
-1-

How to Design Programs

An Introduction to Computing and Programming

Matthias Felleisen
Robert Bruce Findler

Matthew Flatt
Shriram Krishnamurthi

The MIT Press
Cambridge, Massachusetts

London, England

Book Description
This introduction to programming places computer science in the core of a liberal arts education.
Unlike other introductory books, it focuses on the program design process. This approach fosters
a variety of skills--critical reading, analytical thinking, creative synthesis, and attention to detail-
-that are important for everyone, not just future computer programmers.

The book exposes readers to two fundamentally new ideas. First, it presents program design
guidelines that show the reader how to analyze a problem statement; how to formulate concise
goals; how to make up examples; how to develop an outline of the solution, based on the analysis;
how to finish the program; and how to test. Each step produces a well-defined intermediate
product. Second, the book comes with a novel programming environment, the first one explicitly
designed for beginners. The environment grows with the readers as they master the material in
the book until it supports a full-fledged language for the whole spectrum of programming tasks.

All the book's support materials are available for free on the Web. The Web site includes the
environment, teacher guides, exercises for all levels, solutions, and additional projects.

TE
AM
FL
Y

TEAM FLY PRESENTS

-2-

Contents
Preface
 Why Everyone Should Learn to Program
 Design Recipes
 The Choice of Scheme and DrScheme
 The Parts of the Book
 Acknowledgments

I Processing Simple Forms of Data

 1 Students, Teachers, and Computers

 2 Numbers, Expressions, Simple Programs
 2.1 Numbers and Arithmetic
 2.2 Variables and Programs
 2.3 Word Problems
 2.4 Errors
 2.5 Designing Programs

 3 Programs are Function Plus Variable Definitions
 3.1 Composing Functions
 3.2 Variable Definitions
 3.3 Finger Exercises on Composing Functions

 4 Conditional Expressions and Functions
 4.1 Booleans and Relations
 4.2 Functions that Test Conditions
 4.3 Conditionals and Conditional Functions
 4.4 Designing Conditional Functions

 5 Symbolic Information
 5.1 Finger Exercises with Symbols

 6 Compound Data, Part 1: Structures
 6.1 Structures
 6.2 Extended Exercise: Drawing Simple Pictures
 6.3 Structure Definitions
 6.4 Data Definitions
 6.5 Designing Functions for Compound Data
 6.6 Extended Exercise: Moving Circles and Rectangles
 6.7 Extended Exercise: Hangman

 7 The Varieties of Data
 7.1 Mixing and Distinguishing Data
 7.2 Designing Functions for Mixed Data
 7.3 Composing Functions, Revisited

TE
AM
FL
Y

TEAM FLY PRESENTS

-3-

 7.4 Extended Exercise: Moving Shapes
 7.5 Input Errors

 8 Intermezzo 1: Syntax and Semantics
 8.2 The Scheme Vocabulary
 8.3 The Scheme Grammar
 8.4 The Meaning of Scheme
 8.5 Errors
 8.6 Boolean Expressions
 8.7 Variable Definitions
 8.8 Structure Definitions

II Processing Arbitrarily Large Data

 9 Compound Data, Part 2: Lists
 9.1 Lists
 9.2 Data Definitions for Lists of Arbitrary Length
 9.3 Processing Lists of Arbitrary Length
 9.4 Designing Functions for Self-Referential Data Definitions
 9.5 More on Processing Simple Lists

 10 More on Processing Lists
 10.1 Functions that Produce Lists
 10.2 Lists that Contain Structures
 10.3 Extended Exercise: Moving Pictures

 11 Natural Numbers
 11.1 Defining Natural Numbers
 11.2 Processing Natural Numbers of Arbitrary Size
 11.3 Extended Exercise: Creating Lists, Testing Functions
 11.4 Alternative Data Definitions for Natural Numbers
 11.5 More on the Nature of Natural Numbers

 12 Composing Functions, Revisited Again
 12.1 Designing Complex Programs
 12.2 Recursive Auxiliary Functions
 12.3 Generalizing Problems, Generalizing Functions
 12.4 Extended Exercise: Rearranging Words

 13 Intermezzo 2: List Abbreviations

III More on Processing Arbitrarily Large Data

 14 More Self-referential Data Definitions
 14.1 Structures in Structures
 14.2 Extended Exercise: Binary Search Trees
 14.3 Lists in Lists
 14.4 Extended Exercise: Evaluating Scheme

TE
AM
FL
Y

TEAM FLY PRESENTS

-4-

 15 Mutually Referential Data Definitions
 15.1 Lists of Structures, Lists in Structures
 15.2 Designing Functions for Mutually Referential Definitions
 15.3 Extended Exercise: More on Web Pages

 16 Development through Iterative Refinement
 16.1 Data Analysis
 16.2 Defining Data Classes and Refining Them
 16.3 Refining Functions and Programs

 17 Processing Two Complex Pieces of Data
 17.1 Processing Two Lists Simultaneously: Case 1
 17.2 Processing Two Lists Simultaneously: Case 2
 17.3 Processing Two Lists Simultaneously: Case 3
 17.4 Function Simplification
 17.5 Designing Functions that Consume Two Complex Inputs
 17.6 Exercises on Processing Two Complex Inputs
 17.7 Extended Exercise: Evaluating Scheme, Part 2
 17.8 Equality and Testing

 18 Intermezzo 3: Local Definitions and Lexical Scope
 18.2 Organizing Programs with local
 Syntax of local
 Semantics of local
 Pragmatics of local, Part 1
 Pragmatics of local, Part 2
 Pragmatics of local, Part 3
 18.3 Lexical Scope and Block Structure

IV Abstracting Designs

 19 Similarities in Definitions
 19.1 Similarities in Functions
 19.2 Similarities in Data Definitions

 20 Functions are Values
 20.1 Syntax and Semantics
 20.2 Contracts for Abstract and Polymorphic Functions

 21 Designing Abstractions from Examples
 21.1 Abstracting from Examples
 21.2 Finger Exercises with Abstract List Functions
 21.3 Abstraction and a Single Point of Control
 21.4 Extended Exercise: Moving Pictures, Again
 21.5 Note: Designing Abstractions from Templates

 22 Designing Abstractions with First-Class Functions
 22.1 Functions that Produce Functions
 22.2 Designing Abstractions with Functions-as-Values
 22.3 A First Look at Graphical User Interfaces

TE
AM
FL
Y

TEAM FLY PRESENTS

-5-

 23 Mathematical Examples
 23.1 Sequences and Series
 23.2 Arithmetic Sequences and Series
 23.3 Geometric Sequences and Series
 Taylor Series
 23.4 The Area Under a Function
 23.5 The Slope of a Function

 24 Intermezzo 4: Defining Functions on the Fly
 Syntax of lambda
 Scope and Semantics of lambda
 Pragmatics of lambda

V Generative Recursion

 25 A New Form of Recursion
 25.1 Modeling a Ball on a Table
 25.2 Sorting Quickly

 26 Designing Algorithms
 26.1 Termination
 26.2 Structural versus Generative Recursion
 26.3 Making Choices

 27 Variations on a Theme
 27.1 Fractals
 27.2 From Files to Lines, from Lists to Lists of Lists
 27.3 Binary Search
 27.4 Newton's Method
 27.5 Extended Exercise: Gaussian Elimination

 28 Algorithms that Backtrack
 28.1 Traversing Graphs
 28.2 Extended Exercise: Checking (on) Queens

 29 Intermezzo 5: The Cost of Computing and Vectors
 29.2 Concrete Time, Abstract Time
 29.3 The Definition of ``on the Order of''
 29.4 A First Look at Vectors

VI Accumulating Knowledge

 30 The Loss of Knowledge
 30.1 A Problem with Structural Processing
 30.2 A Problem with Generative Recursion

 31 Designing Accumulator-Style Functions
 31.1 Recognizing the Need for an Accumulator
 31.2 Accumulator-Style Functions
 31.3 Transforming Functions into Accumulator-Style

TE
AM
FL
Y

TEAM FLY PRESENTS

-6-

 32 More Uses of Accumulation
 32.1 Extended Exercise: Accumulators on Trees
 32.2 Extended Exercise: Missionaries and Cannibals
 32.3 Extended Exercise: Board Solitaire

 33 Intermezzo 6: The Nature of Inexact Numbers
 33.2 Fixed-size Number Arithmetic
 33.3 Overflow
 33.4 Underflow
 33.5 DrScheme's Numbers

VII Changing the State of Variables

 34 Memory for Functions

 35 Assignment to Variables
 35.1 Simple Assignments at Work
 35.2 Sequencing Expression Evaluations
 35.3 Assignments and Functions
 35.4 A First Useful Example

 36 Designing Functions with Memory
 36.1 The Need for Memory
 36.2 Memory and State Variables
 36.3 Functions that Initialize Memory
 36.4 Functions that Change Memory

 37 Examples of Memory Usage
 37.1 Initializing State
 37.2 State Changes from User Interactions
 37.3 State Changes from Recursion
 37.4 Finger Exercises on State Changes
 37.5 Extended Exercise: Exploring Places

 38 Intermezzo 7: The Final Syntax and Semantics
 38.2 The Vocabulary of Advanced Scheme
 38.3 The Grammar of Advanced Scheme
 38.4 The Meaning of Advanced Scheme
 38.5 Errors in Advanced Scheme

VIII Changing Compound Values

 39 Encapsulation
 39.1 Abstracting with State Variables
 39.2 Practice with Encapsulation

 40 Mutable Structures
 40.1 Structures from Functions
 40.2 Mutable Functional Structures
 40.3 Mutable Structures

TE
AM
FL
Y

TEAM FLY PRESENTS

-7-

 40.4 Mutable Vectors
 40.5 Changing Variables, Changing Structures

 41 Designing Functions that Change Structures
 41.1 Why Mutate Structures
 41.2 Structural Design Recipes and Mutation, Part 1
 41.3 Structural Design Recipes and Mutation, Part 2
 41.4 Extended Exercise: Moving Pictures, a Last Time

 42 Equality
 42.1 Extensional Equality
 42.2 Intensional Equality

 43 Changing Structures, Vectors, and Objects
 43.1 More Practice with Vectors
 43.2 Collections of Structures with Cycles
 43.3 Backtracking with State

Epilogue
 Computing
 Programming
 Moving On

 Index

TE
AM
FL
Y

TEAM FLY PRESENTS

-8-

Preface

It goes against the grain of modern education to teach
children to program. What fun is there in making plans,
acquiring discipline in organizing thoughts, devoting
attention to detail and learning to be self-critical?
 -- Alan Perlis, Epigrams in Programming

Many professions require some form of computer programming. Accountants program
spreadsheets and word processors; photographers program photo editors; musicians program
synthesizers; and professional programmers instruct plain computers. Programming has become
a required skill.

Yet programming is more than just a vocational skill. Indeed, good programming is a fun
activity, a creative outlet, and a way to express abstract ideas in a tangible form. And designing
programs teaches a variety of skills that are important in all kinds of professions: critical reading,
analytical thinking, creative synthesis, and attention to detail.

We therefore believe that the study of program design deserves the same central role in general
education as mathematics and English. Or, put more succinctly,

everyone should learn how to design programs.
On one hand, program design teaches the same analytical skills as mathematics. But, unlike
mathematics, working with programs is an active approach to learning. Interacting with software
provides immediate feedback and thus leads to exploration, experimentation, and self-evaluation.
Furthermore, designing programs produces useful and fun things, which vastly increases the
sense of accomplishment when compared to drill exercises in mathematics. On the other hand,
program design teaches the same analytical reading and writing skills as English. Even the
smallest programming tasks are formulated as word problems. Without critical reading skills, a
student cannot design programs that match the specification. Conversely, good program design
methods force a student to articulate thoughts about programs in proper English.

The Design Recipe for Functions
Problem Analysis & Data Definition
Contract, Purpose & Effect Statements, Header
Examples
Function Template
Function Definition
Tests
Figure 1: The basic steps of a program design recipe

This book is the first book on programming as the core subject of a liberal arts education. Its
main focus is the design process that leads from problem statements to well-organized solutions;

TE
AM
FL
Y

TEAM FLY PRESENTS

-9-

it deemphasizes the study of programming language details, algorithmic minutiae, and specific
application domains. Our desire to focus on the design process requires two radical innovations
for introductory courses. The first innovation is a set of explicit design guidelines. Existing
curricula tend to provide vague and ill-defined suggestions, such as ``design from top to bottom''
or ``make the program structural.'' We have instead developed design guidelines that lead
students from a problem statement to a computational solution in step-by-step fashion with well-
defined intermediate products. In the process they learn to read, to analyze, to organize, to
experiment, to think in a systematic manner. The second innovation is a radically new
programming environment. In the past, texts on programming ignored the role of the
programming environment in the learning process; they simply assumed that students had access
to a professional environment. This book provides a programming environment for beginners. It
also grows with the students as they master more and more of the material until it supports a full-
fledged language for the whole spectrum of programming tasks: large-scale programming as well
as scripting.

Our guidelines are formulated as a number of program design recipes.1 A design recipe guides a
beginning programmer through the entire problem-solving process. With design recipes, a
beginner almost never again stares at a blank piece of paper or a blank computer screen. Instead,
the student will check the design recipe and use the question-and-answer guidelines to make
some progress.

We created the design recipes by identifying categories of problems. The identification of a
problem category is based on the classes of data that are used to represent the relevant
information. Starting from the structure of this class description students derive the programs
with a checklist. Figure 1 shows the basic six steps of a design recipe checklist. Each step
produces a well-defined intermediate product:

1. the description of the class of problem data;
2. the informal specification of a program's behavior;
3. the illustration of the behavior with examples;
4. the development of a program template or layout;
5. the transformation of the template into a complete definition; and
6. the discovery of errors through testing.

The major difference concerns the relationship of steps 1 and 4.

Design recipes help beginners and teachers alike. Teachers can use the recipes to inspect a
beginner's problem-solving skills, to diagnose weaknesses, and to suggest specific remedial steps.
After all, each stage of the design recipe yields a well-defined, checkable product. If a beginner
is stuck, a teacher can inspect the intermediate products and determine what the problem is.
Based on this analysis, the teacher can then provide guidance for a specific step in the recipe,
raise appropriate questions, and recommend additional practice exercises.

Why Everyone Should Learn to Program

And as imagination bodies forth
The forms of things to unknown, and the poet's pen

Turns them to shapes, and gives to airy nothing
A local habitation and a name.

TE
AM
FL
Y

TEAM FLY PRESENTS

-10-

 -- Shakespeare, A Midsummer Night's Dream V(i)

Our claim that everyone programs or should learn to program might appear strange considering
that, at first glance, fewer and fewer people seem to program these days. Instead, the majority of
people use application packages, which don't seem to require any programming. Even
programmers use ``program generators,'' packages that create programs from, say, business rules.
So why should anyone learn to program?

The answer consists of two parts. First, it is indeed true that traditional forms of programming
are useful for just a few people. But, programming as we the authors understand it is useful for
everyone: the administrative secretary who uses spreadsheets as well as the high-tech
programmer. In other words, we have a broader notion of programming in mind than the
traditional one. We explain our notion in a moment. Second, we teach our idea of programming
with a technology that is based on the principle of minimal intrusion. Hence our notion of
programming teaches problem-analysis and problem-solving skills without imposing the
overhead of traditional programming notations and tools.

To get a better understanding of modern programming, take a closer look at spreadsheets, one of
today's popular application packages. A user enters formulas into a spreadsheet. The formulas
describe how a cell A depends on another cell B. Then, as the user enters a number into B, the
spreadsheet automatically calculates the contents of cell A. For complicated spreadsheets, a cell
may depend on many other cells, not just one.

Other application packages require similar activities. Consider word processors and style sheets.
A style sheet specifies how to create a (part of a) document from yet-to-be-determined words or
sentences. When someone provides specific words and a style sheet, the word processor creates
the document by replacing names in the style sheet with specific words. Similarly, someone who
conducts a Web search may wish to specify what words to look for, what words should be next
to each other, and what words should not occur in the page. In this case, the output depends on
the search engine's cache of Web pages and the user's search expression.

Finally, using a program generator in many ways relies on the same skills as those necessary for
application packages. A program generator creates a program in a traditional programming
language, such as C++ or Java, from high-level descriptions, such as business rules or scientific
laws. Such rules typically relate quantities, sales, and inventory records and thus specify
computations. The other parts of the program, especially how it interacts with a user and how it
stores data in the computer's disk, are generated with little or no human intervention.

All of these activities instruct some computer software to do something for us. Some use
scientific notation, some may use stylized English, some use a concrete programming notation.
All of them are some form of programming. The essence of these activities boils down to two
concepts:

1. relating one quantity to another quantity, and
2. evaluating a relationship by substituting values for names.

Indeed, the two concepts characterize programming at the lowest level, the computer's native
language, and in a modern fashionable language such as Java. A program relates its inputs to
outputs; and, when a program is used for specific inputs, the evaluation substitutes concrete
values for names.

TE
AM
FL
Y

TEAM FLY PRESENTS

-11-

No one can predict what kind of application packages will exist five or ten years from now. But
application packages will continue to require some form of programming. To prepare students
for these kinds of programming activities, schools can either force them to study algebra, which
is the mathematical foundation of programming, or expose them to some form of programming.
Using modern programming languages and environments, schools can do the latter, they can do
it effectively, and they can make algebra fun.

Design Recipes

Cooking is at once child's play and adult joy. And
cooking done with care is an act of love.
 -- Craig Claiborne (1920-2000), Food Editor, New
York Times

Learning to design programs is like learning to play soccer. A player must learn to trap a ball, to
dribble with a ball, to pass, and to shoot a ball. Once the player knows those basic skills, the next
goals are to learn to play a position, to play certain strategies, to choose among feasible strategies,
and, on occasion, to create variations of a strategy because none of the existing strategies fits.

A programmer is also very much like an architect, a composer, or a writer. They are creative
people who start with ideas in their heads and blank pieces of paper. They conceive of an idea,
form a mental outline, and refine it on paper until their writings reflect their mental image as
much as possible. As they bring their ideas to paper, they employ basic drawing, writing, and
instrumental skills to express certain style elements of a building, to describe a person's character,
or to formulate portions of a melody. They can practice their trade because they have honed their
basic skills for a long time and can use them on an instinctive level.

Programmers also form outlines, translate them into first designs, and iteratively refine them
until they truly match the initial idea. Indeed, the best programmers edit and rewrite their
programs many times until they meet certain aesthetic standards. And just like soccer players,
architects, composers, or writers, programmers must practice the basic skills of their trade for a
long time before they can be truly creative.

Design recipes are the equivalent of soccer ball handling techniques, writing techniques,
techniques of arrangements, and drawing skills. A single design recipe represents a point of the
program design space. We have studied this space and have identified many important categories.
This book selects the most fundamental and the most practical recipes and presents them in
increasing order of difficulty.2

About half the design recipes focus on the connection between input data and programs. More
specifically, they show how the template of a program is derived from the description of the
input data. We call this data-driven program design, and it is the most frequently used form of
design. Data-driven designs are easy to create, easy to understand, and easy to extend and modify.
Other design recipes introduce the notion of generative recursion, accumulation, and history
sensitivity. The first one produces recursive programs that generate new instances of problems as
they recur; accumulator-style programs collect data as they process inputs; and history-sensitive
programs remember information between successive applications. Last, but not least, we also
introduce a design recipe for abstracting over programs. Abstracting is the act of generalizing
two (or more) similar designs into one and of deriving the original instances from it.

TE
AM
FL
Y

TEAM FLY PRESENTS

-12-

On many occasions, a problem naturally suggests one design recipe. On others, a programmer
must choose from among several possibilities; each choice may produce programs with vastly
different organizations. Making choices is natural for a creative programmer. But, unless a
programmer is thoroughly familiar with the bag of design recipes to choose from and completely
understands the consequences of choosing one over the other, the process is necessarily ad hoc
and leads to whimsical, bad designs. We hope that by mapping out a collection of design recipes,
we can help programmers understand what to choose from and how to choose.

Now that we have explained what we mean by ``programming'' and ``program design,'' the
reader can see why and how teaching program design instills thinking skills that are important in
a variety of professions. To design a program properly, a student must:

1. analyze a problem statement, typically stated as a word problem;
2. express its essence, abstractly and with examples;
3. formulate statements and comments in a precise language;
4. evaluate and revise these activities in light of checks and tests; and
5. pay attention to details.

All of these are activities that are useful for a businessman, a lawyer, a journalist, a scientist, an
engineer, and many others.

While traditional programming requires these skills, too, beginners often don't understand this
connection. The problem is that traditional programming languages and traditional forms of
programming force students to perform a large amount of book-keeping work and to memorize a
large number of language-specific facts. In short, menial work drowns the teaching of essential
skills. To avoid this problem, teachers must use a programming environment that imposes as
little overhead as possible and that accommodates beginners. Because such tools didn't exist
when we started, we developed them.

The Choice of Scheme and DrScheme

We ascribe beauty to that which is simple,
which has no superfluous parts;
which exactly answers its end,
which stands related to all things,
which is the mean of many extremes.
 -- Ralph Waldo Emerson, The Conduct of Life

We have chosen Scheme as the programming language for this book, and we have designed and
implemented DrScheme, a programming environment for the language with special assistance
for beginning students. The programming environment is freely available at the book's official
Web site.3

Still, the book it is not about programming in Scheme. We only use a small number of Scheme
constructs in this book. Specifically, we use six constructs (function definition and application,
conditional expressions, structure definition, local definitions, and assignments) plus a dozen or
so basic functions. This tiny subset of the language is all that is needed to teach the principles of
computing and programming. Someone who wishes to use Scheme as a tool will need to read
additional material.

TE
AM
FL
Y

TEAM FLY PRESENTS

-13-

The choice of Scheme for beginners is natural. First, the core of Scheme permits programmers to
focus on just those two elements of programming that we pointed out at the beginning of the
preface: programs as relations between quantities and evaluating programs for specific inputs.
Using just this core language, students can develop complete programs during the first session
with a teacher.

Second, Scheme can easily be arranged as a tower of language levels. This property is crucial for
beginners who make simple notational mistakes that generate obscure error messages about
advanced features of a language. The result is often a wasteful search and a feeling of frustration
on the student's part. To avoid this problem, our programming environment, DrScheme,
implements several carefully chosen sublanguages of Scheme. Based on this arrangement, the
environment can signal error messages that are appropriate to a student's level of knowledge.
Better still, the layering of languages prevents many basic mistakes. We developed the layers and
the protection modes by observing beginners for weeks in Rice's computer lab. As students learn
more about programming and the language, the teacher can expose students to richer layers of
the language, which allows students to write more interesting and more concise programs.

Third, the DrScheme programming environment offers a truly interactive evaluator. It consists of
two windows: a Definitions window, where students define programs, and an Interactions
window, which acts like a pocket calculator. Students can enter expressions into the latter, and
DrScheme determines their values. In other words, computation starts with pocket-calculator
arithmetic, which they know quite well, and quickly proceeds from there to calculations with
structures, lists, and trees -- the kinds of data that computer programs really manipulate.
Furthermore, an interactive mode of evaluation encourages students to experiment in all kinds of
ways and thus stimulates their curiosity.

Finally, the use of an interactive evaluator with a rich data language permits students to focus on
problem solving and program design activities. The key improvement is that interactive
evaluation renders a discussion of input and output operations (almost) superfluous. This has
several consequences. First, input and output operations require memorization. Learning these
things is tedious and boring. Conversely, students are better off learning problem-solving skills
and using canned input and output support. Second, good text-oriented input requires deep
programming skills, which are best acquired in a course on computational problem-solving.
Teaching bad text-oriented input is a waste of the teachers' and the students' time. Third, modern
software employs graphical user interfaces (GUI), which programmers design with editors and
``wizards'' but not by hand. Again, students are best off learning to design the functions that are
connected to rulers, buttons, text fields and so on, rather than memorizing the specific protocols
that currently fashionable GUI libraries impose. In short, discussing input and output is a waste
of valuable learning time during a first introduction to programming. If students decide to pursue
programming in more depth, acquiring the necessary (Scheme) knowledge about input and
output procedures is straightforward.

In summary, students can learn the core of Scheme in a couple of hours, yet the language is as
powerful as a conventional programming language. As a result, students can focus immediately
on the essence of programming, which greatly enhances their general problem-solving skills.

The Parts of the Book
The book consists of eight parts and seven intermezzos. The parts focus on program design; the
intermezzos introduce other topics concerning programming and computing. Figure 2 shows the

TE
AM
FL
Y

TEAM FLY PRESENTS

-14-

dependence graph for the pieces of the book. The graph demonstrates that there are several paths
through the book and that a partial coverage of the material is feasible.

Parts I through III cover the foundations of data-driven program design. Part IV introduces
abstraction in designs. Parts V and VI are about generative recursion and accumulation. For these
first six parts, the book uses a completely functional -- or algebraic -- form of programming. One
and the same expression always evaluates to the same result, no matter how often we evaluate it.
This property makes it easy to design, and to reason about, programs. To cope with interfaces
between programs and the rest of the world, however, we enrich the language with assignment
statements and abandon some of our algebraic reasoning. The last two parts show what this
means for the design of programs. More precisely, they show how the design recipes of the first
six parts apply and why we must be much more careful once assignments are added.

Intermezzos introduce topics that are important for computing and programming in general but
not for program design per se. Some introduce the syntax and semantics of our chosen subsets of
Scheme on a rigorous basis, a few introduce additional programming constructs. Intermezzo 5 is
a discussion of the abstract cost of computing (time, space, energy) and introduces vectors.
Intermezzo 6 contrasts two ways of representing numbers and processing them.

The coverage of some intermezzos can be delayed until a specific need arises. This is especially
true of the intermezzos on Scheme's syntax and semantics. But, considering the central role of
intermezzo 3 in figure 2, it should be covered in a timely fashion.

Figure 2: The dependencies among parts and intermezzos

TE
AM
FL
Y

TEAM FLY PRESENTS

-15-

ITERATIVE REFINEMENT AND ITERATION OF TOPICS: Systematic program design is particularly interesting
and important for large projects. The step from small single-function problems to small
multifunction projects requires an additional design idea: iterative refinement. The goal is to
design the core of a program and to add functionality to this core until the entire set of
requirements is met.

Students in a first course can, and must, get their first taste of iterative refinement. Hence, in
order to acquaint students with the technique, we have included extended exercises. Typically, a
brief overview sets the stage for a collection of exercises. The exercises gently guide students
through some design iterations. In section 16, the idea is spelled out explicitly.

Furthermore, the book revisits certain exercise and example topics time and again. For example,
sections 6.6, 7.4, 10.3, 21.4, 41.4, and a few exercises in between the last two sections cover the
idea of moving pictures across a canvas. The students thus see the same problem several times,
each time with more and more knowledge about how to organize programs.

Adding pieces of functionality to a program demonstrates why programmers must follow a
design discipline. Solving the problem again shows students how to choose from alternative
design recipes. Finally, on occasion, new knowledge just helps students improve the program
organization; in other words, students learn that programs aren't finished after they work for the
first time but that, like papers and books, they need editing.

TEACHPACKS: A second aspect of working on projects is that programmers have to work in teams.
In an instructional context, this means that one student's program has to fit precisely to someone
else's. To simulate what ``fitting one's function to someone else's'' means, we provide DrScheme
teachpacks. Roughly speaking, a teachpack simulates a team partner yet avoids the frustration of
working with mistakes in a partner's program component. More technically, the projects almost
always consist of a view and a model program component (in the sense of the model-view
software architecture). In a typical setting, students design the model component. The teachpacks
provide the view components, often in the form of (graphical) user interfaces. Thus they
eliminate the tedious, mindless portions of coding. Furthermore, this particular separation of
concerns mimics that of real-world projects.

Fitting model components to view components requires students to pay attention to precise
specifications of functions. It demonstrates the paramount importance of following a design
discipline. It is also a critical skill for programmers and is often underemphasized in beginning
courses. In part IV we show how to construct some simple GUIs and how GUI events trigger the
application of model functions. The goal is to explain that constructing GUIs is no mystery, but
not to spend a lot of time on a topic that requires mostly rote learning and little computational
thinking.

SCHEDULE: Each university, college, and school has its own needs and must find an appropriate
schedule. At Rice University, we conventionally cover the entire book plus some additional
material in a single semester. An instructor at a research university should probably keep up a
similar pace. A high school teacher will necessarily pursue a slower pace. Many of the high
schools that tested the book covered the first three parts in a semester; some used only the first

TE
AM
FL
Y

TEAM FLY PRESENTS

-16-

part to teach algebraic problem solving from a computational perspective; and yet others worked
through the entire book in a year. For more information on schedules, visit the book's Web site.

THE BOOK ON THE WEB: The book comes in two versions: a paper copy and a freely accessible on-
line version at

http://www.htdp.org/

The Web site also provides additional material, especially extended exercises of the style
mentioned above. At this time, the Web page offers exercises on the visual simulation of ball
games and the management of Web site. More exercises will be added.

The two versions of the book come with different kinds of hints. Each is marked with one of the
following three icons:

This marker refers to DrScheme hints; they are available in both versions of the book.
The programming environment has been designed with students in mind. The hints
suggest how to use DrScheme at the various stages of the learning process.

This marker refers to teacher hints, which suggest strategies on how to present a
section, on how to approach an exercise, or on how to supplement some material.

This marker links to on-line solutions. Some solutions are freely available; others are
accessible to registered teachers only. To find out more about registration, see the
book's Web site.

TYPOGRAPHY AND DEFINITIONS: For readability, Scheme programs are typeset using a small number
of fonts. Italic words refer to program names and variables. Sans Serif items are constants and
built-in operations. Boldface words are Scheme keywords.

Definitions come in three varieties. There are those terms that concern the principles of
programming and computing. The book lists the first occurrence of such terms with SMALL CAPITAL
LETTERS. Other definitions are of a more fleeting nature; they introduce terms that are important
for a section, an example, an exercise, or some other small part of the book. The book uses
slanted words to emphasize such definitions. Finally, the book also defines classes of data. Most
data definitions are boxed, and the first occurrence of the defined name is also typeset using
slanted words.

Acknowledgments
Four people deserve special thanks: Robert ``Corky'' Cartwright, who co-developed a
predecessor of Rice's introductory course with the first author; Daniel P. Friedman, for asking
the first author to rewrite The Little LISPer (also MIT Press) in 1984, because it started this
project; John Clements, who designed, implemented, and maintains DrScheme's stepper; and
Paul Steckler, who faithfully supported the team with contributions to our suite of programming
tools.

The development of the book benefited from many other friends and colleagues who used it in
their courses and/or gave detailed comments on early drafts. We are grateful to them for their

TE
AM
FL
Y

TEAM FLY PRESENTS

-17-

help and their patience: Ian Barland, John Clements, Bruce Duba, Mike Ernst, Kathi Fisler,
Daniel P. Friedman, John Greiner, John Stone, Geraldine Morin, and Valdemar Tamez.

A dozen generations of Comp 210 students at Rice University used early drafts of the text and
contributed improvements in various ways. In addition, numerous attendees of our TeachScheme!
workshops used early drafts in their classrooms. Many sent in comments and suggestions. As
representative of these we mention the following active contributors: Ms. Barbara Adler, Dr.
Stephen Bloch, Mr. Jack Clay, Dr. Richard Clemens, Mr. Kyle Gillette, Ms. Karen Buras, Mr.
Marvin Hernandez, Mr. Michael Hunt, Ms. Karen North, Mr. Jamie Raymond, and Mr. Robert
Reid. Christopher Felleisen patiently worked through the first few parts of the book with his
father and provided direct insight into the views of a young student. Hrvoje Blazevic (Master of
LPG/C Harriette), Joe Zachary (University of Utah) and Daniel P. Friedman (Indiana University)
discovered numerous typos in the first printing, which we have now fixed. Thank you to
everyone.

Finally, Matthias expresses his gratitude to Helga for her many years of patience and for creating
a home for an absent-minded husband and father. Robby is grateful to Hsing-Huei Huang for her
support and encouragement; without her, he would not have gotten anything done. Matthew
thanks Wen Yuan for her constant support and enduring music. Shriram is indebted to Kathi
Fisler for support, patience and puns, and for her participation in this project.

1 Readers whose experience is exclusively based on programming languages such as C/C++,
Basic, and Pascal should read ``procedure'' or ``method'' where the preface mentions ``program.''

2 Our design recipes were inspired by work with Daniel P. Friedman on structural recursion, with
Robert Harper on type theory, and by Michael A. Jackson's design method.

3 Scheme has an official definition -- the Revised Report on Scheme, edited by Richard Kelsey,
William Clinger, and Jonathan Rees -- and many implementations. For a copy of the report and
for a list of alternative Scheme implementations, visit www.schemers.org on the Web. Note,
however, that the language of this book extends that of the report and is tailored to beginners.

TE
AM
FL
Y

TEAM FLY PRESENTS

-18-

Part I

Processing Simple Forms of Data

TE
AM
FL
Y

TEAM FLY PRESENTS

-19-

Section 1

Students, Teachers, and Computers
We learn to compute at a young age. At first we just add and subtract numbers.

One plus one equals two. Five minus two is three.
As we grow older we learn about additional mathematical operations, like exponentiation and
sine, but we also learn to describe rules of computation.
Given a circle of radius r, its circumference is r times two times pi. A minimum-wage laborer
who works for N hours earns N times 5.35 dollars.
The truth is, our teachers turn us into computers and program us to execute simple computer
programs.

So, the secret is out. Computer programs are just very fast students. They can perform millions
of additions while we might still be struggling with the first one. But computer programs can do
more than just manipulate numbers. They can guide an airplane. They can play games. They can
look up a person's phone number. They can print the payroll checks for huge corporations. In
short, computers process all kinds of information.

People state information and instructions in English.

The temperature is 35o C; convert this temperature into Fahrenheit. It takes this car 35 seconds to
accelerate from zero to 100 miles per hour; determine how far the car gets in 20 seconds.
Computers, however, barely understand basic English and certainly can't understand complex
instructions expressed in English. Instead we must learn to speak a computer language so that we
can communicate information and instructions.

A computer's language of instruction and information is a PROGRAMMING LANGUAGE. Information
expressed in a programming language is called DATA. There are many flavors of data. Numbers
are one class of data. Number series belong to the class of COMPOUND DATA, because each series is
made up of other pieces of smaller pieces of data, namely, numbers. To contrast the two kinds of
data, we also call numbers ATOMIC DATA. Letters are other examples of atomic data; family trees
are compound data.

Data represents information, but the concrete interpretation is up to us. For example, a number
like 37.51 may represent a temperature, a time, or a distance. A letter like ``A'' may denote a
school grade, a quality symbol for eggs, or a part of an address.

Like data, instructions, also called OPERATIONS, come in several flavors. Each class of data comes
with a set of PRIMITIVE OPERATIONS. For numbers, we naturally get +, -, *, and so on. Programmers
compose primitive operations into PROGRAMS. Thus, we may think of primitive operations as the
words of a foreign language and of programming as forming sentences in this language.

TE
AM
FL
Y

TEAM FLY PRESENTS

-20-

Some programs are as small as essays. Others are like sets of encyclopedias. Writing good essays
and books requires careful planning, and writing good programs does, too. Small or large, a good
program cannot be created by tinkering around. It must be carefully designed. Each piece needs a
lot of attention; composing programs into larger units must follow a well-planned strategy.
Designing programs properly must be practiced from our very first day of programming.

In this book, we will learn to design computer programs, and we will learn to understand how
they function. Becoming and being a programmer is fun, but it is not easy. The best part of being
a programmer is watching our ``products'' grow and become successful. It is fun to observe a
computer program play a game. It is exciting to see a computer program help someone. To get to
this point, however, we must practice many skills. As we will find out, programming languages
are primitive; especially, their grammar is restrictive. And unfortunately, computers are stupid.
The smallest grammatical mistake in a program is a fatal stumbling block for a computer. Worse,
once our program is in proper grammatical shape, it might not perform the computations as
intended.

