The 
equality predicate works as though it were defined  by the following  fact: 

X = X. 

Within a use of  some clause, X always equals X, and we exploit this property when 
defining  the equality predicate in the way shown. 

Given a goal of  the form  X=Y, where X and Y are any two terms which are per-
mitted to contain uninstantiated variables, the rules for  deciding whether X and Y are 
equal are as follows: 

• If  X is an uninstantiated variable, and if  Y is instantiated to any term, then X 
and Y are equal. Also, X will become instantiated to whatever Y is. For exam-
ple, the following  question succeeds, causing X to be instantiated to the structure 
rides(student, bicycle): 

?- rides(student, bicycle) = X. 

• Integers and atoms are always equal to themselves. For example, the following 
goals have the behaviour shown: 

policeman = policeman succeeds 
paper = pencil fails 
1066 = 1066 succeeds 
1206 = 1583 fails 
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• Two structures are equal if  they have the same functor  and number of  compo-
nents, and all the corresponding components are equal. For example, the follow-
ing goal succeeds, and causes X to be instantiated to bicycle: 

rides(student, bicycle) = rides(student, X) 

Look closely: this is not a question about rides; it is a question about =. 

Structures can be "nested" one inside another to any depth. If  such nested structures 
are tested for  equality, the test may take more time to carry out, because there is more 
structure to test. The following  goal 

a(b, C, d(e, F, g(h, i, J))) = a(B, c, d(E, f, g(H, i, j))) 

would succeed, and causes B to be instantiated to b, C to c, E to e, F to f,  H to h, and J to 
j. What happens when we attempt to make two uninstantiated variables equal? This 
is just a special case of  the first  rule above. The goal succeeds, and the two variables 
share. If  two variables share, then whenever one of  them becomes instantiated to 
some term, the other one automatically is instantiated to the same term. A more 
technical way to say this is that the variables co-refer:  that is, they refer  to the same 
thing. So, in the following  rule, the second argument will be instantiated to whatever 
the first  argument is: 

equal(X, Y) :- X = Y. 

An X = Y goal will always succeed if  either argument is uninstantiated. An easier way 
to write such a rule is to take advantage of  the fact  that a variable equals itself,  and 
write: 

equal(X, X). 

Exercise 2.1: Say whether the following  goals would succeed, and which variables, 
if  any, would be instantiated to what values: 

pilots(A, london) = pilots(london, pans) 
point(X, Y, Z) = point(Xl, Yl, Zl) 
letter(C) = word(letter) 
noun(alpha) = alpha 
'studenf = student 
f(X, X) = f(a, b) 
f(X, a(b, c)) = f(Z, a(Z, c)) 
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2.5 Arithmetic 

Many people use computers to do operations on numbers. Arithmetic operations are 
useful  for  comparing numbers and for  calculating results. In this section we will see 
examples of  each kind. 

First, consider comparing numbers. Given two numbers, we can tell whether 
one number is equal to the other, or less than the other, or greater than the other. 
Prolog provides certain built-in predicates for  comparing numbers. Actually these 
predicates evaluate terms that are treated as arithmetic expressions. The arguments 
could be variables instantiated to integers, or they could be integers written as con-
stants, or they could be more general expressions. Here we will use these predicates 
just for  comparing numbers, but later we'll use them in general arithmetic expres-
sions. Note that we are allowed to write them as infix  operators: 

X =:=Y X and Y stand for  the same number 
X =\=Y X and Y stand for  different  numbers 
X < Y X is less than Y 
X > Y X is greater than Y 
X =< Y X is less than or equal to Y 
X >= Y X is greater than or equal to Y 

Note that the "less than or equal to" symbol is not written as "<=" as in many pro-
gramming languages. This is done so that the Prolog programmer is free  to use the 
"<=" atom, which looks like an arrow, for  other purposes. 

As these comparison operators are predicates, one might think it possible to 
write a Prolog fact  as follows, 

2 > 3. 

in order to assert that 2 is actually greater than 3. A fact  like this one is perfectly  well-
formed  Prolog. However, Prolog will not allow further  facts  to be added to predicates 
that are "built in" to Prolog. This prevents you from  changing the meaning of  built-in 
predicates in unexpected ways. In Chapter 6 we shall describe many of  the built-in 
predicates, including all those we have met thus far. 

As a first  example of  using numbers, suppose we have a database of  the reigns 
of  the Sovereign Princes of  Wales in the 9th and 10th Centuries. The predicate reigns 
is defined  such that the goal reigns(X,Y,Z) is true if  the prince named X reigned from 
year Y to year Z. The list of  facts  in the database looks like this: 

reigns(rhodri, 844, 878). 
reigns(anarawd, 878, 916). 
reigns(hywel_dda, 916, 950). 
reigns(Lago_apJdwal, 950, 979). 
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reigns(hywel_apJeuaf, 979, 985). 
reigns(cadwallon, 985, 986). 
reigns(maredudd, 986, 999). 

Now suppose we want to ask who was on the Welsh throne during a particular year. 
We could define  a rule, which given a name and a date, would search the database, 
and compare the given date aginst the dates of  the reign. Let us define  the predicate 
prince(X,Y), which is true if  the prince named X was on the throne during year Y: 

X was a prince during year Y if: 
X reigned between years A and B, and 
Y is between A and B, inclusive. 

Now the first  goal will be satisfied  by using the reigns database above. The second 
goal is satisfied  if  Y is equal to A, or Y is equal to B, or Y lies between A and B. You 
can test for  this by testing if  Y >= A and Y =< B. Translating all this into Prolog, we 
obtain: 

prince(X, Y) :-
reigns(X, A, B), 
Y >= A, 
Y =< B. 

Here are some questions one might ask, with the answers that Prolog gives: 

?- prince(cadwallon, 986). 
yes 
?- prince(rhodri, 1979). 
no 
?- prince(X, 900). 
X=anarawd 
yes 
?- prince(X, 979). 
X=lago_ap_idwal 
X=hywel_ap_ieuaf 
yes 

Notice the use of  variables in the latter examples. Make sure you know how Prolog's 
searching mechanism allows questions like these to be answered. 

Arithmetic can also be used for  calculating. For example, if  we know the pop-
ulation and ground area of  a country, we can calculate the population density of  the 
country. The population density tells us how crowded the country would be if  all the 
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people were evenly spread throughout the country. Consider the following  database 
about the population and area of  various countries in 1976. We will use the predicate 
pop to represent the relationship between a country and its population. Nowadays, 
the populations of  countries are generally quite large numbers. So, we will represent 
population figures  in millions: pop(X, Y) means "the population of  country X is about 
Y million people". The predicate area will denote the relationship between a country 
and its area (in millions of  square miles). The numbers given here are not exact, but 
they will do for  the purpose of  demonstrating arithmetic: 

pop(usa, 203). 
pop(india, 548). 
pop(china, 800). 
pop(brazil, 108). 

area(usa, 3). 
area(india, 1). 
area(china, 4). 
area(brazil, 3). 

Now to find  the population density of  a country, we must use the rule that the density 
is the population divided by the area. This can be represented as the predicate density, 
where the goal density(X,Y) succeeds for  country X having Y as the population density 
of  that country. A Prolog rule for  this is: 

density(X, Y) :-
pop(X, P), 
area(X, A), 
Y is P / A. 

The rule is read as follows: 

The population density of  country X is Y, if: 
The population of  X is P, and 
The area of  X is A, and 
Y is calculated by dividing P by A. 

The "is" operator is new. The "is" operator is an infix  operator. Its right-hand 
argument is a term which is interpreted as an arithmetic expression. To satisfy  an "is", 
Prolog first  evaluates its right-hand argument according to the rules of  arithmetic. 
The answer is unified  with the left-hand  argument to determine whether the goal 
succeeds. In the above example, Y is unknown when the "is" is encountered, and it 
is up to the "is" to evaluate the expression, and let Y stand for  the value. This means 
that the values of  all the variables on the right of  an "is" must be known. 
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We need to use the "is" predicate any time we require to evaluate an arithmetic 
expression. Remember that something like P/A is just an ordinary Prolog structure 
having the same "shape" as a structure like author(emily, bronte). But if  we interpret 
a structure as an arithmetic expression, there is a special operation that can be applied 
to the structure: that of  actually carrying out the bits of  arithmetic and calculating the 
result. This is called evaluating  the arithmetic expression. Not all structures can be 
evaluated as arithmetic expressions. Clearly we cannot evaluate structures such as 
the author one, because author is not defined  here as an arithmetic operation. 

Getting back to the population density example, it is not hard now to see that 
typical questions and their answers are: 

?- density(china, X). 
X=200 
yes 
?- density(turkey, X). 
no 

In the first  question, the X=200  is Prolog's answer, meaning 200 people per square 
mile. The second question failed,  because the population of  Turkey could not be 
found  in our example database. 

Depending on what computer you use, various arithmetic operators can be used 
on the right-hand side of  the "is" operator. All Standard Prolog systems, however, 
will have the following,  as well as many more: 

X + Y the sum of  X and Y 
X - Y the difference  of  X and Y 
X * Y the product of  X and Y 
X / Y the quotient of  X divided by Y 
X / / Y the integer quotient of  X divided by Y 
X mod Y the remainder of  X divided by Y 

This list together with the above list of  comparison operators should tell you nearly 
all you need for  doing simple arithmetic problems. 

2.6 Summary of  Satisfying  Goals 

Prolog performs  a task in response to a question from  the programmer (you). A ques-
tion provides a conjunction of  goals to be satisfied.  Prolog uses the known clauses to 
satisfy  the goals. A fact  can cause a goal to be satisfied  immediately, whereas a rule 
can only reduce the task to that of  satisfying  a conjunction of  subgoals.  However, a 
clause can only be used if  it unifies  the goal under consideration. If  a goal cannot be 



38 Chapter 2 A Closer Look 

satisfied,  backtracking  will be initiated. Backtracking consists of  reviewing what has 
been done, attempting to re-satisfy  the goals by finding  an alternative way to satisfy-
ing them. Furthermore, if  you are not content with an answer to your question, you 
can initiate backtracking yourself  by typing a semicolon when Prolog informs  you 
of  a solution. In this section, we present a diagrammatic notation for  showing how 
and when Prolog attempts to satisfy  and re-satisfy  goals. 

2.6.1 Successful  satisfaction  of  a conjunction of  goals 

Prolog attempts to satisfy  the goals in a conjunction, whether they appear in a rule 
body or in a question, in the order they are written (left  to right). This means that 
Prolog will not attempt to satisfy  a goal until its neighbour on the left  has been 
satisfied.  And, when it has been satisfied,  Prolog will attempt to satisfy  its neighbour 
on the right. Consider the following  simple program about family  relations: 

female(mary). 

parent(C, M, F) :- mother(C, M), father(C, F). 

mother(john, ann). 
mother(mary, ann). 

father(mary, fred). 
father(john, fred). 

Let us look at the sequence of  events that leads to answering the question: 

?- female(mary), parent(mary, M, F), parent(john, M, F). 

This question is to find  whether mary is a sister of  john. To do this Prolog needs to 
satisfy  the following  sequence of  subgoals shown in Figure 2.1. 

We represent goals as boxes distributed down the page. An arrow starting from  the 
top of  the page indicates which goals have already been satisfied.  Boxes that lie 
below the arrowhead represent goals that Prolog has not yet considered. Boxes that 
the arrow has passed through indicate goals that have been satisfied.  As a program 
runs, the arrow moves up and down the page as Prolog turns its attention to the 
various goals. We call this the flow  of  satisfaction.  In the example, the arrow starts at 
the top of  the page, as shown above. It will extend downwards, moving through the 
three boxes as the three goals are satisfied.  So the final  situation will be as shown in 
Figure 2.2. 

Notice that values have now been found  for  the variables M and F. This diagram 
shows the coarse structure of  what has happened, but it fails  to show how these three 
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Fig. 2.1. A sequence of  subgoals not yet satisfied 

Fig. 2.2. The sequence of  subgoals has been satisfied.  Note that variables have been instanti-
ated 

goals were satisfied.  We can show this by putting more detail inside the boxes. Let us 
concentrate on how the second goal is satisfied.  Satisfying  a goal involves searching 
the database for  a unifying  clause, then marking the place in the database, and then 
satisfying  any subgoals. 

We can show this for  the second goal by indicating in the parent box which 
clause was chosen and which subgoals had to be satisfied.  The clause chosen is 
shown by a number in brackets, here (1). This number indicates which clause out 
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of  the set of  clauses for  the appropriate  predicate  has been chosen. So the number 
1 indicates that the first  clause for  the predicate has been chosen. This is enough 
information  to mark the place in the database. The subgoals are shown in small boxes 
inside the box for  the goal. At the point when the parent clause has been chosen, the 
situation looks like Figure 2.3. 

parent(john, M, F) 

Fig. 2.3. The number (1) indicates that the first  clause for  the predicate has been chosen. The 
subgoals are shown in small boxes inside the box for  the goal. 

The arrow has entered the parent box and passed through the brackets indicating 
that a clause has been chosen. The clause has introduced two subgoals, involving 
mother and father, shown as the small boxes inside the goal box. At this point, the 
arrow must pass through these two smaller boxes, emerge from  the current parent 
box and then pass through the second parent box in order for  the question to succeed. 
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When the arrow passes through the smaller boxes, the same steps of  choosing a 
clause and satisfying  the clause's subgoals must be performed.  In this example, both 
of  these goals succeed by finding  facts  in the database, which give instantiations for 
variables M and F. So in Figure 2.4 we see a more detailed picture of  the situation 
when the question succeeds. 

Note that to be precise we should have shown the details of  how the goals fe-
male(mary) and parent(john, ann, fred)  were satisfied.  However, this would have 
been too much detail to fit  onto one page. This example shows the general pattern of 
how Prolog attempts to satisfy  goals in a case where the conjunction of  goals sue-
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ceeds. The arrow moves down the page, passing through the boxes in turn. When it 
enters a box, a clause is chosen and its position marked. If  the clause unifies  with the 
goal and the clause is a fact,  then the arrow can leave the box. This happened for  the 
mother and father  goals. On the other hand, if  the clause unifies  with the goal and 
the clause is a rule then new boxes are created for  the subgoals and the arrow must 
then pass through all of  these before  it can leave the original box. 

2.6.2 Consideration of  goals in backtracking 

When a failure  is generated (because all the alternative clauses for  a goal have been 
tried, or because you type a semicolon), the "flow  of  satisfaction"  passes back  along 
the way it has come. This involves retreating back into boxes that have previously 
been left  in order to re-satisfy  the goals. When the arrow gets back to a place where 
a clause was chosen (represented by a number in brackets), Prolog attempts to find 
an alternative clause for  the appropriate goal. First, it makes uninstantiated all vari-
ables that had been instantiated in the course of  satisfying  the goal. Then, it searches 
through the database from  where the place-marker was put. If  it finds  another unify-
ing possibility, it marks the place, and things continue as in Section 2.6.1 above. 

Note that work on any goals "below" this (even if  such goals were tackled under 
the previous alternative) will always start from  scratch. Prolog will try to satisfy,  and 
not to re-satisfy  them. If  no other unifying  possibility can be found,  the goal fails, 
and the arrow retreats further  until it comes to another place-marker. 

In our example, if  the goal parent(john, ann, fred)  failed,  the arrow would 
retreat upwards from  the parent(john, ann, fred)  box. Then it is necessary to re-
enter the big parent(mary, ann, fred)  box from  below, to attempt to re-satisfy  this 
goal, as shown in Figure 2.5. 

Now after  this point, it is necessary to retreat further.  The arrow needs to reach the 
place where the clause for  the father  goal was chosen. First of  all, all variablesjhat 
became instantiated as the result of  using this clause are set back to uninstantiated. 
This means that F in the father  goal becomes uninstantiated again. Then Prolog looks 
through the database, starting after  the first  father  clause (the one marked), trying to 
find  an alternative clause for  this goal. Assuming that mary has only one father  (a 
not unreasonable assumption), this will not succeed. So the arrow will have to retreat 
further.  It retreats upwards, out of  the father(mary,  F) box (this goal has failed)  and 
back into the mother(mary, ann) box (to attempt to re-satisfy  this goal). We get the 
situation shown in Figure 2.6. 

We can see from  these examples the general pattern of  how goals are reconsidered 
in backtracking. When a goal fails,  the arrow retreats upwards out of  the box for  the 
failing  goal and back into the box for  the goal above. The arrow continues retreating 
until it reaches a place marker. All variables that were instantiated as a result of 
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Fig. 2.5. What happens if  a goal fails 

the previous choice of  clause are reset to uninstantiated. Then Prolog searches the 
database for  a clause after  the place marker. If  it finds  a clause that unifies  with 
the goal, then a new place mark is recorded, boxes for  the subgoals are created and 
the arrow starts moving downwards again. Otherwise, the arrow continues to retreat 
upwards, in search of  another place marker. 

2.6.3 Unification 

The rules for  deciding whether a goal unifies  with the head of  a use of  a clause are 
as follows.  Note that in the use of  a clause, all variables are initially uninstantiated. 

• An uninstantiated variable will unify  with any object. As a result, that object will 
be what the variable stands for. 

• Otherwise, an integer or atom will unify  with only itself. 
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female(mary) 

1 
parent(mary, ann, F) 

(1) 

father(mary, F) 

parent(john, ann, F) 

Fig. 2.6. Attempting to re-satisfy  a goal 

• Otherwise, a structure will unify  with another structure with the same functor 
and number of  arguments, and all the corresponding arguments must unify. 

A noteworthy case in unification  is one in which two uninstantiated variables are 
unified.  In this case, we say that these variables share (or co-refer).  1\vo sharing 
variables are such that as soon as one is instantiated, so is the other (with the same 
value). If  you have noticed a similarity between unification  and making arguments 
equal (Section 2.4), then you are correct. This is because the "=" predicate attempts 
to make its arguments equal by unifying  them. Now we can bring together what we 
have discussed about operators, arithmetic, and unification.  Suppose the following 
facts  are in the database: 

sum(5). 
sum(3). 
sum(X + Y). 
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Consider the question 

?- sum(2 + 3). 

Now, which one of  the facts  above will unify  with the question? If  you think it is 
the first  one, then you should go back and read about structures and operators. In the 
question the argument of  the sum structure is a structure having the plus sign as its 
functor,  and having the 2 and 3 as its components. In fact,  the goal shown will unify 
with the third fact,  instantiating X to 2, and Y to 3. On the other hand, if  we actually 
wanted to compute a sum, we would use the "is" predicate. We would write 

?- X is 2 + 3. 

or, just for  fun,  we could define  a predicate add that relates two integers with their 

sum: 

add(X, Y, Z) :- Z is X + Y. 

In this definition,  X and Y must be instantiated. 





Using Data Structures 

The Oxford  English  Dictionary defines  the word "recursion" in the following  way: 

RECURSION [Now rare or obs. 1626]. A backward movement, return. 

This definition  is cryptic and perhaps outdated. Recursion is now a very popular 
and powerful  technique in the world of  non-numerical programming. The idea of 
recursion is used in two ways. It can be used to describe structures that have other 
structures as components. It can also be used to describe programs that need to satisfy 
a copy of  themselves before  they themselves can succeed. Sometimes, beginners 
view recursion with some suspicion, because, how is it possible for  some relationship 
to be defined  in terms of  itself?  In Prolog, recursion is the normal and natural way 
of  viewing data structures and programs. We hope that the theme of  this chapter, 
recursion, will be made explicit in a comfortable  and unobtrusive way. 

It is usually easier to understand the form  of  a complicated structure if  we write it 
as a tree, in which each functor  is a node, and the components are branches. Each 
branch may point to another structure, so we can have structures within structures. It 
is customary to write a tree diagram with the root at the top, and the branches at the 
bottom. For instance, the structure parents(charles, elizabeth, philip) is written as: 

3.1 Stru< res and Trees 

parents 

charles elizabeth philip 
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The structure a+b*c (or equivalently, +(a, *(b,c))) is written as: 

+ 

The structure book(moby_dick, author(herman, melville)) is written as: 

book 

moby_dick author 

herman melville 

Notice that the last two structures have trees of  the same shape, although the roots 
and leaves are different.  Before  going further,  you should make sure that you can 
write tree diagrams for  each of  the structures you have seen in the previous chapters. 

Suppose we are given the sentence "John likes Mary", and we need to repre-
sent the syntax of  the sentence. A very simple syntax for  English is that a sentence 
consists of  a noun followed  by a verb phrase. Additionally, a verb phrase consists of 
a verb and another noun. We can represent the structure of  any such sentence by a 
structure of  the form: 

sentence(noun(X), verb_phrase(verb(Y), noun(Z))) 

which has a tree like this: 

If  we take our sentence ("John likes Mary"), and instantiate the variables in the struc-
ture with the words of  the sentence, we obtain: 
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sentence 

noun verb  phrase 

I / \ 
X verb noun 

sentence 

noun verb phrase 

I / \ 
john verb noun likes mary 

This shows how we can use Prolog structures and variables to represent the syntax of 
a class of  very simple English sentences. In general, if  we know the parts of  speech 
of  words in a sentence, it is possible to write a Prolog structure that makes explicit 
the relationships between different  words in a sentence. This is an interesting topic 
in its own right, and later on we shall return to the question of  how we can use Prolog 
to make the computer "understand" some simple English sentences. 

Trees can also give a graphic description of  variables inside structures, par-
ticularly showing how like-named variables share. For example, we can depict the 
structure of  the term f(X,  g(X, a)) by the following  tree (more precisely, a directed 
acyclic graph): ^ ^ 
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3.2 Lists 

The list  is a very common data structure in non-numeric programming. The list is 
an ordered sequence of  elements that can have any length. "Ordered" means that 
the order of  the elements in the sequence matters. The "elements" of  a list may be 
any terms — constants, variables, structures — which of  course includes other lists. 
These properties are helpful  when we cannot predict in advance how big a list should 
be, and what information  it should contain. Furthermore, lists can represent practi-
cally any kind of  structure that one may wish to use in symbolic computation. Lists 
are widely used to represent parse trees, grammars, city maps, computer programs, 
and mathematical entities such as graphs, formulae,  and functions.  There is a pro-
gramming language called LISP, in which the only data structures available are the 
constant and the list. However, in Prolog, the list is simply one particular kind of 
structure. 

Lists can be represented as a special kind of  tree. A list is either an empty list, 
having no elements, or it is a structure that has two components: the head and tail. 
The end of  a list is customarily represented as a tail that is set to the empty list. The 
empty list is written as [], which is an opening square bracket followed  by a closing 
square bracket. The head and tail of  a list are components of  the functor  named 
".", which is the dot (called the period or full  stop). Thus, the list consisting of  one 
element "a" is ".(a,[])", and its tree looks like this: 

Also, the list consisting of  the atoms a, b and c is written .(a,.(b,.(c,[]))), and its tree 
looks like this: 

a 
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Some people like to write the tree diagram of  a list with the tree "growing" from  left 
to right, and with the "branches" hanging down. The above list looks like this in such 
a "vine" diagram: 

. . . [] 

a b c 

In this vine diagram, the head component of  the dot functor  hangs down, and the tail 
component grows to the right. The end of  the list is clearly marked by the last tail 
component being the empty list. The main advantage of  the vine diagram for  lists is 
that it can be written right-to-left  on a piece of  paper. 

The vine diagram may be suitable for  writing lists on paper when we need to see 
the structure of  a list, but such diagrams are not used for  writing lists into a Prolog 
program. As the dot notation is often  awkward for  writing complicated lists, there 
is another syntax that can be used for  writing lists in a Prolog program. This list 
notation  consists of  the elements of  the list separated by commas, and the whole list 
is enclosed in square brackets. For example, the above lists can be written in the list 
notation as [a] and [a,b,c]. 

It is useful  for  lists to contain other lists and variables. For example, the follow-
ing lists are legal in Prolog: 

[] 

[the, men, [like, to, fish]] 
[a, VI, b, [X, Y]] 

Variables within lists are treated the same as variables in any other structure. They 
can become instantiated at any time, so judicious use of  variables can provide a way 
to put "holes" in lists that can be filled  with data at a later time. To show the structure 
of  lists within lists, the vine diagram for  the previous list is: 
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It is easy to see from  this diagram that each horizontal "level" of  the vine is a list 
having a certain number of  elements. The top level is a list having four  elements, one 
of  which is a list. The second level, having two elements, is the fourth  element of  the 
top level list. 

Lists are manipulated by splitting them up into a head and a tail. The head of  a 
list is the first  component of  the "." functor  that is used to construct lists. Notice that 
we speak of  the "head" of  a rule as well as the "head" of  a list. These two things are 
different,  and although they are both called "heads" by historical accident, it is easy 
enough to understand which "head" one is talking about at a particular time. The tail 
of  a list is the second component of  the "." functor.  When a list appears in the square 
bracket notation, the head of  the list is the first  element of  the list. The tail of  the list 
is a list that consists of  every element except the first.  Here are some lists with their 
heads and tails: 

List Head Tail 

[a, b, c] a [b, c] 
[] (none) (none) 

[[the, cat], sat] [the, cat] [sat] 
[the, [cat, sat]] the [[cat, sat]] 

[the, [cat, sat], down] the [[cat, sat], down] 
[X+Y, x+y] X+Y [x+y] 

Table 3.1. Some lists with their head and tail 

Notice that the empty list has neither a head nor a tail. In the last example, the "+" 
operator is used as a functor  for  the structures +(X, Y) and +(x ,y). 

Because a common operation with lists is to split a list into its head and tail, 
there is a special notation in Prolog to represent "the list with head X and tail Y". 
This is written [X|Y], where the symbol separating the X and Y is the vertical bar. Be 
careful  not to confuse  the vertical bar with the digit "1", the letter "I" and the letter 
"I". A pattern of  the form  [X|Y] will instantiate X to the head of  a list, and Y to the tail 
of  the list, as in the following  example: 

p([l,2,3]). 
p([the, cat, sat, [on, the, mat]]). 

?- p([X|Y]). 
X=1  Y  = [2,  3] 
X  = the [Y=  cat, sat, [on,  the, mat]] 

?- P([ [-IX]]). 
X  = [the,  mat] 
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More examples of  the list syntax, showing how various lists match, are as follows, 
in which we attempt to match the two lists shown, obtaining the instantiations (if 
possible), shown in Table 3.2. 

List 1 List 2 Instantiations 

[X, Y, Z] [john, likes, fish] 

[cat] 

[X, Y|Z] 

[X|Y] 

[mary, likes, wine] 

X =john 
Y = likes 
Z = fish 
X = cat 
Y=[ ] 
X = mary 
Y = likes 
Z = [wine] 

[[the, Y]|Z] [[X, hare], [is, here]] X = the 
Y = hare 
Z= [[is,here]] 
T = [norfolk] 
(none) 
P = white 
Q = horse 

Table 3.2. Pairs of  lists and how they match. If  they match, variable instantiations are shown. 
One example does not match. 

[golden |T] 
[vale, horse] 

[white|Q] 

[golden, norfolk] 
[horse, X] 
[P| horse] 

As the last example shows, it is possible to use the list notation to create structures 
that resemble lists, but which do not terminate with the empty list. One such struc-
ture, [white|horse], denotes a structure having head white and tail horse. The con-
stant horse is neither a list nor the empty list, and we shall later see that such struc-
tures should be treated carefully  when used at the tail of  a list. 

3.3 Recursive Search 

We frequently  need to search inside a Prolog structure to find  some desired piece of 
information.  When the structure may have other structures as its components, this 
results in a recursive search task. 

Suppose, for example, we have a list of the names of those horses sired by 
Coriander who all won horse races in Great Britain in the year 1927: 

[curragh_tip, music_star, park_mill, portland] 
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Now suppose we want to find  out if  a given horse is in the list. The way we do this 
in Prolog is to find  out whether the horse is the same as the head of  the list: if  it is, 
we succeed. If  it is not, then we check to see if  the horse is in the tail of  the list. This 
means checking the head of  the tail  next time. And the head of  that  tail after  that. If 
we come to the end of  the list, which will be the empty list, we must fail:  the horse 
is not in the list. 

To write this in Prolog, we must first  recognise that there is a relationship be-
tween an object, and a list it might appear in. This relationship, called membership, is 
a common enough concept in our everyday lives. We talk about people being mem-
bers of  clubs, and so forth.  We shall write a predicate member such that the goal 
member(X,Y) is true if  the term that X stands for  is a member of  the list that Y stands 
for.  There are two conditions to check. First, it is a fact  that X will be a member of  Y, 
if  X is the same as the head of  Y. Although you might be tempted to check whether X 
and Y are the same by writing X=Y as a subgoal, it is easier simply to check whether 
they match by writing them using the same variable name. In Prolog, this fact  is: 

member(X, [X|_]). 

which represents, "X is a member of  the list that has X as its head". Notice that we 
use the anonymous variable "_" to stand for  the tail of  the list. This is because we 
do not use the tail for  anything in this particular fact.  Notice that this rule also could 
have been written as: 

member(X, [Y| J ) :- X = Y. 

By this time you should understand why we can take a shortcut by using X in two 
places in the shorter version of  the rule. 

The second, and last, rule says that X is a member of  a list providing it is in the 
tail, say Y, of  that list. And, what better way to find  out if  X is in the tail of  the list, 
than to use member itself!  This is the essence of  recursion. In Prolog: 

member(X, [_|Y]) :- member(X, Y). 

which represents, "X is a member of  the list if  X is a member of  the tail of  the list". 
Notice that we have used the anonymous variable "_", because we do not care to have 
any named variable standing for  the head of  the list. The two rules together define 
the membership predicate, and they tell Prolog how to search a list from  beginning 
to end, looking for  an item in the list. 

The most important point to remember, when encountering a recursively defined 
predicate, is to look for  the boundary  conditions  and the recursive case. There are 
actually two boundary conditions for  the member predicate. Either the object we are 
looking for  is in the list, or it isn't in the list. The first  boundary condition of  member 
is recognised by the first  clause, which will cause the search through the list to be 
stopped if  the first  argument of  member matches the head of  the second argument. 
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The second boundary condition occurs when the second argument of  member is the 
empty list. 

How are we assured that the boundary conditions will ever be satisfied?  We 
must look at the recursive case, the second rule of  member. Notice that each time 
member attempts to satisfy  itself,  the goal is given a shorter  list. The tail of  a list is 
always a shorter list than the original one. Eventually, one of  two things will happen: 
either the first  member rule will match, or member will be given a list of  length 
0, the empty list, as its second argument. When either of  these things happens, the 
"recurrence" of  member goals will come to an end. The first  boundary condition is 
recognised by a fact,  which does not cause any further  subgoals to be considered. 
The second boundary condition is not recognised by any member clause, so member 
will fail.  In Prolog: 

member(X, [X|_]). 
member(X, [_|Y]) :- member(X, Y). 

?- member(d, [a, b, c, d, e, f,  g]). 
yes 
?- member(2, [3, a, 4, f]). 
no 

Suppose we asked the question 

?- member(dygate,[curraghjnp,music_star,park_mill,portland]). 

The second member rule would match, as clygate does not match curragh_tip. Vari-
able Y becomes instantiated to [music_star, park_mill, portland], and the next goal 
is to see if  clygate is a member of  that. The second rule matches again, and the tail is 
taken again. The goal becomes member(clygate ,[park_mill, portland]). The process 
recurs until we reach the goal where X is clygate, and Y is [portland]. The second rule 
matches once more, and now Y becomes the tail of  [portland], which is the empty 
list, and the next goal becomes member(clygate, []). No rule in the database matches 
this, so the goal fails,  and the question is false. 

It is most important to remember that each time that member uses its second 
clause to attempt to satisfy  member, Prolog treats each recurrence of  the member 
goal as a different  "copy". This prevents the variables in one use of  a clause from 
being confused  with variables in another use of  a clause. 

As the membership predicate is so useful,  we shall use it in many places in the 
remainder of  this book. The member predicate is also important because it is one 
of  the smallest useful  examples of  a predicate that is recursive: that is, the defini-
tion of  member contains goals that can only be satisfied  by member itself.  Recursive 
definitions  are frequently  found  in Prolog programs, and they are no different  than 
any other type of  definition.  However, you must be careful  that you do not write 
"circular" definitions,  for  example: 
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parent(X, Y) :- child(Y, X). 
child(A, B) :- parent(B, A). 

In this example, to satisfy  parent, we set up child as a goal. However, the definition 
for  child uses only parent as a goal. You should be able to see that asking a question 
about parent or child would lead to a loop in which Prolog would never infer  anything 
new, and that the loop would never terminate. 

One important problem to look out for  in recursive definitions  is that of  left 
recursion. This arises when a rule causes the invocation of  a goal that is essentially 
equivalent to the original goal that caused the rule to be used. Thus if  we defined: 

person(adam). 

person(X) :- person(Y), mother(X, Y). 

and asked 

?- person(X). 
Prolog would first  use the rule, and generate the subgoal person (Y). In trying to 
satisfy  this, it would again pick the rule first,  and generate yet another equivalent 
goal. And so it would go on and on, until it ran out of  memory space. Of  course, if 
it had a chance to backtrack, it would find  the fact  about Adam and start producing 
solutions. The trouble is, that in order to backtrack, Prolog has to have failed  after 
trying the first  possibility. In this case, the task that it finds  is infinitely  long, and so 
it never gets a chance to succeed or fail.  So the moral is: 

Don't assume that, just because you have provided all the relevant 
facts  and rules, Prolog will always find  them. You must bear in mind 
when you write Prolog programs how Prolog searches through the 
database and which variables will be instantiated when one of  your 
rules is used. 

In this example, the simple solution is just to put the fact  before  the rule, instead of 
after  it: 

person(X) :- person(Y), mother(X, Y). 
person(adam). 

In fact,  as a general heuristic, it is a good idea to put facts  before  rules whenever pos-
sible. Sometimes putting the rules in a particular order will work if  they are used to 
solve goals of  one form  but will not if  goals of  another form  are generated. Consider 
the following  definition  of  islist, in which the goal islist(X) succeeds if  X is a list in 
which the tail "of  its last element is the empty list: 

islist([A|B]) :- islist(B). 
islistQ]). 
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If  we use these rules to answer questions like: 

?- islist([a, b, c, d]). 

or 

?- islist([]). 

or 

?- istist(f(l,  2, 3)). 

then the definition  will work fine.  But when we ask: 

?- islist(X). 

the program will loop. A predicate similar to islist that is not susceptible to loops is 
provided by the following  two facts: 

weak_islist([]). 
weak_islist([_|_]). 

This version just tests the first  part of  the list, rather than checking whether the last 
tail is []. This is not as strong a test as islist, but it will not loop if  the argument is a 
variable. 

3.4 Mapping 

Given a Prolog structure, we frequently  wish to construct a new structure that is simi-
lar to the old one but changed in some way. We traverse the old structure component-
by-component, and construct the components of  the new structure. We call this map-
ping. 

For example, let us consider a Prolog program in which we type an English sentence 
and Prolog replies with another sentence that is an altered version of  the one we typed 
in. This program for  "talking back" to the programmer might produce a dialogue like 
this: 

you are a computer 
/  am not a computer 
do you speak french 
no i speak german 

Although this dialogue may seem like a forced but sensible conversation, it is very 
easy to write a computer program to carry out its "part" of the dialogue simply by 
following these steps: 
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1. Accept a sentence that is typed in by the user. 

2. Change each you in the sentence to the word "i". 

3. Likewise, change any are to am not. 

4. Change french to german. 

5. Change do to no. 

When applied to carefully  chosen sentences, such as those in the above dialogue, this 
scheme will produce a sensible altered sentence. However, it does not work on every 
sentence, for  example: 

i do like you 
i no like  i 

Once a simple program is written, it can be modified  later to cope with sentences that 
produce awkward output. 

A Prolog program to change one sentence into another can be written as follows. 
First, we need to recognise that there is a relationship between the original sentence 
and the altered sentence. So, we need to define  a Prolog predicate, called alter, such 
that alter(X,Y) means that sentence X can be altered to give sentence Y. It is convenient 
for  X and Y to be lists, with atoms standing for  the words, so sentences can be written 
like this: 

[this, is, a, sentence] 

and once alter is defined,  we could ask Prolog a question of  the form 

?- alter([do,you,know,french], X). 

and Prolog would reply 

X=  [no,i,know,german]. 

Don't be concerned yet that the input and output sentences are not tidy, and do not 
look like normal sentences. In later chapters we will discuss ways of  typing in and 
printing out structures in a way that is easy to read. For the moment we will only 
worry about changing one list into another. 

Because alter deals with lists, the first  fact  about alter needs to deal with what 
happens if  the list is empty. In this case, we will say that an empty list is altered into 
an empty list: 

alter([],[]). 

Or, in words, "it is a fact  that altering the empty list gives the empty list". If  the 
reason for  treating the empty list is not apparent now, it should be clearer later. Next, 
we need to recognise that the main job of  alter is to: 
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1. Change the head of  the input list into another word, and let the head of  the output 
list stand for  that word. 

2. Use alter on the tail of  the input list, and let the tail of  the output list stand for 
the altered tail. 

3. If  we have reached the end of  the input list, then there is nothing more to go onto 
the output list, so we can terminate the output list with an empty list []. 

Translated into words that are closer to Prolog: 

Altering a list with head H and tail T gives a list with head X and tail Y if: 
changing word H gives word X, and 
altering the list T gives the list Y. 

Now we need to say what is meant by "changing" one word into another. This can 
be done by having a database of  facts  in which change(X, Y) means word X can be 
changed into word Y. At the end of  the database we need a "catchall" fact,  because 
if  a word is not changed into another word it needs to be changed into itself.  If  the 
reason for  a catchall is not apparent now, it should be clearer after  we explain how 
the program works. The relevant catchall fact  is change(X,X), which means word X is 
changed into itself.  A database to handle the changes listed above is: 

change(you, i). 
change(are, [am,not]). 
change(french, german). 
change(do, no). 
change(X, X). /* this is the "catchall" */ 

Notice that we have treated the phrase "am not" as a list, so that it occupies only one 
argument of  the fact. 

Now we can translate the pseudo-Prolog text above into pure Prolog, remem-
bering the notation [A|B] for  the list with head A and tail B. We get something like 
this: \ 

alter([], []). 
alter([H|T], [X|Y]) :- change(H, X), alter(T, Y). 

The first  clause in this procedure checks for  an empty list. The same clause also 
checks for  the end of  the list as well. Why? Consider this worked example: 

?- alter([you, are, a, computer], Z). 

This question would match with the main alter rule, making variable H stand for  you, 
and the variable T stand for  [are, a, computer]. Next, the goal change(you, X) would 
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succeed, setting X to stand for  the word "i". As X is the head of  the output list (in: 

the goal of  alter), the first  word in the output list is "i". Next, the goal alter([are, a, 
computer], Y) would use the same rule. The word are is changed into the list [am, 
not] by the database, and another alter goal is generated: 

alter([a, computer], Y). 

The fact  change(a, X) is searched for,  but as there is no change fact  with "a" as its, 
first  argument, the catchall fact  at the bottom of  the database succeeds, changing "a"' 
into "a". The alter rule is called for  once again, with computer as the head of  the input 
list, and the empty list [] as the tail of  the input list. As previously, change(computer,| 
X) matches against the catchall. Finally, alter is called with the empty list, which! 
matches against the very first  alter clause. The result is the empty list, which ends' 
the sentence (remember that a list ends with an empty tail). Finally, Prolog answers' 
the question by responding 

Z  = [i,  [am,not],a,computer] 

Notice that the phrase [am, not] appears in the list exactly as it was inserted. This is; 
an example of  a list that is a member of  another list. 

The reasons for  adding the fact  alter([], []) and the catchall fact  change(X,; 
X) should now be clear. Facts like these are often  included in a program when it is! 
desirable to check for  boundary conditions. It should be clear from  the explanation^ 
above that boundary conditions occur when the input list becomes the empty list, and-
when all of  the change facts  have been searched through. In both of  these boundary 
conditions, we wish certain actions to be performed.  When the input list becomes the; 
empty list, we wish to terminate the output list (by putting an empty list at its end).! 
When all the change facts  have been searched through without the given word being 
changed into another word, we wish to keep the word unchanged (by changing it into 
itself). 

3.5 Recursive Comparison 

As we saw in Chapter 2, Prolog provides predicates to compare integers. Comparing 
structures is generally more complicated, because it is necessary to consider all the 
individual components. When the components may themselves be structures, the 
comparison may have to be recursive. This happens, for  instance, when we wish to 
compare lists that may have any length. 

Imagine that you are trying to assess the relative fuel  economy of  a set of  differ-
ent cars. To do this, you drive the cars around particular routes and measure the fuel 
consumption. With each car, you associate a list of  numbers that records the number 
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of  litres of  fuel  consumed on the different  routes. Of  course, to compare two given 
cars you have to look at the same sequence of  routes and it only makes sense to com-
pare consumption on the same route. So we can assume that the lists will all have 
the same length and that they will be ordered in the same way, so that the first  route 
comes first,  the second route second, etc. We can define  the predicate fueLconsumed 
so that the goal fuel_consumed(C,R)  succeeds for  a model of  car C and a list of  routes 
R. So we may have something like: 

fuel_consumed(waster,  [3.1, 10.4, 15.9, 10.3]). 
fuel_consumed(guzzler,  [3.2, 9.9, 13.0, 11.6]). 
fuel_consumed(prodigal,  [2.8, 9.8, 13.1, 10.4]). 

Here we have four  test routes. If  we tested the cars on more routes, we could make 
the lists longer. We would like to compare these cars in a way that works regardless 
of  the exact length of  the lists. 

First of  all, we have to decide when to count one amount of  fuel  consumed as 
better than another. Since there is a certain randomness in how much fuel  is needed 
for  a journey, we will take a generous approach which says that one consumption is 
"equal or better" than another if  it is less than 5 percent more than the average of  the 
two. In Prolog, we can use arithmetic to calculate the threshold (1/20 of  the average, 
which is the same as 1/40 of  the sum) and the number that the better consumption 
must fall  below; the actual comparison can be made using <. 

equaLor_better_consumption(Good, Bad) :-

?- equal_ etter_consumption(10.7,10.5). 
yes 
?- equal_or_better_consumption(10.1,10.7). 
no 
?- equal_or_better_consumption(10.7,10.1). 
yes 

With this in place, we can start to say when one car, Carl, is preferred  to another, 
Car2: 

Threshold is (Good + Bad) / 40, 
Worst is Bad + Threshold, 
Good < Worst. 

Thus we have: 

?- equal_or_better_consumption(10.5,10.7). 
yes 

prefer(Carl, Car2) :-
fuel_consumed(Carl, Conl), 
fuel_consumed(Car2, Con2), 
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always_better(Conl, Con2). 

The remaining thing is to define  always_better, which tests whether one 
list of  consumptions is better than another. We would expect this to call 
equal_or_better_consumption to test how the elements of  those lists compare, some-
how. As is suggested by its name, always_better is given two lists of  consumptions 
and succeeds if  each element in the first  list is "equal or better" than the correspond-
ing element of  the second. Here is how it could be defined: 

always_better([], []). 
always_better([Conl|Tl], [Con2|T2]) :-

equal_or_better_consumption(Conl, Con2), 
always_better(Tl, T2). 

Consider the recursive clause first.  It says that one list is always better than another 
if  its head, Conl, is an equal or better consumption than the other head, Con2, and 
if  in addition the tail of  the first  list is always better than the tail of  the other (T1 is 
always better than T2). The latter is tested by a recursive call of  the same predicate. 
So when we originally invoke always_better, it will peel off  the head elements, test 
the first  for  being equal or better than the second and recur with the tails of  the 
lists. In the recursive call, the second elements of  the original lists will be tested 
and then another recursive goal will be invoked, with the tails of  the tails of  the 
original lists. Thus the program works its way down the lists in a methodical way. 
The program will terminate when it gets to the ends of  both lists (which, if  they are of' 
the same length, should happen simultaneously). Then the first  clause will match (the 
boundary condition), and the original goal will succeed. If  during this process any 
of  the equal_or_better_consumption tests fails,  of  course the original always_better 
goal will do so also. 

This is not the only criterion we could use for  comparing lists of  consumptions. 
Another thing we could look for  is whether in two lists one consumption is some-
times equal or better than the corresponding one. 

sometimes_better([Conl|_], [Con2|_]) :-
equal_or_better_consumption(Conl, Con2). 

sometimes_better([_|Conl], [JCon2]) :-
sometimes_better(Conl, Con2). 

This definition  is subtly different  from  the last one. As before,  we use recursion to 
work our way down the lists. Now the boundary condition occurs when an element 
of  the first  list is a better consumption than the corresponding element of  the second 
list. In this case; we can succeed without going any further  down the list. If  we got all 
the way down to the ends of  the lists then we would not have found  evidence of  one 
being sometimes better than the other. Notice that in this case the predicate would 
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correctly fail,  because both clauses require non-empty lists in both arguments. The 
recursive clause indicates that one way of  establishing that a list is sometimes better 
than another is to look for  better things in the tails of  the lists, regardless of  what 
relationship there may be between the heads. 

Exercise 3.1: Using the sometimes_better definition,  almost every car will be pre-
ferred  to each other. Change the program so that it prefers  a car to another if  at least 
one of  the test results is significantly  better (where you will have to decide what you 
mean by "significant"). 

3.6 Joining Structures Together 

The list processing predicate append is used to join two lists together to form  another, 
new, list. For example, it is true that 

append([a, b, c], [3, 2, 1], [a, b, c, 3, 2, 1]). 

The predicate append is most often  used to create a new list from  concatenating two 
others, like this: 

?- append([alpha, beta], [gamma, delta], X). 
X  = [alpha,  beta, gamma, delta] 

But it can also be used in other ways: 

?- append(X, [b,c,d], [a,b,c,d]). 
X=[a] 

The predicate append is defined  as follows: 

append([], L, L). 
append([X|Ll], L2, [X|L3]) :- append(Ll, L2, L3). 

The boundary condition is when the first  list is the empty list. In this case, any list 
appended to the empty list is the same list. Otherwise, the following  points show the 
principles of  the second rule: 

1. The first  element of  the first  list (X) will always be the first  element of  the third 
list. 

2. The tail of  the first  list (LI) will always have the second argument (L2) appended 
to it to form  the tail (L3) of  the third argument. 

3. You actually have to use append to do the appending mentioned in point (2). 
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4. As we are continually taking the head from  the remainder of  the first  argument, it 
will gradually be reduced to the empty list, so the boundary condition will occur. 

We will refer  to append in later examples, with further  explanation. In later chapters 
we will discuss various properties and applications of  the append predicate. But first, 
let us put it to work in another simple example of  recursion. 

Suppose we work in a bicycle factory,  where it is necessary to keep an inventory 
of  bicycle parts'. If  we want to build a bicycle, we need to know which parts to draw 
from  the supplies. Each part of  the bicycle may have sub-parts, for  example each 
wheel has some spokes, a rim, and a hub. Furthermore, the hub can consist of  an axle 
and gears. Here is an illustration of  these parts: 

handles 

fork 

hub 

spoke 

Let us consider a tree-structured database that will enable us to ask questions about 
which parts are required to build a part of  a bicycle. In a subsequent section we shall 
improve this basic program to calculate how many of  each part are required. 

There are two kinds of  parts that we use to build our bicycle. These are assem-: 
blies and basic parts. Each assembly consists of  a quantity of  basic parts, such as 
the wheel, which consists of  several spokes, a rim, and a hub. Basic parts are not 
made up of  any smaller parts; they simply combine with other basic parts to form 
assemblies. 

We can represent basic parts simply as facts,  as follows: 

basicpart(rim). 
basicpart(spoke). 
basicpart(rearframe). 
basicpart(handles). 
basicpart(gears). 
basicpart(bolt). 
basicpart(nut). 
basicpart(fork). 
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Naturally, this is not a complete list of  the basic parts required for  a bicycle but it 
shows the general idea. Next, an assembly can be represented as the name of  the 
assembly followed  by a list of  the basic parts, and the quantity of  parts required. For 
example, the following  fact  represents that a bike is an assembly made up of  two 
wheels and a frame: 

assembly(bike, [wheel, wheel, frame]). 

The database of  assemblies required for  our simplified  bicycle is: 

assembly(bike, [wheel, wheel, frame]). 
assembly(wheel, [spoke, rim, hub]). 
assembly(frame, [rearframe, frontframe]). 
assembly(fTontframe, [fork, handles]). 
assembly(hub, [gears, axle]). 
assembly(axle, [bolt, nut]). 

Notice that this particular set of  clauses does not perfectly  describe a bicycle. We 
have not distinguished between the front  hub and the rear hub: both have gears! The 
chain and pedals are missing, and there is no place for  the rider to sit. Also, there 
is no indication of  how to fit  the parts together. This simply lists a few  of  the parts 
required, organised into a hierarchy that looks like this: 

bike 

frame 

hub spoke rim frontframe rearframe 

gears axle fork handle 

bolt nut 

Remember that this hierarchy does not reflect  the actual shape of  the data structure, 
but only of  what we know about the structure of  bicycles. 

Now we are ready to write the program that, given a part, will list all the basic 
parts required to construct it. If  the part we want to construct is a basic part, then 
nothing more is required. However, if  we want to construct an assembly, then we 
need to apply the same process to each part making up the assembly. Let us define  a 
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predicate partsof,  to be used in goals of  the form  partsof(X,  Y), where X is the name 
of  a part, and Y is the list of  basic parts that are required to construct X. In our first 
version of  this program, we shall ignore how many of  each kind of  part are required 
to form  assemblies, but multiple parts will be listed in the answer each time they 
occur. A better program will be presented in Chapter 7. 

The boundary condition occurs when X is a basic part. In this case, we simply 
return X in a list: 

partsof(X,  [X]) :- basicpart(X). 

The next condition is if  X is an assembly. In this case, we need to find  out if  there is a 
matching assembly fact  in the database, and if  so, to use partsof  on each member of 
the list of  sub-parts. We shall use a predicate called partsoflist  to handle this second 
task. 

partsof(X,  P) :-
assembly(X, Subparts), 
partsoflist(Subparts,  P). 

Now partsoflist  takes a list of  parts (from  the second argument of  the assembly 
database above), and finds  the partsof  of  each part. After  calling itself  to get the 
partsof  for  the tail of  the list, partsoflist  must glue the lists together with append: 

partsoflist([],  []). 
partsoflist([P|Tail],  Total) :-

partsof(P,  Headparts), 
partsoflist(Tail,  Tailparts), 
append(Headparts, Tailparts, Total). 

The list which is constructed by partsof  will not contain information  about how many 
parts are required, and duplicate parts may appear in the list. In Chapter 7, we shall 
present an improved version of  this program that handles these deficiencies. 

There are two insights that indicate how partsof  can be used to generate En-
glish sentences. First, sentences can be decomposed into hierarchical structures: a 
sentence has parts noun_phrase and verb_phrase; a noun_phrase has parts deter-
miner and noun, and so forth.  So, any simple grammar can be expressed in terms 
of  "parts". Second, partsoflist  always looks at the elements of  its first  argument 
from  left  to right, and its result is appended together in left-to-right  order. These 
two properties of  partsof  show that we can use the same framework  to generate sen-
tences from  a grammar. Part of  a typical "assembly" for  a grammar might look like 
this: 

assembly(sentence,[noun_phrase, verb_phrase]). 
assembly(noun_phrase, [determiner, noun]). 
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assembly(determiner, [the]). 
assembly(noun, [apple]). 
assembly(noun, [fruit]). 

and the words in the lexicon would be defined  as basic parts: 

basicpart(apples). 
basicpart(fruit). 

At this point you may wish to experiment with generating sentences such as "The 
apple is a fruit".  You should provide a reasonable grammar and a vocabulary. Satisfy 
yourself  that this modified  program will produce all possible grammatical sentences 
from  the grammar and vocabulary you provide. As always, Prolog will stop at each 
solution, and wait for  you to type a semicolon to tell it to backtrack to the next solu-
tion. 

This is certainly not the last word on processing English language in this book. 
The whole of  Chapter 9 is devoted to a more sophisticated treatment of  analysing 
English language in Prolog. 

3.7 Accumulators 

Frequently we need to traverse a Prolog structure and calculate a result that depends 
on what was found  in the structure. At intermediate stages of  the traversal, we will 
have an interim value for  the result. A common technique is to use an argument of  the 
predicate to represent "the answer so far".  This argument is called an accumulator. 

In the following  example, we show a definition  of  the predicate listlen without 
using an accumulator, and then a definition  using an accumulator. The goal listlen(L, 
N) succeeds if  the length of  list L is N. Some Prolog systems may have the built-
in predicate length for  this purpose. First, a listlen without using an accumulator. 
There are two clauses, the boundary condition and the recursive case. The boundary 
condition is a fact  stating that the empty list has length 0. The recursive case is a 
rule saying that the length of  a non-empty list can be calculated by adding one to the 
length of  the tail of  the list: 

listlen ([], 0). 
listlen([H|T], N) :- listlen(T, Nl), N is N1 + 1. 

The alternative way to write this uses the same recursive principle, but the answer is 
accumulated at each recurrence in an extra argument used for  this purpose. We use 
an auxiliary predicate lenacc, which is a generalisation of  listlen. The goal lenacc(L, 
A, N) means that the length of  list L, when added to the number A, is the number N. 
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Thus to use lenacc to find  the length of  a list, we need to give it the second argument 
0 (zero). This is done in an introductory clause which gives the relation between 
tistlen and lenacc. 

listlen(L, N) :- lenacc(L, 0, N). 

lenacc([], A, A). 
lenacc([H|T], A, N) A1 is A + 1, lenacc(T, Al, N). 

Predicate lenacc also has two clauses. First, for  the empty list, the length of  the list 
will be whatever has been accumulated so far  (A). In the second clause, we add 1 
to the accumulated amount given by A, and recur on the tail of  the list with a new 
accumulator value Al. 