Programming a computer requires patience and concentration. Only attention to minute details
will avoid frustrating grammatical mistakes. Only rigorous planning and adherence to the plan
will prevent serious logical mistakes in our designs. But when we finally master the design of
programs, we will have learned skills that are useful far beyond the realm of programming.

Let's get started!

TE
AM
FL
Y

TEAM FLY PRESENTS

-21-

Section 2

Numbers, Expressions, Simple Programs
In the beginning, people thought of computers as number crunchers. And indeed, computers are
very good at working with numbers. Since teachers start their first-graders on computing with
numbers, we start with numbers, too. Once we know how computers deal with numbers, we can
develop simple programs in no time; we just translate common sense into our programming
notation. Still, even developing such simple programs requires discipline, and so we introduce
the outline of the most fundamental design recipe and the basic programming guideline at the
end of this section.

2.1 Numbers and Arithmetic
Numbers come in many different flavors: positive and negative integers, fractions (also known as
rationals), and reals are the most widely known classes of numbers:

5 -5 2/3 17/3 #i1.4142135623731
The first is an integer, the second one a negative integer, the next two are fractions, and the last
one is an inexact representation of a real number.

Like a pocket calculator, the simplest of computers, Scheme permits programmers to add,
subtract, multiply, and divide numbers:

(+ 5 5) (+ -5 5) (+ 5 -5) (- 5 5) (* 3 4) (/ 8 12)

The first three ask Scheme to perform additions; the last three demand a subtraction, a
multiplication, and a division. All arithmetic expressions are parenthesized and mention the
operation first; the numbers follow the operation and are separated by spaces.

As in arithmetic or algebra, we can nest expressions:

 (* (+ 2 2) (/ (* (+ 3 5) (/ 30 10)) 2))

Scheme evaluates these expressions exactly as we do. It first reduces the innermost parenthesized
expressions to numbers, then the next layer, and so on:

 (* (+ 2 2) (/ (* (+ 3 5) (/ 30 10)) 2))
= (* 4 (/ (* 8 3) 2))
= (* 4 (/ 24 2))
= (* 4 12)
= 48

Because every Scheme expression has the shape

TE
AM
FL
Y

TEAM FLY PRESENTS

-22-

(operation A ... B)

there is never any question about which part has to be evaluated first. Whenever A ... B are
numbers, the expression can be evaluated; otherwise, A ... B are evaluated first. Contrast this
with

which is an expression that we encounter in grade school. Only a substantial amount of practice
guarantees that we remember to evaluate the multiplication first and the addition afterwards.4

Finally, Scheme not only provides simple arithmetical operations but a whole range of advanced
mathematical operations on numbers. Here are five examples:

1. (sqrt A) computes (A)1/2;
2. (expt A B) computes AB;
3. (remainder A B) computes the remainder of the integer division A/B;
4. (log A) computes the natural logarithm of A; and
5. (sin A) computes the sine of A radians.

When in doubt whether a primitive operation exists or how it works, use DrScheme to test
whether an operation is available with a simple example.

A Note on Numbers: Scheme computes with EXACT integers and rationals as long as we use
primitive operations that produce exact results. Thus, it displays the result of (/ 44 14) as 22/7.
Unfortunately, Scheme and other programming languages compromise as far as real numbers are
concerned. For example, since the square root of 2 is not a rational but a real number, Scheme
uses an INEXACT NUMBER:

 (sqrt 2)
= #i1.4142135623731

The #i notation warns the programmer that the result is an approximation of the true number.
Once an inexact number has become a part of a calculation, the process continues in an
approximate manner. To wit:

 (- #i1.0 #i0.9)
= #i0.09999999999999998

but

 (- #i1000.0 #i999.9)
= #i0.10000000000002274

even though we know from mathematics that both differences should be 0.1 and equal. Once
numbers are inexact, caution is necessary.

This imprecision is due to the common simplification of writing down numbers like the square
root of 2 or as rational numbers. Recall that the decimal representations of these numbers are
infinitely long (without repetition). A computer, however, has a finite size, and therefore can
only represent a portion of such a number. If we choose to represent these numbers as rationals

TE
AM
FL
Y

TEAM FLY PRESENTS

-23-

with a fixed number of digits, the representation is necessarily inexact. Intermezzo 6 will explain
how inexact numbers work.

To focus our studies on the important concepts of computing and not on these details, the
teaching languages of DrScheme deal as much as possible with numbers as precise numbers.
When we write 1.25, DrScheme interprets this number as a precise fraction, not as an inexact
number. When DrScheme's Interactions window displays a number such as 1.25 or 22/7, it is
the result of a computation with precise rationals and fractions. Only numbers prefixed by #i are
inexact representations.

Exercise 2.1.1.

Find out whether DrScheme has operations for squaring a number; for computing the sine of an
angle; and for determining the maximum of two numbers.

Exercise 2.1.2. Evaluate (sqrt 4), (sqrt 2), and (sqrt -1) in DrScheme. Then, find out
whether DrScheme knows an operation for determining the tangent of an angle.

2.2 Variables and Programs
In algebra we learn to formulate dependencies between quantities using VARIABLE EXPRESSIONS. A
variable is a placeholder that stands for an unknown quantity. For example, a disk of radius r has
the approximate area5

In this expression, r stands for any positive number. If we now come across a disk with radius 5,
we can determine its area by substituting 5 for r in the above formula and reducing the resulting
expression to a number:

More generally, expressions that contain variables are rules that describe how to compute a
number when we are given values for the variables.

A program is such a rule. It is a rule that tells us and the computer how to produce data from
some other data. Large programs consist of many small programs and combine them in some
manner. It is therefore important that programmers name each rule as they write it down. A good
name for our sample expression is area-of-disk. Using this name, we would express the rule
for computing the area of a disk as follows:

(define (area-of-disk r)
 (* 3.14 (* r r)))

The two lines say that area-of-disk is a rule, that it consumes a single INPUT, called r, and that
the result, or OUTPUT, is going to be (* 3.14 (* r r)) once we know what number r represents.

Programs combine basic operations. In our example, area-of-disk uses only one basic
operation, multiplication, but defined programs may use as many operations as necessary. Once
we have defined a program, we may use it as if it were a primitive operation. For each variable

TE
AM
FL
Y

TEAM FLY PRESENTS

-24-

listed to the right of the program name, we must supply one input. That is, we may write
expressions whose operation is area-of-disk followed by a number:

 (area-of-disk 5)

We also say that we APPLY area-of-disk to 5.

The application of a defined operation is evaluated by copying the expression named area-of-
disk and by replacing the variable (r) with the number we supplied (5):

 (area-of-disk 5)
= (* 3.14 (* 5 5))
= (* 3.14 25)
= 78.5

Many programs consume more than one input. Say we wish to define a program that computes
the area of a ring, that is, a disk with a hole in the center:

The area of the ring is that of the outer disk minus the area of the inner disk, which means that
the program requires two unknown quantities: the outer and the inner radii. Let us call these
unknown numbers outer and inner. Then the program that computes the area of a ring is
defined as follows:

(define (area-of-ring outer inner)
 (- (area-of-disk outer)
 (area-of-disk inner)))

The three lines express that area-of-ring is a program, that the program accepts two inputs,
called outer and inner, and that the result is going to be the difference between (area-of-disk
outer) and (area-of-disk inner). In other words, we have used both basic Scheme
operations and defined programs in the definition of area-of-ring.

When we wish to use area-of-ring, we must supply two inputs:

 (area-of-ring 5 3)

The expression is evaluated in the same manner as (area-of-disk 5). We copy the expression
from the definition of the program and replace the variable with the numbers we supplied:

 (area-of-ring 5 3)

= (- (area-of-disk 5)
 (area-of-disk 3))

= (- (* 3.14 (* 5 5))
 (* 3.14 (* 3 3)))

TE
AM
FL
Y

TEAM FLY PRESENTS

-25-

= ...

The rest is plain arithmetic.

Exercise 2.2.1. Define the program Fahrenheit->Celsius,6 which consumes a temperature
measured in Fahrenheit and produces the Celsius equivalent. Use a chemistry or physics book to
look up the conversion formula.

When the function is fully developed, test it using the teachpack convert.ss. The teachpack
provides three functions: convert-gui, convert-repl, and convert-file. The first creates a
graphical user interface. Use it with

(convert-gui Fahrenheit->Celsius)

The expression will create a new window in which users can manipulate a slider and buttons.

The second emulates the Interactions window. Users are asked to enter a Fahrenheit
temperature, which the program reads, evaluates, and prints. Use it via

(convert-repl Fahrenheit->Celsius)

The last operation processes entire files. To use it, create a file with those numbers that are to be
converted. Separate the numbers with blank spaces or new lines. The function reads the entire
file, converts the numbers, and writes the results into a new file. Here is the expression:

(convert-file "in.dat" Fahrenheit->Celsius "out.dat")

This assumes that the name of the newly created file is in.dat and that we wish the results to be
written to the file out.dat. For more information, use DrScheme's Help Desk to look up the
teachpack convert.ss.

Exercise 2.2.2. Define the program dollar->euro, which consumes a number of dollars and
produces the euro equivalent. Use the currency table in the newspaper to look up the current
exchange rate.

Exercise 2.2.3. Define the program triangle. It consumes the length of a triangle's side and its
height. The program produces the area of the triangle. Use a geometry book to look up the
formula for computing the area of a triangle.

Exercise 2.2.4. Define the program convert3. It consumes three digits, starting with the least
significant digit, followed by the next most significant one, and so on. The program produces the
corresponding number. For example, the expected value of

(convert3 1 2 3)

is 321. Use an algebra book to find out how such a conversion works.

Exercise 2.2.5. A typical exercise in an algebra book asks the reader to evaluate an expression
like

TE
AM
FL
Y

TEAM FLY PRESENTS

-26-

for n = 2, n = 5, and n = 9. Using Scheme, we can formulate such an expression as a program and
use the program as many times as necessary. Here is the program that corresponds to the above
expression:

(define (f n)
 (+ (/ n 3) 2))

First determine the result of the expression at n = 2, n = 5, and n = 9 by hand, then with
DrScheme's stepper.

Also formulate the following three expressions as programs:

1. n2 + 10
2. (1/2) · n2 + 20
3. 2 - (1/n)

Determine their results for n = 2 and n = 9 by hand and with DrScheme.

2.3 Word Problems
Programmers are rarely handed mathematical expressions to turn into programs. Instead they
typically receive informal problem descriptions that often contain irrelevant and sometimes
ambiguous information. The programmers' first task is to extract the relevant information and
then to formulate appropriate expressions.

Here is a typical example:

Company XYZ & Co. pays all its employees $12 per hour. A typical employee works between
20 and 65 hours per week. Develop a program that determines the wage of an employee from the
number of hours of work.
The last sentence is the first to mention the actual task: to write a program that determines one
quantity based on some other quantity. More specifically, the program consumes one quantity,
the number of hours of work, and produces another one, the wage in dollars. The first sentence
implies how to compute the result, but doesn't state it explicitly. In this particular example,
though, this poses no problem. If an employee works h hours, the wage is

Now that we have a rule, we can formulate a Scheme program:

(define (wage h)
 (* 12 h))

The program is called wage; its parameter h stands for the hours an employee works; and its
result is (* 12 h), the corresponding wage.

Exercise 2.3.1. Utopia's tax accountants always use programs that compute income taxes even
though the tax rate is a solid, never-changing 15%. Define the program tax, which determines
the tax on the gross pay.

TE
AM
FL
Y

TEAM FLY PRESENTS

-27-

Also define netpay. The program determines the net pay of an employee from the number of
hours worked. Assume an hourly rate of $12.

Exercise 2.3.2. The local supermarket needs a program that can compute the value of a bag of
coins. Define the program sum-coins. It consumes four numbers: the number of pennies, nickels,
dimes, and quarters in the bag; it produces the amount of money in the bag.

Exercise 2.3.3. An old-style movie theater has a simple profit function. Each customer pays $5
per ticket. Every performance costs the theater $20, plus $.50 per attendee. Develop the function
total-profit. It consumes the number of attendees (of a show) and produces how much
income the attendees produce.

2.4 Errors
When we write Scheme programs, we must follow a few carefully designed rules, which are a
compromise between a computer's capabilities and human behavior.7 Fortunately, forming
Scheme definitions and expressions is intuitive. Expressions are either ATOMIC, that is, numbers
and variables; or they are COMPOUND expressions, in which case they start with ``('', followed by an
operation, some more expressions, and terminated by ``)''. Each expression in a compound
expression should be preceded by at least one space; line breaks are permissible, and sometimes
increase readability.

Definitions have the following schematic shape:

(define (f x ... y)
 an-expression)

That is, a definition is a sequence of several words and expressions: ``('', the word ``define'', ``('',
a non-empty sequence of names separated by spaces, ``)'', an expression, and a closing ``)''. The
embedded sequence of names, f x ... y, introduces the name of the program and the names of
its parameters.

Syntax Errors:8 Not all parenthesized expressions are Scheme expressions. For example, (10)
is a parenthesized expression, but Scheme does not accept it as a legal Scheme expression
because numbers are not supposed to be included in parentheses. Similarly, a sentence like (10
+ 20) is also ill formed; Scheme's rules demand that the operator is mentioned first. Finally, the
following two definitions are not well formed:

(define (P x)
 (+ (x) 10))

(define (Q x)
 x 10)

The first one contains an extra pair of parentheses around the variable x, which is not a
compound expression; the second contains two atomic expressions, x and 10, instead of one.

When we click DrScheme's Execute button, the programming environment first determines
whether the definitions are formed according to Scheme's rules. If some part of the program in
the Definitions window is ill formed, DrScheme signals a SYNTAX ERROR with an appropriate

TE
AM
FL
Y

TEAM FLY PRESENTS

-28-

error message and highlights the offending part. Otherwise it permits the user to evaluate
expressions in the Interactions window.

Exercise 2.4.1. Evaluate the following sentences in DrScheme, one at a time:

(+ (10) 20)
(10 + 20)
(+ +)

Read and understand the error messages.

Exercise 2.4.2. Enter the following sentences, one by one, into DrScheme's Definitions
window and click Execute:

(define (f 1)
 (+ x 10))

(define (g x)
 + x 10)

(define h(x)
 (+ x 10))

Read the error messages, fix the offending definition in an appropriate manner, and repeat until
all definitions are legal.

Run-time Errors: The evaluation of Scheme expressions proceeds according to the intuitive
laws of algebra and arithmetic. When we encounter new operations, we will extend these laws,
first intuitively and then, in section 8, rigorously. For now, it is more important to understand
that not all legal Scheme expressions have a result. One obvious example is (/ 1 0). Similarly,
if we define

(define (f n)
 (+ (/ n 3) 2))

we cannot ask DrScheme to evaluate (f 5 8).

When the evaluation of a legal Scheme expression demands a division by zero or similarly
nonsensical arithmetic operations, or when a program is applied to the wrong number of inputs,
DrScheme stops the evaluation and signals a RUN-TIME ERROR. Typically it prints an explanation in
the Interactions window and highlights the faulty expression. The highlighted expression
triggered the error signal.

Exercise 2.4.3. Evaluate the following grammatically legal Scheme expressions in DrScheme's
Interactions window:

(+ 5 (/ 1 0))

(sin 10 20)

(somef 10)

Read the error messages.

TE
AM
FL
Y

TEAM FLY PRESENTS

-29-

Exercise 2.4.4. Enter the following grammatically legal Scheme program into the Definitions
window and click the Execute button:

(define (somef x)
 (sin x x))

Then, in the Interactions window, evaluate the expressions:

(somef 10 20)

(somef 10)

and read the error messages. Also observe what DrScheme highlights.

Logical Errors: A good programming environment assists the programmer in finding syntax
and runtime errors. The exercises in this section illustrate how DrScheme catches syntax and
run-time errors. A programmer, however, can also make LOGICAL ERRORS. A logical mistake does
not trigger any error messages; instead, the program computes incorrect results. Consider the
wage program from the preceding section. If the programmer had accidentally defined it as

(define (wage h)
 (+ 12 h))

the program would still produce a number every time it is used. Indeed, if we evaluate (wage
12/11), we even get the correct result. A programmer can catch such mistakes only by designing
programs carefully and systematically.

2.5 Designing Programs
The preceding sections show that the development of a program requires many steps. We need to
determine what's relevant in the problem statement and what we can ignore. We need to
understand what the program consumes, what it produces, and how it relates inputs to outputs.
We must know, or find out, whether Scheme provides certain basic operations for the data that
our program is to process. If not, we might have to develop auxiliary programs that implement
these operations. Finally, once we have a program, we must check whether it actually performs
the intended computation. This might reveal syntax errors, run-time problems, or even logical
errors.

To bring some order to this apparent chaos, it is best to set up and to follow a DESIGN RECIPE, that is,
a step-by-step prescription of what we should do and the order9 in which we should do things.
Based on what we have experienced thus far, the development of a program requires at least the
following four activities:

;; Contract: area-of-ring : number number -> number

;; Purpose: to compute the area of a ring whose radius is
;; outer and whose hole has a radius of inner

;; Example: (area-of-ring 5 3) should produce 50.24

;; Definition: [refines the header]
(define (area-of-ring outer inner)

TE
AM
FL
Y

TEAM FLY PRESENTS

-30-

 (- (area-of-disk outer)
 (area-of-disk inner)))

;; Tests:
(area-of-ring 5 3)
;; expected value
50.24

Figure 3: The design recipe: A complete example

• Understanding the Program's Purpose: The goal of designing a program is to create a
mechanism that consumes and produces data. We therefore start every program
development by giving the program a meaningful name and by stating what kind of
information it consumes and produces. We call this a CONTRACT.

Here is how we write down a contract for area-of-ring, one of our first programs:10

;; area-of-ring : number number -> number

The semicolons indicate that this line is a COMMENT. The contract consists of two parts. The
first, to the left of the colon, states the program's name. The second, to the right of the
colon, specifies what kind of data the program consumes and what it produces; the inputs
are separated from the output by an arrow.

Once we have a contract, we can add the HEADER. It restates the program's name and gives
each input a distinct name. These names are (algebraic) variables and are referred to as
the program's PARAMETERS.11

Let's take a look at the contract and header for area-of-ring:

;; area-of-ring : number number -> number
(define (area-of-ring outer inner) ...)

It says that we will refer to the first input as outer and the second one as inner.

Finally, using the contract and the parameters, we should formulate a short PURPOSE
STATEMENT for the program, that is, a brief comment of what the program is to compute.
For most of our programs, one or two lines will suffice; as we develop larger and larger
programs, we may need to add more information to explain a program's purpose.

Here is the complete starting-point for our running example:

;; area-of-ring : number number -> number
;; to compute the area of a ring whose radius is
;; outer and whose hole has a radius of inner
(define (area-of-ring outer inner) ...)

Hints: If the problem statement provides a mathematical formula, the number of distinct
variables in the formula suggests how many inputs the program consumes.

TE
AM
FL
Y

TEAM FLY PRESENTS

-31-

For other word problems, we must inspect the problem to separate the given facts from
what is to be computed. If a given is a fixed number, it shows up in the program. If it is
an unknown number that is to be fixed by someone else later, it is an input. The question
(or the imperative) in the problem statement suggests a name for the program.

• Program Examples: To gain a better understanding of what the program should
compute, we make up examples of inputs and determine what the output should be. For
example, area-of-ring should produce 50.24 for the inputs 5 and 3, because it is the
difference between the area of the outer disk and the area of the inner disk.

We add examples to the purpose statement:

 ;; area-of-ring : number number -> number
 ;; to compute the area of a ring whose radius is
 ;; outer and whose hole has a radius of inner
 ;; example: (area-of-ring 5 3) should produce 50.24
 (define (area-of-ring outer inner) ...)

Making up examples -- before we write down the program's body -- helps in many
ways. First, it is the only sure way to discover logical errors with testing. If we use the
finished program to make up examples, we are tempted to trust the program because it is
so much easier to run the program than to predict what it does. Second, examples force us
to think through the computational process, which, for the complicated cases we will
encounter later, is critical to the development of the function body. Finally, examples
illustrate the informal prose of a purpose statement. Future readers of the program, such
as teachers, colleagues, or buyers, greatly appreciate illustrations of abstract concepts.

• The Body: Finally, we must formulate the program's body. That is, we must replace
the ``...'' in our header with an expression. The expression computes the answer from
the parameters, using Scheme's basic operations and Scheme programs that we already
defined or intend to define.

We can only formulate the program's body if we understand how the program computes
the output from the given inputs. If the input-output relationship is given as a
mathematical formula, we just translate mathematics into Scheme. If, instead, we are
given a word problem, we must craft the expression carefully. To this end, it is helpful to
revisit the examples from the second step and to understand how we computed the
outputs for specific inputs.

In our running example, the computational task was given via an informally stated
formula that reused area-of-disk, a previously defined program. Here is the
translation into Scheme:

(define (area-of-ring outer inner)
 (- (area-of-disk outer)
 (area-of-disk inner)))

• Testing: After we have completed the program definition, we must still test the program.
At a minimum, we should ensure that the program computes the expected outputs for the
program examples. To facilitate testing, we may wish to add the examples to the bottom

TE
AM
FL
Y

TEAM FLY PRESENTS

-32-

of the Definitions window as if they were equations. Then, when we click the Execute
button, they are evaluated, and we see whether the program works properly on them.

Testing cannot show that a program produces the correct outputs for all possible inputs --
because there are typically an infinite number of possible inputs. But testing can reveal
syntax errors, run-time problems, and logical mistakes.

For faulty outputs, we must pay special attention to our program examples. It is possible
that the examples are wrong; that the program contains a logical mistake; or that both the
examples and the program are wrong. In either case, we may have to step through the
entire program development again.

Figure 3 shows what we get after we have developed the program according to our recipe.
Figure 4 summarizes the recipe in tabular form. It should be consulted whenever we design a
program.

Phase Goal Activity
Contract
Purpose and
Header

to name the
function;
to specify its
classes of
 input data and
its
 class of output
data;
to describe its
purpose;
to formulate a
header

choose a name that fits the problem study the problem
for clues on how many unknown ``givens'' the function
consumes pick one variable per input; if possible, use
names that are mentioned for the ``givens'' in the problem
statement describe what the function should produce
using the chosen variables names formulate the contract
and header:
 ;; name : number ...--> number
 ;; to compute ... from x1 ...
 (define (name x1 ...) ...)

Examples to characterize
the input-
output
relationship via
examples

search the problem statement for examples work through
the examples validate the results, if possible make up
examples

Body to define the
function

formulate how the function computes its results develop
a Scheme expression that uses Scheme's primitive
operations, other functions, and the variables translate
the mathematical expressions in the problem statement,
when available

Test to discover
mistakes
 (``typos'' and
logic)

apply the function to the inputs of the examples check
that the outputs are as predicted

Figure 4: The design recipe at a glance

TE
AM
FL
Y

TEAM FLY PRESENTS

-33-

The design recipe is not a magic bullet for the problems we encounter during the design of a
program. It provides some guidance for a process that can often appear to be overwhelming. The
most creative and most difficult step in our recipe concerns the design of the program's body. At
this point, it relies heavily on our ability to read and understand written material, on our ability to
extract mathematical relationships, and on our knowledge of basic facts. None of these skills is
specific to the development of computer programs; the knowledge we exploit is specific to the
application domain in which we are working. The remainder of the book will show what and
how much computing can contribute to this most complicated step.

Domain Knowledge: Formulating the body of a program often requires knowledge about the
area, also known as domain, from which the problem is drawn. This form of knowledge is called
DOMAIN KNOWLEDGE. It may have to be drawn from simple mathematics, such as arithmetic, from
complex mathematics, such as differential equations, or from non-mathematical disciplines:
music, biology, civil engineering, art, and so on.

Because programmers cannot know all of the application domains of computing, they must be
prepared to understand the language of a variety of application areas so that they can discuss
problems with domain experts. The language is often that of mathematics, but in some cases, the
programmers must invent a language, especially a data language for the application area. For that
reason, it is imperative that programmers have a solid understanding of the full possibilities of
computer languages.

4 Another advantage of Scheme's notation is that we always know where to place an operator or
where to find it: to the immediate right of the opening parenthesis. This is important in
computing because we need many more operators than just the few numerical operators that we
use in arithmetic and algebra.

5 It is common to speak of the area of a circle, but mathematically speaking, the circle is only the
disk's outer edge.

6 An arrow is keyed in as - followed by >.

7 This statement is true for any other programming language as well, for example, spreadsheet
languages, C, word processor macro. Scheme is simpler than most of these and easy to
understand for computers. Unfortunately, to human beings who grow up on infix expressions
such as 5 + 4, Scheme prefix expressions such as (+ 5 4) initially appear to be complicated. A
bit of practice will quickly eliminate this misconception.

8 We will find out in section 8 why such errors are called syntax errors.

9 As we will see later, the order is not completely fixed. It is possible, and for a number of
reasons, desirable to switch the order of some steps in some cases.

10 An arrow is keyed in as - followed by >.

11 Others also call them FORMAL ARGUMENTS or INPUT VARIABLES.

TE
AM
FL
Y

TEAM FLY PRESENTS

-34-

Section 3

Programs are Function Plus Variable
Definitions
In general, a program consists not just of one, but of many definitions. The area-of-ring
program, for example, consists of two definitions: the one for area-of-ring and another one for
area-of-disk. We refer to both as FUNCTION DEFINITIONs and, using mathematical terminology in a
loose way, say that the program is COMPOSED of several functions. Because the first one, area-of-
ring, is the function we really wish to use, we refer to it as the MAIN FUNCTION; the second one,
area-of-disk, is an AUXILIARY FUNCTION.

The use of auxiliary functions makes the design process manageable and renders programs
readable. Compare the following two versions of area-of-ring:

(define (area-of-ring outer inner)
 (- (area-of-disk outer)
 (area-of-disk inner)))

(define (area-of-ring outer inner)
 (- (* 3.14 (* outer outer))
 (* 3.14 (* inner inner))))

The definition on the left composes auxiliary functions. Designing it helped us break up the
original problem into smaller, more easily solvable problems. Reading it reminds us of our
reasoning that the area is the difference between the area of the full disk and the area of the hole.
In contrast, the definition on the right requires a reader to reconstruct the idea that the two
subexpressions compute the area of two disks. Furthermore, we would have had to produce the
right definition in one monolithic block, without benefit of dividing the problem-solving process
into smaller steps.

For a small program such as area-of-ring, the differences between the two styles are minor.
For large programs, however, using auxiliary functions is not an option but a necessity. That is,
even if we are asked to write a single program, we should consider breaking it up into several
small programs and COMPOSING them as needed. Although we are not yet in a position to develop
truly large programs, we can still get a feeling for the idea by developing two versions in parallel.

The first subsection contrasts the two development styles with an example from the business
domain. It demonstrates how breaking up a program into several function definitions can greatly
increase our confidence in the correctness of the overall program. The second subsection
introduces the concept of a variable definition, which is an additional important ingredient for
the development of programs. The last subsection proposes some exercises.

3.1 Composing Functions
Consider the following problem:

TE
AM
FL
Y

TEAM FLY PRESENTS

-35-

Imagine the owner of a movie theater who has complete freedom in setting ticket prices. The
more he charges, the fewer the people who can afford tickets. In a recent experiment the owner
determined a precise relationship between the price of a ticket and average attendance. At a price
of $5.00 per ticket, 120 people attend a performance. Decreasing the price by a dime ($.10)
increases attendance by 15. Unfortunately, the increased attendance also comes at an increased
cost. Every performance costs the owner $180. Each attendee costs another four cents ($0.04).
The owner would like to know the exact relationship between profit and ticket price so that he
can determine the price at which he can make the highest profit.
While the task is clear, how to go about it is not. All we can say at this point is that several
quantities depend on each other.

When we are confronted with such a situation, it is best to tease out the various dependencies one
at a time:

1. Profit is the difference between revenue and costs.
2. The revenue is exclusively generated by the sale of tickets. It is the product of ticket price

and number of attendees.
3. The costs consist of two parts: a fixed part ($180) and a variable part that depends on the

number of attendees.
4. Finally, the problem statement also specifies how the number of attendees depends on the

ticket price.

Let's formulate a function for each of these dependencies; after all, functions compute how
quantities depend on each other.

We start with contracts, headers, and purpose statements. Here is the one for profit:

;; profit : number -> number
;; to compute the profit as the difference between revenue and costs
;; at some given ticket-price
(define (profit ticket-price) ...)

It depends on the ticket price because both revenue and cost depend on the ticket price. Here are
the remaining three:

;; revenue : number -> number
;; to compute the revenue, given ticket-price
(define (revenue ticket-price) ...)

;; cost : number -> number
;; to compute the costs, given ticket-price
(define (cost ticket-price) ...)

;; attendees : number -> number
;; to compute the number of attendees, given ticket-price
(define (attendees ticket-price) ...)

Each purpose statement is a rough transliteration of some part of the problem statement.

Exercise 3.1.1. The next step is to make up examples for each of the functions. Determine how
many attendees can afford a show at a ticket price of $3.00, $4.00, and $5.00. Use the examples
to formulate a general rule that shows how to compute the number of attendees from the ticket
price. Make up more examples if needed.

TE
AM
FL
Y

TEAM FLY PRESENTS

-36-

Exercise 3.1.2. Use the results of exercise 3.1.1 to determine how much it costs to run a show
at $3.00, $4.00, and $5.00. Also determine how much revenue each show produces at those
prices. Finally, figure out how much profit the monopolistic movie owner can make with each
show. Which is the best price (of these three) for maximizing the profit?

Once we have written down the basic material about our functions and calculated out several
examples, we can replace the ``...'' with Scheme expressions. The left column of figure 5
contains complete definitions of all four functions. The profit function computes its result as
the difference between the result of revenue and cost, just as the problem analysis and purpose
statement suggest. The computation of both depends on ticket-price, which is what the
applications say. To compute the revenue, we first compute the number of attendees for the
given ticket-price and multiply it with ticket-price. Similarly, to compute the cost we add
the fixed portion of the cost to the variable part, which is the product of the number of attendees
and 0.04 (four cents). Finally, the computation of the number of attendees also follows the
problem statement. The base attendance at a price of five dollars is 120, and for each 10 cents
less than five dollars, 15 more attendees show up.

;; How to design a program
(define (profit ticket-price)
 (- (revenue ticket-price)
 (cost ticket-price)))

(define (revenue ticket-price)
 (* (attendees ticket-price) ticket-
price))

(define (cost ticket-price)
 (+ 180
 (* .04 (attendees ticket-
price))))

(define (attendees ticket-price)
 (+ 120
 (* (/ 15 .10) (- 5.00 ticket-
price))))

;; How not to design a
program
(define (profit price)
 (- (* (+ 120
 (* (/ 15 .10)
 (- 5.00 price)))
 price)
 (+ 180
 (* .04
 (+ 120
 (* (/ 15 .10)
 (- 5.00
price)))))))

Figure 5: Two ways to express the profit program

Instead of developing a function per dependency in the problem statement, we could have tried
to express the relationship between the ticket price and the owner's profit in a single function.
The right column in figure 5 shows the most straightforward way of doing so. And indeed, it is
easy to check that the two profit programs in figure 5 produce the same profit when given the
same ticket price. Still, it is also obvious that while the arrangement on the left conveys the
intention behind the program directly, the program on the right is nearly impossible to
understand. Worse, if we are asked to modify some aspect of the program, say, the relationship
between the number of attendees and the price of the ticket, we can do this for the left column in
a small amount of time, but we need to spend a much longer time for the right one.

Based on our experience, we thus formulate the first and most important guideline of
programming:

TE
AM
FL
Y

TEAM FLY PRESENTS

-37-

Guideline on Auxiliary Functions
Formulate auxiliary function definitions for every dependency between quantities mentioned in
the problem statement or discovered with example calculations.

Sometimes we will find that some of the required functions are already available as programs for
other problems. Indeed, we have already encountered such an example: area-of-disk. At other
times, we will make a list of functions and develop each one separately. We may then find that
some of the functions, such as attendees, are useful in several other definitions, leading to a
network-like relationship among functions.

Exercise 3.1.3. Determine the profit that the movie owner makes at $3.00, $4.00, and $5.00
using the program definitions in both columns. Make sure that the results are the same as those
predicted in exercise 3.1.2.

Exercise 3.1.4. After studying the cost structure of a show, the owner discovered several ways
of lowering the cost. As a result of his improvements, he no longer has a fixed cost. He now
simply pays $1.50 per attendee.

Modify both programs to reflect this change. When the programs are modified, test them again
with ticket prices of $3.00, $4.00, and $5.00 and compare the results.

3.2 Variable Definitions
When a number occurs many times in our program(s), we should give it a name using a VARIABLE
DEFINITION, which associates a name with a value. One example is 3.14, which we have used in
place of . Here is how we could give this number a name:

(define PI 3.14)

Now, every time we refer to PI, DrScheme replaces it with 3.14.

Using a name for a constant makes it easier to replace it with a different value. Suppose our
program contains the definition for PI, and we decide that we need a better approximation of for
the entire program. By changing the definition to

(define PI 3.14159)

the improvement is used everywhere where we use PI. If we didn't have a name like PI for , we
would have to find and all instances of 3.14 in the program and replace them with 3.14159.

Let us formulate this observation as our second guideline:

Guideline on Variable Definitions
Give names to frequently used constants and use the names instead of the constants in programs.

Initially, we won't use many variable definitions for constants, because our programs are small.
But, as we learn to write larger programs, we will make more use of variable definitions. As we

TE
AM
FL
Y

TEAM FLY PRESENTS

-38-

will see, the ability to have a single point of control for changes is important for variable and
function definitions.

Exercise 3.2.1. Provide variable definitions for all constants that appear in the profit program of
figure 5 and replace the constants with their names.

3.3 Finger Exercises on Composing Functions
Exercise 3.3.1. The United States uses the English system of (length) measurements. The rest
of the world uses the metric system. So, people who travel abroad and companies that trade with
foreign partners often need to convert English measurements to metric ones and vice versa.

Here is a table that shows the six major units of length measurements of the English system:12

English metri
c

1 inch = 2.54 cm
1 foot = 12 in.

1 yard = 3 ft.

1 rod = 5(1/2) yd.

1 furlong = 40 rd.

1 mile = 8 fl.

Develop the functions inches->cm, feet->inches, yards->feet, rods->yards, furlongs-
>rods, and miles->furlongs.

Then develop the functions feet->cm, yards->cm, rods->inches, and miles->feet.

Hint: Reuse functions as much as possible. Use variable definitions to specify constants.

Exercise 3.3.2. Develop the program volume-cylinder. It consumes the radius of a cylinder's
base disk and its height; it computes the volume of the cylinder.

Exercise 3.3.3. Develop area-cylinder. The program consumes the radius of the cylinder's
base disk and its height. Its result is the surface area of the cylinder.

Exercise 3.3.4. Develop the function area-pipe. It computes the surface area of a pipe, which
is an open cylinder. The program consumes three values: the pipe's inner radius, its length, and
the thickness of its wall.

Develop two versions: a program that consists of a single definition and a program that consists
of several function definitions. Which one evokes more confidence?

Exercise 3.3.5. Develop the program height, which computes the height that a rocket reaches
in a given amount of time. If the rocket accelerates at a constant rate g, it reaches a speed of g · t
in t time units and a height of 1/2 * v * t where v is the speed at t.

TE
AM
FL
Y

TEAM FLY PRESENTS

-39-

Exercise 3.3.6. Recall the program Fahrenheit->Celsius from exercise 2.2.1. The program
consumes a temperature measured in Fahrenheit and produces the Celsius equivalent.

Develop the program Celsius->Fahrenheit, which consumes a temperature measured in
Celsius and produces the Fahrenheit equivalent.

Now consider the function

;; I : number -> number
;; to convert a Fahrenheit temperature to Celsius and back
(define (I f)
 (Celsius->Fahrenheit (Fahrenheit->Celsius f)))

Evaluate (I 32) by hand and using DrScheme's stepper. What does this suggest about the
composition of the two functions?

12 See The World Book Encyclopedia 1993, Weights and Measurements.

TE
AM
FL
Y

TEAM FLY PRESENTS

-40-

Section 4

Conditional Expressions and Functions
For many problems, computer programs must deal with different situations in different ways. A
game program may have to determine whether an object's speed is in some range or whether it is
located in some specific area of the screen. For an engine control program, a condition may
describe whether or when a valve is to be opened. To deal with conditions, we need to have a
way of saying a condition is true or false; we need a new class of values, which, by convention,
are called BOOLEAN (or truth) values. This section introduces booleans, expressions that evaluate to
Booleans, and expressions that compute values depending on the boolean result of some
evaluation.

4.1 Booleans and Relations
Consider the following problem statement:

Company XYZ & Co. pays all its employees $12 per hour. A typical employee works between
20 and 65 hours per week. Develop a program that determines the wage of an employee from the
number of hours of work, if the number is within the proper range.
The italic words highlight the new part (compared to section 2.3). They imply that the program
must deal with its input in one way if it is in the legitimate range, and in a different way if it is
not. In short, just as people need to reason about conditions, programs must compute in a
conditional manner.

Conditions are nothing new. In mathematics we talk of true and false claims, which are
conditions. For example, a number may be equal to, less than, or greater than some other number.
If x and y are numbers, we state these three claims about x and y with

1. x = y: ``x is equal to y'';
2. x < y: ``x is strictly less than y'';
3. x > y: ``x is strictly greater than y''.

For any specific pair of (real) numbers, exactly one of these claims holds. If x = 4 and y = 5, the
second claim is a true statement, and the others are false. If x = 5 and y = 4, however, the third
claim is true, and the others are false. In general, a claim is true for some values of the variables
and false for others.

In addition to determining whether an atomic claim holds in a given situation, it is sometimes
important to determine whether combinations of claims hold. Consider the three claims above,
which we can combine in several ways:

1. x = y and x < y and x > y
2. x = y or x < y or x > y

TE
AM
FL
Y

TEAM FLY PRESENTS

-41-

3. x = y or x < y .

The first compound claim is false because no matter what numbers we pick for x and y, two of
the three claims are false. The second compound claim, however, always holds no matter what
numbers we pick for x and y. Finally, the third kind of compound claim is the most important of
all, because it is true in some cases and false in others. For example, it holds when x = 4, y = 4
and x = 4, y = 5, but it is false if x = 5 and y = 3.

Like mathematics, Scheme has ``words'' for expressing truth and falsity, for stating atomic
claims, for combining claims into compound claims, and for expressing that a claim is true or
false. The ``word'' for true is true and the ``word'' for false is false. If a claim concerns the
relationship between two numbers, it can typically be expressed with a RELATIONAL OPERATION, for
example, =, <, and >.

Translating the three mathematical claims from above follows our well-known pattern of writing
a left parenthesis, followed by the operator, its arguments, and a right parenthesis:

1. (= x y): ``x is equal to y'';
2. (< x y): ``x is strictly less than y''; and
3. (> x y): ``x is strictly greater than y''.

We will also encounter <= and >= as relational operators.

A Scheme expression that compares numbers has a result just like any other Scheme expression.
The result, however, is true or false, not a number. That is, when an atomic Scheme claim
about two numbers is true, it evaluates to true. For example,

 (< 4 5)
= true

Similarly, a false claim evaluates to false:

 (= 4 5)
= false

Expressing compound conditions in Scheme is equally natural. Suppose we want to combine (=
x y) and (< y z) so that the compound claim holds if both conditions are true. In Scheme we
would write

(and (= x y) (< y z))

to express this relationship. Similarly, if we want to formulate a compound claim that is true if
(at least) one of two claim holds, we write

(or (= x y) (< y z))

Finally, when we write something such as

(not (= x y))

we state that we wish the negation of a claim to be true.13

TE
AM
FL
Y

TEAM FLY PRESENTS

-42-

Compound conditions, like atomic conditions, evaluate to true or false. Consider the following
compound condition:

(and (= 5 5) (< 5 6))

It consists of two atomic claims: (= 5 5) and (< 5 6). Both evaluate to true, and therefore the
evaluation of the and-expression continues as follows:

 ...
= (and true true)
= true

The last step follows because, if both parts of an and-expression are true, the entire expression
evaluates to true. In contrast, if one of the two claims in an and-expression evaluates to false,
the and-expression evaluates to false:

 (and (= 5 5) (< 5 5))
= (and true false)
= false

The evaluation rules for or and not are similarly intuitive.

The next few sections will explain why programming requires formulating conditions and
reasoning about them.

Exercise 4.1.1. What are the results of the following Scheme conditions?

1. (and (> 4 3) (<= 10 100))
2. (or (> 4 3) (= 10 100))
3. (not (= 2 3))

Exercise 4.1.2. What are the results of

1. (> x 3)
2. (and (> 4 x) (> x 3))
3. (= (* x x) x)

for (a) x = 4, (b) x = 2, and (c) x = 7/2 ?

4.2 Functions that Test Conditions
Here is a simple function that tests some condition about a number:

;; is-5? : number -> boolean
;; to determine whether n is equal to 5
(define (is-5? n)
 (= n 5))

The function produces true if, and only if, its input is equal to 5. Its contract contains one novel
element: the word boolean. Just like number, boolean represents a class of values that is built
into Scheme. Unlike number, boolean consists of just two values: true and false.

TE
AM
FL
Y

TEAM FLY PRESENTS

-43-

Here is a slightly more interesting function with a boolean output:

;; is-between-5-6? : number -> boolean
;; to determine whether n is between 5 and 6 (exclusive)
(define (is-between-5-6? n)
 (and (< 5 n) (< n 6)))

It consumes a number and produces true if the number is between, but does not include, 5 and 6.
One good way to understand the function is to say that it describes the following interval on the
number line:

Interval Boundaries: An interval boundary marked with ``('' or ``)'' is excluded from the interval;
an interval boundary marked with ``['' or ``]'' is included.

The following third function from numbers to boolean values represents the most complicated
form of interval:

;; is-between-5-6-or-over-10? : number -> boolean
;; to determine whether n is between 5 and 6 (exclusive)
;; or larger than or equal to 10
(define (is-between-5-6-or-over-10? n)
 (or (is-between-5-6? n) (>= n 10)))

The function returns true for two portions of the number line:

The left part of the interval is the portion between, but not including, 5 and 6; the right one is the
infinite line starting at, and including, 10. Any point on those two portions of the line satisfies the
condition expressed in the function is-between-5-6-or-over-10?.

All three functions test numeric conditions. To design or to comprehend such functions, we must
understand intervals and combinations (also known as unions) of intervals. The following
exercises practice this important skill.

Exercise 4.2.1. Translate the following five intervals on the real line into Scheme functions that
accept a number and return true if the number is in the interval and false if it is outside:

1. the interval (3,7]:

TE
AM
FL
Y

TEAM FLY PRESENTS

-44-

2. the interval [3,7]:

3. the interval [3,9):

4. the union of (1,3) and (9,11):

5. and the range of numbers outside of [1,3].

Exercise 4.2.2. Translate the following three Scheme functions into intervals on the line of
reals:

1. (define (in-interval-1? x)
 (and (< -3 x) (< x 0)))

2. (define (in-interval-2? x)
 (or (< x 1) (> x 2)))

3. (define (in-interval-3? x)
 (not (and (<= 1 x) (<= x 5))))

Also formulate contracts and purpose statements for the three functions.

Evaluate the following expressions by hand:

1. (in-interval-1? -2)
2. (in-interval-2? -2)
3. (in-interval-3? -2)

Show the important steps. Use the pictures to check your results.

Exercise 4.2.3. Mathematical equations in one variable are claims about an unknown number.
For example, the quadratic equation

TE
AM
FL
Y

TEAM FLY PRESENTS

-45-

is a claim concerning some unknown number x. For x = - 1, the claim holds:

For x = 1, it doesn't, because

and 4 is not equal to 0. A number for which the claim holds is called a solution to the equation.

We can use Scheme to formulate equational conditions as a function. If someone then claims to
have a solution, we can use the function to test whether the proposed solution is, in fact, a
solution. Our running example corresponds to the function

;; equation1 : number -> boolean
;; to determine whether x is a solution for x2 + 2 · x + 1 = 0
(define (equation1 x)
 (= (+ (* x x) (+ (* 2 x) 1)) 0))

When we apply equation1 to some number, we get true or false:

 (equation1 -1)
= true

and

 (equation1 +1)
= false

Translate the following equations into Scheme functions:

1. 4 · n + 2 = 62
2. 2 · n2 = 102
3. 4 · n2 + 6 · n + 2 = 462

Determine whether 10, 12, or 14 are solutions of these equations.

Exercise 4.2.4. Equations are not only ubiquitous in mathematics, they are also heavily used in
programming. We have used equations to state what a function should do with examples, we
have used them to evaluate expressions by hand, and we have added them as test cases to the
Definitions window. For example, if our goal is to define Fahrenheit->Celsius, we might
have added our examples as test cases as follows:

;; test expression:
(Fahrenheit->Celsius 32)
;; expected result:
0

and

TE
AM
FL
Y

TEAM FLY PRESENTS

-46-

;; test expression:
(Fahrenheit->Celsius 212)
;; expected result:
100

After clicking the Execute button we can compare the two numbers. If they are equal, we know
our function works.

As our results become more and more complex, comparing values becomes more and more
tedious. Using =, we can instead translate these equations into claims:

(= (Fahrenheit->Celsius 32)
 0)

and

(= (Fahrenheit->Celsius 212)
 100)

Now, if all claims evaluate to true, we know that our function works for the specified examples.
If we see a false anywhere, something is still wrong.

Reformulate the test cases for exercises 2.2.1, 2.2.2, 2.2.3, and 2.2.4 as claims.

Testing: Writing tests as claims is good practice, though we need to know more about equality to
develop good automatic tests. To do so, we resume the discussion of equality and testing in
section 17.8.

4.3 Conditionals and Conditional Functions
Some banks pay different levels of interest for saving accounts. The more a customer deposits,
the more the bank pays. In such arrangements, the interest rate depends on the interval into
which the savings amount falls. To assist their bank clerks, banks use interest-rate functions. An
interest function consumes the amount that a customer wishes to deposit and responds with the
interest that the customer receives for this amount of money.

Our interest rate function must determine which of several conditions holds for the input. We say
that the function is a CONDITIONAL FUNCTION, and we formulate the definition of such functions using
CONDITIONAL EXPRESSIONS. The general shape of a conditional expression is

(cond
 [question answer]
 ...
 [question answer])

 or
(cond
 [question answer]
 ...
 [else answer])

The dots indicate that a cond-expression may contain an arbitrary number of cond-lines. Each
cond-line, also called a cond-clause, contains two expressions, called CONDITION and ANSWER. A
condition is a conditional expression that involves the parameters; the answer is a Scheme
expression that computes the result from the parameters and other data if the conditional
expression holds.14

TE
AM
FL
Y

TEAM FLY PRESENTS

-47-

Conditional expressions are the most complicated form of expressions we have encountered and
will encounter. It is therefore easy to make mistakes when we write them down. Compare the
following two parenthesized expressions:

(cond
 [(< n 10) 5.0]
 [(< n 20) 5]
 [(< n 30) true])

(cond
 [(< n 10) 30 12]
 [(> n 25) false]
 [(> n 20) 0])

The left one is a valid cond-expression because each cond-line contains two expressions. In
contrast, the right one is not a valid cond-expression. Its first line contains three expressions
instead of two.

When Scheme evaluates a cond-expression, it determines the value of each condition, one by
one. A condition must evaluate to true or false. For the first condition that evaluates to true,
Scheme evaluates the corresponding answer, and the value of the answer is the value of the
entire cond-expression. If the last condition is else and all other conditions fail, the answer for
the cond is the value of the last answer expression.15

Here are two simple examples:

(cond
 [(<= n 1000) .040]
 [(<= n 5000) .045]
 [(<= n 10000) .055]
 [(> n 10000) .060])

(cond
 [(<= n 1000) .040]
 [(<= n 5000) .045]
 [(<= n 10000) .055]
 [else .060])

If we replace n with 20000, the first three conditions evaluate to false in both expressions. For
the expression on the left the fourth condition, (> 20000 10000), evaluates to true and
therefore the answer is 0.60. For the expression on the right, the else clause specifies what the
result of the entire expression is. In contrast, if n is 10000, the value is .055 because for both
expressions, (<= 10000 1000) and (<= 10000 5000) evaluate to false and (<= 10000 10000)
evaluates to true.

Exercise 4.3.1. Decide which of the following two cond-expressions is legal:

(cond
 [(< n 10) 20]
 [(> n 20) 0]
 [else 1])

(cond
 [(< n 10) 20]
 [(and (> n 20) (<= n 30))]
 [else 1])

Explain why the other one is not. Why is the following illegal?
(cond [(< n 10) 20]
 [* 10 n]
 [else 555]) ;

Exercise 4.3.2. What is the value of

(cond
 [(<= n 1000) .040]
 [(<= n 5000) .045]
 [(<= n 10000) .055]
 [(> n 10000) .060])

when n is (a) 500, (b) 2800, and (c) 15000?

TE
AM
FL
Y

TEAM FLY PRESENTS

-48-

Exercise 4.3.3. What is the value of

(cond
 [(<= n 1000) (* .040 1000)]
 [(<= n 5000) (+ (* 1000 .040)
 (* (- n 1000) .045))]
 [else (+ (* 1000 .040)
 (* 4000 .045)
 (* (- n 10000) .055))])

when n is (a) 500, (b) 2800, and (c) 15000?

With the help of cond-expressions, we can now define the interest rate function that we
mentioned at the beginning of this section. Suppose the bank pays 4% for deposits of up to
$1,000 (inclusive), 4.5% for deposits of up to $5,000 (inclusive), and 5% for deposits of more
than $5,000. Clearly, the function consumes one number and produces one:

;; interest-rate : number -> number
;; to determine the interest rate for the given amount
(define (interest-rate amount) ...)

Furthermore, the problem statement provides three examples:

1. (= (interest-rate 1000) .040)
2. (= (interest-rate 5000) .045)
3. (= (interest-rate 8000) .050)

Recall that examples are now formulated as boolean expressions when possible.

The body of the function must be a cond-expression that distinguishes the three cases mentioned
in the problem statement. Here is a sketch:

 (cond
 [(<= amount 1000) ...]
 [(<= amount 5000) ...]
 [(> amount 5000) ...])

Using the examples and the outline of the cond-expression, the answers are easy:

(define (interest-rate amount)
 (cond
 [(<= amount 1000) 0.040]
 [(<= amount 5000) 0.045]
 [(> amount 5000) 0.050]))

Since we know that the function requires only three cases, we can also replace the last condition
with else:

(define (interest-rate amount)
 (cond
 [(<= amount 1000) 0.040]
 [(<= amount 5000) 0.045]
 [else 0.050]))

TE
AM
FL
Y

TEAM FLY PRESENTS

-49-

When we apply interest-rate to an amount, say, 4000, the calculation proceeds as usual.
Scheme first copies the body of the function and replaces amount by 4000:

 (interest-rate 4000)
= (cond
 [(<= 4000 1000) 0.040]
 [(<= 4000 5000) 0.045]
 [else 0.050])
= 0.045

The first condition is false but the second one is true, so the result is 0.045 or 4.5%. The
evaluation would proceed in the same manner if we had used the variant of the function with (>
amount 5000) instead of else.

4.4 Designing Conditional Functions
Developing conditional functions is more difficult than designing a plain function. The key is to
recognize that the problem statement lists cases and to identify the different cases. To emphasize
the importance of this idea, we introduce and discuss a design recipe for designing conditional
functions. The new recipe introduces a new step, DATA ANALYSIS, which requires a programmer to
understand the different situations that the problem statement discusses. It also modifies the
Examples and the Body steps of the design recipe in section 2.5:

• Data Analysis and Definition: After we determine that a problem statement deals with
distinct situations, we must identify all of them. The second step is a DATA DEFINITION, an
idea that we will explore a lot more.

For numeric functions, a good strategy is to draw a number line and to identify the
intervals that correspond to a specific situation. Consider the contract for the interest-
rate function:

 ;; interest-rate : number -> number
 ;; to determine the interest rate for the given amount >= 0
 (define (interest-rate amount) ...)

It inputs non-negative numbers and produces answers for three distinct situations:

For functions that process booleans, the cond-expression must distinguish between
exactly two situations: true and false. We will soon encounter other forms of data that
require case-based reasoning.

• Function Examples: Our choice of examples accounts for the distinct situations. At a
minimum, we must develop one function example per situation. If we characterized the
situations as numeric intervals, the examples should also include all borderline cases.

TE
AM
FL
Y

TEAM FLY PRESENTS

-50-

For our interest-rate function, we should use 0, 1000, and 5000 as borderline cases.
In addition, we should pick numbers like 500, 2000, and 7000 to test the interiors of the
three intervals.

• The Function Body -- Conditions: The function's body must consist of a cond-
expression that has as many clauses as there are distinct situations. This requirement
immediately suggests the following body of our solution:
• (define (interest-rate amount)
• (cond
• [... ...]
• [... ...]
• [... ...]))

Next we must formulate the conditions that characterize each situation. The conditions
are claims about the function's parameters, expressed with Scheme's relational operators
or with our own functions.

The number line from our example translates into the following three conditions:

1. (and (<= 0 amount) (<= amount 1000))
2. (and (< 1000 amount) (<= amount 5000))
3. (< 5000 amount)

Adding these conditions to the function produces a better approximation of the final
definition:

(define (interest-rate amount)
 (cond
 [(and (<= 0 amount) (<= amount 1000)) ...]
 [(and (< 1000 amount) (<= amount 5000)) ...]
 [(> amount 5000) ...]))

At this stage, a programmer should check that the chosen conditions distinguish inputs in
an appropriate manner. Specifically, if some input belongs to a particular situation and
cond-line, the preceding conditions should evaluate to false and the condition of the line
should evaluate to true.

• The Function Body -- Answers: Finally, it is time to determine what the function
should produce for each cond-clause. More concretely, we consider each line in the
cond-expression separately, assuming that the condition holds.

In our example, the results are directly specified by the problem statement. They are 4.0,
4.5, and 5.0. In more complicated examples, we may have to determine an expression
for each cond-answer following the suggestion of our first design recipe.

Hint: If the answers for each cond-clause are complex, it is good practice to develop one
answer at a time. Assume that the condition evaluates to true, and develop an answer
using the parameters, primitives, and other functions. Then apply the function to inputs
that force the evaluation of this new answer. It is legitimate to leave ``...'' in place of the
remaining answers.

TE
AM
FL
Y

TEAM FLY PRESENTS

-51-

• Simplification:

When the definition is complete and tested, a programmer might wish to check whether
the conditions can be simplified. In our example, we know that amount is always greater
than or equal to 0, so the first condition could be formulated as

(<= amount 1000)

Furthermore, we know that cond-expressions are evaluated sequentially. That is, by the
time the second condition is evaluated the first one must have produced false. Hence we
know that the amount is not less than or equal to 1000, which makes the left component
of the second condition superfluous. The appropriately simplified sketch of interest-
rate is as follows:

(define (interest-rate amount)
 (cond
 [(<= amount 1000) ...]
 [(<= amount 5000) ...]
 [(> amount 5000) ...]))

Figure 6 summarizes these suggestions on the design of conditional functions. Read it in
conjunction with figure 4 and compare the two rows for ``Body.'' Reread the table when
designing a conditional function!

Phase Goal Activity
Data
Analysis

to determine the
distinct situations a
function deals with

inspect the problem statement for distinct situations
enumerate all possible situations

Examples to provide an example
per situation

choose at least one example per situation for
intervals or enumerations, the examples must
include borderline cases

Body (1)
Conditions

to formulate a
conditional expression

write down the skeleton of a cond expression, with
one clause per situation formulate one condition per
situation, using the parameters ensure that the
conditions distinguish the examples appropriately

Body (2)
Answers

to formulate the
answers for the cond-
clauses

deal with each cond-line separately assume the
condition holds and develop a Scheme expression
that computes the appropriate answer for this case

Figure 6: Designing the body of a conditional function

 (Use with the recipe in figure 4 (pg. 5))

Exercise 4.4.1. Develop the function interest. Like interest-rate, it consumes a deposit
amount. Instead of the rate, it produces the actual amount of interest that the money earns in a
year. The bank pays a flat 4% for deposits of up to $1,000, a flat 4.5% per year for deposits of up
to $5,000, and a flat 5% for deposits of more than $5,000.

TE
AM
FL
Y

TEAM FLY PRESENTS

-52-

Exercise 4.4.2. Develop the function tax, which consumes the gross pay and produces the
amount of tax owed. For a gross pay of $240 or less, the tax is 0%; for over $240 and $480 or
less, the tax rate is 15%; and for any pay over $480, the tax rate is 28%.

Also develop netpay. The function determines the net pay of an employee from the number of
hours worked. The net pay is the gross pay minus the tax. Assume the hourly pay rate is $12.

Hint: Remember to develop auxiliary functions when a definition becomes too large or too
complex to manage.

Exercise 4.4.3. Some credit card companies pay back a small portion of the charges a customer
makes over a year. One company returns

1. .25% for the first $500 of charges,
2. .50% for the next $1000 (that is, the portion between $500 and $1500),
3. .75% for the next $1000 (that is, the portion between $1500 and $2500),
4. and 1.0% for everything above $2500.

Thus, a customer who charges $400 a year receives $1.00, which is 0.25 · 1/100 · 400, and one
who charges $1,400 a year receives $5.75, which is 1.25 = 0.25 · 1/100 · 500 for the first $500
and 0.50 · 1/100 · 900 = 4.50 for the next $900.

Determine by hand the pay-backs for a customer who charged $2000 and one who charged
$2600.

Define the function pay-back, which consumes a charge amount and computes the
corresponding pay-back amount.

Exercise 4.4.4. An equation is a claim about numbers; a quadratic equation is a special kind of
equation. All quadratic equations (in one variable) have the following general shape:

In a specific equation, a, b and c are replaced by numbers, as in

or

The variable x represents the unknown.

Depending on the value of x, the two sides of the equation evaluate to the same value (see
exercise 4.2.3). If the two sides are equal, the claim is true; otherwise it is false. A number that
makes the claim true is a solution. The first equation has one solution, - 1, as we can easily
check:

TE
AM
FL
Y

TEAM FLY PRESENTS

-53-

The second equation has two solutions: + 1 and - 1.

The number of solutions for a quadratic equation depends on the values of a, b, and c. If the
coefficient a is 0, we say the equation is degenerate and do not consider how many solutions it
has. Assuming a is not 0, the equation has

1. two solutions if b2 > 4 · a · c,
2. one solution if b2 = 4 · a · c, and
3. no solution if b2 < 4 · a · c.

To distinguish this case from the degenerate one, we sometimes use the phrase proper quadratic
equation.

Develop the function how-many, which consumes the coefficients a, b, and c of a proper
quadratic equation and determines how many solutions the equation has:

(how-many 1 0 -1) = 2
(how-many 2 4 2) = 1

Make up additional examples. First determine the number of solutions by hand, then with
DrScheme.

How would the function change if we didn't assume the equation was proper?

13 In truth, the operations and and or are different from not, which is why they are typeset in
different fonts. We ignore this minor difference for now.

14 The use of brackets, that is, [and], in place of parentheses is optional, but it sets apart the
conditional clauses from other expressions and helps people read functions.

15 If the cond-expression has no else clause and all conditions evaluate to false, an error is
signaled in Beginning Student Scheme. TE

AM
FL
Y

TEAM FLY PRESENTS

-54-

Section 5

Symbolic Information
These days computers mostly process symbolic information such as names, words, directions, or
images. All modern programming languages support at least one way of representing symbolic
information. Scheme supports several ways to express symbolic information: symbols, strings,
(keyboard) characters, and images. A symbol is a sequence of keyboard characters16 preceded by
a single forward quotation mark:

'the 'dog 'ate 'a 'chocolate 'cat! 'two^3 'and%so%on?
Like a number, a symbol has no inherent meaning. It is up to the function's user to relate
symbolic data and real-world information, though the connection is typically obvious in a
specific context. For example, 'east will usually refer to the direction where the sun rises,
'professor will be the title of a person teaching and researching at a university.

TE
AM
FL
Y

TEAM FLY PRESENTS

-55-

Figure 7: The planets as images in DrScheme

Like numbers, symbols are atomic pieces of data. Their purpose is to represent things such as
family and first names, job titles, commands, announcements, and so on. Scheme provides only
one basic operation on symbols: symbol=?, a comparison operation. It consumes two symbols
and produces true if and only if the two symbols are identical:

1. (symbol=? 'Hello 'Hello) = true
2. (symbol=? 'Hello 'Howdy) = false
3. (symbol=? 'Hello x) = true if x stands for 'Hello
4. (symbol=? 'Hello x) = false if x stands for 'Howdy

Symbols were first introduced to computing by researchers in artificial intelligence who wanted
to design functions that could have conversations with people. Consider the function reply,
which replies with some remark to the following greetings: ``good morning,'' ``how are you,''
``good afternoon,'' and ``good evening.'' Each of those short sentences can be represented as a
symbol: 'GoodMorning, 'HowAreYou, 'GoodAfternoon, and 'GoodEvening. Thus, reply
consumes a symbol and replies with a symbol:

;; reply : symbol -> symbol
;; to determine a reply for the greeting s
(define (reply s) ...)

Furthermore, the function must distinguish among four situations, implying, according to our
design recipe from section 4.4, a four-clause cond-expression:

(define (reply s)
 (cond
 [(symbol=? s 'GoodMorning) ...]
 [(symbol=? s 'HowAreYou?) ...]
 [(symbol=? s 'GoodAfternoon) ...]
 [(symbol=? s 'GoodEvening) ...]))

The cond-clauses match the four symbols, which is naturally much easier than matching four
intervals.

From this function template it is a short step to the final function. Here is one version of reply:

(define (reply s)
 (cond
 [(symbol=? s 'GoodMorning) 'Hi]
 [(symbol=? s 'HowAreYou?) 'Fine]
 [(symbol=? s 'GoodAfternoon) 'INeedANap]
 [(symbol=? s 'GoodEvening) 'BoyAmITired]))

We can think of many different ways of how to replace the ``...'' in the template with replies.
But no matter what we replace them with, the basic template could be defined without concern
for the output of the function. We will see in subsequent sections that this focus on the input data
is actually the norm and that concern for the output data can be postponed.

TE
AM
FL
Y

TEAM FLY PRESENTS

-56-

A Note on Strings: A string is a second form of symbolic data. Like a symbol, a string consists
of a sequence of keyboard characters, but they are enclosed in string quotes:

"the dog" "isn't" "made of" "chocolate" "two^3" "and so on?"
In contrast to symbols, strings are not atomic. They are compound data, which we discuss later in
the book. For now, we use strings as if they were fancy symbols; the only operation needed is
string=?, which compares two strings the way symbol=? compares two symbols. Otherwise we
ignore strings, and when we use them, we act as if they were symbols.

A Note on Images: An image is a third form of symbolic data, and it is fun to develop functions
that process images. Like symbols, images don't have any a priori meaning, but we tend to
connect them easily with the intended information.

DrScheme supports images: see figure 7, which shows the beginning of a function that
manipulates planet pictures. Images are values like numbers and booleans. They can therefore be
used inside of expressions. Most often though, we give images names because they are typically
used by several functions. If we don't like the picture, it is then easily replaced with a different
one (see section 3.2).

5.1 Finger Exercises with Symbols
Exercise 5.1.1. Evaluate (reply 'HowAreYou?) by hand and with DrScheme's stepper.
Formulate a complete set of examples for reply as boolean expressions (using symbol=?).

Exercise 5.1.2. Develop the function check-guess. It consumes two numbers, guess and
target. Depending on how guess relates to target, the function produces one of the following
three answers: 'TooSmall, 'Perfect, or 'TooLarge.

The function implements one part of a two-player number guessing game. One player picks a
random number between 0 and 99999. The other player's goal is to determine this number, called
target, with the least number of guesses. To each guess, the first player responds with one of
the three responses that check-guess implements.

The function check-guess and the teachpack guess.ss implement the first player. The
teachpack picks the random number, pops up a window in which the second player can choose
digits, and hands over the guess and the target to check-guess. To play the game, set the
teachpack to guess.ss using the Language|Set teachpack option. Then evaluate the
expression

(guess-with-gui check-guess)

after check-guess has been thoroughly tested.

Exercise 5.1.3. Develop the function check-guess3. It implements a larger portion of the
number guessing game of exercise 5.1.2 than the function check-guess. Now the teachpack
hands over the digits that the user guesses, not the number that they form.

To simplify the problem a little bit, the game works with only three numbers. Thus, check-
guess3 consumes three digits and a number. The first digit is the least significant, the third one

TE
AM
FL
Y

TEAM FLY PRESENTS

-57-

is the most significant. The number is called target and represents the randomly chosen number.
Depending on how guess, the number determined by the three digits, relates to target, check-
guess3 produces one of the following three answers: 'TooSmall, 'Perfect, or 'TooLarge.

The rest of the game is still implemented by guess.ss. To play the game with check-guess3,
evaluate

(guess-with-gui-3 check-guess3)

after the function has been thoroughly tested.

Hint: Remember to develop an auxiliary function per concept.

Exercise 5.1.4. Develop what-kind. The function consumes the coefficients a, b, and c of a
quadratic equation. It then determines whether the equation is degenerate and, if not, how many
solutions the equation has. The function produces one of four symbols: 'degenerate, 'two,
'one, or 'none.

Hint: Compare with exercise 4.4.4.

Exercise 5.1.5. Develop the function check-color. It implements a key portion of a color
guessing game. One player picks two colors for two squares; we call those targets. The other one
tries to guess which color is assigned to which square; they are guesses. The first player's
response to a guess is to check the colors and to produce one of the following answers:

1. 'Perfect, if the first target is equal to the first guess and the second target is equal to the
second guess;

2. 'OneColorAtCorrectPosition, if the first guess is equal to the first target or the second
guess is equal to the second target;

3. 'OneColorOccurs, if either guess is one of the two targets; and
4. 'NothingCorrect, otherwise.

These four answers are the only answers that the first player gives. The second player is to guess
the two chosen target colors with as few guesses as possible.

The function check-color simulates the first player's checking action. It consumes four colors;
for simplicity, we assume that a color is a symbol, say, 'red. The first two arguments to check-
color are ``targets,'' the latter two are ``guesses.'' The function produces one of the four answers.

When the function is tested, use the teachpack to master.ss to play the color-guessing game.17
The teachpack provides the function master. Evaluate (master check-color) and choose
colors with the mouse.

16 Not all keyboard characters are legal in symbols. For example, a blank space or a comma are
illegal.

17 MasterMind, the commercial version of this game, is played in a different manner.

TE
AM
FL
Y

TEAM FLY PRESENTS

-58-

Section 6

Compound Data, Part 1: Structures
The input of a function is seldom a single measurement (number), a single switch position
(boolean), or a single name (symbol). Instead, it is almost always a piece of data that represents
an object with many properties. Each property is a piece of information. For example, a function
may consume a record about a CD; the relevant information might include the artist's name, the
CD title, and the price. Similarly, if we are to model the movement of an object across a plane
with a function, we must represent the position of the object in the plane, its speed in each
direction, and possibly its color. In both cases, we refer to several pieces of information as if they
were one: one record and one point. In short, we COMPOUND several pieces of data into a single
piece of data.

Scheme provides many different methods for compounding data. In this section, we deal with
structures. A structure combines a fixed number of values into a single piece of data. In section 9,
we will encounter a method for combining an arbitrarily large number of values into a single
piece of data.

6.1 Structures
Suppose we wish to represent the pixels (colored dots) on our computer monitors. A pixel is very
much like a Cartesian point. It has an x coordinate, which tells us where the pixel is in the
horizontal direction, and it has a y coordinate, which tells us where the pixel is located in the
downwards vertical direction. Given the two numbers, we can locate a pixel on the monitor, and
so can a computer program.

DrScheme's teachpacks represent pixels with posn structures. A posn structure combines two
numbers. That is, a posn is a single value that contains two values. We can create a posn
structure with the operation make-posn, which consumes two numbers and makes a posn. For
example,

(make-posn 3 4)

(make-posn 8 6)

(make-posn 5 12)

are posn structures. Each of these structures has the same status as a number as far as
computations are concerned. Both primitive operations and functions can consume and produce
structures.

Now consider a function that computes how far some pixel is from the origin. The contract,
header, and purpose statement are easy to formulate:

;; distance-to-0 : posn -> number
;; to compute the distance of a-posn to the origin

TE
AM
FL
Y

TEAM FLY PRESENTS

-59-

(define (distance-to-0 a-posn) ...)

In other words, distance-to-0 consumes a single value, a posn structure, and produces a single
value, a number.

We already have some input examples, namely, the three posn structures mentioned above. What
we need next are examples that relate inputs and outputs. For points with 0 as one of the
coordinates, the result is the other coordinate:

 (distance-to-0 (make-posn 0 5))
= 5
and
 (distance-to-0 (make-posn 7 0))
= 7

In general, we know from geometry that the distance from the origin to a position with
coordinates x and y is distance

Thus,

 (distance-to-0 (make-posn 3 4))
= 5

 (distance-to-0 (make-posn 8 6))
= 10

 (distance-to-0 (make-posn 5 12))
= 13

Once we have examples, we can turn our attention to the definition of the function. The
examples imply that the design of distance-to-0 doesn't need to distinguish between different
situations. Still, we are stuck now, because distance-to-0 has a single parameter that
represents the entire pixel but we need the two coordinates to compute the distance. Put
differently, we know how to combine two numbers into a posn structure using make-posn and
we don't know how to extract these numbers from a posn structure.

Scheme provides operations for extracting values from structures.18 For posn structures, Scheme
supports two such operations: posn-x and posn-y. The former operation extracts the x
coordinate; the latter extracts the y coordinate.

To describe how posn-x, posn-y, and make-posn are related, we can use equations that are
roughly analogous to the equations that govern addition and subtraction:

 (posn-x (make-posn 7 0))
= 7

and

 (posn-y (make-posn 7 0))
= 0

TE
AM
FL
Y

TEAM FLY PRESENTS

-60-

The equations only confirm what we already know. But suppose we introduce the following
definition:

 (define a-posn (make-posn 7 0))

Then we can use the two operations as follows in the Interactions window:

 (posn-x a-posn)
= 7

 (posn-y a-posn)
= 0

Naturally, we can nest such expressions:

 (* (posn-x a-posn) 7)
= 49

 (+ (posn-y a-posn) 13)
= 13

Now we know enough to complete the definition of distance-to-0. We know that the
function's a-posn parameter is a posn structure and that the structure contains two numbers,
which we can extract with (posn-x a-posn) and (posn-y a-posn). Let us add this knowledge
to our function outline:

(define (distance-to-0 a-posn)
 ... (posn-x a-posn) ...
 ... (posn-y a-posn) ...)

Using this outline and the examples, the rest is easy:

(define (distance-to-0 a-posn)
 (sqrt
 (+ (sqr (posn-x a-posn))
 (sqr (posn-y a-posn)))))

The function squares (posn-x a-posn) and (posn-y a-posn), which represent the x and y
coordinates, sums up the results, and takes the square root. With DrScheme, we can also quickly
check that our new function produces the proper results for our examples.

Exercise 6.1.1. Evaluate the following expressions:

1. (distance-to-0 (make-posn 3 4))
2. (distance-to-0 (make-posn (* 2 3) (* 2 4)))
3. (distance-to-0 (make-posn 12 (- 6 1)))

by hand. Show all steps. Assume that sqr performs its computation in a single step. Check the
results with DrScheme's stepper.