Note that the final  argument of  the recursive subgoal (N) is the same as the 
final  argument in the head of  the clause. This means that the length returned for 
the whole list will be the number that the recursive subgoal calculates. That is, the 
production of  the final  result is being delegated entirely to the recursive subgoal. 
All the extra information  that is needed to construct this overall result is provided 
by the accumulator. If  the second clause is used again for  the recursive subgoal, 
once again the production of  the final  result is delegated to a recursive subgoal (with 
a modified  accumulator). Thus we get a sequence of  lenacc goals, all sharing the 
same last argument, each having the tail of  the input list of  the previous one and an 
accumulator that is one greater than the previous one. Here is what the sequence of 
subgoals would look like for  finding  the length of  the list [a, b, c, d, e]: 

lenacc([a, b, c, d, e], 0, N) 
lenacc([b, c, d, e], 1, N) 
lenacc([c, d, e], 2, N) 
lenacc([d, e], 3, N) 
lenacc([e], 4, N) 
lenacc([], 5, N) 

where all the N's share (or co-refer).  The last goal has now met the boundary con-
dition (the end of  the input list has been reached), and so the first  lenacc clause is 
now applicable. This instantiates the final  argument to whatever the accumulator is 
at that point. Since the initial accumulator was 0 and each time we found  an element 
in the list we passed on an accumulator 1 greater than the previous one, this value is 
the length of  the list (5). Also since all the lenacc goals — including the very first 
one introduced by listlen — share their final  argument, all these goals immediately 
get their final  arguments instantiated to the length of  the list. In particular, this means 
here that N in the listlen clause is instantiated to 5. 

Accumulators needn't be integers. If  we are producing a list as a result, an 
accumulator will hold the list built so far.  This may be useful  if  we need to inspect 
our interim results (for  example, to avoid adding duplicate elements to the list). Using 
an accumulator in this situation can also avoid much wasteful  joining of  structures. 



3.7 Accumulators 6 

In general, for  efficiency  we may wish to avoid joining structures together too often 
because these operations are expensive. For instance, if  we use append to join two 
lists together, we make our way down the first  list until it is empty. At each stage, we 
construct a new piece of  list structure in the third argument. When we finally  reach 
the end of  the list, we fill  in the final  part of  the output list with the second input list. 
In order to produce an output list that ends with the second input list, we essentially 
have to make a copy of  the first  input list. If  the first  input list is long, this can be a 
lot of  work. 

Consider what happens in our parts inventory if  we wish to find  the parts that make 
up a bicycle. A bicycle assembly is given by the following: 

assembly(bike, [wheel, wheel,frame]). 

To find  the parts of  a bicycle, we use partsoflist  to find  the parts coming from  the list 
[wheel, wheel, frame].  Because of  the way partsoflist  is defined,  this involves: 

• finding  the parts of  a frame, 

• appending these to the empty list to give the parts of  [frame], 

• finding  the parts of  a wheel, 

• appending these to the parts of  [frame]  to get the parts of  [wheel ,frame], 

• finding  the parts of  a wheel (for  the second wheel), 

• appending these to the parts of  [wheel,frame]  to get the parts of  [wheel, wheel, 
frame]. 

This sequence of  operations is wasteful  because each list of  parts for  a subpart of  a 
bicycle has to be built twice. It is built once when it is first  worked out, and once 
when it is appended to the list of  parts obtained so far.  Because some of  the subparts 
of  a bicycle are themselves assemblies, this wastefulness  will be repeated in deriving 
their parts as well. 

We can avoid this unnecessary extra work by using accumulators. As with the listlen 
example, we introduce auxiliary predicates with extra accumulator arguments and 
have a starting clause that calls one of  these with an appropriately initialised accu-
mulator. Here is a program for  the parts inventory which uses accumulators. The 
clauses for  basicpart and assembly are unchanged, so are not listed here. Notice that 
append is no longer used. 

partsof(X, P) :- partsacc(X, [], P). 

partsacc(X, A, [X|A]) :- basicpart(X). 
partsacc(X, A, P) :-

assembly(X, Subparts), 



0 Chapter 3 Using Data Structures 

partsacclist(Subparts, A, P). 

partsacclist([], A, A). 
partsacclist([P|Tail], A, Total) :-

partsacc(P, A, Hp), 
partsacclist(Tail, Hp, Total). 

The predicates partsacc and partsacclist are defined  very similarly to the previous 
versions of  partsof  and partsoflist,  except that they each have an accumulator as 
their second argument. This argument represents the list of  (basic) parts that have 
been found  so far.  So partsacc(X,A,P) means that the parts of  object X, when added 
to the list A, give the list P. Notice the similarity with the meaning of  lenacc. If  we 
wish to use partsacc to find  the parts of  an object, we must provide it with the empty 
list as its second argument; hence the partsof  clause. 

The first  clause of  partsacc simply constructs a new list whose head is the object 
given in the first  argument, and whose tail is the accumulated list of  parts, and this 
will succeed if  the object is a basic part. The second clause, which applies when the 
object is an assembly, first  finds  the list of  subparts, and then uses partsacclist to find 
the subparts of  each part in the list. Note that the accumulator (A) has been passed to 
partsacclist. 

The first  clause of  partsacclist is the boundary case, in which the result is the 
accumulated list of  subparts (A). The recursive case calls partsacc to find  the subparts 
of  the next part on the given list, and the recursive goal deals with the remainder 
of  the list. Note that the second argument of  the second clause (A) is used as the 
accumulator for  the partsacc goal, and that the result of  the partsacc goal (Hp) is 
used as the accumulator for  the recursive goal. 

We make further  use of  accumulators throughout the book. In particular, we 
draw your attention to Sections 7.2,7.5, and 7.8, as well as the next section. 

3.8 Difference  Structures 

In the previous section, we used an accumulator to avoid unnecessary joining of 
structures. One unmentioned effect  of  this was to produce a resulting list in which 
the elements were in the reverse order to that in which they were produced from  the 
original list. Sometimes, however, we may wish to generate elements in the same 
order as the original list. Difference  structures  (here difference  lists)  allow us to do 
this. 

If  we use the parts inventory program to find  the parts of  a bicycle, the ver-
sion using accumulators works just as well as the original version, and indeed runs 
faster.  However, if  we use it for  generating English sentences as suggested before, 
we encounter a problem: the words come out in reverse order! This did not matter 
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for  the bicycles, because the order of  the parts is not important, but obviously with 
English sentences it matters what order the words come in. If  we think about the way 
in which the list of  "parts" is built, it is not surprising that it ends up in the reverse 
order to that in which the parts are originally discovered. For every time we come 
to a basic part, we create a new accumulator which has this part before  all the parts 
found  so far. 

With accumulators, we use two arguments to organise the building of  some 
output structure. One is for  "the result so far"  and one is for  the "final  result". With 
difference  lists, we also use two arguments, but with a different  interpretation. The 
first  argument is for  the "final  result", and the second argument is for  a "hole in the 
final  result where further  information  can be put". The way we represent a "hole" in 
a structure is by a Prolog variable which shares with a component somewhere in the 
structure. Thus the following  two terms represent a list together with a named "hole 
variable" where further  information  could be put: 

[a, b, c|X] X 

If  we have a list with a "hole" in it, we can further  instantiate the list by passing the 
"hole variable" as an argument to a Prolog goal which instantiates this argument. In 
general, we will be interested in where further  information  can be inserted after  this 
goal has succeeded. Thus we will require the goal to pass back a new hole through 
another argument. So here is a conjunction of  goals that would create a list with a 
hole, add some elements to the list using predicate p and then fill  in the hole that 
remains with the list [z]: 

?- Res = [a, b, c|X], p(X, NewHole), NewHole - [z]. 

We can allow for  the p goal not instantiating the list further  by providing a clause 
that causes the original hole to be returned as the new hole: 

p(Hole, Hole). 

If  this clause is chosen, the variable Res will have the value [a, b, c, z] when the 
question succeeds. Better, we can provide a clause that causes the original hole to 
be instantiated to a structure containing a new variable and this variable to be passed 
back as the new hole: 

p([d|NewHole], NewHole). 

In general, a clause like this will, of  course, obtain these results partly through the 
effects  of  subgoals that it invokes. If  this clause is chosen, the variable Res will have 
the value [a, b, c, d, z] when the question succeeds. 

Here is a version of  the parts inventory program that uses the difference  lists tech-
nique: 
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partsof(X, P) :- partsacc(X, P, Hole), Hole= f]. 

partsacc(X, [X|Hole], Hole) :- basicpart(X). 
partsacc(X, P, Hole) :-

assembly(X, Subparts), 
partsacclist(Subparts, P, Hole). 

partsacclist([], Hole, Hole). 
partsacclist([P|T], Total, Hole) :-

partsacc(P, Total, Holel), 
partsacclist(T, Holel, Hole). 

First consider the partsof  clause. When partsacc is initially called from  the partsof 
clause, it will build its result in the second argument P and will instantiate Hole to 
a variable. Because partsof  calls partsacc only once, it is necessary to terminate the 
difference  list by instantiating Hole with []. Note that a perfectly  valid alternative 
definition  of  partsof  is: 

partsof(X, P) :- partsacc(X, P, []). 

This more succinct version ensures that the very last hole is filled  with [] even before 
the list contents are known. 

The first  clause of  partsacc returns a difference  list containing the object in 
the first  argument, and this applies if  the object is a basic part. The second clause, 
for  assemblies, finds  the list of  subparts and delegates the traversal of  the list to 
partsacclist, passing the two arguments making up the difference  list (P and Hole). 
The second clause uses partsacc to list the subparts using the difference  list with Total 
and Holel. The recursive goal then returns the portion of  the difference  list starting 
at Holel and ending at Hole. The entire result, the list between Total and Hole, is 
the result of  the second partsacclist clause. The way that the list is constructed by 
"weaving" together partial results can be conveyed with the aid of  this illustration: 

partsacclist([P|Tail],Total,Hole) :-

partsacclist(Tai I, H olel, H ole). 

We make use of  difference  lists again in the definition  of  quisortx in Section 7.7. 



Backtracking and the "Cut" 

Let us summarise what we learned in Chapters 1 and 2 about what can happen to a 
goal: 

1. An attempt can be made to satisfy  a goal. When we satisfy  a goal, we search the 
database from  the top. Two things can happen: 

a) A unifying  fact  (or rule head) can be found.  In this case, we say the goal 
has been matched. We mark the place in the database, and instantiate any 
previously uninstantiated variables that have unified.  If  we matched against 
a rule, we shall first  have to attempt to satisfy  the subgoals introduced by 
the rule. If  the goal succeeds, we then attempt to satisfy  the next goal. In our 
diagrams, this is the goal in the next box below the arrow. If  the original goal 
appears in a conjunction, this will be the goal to its right in the program. 

b) No unifying  fact  (or rule head) can be found.  In this case, we say the goal has 
failed.  We then attempt to re-satisfy  the goal in the box above the arrowhead. 
If  the original goal appears in a conjunction, then this will be the goal on its 
left  in the program. 

2. We can attempt to re-satisfy  a goal. First of  all, we attempt to re-satisfy  each 
of  the subgoals in turn, the arrow retreating up the page. If  no subgoal can be 
re-satisfied  in a suitable way, we attempt to find  an alternative clause for  the 
goal itself.  In this case, we must make uninstantiated any variables that became 
instantiated when the previous clause was chosen. This is what we mean by 
"undoing" all the work previously done by this goal. Next, we resume searching 
the database, but we begin the search from  where the goal's place-marker was 
previously put. As before,  this new "backtracked" goal may either succeed or 
fail,  and either step (a) or (b) above would occur. 
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This chapter will look at backtracking in more detail. It will also look at a special 
mechanism that can be used in Prolog programs: the "cut". The cut allows you to tell 
Prolog which previous choices it need not consider again. 

4.1 Generating Multiple Solutions 

The simplest way a set of  facts  can allow multiple solutions to a question is when 
there are several facts  that will match against the question. For instance, if  we have 
the following  facts  in which father(X,  Y) means that the father  of  X is Y: 

father(mary,  george). 
father(john,  george). 
father(sue,  harry). 
father(george,  edward). 

The question 

?- father(X,  Y). 

will have several possible answers. If  we prompt with a semicolon, Prolog will give 
us the following: 

X=mary,  Y=george 
X=john,  Y=george 
X=sue,  Y=harry  ; 
X=george,  Y=edward 

It finds  these answers by searching through the database to find  the facts  and rule 
about father  in the order in which they were given. Prolog is not particularly clever 
about this. It does not remember anything about what it has shown before.  So if  we 
ask 

?- father(_,  X). 

(for  which X is X a father?)  we will get: 

X=george 
X=george 
X=harry 
X=edward 

with george  repeated twice because George is the father  of  both Mary and John. 
If  Prolog has two ways of  showing the same thing, it treats them as two different 
solutions. 
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Backtracking happens in exactly the same way if  the alternatives are embedded 
more deeply in the processing. For example, one rule in a definition  of  "one of  the 
children of  X is Y" might be 

child(X, Y) :- father(Y,  X). 

Then, the question 

?- child(X, Y). 

would give 
X=george,  Y=mary  ; 
X=george,  Y=john  ; 
X=harry,  Y=sue 
X-edward,  Y=george 

Because father(Y,  X) has four  solutions, so does child(X, Y). Moreover, the solutions 
are generated in the same order. All that is different  is that the order of  the arguments 
is different,  as is specified  in the definition  of  child. Similarly, if  we defined  father(X) 
meaning that X is a father, 

father(X)  :- father(_,  X). 

then the question 

?- father(X). 

would evoke: 
X=george 
X=george 
X=harry 
X=edward 

If  we mix facts  and rules, the alternatives follow  again in the order in which things 
are presented. Thus we might represent that adam is a person, anything is a person if 
it has a mother, and eve is a person. Also, various people have various mothers: 

person(adam). 
person(X) :- mother(X, Y). 
person (eve). 

mother(cain, eve). 
mother(abel, eve). 
mother(jabal, adah). 
mother(tubalcain, zillah). 

In this case, if  we asked the question 

?- person(X). 

the answers would be: 
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X=adam 
X=cain  ; 
X=abel 
X=jabal 
X=tubalcain  ; 
X=eve 

Let us look now at a more interesting case where there are two goals, each of  which 
has several solutions. Let us imagine we are planning a party and want to speculate 
about who might dance with whom. We can start writing a program as follows: 

possible_pair(X, Y) :- boy(X), girl(Y). 

boy(john). 
boy(marmaduke). 
boy(bertram). 
boy(charles). 

girl(griselda). 
girl(ermintrude). 
girl(brunhilde). 

This program says that X and Y form  a possible pair if  X is a boy and Y is a girl. Now 
let's see what possible pairs there are: 

?- possible_pair(X, Y). 

X  = john, Y  = griselda 
X  = john, Y  = ermintrude 
X  = john, Y  = brunhilde 
X  = marmaduke,  Y  = griselda  ; 
X  = marmaduke,  Y  = ermintrude  ; 
X  = marmaduke,  Y  = brunhilde  ; 
X  = bertram,  Y  = griselda  ; 
X  = bertram,  Y  = ermintrude 
X  = bertram,  Y  = brunhilde 
X  = charles,  Y  = griselda  ; 
X  = charles,  Y  = ermintrude  ; 
X  = charles,  Y  = brunhilde 

You should make sure that you understand why Prolog produces the solutions in 
this order. First of  all, it satisfies  the goal boy(X), finding  john, the first  boy. Then 
it satisfies  girl(Y), finding  griselda, the first  girl. At this point, we ask for  another 
solution by typing ";" to cause backtracking. Prolog attempts to re-satisfy  what it did 
last, which is the girl goal within the satisfaction  of  the possible_pair goal. It finds 
the alternative girl ermintrude, and so the second solution is john and ermintrude. 
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Similarly, it generates john and brunhilde as the third solution. The next time it tries 
to re-satisfy  girl(Y), Prolog finds  that its place-marker is at the end of  the database, 
and so the goal fails.  Now it tries to re-satisfy  boy(X). The place-marker for  this 
was placed at the first  fact  for  boy, and so the next solution found  is the second boy 
(marmaduke). Now that it has re-satisfied  this goal, Prolog looks to see what is next: 
it must now satisfy  girl(Y) from  the start again. So it finds  griselda, the first  girl. The 
next three solutions now involve marmaduke and the three girls. Next time we ask 
for  an alternative, the girl goal cannot be re-satisfied  again. So another boy is found, 
and the search through girls starts again from  scratch. And so on. Eventually, the girl 
goal fails  and there are also no more solutions to the boy goal either. So the program 
can find  no more pairs. 

These examples are all very simple. They just involve the specification  of  many 
facts  or the use of  rules to access those facts.  Because of  this, they can only generate 
a finite  number of  possible solutions. Sometimes we might want to generate an infi-
nite number of  possibilities: not because we want to consider them all, but because 
we may not know in advance how many we need. In this case we need a recursive 
definition  (discussed in the previous chapter). 

Consider the following  definition  of  what it is to be a positive integer1. The goal 
is_integer(N) will succeed providing N is instantiated to a positive integer. If  N is not 
instantiated at the time the goal is considered, then an is_integer(N) goal will cause 
a positive integer to be chosen, and N will be instantiated to it: 

/* 1 */ is_integer(0). 

/* 2 */ is_integer(X):- is_integer(Y), X is Y + 1. 

If  we ask the question 

?- is_integer(X). 
we will get as the possible answers all the integers in ascending order (0, 1, 2, 3, 
...), one at a time. Each time we force  backtracking to occur (perhaps by typing 
semicolon), is_integer will succeed with its argument instantiated to a new integer. 
So in principle this short definition  generates an infinite  number of  answers. Why? 
The sequence of  events that leads to the first  three solutions is shown in Figures 4.1, 
4.2, and 4.3. 

1 B y posi t ive in teger w e m e a n a w h o l e n u m b e r not less than 0. You should satisfy  yourse l f 
that there a re an infinite  n u m b e r of  these . 
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Fig. 4.1. The first  solution 

Fig. 4.2. The second solution 

At each stage, the lowest (1) is where another choice will be made next. Initially, 
we have a choice between fact  1 and rule 2 to answer the question. If  we choose 
fact  1, no more choices have to be made, and we get X=0.  Otherwise we choose rule 
2 and have a choice how to satisfy  the goal it introduces. If  we choose fact  1, we 
end up with the answer X=l;  otherwise we use rule 2 and must again choose how to 
satisfy  the subgoal produced. And so on. At each stage, the first  thing Prolog does is 



4.1 Generating Multiple Solutions 7 

to pick fact  1. Only on backtracking does it undo the last choice. Each time it does 
this, it goes back to where it last chose fact  1, and instead chooses rule 2. Once it has 
decided to use rule 2, a new subgoal is introduced. Fact 1 is the first  possibility for 
satisfying  it. 

Most Prolog rules will give rise to alternative solutions if  they are used for  goals 
that contain a lot of  uninstantiated variables. For instance, the relation of  membership 
of  a list (from  Chapter 3): 
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member(X, [X|_]). 
member(X, [_|Y]) :- member(X, Y). 

will generate alternatives. If  we ask 

?- member(a, X). 

(notice X in the question is uninstantiated) then the successive values of  X will be 
partially-defined  lists where a is the first,  second, third, (and so on) member. See if 
you can see why this is. 

A further  result of  allowing this definition  of  member to backtrack is that the 
question 

?- member(a, [a,b,r,a,c,a,d,a,b,r,a]). 

actually can succeed five  times. Clearly, there are some applications of  member 
where we only need it to succeed once, if  at all, and then discard the other four 
choices. We can tell Prolog to discard choices in this way by using the "cut". 

4.2 The "Cut" 

This section looks at a special mechanism that can be used in Prolog programs the 
"cut". The "cut" allows you to tell Prolog which previous choices it need not consider 
again when it backtracks though the chain of  satisfied  goals. There are two reasons 
why it may be important to do this: 

• Your program will operate faster  because it will not waste time attempting to 
satisfy  goals that you can tell beforehand  will never contribute to a solution; 

• Your program may occupy less of  the computer's memory space because more 
economical use of  memory can be made if  backtracking points do not have to be 
recorded for  later examination. 

In some cases, including a "cut" may mean the difference  between a program that 
will run and a program that will not. 

Syntactically, a use of  "cut" in a rule looks just like the appearance of  a goal 
which has the predicate "!" and no arguments. As a goal, this succeeds immediately 
and cannot be re-satisfied.  However, it also has side-effects  which alter the way back-
tracking works afterwards.  The effect  is to make inaccessible the place markers for 
certain goals so that they cannot be re-satisfied. 

Let us see how this works in an example. Imagine that you are running a library 
and have a Prolog database containing information  about what books there are, who 
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has borrowed what, and when books are due back. One thing you might be concerned 
about is which of  the library facilities  should be open to which people. Some facili-
ties, which we might call basic facilities,  should be open to everyone. These include 
the use of  the reference  library and the enquiries desk. On the other hand, the library 
might want to be selective about which people are allowed to use additional facilities, 
such as actually borrowing books or using inter-library loans. One rule that might be 
made is that, if  a person has a book overdue, then the additional facilities  will not be 
available to the person until the book is returned. Here is part of  a program that uses 
this rule: 

facility(Pers, Fac) :-
book„overdue(Pers, Book), 
i 

basic_facility(Fac) 
facility(Pers, Fac) :- general_facility(Fac). 

basic_facility( reference). 
basic_facility(enquiries). 

additional_facility(borrowing). 
additional_facility(inter_library_loan). 

general_facility(X) :- basic_facility(X). 
generaLfacility(X) :- additionaLfacility(X). 

Then we need a database of  clients and their borrowing habits, of  which only two are 
shown here: 

client('A. Jones'). 
client('W. Metesk') 

book_overdue('C. Watzer', bookl0089). 
book_overdue('A. Jones', book29907). 

Why is there a cut in this program and what effect  does it have? Let us assume that 
we wish to run through all our clients and find  out what facilities  are open to them. 
Thus we give Prolog the question: 

?- client(X), facility(X, Y). 

Prolog will start by finding  the first  client, 'A. Jones'. Let us assume that this client 
has several overdue books. In order to find  what facilities  are open to him, Prolog 
will start by using the first  clause for  facility.  This introduces a new goal to see 
whether he has any overdue books. After  a short search among the book_overdue 
facts,  the fact  about the first  overdue book for  A. Jones is found  (the second fact  for 
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Fig. 4.4. Just before  the cut is encountered 

this predicate). The next goal encountered is the "cut". This goal succeeds, and the 
effect  is to commit the system to all the decisions made since the first  facility  clause 
was chosen. We can show the situation just before  the cut is encountered in a diagram 
as shown in Figure 4.4. 

When the cut is encountered, it "cuts" the flow  of  satisfaction  line so that if  it is 
forced  to retreat beyond this point it will have to take a short cut, as seen in Figure 
4.5. 



4.2 The "Cut" 8 

Fig. 4.5. The cut commits to the solutions so far,  but the flow  of  satisfaction  is altered so that 
if  basic_facility  fails,  then backtracking takes a shortcut to re-satisfy  the client goal 

The effect  of  the cut in the facility  rule (clause 1) is to commit the system to every 
choice it has made since it chose that rule. The flow  of  satisfaction  path has been 
changed so as to avoid all the place markers between the facility  goal and the cut 
goal inclusive. Thus if  backtracking later causes a retreat back past this point, the 
facility  goal will immediately fail. 

Because of  the cut, the system will not consider alternative solutions for  the goal 
book_overdue('A. Jones', Book). This is quite reasonable as we are only interested 
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in whether the client has any overdue book, not what all  the books are. Neither will 
the system consider clause 2 for  facility,  because the choice of  the rule that the cut 
appears in is also bypassed on backtracking. This is again reasonable here, because 
we don't want to generate solutions that say that all facilities  are open to A. Jones. 

In summary, the effect  of  the cut in this example is to say: 
If  a client is found  to have an overdue  book, then only allow the client the 
basic facilities  of  the library.  Don't  bother going through  all  the client's 
overdue  books, and  don't  consider  any other rule about facilities. 

In this example, the cut committed the system to all the decisions made from  it back 
to the facility  goal. This is called the parent goal  of  the cut goal, because it is the goal 
that caused the use of  the rule containing the cut. In our diagrams, the parent goal 
is always the goal whose box is the smallest one enclosing the "!" box. The formal 
definition  of  the effect  of  the cut symbol is as follows: 

When a cut is encountered as a goal, the system thereupon becomes 
committed to all choices made since the parent goal was invoked. 
All other alternatives are discarded. Hence an attempt to re-satisfy 
any goal between the parent goal and the cut goal will fail. 

There are several ways of  describing what has happened to the choices that are af-
fected  by a cut. One can say that the choices are cut or frozen,  that the system com-
mits itself  to the choices made or that the alternatives are discarded. One can also 
look at the cut symbol as being rather like a fence  that separates goals. In this con-
junction of  goals, 

foo :- a, b, c, !, d, e, f. 

Prolog will quite happily backtrack among goals a, b, and c, until  the success of; 
c causes the "fence"  to be crossed to the right to reach goal d. Then, backtracking: 
can occur among d, e, and f,  perhaps satisfying  the entire conjunction several times. 
However, if  d fails,  causing the "fence"  to be crossed to the left,  then no attempt will 
be made to re-satisfy  goal c: the entire conjunction of  goals will fail,  and the goal foo 
will also fail. 

One further  note before  we go on to see more examples of  the cut in use. We \ 
have said that if  the cut appears in some rule and the cut goal is satisfied  then Pro-; 
log becomes committed to all choices made since the parent goal was invoked. This < 
means that the choice of  that rule, and all other choices made since then, become 
fixed.  We will see later that it is possible to provide alternatives within a single rule 
using the built-in predicate ";" (meaning "or"). The choices introduced by this facil-
ity are affected  in exactly the same way. That is, when a cut goal is satisfied,  all "or" 
choices that have been made since the rule was chosen are fixed. 
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4.3 Common Uses of  the Cut 

We can divide the common uses of  "cut" into three main areas: 

• The first  concerns places where we want to tell the Prolog system that it has 
found  the right rule for  a particular goal. Here, the cut says, "if  you get this far, 
you have picked the correct rule for  this goal." 

• The second concerns places where we want to tell the Prolog system to fail  a 
particular goal immediately without trying for  alternative solutions. Here, we use 
the cut in conjunction with the fail predicate to say, "if  you get to here, you should 
stop trying to satisfy  this goal." 

• The third concerns places where we want to terminate the generation of  alterna-
tive solutions through backtracking. Here, the cut says, "if  you get to here, you 
have found  the only solution to this problem, and there is no point in ever looking 
for  alternatives." 

We will now look at some examples of  these three uses. You should bear in mind, 
however, that the cut has a single meaning in all these applications. The division 
into three main areas of  use is purely for  tutorial reasons, and to show what kinds of 
reasons you might have for  putting cuts into your programs. 

4.3.1 Confirming  the Choice of  a Rule 

Often  in a Prolog program, we wish to associate several clauses with the same pred-
icate. One clause will be appropriate if  the arguments are of  one form,  another will 
be appropriate if  the arguments are of  another form,  and so on. Often  we can specify 
which rule should be used for  a given goal by providing patterns in the rule heads 
that will only match goals of  the right types. However, this may not always be possi-
ble. If  we cannot tell in advance what forms  the arguments may take, or if  we cannot 
specify  an exhaustive set of  patterns, we may have to compromise. This means giv-
ing rules for  some specific  argument types and then giving a "catchall" rule at the 
end for  everything else. 

As an example of  this, consider the following  program. The rules define  the 
predicate sum_to such that giving Prolog the goal sum_to(N, X) with N having an 
integer value, causes X to be instantiated to the sum of  the numbers from  1 to N. 
Thus, for  instance, it produces the following: 

?- sum_to(5, X). 

X  = 15 
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no 

because 1+2+3+4+5 is 15. Here is the program. 

sum_to(l, 1) :- !. 
sum_to(N, Res) :-

N1 is N - 1, 
sum_to(Nl, Resl), 
Res is Resl + N. 

This is a recursive definition.  The idea is that the boundary condition occurs wherf 
the first  number is 1. In that case, the answer is also 1. The second clause introduce! 
a recursive sum_to goal. However, the first  number of  the new goal is one less thai 
the original one. The new goal that this goal will invoke will have its first  argumen 
one less again. And so on until the boundary condition is reached. Since the firs 
arguments are always getting smaller, the boundary condition must be reached even 
tually (assuming that the original goal has a first  argument not less than 1), and th 
program will terminate. j 

The interesting thing about this program is how we have handled the two cases 
when the number is 1, and when it is something else. When we defined  predicate 
that talked about lists, it was easy to specify  the two cases that would normally arisj 
when the list was [] and when it was of  the form  [A | B]. With numbers, things ar 
not so easy, because we cannot specify  a pattern that will only match an integer n<j 
equal to 1. The solution adopted in this example is to provide a pattern for  the "I 

't 
case and just to leave a variable to match against anything else. We know from  th 
way Prolog searches through the database that it will try to match the number again! 
1 first  and will only try the second rule if  this fails.  So the second rule should oni 
be used for  numbers not equal to 1. J 

However, this is not the whole story. If  Prolog ever backtracks and comes t| 
reconsider the choice of  rule when applied to the number 1, it will find  that tl| 
second rule is applicable. As far  as it can see, both rules provide alternatives for  tl) 
goal sum_to(l, X). We must tell it that on no account is the second rule ever to h 
tried if  the number is 1. One way of  doing this is to put a cut in the first  rule (a|| 
shown). This tells Prolog that, once it has got this far  in the first  rule, it must neve* 
remake the decision about which rule to use for  the sum_to goal. It will only get this 
far  if  the number is in fact  1. Let us see what this looks like in terms of  the flow  oI 
satisfaction.  If  we call sum_to(l,X) in the context: 

go :- sum_to(l, X), foo(apples). 

?- go. 
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go 

(1) 

Fig. 4.6. The goal foo(apples) fails 

and the goal foo(apples) fails, then at the point of failure we will have the situation 
shown in Figure 4.6. 

When Prolog tries to re-satisfy the goals in reverse order, it will find that two of the 
goals cannot be re-satisfied because the flow of satisfaction path has been re-routed. 
Hence it will correctly avoid trying alternative ways of satisfying sum_to(l,X). 

Exercise 4.1: What happens if the "cut" is left out here and backtracking gets round 
to reconsidering the sum_to goal? What alternative results, if any, are produced, and 
why? 

The last example showed how "cut" can be used to make Prolog behave sensibly 
when we cannot distinguish between all the possible cases by specifying patterns in 
the heads of the rules. A more usual situation in which we cannot specify patterns to 
decide which rule to use arises when we want to provide extra conditions, in the form 
of  Prolog goals, which will decide on the appropriate rule. Consider the following 
alternative form of the above example: 

sum_to(N, 1) :- N =< 1, !. 
sum_to(N, R) :-

N1 is N - 1, 
sum_to(Nl, Rl), 
R is Rl + N. 
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In this case, we say that the first rule is the one to choose if the number provided is 
less than or equal to one. This is slightly better than the previous formulation, because 
it means that the program produces an answer (rather than running on indefinitely) 
if the first argument is given as 0 or a negative number. If the condition is true, the 
result I can be produced immediately, and no more recursive goals are necessary. 
Only if the condition is not true do we want ever to try the second rule. We must tell 
Prolog that once it has proved N =< 1, it must never reconsider the choice about what 
rule to choose. This is what the cut does. 

It is a general principle that uses of cut to tell Prolog when it has picked the only 
correct rule can be replaced by uses of \+. This is a Prolog built-in predicate, which 
means that its definition is already provided when you start your Prolog session. It 
is also already declared as a prefix operator. So you can use it in your own programs 
without having to write down a definition each time (built-in predicates are described 
more fully in Chapter 6). Predicate \+ is defined in such a way that the goal \+X 
succeeds only if X, when seen as a Prolog goal, fails. So \+X means that "X is not 
satisfiable as a Prolog goal". As an example of replacing cuts with uses of \+, the 
two possibilities given for the sum_to definition can be rewritten as: 

sum_to(l, 1). 
sum_to(N, R) :-

\+(N = 1), 
N1 is N - 1, 
sum_to(Nl, Rl), 
R is N + Rl. 

or 

sum_to(N,l) :- N =< 1. 
sum_to(N,R) :-

V(N =< 1), 
N1 is N - 1, 
sum_to(Nl, Rl), 
R is N + Rl. 

In fact, Prolog provides suitable built-in predicates to substitute for both of these 
uses. For example, we can replace \+(N=l) by N\=l, and \+(N=<l) by N>1. In gen-
eral, we will not be able to do this with all the conditions we dream up. 

It is good programming style to replace cuts by the use of \+. This is because 
programs containing cuts are in general harder to read than programs not containing 
them. If one can localise all occurrences of cut to inside the definition of \+, then the 
program will be easier to understand. However, the definition of \+ involves trying 
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to show that the goal it is given can be satisfied. Therefore, if we have a program of 
the general form: 

A :- B, C. 
A :- \+B, D. 

Prolog may well end up trying to satisfy B twice. It will have to try to satisfy B when 
it looks at the first rule. Also, if it ever backtracks and considers the second rule, it 
will have to try to satisfy B again to see if \+fl can be satisfied. This duplication could 
be very inefficient if the condition B was rather complicated. This would not be the 
case if instead we had: 

A :- B, !, C. 
A :- D. 

So one must sometimes weigh up the advantages of a clear program against those 
of a program that will run quickly. The discussion of efficiency leads us to our last 
example of the cut being used to fix the choice of a rule. Consider the definition of 
append from Chapter 3: 

append([], X, X). 
append([A|B], C, [A|D]) :- append(B, C, D). 

If we are always using append for the case where we have two known lists and want 
to know what list consists of the first appended onto the front of the second, we may 
feel that it is inefficient that when backtracking gets to reconsider how to deal with 
a goal like append([],[a,b,c(d],X) it must try to use the second rule, even though the 
attempt is bound to fail. We know in this context that if the first list is [] then the 
first rule is the only correct one, and this information can be given to Prolog by a use 
of the cut. In general, Prolog implementations will be able to make better use of the 
available storage if they are told things like this than if they have to keep a record of 
apparent choices that are not really there. So we could rewrite our definition as: 

appendtf], X, X) :- !. 
append([A|B], C, [A|D]) :- append(B, C, 0). 

Assuming our restricted use of append, this does not affect at all which solutions 
the program finds. It only increases the space and time efficiency to some extent. In 
exchange for this, we are liable to find that other kinds of uses of append will no 
longer work as expected, as is shown in Section 4.4. 
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4.3.2 The "cut-fail"  Combination 

In the second major application area, the cut is used in conjunction with the built-in 
fail predicate. This is another built-in predicate, like \+. It has no arguments, which 
means that the success of the goal fail does not depend on what any variables stand 
for. Indeed, fail is defined in such a way that as a goal it always fails and causes 
backtracking to take place. This is just like what happens if we try to satisfy a goal 
for a predicate with no facts or rules. When fail is encountered after a cut, the normal 
backtracking behaviour will be altered by the effect of the cut. In fact, the particular 
combination "cut-fail" turns out to be quite useful in practice. 

Let us consider how we might use this combination in a program to calculate 
how much tax somebody should pay. One thing we might want to know is whether 
the person is an "average taxpayer". In this case, the calculations might be quite 
simple and not have to involve considering lots of special cases. Let us define a 
predicate average_taxpayer, where average_taxpayer(X) means that X is an average 
taxpayer. For instance, Fred Bloggs, who is married with 2 children and works in a 
bicycle factory, might be considered quite average. However, the managing director 
of an oil company may be earning too much, and a student may be earning too 
little for the same kinds of tax calculations to be appropriate. We should start by 
considering a possible special case. It may be that special tax laws apply to somebody 
who is a native of another country, because he may have obligations to that country 
as well. Therefore, however average he may be in other respects, a foreigner will not 
be classed as an average taxpayer. We can start writing rules about this as follows: 

average_taxpayer(X) :- foreigner(X), fail. 
average_taxpayer(X) :- . . . 

In this extract, which is not correct  yet, the first rule attempts to say, "if X is a for-
eigner then the goal average_taxpayer(X) should fail". The second rule is to apply 
the general criterion for being an average taxpayer for the cases when X is not a 
foreigner. The trouble is that if we asked the question: 

?- average_taxpayer(widslewip). 

about a foreigner called widslewip, the first rule would match and the foreigner goal 
would succeed. Next, the fail goal would initiate backtracking. In attempting to re-
satisfy the average_taxpayer goal, Prolog would find the second rule and start ap-
plying the general criterion to widslewip. Now it is quite likely that he would pass 
the further tests, being average in other ways, in which case the question would 
incorrectly be answered "yes". So our first rule has been completely ineffective in 
rejecting our friend as an average taxpayer. 
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Why is this? The answer is that during backtracking Prolog tries to re-satisfy 
every goal that has succeeded. So in particular it will investigate alternative ways of 
satisfying the goal 

?- average_taxpayer(widslewip). 

In order to stop Prolog finding alternatives for this, we need to "cut" the choice 
(freeze the decision) before failing. We can do this by inserting a cut before the fail 
goal. A slightly more comprehensive definition of average_taxpayer incorporating 
this change is shown here: 

average_taxpayer(X) :- foreigner(X), !, fail. 

average_taxpayer(X) :-
spouse(X, Y), 
gross_income(Y, Inc), 
Inc > 3000, 
!, fail. 

average_taxpayer(X) :-
gross_income(X, Inc), 
2000 < Inc, 20000 > Inc. 

gross_income(X, Y) :-
receives_pension(X, P), 
P < 5000, 
!, fail. 

grossJncome(X, Y) :-
gross_salary(X, Z), 
investment_income(X, W), 
Y i s Z + W. 

investmentJncome(X, Y) : - ... 

Note the use in this program of several other "cut-fail" combinations. In the second 
rule for average_taxpayer we say that the attempt to show that someone is an average 
taxpayer can be abandoned if we can show that that person's spouse earns more than 
a certain amount. Also, in the definition of the predicate gross_income we say (in the 
first rule) that if somebody receives a pension that is below a certain amount then, 
whatever their other circumstances, we will consider them not to have any gross 
income at all. 

An interesting application of the "cut-fail" combination is in the definition of 
the predicate \+. Most Prolog implementations provide this already defined, but it 
is interesting to consider how we can provide rules for it. We require that the goal 
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\+P, where P stands for another goal, succeeds if and only if the goal P fails. This is 
not exactly in accord with our intuitive notion of "not true": it is not always safe to 
assume that something is not true if we are unable to prove it. However, here is the 
definition: 

\+P :- call(P), !, fail. 
\+P. 

The definition of \+ involves invoking the argument P as a goal, using the built-in 
predicate call. Predicate call simply treats its argument as a goal and attempts to 
satisfy it. We want the first rule to be applicable if P can be shown, and the second 
to be applicable otherwise. So we say that if Prolog can satisfy call(P) it should 
thereupon abandon satisfying the \+ goal. The other possibility is that Prolog cannot 
show call(P). In this case, it never gets to the cut. Because the call(P) goal failed, 
backtracking takes place, and Prolog finds the second rule. Hence the goal \+P will 
succeed when P is not provable. 

As with the first use of "cut", we can replace uses of "cut-fail" with uses of 
\+. This involves rather more reorganisation of the program than before, but does not 
introduce the same inefficiency. If we were to rewrite our average_taxpayer program, 
it would start off something like: 

average_taxpayer(X) :-
\+foreigner(X), 

\+((spouse(X, Y), gross_income(Y, Inc), Inc > 3000)), 
gross_income(X, Incl), 

Note that in this example, we have to enclose a whole conjunction of goals inside thei 
\+. In order to show unambiguously that the commas join the goals into a conjunction 
(rather than separating multiple \+ arguments), we have enclosed the \+ argument in; 
an extra set of brackets. 

4.3.3 Terminating a "generate and test" 

Now we come to look at the last major use of "cut" in Prolog programs: to terminate 
a "generate and test" sequence. Very often a program will have parts that conform 
to the following general model. There will be a sequence of goals that can succeed 
in many ways, and which generates many possible solutions on backtracking. Af-
ter this, there are goals that check whether a solution generated is acceptable for 
some purpose. If these goals fail, backtracking will lead to another solution being 
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proposed. This will be tested for appropriateness, and so on. This process will stop 
when either an acceptable solution is generated (success), or when no more solutions 
can be found (failure). We can call the goals that are yielding all the alternatives the 
"generator" and those that check whether a solution is acceptable the "tester". Let 
us consider an example of this: a program to play the game Noughts and Crosses, 
also known as Tic-Tac-Toe. In case you haven't come across this game, it involves 
two players taking turns to occupy squares on a 3 by 3 board. One player occupies 
squares with pieces marked o, and the other one with pieces marked x. To illustrate, 
here is a board part way through a game: 

To represent a board, we can use a 9-component structure b (for "board"), using 
the constants x and o to represent the pieces. If a square is empty, we will mark it 
with an e. The components of the board can be ordered in rows from left-to-right, so 
for example, the above pictured board is represented like this: b(e,o,e,e,x,o,e,x,e). 
The object of the game is to get three of one's own pieces in a (vertical, horizon-
tal or diagonal) line before the other player does. There are eight ways to make a 
line of pieces. We can represent the lines of a board in the following way, where 
line(B,X,Y,Z) instantiates the arguments X,Y,Z to the three squares that make up a line 
in board B: 

line(b(X,Y,Z,_, ), X, Y, Z). 
line(b( X,Y,Z ),X, Y, Z). 
line(b( ,_,_,_,X,Y,Z), X, Y, Z). 
line(b(X Y Z ), X, Y, Z). 
line(b(_,X,_,_,Y,_,_,Z,_), X, Y, Z). 
line(b(_,_,X Y Z), X, Y, Z). 
line(b(X Y ,Z), X, Y, Z). 
line(b( X,_,Y,_,Z ), X, Y, Z). 

By now you should immediately recognise that X is a variable denoting a board po-
sition, and x is a constant naming the x-shaped pieces. 
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We shall next look at the game from the point of view of the player who puts 
o's on the board. The predicate forced_move is used to answer the question, "Is the 
o-player forced to put a piece in a particular position?" This will be the case if the 
o-player cannot immediately win (we do not deal with this here), but the x-player is 
threatening to win on its next move: 

forced_move(Board) :-
line(Board, X, Y, Z), 
threatening(X, Y, Z), 

Notice that the "cut" here means that one threat is enough to force a move. We now 
need to determine whether a row of squares constitutes a threat. This will be the case 
if two of the squares are x's and one is empty. There are three possibilities for these 
threatening patterns. A suitable definition is: 

threatening(e, x, x). 
threatening(x, e, x). 
threatening(x, x, e). 

For instance, in the position shown below, the o-player is forced to play in the indi-
cated square, because if it does not, the x-player will be able to fill the second column 
and win in the next turn: The program works by trying to find a line, two of whose 

squares are occupied by crosses, and the other of which is empty. If it can, it reports 
a forced move situation. 

In the clause for forced_move, the goal line(Board,X,Y,Z) serves as a "genera-
tor" of possible lines. This goal can succeed in many ways, with the variables X,Y,Z 
instantiated to one of the possible lines of squares. Once a possible line has been 
suggested by line, it is necessary to see whether the opponent is threatening to claim 

The centre column matches threatening(x,x,e)... 
X 

X I 0 

... so o must play here 
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this line. This is the purpose of the "tester" goal: threatening(X,Y,Z), which looks for 
one of three threatening patterns of squares. The basic idea of the program is very 
simple. First, line proposes a line, and then threatening looks to see whether that line 
is threatening. If so, the original forced_move goal succeeds. Otherwise, backtrack-
ing occurs and line comes up with another possible line. Now this is tested also, and 
maybe backtracking occurs again to find another line. If we get to the point when 
line can generate no more lines, then the forced_move goal will correctly fail (there 
is no forced move). 

Now consider what happens if this program, as part of a larger system, success-
fully finds a forced move. Suppose that somewhere later on during the move calcula-
tion a failure occurs, and Prolog eventually backtracks to re-satisfy the forced_move 
goal. We do not wish line to start producing more possible lines to be checked. This 
makes no sense, because it cannot possibly be useful to find alternative forced moves. 
If we have found one of them, theft we cannot do anything better than carry it out: 
failure to do so would guarantee losing the game. Most of the time, there will be no 
alternative anyway, and forced_move will search through all the untried lines in vain, 
before itself failing. However, in the case of forced moves, we know that even if there 
is an alternative solution, it cannot be of any use in a context where a failure occurred 
in spite of the first solution. We can prevent Prolog from wasting time searching for 
different forced moves by putting a "cut" at the end of the clause. This has the effect 
of freezing the last successful line solution. Including the "cut" amounts to saying 
"when I look for forced moves, it is only the first solution that is important." 

Let us look at another example of a program that works by a "generate and test" 
method. We came across the idea of integer division in Section 2.5. Most Prolog 
systems provide this facility automatically, but here is a program for integer division 
that only uses addition and multiplication. 

divide(Nl, N2, Result) :-
is_integer(Result), 
Productl is Result * N2, 
Product2 is (Result + 1) * N2, 
Productl =< Nl, Product2 > Nl, 

This rule uses the predicate isjnteger (as defined before) to generate the number 
Result which is the result of dividing Nl by N2. For instance, the result of dividing 
27 by 6 is 4, because 4 * 6 is less than or equal to 27, and 5 * 6 is greater than 27. 

The rule uses isjnteger as a "generator", and the rest of the goals provide the 
appropriate "tester". Now we know in advance that, given specific values of Nl and 
N2, divide(Nl,N2,Result) can only succeed for one possible value for Result. For 
although isjnteger can generate infinitely many candidates, only one will ever get 



6 Chapter 4 Backtracking and the "Cu 

past the tests. We can indicate this knowledge by putting a cut at the end of the 
rule. This says that if we ever successfully generate a Result that passes the tests 
for being the result of the division, we need never try any more. In particular, we 
need never reconsider any of the choices that were involved in looking for rules 
for divide, isjnteger, and so on. We have found the only solution, and there is no 
point in ever looking for another. If we did not put in the cut here, any backtracking 
would eventually start finding alternatives for is_integer again. So we would carry 
on generating possible values for Result again. None of these other values would be 
the correct result of the division, and so we would continue generating indefinitely. 

4.4 Problems with the Cut 

We have already seen that we must sometimes take into account the way Prolog 
searches the database and what state of instantiation our goals will have in deciding 
the order in which to write the clauses of a Prolog program. The problem with in-
troducing cuts is that we have to be even more certain of exactly how the rules of 
the program are to be used. For, whereas a cut when a rule is used one way can be 
harmless or even beneficial, the very same cut can cause strange behaviour if the rule 
is suddenly used in another way. Consider the modified append from the last section: 

append([], X, X) :- !. 
append([A|B], C, [A|D]) :- append(B, C, D). 

When we are considering goals like: 

?- append([a,b,c],[d,e], X) 

and 

?- append(fa,b,c], X, Y) 

the cut is quite appropriate. If the first argument of the goal already has a value, then 
all the cut does is to reaffirm that only the first rule will be relevant if the value is []. 
However, consider what happens if we have the goal 

?- append(X, Y, [a,b,c]). 

This goal will match the head of the first rule, giving: 

X=[],  Y-[a,b,c] 

but now the cut is encountered. This will freeze all the choices we have made, and so 
if we ask for another solution, the answer will be no even though there actually are 
other solutions to the question. 
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Here is another interesting example of what can happen if a rule containing a cut 
is used in an unexpected way. Let us define a predicate number_of_parents, which 
can express information about how many parents somebody has. We can define it as 
follows: 

number_of_parents(adam, 0 ) : - ! . 
number_of_parents(eve, 0) : - ! . 
number_of_parents(X, 2). 

That is, the number of parents is 0 for adam and eve, but two for everybody else. 
Now if we are always using our definition of number_of_parents to find the number 
of parents of given people, this is fine. We will get 

?- number_of_parents(eve, X). 

X=0 
no 

?- number_of_parents(john, X). 

X=2 
no 

and so on, as required. The cut is necessary to prevent backtracking ever reaching the 
third rule if the person is adam or eve. However, consider what will happen if we use 
the same rules to verify whether given people have given numbers of parents. All is 
well, except that we get: 

?- number_of_parents(eve, 2). 

yes 

You should work out for yourself why this happens. It is simply a consequence of the 
way Prolog searches through the database. Our implementation of "otherwise" with 
a cut simply does not work properly any more. There are two possible modifications 
we could make to recover from this: 

number_of_parents(adam, N):-! , N = 0. 
number_of_parents(eve, N) :- !, N = 0. 
number_of_parents(X, 2). 

or 

number_of_parents(adam, 0). 
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number_of_parents(eve, 0). 
number_of_parents(X, 2) :- \+(X=adam), \+(X=eve). 

Of course, these will still not work properly if we give goals such as 

?- number_of_parents(X, Y). 

expecting backtracking to enumerate all the possibilities. So the moral is: 

If  you introduce  cuts to obtain correct  behaviour when the goals are of  one 
form,  there is no guarantee  that anything sensible will  happen if  goals of 
another form  start  appearing. 

It follows that it is only possible to use the cut reliably if you have a clear policy 
about how your rules are going to be used. If you change this policy, all the uses of 
cut must be reviewed. 



Input and Output 

Thus far, the only means we have seen of providing information to a Prolog program 
has been by asking questions of the Prolog system. Also, the only method of finding 
out what a variable stands for at some point in the satisfaction of a goal has been 
by asking a question in such a way that Prolog will display the answer in the "X  = 
answer"  form. Much of the time, such direct interaction with questions is all that is 
required to ensure that a program is working properly. However, for many occasions 
it is useful to write a Prolog program that initiates a conversation with you by itself. 

Suppose you have a database of world events in the 16th Century, arranged 
as facts containing dates and headlines. To start with, dates can be represented as 
integers, and headlines can be represented as lists of atoms. We shall have to enclose 
some of the atoms in single quotes because they begin with an upper-case letter, and 
we should not want them to be interpreted as variables: 

event(1505, ['Euclid',translated,into/Latin']). 
event(1510, ['Reuchlin-Pfefferkorn',controversy]). 
event(1523, ['Christian','II',flees,from,'Denmark']). 

Now if we wish to know about a particular date, we could ask a question as follows: 

?- event(1505, X). 

and Prolog would produce the reply 

X=  [Euclid,  transla  ted,  in to, Latin], 

Representing the history headlines as lists of atoms confers the advantage that 
"searches" can be made to find out the date when certain key events happened. For 
example, consider the predicate we shall define, called when. The goal when(X,Y) 
succeeds if X is mentioned in year Y according to our history headlines: 
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when(X, Y) :- event(Y, Z), member(X, Z). 

?- when('Denmark', D). 

D = 1523 

It would be convenient, instead of asking Prolog questions of this form, to write a 
program that first asks what date you want to know about, and then displays the 
appropriate headline. In order to do these kinds of tasks, Prolog makes available 
some built-in predicates that display their arguments on your computer's display. 
There are also predicates that wait for you to type in text on the computer's keyboard, 
and instantiate a variable to whatever you typed in. In this way, your program can 
interact with you, accepting input from you, and producing output  to you. When a 
program waits for you to type some input from you, we say that it is reading  the input. 
Likewise, when a program is displaying some output to you, we say it is writing  the 
output. 

In this chapter we describe various methods for reading and writing. One of 
our examples will be displaying headlines from the history database, and we finally 
present a program that accepts normal sentences and converts them into a list of 
constants that can be processed by other programs. This conversion program, callefi 
read_in, can be used to avoid having to type in quotes, brackets and commas in 
entering English phrases such as history headlines. It is an important building block 
for creating programs that analyse English language. Such analysis programs are 
discussed in later chapters, especially Chapter 9. 

One important point to bear in mind is that the input/output predicates specified 
by Standard Prolog differ in some ways from the Prolog language that was presented 
in previous editions of Programming  in Prolog  and indeed often also from the pred-
icates offered by particular Prolog implementations. We will indicate by footnotes 
some of the main ways in which the new predicates correspond with older versions 
that are still commonly used. Appendix C describes ways to make it easier to write 
Standard Prolog programs even if your Prolog implementation does not yet conform. 

5.1 Reading and Writing Terms 

5.1.1 Reading Terms 

The special predicate read will read the next term that you type in from the computer 
terminal's keyboard. The term must be followed by a dot Q (usually called a period 
or a full stop) and a non-printing character such as a space or a newline vJj. If X 
is uninstantiated, the goal read(X) will cause the next term to be read, and X to be 
instantiated to the term. 
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If its argument is instantiated at the time it is used as a goal, then the next term 
will be read, and matched with the argument given to read. The goal will succeed or 
fail, depending on the success of the match. The read predicate cannot be re-satisfied. 
It only succeeds at most once, and it fails if an attempt is made to re-satisfy it. 

Using read, we can start to write a more interactive program to display the 
historical headlines from the event database as follows: 

hellol(Event) :- read(Date), event(Date, Event). 

When we ask the question: 

?- heUol(X). 

Prolog will attempt to satisfy the read goal and will wait for a response. Suppose we 
type in: 

1523. 

Remember to type in the SD and d ] after 1523. The read goal will succeed, with 
Date instantiated to 1523. An event with date 1523 will be looked up in the database, 
and as a result Event will be instantiated to an appropriate list of atoms. Prolog will 
respond: 

X  = ['Christian',  II',  flees,  from,  'DenmarkJ  ? 

If we prompt for more solutions, we may get alternative events that took place in 
1523. But read will fail when it is reached on backtracking and so we will not be 
asked for other possible dates. 

The hello 1 predicate represents a start towards making our program easier to 
use, but the major problem now is the ugly format of the way the events are displayed. 
What is needed is a way of directing Prolog to produce output in a format that we 
like. 