6.2 Extended Exercise: Drawing Simple Pictures

TE
AM
FL
Y

TEAM FLY PRESENTS

-61-

DrScheme provides the graphics teachpack draw.ss, which introduces simple graphics
operations:

1. draw-solid-line, which consumes two posn structures, the beginning and the end of
the line on the canvas, and a color.

2. draw-solid-rect, which consumes four arguments: a posn structure for the upper-left
corner of the rectangle, a number for the width of the rectangle, another number for its
height, and a color.

3. draw-solid-disk, which consumes three arguments: a posn structure for the center of
the disk, a number for the radius of the disk, and a color.

4. draw-circle, which consumes three arguments: a posn structure for the center of the
circle, a number for the radius, and a color.

Each of the operation produces true, if it succeeds in changing the canvas as specified. We refer
to the action to the canvas as an EFFECT, but we will ignore studying the precise nature of effects
until part VII. Also, if anything goes wrong with the operation, it stops the evaluation with an
error.

Each drawing operation also comes with a matching clear- operation: clear-solid-line,
clear-solid-rect, clear-solid-disk, and clear-circle. If these functions are applied to
the same arguments as their matching draw- function, they clear the corresponding shapes of the
canvas.19

Drawing operations on computers interpret the screen as follows:

First, the origin of the plane is in the upper-left corner. Second, y coordinates grow in the
downwards direction. Understanding the difference between this picture and the more
conventional Cartesian plane is critical for drawing shapes with programs.

Exercise 6.2.1. Evaluate the following expressions in order:

1. (start 300 300), which opens a canvas for future drawing operations;
2. (draw-solid-line (make-posn 1 1) (make-posn 5 5) 'red), which draws a red

line;
3. (draw-solid-rect (make-posn 20 10) 50 200 'blue), which draws a blue

rectangle of width 50 parallel to the line; and
4. (draw-circle (make-posn 200 10) 50 'red), which draws a red circle of radius 50

and a center point at the upper line of the rectangle.
5. (draw-solid-disk (make-posn 200 10) 50 'green), which draws a green disk of

radius 50 and a center point at the height of the upper line of the rectangle.
6. (stop), which closes the canvas.

TE
AM
FL
Y

TEAM FLY PRESENTS

-62-

Read the documentation for draw.ss in DrScheme's HelpDesk.

The definitions and expressions in figure 8 draw a traffic light. The program fragment illustrates
the use of global definitions for specifying and computing constants. Here, the constants
represent the dimensions of the canvas, which is the outline of the traffic light, and the positions
of three light bulbs.

;; dimensions of traffic light

(define WIDTH 50)

(define HEIGHT 160)

(define BULB-RADIUS 20)

(define BULB-DISTANCE 10)

;; the positions of the bulbs

(define X-BULBS (quotient WIDTH 2))

(define Y-RED (+ BULB-DISTANCE BULB-RADIUS))

(define Y-YELLOW (+ Y-RED BULB-DISTANCE (* 2 BULB-
RADIUS)))

(define Y-GREEN (+ Y-YELLOW BULB-DISTANCE (* 2 BULB-
RADIUS)))

;; draw the light with the red bulb turned on

(start WIDTH HEIGHT)

(draw-solid-disk (make-posn X-BULBS Y-RED) BULB-RADIUS
'red)

(draw-circle (make-posn X-BULBS Y-YELLOW) BULB-RADIUS
'yellow)

(draw-circle (make-posn X-BULBS Y-GREEN) BULB-RADIUS
'green)

Figure 8: Drawing a traffic light

Exercise 6.2.2. Develop the function clear-bulb. It consumes a symbol that denotes one of
the possible colors: 'green, 'yellow, or 'red, and it produces true. Its effect is ``to turn off''
the matching bulb in the traffic light. Specifically, it should clear the disk and display a circle of
the matching color instead.

Choice of Design Recipe: See section 5 for designing functions that consume one of an
enumeration of symbols.

TE
AM
FL
Y

TEAM FLY PRESENTS

-63-

Testing: When testing functions that draw shapes into a canvas, we ignore test expressions.
Although it is possible to implement appropriate test suites, the problem is beyond the scope of
this book.

Combining Effects: The primitive operations for drawing and clearing disks and circles produce
true if they successfully complete their task. The natural way to combine the values and the
effects of these functions is to use an and-expression. In particular, if exp1 and exp2 produce
effects and we wish to see the effects of exp2 after those of exp1, we write

(and exp1 exp2)

Later we will study effects in more detail and learn different ways to combine effects.

Exercise 6.2.3. Develop a function draw-bulb. It consumes a symbol that denotes one of the
possible colors: 'green, 'yellow, or 'red, and produces true. Its effect is ``to turn on'' the
matching bulb in the traffic light.

Exercise 6.2.4. Develop the function switch. It consumes two symbols, each of which stands
for a traffic light color, and produces true. Its effects are to clear the bulb for the first color and
then to draw the second bulb.

Exercise 6.2.5. Here is the function next:

;; next : symbol -> symbol
;; to switch a traffic light's current color and to return the next one
(define (next current-color)
 (cond
 [(and (symbol=? current-color 'red) (switch 'red 'green))
 'green]
 [(and (symbol=? current-color 'yellow) (switch 'yellow 'red))
 'red]
 [(and (symbol=? current-color 'green) (switch 'green 'yellow))
 'yellow]))

It consumes the current color of a traffic light (as a symbol) and produces the next color that the
traffic light shows. That is, if the input is 'green, it produces 'yellow; if it is 'yellow, it
produces 'red; and if it is 'red, it produces 'green. Its effect is to switch the traffic light from
the input color to the next color.

Replace the last three lines of the program fragment in figure 8 with (draw-bulb 'red). This
creates a traffic light that is red. Then use next to switch the traffic light four times.

6.3 Structure Definitions
In the preceding section we explored one particular class of structures: the posn structures. A
posn structure combines two numbers, and it is useful to represent pixels. If we wish to represent
employee records or points in three-dimensional space, however, posns are useless. DrScheme
therefore permits programmers to define their own structures so that they can represent all kinds
of objects with a fixed number of properties.

TE
AM
FL
Y

TEAM FLY PRESENTS

-64-

A STRUCTURE DEFINITION is, as the term says, a new form of definition. Here is DrScheme's definition
of posn:

(define-struct posn (x y))

When DrScheme evaluates this structure definition, it creates three operations for us, which we
can use to create data and to program:

1. make-posn, the CONSTRUCTOR, which creates posn structures;
2. posn-x, a SELECTOR, which extracts the x coordinate;
3. posn-y, also a selector, which extracts the y coordinate.

In general, the names of these new operations are created by prefixing the name of the structure
with ``make-'' and by postfixing the name with all the field names. This naming convention
appears to be complicated but, with some practice, it is easy to remember.

Now consider the following example:

(define-struct entry (name zip phone))

The structure represents a simplified entry into an address book. Each entry combines three
values. We also say that each entry structure has three fields: name, zip, and phone. Because
there are three fields, the constructor make-entry consumes three values. For example,

(make-entry 'PeterLee 15270 '606-7771)

creates an entry structure with 'PeterLee in the name-field, 15270 in the zip-field, and '606-
7771 in the phone-field.

One way to think of a structure is as a box with as many compartments as there are fields:

name zip phone
'PeterLee 15270 15270
'PeterLee15270'606-7771

The italicized labels name the fields. By putting values in the compartments, we illustrate
specific entry structures.

The define-struct definition of entry also introduces new selectors:

entry-name entry-zip entry-phone

Here is how we can use the first one:

 (entry-name (make-entry 'PeterLee 15270 '606-7771))
= 'PeterLee

If we give the structure a name,

(define phonebook (make-entry 'PeterLee 15270 '606-7771))

TE
AM
FL
Y

TEAM FLY PRESENTS

-65-

then we can use the selectors in the Interactions window to extract the data from the three
fields:

 (entry-name phonebook)
= 'PeterLee

 (entry-zip phonebook)
= 15270

 (entry-phone phonebook)
= '606-7771

Put more graphically, a constructor creates a box with several compartments and puts values in it.
A selector reveals the contents of a particular compartment, but leaves the box alone.

Here is one final example, a structure for representing rock stars:

(define-struct star (last first instrument sales))

It defines the class of star structures, each of which has four fields. Accordingly, we get five
new primitive operations:

make-star star-last star-first star-instrument star-sales

The first is for constructing star structures; the others are selector operations for extracting
values from a star structure.

To create a star structure, we apply make-star to three symbols and a positive integer:

(make-star 'Friedman 'Dan 'ukelele 19004)

(make-star 'Talcott 'Carolyn 'banjo 80000)

(make-star 'Harper 'Robert 'bagpipe 27860)

To select the first name of a star structure called E, we use

(star-first E)

Other fields are extracted with other selectors.

Exercise 6.3.1. Consider the following structure definitions:

1. (define-struct movie (title producer))
2. (define-struct boyfriend (name hair eyes phone))
3. (define-struct cheerleader (name number))
4. (define-struct CD (artist title price))
5. (define-struct sweater (material size producer))

What are the names of the constructors and the selectors that each of them adds to Scheme?
Draw box representations for each of these structures.

TE
AM
FL
Y

TEAM FLY PRESENTS

-66-

Exercise 6.3.2. Consider the following structure definition

(define-struct movie (title producer))

and evaluate the following expressions:

1. (movie-title (make-movie 'ThePhantomMenace 'Lucas))
2. (movie-producer (make-movie 'TheEmpireStrikesBack 'Lucas))

Now evaluate the following expressions, assuming x and y stand for arbitrary symbols:

1. (movie-title (make-movie x y))
2. (movie-producer (make-movie x y))

Formulate equations that state general laws concerning the relationships of movie-title and
movie-producer and make-movie.

Functions both consume and produce structures. Suppose we need to record an increase of sales
for one of our stars. This act should be recorded in the star's record. To do so, we should have a
function that consumes a star structure and produces a star structure with the same information
except for the sales component. Let's assume for now that the function adds 20000 to the star's
sales.

First, we write down a basic description of the function, using our contract, header, and purpose
format:

;; increment-sales : star -> star
;; to produce a star record like a-star with 20000 more sales
(define (increment-sales a-star) ...)

Here is an example of how the function should process star structures:

 (increment-sales (make-star 'Abba 'John 'vocals 12200))
should produce
 (make-star 'Abba 'John 'vocals 32200))

The three sample star structures from above are also good examples of potential inputs.

;; increment-sales : star -> star
;; to produce a star record like a-star with 20000 more sales
(define (increment-sales a-star)
 (make-star (star-last a-star)
 (star-first a-star)
 (star-instrument a-star)
 (+ (star-sales a-star) 20000)))

Figure 9: The complete definition of increment-sales

The increment-sales function must construct a new star structure with make-star, but to do
so, it must also extract the data in a-star. After all, almost all of the data in a-star is a part of

TE
AM
FL
Y

TEAM FLY PRESENTS

-67-

the star structure produced by increment-sales. This suggests that the definition of
increment-sales contains expressions that extract the four fields of a-star:

(define (increment-sales a-star)
 ... (star-last a-star) ...
 ... (star-first a-star) ...
 ... (star-instrument a-star) ...
 ... (star-sales a-star) ...)

As we have seen with the examples, the function adds 20000 to (star-sales a-star) and
assembles the four pieces of data into a star structure with make-star. Figure 9 contains the
complete definition.

Exercise 6.3.3. Provide a structure definition that represents an airforce's jet fighters. Assume
that a fighter has four essential properties: designation ('f22, 'tornado, or 'mig22),
acceleration, top-speed, and range. Then develop the function within-range. The function
consumes a fighter record and the distance of a target from the (fighter's) base. It determines
whether the fighter can reach the intended target. Also develop the function reduce-range. The
function consumes a fighter record and produces one in which the range field is reduced to 80%
of the original value.

6.4 Data Definitions
Consider the following expression:

(make-posn 'Albert 'Meyer)

It constructs a posn structure from two symbols. If we now apply distance-to-0 to this
structure, the computation fails miserably:

 (distance-to-0 (make-posn 'Albert 'Meyer))

= (sqrt
 (+ (sqr (posn-x (make-posn 'Albert 'Meyer)))
 (sqr (posn-y (make-posn 'Albert 'Meyer)))))

= (sqrt
 (+ (sqr 'Albert)
 (sqr (posn-y (make-posn 'Albert 'Meyer)))))

= (sqrt
 (+ (* 'Albert 'Albert)
 (sqr (posn-y (make-posn 'Albert 'Meyer)))))

That is, it requires us to multiply 'Albert with itself. Similarly,

(make-star 'Albert 'Meyer 10000 'electric-organ)

does not produce a star structure according to our intentions. In particular, the structure is not
suitable for processing by increment-sales.

To avoid such problems and to assist with the development of functions, we must add a data
definition to each structure definition.

TE
AM
FL
Y

TEAM FLY PRESENTS

-68-

A DATA DEFINITION states, in a mixture of English and Scheme, how we intend to use a class of
structures and how we construct elements of this class of data. For example, here is a data
definition for posn structures:

A posn is a structure:

 (make-posn x y)
where x and y are numbers.

It says that a valid posn structure always contains two numbers, and nothing else. Hence, when
we use make-posn to create a posn structure, we must apply it to two numbers; when a function
contains selector expressions for posn structures, we may now assume that their result is a
number.

The data definition for star structures is only slightly more complicated:

A star is a structure:

 (make-star last first instrument sales)
where last, first, and instrument are symbols and sales is a number.

This data definition says that valid star structures contain symbols in the fields for last name,
first name, and instrument, and a number in the sales field.

Figure 10: The meaning of data definitions

In general, a data definition identifies a subclass of Scheme's universe of values: see figure 10.
As we have seen so far, Scheme's universe contains numbers, symbols, images, strings, chars,
booleans, and many different classes of structures. Our functions, however, are intended to work
only for a subclass of values. For example, area-of-disk consumes only numbers; reply from
section 5 consumes only symbols. A few subclasses, such as number, already have names,
because they are useful for all kinds of programming tasks. Others are only interesting in the
context of a specific problem. For those cases, a programmer should introduce a data definition.

The most important role of a data definition is that of a covenant between programmers and users.
We expect both groups to respect such data definitions, and we expect the programmer to exploit
it for the function construction. For example, when the programmer of distance-to-0 specifies
that all posns contain two numbers, a user must always apply distance-to-0 to a posn
structure with two numbers. Furthermore, as we will discuss over the next few sections, we
expect a programmer to exploit data definitions for function developments. Naturally, a data
definition in English and Scheme does not prevent us from abusing make-posn. It is, however, a

TE
AM
FL
Y

TEAM FLY PRESENTS

-69-

written statement of intent, and a person who willingly violates or ignores this covenant must
face the consequences of ill-behaving computations.20

Exercise 6.4.1. Provide data definitions for the following structure definitions:

1. (define-struct movie (title producer))
2. (define-struct boyfriend (name hair eyes phone))
3. (define-struct cheerleader (name number))
4. (define-struct CD (artist title price))
5. (define-struct sweater (material size producer))

Make appropriate assumptions about what data goes with which field.

Exercise 6.4.2. Provide a structure definition and a data definition for representing points in
time since midnight. A point in time consists of three numbers: hours, minutes, and seconds.

Exercise 6.4.3. Provide a structure definition and a data definition for representing three-letter
words. A word consists of letters, which we represent with the symbols 'a through 'z.

6.5 Designing Functions for Compound Data
Sections 6.1 through 6.4 suggest that the design of functions for compound data proceeds in a
regular manner. First, a programmer must recognize that structures are needed. We follow the
simple rule of using structures whenever the description of some object specifies several pieces
of information. If we don't use structures in these cases, we quickly lose track of which data
belongs to which object, especially when we write large functions that process massive amounts
of data.

Second, a programmer can use the structure and data definitions for the organization of a
function. We use the term template when we design functions. As we will see in this and many
future sections, the template matches the data definition, and the template is the essential step in
the careful design of functions.

To emphasize this point, we modify our function design recipe from section 2.5 to accommodate
compound data. Most importantly, working with compound data requires adjustments in a few of
the basic design steps and two new steps: data analysis and template design:

;; Data Analysis & Definitions:
(define-struct student (last first teacher))
;; A student is a structure: (make-student l f t) where f, l, and t are
symbols.

;; Contract: subst-teacher : student symbol -> student

;; Purpose: to create a student structure with a new
;; teacher name if the teacher's name matches 'Fritz

;; Examples:
;; (subst-teacher (make-student 'Find 'Matthew 'Fritz) 'Elise)
;; =
;; (make-student 'Find 'Matthew 'Elise)

TE
AM
FL
Y

TEAM FLY PRESENTS

-70-

;; (subst-teacher (make-student 'Find 'Matthew 'Amanda) 'Elise)
;; =
;; (make-student 'Find 'Matthew 'Amanda)

;; Template:
;; (define (process-student a-student a-teacher)
;; ... (student-last a-student) ...
;; ... (student-first a-student) ...
;; ... (student-teacher a-student) ...)

;; Definition:
(define (subst-teacher a-student a-teacher)
 (cond
 [(symbol=? (student-teacher a-student) 'Fritz)
 (make-student (student-last a-student)
 (student-first a-student)
 a-teacher)]
 [else a-student]))

;; Tests:
(subst-teacher (make-student 'Find 'Matthew 'Fritz) 'Elise)
;; expected value:
(make-student 'Find 'Matthew 'Elise)

(subst-teacher (make-student 'Find 'Matthew 'Amanda) 'Elise)
;; expected value:
(make-student 'Find 'Matthew 'Amanda)

Figure 11: The design recipe for compound data: A complete example

• Data Analysis and Design: Before we can develop a function, we must understand how
to represent the information in our problem statement within our chosen programming
language. To do so, we search the problem statement for descriptions of (relevant)
objects and then design a data representation based on the results of our analysis.

Until now we could use Scheme's classes of atomic data (numbers, symbols, images, etc.)
to represent information. But they are not enough. If we discover that an object has N
properties, we introduce a structure definition with N fields and supply a data definition
that specifies what kind of data the fields may contain.

Let us consider functions that process student records at a school. If a student's interesting
properties for a school are

1. the first name,
2. the last name, and
3. the name of the home-room teacher,

then we should represent information about a student as a structure:

(define-struct student (last first teacher))

Here is the data definition that specifies the class of student structures as precisely as
possible:

TE
AM
FL
Y

TEAM FLY PRESENTS

-71-

A student is a structure:

 (make-student l f t)

where l, f, and t are symbols.

The corresponding data class contains structures like these:

(make-student 'findler 'kathi 'matthias)
(make-student 'fisler 'sean 'matthias)
(make-student 'flatt 'shriram 'matthias)

• Contract: For the formulation of contracts, we can use the names of the atomic classes
of data, such as number and symbol, and those names that we introduced in data
definitions, such as student.

• Template: A function that consumes compound data is likely to compute its result from
the components of its input. To remind ourselves of the components, we first design a
template. For compound data, a TEMPLATE consists of a header and a body that lists all
possible selector expressions. Each selector expression is the application of an
appropriate selector primitive to a parameter that stands for a structure.

In other words, a template expresses what we know about the inputs, and nothing about
the outputs. We can therefore use the same template for all functions that consume the
same kind of structure. Also, because a template does not express anything about the
purpose of the function, we can formulate it before or after we have developed
examples.

Consider a function that consumes a student structure and a teacher name:

;; process-student : student symbol -> ???
(define (process-student a-student a-teacher) ...)

Then a-student is a parameter that stands for a structure and a-teacher stands for just
a symbol. The template therefore has the following shape:

;; process-student : student symbol -> ???
(define (process-student a-student a-teacher)
 ... (student-last a-student) ...
 ... (student-first a-student) ...
 ... (student-teacher a-student) ...)

The ??? output reminds us that we don't assume anything about the output of the function.
We design every function that consumes a student structure using this template.

• Examples: Let us study two examples of functions that consume student structures.
The first function, check, is supposed to return the last name of the student if the
teacher's name is equal to a-teacher and 'none otherwise:
• (check (make-student 'Wilson 'Fritz 'Harper) 'Harper)
• ;; expected value:
• 'Wilson
•
• (check (make-student 'Wilson 'Fritz 'Lee) 'Harper)

TE
AM
FL
Y

TEAM FLY PRESENTS

-72-

• ;; expected value
• 'none

The second function, transfer, is supposed to produce a student structure that contains
the same information as a-student except for the teacher field, which should be a-
teacher:

(transfer (make-student 'Wilson 'Fritz 'Harper) 'Lee)
;; expected value:
(make-student 'Wilson 'Fritz 'Lee)

(transfer (make-student 'Woops 'Helen 'Flatt) 'Fisler)
;; expected value:
(make-student 'Woops 'Helen 'Fisler)

• Body: The template provides as many clues for the definition of the function as the
examples. As before, the goal of this step is to formulate an expression that computes the
answer from the available data using other functions or Scheme's primitive. The template
reminds us that the available data are the parameters and the data computed by the
selector expressions. To determine what the selectors produce, we read the data definition
for the structure.

Let us return to our first example, check:

(define (check a-student a-teacher)
 (cond
 [(symbol=? (student-teacher a-student) a-teacher)
 (student-last a-student)]
 [else 'none]))

This particular function uses two of the three selector expressions from the template.
Specifically, it compares the result of the selector expression (student-teacher a-
student) with a-teacher and, if they are equal, produces the result of (student-last
a-student). Just naming the results of the selector expressions and reading the problem
statement makes the definition obvious.

Similarly, the transfer function is easy to define using the template and the examples:

(define (transfer a-student a-teacher)
 (make-student (student-last a-student)
 (student-first a-student)
 a-teacher))

This second function uses the same two selector expressions as the first example, but in a
different way. The key observation, however, is that the template reminds us of all the
information that we have available. When we define the function, we must use and
combine the available information.

Figure 12 presents the recipe for compound data in tabular form. In practice, though, a function
contains many functions that all work on the same class of input data. It is therefore normal to
reuse the template many times, which means that examples are often constructed after the
template is set up. Compare it with the design recipes in figures 4 and 6.

TE
AM
FL
Y

TEAM FLY PRESENTS

-73-

Phase Goal Activity
Data
 Analysis
 and Design

to formulate a data
definition

determine how many pieces of data describe the
``interesting'' aspects of the objects mentioned in the
problem statement add a structure definition and a data
definition (for each class of problem object)

Contract
Purpose and
Header

to name the
function;
to specify its
classes of
 input data and its
 class of output
data;
to describe its
purpose;
to formulate a
header

name the function, the classes of input data, the class of
output data, and specify its purpose:
 ;; name : in1 in2 ...--> out
 ;; to compute ... from x1 ...
 (define (name x1 x2 ...) ...)

Examples to characterize the
input-
output relationship
via examples

search the problem statement for examples work
through the examples validate the results, if possible
make up examples

Template to formulate an
outline

for those parameters that stand for compound values,
annotate the body with selector expressions if the
function is conditional, annotate all appropriate
branches

Body to define the
function

develop a Scheme expression that uses Scheme's
primitive operations, other functions, selector
expressions, and the variables

Test to discover
mistakes
 (``typos'' and
logic)

apply the function to the inputs of the examples check
that the outputs are as predicted

Figure 12: Designing a function for compound data

 (Refines the recipe in figure 4 (pg. 5))

Exercise 6.5.1. Develop templates for functions that consume the following structures:

1. (define-struct movie (title producer))
2. (define-struct boyfriend (name hair eyes phone))
3. (define-struct cheerleader (name number))
4. (define-struct CD (artist title price))
5. (define-struct sweater (material size producer)) .

Exercise 6.5.2. Develop the function time->seconds, which consumes a time structure (see
exercise 6.4.2) and produces the number of seconds since midnight that the time structure
represents.

TE
AM
FL
Y

TEAM FLY PRESENTS

-74-

Example:

(time->seconds (make-time 12 30 2))
;; expected value:
45002

Explain the example.

6.6 Extended Exercise: Moving Circles and Rectangles
Implementing a computer game often requires moving a picture across a computer monitor. In
figure 13, for example, a simplistic face is moved from the left part of the canvas toward the
right border. For simplicity, our pictures consist of many colored circles and rectangles. From
section 6.2, we already know, for example, how to draw and erase a circle. Here we learn to
translate a circle, that is, to move its representation along some line. In sections 7.4, 10.3,
and 21.4 we learn to move entire pictures with compact programs.21

Figure 13: A moving face

Following the design recipe, we start with structure and data definitions, then move on to
templates, and finally write the necessary functions. The first sequence of exercises covers
circles; the second one is about rectangles.

A First Note on Iterative Refinement: This method of developing large programs is our first
taste of ITERATIVE REFINEMENT. The basic idea behind iterative refinement is to start with a simple
version of the program, that is, a version that deals with the most important part of the problem.
In this section, we start with functions that move the most basic shapes: circles and rectangles.
Then we refine the program to deal with more and more complex situations. For example, in
section 10.3 we learn to deal with pictures that consist of an arbitrary number of circles and
rectangles. Once we have a complete program, we edit it so that others can easily read and
modify it, too. Section 21.4 covers this aspect of the example.

TE
AM
FL
Y

TEAM FLY PRESENTS

-75-

Refining a program in this manner is the most prevalent method of designing complex programs.
Of course, we must know the eventual goal for this method to succeed, and we must always keep
it in mind. It is therefore a good idea to write down an action plan, and to reconsider the plan
after each refinement step. We will discuss this process again in section 16.

Exercise 6.6.1. Provide a structure definition and a data definition for representing colored
circles. A circle is characterized by three pieces of information: its center, its radius, and the
color of its perimeter. The first is a posn structure, the second a number, and the third a (color)
symbol.

Develop the template fun-for-circle, which outlines a function that consumes circles. Its
result is undetermined.

Exercise 6.6.2. Use fun-for-circle to develop draw-a-circle. The function consumes a
circle structure and draws the corresponding circle on the screen. Use (start 300 300) to
create the canvas before testing the function.

Exercise 6.6.3. Use the template fun-for-circle to develop in-circle?. The function
consumes a circle structure and a posn and determines whether or not the pixel is inside the
circle. All pixels whose distance to the center is less or equal to the radius are inside the circle;
the others are outside.

Consider the circle in figure 14. The circle's center is (make-posn 6 2), its radius is 1. The
pixel labeled A, located at (make-posn 6 1.5), is inside the circle. The pixel labeled B, located
at (make-posn 8 6), is outside.

Exercise 6.6.4. Use the template fun-for-circle to develop translate-circle. The
function consumes a circle structure and a number delta. The result is a circle whose center
is delta pixels to the right of the input. The function has no effect on the canvas.

Geometric Translation: Moving a geometric shape along a straight line is referred to as a
translation.

Exercise 6.6.5. Use the template fun-for-circle to develop clear-a-circle. The function
consumes a circle structure and clears the corresponding circle on the canvas.

Exercise 6.6.6. Define the function draw-and-clear-circle, which draws a circle structure,
waits for a short time, and clears it. To implement a waiting period, the teachpack draw.ss
provides the function sleep-for-a-while. It consumes a number and puts the program to sleep
for that many seconds; its result is true. For example, (sleep-for-a-while 1) waits for one
second.

The following function is the key ingredient for moving a circle across a canvas, one step at a
time:

;; move-circle : number circle -> circle
;; to draw and clear a circle, translate it by delta pixels
(define (move-circle delta a-circle)
 (cond
 [(draw-and-clear-circle a-circle) (translate-circle a-circle delta)]
 [else a-circle]))

TE
AM
FL
Y

TEAM FLY PRESENTS

-76-

It draws and clears the circle on the canvas and then produces the new circle structure so that
another draw-and-clear effect displays the circle at a new position:

(start 200 100)

(draw-a-circle
 (move-circle 10
 (move-circle 10
 (move-circle 10
 (move-circle 10 ... a circle ...)))))

This expression moves the circle four times, by 10 pixels each, and also shows this movement on
the canvas. The last draw-a-circle is necessary because we wouldn't otherwise see the last
move on the screen.

Figure 14: Circles, rectangles, and pixels

Exercise 6.6.7. Provide a structure definition and a data definition for representing colored
rectangles. A rectangle is characterized by four pieces of information: its upper-left corner, its
width, its height, and its fill color. The first is a posn structure, the second and third quantities
are plain numbers, and the last one is a color.

Develop the template fun-for-rect, which outlines a function that consumes rectangles. Its
result is undetermined.

Exercise 6.6.8. Use the template fun-for-rect to develop draw-a-rectangle. The function
consumes a rectangle structure and draws the corresponding rectangle on the screen. In
contrast to circles, the entire rectangle is painted in the matching color. Remember to use (start
300 300) to create the canvas before testing the function.

Exercise 6.6.9. Use the template fun-for-rect to develop in-rectangle?. The function
consumes a rectangle structure and a posn and determines whether or not the pixel is inside the
rectangle. A pixel is within a rectangle if its horizontal and vertical distances to the upper-left
corner are positive and smaller than the width and height of the rectangle, respectively.

TE
AM
FL
Y

TEAM FLY PRESENTS

-77-

Consider the rectangle in figure 14. This rectangle's key parameters are (make-posn 2 3), 3,
and 2. The pixel labeled C is inside of the rectangle, B is outside.

Exercise 6.6.10. Use the template fun-for-rect to develop translate-rectangle. The
function consumes a rectangle structure and a number delta. The result is a rectangle whose
upper-left corner is delta pixels to the right of the input. The function has no effect on the
canvas.

Exercise 6.6.11. Use the template fun-for-rect to develop clear-a-rectangle. It consumes
a rectangle structure and clears the corresponding rectangle on the canvas.

Exercise 6.6.12. Here is the move-rectangle function:

;; move-rectangle : number rectangle -> rectangle
;; to draw and clear a rectangle, translate it by delta pixels
(define (move-rectangle delta a-rectangle)
 (cond
 [(draw-and-clear-rectangle a-rectangle)
 (translate-rectangle a-rectangle delta)]
 [else a-rectangle]))

It draws and clears a rectangle circle on the canvas and then produces a translated version.

Develop draw-and-clear-rectangle, which draws a rectangle, sleeps for a while, and then
clears the rectangle. Finally, create a rectangle and use the functions of this exercise set to move
it four times.

6.7 Extended Exercise: Hangman

Figure 15: Three stages of the hangman picture

TE
AM
FL
Y

TEAM FLY PRESENTS

-78-

Hangman is a two-player, word-guessing game. One player thinks of a three-letter22 word and
draws the noose of a gallows (see figure 15); the other player tries to guess the word, one letter at
a time. For every wrong guess, the first player adds another part to the drawing (see figure 15):
first the head, then the body, the arms, and the legs. If, however, a guess agrees with one or two
letters in the chosen word, the first player reveals the position(s) where this letter occurs. The
game is over when the second player guesses the complete word or when the first player has
completed the stick figure.

Let's design a program that plays the role of the first player. The program consists of two parts:
one for drawing the figure, and another for determining whether a guess occurs in the chosen
word and where.

Exercise 6.7.1. Develop the function draw-next-part, which draws the pieces of a hangman
figure. The function consumes one of the seven symbols:

'right-leg 'left-leg 'left-arm 'right-arm 'body 'head 'noose
It always returns true and draws the matching part of the figure. See figure 15 for three
snapshots of intermediate stages.23

Hints: Add (start 200 200) to the top of the definition window. Start with the noose and
develop one component at a time. If a component of the stick figure requires more than one
drawing operation, combine the operations using an and-expression, which evaluates the two
expressions and ensure that both results are true.

The second task of the first player is to determine whether a guess is among the letters of the
chosen word and, if so, where it occurs. Our recipe requires that, before we design a function for
this task, we need to analyze our data and provide data definitions. The key objects of the game
are words and letters. A word consists of three letters. A letter is represented with the symbols 'a
through 'z. Using just those letters, however, is not enough because the program also needs to
maintain a word that records how much the second player has guessed. The solution is to add one
extra ``letter'' to our alphabet that is distinct from the others; the hangman teachpack uses '_ for
this purpose.

Exercise 6.7.2. Provide a structure definition and a data definition for representing three-letter
words.

Exercise 6.7.3. Develop the function reveal. It consumes three arguments:

1. the chosen word, which is the word that we have to guess;
2. the status word, which shows which portion of the word has been revealed so far; and
3. a letter, which is our current guess.

The function produces a new status word, that is, a word that contains ordinary letters and '_.
The fields in the new status word are determined by comparing the guess with each pair of letters
from the status word and the chosen word:

TE
AM
FL
Y

TEAM FLY PRESENTS

-79-

1. If the guess is equal to the letter in the chosen word, the guess is the corresponding letter
in the new status word.

2. Otherwise, the new letter is the corresponding letter from the status word.

Test the function with the following examples:

(reveal (make-word 't 'e 'a) (make-word '_ 'e '_) 'u)
;; expected value
(make-word '_ 'e '_)

(reveal (make-word 'a 'l 'e) (make-word 'a '_ '_) 'e)
;; expected value:
(make-word 'a '_ 'e)

(reveal (make-word 'a 'l 'l) (make-word '_ '_ '_) 'l)
;; expected value
(make-word '_ 'l 'l)

The first one shows what happens when the guess does not occur in the word; the second one
shows what happens when it does occur; and the last one shows what happens when it occurs
twice.

Hints: (1) Remember to develop auxiliary functions when a definition becomes too large or too
complex to manage.

(2) The function reveal consumes two structures and one atomic value (a letter). This suggests
that we use the design recipe for compound data (figure 12). For the template, it is best to write
down the selector expressions in a two-column format, one column per word.

When the functions draw-next-part and reveal are properly tested, set teachpack to
hangman.ss and play the game by evaluating

(hangman make-word reveal draw-next-part)

The hangman function chooses a three-letter word randomly and displays a window with a pop-
up menu for letters. Choose letters and, when ready, click the Check button to see whether the
guess is correct. Comment out the test cases for exercise 6.7.1 so that their drawing effects don't
interfere with those of hangman.

18 An alternative terminology is ``to access the fields of a record.'' We prefer to think of structure
values as containers from which we can extract other values.

19 For more documentation, see DrScheme's Help Desk.

20 DrScheme provides an optional tool that permits programmers to check whether users and
programmers respect the data definition for a particular structure. To do so, a programmer must
state data definitions in a special language. Although checking the adherence to data definitions
is important for large programs, an introductory course can avoid this topic.

21 This series of sections was inspired by Ms. Karen Buras and her son.

TE
AM
FL
Y

TEAM FLY PRESENTS

-80-

22 In reality, we would want to play the game with words of arbitrary length, but a game based on
three-letter words is easier to implement for now. We return to the problem in exercise 17.6.2.

23 Thanks to Mr. John Clements for the artistic version of draw-next-part.

TE
AM
FL
Y

TEAM FLY PRESENTS

-81-

Section 7

The Varieties of Data
The previous section significantly expands our world of data. We must now deal with a universe
that contains booleans, symbols, and structures of many kinds. Let's bring some order to this
world.

Up to this point, our functions have always processed subclasses of four different kinds of data:24

• numbers: representations of numeric information;
• booleans: truth and falsity;
• symbols: representations of symbolic information; and
• structures: representations of compounds of information.

On occasion, however, a function must process a class of data that includes both numbers and
structures or structures of several different kinds. We learn to design such functions in this
section. In addition, we learn how to protect functions from bad uses. Here a bad use means that
some user can accidentally apply a function for drawing circles to a rectangle. Although we have
agreed that such users violate our data definitions, we should nevertheless know how to protect
our functions against such uses, when necessary.

7.1 Mixing and Distinguishing Data
In the preceding section, we used posn structures with exactly two components to represent
pixels. If many of the pixels are on the x axis, we can simplify the representation by using plain
numbers for those pixels and posn structures for the remaining ones.

Figure 16 contains a sample collection of such points. Three of the five points, namely, C, D, and
E, are on the x axis. Only two points require two coordinates for an accurate description: A and B.
Our new idea for representing points permits us to describe this class of points succinctly:
(make-posn 6 6) for A; (make-posn 1 2) for B; and 1, 2, and 3 for C, D, and E, respectively.