5.1.2 Writing Terms 

Perhaps the most useful way to display a term on the computer terminal's display is 
to use the built-in predicate write. If X is instantiated to a term, then the goal write(X) 
will cause the term to be displayed. If X is not instantiated, a uniquely numbered 
variable (such as '_253') will be displayed. As with read, write only succeeds once. 

It would not be a good idea to use write to write out the historical headline in 
our example above because write will display the headline in the standard format for 
a Prolog list, with brackets and commas. On the other hand, if we use write to display 
the individual components of the list then we may be able to achieve something more 
readable. 
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There is one more predicate to introduce, and then we will see our first example 
using write. The built-in predicate nl is used to force all succeeding output to appear 
on the next line of the display. The name "nl" means "new line". Like write, nl 
succeeds only once. 

When displaying lists, it is helpful for the items of a list to be displayed in a 
way that is easy to understand. Lists that contain other lists are especially difficult to 
read, especially when there are structures inside as well. We shall define a predicate 
pp such that the goal pp(X,Y) displays the list (to which X is instantiated) in a helpful 
way. The name "pp" means "pretty print". The second argument of pp is explained 
later. 

Each author of a pretty-print program has his or her own style of making lists 
more legible. Just for simplicity, we shall adopt a method where the elements of 
a list are displayed in a vertical column. If the element is itself a list, its elements 
are displayed in a column which is shifted over to the right. This is essentially a 
"vine diagram" (Chapter 3) on its side. For example, the list [1,2,3] is pretty-printed 
as 

1 
2 
3 

and the list [1,2,[3,4],5,6] is shown as 

1 
2 

3 
4 

5 
6 

Notice that we have decided to remove the separating commas and the square 
brackets. If the element of a list is a structure, we will treat it as though it is an 
atom. This way we do not have to "get inside" structures to pretty-print their con-
tents. 

First we need a way to display the indentation for embedded lists. If we keep 
track of the "depth" of the list element being displayed, we should just display a cer-
tain number of spaces depending on the depth before displaying the element. We can 
define the predicate spaces, which displays a certain number of spaces by displaying 
the "space" character as many times as given by the argument of spaces: 

spaces(O) :- !. 
spaces(N) :- write(''), Nl is N - 1, spaces(Nl). 



5. Reading and Writing e r s 10 

The following program implements the pretty-print method we have specified: 

pp([H|T], I) :- !, J is I + 3, pp(H, J), ppx(T, J), nl. 
pp(X, I) :- spaces(I), write(X), nl. 

PPX([L_)-
ppx([H|T],I) :- pp(H, I), ppx(T, I). 

Here we see the second argument of pp revealed as a column counter. The top level 
goal for displaying a list might look like 

• • pp(L, 0), . . . 

which initialises the column counter to 0. The first clause of pp handles the special 
case: if the first argument is a list. If so, we have to set up a new column by increasing 
the column counter by some amount (3 here). Next, we need to "pretty print" the head 
of the list, because it might be a list itself. Next, we need to display each element of 
the tail of the list all in the same column. This is what ppx does. And, ppx needs to 
pp each element in case it is a list. The second clause of pp matches if we wish to 
pretty-print something that is not a list. We simply indent to the specified column, 
use write to display the term, and move to a new line. The first clause of pp also 
needs to terminate each list with a new line, hence the nl there. 

Let us consider the event facts from the beginning of this chapter. Given one 
of the history headlines represented as a list of atoms, we can use write to display 
each atom, with a space in between each atom. Consider the predicate phh (for "print 
history headline"): 

phh([]) :- nl. 
phh([H|T]):- write(H), spaces(O), phh(T). 

So, the following question, if we prompt for all alternative solutions, would display 
any history headline that mentions "England": 

?- event(_, L), member('England', L), phh(L). 

Notice the use of backtracking to search the database. Every time the member goal 
fails, an attempt is made to re-satisfy event, which causes the entire database to be 
searched top-to-bottom for events that mention the atom England. 

The predicate write is clever about how it displays a term, because it takes 
into account which operator declarations have been made. For instance, if we have 
declared an atom as an infix operator, then a term with this atom as functor and 
two arguments will be displayed with the atom between the two arguments. There 
is another predicate that behaves in exactly the same way as write, except that 
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it ignores any operator declarations that have been made. This predicate is called 
write_canonical]. 

The difference between write and write_canonical is illustrated by the follow-
ing: 

?- write(a+b*c*c), nl, write_canonical(a+b*c*c), nl. 

a+b*c*c 
+(a,*(*(b,c),c)) 
yes 

Notice how write_canonical has treated the atoms + and * just like any other atoms. 
We do not usually want to see our structures displayed out in this way, because having 
operators usually helps us to read program output as well as prepare program input. 
However, using write_canonical can be quite helpful if we are not quite sure about 
the precedences of our operators. 

Now that we have seen the use of read and defined phh, we can put them to-
gether into an improved program for displaying history headlines: 

hello2 :-
phh(['What', date, do, you, 'desire? ']), 
read(D), 
event(D, S), 
phh(S). 

Here we have defined a predicate hello2 with no arguments. When it is called, phh 
will cause a question to be displayed, then read will  read in our date (as with hellol) 
and finally phh will be used again to display the retrieved headline. Notice that the 
first clause of the body of hello2 uses phh, even though it is not intended to print 
a history headline. This simply shows that phh suffices also to display any list of 
atoms, no matter where that list came from. 

5.2 Reading and Writing Characters 

The character is the smallest entity that can be written or read. In Standard Prolog, 
characters are identified with the atoms that have exactly one element in their name. 
Thus 'a', '\n' and ' ' are examples of characters, but 'abc' is not2. 

1 Many Prolog systems provide a similar predicate called display. 
2 In fact,  efficient  low-level character operations generally make use of  small integers and 

there is associated with each character an integer character code that may be different 
on different  machines. Standard Prolog does provide facilities  for  manipulating character 
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Standard Prolog has built-in predicates for reading and writing characters, 
which are useful for programs which take input that is not already in the form of 
Prolog terms or which seek to have fine control over their output. 

5.2.1 Reading Characters 

A character X may be read from the keyboard by using the goal get_char(X).3 Such a 
goal always succeeds if its argument is uninstantiated, and also cannot be re-satisfied. 
Satisfying such a goal makes the computer wait until some characters have been 
typed by you. Depending on the characteristics of your machine, the characters you 
type may however not be made available to the Prolog system until you have entered 
a complete line followed by EO- If X is already instantiated, then get_char(X) com-
pares the next character for equality, and succeeds or fails depending on the outcome 
of the equality test. 

The following simple program uses get_char in a simple typing checker. 

checkJine(OK) :-
get_char(X), 
rest_line('\n', X, OK). 

rest_line(_, '\n', yes) :- !. 

rest_line(Last, Current, no) :-
typing_error(Last, Current), !, 
get_char(New), 
rest_line(Current, New, _). 

rest_line(_, Current, OK) :-
get_char(New), 
rest_line(Current, New, OK). 

typing_error('q', V ) . 
typing_error('c', V) . 

When check_line(X) is called, it reads all the characters typed until the newline char-
acter '\n' is encountered. As this line is read, each consecutive pair of characters is 
compared against a list of known "typing errors". For instance, "qw" and "cv" must 
both represent errors, since these pairs of characters would never arise together in 

codes, but we will not cover them here. Many old Prolog systems only provide operations 
on character codes, not on characters, but the Appendix shows that it is straightforward  to 
define  character operations in terms of  character code operations. 

3 Older Prologs use getO(X), but instantiate X to a character code. 
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English text. check_line instantiates X to either 'yes'  or 'no',  according to whether 
the text is correct by this criterion: 

?- check_line(X). 

Please could you enter your cvomments on the proposal 

X  = no 

The basic idea behind this program is to read the characters of the line one by one 
and keep a record of the current character (the one just read) and the one before. The 
predicate rest_line is always called just after a character is read, with the previous 
character in the first argument and the current character in the second argument. It 
returns either yes or no in the third argument, according to whether the rest of the 
line (starting with these two characters) is error-free. Initially, the previous character 
is assumed to be '\n' and the current character is the first one read. Each time a 
character is read, the current character becomes the previous character and the new 
character becomes the current character. When rest_line calls itself recursively the 
first two arguments are changed to reflect the new situation. The clauses of rest_line 
account for three different situations: 

1. The end of the line has been reached. In that case, this part of the line (the end 
bit) is error-free. 

2. The previous and current characters match a known typing error. In that case, 
this part of the line is not error-free.  The  program continues checking to the end 
of the line, but the answer is always no. 

3. No known typing error is spotted at this point. In that case, the next character is 
read and the program keeps checking. 

5.2.2 Writing Characters 

If X is instantiated to a character it will be displayed when Prolog encounters the goal 
put_char(X)4 

The predicate put_char always succeeds, and it cannot be re-satisfied (it fails 
when an attempt is made to re-satisfy it). As a "side effect", put_char displays its 
argument as a character on your computer's display. For example, we can display the 
word hello in a rather awkward way by: 

?- put_char('h'), put_char('e'); put_char(T), put_char(T), put_char('o'). 
hello 

4 Previous Prolog systems used put(X), where X had to be a character code. 
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The result of this conjunction of goals is that Prolog displays the characters h, e, I, 
I, o, displaying them after the question as shown above. 

We have already seen that it is possible to start the display at the beginning of 
the next line by using the nl predicate, which has no arguments. What nl actually 
does is to emit some control codes that cause the cursor on your computer's display 
to move to the beginning of the next line. The question: 

?- put_char('h'), put_char('i'), nl, put_char('f), 
put_char('h'), put_char('e'), put_char(Y), put_char('e'). 

causes the following to be output: 

hi 
there 

We can use character output to enhance our typing checker to make it actually cor-
rect the errors. In the following revised version of check_line, called correct_line, 
whenever a known typing error is detected it is corrected. 

Characters not involved in typing errors are copied out unchanged. The ap-
proach here is quite limited, because it assumes that each typing error involves two 
adjacent characters and that the correction for the two is simply a single charac-
ter that should replace the pair. This information is recorded in the predicate typ-
ing_correction, where the first two arguments represent the incorrect pair (as in 
typing_error above) and the third argument represents the correction. It would be 
relatively easy to make this representation more general. 

correct_line :-
get_char(X), 
correct_rest_line('\n', X). 

correct_rest_line(C, '\n') :- !, 
put_char(C), nl. 

correct_rest_line(Last, Current) :-
typing_correction(Last, Current, Corr), !, 
get_char(New), 
correct_rest_line(Corr, New). 

eorrect_rest_line(Last, Current) :-
put_char(Last), 
get_char(New), 
correct_rest_line(Current, New). 

typing_correction('q', 'w', 'q'). 
typing_correction('c', V , 'c'). 
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The correctjine procedure has the same basic organisation as check_line, except 
that correct_rest_line has no third argument. Instead of returning a yes/no  result, 
correct_rest_line is in charge of producing as its output the corrected text for the part 
of the line starting with the character in its first argument. 

As before, this first argument is the previous character and the second argument 
is the current character. Of course, a character can only be echoed unchanged to 
the output if the subsequent character has been read and the two don't represent a 
known typing error. That means that correct_rest_line only ever outputs the previous 
character before moving on. 

5.3 Reading English Sentences 

We shall now present the program that reads in a sentence typed at the terminal and 
converts it to a list of Prolog atoms. The program defines the predicate read_in with 
one argument. The program must know when one word of the input ends and the 
next begins. In order to know this, it assumes that a word consists of any number of 
letters, digits, and special characters. 

Letters and digits are the same as those discussed in Section 2.1, and we will 
consider the single quote ""5 and the hyphen '-' to be special characters. Also, the 
following characters',''.'';'':''?''!' are taken to form words on their own. Any other 
characters just mark space between words. The sentence is deemed to have finished 
when one of the words '.', '?', or '!' appears. Upper-case letters are automatically 
converted to lower-case, so that the same word always gives rise to the same atom. As 
a result of this definition, the program will produce question and answer sequences 
like: 

?- read_in(S). 

The man, who is old, saw Joe's hat. 

S = [the,man//,who,is,old//,saw/joe"s',hat/.'] 

We have actually inserted extra single-quote characters in this to make it clear that 
the punctuation marks are atoms. 

The program uses the predicate get char to read in characters from the terminal. 
The trouble with get_char is that, once a character has been read from the terminal 
by it, that character has "gone for ever", and no other get_char goal or attempt to re-
satisfy a get_char goal will ever get hold of that character again. So we must avoid 
ever backtracking over a use of get_char if we want to avoid losing the character it 

5 R e m e m b e r that the s ingle quo te charac te r is doub led ins ide the normal quo tes for  a toms . 
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reads in. For instance, the following program to read in characters and write them 
out again, converting a's to b's will not work: 

go :- do_a_character, go. 

do_a_character:- get_char(X), X='a', !, put_char('b'). 
do_a_character:- get_char(X), put_char(X). 

This is not a particularly good program anyway, because it will run forever. How-
ever, consider the effect of attempting to satisfy the do_a_character goal. If the first 
do_a_character rule reads in an X which is not a, backtracking then causes the second 
rule to be tried instead. 

However, the get_char(X) goal in the second rule will cause X to be instantiated 
to the next character after the one already found. This is because the satisfaction 
of the original get_char goal was an irreversible process. So this program would 
actually fail to display all the characters. It would even sometimes write out a's. 

How does our read_in program cope with the problem of backtracking over 
input? The answer is that we must design it in such a way that it always reads one 
character ahead, and makes tests on a character inside a different rule to the one 
where it was read. When a character is found somewhere and cannot be used at that 
point, it is passed back to the rules that will be able to use it. Hence, our predicate 
to do with reading a single word, readword, actually has three arguments. The first is 
for the character that was found by whichever rule last satisfied a get_char goal but 
could not find a use for the character. The second is for the Prolog atom that will be 
constructed for the word. The last argument is for the first character that is read after 
the word. 

In order to see where a word ends, it is necessary to read up to the next character 
after it. This character must be passed back, because it might provide the valuable 
first character of another word. Here then is the program: 

/* Read in a sentence */ 

read_in([W|Ws]) :- get_char(C), readword(C, W, CI), restsent(W, Cl, Ws). 

/* Given a word and the character after it, read in the rest of the sentence */ 

restsent(W, []) :- lastword(W), !. 
restsent(W, C, [Wl|Ws]) :- readword(C, Wl, Cl), restsent(Wl, Cl, Ws). 

/ * 
Read in a single word, given an initial character, and 
remembering which character came after the word. 

7 

readword(C, C, Cl) :- single_character(C), !, get_char(Cl). 
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readword(C, W, C2) :-
in_word(C, NewC), 
i 

get_char(Cl), 
restword(Cl, Cs, C2), 
atom_chars(W, [NewC|Cs]). 

readword(C, W, C2) :- get_char(Cl), readword(Cl, W, C2). 

restword(C,[NewC(Cs], C2) :-
in_word(C, NewC), 
i •, 
get_char(Cl), restword(Cl, Cs, C2). 

restword(C, [], C). 

/* These characters can appear within a word. The second 
in_word clause converts letters to lower-case */ 

in_word(C, C) :- letter(C, J . /* a b...z */ 
in_word(C, L) :- letter(L, C). /* A B...Z */ 
in_word(C, C) :- digit(C). /* 1 2...9 */ 
in_word(C, C) :- special_character(C). /* '.' */ 

/* Special characters */ 

speciaLcharacter('-'). 
speciaLcharacter(""). 

/* These characters form words on their own */ 

single_character(','). single_character(':'). 
single_character(7). single_character('?'). 
single_character(';'). single_character('!'). 

/* Upper and lower case letters */ 

letter(a, 'A'). letter(n, 'N'). 
letter(b, 'B'). letter(o, '0'). 
letter{c, 'C'). letter(p, 'P'). 
letter(d, 'D'). letter(q, 'Q'). 
letter(e, 'E'). letter(r, 'R'). 
letter(f, 'F). letter(s, 'S'). 
letter(g, 'G'). letter(t, T ) . 
letter(h, 'H'). letter(u, 'U'). 
letter(i, T ) . letter(v, 'V'). 
letterQ, 'J). letter(w, 'W'). 
letter(k, 'K'). letter(x, 'X'). 
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letter(l, 'L'). letter(y, T ) . 
letter(m, 'M'). letter(z, T ) . 

/* Digits */ 

digit('O'). digit('5'). 
digit('l'). digit('6'). 
digit('2'). digit('7'). 
digit('3'). digit('8'). 
digit('4'). digit('9'). 

/* These words terminate a sentence */ 

lastword('.'). 
lastword(T). 
lastword('?'). 

The built-in predicate atom_chars is used here to create an atom from a list of char-
acters (see Section 6.5). 

Exercise 5.1: Explain what each variable in the above program is used for. 

Exercise 5.2: Write a program to read in characters indefinitely, displaying them 
again with a's changed to b's. 

5.4 Reading and Writing Files 

The predicates previously discussed in this chapter were used only for reading from 
or writing to your computer's display, but they are actually more general than that. In 
general, a Standard Prolog system will be able to read from and write to streams.  A 
stream may correspond to your computer keyboard or display or it may correspond 
to a file,  which is a sequence of characters on a secondary storage medium. The par-
ticular medium depends on your particular computer installation, but nowadays we 
usually read and write files that are stored on magnetic discs. It is assumed that each 
file has a filename  that we use to identify it. In order for this section to be under-
standable, you should be familiar with the conventions for organising and naming 
files on your computer. In Prolog, filenames are represented as atoms, but we cannot 
rule out the possibility of further installation-dependent restrictions on the syntax of 
filenames. 

Files have a certain length. That is, they contain a certain number of characters. 
At the end of a file, there is a special marker, called the end  of  file  marker.  We did not 
discuss the end of file marker previously, because it is more usual to encounter the 
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end of file marker on a file than on a computer display. If a program is reading from 
a file, the end of file marker can be detected whether the program is reading terms or 
characters. 

If a get_char(X) or read(X) encounters the end of a file, X will be instantiated to 
the special atom 'end_of_file'6. If an attempt is made to read beyond the end of a 
file, an error is generated. 

There is a built-in input stream called userjnput and a built in output stream 
called user_output. Setting the current input to be userjnput (the default) causes 
input to come from your computer's keyboard, and setting the current output to 
user_output (the default) will cause characters to be written on the display. This 
is the normal mode of operation. When input is from the computer's keyboard, an 
end of file can be generated by typing the end-of-file control character, which will 
depend on your computer installation. This will make get_char and read behave as 
though the end of a file has been encountered. 

5.4.1 Opening and closing streams 

•i 
A Standard Prolog system recognises a current  input stream,  from which all input is 
read. Input returned from get_char and read is taken from the current input stream. 
There is also a current  output stream  and output produced by put_char and write is 
directed to the current output stream. 

The computer terminal's keyboard is normally the current input stream, and the 
computer's display is normally the current output stream, but it is possible to change 
both of these temporarily whilst your program is running. 

Before a file can be accessed, it is necessary to open a new stream associated 
with it. The built-in predicate open is used for this, open is provided with the name 
of a file and an atom indicating whether it is to be used for reading or writing in its 
first two arguments. It instantiates its third argument to a special term naming the 
stream that has been opened. So, for instance, 

?- open('myfile.pl', read, X). 

instantiates X to a term naming a stream which can be used for reading from the file 
'myfite.pl'. On the other hand, 

?- open('output', write, X). 

instantiates X to the name of a stream that can be used for writing to the file named 
'output'. 

6 P ro log imp lemen ta t i ons not fo l lowing  the s tandard m a y return o ther values, but in genera l 

there wil l b e s o m e specia l va lue indica t ing the end of  a file. 
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Note that every time you open a new stream associated with a given file, that 
new stream starts at the beginning of the file. You can in principle have several 
streams open for a single file, but the different streams will be at different places 
in the file and it is very unusual to want to achieve this effect. In general you should 
ensure that you only have a single stream open at any one time for a given file, which 
means that you only call open once, shortly before the very first time you want to 
use the file. When a stream is no longer required, either because enough of an in-
put stream has been read or an output stream is complete, the predicate close should 
be called to finish everything off nicely. Predicate close is given a single argument, 
which is the name of the stream, as was obtained by the original call to open. Thus 
the general form of a program that reads from a file would be something like the 
following (this will be refined below): 

program :-
open('myfile.pl', read, X), 
code_reading_from(X), 
close(X). 

where code_reading_from(X) is the predicate during whose satisfaction input needs 
to be taken from the stream X. Similarly, the general form of a program that writes to 
a file is: 

program :-
open('outpuf, write, X), 
code_writing_to(X), 
close(X). 

where code_writing_to(X) is the predicate that does the real work. Notice that 
code_reading_from and code_writing_to should not fail, because then their streams 
will never be closed. If your definitions for these predicates could possibly fail, then 
this should be changed, for instance by adding extra catch-all clauses. In general, 
predicates that are reading and writing to files are difficult to debug and so it is a 
good idea to test them thoroughly reading and writing from the computer terminal 
before using them with files. 

5.4.2 Changing the current input and output 

The form of the name used for a stream will depend on your Prolog implementation 
and for portable programs you should not make any assumptions about its form. In 
general, a program that opens a new stream, receiving the name for the stream in X, 
will only need to do the following things with X: 
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1. Set the current input or output to X for some part of the execution. 

2. Call close with it at the end. 

3. Pass it (through predicate arguments) to any other parts of the program that need 
to do these two things. 

Changing the current input and output is done by the built-in predicates setjnput 
and set_output. Each of these expects a single argument naming a stream (or it 
could be the atom userjnput or user_output). The effect of satisfying such a goal 
is to switch the current input to the named stream until the same predicate is called 
again. It is important to realise that the current input/output is not switched back if 
an attempt is made to resatisfy the goal - such an attempt simply fails. 

Because setjnput and set_output produce irreversible effects, a good program 
will take explicit charge of the current input and output at all times and make sure 
that they are set appropriately whatever happens (e.g. even if some important goal 
fails). In particular, if a program changes the current input or output then it should 
reinstate the previous one when it finishes. To do this, it needs to determine what the 
current input/output is when it starts. 

The built-in predicates currentjnput and current_output enable this to be 
tested. These predicates instantiate their single argument to the name of the current 
input/output stream. 

Now that setjnput and currentjnput have been described, it is possible to 
show the general form of a program reading from a file in more detail: 

program :-
open('myfile.pl', read, X), 
currentJnput(Stream), 
setJnput(X), 
code_reading, 
close(X), 
setJnput(Stream). 

Notice how code_reading now does not need to depend on X. Since the current input 
has been set to X before code_reading is called, it just needs to use get_char and read, 
and both of these will produce input from the file. Thus the program implemented by 
code_reading can be used at different times to do things with different files. 

Notice also how the pair of goals involving Stream ensure that the current input 
is restored afterwards. The general format for a program producing output to a file is 
similar: 



5. Reading and Writing Files 11 

program :-
open('outpuf, write, X), 
current_output(Stream), 
set_output(X), 
code_writing, 
close(X), 

set_output(Stream). 

5.4.3 Consulting 

Reading and writing files is most helpful when our programs deal with more terms 
than we care to type in by hand each time we want to put them in the database. In 
Prolog, files can be used to store programs. If we have the text of a Prolog program 
in a file, reading all of the clauses in the file and putting them into the database is 
called "consulting" the file. The Prolog standard leaves it open to individual imple-
mentations to provide convenient ways to "consult" files. In this section, we describe 
facilities that will often be available, though this cannot necessarily be relied on. In 
Section 7.13 we show how some of these could be defined in Standard Prolog if an 
implementation did not provide them. 

Many Prolog systems provide a built-in predicate consult. When X is instanti-
ated to the name of a file, the goal consult(X) will read Prolog clauses and goals from 
the file. Most implementations of Prolog also have a special notation for consult, 
which allows a list of files to be consulted, one after another. If a list of atoms is 
given as a Prolog question, then Prolog will consult each file in the list. An example 
of this notation is: 

?- [filel, mapper, expert]. 

This behaves as though Prolog were executing a goal consultall(X), where X is the 
list that we give the question, and where consultall might be defined as follows: 

consultall([]). 
consultall([H|T]):- consult(H), consultall(T). 

However, the shorthand list notation reduces effort, and this is especially important 
when one considers that the very first act that the practising Prolog programmer 
does is to consult a list of files to make available his or her favourite predicates. The 
predicate automatically stops reading clauses when the end of the file is encountered. 
Section 6.1 describes consult in more detail. 
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5.5 Declaring Operators 

Operators are considered in this "input and output" chapter because operators pro-
vide syntactic convenience when reading or writing terms. There is no other reason 
for having operators. Let us first briefly review Section 2.3, and then tell how opera-
tors are declared. 

The Prolog syntax provides for operators, each having three properties: a posi-
tion, precedence class, and associativity. The position can be infix, postfix, or prefix 
(an operator with two arguments can go between them; an operator with one argu-
ment can go after or before it). The precedence class is an integer whose range in 
Standard Prolog is from 1 to 1200. The precedence class is used to disambiguate 
expressions where the syntax of the terms is not made explicit through the use of 
brackets. The associativity is to disambiguate expressions in which there are two 
operators in the expression that have the same precedence. In Prolog, we associate 
a special atom with an operator, which specifies its position and associativity. The 
possible specifiers for infix operators are: 

xfx xfy yfx yfy. 

To understand these specifiers, it helps to see them as "pictures" of possible uses of 
the operators. In the pictures, the letter f represents the operator, and x and y represent 
arguments. So in all of the above, the operator must appear between two arguments 
that is, it is an infix operator. In accordance with this convention, 

fx fy 

are two specifiers for prefix operators (the operator comes before  its one argument). 
Also, 

xfyf 

are possible specifiers for postfix operators. You may be wondering why there are 
two letters available for indicating arguments. The choice of x's and y's in these po-
sitions enables associativity information to be conveyed. Assuming that there are no 
brackets, a y means that the argument can contain operators of the same or lower 
precedence class than this operator. On the other hand, an x means that any opera-
tors in the argument must have a strictly lower precedence class than this operator. 
Consider what this means for the operator +, declared as yfx. If we look at 

a + b + c 

there are two possible interpretations: 

(a + b) + c or a + (b + c) 
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The second of these is ruled out, because it requires the argument after the first + to 
contain an operator of the same precedence (another +, for example). This contradicts 
the presence of an x after the f of the specifier. 

Thus, in particular, an operator declared yfx is left associative. Similarly, an 
operator declared xfy is right associative. If we know the desired associativity of an 
infix operator we are declaring, this means that the specifier is uniquely determined. 

Note that the meanings of x and y (in terms of what other operators can appear 
unbracketed in the relevant position) are the same in all the other cases as well. This 
means that, for instance, the sequence 

not not a 

is legal syntactically if not is declared as fy, but is illegal if it is declared fx. 
In Prolog, if we wish to declare that an operator with a given position, prece-

dence class, and associativity is to be recognised when terms are read and written, 
we use the built-in predicate op. If Name is the desired operator (the atom that we 
want to be an operator), Prec the precedence class (an integer within the appropriate 
range), and Spec the position/associativity specifier (one of the above atoms), then 
the operator is declared by providing the following goal: 

?- op(Prec, Spec, Name). 

If the operator declaration is legal, then the goal will succeed. 
As an example of declaring operators, the following is a list of the most impor-

tant operators that are already defined in Standard Prolog: 

?- op( 1200, xfx,':-'). 
?- op( 1200, fx , '? - ' ) . 

?- op( 1200, fx,':-'). 
?- op( 1100, xfy,';'). 
?- op( 1000, xfy,','). 
?- op( 900, fy, V )• 
?- op( 700, xfx, '='). 
?- op( 700, xfx,\=). 
?- op( 700, xfx, '=='). 

?- op( 700, xfx, \== ). 
?- op( 700, xfx, '=.. '). 

?- op( 700, xfx, '<'). 
?- op( 700, xfx, V ). 
?- op( 700, xfx, '=<') . 

?- op( 700, xfx, W ). 

?- op( 700, xfx, '@< ). 

?- op( 700, xfx, '@=<') . 
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?- op( 700, xfx, '@>' ) . 

?- op( 700, xfx, '@>='). 
?- op( 700, xfx, 'is'). 
?- op( 500, yfx, V ). 
?- op( 500, yfx,'-'). 
?- op( 400, yfx, '* ' ) . 

?- op( 400, y fx , '// ' ) . 

?- op( 400, y fx , ' / ' ) . 

?- op( 400, yfx, 'mod'). 
?- op( 200, fy, '-')• 
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Built-in Predicates 

In this chapter we introduce some of the built-in  predicates that a Prolog system 
might provide. What do we mean when we say that a predicate is built-in? We mean 
that the predicate's definition is provided in advance by the Prolog system, instead 
of by your own clauses. Built-in predicates may provide facilities that cannot be 
obtained by definitions in pure Prolog. Or they may provide convenient facilities just 
to save the programmer from having to define them. We have already encountered 
some built-in predicates: the predicates for reading and writing discussed in Chapter 
5. Also, the "cut" can be regarded as a built-in predicate. 

The input/output predicates illustrate the fact that a built-in predicate may have 
"side effects". That is, satisfying a goal involving the predicate may cause changes 
apart from the instantiation of the arguments. Another important fact about built-
in predicates is that they may expect particular sorts of arguments. For instance, 
consider the predicate "<", defined so that X < Y succeeds if the number X is less than 
the number Y. Such a relation cannot be defined in Prolog without some outside help 
that knows something about numbers. So "<" is provided as a built-in predicate, and 
its definition involves the use of some underlying machine operation for testing the 
comparative size of numbers (represented as binary patterns, or whatever). 

What should happen if we introduce a X < Y goal where X is an atom, or even if 
both X and Y are uninstantiated? The definition in terms of the machine will simply 
not apply. So we must stipulate that X < Y is only a sensible goal if both X and 
Y are instantiated to numbers when an attempt is made to satisfy it. What happens 
if this condition is not met will depend on the individual Prolog implementation. 
One possibility is that the goal will simply fail. The other possibility is that an error 
message will be printed out, and the system will take some appropriate action (like 
abandoning trying to answer the current question). 
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6.1 Entering New Clauses 

When you write a Prolog program, you will want to tell the system what clauses 
to use, as well as ask questions about them. Surprisingly, Standard Prolog does not 
specify a uniform way to do this, which means that different implementations will 
provide different features. In the following, we describe some ways that are com-
monly used in Prolog systems. You may want to type in new clauses at the keyboard, 
or to tell Prolog to take clauses from a file that you have prepared in advance. In fact, 
these two operations look the same from Prolog's point of view, because the com-
puter keyboard and display is seen as just another file, having the name user. There is 
one basic built-in predicate for reading in new clauses: consult. In addition, there is 
a convenient notation for when you want to read in clauses from more then one file: 
the list notation. If you are interested, a simplified definition in Prolog of consult is 
given in Section 7.13. 

consult(X) 

The built-in predicate consult is meant for those situations when you want the clauses 
in some file (or to be typed at the terminal) to replace all existing clauses for the same 
predicates. The argument must be an atom giving the name of the file the clauses are 
to be taken from. Which atoms constitute a legal file name will, of course, depend on 
your particular computer. Examples of possible consult goals for various computers 
are: 

?- consult(myfile). 
?- consult('/usr/john/pl/chaf). 
?- consult('\\john\\pl\\chat'). 
?- consult('lib:iorout.pl'). 

See if you can recognise one of these filename conventions as one you normally use 
on your computer. Notice that the character \ has to be doubled when it is typed 
inside a Prolog quoted atom. 

If a question is found in the file, this will be treated just like an ordinary ques-
tion. It does not usually make sense to interleave questions with new clauses in a file, 
except to do things like declare new operators and print out helpful messages. 

If you read in several files of clauses and then discover that there is a mistake in 
one clause, you may be able to correct it without having to read in all the files again. 
To do this, you just have to consult a file containing a correct set of clauses for the 
predicate in question. You can give the corrected clauses by either typing them at 
the keyboard by consult(user) or by editing a file without exiting from Prolog and 
then consult-ing that file. Of course, typing in revised clauses at the terminal will 
alter what Prolog sees in the database  but it will not change the file  that the original, 
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faulty, clauses came from! Section 8.5 shows consult being used in the development 
of a program. 

consult, as defined above, does not allow you to spread the definition of a predi-
cate across more than one file. This is usually a reasonable restriction, as it normally 
makes sense to keep all the clauses for a predicate in one place. If it is necessary to 
distribute the clauses for a predicate over several files, Prolog implementations usu-
ally provide a way for you to announce that this is what you intend, or they provide 
several consult-style predicates for different situations. 

The List Notation 

Prolog implementations often provide a special notation that makes it more conve-
nient to specify consult goals, especially when you want Prolog to look at more than 
one file. The notation involves simply putting the file names (as Prolog atoms) into a 
list, and giving that list as a goal to be satisfied. Thus the question: 

?- [filel,file2/fred.l'/bill.2']. 

is exactly equivalent to the longer version: 

?- consult(filel), consult(file2), 
consult('fred.l'), consult('bill.2'). 

The list notation is purely a notational convenience, and does not offer any extra 
facilities over and above those provided by consult. 

6.2 Success and Failure 

In the normal course of executing a Prolog program, a goal succeeds when it can be 
satisfied, and it fails when there is no way to satisfy it. There are two predicates that 
make it more convenient to specify when a goal succeeds or fails. These are the true 
and the fail predicates. 

true 

This goal always succeeds. It is not actually necessary, as clauses and goals can be 
reordered or recombined to obviate any use of true. However, it exists for conve-
nience. 

fail 

This goal always fails. There are two places where it is helpful. One place is the "cut 
fail" combination, which was described in Section 4.3. A conjunction of goals of the 
form 
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. . . , ! , fail. 

is used to say, "if execution proceeds to this point, then one can abandon attempting 
to satisfy this goal". The conjunction fails due to the fail, and the parent goal fails 
because of the cut. 

Another place to use fail is where you explicitly want another goal to backtrack 
through all solutions. You may want to print out all the solutions. For instance, 

?- event(X, Y), phh(Y), fail. 

would print out all the events in the database of Section 5.1.2, using event and phh 
(and would then fail). See the definition of retractall in Section 7.13 for another use 
of fail. 

6.3 Classifying  Terms 

If we wish to define predicates which will be used with a wide variety of argument 
types, it is useful to be able to distinguish in the definition what should be done for 
each possible type. At the crudest level, we might wish a different clause to apply 
if an argument is an integer than if the argument is an atom. Or we might want one 
clause to apply if the argument is instantiated and another if it is not. The following 
predicates allow the programmer to put these extra conditions in his clauses. 

var(X) 

The goal var(X) succeeds if X is currently an uninstantiated  variable. Thus we would 
expect the following behaviour: 

?- var(X). 
yes 
?- var(23). 
no 
?- X = Y, Y = 23, var(X). 
no 

An uninstantiated variable can represent part of a structure that has not yet been 
filled in. An example is the unfilled parts of the sorted tree dictionary in Section 
7.1. When such structures are being examined, the predicate var can be essential to 
determine whether some part has already been filled in. This can prevent the variable 
from being "accidentally" instantiated to something when the intent was to examine 
it. For example, in the sorted tree dictionary, one might wish to know whether there 
is already an entry for some key without creating one. 



6.4 Treating Clauses as Terms 123 

nonvar(X) 

The goal nonvar(X) succeeds if X is not currently an uninstantiated variable. The 
predicate nonvar is therefore the opposite of var. Indeed, it could be defined in Prolog 
by: 

nonvar(X):- var(X), !, fail. 
nonvar(_). 

atom(X) 

The goal atom(X) succeeds if X currently stands for a Prolog atom. As a result, the 
following behaviour takes place: 

?- atom(23). 
no 
?- atom (apples). 
yes 
?- atom('/us/chris/pi. 123'). 
yes 
?- atom(X). 
no 
?- atom(book(bronte, w_h,X)). 
no 

number (X) 

The goal number(X) succeeds if X currently stands for a number. For example, Section 
7.12 shows how we can use this predicate in the definition of a simplifier for arith-
metic expressions, where we need to know whether the expression is just a number. 

atomic(X) 

The goal atomic(X) succeeds if X currently stands for either a number or an atom. 
Predicate atomic can be defined in terms of atom and number by 

atomic(X) :- atom(X). 
atomic(X) :- number(X). 

6.4 Treating Clauses as Terms 

Prolog allows the programmer to examine and alter the program (the clauses that 
are used to satisfy the goals). This is particularly straightforward, because a clause 
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can be seen as just an ordinary Prolog structure. Therefore Prolog provides built-in 
predicates to allow the programmer to: 

• Construct a structure representing a clause in the database, 

• Add a clause, represented by a given structure, to the database, 

• Remove a clause, represented by a given structure, from the database. 

Most operations on the database can be performed by the use of these predicates, 
together with the normal Prolog operations of constructing and decomposing struc-
tures. In addition to the examples given here, Section 7.8 shows some of the uses one 
can make of predicates to add and remove clauses. 

Before we look at the relevant built-in predicates, it is important to see just how 
a Prolog clause can be seen as a structure. For a simple fact, the structure is just the 
predicate with the arguments. That is, something like 

likes(john, X) 

can be seen as an ordinary structure, with functor likes, and two arguments john and 
X. A rule, on the other hand, can be seen as a structure whose main functor is ":-", 
with two arguments. This functor is declared as an infix operator. The first argument 
is the head of the clause, and the second is the body. Thus 

likes(john, X) :- likes(X, wine) 

is really just the same as 

':-'(likes(john, X),likes(X, wine)) 

which is a perfectly normal structure. Finally, when there is more than one goal in a 
rule, the goals are considered bound together by the functor "," (with two arguments). 
This is also declared as an infix operator. Thus 

grandparent(X, Z) :- parent(X, Y), parent(Y, Z) 

is really just 

':-'(grandparent(X, Z), '/(parent(X, Y), parent(Y, Z)) 
It is important to note that in Standard Prolog the following built-in predicates 

do not necessarily work with all the predicates used in a program: 

• clause (and also facilities such as listing) will only be able to find clauses for 
predicates which are "public" (quite what this means will depend on the Prolog 
implementation, but the intention is that, for instance, clauses for built-in pred-
icates cannot be inspected; it may be possible to influence which of your own 
predicates are considered "public"). 
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• asserta, assertz and retract will only work on the definitions of predicates which 
have been declared "dynamic" . The intention again is to prevent accidental un-
planned changing of definitions. A predicate foo/4 can be declared as "dynamic" 
by including the following in the relevant program file (before the definition of 
foo/4 or, if there is no definition, before the code that uses asserta etc.): 

:- dynamic foo/4. 

Several predicates can be declared as dynamic on one line by separating them 
with commas, e.g: 

:- dynamic foo/4, baz/3. 

Here now are the predicates that enable the programmer to examine and alter 
clauses. 

listing(A) 

Most Prolog systems allow you to inspect the clauses that you currently have loaded, 
but the Standard does not specify how this should be done. A common approach is for 
there to be a built-in predicate listing, where satisfying a goal of the form listing(A), 
where A is instantiated to an atom, causes all the clauses with the atom as predicate 
to be written out, as Prolog terms, on the current output file. This is how you can 
check up on what clauses you currently have for some predicate. The exact format 
of the output will depend on your Prolog implementation. Notice that you will see 
all the clauses with that atom as predicate, regardless of how many arguments it has. 
Using listing can help you discover a mistake in your program. For instance, in the 
following example session, the programmer discovers that he has not defined reverse 
properly. 

?- [test]. 
test  consulted 
yes 

?- reverse([a, b, c, d], X). 
no 

?- listing(reverse). 

reversed],  []). 
reverse ([_441  45], _38) 

reverse(jb5,  _47), 
appenD(_47,  [_44],  _38). 

yes 
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The listing of the reverse clauses reveals that the atom append was mis-spelled in the 
program (as appenD). 

clause(X,Y) 

Satisfying a goal of the form clause(X, Y) causes X and Y to be matched with the head 
and body of an existing clause (for a "public" predicate) in the database. When an 
attempt is made to satisfy the goal, X must be instantiated enough so that the main 
predicate of the clause is known. If there are no clauses for the predicate, the goal just 
fails. If there is more than one clause that matches, Prolog will choose the first one. 
In this case, if an attempt is made to re-satisfy the goal, the other matching clauses 
will be chosen, one at a time. 

Notice that, although clause always has an argument for the body of a clause, not 
every clause actually has a body. If a clause does not have a body, it is considered to 
have the dummy body true. We have been calling such clauses "facts". By providing 
X's and Y's that are more or less instantiated, you can look for either all the clauses for 
a given predicate and number of arguments, or all the ones that match some pattern. 
Thus, for instance: 

append([], X, X). 
append([A|B], C, [A|D]) :- append(B, C, D). 

?- clause(append(A, B, C), Y). 
A = [],  B = _3, C = _3, Y  = true 

A = [_3\_4],  B = _5, C = [_3\_6],  Y  = append(_4,  _5, _6) ; 

no 

The predicate clause is very important if we wish to construct programs that examine 
or execute other programs (see Section 7.13). 

asserta(X), assertz(X) The two built-in predicates asserta and assertz allow one to 
add new clauses (for "dynamic" predicates) to the database. The two predicates act 
in exactly the same way, except that asserta adds a clause at the beginning  of the 
database, whereas assertz adds a clause at the end.  This convention can be remem-
bered because a is the first letter of the alphabet, and z is the last. In a goal asserta(X), 
X must be already instantiated to something representing a clause; indeed, as for 
clause, it must be sufficiently instantiated that the main predicate is known. 

It is important to stress that the action of adding a clause to the database is 
not undone when backtracking takes place. Therefore, once we have used asserta or 
assertz to add a new clause, that clause will only be removed if we explicitly say so 
(using retract). See Section 7.8 for examples of asserta in use. 
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retract(X) 

The built-in predicate retract enables a program to remove clauses (for a "dynamic" 
predicate) from the database. The predicate takes a single argument, representing 
a term that the clause is to match. The term must be sufficiently instantiated that 
the predicate of the clause can be determined (as for asserta, clause, etc.). When an 
attempt is made to satisfy a goal retract(X), X is matched with the first clause in the 
database that it can be matched with, and that clause is removed. When an attempt is 
made to re-satisfy the goal, Prolog searches on from that clause, looking for another 
one that will match. If it finds one, the same thing happens as before. If an attempt is 
made to re-satisfy it again, the search continues for another appropriate clause. And 
so on. Note that, once a clause has been removed it is never reinstated, even when 
backtracking tries to re-satisfy the retract goal. If at any time the search cannot find 
any more matching clauses, the goal fails. 

Because the argument X is matched with a clause as it is removed, it is possible 
to see exactly which clause has been removed, even if X originally stood for some-
thing with lots of uninstantiated variables in it. So one can use retract to duplicate 
the function of clause, in the case that one wants to remove the clause after finding 
it. This is how it is used in the definition of gensym (Section 7.8). 

6.5 Constructing and Accessing Components of  Structures 

Normally when we want to access a structure of a certain kind in a Prolog program, 
we do so by just "mentioning" such a structure. That is, if a predicate needs to han-
dle a variety of different kinds of structures appearing in an argument position, we 
normally just provide a separate clause for each kind of structure. A good example 
of this is the definition of symbolic differentiation in Section 7.11. There are separate 
clauses for the functors +,- ,*, and so on. We have anticipated all the structures that 
might appear, and have provided clauses for each one. 

In some programs we cannot anticipate all the structures that may appear. For 
instance, we might want to write a "pretty print" program that can print out any 
Prolog structure, using multiple lines and indentation (see Section 5.1 for a version 
of such a program that only handles lists). So, for instance, we might want the term 

book(b29, author(bronte, emily), wh) 

to "pretty print" as 

book 
b29 
author 
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bronte 
emily 

wh 

The important point is that we want this program to work whatever  kind of structure 
we give it. One possibility, of course, is to provide a clause for every functor we 
can possibly think of. But this is a task that we will never finish, because in some 
programs there might be infinitely many of them! The way to write this kind of 
program is to use built-in predicates that perform operations on arbitrary structures. 
We will now describe some of these the predicates functor, arg, and "=..". We will 
also describe a predicate that works on atoms, the predicate atom_chars. 

functor(T, F, N) 

The predicate functor is defined in such a way that functor(T,F,N) means, "T is a 
structure with functor F and arity (number of arguments) N". It can be used in basi-
cally two ways. In the first way, T is already instantiated. The goal fails if T is not an 
atom or a structure. If T is an atom or structure, F is matched with the functor and N is 
matched with the integer giving the arity (number of arguments) of the functor. Note 
that in this context, an atom is considered to be like a structure with arity 0. Here are 
some examples of goals involving functor: 

?- functor(f(a, b, g(Z)), F, N). 
Z  = _23, F = f,  N  = 3 
?- functor(a + b, F, N). 
F = +, N  = 2 
?- functor([a, b, c], F, N). 
F =., N  = 2 
?- functor(apple, F, N). 
F = apple,  N  = 0 
?- functor([a, b, c],'.', 3). 
no 
?- functor([a, b, c], a, Z). 
no 

Before we go on to look at arg, we should consider the second possible use for 
functor. This occurs when the first argument of the goal (T) is uninstantiated. In this 
case, both of the others must be instantiated: specifying a functor and a number of 
arguments respectively. A goal of this form will always succeed, and as a result T 
will become instantiated to a structure with the functor and number of arguments 
provided. So this is a way of constructing  arbitrary structures, given a specification 
in terms of a functor and its number of arguments. The arguments of such a structure 
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constructed by functor are uninstantiated variables. Hence the structure will match 
any other structure with the same functor and number of arguments. 

A common use of functor to create a structure is when we wish to make a "copy" 
of an existing structure with new variables as the arguments of the principal functor. 
We can encapsulate this use in the definition of a predicate copy, as follows: 

copy(0ld, New) :- functor(0ld, F, N), functor(New, F, N). 

Here, two functor goals occur adjacently. If the copy goal has the first argument 
instantiated and the second uninstantiated, then the following will happen. The first 
functor goal will involve the first possible use of the predicate (because the first 
argument will be instantiated). Hence F and N will become instantiated to the functor 
and number of arguments of this existing structure. The second functor goal uses 
the predicate in the second way. This time the first argument is uninstantiated, and 
the information in F and N is used to construct  the structure New. This is a structure 
involving the same functor and number of arguments as Old, but with variables as its 
components. Thus we would get interactions like: 

?- copy(sentence(np(n(john)), v(eats)), X). 
X  = sentence(_23,  _24) 

We shall use a combination of functor goals in this way in the definition of consult 
in Section 7.13. 

arg(N,T,A) 

The predicate arg must always be used with its first two arguments instantiated. It is 
used to access a particular argument of a structure. The first argument of arg specifies 
which argument is required. The second specifies the structure that the argument is 
to be found inside. Prolog finds the appropriate argument and then tries to match it 
with the third argument. Thus arg(N, T, A) succeeds if the Nth argument of T is A. Let 
us look at some goals involving arg. 

?- arg(2, related(john, mother(jane)), X). 
X  = mother (jane) 
?- arg(l, a+(b+c), X). 
X  = a 
?- arg(2, [a,b,c], X). 
X=[b,c] 
?- arg(l, a+(b+c), b). 
no 
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Sometimes we will want to use functor and arg when the possible structures are 
known. This is because there may be so many arguments that it is inconvenient to 
specify them every time. Consider an example where we use structures to represent 
books. We might have a component for the title, the author, the publisher, the date of 
publication, and so on. Let us say that the resulting structures have fourteen compo-
nents. We might write the following useful definitions: 

is_a_book(book(_, )). 
title(book(T,_,_,_,_,_,_,_,_,_,_,_, ), T). 
author(book(_,A,_,_,_,_,_,_,_,_,_, ,_), A). 

In fact, we can write these much more compactly as: 

is_a_book(X):- functor(X, book, 14). 
title(X, T) :- is_a_book(X), arg(l, X, T). 
author(X, A) :- is_a_book(X), arg(2, X, T). 

X=.. L 

The predicates functor and arg provide one way of creating and accessing arguments 
of arbitrary structures. The predicate "=.." (pronounced "univ" for historical reasons) 
provides an alternative way, which is useful if you want to obtain the arguments of a 
structure all together, or if you want to construct a structure, given a list of arguments. 
The goal X =.. L means, "L is the list consisting of the functor of X followed by the 
arguments of X." Such a goal can be used in two ways, in the same way that a functor 
goal can. If X is instantiated, Prolog constructs the appropriate list and tries to match 
it with L. Alternatively, if X is uninstantiated, the list will be used to construct an 
appropriate structure for X to stand for. In this case, the head of L must be an atom (it 
will become the functor of X). Here are some examples of =.. goals: 

?- foo(a,b,c) =.. X. 
X  = [foo,a,b,c] 
?- append([A|B], C, [A|D])=.. L. 
A = _2, B = 3, C = _4, D = _5,L = [append,  [_2\_3],  _4, [_2\__5]] 
?- [a,b,c,d] =.. L. 
L = [V,a,[b,c,d]]. 
?- (a+b) =.. L. 
L = [+,a,b]. 
?- (a+b) =.. [+,X,Y], 
X  = a, Y  = b. 
?- [a,b,c,d] =.. [X|Y], 
*='.',  Y  = [a,[b,c,dj] 
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?- X =.. [a,b,c,d]. 
X  = a(b,c,d). 
?- X =.. [append,[a,b],[c],[a(b,c]]. 
X  = append ([a,b],[c],[a,b,c]) 

Examples of the use of =.. are given in Section 7.12. 

atom_chars(A,L) 

Whereas functor, arg, and =.. are used for constructing and accessing arbitrary 
structures, the predicate atom_chars is for dealing with arbitrary atoms1. Predicate 
atom_chars relates an atom to the list of characters (atoms with one element) that 
make it up. This can be used either to find the characters for a given atom, or to find 
the atom that has some given characters. The goal atom_chars(A,L) means that "the 
characters for the atom A are the members of the list L". If the argument A is instan-
tiated, Prolog creates the list of characters and tries to match them with L. Otherwise 
Prolog uses the list L to make an atom for A to stand for. Example uses of atom_chars 
are as follows: 

?- atom_chars(apple, X). 
X  = [a,p,p,l,e] 
?- atom_chars(X, [a,p,p,l,e]). 
X  = apple 

In Section 9.5, we use atom_chars to access the internal structure of English words 
represented as Prolog atoms. 

number_chars(A,L) 

This predicate is just like atom_chars except that it works with numbers, rather than 
atoms. Notice that in: 

?- atom_chars(X, ['1' ,'2', '3']). 

the variable X will be instantiated to the atom '123'. If we want it to be a number 
instead, we need to use number_chars. Here are some uses of number_chars: 

?- number_chars(123.5, X). 
X  = [T,  '2% '3\  '57 
?- number_chars(X, [ T , '2', '3']). 
X  = 123 

' S o m e Pro log imp lemen ta t i ons that d o not p rov ide atom_chars p rov ide a bui l t - in p red i -
ca te name w h i c h g ives rough ly the s a m e funct ional i ty  as atom_chars and number_chars 
combined . 
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The actual sequence of characters produced for a number may depend on the imple-
mentation (e.g. 23 could come out as ['2'/3'/.','0']).  The predicate is probably more 
often used the other way around and in this use should accept a list of characters 
corresponding to any way that the Prolog system would normally be able to read a 
number. We use number_chars in the definition of gensym in Section 7.8.2. 

6.6 Affecting  Backtracking 

There are two built-in predicates that affect the normal sequence of events that hap-
pens during backtracking. Basically, "!" removes possibilities for the re-satisfaction 
of goals, and repeat makes new alternatives where there were none before. 

I 

The "cut" symbol can be viewed as a built-in predicate that commits the Prolog 
execution procedure to certain choices it has made. For more details about the "cut" 
see Chapter 4. 

repeat 

The built-in predicate repeat is provided as an extra way to generate multiple solu-
tions through backtracking. Although it is built-in, it can be thought of as behaving 
as though defined as follows: 

repeat. 
repeat:- repeat. 

What is the effect of this if we put repeat as a goal in one of our rules? First of all, the 
goal will succeed, because of the fact which is the first clause of repeat. Secondly, 
if backtracking reaches this point again, Prolog will be able to try an alternative: the 
rule that is provided as the second clause of repeat. When it uses this rule, another 
goal repeat is generated. Since this matches the first fact, we have succeeded again. 
If backtracking reaches here again, Prolog will again use the rule where it used the 
fact before. To satisfy the extra goal generated, it will again pick the fact as the first 
option. And so on. In fact, the goal repeat will be able to succeed infinitely many 
times on backtracking. Note the importance of the order of the clauses here. (What 
would happen if the fact appeared after the rule?). 

Why is it useful to generate goals that will always succeed again on backtrack-
ing? The reason is that they allow one to build — from rules that have no choices in 
them — rules that do  have choices. And we can make them generate different values 
each time. 
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Consider the built-in predicate get_char, which is described in Chapter 5. If 
Prolog attempts to satisfy a goal get_char(X), it takes this as an instruction to look at 
the next character (letter, digit, space or whatever) that has been input to the system 
and to try to match the atom representation of this character with whatever value X 
has. If it will match, the goal succeeds; otherwise it fails. There is no choice involved. 
Predicate get_char always only considers the character which comes next at the time 
it is invoked. The next time a goal involving get_char is invoked, it will find the 
character after this, but again there will be no choice. We can define a new predicate 
new_get as follows: 

nevv_get(X) :- repeat, get_char(X). 

The predicate new_get has the property that it generates the values of all the 
next characters (in the right order) one by one as its alternative solutions. Why is 
this? When we first call new_get(X), the subgoal repeat succeeds and the subgoal 
get_char(X) succeeds with the value of the next character associated with X. When 
backtracking happens, the last place where there was a choice is in the satisfaction 
of repeat. So Prolog forgets everything it has done since then and succeeds in estab-
lishing repeat in another way. It now has to look at the subgoal get_char(X) again. 
By now, the "next character" is the one after what we last saw, and so X ends up with 
the second character as its value. 