If we now wish to define the function distance-to-0, which consumes such point
representations and produces their distance to the origin, we are confronted with a problem. The
function may be applied to a number or a posn. Depending on the class to which the input
belongs, distance-to-0 must employ a different method to calculate the distance to the origin.
Thus we need to use a cond-expression to distinguish the two cases. Unfortunately, we don't
have any operations to formulate the appropriate conditions.

TE
AM
FL
Y

TEAM FLY PRESENTS

-82-

Figure 16: A small collection of points

To accommodate this kind of function, Scheme provides PREDICATES, which are operations that
recognize a particular form of data. The predicates for the classes of data we know are:

• number?, which consumes an arbitrary value and produces true if the value is a number
and false otherwise;

• boolean?, which consumes an arbitrary value and produces true if the value is a
boolean value and false otherwise;

• symbol?, which consumes an arbitrary value and produces true if the value is a symbol
and false otherwise;

• struct?, which consumes an arbitrary value and produces true if the value is a
structure and false otherwise.

For each structure definition, Scheme also introduces a separate predicate so that we can
distinguish between distinct classes of structures. Suppose the Definitions window contains
the following structure definitions:25

(define-struct posn (x y))

(define-struct star (last first dob ssn))

(define-struct airplane (kind max-speed max-load price))

Then, Scheme also knows the following three predicates:

• posn?, which consumes an arbitrary value and produces true if the value is a posn
structure and false otherwise;

• star?, which consumes an arbitrary value and produces true if the value is a star
structure and false otherwise;

• airplane?, which consumes an arbitrary value and produces true if the value is a
airplane structure and false otherwise.

TE
AM
FL
Y

TEAM FLY PRESENTS

-83-

Hence a function can distinguish a structure from a number as well as a posn structure from an
airplane structure.

Exercise 7.1.1. Evaluate the following expressions by hand:

1. (number? (make-posn 2 3))
2. (number? (+ 12 10))
3. (posn? 23)
4. (posn? (make-posn 23 3))
5. (star? (make-posn 23 3))

Check the answers in DrScheme.

Now we can develop distance-to-0. Let's start with a data definition:

A pixel-2 is either

1. a number, or
2. a posn structure.

Stating the contract, purpose, and header is straightforward:

;; distance-to-0 : pixel-2 -> number
;; to compute the distance of a-pixel to the origin
(define (distance-to-0 a-pixel) ...)

As mentioned before, the function must distinguish between its two kinds of inputs, which can
be accomplished with a cond-expression:

(define (distance-to-0 a-pixel)
 (cond
 [(number? a-pixel) ...]
 [(posn? a-pixel) ...]))

The two conditions match the two possible inputs of the new distance-to-0 function. If the
first one holds, the input is a pixel on the x axis. Otherwise the pixel is a posn structure. For the
second cond-line, we also know that the input contains two items: the x and y coordinates. To
remind ourselves, we annotate the template with two selector expressions:

(define (distance-to-0 a-pixel)
 (cond
 [(number? a-pixel) ...]
 [(posn? a-pixel) ... (posn-x a-pixel) ... (posn-y a-pixel) ...]))

Completing the function is easy. If the input is a number, it is the distance to the origin. If it is a
structure, we use the old formula for determining the distance to the origin:

(define (distance-to-0 a-pixel)
 (cond
 [(number? a-pixel) a-pixel]
 [(posn? a-pixel) (sqrt
 (+ (sqr (posn-x a-pixel))
 (sqr (posn-y a-pixel))))]))

TE
AM
FL
Y

TEAM FLY PRESENTS

-84-

Let us consider a second example. Suppose we are to write functions that deal with geometric
shapes. One function might have to compute the area covered by a shape, another one the
perimeter, and a third could draw the shape. For the sake of simplicity, let's assume that the class
of shapes includes only squares and circles and that their description includes their location (a
posn) and their size (a number).

Information about both shapes must be represented with structures, because both have several
attributes. Here are the structure definitions:

(define-struct square (nw length))
(define-struct circle (center radius))

and the matching data definition:

A shape is either

1. a circle structure:
2. (make-circle p s)

where p is a posn and s is a number; or

3. a square structure:
4. (make-square p s)

where p is a posn and s is a number.

Together, the two classes make up the class of shapes:

The next step of our design recipe requires that we make up examples. Let's start with input
examples:

1. (make-square (make-posn 20 20) 3),
2. (make-square (make-posn 2 20) 3), and
3. (make-circle (make-posn 10 99) 1).

To make up examples of input-output relationships, we need to know the purpose of the function.
So suppose we need the function perimeter, which computes the perimeter of a shape. From
geometry, we know that the perimeter of a square is four times its side, and the perimeter of a
circle is times the diameter, which is twice the radius.26 Thus, the perimeter of the above three
examples are: 12, 12, and (roughly) 6.28, respectively.

Following the design recipe and the precedent of distance-to-0, we start with the following
skeleton of the function:

;; perimeter : shape -> number

TE
AM
FL
Y

TEAM FLY PRESENTS

-85-

;; to compute the perimeter of a-shape
(define (perimeter a-shape)
 (cond
 [(square? a-shape) ...]
 [(circle? a-shape) ...]))

because the function must first determine to which class a-shape belongs.

Furthermore, each possible input is a structure, so we can also add two selector expressions to
each cond-clause:

;; perimeter : shape -> number
;; to compute the perimeter of a-shape
(define (perimeter a-shape)
 (cond
 [(square? a-shape)
 ... (square-nw a-shape) ... (square-length a-shape) ...]
 [(circle? a-shape)
 ... (circle-center a-shape) ... (circle-radius a-shape) ...]))

The selector expressions remind us of the available data.

Now we are ready to finish the definition. We fill the gaps in the two answers by translating the
mathematical formulae into Scheme notation:

(define (perimeter a-shape)
 (cond
 [(square? a-shape) (* (square-length a-shape) 4)]
 [(circle? a-shape) (* (* 2 (circle-radius a-shape)) pi)]))

Since the position of a shape does not affect its perimeter, the template's selector expressions for
nw and center disappear.

Exercise 7.1.2. Test perimeter with the examples.

Exercise 7.1.3. Develop the function area, which consumes either a circle or a square and
computes the area. Is it possible to reuse the template for perimeter by changing the name to
area?

7.2 Designing Functions for Mixed Data
The function development in the preceding section suggests some amendments to our design
recipe. Specifically, the data analysis step, the template construction step, and the definition of
the function's body require adjustments.

• Data Analysis and Design: When we analyze a problem statement, our first task is to
determine whether it mentions distinct classes of data -- which we call MIXED DATA and
which is also known as the UNION of data classes. In other words, the data analysis must
take into account several aspects now. First, we must determine how many distinct
classes of objects are mentioned in the problem and what their important attributes are. If
there are several different classes of objects, we are mixing data. Second, we must
understand whether the various objects have several properties. If an object has several

TE
AM
FL
Y

TEAM FLY PRESENTS

-86-

attributes, we use compound data for its representation. As a result, the resulting data
definition may have several clauses that enumerate several possibilities. Indeed, we will
see that the data analysis may yield a hierarchy of data definitions.

The example of the preceding section deals with two distinct kinds of shapes, each of
which has several properties. We captured this idea with the following data definition:

A shape is either

1. a circle structure:
2. (make-circle p s)

where p is a posn and s is a number; or

3. a square structure:
4. (make-square p s)

where p is a posn and s is a number.

It specifies that every shape belongs to one of two subclasses of data.

For a data definition to make sense, it must be possible to formulate conditions that
distinguish the various subclasses in a definition. That is, if x stands for a piece of data in
the defined class, we must be able to use built-in and user-defined predicates to
distinguish the enumerated subclasses from each other. In our running example, the two
conditions would be (square? x) and (circle? x).

• Template: Recall that the template is a translation of the input data definition into
Scheme. Thus, imagine that we have a data definition that enumerates several distinct
possibilities. The first step is to write down a cond-expression with as many clauses as
there are enumerated possibilities in the data definition. The second step is to add a
condition to each line. Each condition should hold if the input belongs to the
corresponding subclass of data mentioned in the data definition.

Here is the template for our running example:

;; f : shape -> ???
(define (f a-shape)
 (cond
 [(square? a-shape) ...]
 [(circle? a-shape) ...]))

The output specification and the purpose statement are missing to emphasize that a
template has no connection to the output or the purpose of a function.

TE
AM
FL
Y

TEAM FLY PRESENTS

-87-

Once we have formulated the template for the conditional, we refine the template further,
cond-line by cond-line. If the purpose of a line is to process atomic information, we are
done. If a line processes compound data, we enrich the template with appropriate selector
expressions.

Let's illustrate the idea with our running example again:

(define (f a-shape)
 (cond
 [(square? a-shape)
 ... (square-nw a-shape) ... (square-length a-shape) ...]
 [(circle? a-shape)
 ... (circle-center a-shape) ... (circle-radius a-shape) ...]))

• Body: Using the conditional template, we split the task into simpler tasks. Specifically,
we can focus on each cond-line separately, simply considering the question what is the
output if we are given this kind of input. All other cases are ignored as we work out one
particular clause.

Suppose we want to define a function that computes the perimeter of a shape. Then we
start from the template and fill in the gaps:

;; perimeter : shape -> number
;; to compute the perimeter of a-shape
(define (perimeter a-shape)
 (cond
 [(square? a-shape) (* (square-length a-shape) 4)]
 [(circle? a-shape) (* (* 2 (circle-radius a-shape)) pi)]))

Figure 17 summarizes the development of our running example.

The remaining steps of the recipes in figures 4, 6, and 12 should be followed on an as-is basis.
Figure 18 summarizes the design recipe, with all steps included.

;; Data Definition:
(define-struct circle (center radius))
(define-struct square (nw length))
;; A shape is either
;; 1. a structure: (make-circle p s)
;; where p is a posn, s a number;
;; 2. a structure: (make-square p s)
;; where p is a posn, s a number.

;; Contract, Purpose, Header:
;; perimeter : shape -> number
;; to compute the perimeter of a-shape

;; Examples: see tests

;; Template:
;; (define (f a-shape)
;; (cond
;; [(square? a-shape)
;; ... (square-nw a-shape) ... (square-length a-shape) ...]
;; [(circle? a-shape)

TE
AM
FL
Y

TEAM FLY PRESENTS

-88-

;; ... (circle-center a-shape) ... (circle-radius a-shape) ...]))

;; Definition:
(define (perimeter a-shape)
 (cond
 [(circle? a-shape)
 (* (* 2 (circle-radius a-shape)) pi)]
 [(square? a-shape)
 (* (square-length a-shape) 4)]))

;; Tests: (same as examples)
(= (perimeter (make-square ... 3)) 12)
(= (perimeter (make-circle ... 1)) (* 2 pi))

Figure 17: The design recipe for mixed data: A complete example

Phase Goal Activity
Data
 Analysis
 and Design

to formulate a data
definition

determine how many distinct classes of ``objects'' make
up the classes of problem data enumerate the
alternatives in a data definition formulate a data
definition for each alternative, if it is a form of
compound data

Contract
Purpose and
Header

to name the
function;
to specify its
classes of
 input data and its
 class of output
data;
to describe its
purpose;
to formulate a
header

name the function, the classes of input data, the class of
output data, and specify its purpose:
 ;; name : in1 in2 ...--> out
 ;; to compute ... from x1 ...
 (define (name x1 x2 ...) ...)

Examples to characterize the
input-
output relationship
via examples

create examples of the input-output relationship make
sure there is at least one example per subclass

Template to formulate an
outline

introduce a cond-expression with one clause per
subclass formulate a condition for each case, using
built-in and predefined predicates

Body to define the
function

develop a Scheme expression for each cond-line (an
answer), assuming that the condition holds

Test to discover
mistakes
 (``typos'' and
logic)

apply the function to the inputs of the examples check
that the outputs are as predicted

Figure 18: Designing a function for mixed data

TE
AM
FL
Y

TEAM FLY PRESENTS

-89-

 (Refines the recipes in figures 4 (pg. 5) and 12 (pg. 9))

Even a cursory comparative reading of the design recipes in sections 2.5, 4.4, 6.5, and the
current one suggests that the data analysis and the template design steps are becoming more and
more important. If we do not understand what kind of data a function consumes, we cannot
design it and organize it properly. If, however, we do understand the structure of the data
definition and organize our template properly, it is easy to modify or to extend a function. For
example, if we add new information to the representation of a circle, then only those cond-
clauses related to circles may require changes. Similarly, if we add a new kind of shape to our
data definition, say, rectangles, we must add new cond-clauses to our functions.

Exercise 7.2.1. Develop structure and data definitions for a collection of zoo animals. The
collection includes

• spiders, whose relevant attributes are the number of remaining legs (we assume that
spiders can lose legs in accidents) and the space they need in case of transport;

• elephants, whose only attributes are the space they need in case of transport;
• monkeys, whose attributes are intelligence and space needed for transportation.

Then develop a template for functions that consume zoo animals.

Develop the function fits?. The function consumes a zoo animal and the volume of a cage. It
determines whether the cage is large enough for the animal.

Exercise 7.2.2. The administrators of metropolitan transportation agencies manage fleets of
vehicles. Develop structure and data definitions for a collection of such vehicles. The collection
should include at least buses, limos, cars, and subways. Add at least two attributes per class of
vehicle.

Then develop a template for functions that consume vehicles.

7.3 Composing Functions, Revisited
As we analyze a problem statement, we might wish to develop the data representation in stages.
This is especially true when the problem statement mentions several different kinds of objects. It
is easier to understand several smaller data definitions than one larger one.

Let's return to our shape problem again. Instead of the class of shapes in a single data definition,
we could start with two data definitions, one for each basic shape:

A circle is a structure:

 (make-circle p s)
where p is a posn and s is a number.

A square is a structure:

 (make-square p s)
where p is a posn and s is a number.

TE
AM
FL
Y

TEAM FLY PRESENTS

-90-

Once we have developed and understood the basic data definitions, possibly by playing with
examples and by writing simple functions, we can introduce data definitions that combine them.
For example, we can introduce a data definition for a class of shapes that refers to the two above:

A shape is either

1. a circle, or
2. a square.

Now suppose we need a function that consumes shapes. First, we form a cond-expression with
conditions for each part of the data definition:

;; f : shape -> ???
(define (f a-shape)
 (cond
 [(circle? a-shape) ...]
 [(square? a-shape) ...]))

Given our guideline concerning the composition of functions from section 3.1 and given that the
data definition refers to two other data definitions, the natural second step is to pass the argument
to auxiliary functions:

(define (f a-shape)
 (cond
 [(circle? a-shape) (f-for-circle a-shape)]
 [(square? a-shape) (f-for-square a-shape)]))

This, in turn, requires that we develop the two auxiliary functions, f-for-circle and f-for-
square, including their templates.

;; Data Definition:

(define-struct circle (center
radius))

(define-struct squareP (nw
lengthP))

;; A shape is either

;; 1. a structure: (make-circle p
s)

;; where p is a posn, s a
number;

;; 2. a structure: (make-square p
s)

;; where p is a posn, s a
number.

;; Data Definitions:

(define-struct circle (center
radius))

;; A circle is a structure:

;; (make-circle p s)

;; where p is a posn, s a
number;

(define-struct squareP (nw
lengthP))

;; A square is a structure:

;; (make-square p s)

;; where p is a posn, s a
number.

TE
AM
FL
Y

TEAM FLY PRESENTS

-91-

;; A shape is either

;; 1. a circle, or

;; 2. a square.

;; Final Definition:

;; perimeter : shape -> number

;; to compute the perimeter of a-
shape

(define (perimeter a-shape)

 (cond

 [(circle? a-shape)

 (* (* 2 (circle-radius a-
shape)) pi)]

 [(square? a-shape)

 (* (square-length a-shape)
4)]))

;; Final Definitions:

;; perimeter : shape -> number

;; to compute the perimeter of
a-shape

(define (perimeter a-shape)

 (cond

 [(circle? a-shape)

 (perimeter-circle a-shape)]

 [(square? a-shape)

 (perimeter-square a-
shape)]))

;; perimeter-circle : circle ->
number

;; to compute the perimeter of
a-circle

(define (perimeter-circle a-
circle)

 (* (* 2 (circle-length a-
circle)) pi))

;; perimeter-square : square ->
number

;; to compute the perimeter of
a-square

(define (perimeter-square a-
square)

 (* (square-length a-square)
4))

TE
AM
FL
Y

TEAM FLY PRESENTS

-92-

Figure 19: Two ways to define perimeter

If we follow this suggestion, we arrive at a collection of three functions, one per data definition.
The essential points of the program development are summarized in the right column of
figure 19. For a comparison, the left column contains the corresponding pieces of the original
program development. In each case, we have as many functions as there are data definitions.
Furthermore, the references between the functions in the right column directly match the
references among the corresponding data definitions. While this symmetry between data
definitions and functions may seem trivial now, it becomes more and more important as we study
more complex ways of defining data.

Exercise 7.3.1. Modify the two versions of perimeter so that they also process rectangles. For
our purposes, the description of a rectangle includes its upper-left corner, its width, and its
height.

7.4 Extended Exercise: Moving Shapes
In section 6.6, we developed functions for drawing, translating, and clearing circles and
rectangles. As we have just seen, we should think of the two classes of data as subclasses of a
class of shapes so that we can just draw, translate, and clear shapes.

Exercise 7.4.1. Provide a data definition for a general class of shapes. The class should at least
subsume the classes of colored circles and rectangles from section 6.6.

Develop the template fun-for-shape, which outlines functions that consume shapes.

Exercise 7.4.2. Use the template fun-for-shape to develop draw-shape. The function
consumes a shape and draws it on the canvas.

Exercise 7.4.3. Use the template fun-for-shape to develop translate-shape. The function
consumes a shape and a number delta, and produces a shape whose key position is moved by
delta pixels in the x direction.

Exercise 7.4.4. Use the template fun-for-shape to develop clear-shape. The function
consumes a shape, erases it from the canvas, and returns true.

Exercise 7.4.5. Develop the function draw-and-clear-shape. The function consumes a shape,
draws it, sleeps for a while, and clears it. If all the effects work out, it produces true.

Exercise 7.4.6. Develop move-shape, which moves a shape across the canvas. The function
consumes a number (delta) and a shape. The function should draw-and-clear the shape and return
a new shape that has been translated by delta pixels. Use this function several times to move a
shape across the canvas.

7.5 Input Errors
Recall our first function:

TE
AM
FL
Y

TEAM FLY PRESENTS

-93-

;; area-of-disk : number -> number
;; to compute the area of a disk with radius r
(define (area-of-disk r)
 (* 3.14 (* r r)))

Clearly, our friends may wish to use this function, especially for some of their geometry
homework. Unfortunately, when our friends use this function, they may accidentally apply it to a
symbol rather than a number. When that happens, the function stops with a whimsical and
uninformative error message:

> (area-of-disk 'my-disk)
*: expects type <number> as 1st argument, given: 'my-disk; ...

Using predicates, we can do better.

To prevent this kind of accident, we should define checked versions of our functions, when we
wish to hand them to our friends. In general, a CHECKED FUNCTION inputs an arbitrary Scheme value:
a number, a boolean, a symbol, or a structure. For all those values that are in the class of values
for which the original function is defined, the checked version applies the latter; for all others, it
signals an error. Concretely, checked-area-of-disk consumes an arbitrary Scheme value, uses
area-of-disk to compute the area of the a disk if the input is a number, and stops with an error
message otherwise.

Based on the enumeration of Scheme's classes of values, the template for a checked function is
as follows:

;; f : Scheme-value -> ???
(define (f v)
 (cond
 [(number? v) ...]
 [(boolean? v) ...]
 [(symbol? v) ...]
 [(struct? v) ...]))

Each line corresponds to one possible class of input. If we need to distinguish between the
structures, we expand the last line appropriately.

The first clause is the only one where we can use area-of-disk. For the others, however, we
must signal an error. In Scheme we use the operation error to do so. It consumes a symbol and a
string. Here is an example:

(error 'checked-area-of-disk "number expected")

Hence the full definition of checked-area-of-disk is:

(define (checked-area-of-disk v)
 (cond
 [(number? v) (area-of-disk v)]
 [(boolean? v) (error 'checked-area-of-disk "number expected")]
 [(symbol? v) (error 'checked-area-of-disk "number expected")]
 [(struct? v) (error 'checked-area-of-disk "number expected")]))

Using else we can greatly simplify the function:

TE
AM
FL
Y

TEAM FLY PRESENTS

-94-

;; checked-area-of-disk : Scheme-value -> number
;; to compute the area of a disk with radius v,
;; if v is a number
(define (checked-area-of-disk v)
 (cond
 [(number? v) (area-of-disk v)]
 [else (error 'checked-area-of-disk "number expected")]))

Of course, such a simplification may not always be possible and may require a reordering of the
cond-clauses first.

Writing checked functions and simplifying them is important if we distribute the programs to
others. Designing programs that work properly, however, is far more important. The book
therefore focuses on the design process for the program proper and deemphasizes writing
checked versions.

Exercise 7.5.1. A checked version of area-of-disk can also enforce that the arguments to the
function are positive numbers, not just arbitrary numbers. Modify checked-area-of-disk in
this way.

Exercise 7.5.2. Develop checked versions of the functions profit (figure 5), is-between-5-6?
(section 4.2), reply (section 5), distance-to-0 (section 6.1), and perimeter (in the left
column of figure 19).

Exercise 7.5.3. Take a look at these structure and data definitions:

(define-struct vec (x y))

A speed-vector (vec) is a structure:

 (make-vec x y)
where both x and y are positive numbers.

Develop the function checked-make-vec, which should be understood as a checked version of
the primitive operation make-vec. It ensures that the arguments to make-vec are positive
numbers, and not just arbitrary numbers. In other words, checked-make-vec enforces our
informal data definition.

24 We have also discussed images and strings, but we ignore these for now.

25 The posn structure is automatically provided in DrScheme's teaching languages and should
never be defined.

26 The perimeter of a circle is also known as circumference.

TE
AM
FL
Y

TEAM FLY PRESENTS

-95-

Section 8

Intermezzo 1: Syntax and Semantics
Thus far we have approached Scheme as if it were a spoken language. Like toddlers, we learned
the vocabulary of the language, we acquired an intuitive understanding of its meaning, and we
figured out some basic rules of how to compose and not to compose sentences. Truly effective
communication, however, in any language -- be it natural like English or artificial like Scheme --
eventually requires a formal study of its vocabulary, its grammar, and the meaning of sentences.

A programming language is in many ways like a spoken language. It has a vocabulary and a
grammar. The vocabulary is the collection of those ``basic words'' from which we can compose
``sentences'' in our language. A sentence in a programming language is an expression or a
function; the language's grammar dictates how to form complete sentences from words.
Programmers use the terminology SYNTAX to refer to the vocabularies and grammars of
programming languages.

Not all grammatical sentences are meaningful -- neither in English nor in a programming
language. For example, the English sentence ``the cat is round'' is a meaningful sentence, but
``the brick is a car'' makes no sense, even though it is completely grammatical. To determine
whether or not a sentence is meaningful, we must study the MEANING, or SEMANTICS, of words and
sentences. For spoken languages, we typically explain the meaning of words with sentences that
use simpler words; in the case of a foreign language, we sometimes explain a word with simple
sentences in the foreign language or we translate words to a known language. For programming
languages, there are also several ways to explain the meaning of individual sentences. In this
book, we discuss the meaning of Scheme programs through an extension of the familiar laws of
arithmetic and algebra. After all, computation starts with this form of simple mathematics, and
we should understand the connection between this mathematics and computing.

The first three sections present the vocabulary, grammar, and meaning of a small, but powerful
subset of Scheme. The fourth one resumes our discussion of run-time errors in Scheme, based on
our new understanding of its meaning. The remaining three sections revisit and and or
expressions, variable definitions, and structures.

8.2 The Scheme Vocabulary
Scheme's basic vocabulary consists of five categories of words. The five lines in figure 20 show
how computer scientists discuss the vocabulary of a language.27 All lines employ the same
notation. They enumerate some simple examples separated by a bar (`` | ''). Dots indicate that
there are more things of the same kind in some category.

<var> = x | area-of-disk | perimeter | ...
<con> = true | false
 'a | 'doll | 'sum | ...

TE
AM
FL
Y

TEAM FLY PRESENTS

-96-

 1 | -1 | 3/5 | 1.22 | ...
<prm> = + | - | ...

Figure 20: Beginning Student Scheme: The core vocabulary

The first category is that of variables, which are the names of functions and values. The second
introduces constants: boolean, symbolic, and numeric constants. As indicated before, Scheme
has a powerful number system, which is best introduced gradually by examples. The final
category is that of primitive operations, which are those basic functions that Scheme provides
from the very beginning. While it is possible to specify this collection in its entirety, it is best
introduced in pieces, as the need arises.

For the classification of Scheme sentences, we also need three keywords: define, cond, and
else. These keywords have no meaning. Their role resembles that of punctuation marks,
especially that of commas and semicolons, in English writing; they help programmers
distinguish one sentence from another. No keyword may be used as a variable.

8.3 The Scheme Grammar
In contrast to many other programming languages, Scheme has a simple grammar. It is shown in
its entirety in figure 21.28 The grammar defines two categories of sentences: Scheme definitions,
<def>, and expressions, <exp>. While the grammar does not dictate the use of white space
between the items of sentences, we follow the convention to put at least one blank space behind
each item unless an item is followed by a right parenthesis ``)''. Scheme is flexible concerning
blank space, and we can replace a single blank space by many spaces, line breaks, and page
breaks.

<def> = (define (<var> <var> ...<var>) <exp>)
<exp> = <var>
 | <con>
 | (<prm> <exp> ...<exp>)
 | (<var> <exp> ...<exp>)
 | (cond (<exp> <exp>) ...(<exp> <exp>))
 | (cond (<exp> <exp>) ...(else <exp>))

Figure 21: Beginning Student Scheme: The core grammar

The two grammar definitions describe how to form atomic sentences and compound sentences,
which are sentences built from other sentences. For example, a function definition is formed by
using ``('', followed by the keyword define, followed by another ``('', followed by a non-empty
sequence of variables, followed by ``)'', followed by an expression, and closed by a right
parenthesis ``)'' that matches the very first one. The keyword define distinguishes definitions
from expressions.

TE
AM
FL
Y

TEAM FLY PRESENTS

-97-

The category of expressions consists of six alternatives: variables, constants, primitive
applications, (function) applications, and two varieties of conditionals. The last four are again
composed of other expressions. The keyword cond distinguishes conditional expressions from
primitive and function applications.

Here are three examples of expressions: 'all, x, and (x x). The first one belongs to the class of
symbols and is therefore an expression. The second is a variable, and every variable is an
expression. Finally, the third is a function application, because x is a variable.

In contrast, the following parenthesized sentences are not expressions: (f define), (cond x),
and (). The first one partially matches the shape of a function application but it uses define as if
it were a variable. The second one fails to be a correct cond-expression because it contains a
variable as the second item and not a pair of expressions surrounded by parentheses. The last one
is just a pair of parentheses, but the grammar requires that every left parenthesis is followed by
something other than a right parenthesis.

Exercise 8.3.1. Why are the sentences

1. x 2. (= y z) 3. (= (= y z) 0)

syntactically legal expressions?

Explain why the following sentences are illegal expressions:

1. (3 + 4) 2. empty?(l) 3. (x)

Exercise 8.3.2. Why are the sentences

1. (define (f x) x) 2. (define (f x) y) 3. (define (f x y) 3)

syntactically legal definitions?

Explain why the following sentences are illegal definitions:

1. (define (f 'x) x) 2. (define (f x y z) (x)) 3. (define (f) 10)

Exercise 8.3.3. Distinguish syntactically legal from illegal sentences:

1. (x) 2. (+ 1 (not x)) 3. (+ 1 2 3)

Explain why the sentences are legal or illegal.

Exercise 8.3.4. Distinguish syntactically legal from illegal sentences:

1. (define (f x) 'x) 2. (define (f 'x) x) 3. (define (f x y) (+ 'y (not x)))

Explain why the sentences are legal definitions or why they fail to be legal definitions.

TE
AM
FL
Y

TEAM FLY PRESENTS

-98-

Grammatical Terminology: The components of compound sentences have names. We have
introduced some of these names on an informal basis; for better communication, we introduce all
useful ones here. The second component of a definition, that is, the non-empty sequence of
variables, is a HEADER. Accordingly, the expression component of a definition is called BODY. The
variables that follow the first variable in a header are the PARAMETERS of a function.

(define (<function-name> <parameter> ...<parameter>) <body>)
(<function> <argument> ...<argument>)
(cond (<question> <answer>) <cond-clause> ...)

Figure 22: Syntactic naming conventions

People who think of definition as the definition of a mathematical function also use the
terminology LEFT-HAND SIDE for a definition's header and RIGHT-HAND SIDE for the body. For the same
reason, the first component in an application is called FUNCTION and the remaining components are
referred to as ARGUMENTS. Occasionally, we also use ACTUAL ARGUMENTS.

Finally, a cond-expression consists of cond-lines or cond-clauses. Each line consists of two
expressions: the QUESTION and the ANSWER. A question is also called a CONDITION.

Figure 22 provides a summary of the conventions.

8.4 The Meaning of Scheme
A legal DrScheme program consists of two items: a sequence of function definitions (in the
Definitions window) and a sequence of interactions (in the Interactions window). Each
interaction is a demand for the evaluation of one Scheme expression, which typically refers to
the functions defined in the upper part of DrScheme.

When DrScheme evaluates an expression, it uses nothing but the laws of arithmetic and algebra
to convert an expression into a value. In ordinary mathematics courses, values are just numbers.
We also include symbols, booleans, and indeed all constants:

<val> = <con>
The collection of values is thus just a subset of the collection of expressions.

Now that we have defined the set of values, it is easy to introduce and to explain the evaluation
rules. The rules come in two categories: those that appeal to arithmetic knowledge and those that
rely on a small amount of algebra. First, we need an infinite number of rules like those of
arithmetic to evaluate applications of primitives:

(+ 1 1) = 2
(- 2 1) = 1

But Scheme ``arithmetic'' is more general than just number crunching. It also includes rules for
dealing with boolean values, symbols, and lists like these:

TE
AM
FL
Y

TEAM FLY PRESENTS

-99-

(not true) = false
(symbol=? 'a 'b) = false
(symbol=? 'a 'a) = true

Second, we need one rule from algebra to understand how the application of a user-defined
function advances computation. Suppose the Definitions window contains the definition

(define (f x-1 ... x-n)
 exp)

and f, x-1, ..., x-n are variables and exp is some (legal) expression. Then an application of
a function is governed by the law:

(f v-1 ... v-n) = exp with all x-1 ... x-n replaced by v-1 ... v-n
where v-1 ... v-n is a sequence of values that is as long as x-1 ... x-n.

This rule is as general as possible, so it is best to look at a concrete example. Say the definition is

(define (poly x y)
 (+ (expt 2 x) y))

Then the application (poly 3 5) can be evaluated as follows:

 (poly 3 5)
= (+ (expt 2 3) 5))
 ;; This line is (+ (expt 2 x) y) where x was replaced by 3 and y by 5 .
= (+ 8 5)
= 13

These last two steps follow from plain arithmetic.

Third and finally, we need some rules that help us determine the value of cond-expressions.
These rules are algebraic rules but are not a part of the standard algebra curriculum:

• cond_false: when the first condition is false:
• (cond
• [false ...]
• [exp1 exp2]
• ...)
• = (cond
• ; The first line disappeared.
• [exp1 exp2]
• ...)

then the first cond-line disappears;

• cond_true: when the first condition is true:
• (cond
• [true exp]
• ...)
• = exp
•

TE
AM
FL
Y

TEAM FLY PRESENTS

-100-

•

the entire cond-expressions is replaced by the first answer;

• cond_else: when the only line left is the else-line:
• (cond
• [else exp])
• = exp
•

the cond-expressions is replaced by the answer in the else-clause.

No other rules are needed to understand cond.

Consider the following evaluation:

(cond
 [false 1]
 [true (+ 1 1)]
 [else 3])

= (cond
 [true (+ 1 1)]
 [else 3])

= (+ 1 1)

= 2

It first eliminates a cond-line and then equates the cond-expression with (+ 1 1). The rest is
plain arithmetic again.

The rules are equations of the form that we use in arithmetic and algebra on a daily basis. Indeed,
the same laws apply to this system of equations as to those in mathematics. For example, if a =
b and b = c, then we also know that a = c. A consequence is that as we get better at hand-
evaluations, we can skip obvious steps and combine several equational inferences into one. Here
is one shorter version of the previous evaluation:

 (cond
 [false 1]
 [true (+ 1 1)]
 [else 3])

= (+ 1 1)

= 2

Even more importantly, we can replace any expression by its equal in every context -- just as in
algebra. Here is a another cond-expression and its evaluation:

 (cond
 [(= 1 0) 0]
 [else (+ 1 1)])
 ;; The underlined expression is evaluated first.
= (cond

TE
AM
FL
Y

TEAM FLY PRESENTS

-101-

 [false 0]
 [else (+ 1 1)])
 ;; Here cond_false applies.
= (cond
 [else (+ 1 1)])
 ;; Using cond_else, we now get an arithmetic expression.
= (+ 1 1)
= 2

For the first step, we evaluated the nested, underlined expression, which is clearly essential here,
because no cond rule would apply otherwise. Of course, there is nothing unusual about this kind
of computing. We have done this many times in algebra and in the first few sections of this book.

Exercise 8.4.1. Evaluate the following expressions step by step:

1. (+ (* (/ 12 8) 2/3)
 (- 20 (sqrt 4)))

2. (cond
 [(= 0 0) false]
 [(> 0 1) (symbol=? 'a 'a)]
 [else (= (/ 1 0) 9)])

3. (cond
 [(= 2 0) false]
 [(> 2 1) (symbol=? 'a 'a)]
 [else (= (/ 1 2) 9)]) ;

Exercise 8.4.2. Suppose the Definitions window contains

;; f : number number -> number
(define (f x y)
 (+ (* 3 x) (* y y)))

Show how DrScheme evaluates the following expressions, step by step:

1. (+ (f 1 2) (f 2 1))

2. (f 1 (* 2 3))

3. (f (f 1 (* 2 3)) 19) ;

8.5 Errors
Parenthesized sentences may or may not belong to Scheme, depending on whether or not they
are legal according to the grammar in figure 21. If DrScheme verifies that a sentence does not
belong to the language dubbed Beginning Student, it signals a SYNTAX ERROR.

The remaining expressions are syntactically legal, but some of those may still pose problems for
our evaluation rules. We say that such legal expressions contain LOGICAL ERRORS or RUN-TIME ERRORS.
Consider the simplest example: (/ 1 0). We already know from mathematics that

TE
AM
FL
Y

TEAM FLY PRESENTS

-102-

does not have a value. Clearly, since Scheme's calculations must be consistent with mathematics,
it too must not equate (/ 1 0) with a value.

In general, if an expression is not a value and if the evaluation rules allow no further
simplification, we say that an error occurred or that the function raises an error signal.
Pragmatically this means that the evaluation stops immediately with an appropriate error
message, such as "/: divide by zero" for division by zero.

For an example, consider the following evaluation:

 (+ (* 20 2) (/ 1 (- 10 10)))
= (+ 40 (/ 1 0))
= /: divide by zero

The error eliminates the context (+ 40 ...) around (/ 1 0), which represents the remainder of
the computation with respect to the division.

To understand how run-time errors are signaled, we must inspect the evaluation rules again.
Consider the function

;; my-divide : number -> number
(define (my-divide n)
 (cond
 [(= n 0) 'inf]
 [else (/ 1 n)]))

Now suppose we apply my-divide to 0. Then the first step is:

 (my-divide 0)

= (cond
 [(= 0 0) 'inf]
 [else (/ 1 0)])

It would obviously be wrong to say that the function signals the error ``/: divide by zero'' now,
even though an evaluation of the underlined subexpression would demand it. After all, (= 0 0)
is true and therefore the application has a proper result:

 (my-divide 0)

= (cond
 [(= 0 0) 'inf]
 [else (/ 1 0)])

= (cond
 [true 'inf]
 [else (/ 1 0)])

= 'inf

Fortunately, our laws of evaluation take care of these situations automatically. We just need to
keep in mind when the laws apply. For example, in

(+ (* 20 2) (/ 20 2))

TE
AM
FL
Y

TEAM FLY PRESENTS

-103-

the addition cannot take place before the multiplication or division. Similarly, the underlined
division in

(cond
 [(= 0 0) 'inf]
 [else (/ 1 0)])

cannot be evaluated until the corresponding line is the first condition in the cond-expression.