We can use our definition of new_get to define another useful predicate which 
skips through an input until a non-space character is found. When Prolog finds a 
goal get_non_space(X), it treats this as an instruction to read characters until it finds 
the next proper printing character (not a space). It then tries to match the atom 
representation of this character with X. We can write an approximate definition of 
get_non_space as follows: 

get_non_space(X) :- new_get(X), \+ X = " . 

What happens when we try to satisfy get_non_space(X)? First of all, new_get(X) 
matches X against the next character coming in. If the value is ' the next goal 
will fail, and new_get will have to generate the next character as the next possible 
solution. This will then be compared to ' ', and so on. Eventually, new_get will find 
a non-space character, the comparison will succeed, and the value of this character 
will be returned as the result of get_non_space. 

Exercise 6.1 The above definition of get_non_space will not necessarily work if we 
invoke the goal get_non_space(X) when X is already instantiated. Why is this? 

One trouble with repeat is that it always has a choice to redo when backtracking 
reconsiders it. So backtracking will never be able to reconsider choices made earlier 
than the last call of repeat unless we manage to cut out the choice in some way. 
Because of this, the above definitions should be rewritten as: 
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new_get(X) :- repeat, get_char(X). 
get_non_space(X) :- new_get(X), \+ X = " , !. 

Note that this definition will still only work if we attempt to satisfy get(X) with X 
uninstantiated. Because of the problem of backtracking over repeat choices, every-
thing using new_get should be responsible for cutting out the choice as soon as the 
character generated is satisfactory for its purposes. 

6.7 Constructing Compound Goals 

In rules and questions of the form X :- Y or ?- Y, the term appearing as Y may consist 
of a single goal, or a conjunction of goals, or a disjunction of goals. Furthermore, 
it is possible to have variables as goals, and to satisfy a goal when the goal actually 
fails by using \+. The predicates described in this section provide ways to specify 
these complicated ways of expressing goals. 

X , Y 

The "," operator specifies a conjunction of goals. This operator was introduced in 
Chapter 1. Where X and Y are goals, the goal X,Y succeeds if X succeeds and if Y 
succeeds. If X succeeds and then Y fails, then an attempt is made to re-satisfy X. If X 
fails, then the entire conjunction fails. This is the essence of backtracking. The "," has 
a built-in declaration as a right associative infix operator, so that X,Y,Z is equivalent 
to X,(Y,Z). 

X ; Y 

The ";" operator specifies a disjunction (meaning or) of goals. When X and Y are 
goals, the goal X;Y succeeds if X succeeds or if Y succeeds. If X fails, then an attempt 
is made to satisfy Y. If Y then fails, the entire disjunction fails. We can use the ";" 
operator to express alternatives within the same clause. For instance, let us say that 
something is a person if it is either Adam or Eve, or if it has a mother. We can express 
this in a single rule as follows: 

person(X) :- (X=adam; X=eve; mother(X, Y)). 

In this rule, we have actually specified three alternatives. However, as far as Prolog 
is concerned, this breaks down into two alternatives, one of which itself introduces 
two alternatives. Because ";" has a built-in declaration as a right" associative infix 
operator, the clause is actually the same as: 

person(X) :-';'( X=adam, ';'(X=eve, mother(X, Y) ) ) 
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So the first possibility is that X is adam. The second possibility involves the two 
alternatives that X is eve or X has a mother. 

We can put disjunctions anywhere where we can put any other kind of goal in 
Prolog. However, it is advisable to add extra brackets to avoid confusion about how 
the operators ";" and "," interact. We can usually replace a use of disjunction with a 
use of several facts and rules, possibly involving the definition of an extra predicate. 
For instance, the above example is exactly equivalent to: 

person(adam). 
person(eve). 
person(X) :- mother(X, Y). 

This version is more conventional and perhaps easier to read. In general you are 
not recommended to use ";" excessively. Refer to Chapter 8 for warnings on how 
injudicious use of ";" may lead to programs that are difficult to understand. 

call(X) 

It is assumed that X is instantiated to a term that can be interpreted as a goal. The 
call(X) goal succeeds if an attempt to satisfy X succeeds. The call(X) goal fails if an 
attempt to satisfy X fails. At first sight, this predicate may seem redundant, because 
one might ask why the argument of call shouldn't simply appear by itself as a goal? 
For instance, the goal 

. . . , call(member(a, X)), . . . 

can always be replaced by 

. . . , member(a, X), . . . 

However, if we are constructing  goals by using the "=.." predicate or functor and 
arg, then it is possible to call goals that have a functor that is unknown  at the time 
you type in your program. In the definition of consult in Section 7.13, for instance, 
we want to be able to treat any term read after a "?-" as a goal. Assuming that P, X, 
and Y are instantiated to a functor and arguments appropriately, call can be used as 
follows: 

. . Z =.. [P,X,Y], call(Z), . . . 

The above line can be thought of as a way of expressing the following sort of call, 
which is not correct  syntax in the standard version of Prolog we are using in this 
book: 

., P(X, Y), 
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y x 

The predicate (pronounced "not") is declared as a prefix operator. It is assumed 
that X is instantiated to a term that can be interpreted as a goal. The \+ X goal succeeds 
if an attempt to satisfy X fails. The \+ X goal fails if an attempt to satisfy X succeeds. 
In this way, \+ is rather like call, except that the success or failure of the argument, 
interpreted as a goal, is reversed. What is the difference between the following two 
questions? 

?- member(X, [a,b,c]), write(X). 
?- \+ \+ member(X, [a,b,c]), write(X). 

One might be tempted to say that there is no difference, because in the second ques-
tion, 

member(X, [a,b,c]) succeeds, so 
\+ member(X, [a,b,c]) fails, and so 

\+ \+ member(X, [a,b,c]) succeeds. 

This is partly right. However, the first question would cause the atom "a" to be writ-
ten, and the second goal would cause an uninstantiated variable to be written. This is 
what happens when an attempt is made to satisfy the first goal of the second question 
above: 

1. The member goal succeeds, instantiating X to a. 

2. An attempt is made to satisfy the first \+ goal, and it fails because the member 
goal, its argument, succeeded. Now remember that when a goal fails, any vari-
ables that became instantiated, such as X in the example, must now "forget" what 
they stood for. Hence X becomes uninstantiated. 

3. An attempt is made to satisfy the second \+ goal, and it succeeds, because its 
argument, \+ member(. . .), failed. X is still uninstantiated. 

4. An attempt is made to satisfy the write goal, with X uninstantiated. The uninstan-
tiated variable, as described in Section 6.9, is printed in a special way. 

6.8 Equality 

This section deals briefly with the various built-in predicates for testing and making 
things equal in Prolog. 

X = Y 

When Prolog encounters a goal X = Y, it attempts to make X and Y equal by matching 
them together. If it can match them, the goal succeeds (and X and Y may have become 
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more instantiated). Otherwise the goal fails. A fuller discussion of this predicate is 
given in Section 2.4. The equality predicate is defined as though by 

X = X. 

See if you can understand how this definition works. 

X — Y 

The predicate "==" represents a much stricter equality test than "=". That is, if X == Y 
ever succeeds then X = Y does as well. On the other hand, this is not so the other way 
round. The way that " = " is more strict is by the way it considers variables. The "=" 
predicate will consider an uninstantiated variable to be equal to anything, because 
it will match anything. On the other hand, "==" will only consider an uninstantiated 
variable to be equal to another uninstantiated variable that is already sharing with it. 
Otherwise the test will fail. So we get the following behaviour: 

?- X == Y. 
no 
?- X = X. 
X  = _23 
?- X=Y, X==Y. 
X  = _23, Y  = 23 
?- append([A|B], C) = append(X, Y). 
no 
?- append([A|B], C) == append([A|B], C). 
A = _23, B = _24, C = _25 

6.9 Input and Output 

The predicates made available for reading and writing characters and terms were 
descibed in Chapter 5. Here we summarise each one. 

get_char(X) 

This goal succeeds if X can be matched with the next character encountered on the 
current input stream. get_char succeeds only once (it cannot be re-satisfied). The 
operation of moving to the next character is not undone on backtracking, because 
there is no way to put a character back onto the current input stream. 

read(X) 

This goal reads the next term from the current input stream and matches it with X. 
A read succeeds only once. The term must be followed by a dot ".", which does not 
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become a part of the term, and at least one non-printing character. The dot is removed 
from the current input stream. 

put_char(X) 

This goal writes the character X on the current output stream. put_char succeeds only 
once. An error occurs if X is not instantiated. 

nl 
Writes a control sequence to the current output stream that causes a "new line". On 
a computer display, all characters after the use of nl appear on the next line of the 
page, nl succeeds only once. 

write(X) 

This goal writes the term X to the current output stream, write succeeds only once. 
Any uninstantiated variables in X are written as uniquely numbered variables be-
ginning with an underscore, such as "_239". Co-referring variables within the same 
argument to write have the same number when they are printed out. The predicate 
write takes account of current operator declarations when it prints a term. Thus an 
infix operator will be printed out between its arguments, for instance. 

write_canonical(X) 

The predicate write_canonical works in exactly the same way as write, except that 
it ignores any operator declarations. When write_canonical is used, any structure is 
printed out with the functor first and the arguments in brackets afterwards. 

op(X, Y, Z) 

This goal declares an operator having precedence class X, position and associativity Y, 
and name Z. The position and associativity specification is taken from the following 
set of atoms: 

fx fy xf yf xfx xfy yfx yfy 

If the operator declaration is legal, then op will succeed. See Section 5.5 for more 
details. 

6.10 Handling Files 

The predicates that Prolog makes available for altering the current input and current 
output streams were introduced in Chapter 5. Here we summarise each one. 
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open(X, Y, Z) 

This goal opens a file whose name is X (an atom). If Y is read then the file is opened 
for reading; otherwise if Y is write then the file is opened for writing. Z is instantiated 
to a special term naming the stream that must be referred to when the file is accessed 
later. An error occurs if X is not instantiated, or if X names a file that does not exist. 

close(X) 

This is used when X is a term naming a stream. The stream is closed and can no 
longer be used. 

set_input(X) 

Sets the current input to the stream whose name is provided by X. X will be a term 
returned in the third argument of open, or the atom user_input, which specifies that 
input is to come from the keyboard. 

set_output(X) 

Sets the current output to the stream whose name is provided by X. X will be a term 
returned in the third argument of open, or the atom user_output, which specifies that 
output is to go to the computer display. 

current_input(X) 

This goal succeeds if the name of the current input stream matches with X, and fails 
otherwise. 

current_output(X) 

This goal succeeds if X matches with the name of the current output stream, and fails 
otherwise. 

6.11 Evaluating Arithmetic Expressions 

Arithmetic was first discussed in Section 2.5. Here we summarise the use of the "is" 
predicate, and what functors are available for constructing arithmetic expressions. 

X is Y 

Y must be instantiated to a structure that can be interpreted as an arithmetic expres-
sion as described in Section 2.4. First, the structure instantiated for Y is evaluated 
to give a number, called the result.  The result is matched with X, and the is goal 
succeeds or fails based on the match. The functors that can be used to make up the 
structure on the right-hand side of an is are as follows: 
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X + Y 

The addition operator. When evaluated by is its result is the numerical sum of its 
two arguments. The arguments must be instantiated to numbers or to structures that 
evaluate to numbers. 

X - Y 

The subtraction operator. When evaluated by is, its result is the numerical difference 
of its two arguments. The arguments must be instantiated to numbers or to structures 
that evaluate to numbers. 

X * Y 

The multiplication operator. When evaluated by is, its result is the numerical product 
of its two arguments. The arguments must be instantiated to numbers or to structures 
that evaluate to numbers. 

X / Y 

The floating point division operator. When evaluated by is, its result is the quotient 
of its two arguments (in general, not a whole number). The arguments must be in-
stantiated to numbers or to structures that evaluate to numbers. 

X / / Y 

The integer division operator. When evaluated by is, its result is the integer (whole 
number) quotient of its two arguments (the largest whole number less than X/Y). The 
arguments must be instantiated to numbers or to structures that evaluate to numbers. 

X mod Y 

The integer remainder operator. When evaluated by is, its result is the integer (whole 
number) remainder that is generated when X is divided by Y. The arguments must be 
instantiated to numbers or structures that evaluate to numbers. 

Particular Prolog implementations may include more arithmetic operations such 
as exponentiation and trigonometric functions. The examples shown in this book 
only require the ones listed here. 

6.12 Comparing Terms 

Seven predicates are provided for comparing numbers. These predicates were first 
presented in Section 2.5 when we discussed arithmetic. Each predicate is written as 
an infix operator having two arguments. 
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X = Y 

The equality predicate, described in Section 6.8, also succeeds when two number 
arguments are the same. However, if one of the arguments is a variable, the equal-
ity predicate will cause the variable to be instantiated because the equality predicate 
performs a unification of its two arguments. In many numeric calculations, this is 
not desirable. Instead, Prolog makes available predicates specifically for comparing 
equality and inequality of numbers. In all of the following predicates, both argu-
ments must be instantiated, or an error occurs. Using these predicates for numeric 
calculation can also cause the program to be executed more efficiently. 

X =:= Y 

The numeric equality predicate succeeds when the left-hand number argument is 
equal to the right-hand number argument. 

X-VY 

The numeric inequality predicate succeeds when the left-hand number argument is 
not equal to the right-hand number argument. 

X < Y 

The less than predicate succeeds when the left-hand number argument is less than 
the right-hand number argument. 

X > Y 

The greater than predicate succeeds when the left-hand number argument is greater 
than the right-hand number argument. 

X >= Y 

The greater than or equal to predicate succeeds when the left-hand number argument 
is greater than or equal to the right-hand number argument. 

X =< Y 

The less than or equal to predicate succeeds when the left-hand argument is less than 
or equal to the right-hand argument. Notice that the predicate is spelled as =< rather 
than <=, so that <= is free to be used as an operator that looks like an arrow. 

In addition, Standard Prolog provides predicates for comparing two arbitrary 
terms. What does it mean for one term to be less than another (e.g. is f(X) less than 
123)? Usually the term comparison operators are used just for comparing two terms 
of the same kind (e.g. two atoms, as in the sorted tree dictionary of Section 7.1). But 
sometimes one might want to compare other combinations. Here are the principles 
that determine whether one term is considered less than another: 
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• All uninstantiated variables are less than all floating-point numbers, which are 
less than all integers, which are less than all atoms, which are less than all struc-
tures. 

• For two non-sharing uninstantiated variables, one will be less than the other 
(which one is less may be different in different Prolog implementations). 

• Floating point numbers are less than floating point numbers and integers are less 
than integers in the way one would expect. 

• One atom is less than another if it would come earlier than it in the normal dic-
tionary ordering. To be precise, the ordering depends on the character codes, but 
these are usually ordered as one would expect, at least for alphabetic characters. 

• One structure is less than another if its functor has a lower arity. If two structures 
have the same arity, one is less than the other if its functor is less than the other 
(using the ordering for atoms). If two structures have the same arity and functor, 
they are ordered by considering the arguments in turn - for the first correspond-
ing arguments that differ, the order of the structures is the order of the relevant 
arguments. 

So for instance all of the following succeed: 

?- g(X) @< f(X, Y). 

?- f(Z,b) @< f(a, A). 

?- 123 @< 124. 

?- 123.5 @< 2. 

X @< Y 

The term less than predicate succeeds when the left-hand term argument is less than 
the right-hand term argument according to the above ordering. 

X @> Y 

The term greater than predicate succeeds when the left-hand term argument is greater 
than the right-hand term argument according to the above ordering. 

X @>= Y 

The term greater than or equal predicate succeeds when the left-hand term argument 
is greater than the right-hand term argument, according to the above ordering, or if 
the two arguments are the same. 
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X @=< Y 

The term less than or equal predicate succeeds when the left-hand term argument is 
less than the right-hand term argument, according to the above ordering, or if the two 
arguments are the same. 

6.13 Watching Prolog at Work 

This section describes some built-in predicates that enable you to watch your pro-
gram as it runs. Since Standard Prolog does not specify a fixed set of such predicates, 
the ones presented here are intended to be indicative of the sorts of facilities that may 
be available, rather than authoritative. We will only describe the built-in predicates 
here, and refer you to Chapter 8 for a more detailed discussion of debugging and 
tracing. 

trace 

The effect of satisfying the goal trace is to turn on exhaustive tracing. This means 
that afterwards you will get to see every goal that your program generates at each of 
the four main ports. 

notrace 

The effect of the goal notrace is to stop exhaustive tracing from now on. However, 
any tracing due to the presence of spy points will continue. 

spy P 

The predicate spy is used when you want to pay special attention to goals involving 
some specific predicates. You do this by setting spy points on them. The predicate 
is defined as a prefix operator, and so you do not need to put brackets round the 
argument. The argument can be any of the following: 

• An atom. In this case, a spy point is put on all predicates with this atom, however 
many arguments are used. So if we had clauses for sort with both two and three 
arguments, the goal spy sort would cause spy points to be set on both sets of 
clauses. 

• A structure of the form Name/Arity, where Name is an atom and Arity is an inte-
ger. This specifies a predicate with functor Name and arity Arity. Thus spy sort/2 
would cause spy points to be set on goals for the predicate sort with two argu-
ments. 
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• A list. In this case, the list must be terminated with "[]", and each element of 
the list must itself be an allowable argument to spy. Prolog will put spy points in 
all the places specified in the list. Thus spy [sort/2,append/3] would cause spy 
points to be set on sort with two arguments and append with three. 

debugging 

The built-in predicate debugging allows you to see which spy points you currently 
have set. The list of spy points is printed out as a side-effect of the goal debugging 
being satisfied. 

nodebug 

The goal nodebug causes all your current spy points to be removed. 

nospy 

Like spy, nospy is a prefix operator, nospy is more selective than nodebug, because 
you can specify exactly which spy points you wish to have removed. You do this 
by providing an argument in exactly the same form as for spy. Thus the goal nospy 
[reverse/2,append/3] will remove any spy points on reverse with two arguments and 
append with three arguments. 
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More Example Programs 

Each section of this chapter deals with a particular application of Prolog program-
ming. We suggest that you read all of the sections in this chapter. Do not be concerned 
if you do not understand the purpose of a program because you are not acquainted 
with the particular application. For example, only those readers who have been in-
troduced to Calculus will appreciate the value of symbolic differentiation. Read it 
anyway, because the program for finding symbolic derivatives demonstrates how to 
use pattern matching to transform one kind of structure (an arithmetic expression) 
into another one. What is important is to gain an understanding of programming 
techniques available to the Prolog programmer, regardless of the particular applica-
tion. 

We hope that we have included enough applications to satisfy most tastes. Nat-
urally, all of the applications deal with areas that suit Prolog's way of representing 
the world. You will not find how to calculate the flow of heat through a square metal 
pipe, for example. It is possible to solve such problems using Prolog, but the ex-
pressiveness and power of Prolog is not shown to advantage on problems that are 
essentially repetitious calculations over arrays of numbers. We would like to be able 
to discuss large Prolog programs, such as those that are used by Artificial Intelli-
gence researchers for understanding natural language. Unfortunately, the aims of a 
book like this one preclude discussion of programs that are longer than a page of text 
and which would appeal only to a specialised audience. 

7.1 A Sorted Tree Dictionary 

Suppose we wish to make associations between items of information, and retrieve 
them when required. For example, an ordinary dictionary associates a word with its 
definition, and a foreign language dictionary associates a word in one language with 
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a word in another language. We have already seen one way to make a dictionary: 
with facts. 

If we want to make an index of the performance of horses in the British Isles 
during the year 1938, we could simply define facts winnings(X, Y) where X is the 
name of the horse, and Y is the number of guineas (a unit of currency) won by the 
horse. The following database of facts could serve as part of such an index: 

winnings(aban's, 582). 
winnings(careful, 17). 
winnings(jingling_silver, 300). 
winnings(maloja, 356). 

If we want to find out how much was won by maloja, we would simply ask the right 
question, and Prolog would give us the answer: 

?- winnings(maloja, X). 
X=356 

Remember that when Prolog searches through a database to find a matching fact, 
it starts at the top of the database and works its way down. This means that if our 
dictionary database is arranged in alphabetical order, as is the one above, then Prolog 
will take a short amount of time to find the winnings for ablaze, and it will take longer 
to find the winnings for zoltan. Although Prolog can look through its database much 
faster than you could look through a printed index, it is silly to search the index from 
beginning to end if we know that the horse we are looking for is at the end. 

Also, although Prolog has been designed to search its database quickly, it is 
not always as fast as we would wish. Depending on how large your index is, and 
depending on how much information you have stored about each horse, Prolog might 
take an uncomfortably long amount of time to search the index. 

For these reasons and others, computer scientists have devoted much effort to 
finding good ways to store information, such as indices and dictionaries. Prolog itself 
uses some of these methods to store its own facts and rules, but it is sometimes 
helpful to use these methods in our programs. We shall describe one such method for 
representing a dictionary, called the sorted  tree.  The sorted tree is both an efficient 
way of using a dictionary, and a demonstration of how lists of structures are helpful. 

A sorted tree consists of some structures called nodes,  where there is one node 
for each entry in the dictionary. Each node has four components. One of these com-
ponents, called the key,  is the one whose name determines its place in the dictionary 
(the name of the horse in our example). The other item is used to store any other in-
formation about the object involved (the winnings in our example). In addition, each 
node contains a tail (like the tail of a list) to a node containing a key whose name is 
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alphabetically less than the name of the key in the node itself. Furthermore, the node 
contains another tail, to a node whose name is alphabetically greater  than the key in 
the node. 

Let us use a structure called w(H, W, L, G) (w is an abbreviation of "winnings") 
where H is the name of a horse (an atom) used as the key, W is the amount of guineas 
won (an integer), L is a structure with a horse whose name is less than H's, and G is 
a structure with a horse whose name is greater than H's. If there are no structures for 
L and G, we will leave them uninstantiated. Given a small set of horses, the structure 
might look like this when written as a tree: 

Represented as a structure in Prolog, and indented so as to illustrate the structure and 
not to be too wide to fit on the page, this would look like: 

w(massinga,858, 
w(braemar,385, 

w(adela,588,_,_), 

w(panorama,158, 
w(nettleweed,579,_,_), 

J 
)• 

Now given a structure like this, we wish to "look up" names of horses in the structure 
to find out how many guineas they won during 1938. The structure would have the 
format w(H, W, L, G) as above. The boundary condition is when the name of the 
horse we are looking for is H. In this case, we have succeeded and need not try 
any alternatives. Otherwise, we must use the term comparison built-in predicates 
introduced in section 6.12 to decide which "branch" of the tree, L or G, to look up 
recursively. We use these principles to define the predicate lookup for which the goal 
lookup(H, S, G) means that horse H, when looked up in index S (a w structure), won 
G guineas: 
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lookup(H, w(H,G ), Gl ) : - !, G=Gl. 
lookup(H, w(Hl,_,Before,_), G) :-

H @< HI, 
lookup(H, Before, G). 

lookup(H, w(Hl, ,After), G) :-
H @> HI, 
lookup(H, After, G). 

If we use this predicate to search a sorted tree, in general we examine fewer horses 
than if we arrange them in a single list and search the list from start to finish. 

There is a surprising and interesting property of this lookup procedure: if we 
look for the name of a horse which is not in the structure, then whatever information 
we supply about the horse when we use lookup as a goal will be instantiated in the 
structure when lookup returns from its recursion. For example, the interpretation of 
lookup in this question 

?- lookup(ruby_vintage, S, X). 

is: 

there is a structure,  instantiated  to S such that  ruby_vintage is paired  with 
X. 

So, lookup is inserting new components in a partially specified structure. We can 
therefore use lookup repeatedly to create a dictionary. For instance, 

?- lookup(abaris, X, 582), lookup(maloja, X, 356). 

would instantiate X to be a sorted tree with two entries. The actual means by which 
lookup functions for both storing and retrieving components takes advantage of what 
you should know already about Prolog, so we urge you to work this out by yourself. 
Hint: when lookup(H, S, G) is used in a conjunction of goals, the "changes" made to 
S only hold over the scope of S. 

Exercise 7.1. Experiment with the lookup predicate to determine what difference it 
makes to insert items in the dictionary in a different order each time. For example, 
what does the dictionary tree look like when entries have been inserted in the order: 
massinga, braemar, nettleweed, panorama? In the order: adela, braemar, nettleweed, 
massinga? 

7.2 Searching a Maze 

It is a dark and stormy night. As you drive down a lonely country road, your car 
breaks down, and you stop in front of a splendid palace. You go to the door, find 
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it open, and begin looking for a telephone. How do you search the palace without 
getting lost? How do you know that you have searched every room? Also, what is the 
shortest path to the telephone? It is for such situations that maze-searching methods 
have been devised. 

In many computer programs, such as those for searching mazes, it is useful to 
keep lists of information, and search the list if some information is needed at a later 
time. For example, if we decide to search the palace for a telephone, we might need to 
keep a list of the room numbers visited so far, so we don't go round in circles visiting 
the same rooms over and over again. What we do is to write down the room numbers 
visited on a piece of paper. Before entering a room, we check to see if its number 
is on our piece of paper. If it is, we ignore the room, since we must have been to it 
previously. If the room number is not on the paper, we write down the number, and 
enter the room. And so on until we find the telephone. There are some refinements 
to be made to this method, and we will do so later when we discuss graph searching. 
But first, let's write down the steps in order, so we know what problems there are to 
solve: 

1. Go to the door of any room. 

2. If the room number is on our list, ignore the room and go to Step 1. If there are no 
rooms in sight, then "backtrack" through the room we went through previously, 
to see if there are any other rooms near it. 

3. Otherwise, add the room number to our list. 

4. Look in the room for a telephone. 

5. If there is no telephone, go to Step 1. Otherwise we stop, and our list has the 
path that we took to come to the correct room. 

We shall assume that room numbers are constants, but it does not matter whether 
they are numbers or atoms. First, we can solve the problem of how to look up room 
numbers on the piece of paper by using the member predicate defined in Section 3.3, 
representing the piece of paper as a list. Now we can get on with the problem of 
searching the maze. Let us consider a small example, where we are given the floor 
plan of a house, with letters labelling the different rooms, as shown in Figure 7.1. 

Notice that gaps in the walls are meant to represent doors, and that room a is simply 
a representation of the space outside the house. There are doors from rooms a to b, 
from c to d, from f to e, and so forth. The facts about where there are doors can be 
represented as Prolog facts. 

Notice that the information about doors is not redundant. For example, although we 
have said that there is a door between room g and room e, we have not said that there 
is a door between room e and room g: we have not asserted d(e, g). 



1 Chapter 7 More Example Programs 

d c 
d(a, b). 
d(b, e). 
d(b, c). 
d(d, e). 
d(c, d). 
d(e, f). 
d(g, e). 

f e b a 

g 
Fig. 7.1. A floor plan and the program that represents it 

To get around this problem of representing two-way doors, we could write a du-
plicate d fact for each door, reversing the arguments. Or, we could make the program 
recognise that each door fact can be interpreted in two ways. This is the alternative 
we choose in the program that follows. 

To go from one room to another, we must recognise one of two cases: 

• we are in the room we want to go to, or 

• we have to pass through a door, and recognise these cases again (recursively). 

Consider the goal go(X, Y, T), which succeeds if it is possible to go from room X to 
room Y. The third argument T is our piece of paper that we carry, that has a "trail" of 
the room numbers that we have visited so far. 

The boundary condition for going from room X to room Y is if we are already at 
room Y (this is, if X = Y). This is represented as the clause: 

Otherwise we choose some adjoining room, call it Z, and see if we have been to it 
before. If we haven't, then we go from Z to Y, adding Z to our list. All of this is 
represented as the following clause: 

In words, this could be interpreted as: 
To "go" from X to Y, not passing though the rooms on T, find a door from X 
to an adjacent room (Z), ensure that Z is not already on the list, and go from 
Z to Y, using the list T with Z added to it. 

go(X, X, T). 

go(X, Y, T) :- d(X, I), \+ member(Z, T), go(Z, Y, [Z|T]). 
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There are three ways that failures can occur in the use of this rule. First, if there is no 
door from X to anywhere. Second, if the door we choose is on the list. Third, if we 
cannot "go" to Y from the Z we chose because it fails deeper in the recursion. If the 
first goal d(X, Z) fails, then it will cause this use of go to fail. At the top level (not a 
recursive call), this means that there is no path from X to Y. At lower levels, it simply 
means we must backtrack to find a different door. 

The program as stated treats each door as a one-way door. If we assume that 
having a door from room a to room b is just the same as having a door from room b 
to room a, then we must make this explicit, as indicated above. Instead of supplying 
a duplicate fact for each d fact but with the arguments reversed, there are two ways 
to put this information in the program. The most obvious way is to add another rule, 
giving: 

go(X, X, T). 
go(X, Y, T):- d(X, Z), \+ member(Z, T), go(Z, Y, [Z|T]). 
go(X, Y, T) :- d(Z, X), \+ member(Z, T), go(Z, Y, [Z|T]). 

Or, the semicolon predicate (for disjunction) can be used: 

go(X, X, T). 
go(X, Y, T) :-

(d(X, Z ) ; d(Z, X)), 
\+ member(Z, T), 
go(Z, Y, [Z|T]). 

But perhaps the clearest way is to keep the program simple, and augment the d(X,Y) 
relation so that it is symmetric: 

d(a, b). d(b, a). 
d(b, e). d(e, b). 
d(b, c). d(c, b). 
d(d, e). d(e, d). 
d(c, d). d(d, c). 
d(e, f). d(f, e). 
d(g, e). d(e, g). 

Now for finding the telephone. Consider the goal hasphone(X) which succeeds if 
room X has a telephone. If we want to say that room g has a telephone, we simply 
write our database with 

hasphone(g). 

in it. Supposing we start at room a, one possible question we ask to find the path to 
the telephone is: 

?- go(a, X, []), hasphone(X). 
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This question is a "generate and test", which finds possible rooms, then checks them 
for a telephone. Another way is to satisfy hasphone(X) first, then see whether we can 
go from a to X: 

?- hasphone(X), go(a, X, []). 

This method is more efficient, but it implies that we "know" where the telephone is 
before we have begun the search. 

Initialising the third argument to the empty list means that we start with a clean 
piece of paper. This can be changed to provide variety. The question, "Find the tele-
phone without entering rooms d and f ' would be expressed in Prolog as 

?- hasphone(X), go(a, X, [d,f]). 

In Section 7.9 we will describe some general graph searching procedures, including 
a program that finds the shortest path through a graph. 

Exercise 7.2: Annotate the above program so that it will print messages such as "en-
tering room Y" and "found telephone in room Y" with the appropriate room numbers 
filled in. 

Exercise 7.3: Can alternate paths be found by this program? If so, where do you put 
the "cut" goal to prevent more than one path from being found? 

Exercise 7.4: What determines the order in which rooms are searched? 

7.3 The Towers of  Hanoi 

The Towers of Hanoi is a game played with three poles and a set of discs. The discs 
are graded in diameter, and fit onto the poles by means of a hole cut through the 
centre of each disc. Initially all the discs are on the left-hand pole. The object of the 
game is to move all of the discs onto the centre pole. The right-hand pole can be used 
as a "spare" pole, a temporary resting place for discs. Each time a disc is moved from 
one pole to another, two constraints must be observed: only the top disc on a pole 
can be moved, and no disc may be placed on top of a smaller one. 

Left  Pole Centre Pole Right Pole 
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Many people who play this game never actually discover the quite simple strategy 
that will correctly play the Towers of Hanoi game with three poles and N discs. To 
save you the effort of finding it, we reveal it here: 

• The boundary condition occurs when there are no discs on the source (the left-
hand) pole. 

• Move N  — 1 discs from the source pole to the spare pole (the right-hand one), 
using the destination as a spare. Notice that this is a recursive move. 

• Move a single disc from the source pole to the destination pole. 

• Finally, move TV — 1 discs from the spare to the destination, using the source as 
the spare. 

The Prolog program that implements this strategy is defined as follows. We define 
a predicate hanoi having one argument, such that hanoi(N) means to print out the 
sequence of moves when N discs are on the source pole. Of the two move clauses, 
the first one is the boundary condition as described above, and the second clause 
implements the recursive cases. The predicate move has four arguments. The first 
argument is the number of discs to be moved. The other three are atoms that name the 
poles which are the source, destination and spare for moving the discs. The predicate 
inform uses write to print out the names of the poles that are involved in moving a 
disc. 

hanoi(N) :- move(N, left, centre, right). 

move(0, _, _ ) : - ! . 
move(N, A, B, C) :-

M is N-l, 
move(M, A, C, B), inform(A, B), move(M, C, B, A). 

inform(X, Y) :-
write([move,a,disc,from, the,X,pole,to,the,Y,pole]), 
nl. 

7.4 Parts Inventory 

In Chapter 3 we discussed a program for printing a list of parts required in con-
structing an assembly when given an inventory of parts. In the improved program 
described in this section, we shall take into account how many of each part is re-
quired, by accumulating the quantities of parts required as we descend from assem-
blies to their constituents. The improved program also handles duplicates properly: 
the collect procedure removes duplicates, while summing up the quantities of each 
part required, before the answer is printed out. 
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The structure of the inventory database is similar to that described in Chapter 
3. An assembly is represented as a list of structures of the form quant(X,Y), where X 
is the name of some part (a basic part or an assembly), and Y is the quantity of such 
parts needed. For example, the list of structures for a bicycle having two wheels and 
a frame would look like this: 

[quant(wheel,2), quant(frame,l)] • 

This can just as well be used for any list of items, such as a grocery list: 

[quant(apple,12), quant(banana,2), quant(loaf,2)] . 

We now list each predicate of the modified program, together with a description of 
its purpose. 

partlist(A): prints out a list of all of the basic parts required, and the quantities of 
each, for the construction of assembly A. 

partlist(T) :-
partsof(l, T, P), 
collect(P, Q), 
printpartlist(Q). 

partsof(N, X, P): P is a list of structures quant(Part,Num) giving the part name Part 
and the quantity Num of each required for the construction of N X's. N is an integer 
and X is an atom which is the name of some part. 

partsof(N, X, P) :- assembly(X, S), partsoflist(N, S, P). 
partsof(N, X, [quant(X,N)]) :- basicpart(X) 

partsoflist(N, S, P): P is a list of quant structures as above, required for the construc-
tion of the sum of all the members of the list S, given that N such lists are required. N 
is an integer, S is a list of quant structures. 

partsoflist(_, [], []). 
partsoflist(N, [quant(X,Num)|L], T) :-

M is N * Num, 
partsof(M, X, Xparts), 
partsoflist(N, L, Restparts), 
append(Xparts, Restparts, T). 

collect(P, A): P and A are lists of quant structures. A is a list with the same members 
as P except that there are no duplicate parts, and for any duplicates in P, the quantity 
of that part in A is the sum of all the corresponding quantities in P. We use collect 
to collect several descriptions of collections of like parts. For instance, "3 screws, 4 
cushions, and 4 screws" is collected to form "7 screws and 4 cushions". 
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collect([], []). 
collect([quant(X,N)|R], [quant(X,Ntotal)|R2]) :-

collectrest(X, N, R, 0, Ntotal), 
collect(0, R2). 

collectrest(X, M, L, 0, N): L and 0 are lists of quant structures. 0 is the list of all the 
members of L except for those which have X as their part. X is an atom which is the 
name of some part. N is the sum of all the quantities of X in list L, added to M. M is 
an integer that is used to accumulate the quantity of X's in L, and is passed down to 
each call of collectrest. At the end of the recursion, which is caught by the boundary 
condition, M is returned as N. 

collectrest(_,N, [], [], N). 
collectrest(X, N, [quant(X,Num)|Rest], Others, Ntotal) :-

i 
• , 

M is N + Num, 
collectrest(X, M, Rest, Others, Ntotal). 

collectrest(X, N, [Other|Rest], [0ther|0thers], Ntotal) :-
collectrest(X, N, Rest, Others, Ntotal). 

printpartlist(P): P is a list of quant structures, printed one structure per line of output. 
The put_char('\t') goal prints a horizontal tab motion. 

printpartlist([]). 
printpartlist([quant(X,N)|R]) :-

write(''), write(N), put_char('\f), write(X), nl, 
printpartlist(R). 

Finally, append(A, B, C), which is used in the definition of partsoflist, is the predicate 
whose definition we have seen several times before. 

7.5 List Processing 

In this section we shall describe some basic predicates that are useful for manipulat-
ing lists. Because Prolog makes arbitrary data structures available to you, lists may 
not take on the omnipresent r61e that they do in other programming languages such 
as LISP and POP-2. Whether or not your programs will make use of lists, it is always 
important to understand how the predicates defined in this section work, because they 
employ principles that can be applied to manipulating any kind of data structure. 

Finding  the last  element of  a list:  The goal last(X, L) succeeds if element X is the last 
element of list L. The boundary condition is when there is only one element in L. The 
first rule checks for this. The usual kind of recursive case forms the second rule. 
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last(X, [X]). 
last(X, [_|Y]) :- last(X, Y). 

?- last(X, [talk,of,the,town]). 
X  = town 

Checking  for  consecutive elements:  The goal nextto(X, Y, L) succeeds if elements X 
and Y are consecutive elements of list L. Due to the way variables work, either X, or 
Y, or both, could be uninstantiated when an attempt is made to satisfy the goal. The 
first clause, which checks for the boundary condition, must also assume that there 
may be more elements in the list after X and Y. This is why the anonymous variable 
appears, holding down the tail of the list. 

nextto(X, Y, [X,Y|J). 
nextto(X, Y, [ JZ]) :- nextto(X, Y, Z). 

Appending  lists:  We have seen this example before in Section 3.6. The goal ap-
pend(X, Y, Z) succeeds when Z is a list constructed by appending Y to the end of X. 
For example, 

?- append([a,b,c], [d,e,f], Q). 
Q=[a,b,c,d,e,f] 

It is defined as follows: 

append([], L, L). 
append([X|Ll], L2, [X|L3]) :- append(Ll, L2, L3). 

The boundary condition occurs when the first argument is the empty list. This is 
because appending the empty list to a list does not change the list. Furthermore, we 
will gradually approach the boundary condition because each recursion of append 
removes an element from the head of the first argument. 

Notice that any two of the arguments of append can be instantiated, and append 
will instantiate the third argument to the appropriate result. This property is true of 
many of the predicates defined in this chapter. Because of the flexibility of append, 
we can actually define several other predicates in terms of it: 

last(El, List) :- append(_, [El], List). 
next_to(Ell, E12, List) :- append(_, [Ell,El2|J, List). 
member(El, List) :- append(_, [El|_], List). 

Reversing a list:  The goal rev(L, M) succeeds if the result of reversing the order of 
elements in list L is list M. The program uses a standard technique, where we reverse 
a list by appending its head to the reverse of its tail. And, what better way to reverse 
the tail than to use rev itself! The boundary condition is when the first argument is 
reduced to the empty list, in which case the result is also the empty list. 
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rev([], []). 
rev([H|T], L) :- rev(T, Z), append(Z, [H], L). 

Notice that we have enclosed H in square brackets in the second argument of append. 
This is because H was selected as the head of the first argument, and the head of a 
list is not necessarily a list. By convention, the tail of a list is always a list. 

For a more efficient implementation of rev, we can incorporate the appending 
into the clauses for rev: 

rev2(Ll, L2) :- revzap(Ll, [], L2). 
revzap([X|L], L2, L3) :-

revzap(L, [X|L2], L3). revzapQ], L, L). 

The second argument of revzap is used to hold "the answer so far", in other words, an 
accumulator, as introduced in Section 3.7. Whenever a new piece (X) of the answer is 
discovered, the accumulator passed to the rest of the program is the old accumulator 
combined with the new piece X. At the end, the last accumulator is passed back to be 
the answer in the original goal. 

Deleting  one element:  The goal efface(X, Y, Z) removes the first occurrence of ele-
ment X from list Y, giving a new effaced list Z. If there is no such element X in the 
list Y, the goal fails. The boundary condition is when we have found the element. 
Otherwise, we recur on the tail of Y. 

efface(A, [A|L], L) :- !. 
efface(A, [B|L], [B|M]) :- efface(A, L, M). 

It is easy to add a clause so that the predicate does not fail when the second argument 
becomes reduced to the empty list. The new clause, which recognises a new boundary 
condition, is 

efface(_, [], []). 

Deleting  all  occurrences of  an element:  The goal delete(X, LI, L2) constructs a list 
L2 by deleting all the elements X from list LI. The boundary condition is when LI 
is the empty list, meaning that we have recurred down the entire length of the list. 
Otherwise, if X is in the list, then the result is the tail of the list, except that we delete 
from that as well. The final case is if we have seen something other than X in the 
second argument: we simply recur. 

delete(_, [], []). 
delete(X, [X|L], M) :- !, delete(X, L, M). 
delete(X, [Y|L1], [Y|L2]) :- delete(X, LI, L2). 

Substitution:  This is similar to delete, except instead of deleting a desired element, 
we substitute some other element in its place. The goal subst(X, L, A, M) will con-
struct a new list M made up from elements of list L, except that any occurrences of X 
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will be replaced by A. There are three cases. The first one is the boundary condition, 
exactly as for delete. The second one is in case an X is found in the second argument, 
and the third is in case something other than X is found. 

SUbst(_, [], []). 
subst(X, [X|L], A, [A|M]) :- !, subst(X, L, A, M). 
subst(X, [Y|L], A, [Y|M]) :- subst(X, L, A, M). 

Sublisf.  List X is a sublist of list Y if every item in X also appears in Y, consecutively, 
and in the same order. The following goal would succeed: 

sublist([of,the,club], [meetings,of,the,club,will,be,held]). 

The sublist program requires two predicates: one to find a matching first element, and 
one to ensure that the remainder of the first argument matches element-for-element 
with the remainder of the second argument: 

sublist([X|L], [X|M]) :- prefix(L, M), !. 
sublist(L, [JM]) :- sublist(L, M). 

prefix([], J . 
prefix([X|L], [X|M]) :- prefix(L, M). 

Removing duplicates:  The predicate remdup runs through a list of any elements, and 
makes a new list. Although duplicate elements may exist in the input, we want the 
output list to contain at most one of each element. The goal remdup(L, M) succeeds 
if L is the input list, and M is a list of the elements appearing in L without duplication. 
The definition uses an auxiliary predicate dupacc in which the accumulator (see Sec-
tion 3.7) is the second argument, initialised to the empty list. We also use predicate 
member (from Section 3.3). 

remdup(L, M) :- dupacc(L, [], M). 

dupacc([], A, A). 
dupacc([H|T], A, L) :- member(H, A), !, dupacc(T, A, L). 
dupacc([H|T], A, L) :- dupacc(T, [H|A], L). 

Predicate dupacc has three clauses. The boundary condition states that, when the in-
put list is empty, the result will be whatever we have accumulated so far. The second 
clause checks whether the next element of the list is a member of the accumulated 
list. If it is, we simply recur on the tail, making no change to the accumulator. Other-
wise, using the next clause, we recur on the tail of the input list, with an accumulator 
that has the new element (H) added. 

Mapping:  A powerful technique is the ability to convert one list into another list by 
applying some function to each element of the first list, using the successive results 
as the successive members of the second list. Our program in Chapter 3 for changing 
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one sentence into another is an example of mapping. We say that we are "mapping 
one sentence into another". 

Mapping is so useful that it justifies a section of its own. Furthermore, because 
lists in Prolog are simply special cases of structures, we will postpone discussion of 
mapping lists until Section 7.12. Mapping appears in other guises also. Section 7.11, 
on symbolic differentiation, describes a way to map arithmetic expression onto other 
ones. 

7.6 Representing and Manipulating Sets 

The set is one of the most important data structures used in Mathematics, and op-
erations with sets find applications in computer programming as well. A set is a 
collection of elements, rather like a list, but it does not make sense to ask where or 
how many times something is an element of a set. Thus, the set {1,2,3} is the same 
as the set {2,3,1}, because all that matters is whether a given item is an element of 
the set or not. Sets may also have other sets as members. The most fundamental op-
eration on a set is to determine whether some element is a member of some given 
set. 

It should come as no surprise that a convenient representation for sets is as 
lists. A list can contain arbitrary elements including other lists, and it is possible to 
define a membership predicate over lists. However, when we represent a set as a list, 
we will arrange that the list only has one element for each object that belongs to 
the set. Dealing with lists without duplicated elements simplifies some operations 
such as removing elements. So we will deal only with lists without duplicates. The 
predicates described in this section expect and maintain this property. 

It is usual to define the following operations over sets. We shall include the 
usual mathematical notation for those who are accustomed to it: 

Set  membership: X € Y 
X is a member of some set Y if X is one of the elements of Y. 
Example: a € {c,a,t} 

Subset:  X C Y 
Set X is a subset of set Y if every element of X is also an element of Y. Y may contain 
some elements that X does not. 
Example: {x,r,u} C {p,q,r,s,t,u,v,w,x,y,z} 

Intersection:  X n Y 
The intersection of sets X and Y is the set containing those elements which are 
members of X and which are members of Y. 
Example: {r,a,p,i,d} n {p,i,c,t,u,r,e} = {r,i,p} 
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Union:  X U Y 
The union of sets X and Y is the set consisting of members from X, or Y, or both. 
Example: {a,b,c} U {c,d,e} = {a,b,c,d,e} 

These are the basic operations that are normally used to manipulate sets. We can now 
write Prolog programs to implement each one. The first basic operation, membership, 
is the same member predicate that we have seen several times before. However, the 
definition of member that we use does not contain the "cut" goal in the boundary 
case so that we can generate successive elements of the list by backtracking. 

member(X, [X|_]). 
member(X, [_|Y]) :- member(X, Y). 

Next, a predicate subset for which subset(X, Y) will succeed if X is a subset of Y. The 
first clause in the definition embodies the mathematical notion that the empty set is a 
subset of every set. In Prolog, this notion turns into a way of checking the boundary 
condition on the first argument, since we recur on its tail. 

subset([], Y). 
subset([A|X], Y) :- member(A, Y), subset(X, Y). 

Next, the most complicated example, intersection. The goal intersection(X, Y,Z) will 
succeed if the intersection of X and Y is Z. Here is where we have to assume that the 
lists contain no duplicated elements. 

intersection^], X, []). 
intersection([X|R], Y, [X|Z]) :-

member(X, Y), 
i 
V 

intersection^, Y, Z). 
intersection([X|R], Y, Z) :- intersection^, Y, Z). 

Finally, union. The goal union(X, Y, Z) will succeed if the union of X and Y is Z. 
Notice that union looks rather like an arranged marriage between intersection and 
append: 

union([], X, X). 
union([X|R], Y, Z) :- member(X, Y), !, union(R, Y, Z). 
union([X|R], Y, [X|Z]) :- union(R, Y, Z). 

This completes our repertoire of set-processing predicates. Although sets may not 
feature in the kind of programming you intend to do, it is worthwhile to study these 
examples to obtain a clear understanding of how you can make recursion and back-
tracking work for you. 
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7.7 Sorting 

Sometimes it is helpful to sort a list of elements into order. If the elements of the 
list are integers, we can use the "<" predicate to decide whether two integers are in 
order. The list [1/2,3] is sorted into order because the predicate "<" succeeds for 
each consecutive pair of integers in the list. If the elements are atoms, we can use 
"@=<" as discussed in Section 7.1. The list [alpha, beta, gamma] is sorted into 
order because the predicate "@=<" succeeds for each consecutive pair of atoms in 
the list. 

Computer scientists have developed many techniques for sorting a list into order 
when given some predicate that tells us whether consecutive elements are in order. 
We will show Prolog programs for four such sorting methods: naive sort, insertion 
sort, bubble sort, and Quicksort. Each program will use a predicate order which can 
be defined by using "<" or "@<" or any other predicate you desire, depending on 
what kind of structure you are sorting. We assume that the goal order(X,Y) will suc-
ceed if objects X and Y are in the desired order, that is, if X is less than Y in some 
sense. 

One way of sorting objects into ascending order is first to generate some permu-
tation of the objects, and then test to see if the resulting list of objects is in ascending 
order. If they are not, then we generate some other permutation of the objects. This 
method is known as the naive sort: 

sort(Ll, L2) :- permutation(Ll, L2), sorted(L2), !. 

permutation([], []). 
permutation(L, [H|T]) :-

append(V, [H|U], L), 
append(V, U, W), 
permutation(W, T). 

sorted([]). 
sorted([X]). 
sorted([X, Y|L]) :- order(X, Y), sorted([Y|L]). 

The predicate append is defined numerous times previously in this book. In this 
program, the predicates have the following meanings: sort(Ll, L2) means that L2 is 
the list which is the sorted version of LI; permutation(Ll, L2) means that L2 is a list 
consisting of all the elements of list LI in one of the many possible orders — this 
is a generator  in the terminology of Section 4.3. Predicate sorted(L) means that the 
numbers in the list are sorted into increasing order — this is a tester. 

The goal of finding the sorted version of a list consists of generating a permu-
tation of the elements and testing to see if it is sorted. If it is, we have found the 
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unique answer. Otherwise we must carry on generating permutations. This is not a 
very efficient way to sort a list. 

In the insertion sort  method, each item of the list is considered one at a time, 
and each item is inserted into a new list in the appropriate position. If you play card 
games, then you probably use this method when you sort your hand, picking up one 
card at a time. The goal insort(X, Y) succeeds when list Y is a sorted version of list 
X. Each element is removed from the head of the list and passed to insortx, which 
inserts the element in the list and returns the modified list: 

insort([], []). 
insort([X|L], M) :- insort(L, N), insortx(X, N, M). 

insortx(X, [A|L], [A|M]) :-
order(A, X), !, insortx(X, L, M). 

insortx(X, L, [X|L]). 

A convenient way to obtain a more general-purpose insertion sorting predicate is to 
use the ordering predicate as an argument of insort. Here we add a third argument 
as the ordering procedure, and use the "=.." predicate as discussed in Chapter 6 to 
construct a goal which is then called: 

insort([], [], _). 
insort([X|L], M, 0) :- insort(L, N, 0), insortx(X, N, M, 0). 

insortx(X, [A|L], [A|M], 0) :-
P=.. [0, A, X], 
call(P), !, 
insortx(X, L, M, 0). 

insortx(X, L, [X|L], 0). 

Then we can use goals such as insort(A, B, '<') and insort(A, B, '@<) without 
requiring a predicate named order. This technique can be applied to the other sorting 
algorithms in this section. 

The bubble sort  checks the list to see if two adjacent elements are out of order. 
If so, then they are exchanged. This process is repeated until no more exchanges are 
necessary. Whereas the insertion sort makes elements "sink" down to the appropri-
ate level, the bubble sort is so named because it makes elements "float" up to the 
appropriate level. 

busort(L, S) :-
append(X, [A,B|Y], L), 
order(B, A), !, 
append(X, [B,A|Y], M), 
busort(M, S). 

busort(L, L). 
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append([], L, L). 
append([H|T], L, [H|V]) :- append(T, L, V). 

Notice that the append predicate is the same as we have seen before, and that in this 
example it must be able to backtrack on each solution found. Hence, a "cut" does not 
appear in the first clause of append. This is another example of what some people call 
"non-deterministic" programming, because we are using append to select arbitrary 
members of list L. It is the responsibility of append to ensure that the set of selections 
from L is complete. 

Quicksort  is a more sophisticated sorting method due to C.A.R. Hoare. To im-
plement Quicksort in Prolog we first need to split a list consisting of head H and tail 
T into two lists L and M such that: 

• all the elements of L are less than H; 

• all the elements of M are greater than or equal to H, and 

• the order of elements within L and M is the same as in [H |T]. 

Once we have split the list, we Quicksort each list (this is the recursive part), and 
append M onto the back of L. The goal split(H, T, L, M) partitions the list [H|T] into L 
and M as described above: 

split(H, [A|X], [A|Y], Z) :- order(A, H), split(H, X, Y, Z). 
split(H, [A|X], Y, [A|Z]) :- \+(order(A, H)), split(H, X, Y, I ) . 
split(_, [], [], []). 

The Quicksort program is now: 

quisort([], []). 
quisort([H|T], S) :-

split(H, T, A, B), 
quisort(A, Al), 
quisort(B, Bl), 
append(Al, [H|B1], S). 

It is also possible to build the append into the sorting program, giving the more 
efficient program: 

quisortx([], X, X). 
quisortx([H|T], S, X) :-

split(H, T, A, B), 
quisortx(A, S, [H|Y]>, 
quisortx(B, Y, X). 

In this case the third argument is used as a temporary work area, and it is initialised 
to the empty list when quisortx is used as a goal. 
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More information on sorting can be found in Volume 3 (Sorting and Search-
ing) of The  Art of  Computer  Programming  by Donald Knuth, published in 1973 by 
Addison-Wesley. Hoare's Quicksort method is described in his paper in Computer 
Journal  5 (1962), pages 10 to 15. 

Exercise 7.5: Verify that, when given a known list as LI, permutation(Ll,L2) will 
generate all the permutations of L l (once each) as the alternative values of L2. In 
what order are the solutions generated? 

Exercise 7.6: Quicksort works best on large lists because it converges to a solu-
tion more rapidly. However, the amount of work done at each recurrence of quisort 
is more than the other methods, because it must use split. So, perhaps when sorting 
small lists, then quisort's recursive calls could be replaced by calls to some other sort-
ing method, say insertion sort. Develop a "hybrid" sorting program that uses Quick-
sort to sort the large partitions (the lists made by the split predicate), but switches to 
another sorting method when the size of the partition becomes sufficiently low that 
the insertion sort can be used. Hint: since split has to look at every element of the list 
anyway, it can be used to compute the length of a list. 

7.8 Using the Database 

In all of the programs discussed so far, we have used the database only to store facts 
and rules that define predicates. It is possible to use the database to store ordinary 
structures, such as the structures that are constructed as a program executes. Until 
now, we have been passing such structures from one predicate to another by us-
ing arguments. However, one reason for storing information in the database, rather 
than passing it around through arguments, is that sometimes a piece of information 
may be needed by many parts of a program, and that the alternative would involve 
something like one or two extra arguments to most predicates. Another reason is to 
retain information over backtracking. In this section we describe three predicates that 
take advantage of the database for storing structures that have a lifetime that extends 
further than is possible by using variables. The three predicates are random, which 
generates a pseudo-randomly chosen integer each time it is called; findall, which 
generates a list of all the structures that make a given predicate succeed, and gensym, 
which generates atoms with unique names. 

7.8.1 Random 

The goal random(R, N) instantiates N to a randomly chosen integer between 1 and R. 
The method of choosing a random integer is to use a congruential method, using a 
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"seed" that is initialised to an arbitrary integer. Each time a random integer is desired, 
the answer is computed using the existing seed, and a new seed is determined, and 
stored until the next time that a random integer is desired. We use the database to 
store the seed between calls to random. After the seed is used, we retract the old 
information about its value. Then, the new seed is computed, and new information is 
asserted. The initial seed is simply a fact in the database, with the dynamic predicate 
seed having one argument, the integer value of the seed. 

:- dynamic seed/1. 

seed(13). 

random(R, N) :-
seed(S), 
N is (S mod R) + 1, 
retract(seed(S)), 
NewSeed is (125 * S + 1) mod 4096, 
asserta(seed(NewSeed)), !. 

We can take advantage of the semantics of retract to simplify the definition of random 
by getting the seed and retracting it at the same time, in the following way: 

random(R,N) :-
retract(seed(S)), 
N is (S mod R)+l, 
NewSeed is (125*S+1) mod 4096, 
asserta(seed(NewSeed)), !. 

To print out a lot of random numbers between 1 and 10, but stopping when 5 has 
been generated, all that is required is: 

?- repeat, random(10, X), write(X), nl, X = 5. 

We should warn that this is not a particularly good algorithm for generating a random 
sequence; the purpose here is to demonstrate a problem involving saving the state of 
a computation. 

7.8.2 Gensym 

The predicate gensym provides a way of generating new Prolog atoms. If we have a 
program that is assimilating information about the world (perhaps by understanding 
English sentences about it), we have the problem of dealing with the situation when a 
new object is discovered. A natural way to represent an object is with a Prolog atom. 
If the object has not been encounted before, we must ensure that the atom we assign 
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to it does not accidentally coincide with the one representing some other object. 
That is, we require the ability to generate a new atom. We might as well require that 
the atom have some mnemonic significance as well, so that we can understand the 
program's output. If we were representing students, say, a reasonable solution would 
be to name the first student studentl, the second student2, the third student3, and so 
on. Then if in addition we had to represent teachers, we could pick atoms teacherl, 
teacher2, teacher3 and so on to represent them. 

The purpose of gensym is to generate new atoms from given roots (like student 
and teacher). For each root, it remembers what number was last used, so that next 
time it is asked to generate an atom from that root it can guarantee that it will be 
different from the ones generated before. Thus, the first time the question: 

?- gensym (student, X). 

is asked, the answer is 

X  = studentl 

The next time, the answer will be X  = student2  and so on. Note that these different 
solutions are not generated on backtracking (gensym (X, Y) can never be resatisfied), 
but are generated by subsequent goals involving the predicate. 

The definition of gensym makes use of the subsidiary dynamic predicate cur-
rent_num. It is by putting facts about current_num into the database (and also by 
removing facts that are no longer applicable) that gensym keeps track of which num-
ber to use next with a given root. The fact current_num(Root, Num) means that the 
last number used with root Root was Num. That is, the last atom generated for this 
root had the characters derived from Root followed by those derived from Num. The 
normal course of action when Prolog tries to satisfy a gensym goal is that the last 
current_num fact about the given root is removed from the database, 1 is added to 
the number involved and a new current_num fact is added to replace it. Meanwhile, 
the new number is used as the basis for generating an atom. It is very convenient to 
keep the current_num information in the database. The only alternative is to have ev-
ery predicate directly or indirectly involved in a gensym carry the information about 
current numbers in extra arguments. Here is the program: 

:- dynamic current_num/2. 

gensym(Root, Atom) :-
get_num(Root, Num), 
atom_chars(Root, Namel), 
number_chars(Num, Name2), 
append(Namel, Name2, Name), 
atom_chars(Atom, Name). 
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get_num(Root,Num) :-
retract(current_num(Root, Numl)), !, 
Num is Numl + 1, 
asserta(current_num(Root, Num)). 

get_num(Root, 1) :- asserta(current_num(Root, 1)). 

The predicate get_num is used to retrieve the next number to be used with the given 
root. If there is a number already associated with the root (first clause), it returns 
the next number and updates the database. If there is no number so far associated 
with the root (second clause), it starts off the record with 1. All gensym has to do is 
reduce the root and number to characters, using the appropriate built-in predicates, 
concatenate the lists and make an atom whose characters are the resulting list. 

7.8.3 Findall 

In some applications it is helpful to determine all of the terms that satisfy some 
predicate. For example, we might want to make a list of all of the children of Adam 
and Eve using the parents predicate of Chapter 1 (and assuming we had a database 
of parents facts). For this we could use a predicate called findall, which is already 
provided in any Prolog implementation conforming to the standard. Standard Prolog 
also contains a similar predicate setof. Because findall is a good illustration of using 
the database in Prolog, we will show how findall might be defined in Prolog. 

The goal findall(X, 6, L) constructs a list L consisting of all of the objects X such 
that the goal G is satisfied. It is assumed that G is instantiated to an ordinary term, 
except that findall treats it as a Prolog goal. Also, X will appear somewhere inside G. 
So, G can be instantiated to a Prolog goal of arbitrary complexity. Here is how we 
could find out all the children of Adam and Eve: 

?- findall(X, parents(X,eve,adam), L). 

The variable L would be instantiated to a list of all of the X's that satisfy par-
ents^,eve,adam). All that findall needs to do is to repeatedly attempt to satisfy its 
second argument, and each time it succeeds it should take whatever X is instantiated 
to, and put it in the database. When the attempt to satisfy the second argument fi-
nally fails, then we go back and collect all of the X's that we put into the database. 
The resulting list is returned as the third argument. If the attempt to satisfy the second 
argument never succeeds, then the third argument will be instantiated to the empty 
list. To put items into the database, we use the built-in asserta predicate, which in-
serts terms before  those that have the same functor. To record that an item X has been 
found, we add a fact to the database about the dynamic predicate found. The Prolog 
clauses for findall are as follows: 
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:- dynamic found/1. 

findall(X, G, J :-

asserta(found(mark)), 

ca 11(G), 

asserta(found(result(X))), 

fail. 

findall( L) :- collect_found([], M), !, L = M. 

collect_found(S, L) :-
getnext(X), 
i 

collect_found([X|S], L). 

collect_found(L, L). 

getnext(Y) :- retract(found(X)), !, X = result(Y). 

The findall predicate first adds a special marker fact for found, in the form of a fact 
with argument mark. This special marker serves to mark the place in the database 
before which all of the X's satisfying G in this use of findall will be asserted. Every 
other argument of found will be of the form result(X), where X is a found value. Next, 
an attempt is made to satisfy G, and each time it succeeds, then found(result(X)) 
is inserted in the database. The fail forces backtracking to occur, attempting to re-
satisfy G (asserta succeeds at most once). When G finally fails, backtracking will 
force the first findall clause to fail, and an attempt will be made to satisfy the second 
one. The second clause calls collect_found to retract each found structure back out of 
the database, inserting its component in a list. The collect_found predicate puts each 
element into a variable that holds the "list so far", the trick revealed when explaining 
gensym above. As soon as the component mark is encountered (or in fact anything 
not of the form result(X)), getnext fails, so the second clause of collect_found is 
satisfied, which shares its second argument (the result) with its first (the collected 
list). 

Notice that the presence of the found(mark) in the database indicates a particular 
use of findall. This means that findall can be used recursively. Any occurrence of 
findall used within the second argument of another findall will be treated correctly. 

In Section 7.9 we develop a program that uses findall to construct a list of all of 
the descendents of a node in a graph. This is used to implement a breadth-first graph 
searching program. 

Exercise 7.7: Write a Prolog program that defines the predicate random_pick, for 
which the goal random_pick(L, E) instantiates E to a randomly chosen element of list 
L. Hint: Use the random number generator and define a predicate that returns the Arth 
element of a list. 
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Exercise 7.8: Given the goal findall(X, G, L), what happens when there are uninstan-
tiated variables not sharing with X in G? 

7.9 Searching Graphs 

Graphs are networks of nodes connected by arcs. For example, a map can be seen 
as a graph, in which the nodes are villages and the arcs are roads connecting the 
villages. If you want to find the shortest journey between two villages, you have to 
solve the problem of finding the shortest path between nodes of a graph. 

The easiest way to represent a graph is by using a database of facts to represent 
the arcs between nodes of a graph. For example, the graph consisting of the following 
pattern of nodes and arcs can be represented as facts as shown in Figure 7.2. 

a(g,h). 
a(g.d). 

a(e,d). 

a(h,f). 

a(e,f). 
a(a,e). 
a(a,b). 
a(b,f). 
a(b,c). 

a(f,c). 

Notice that the predicate name to represent an arc is a, and there is also a node named 
a. There should be no confusion, because the predicate a is always accompanied by 
two arguments, while the node named a is a constant. So to go from node a to node 
c, we could take the path a,e,f,c, or one of several other possible paths indicated by 
the arrowheads on the arcs. Thus the predicate a is interpreted such that a(X,Y) means 
that there is an arc from X to Y, which by itself does not imply an arc from Y to X. 

The easiest program for searching a graph represented as above is the following: 

go(X, X). 
go(X, Y) :- a(X, Z), go(Z, Y). 

This program is more strict that the one presented in Section 7.2 because paths are 
found only in the direction of the arcs. As before, it is possible for this program to 
get into a loop. We could simply add the arc 



1 Chapter 7 More Example Programs 

a(d, a). 

to the above definition of the graph, obtaining a cyclic graph. This is why, as before, 
we should use list T to keep a "trail" of the nodes we have visited at any particular 
recurrence of the predicate: 

go(X, X, T). 

go(X, Y, T) :- a(X, Z), legal(Z, T), go(Z, Y, [Z|T]). 

legal(X, []). 
legal(X, [H|T]) :- \+ X = H, legal(X, T). 

Note that the predicate legal is nothing more than a "non-membership" test. 
This program does what is called a "depth first" search, because at first only 

one of the neighbours of a node in the graph is considered. The other neighbours are 
ignored until later failure causes backtracking to the node so another neighbour can 
be considered. 

Now let's assume that the graph is undirected  — that is, all arcs are two-way. 
Then it is necessary to use the arc information to propose arcs in either direction. 
This is the same assumption as we made in Section 7.2 when searching the maze. 
This would result in the program: 

go(X, X, T). 
go(X, Y, T) :-

(a(X, Z) ; a(Z, X)), 
legal(Z, T), go(Z, Y, [Z|T]). 

Let's look now at a case of graph searching that we might find useful in practice. 
What if we have to plan a route for driving from one town to another? We might 
have a database of information about which roads go between which towns in the 
North of England, and how long they are: 

a(newcastle, Carlisle, 58). 
a(carlisle, penrith, 23). 
a(darlington, newcastle, 40). 
a(penrith, dartington, 52). 
a(workington, Carlisle, 33). 
a(workington, penrith, 39). 

For the moment we can ignore the distances, and define a new predicate a as follows: 

a(X, Y) :- a(X, Y, Z). 

The two predicates are not confusable, because each is followed by the number of 
arguments that relates to the right one. Given this definition of a, our existing graph 
searching procedure go will find possible ways that we can drive from any place in 
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the graph to any other. However, go has a deficiency: it does not tell us which route it 
has found when it finally succeeds. At the very least we might expect go to build up 
a list of the places to be visited in the correct order. Moreover, the program already 
has at hand the "trail", but in the reverse order to what we expect. We can use rev, 
defined in Section 7.5, to turn it the right way round again. Here is a new definition 
of go, which returns successful routes by means of a third argument: 

go(Start, Dest, Route) :-
goO(Start, Dest, [], R), 
rev(R, Route). 

goO(X, X, T, [X|T]). 
goO(Place, Y, T, R) :-

legalnode(Place, T, Next), 
goO(Next, Y, [Place|T], R). 

legalnode(X, Trail, Y) :-
(a(X, Y) ; a(Y, X)), legal(Y, Trail). 

Notice that we have used legalnode to represent the notion of what is a legal node to 
proceed to from another node, and that legal is defined as before. Here is an example 
of this program at work, finding a route from Darlington to Workington: 

?- go(darlington, Workington, X). 
X=[darlington,newcastle,Carlisle,penrith,  workington] 

Not the best route, perhaps, but it will find other routes if we ask for alternatives by 
backtracking. 

This program has various deficiencies. The program is not fully in control of 
which path it should investigate next, because it is never in a position to survey the 
complete set of possibilities. The options that still remain to be considered are im-
plicit in the backtracking structure of Prolog, rather than being explicit in a structure 
that the program can examine. Here is a revised version, which is more general-
purpose. We shall see that simple modifications to this program can result in a variety 
of search behaviours. 

go(Start, Dest, Route) :-
gol([[Start]], Dest, R), 
rev(R, Route). 

gol([First|Rest], Dest, First) :- First = [Dest|J. 
gol([[Last|Trail]|Others], Dest, Route) :-

findall([Z, Last[Trail], legalnode(Last, Trail, Z), List), 
append(List, Others, NewRoutes), 
gol(NewRoutes, Dest, Route). 
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Predicate legalnode is defined as before. Predicate gol is given a list of routes under 
consideration together with the destination, and it returns the successful route in its 
last argument. The list of routes under consideration is simply all the paths that we 
have followed so far from the starting place. We hope we can extend one of these to 
make a path that gets to the destination. The paths are represented as lists of places 
in reverse order, so they function as "trails" as well. 

When we start off, there is only one possible path we might want to extend. This 
is simply the path that starts at the starting place and doesn't go any further. If we 
start at Darlington, it will be [darlington]. If we now investigate paths going from 
Darlington to adjacent towns, there are two possible paths: [newcastle, darlington], 
and [penrith, darlington]. Since Workington is not on any of these, we must now 
decide which of these to extend. If we decide to look at the first one, we find that 
there is only one legal node adjacent to Newcastle (the last town on that path). So now 
we have a new path in addition to the Darlington-Penrith path: [Carlisle, newcastle, 
darlington]. 

Our searcher, gol, keeps track of a whole list of paths that might be worth 
following. How does it decide which one to look at first? It simply chooses the first 
one. It then finds all possible ways to extend that path by one town at a time (using 
findall to build a list of all such extended paths) and puts them on the front  of the list, 
to be considered next time around. 

The resulting behaviour is that gol will try all possible ways of extending the 
first path before it ever considers an alternative. This makes the strategy a version 
of depth first search. Incidentally, gol considers routes in exactly the same order as 
goO. You might like to work out exactly why this is. 

If we are interested in the shortest route from Darlington to Workington, the 
existing program does not seem to be much good. The first solution it finds is not the 
shortest one: indeed it is the longest one (in this case). We must alter the program so 
that it generates routes in order of length. If we change it so that it always extends 
shorter paths before considering longer paths, then it is bound to find the shortest 
path first (if we measure the length of a path by the number of towns on it). The 
resulting program will then perform a breadth  first  search. All we need to do is to 
put new alternatives on the end  of the overall list of possibilities, instead of at the 
beginning as in the last example. We simply amend the second clause of gol to read: 

gol([[Last|TraiI] |Others], Dest, Route) :-
findall([Z,Last|Trail], legalnode(Last, Trail, Z), List), 
append(Others, List, NewRoutes), 
gol(NewRoutes, Dest, Route). 

The amended program now finds possible routes from Darlington to Workington in 
the following order: 

[darlington,penrith, workington] 
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[darlington, newcastle,Carlisle, workington] 
[darlington,penrith,Carlisle, workington] 
[darlington,newcastle,Carlisle,penrith, workington] 

We can simplify this program considerably if we are certain that there is always an 
answer to a query, and if we want only the first solution. Under such circumstances, 
we no longer need to check for loops in legalnode. See if you can work out why this 
is. 

Unfortunately, the route that involves the smallest number of towns may not 
necessarily be the route with the least mileage. We have so far ignored the mileage 
information in our graph. If we add a few fictitious towns to our graph to obtain: 

a(newcastle, Carlisle, 58). 
a(carlisle, penrith, 23). 
a(smallville, metropolis, 15). 
a(penrith, darlington, 52). 
a(smallville, ambridge, 10). 
a(workington, Carlisle, 33). 
a(workington, ambridge, 5). 
a(workington, penrith, 39). 
a(darlington, metropolis, 25). 

then the route of shortest mileage is actually generated last, because it involves travel 
through so many towns. What we need to do is to keep, with each path that may be 
extended, a record of how long that path is so far. We then always extend the path 
with the shortest mileage. This is called a best first  search. 

We shall now represent a path on the list of alternative paths as a structure of 
the form r(M, P), where M is the total length of the path in miles, and P is the list of 
places visited. Our modified predicate go3 now finds the shortest of the paths on its 
list of alternatives. The predicate shortest returns the shortest path on the list, and 
also returns the remaining paths on the list. Given the shortest path so far, predicate 
proceed finds all the legal extensions to the path, and adds them to the list. This in 
turn needs a new version of legalnode, which adds the distance to the next town to 
the distance computed so far. The entire program is: 

go3(Routes, Dest, Route) :-
shortest(Routes, Shortest, RestRoutes), 
proceed (Shortest, Dest, RestRoutes, Route). 

proceed(r(Dist, Route), Dest,Route) :-
Route = [Dest|J. 

proceed(r(Dist, [Last|Trail]), Dest, Routes, Route) :-
findall( 

r(Dl, [Z,Last|Trail]), 



1 Chapter 7 More Example Programs 

legalnode(Last, Trail, Z, Dist, Dl), 
List), 

append(List, Routes, NewRoutes), 
go3(NewRoutes, Dest, Route). 

shortest([Route|Routes], Shortest, [Route|Rest]) 
shortest(Routes, Shortest, Rest), 
shorter(Shortest, Route), 

shortest([Route|Rest], Route, Rest). 
shorter(r(Ml,_), r(M2,J) :- Ml < M2. 

legalnode(X, Trail, Y, Dist, NewDist) :-
(a(X, Y, Z) ; a(Y, X, Z)), 
legal(Y, Trail), 
NewDist is Dist + Z. 

To use this program, we attempt to satisfy predicate go, defined as 

go(Start, Dest, Route) :-
go3([r(0,[Start])]/ Dest, R), 
rev(R, Route). 

This new program successfully generates possible routes in the order of their actual 
mileage. You might like to alter it to tell how long the various routes are when it 
gives the answers. 

We have hardly begun to look at the possible ways of organising graph search-
ing. Information about how to search graphs using more effective heuristics than 
"best first" is available in books on Artificial Intelligence. For example: Principles  of 
Artificial  Intelligence,  by Nils Nilsson, published in 1982 by Springer-Verlag; Artifi-
cial Intelligence,  (second edition) by Patrick Winston, published in 1984 by Addison-
Wesley and Artificial  Intelligence:  A Modern  Approach by Stuart Russell and Peter 
Norvig, published in 1995 by Prentice-Hall. 

7.10 Sift  the Two's and Sift  the Three's 

Sift  the Two's  and  sift  the Three's: 
The  Sieve of  Erastosthenes. 
When  the multiples  sublime, 
The  numbers that remain are Prime. 

Anon. 
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A prime number is a number that has no whole number divisors except 1 and itself. 
For instance, the number 5 is prime, but the number 15 is not, because it has the 
whole number 3 as a divisor. One method for generating prime numbers is called the 
Sieve of Erastosthenes. This method for sifting for primes up to the integer N  works 
as follows: 

1. Put all the numbers between 2 and N  into the "sieve". 

2. Select and remove the smallest number remaining in the sieve. 

3. Include this number in the primes. 

4. Step though the sieve, removing all multiples of this number. 

5. If the sieve is not empty, repeat steps 2 through 5. 

To translate these rules into Prolog, we define a predicate integers to generate a list 
of integers, a predicate sift to examine each element of the sieve, and a predicate 
remove to create a new sieve by removing multiples of the selected number from the 
sieve. This new sieve is passed back to sift. The predicate primes is defined such that 
the goal primes(N,L) instantiates L to the list of primes lying in the range from 2 to N 
inclusive: 

primes(Limit, Ps) :-
integers(2, Limit, Is), 
sift(Is, Ps). 

integers(Low, High, [Low|Rest]) :-
Low =< High, 
i •, 
M is Low + 1, 
integers(M, High, Rest). 

integers(_, _,[]) . 

sift([],  [])• 
sift([I|Is], [I|Ps]) :-

remove(I, Is, New), 
sift(New, Ps). 

remove(P, [], []). 
remove(P, [I|Is], [I|Nis]) :-

\+ 0 is I mod P, 
i 

remove(P, Is, Nis). 
remove(P, [I|Is], Nis) :-

0 is I mod P, 
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i • , 
remove(P, Is, Nis). 

Sometimes a better program can result from not translating the recipe too literally. 
There is actually a more direct way to find primes as follows. Goal primes(I, L, P) 
will scan the list of integers I to produce the primes P, using L as an accumulator of 
the "primes so far". Each element of I needs to be checked to see if it is divided by 
any element of L. If it is not, then it can be added to L. When the end of the list is 
encountered, the primes become the accumulated list. 

primes([], P, P). 
primes([H|T], P, Z) :-

legal(H, P), 
I 

primes(T, [H|P],Z). 
primes([H|T], P, Z) :- primes(T, P, Z). 

/* X is legal in L if X is not divided by any member of L */ 
legal(X, []). 
legal(X, [H|J) :-

0 is X mod H, 
1 
• , 

fail. 
legal(X, [ JL ] ) :- legal(X, L). 

Continuing in this arithmetical vein, here are Prolog programs for the recursive for-
mulation of Euclid's algorithms for finding the greatest common divisor and the least 
common multiple of a pair of integers. The goal gcd(I, J, K) succeeds when the great-
est common divisor of I and J is K. The goal lcm(I, J, K) succeeds when the least 
common multiple of I and J is K: 

gcd(I, 0,1) :- !. 
gcd(I, J, K) :- R is I mod J, gcd(J, R, K). 
lcm(I, J, K) :- gcd(I, J, R), K is (I * J) // R. 

Notice that due to the way of computing remainders, these predicates are not "re-
versible". Variables I and J must be instantiated in order for the predicates to work. 

Exercise 7.9: The three numbers x, y, and 2 are said to form a Pythagorean  triple  if 
the square of 2 is equal to the sum of the squares of x and y (that is, if z2 = x2 + y2). 
Write a program to generate Pythagorean triples. Define a predicate pythag such that 
asking 

?- pythag(X, Y, Z). 
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and asking for alternative solutions gives us as many different Pythagorean triples as 
we dare. Hint: Make use of predicates such as isjnteger of Chapter 4. 

7.11 Symbolic Differentiation 

In Mathematics, symbolic differentiation is an operation that converts a given arith-
metic expression into another arithmetic expression called the derivative.  Suppose U 
stands for an arithmetic expression which may contain a variable x. The derivative 
of U  with respect to x is written as and is defined recursively by applying some 
conversion rules to the expression U. Two boundary conditions appear first, and the 
arrow is read "is converted to"; U  and V  stand for expressions, and c stands for a 
constant: 

? o 
dx 
dx 
dx 
d(-U)  fdU dx  \ dx 
d(U  + V)  <EL + dV 

dx  dx  dx 
d(U  - V)  <W_dV_ 

dx  dx  dx 
d(cU)  (dUs 

dx  \ dx 
d{UV)  t u(dV\+vfdU 

dx  \dx  J  \dx 
d(U/V)  d(UV~l) 

dx  dx 

dx \dx J 
d(\ogeU)  v _ t fdU 

dx  \ dx 

This set of conversion rules is easily translated to Prolog, because we can represent 
arithmetic expressions as structures, and use operators as the functors of the struc-
tures. We can also take advantage of the pattern-matching that occurs when a goal 
matches against the head of a rule. 

Let us consider a goal d(E, X, F) which succeeds when the derivative of ex-
pression E with respect to constant X is the expression F. Although the +, -, *, and / 
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operators have built-in declarations, we shall have to declare a " A " operator, where 
XAY means xy. Operator declarations are used simply to make the syntax of expres-
sions easier to read. For example, the following questions might be asked of d after 
it is defined: 

?- d(x+l, x, X). 
X  = 1+0 

?- d(x*x-2, x, X). 
X = x*l+l*x-0 

Notice that simply transforming one expression into another using the rules does not 
necessarily render the result in a simplified form, but a simplifier can be written as a 
separate procedure (Section 7.12). The differentiation program consists of the extra 
operator declarations plus a line-by-line translation of the above conversion rules 
into Prolog clauses: 

?- op(300,yfxS). 

d(X, X, 1) :- !. 
d(C, X, 0) :- atomic(C). 
d(-U, X, -A) :- d(U, X, A). 
d(U+V, X, A+B) :- d(U, X, A), d(V, X, B). 
d(U-V, X, A-B) :- d(U, X, A), d(V, X, B). 
d(C*U, X, C*A) :- atomic(C), \+ C = X, d(U, X, A), !. 
d(U*V, X, B*U+A*V) :- d(U, X, A), d(V, X, B). 
d(U/V, X, A) :- d(U*VA(-l), X, A). 
d(UAC, X, C*UA(C-1)*W) :- atomic(C), \+ C = X, d(U, X, W). 
d(log(U), X, A*UA(-1)) :- d(U, X, A). 

Notice the two places where the cuts occur. The first cut ensures that the derivative of 
a variable with respect to itself matches only the first clause, eliminating the second 
clause as a possibility. Secondly, there are two clauses for multiplication, the first 
one dealing with a special case. If the special case succeeds, the general case must 
be eliminated as a possibility. 

As pointed out above, the solutions generated by this program are far from 
simplified. For example, any occurrence of x*l may as well be written as x and any 
occurrence of, for example x* 1+1 *x-0 may as well be written as 2 *x. The next section 
describes an algebraic simplifier that can be used to simplify arithmetic expressions 
in very much the same way as the derivatives were derived above. 
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7.12 Mapping Structures and Transforming  Trees 

If we copy a structure component-by-component to form a new structure, we say that 
we are mapping one structure into another. It is usual to make a slight modification 
to each component as we copy it, as was done when we changed one sentence into 
another sentence in Chapter 3. In that example, sometimes we wanted to copy a 
word in the sentence exactly as it appeared in the original sentence, and sometimes 
we wanted the new copy to be a changed word. We used the following program to 
map the first argument of alter into its second argument: 

alter([], []). 
alter([A|B], [C|D]):- change(A, C), alter(B, D). 

Since mapping is such a general-purpose operation, we can define a predicate maplist 
such that the goal maplist(P, L, M) succeeds by applying the predicate P to each 
element of a list L to form a new list M. We assume that P has two arguments, such 
that the first argument is the "input" element, and the second argument is the modified 
element to be inserted into M: 

maplist(_, []. []). 
maplist(P, [X|L], [Y|M]) :-

Q =.. [P,X,Y], call(Q), maplist(P, L, M). 

There are several points to note about this definition. First, the definition consists of a 
boundary condition (the first clause) and a general recursive case (the second clause). 
The second clause uses the "=.." operator, pronounced "univ", to form a goal from 
the given predicate (P), the input element (X), and the variable that P is assumed to 
instantiate to form the modified element (Y). Next, an attempt is made to satisfy Q, 
which will result in Y being instantiated, forming the head of the second argument to 
this call of maplist. Finally, the recursive call maps the tail into the tail. 

The predicate alter can be replaced by using maplist. Assuming that change is 
defined as in Chapter 3, maplist would be used as follows: 

?- maplist(change, [you,are,a,computer], Z). 
Z=  [i,  [am,  not],  a, computer] 

A simplification of maplist results in applist, which simply applies some predicate, 
assumed to have one argument, to each member of a list. No new list is created: 

applist(_, []). 
applist(P, [X|L]) :-

Q =.. [P,X], call(Q), applist(P, L). 

An example of the use of this predicate would be the following alternative definition 
of the phh predicate of Chapter 5: 
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phh(List) :- applist(write_space, List). 

write_space(X) :- write(X), spaces(l). 

Mapping is not restricted to lists, but can be defined for any kind of structure. For 
example, consider arithmetic expressions made up of functors such as * and +, each 
having two arguments. Suppose we wanted to map one expression into another, re-
moving all multiplications by 1 in the process. One way to describe this algebraic 
simplification would be to define a predicate s such that s(0p, La, Ra, Ans) means 
that for an expression consisting of an operator Op with a left argument La and right 
argument Ra, a simplified form is the expression Ans. The facts for removing multi-
plications by 1 would look like this, with two facts accounting for the commutativity 
of multiplication: 

s(*, X, 1, X). 
s(*, 1, X, X). 

So, given an expression of the form 1*X, this table of simplifications could tell us to 
map it into whatever X is. Let us see how we can use this in a program. 

To simplify an expression E using such a table of simplification rules, we need 
to first simplify the left-hand argument of E, then simplify the right-hand argument 
of E, and then see if the simplified result is in our table. If it is, we make the new 
expression whatever the table indicates. At the "leaves" of the expression tree there 
are integers or atoms, so we should use the built-in predicate atomic as a boundary 
condition to simplify leaves into themselves. As above, we can use "=.." to separate 
E into its functor and components: 

simp(E, E) :- atomic(E), !. 
simp(E, F) :-

E =.. [Op, La, Ra], 
simp(La, X), 
simp(Ra, V), 
s(0p, X, Y, F). 

So, simp maps expression E into expression F, using the facts found in a simplification 
table s. What happens if simp is presented with an operation for which no simplifica-
tion can be made? To prevent s(0p, X, Y, F) failing, we must have a "catchall" rule at 
the end of each operator's part of the simplification table. The following simplifica-
tion table includes rules for addition and multiplication, and shows the catchall rule 
for each operator included: 

s(+, X, 0, X). 
s(+, 0, X, X). 
s(+, X, Y, X+Y). /* catchall for + */ 
s(*, 0, 0). 
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s ( \ 0, 0). 
s(*, 1, X, X). 
s(*, X, 1, X). 
s(*, X, Y, X*Y). /* catchall for * */ 

With the "catchall" rules present, there is now a choice of how to simplify some ex-
pressions. For instance, given 3+0, we can either use the first fact, or we can employ 
the "catchall" for +. Because of the way the facts are ordered, Prolog will always try 
the special case rules before the catchalls. Thus the first solution to simp will always 
be a true simplification (if there is one). However, alternative solutions will not be in 
the simplest possible form. 

Another simplification used in computer-aided algebra is known as constant 
folding. The expression 3*4+a can have the constants 3 and 4 "folded" to form the 
expression 12+a. The folding rules can be added to the appropriate parts of the sim-
plification table above. The rule for addition is 

s(+, X, Y, Z) :- number(X), number(Y), Z is X+Y. 

The rules for the other arithmetic operations are similar. 
In commutative operations such as multiplication and addition, the simplifi-

cations described above may have different effects on expressions that are written 
differently but are algebraically equivalent. For example, if a folding rule is available 
for multiplication, then the simp predicate will faithfully map 2*3*a into 6*a, but 
a*2*3 or 2*a*3 will be mapped into themselves. To see why this is, think about what 
the expressions look like as trees: 

The first tree can have its bottom-most multiplication folded from 2*3 into 6, 
but the second tree has no sub-tree that can be folded. Because multiplication is 
commutative, adding the following rule to the table will suffice for this particular 
case: 

s (\ X*Y, W, X*Z) :- number(Y), number(W), Z is Y*W. 

A more general algebra system can be constructed simply be adding more s clauses, 
instead of adding more programming to simp. Techniques for simplification, together 
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with the more general problem of expression manipulation, are covered more com-
prehensively in the book Clause  and  Effect  (see end of this chapter for details). 

7.13 Manipulating Programs 

Many of the built-in predicates discussed in this book can in fact be defined in Prolog 
using simpler built-in predicates. In this section we give a few such definitions. These 
may be of use to the programmer whose Prolog system is lacking in certain respects, 
but they are in any case of interest as examples of Prolog programming. Perhaps they 
may inspire you to develop rather different versions of these predicates for your own 
use.1 

listing 
We can use clause to define a version of the listing predicate. Let us define listl such 
that satisfying the goal listl (X) will print out the clauses in the database whose heads 
match X. Because the definition of listl will involve using clause with X as its first 
argument, we will have to require that X is sufficiently instantiated that the principal 
functor is known. Here is the definition of listl: 

listl (X) :-
clause(X, Y), 
output_clause(X, Y), write('.'), nl, fail, 

listl (X). 

output_clause(X, true) :- !, write(X). 
output_clause(X, Y) :- write((X :- Y)). 

When an attempt is made to satisfy a goal listl(X), the first clause causes a search 
for a clause whose head matches X. If one is found, that clause is printed out and 
then a failure is generated. Backtracking will reach the clause goal and find another 
clause, if there is one. And so on. When there are no more clauses to be found, the 
clause goal will be unable to be resatisfied, and so will fail. At this point, the second 
clause for listl will be chosen, and so the goal will succeed. As a "side effect", all 
the appropriate clauses will have been printed out. The definition of output_clause 
specifies how the clauses will be printed. It looks for the special case of the body 
true and in this case just writes out the head. Otherwise, it writes out the head and 
the body, constructed with the functor ":-". Notice the use of the "cut" here to say 
that the first rule is the only valid possibility if the body is true. Because this example 
relies on backtracking, the cut is essential here. 

' B e warned , however , that s o m e P r o l o g imp lemen ta t ions not conforming  to the s tandard 

m a y only a l low the bui l t - in p red ica te clause to opera te o n d y n a m i c predicates . 
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A Prolog  interpreter 
The built-in predicate clause can also be used to write a Prolog interpreter in Prolog. 
That is, we can define what it is to run a Prolog program by something which is 
itself a Prolog program. Here is the definition of a predicate interpret, such that 
interpret(X) succeeds as a goal exactly when X succeeds as a goal. Predicate interpret 
is similar to the built-in call, but is more restricted because it does not deal with cuts 
or built-in predicates. 

interpret(true) :- !. 

interpret((Gl, G2)) :- !, interpret(Gl), interpret(G2). 

interpret(Goal) :-

clause(Goal, MoreGoals), interpret(MoreGoals). 

The first two clauses deal with the special cases of the goal true, and a goal which is 
a conjunction. The last clause covers a simple goal. The procedure is to find a clause 
whose head matches the goal, and then interpret the goals in the body of that clause. 
Note that the above definition will not cope with programs using built-in predicates, 
because such predicates do not have clauses in the usual sense. 

retractall 
As an example of the use of retract, here is the definition of a useful predicate called 
retractall. When the goal retractall(X) is satisfied, all the clauses whose heads match 
X are removed from the database. Because the definition uses retract, X cannot be 
uninstantiated, for otherwise the predicate of the clause could not be determined. In 
the definition we must deal with the two cases of a clause whose head matches X: a 
fact and a rule. We provide different arguments to retract to access the two types of 
clauses. The definition exploits the property that retract backtracks until all clauses 
matching its argument are removed from the database. 

retractall(X) :- retract(X), fail. 

retractall(X) :- retract((X :- Y)), fail. 

retractall(_). 

consult 
As an example of the predicate retractall in use, here is a definition in Prolog of the 
predicate consult, as discussed in section 6.1, which reads in the clauses in a file and 
erases any existing clauses for predicates defined in that file. Of course, consult (or 
similar facilities) are provided as built-in predicates in most Prolog systems, but it is 
interesting to see how it can be defined in Prolog. In fact, the following definition is 
only partial, in that it does not handle directives2 in the file properly and in any case 

2 A directive is a special built-in predicate that is usually invoked when a file  of  code is 
loaded (to somehow affect  that loading), rather than during the execution of  a program. 
A directive can be invoked by a goal of  the form  :- G„ rather than the usual ?- G. - the 



1 Chapter 7 More Example Programs 

it may disagree with some Standard Prolog implementations because it uses assertz 
on the clauses of the file without the relevant predicates being declared dynamic in 
advance. 

consult(File) :-
retractall(done(_)), 
current_input(Old), 
open(File, read, Stream), 
repeat, 

read (Term), 
try(Term), 
close(Stream), 
set_input(Old), 

try(end_of_file) :- !. % End of file marker read 
try((?- Goals)) :- !, call(Goals), !, fail. 
try((:- Goals)) :- !. % ignore directives 
try(Clause) :-

head(Clause, Head), 
record_done(Head), 
assertz(Clause), 
fail. 

:- dynamic done/1. 

record_done(Head) :- done(Head), !. 
record_done(Head) :-

functor(Head, Func, Arity), 
functor(Proc, Func, Arity), 
asserta(done(Proc)), 
retractall (Proc), 

head((A :- B), A) :- !. 
head(A, A). 

There are several interesting points about this definition. The goal current_input(Old) 
and its partner set_input(Old) are there to ensure that the current input file will not 
be changed after the consult from what it was before. The point of the definition of 
try is to cause an appropriate action to be taken for each term read from the input 

only difference  in practice is that the former  creates no yes/no output or querying about 
multiple solutions. The only directives that we discuss in this book are the predicates op/3 
and dynamic/1. 



7.14 Bibliographic Notes 185 

file. A try goal only succeeds when its argument is the end of file mark. Otherwise, a 
failure occurs after the appropriate action, and backtracking goes back to the repeat 
goal. Notice the importance of the "cut" at the end of the consult definition. This cuts 
out the choice introduced by the repeat. 

Some final points about try: if a term read from the file represents a question 
(second clause), an attempt is made to satisfy the appropriate goal immediately using 
the call predicate (Section 6.7). If a call to a directive is read, it is ignored. Since 
directives must be called directly from the text of the program they refer to (and not 
indirectly, via try), we can't replicate their effects in our own programs. 

When the first clause for a given predicate appears in a file, all the clauses in the 
database for that predicate must be removed before the new one is added. We must 
not remove clauses when later ones for that predicate appear, because then we will 
be removing clauses that have just been read in. How can we determine whether a 
clause is the first one in the file for its predicate? The answer is that we keep a record 
in the database of the predicates for which we have found clauses in the file. This is 
done though the dynamic predicate done. When the first clause for a predicate, for 
instance foo with two arguments is read from the database, the existing clauses are 
removed, and the new clause is added to the database. In addition, the fact 

done(foo(_,_)). 

is added. When a later clause for predicate foo is read from the file, we will be able 
to see that the old clauses have already been removed, and so we avoid removing 
new clauses. It is important for the definition that we do not add something like 

done(foo(a,X)). 

because then the argument of done will not necessarily match the head of a clause 
for foo. The pair of goals 

. . . , functor(Head, Func, Arity), functor(Proc, Func, Arity), . . . 

instantiates Proc to a structure having the same functor as the head Head, but with 
variables as its arguments (see Section 6.5). 

7.14 Bibliographic Notes 

Some larger Prolog programs with commentary are presented in: 

The  Practice of  Prolog,  edited by Leon Sterling, published by the MIT Press in 1994. 

Also, the following book contains some case studies, some of which use Prolog for 
unlikely applications such as the Fast Fourier Transform: 

Clause  and  Effect  by William Clocksin, published by Springer Verlag in 1997. 
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Debugging Prolog Programs 

By this point you will have used and modified many of the example programs de-
scribed earlier, and you will have written programs of your own. It is now relevant 
to consider what to do when your program does not behave as intended. Such prob-
lems with programs are known as "bugs", and the process of removing bugs from 
programs is known as "debugging". We believe that a convenient approach to pro-
gramming is what could be described as "preventative programming". To paraphrase 
an old proverb, "an ounce of careful programming is worth a pound of debugging". 
In this chapter we shall attempt to describe some techniques for debugging, but we 
shall start with a discussion of how to try to prevent bugs from infesting your pro-
grams. We realise that such a problem is unsolved in general, but we simply wish to 
convey some informal techniques that have helped other Prolog programmers. 

As with any creative activity, whether musical composition, literature, or archi-
tecture, computer programming offers a multitude of methods for expressing how to 
represent  and manipulate  the objects and relationships that are found in a particular 
problem. In general, there will be a number of ways to represent or manipulate some 
item of information in a program. Every time the programmer decides to use one of 
the ways in the program, we say that the programmer has made a design  decision. 

Novices faced with the task of making design decisions for the first time often 
feel confused. An understanding of the choices available will help them, and it is 
important for a tutor to explain programming techniques in general. This is because 
the art of making design decisions in programming is a discipline in its own right. We 
attempted to give the flavour of this problem in Section 1.1 when we discussed the 
different ways to understand the meaning of clauses. This is a matter of representing 
objects and relationships. Also, in Section 7.7 the problem also became apparent 
when we described three different ways to sort a list of objects. This is a matter of 
different ways to manipulate  objects and relationships. 
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We hope that this book provides help about making design decisions in two 
ways. First, by containing a number of example programs, it should convey some 
idea of the solutions that practising programmers have obtained. Second, this chapter 
should provide some advice and direction that is specific to Prolog. 

8.1 Laying out Programs 

Assuming that the programmer has decided how to represent and manipulate the 
objects and relationships in the problem, the next step is to ensure that the layout and 
syntax of the program is clear and easily read. The collection of clauses for a given 
predicate is called a procedure.  In the examples in this book, you may have noticed 
that each clause in a procedure has started on a new line, and there is one blank 
line between procedures. For example, one way to define the set equality predicate 
(representing sets as lists) is to use three predicates, each of which is defined by a 
twoline procedure: 

eqset(X, X) :- !. 
eqset(X, Y) :- eqlist(X, Y). 

eqlist([], []). 
eqlist([X|Ll], L2) :- delete(X, L2, L3), eqlist(Ll, L3). 

delete(X, [X|Y], Y). 
delete(X, [Y|L1], [Y|L2]) :- delete(X, LI, L2). 

This is not necessarily the best definition of set equality, but it points out how to lay 
out procedures. Notice that the clauses for each procedure are grouped together, and 
procedures are separated by a blank line. Notice also that the body of each rule is 
short enough to fit on one line. Another convention that is adopted by many Prolog 
programmers is to write each clause on a single line if the entire clause will fit on a 
line. Otherwise, write the head of the clause and the ":-" on the first line, and write 
each goal of a conjunction indented on a separate line. For example, a program to 
generate all permutations of a list: 

permute([], []). 
permute(L, [H|T]) :-

append(V, [H|U], L), 
append(V, U, W), 
permute(W, T). 

The definition uses a backtracking append, so that another permutation Y is generated 
from X each time an attempt is made to re-satisfy permute(X, Y). What we should 
notice here is the way the conjuncts in the second clause are laid out on the page. 
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The main point is to decide on consistent conventions, whatever the conventions 
may be. In general, it is wise to add comments, to group terms appropriately, to use 
round brackets when in doubt about operator precedences, and to use plenty of white 
space (spaces and blank lines) in consistent ways. Comments should indicate how 
the arguments of a structure (or clause) are interpreted: what order they come in, 
and what data structures (constants or structures) are expected to fill each argument. 
Also, it is wise to write comments on the way that variables are expected to become 
instantiated as the clause becomes satisfied. 

For more global organisation of the program, it is helpful to divide the program 
into reasonably self-contained parts, for example, where all of the list processing 
procedures would appear in the same file. A Prolog procedure that uses more than 
about five to ten rules may be hard to read, so consider whether it can be broken up 
naturally by the definition of some subsidiary predicates. If a program uses many 
facts, such as the simplification rules in Section 7.12, then all of the facts should 
belong together in the same file. A lot of facts is generally easier to read than a lot of 
rules, and although even a few rules may be difficult to understand, many pages of a 
particular fact can be understood because the semantics of facts are less complex. 

Another issue that affects the ease in which Prolog programs can be read is the 
use of semicolon ("or") and exclamation ("cut"). The problems with excessive use of 
the "cut" were introduced in Chapter 4. You should always consider whether it may 
be worthwhile avoiding a ";" by defining extra clauses. For instance, the following 
program: 

nospy(X) :-

check(X,Functor,Arity,A), !, 

( spypoint(_,Functor,A), !, 

( deny(spypoint(Head,Functor,Arity),_), 

makespy(Head,Body), deny(Head,Body), 

write('Spypoint on '), prterm(Functor,Arity), 

write(' removed.'), nl, 

fa i l ; true ) ; write('There is no spypoint on '), 

write(X), put(46), n l ) , !. 

is an example of what not to do. It is much harder to understand than: 

nospy(X) :-

check(X, Functor, Arity, A), !, 

try_remove(X, Functor, Arity, A). 

try_remove(_, Functor, Arity, A) :-
spypoint(_. Functor, A), !, 
remove_spy(Functor, Arity, A). 

try_remove(X, _) 
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writefThere is no spypoint on '), 

write(X), put(46), nl, !. 

remove_spy(Functor, Arity, A) :-

deny(spypoint(Head, Functor, Arity),_), 

makespy(Head, Body), 

deny(Head, Body), 

write('Spypoint on '), 

prterm(Functor, Arity), 

write(' removed.'), nl, fail. 

remove_spy(_, _). 

which does exactly the same thing. When you really do want to use "or", it is helpful 
to arrange the conjunction of goals so that the "or" stands out from the rest of the 
goals, and to place brackets around the goals so that the scope of the "or" is made 
explicit. 

Throughout this book we have emphasised the importance of thinking of many 
problems in terms of boundary conditions together with a general rule. Whenever 
possible, we write boundary conditions before all the other clauses of a procedure. 
This makes it easy to see what the boundary conditions are, and also provides some 
measure of protection against circular definitions. However, there are some cases 
where it is desirable to place the boundary condition after the other clauses of a 
procedure. Obviously, "catchall" rules, as seen several times previously, need to be 
placed at the end of the procedure. 

When reading a Prolog procedure, it is helpful to look each time for the follow-
ing key properties of the procedure. 

• Look at how each predicate and variable in the procedure is spelled.  Mis-spelling 
is a common mistake. 

• Look for the number of  components of each functor that is mentioned in the 
procedure. Ensure that the number of components (and their order) is consistent 
with your design decisions. 

• Locate all of the operators  in the clauses, and determine their precedence, asso-
ciativity, and where their arguments are. You can determine this from operator 
declarations and the presence of brackets. When in doubt, add extra brackets. 
Also, to check whether an operator behaves in the way you expect, try printing 
out some sample terms using write_canonical. 

• Notice the scope of each variable, and locate all the likenamed variables within 
the scope. Notice which variables will "share" when one of them becomes in-
stantiated. Notice whether variables in the head of the clause appear in the body 
of the clause. 
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• Try to determine what variables are instantiated or uninstantiated at the time the 
clause will be used. 

• Locate the clause(s) that constitute the boundary condition(s). Determine whether 
all the conceivable boundary conditions have been accounted for. 

Once you can "dissect" a procedure in this way, your understanding of the procedure 
will improve. 

8.2 Common Errors 

In this section we list a number of problems that both beginning and experienced Pro-
log programmers encounter. The problems fall into two categories: errors of syntax, 
and errors of control  flow. 

Once the programmer has decided what program to write, and how to lay it out 
on the printed page (or terminal display screen), there is the problem of getting the 
program into a file or typing it straight into the top level of a Prolog system. The 
main problem encountered here is ensuring that the syntax of the program is correct. 
Here we list a number of common syntactic errors. If these errors are not detected by 
the programmer, Prolog may provide an error message when an attempt is made to 
consult the program. 

• A common syntax error is forgetting to add the dot"." at the end of a clause. A 
dot must also always follow any term that is read by the read predicate. You must 
also leave at least one white space character after the dot. So beware of ending a 
file with the dot of the last clause — make sure that there is a [i] at the very end. 

• Some special characters belong in pairs. There are the round brackets "(" and 
")" for grouping terms, the square brackets "[" and "]" for the list notation, and 
the curly brackets "{" and "}" for the grammar rule notation (Chapter 9). Also, 
the single quotes ""' for atoms, belong in pairs. The composite brackets "/*" and 
"*/" surround comments. Ensure that there are neither too few or too many of 
each kind of bracket. 

• Beware of mis-spelled words, especially the names of built-in predicates. These 
can cause unexpected failures, because mis-spelled predicates are unlikely to 
match with any clauses in the database. Or, they may unexpectedly match with 
clauses that happen to have the same name as the mis-spelled one. 

• Operators are another source of possible errors. Use round brackets when in 
doubt, to make the associativity of an operator explicit. Use write_canonical to 
experiment with the operators you have defined. 
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When considering the list notation, test yourself on the following questions and an-
swers: 

• How do [a,b,c] and [X|Y] match? (X  is instantiated  to a, and  Y is instantiated  to 
[b,c]). 

• Do [a] and [X|Y] match? (Yes.  X is instantiated  to a, and  Y is instantiated  to []). 

• Do [] and [X|Y] match? (no). 

• Is [X,Y|Z] meaningful? (yes). 

• Is [X|Y,Z] meaningful? (no). 

• Is [X| [Y|Z]] meaningful? (Yes,  it is the same as [X,Y|Z] j. 

• How do [a,b] and [A|B] match? (A is instantiated  to a, and  B is instantiated  to 

• Is there more than one way to match them? (No,  never). 

When dealing with lists, or any other structure for that matter, it is important to stress 
the helpfulness of the "tree diagrams" that we introduced in Chapter 2. 

Even if you are certain that a program is free from syntax errors, the program 
can still exhibit unexpected behaviour when an attempt is made to satisfy goals in 
the program. Typical symptoms are a program which seems to run without stopping 
(an "infinite loop"), the response no appearing unexpectedly, or variables being in-
stantiated to unexpected terms. Usual sources of such errors are: 

• Circular definitions, which were mentioned in Chapter 3. 

• Not enough boundary conditions, or some other under-specification of the prob-
lem. 

• Useless procedures that redefine built-in predicates. 

• Supplying the wrong number of arguments to a functor. This is not considered a 
syntax problem because the number of arguments of a functor depends on what 
the functor is used for. 

• Unexpectedly reaching the end of a file when using the read predicate. 

One particularly insidious type of error is demonstrated by the following program to 
test list equality: 

eq([], [])• 
eq([X|L], M) :- del(X, M, N), eq(L, N), 
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del(X, [X|Y], Y). 
del(X, [YjLl], [Y|L2]) :- del(X, LI, L2). 

Do you see the mistake? The second clause of eq is terminated by a comma. Although 
this is probably a typing error, the above program has legal  syntax because the term 
following the comma is taken as the next goal! The above program is identical  to the 
following program, which is certainly not a program to test list equality : 

eq([], [])• 

eq([X|L], M) :- del(X, M, N), eq(L, N), del(X, [X|Y], Y). 

del(X, [Y|L1], [Y|L2]) :- del(X, LI, L2). 

A variation on this theme is the following: 

eq([], [])• 

eq([X|L], M) :- del(X, M, N). eq(L, N). 

del(X, [X|Y], Y). 
del(X, [Y|L1], [Y|L2]) :- del(X, LI, L2). 

Do you see the mistake? The second clause of eq has its goals separated by a dot. 
Again, this is likely to be a typing error, but the program as typed above has legal 
syntax, and is identical to the following, which again is not what was intended: 

eq([], [])• 
eq([X|L], M) :- del(X, M, N). 
eq(L, N). 

del(X, [X|Y], Y). 
del(X, [Y|L1], [Y|L2]) :- del(X, LI, L2). 

Beware of the following fallacies about the nature of backtracking: 

Fallacy:  One of the reasons for backtracking is so that Prolog can return to a previous 
match and do it again in some other way. Fact:  When Prolog searches the database 
in an attempt to match a goal against something in the database (a fact or the head 
of a rule), the match either succeeds or fails. Prolog does not backtrack to a "match" 
and try to match another way, because there is only one way to match a particular 
goal with a particular clause in the database. 

Fallacy:  The list notation [X|Y] can match against any segment of a list, and can take 
apart lists in several different ways. The behaviour of append(X, Y, [a,b,c,d]) is due 
to this. Fact:  In [X|Y], X matches only the head of a list, and Y matches only the tail. 
The append goals are able to find different partitions of lists because of backtracking, 
not because of matching. 
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8.3 The Tracing Model 

There are various ways of looking at the method by which Prolog attempts to satisfy 
goals. We have introduced a model in terms of the "flow of satisfaction" through 
boxes representing goals. Here we present the model of Prolog execution used by 
a number of debugging aids, such as the trace facility. This model is largely due to 
our colleague Lawrence Byrd, and for this reason the model is known as the Byrd 
Box model. Although Prolog systems differ in the debugging aids provided (and the 
Prolog standard does not specify what they should be), the following description 
should roughly correspond to what happens with many Prolog systems. 

When the trace facility is used, the Prolog system prints out information about 
the sequence of goals in order to show where the program has reached in its execu-
tion. However, in order to understand what is happening, it is important to understand 
when and why the goals are printed. In a conventional programming language, the 
key points of interest are the entries to and exits from functions. But Prolog permits 
non-deterministic programs to be written, and this introduces the complexities of 
backtracking. Not only are clauses entered and exited, but backtracking can suddenly 
reactivate them in order to generate an alternative solution. Furthermore, the cut goal 
"!" indicates which goals are committed to having only one solution. One of the ma-
jor confusions that novice programmers face is what actually occurs when a goal fails 
and the system suddenly starts backtracking. We hope this has been adequately ex-
plained in the previous chapters. However, the previous chapters discussed not only 
control flow, but also how variables are instantiated, how goals match against clause 
heads in the database, and how subgoals are satisfied. The tracing model describes 
the execution of Prolog programs in terms of four kinds of events that occur: 

CALL.  A C A L L event occurs when Prolog starts trying to satisfy a goal. In our 
diagrams, this is when an arrow enters a box from the top. 