As a rule of thumb, it is best to keep the following in mind:

Guideline on Expression Evaluation
Simplify the outermost (and left-most) subexpression that is ready for evaluation.

While this guideline is a simplification, it always explains Scheme's results.

In some cases, programmers also want to define functions that raise errors. Recall the checked
version of area-of-disk from section 6:

;; checked-area-of-disk : Scheme-value -> boolean
;; to compute the area of a disk with radius v, if v is a number
(define (checked-area-of-disk v)
 (cond
 [(number? v) (area-of-disk v)]
 [else (error 'checked-area-of-disk "number expected")]))

If we were to apply checked-area-of-disk to a symbol, we would get the following evaluation:

 (- (checked-area-of-disk 'a)
 (checked-area-of-disk 10))

= (- (cond
 [(number? 'a) (area-of-disk 'a)]
 [else (error 'checked-area-of-disk "number expected")])
 (checked-area-of-disk 10))

= (- (cond
 [false (area-of-disk 'a)]
 [else (error 'checked-area-of-disk "number expected")])
 (checked-area-of-disk 10))

= (- (error 'checked-area-of-disk "number expected")
 (checked-area-of-disk 10))

= checked-area-of-disk : number expected

In other words, when we evaluate an the error expression, we proceed as if we had encountered
a division by zero.

8.6 Boolean Expressions

TE
AM
FL
Y

TEAM FLY PRESENTS

-104-

Our current definition of the Beginning Student Scheme language omits two forms of
expressions: and and or expressions. Adding them provides a case study of how to study new
language construct. We must first understand their syntax, then their semantics, and finally their
pragmatics.

Here is the revised grammar:

<exp> = (and <exp> <exp>)
 | (or <exp> <exp>)

The grammar says that and and or are keywords, each followed by two expressions. At first
glance, the two look like (primitive or function) applications. To understand why they are not,
we must look at the pragmatics of these expressions first.

Suppose we need to formulate a condition that determines whether the n-th fraction of 1 is m:

(and (not (= n 0))
 (= (/ 1 n) m))

We formulate the condition as an and combination of two boolean expressions, because we don't
wish to divide by 0 accidentally. Next, assume n becomes 0 during the course of the evaluation.
Then the expression becomes

(and (not (= 0 0))
 (= (/ 1 0) m))

Now, if and were an ordinary operation, we would have to evaluate both subexpressions, which
would trigger an error in the second one. For this reason, and is not a primitive operation, but a
special expression. In short, we use and and or expressions to combine boolean computations
that may have to short-cut an evaluation.

Once we understand how and and or expressions should be evaluated, it is easy to formulate
matching rules. Better still, we can formulate expressions in our first language that are equivalent
to these expressions:

(and <exp-1> <exp-2>)
=
(cond
 [<exp-1> <exp-2>]
 [else false])

and

(or <exp-1> <exp-2>)
=
(cond
 [<exp-1> true]
 [else <exp-2>])

These equivalences simplify what actually takes place in DrScheme but they are a perfectly
appropriate model for now.

TE
AM
FL
Y

TEAM FLY PRESENTS

-105-

8.7 Variable Definitions
Programs consist not only of function definitions but also variable definitions, but these weren't
included in our first grammar.

Here is the grammar rule for variable definitions:

<def> = (define <var> <exp>)

The shape of a variable definition is similar to that of a function definition. It starts with a ``('',
followed by the keyword define, followed by a variable, followed by an expression, and closed
by a right parenthesis ``)'' that matches the very first one. The keyword define distinguishes
variable definitions from expressions, but not from function definitions. For that, a reader must
look at the second component of the definition.

Next we must understand what a variable definition means. A variable definition like

(define RADIUS 5)

has a plain meaning. It says that wherever we encounter RADIUS during an evaluation, we may
replace it with 5.

When DrScheme encounters a definition with a proper expression on the right-hand side, it must
evaluate that expression immediately. For example, the right-hand side of the definition

(define DIAMETER (* 2 RADIUS))

is the expression (* 2 RADIUS). Its value is 10 because RADIUS stands for 5. Hence we can act
as if we had written

(define DIAMETER 10)

In short, when DrScheme encounters a variable definition, it determines the value of the right-
hand side. For that step, it uses all those definitions that precede the current definition but not
those that follow. Once DrScheme has a value for the right-hand side, it remembers that the
name on the left-hand side stands for this value. Whenever we evaluate an expression, every
occurrence of the defined variable is replaced by its value.

(define RADIUS 10)

(define DIAMETER (* 2 RADIUS))

;; area : number -> number
;; to compute the area of a disk with radius r
(define (area r)
 (* 3.14 (* r r)))

(define AREA-OF-RADIUS (area RADIUS))

Figure 23: An example of variable definitions

TE
AM
FL
Y

TEAM FLY PRESENTS

-106-

Consider the sequence of definitions in figure 23. As DrScheme steps through this sequence of
definitions, it first determines that RADIUS stands for 10, DIAMETER for 20, and area is the name
of a function. Finally, it evaluates (area RADIUS) to 314.0 and associates AREA-OF-RADIUS
with that value.

Exercise 8.7.1. Make up five examples of variable definitions. Use constants and expressions
on the right-hand side.

Exercise 8.7.2. Evaluate the following sequence of definitions

(define RADIUS 10)

(define DIAMETER (* 2 RADIUS))

(define CIRCUMFERENCE (* 3.14 DIAMETER))

by hand.

Exercise 8.7.3. Evaluate the following sequence of definitions

(define PRICE 5)

(define SALES-TAX (* .08 PRICE))

(define TOTAL (+ PRICE SALES-TAX))

by hand.

8.8 Structure Definitions
We still have to understand the syntax and semantics of one more Scheme construct: define-
struct. When we define a structure, we really define several primitive operations: a constructor,
several selectors, and a predicate. Hence, define-struct is by far the most complex Scheme
construct we use.

A structure definition is a third form of definition. The keyword define-struct distinguishes
this form of definition from function and variable definitions. The keyword is followed by a
name and a sequence of names enclosed in parentheses:

<def> = (define-struct <var0> (<var-1> ... <var-n>)) .
The names in a define-struct definition must be chosen as if they were function names,
though none of them is used as a function (or variable) name.

Here is a simple example:

 (define-struct point (x y z)) .

Since point, x, y, and z are variables and the parentheses are placed according to the
grammatical pattern, it is a proper definition of a structure. In contrast, these two parenthesized
sentences

TE
AM
FL
Y

TEAM FLY PRESENTS

-107-

 (define-struct (point x y z))

 (define-struct point x y z)

are improper definitions, because define-struct is not followed by a single variable name and
a sequence of variables in parentheses.

A define-struct definition introduces new primitive operations. The names of these operations
are formed from those that occur in the definition. Suppose a data structure definition has the
following shape:

 (define-struct c (s-1 ... s-n))

Then Scheme introduces the following primitive operations:

1. make-c: a CONSTRUCTOR;
2. c-s-1 ... c-s-n: a series of SELECTORS; and
3. c?: a PREDICATE.

These primitives have the same status as +, -, or *. Before we can understand the rules that
govern these new primitives, however, we must return to the definition of values. After all, the
purpose of define-struct is to introduce a new class of values: structures.

Simply put, the set of values no longer consists of just constants, but also of structures, which
compound several values into one. In terms of our grammar of values, we must add one clause
per define-struct:

<val> = (make-c <val> ... <val>)

Let us return to the points structures. Since the list of fields contains three names, (make-point
u v w) is a value if u, v, and w are values.

Now we are in a position to understand the evaluation rules of the new primitives. If c-s-1 is
applied to a c structure, it returns the first component of the value. Similarly, the second selector
extracts the second component, the third selector the third component, and so on. The
relationship between the new data constructor and the selectors is best characterized with n
equations:

(c-s-1 (make-c V-1 ... V-n)) = V-1

(c-s-n (make-c V-1 ... V-n)) = V-n

where V-1 ... V-n is a sequence of values that is as long as s-1 ... s-n.

For our running example, we get the equations

(point-x (make-point V U W)) = V
(point-y (make-point V U W)) = U
(point-z (make-point V U W)) = W

TE
AM
FL
Y

TEAM FLY PRESENTS

-108-

In particular, (point-y (make-point 3 4 5)) is equal to 4, and (point-x (make-point
(make-point 1 2 3) 4 5)) evaluates to (make-point 1 2 3) because the latter is also a
value.

The predicate c? can be applied to any value. It returns true if the value is of kind c and false
otherwise. We can translate both parts into equations. The first one,

(c? (make-c V-1 ... V-n)) = true ,

relates c? and values constructed with make-c; the second one,

(c? V) = false; if V is a value not constructed with make-c ,

relates c? to all other values.

Again, the equations are best understood in terms of our example. Here are the general equations:

(point? (make-point V U W)) = true
(point? U) = false ; if U is value, but not a point structure.

Thus, (point? (make-point 3 4 5)) is true and (point? 3) is false.

Exercise 8.8.1. Distinguish legal from illegal sentences:

1. (define-struct personnel-record (name salary dob ssn))
2. (define-struct oops ())
3. (define-struct child (dob date (- date dob)))
4. (define-struct (child person) (dob date))
5. (define-struct child (parents dob date))

Explain why the sentences are legal define-struct definitions or how they fail to be legal
define-struct definitions.

Exercise 8.8.2. Which of the following are values?

1. (make-point 1 2 3)
2. (make-point (make-point 1 2 3) 4 5)
3. (make-point (+ 1 2) 3 4)

Exercise 8.8.3. Suppose the Definitions window contains

(define-struct ball (x y speed-x speed-y))

Determine the results of the following expressions:

1. (number? (make-ball 1 2 3 4))
2. (ball-speed-y (make-ball (+ 1 2) (+ 3 3) 2 3))
3. (ball-y (make-ball (+ 1 2) (+ 3 3) 2 3))

Also check how DrScheme deals with the following expressions:

TE
AM
FL
Y

TEAM FLY PRESENTS

-109-

1. (number? (make-ball 1 3 4))
2. (ball-x (make-posn 1 2))
3. (ball-speed-y 5)

Verify your solutions with DrScheme.

<def> = (define (<var> <var> ...<var>) <exp>)
 | (define <var> <exp>)
 | (define-struct <var0> (<var-1> ...<var-n>))
<exp> = <var>
 | <con>
 | (<prm> <exp> ...<exp>)
 | (<var> <exp> ...<exp>)
 | (cond (<exp> <exp>) ...(<exp> <exp>))
 | (cond (<exp> <exp>) ...(else <exp>))
 | (and <exp> <exp>)
 | (or <exp> <exp>)

Figure 24: Beginning Student Scheme: The full grammar

27 We use different fonts to distinguish the words of different categories. Constants and primitive
operations are type set in sans serif, variables in italics, and keywords in boldface.

28 This grammar describes only that portion of Scheme we have used so far (minus variable and
structure definitions), which still covers a large subset of the full language. Scheme is a bit larger,
and we will get to know more of it in the remaining parts of the book. TE

AM
FL
Y

TEAM FLY PRESENTS

-110-

Part II

Processing Arbitrarily Large Data

TE
AM
FL
Y

TEAM FLY PRESENTS

-111-

Section 9

Compound Data, Part 2: Lists
Structures are one way to represent compound information. They are useful when we know how
many pieces of data we wish to combine. In many cases, however, we don't know how many
things we wish to enumerate, and in that case we form a list. A list can be of arbitrary length, that
is, it contains a finite, but undetermined number of pieces of data.

Forming lists is something that all of us do. Before we go grocery shopping, we often write down
a list of items that we want to purchase. When we plan out a day in the morning, we write down
a list of things to do. During December, many children prepare Christmas wish lists. To plan a
party, we list the people we want to invite. In short, arranging information in the form of lists is a
ubiquitous part of our life, and we should learn to represent lists as Scheme data. In this section,
we first learn to create lists and then move on to developing functions that consume lists.

9.1 Lists
When we form a list, we always start out with the empty list. In Scheme,

empty

represents the empty list. From here, we can construct a longer list with the operation cons. Here
is a simple example:

(cons 'Mercury empty)

In this example, we constructed a list from the empty list and the symbol 'Mercury. Figure 25
presents this list in the same pictorial manner we used for structures. The box for cons has two
fields: first and rest. In this specific example the first field contains 'Mercury and the rest
field contains empty.

(cons 'Mercury empty) 'Mercury empty

(cons 'Venus (cons 'Mercury empty)) 'Venus 'Mercury empty

(cons 'Earth (cons 'Venus (cons 'Mercury empty))) 'Earth 'Venus 'Mercury empty

Figure 25: Building a list

TE
AM
FL
Y

TEAM FLY PRESENTS

-112-

Once we have a list with one item on it, we can construct lists with two items by using cons
again:

(cons 'Venus (cons 'Mercury empty))

The middle row of figure 25 shows how we should imagine the second list. It is also a box of
two fields, but this time the rest field contains a box. Indeed, it contains the box from the top
row of the same figure.

Finally, we construct a list with three items:

(cons 'Earth (cons 'Venus (cons 'Mercury empty)))

The last row of figure 25 illustrates the list with three items. Its rest field contains a box that
contains a box again. So, as we create lists we put boxes into boxes into boxes, etc. While this
may appear strange at first glance, it is just like a set of Chinese gift boxes or a set of nested
drinking cups, which we sometimes get for our early birthdays. The only difference is that
Scheme programs can nest lists much deeper than any artist could nest physical boxes.

Exercise 9.1.1. Create Scheme lists that represent

1. the list of all planets in our solar system;
2. the following meal: steak, pommes-frites, beans, bread, water, juice, brie cheese, and ice-

cream; and
3. the list of basic colors.

Sketch box representations of these lists, similar to those in figure 25.

We can also make lists of numbers. As before, empty is the list without any items. Here is a list
with 10 numbers:

(cons 0
 (cons 1
 (cons 2
 (cons 3
 (cons 4
 (cons 5
 (cons 6
 (cons 7
 (cons 8
 (cons 9 empty))))))))))

To build it requires 10 list constructions and one empty list.

In general a list does not have to contain values of one kind, but may contain arbitrary values:

(cons 'RobbyRound
 (cons 3
 (cons true
 empty)))

Here the first item is a symbol, the second one is a number, and the last one a boolean. We could
think of this list as the representation of a personnel record that includes the name of the

TE
AM
FL
Y

TEAM FLY PRESENTS

-113-

employee, the number of years spent at the company, and whether the employee has health
insurance through the company plan.

Now suppose we are given a list of numbers. One thing we might wish to do is add up the
numbers on the list. To make this more concrete, let us assume that we are only interested in lists
of three numbers:

A list-of-3-numbers is

 (cons x (cons y (cons z empty)))
where x, y, and z are numbers.

We write down the contract, purpose, header, and examples as before:

;; add-up-3 : list-of-3-numbers -> number
;; to add up the three numbers in a-list-of-3-numbers
;; examples and tests:
;; (= (add-up-3 (cons 2 (cons 1 (cons 3 empty)))) 6)
;; (= (add-up-3 (cons 0 (cons 1 (cons 0 empty)))) 1)
(define (add-up-3 a-list-of-3-numbers) ...)

To define the body, however, presents a problem. A constructed list is like a structure. Hence we
should layout a template with selector expressions next. Unfortunately, we don't know how to
select items from a list.

In analogy to structure selectors, Scheme implements operations for extracting the fields from a
constructed list: first and rest.29 The first operation extracts the item that we used to
construct a list; the rest operation extracts the list field.

To describe how first, rest, and cons are related, we can use equations that are similar to the
equations that govern addition and subtraction and structure creation and field extraction:

 (first (cons 10 empty))
= 10

 (rest (cons 10 empty))
= empty

 (first (rest (cons 10 (cons 22 empty))))
= (first (cons 22 empty))
= 22

The last one demonstrates how to evaluate nested expressions. The key is to think of (cons a-
value a-list) as a value. And, as always, we start with the evaluation of the innermost
parenthesized expressions that can be reduced, just as in arithmetic. In the above calculations, the
expressions that are about to be reduced next are underlined.

Using first and rest we can now write down a template for add-up-3:

;; add-up-3 : list-of-3-numbers -> number
;; to add up the three numbers in a-list-of-3-numbers
(define (add-up-3 a-list-of-3-numbers)
 ... (first a-list-of-3-numbers) ...

TE
AM
FL
Y

TEAM FLY PRESENTS

-114-

 ... (first (rest a-list-of-3-numbers)) ...
 ... (first (rest (rest a-list-of-3-numbers))) ...)

The three expressions remind us that the input, called a-list-of-3-numbers, contains three
components and how to extract them.

Exercise 9.1.2. Let l be the list

(cons 10 (cons 20 (cons 5 empty)))

What are the values of the following expressions?

1. (rest l)
2. (first (rest l))
3. (rest (rest l))
4. (first (rest (rest l)))
5. (rest (rest (rest l)))

Exercise 9.1.3. Finish the development of add-up-3, that is, define the body and test the
complete function on some examples.

A list of three numbers is one possible representation for 3-dimensional points. The distance of a
3-dimensional point to the origin of the coordinate grid is computed in the same manner as that
of 2-dimensional point: by squaring the numbers, adding them up, and taking the square root.

Use the template for add-up-3 to develop distance-to-0-for-3, which computes the distance
of a 3-dimensional point to the origin.

Exercise 9.1.4. Provide a data definition for lists of two symbols. Then develop the function
contains-2-doll?, which consumes a list of two symbols and determines whether one of them
is 'doll.

On the Precise Relationship between Cons and Structures: The discussion of cons, first,
and rest suggests that cons creates a structure and first and rest are ordinary selectors:

(define-struct pair (left right))

(define (our-cons a-value a-list) (make-pair a-value a-list))

(define (our-first a-pair) (pair-left a-pair))

(define (our-rest a-pair) (pair-right a-pair))

(define (our-cons? x) (pair? x))

Although these definitions are a good first approximation, they are inaccurate in one important
point. DrScheme's version of cons is really a checked version of make-pair. Specifically, the
cons operation ensures that the right field is always a list, that is, constructed or empty. This
suggests the following refinement:

(define (our-cons a-value a-list)
 (cond

TE
AM
FL
Y

TEAM FLY PRESENTS

-115-

 [(empty? a-list) (make-pair any a-list)]
 [(our-cons? a-list) (make-pair any a-list)]
 [else (error 'cons "list as second argument expected")]))

The definitions for our-first, our-rest, and our-cons? remain the same. Finally, we must
also promise not to use make-pair directly so that we don't accidentally build a bad list.

9.2 Data Definitions for Lists of Arbitrary Length
Suppose we wish to represent the inventory of a toy store that sells such things as dolls, make-up
sets, clowns, bows, arrows, and soccer balls. To make an inventory, a store owner would start
with an empty sheet of paper and slowly write down the names of the toys on the various shelves.

Representing a list of toys in Scheme is straightforward. We can simply use Scheme's symbols
for toys and then construct lists from them. Here are a few short samples:

empty
(cons 'ball empty)
(cons 'arrow (cons 'ball empty))
(cons 'clown empty)
(cons 'bow (cons 'arrow (cons 'ball empty)))
(cons 'clown (cons 'bow (cons 'arrow (cons 'ball empty))))

For a real store, the list will contain many more items, and the list will grow and shrink over time.
In any case, we cannot say in advance how many items these inventory lists will contain. Hence,
if we wish to develop a function that consumes such lists, we cannot simply say that the input is
a list with either one, two, three, or four items. We must be prepared to think about lists of
arbitrary length.

In other words, we need a data definition that precisely describes the class of lists that contain an
arbitrary number of symbols. Unfortunately, the data definitions we have seen so far can only
describe classes of data where each item is of a fixed size, such as a structure with a specific
number of components or a list with a specific number of items. So how can we describe a class
of lists of arbitrary size?

Looking back we see that all our examples fall into one of two categories. The store owner starts
with an empty list and constructs longer and longer lists. The construction proceeds by
constructing together a toy and another list of toys. Here is a data definition that reflects this
process:

A list-of-symbols is either

1. the empty list, empty, or
2. (cons s los) where s is a symbol and los is a list of symbols.

This definition is unlike any of the definitions we have seen so far or that we encounter in high
school English or mathematics. Those definitions explain a new idea in terms of old, well-
understood concepts. In contrast, this definition refers to itself in the item labeled 2, which
implies that it explains what a list of symbols is in terms of lists of symbols. We call such
definitions SELF-REFERENTIAL or RECURSIVE.

TE
AM
FL
Y

TEAM FLY PRESENTS

-116-

At first glance, a definition that explains or specifies something in terms of itself does not seem
to make much sense. This first impression, however, is wrong. A recursive definition, such as the
one above, makes sense as long as we can construct some elements from it; the definition is
correct if we can construct all intended elements.30

Let's check whether our specific data definition makes sense and contains all the elements we are
interested in. From the first clause we immediately know that empty is a list of symbols. From
the second clause we know that we can create larger lists with cons from a symbol and a list of
symbols. Thus (cons 'ball empty) is a list of symbols because we just determined that empty
is one and we know that 'doll is a symbol. There is nothing special about 'doll. Any other
symbol could serve equally well to form a number of one-item lists of symbols:

(cons 'make-up-set empty)
(cons 'water-gun empty)
...

Once we have lists that contain one symbol, we can use the same method to build lists with two
items:

(cons 'Barbie (cons 'robot empty))
(cons 'make-up-set (cons 'water-gun empty))
(cons 'ball (cons 'arrow empty))
...

From here, it is easy to see how we can form lists that contain an arbitrary number of symbols.
More important still for our problem, all possible inventories are adequately described by our
data definition.

Exercise 9.2.1. Show that all the inventory lists discussed at the beginning of this section
belong to the class list-of-symbols.

Exercise 9.2.2. Do all lists of two symbols also belong to the class list-of-symbols? Provide
a concise argument.

Exercise 9.2.3. Provide a data definition for the class of list of booleans. The class contains all
arbitrarily large lists of booleans.

9.3 Processing Lists of Arbitrary Length
A real store will want to have a large inventory on-line, that is, put into a computer, so that an
employee can quickly determine whether a toy is available or not. For simplicity, assume that we
need contains-doll?, a function that checks whether the store has a 'doll. Translated into
Scheme terminology, the function determines whether 'doll occurs on some list of symbols.

Because we already have a rigorous definition of contains-doll?'s input, we turn to the
contract, header, and purpose statement:

;; contains-doll? : list-of-symbols -> boolean
;; to determine whether the symbol 'doll occurs on a-list-of-symbols
(define (contains-doll? a-list-of-symbols) ...)

TE
AM
FL
Y

TEAM FLY PRESENTS

-117-

Following the general design recipe, we next make up some examples that illustrate contains-
doll? purpose. First, we clearly need to determine the output for the simplest input: empty.
Since the list does not contain any symbol, it certainly does not contain 'doll, and the answer
should be false:

(boolean=? (contains-doll? empty)
 false)

Next, we consider lists with a single item. Here are two examples:

(boolean=? (contains-doll? (cons 'ball empty))
 false)
(boolean=? (contains-doll? (cons 'doll empty))
 true)

In the first case, the answer is false because the single item on the list is not 'doll; in the
second case, the item is 'doll, and the answer is true. Finally, here are two more general
examples, with lists of several items:

(boolean=? (contains-doll? (cons 'bow (cons 'ax (cons 'ball empty))))
 false)
(boolean=? (contains-doll? (cons 'arrow (cons 'doll (cons 'ball empty))))
 true)

Again, the answer in the first case must be false because the list does not contain 'doll, and in
the second case it must be true because 'doll is one of the items on the list provided to the
function.

The next step is to design a function template that matches the data definition. Since the data
definition for lists of symbols has two clauses, the function's body must be a cond-expression.
The cond-expression determines which of the two kinds of lists the function received: the empty
list or a constructed list:

(define (contains-doll? a-list-of-symbols)
 (cond
 [(empty? a-list-of-symbols) ...]
 [(cons? a-list-of-symbols) ...]))

Instead of (cons? a-list-of-symbols), we can use else in the second clause.

We can add one more hint to the template by studying each clause of the cond-expression in turn.
Specifically, recall that the design recipe suggests annotating each clause with selector
expressions if the corresponding class of inputs consists of compounds. In our case, we know
that empty does not have compounds, so there are no components. Otherwise the list is
constructed from a symbol and another list of symbols, and we remind ourselves of this fact by
adding (first a-list-of-symbols) and (rest a-list-of-symbols) to the template:

(define (contains-doll? a-list-of-symbols)
 (cond
 [(empty? a-list-of-symbols) ...]
 [else ... (first a-list-of-symbols) ... (rest a-list-of-
symbols) ...]))

TE
AM
FL
Y

TEAM FLY PRESENTS

-118-

Now that we have a template based on our design recipes for mixed and compound data, we turn
to the definition of the function's body, dealing with each cond-clause separately. If (empty? a-
list-of-symbols) is true, the input is the empty list, in which case the function must produce
the result false. In the second case, (cons? a-list-of-symbols) is true. The annotations in
the template remind us that there is a first symbol and the rest of the list. So let us consider an
example that falls into this category:

(cons 'arrow
 (cons ...
 ... empty)))

The function, just like a human being, must clearly compare the first item with 'doll. In this
example, the first symbol is 'arrow and not 'doll, so the comparison will yield false. If we
had considered some other example instead, say,

(cons 'doll
 (cons ...
 ... empty)))

the function would determine that the first item on the input is 'doll, and would therefore
respond with true. All of this implies that the second line in the cond-expression should contain
another cond-expression:

(define (contains-doll? a-list-of-symbols)
 (cond
 [(empty? a-list-of-symbols) false]
 [else (cond
 [(symbol=? (first a-list-of-symbols) 'doll)
 true]
 [else
 ... (rest a-list-of-symbols) ...])]))

Furthermore, if the comparison of (first a-list-of-symbols) yields true, the function is
done and produces true, too.

If the comparison yields false, we are left with another list of symbols: (rest a-list-of-
symbols). Clearly, we can't know the final answer in this case, because depending on what
``...'' represents, the function must produce true or false. Put differently, if the first item is
not 'doll, we need some way to check whether the rest of the list contains 'doll.

Fortunately, we have just such a function: contains-doll?, which according to its purpose
statement determines whether a list contains 'doll. The purpose statement implies that if l is a
list of symbols, (contains-doll? l) tells us whether l contains the symbol 'doll. Similarly,
(contains-doll? (rest l)) determines whether the rest of l contains 'doll. And in the same
vein, (contains-doll? (rest a-list-of-symbols)) determines whether or not 'doll is in
(rest a-list-of-symbols), which is precisely what we need to know now.

Here is the complete definition of the function:

(define (contains-doll? a-list-of-symbols)
 (cond
 [(empty? a-list-of-symbols) false]
 [else (cond

TE
AM
FL
Y

TEAM FLY PRESENTS

-119-

 [(symbol=? (first a-list-of-symbols) 'doll) true]
 [else (contains-doll? (rest a-list-of-symbols))])]))

It consumes a list of symbols and determines whether or not it is empty. If it is, the result is
false. Otherwise, the list is not empty and the result of the function depends on the first item of
the list. If the first item is 'doll, the result is true; if not, the function's result is the result of
searching the rest of the input list -- whatever it is.

Exercise 9.3.1. Use DrScheme to test the definition of contains-doll? on our examples:

empty
(cons 'ball empty)
(cons 'arrow (cons 'doll empty))
(cons 'bow (cons 'arrow (cons 'ball empty)))

 Exercise 9.3.2. Another way of formulating the second cond-clause in the function contains-
doll? is to understand

(contains-doll? (rest a-list-of-symbols))

as a condition that evaluates to either true or false, and to combine it appropriately with the
condition

(symbol=? (first a-list-of-symbols) 'doll)

Reformulate the definition of contains-doll? according to this observation.

Exercise 9.3.3. Develop the function contains?, which consumes a symbol and a list of
symbols and determines whether or not the symbol occurs in the list.

9.4 Designing Functions for Self-Referential Data
Definitions
At first glance, self-referential data definitions seem to be far more complex than those for
compound or mixed data. But, as the example in the preceding subsection shows, our design
recipes still work. Nevertheless, in this section we discuss a new design recipe that works better
for self-referential data definitions. As implied by the preceding section, the new recipe
generalizes those for compound and mixed data. The new parts concern the process of
discovering when a self-referential data definition is needed, deriving a template, and defining
the function body:

• Data Analysis and Design: If a problem statement discusses compound information of
arbitrary size, we need a recursive or self-referential data definition. At this point, we
have only seen one such class, list-of-symbols, but it is easy to imagine other, yet
similar classes of lists. We will get to know many other examples in this and the
following part.31

For a recursive data definition to be valid, it must satisfy two conditions. First, it must
contain at least two clauses. Second, at least one of the clauses must not refer back to the

TE
AM
FL
Y

TEAM FLY PRESENTS

-120-

definition. It is good practice to identify the self-references explicitly with arrows from
the references in the data definition back to its beginning.

Our running example for this section are functions that consume lists of symbols:

• Template: A self-referential data definition specifies a mixed class of data, and one of
the clauses should specify a subclass of compound data. Hence the design of the template
can proceed according to the recipes in sections 6.5 and 7.2. Specifically, we formulate a
cond-expression with as many cond-clauses as there are clauses in the data definition,
match each recognizing condition to the corresponding clause in the data definition, and
write down appropriate selector expressions in all cond-lines that process compound
values.

In addition, we inspect each selector expression. For each that extracts a value of the
same class of data as the input, we draw an arrow back to the function parameter. At the
end, we must have as many arrows as we have in the data definition.

Let's return to the running example. The template for a list-processing function contains a
cond-expression with two clauses and one arrow:

For simplicity, this book will use a textual alternative to arrows. Instead of drawing an
arrow, the templates contain self-applications of the function to the selector expression(s):

(define (fun-for-los a-list-of-symbols)
 (cond
 [(empty? a-list-of-symbols) ...]
 [else ... (first a-list-of-symbols) ...
 ... (fun-for-los (rest a-list-of-symbols)) ...]))

We refer to these self-applications as NATURAL RECURSIONS.

• Body: For the design of the body we start with those cond-lines that do not contain
natural recursions. They are called BASE CASES. The corresponding answers are typically
easy to formulate or are already given by the examples.

TE
AM
FL
Y

TEAM FLY PRESENTS

-121-

Then we deal with the self-referential cases. We start by reminding ourselves what each
of the expressions in the template line computes. For the recursive application we assume
that the function already works as specified in our purpose statement. The rest is then a
matter of combining the various values.

Suppose we wish to define the function how-many, which determines how many symbols
are on a list of symbols. Assuming we have followed the design recipe, we have the
following:

;; how-many : list-of-symbols -> number
;; to determine how many symbols are on a-list-of-symbols
(define (how-many a-list-of-symbols)
 (cond
 [(empty? a-list-of-symbols) ...]
 [else ... (first a-list-of-symbols) ...
 ... (how-many (rest a-list-of-symbols)) ...]))

The answer for the base case is 0 because the empty list contains nothing. The two
expressions in the second clause compute the first item and the number of symbols on
the (rest a-list-of-symbols). To compute how many symbols there are on all of a-
list-of-symbols, we just need to add 1 to the value of the latter expression:

(define (how-many a-list-of-symbols)
 (cond
 [(empty? a-list-of-symbols) 0]
 [else (+ (how-many (rest a-list-of-symbols)) 1)]))

• Combining Values: In many cases, the combination step can be expressed with
Scheme's primitives, for example, +, and, or cons. If the problem statement suggests that
we ask questions about the first item, we may need a nested cond-statement. Finally, in
some cases, we may have to define auxiliary functions.

Figure 26 summarizes this discussion in the usual format; those design steps that we didn't
discuss are performed as before. The following section discusses several examples in detail.

Phase Goal Activity
Data
 Analysis
 and Design

to formulate a data
definition

develop a data definition for mixed data with at least
two alternatives one alternative must not refer to the
definition explicitly identify all self-references in the
data definition

Contract
Purpose and
Header

to name the
function;
to specify its
classes of
 input data and its
 class of output
data;
to describe its
purpose;
to formulate a

name the function, the classes of input data, the class of
output data, and specify its purpose:
 ;; name : in1 in2 ...--> out
 ;; to compute ... from x1 ...
 (define (name x1 x2 ...) ...)

TE
AM
FL
Y

TEAM FLY PRESENTS

-122-

header
Examples to characterize the

input-
output relationship
via examples

create examples of the input-output relationship make
sure there is at least one example per subclass

Template to formulate an
outline

develop a cond-expression with one clause per
alternative add selector expressions to each clause
annotate the body with natural recursions TEST: the
self-references in this template and the data definition
match!

Body to define the
function

formulate a Scheme expression for each simple cond-
line explain for all other cond-clauses what each natural
recursion computes according to the purpose statement

Test to discover
mistakes
 (``typos'' and
logic)

apply the function to the inputs of the examples check
that the outputs are as predicted

Figure 26: Designing a function for self-referential data

 (Refines the recipes in figures 4 (pg. 5), 12 (pg. 9), and 18 (pg. 10))

9.5 More on Processing Simple Lists
Let us now look at another aspect of inventory management: the cost of an inventory. In addition
to a list of the available toys, a store owner should also maintain a list of the cost of each item.
The cost list permits the owner to determine how much the current inventory is worth or, given
the inventory at the beginning of the year and that of the end of the year, how much profit the
store makes.

A list of costs is most easily represented as a list. For example:

empty
(cons 1.22 empty)
(cons 2.59 empty)
(cons 1.22 (cons 2.59 empty))
(cons 17.05 (cons 1.22 (cons 2.59 empty)))

Again, for a real store, we cannot place an arbitrary limit on the size of such a list, and functions
that process such cost lists must be prepared to consume lists of arbitrary size.

Suppose the toy store needs a function that computes the value of an inventory from the cost of
the individual toys. We call this function sum. Before we can define sum, we must figure out how
to describe all possible lists of numbers that the function may consume. In short, we need a data
definition that precisely defines what an arbitrarily large list of numbers is. We can obtain this
definition by replacing ``symbol'' with ``number'' in the definition of lists of symbols:

A list-of-numbers is either

TE
AM
FL
Y

TEAM FLY PRESENTS

-123-

1. the empty list, empty, or
2. (cons n lon) where n is a number and lon is a list of numbers.

Given that this data definition is self-referential again, we must first confirm that it actually
defines some lists and that it defines all those inventories that we wish to represent. All of the
examples above are lists of numbers. The first one, empty, is included explicitly. The second and
third are constructed by adding the numbers 1.22 and 2.59, respectively, to the empty list. The
others are lists of numbers for similar reasons.

As always, we start the development of the function with a contract, header, and purpose
statement:

;; sum : list-of-numbers -> number
;; to compute the sum of the numbers on a-list-of-nums
(define (sum a-list-of-nums) ...)

Then we continue with function examples:

(= (sum empty)
 0)
(= (sum (cons 1.00 empty))
 1.0)
(= (sum (cons 17.05 (cons 1.22 (cons 2.59 empty))))
 20.86)

If sum is applied to empty, the store has no inventory and the result should be 0. If the input is
(cons 1.00 empty), the inventory contains only one toy, and the cost of the toy is the cost of
the inventory. Hence the result is 1.00. Finally, for (cons 17.05 (cons 1.22 (cons 2.59
empty))), sum should yield

For the design of sum's template, we follow the design recipe, step by step. First, we add the
cond-expression:

(define (sum a-list-of-nums)
 (cond
 [(empty? a-list-of-nums) ...]
 [(cons? a-list-of-nums) ...]))

The second clause indicates with a comment that it deals with constructed lists. Second, we add
the appropriate selector expressions for each clause:

(define (sum a-list-of-nums)
 (cond
 [(empty? a-list-of-nums) ...]
 [(cons? a-list-of-nums)
 ... (first a-list-of-nums) ... (rest a-list-of-nums) ...]))

Finally, we add the natural recursion of sum that reflects the self-reference in the data definition:

(define (sum a-list-of-nums)
 (cond

TE
AM
FL
Y

TEAM FLY PRESENTS

-124-

 [(empty? a-list-of-nums) ...]
 [else ... (first a-list-of-nums) ... (sum (rest a-list-of-
nums)) ...]))

The final template reflects almost every aspect of the data definition: the two clauses, the
construction in the second clauses, and the self-reference of the second clauses. The only part of
the data definition that the function template does not reflect is that the first item of a
constructed input is a number.

Now that we have a template, let us define the answers for the cond-expression on a clause-by-
clause basis. In the first clause, the input is empty, which means that the store has no inventory.
We already agreed that in this case the inventory is worth nothing, which means the
corresponding answer is 0. In the second clause of the template, we find two expressions:

1. (first a-list-of-nums), which extracts the cost of the first toy; and
2. (sum (rest a-list-of-nums)), which, according to the purpose statement of sum,

computes the sum of (rest a-list-of-nums).

From these two reminders of what the expressions already compute for us, we see that the
expression

(+ (first a-list-of-nums) (sum (rest a-list-of-nums)))

computes the answer in the second cond-clause.

Here is the complete definition of sum:

(define (sum a-list-of-nums)
 (cond
 [(empty? a-list-of-nums) 0]
 [else (+ (first a-list-of-nums) (sum (rest a-list-of-nums)))]))

A comparison of this definition with the template and the data definition shows that the step from
the data definition to the template is the major step in the function development process. Once
we have derived the template from a solid understanding of the set of possible inputs, we can
focus on the creative part: combining values. For simple examples, this step is easy; for others, it
requires rigorous thinking.

We will see in future sections that this relationship between the shape of the data definition and
the function is not a coincidence. Defining the class of data that a function consumes always
determines to a large extent the shape of the function.

Exercise 9.5.1. Use DrScheme to test the definition of sum on the following sample lists of
numbers:

empty
(cons 1.00 empty)
(cons 17.05 (cons 1.22 (cons 2.59 empty)))

Compare the results with our specifications. Then apply sum to the following examples:

empty

TE
AM
FL
Y

TEAM FLY PRESENTS

-125-

(cons 2.59 empty)
(cons 1.22 (cons 2.59 empty))

First determine what the result should be; then use DrScheme to evaluate the
expressions. Solution

Exercise 9.5.2. Develop the function how-many-symbols, which consumes a list of symbols
and produces the number of items in the list.

Develop the function how-many-numbers, which counts how many numbers are in a list of
numbers. How do how-many-symbols and how-many-numbers differ?

Exercise 9.5.3. Develop the function dollar-store?, which consumes a list of prices
(numbers) and checks whether all of the prices are below 1.

For example, the following expressions should evaluate to true:

(dollar-store? empty)
(not (dollar-store? (cons .75 (cons 1.95 (cons .25 empty)))))
(dollar-store? (cons .75 (cons .95 (cons .25 empty))))

Generalize the function so that it consumes a list of prices (numbers) and a threshold price
(number) and checks that all prices in the list are below the threshold.

Exercise 9.5.4. Develop the function check-range1, which consumes a list of temperature
measurements and checks whether all measurements are between 5oC and 95oC.

Generalize the function to check-range, which consumes a list of temperature measurements
and a legal interval and checks whether all measurements are within the legal interval.

Exercise 9.5.5. Develop the function convert. It consumes a list of digits and produces the
corresponding number. The first digit is the least significant, and so on.

Also develop the function check-guess-for-list. It implements a general version of the
number-guessing game of exercise 5.1.3. The function consumes a list of digits, which represents
the player's guess, and a number, which represents the randomly chosen and hidden number.
Depending on how the converted digits relate to target, check-guess-for-list produces
one of the following three answers: 'TooSmall, 'Perfect, or 'TooLarge.

The rest of the game is implemented by guess.ss. To play the game, use the teachpack to
guess.ss and evaluate the expression

(guess-with-gui-list 5 check-guess-for-list)

after the functions have been thoroughly developed.

Exercise 9.5.6. Develop the function delta, which consumes two price lists, that is, lists of
numbers. The first represents the inventory at the beginning of a time period, the second one the
inventory at the end. The function outputs the difference in value. If the value of the inventory
has increased, the result is positive; if the value has decreased, it is negative.

TE
AM
FL
Y

TEAM FLY PRESENTS

-126-

Exercise 9.5.7. Define the function average-price. It consumes a list of toy prices and
computes the average price of a toy. The average is the total of all prices divided by the number
of toys.

Iterative Refinement: First develop a function that works on non-empty lists. Then produce a
checked function (see section 7.5) that signals an error when the function is applied to an empty
list

Exercise 9.5.8. Develop the function draw-circles, which consumes a posn p and a list of
numbers. Each number of the list represents the radius of some circle. The function draws
concentric red circles around p on a canvas, using the operation draw-circle. Its result is true,
if it can draw all of them; otherwise an error has occurred and the function does not need to
produce a value.

Use the teachpack draw.ss; create the canvas with (start 300 300). Recall that draw.ss
provides the structure definition for posn (see section 7.1).

29 The traditional names are car and cdr, but we will not use these nonsensical names.

30 It is common that a data definition describes a class of data that contains more than the
intended elements. This limitation is inherent and is just one of the many symptoms of the limits
of computing.

31 Numbers also seem to be arbitrarily large. For inexact numbers, this is an illusion. For precise
integers, this is indeed the case, and we will discuss them later in this part.

TE
AM
FL
Y

TEAM FLY PRESENTS

-127-

Section 10

More on Processing Lists
The functions in section 9 consume lists that contain atomic data, especially numbers, symbols,
and booleans. But functions must also be able to produce such lists. Furthermore, they must be
able to consume and produce lists that contain structures. We discuss these cases in this section,
and we continue practicing the use of the design recipe.

10.1 Functions that Produce Lists
Recall the function wage from section 2.3:

;; wage : number -> number
;; to compute the total wage (at $12 per hour)
;; of someone who worked for h hours
(define (wage h)
 (* 12 h))

The wage function consumes the number of hours some employee worked and produces the
weekly wage payment. For simplicity, we assume that all employees earn the same hourly rate,
namely, $12. A company, however, isn't interested in a function like wage, which computes the
wage of a single employee. Instead, it wants a function that computes the wages for all of its
employees, especially if there are a lot of them.

Call this new function hours->wages. It consumes a list that represents how many hours the
employees of the company worked and must produce a list of the weekly wages they earned. We
can represent both the input and the output as Scheme lists of numbers. Since we already have a
data definition for the inputs and outputs, we can immediately start our function development:

;; hours->wages : list-of-numbers -> list-of-numbers
;; to create a list of weekly wages from a list of weekly hours (alon)
(define (hours->wages alon) ...)

Next we need some examples of inputs and the corresponding outputs:

empty
(cons 28 empty)
(cons 40 (cons 28 empty))

empty
(cons 336 empty)
(cons 480 (cons 336 empty))

The outputs are obtained by calculating the wage for each item on the list to the left.

Given that hours->wages consumes the same class of data as, say, the function sum, and given
that the shape of a function template depends only on the shape of the data definition, we can
reuse the list-of-numbers template:

TE
AM
FL
Y

TEAM FLY PRESENTS

-128-

(define (hours->wages alon)
 (cond
 [(empty? alon) ...]
 [else ... (first alon) ... (hours->wages (rest alon)) ...]))

Starting with this template, we can turn to the most creative step of function development: the
definition of the function body. Following our recipe, we consider each cond-line in isolation,
starting with the simpler case. First, assume (empty? alon) is true, which means that the input
is empty. The answer in this case is empty:

(define (hours->wages alon)
 (cond
 [(empty? alon) empty]
 [else ... (first alon) ... (hours->wages (rest alon)) ...]))

Second, assume that alon was constructed from a number and a list of numbers. The
expressions in the second line remind us of this assumption, and the recipe tells us that we should
state explicitly what they compute:

1. (first alon) yields the first number on alon, which is the first number of hours
worked; and

2. (hours->wages (rest alon)) reminds us that (rest alon) is a list and can be
processed by the very function we are defining. According to the purpose statement, the
expression computes the list of wages for the rest of the list of hours, and we may assume
this relationship in our construction -- even though the function is not yet completely
defined.

From here it is a short step to the complete function definition. Since we already have the list of
wages for all but the first item of alon, the function must do two things to produce an output for
the entire list of hours:

1. Compute the weekly wage for the first number of hours.
2. Construct a list that represents all weekly wages for alon, using the first weekly wage

and the list of weekly wages for (rest alon).

For the first part, we reuse wage. For the second, we cons the two pieces of information together
into one list:

(cons (wage (first alon)) (hours->wages (rest alon)))

And with that, we have a complete function. It is shown in figure 27. To finish the design of the
function, we must still test it.

;; hours->wages : list-of-numbers -> list-of-numbers
;; to create a list of weekly wages from a list of weekly hours (alon)
(define (hours->wages alon)
 (cond
 [(empty? alon) empty]
 [else (cons (wage (first alon)) (hours->wages (rest alon)))]))

;; wage : number -> number
;; to compute the total wage (at $12 per hour)
;; of someone who worked for h hours

TE
AM
FL
Y

TEAM FLY PRESENTS

-129-

(define (wage h)
 (* 12 h))

Figure 27: Computing weekly wages

Exercise 10.1.1. How do we have to change the function in figure 27 if we want to give
everyone a raise to $14?

Exercise 10.1.2. No employee could possibly work more than 100 hours per week. To protect
the company against fraud, the function should check that no item of the input list of hours-
>wages exceeds 100. If one of them does, the function should immediately signal the error "too
many hours".

How do we have to change the function in figure 27 if we want to perform this basic reality
check?

Exercise 10.1.3.

Develop convertFC. The function converts a list of Fahrenheit measurements to a list of Celsius
measurements.

Exercise 10.1.4. Develop the function convert-euro, which converts a list of U.S. dollar
amounts into a list of euro amounts. Assume the exchange rate is 1.22 euro for each dollar.

Generalize convert-euro to the function convert-euro-1, which consumes an exchange rate
and a list of dollar amounts and converts the latter into a list of euro amounts.

Exercise 10.1.5. Develop the function eliminate-exp to eliminate expensive toys. The
function consumes a number, called ua, and a list of toy prices, called lotp, and produces a list
of all those prices in lotp that are below or equal to ua. For example,32

(eliminate-exp 1.0 (cons 2.95 (cons .95 (cons 1.0 (cons 5 empty)))))
;; expected value:
(cons .95 (cons 1.0 empty))

 Exercise 10.1.6. Develop the function name-robot, which consumes a list of toy descriptions
(names) and produces an equivalent list of more accurate descriptions. Specifically, it replaces
all occurrences of 'robot with 'r2d2 and otherwise retains the toy descriptions in the same
order.

Generalize name-robot to the function substitute. The new function consumes two symbols,
called new and old, and a list of symbols. It produces a new list of symbols by substituting all
occurrences of old by new. For example,

(substitute 'Barbie 'doll (cons 'robot (cons 'doll (cons 'dress empty))))
;; expected value:
(cons 'robot (cons 'Barbie (cons 'dress empty)))

TE
AM
FL
Y

TEAM FLY PRESENTS

-130-

Exercise 10.1.7. Develop the function recall to eliminate specific toys from a list. The
function consumes the name of a toy, called ty, and a list of names, called lon, and produces a
list of names that contains all components of lon with the exception of ty. For example,

(recall 'robot (cons 'robot (cons 'doll (cons 'dress empty))))
;; expected value:
(cons 'doll (cons 'dress empty))

Exercise 10.1.8. Develop quadratic-roots, which solves quadratic equations: see
exercises 4.4.4 and 5.1.4. The function accepts the coefficients a, b, and c. The computations it
performs depend on the input:

1. if a = 0, its output is 'degenerate.
2. if b2 < 4 · a · c, the quadratic equation has no solution; quadratic-roots produces

'none in this case.
3. if b2 = 4 · a · c, the equation has one solution:

the solution is the answer.

4. if b2 > 4 · a · c, the equation has two solutions:

and

the result is a list of two numbers: the first solution followed by the second solution.

Test the function with the examples from exercises 4.4.4 and 5.1.4. First decide the answer for
each example, then determine it with DrScheme.

Exercise 10.1.9. The cash registers at many grocery stores talk to customers. The register's
computer receives the number of cents that the customer must pay and then builds a list with the
following five items:

1. the dollar amount;
2. the symbol 'dollar if the dollar amount is 1 and 'dollars otherwise;
3. the symbol 'and;
4. the cent amount; and
5. the symbol 'cent if the cent amount is 1 and 'cents otherwise.

Develop the function controller, which consumes a number and produces a list according to
the above description. For example, if the amount is $1.03, then the cash register evaluates
(controller 103):

TE
AM
FL
Y

TEAM FLY PRESENTS

-131-

(controller 103)
;; expected value:
(cons 1 (cons 'dollar (cons 'and (cons 3 (cons 'cents empty)))))

Hint: Scheme provides the arithmetic operations quotient and remainder, which produce the
quotient and remainder of the expression n/m for integers n and m, respectively.

Once the controller returns the correct list for amounts whose dollar and cent amounts are
between 0 and 20, test the controller with a computer that can speak. Set the teachpack to
sound.ss, which makes two operations available: speak-word and speak-list. The first
accepts a symbol or a number, the second a list of symbols and numbers. Both pronounce the
symbols they consume. Evaluate the following expressions (speak-word 1), (speak-list
(cons 1 (cons 'dollar empty))), and (speak-list (cons 'beautiful (cons 'lady
empty))) to understand how the operations operate.

Simple Challenge: The sound teachpack contains only the sounds for the numbers 0 through 20
and 30, 40, 50, 60, 70, 80, and 90. Because of this restriction, this challenge problem works only
on amounts with cents and dollars between 0 to 20. Implement a controller that deals with
arbitrary amounts between 0 and 99.99.

10.2 Lists that Contain Structures
The representation of an inventory as a list of symbols or a list of prices is naive. A sales clerk in
a toy store needs to know not only the name of the toy, but also its price, and possibly other
attributes like warehouse availability, delivery time, or even a picture of the item. Similarly,
representing the personnel's work week as a list of hours is a bad choice. Even the printing of a
paycheck requires more information about the employee than the hours worked per week.

Fortunately, the items of lists do not have to be atomic values. Lists may contain whatever values
we want, especially structures. Let's try to make our toy store inventory functions more realistic.
We start with the structure and the data definition of a class of inventory records:

(define-struct ir (name price))

An inventory-record (short: ir) is a structure:

 (make-ir s n)

where s is a symbol and n is a (positive) number.

Most important, we can define a class of lists that represent inventories much more realistically:

An inventory is either

1. empty or
2. (cons ir inv)

where ir is an inventory record and inv is an inventory.

TE
AM
FL
Y

TEAM FLY PRESENTS

-132-

While the shape of the list definition is the same as before, its components are defined in a
separate data definition. Since this is our first such data definition, we should make up some
examples before we proceed.

The simplest example of an inventory is empty. To create a larger inventory, we must create an
inventory record and cons it onto another inventory:

(cons (make-ir 'doll 17.95)
 empty)

From here, we can create yet a larger inventory listing:

(cons (make-ir 'robot 22.05)
 (cons (make-ir 'doll 17.95)
 empty))

Now we can adapt our inventory-processing functions. First look at sum, the function that
consumes an inventory and produces its total value. Here is a restatement of the basic
information about the function:

;; sum : inventory -> number
;; to compute the sum of prices on an-inv
(define (sum an-inv) ...)

For our three sample inventories, the function should produce the following results: 0, 17.95,
and 40.0.

Since the data definition of inventories is basically that of lists, we can again start from the
template for list-processing functions:

(define (sum an-inv)
 (cond
 [(empty? an-inv) ...]
 [else ... (first an-inv) ... (sum (rest an-inv)) ...]))

Following our recipe, the template only reflects the data definition of the input, not that of its
constituents. Therefore the template for sum here is indistinguishable from that in section 9.5.

For the definition of the function body, we consider each cond-line in isolation. First, if (empty?
an-inv) is true, sum is supposed to produce 0. Hence the answer expression in the first cond-line
is obviously 0.

(define (sum an-inv)
 (cond
 [(empty? an-inv) 0]
 [else (+ (ir-price (first an-inv)) (sum (rest an-inv)))]))

Figure 28: Computing the value of an inventory

Second, if (empty? an-inv) is false, in other words, if sum is applied to a constructed inventory,
the recipe requires us to understand the purpose of two expressions:

TE
AM
FL
Y

TEAM FLY PRESENTS

-133-

1. (first an-inv), which extracts the first item of the list; and
2. (sum (rest an-inv)), which extracts the rest of an-inv and then computes its cost

with sum.

To compute the total cost of the entire input an-inv in the second case, we must determine the
cost of the first item. The cost of the first item may be obtained via the selector ir-price, which
extracts the price from an inventory record. Now we just add the cost of the first item and the
cost of the rest of the inventory:

(+ (ir-price (first an-inv))
 (sum (rest an-inv)))

The complete function definition is contained in figure 28.

Exercise 10.2.1. Adapt the function contains-doll? so that it consumes inventories instead of
lists of symbols:

;; contains-doll? : inventory -> boolean
;; to determine whether an-inv contains a record for 'doll
(define (contains-doll? an-inv) ...)

Also adapt the function contains?, which consumes a symbol and an inventory and determines
whether an inventory record with this symbol occurs in the inventory:

;; contains? : symbol inventory -> boolean
;; to determine whether inventory contains a record for asymbol
(define (contains? asymbol an-inv) ...)

Item Price Image

robot 29.95

robot 29.95

robot 29.95
Figure 29: A table of toys

TE
AM
FL
Y

TEAM FLY PRESENTS

-134-

Exercise 10.2.2. Provide a data definition and a structure definition for an inventory that
includes pictures with each object. Show how to represent the inventory listing in figure 29.33

Develop the function show-picture. The function consumes a symbol, the name of a toy, and
one of the new inventories. It produces the picture of the named toy or false if the desired item
is not in the inventory. Pictures of toys are available on the Web.

Exercise 10.2.3. Develop the function price-of, which consumes the name of a toy and an
inventory and produces the toy's price.

Exercise 10.2.4. A phone directory combines names with phone numbers. Develop a data
definition for phone records and directories. Using this data definition develop the functions

1. whose-number, which determines the name that goes with some given phone number and
phone directory, and

2. phone-number, which determines the phone number that goes with some given name and
phone directory.

Suppose a business wishes to separate all those items that sell for a dollar or less from all others.
The goal might be to sell these items in a separate department of the store. To perform this split,
the business also needs a function that can extract these items from its inventory listing, that is, a
function that produces a list of structures.

Let us name the function extract1 because it creates an inventory from all those inventory
records whose price item is less than or equal to 1.00. The function consumes an inventory and
produces one with items of appropriate prices. Thus the contract for extract1 is easy to
formulate:

;; extract1 : inventory -> inventory
;; to create an inventory from an-inv for all
;; those items that cost less than $1
(define (extract1 an-inv) ...)

We can reuse our old inventory examples to make examples of extract1's input-output
relationship. Unfortunately, for these three examples it must produce the empty inventory,
because all prices are above one dollar. For a more interesting input-output example, we need an
inventory with more variety:

(cons (make-ir 'dagger .95)
 (cons (make-ir 'Barbie 17.95)
 (cons (make-ir 'key-chain .55)
 (cons (make-ir 'robot 22.05)
 empty))))

Out of the four items in this new inventory, two have prices below one dollar. If given to
extract1, we should get the result

(cons (make-ir 'dagger .95)
 (cons (make-ir 'key-chain .55)

TE
AM
FL
Y

TEAM FLY PRESENTS

-135-

 empty))

The new listing enumerates the items in the same order as the original, but contains only those
items whose prices match our condition.

The contract also implies that the template for extract1 is identical to that of sum, except for a
name change:

(define (extract1 an-inv)
 (cond
 [(empty? an-inv) ...]
 [else ... (first an-inv) ... (extract1 (rest an-inv)) ...]))

As always, the difference in outputs between sum and extract1 does not affect the template
derivation.

;; extract1 : inventory -> inventory
;; to create an inventory from an-inv for all
;; those items that cost less than $1
(define (extract1 an-inv)
 (cond
 [(empty? an-inv) empty]
 [else (cond
 [(<= (ir-price (first an-inv)) 1.00)
 (cons (first an-inv) (extract1 (rest an-inv)))]
 [else (extract1 (rest an-inv))])]))

Figure 30: Extracting dollar items from an inventory

For the definition of the function body, we again analyze each case separately. First, if (empty?
an-inv) is true, then the answer is clearly empty, because no item in an empty store costs less
than one dollar. Second, if the inventory is not empty, we first determine what the expressions in
the matching cond-clause compute. Since extract1 is the first recursive function to produce a
list of structures, let us look at our interesting example:

(cons (make-ir 'dagger .95)
 (cons (make-ir 'Barbie 17.95)
 (cons (make-ir 'key-chain .55)
 (cons (make-ir 'robot 22.05)
 empty))))

If an-inv stands for this inventory,

(first an-inv) = (make-ir 'dagger .95)

(rest an-inv) = (cons (make-ir 'Barbie 17.95)
 (cons (make-ir 'key-chain .55)
 (cons (make-ir 'robot 22.05)
 empty)))

Assuming extract1 works correctly, we also know that

(extract1 (rest an-inv)) = (cons (make-ir 'key-chain .55)
 empty)

TE
AM
FL
Y

TEAM FLY PRESENTS

-136-

In other words, the recursive application of extract1 produces the appropriate selection from
the rest of an-inv, which is a list with a single inventory record.

To produce an appropriate inventory for all of an-inv, we must decide what to do with the first
item. Its price may be more or less than one dollar, which suggests the following template for the
second answer:

... (cond
 [(<= (ir-price (first an-inv)) 1.00) ...]
 [else ...]) ...

If the first item's price is one dollar or less, it must be included in the final output and, according
to our example, should be the first item on the output. Translated into Scheme, the output should
be a list whose first item is (first an-inv) and the rest of which is whatever the recursion
produces. If the price is more than one dollar, the item should not be included. That is, the result
should be whatever the recursion produces for the rest of an-inv and nothing else. The
complete definition is displayed in figure 30.

Exercise 10.2.5. Define the function extract>1, which consumes an inventory and creates an
inventory from those records whose prices are above one dollar.

Exercise 10.2.6. Develop a precise data definition for inventory1, which are inventory listings
of one-dollar stores. Using the new data definition, the contract for extract1 can be refined:

;; extract1 : inventory -> inventory1
(define (extract1 an-inv) ...)

Does the refined contract affect the development of the function above?

Exercise 10.2.7. Develop the function raise-prices, which consumes an inventory and
produces an inventory in which all prices are raised by 5%.

Exercise 10.2.8. Adapt the function recall from exercise 10.1.7 for the new data definition of
inventory. The function consumes the name of a toy ty and an inventory and produces an
inventory that contains all items of the input with the exception of those labeled ty.

Exercise 10.2.9. Adapt the function name-robot from exercise 10.1.6 for the new data
definition of inventory. The function consumes an inventory and produces an inventory with
more accurate names. Specifically, it replaces all occurrences of 'robot with 'r2d3.

Generalize name-robot to the function substitute. The new function consumes two symbols,
called new and old, and an inventory. It produces a new inventory by substituting all occurrences
of old with new and leaving all others alone.

10.3 Extended Exercise: Moving Pictures
In sections 6.6 and 7.4, we studied how to move individual shapes. A picture, however, isn't just
a single shape but a whole collection of them. Considering that we have to draw, translate, and
clear pictures, and that we may wish to change a picture or manage several pictures at the same
time, it is best to collect all of the parts of a picture into a single piece of data. Because pictures

TE
AM
FL
Y

TEAM FLY PRESENTS

-137-

may consist of a varying number of items, a list representation for pictures naturally suggests
itself.

Exercise 10.3.1. Provide a data definition that describes the class of lists of shapes. The class
of shapes was defined in exercise 7.4.1.

Create a sample list that represents the face of figure 10.3.6 and name it FACE. Its basic
dimensions are gathered in the following table:

shape position size(s) color
circle (50,50) 40 red
rectangle (30,20) 5 × 5 blue
rectangle (65,20) 5 × 5 blue
rectangle (40,75) 20 × 10 red
rectangle (45,35) 10 × 30 blue

The table assumes a canvas of size 300 by 100.

Develop the template fun-for-losh, which outlines functions that consume a list-of-shapes.

Exercise 10.3.2. Use the template fun-for-losh to develop the function draw-losh. It
consumes a list-of-shapes, draws each item on the list, and returns true. Remember to use
(start n m) to create the canvas before the function is used.

Exercise 10.3.3. Use the template fun-for-losh to develop translate-losh. The function
consumes a list-of-shapes and a number delta. The result is a list of shapes where each of
them has been moved by delta pixels in the x direction. The function has no effect on the
canvas.

Exercise 10.3.4. Use the template fun-for-losh to develop clear-losh. The function
consumes a list-of-shapes, erases each item on the list from the canvas, and returns true.

Exercise 10.3.5. Develop the function draw-and-clear-picture. It consumes a picture. Its
effect is to draw the picture, sleep for a while, and to clear the picture.

Exercise 10.3.6. Develop the function move-picture. It consumes a number (delta) and a
picture. It draws the picture, sleeps for a while, clears the picture and then produces a translated
version. The result should be moved by delta pixels.

Test the function with expressions like these:

(start 500 100)

(draw-losh
 (move-picture -5
 (move-picture 23
 (move-picture 10 FACE))))

(stop)

TE
AM
FL
Y

TEAM FLY PRESENTS

-138-

This moves FACE (see exercise 10.3.1) by 10, 23, and -5 pixels in the x direction.

When the function is fully tested, use the teachpack arrow.ss and evaluate the expression:

(start 500 100)

(control-left-right FACE 100 move-picture draw-losh)

The last one creates a graphical user interface that permits users to move the shape FACE by
clicking on arrows. The shape then moves in increments of 100 (right) and -100 (left) pixels.
The teachpack also provides arrow controls for other directions. Use them to develop other
moving pictures.

32 Since we don't know yet how to compare two lists with a function, we use the old style of
specifying examples and tests.

33 Thanks to Mr. John Clements for drawing these pictures.

TE
AM
FL
Y

TEAM FLY PRESENTS

-139-

Section 11

Natural Numbers
The only self-referential data definitions we have seen thus far involved cons and lists of
arbitrary length. We needed such data definitions because the classes of lists that we wanted to
process were of arbitrary size. Natural numbers are another class of data whose elements are of
arbitrary size; after all, there is no limit on how large a natural number can be, and, at least in
principle, a function should be able to process them all.

In this section, we study how to describe natural numbers with self-referential data definitions
and how to develop functions that process natural numbers in a systematic fashion. Since such
functions come in many flavors, we study several different flavors of definitions.

11.1 Defining Natural Numbers
People normally introduce natural numbers via enumeration: 0, 1, 2, etc.34 The abbreviation
``etc.'' at the end says that the series continues in this manner. Mathematicians and mathematics
teachers often use dots for the same purpose. For us, however, neither the ``etc.'' nor the dots is
good enough, if we wish to design functions on natural numbers systematically. So, the question
is what it means to write down ``etc.,'' or put differently, what a complete, self-contained
description of the natural numbers is.

The only way to remove the informal ``etc.'' from the enumeration is to describe the collection of
numbers with a self-referential description. Here is a first attempt:

0 is a natural number.
If n is a natural number, then one more than n is one, too.
While this description is still not quite rigorous,35 it is a good starting point for a Scheme-style
data description:

A natural-number is either

1. 0 or
2. (add1 n) if n is a natural number.

The operation add1 adds 1 to a natural number. Of course, we could use (+ ... 1) but add1
stands out and signals ``natural number,'' as opposed to arbitrary number, to the reader of a data
definition and a function.

Although we are familiar with natural numbers from school, it is instructive to construct
examples from the data definition. Clearly,

0

TE
AM
FL
Y

TEAM FLY PRESENTS

-140-

is the first natural number, so

(add1 0)

is the next one. From here, it is easy to see the pattern:

(add1 (add1 0))
(add1 (add1 (add1 0)))
(add1 (add1 (add1 (add1 0))))

The examples should remind us of the lists construction process. We built lists by starting with
empty and by constructing on more items. Now we build natural natural numbers by starting
with 0 and by adding on 1. In addition, natural numbers come with century-old abbreviations.
For example, (add1 0) is abbreviated as 1, (add1 (add1 0)) as 2, and so on.

A function on natural numbers must extract the number that went into the construction of a
positive natural number just like a function on lists must extract the list that went into a
constructed list. The operation that performs this ``extraction'' is called sub1. It satisfies the law

(sub1 (add1 n)) = n

just as the rest operation satisfies the law

(rest (cons a-value a-list)) = a-list

Of course, (- n 1) would also work, but sub1 stands out and signals that the function processes
natural numbers.

11.2 Processing Natural Numbers of Arbitrary Size
Let us develop the function hellos. It consumes a natural number n and produces a list of n
copies of 'hello. We can write the contract for this function:

;; hellos : N -> list-of-symbols
;; to create a list of n copies of 'hello
(define (hellos n) ...)

And we can make up examples:

(hellos 0)
;; expected value:
empty
(hellos 2)
;; expected value:
(cons 'hello (cons 'hello empty))

The design of a template for hellos follows the design recipe for self-referential data definitions.
We immediately see that hellos is a conditional function, that its cond-expression has two
clauses, and that the first clause must distinguish 0 from other possible inputs:

(define (hellos n)
 (cond

TE
AM
FL
Y

TEAM FLY PRESENTS

-141-

 [(zero? n) ...]
 [else ...]))

Furthermore, the data definition says that 0 is an atomic value, and every other natural number is
a compound value that ``contains'' the predecessor to which 1 was added. Hence, if n is not 0, we
subtract 1 from n. The result is also a natural number, so according to the design recipe we wrap
the expression with (hellos ...):

(define (hellos n)
 (cond
 [(zero? n) ...]
 [else ... (hellos (sub1 n)) ...]))

Now we have exploited every hint in the data definition and are ready to proceed with the
definition.

Assume (zero? n) evaluates to true. Then the answer must be empty, as the examples illustrate.
So assume the input is greater than 0. For concreteness, let us say it is 2. According to the
suggestion in the template, hellos should use (hellos 1) to compute a part of the answer. The
purpose statement specifies that (hellos 1) produces (cons 'hello empty), a list with one
'hello. In general, (hellos (sub1 n)) produces a list that contains n - 1 occurrences of
'hello. Clearly, to produce a list with n occurrences, we must cons another 'hello onto this list:

(define (hellos n)
 (cond
 [(zero? n) empty]
 [else (cons 'hello (hellos (sub1 n)))]))

As usual, the final definition is just the template with a few extras.

Let's test hellos with some hand-evaluations:

 (hellos 0)

= (cond
 [(zero? 0) empty]
 [else (cons 'hello (hellos (sub1 0)))])

= (cond
 [true empty]
 [else (cons 'hello (hellos (sub1 0)))])

= empty

It confirms that hellos works properly for the first example.

Here is another example:

 (hellos 1)

= (cond
 [(zero? 1) empty]
 [else (cons 'hello (hellos (sub1 1)))])

= (cond

TE
AM
FL
Y

TEAM FLY PRESENTS

-142-

 [false empty]
 [else (cons 'hello (hellos (sub1 1)))])

= (cons 'hello (hellos (sub1 1)))

= (cons 'hello (hellos 0))

= (cons 'hello empty)

For the last step in the calculation, we can exploit that we already know that (hellos 0)
evaluates to empty and replace the (underlined) expression with its result.

The last hand-evaluation shows that the function works for the second example:

 (hellos 2)

= (cond
 [(zero? 2) empty]
 [else (cons 'hello (hellos (sub1 2)))])

= (cond
 [false empty]
 [else (cons 'hello (hellos (sub1 2)))])

= (cons 'hello (hellos (sub1 2)))

= (cons 'hello (hellos 1))

= (cons 'hello (cons 'hello empty))

We can again exploit what we know about (hellos 1), which greatly shortens the hand-
evaluation.

Exercise 11.2.1. Generalize hellos to repeat, which consumes a natural number n and a
symbol and produces a list with n occurrences of the symbol.

Exercise 11.2.2. Develop the function tabulate-f, which tabulates the values of

;; f : number -> number
(define (f x)
 (+ (* 3 (* x x))
 (+ (* -6 x)
 -1)))

for some natural numbers. Specifically, it consumes a natural number n and produces a list of n
posns. The first one combines n with (f n), the second one n-1 with (f n-1), etc.

Exercise 11.2.3. Develop apply-n. The function consumes a natural number, n. It applies the
function move from exercise 10.3.6 n times to FACE, the list of shapes from exercise 10.3.1. Each
application should translate the shape by one pixel. The purpose of the function is to simulate a
continuously moving shape on a canvas, the last missing piece of the extended exercise 10.3.

Exercise 11.2.4. Lists may contain lists that contain lists and so on. Here is a data definition
that takes this idea to an extreme:

TE
AM
FL
Y

TEAM FLY PRESENTS

-143-

A deep-list is either

1. s where s is some symbol or
2. (cons dl empty), where dl is a deep list.

Develop the function depth, which consumes a deep list and determines how many times cons
was used to construct it.

Develop the function make-deep, which consumes a symbol s and a natural number and
produces a deep list containing s and constructed with n conses.

11.3 Extended Exercise: Creating Lists, Testing Functions
We often encounter situations where we would like to create lists of data that involve numbers.
For example, we may wish to create large lists of numbers to test a function like extract1 in
section 10.2 on large lists instead of hand-coded small ones. Sometimes we would like to
visualize randomly picked data. We can create such functions using recursion on natural
numbers and a random number generator.

Exercise 11.3.1. Scheme provides the operation random. It consumes a natural number n
greater than 1, and produces a random integer between 0 and n - 1:

;; random : N -> N
;; to compute a natural number between 0 and n-1
(define (random n) ...)

Two successive uses of (random n) may produce two distinct results.

Now consider the following definition:

;; random-n-m : integer integer -> integer
;; ...
;; Assume: n < m
(define (random-n-m n m)
 (+ (random (- m n)) n))

Formulate a succinct and precise purpose statement for random-n-m. Use a number line with an
interval to explain the result of (random n). Use a symbolic evaluation to support your
explanation.

Exercise 11.3.2. Develop the function tie-dyed. It consumes a natural number and produces a
list of numbers. Each of these should be between 20 and 120. Use tie-dyed to test draw-
circles from exercise 9.5.8.

Exercise 11.3.3. Develop the function create-temps. It consumes a natural number n and two
integers, called low and high. It produces a list of n integers that are between low and high.

Use create-temps to test check-range from exercise 9.5.4.

TE
AM
FL
Y

TEAM FLY PRESENTS

-144-

Finally, discuss the following questions. Can we simply feed the result of create-temps into
check-range or do we need to know the list that create-temps produced? Are there values for
low and high such that we don't need to know the result of create-temps and yet we can
predict the result of the test? Which function tests which? What does this tell us about testing
with automatically generated test data?

Exercise 11.3.4. Develop the function create-prices, which consumes a natural number and
produces a list with a corresponding of prices between $.10 and $10.00 with increments of a
dime. Use create-prices to test dollar-store? from exercise 9.5.3.

Hint: How many dimes are there between $.10 and $10.00?