EXIT.  An E X I T event occurs when some goal has just been satisfied. In our diagrams, 
this is when the arrow emerges from the bottom of a box. 

REDO. A REDO event occurs when the system comes back to a goal, trying to 
resatisfy it. In our diagrams, this is when the arrow retreats back into a box from the 
bottom. 

FAIL.  A FAIL event occurs when a goal fails. In our diagrams, this is when the arrow 
retreats upwards out of a box. 

The debugging aids tell us about when events of these four kinds occur in the exe-
cution of our programs. These events will take place for all of the various goals that 
Prolog considers during the execution. So that we can distinguish which events are 
happening to which goals, each goal is given a unique integer identifier, its invocation 
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number. Below we shall show some goals together with their invocation numbers in 
square brackets. 

Let us now take a look at an example. Consider the following definition of the 
predicate descendant: 

descendant^, Y) :- offspring(X, Y). 
descendant(X, Z) :- offspring(X, Y), descendant(Y, Z). 

This piece of program derives descendants of a person, provided that there are off-
spring facts in the database, such as 

offspring(abraham, ishmael). 
offspring(abraham, isaac). 
offspring(isaac, esau). 

The first clause of descendant states that Y is a descendant of X if Y is an offspring of 
X. The second clause states that Z is a descendant of X if Y is an offspring of X and if 
Z is a descendant of Y. We shall consider the question: 

?- descendant(abraham. Answer), fail. 

and we shall follow the control flow to see when the various kinds of events occur. 
It is important that you try to follow the trace we are about to look at by thinking 
about the flow of satisfaction entering and leaving the boxes for the goals. We will 
periodically display the current state in diagram form. 

The first goal in the question is followed by a fail. The purpose of this is to 
force all possible backtracking behaviour out of the descendant goal. The question 
as a whole can therefore never succeed. However, the point of this trace is to observe 
the execution flow induced by the failure of the second goal (the fail). We begin with 
(as yet unentered) boxes for the two goals: 

descendant(abraham,Answer) 

fail 

The first event is that the descendant goal is CALLed. This is invocation number 1 
(shown in square brackets). 
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[1] CALL: descendant(abraham,Answer) 

[2] CALL: offspring(abraham,Answer) 

We have matched the first clause of the descendant procedure and this results in a 
C A L L of a goal for offspring. The situation is now as follows, with the arrow moving 
downwards: 

descendant(abraham, Answer) 
(1) 

fail 

We continue: 

[2] EXIT: offspring(abraham,ishmael) 

Immediate success on the first clause, and so the goal EXITs. 

[1] EXIT: descendant(abraham,ishmael) 

And thus we have satisfied the first descendant clause. 

[3] CALL: fail 

[3] FAIL: fail 

[1] REDO: descendant(abraham,ishmael) 

Then we try to satisfy fail, and, as might be expected, this goal FAILs. The arrow 
retreats back out of the fail box and back into the descendant box above. Here is a 
picture of where we are now. The arrow is retreating upwards out of the fail box. 

Continuing: 

[2] REDO: offspring(abraham,ishmael) 
[2] EXIT: offspring(abraham,isaac) 
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An alternative clause is chosen for the offspring goal, and so the arrow can move 
down out of this box again. 

[1] EXIT: descendant(abraham,isaac) 
[4] CALL: fail 
[4] FAIL: fail 
[1] REDO: descendant(abraham,isaac) 

Again, fail causes us to reject this solution and to start backtracking. Notice that this 
was a completely new invocation of fail (we entered it afresh from "above"). 

[2] REDO: offspring(abraham,isaac) 
[2] FAIL: offspring(abraham,Answer) 

This time, offspring cannot offer us another match and so we continue backtracking, 
the arrow retreating upwards out of the offspring box. 

[5] CALL: offspring(abraham,Y) 

What has happened here is that Prolog has chosen the second descendant clause and 
this is a completely new offspring invocation corresponding to the first subgoal: 

The arrow is now moving downwards again. Continuing: 

[5] EXIT: offspring(abraham,ishmael) 
[6] CALL: descendant(ishmael,Answer) 

This provides a solution with which we now recursively call descendant. This gives 
us a new invocation of descendant. 

[7] CALL: offspring(ishmael,Answer) 
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descendant(abraham, Answer) 

(2) 

fait 

[7] FAIL: offspring(ishmael,Answer) 
[8] CALL: offspring(ishmael,Y2) 
[8] FAIL: offspring(ishmael,Y2) 
[6] FAIL: descendant(ishmael,Answer) 

Ishmael has no offspring (in this example), and so the offspring subgoals in both 
descendant clauses fail, thus failing the descendant goal. 

[5] REDO: offspring(abraham,ishmael) 

Back we go for an alternative. 

[5] EXIT: offspring(abraham,isaac) 
[9] CALL: descendant(isaac,Answer) 
[10] CALL: offspring(isaac,Answer) 

[10] EXIT: offspring(isaac,esau) 

We get a new invocation of descendant and the offspring subgoal succeeds: 

Continuing: 

[9] EXIT: descendant(isaac,esau) 
[I] EXIT: descendant(abraham,esau) 
[11] CALL: fail 
[ I I ] FAIL: fail 
[1] REDO: descendant(abraham,esau) 
[9] REDO: descendant(isaac,esau) 
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[1] 
descendant(abraham,esau) 

(2) 

fail 

This provides a final solution to the initial question, but the fail forces backtracking 
again and so back we come along the REDO paths. 

[10] REDO: offspring(isaac,esau) 
[10] EXIT: offspring(isaac,jacob) 
[9] EXIT: descendant(isaac,jacob) 
[1] EXIT: descendant(abraham,jacob) 

The offspring subgoal has another alternative which produces another result for the 
initial descendant goal. As can be seen, this is Abraham's last possible descendant, 
however there is a certain amount of work left to be done. Let us continue to follow 
the control flow as it backtracks unsuccessfully back to the beginning. 

[12] CALL: fail 
[12] FAIL: fail 
[1] REDO: descendant(abraham,jacob) 
[9] REDO: descendant(isaac,jacob) 
[10] REDO: offspring(isaac,jacob) 
[10] FAIL: offspring(isaac,Answer) 
[13] CALL: offspring(isaac,Y3) 
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We are now trying the second clause for descendant. 

[13] EXIT: offspring(isaac,esau) 
[14] CALL: descendant(esau,Answer) 

Recur again. 

[15] CALL: offspring(esau,Answer) 
[15] FAIL: offspring(esau,Answer) 
[16] CALL: offspring(esau,Y4) 
[16] FAIL: offspring(esau,Y4) 
[14] FAIL: descendant(esau,Answer) 
[13] REDO: offspring(isaac,esau) 
[13] EXIT: offspring(isaac,jacob) 
[17] CALL: descendant(jacob,Answer) 

Try jacob. 

[18] CALL: offspring(jacob,Answer) 
[18] FAIL: offspring(jacob,Answer) 
[19] CALL: offspring(jacob,Y5) 
[19] FAIL: offspring0'acob,Y5) 
[17] FAIL: descendant(jacob,Answer) 
[13] REDO: offspring(isaac,jacob) 
[13] FAIL: offspring(isaac,Y3) 
[9] FAIL: descendant(isaac,Answer) 
[1] FAIL: descendant(abraham,Answer) 

no 

And that's the end of that. We hope that this exhaustive example has provided an 
understanding of the control flow involved in the execution of a Prolog program. 
You should have noticed that for any goal there is always only one C A L L and FAIL, 
although there may be arbitrarily many REDOs and corresponding EXITs. In the 
next section, we look at the trace messages for a more complicated example: append. 

Exercise 8.1: In the above model, no mention is made of how the cut goal "!" is 
handled. Extend the model to account for the action of cut. 

8.4 Tracing and Spy Points 

When you find that your program doesn't work (because it generates an error, just 
says "no" or produces the wrong answer), you will want to find out quickly where 
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the mistakes are so that you can correct them. This section describes a set of builtin 
predicates that allow you to "watch" your program running. Using these, you can 
give your program the same task again, and watch to see where it starts going wrong. 
What you will see is when the various events of the tracing model take place, as 
we saw with descendant in the last section. The exact facilities that the debugging 
predicates provide will depend on the particular Prolog implementation, but the fol-
lowing should give some guide about the sorts of options, so that you can make sense 
of what your system provides. In any case, you are strongly advised to consult the 
documentation for your Prolog system before you start using these facilities. 

The basic principle behind tracing and spy points is that the programmer is 
informed about the satisfaction of certain goals that arise in the running of his pro-
gram. The programmer can decide, first, what goals he or she wishes to be informed 
about, and second, how much he or she wants to interact with how goals are sat-
isfied. The first decision involves deciding what combination of exhaustive tracing 
and spy points to use. Basically, exhaustive tracing involves information being given 
about all  goals, and spy points enable the programmer to get only information about 
certain predicates that he or she has specified. However, these options can be mixed 
in various ways. Section 6.13 outlines the relevant built-in predicates that are of use 
here. To set a spy point on a predicate, we use predicate spy (and to remove a spy 
point, we use nospy). To start exhaustive tracing, we use trace (and to turn it off, we 
use notrace). 

The second decision involves deciding on the level of leashing  that is to be 
used. In unleashed tracing, information about the goals is displayed on the terminal 
and the program keeps on running. In leashed tracing, as well as the information 
being displayed, the programmer is asked at each point which option to take. It may 
then be possible to specify changes in the level of tracing, alterations from the normal 
flow of the program and various other options. Your Prolog system may provide an 
independent choice of leashed or unleashed tracing for each of the four kinds of 
events: 

• When an attempt is first made to satisfy a goal: when the goal is encountered for 
the first time (a C A L L event), 

• When a goal has successfully been satisfied (an E X I T event), 

• When an attempt is about to be made to re-satisfy a goal (a REDO event), and 

• When a goal is about to fail, because all attempts to re-satisfy it have failed (a 
FAIL event). 

For instance, a reasonable choice would be to specify that C A L L and REDO events 
are leashed and E X I T and FAIL events are unleashed. We gave a more detailed de-
scription of these four events in the satisfaction of goals in Section 8.3. 
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Now let us consider the information that is given to you when an event occurs 
for a goal you are interested in. First of all, the goal itself is shown, together with an 
indication of which kind of event has occurred and perhaps an invocation number. If 
tracing for this event type is unleashed, this is all that is provided. Otherwise, Prolog 
will also ask you to specify one of a set of options about what should be done next. 
A session with exhaustive, unleashed tracing would look something like: 

?- [user]. 

append([],Y,Y). 
append([A|B],C,[A|D]) :- append(B,C,D). 
/* type the end of file character here */ 

yes 

?- append([a],[b],X). 

CALL append ([a],  [b],_43) 
CALL append ([],[b],_103) 
EXIT  append([],[b],[b]) 
EXIT  append ([a]  r[b],[arb]) 

X  = [a,b]  ; 

REDO append([a],[b],  fab]) 
REDO append ([J,  [b],  [b]) 
FAIL  append ([]r[b]r_103) 
FAIL  append}  [a]  r[b],_43) 

no 

?- append(X,Y,[a]). 

CALL append(_37,_38,  [a]) 
EXIT  append([]r[a],[a]) 

X=[],  Y=[a]; 

REDO append([],[a]r[a]) 
CALL append(_93,_38,[]) 
EXIT  append ([],[],[]) 
EXIT  append ([a],  [],  [a]) 

X=[a],Y=[]; 

REDO append ([a],  [],  [a]) 
REDO append ([],  [],  []) 
FAIL  append(_93,_38,  []) 
FAIL  append (_3  7,_38,[a]) 
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no 
Here, all four events for all goals are being shown on the display. However, the 
programmer is not given any chance to make the program pause at any point, change 
the amount of tracing half way through, or affect the way it runs in any other way. 
These facilities are what leashed tracing provides. 

Before we go on to discuss leashed tracing, we should make some remarks 
about how Prolog shows your goals when you are tracing. Now, actually the way 
your goals are shown by the tracing facilities is not necessarily the same as if they 
were output using write. This is because you are allowed to provide your own special 
purpose definitions for showing the goals in your program. You can use this facility 
to output some of the common structures used in your program in ways that are 
clearer or more concise than write would normally produce. The way the facility 
works is as follows. The standard way of printing your goals is actually by using the 
built-in predicate print, with one argument. Predicate print works as if it is defined 
as follows: 

print(X) :- portray(X), !. 

print(X) :- write(X). 

Now, the predicate portray is not a built-in predicate, and so you can provide clauses 
for it yourself. If your clauses allow the goal portray(X) to be satisfied for one of 
your goals X, then it will be assumed that that provides all the necessary output. 
Otherwise, the goal will be output using write instead. So if for some reason you did 
not want to ever see the third arguments of append goals, you could make sure of 
this by providing the clause: 

portray(append(A, B, C)) :-

write('append('), write(A), write(','), 

write(B), write(7), 

write('<foo>)'). 

Whenever a goal X involving append occurs, this clause will cause the goal portray(X) 
to succeed, and so it will provide the only output. For a goal involving any other 
predicate, portray(X) will fail, and X will be output using write. If the above clause 
was in the database, part of the above example session would look like the following: 

?- append([a],[b],X). 

CALL append([a],  [b],<foo>) 
CALL append([],[b],<foo>) 
EXIT  append(U,[b],<foo>) 
EXIT  append ([a],[b],  <foo>) 

X=[a,b]  ; 
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REDO append ([a],  [b],<foo>) 
REDO append([],[b],<foo>) 
FAIL  append([],[b],<foo>) 
FAIL  append([a],  [b],<foo>) 

no 

Now for a discussion of leashed tracing. If you have specified leashed tracing for 
events of some type you will be asked to specify what should be done next when an 
event of this type occurs. This will look something like the following at the terminal: 

?- append([a], [b], X). 

CALL append([a],[b],_43)  ? 

The program stops after typing out the "?". You are now supposed to reply by speci-
fying one of a set of possible options. If the option you specify involves the program 
continuing as usual, it will then run on as far as the next leashed event for a predicate 
being traced, and again ask you, with something like: 

CALL append([],[b],_103)  ? 

There is likely to be an option to display a list of available options at the terminal. 
Here are some of the options that may be available: 

8.4.1 Examining the Goal 

The first set of options involve looking at the goal in various ways. As we have seen, 
the standard is for a goal to be shown using print, which gives your portray clauses a 
chance to show things in a special way. However, you may start to have doubts about 
the correctness of your portray clauses, or just want to see a goal written in the normal 
way for a change. Hence Prolog will allow you to either write or write_canonical the 
current goal as a possible option. In this case, the program will not run any further, 
but you will be asked for another option that will specify how the program should 
continue. A typical interaction might be: 

?- append([a], [b], X). 

CALL append([a],[b],<foo>)  ? write 
CALL append}[a],  [b],_103)  ? 

Usually you will only want to use write as an alternative way of looking at a goal. You 
might want to use write_canonical when the goal involves many operators, and you 
have forgotten what their various precedences are. In such a case, write_canonical 
will enable you to see the nesting of functors unambiguously. 
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8.4.2 Examining the Ancestors 

The ancestors  of a goal are those goals to which its satisfaction will eventually con-
tribute. In our box diagrams, these are the goals whose boxes enclose the goal under 
consideration. Thus every goal has an ancestor which is one of the goals in the orig-
inal question, the one that it is helping to satisfy. Also, whenever a rule is used, each 
of the goals introduced by the rule body has as an ancestor the goal that matched the 
rule head. Let us look at some examples of ancestors. Consider the following simple 
program to reverse a list (described in Section 7.5): 

rev([], []). 

rev([H|T], L) :- rev(T, Z), append(Z, [H], L). 

append([], X, X). 
append([A|B], C, [A|D]) :- append(B, C, D). 

If we ask the initial question: 

?- rev([a,b,c,d], X). (A) 

then, because of the second clause of rev, there will be two subgoals to satisfy. Each 
of these has the goal in the question as its immediate ancestor. The subgoals are: 

rev([b,c,d], Z) (B) 

append(Z, [a], X). (C) 

Since the second clause will be used again to satisfy (B), again two subgoals will be 
introduced: 

rev([c,d], Z l ) (D) 

append(Zl, [a], Z) (E) 

Each of (D) and (E)  has both (A) and (B)  as ancestors. Note that goal ( Q is not an 
ancestor of these, because they are only contributing immediately to the satisfaction 
of (B),  which contributes to the satisfaction of (A). Goals (D) and (E)  are not con-
tributing in any way to the satisfaction of (C). When the satisfaction of this question 
has progressed fairly far, a goal of the form: 

will appear. At this stage, the goal and its ancestors might be displayed as follows: 

append([c], [b], Y) 

rev([a,b,c,d], _46) 

rev([b,c,d], [d|_50]) 

appended,c], [b], [d|_51]) 

append([c], [b], _52) 

This  is Goal A. 

This  is Goal B. 
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Before you read any further, you should make sure that you understand why these 
are all ancestors of the goal, and why there are not any more ancestors. There is 
one peculiarity with the way the ancestors are shown here, which may be reflected in 
your Prolog system. There are two possible ways of printing out an ancestor: as it was 
when an attempt was first made to satisfy it, or as it stands now, with any variables as 
they are now instantiated. Here we have adopted the second course. When the goal 
(B)  was first encountered, the second argument of rev was uninstantiated. However, 
that argument is shown with a value in the ancestor list. This is because by now the 
variable that was in that position has become instantiated. By now we have found out 
that the first element of the reverse of [b,c,d] is d. 

By looking at the ancestors of the current goal, you can get a fair idea what 
your program is up to, and why is is doing what it is. One of the options that a Prolog 
system may provide at a leashed event for a goal is for some of the current ancestors 
to be printed out. So if your program seems to be spending a lot of time somewhere 
and you suspect that it may be in a loop, a good strategy is to interrupt the execution, 
turn on full tracing and then take a look at the ancestors to see where you are. 

8.4.3 Altering the Degree of  Tracing 

Another set of options that may be available at a leashed event concerns changing 
how much tracing is going on. Some of the more coarse controls that you can exercise 
are: 

• Removing all spy points. This has the same effect as invoking the goal nodebug. 

• Turning exhaustive tracing off. This has the same effect as invoking the goal 
notrace. 

• Turning exhaustive tracing on. This has the same effect as invoking the goal trace. 

The goals nodebug, notrace and trace were all described in Section 6.13. 
With all of these, your program will subsequently carry on running until it 

reaches a goal that you wish to trace, given your new conditions. Depending on what 
version of Prolog you use, more local controls of tracing may be available. These 
help you quickly to get over bits of the program's execution that are of little interest, 
so that you can concentrate on where the bugs seem to be. Possible options here are: 

• "creep": Carry on with the program, doing exhaustive tracing, until you are 
prompted again (at the next leashed event). 

• "skip": Carry on with the program, and produce no trace messages at all until 
another event occurs involving the current goal. 
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• "leap": Carry on with the program, producing no trace messages until either a 
spy point is reached or an event occurs involving the current goal. 

The first of these is what you will want to use if you want to follow the program 
closely at this point. The second is used when you are not worried about how a 
certain goal is satisfied, and just want to move on quickly to what happens afterwards. 
The third is used when there may be a lot of uninteresting work going on in the 
satisfaction of a goal, but somewhere in the middle a goal that is of interest (which 
has a spy point) will occur. Hence you want to ignore everything until either that 
spy point is reached or (if the program is faulty) if the current goal succeeds or fails 
without ever reaching the spy point. Here is an example of the use of "creep" and 
"skip". Let us assume that there is a bug in the naive sort program given in Section 
7.7, but that we are confident that our program to generate permutations is all right. 
If you remember, the definition of sort started as follows: 

sort(X, Y) :- permutation(X, Y), sorted(Y), !. 

We can use the "skip" option to avoid having to look at the gory details of how 
permutation works, and produce a trace that starts as follows: 

CALL sort([3,6,2,9,20],_45)  ? creep 
CALL permutation([3,6,2,9,20],_45)  ? skip 
EXIT  permutation  ([3,6,2,9,20],  [3,6,2,9,20])  ? creep 
CALL sorted([3,6,2,9,20])  ? creep 
CALL sorted(0,[3,6,2,9,20])  ? creep 
CALL 0<3 ? 
...and so on. 

8.4.4 Altering the Satisfaction  of  the Goal 

The following options enable you to alter how your program works. You can use 
these to repeat things that you want to look at in more detail, avoid choices which 
you know to be irrelevant and force the program to consider choices that it might not 
otherwise find. These can greatly speed up debugging, because they mean that you 
can subject the difficult parts of the program to repeated scrutiny without having to 
run the whole thing again. 

• "retry": If you specify the option "retry" at an event for some goal, Prolog will 
go back to where it was when it originally CALLed the goal. Everything will be 
exactly as it was when the goal was first encountered (except for any additions 
to the database that may have been made). Hence you can look at what happens 
in the satisfaction of the goal once again. A common technique is to combine the 
use of the "retry" and "skip" options. If you are not sure whether a bug occurs 
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in the satisfaction of some goal, you can "skip" over its satisfaction to start with. 
This means that you will not have to wade through lots of output about a goal 
that is satisfied completely correctly. If there is a bug, and the goal either fails or 
produces the wrong result, you can afterwards use the "retry" option to go back 
and look more closely. 

• "or": This option is just like the EE) you type in to ask for alternative solutions to 
a question. If you are at an E X I T for a goal, you can also ask for alternatives. So 
if you know that the first answer found will not allow the rest of the program to 
succeed, you can immediately ask for another solution to be found. This means 
that you will be able to get more quickly to the part of the program that has the 
bug. The alternative would be to have to watch the eventual failure after the first 
alternative was found. 

• "fail": This is mainly to be used at a C A L L event for a goal. If you know that 
the goal is going to fail eventually, and the goal is of no interest to you, you can 
cause it to fail immediately by using this option. 

Here is an example of these various options being used to move around the satisfac-
tion of the question: 

? member(X,[a,b,c]), member(X,[d,c,e]). 

CALL member(_44,  [a,b,c])  ? creep 
EXIT  member (a,[a,b,c])  ? or 
REDO member (a,  [a,b,c])  ? creep 
CALL member(_44,[brc])  ? fail 
FAIL  member(_44,[b,c])  ? creep 
FAIL  member(_44r[a,b,c])  ? retry 
CALL member(_44,[a,b,c])  ? creep 
EXIT  member(a,[a,b,c])  ? creep 
CALL member (a,  [d,c,e])  ? fail 
FAIL  member(a,  [d,c,e])  ? creep 
REDO member(a,[a,b,c])  ? creep 
CALL member(_44,[b,c])  ? creep 
EXIT  memberfb,  [b,c])  ? or 
REDO member(b,[b,c])  ? creep 
CALL member(_44,[c])  ? fail 
FAIL  member(_44,[c])  ? retry 
CALL member(_44,[c])  ? creep 
EXIT  member(c,[c])  ? creep 
EXIT  member(c,[b,c])  ? creep 
EXIT  member(c,  [a,b,c])  ? creep 
CALL member(c,[d,c,e])  ? creep 
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CALL member(c,[c,e])  ? creep 
EXIT  member(c,  [c,e])  ? creep 
EXIT  member(c,[d,c,e])  ? or 
REDO member(c,[d,cfe])  ? creep 
REDO member(c,[c,e])  ? creep 
CALL member(c,[e])  ? creep 
CALL member(c,U)  ? creep 
FAIL  member(c,[])  ? creep 
FAIL  member(c,[e])  ? creep 
FAIL  member(c,[c,e])  ? retry 
CALL member(c,[c,ej)  ? creep 
EXIT  member(c,  [c,e])  ? creep 
EXIT  member(c,[d,c,e])  ? creep 

8.4.5 Other Options 

Other options that may be open to you at a leashed event are: 

• "break": This causes the current execution to be suspended and a new copy of the 
Prolog interpreter to be made available to you. You can use this to ask questions 
about what clauses you have, to set spy points, or anything else that you want. 
When you exit from the interpreter (by typing the end-of-file character), your 
previous program will be resumed. 

• "abort": This causes all your current running programs to be abandoned, and you 
get "thrown back" to the Prolog interpreter, ready to give the next question. 

• "halt": This causes you to leave Prolog completely. You might want to use this 
as soon as you discover a bug, because you want to edit a file that contains the 
bugridden program. 

8.4.6 Summary 

In conclusion then, there are three things to think about when you start to look at 
your program as it runs: 

1. Which goals do you want to look at? If you look at everything (use exhaustive 
tracing with trace), you may become overwhelmed by the amount of informa-
tion that appears on your terminal. On the other hand, if you just look at what 
happens to a few predicates (setting spy points with spy), you may miss where 
the program is going wrong. The best solution is probably a compromise, with 
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careful use of spy points to narrow down the search, and then exhaustive tracing 
at the end to isolate the bug. 

2. How much do you want to control the program's progress from the terminal? 
If you have all event types unleashed, you will have no control at all over the 
program, which will rapidly run past the faulty bits before you can notice and 
look in more detail. On the other hand, if you have all event types leashed, you 
will get thoroughly fed up telling the program to keep going at each event. 

3. Do you want to provide special output facilities for your goals? This will be 
useful if some of the goals will contain huge structures of little interest, which 
will only distract from the arguments that you are really interested in. In this 
case, you can provide a portray facility that suppresses this information. 

8.5 Fixing Bugs 

When you have watched your faulty program working and discovered something 
wrong with it, you will want to fix the bug and try the program again. Assuming that 
your program is of a reasonable size, you will already have it stored in disc files. At 
this point, you will need to use an editor program to change what is in those files. 
There are two possibilities now: 

1. Your computer system may allow you to use an editor and then return to Prolog 
with exactly the same database as before. You may be able to do this directly, 
e.g. by running the editor in a different window and then returning to the Prolog 
program. Alternatively, Prolog may allow you to save the current state of the 
database in a special file and then restore it again later. You then save your current 
state, exit from Prolog, change your program, run Prolog again and restore the 
previous database state. Having returned to where you were before, but with one 
or more program files changed, all you need to do is consult these files again to 
replace the old definitions with new ones. 

2. If your Prolog system does not allow you to return to a previous state after using 
an editor, after changing your program files you will have to run Prolog and 
consult all your program files from scratch. 

You can make this process easier by having a single file containing commands to 
Prolog to consult all the files of your program. You can then read in the whole pro-
gram by just asking Prolog to consult the first file. For instance, if you asked Prolog 
to consult a file containing: 

?- [filel, file2, file3]. 



8.5 Fixing Bugs 211 

?- [file4, file5, file6]. 

then as a result each of filel, file2, file3, file4, file5, file6 will be read in. 
In some circumstances, the change to your program may seem so minimal that 

you can enter it from the terminal, by a consult(user). However, you should beware 
of doing this too often. If you are not careful, you will forget all the little changes 
you have made this way and run across the same bugs when you run your program 
in a later session. Also, since you will want eventually to incorporate the changes 
into your program files, it is rather a waste to have to type them in at the terminal as 
well. So do not be tempted into entering clauses from the terminal by the prospect of 
getting the program to work quickly. 

To show how consult can be used to change a program from the terminal, here 
is a small example session where this is done by a particularly careless programmer. 
The session starts with the programmer having no clauses in the database, so he 
enters some from the keyboard... 

?- consult(user). 

append([A)B], C, [A|D]):- append(A, C, D). 

append([], X, X). 

reverse([], []). 

reverse([A)B], C) :- reverse(B, D), append(D, [A], C). 

/* the end of file character is typed here*/ 

yes 
Now the programmer tries some goals... 

?- reverse([a,b,c,d,e], X). 

no 

?- append([a,b,c,d,e], [f], X). 

no 
?- append([], [a,b,c], X). 
X  = [a,b,c] 

yes 

It doesn't seem to be working. Try redefining append. 

?- consult(user). 

append([A|B], C, [A|D]):- append(B, C, D). 

/* the end of file character is typed here */ 

yes 
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Now try again... 

?- reverse([a,b,c,d], X). 
no 

Now reverse doesn't work. Try a longer definition... 

?- consult(user). 

append([], X, X). 

append([A|B], C, [A|D]) :- append(B, C, D). 

/* the end of file character is typed here */ 

yes 
Now try again... 

?- reverse([a,b,c,d,e], X). 
X  = [e,d,c,b,a] 
yes 

In this session, the programmer starts by entering clauses for the predicates append 
and reverse from the terminal. Of course, the programmer could have typed these 
into a file first and then told Prolog to consult that file, but for an example of this 
small size that might not have been worthwhile. Unfortunately, there is a mistake 
in the first clause for append. The goal contains an A where there should be a B. 
This mistake is revealed when the system cannot answer the append and reverse 
questions. Somehow, the programmer realises that the definition of append is wrong 
(in a real session, this would probably happen after use was made of the debugging 
aids). So he decides to replace his existing definition with a new one, using consult. 
Unfortunately, in the new definition, he forgets to specify the boundary condition (the 
[] case). So the program still does not work. At this point, the original two-clause 
definition of append has been replaced by a new one-clause definition, which is not 
complete. The programmer sees what he has done, and can rectify the situation by 
simply adding a new clause to the existing definition. This is achieved with another 
use of consult. The program now works. 

In conclusion, when you are making changes to a program, exercise the same 
care that you take when you write the first version of a program. Make sure that what 
you add is still compatible with your conventions about which variables should be 
instantiated when and what arguments are used for what purposes. Above all, take 
the opportunity to look over the program again: there may be some other mistakes in 
it! 
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Using Prolog Grammar Rules 

9.1 The Parsing Problem 

Sentences in a language such as English are much more than just arbitrary sequences 
of words. We cannot string together any set of words and make a reasonable sentence. 
At the very least, the result must conform to what we consider to be grammatical. 

A grammar for a language is a set of rules for specifying what sequences of 
words are acceptable as sentences of that language. It specifies how the words must 
group together into phrases and what orderings of these phrases are allowed. Given 
a grammar for a language, we can look at any sequence of words and see whether it 
meets the criteria for being an acceptable sentence. If the sequence is indeed accept-
able, the process of verifying this will have established what the natural groups of 
words are and how they are put together. That is, it will have established something 
of the underlying structure of the sentence. 

A particularly simple kind of grammar is known as a "context free" grammar. 
Rather than give a formal definition of what such a thing is, we will illustrate it by 
means of a simple example. The following might be the start of a grammar of English 
sentences: 

sentence --> noun. phrase, verb_phrase. 

noun_phrase --> determiner, noun. 

verb__phrase --> verb, noun_phrase. 

verb_phrase --> verb. 

determiner --> [the]. 

noun —> [apple]. 
noun ~ > [man]. 
verb --> [eats]. 
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verb --> [sings]. 

The grammar consists of a set of rules, here shown one to a line. Each rule specifies 
a form that a certain kind of phrase can take. The first rule says that a sentence 
consists of a phrase called a noun_phrase followed by a phrase called a verb_phrase. 
These two phrases are what are commonly known as the subject and predicate of the 
sentence, and their configuration can be illustrated in a tree as follows: 

sentence 

noun_ phrase verb_phrase 

I I 
the man eats the apple 

To see what a rule in a context free grammar means, read "X —> Y" as saying "X can 
take the form Y", and read "X,Y" as saying "X followed by Y." Thus, the first rule can 
be read as: 

A sentence can take the form: a noun_phrase followed by a verb_phrase. 

This is all very well, but what is a noun_phrase and what is a verb_phrase? How 
are we to recognise such things and to know what constitute grammatical forms for 
them? The second, third and fourth rules of the grammar go on to answer these 
questions. For instance, 

A noun_phrase can take the form: a determiner followed by a noun. 

Informally, a noun phrase is a group of words that names a thing (or things). Such a 
phrase contains a word, the "noun", which gives the main class that the thing belongs 
to. Thus "the man" names a man, "the program" names a program and so on. Also, 
according to this grammar, the noun is preceded by a phrase called a "determiner": 

noun_phrase 

determiner noun 

the man 

Similarly, the internal structure for a verb_phrase is described by the rules. Notice 
that there are two rules for what a verb_phrase is. This is because (according to this 
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grammar) there are two possible forms. A verb_phrase can contain a noun_phrase, 
as in "the man eats the apple", or it need not, as in "the man sings." 

What are the other rules in the grammar for? These express how some phrases 
can be made up in terms of actual words, rather than in terms of smaller phrases. The 
things inside square brackets name actual words of the language, so that the rule: 

determiner --> [the]. 

can be read as: 

A determiner can take the form: the word the. 

Now that we have got through the whole of the grammar, we can begin to see which 
sequences of words are actually sentences according to the grammar. This is a very 
simple grammar and needs extending in many ways, especially as it will only accept 
sentences formed out of five different words. If we wish to investigate whether a 
given sequence of words is actually a sentence according to these criteria, we need 
to apply the first rule, and this reduces the problem to: 

Does the sequence decompose into two phrases, such that the first is an 
acceptable noun_phrase and the second is an acceptable verb_phrase? 

Then in order to test whether the first phrase is a noun phrase, we need to apply the 
second rule, asking, 

Does it decompose into a determiner followed by a noun? 

and so on. At the end, if we succeed, we will have located all the phrases and sub-
phrases of the sentence, as specified by the grammar, and will have established a 
structure for that sentence such as, for instance: 

sentence 

determiner noun verb noun_phrase 

determiner noun 

the man eats the apple 

This diagram showing the phrase structure of the sentence is called a parse tree  for 
the sentence. 
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We have seen how having a grammar for a language means that we can con-
struct parse trees to show the structure of sentences of the language. The problem of 
constructing a parse tree for a sentence, given a grammar, is what we call the parsing 
problem.  A computer program that constructs parse trees for sentences of a language 
we shall call a parser. 

This chapter illustrates how the parsing problem can be formulated in Prolog, 
and introduces the Prolog grammar rule formalism, which makes it rather more con-
venient to write parsers in Prolog. Although a parser for the grammar rule formal-
ism (also called "Definite Clause Grammars" or "DCGs") is not actually part of the 
definition of Standard Prolog, it is provided automatically by many Prolog imple-
mentations. The usefulness of DCGs is not confined to applications concerned with 
the syntax of natural languages. Indeed, the same techniques apply to any problem 
where we are presented with an ordered sequence of items that seem to fall into nat-
ural groups and where the arrangement of these groups can be specified by a set of 
rules. However, for the sake of simplicity the rest of the chapter will concentrate on 
the problem of parsing English sentences and the generalisation to other fields will 
be left to you. 

9.2 Representing the Parsing Problem in Prolog 

The primary structure that we are talking about in discussing the parsing problem 
is the sequence of words whose structure is to be determined. We expect to be able 
to isolate subsequences of this structure as being various phrases accepted by the 
grammar, and to show in the end that the whole sequence is acceptable as a phrase 
of type sentence. Because a standard way of representing a sequence is as a list, we 
shall represent the input to the parser as a Prolog list. What about the representation 
of the words themselves? For the moment, there seems to be no point in giving the 
words internal structure. All we want to do is compare words with one another. Hence 
it seems reasonable to represent them as Prolog atoms. 

Let us develop a program to see if a given sequence of words is a sentence 
according to the grammar shown above. In order to do this, it will have to establish 
the underlying structure of the sentences it is given. We will later on consider how to 
develop a program that remembers this structure and displays it to us, but for now it 
will be easier if we ignore this extra complexity. Since the program involves testing 
to see if something is a sentence, let us define a predicate sentence. The predicate 
will only need one argument, and we will give it a meaning as follows: 

sentence(X) means that: 

X is a sequence of words forming a grammatical sentence. 

So we anticipate asking questions such as: 
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?- sentence([the,man,eats,the,apple]). 

This will succeed if "the man eats the apple" is a sentence and fail otherwise. 
It is clumsy to specify sentences artificially by giving lists of Prolog atoms. 

For a more serious application, we would probably want to be able to type English 
sentences at the terminal in the normal way. In Chapter 5, we saw how a predicate 
read_in can be defined so that we can convert a sentence typed in to a list of Prolog 
atoms. We could obviously build this into our parser to allow a more natural means of 
communication with the program's user. However, we will ignore these "cosmetic" 
matters for now and concentrate on the real problem of parsing. 

What is involved in testing to see whether a sequence of words is a sentence? 
Well, according to the first rule of the grammar, the task decomposes into finding a 
noun_phrase at the beginning of the sequence and then finding a verb_phrase in what 
is left. At the end of this, we should have used up exactly the words of the sequence, 
no more and no less. Let us introduce the predicates noun_phrase and verb_phrase 
to express the properties of being a noun phrase or verb phrase, so that: 

noun_phrase(X) means that: sequence X is a noun phrase. 

Also, 

verb_phrase(X) means that: sequence X is a verb phrase. 

We can put together a definition of sentence in terms of these predicates. A se-
quence X is a sentence if it decomposes into two subsequences Y and Z, where Y 
is a noun_phrase and Z is a verb_phrase. Since we are representing sequences as 
lists, we already have available the predicate append for decomposing one list into 
two others. So we can write: 

sentence(X) :-

append(Y, Z, X), noun_phrase(Y), verb_phrase(Z). 

Similarly, 

noun_phrase(X) :-
append(Y, Z, X), determiner(Y), noun(Z). 

verb_phrase(X) :-
append(Y, Z, X), verb(Y), noun_phrase(Z). 

verb_phrase(X):- verb(X). 

Notice that the two rules for verb_phrase give rise to two clauses for the predicate, 
corresponding to the two ways of verifying that a sequence is a verb_phrase. Finally, 
we can easily deal with the rules that introduce words: 

determiner([the]). 
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noun([apple]). 
noun([man]). 

verb ([eats]). 
verb([sings]). 

So our program is complete. Indeed, this program will successfully tell us which 
sequences of words are sentences according to the grammar. However, before we 
consider the task complete, we should have a look at what actually happens when we 
ask questions about some example sequences. Consider just the sentence clause: 

sentence(X) :-

append(Y, Z, X), noun_phrase(Y), verb_phrase(Z). 

and a question: 

?- sentence([the,man,eats,the,apple]). 
Variable X in the rule will be instantiated (to [the, man, eats, the, apple]), but 
initially Y and Z will be uninstantiated, so the goal will generate a possible pair of 
values for Y and Z such that when Z is appended to Y the result is X. On backtracking, 
it will generate all the possible pairs, one at a time. The noun_phrase goal will only 
succeed if the value for Y actually is an acceptable noun_phrase. Otherwise it will 
fail, and append will have to propose another value. So the flow of control for the 
first part of the execution will be something like: 

1. Thegoalissentence([the, man, eats, the, apple]). 

2. Decompose the list into two lists Y and Z. The following decompositions are 
possible: 

Y = [ L Z = [the,man,eats,the,apple] 

Y = [the], Z = [man,eats,the,apple] 
Y = [the,man], Z = [eats,the,apple] 
Y = [the,man,eats], Z = [the,apple] 
Y = [the,man,eats,the], Z = [apple] 
Y = [the,man,eats,the,apple], Z = [] 

3. Choose a possibility for Y and Z from the above list of possibilities, and see if Y 
is a noun_phrase. That is, try to satisfy noun_phrase(Y). 

4. If Y is a noun_phrase, then succeed (and then look for a verb_phrase). Otherwise, 
go back to Step 3 and try another possibility. 

There seems to be a lot of unnecessary searching in this approach. The goal ap-
pend(Y,Z,X) generates a large number of solutions, most of which are useless from 



9.2 Representing the Parsing Problem in Prolog 21 

the point of view of identifying noun phrases. There must be a more directed way of 
getting to the solution. As our grammar stands, a noun_phrase must have precisely 
two words in it, and so we might think of using this fact to avoid searching among 
possible decompositions of the sequence. The trouble is that this state of affairs may 
not stay true if we change the grammar. Even a small change in the rules for de-
terminer could affect the possible lengths of noun phrases and hence affect the way 
in which the presence of noun phrases would be tested. In designing the program it 
would be nice to retain some modularity. If we wish to change one clause, it should 
not necessarily have ramifications for the whole program. 

So, the heuristic about the length of noun phrases is too specific to be built into 
the program. Nevertheless, we can see it as a specific case of a general principle. 
If we wish to select a subsequence that is a noun phrase, then we can look at the 
properties of noun phrases to restrict what kinds of sequences are actually proposed. 
If the noun phrase definition is liable to change, we cannot do this, unless we hand 
over the whole responsibility to the noun_phrase clauses. Since it is the noun_phrase 
clauses that express what the properties of noun phrases are, why not expect them to 
decide how much of the sequence is to be looked at? Let us require the noun_phrase 
clauses to decide how much of the sequence is to be consumed, and what is to be left 
for the verb_phrase definition to work on. 

This discussion leads us to consider a new definition for the noun_phrase pred-
icate, this time involving two arguments: 

noun_phrase(X,Y) is true if 
there is a noun phrase at the beginning of sequence X 
and the part of the sequence left after the noun phrase is Y. 

So we might expect these questions: 

?- noun_phrase([the,man,eats,the,apple], [eats,the,apple]). 
?- noun_phrase([the,apple,sings], [sings]). 
?- noun_phrase([the,man,eats,the,apple], X). 
?- noun_phrase([the,apple,sings], X). 

all to succeed, the last two instantiating the variable X to whatever in the list follows 
the noun_phrase. 

We must now revise the definition of noun_phrase to reflect this change of 
meaning. In doing this, we must resolve how the sequence taken up by a noun phrase 
decomposes into a sequence taken up by a determiner followed by a sequence taken 
up by a noun. We can again delegate the problem of how much of the sequence is 
taken up to the clauses for the embedded phrases, giving the following: 

noun_phrase(X, Y) :- determiner(X, Z), noun(Z, Y) 

So a noun_phrase exists at the beginning of sequence X if we can find a determiner 
at the front of X, leaving behind Z, and we can then find a noun at the front of Z. The 



2 Chapter 9 Using Prolog Grammar Rules 

amount of the sequence left behind by the whole noun phrase is the same as that left 
behind after the noun (Y). Expressed diagramatically: 

the man eats the apple 

I I Y 
I I Z 

I X 

In order for this to work, we will have to adopt a similar convention with determiner 
and noun as we did with noun_phrase. 

This clause tells us how the problem of finding a sequence that is a noun phrase 
decomposes into finding subsequences that is a determiner followed by one which is 
a noun. Similarly, the problem of finding a sentence decomposes into finding a noun 
phrase followed by a verb phrase. This is all very abstract. None of this tells us how 
many words are actually consumed in the determiner, noun phrase or sentence. The 
information must be built up from our version of the rules that actually introduce 
English words. We can again express these as Prolog clauses, but this time we need 
to add an extra argument, to give for example: 

determiner([the|X], X). 

This rule expresses the fact that one can find a determiner at the front of a sequence 
beginning with the word the. Moreover, the determiner only takes up the first word 
of the sequence, and leaves the rest behind. 

In fact, we can add an extra argument to every predicate that recognises a kind of 
phrase, to express how that kind of phrase "uses up" some of the words of a sequence 
and leaves the rest. In particular, for consistency, it would be sensible to do this with 
the sentence predicate. How does the initial goal that we give to the program look 
now? We must decide on what two arguments to give to sentence in the question. 
The arguments indicate the sequence that it starts from and the sequence it is to leave 
behind. The first of these is obviously the same as the argument we gave to sentence 
before. Moreover, since we want to find a sentence that occupies the whole of the 
sequence, we want nothing left after the sentence has been found. We want only the 
empty sequence to be left. Hence we must give the program a goal like: 

?- sentence([the,man,eats,the,apple], []). 

Let us now see how the complete grammar looks after we have rewritten it with the 
above discussion in mind: 
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sentence(SO, S) :-

noun_phrase(SO, S i ) , 

verb_phrase(Sl, S). 

noun_phrase(SO, S) :- determiner(SO, S I ) , noun(Sl, S). 

verb_phrase(SO, S) :- verb(S0, S). 

verb_phrase(SO, S) :- verb(S0, S I ) , noun_phrase(Sl, S). 

determiner([the|S], S). 

noun([man|S], S). 

noun([apple|S], S). 

verb([eats|S], S). 

verb([sings|S], S). 

So we now have a more efficient version of our program to recognise sentences ac-
cepted by the grammar. It is a pity, though, that the code looks more messy than that 
of the previous version. All the extra arguments seem to clutter it up unnecessarily. 
We shall now see how to cope with this problem. 

9.3 The Grammar Rule Notation 

The Prolog grammar rule notation was developed as an aid to people writing parsers 
using the techniques we have just described. The notation makes the code easier to 
read, because it suppresses information that is not interesting. Because the notation 
is more concise than ordinary Prolog, there is also less chance of making silly typing 
mistakes if you use grammar rules for writing your parsers. 

Although the grammar rule notation is self-contained, it is important to realise 
that it is only a shorthand for ordinary Prolog code. You can use grammar rules either 
because they are built-in to your Prolog system already, or because there is a library 
package (such as Appendix D that enables you to use a special form of consult. In 
either case, the way that the system handles grammar rales is to recognise them when 
they are input and then translate them into ordinary Prolog. So your grammar rules 
end up as ordinary Prolog clauses, although naturally looking a bit different from 
what you typed in. 

The actual notation is built around the notation for context-free grammars that 
we introduced at the beginning of this chapter. In fact, if the grammar as presented 
there (reproduced below) were given to Prolog, it would be translated into clauses 
exactly the same as what we ended up with as the final version of the parsing pro-
gram: 
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sentence —> noun_phrase, verb_phrase. 

noun_phrase --> determiner, noun. 

verb_phrase --> verb. 

verb_phrase ~> verb, noun_phrase. 

determiner ~> [the]. 

noun —> [man]. 
noun ~> [apple]. 
verb - > [eats]. 
verb --> [sings]. 

The actual grammar rules are Prolog structures, with main functor "-->", which is 
declared as an infix operator. All the Prolog system has to do is check whether a term 
read in (in a consult or similar) has this functor, and if so translate it into a proper 
clause. 

What is involved in this translation? First of all, every atom that names a kind 
of phrase must be translated into a predicate with two arguments. One argument 
is for the sequence provided, and the other is for the sequence left behind, as in 
our program above. Second, whenever a grammar rule mentions phrases coming 
one after another, it must be arranged that that the arguments reflect the fact that 
what is left behind by one phrase forms the input to the next. Finally, whenever a 
grammar rule mentions that a phrase can be realised as a sequence of subphrases, the 
arguments must express the fact that the amount of words consumed by the whole 
phrase is the same as the total consumed by the subphrases mentioned on the right 
of the "-->". These criteria ensure, for instance, that: 

sentence --> noun_phrase, verb_phrase. 

translates into: 

sentence(SO, S) :-
noun_phrase(SO, SI), verb_phrase(Sl, S). 

or, in English, 

There is a sentence between SO and S if: there is a noun phrase between SO 
and SI, and if there is a verb phrase between Si and S. 

Finally, the system has to know how to translate those rules that introduce actual 
words. This involves inserting the words into the lists forming the arguments of the 
predicates, so that, for instance, 

determiner —> [the], 

translates into: 
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determiner([the|S], S). 

Once we have expressed our parsing program as grammar rules, how do we specify 
the goals that we want it to work at? Since we now know how grammar rules translate 
into ordinary Prolog, we can express our goals in Prolog, adding the extra arguments 
ourselves. The first argument to add is the list of words that is to be looked at, and 
the second is the list that is going to be left, which is normally the empty list, []. So, 
we can specify goals such as: 

?- sentence([the,man,eats,the,apple], []). 
?- noun_phrase([the,man,sings], X). 

As an alternative, some Prolog implementations provide a built-in predicate phrase 
which simply adds the extra arguments for you. The predicate phrase is defined by: 

phrase(P, L) is true if: list L can be parsed as a phrase of type P. 

So we could replace the first of the above goals by the alternative: 

?- phrase(sentence, [the,man,eats,the,apple]). 

Note that the definition of phrase involves the whole list being parsed, with the empty 
list being left. Therefore we could not replace the second goal above by a use of 
phrase. 

If your Prolog implementation does not provide phrase already defined, you can 
easily provide a clause for it, as follows: 

phrase(P,L) :- Goal=.. [P, L, []], call(Goal). 

Note, however, that this definition will not be adequate when we consider more gen-
eral grammar rules in the next section. 

9.4 Adding Extra Arguments 

The grammar rules we have considered so far are only of a fairly restricted kind. In 
this section we will consider one useful extension, which allows phrase types to have 
extra arguments. This extension is still part of the standard grammar rule facility that 
most Prolog systems provide. 

We have seen how an occurrence of a phrase type in a grammar rule translates to 
the use of a Prolog predicate with two extra arguments. So the rules we have seen so 
far give rise to a lot of two-argument predicates. Now Prolog predicates can have any 
number of arguments, and we may sometimes want to have extra arguments used in 
our parsers, apart from the ones dealing with the consumption of the input sequence. 
The grammar rule notation supports this. 
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Let us look at an example where extra arguments may be useful. Consider the 
problem of "number agreement" between the subject and verb of a sentence. Se-
quences like 

-k The boys eats the apple. 
~k  The boy eat the apple. 

are not grammatical English sentences, even though they might be allowed by a 
simple extension of our grammar (the "T*T" is a convention used to denote an un-
grammatical sentence). The reason they are not grammatical is that if the subject of 
a sentence is singular then the sentence must also use the singular form of the verb. 
Similarly, if the subject is plural, the plural form of the verb must be used. We could 
express this in grammar rules by saying that there are two kinds of sentences, sin-
gular sentences and plural sentences. A singular sentence must start with a singular 
noun phrase, which must have a singular noun, and so on. We would end up with a 
set of rules like the following: 

sentence - > singular_sentence. 
sentence —> plural_sentence. 

noun_phrase —> singular_noun_phrase. 
noun_phrase --> plural_noun_phrase. 

singular_sentence --> 
singular_noun_phrase, singular_verb_phrase. 

singular_noun_phrase —> 
singular_determiner, singular_noun. 

singular_verb_phrase --> singular_verb, noun_phrase. 

singular_verb_phrase --> singular_verb. 

singular_determiner --> [the]. 

singular_noun —> [boy]. 

singular_verb --> [eats]. 
and also a whole lot of rules for plural phrases. This is not very elegant, and obscures 
the fact that singular and plural sentences have a lot of structure in common. A bet-
ter way is to associate an extra argument with phrase types, according to whether 
they are singular or plural. Thus sentence(singular) names a phrase which is a sin-
gular sentence and, in general, sentence(X) a sentence of plurality X. The rules about 
number agreement then amount to consistency conditions on the values of these ar-
guments. The plurality of the subject noun phrase must be the same as that of the 
verb phrase, and so on. Rewriting the grammar in this way, we get: 
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sentence --> sentence(X). 

sentence(X) --> noun_phrase(X), verb_phrase(X). 

noun_phrase(X) —> determiner(X), noun(X). 

verb_phrase(X) --> verb(X). 
verb_phrase(X) --> verb(X), noun_phrase(Y). 

noun(singular) ~> [boy]. 

noun(plural) ~> [boys]. 

determiner(_) --> [the]. 

verb(singular) --> [eats]. 
verb(plural) --> [eat]. 

Note the way in which we can specify the plurality of the. This word could introduce 
a singular or a plural phrase, and so its plurality is compatible with anything. Also 
note that in the second rule for verb_phrase the naming of the variables expresses the 
fact that the plurality of a verb phrase (the thing that must agree with the subject) is 
taken from that of the verb, and not that of the object, if there is one. 

We can introduce arguments to express other important information as well as 
number agreement. For instance, we can use them to keep a record of constituents 
that have appeared outside their "normal" position, and hence deal with the phenom-
ena that linguists call "movement". Or we can use them to record items of semantic 
significance, for example to say how the meaning of a phrase is composed of the 
meanings of the subphrases. We will not investigate these any more here, although 
Section 9.6 gives a simple example of incorporating semantics into the parser. How-
ever, one point should be noted here. Linguists may be interested to know that once 
we introduce extra arguments into grammar rules, we cannot guarantee that the lan-
guage defined by the grammar is still context-free, although it often will be. 

An important use of extra arguments is to return a parse tree as a result of the 
analysis. In Chapter 3 we saw how trees can be represented as Prolog structures, and 
we will now make use of that in extending the parser to make a parse tree. Parse 
trees are helpful because they provide a structural representation of a sentence. It 
is convenient to write programs that process this structural representation in a way 
analogous to processing the arithmetic formulae and lists in Chapter 7. The new 
program, given a grammatical sentence like: 

The man eats the apple, 

will generate a structure like this: 

sentence( 
noun_phrase( 

determiner(the), 
noun(man)), 
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verb_phrase( 
verb(eats), 
noun_phrase( 

determiner(the), 
noun(apple)) 

) 
) 

as a result. In order to make it do this, we only need to add an extra argument to each 
predicate, saying how the tree for a whole phrase is constructed from the trees of the 
various sub-phrases. Thus we can change the first rule to: 

sentence(X, sentence(NP, VP)) --> 
noun_phrase(X, NP), verb_phrase(X, VP). 

This says that if we can find a sequence constituting a noun phrase, with parse tree 
NP, followed by a sequence constituting a verb phrase, with parse tree VP, then we 
have found a sequence constituting a complete sentence, and the parse tree for that 
sentence is sentence(NP,VP). Or, in more procedural terms, to parse a sentence one 
must find a noun phrase followed by a verb phrase, and then combine the parse 
trees of these two constituents, using the functor sentence to make the tree for the 
sentence. 

It is only coincidental that we have named the grammar rule sentence as well 
as the sentence node of the parse tree. We could have used, say, s to name the parse 
tree node instead. Note that the X arguments are just the number agreement argu-
ments used earlier, and that the decision to put the tree generating arguments after 
rather then before them was arbitrary. If you have any difficulty understanding this 
extension, it helps to see that this is all just a shorthand for an ordinary Prolog clause: 

sentence(X, sentence(NP, VP), SO, S) :-
noun_phrase(X, NP, SO, SI), 
verb_phrase(X, VP, Si, S). 

where SO, SI and S stand for parts of the input sequence. We can introduce tree-
building arguments throughout the grammar in a routine way. Here is an excerpt 
from what is produced if we do this (number agreement arguments being left out for 
clarity): 

sentence(sentence(NP, VP)) --> 

noun_phrase(NP), verb_phrase(VP). 

verb_phrase(verb_phrase(V)) --> verb(V). 

noun(noun(man)) - > [man]. 

verb(verb(eats)) --> [eats]. 
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The translation mechanism needed to deal with grammar rules with extra arguments 
is a simple extension of the one described before. Previously a new predicate was 
created for each phrase type, with two arguments to express how the input sequence 
was consumed. Now it is necessary to create a predicate with two more arguments 
than are mentioned in the grammar rules. By convention, these two extra arguments 
are added as the last arguments of the predicate (although this may vary between 
Prolog systems). Thus the grammar rule: 

sentence(X) --> noun_phrase(X), verb_phrase(X). 

translates into: 

sentence(X, SO, S) --> 
noun_phrase(X, SO, Si), verb_phrase(X, Si , S). 

When we want to invoke goals involving grammar rules from the top level of the 
interpreter or from ordinary Prolog rules, we must explicitly add the extra arguments. 
Thus appropriate goals involving this definition of sentence would be: 

?- sentence(X, [a,student,eats,a,cake],[]). 
?- sentence(X, [every,bird,sings,and,pigs,can,fly],L). 

Exercise 9.1: This may be a difficult exercise for some. Define in Prolog a procedure 
translate, such that the goal translate(X, Y) succeeds if X is a grammar rule of the type 
seen in previous sections, and Y is the term representing the corresponding Prolog 
clause. 

Exercise 9.2: Write a new version of phrase that allows grammar rules with extra 
arguments, so that one can provide goals such as: 

?- phrase(sentence(X), [the,man,sings]). 

9.5 Adding Extra Tests 

So far in our parser, everything mentioned in the grammar rules has had to do with 
how the input sequence is consumed. Every item in the rules has had something to 
do with those two extra argument positions that are added by the grammar rule trans-
lator. So every goal in the resulting Prolog clause has been involved with consuming 
some amount of the input. Sometimes we may want to specify Prolog goals that are 
not of this type, and the grammar rule formalism allows us to do this. The conven-
tion is that any goals enclosed inside curly brackets {} are to be left unchanged by 
the translator. 
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Let us look at some examples of where it would be beneficial to use this facility, 
in improving the "dictionary" of the parser, that is, the parser's knowledge about 
words of the language. First, consider the overhead involved in introducing a new 
word into the program with both sets of extra arguments. If we wished to add the 
new noun banana, for instance, we would have to add at least the rule: 

noun(singular, noun(banana)) --> [banana], 

which amounts to: 

noun(singular, noun(banana), [banana|S], S). 

in ordinary Prolog. This is a lot of information to specify for each noun, especially 
when we know that every noun will only occupy one element of the input list and 
will give rise to a small tree with the functor noun. A much more economical way 
would be to express the common information about all nouns in one place and the 
information about particular words somewhere else. We can do this by mixing gram-
mar rules with ordinary Prolog. We express the general information about how nouns 
fit into larger phrases by a grammar rule, and then the information about what words 
are nouns in ordinary clauses. The solution that results looks like: 

noun(S, noun(N)) --> [N], {is_noun(N, S)}. 

where the normal predicate is_noun can be provided to express which words are 
nouns and whether they are singular or plural: 

is_noun(banana, singular). 
is_noun(bananas, plural). 
is_noun(man, singular). 

Let us look carefully at what this grammar rule means. It says that a phrase of type 
noun can take the form of any single word N (a variable is specified in the list) subject 
to a restriction. The restriction is that N must be in our is_noun collection, with 
some plurality S. In this case, the plurality of the phrase is also S, and the parse tree 
produced consists just of the word N underneath the node noun. Why does the goal 
is_noun(N,S) have to be put inside curly brackets? Because it expresses a relationship 
that has nothing to do with the input sequence. If we were to leave out the curly 
brackets, it would be translated to something like is_noun(N, S, Si, S2), which would 
never match our clauses for is_noun. Putting it inside the curly brackets stops the 
translation mechanism from changing it, so that our rule will be correctly translated 
to: 

noun(S, noun(N), [N|Seq], Seq) :- is_noun(N, S). 

In spite of this change, our treatment of individual words is still not very elegant. 
The trouble with this technique is that we will have to have to write two is_noun 
clauses for every new noun that is introduced — one for the singular form, and one 
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for the plural form. This is unnecessary, because for many nouns the singular and 
plural forms are related by a simple rule: 

If X is the singular form of a noun, then the word formed by adding an "s" 
on the end of X is the plural form of that noun. 

We can use this rule about the form of nouns to revise our definition of noun. The 
revisions will give a new set of conditions that the word N must satisfy in order to be 
a noun. Because these conditions are about the internal structure of the word, and do 
not have anything to do with the consumption of the input sequence, they will appear 
within curly brackets. We are representing English words as Prolog atoms, and so 
considerations about how words decompose into letters translate into considerations 
about the characters that go to make up the appropriate atoms. So we will need to 
use the predicate atom_chars in our definition. The amended rule looks as follows: 

noun(plural, noun(RootN)) —> 

[N], 
{atom_chars(N, Plname), 
append(RootN, [s], Plname), 
atom_chars(RootN, Singname), 
is_noun(RootN, singular)}. 

Of course, this expresses a general rule about plurals that is not always true (for 
instance, the plural of "fly" is not "flys"). We will still have to express the exceptions 
in an exhaustive way.1 We need now only specify is_noun clauses for the singular 
forms of regular nouns. Note that under the above definition the item inserted into 
the parse tree will be the "root" noun, rather than the inflected form. This may be 
useful for subsequent processing of the tree. Note also the syntax of curly brackets. 
Inside the curly brackets you can put any Prolog goal or sequence of goals that could 
appear as the body of a clause. 

In addition to knowing about curly brackets, most Prolog grammar rule transla-
tors will know about certain other goals that are not to be translated normally. Thus 
it is not normally necessary to enclose "!"s or disjunctions (";") of goals involving 
the input sequence inside curly brackets. 

1 Some Prolog implementations support a version of  atom_chars that produces from  an atom 
a list of  character codes (numbers) rather than characters (single element atoms). For such 
an implementation, the append goal here must be amended to specify  the list containing 
the character code of  s as its second argument. In some Prolog implementations, this list 
can be specified  by putting the s inside double quotes. 
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9.6 Summary 

We shall now summarise the syntax of grammar rules as described so far. We shall 
then indicate some of the possible extensions to the basic system and some of the 
interesting ways that grammar rules can be used. The best way to describe the syntax 
of grammar rules is by grammar rules themselves. So here is an informal definition. 
Note that it is not completely rigorous, because it neglects the influence of operator 
precedences on the syntax. 

grammarj-ule —> grammarjiead, ['-->'], grammar_body. 

grammar_head ~> nonterminal. 
grammar_head --> nonterminal, [','], terminal. 

grammar_ body --> grammar_body, [','], grammar_body. 
grammarjbody —> grammarjbody, [';'], grammar_body. 
grammar_ body --> grammarjbodyJtem. 

grammar_ bodyJtem —> ['!']. 
grammar_body_item --> ['{'],  prolog_goals,  ['}']. 
grammar_bodyJtem —> nonterminal. 
grammar_body_item ~> terminal. 

This leaves several items undefined. Here are definitions of them in English. A 
nonterminal indicates a kind of phrase that may occupy part of the input sequence. 
It takes the form of a Prolog structure, where the functor names the category of the 
phrase and the arguments give extra information, like the number class, the meaning, 
etc. A terminal indicates a number of words that may occupy part of the input se-
quence. It takes the form of a Prolog list (which may be [] or a list of any determinate 
length). The items of the list are Prolog items that are to match against the words as 
they appear in the order given. prolog_goals are any Prolog goals. They can be used 
to express extra tests and actions that constrain the possible analysis paths taken and 
indicate how complex results are built up from simpler ones. 

When translated into Prolog, prolog_goals are left unchanged and nonterminals 
have two extra arguments inserted after the ones that appear explicitly, correspond-
ing to the sequence provided to, and the sequence left behind by, the phrase. The 
terminals appear within the extra arguments of the nonterminals. When a predi-
cate defined by grammar rules is invoked at the top level of the interpreter or by an 
ordinary Prolog rule, the two extra arguments must be provided explicitly. 

The second rule for grammar_head in the above mentions a kind of grammar 
rule that we have not met before. Up to now, our terminals and non-terminals have 
only been defined in terms of how they consume the input sequence. Sometimes we 
might like to define things that insert items into the input sequence (for other rules to 
find). For instance, we might like to analyse an imperative sentence such as: 
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Eat your supper, 

as if there were an extra word you inserted: 

You eat your supper. 

It would then have a nice noun phrase/verb phrase structure, which conforms to our 
existing ideas about the structure of sentences. We can do this by having a grammar 
that looks in part like: 

sentence --> imperative, noun_phrase, verb_phrase. 

imperative, [you] --> []. 
imperative --> []. 

There is only one rule here that deserves mention. The first rule for imperative actu-
ally translates to: 

imperative(L, [you|L]). 

So this involves a sequence being returned that is longer than the one originally pro-
vided. In general, the left-hand side of a grammar rule can consist of a non-terminal 
separated from a list of words by a comma. The meaning of this is that in the parsing, 
the words are inserted into the input sequence after the goals on the right-hand side 
have had their chance to consume words from it. 

Exercise 9.3: The definition given for grammar rules, even if made complete, would 
not constitute a useful parser, given a sequence of tokens as its input. Why? 

9.7 Translating Language into Logic 

To give an indication of how DCGs can be used to compute more complex analyses 
of language, we present an example (taken from Pereira and Warren's paper in the 
journal Artificial  Intelligence  Volume 13) of grammar rules used to obtain the mean-
ing of sentences directly, without an intermediate parse tree. The following rules 
translate from (a restricted number of) English sentences into a representation of 
their meaning in Predicate Calculus. For a description of Predicate Calculus and our 
notation for it, the reader is referred to Chapter 10. As an example of the program at 
work, the meaning obtained for "every man loves a woman" is the structure: 

all(X, (man(X) -> exists(Y, (woman(Y) & loves(X, Y))))) 

Here are the grammar rules: 

?- op(500,xfy,&). 
?- op(600,xfy,->). 
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sentence(P) --> 
noun_phrase(X, PI, P), verb_phrase(X, PI). 

noun_phrase(X, Pi, P) --> 
determiner(X, P2, Pi, P), 
noun(X, P3), 
rel_clause(X, P3, P2). 

noun_phrase(X, P, P) --> proper_noun(X). 

verb_phrase(X, P) ~> 

trans_verb(X, Y, PI), rioun_phrase(Y, PI, P). 

verb_phrase(X, P) --> intrans_verb(X, P). 

rel_clause(X, PI, (P1&P2)) --> 

[that], verb_phrase(X, P2). 
rel_clause(_, P, P) --> []. 
determiner(X, PI, P2, all(X,(Pl -> P2))) - > [every]. 
determiner(X, PI, P2, exists(X, (P1&P2))) - > [a]. 

noun(X, man(X)) --> [man]. 
noun(X, woman(X)) - > [woman]. 

proper_noun(john) —> [john], 

trans_verb(X, Y, loves(X,Y)) --> [loves]. 

intrans_verb(X, lives(X)) ~> [lives]. 

In this program, arguments are used to build up structures representing the mean-
ings of phrases. For each phrase, it is the last argument that actually specifies the 
meaning of that phrase. However, the meaning of a phrase may depend on several 
other factors, given in the other arguments. For instance, the verb lives gives rise to 
a proposition of the form lives(X), where X is something standing for the person who 
lives. The meaning of lives cannot specify in advance what X will be. The meaning 
has to be applied to some specific object in order to be useful. The context in which 
the verb is used will determine what this object is. So the definition just says that, 
for any X, when the verb is applied to X, the meaning is lives (X). A word like every 
is much more complicated. In this case, the meaning has to be applied to a variable 
and two propositions containing that variable. The result is something that says that, 
if substituting an object for the variable in the first proposition yields something true 
then substituting that same object for the variable in the second proposition will also 
yield something true. 

Exercise 9.4: Read and understand this program. Try running the program, giving it 
goals like 
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?- sentence(X, [every,man,loves,a,woman],[]). 

What meaning does the program generate for the sentence "every man that lives loves 
a woman", "every man that loves a woman lives"? The sentence "Every man loves 
a woman" is actually ambiguous. There could either be a single woman that every 
man loves, or there could be a (possibly) different woman that each man loves. Does 
the program produce the two possible meanings as alternative solutions? If not, why 
not? What simple assumption has been made about how the meanings of sentences 
are built up? 

9.8 More General Use of  Grammar Rules 

The grammar rule notation can be used more generally to hide an extra pair of argu-
ments used as an accumulator or difference structure. That is, apart from the handling 
of terminals (actual words in the list), the two extra arguments added by the grammar 
rule translation mechanism can be used to track the situation as regards any single 
piece of information which changes as the Prolog computation proceeds. Thus a 
more neutral reading of: 

noun_phrase(X, Y) :- determiner(X, I), noun(Z, Y). 

would be something like "noun_phrase is true in the situation characterised by X if 
determiner is true in situation X and, in the situation that results after that (Z), noun 
is true. The situation after noun_phrase is the same as that resulting from the noun 
(Y)." For grammar rules, the "situation" is usually a list of words that remains to be 
processed. But we'll see below that there are other possibilities. 

The occurrence of a terminal in a grammar rule marks a transition from one 
"situation" to another. For the usual use of grammar rules, this is the transition from 
having some list of unprocessed words to having the same list minus its first word. 
All changes of "situation" in the end reduce to sequences of changes of this kind (the 
only way we can move through the list of words is to repeatedly find terminals as 
specified in the grammar rules). 

In order to generalise the use of grammar rules, it is useful to define a predi-
cate that says how a terminal induces a transition from one situation to another. By 
providing different definitions for this predicate, we can make our grammar rules 
perform as usual or make them do something different. This predicate is often called 
'C'/3 (note that quotes are required because the C is upper case), and its definition for 
normal grammar rules is as follows: 

% 'C'(Prev, Terminal, New) 
% 
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% Succeeds if the terminal Terminal causes a transition from 
% situation Prev to situation New 

'C'([W|Ws], W, Ws). 

That is, if the situation (list of unused words) is [W|Ws] and the terminal W is specified 
as the next thing in the current grammar rule, we can move to a new situation where 
the list of unused words is just Ws. 

In the translation into Prolog, terminals in grammar rules can be expressed in 
terms of 'C' rather than directly in terms of what they mean for the list arguments. 
Indeed, many Prolog systems translate grammar rules in terms of 'C, thus producing 
for: 

determiner --> [the]. 

the translation 

determiner(In,Out) :- 'C'(In,the,Out). 

rather than the: 

determine^ [the|S] ,S). 

that we have shown above. Given the definition of'C' shown above, these two Prolog 
definitions for determiner always produce exactly the same answers (you might want 
to convince yourself of this!). So actually when you are using grammar rules in the 
normal way, you don't need to know which of these translation methods is used. 

Giving 'C/3 a modified definition allows grammar rules to be used for main-
taining a record of something other than a shrinking list through the computation. 
For instance, if one is computing the length of a list, one can maintain a record of the 
number of items encountered so far. Here is a version of the code for this in section 
3.7 re-expressed using grammar rules: 

listlen(L, N) :- lenacc(L, 0, N). 

lenacc([]) ~> []. 
lenacc([H|T]) --> [1], lenacc(T). 

In this situation, encountering the terminal 1 causes 1 to be added to the total so far. 
So the definition we want for 'C' is: 

'C'(0ld, X, New) :- New is Old + X. 

As another example, the computation of a parts list in section 3.7 can be recast as 
maintaining an increasing list of parts found so far. Here is what this could look like 
using grammar rules: 

partsof(X, P) :- partsacc(X, [], P). 
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partsacc(X) ~ > [X], {basicpart(X)}. 

partsacc(X) ~ > {assembly(X SubParts)}, partsacclist(Subparts). 

partsacclist([J) --> []. 

partsacclist([P|Tail]) ~ > partsacc(P), partsacclist(Tail). 

In this case, the appropriate definition  for  'C  is: 

'C'(0ld, X, [X|0Ld]>. 
Important note: The phrase/2 predicate makes the assumption that one is interested 
in the final  situation represented during the computation being []. If  you change the 
definition  of  'C', you may need to define  your own modified  version of  phrase/2 that 
does not make this assumption. 





10 

The Relation of  Prolog to Logic 

The programming language Prolog was invented by Alain Colmerauer and his as-
sociates around 1970. It was the first  attempt at the design of  a practical program-
ming language that would enable a programmer to specify  tasks in logic, instead 
of  in terms of  conventional programming constructs about what the machine should 
do when. This motivation explains the name of  the language, for  "Prolog" means 
Programming in Logic. 

In this book we have emphasised mainly how one can use Prolog as a tool for 
doing practical tasks, and we have not discussed the ways in which Prolog is a step 
towards the ultimate goal of  a "logic programming" system. In this chapter, we intend 
to redress the balance by considering briefly  how Prolog is related to logic and the 
extent to which Prolog programming is really like "programming in logic". 

10.1 Brief  Introduction to Predicate Calculus 

If  we wish to discuss how Prolog is related to logic, we must first  establish what we 
mean by logic. Logic was originally devised as a way of  representing the form  of 
arguments, so that it would be possible to check in a formal  way whether or not they 
are valid. Thus we can use logic to express propositions, the relations between propo-
sitions and how one can validly infer  some propositions from  others. The particular 
form  of  logic that we will be talking about here is called the Predicate Calculus. We 
will only be able to say a few  words about it here. There are scores of  good basic 
introductions to logic you can turn to for  background reading. 

If  we wish to express propositions about the world, we must be able to describe 
the objects that are involved in them. In Predicate Calculus, we represent objects by 
terms. A term is of  one of  the following  forms: 
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• A constant symbol. This is a symbol that stands for  a single individual or concept. 
We can think of  this as a Prolog atom, and we will use the Prolog syntax. So 
greek, agatha, and peace are constant symbols. 

• A variable symbol. This is a symbol that we may want to stand for  different 
individuals at different  times. Variables are really only introduced in conjunction 
with quantifiers,  which are discussed below. We can think of  them as Prolog 
variables and will use the Prolog syntax. Thus X, Man, and Greek are variable 
symbols. 

• A compound  term. A compound term consists of  a function  symbol, together 
with an ordered set of  terms as its arguments.  The idea is that the compound 
term represents some individual that depends on the individuals represented by 
the arguments. The function  symbol represents how the first  depends on the sec-
ond. For instance, we could have a function  symbol standing for  the notion of 
"distance" and two arguments. In this case, the compound term stands for  the 
distance between the objects represented by the arguments. We can think of  a 
compound term as a Prolog structure with the function  symbol as the functor. 
We will write Predicate Calculus compound terms using the Prolog syntax, so 
that, for  instance, wife(henry)  might mean Henry's wife,  distance(pointl, X) 
might mean the distance between some particular point and some other place to 
be specified,  and classes(mary, dayafter(W))  might mean the classes that Mary 
teaches on the day after  some day W to be specified. 

Thus in Predicate Calculus the ways of  representing objects are just like the ways 
available in Prolog. 

In order to express propositions about objects we must be able to express rela-
tionships between objects. We do this with predicate  symbols. An atomic proposition 
consists of  a predicate symbol, together with an ordered sequence of  terms as its ar-
guments.  This is just like the kind of  thing that can appear as a Prolog goal. So, for 
example, the following  are atomic propositions: 

human(mary) 

likes(man, wine) 

owns(X, donkey(X)) 

In Prolog, a structure can serve either as a goal, or as an argument to another struc-
ture, or both. This is not the case in Predicate Calculus, where a rigid separation is 
made between function  symbols, which are functors  that are used to construct argu-
ments, and predicate symbols, which are functors  that are used to construct proposi-
tions. 

We can make compound propositions from  atomic propositions in various ways. 
It is here that we begin to find  things that do not have direct analogues in Prolog. 
There are several ways in which we can make more complicated propositions out of 
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simpler ones. First, we can use the logical  connectives. These are ways of  expressing 
the familiar  notions "not", "and", "or", "implies" and "is equivalent to". The follow-
ing table summarises the connectives and their meanings. In this summary, a and p 
are meant to represent any propositions. We give both the traditional Predicate Cal-
culus (PC) syntax and the syntax that we shall use in programs because it is easy to 
type on an ordinary computer. 

Thus, for  example, 

man(fred) # woman(fred) 

could be used to represent the proposition that Fred is a man or Fred is a woman. 
The expression 

man(john) -> human(john) 

might represent the proposition that John's being a man implies his being human 
(if  John is a man then he is human). The notions of  implication and equivalence are 
sometimes a little hard to grasp at first.  We say that a implies [i if,  whenever a is true 
so is p. We say that a is equivalent to p if  a is true in exacdy those circumstances 
when P is true. In fact,  these notions can be defined  in terms of  "and", "or", and 
"not", for: 

So far,  we have not made it clear what it means when variables appear inside a 
proposition. In fact,  the meaning is only defined  when such variables are introduced 
by quantifiers.  Quantifiers  provide a means of  talking about sets of  individuals and 
what is true of  them. Predicate Calculus provides two quantifiers.  If  v represents any 
variable and P any proposition, we can summarise them as follows: 

Connective PC Computer Meaning 

Negation -> a. 
Conjunction a A P 
Disjunction a V j ? 
Implication a D P 
Equivalence a = [3 

a 8,p "a and P" 
aUP "a or p" 
a->p "a implies P" 

a <-> P "a is equivalent to /?' 

~ a "not a " 

a-> P means the same as (~a)  # P 
a <-> P means the same as (a & P) # (~a & ~p) 
a <-> P also means the same as (a -> P) & (p -> a). 
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PC Computer Meaning 

V v.P aLl(v,/)) "P  is true whatever v stands for." 
3 v.P exists(v,P) "There is something that v can 

stand for  such that P is true." 

The first  of  these is called the universal quantifier  because it talks about everything in 
the Universe ("for  all v,. . ."). The second is called the existential  quantifier  because 
it talks about the existence of  some object(s) ("there exists v such that ..."). As 
examples of  uses of  the quantifiers,  for  instance, 

all(X, man(X) -> human(X) ) 

means that, whatever X we choose, if  X is a man, then X is a human. We can read this 
as, "for  all X, if  X is a man, then X is human." Or, in English, simply "every man is 
human". Similarly, 

exists(Z, father(john,  Z) & female(Z)) 

means that there is something that Z can stand for  such that John is the father  of  Z and 
Z is female.  We can read it as "there exists a Z such that John is the father  of  Z and 
Z is female",  or in English, simply "John has a daughter". Notice that this statement 
does not rule out the possibility that John has more than one daughter. Here are some 
more complicated Predicate Calculus formulae  for  your amusement: 

all(X, animal(X) -> exists(Y, motherof(X,  Y)) ) 
all(X, pcform(X)  <-> (atomic(X) # compound(X))). 

10.2 Clausal Form 

As we saw in the last section, Predicate Calculus formulae  expressed in terms of  -> 
(implication) and <-> (equivalence) can be rewritten in terms of  & (conjunction), # 
(disjunction) and ~ (negation). In fact,  there are many more identities of  this form, 
and we would not sacrifice  any expressive power if  we were to completely avoid 
using #, ->, <->, and exists(X,P), for  instance. As a result of  the redundancy, there 
are many ways of  writing down the same proposition. If  we wish to carry out formal 
manipulations on Predicate Calculus formulae,  this turns out to be very inconvenient. 
It is much nicer if  everything we want to say can only be expressed in one way. So 
we will now consider how a Predicate Calculus proposition can be translated into a 
special form,  clausal  form,  where there are fewer  different  ways of  saying the same 
thing. In fact,  it will turn out that a Predicate Calculus proposition in clausal form  is 
very much like a set of  Prolog clauses. So an investigation of  clausal form  is essential 
for  an understanding of  the relation between Prolog and logic. 
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In Appendix B we give a Prolog program that automatically translates a Pred-
icate Calculus formula  into clausal form.  There is one difference  between our dis-
cussion here and the actual program in Appendix B. To make certain manipulations 
easier, PC variables are represented as atoms when given as input to the program. 
Thus, when using the program in Appendix B to process, for  example, the formula 

(person(X) # ~mother(X, Y)) # -person(Y), 

it will be necesary to write this as 

(person(x) # ~mother(x, y)) # ~person(y). 

The conversion of  a Predicate Calculus formula  into normal form  has six main stages. 

Stage  1. Removing Implications 

We start by replacing occurrences of  -> and <-> in accordance with the definitions 
given in Section 10.1. As a result of  this definition,  we would expect: 

all(X, man(X) -> human(X) ) 

to be transformed  to: 

all(X, ~man(X)) # human(X)). 

Stage  2. Moving  negation inwards 

This stage is involved with cases where is applied to a formula  that is not atomic. 
If  such a case is detected, an appropriate rewrite is made. Thus, for  instance, 

~(human(caesar) & living(caesar)) 

is transformed  to: 

~human(caesar) # ~living(caesar) 

Also, 

~all(Y, person(Y)) 

is transformed  to: 

exists(Y, ~person(Y)). 

The validity of  this stage results from  the following  identities: 

~(a & /j) means the same as (~a) # ~8) 
~exists(v,P) means the same as all(v, P) 
~all(v,P) means the same as exists(v,7>). 

After  Stage 2, negation will only be applied directly to atomic formulae.  We call an 
atomic proposition, or an atomic proposition preceded by a a literal.  The next 
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few  stages will treat literals as single items, and the significance  of  which literals are 
negated will only be important at the end. 

Stage  3. Skolemising 

The next stage involves removing the existential quantifiers.  This is done by introduc-
ing new constant symbols, Skolem  constants,  in the place of  the variables introduced 
by the existential quantifiers.  Instead of  saying that there exists an object with a cer-
tain set of  properties, one can create a name for  one such object and simply say that 
it has the properties. This is the motivation behind introducing Skolem constants. 
Skolemising does more damage to the logical properties of  a formula  than the other 
transformations  we discuss. Nevertheless, it has the following  important property. 
There is an interpretation for  the symbols of  a formula  that makes the formula  true if 
and only if  there is an interpretation for  the Skolemised version of  the formula.  For 
our purposes, this form  of  equivalence is enough. Thus, for  example, 

exists(X, female(X) & motherof(X, eve) ) 

is changed by Skolemisation to 

female(gl97) & motherof(gl97, eve) 

where gl97 is some new constant not used elsewhere. Constant gl97 represents some 
female  whose mother is Eve. It is important that we use a different  symbol from  any 
used previously, because 

exists(X, female(X) & motherof(X, eve) ) 

is not saying that some particular person is Eve's daughter, but only that there is such 
a person. It may turn out that gl97 will correspond to the same person as some other 
constant symbol, but that is extra information  that is not conveyed by this proposition. 

When there are universal quantifiers  in a formula,  Skolemisation is not quite so 
simple. For instance, if  we Skolemised 

all(X, human(X) -> exists(Y, motherof(X, Y ) ) ) 

("every human has a mother") to 

all(X, human(X) -> motherof(X, g2) ) 

we would be saying that every human has the same mother — the thing denoted by 
g2. When there are variables introduced by universal quantifiers,  Skolemisation must 
instead introduce function  symbols, to express how what exists depends  on what the 
variables are chosen to stand for.  Thus the above example should Skolemise to 

all(X, human(X) -> motherof(X, g2(X)) ) 
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In this case, the function  symbol g2 corresponds to the function  in the world that, 
given any person, returns as its value the mother of  that person. 

Stage  4. Moving  universal quantifiers  outwards 

This stage is very simple. We just move any universal quantifiers  to the outside of 
the formula.  This does not affect  the meaning. As an example, 

all(X, man(X) -> all(Y, woman(Y) -> likes(X, Y))) 

is transformed  to 

all(X, all(Y, man(X) -> (woman(Y) -> likes(X, Y)))). 

Since every variable in the formula  is now introduced by a universal quantifier  at 
the outside of  the formula,  the quantifiers  themselves no longer provide any extra 
information.  So we can abbreviate the formula  by simply leaving the quantifiers  out. 
We just need to remember that every variable is introduced by an implicit quantifier 
that we have left  out. Thus we can now represent: 

all(X, alive(X) # dead(X)) 
& all(Y, likes(mary, Y) # impure(Y)) 

as: 

(alive(X) # dead(X)) & (likes(mary, Y) # impure(Y)). 

The formula  means that, whatever X and Y we choose, either X is alive or X is dead, 
and either Mary likes Y or Y is impure. 

Stage  5. Distributing  "&"  over "#" 

At this stage, our original Predicate Calculus formula  has changed a lot. We no longer 
have any explicit quantifiers,  and the only connectives left  are & and # (apart from 
where literals are negated). We now put this in a special normal form,  conjunctive 
normal form,  where conjunctions no longer appear inside disjunctions. Thus we can 
convert the whole formula  into a bundle of  &'s, where the things joined together are 
either literals or literals joined by #'s. Suppose A, B and C stand for  literals. We can 
make use of  the following  identities: 

(A&B)  ff  C is equivalent to (A  # C) & (B  ff  C) 
(AffB)&C  is equivalent to (A & C) ft  (B  & C) 

As an example of  what happens, the formula: 

holiday(X) # 
(work(chris, X) & (angry(chris) # sad(chris))) 

(For every X, either X is a holiday, or, both Chris works on X and Chris is angry or 
sad) is equivalent to: 
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(holiday(X) # work(chris, X)) & 

(holiday(X) # (angry(chris) # sad(chris))) 

(For every X, first,  X is a holiday or Chris works on X, and second, either X is a holiday 
or Chris is angry or sad). 

Stage  6. Putting  into clauses 

The formula  we have now is in general made up of  a collection of  &'s relating things 
which are either literals or composed of  literals by #'s. Let us look first  at the top 
level of  this, not looking in detail at the #'s. We might have something like: 

(A & B) & (C & (D & E)) 

where the letters stand for  complex propositions, but having no &'s in them. Now all 
this nesting of  structure is unnecessary, because all the propositions 

(A & B) & (C  & (D  & E)) 
A & ((B  & C) & (D  & E)) 
(A&B)& ((C & D) & E) 

mean the same thing. Although structurally the formulae  are different,  they have the 
same meaning. This is because, if  I assert that some set of  propositions are all true, 
then it does not matter how I group them together when I do so. It does not matter, 
for  instance, whether I say "A is true, and so are B and C or "A and B are true, and so 
is C". So the bracketing is unnecessary to the meaning. We can just say (informally): 

A&B&C&D&E. 

Secondly, the order in which we write these formulae  also does not matter. It does 
not matter whether I say "A is true and so is B" or "B is true and so is A". They 
both mean the same. Finally, we do not really need to specify  the &'s between the 
formulas,  because we know in advance that the top level of  the formula  is made up 
with &'s. So, really, we can be much more concise about the import of  the formula 
we are given just by saying that it consists of  the set {A, B, C, D, E}. By calling this 
a set, we are saying that the order does not matter. The set {A,  B, C, D, E] is exactly 
the same as {B,  A, C, E, D}, {E,  D, B, C, A}, and so on. The formulae  that end up 
in this set, when we convert a formula  to Clausal form,  are called clauses. So any 
Predicate Calculus formula  is equivalent (in some sense) to a set of  clauses. 

Let us now look in more detail at what these clauses are actually like. We said 
that they are made up of  literals joined together by disjunctions. So in general, if  the 
letters V  through Z stand for  literals, a clause will be something like: 

((VUW)UX)U(Y#Z). 

Now we can do the same trick that we played with the top level of  the formula.  Once 
o aain the bracketing is irrelevant to the meaning, and the order is also unimportant. 
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So we can simply say that the clause is the set of  literals { V, W,  X,  Y,  Z}  (implicitly 
disjoined). 

Now our original formula  has reached clausal form.  Moreover the rules used 
for  this have not altered whether there is an interpretation that makes it true or not. 
The clausal form  consists of  a collection of  clauses, each of  which is a collection of 
literals. A literal is either an atomic formula  or a negated atomic formula.  This form 
is quite concise, since we have left  out things like implicit conjunctions, disjunctions 
and universal quantifiers.  We must obviously remember the conventions about where 
these have been missed out when we look to see what something in clausal form 
means. 

Let us look at some formulae  (as they would be produced by Stage 5) to see 
what they look like in clausal form.  First of  all, look at the example used before: 

(holiday(X) # work(chris, X)) & 

(holiday(X) # (angry(chris) # sad(chris))). 

This gives rise to two clauses. The first  contains the literals: 

holiday(X), work(chris, X) 

and the second contains the literals: 

hotiday(X), angry(chris), sad(chris). 

As another example, the formula: 

(person(adam) & person(eve)) & 

((person(X) # ~mother(X, Y)) # -person(Y)) 

gives rise to three clauses. Two of  them contain one literal each, 

person(adam) 

and 

person(eve). 

The other one has three literals: 

person(X), ~mother(X, Y), -person(Y). 

To bring this section to a close, let us just consider one more example, and the various 
stages as it is translated into clausal form.  We start with the formula: 

all(X, all(Y, person(Y) -> respect(Y, X)) -> king(X)) 

which says that, if  everybody respects somebody then that person is a king. That is, 
for  every X, if  every Y that is a person respects X, then X is a king. When we remove 
implications (Stage 1) we get: 
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all(X, ~(all(Y, -person(Y) # respects(Y, X))) ft  king(X)) 

Moving negation inwards (Stage 2) leads us to: 

all(X, exists (Y, person(Y) & ~respects(Y, X)) # king(X)) 

Next, Skolemising (Stage 3) translates this to: 

all(X, (person(fl(X))  & ~respects(fl(X),  X)) # king(X)) 

where fl  is a Skolem function.  Now comes the stage of  removing universal quanti-
fiers  (Stage 4), which leads to: 

(personal(X)) & ~respects(fl(X),  X)) ft  king(X). 

We now put this into conjunctive normal form  (Stage 5), where conjunctions do not 
appear within disjunctions, thus: 

(person(fl(X))  # king(X)) & (~respects(fl(X),  X) # king(X)). 

This amounts (stage 6) to two clauses. The first  has the two literals: 

person (fl(X))  king(X) 

and the second has the literals: 

~respects(fl(X),  X) king(X) . 

10.3 A Notation for  Clauses 

We need a way of  writing something down in clausal form,  and this is what we will 
now present. First of  all, something in clausal form  is a collection of  clauses. As good 
a convention as any is to write down the clauses one after  the other, remembering 
that the order is actually irrelevant. Within a clause there is a collection of  literals, 
some negated and some not negated. We will adopt the convention of  writing the 
unnegated literals first  and the negated ones second. The two groups will be separated 
by the sign ":-". The unnegated literals will be written separated by ;'s (remembering, 
of  course, that the order is not important), and the negated literals will be written 
without their ~'s and separated by commas. Finally, a clause will be terminated by 
a full  stop. In this notation, a clause with the n negated literals ~Qi,  ~Q2, • • ~Qn 
and the m unnegated literals Pi, P?,..., Pm would be written as: 

PuPi)  . • -; Pm Qh Qh • • •/  Qn-

Although we have introduced our convention for  writing out clauses as something 
arbitrary, it actually has some mnemonic significance.  If  we write a clause including 
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the disjunctions, with the negated literals separated from  the unnegated ones, it will 
look something like: 

(Pi # P 2 # • • • # Pm) # (~Ql  # ~Q2 # • • • # ~Qn) 

which is equivalent to: 

( P i # P 2 # • • • # P m ) M Q i &Q2&...&Qn) 

which is equivalent to: 

(Ql & & . . . & Qm) -> (Pi # P 2 ft  • • • # Pm) 

If  we write "," for  "and", and ";" for  "or", and ":-" for  "is implied by" (following  the 
Prolog convention), the clause naturally comes out as: 

Pit  P2i  • • Pm. > Qlt Q2i • • Qn-

Given these conventions, the formula  about Adam and Eve: 

(person(adam) & person(eve)) & 

((person(X) # ~mother(X, Y)) # -person(Y)) 

comes out as: 

person(adam):- . 

person(eve) : - . 

person(X) :- mother(X, Y), person(Y). 

This is beginning to look rather familiar.  This really looks like a Prolog definition  for 
what it is to be a person. However, other formulae  give rise to more puzzling things. 
The example about holidays ends up as: 

holiday(X); work(chris, X) : - . 

holiday(X); angry(chris); sad(chris) : - . 

which does not so obviously correspond to something in Prolog. We shall see why 
this is in a later section. 

In Appendix B we present a Prolog program to convert clauses to this special 
notation. Written according to our convention, the clauses produced at the end of  the 
last section come out as: 

person(fl(X)); k i n g ( X ) : - . 

king(X) :- respects(fl(X), X). 
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10.4 Resolution and Proving Theorems 

Now that we have got a way of putting our Predicate Calculus formulas into a nice 
tidy form, we should consider what we can do with them. An obvious thing to in-
vestigate, when we have a collection of propositions, is whether anything interesting 
follows  from  those propositions. That is, we may investigate what consequences the 
propositions have. We shall call those propositions that we are taking as true for the 
sake of argument our axioms or hypotheses, and those propositions that we find to 
follow from them our theorems.  This is consistent with the terminology used to de-
scribe one view of Mathematics: a view which sees the work of a mathematician 
as involving the derivation of more and more interesting theorems from some exact 
axiomatisation of what sets and numbers are. In this section, we will look briefly at 
the activity of deriving interesting consequences from our given propositions, that is, 
we will look at the activity of theorem proving. 

There was a great deal of activity in the 1960's as people began to investigate the 
possibility that digital computers could be programmed to prove theorems automati-
cally. It was this area of scientific endeavour, which is still progressing healthily, that 
gave rise to the ideas behind Prolog. One of the fundamental breakthroughs made at 
this time was the discovery of the resolution  principle  by J. Alan Robinson, and its 
application to mechanical theorem proving. Resolution is a rule of  inference.  That is, 
it tells us how one proposition can follow from others. Using the resolution principle, 
we can prove theorems in a purely mechanical way from our axioms. We only have 
to decide which propositions to apply it to, and valid conclusions will be produced 
automatically. 

Resolution is designed to work with formula; in clausal form. Given two clauses 
related in an appropriate way, it will generate a new clause that is a consequence of 
them. The basic idea is that if the same atomic formula appears both on the left hand 
side of one clause and the right hand side of another, then the clause obtained by 
fitting together the two clauses, missing out the duplicated formula, follows from 
them. For example: 

From: 

sad(chris); angry(chris) :-

workday(today), raining(today). 

and: 

unpleasant(chris) :- angry(chris), tired(chris). 

follows: 
sad(chris); unpleasant(chris) :-

workday(today), raining(today), tired(chris). 
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In English, if today is a workday and it is raining, then Chris is sad or angry. Also, 
if Chris is angry and tired, he is unpleasant. Therefore, if today is a workday, it is 
raining and Chris is tired, then Chris is sad or unpleasant. 

In fact, we have over-simplified in two ways here. Firstly, things are actually 
more complicated when the clauses contain variables. Now the two atomic formulae 
do not have to be identical, they only have to "match". Also, the clause that follows 
from the first two is obtained from the two fitted together (with the duplicated for-
mula removed) by an extra operation. This operation involves "instantiating" the 
variables just enough so that the two matching formulae are identical. In Prolog 
terms, if we had the two clauses as structures and matched together the appropriate 
substructures, the result of fitting them together afterwards would be the representa-
tion of the new clause. Our second simplification is that in general resolution one is 
allowed to match several  literals on a right hand side against several on a left hand 
side. Here, we shall only consider examples where one literal is chosen from each 
clause. 

Let us look at one example of resolution involving variables: 

(1) person(fl(X»; king(X) : - . 

(2) king(Y) :- respects (fl(Y), Y). 

(3) respects(Z, arthur) :- person(Z). 

The first two of these are what we obtained as the clausal form of our formula saying 
"if every person respects somebody then that person is a king". We have renamed 
the variables for ease of explanation. The third expresses the proposition that every 
person respects Arthur. Resolving (2) with (3) (matching the two respects literals), 
gives us: 

(4) king(arthur):- person(fl(arthur)). 

(Y in (2) matched with arthur in (3), and Z in (3) matched with fl(Y) in (2)). We can 
now resolve (1) with (4), to give: 

(5) king(arthur); king(arthur) : - . 

This is equivalent to the fact that Arthur is a king. 
In the formal definition of resolution, the process of "matching" that we have re-

ferred to informally is called unification.  Intuitively, some atomic formulae are unifi-
able if, as Prolog structures, they can be matched together. Actually, we will see in 
a later section that the matching in most Prolog implementations is not exactly the 
same as unification. 

How can we use resolution to try and prove a specific thing? One possibility 
is that we can keep on applying resolution steps to our hypotheses and look to see 
if what we want appears. Unfortunately, we cannot guarantee that this will happen, 
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even if the proposition we are interested in really does follow from the hypotheses. 
In the above example, for instance, there is no way of deriving the simple clause 
king(arthur) from the clauses given, even though it is clearly a consequence. So must 
we conclude that resolution is not powerful enough for what we want? Fortunately, 
the answer is "no", for we can rephrase our aims in such a way that resolution is 
guaranteed to be able to solve our problem if it is possible. 

The important formal property that Resolution has is that of being refutation 
complete.  This means that, if a set of clauses are inconsistent  then Resolution will be 
able to derive from them the empty clause: 

Also, since Resolution is correct,  it will only be able to derive the empty clause in 
this circumstance. A set of formulae is inconsistent if there is no possible interpre-
tation for the predicates, constant symbols and function symbols that makes them 
simultaneously express true propositions. The empty clause is the logical expression 
of falsity  — it represents a proposition that cannot possibly be true. So Resolution 
can be guaranteed to tell us when our formulae are inconsistent by deriving this clear 
expression of contradiction. 

How can these particular properties of resolution help us? Well, it is a fact that 

If the formulae {Ai,  A2,..., An] are consistent, then formula B is a conse-
quence of formulae {Ai , A2, • •., An} exactly when the formulae {Ai , A2, 
..., An, ->£?} are inconsistent. 

So, if our hypotheses are consistent, we just need to add to them the clauses for the 
negation of what we want to prove. Resolution will derive the empty clause exactly 
when the proposition follows from the hypotheses. We call the clauses that we add 
to the hypotheses the goal statements.  Note that the goal statements do not look in 
any way different from the hypotheses — all of them are just clauses. So, if we are 
presented with a set of clauses Ai, A2,..., An, and are told that the task is to show 
them to be inconsistent, we cannot actually tell whether this is in order to show that: 

-•Ai follows from A2,..., An, or that 
~iA2 follows from A\, A:i,..., An, or that 
-i A3 follows from Ai, A2, A4,..., An, 
... and so forth. 

It is a matter of emphasis which statements we actually consider to be the goal state-
ments, because in a Resolution system all these tasks are equivalent. 

In our example about Arthur being king, it is easy to see how we can obtain the 
empty clause if we add the goal statement: 

(6) :- king(arthur). 
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(this is the clause for ~king(arthur)). We saw before how the clause 

(5) king(arthur); king(arthur) : - . 

was derived from the hypotheses. Resolving (5) with (6) (matching either of the 
atomic formulae in (5)), we obtain: 

(7) king(arthur) : - . 

Finally, resolving (6) with (7) gives us: 

So resolution has shown that as a consequence, Arthur is a king. 
The completeness of Resolution is a nice mathematical property. It means that if 

some fact follows from our hypotheses, we should be able to prove its truth (by show-
ing the inconsistency of its negation and the hypotheses) using Resolution. However, 
when we say that Resolution will be able to derive the empty clause, we mean that 
there is a sequence of Resolution steps, each involving axioms or clauses derived in 
previous steps, which ends in the production of a clause with no literals. The only 
trouble is to find the sequence of steps. For, although Resolution tells us how to de-
rive a consequence from two clauses, it does not tell us either how to decide which 
clauses to look at next or which literals to "match". Usually, if we have a large num-
ber of hypotheses, there will be many possibilities for each. Moreover, each time we 
derive a new clause, it too becomes a candidate to take part in further resolutions. 
Most of the possibilities will be irrelevant for the task at hand, and if we are not care-
ful we may spend so much time on irrelevances that we will never find the solution 
path. 

Many refinements of the original resolution principle have been proposed to 
address these issues. The next section considers some of these. 

10.5 Horn Clauses 

We shall look now at refinements designed for resolution when all the clauses are 
of a certain kind — when they are Horn  clauses. A Horn clause is a clause with 
at most one unnegated literal. It turns out that, if we are using a clausal theorem 
prover to determine the values of computable functions, it is only strictly necessary 
to use Horn clauses. Because resolution with Horn clauses is also relatively simple, 
they are an obvious choice as the basis of a theorem prover which provides a practical 
programming system. Let us consider briefly what Resolution theorem proving looks 
like if we restrict ourselves to Horn Clauses. 

First, there are two kinds of Horn Clauses: those with one unnegated literal and 
those with none. Let us call these two types headed  and headless  Horn Clauses. The 
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two types are exemplified by the following (remember that we write the unnegated 

literals on the left hand side of the ":-"): 

bachelor(X) :- male(X), unmarried(X). 

:- bachelor(X). 

In fact, when we consider sets of Horn Clauses (including goal statements), we need 
only consider those sets where all but one of the clauses are headed. That is, any 
soluble problem (theorem-proving task) that can be expressed in Horn Clauses can 
be expressed in such a way that: 

• There is one headless clause; 

• All the rest of the clauses are headed. 

Since it is arbitrary how we decide which clauses are actually the goals, we can 
decide to view the headless clause as the goal and the other clauses as the hypotheses. 
This has a certain naturalness. 

Why do we only have to consider collections of Horn Clauses that conform to 
this pattern? First, it is easy to see that at least one headless clause must be present 
for a problem to be soluble. This is because the result of resolving two headed Horn 
Clauses is itself a headed Horn Clause. So, if all the clauses are headed, we will only 
be able to derive other headed clauses. Since the empty clause is not headed, we will 
not be able to derive it. The second claim — that only one headless clause is needed 
— is slightly more difficult to justify. However, it turns out that, if there are several 
headless clauses among our axioms, any Resolution proof of a new clause can be 
converted into a proof using at most one of them. Therefore, if the empty clause 
follows from the axioms, it follows from the headed ones together with at most one 
of the headless ones. 

10.6 Prolog 

Let us now summarise how Prolog fits into this scheme of things. As we saw before, 
some of our formulae turned into clauses that looked remarkably like Prolog clauses, 
whereas others looked somewhat peculiar. Those that turned into Prolog-like clauses 
were, in fact, those whose translation was into Horn clauses. When we write a Horn 
clause according to our conventions, at most one atomic formula appears on the left 
of the ":-". In general, clauses may have several such formulae (these correspond to 
the literals which are unnegated atomic formulae). In Prolog, we can express directly 
only the Horn clauses. The clauses of a Prolog program correspond to headed Horn 
clauses in a certain kind of theorem prover. What in Prolog corresponds to the goal 
statement? Quite simply, the Prolog question: 

?- Ai, A2, An. 
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corresponds exactly to the headless Horn Clause: 

:- Ai, A2, ..., An. 

We saw in the last section that, for any problem we want to solve with Horn Clauses, 
it suffices to have exactly one headless clause. This corresponds to the situation in 
Prolog, where all the clauses of the "program" are headed and only one (headless) 
goal is considered at any one time. 

A Prolog system is based on a resolution theorem prover for Horn clauses. The 
particular strategy that it uses is a form of linear input resolution.  When this strategy 
is used, the choice of what to resolve with what at any time is restricted as follows. 
We start with the goal statement and resolve it with one of the hypotheses to give 
a new clause. Then we resolve that with one of the hypotheses to give another new 
clause. Then we resolve that with one of the hypotheses, and so on. At each stage, we 
resolve the clause last obtained with one of the original hypotheses. At no point do 
we either use a clause that has been derived previously or resolve together two of the 
hypotheses. In Prolog terms, we can see the latest derived clause as the conjunction 
of goals yet to be satisfied. This starts off as the question, and hopefully ends up as 
the empty clause. At each stage, we find a clause whose head matches one of the 
goals, instantiate variables as necessary, remove the goal that matched and then add 
the body of the instantiated clause to the goals to be satisfied. Thus, for instance, we 
can go from: 

:- mother(john, X), mother(X, Y). 

and 

mother(U, V) :- parent(U, V), female(V). 

to: 

:- parent(john, X), female(X), mother(X, Y). 

In fact, Prolog's proof strategy is even more restricted than general linear input res-
olution. In this example, we decided to match the first of the literals in the goal 
clause, but we could equally well have matched the second. In Prolog, the literal to 
be matched is always selected in the same way: it is always the first one in the goal 
clause. In addition, the new goals derived from the use of a clause are placed at the 
front  of the goal clause. This just means that Prolog finishes satisfying a subgoal 
before it goes on to try anything else. 

So much for what happens when Prolog has decided what clause to match 
against the first goal. But how does it organise the investigation of alternative clauses 
to satisfy the same goal? Basically, Prolog adopts a depth-first  strategy, rather than a 
breadth-first  one. This means that it only considers one alternative at a time, follow-
ing up the implications under the assumption that the choice is correct. For each goal, 
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it chooses the clauses in a fixed order, and it only comes to consider the later ones 
if all the earlier ones have failed to lead to solutions. The alternative strategy would 
be one where the system kept track of alternative solution paths simultaneously. It 
would then move around from one alternative to another, following it up for a short 
time and then going on to something else. This latter, breadth-first, strategy has the 
advantage that, if a solution exists, it will be found. The Prolog depth-first strategy 
can get into "loops" and hence never follow up some of the alternatives. On the other 
hand, it is much simpler and less space-consuming to implement on a conventional 
computer. 

Finally, a note about how Prolog matching sometimes differs from the unifica-
tion used in Resolution. Most Prolog systems will allow you to satisfy goals like: 

equal(X, X). 

?- equal(foo(Y), Y). 

that is, they will allow you to match a term against an uninstantiated subterm of itself. 
In this example, foo(Y) is matched against Y, which appears within it. As a result, Y 
will stand for foo(Y), which is foo(foo(Y)) (because of what Y stands for), which is 
foo(foo(foo(Y))), and so on. So Y ends up standing for some kind of infinite structure. 
Note that, whereas they may allow you to construct something like this, most Prolog 
systems will not be able to write it out at the end. According to the formal definition 
of Unification, this kind of "infinite term" should never come to exist. Thus Prolog 
systems that allow a term to match an uninstantiated subterm of itself do not act 
correctly as Resolution theorem provers. In order to make them do so, we would 
have to add a check that a variable cannot be instantiated to something containing 
itself. Such a check, an occurs check,  would be straightforward to implement, but 
would slow down the execution of Prolog programs considerably. Since it would 
only affect very few programs, most implementors have simply left it out1. 

10.7 Prolog and Logic Programming 

In the last few sections, we have seen how Prolog is based on the idea of a theorem 
prover. As a result of this, we can see that our programs are rather like our hypotheses 
about the world, and our questions are rather like theorems that we would like to 

1 The Prolog standard states that the result is undefined  if  a Prolog system attempts to match 
a term against an uninstantiated subterm of  itself,  which means that programs which cause 
this to happen will not be portable. A portable program should ensure that wherever an 
occurs check might be applicable the built-in predicate unify_with_occurs_check/2  is used 
explicitly instead of  the normal unification  operation of  the Prolog implementation. As its 
name suggests, this predicate acts like =/2 except that it fails  if  an occurs check detects an 
illegal attempt to instantiate a variable. 
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have proved. So programming in Prolog is not so much like telling the computer 
what to do when, but rather like telling it what is true and asking it to try and draw 
conclusions. The idea that programming should be like this is an appealing one, 
and has led many people to investigate the notion of logic programming,  that is, 
programming in logic as a practical possibility. This is supposed to contrast with 
using a conventional programming language such as FORTRAN or LISP, where one 
specifies tasks much more clearly in terms of what the computer should do and when 
it should do it. 

The advantages of logic programming should be that computer programs are 
easier to read. They should not be cluttered up with details about how things are 
to be done — they will be more like specifications of what a solution will look like. 
Moreover, if a program is rather like a specification of what it is supposed to achieve, 
it should be relatively easy, just by looking at it (or, perhaps, by some automatic 
means) to check that it really does do what is required. In summary, the advantages 
of a logic programming language would result from programs having a declarative 
semantics as well as a procedural  one. We would know what a program computes, 
rather than how it computes it. We will not be able to look at logic programming 
in general here. The interested reader is referred to Robert Kowalski's book Logic 
for  Problem Solving  published by North Holland in 1979, and Christopher Hogger's 
book Introduction  to Logic Programming  published by Academic Press in 1984. 

Let us briefly look at Prolog as a candidate logic programming language, and 
see how well it shapes up. First, it is clear that some Prolog programs do represent 
logical truths about the world. If we write: 

mother(X, Y) : - parent(X, Y), female(Y). 

we can see this as saying what it is to be a mother (it is to be a female parent). So this 
clause expresses a proposition that we are hypothesising to be true, as well as saying 
how to show that somebody is a mother. Similarly, the clauses: 

appendQ], X, X). 
append([A|B], C, [A|D]):- append(B, C, D). 

say what it is for one list to be concatenated to the front of another. If the empty list 
is put on the front of some list X, then the result is just X. On the other hand, if a 
non-empty list is appended on the front of a list, then the head of the result is the 
same as the head of the list being put on the front. Also, the tail of the result is the 
same list as would be obtained by appending the tail of the first list onto the front 
of the second. These clauses can definitely be seen as expressing what is true about 
the append relation, as well as how one might actually set about appending two lists 
together. 

So much for some Prolog programs, but what possible logical meaning can we 
give to clauses like these? 
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memberl(X, List) :- var(List), !, fail. 

memberl(X, [X|_]). 

memberl(X, [_|List]) :- memberl(X, List). 

print(O) :- !. 

print(N) :- write(N), Nl is N - 1 , print(Nl). 

noun(N) :-

name(N, Namel), append(Name2, [115], Namel), 

name(RootN, Name2), noun(RootN). 

implies(Assum, Concl) :-

asserta(Assum), 

call(Concl), 

retract(Concl). 

The problem comes with all those built-in predicates that we use in our Prolog pro-
grams. A goal such as var(List) does not say anything about lists or membership, 
but refers to a state of affairs (some variable being uninstantiated) that may hold 
at some time during the proof. The "cut" similarly says something about the proof 
of a proposition (which choices may be ignored), rather than about the proposition 
itself. These two goals can be regarded as ways of expressing control  information 
about how the proof is to be carried out. Similarly, something like write(N) does 
not have any interesting logical properties, but presupposes that the proof will have 
reached a certain state (with N instantiated) and initiates a communication with the 
user. The goal name(N, Namel) is saying something about the internal structure of 
what, in Predicate Calculus, would be an indivisible symbol. In Prolog, we can con-
vert symbols to character strings, convert structures to lists and convert structures 
to clauses. These operations violate the simple self-contained nature of Predicate 
Calculus propositions. In the last example, the use of asserta means that the rule is 
talking about adding something to the set of axioms. In logic, each fact or rule states 
an independent truth, independent of what other facts and rules there may be. Here 
we have a rule that violates that principle. Also, if we use this rule, we will be in a 
position of having a different set of axioms at different times of the proof! Finally, 
the fact that the rule envisages Concl being used as a goal  means that a logical vari-
able is being allowed to stand for a proposition appearing in an axiom. This is not 
something that could be expressed in Predicate Calculus at all, but is reminiscent of 
what higher-order logic can provide. 

Given these examples, we can see that some Prolog programs can only be un-
derstood in terms of what happens when and how they tell the system what to do. As 
an extreme case, the program for gensym given in Chapter 7 can hardly be given any 
declarative interpretation at all. 
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So does it make sense to regard Prolog as a logic programming language at all? 
Can we really expect any of the advantages of logic programming to apply to our 
Prolog programs? The answer to both these questions is a qualified "yes", and the 
reason is that, by adopting an appropriate programming style, we can still extract 
some advantages from the relation of Prolog to logic. The key is to decompose our 
programs into parts, confining the use of the non-logical operations to within a small 
set of clauses. As an example, we saw in Chapter 4 how some uses of the cut could 
be replaced with uses of not. As a result of such replacements, a program containing 
a number of cuts can be reduced to one with the cut only used once (in the definition 
of not). Use of the predicate not, even though it does not capture exactly the logical 
"-i", enables one to recapture part of the underlying logical meaning of a program. 
Similarly, confining the use of the predicates asserta and retract to within the def-
initions of a small number of predicates (such as gensym and findall) results in a 
program that is clearer overall than one where these predicates are used freely in all 
sorts of contexts. 

The ultimate goal of a logic programming language has not, then, been achieved 
with Prolog. Nevertheless, Prolog provides a practical programming system that has 
some of the advantages of clarity and declarativeness that a logic programming lan-
guage would offer. Meanwhile the work goes on to develop improved versions of 
Prolog that are truer to the logic than what we currently have available. Among the 
highest priorities of workers in this area is to develop a practical system that does not 
need the cut and has a version of not that exactly corresponds to the logical notion 
of negation. 

For more information on the theory of logic programming, you should con-
sult Logic for  Problem Solving,  by Robert Kowalski, published by North-Holland in 
1979; and Introduction  to Logic Programming,  by Christopher Hogger, published by 
Academic Press in 1984. 





Projects in Prolog 

This chapter contains a list of projects that you may wish to undertake in order to 
exercise your programming ability. Some of the projects are easy, but some may be 
appropriate as "term projects" as a part of a course in Prolog. The easier projects 
should be used to supplement the exercises in the previous chapters. The projects are 
in no particular order, although those in Section 11.2 are more open ended and am-
bitious, and will require some knowledge or background reading in various areas of 
artificial intelligence and computer science. A few of the projects assume knowledge 
about some particular field of study, so if you are not a mathematical physicist, do 
not feel discouraged if you cannot write a program to differentiate three dimensional 
vector fields. 

11.1 Easier Projects 

1. Define a predicate to "flatten" a list by constructing a list containing no lists as ele-
ments, but containing all of the atoms of the original list. For example, the following 
goal would succeed: 

?- flatten([a,[b,c],[[d],[],e]], [a,b,c,d,e]). 

There are at least six distinct ways to write this program. 

2. Write a program to calculate the interval in days between two dates expressed in 
the form DayMonth, assuming they refer to the same year which is not a leap year. 
Notice that"-" is simply the infix form of a 2-ary functor. For example, the following 
goal would succeed: 

interval(3-march, 7-april, 35). 
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3. In Chapter 7 sufficient information is given to construct programs to differentiate 
and simplify arithmetic expressions. Extend these programs so they will handle ex-
pressions containing trigonometric functions, and if you desire, differential geometry 
operators such as div, grad, and curl. 

4. Write a program to produce the negation of a prepositional expression. Preposi-
tional expressions are built up from atoms, the unary functor not, and binary functors 
and, or, and implies. Provide suitable operator declarations for the functors, perhaps 
using the operator declarations &, #, and ->) in Chapter 10. The negated expres-
sion should be in simplest form, where not is only applied to atoms. For example, 
the negation of 

p implies (q and not(r)) 

should be 

p and (not(q) or r). 

5. A concordance is a listing of words that occur in a text, listed in alphabetical order 
together with the number of times each word appears in the text. Write a program to 
produce a concordance from a list of words represented as Prolog strings. Recall that 
strings are lists of A S C I I codes. 

6. Write a program that understands simple English sentences having the following 
forms: 

is a . 

A is a . 

Is _ a _ ? 

The program should give an appropriate response (yes, no, ok, unknown), on the 
basis of the sentences previously given. For example, 

John is a man. 

ok 
A man is a person. 

ok 
Is John a person? 

yes 
Is Mary a person? 

unknown 

Each sentence should be translated into a Prolog clause, which is then asserted or 
executed as appropriate. Thus, the translations of the preceding examples are: 
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man(john). 
person(X) :- man(X). 
?- person(john). 
?- person(mary). 

Use grammar rules if you find them appropriate. The top clause to control the dia-
logue might be: 

talk : 
repeat, 
read(Sentence), 
parse(Sentence, Clause), 
respond_to(Clause), 
Clause = stop. 

7. The alpha-beta (a — /?) algorithm is a method for searching game trees that is 
mentioned in many books on artificial intelligence programming. Implement the a — 
fi  algorithm in Prolog. 

8. The AT-queens problem is also widely discussed in programming texts. Implement 
a program to find all the ways of placing 4 queens on a 4x4 chessboard so that 
no queen attacks another. One way is to write a permutation generator, which then 
checks each permutation to ensure that it places the queens correctly. 

9. Write a program that rewrites propositional expressions (Problem 4), replacing 
all occurrences of and, or, implies, and not by the single connective nand. The 
connective nand is defined by the following identity: 

(a nand 0) = -i(a A /?) 

10. One way of representing the positive whole numbers is as Prolog terms involving 
the integer 0 and the functor s with one argument. Thus, we represent 0 by itself, 1 
by s(0), 2 by s(s(0)), and so on (each number is represented by the functor s applied 
to the representation of the number one less). Write definitions of the standard arith-
metic operations addition, multiplication and subtraction, given this representation of 
numbers. For instance, you should define a predicate plus that exhibits the following 
behaviour: 

?- plus(s(s(0)), s(s(s(0))), X). 
X-s(s(5(s(s(0))))) 

that is, 2+3=5. For subtraction, you will have to introduce a convention for when 
the result of the operation is not a positive whole number. Also define the predicate 
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"less than". What arguments need to be instantiated for your definitions to work? 
What happens in the other cases? How does this compare with the standard Prolog 
arithmetic operations? Try defining some more complicated arithmetic operations, 
like integer division and square root. 

11.2 Advanced Projects 

Although the projects in this section may seem open ended, all of them have been 
implemented in Prolog by various programmers around the world. Some of them are 
straightforward enhancements to programs discussed earlier, and some of them are 
completely new, and depend on knowledge of the artificial intelligence literature or 
computer science. 

1. Given a map that describes roads that connect towns, write a progam that plans 
a route between two towns, giving a timetable of expected travel. The map data 
should include mileage, road conditions, estimated amount of other traffic, gradients, 
availability of fuel along various roads. 

2. Only integer and floating-point arithmetic operations are built into current Prolog 
systems. Write a package of programs to support arithmetic over rational numbers, 
represented either as fractions or as mantissa and exponent. 

3. Write procedures to invert and multiply matrices. 

4. Compiling a high-level computer language into a low-level language can be 
viewed as the successive transformation of syntax trees. Write such a compiler, first 
compiling arithmetic expressions. Then add control syntax (like i f . . .  then . . . else). 
The syntax of the assembly output is not crucial for this purpose. For example, the 
arithmetic expression x+1 could be "simplified" into the assembly language state-
ment inc x, where inc is declared as a unary operator. The problem of register allo-
cation can be postponed by assuming that the code compiles into a form suitable for 
execution by a stack machine (0-address machine). 

5. Devise a representation for complex board games such as Chess or Go, and under-
stand how the pattern matching capabilities of Prolog might be used to implement 
strategies for these games. 

6. Devise a formalism for expressing sets of axioms, say from Group Theory, Eu-
clidean Geometry, Denotational Semantics, and investigate the problem of writing a 
theorem prover for these domains. 

7. An interpreter for Prolog clauses can be written in Prolog (see Section 7.13). Write 
an interpreter that implements different semantics for Prolog execution, such as more 
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flexible execution order (instead of left-to-right), perhaps using an "agenda" or other 
scheduling mechanism. 

8. Consult the artificial intelligence literature on the area of generating plans to solve 
problems, and implement a plan generator. 

9. Express in Prolog the problem of interpreting a line drawing in terms of some 
underlying scene. Features of the picture can be labelled with variables represent-
ing corresponding features of the scene. The picture then corresponds to a set of 
constraints these variables must satisfy. 

10. Write a program, using Grammar Rules, to parse sentences of the form: 

Fred saw John. 
Mary was seen by John. 
Fred told Mary to see John. 
John was believed to have been seen by Fred. 
Was John believed to have told Mary to see Fred? 

11. A production rule system, used in artificial intelligence research, is a sequence 
of rules of the form "if  situation  then action." It has become fashionable within the 
artificial intelligence field to write "expert knowledge" in terms of production rules. 
For example, the following sentences are typical of those used in actual production 
systems that have been implemented: 

Pharmacology: If agent X is a quaternary ammonium salt and an antiarhyth-
mic, and agent Y is a salicylate, then X and Y will interact to produce in-
creased absorption by ion pair formation. 

Playing chess: If the black king can move adjacent to the black knight and 
the distance from the white king to the knight is greater than one square, 
then the knight is safe. 

Medicine: If the site of the culture is blood, and the gram stain of the or-
ganism is negative, and the morphology of the organism is a rod, and the 
patient is a compromised host, then there is a 60% chance that the infecting 
organism is Pseudomonas  aeruginosa. 

Write a Prolog program to interpret a set of production rules. Consider some domain 
such as identifying plants or animals from identifying characteristics. For example, 
a rule from botany would read: 

If a plant has a square stem, paired leaves, twolipped hooded flowers, and 
fruit consisting of four tiny nuts enclosed in the calyx, then it belongs to the 
family Labiatae. 
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So, if the program asked the question "Does the flower have a square stem?", then 
we would rule out the possibility that it belongs to the family Labiatea by answering 
"no". 

12. Write a program to translate some corpus of English sentences into Predicate 
Calculus. 

13. Write a program to prove theorems in Predicate Calculus. 

14. Write a program to act as a simulated psychiatrist that makes a reply based on 
key words in the input, rather like the program in Chapter 3 that changed keywords 
in a sentence into other words. A typical dialogue might be (computer replies shown 
in boldface): 

What  is your problem? 
This is too much work. 
What  else do  you regard  as too much work? 
Writing letters. 
I  see. Please  continue. 
Also washing my mother's car. 
Tell  me more about your family. 
Why should I? 
Why  should  you what? 

Here the appropriate key words were this is, mother, and why. The lack of appropri-
ate keyword evoked the response I  see. Please  continue. 

15. Write a program that parses sentences about happenings in an office building, 
such as "Smith will be in his office at 3 pm for a meeting". You might wish to use 
Grammar Rules to capture the "business English" language. The program should 
then print out a "summary" of the sentence telling who, what, where, and when; 
such as follows: 

who: smith 
where: office 
when: 3 pm 
what: meeting 

The summary could be represented as assertions in the database, so that questions 
could be asked: 

Where is Smith at 3 pm? 
where: office 
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what: meeting 

16. Write a natural language interface to the filing system of your computer to answer 
questions such as: 

How many files does David own? 
Does Chris share PROG.MAC with David? 
When did Bill change the file VIDEO.C? 

The program must be able to interrogate various parts of the filing system such as 
ownership and dates. 





A 

Answers to Selected Exercises 

We include here suggested answers to some of the exercises that appear in the text. 
With most programming exercises, there is rarely a single correct answer, and you 
may well have a good answer that looks different from what we suggest. In any case, 
you should always try out your program on your local Prolog system, to see whether 
it really works. Even if you have written a correct program that is different, it may 
still be instructive to spend some time looking at an alternative approach to the same 
problem. 

Exercise 1.3. Here are possible definitions of the family relationships. 

is_mother(Mum) :- mother(Mum, Child). 

is_father(Dad) :- father(Dad, Child). 

is_son(Son):- parent(Par, Son), male(Son). 

sister_of(Sis, Pers) :-
parent(Par, Sis), parent(Par, Pers), 
female(Sis), diff(Sis, Pers). 

granpa_of(Gpa, X) :- parent(Par, X), father(Gpa, Par). 

sibling(Sl,S2) :-
parent(Par, Si), parent(Par, S2), diff(Sl, S2). 

Note that we are using the predicate diff in the definition of sister_of and sibling. 
This prevents the system concluding that somebody can be a sister or sibling of 
themselves. You will not be able to define diff at this stage. 

Exercise 5.2. The following program reads in characters (from the current input file) 
indefinitely, printing them out again with a's changed to b's. 

go :- repeat, get_char(C), deal_with(C), fail. 

deaLwith(a) :- !, put_char(b). 
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deal_with(X) :- put(X). 

The "cut" in the first deal_with rule is essential (why?). 

Exercise 7.9. Here is a program that generates Pythagorean triples: 

pythag(X, Y, Z) :-
intriple(X, Y, Z), 

Sumsq is X*X + Y*Y, Sumsq is Z * Z. 

intriple(X, Y, Z) :-
is_integer(Sum), 
minus(Sum, X, Suml), minus(Suml, Y, Z). 

minus(Sum, Sum, 0). 
minus(Sum, Dl, D2) :-

Sum > 0, Suml is Sum - 1, 
minus(Suml, Dl, D3), D2 is D3 + 1. 

is_integer(0). 
is_integer(N) :- is_integer(Nl), N is Nl + 1. 

The program uses the predicate intriple to generate possible triples of integers X, Y, Z. 
It then checks to see whether this triple really is a Pythagorean triple. The definition 
of intriple has to guarantee that all triples of integers will eventually be generated. 
It first of all generates an integer that is the sum of X, Y and Z. Then it uses a non-
deterministic subtraction predicate, minus, to generate values of X, Y and Z from that. 

Exercise 9.1. Here is the program for translating a simple grammar rule into Prolog. 
It is assumed here that the rule contains no phrase types with extra arguments, no 
goals inside curly brackets and no disjunctions or cuts. 

?- op(1199,xfx,~>). 

translate((Pl—>P2),(G1:-G2)) :-
left_hand_side(Pl,SO,S,Gl), 
right_hand_side(P2,S0,S,G2). 

left_hand_side(P0,S0,S,G) :-
nonvar(PO), tag(P0,S0,S,G). 

right_hand_side((Pl,P2),S0,S,G) :-; 

right_hand_side(Pl,SO,Sl,Gl), 
right_hand_side(P2,Sl,S,G2), 
and(Gl,G2,G). 

right_hand_side(P,SO,S,true) :-
islist(P), 
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append(P,S,SO). 

right_hand_side(P,SO,S,G) tag(P,S0,S,G). 

tag(P,S0,S,G) :- atom(P), G =..[P,S0,S]. 

and(true,G,G) : - ! . 

and(G,true,G) :- !. and(Gl,G2,(Gl,G2)). 

islist([]) :- !. i s l i s t ( L U ) . 

append([A|B],C,[A|D]) :- append(B,C,D). 

append([],X,X). 

In this program, variables beginning with P stand for phrase descriptions (atoms, or 
lists of words) in grammar rules. Variables beginning with G stand for Prolog goals. 
Variables beginning with S stand for arguments of the Prolog goals (which represent 
sequences of words). In case you are interested, there follows a program that will 
handle the more general cases of grammar rule translation. One way in which a 
Prolog system can handle grammar rules is to have a modified version of consult, in 
which a clause of the form A --> B is translated before it is added to the database. We 
have defined a pair of operators to act as curly brackets "{" and "}", but some Prolog 
implementations may have built-in definitions, so that the term {X} is another form 
of the structure '{}'(X). 

?- op(1101,fx,"). 
?- op(1100,xf,"). 
?- op(1199,xfx,-->). 

translate((PO—>Q0),(P:-Q)) :-

left_hand_side(PO,SO,S,P), 

right_hand_side(QO,SO,S,Ql), 

flatten(Ql,Q). 

left_hand_side((NT,Ts),SO,S,P) :- !, 

nonvar(NT), 

islist(Ts), 

tag(NT,SO,Sl,P), 

append(Ts,S,Sl). 

left_hand_side(NT,SO,S,P) :-

nonvar(NT), tag(NT,SO,S,P). 

right_hand_side((Xl,X2),S0,S,P):- !, 

right_hand_side(Xl,SO,Sl,Pl), 

right_hand_side(X2,Sl,S,P2), 
and(Pl,P2,P). 
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rightJiand_side((Xl;X2),S0,S,(Pl;P2)) :-

!, or(Xl,S0,S,Pl), or(X2,S0,S,P2). 

right_hand_side(P,S,S,P):- !. 

right_hand_side(!,S,S,!):- !. 

right_hand_side(Ts,SO,S,true) :-

islist(Ts), 
i • f 
append(Ts,S,S0). 

right_hand_side(X,SO,S,P):- tag(X,S0,S,P). 

or(X,S0,S,P) :-

right_hand_side(X,SOa,S,Pa), 

( var(SOa), SOa = S, !, 

S0=S0a, P=Pa; P=(S0=S0a,Pa) ). 

tag(X,S0,S,P) :-

X =.. [F|A], append(A,[SO,S],AX), P =.. [F|AX], 

and(true,P,P):-!. 

and(P,true,P):-!. 

and(P,Q,(P,Q)). 

flatten (A, A) :- var(A), !. 

flatten((A,B),C) :- !, flattenl(A,C,R), flatten(B,R). 

flatten(A,A). 

flattenl(A,(A,R),R) :- var(A), !. 

flattenl((A,B),C,R) :-

!, flattenl(A,C,Rl), flattenl(B,Rl,R). 

flattenl(A,(A,R),R). 

islist([]) - -

i s l i s t ( L U ) . 

append([A|B],C,[A|D]) :- append(B,C,D). 

append([],X,X). 

Exercise 9.2. The definition of the general version of phrase is as follows: 

phrase(Ptype,Words) :-

Ptype =.. [Pred|Args], 

append(Args, [Words, []],Newargs), 

Goal=.. [Pred|Newargs], 

call(Goal). 

where append is defined as in Section 3.6. 
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Clausal Form Program Listings 

As promised in Chapter 10, we shall illustrate the process of converting a formula to 
clausal form by showing fragments of a Prolog program for doing this. The top level 
of the program is as follows: 

translate(X) :-

implout(X,Xl), /* Stage 1 */ 

negin(Xl,X2), /* Stage 2 */ 

skolem(X2,X3,[]), /* Stage 3 */ 

univout(X3,X4), /* Stage 4 */ 

conjn(X4,X5), /* Stage 5 */ 

clausify(X5,Clauses), /* Stage 6 */ 

pclauses(Clauses). /* Print out clauses */ 

This defines a predicate translate, such that if we give Prolog the goal translate(X), 
with X standing for a Predicate Calculus formula, the program will print out the 
formula's representation as clauses. In the program, we will represent Predicate Cal-
culus formulae as Prolog structures, as we have indicated before. Remember that 
Predicate  Calculus  variables will  be represented  by Prolog  atoms, as this makes 
certain manipulations easier. We can distinguish Predicate Calculus variables from 
constants by having some convention for their names. For instance, we could say 
that variable names always begin with one of the letters x, y, and z. In fact, in the 
program we will not need to know about this convention because variables are al-
ways introduced by quantifiers and hence are easy to detect. Only in reading the 
program's output will it be important for the programmer to remember which names 
were Predicate Calculus variables and which were constants. 

First, we will need the following operator declarations for the connectives: 
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?- op(200,fx,~). 
?- op(400,xfy,#). 
?- op(400,xfy,&). 
?- op(700,xfy,->). 
?- op(700,xfy,<->). 

It is important to note how we have defined these. In particular, has a lower 
precedence than "#" and "&". To start with, we must make an important assumption. 
The assumption is that the variables have been renamed as necessary, so that the 
same variable is never introduced by more than one quantifier in the formula at hand. 
This is to prevent accidental name clashes in what follows. 

The actual programming technique we use to implement the conversion to 
clausal form is tree transformation, as discussed in Sections 7.11 and 7.12. By rep-
resenting the logical connectives as functors, Predicate Calculus formulae become 
structures that can be depicted as trees. Each of the six main stages of conversion 
into clausal form is a tree transformation that maps an input tree onto an output tree. 

Stage  1 — Removing Implications 

We define a predicate implout such that implout(X,Y) means that Y is the formula 
derived from X by removing implications. 

implout((P <-> Q),((P1 & Ql) # (~P1 & ~Q1))) :-
!, implout(P,Pl), implout(Q,Ql). 

implout((P -> Q),(~P1 # Ql)) 
!, imptout(P,Pl), implout(Q,Ql). 

implout(all(X,P),all(X,Pl)):- !, implout(P,Pl). 
implout(exists(X,P),exists(X,Pl)):-!, implout(P,Pl). 
implout((P & Q),(P1 & Ql)) :-

!, imptout(P,Pl), implout(Q,Ql). 
imptout((P # Q),(P1 # Ql)) :-

!, implout(P,Pl), implout(Q,Ql). 
implout((~P),(~Pl)) :- !, implout(P,Pl). 
impk>ut(P,P). 

Stage  2 — Moving  Negation  Inwards 

We need to define two predicates here: negin and neg. Goal negin(X,Y) means that 
Y is the formula derived by applying the "negation inwards" transformation to the 
whole of X. This is the main thing we will ask questions about. Goal neg(X,Y) means 
that Y is the formula derived by applying the transformation to the formula ~X. With 
both of these, we assume that stage 1 has been carried out, and that we hence do not 
need to deal with -> and <->. 
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negin((~P),Pl) :- !, neg(P,Pl). 

negin(all(X,P),all(X,Pl)):- !, negin(P,Pl). 

negin(exists(X,P),exists(X,Pl)) : - ! , negin(P,Pl). 

negin((P & Q),(P1 & Ql)) :-

!, negin(P,Pl), negin(Q,Ql). 

negin((P # Q),(P1 # Ql)) :-

!, negin(P,Pl), negin(Q,Ql). 

negin(P,P). 

n e g ( ( ~ P ) , P l ) : - ! , negin(P,Pl). 

neg(all(X,P),exists(X,Pl)):-!, neg(P,Pl). 

neg(exists(X,P),all(X,Pl)):- !, neg(P,Pl). 

neg((P & Q),(P1 # Ql)) :- !, neg(P.Pl), neg(Q,Ql). 

neg((P # Q),(P1 & Ql)) :- !, neg(P,Pl), neg(Q,Ql). 

neg(P,(~P)). 

Stage  3 — Skolemising 

The predicate skolem has three arguments: corresponding to the original formula, 
the transformed formula and the list of variables that have been introduced so far by 
universal quantifiers. 

skolem(all(X,P),all(X,Pl),Vars) :-

!, skolem(P,Pl,[X|Vars]). 

skolem(exists(X,P),P2,Vars):-

*t 
gensym(f,F), 

Sk =..[F|Vars], 

subst(X,Sk,P,Pl), 

skolem(Pl,P2,Vars). 

skolem((P # Q),(P1 it Ql),Vars) :-

!, skolem(P,Pl,Vars), skolem(Q,Ql,Vars). 

skolem((P & Q),(P1 & Ql),Vars) :-

!, skolem(P,Pl,Vars), skolem(Q,Ql,Vars). 

skolem(P,P,_). 

This definition makes use of two new predicates. Predicate gensym must be defined 
such that the goal gensym (X,Y) causes Y  to be instantiated to a new atom built up 
from the atom X and a number. This is used to generate Skolem constants that have 
not been used before. Predicate gensym is defined in Section 7.8. The second new 
predicate that is mentioned is subst. We require subst(Vl,V2,Fl,F2) to be true if the 
result of substituting V2 for VI every time it appears in the formula F1 is F2. The 
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definition of this is left as an exercise for the reader, but it is similar to predicates 
defined in Sections 7.5 and 6.5. 

Stage  4 — Moving  Universal  Quantifiers  Outwards 

After this point, of course, it will be necessary to be able to tell which Prolog atoms 
represent Predicate Calculus variables and which represent Predicate Calculus con-
stants. We will no longer have the convenient rule that the variables are precisely 
those symbols introduced by quantifiers. Here is the program for moving out and 
removing the universal quantifiers: 

univout(all(X,P),Pl):- !, univout(P,Pl). 
univout((P & Q),(P1 & Ql)) :-

!, univout(P,Pl), univout(Q,Ql). 
univout((P # Q),(P1 # Ql)) :-

!, univout(P,Pl), univout(Q,Ql). univout(P,P). 

These rules define the predicate univout so that univout(X,Y) means that the version 
of X with universal quantifiers moved out is Y. 

It should be noted that our definition of univout assumes that this operation will 
only be applied after the first three stages are already complete. Hence it makes no 
allowance for implications or existential quantifiers in the formula. 

Stage  5 — Distributing  & over # 

The actual program to put a formula into conjunctive normal form is rather more 
complicated than the last one. When it comes across something like (P#Q), where 
P and Q are any formulas, it must first of all put P and Q into conjunctive normal 
forms, PI and Ql say, and only then look to see if the formula as a whole is suitable 
for translation by one of the equivalences. The process must happen in this order, 
because it may happen that neither of P and Q has & at the top level, but one of PI 
and Ql does. Here is the program: 

conjn((P # Q),R) :-
i • t 
conjn(P,Pl), conjn(Q,Ql), 
conjnl((Pl # Ql),R). 

conjn((P & Q),(P1 & Ql)) :- !, conjn(P,Pl), conjn(Q,Ql). 
conjn(P,P). 

conjnl(((P & Q) # R),(P1 & Ql)) :-
!, conjn((P # R),P1), conjn((Q # R),Ql). 

conjnl((P # (Q & R)),(P1 & Ql)) :-
!, conjn((P # Q),P1), conjn((P # R),Q1). 

conjnl(P,P). 
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Stage  6 — Putting  into Clauses 

Here, now, is the last part of our program to put a formula in clausal form. We define 
first of all the predicate clausify, which involves building up an internal represen-
tation of a collection of clauses. The collection is represented as a list, where each 
clause is represented as a structure cl(A,B). In such a structure, A is the list of literals 
that are not negated, and B is the list of literals that are negated (but written without 
their ~'s). Predicate clausify has three arguments. The first is for the formula, as de-
livered by Stage 5. The second and third are for defining the list of clauses. Predicate 
clausify builds a list terminating in a variable, instead of the usual [], and returns this 
variable through the third argument. It is then possible for other rules to add things 
to the end of the list by instantiating the variable. One feature built into the program 
checks that the same atomic formula does not appear both negated and unnegated 
within the same clause. If this happens, the clause is not added to the list, because 
such a clause is trivially true and contributes nothing. Also, it is checked that the 
same literal does not appear twice within a clause. 

clausify((P & Q),C1,C2) :-

!, clausify(P,Cl,C3), clausify(Q,C3,C2). 

clausify(P,[cl(A,B)|Cs],Cs) :-

inclause(P,A,[],B,[]),!. 

clausify(_,C,C). 

inclause((P # Q),A,A1,B,B1) 
I 
inclause(P,A2,Al,B2,Bl), inclause(Q,A,A2,B,B2). 

inclause((~P),A,A,Bl,B) :-

!, notin(P,A), putin(P,B,Bl). 

inclause(P,Al,A,B,B) :- notin(P,B), putin(P,A,Al). 

notin(X,[X|J) : - ! , fail. 

n o t i n ( X , [ j L ] ) : - ! , notin(X,L). 

notin(X,[]). 

putin(X,[],[X]):- !. 

putin(X,[X|L],[X[L]):- !. 

putin(X,[Y|L]r[Y|Ll]):- putin(X,L,Ll). 

Printing  out Clauses 

We will now define a predicate pclauses which causes a formula represented in this 
way to be displayed according to our notation. 



276 Appendix B Clausal Form Program Listings 

pclauses([]) :- !, nl, nl. 

pclauses([cl(A,B) |Cs]) :-

pclause(A,B), nl, pclauses(Cs). 

pclause(L,[]) :-

!, pdisj(L), write('.'). 

pclause([],L) :-

!, write(':-'), pconj(L), write('.'). 

pclause(Ll,L2) :-

pdisj(Ll), 

write(' :- ' ) , pconj(L2), write('.'). 

pdisj([L]) :- !, write(L). 

pdisj([L|Ls]) :- write(L), write(';'), pdisj(Ls). 

pconj([L]) :- !, write(L). 

pconj([L|Ls]) :- write(L), write(', '), pconj(Ls). 
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Writing Portable Standard Prolog Programs 

This appendix introduces some of the issues involved in writing Prolog programs that 
can easily be used by other people (with different hardware and software infrastruc-
ture). It suggests a way of using and working with the Prolog standard to facilitate 
this. 

C.l Standard Prolog for  Portability 

It is a fact of life that nearly every time a new piece of computer hardware or com-
puter operating system is developed, some new piece of programming is required 
to make Prolog (or any other high-level programming language) available to users 
of that hardware or software. The program that is written to support Prolog (i.e. to 
allow users to consult and run programs with the expected results, to provide the re-
quired built-in predicates and generally to allow Prolog programmers to exploit the 
facilities available) within some hardware and software infrastructure is what we call 
a Prolog implementation.  Different Prolog implementations are written by different 
people with different interests at different times and often attempting to exploit the 
special facilities provided by the hardware and software environment. So they look 
different to Prolog programmers. One implementation provides a built-in predicate 
foo/1 whereas another calls this predicate baz/1; a third implementation provides a 
predicate foo/1 but this does something completely different. The Prolog program 
that runs happily on one machine fails unexpectedly on another. This is bad news for 
anyone who would like to write portable  programs that other people can use (or who 
would like to use somebody else's programs). 

In an attempt to tackle this problem, after a great deal of work by many different 
Prolog implementors and programmers, the Prolog standard (ISO/IEC 13211-1) was 
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finalised in 1995. The standard precisely specifies what a Prolog program is and how 
it is executed. It includes a specification of a set of built-in predicates and what they 
should do. It is documented in the book Prolog:  The  Standard  by Pierre Deransart, 
AbdeLAli Ed-Dbali and Laurent Cervoni, published by Springer Verlag in 1996. If 
every Prolog implementation conformed exactly to the standard then there would 
be no problems taking a program written for one implementation and running it on 
another. 

C.2 Different  Prolog Implementations 

At the time of writing, very few, if any, Prolog implementations are completely com-
patible with Standard Prolog. Fortunately in this book we have restricted our at-
tention to a compact subset of the language and the ideas here are being reflected 
rapidly in actual implementations. The standard is also the best statement available 
about what a Prolog system should be like and the description is widely respected. 
The current best approach to writing portable Prolog programs is to adhere to the 
standard, which is why we have kept to it in this book. 

The fact that a given implementation is not standard-compliant does not necessarily 
mean that it is impossible to use it to write Standard Prolog programs, and anyone 
who cares about portability should try to write programs which are as close to the 
standard as possible. In particular, programs that make use of built-in predicates not 
described in this book may not be portable (unless they are described in the full stan-
dard as given in the book of Deransart et al). This opens up difficulties when Standard 
Prolog facilities are only available in a different form in a given implementation. 

Fortunately when a Prolog implementation does not provide a predicate described 
in the Prolog standard, it will often provide something else in terms of which the 
standard predicate could be defined. 

• If your implementation does not provide a standard predicate but you need it, 
you may be able to define that predicate in terms of other predicates which are 
provided. It is a good strategy to keep such definitions (and only these) in a 
separate file (your "compatibility file") to be consulted with your program by 
people using the same implementation. People using a different implementation 
which is completely compatible with the standard in the relevant respects can 
just consult your program without the compatibility file. People using a different 
implementation which is incompatible with the standard in yet another way will 
have to write their own compatibility file (possible adapting yours), but this is a 
move which will be worth their while anyway if they are wanting to exchange 
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programs with other people. Once you have defined your compatibility file, then 
the rest of your program can use the relevant predicates just as in Standard Prolog. 

• If your implementation does provide a predicate, but with a different meaning to 
the standard, then you should again attempt to put a standard-conforming def-
inition of the predicate in your compatibility file. But you will have to rename 
the predicate concerned in your own program and also in the compatibility file 
definition so as to avoid a clash with the predicate provided by the implementa-
tion. In this case your program will not be standard-compliant, but it is easy to 
document the transformation needed to make it standard-compliant. 

In practice, the process of determining which Standard Prolog predicates need to be 
added to an implementation can be done once for a given implementation, or perhaps 
just once for a given site using a specific implementation. 

C.3 Issues to Look Out For 

The following summarises some of the issues where Prolog implementations some-
times differ from the standard or where for other reasons the portability-concerned 
programmer will need to pay attention. This list is of course not exhaustive, as there 
is nothing preventing a new Prolog implementation from diverging from the standard 
in a quite unexpected way. 

Characters. In Standard Prolog, characters are atoms whose names have length 1 
(see Section 2.1). Some built-in predicates deal with characters and some with 
integer character codes (e.g. using the ASCI I code). Implementations may differ 
according to which deal with which. Character codes are implementation depen-
dent. 

Strings. The standard allows for the programmer to select between a fixed set of 
meanings for a Prolog term consisting of characters enclosed in double quotes 
(e.g. "abc"). Implementations may not provide all of these, and so we have 
avoided using this notation in the book. 

Unknown predicates. The standard allows for the programmer to select between a 
fixed set of possible actions to be performed if a predicate without a definition is 
invoked. Implementations may not provide all of these, and so it is wise not to 
rely on any particular behaviour. 

Database updates. Strange things can happen if clauses for a predicate are retracted 
whilst a goal for the predicate is being satisfied. Although the standard specifies 
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what should happen in cases like this, implementations do not always follow, 
and so it is inadvisable to write programs that will cause this to happen. 

Names of predicates. Built-in predicates may have different names in different im-
plementations. For instance, \+ may be called not. It is best to stick to the stan-
dard names and if necessary create a compatibility file defining these in terms of 
the non-standard names. 

Operator precedences. These may differ between implementations. It is best to rely 
on the standard precedences and if necessary (and if this is possible) explicitly 
call op/3 on operators you are using before loading your program. 

Term comparison. This may not be provided by an implementation. The results of 
term comparison will probably rely on character codes and so, to some ex-
tent, will be implementation dependent (though the standard specifies some con-
straints on what term comparison can do). 

Input/output. Prolog systems in the past have differed greatly in how file input/output 
is dealt with, this not always being stream-based. The internal structure of file 
names will be implementation dependent. 

Directives. Implementations differ in the directives that are available to influence 
how programs are loaded. 

Consulting programs. The standard does not specify what predicates are provided 
for this, and so different implementations will differ. 

Arithmetic. In this book, we have not used arithmetic a great deal. The Prolog stan-
dard specifies a set of functors that can be used in arithmetic expressions (we 
have only used a small subset). Implementations may differ in how they treat 
integer vs floating point numbers, how errors are dealt with, etc. 

Occurs check. The standard specifies that Prolog programs should not be able to 
create circular terms (see Section 10.6). Some implementations even provide 
special support for circular terms, but for portability one should not be using 
them. 

C.4 Definitions  of  some Standard Predicates 

To give you a start towards creating your own compatibility file, in this section we 
provide simple definitions of those Standard Prolog built-in predicates that we have 
used in this book. Many Prolog implementations support at least the core built-in 
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predicates, and so will be able to use definitions of new predicates defined in terms 
of them. 

Because in the following definitions we have restricted ourselves to the Clocksin and 
Mellish core Prolog subset, we have not been able to remain faithful to all aspects of 
the standard. In particular, there is no way in the core subset of Prolog to create an 
error condition, and so sometimes these definitions will fail when according to the 
standard an error condition should arise. The following definitions should support 
most correct uses of the predicates, but might behave differently if they are used 
incorrectly. 

Where subsidiary predicates have been defined in the following, their names begin 
with $$ to minimise the chance of clashes with existing predicates. 

The following summarises the definitions given here. These programs can be ob-
tained in machine-readable form from http://www.dai.ed.ac.uk/homes/chrism/pinsp. 

Standard predicate: Defined in terms of non-standard: 
atom_chars/2 
number_chars/2 
get_char/l 
put_char/l 
dynamic/1 
close/1 
current_input/l 
current_output/l 
open/1 
setjn put/1 
set_output/l 
write_canonical/l 
\+/l 
number/1 
@=</2, @>/2, @>=/2, @</2 

name/2 
name/2 
getO/1, name/2 
put/1, name/2 
(nothing) 
seeing/1, see/1, seen/0, telling/1, tell/1, told/0 
seeing/1 
telling/1 
seeing/1, see/1, telling/1, tell/1 
see/1 
tell/1 
display/1 
not/1 
integer/1 
name/2 

C.4.1 Character Processing 

% atom_chars/2 
% 

% Translate between atoms and lists of characters 
% 

% Known problems: 
% tends to fail rather than produce an error 

http://www.dai.ed.ac.uk/homes/chrism/pinsp
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% converts a sequence of characters which happen to be from '0' to '9' 

% into a number, not an atom 

atom_chars(Atom,Chars) :-

var(Atom), nonvar(Chars), !, 

'$$collect_codes'(Chars,Codes), 

name(Atom, Codes). 

atom_chars(Atom,Chars) :-

name(Atom, Codes), 

'$$cotlect_codes'(Chars,Codes). 

'$$collect_codes'([Ch|Chs],[Co|Cos]) :-

(nonvar(Chs); nonvar(Cos)), !, 

name(Ch,[Co]), 

'$$collect_codes'(Chs,Cos). 

'$$collect_codes'( [],[]). 

% number_chars/2 
% 

% Translate between numbers and lists of characters 
% 

% Known problems: 

% tends to fail rather than produce an error 

% in fact also produces characters from non-numbers 

number_chars(Num,Chars) :-

var(Num), nonvar(Chars), !, 

'$$collect_codes'(Chars, Codes), 

name(Num,Codes). 

number_chars(Num,Chars) :-

nonvar(Num), 

name(Num,Codes), 

'$$collect_codes'(Chars,Codes). 

% get_char/l 
% 

% Single character input 

% 
% Known problems: 
% 

% The definition of '$$end_of_file_code' needs to be updated so 
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% that it represents the character code used for "end of file". 

get_char(Char) :- getO(Code), ,$$code_to_char'(Code,Char). 

'$$code_to_char/(Code,Char) 

'$$end_of_file_code'(Code), !, Char=end_of_file. 

'SScodeJio.char^Code^harl):- name(Char,[Code]), 

'$$name_to_atom'(Char,Charl). 

% some versions of 'name' create numbers in their first arguments 

% make sure that the result really is an atom 

'$$name_to_atom'(0/0'):-!. 

'$$name_to_atom'(l/l '):-!. 

'$$name_to_atom'(2/2'):- !. 

'$$name_to_atom'(3/3'):-!. 

'$$name_to_atom'(4/4'):- !. 

'$$name_to_atom'(5/5'):-!. 

'$$name_to_atom'(6/6'):-!. 

'$$name_to_atom'(7,'7'):-!. 

'$$name_to_atom'(8/8'):- !. 

'$$name_to_atom'(9,'9'):- !. 

'$$name_to_atom'(X,X). 

'$$end_of_file_code'(-l). 

% put_char/l 
% 

% Single character output 
% 

% Known problems: 
% 

% will fail if given a non-character atom (rather than produce an error) 

put_char(X):- name(X,[C]), put(C). 

C.4.2 Directives 

% dynamic/1 
% 

% Declare a set of *-
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% 
% Known problems: 

% 
% Does nothing. This at least means that dynamic directives will not 

% create errors, but it does not address whatever might be required 

% to allow a predicate to be dynamic in a given implementation. 

?- op(1200,fx,':-'). 

?- op(1100,fx,dynamic). 

dynamic(_). 

C.4.3 Stream Input/Output 

% The following predicates have to be used together 

% NB the following predicates all make the assumption that the predicate 

% 
% '$$open'(Filename,Mode) 
% 
% (Filename an atom naming a file and Mode being 'read' or'write') is 

% updated dynamically to reflect the files that are currently open for 

% input and output. 

% 
% A stream is represented by a term '$$stream'(F) where F is the atom 

% file name. The same structure is used for the streams userjnput and 
% user_output, with F = userjnput or user_output. 
% 

% Known problems with this group of definitions: 
% 

% uses the file name inside the stream name - this convention cannot 

% be relied on in Standard Prolog 

% can only have one stream open at a time for a given file for input 

% or output 

% can't open a file called userjnput or user_output 

:- dynamic('$$open'/2). 

% close/1 
% 

% Close a currently open stream 
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% 
% Known problems: 
% 

% Fails if the stream is not open (rather than producing an error) 

% Closes the file for both input and output (for whichever it is 

% open for) 

c lose(userjnput) : - ! . 

close(user_output):- !. 

close('$$stream'(user_input)):- !. 

close('$$stream'(user_output)):- !. 

close('$$stream'(File)) :-

'$$open'(File,Mode), !, 

'$$closefiles'(File). 

'$$closefiles'(File) :-

retract('$$open'(File,Mode)), 

'$$closefile(File,Mode), 

fail. 

'$$closefiles'(_). 

'$$closefile'(File,read) :- !, 

seeing(Current), 

see(File), seen, 

see(Current). 

'$$closefile'(File,write) :-

telling(Current), 

tell(File), told, 

tell(Current). 

% current_input/l 
% 

% Test what the current input stream is 

current_input('$$stream'(F)) :- seeing(F). 

% current_output/l 
% 

% Test what the current output stream is 

current_output('$$stream'(F)) :- telling(F). 
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% open/3 
% 

% Open a file  for  input or output 
% 

% Known problems: 

% 

open(File,read/$$stream'(File)) :- !, 

'$$closeJf_open'(File,read), % close file if already open 

seeing(Old), % remember the current input 

see(File), % open again from the start 

assert('$$open'(File,read)), 

see(Old). % but don't change the current input 

open(File,write,'$$stream'( File)) :-

'$$close_if_open'(File,write), % close file if already open 

telling(Old), % remember the current output 

tell(File), % open again from the start 

assert('$$open'(File,write)), 

tell(Old). % but don't change the current input 

'$$close_if_open'(File,Mode) :-

retract('$$open'(File,Mode)), !, 

'$$closefile'(File,Mode). 

'$$closeJf_open'(File,_). 

% set_input/l 
% 

% Change current input 

set_input(user_input):- !, 

see(user). 

setjnput('$$stream'(user_input)):-!, 

see(user). 

set_input('$$stream'(F)) :-

'$$open'(F,read), !, 

see(F). 

% set_output/l 
% 

% Change current output 
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set_output(user_output):- !, 
tell(user). 

set_output('$$stream'(user_output)) :- !, 

tell(user). 

set_output('$$stream'(F)) :-

'$$open'(F,write), !, 

tell(F). 

C.4.4 Miscellaneous 

% write_canonical/l 
% 

% Write a term, ignoring operator declarations 

write_canonical(X) :- display(X). 

% V / l 
% 

% Negation as failure 

?- op(900,fy,\+). 

\+ X :- not(X). 

% number/1 
% 

% Test for  whether something is a number. 

% Limitations: only succeeds for integers 

number(X) :- integer(X). 

% @<, @>, @=<, @>= 

% 
% Term comparison 
% 

% Limitations: only succeeds for atoms, assumes the Ascii character set 

?- op(700,xfx,@<). 
?- op(700,xfx,@>). 
?- op(700,xfx,@=<). 
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?- op(700,xfx,@>=). 

X @=< Y :- atom(X), atom(Y), X=Y, !. 

X @=< Y :- X @< Y. 

X @> Y :- Y @< X. 

X @>= Y :- Y @=< X. 

X @ < Y :- atom(X), atom(Y), name(X,XC), name(Y,YC), '$$aless'(XC,YC). 

'$$aless'([],[_|J):- !• 
'$$aless'([C|_],[Cl |_]):- C<C1, !. 
'$$aless'([C|Cs],[C|Csl]) '$$aless'(Cs,Csl). 
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Code to Support DCGs 

The Prolog standard does not specify that a Prolog implementation should provide 
translation from D C G rules into Prolog, though in practice many implementations 
do. The following Prolog program may be useful for people wishing to use DCGs 
if their implementations do not support this. Apart from the predicates phrase/2, 
phrase/3 and (updateable) 'C'/3, it provides a predicate g/1 to consult a file contain-
ing grammar rules (and possibly ordinary Prolog as well). 

The g/1 predicate works by reading in the file and writing it out to a file dcg.tmp with 
any grammar rules translated into ordinary Prolog. Then that file is consulted nor-
mally. Obviously a user should not be using a file dcg.tmp for something else. Any 
directives in the original file are simply copied to dcg.tmp so that they are obeyed 
when this is consulted. Since they are not obeyed on the first reading of the file, any 
operator declarations necessary for reading the file have to be made before  g is called. 

The code assumes that —> is already declared as an operator, as if by: 

?- op(1200,xfx,-->). 

and that the Prolog reader reads a term of the form {...} as '{}'(...) (where the argu-
ment can use operators like ,/2 and ;/2 without having to enclose the terms in extra 
parentheses). Both of these should be the case in an implementation conforming to 
the standard. The comments at the start of the code suggest how one might be able 
to fix things in an implementation that was non-standard in this respect. 
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D.l DCG Support Code 

% DCG code for Programming in Standard Prolog 

% 
% The following is part of Standard Prolog, but some Prolog 

% systems may need it: 

% 
?- op(1200,xfx,-->). 

% 
% {...} is dealt with specially in the syntax of Standard Prolog, 

% but in case it is not recognised, the following could be a way 

% of having { and } be standard operators. However, any conjunctions 

% and disjunctions inside {...} will have to be inside extra 

% parentheses with spaces around the { and }, e.g. { (a(X), b(Y)) } . 

% 
?- op(901,fx/{'). 
?- op(900,xf,'}'). 

% g(File) 
% 
% Consult a file File that may contain grammar rules. The 

% predicate creates a new file dcg.tmp with the translated 

% version of the original file and then consults that. 

% The file can contain ordinary Prolog clauses as well, but 

% any necessary operator declarations must be made before g is called 

% (it does not obey any directives when the file is first read). 

9(File) :-

open(File,read,In), 

setjnput( ln), 

open('dcg.tmp', write,Out), 

set_output(0ut), 

repeat, 

read(Term), 

output_with_translation(Term), 
Term = end_of_file, 
i 
., 

close(Out), 
close(In), 
consult('dcg.tmp'). 
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% output_with_translation(Term) 
% 

% Outputs Term (in such a way that it can be read in as a clause) 

% after translating it (if it happens to be a grammar rule) 

output_with_translation(end_of_file):-!. 

output_with_translation((X~>Y)) :- !, 

translate((X—>Y),Z), 

write_canonical(Z), write('.'), nl. 

output_with_translation(X) :-

write_canonical(X), write(7), nl. 

% translate(+In,-Out) 
% 

% Translate a grammar rule 
% 

translate(((LHSJnl,LHS_in2) ~ > RHSJn) , (LHS_out:- RHS_out)) :- !, 

nonvar(LHSJnl) , 

islist(LHS_in2), 

tag(LHS_inl,SO,Sn,LHS_out), 

make_connects(LHS_in2,Sn,Sl,Conn), 

dcg_rhs(RHS_in,SO,Sl,RHS_l), 

dcg_and(Conn,RHS_l,RHS_2), 

flatten2(RHS_2,RHS_out). 

translate((LHS_in - > RHSJn) , (LHS_out:- RHS_out)) :-

nonvar(LHSJn), 

tag(LHSJn,SO,Sn,LHS_out), 

dcg_rhs(RHSJn,SO,Sn,RHS_l), 

flatten2(RHS_l,RHS_out). 

% dcg_rhs(+RHS,SO,SI,-Translation) 
% 

% Translate the RHS of a grammar rule into a 

% conjunction of Prolog goals. SO and S i are 

% variables to be used for the input and output 

% list arguments of the whole conjunction (these 

% are the variables used for the input and output 

% list arguments for the head of the clause) 

dcg_rhs(X, SO, S, phrase(X,SO,S)) :- var(X), !. 
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dcg_rhs((RHS_inl,RHSJn2),S0,Sn,RHS_out):- !, 

dcg_rhs(RHS_inl,SO,Sl,RHS_outl), 

dcg_rhs(RHS_in2,Sl,Sn,RHS_out2), 

dcg_and(RHS_outl,RHS_out2,RHS_out). 

dcg_rhs((RHS_inl;RHS_in2),S0,Sn,(RHS_outl;RHS_out2)):- !, 

dcg_or(RHS_inl,SO,Sn,RHS_outl), 

dcg_or(RHS_in2,S0,Sn,RHS_out2). 

dcg_rhs({RHS_in},SO,SO,RHS_in) :- !. 

dcg_rhs(!,S0,S0,!) :- !. 

dcg_rhs(RHS_in,SO,Sn,C) :- % terminal(s) 

isl ist(RHSJn), !, 

make_connects(RHS_in,SO,Sn,C). 

dcg_rhs(RHS_in,SO,Sn,RHS_out):- 7o single non-terminal 

tag(RHS_in,SO,Sn,RHS_out). 

% 
% Auxiliary predicates 

% 

% dcg_or(+RHS,SO,SI,-Translation) 
% 

% As dcg_rhs, except for goals that will be part of a 

% disjunction. dcg_rhs can instantiate the first list 

% argument (SO) (by making it the same as the second 

% or a list with some terminals in it), but that can't 

% be done here (it will mess 

% up the other disjuncts). Instead, if that happens, an 

% explicit = goal is included in the output. 

dcg_or(In,S0,Sn,0ut) :-

dcg_rhs(In,Sl,Sn,0utl), % using new first list argument S I 

( var(Sl), 

\+ S i == Sn, !, % if S i has not been set 

S0=S1, % 

0ut=0utl; % return what was computed (S I ) 

0ut=(S0=Sl ,0ut l ) ) . % otherwise link SO,SI with an = goal 

% Create a conjunction, flattening if possible 

dcg_and(true,In,In) :- !. 
dcg_and(In,true,In) :- !. 
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dcg_and(Inl, In2,(Inl , In2)). 

% tag(+In,S0,Sl,-0ut) 
% 

% In is a term representing a DCG non-terminal. Out 

% is the result of adding SO and S I as extra arguments 

tag(In,S0,Sn,0ut) :-

In=..[Predicate|Arguments], 

dcg_append(Arguments,[SO,Sn],New_arguments), 

Out=..[Predicate|New_arguments]. 

% flatten 2 (+Seq,-FSeq) 
% 

% Given a sequence of terms connected by','/2 

% (possibly with embedded sequences), produces a 

% "flattened" form 

flatten2(In,In) :- var(In), !. 

f latten2((Inl,In2),0utl) :- !, 

f lattenl( lnl ,0utl ,0ut2), 

flatten2(In2,0ut2). 

flatten2(In,In). 

f lattenl( Inl , ( Inl , In2) , In2) :-

var(Inl), !. 

f lattenl( ( In l , In2) ,0ut l , In3) : - !, 

f lattenl(Inl,0utl ,0ut2), 

flattenl(In2,0ut2,In3). 

f lattenl( Inl , ( Inl , In2), In2). 

islist([]). 

islist(LU). 

dcg_append([],X,X). 

dcg_append([X|L],Ll,[X|L2]):- dcg_append(L,Ll,L2). 

% make_connects(+Terminals,SO,Sl,-Goals) 

% 
% Create the X' goals for a list of terminals. SO and S I 
% are to be instantiated to the input and output list 
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% arguments. 

make_connects([First|Rest],SO,Sn,Conns) :-
nonvar(Rest), !, 
make_connects(Rest,SI,Sn,Cs), 
dcg_and('C'(SO,First,SI),Cs,Conns). 

make_connects([],S,S,true). 

% Predicates that can be called/redefined by the user 

phrase(T, S):- phrase(T, S, []). 

phrase(T, SO, S ) t a g ( T , SO, S, G), call(G). 

'C'([W|Ws],W,Ws). 
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