Exercise 11.3.5. Develop a program that visualizes a student riot. In preparation of a student
riot, a small group of students meets to make paint-filled balloons. The typical riot uses RED only.
Then, on the evening of the riot, the students enter a university's progressive theater with the
balloons and throw them all over the seats.

The program's only input should be a natural number, which represents the number of balloons
thrown. The visualization should use a canvas that contains a black grid and the positions of the
balls:

Assume a random distribution of the balls over the theater's seats. Each box in the grid represents
a seat. Configure the program so the change of one variable definition changes the number of
columns in the grid and a change to another changes the number of rows.

Hint: Develop auxiliary functions that draw some given number of lines in the vertical and the
horizontal direction.

11.4 Alternative Data Definitions for Natural Numbers
Using the above, standard data definition for natural numbers makes it easy to develop all kinds
of functions on numbers. Consider, for example, a function that multiplies the first n numbers.
Put differently, it consumes a natural number n and multiplies all numbers between 0 (exclusive)
and n (inclusive). The function is called factorial and has the mathematical notation !. Its
contract is easy to formulate:

;; ! : N -> N
;; to compute n · (n - 1) · ... · 2 · 1
(define (! n) ...)

It consumes a natural number and produces one.

TE
AM
FL
Y

TEAM FLY PRESENTS

-145-

Specifying its input-output relationship is a bit more tricky. We know, of course, what the
product of 1, 2, and 3 is, so we should have

(= (! 3)
 6)
and, similarly,
(= (! 10)
 3628800)

The real question is what to do with the input 0. According to the informal description of the
task, ! is supposed to produce the product of all numbers between 0 (exclusive) and n (inclusive),
the argument. Since n is 0, this request is rather strange because there are no numbers between 0
(exclusive) and 0 (inclusive). We solve the problem by following mathematical convention and
set that (! 0) evaluates to 1.

From here, the rest is straightforward. The template for ! is clearly that of a natural number
processing function:

(define (! n)
 (cond
 [(zero? n) ...]
 [else ... (! (sub1 n)) ...]))

The answer in the first cond-clause is given: 1. In the second clause, the recursion produces the
product of the first n - 1 numbers. To get the product of the first n numbers, we just need to
multiply the (value of the) recursion by n. Figure 31 contains the complete definition of !.

Exercise 11.4.1. Determine the value of (! 2) by hand and with DrScheme. Also test ! with 10,
100, and 1000.

Note: The results of these expressions are large numbers, well beyond the native capacities of
many other programming languages.

Now suppose we wish to design the function product-from-20, which computes the product
from 20 (exclusive) to some number n (inclusive) that is greater or equal to 20. We have several
choices here. First, we could define a function that computes (! n) and (! 20) and divides the
former by the latter. A simple mathematical argument shows that this approach indeed yields the
product of all numbers between 20 (exclusive) and n (inclusive):

Exercise 11.4.2. Use the idea to define product, a function that consumes two natural numbers,
n and m, with m > n, and that produces the product of the numbers between n (exclusive) and m
(inclusive).

Second, we can follow our design recipe, starting with a precise characterization of the function's
input. Obviously, the inputs belong to the natural numbers, but we know more than that. It
belongs to the following collection of numbers: 20, 21, 22, By now we know how to
describe such a set precisely with a data definition:

TE
AM
FL
Y

TEAM FLY PRESENTS

-146-

A natural number [>= 20] is either

1. 20 or
2. (add1 n) if n is a natural number [>= 20].

Notation: In contracts, we use N [>= 20] instead of ``natural numbers [>= 20].''

Using the new data definition, we can formulate a contract for product-from-20:

;; product-from-20: N [>= 20] -> N
;; to compute n · (n - 1) · ... · 21 · 1
(define (product-from-20 n-above-20) ...)

Here is a first example for product-from-20's input-output specification:

(= (product-from-20 21)
 21)

Since the function multiplies all numbers between 20 (exclusively) and its input, (product-
from-20 21) must produce 21, which is the only number in the interval. Similarly,

(= (product-from-20 22)
 462)

for the same reason. Finally, we again follow mathematical convention and agree that

(= (product-from-20 20)
 1)

The template for product-from-20 is a straightforward adaptation of the template for !, or any
natural number-processing function:

(define (product-from-20 n-above-20)
 (cond
 [(= n-above-20 20) ...]
 [else ... (product-from-20 (sub1 n-above-20)) ...]))

The input n-above-20 is either 20 or larger. If it is 20, it does not have any components
according to the data definition. Otherwise, it is the result of adding 1 to a natural number [>=
20], and we can recover this ``component'' by subtracting 1. The value of this selector expression
belongs to the same class of data as the input and is thus a candidate for natural recursion.

Completing the template is equally straightforward. As specified, the result of (product-from-
20 20) is 1, which determines the answer for the first cond-clause. Otherwise, (product-from-
20 (sub1 n-above-20)) already produces the product of all the numbers between 20
(exclusive) and n-above-20 - 1. The only number not included in this range is n-above-20.
Hence (* n-above-20 (product-from-20 (sub1 n-above-20))) is the correct answer in the
second clause. Figure 31 contains the complete definition of product-from-20.

Exercise 11.4.3. Develop product-from-minus-11. The function consumes an integer n
greater or equal to -11 and produces the product of all the integers between -11 (exclusive) and
n (inclusive).

TE
AM
FL
Y

TEAM FLY PRESENTS

-147-

Exercise 11.4.4. In exercise 11.2.2, we developed a function that tabulates some mathematical
function f for an interval of the shape (0,n].

Develop the function tabulate-f20, which tabulates the values of f for natural numbers greater
than 20. Specifically, the function consumes a natural number n greater or equal to 20 and
produces a list of posns, each of which has the shape (make-posn n (f n)) for some n
between 20 (exclusive) and n (inclusive).

;; ! : N -> N
;; to compute n · (n - 1) · ... · 2 · 1
(define (! n)
 (cond
 [(zero? n) 1]
 [else (* n (! (sub1 n)))]))

;; product-from-20: N [>= 20] -> N
;; to compute n · (n - 1) · ... · 21 · 1
(define (product-from-20 n-above-20)
 (cond
 [(= n-above-20 20) 1]
 [else (* n-above-20 (product-from-20 (sub1 n-above-20)))]))

;; product: N[limit] N[>= limit] -> N
;; to compute n · (n - 1) · ... · (limit + 1) · 1
(define (product limit n)
 (cond
 [(= n limit) 1]
 [else (* n (product limit (sub1 n)))]))

Figure 31: Computing factorial, product-from-20, and product

A comparison of ! and product-from-20 suggests the natural question of how to design a
function that multiplies all natural numbers in some range. Roughly speaking, product is like
product-from-20 except that the limit is not a part of the function definition. Instead, it is
another input, which suggests the following contract:

;; product: N N -> N
;; to compute n · (n - 1) · ... · (limit + 1) · 1
(define (product limit n) ...)

The intention is that product, like product-from-20, computes the product from limit
(exclusive) to some number n (inclusive) that is greater or equal to limit.

Unfortunately, product's contract, in contrast with product-from-20's, is rather imprecise. In
particular, it does not describe the collection of numbers that product consumes as the second
input. Given its first input, limit, we know that the second input belongs to limit, (add1
limit), (add1 (add1 limit)), etc. While it is easy to enumerate the possible second inputs, it
also shows that the description of the collection depends on the first input -- an unusal situation
that we have not encountered before.

Still, if we assume limit is some number, the data description for the second input is nearly
obvious:

TE
AM
FL
Y

TEAM FLY PRESENTS

-148-

Let limit be a natural number. A natural number [>= limit] (N[>=limit]) is either

1. limit or
2. (add1 n) if n is a natural number [>= limit].

In other words, the data definition is like that for natural numbers [>= limit] with 20 replaced
by a variable limit. Of course, in high school, we refer to N[>=0] as the natural numbers, and
N[>=1] as the positive integers.

With this new data definition, we specify the contract for product as follows:

;; product: N[limit] N [>= limit] -> N
;; to compute n · (n - 1) · ... · (limit + 1) · 1
(define (product limit n) ...)

That is, we name the first input, a natural number, with the notation [limit] and specify the
second input using the name for the first one.

The rest of the program development is straightforward. It is basically the same as that for
product-from-20 with 20 replaced by limit throughout. The only modification concerns the
natural recusion in the function template. Since the function consumes a limit and a N [>=
limit], the template must contain an application of product to limit and (sub1 n):

(define (product limit n)
 (cond
 [(= n limit) ...]
 [else ... (product limit (sub1 n)) ...]))

Otherwise things remain the same. The full function definition is contained in figure 31.

Exercise 11.4.5. In exercises 11.2.2 and 11.4.4, we developed functions that tabulate f from
some natural number or natural number [>= 20] down to 0 or 20 (exclusive), respectively.

Develop the function tabulate-f-lim, which tabulates the values of f in an analogous manner
from some natural number n down to some other natural number limit.

Exercise 11.4.6. In exercises 11.2.2, 11.4.4, and 11.4.5, we developed functions that tabulate
the mathematical function f in various ranges. In both cases, the final function produced a list of
posns that was ordered in descending order. That is, an expression like (tabulate-f 3) yields
the list

(cons (make-posn 3 2.4)
 (cons (make-posn 2 3.4)
 (cons (make-posn 1 3.6)
 (cons (make-posn 0 3.0)
 empty))))

If we prefer a list of posns in ascending order, we must look at a different data collection, natural
numbers up to a certain point in the chain:

A natural number [<= 20] (N[<=20]) is either

TE
AM
FL
Y

TEAM FLY PRESENTS

-149-

1. 20 or
2. (sub1 n) if n is a natural number [<= 20].

Of course, in high school, we refer to N[<=-1] as the negative integers.

Develop the function

;; tabulate-f-up-to-20 : N [<= 20] -> N
(define (tabulate-f-up-to-20 n-below-20) ...)

which tabulates the values of f for natural numbers less than 20. Specifically, it consumes a
natural number n less than or equal to 20 and produces a list of posns, each of which has the
shape (make-posn n (f n)) for some n between 0 and n (inclusively).

Exercise 11.4.7. Develop the function is-not-divisible-by<=i. It consumes a natural
number [>= 1], i, and a natural number m, with i < m. If m is not divisible by any number
between 1 (exclusive) and i (inclusive), the function produces true; otherwise, its output is
false.

Use is-not-divisible-by<=i to define prime?, which consumes a natural number and
determines whether or not it is prime.

11.5 More on the Nature of Natural Numbers
The natural numbers are a small subset of Scheme's numbers, not all of them. Hence the function
template above cannot be used for processing arbitrary numbers, in particular, inexact numbers.
Still, the template is a good starting point for functions whose definitions involve both natural
numbers and other Scheme numbers. To illustrate this point, let us design the function add-to-
pi, which consumes a natural number n and produces n + 3.14 without using +.

Following the design recipe, we start with

;; add-to-pi : N -> number
;; to compute n + 3.14 without using +
(define (add-to-pi n) ...)

Another easy step is to determine the output for a few sample inputs:

(= (add-to-pi 0) 3.14)
(= (add-to-pi 2) 5.14)
(= (add-to-pi 6) 9.14)

The difference between hellos's contract (see exercise 11.2.1) and that of add-to-pi is the
output, but as we have seen this does not affect the template design. We obtain the template for
add-to-pi by renaming hellos appropriately:

(define (add-to-pi n)
 (cond
 [(zero? n) ...]
 [else ... (add-to-pi (sub1 n)) ...])))

TE
AM
FL
Y

TEAM FLY PRESENTS

-150-

In combination with the examples, the template immediately suggests how to complete the
function. If the input is 0, add-to-pi's answer is 3.14. Otherwise, (add-to-pi (sub1 n))
produces (- n 1) + 3.14; since the correct answer is 1 more than this value, the answer
expression in the second cond-line is (add1 (add-to-pi (sub1 n))). Figure 32 contains the
complete function definition.

Exercise 11.5.1. Define add, which consumes two natural numbers, n and x, and produces n +
x without using Scheme's +.

Exercise 11.5.2. Develop the function multiply-by-pi, which consumes a natural number and
multiplies it by 3.14 without using *. For example,

(= (multiply-by-pi 0) 0)
(= (multiply-by-pi 2) 6.28)
(= (multiply-by-pi 3) 9.42)

Define multiply, which consumes two natural numbers, n and x, and produces n * x without
using Scheme's *. Eliminate + from these definitions, too.

Hint: Recall that multipliplying x by n means adding x to itself n times.

Exercise 11.5.3. Develop the function exponent, which consumes a natural number n and a
number x and computes

Eliminate * from the definition, too.

Hint: Recall that exponentiating x by n means multiplying x with itself n times.

Exercise 11.5.4. Deep lists (see exercise 11.2.4) are another representation for natural numbers.
Show how to represent 0, 3, and 8.

Develop the function addDL, which consumes two deep lists, representing the natural numbers n
and m, and produces a deep list representing n + m.

;; add-to-pi : N -> number
;; to compute n + 3.14 without using +
(define (add-to-pi n)
 (cond
 [(zero? n) 3.14]
 [else (add1 (add-to-pi (sub1 n)))]))
Figure 32: Adding a natural number to pi

34 It is important to start counting at 0 so that we can use the natural numbers for counting the
number of items on a list or the members of a family tree.

35 For that, we need to defer to a course on mathematical sets.

TE
AM
FL
Y

TEAM FLY PRESENTS

-151-

Section 12

Composing Functions, Revisited Again
In section 3 we said that programs were collections of function definitions and possibly some
variable definitions, too. To guide the division of labor among functions, we also introduced a
rough guideline:

Formulate auxiliary function definitions for every dependency between quantities in the problem
statement.
So far the guideline has been reasonably effective, but it is now time to take a second look at it
and to formulate some additional guidance concerning auxiliary functions.

In the first subsection, we refine our original guideline concerning auxiliary programs. The
suggestions mostly put into words the experiences that we made with the exercises. The second
and third one illustrate two of the ideas in more depth; the last one is an extended exercise.

12.1 Designing Complex Programs
When we develop a program, we may hope to implement it with a single function definition but
we should always be prepared to write auxiliary functions. In particular, if the problem statement
mentions several dependencies, it is natural to express each of them as a function. Others who
read the problem statement and the program can follow our reasoning more easily that way. The
movie-theater example in section 3.1 is a good example for this style of development.

Otherwise, we should follow the design recipe and start with a thorough analysis of the input and
output data. Using the data analysis we should design a template and attempt to refine the
template into a complete function definition. Turning a template into a complete function
definition means combining the values of the template's subexpressions into the final answer. As
we do so, we might encounter several situations:

1. If the formulation of an answer requires a case analysis of the available values, use a
cond-expression.

2. If a computation requires knowledge of a particular domain of application, for example,
drawing on (computer) canvases, accounting, music, or science, use an auxiliary function.

3. If a computation must process a list, a natural number, or some other piece of data of
arbitrary size, use an auxiliary function.

4. If the natural formulation of the function isn't quite what we want, it is most likely a
generalization of our target. In this case, the main function is a short definition that defers
the computation to the generalized auxiliary program.

The last two criteria are situations that we haven't discussed yet. The following two subsections
illustrate them with examples.

After we determine the need for an auxiliary function, we should add a contract, a header, and a
purpose statement to a WISH LIST of functions.36

TE
AM
FL
Y

TEAM FLY PRESENTS

-152-

Guideline on Wish Lists
Maintain a list of functions that must be developed to complete a program. Develop each
function according to a design recipe.

Before we put a function on the wish list, we must check whether something like the function
already exists or is already on the wish list. Scheme provides many primitive operations and
functions, and so do other languages. We should find out as much as possible about our working
language, though only when we settle on one. For beginners, a superficial knowledge of a
language is fine.

If we follow these guidelines, we interleave the development of one function with that of others.
As we finish a function that does not depend on anything on our wish list, we can test it. Once
we have tested such basic functions, we can work our way backwards and test other functions
until we have finished the wish list. By testing each function rigorously before we test those that
depend on it, we greatly reduce the effort of searching for logical mistakes.

12.2 Recursive Auxiliary Functions
People need to sort things all the time. Investment advisors sort portfolios by the profit each
holding generates. Doctors sort lists of transplant patients. Mail programs sort messages. More
generally, sorting lists of values by some criteria is a task that many programs need to perform.

Here we study how to sort a list of numbers not because it is important for many programming
tasks, but also because it provides a good case study of the design of auxiliary programs. A
sorting function consumes a list and produces one. Indeed, the two lists contain the same
numbers, though the output list contains them in a different order. This is the essence of the
contract and purpose statement:

;; sort : list-of-numbers -> list-of-numbers
;; to create a sorted list of numbers from all the numbers in alon
(define (sort alon) ...)

Here is one example per clause in the data definition:

(sort empty)
;; expected value:
empty
(sort (cons 1297.04 (cons 20000.00 (cons -505.25 empty))))
;; expected value:
(cons 20000.00 (cons 1297.04 (cons -505.25 empty)))

The answer for the input empty is empty, because empty contains the same items (none) and in
sorted order.

Next we must translate the data definition into a function template. Again, we have dealt with
lists of numbers before, so this step is easy:

(define (sort alon)
 (cond
 [(empty? alon) ...]

TE
AM
FL
Y

TEAM FLY PRESENTS

-153-

 [else ... (first alon) ... (sort (rest alon)) ...]))

Using this template, we can finally turn to the interesting part of the program development. We
consider each case of the cond-expression separately, starting with the simple case. If sort's
input is empty, then the answer is empty, as specified by the example. So let's assume that the
input is not empty. That is, let's deal with the second cond-clause. It contains two expressions
and, following the design recipe, we must understand what they compute:

1. (first alon) extracts the first number from the input;
2. (sort (rest alon)) produces a sorted version of (rest alon), according to the

purpose statement of the function.

Putting together these two values means inserting the first number into its appropriate spot in the
sorted rest of the list.

Let's look at the second example in this context. When sort consumes (cons 1297.04 (cons
20000.00 (cons -505.25 empty))), then

1. (first alon) evaluates to 1297.04,
2. (rest alon) is (cons 20000.00 (cons -505.25 empty)), and
3. (sort (rest alon)) produces (cons 20000.00 (cons -505.25 empty)).

To produce the desired answer, we must insert 1297.04 between the two numbers of the last list.
More generally, the answer in the second cond-line must be an expression that inserts (first
alon) in its proper place into the sorted list (sort (rest alon)).

Inserting a number into a sorted list isn't a simple task. We may have to search through the entire
list before we know what the proper place is. Searching through a list, however, can be done only
with a function, because lists are of arbitrary size and processing such values requires recursive
functions. Thus we must develop an auxiliary function that consumes the first number and a
sorted list and creates a sorted list from both. Let us call this function insert and let us
formulate a wish-list entry:

;; insert : number list-of-numbers -> list-of-numbers
;; to create a list of numbers from n and the numbers on alon
;; that is sorted in descending order; alon is already sorted
(define (insert n alon) ...)

Using insert, it is easy to complete the definition of sort:

(define (sort alon)
 (cond
 [(empty? alon) empty]
 [else (insert (first alon) (sort (rest alon)))]))

The answer in the second line says that in order to produce the final result, sort extracts the first
item of the non-empty list, computes the sorted version of the rest of the list, and inserts the
former into the latter at its appropriate place.

Of course, we are not really finished until we have developed insert. We already have a
contract, a header, and a purpose statement. Next we need to make up function examples. Since

TE
AM
FL
Y

TEAM FLY PRESENTS

-154-

the first input of insert is atomic, let's make up examples based on the data definition for lists.
That is, we first consider what insert should produce when given a number and empty.
According to insert's purpose statement, the output must be a list, it must contain all numbers
from the second input, and it must contain the first argument. This suggests the following:

(insert 5 empty)
;; expected value:
(cons 5 empty)

Instead of 5, we could have used any number.

The second example must use a non-empty list, but then, the idea for insert was suggested by
just such an example when we studied how sort should deal with non-empty lists. Specifically,
we said that sort had to insert 1297.04 into (cons 20000.00 (cons -505.25 empty)) at its
proper place:

(insert 1297.04 (cons 20000.00 (cons -505.25 empty)))
;; expected value:
(cons 20000.00 (cons 1297.04 (cons -505.25 empty)))

In contrast to sort, the function insert consumes two inputs. But we know that the first one is a
number and atomic. We can therefore focus on the second argument, which is a list of numbers
and which suggests that we use the list-processing template one more time:

(define (insert n alon)
 (cond
 [(empty? alon) ...]
 [else ... (first alon) ... (insert n (rest alon)) ...]))

The only difference between this template and the one for sort is that this one needs to take into
account the additional argument n.

To fill the gaps in the template of insert, we again proceed on a case-by-case basis. The first
case concerns the empty list. According to the purpose statement, insert must now construct a
list with one number: n. Hence the answer in the first case is (cons n empty).

The second case is more complicated than that. When alon is not empty,

1. (first alon) is the first number on alon, and
2. (insert n (rest alon)) produces a sorted list consisting of n and all numbers on

(rest alon).

The problem is how to combine these pieces of data to get the answer. Let us consider an
example:

(insert 7 (cons 6 (cons 5 (cons 4 empty))))

Here n is 7 and larger than any of the numbers in the second input. Hence it suffices if we just
cons 7 onto (cons 6 (cons 5 (cons 4 empty))). In contrast, when the application is
something like

(insert 3 (cons 6 (cons 2 (cons 1 (cons -1 empty)))))

TE
AM
FL
Y

TEAM FLY PRESENTS

-155-

n must indeed be inserted into the rest of the list. More concretely,

1. (first alon) is 6
2. (insert n (rest alon)) is (cons 3 (cons 2 (cons 1 (cons -1 empty)))).

By adding 6 onto this last list with cons, we get the desired answer.

Here is how we generalize from these examples. The problem requires a further case distinction.
If n is larger than (or equal to) (first alon), all the items in alon are smaller than n; after all,
alon is already sorted. The result is (cons n alon) for this case. If, however, n is smaller than
(first alon), then we have not yet found the proper place to insert n into alon. We do know
that the first item of the result must be the (first alon) and that n must be inserted into (rest
alon). The final result in this case is

(cons (first alon) (insert n (rest alon)))

because this list contains n and all items of alon in sorted order -- which is what we need.

The translation of this discussion into Scheme requires the formulation of a conditional
expression that distinguishes between the two possible cases:

(cond
 [(>= n (first alon)) ...]
 [(< n (first alon)) ...])

From here, we just need to put the proper answer expressions into the two cond-clauses.
Figure 33 contains the complete definitions of insert and sort.

;; sort : list-of-numbers -> list-of-numbers (sorted)
;; to create a list of numbers with the same numbers as
;; alon sorted in descending order
(define (sort alon)
 (cond
 [(empty? alon) empty]
 [(cons? alon) (insert (first alon) (sort (rest alon)))]))

;; insert : number list-of-numbers (sorted) -> list-of-numbers (sorted)
;; to create a list of numbers from n and the numbers on
;; alon that is sorted in descending order; alon is sorted
(define (insert n alon)
 (cond
 [(empty? alon) (cons n empty)]
 [else (cond
 [(>= n (first alon)) (cons n alon)]
 [(< n (first alon)) (cons (first alon) (insert n (rest
alon)))])]))

Figure 33: Sorting lists of numbers

Terminology: This particular program for sorting is known as INSERTION SORT in the programming
literature.

TE
AM
FL
Y

TEAM FLY PRESENTS

-156-

Exercise 12.2.1. Develop a program that sorts lists of mail messages by date. Mail structures
are defined as follows:

(define-struct mail (from date message))

A mail-message is a structure:

 (make-mail name n s)
where name is a string, n is a number, and s is a string.

Also develop a program that sorts lists of mail messages by name. To compare two strings
alphabetically, use the string<? primitive.

Exercise 12.2.2. Here is the function search:

;; search : number list-of-numbers -> boolean
(define (search n alon)
 (cond
 [(empty? alon) false]
 [else (or (= (first alon) n) (search n (rest alon)))]))

It determines whether some number occurs in a list of numbers. The function may have to
traverse the entire list to find out that the number of interest isn't contained in the list.

Develop the function search-sorted, which determines whether a number occurs in a sorted list
of numbers. The function must take advantage of the fact that the list is sorted.

Terminology: The function search-sorted conducts a LINEAR SEARCH.

12.3 Generalizing Problems, Generalizing Functions
Consider the problem of drawing a polygon, that is, a geometric shape with an arbitrary number
of corners.37 A natural representation for a polygon is a list of posn structures:

A list-of-posns is either

1. the empty list, empty, or
2. (cons p lop) where p is a posn structure and lop is a list of posns.

Each posn represents one corner of the polygon. For example,

(cons (make-posn 10 10)
 (cons (make-posn 60 60)
 (cons (make-posn 10 60)
 empty)))

represents a triangle. The question is what empty means as a polygon. The answer is that empty
does not represent a polygon and therefore shouldn't be included in the class of polygon
representations. A polygon should always have at least one corner, and the lists that represent
polygons should always contain at least one posn. This suggest the following data definition:

TE
AM
FL
Y

TEAM FLY PRESENTS

-157-

A polygon is either

1. (cons p empty) where p is a posn, or
2. (cons p lop) where p is a posn structure and lop is a polygon.

In short, a discussion of how the chosen set of data (lists of posns) represents the intended
information (geometric polygons) reveals that our choice was inadequate. Revising the data
definition brings us closer to our intentions and makes it easier to design the program.

Because our drawing primitives always produce true (if anything), it is natural to suggest the
following contract and purpose statement:

;; draw-polygon : polygon -> true
;; to draw the polygon specified by a-poly
(define (draw-polygon a-poly) ...)

In other words, the function draws the lines between the corners and, if all primitive drawing
steps work out, it produces true. For example, the above list of posns should produce a triangle.

Although the data definition is not just a variant on our well-worn list theme, the template is
close to that of a list-processing function:

;; draw-polygon : polygon -> true
;; to draw the polygon specified by a-poly
(define (draw-polygon a-poly)
 (cond
 [(empty? (rest a-poly)) ... (first a-poly) ...]
 [else ... (first a-poly) ...
 ... (second a-poly) ...
 ... (draw-polygon (rest a-poly)) ...]))

Given that both clauses in the data definition use cons, the first condition must inspect the rest of
the list, which is empty for the first case and non-empty for the second one. Furthermore, in the
first clause, we can add (first a-poly); and in the second case, we not only have the first item
on the list but the second one, too. After all, polygons generated according to the second clause
consist of at least two posns.

Now we can replace the ``...'' in the template to obtain a complete function definition. For the
first clause, the answer must be true, because we don't have two posns that we could connect to
form a line. For the second clause, we have two posns, we can draw a line between them, and we
know that (draw-polygon (rest a-poly)) draws all the remaining lines. Put differently, we
can write

(draw-solid-line (first a-poly) (second a-poly))

in the second clause because we know that a-poly has a second item. Both (draw-solid-
line ...) and (draw-poly ...) produce true if everything goes fine. By combining the two
expressions with and, draw-poly draws all lines.

Here is the complete function definition:

(define (draw-polygon a-poly)

TE
AM
FL
Y

TEAM FLY PRESENTS

-158-

 (cond
 [(empty? (rest a-poly)) true]
 [else (and (draw-solid-line (first a-poly) (second a-poly))
 (draw-polygon (rest a-poly)))]))

Unfortunately, testing it with our triangle example immediately reveals a flaw. Instead of
drawing a polygon with three sides, the function draws only an open curve, connecting all the
corners but not closing the curve:

Mathematically put, we have defined a more general function than the one we wanted. The
function we defined should be called ``connect-the-dots'' and not draw-polygon.

To get from the more general function to what we want, we need to figure out some way to
connect the last dot to the first one. There are several ways to accomplish this goal, but all of
them mean that we define the main function in terms of the function we just defined or
something like it. In other words, we define one auxiliary function in terms of a more general
one.

One way to define the new function is to add the first position of a polygon to the end and to
have this new list drawn. A symmetric method is to pick the last one and add it to the front of the
polygon. A third alternative is to modify the above version of draw-polygon so that it connects
the last posn to the first one. Here we discuss the second alternative; the exercises cover the
other two.

To add the last item of a-poly at the beginning, we need something like

(cons (last a-poly) a-poly)

where last is some auxiliary function that extracts the last item from a non-empty list. Indeed,
this expression is the definition of draw-polygon assuming we define last: see figure 34.

Formulating the wish list entry for last is straightforward:

;; last : polygon -> posn
;; to extract the last posn on a-poly
(define (last a-poly) ...)

And, because last consumes a polygon, we can reuse the template from above:

(define (last a-poly)
 (cond
 [(empty? (rest a-poly)) ... (first a-poly) ...]
 [else ... (first a-poly) ...
 ... (second a-poly) ...

TE
AM
FL
Y

TEAM FLY PRESENTS

-159-

 ... (last (rest a-poly)) ...]))

Turning the template into a complete function is a short step. If the list is empty except for one
item, this item is the desired result. If (rest a-poly) is not empty, (last (rest a-poly))
determines the last item of a-poly. The complete definition of last is displayed at the bottom of
figure 34.

;; draw-polygon : polygon -> true
;; to draw the polygon specified by a-poly
(define (draw-polygon a-poly)
 (connect-dots (cons (last a-poly) a-poly)))

;; connect-dots : polygon -> true
;; to draw connections between the dots of a-poly
(define (connect-dots a-poly)
 (cond
 [(empty? (rest a-poly)) true]
 [else (and (draw-solid-line (first a-poly) (second a-poly) RED)
 (connect-dots (rest a-poly)))]))

;; last : polygon -> posn
;; to extract the last posn on a-poly
(define (last a-poly)
 (cond
 [(empty? (rest a-poly)) (first a-poly)]
 [else (last (rest a-poly))]))

Figure 34: Drawing a polygon

In summary, the development of draw-polygon naturally led us to consider a more general
problem: connecting a list of dots. We solved the original problem by defining a function that
uses (a variant of) the more general function. As we will see again and again, generalizing the
purpose of a function is often the best method to simplify the problem.

Exercise 12.3.1. Modify draw-polygon so that it adds the first item of a-poly to its end. This
requires a different auxiliary function: add-at-end.

Exercise 12.3.2. Modify connect-dots so that it consumes an additional posn structure to
which the last posn is connected.

Then modify draw-polygon to use this new version of connect-dots.

Accumulator: The new version of connect-dots is a simple instance of an accumulator-style
function. In part VI we will discuss an entire class of such problems.

12.4 Extended Exercise: Rearranging Words
Newspapers often contain exercises that ask readers to find all possible words made up from
some letters. One way to play this game is to form all possible arrangements of the letters in a
systematic manner and to see which arrangements are dictionary words. Suppose the letters ``a,''
``d,'' ``e,'' and ``r'' are given. There are twenty-four possible arrangements of these letters:

TE
AM
FL
Y

TEAM FLY PRESENTS

-160-

ader
daer
dear
dera
aedr

eadr
edar
edra
aerd
eard

erad
erda
adre
dare
drae

drea
arde
rade
rdae
rdea

ared
raed
read
reda

The three legitimate words in this list are ``read,'' ``dear,'' and ``dare.''

The systematic enumeration of all possible arrangements is clearly a task for a computer program.
It consumes a word and produces a list of the word's letter-by-letter rearrangements.

One representation of a word is a list of symbols. Each item in the input represents a letter: 'a,
'b, ..., 'z. Here is the data definition for words:

A word is either

1. empty, or
2. (cons a w) where a is a symbol ('a, 'b, ..., 'z) and w is a word.

Exercise 12.4.1. Formulate the data definition for lists of words. Systematically make up
examples of words and lists of words.

Let us call the function arrangements.38 Its template is that of a list-processing function:

;; arrangements : word -> list-of-words
;; to create a list of all rearrangements of the letters in a-word
(define (arrangements a-word)
 (cond
 [(empty? a-word) ...]
 [else ... (first a-word) ... (arrangements (rest a-word)) ...]))

Given the contract, the supporting data definitions, and the examples, we can now look at each
cond-line in the template:

1. If the input is empty, there is only one possible rearrangement of the input: the empty
word. Hence the result is (cons empty empty), the list that contains the empty list as
the only item.

2. Otherwise there is a first letter in the word, and (first a-word) is that letter and the
recursion produces the list of all possible rearrangements for the rest of the word. For
example, if the list is
3. (cons 'd (cons 'e (cons 'r empty)))

then the recursion is (arrangements (cons 'e (cons 'r empty))). It will produce
the result

(cons (cons 'e (cons 'r empty))
 (cons (cons 'r (cons 'e empty))
 empty))

TE
AM
FL
Y

TEAM FLY PRESENTS

-161-

To obtain all possible rearrangements for the entire list, we must now insert the first item,
'd in our case, into all of these words between all possible letters and at the beginning
and end.

The task of inserting a letter into many different words requires processing an arbitrarily large
list. So, we need another function, call it insert-everywhere/in-all-words, to complete the
definition of arrangements:

(define (arrangements a-word)
 (cond
 [(empty? a-word) (cons empty empty)]
 [else (insert-everywhere/in-all-words (first a-word)
 (arrangements (rest a-word)))]))

Exercise 12.4.2. Develop the function insert-everywhere/in-all-words. It consumes a
symbol and a list of words. The result is a list of words like its second argument, but with the
first argument inserted between all letters and at the beginning and the end of all words of the
second argument.

Hint: Reconsider the example from above. We stopped and decided that we needed to insert 'd
into the words (cons 'e (cons 'r empty)) and (cons 'r (cons 'e empty)). The
following is therefore a natural candidate:

(insert-everywhere/in-all-words 'd
 (cons (cons 'e (cons 'r empty))
 (cons (cons 'r (cons 'e empty))
 empty)))

for the ``function examples'' step. Keep in mind that the second input corresponds to the
sequence of (partial) words ``er'' and ``re''.

Also, use the Scheme operation append, which consumes two lists and produces the
concatenation of the two lists. For example:

 (append (list 'a 'b 'c) (list 'd 'e))
= (list 'a 'b 'c 'd 'e)

We will discuss the development of functions such as append in section 17.

36 The term ``wish list'' in this context is due to Dr. John Stone.

37 Mr. Paul C. Fisher inspired this section.

38 The mathematical term is permutation.

TE
AM
FL
Y

TEAM FLY PRESENTS

-162-

Section 13

Intermezzo 2: List Abbreviations
Using cons to create lists is cumbersome if a list contains many items. Fortunately, Scheme
provides the list operation, which consumes an arbitrary number of values and creates a list.
Here is Scheme's extended syntax:

<prm> = list

The extended collection of values is

<val> = (list <val> ... <val>)

A simpler way to understand list expressions is to think of them as abbreviations. Specifically,
every expression of the shape

(list exp-1 ... exp-n)

stands for a series of n cons expressions:

(cons exp-1 (cons ... (cons exp-n empty)))

Recall that empty is not an item of the list here, but the rest of the list. Here are three examples:

(list 1 2)
= (cons 1 (cons 2 empty))

(list 'Houston 'Dallas 'SanAntonio)
= (cons 'Houston (cons 'Dallas (cons 'SanAntonio empty)))

(list false true false false)
= (cons false (cons true (cons false (cons false empty))))

They introduce lists with two, three, and four items, respectively.

Of course, we can apply list not only to values but also to expressions:

 (list (+ 0 1) (+ 1 1))
= (list 1 2)

Before the list is constructed, the expressions must be evaluated. If during the evaluation of an
expression an error occurs, the list is never formed:

 (list (/ 1 0) (+ 1 1))
= /: divide by zero

In short, list behaves just like any other primitive operation.

TE
AM
FL
Y

TEAM FLY PRESENTS

-163-

The use of list greatly simplifies the notation for lists with many items and lists that contains
lists or structures. Here is an example:

 (list 0 1 2 3 4 5 6 7 8 9)

This list contains 10 items and its formation with cons and empty would require 10 uses of cons
and one instance of empty. Similarly, the list

 (list (list 'bob 0 'a)
 (list 'carl 1 'a)
 (list 'dana 2 'b)
 (list 'erik 3 'c)
 (list 'frank 4 'a)
 (list 'grant 5 'b)
 (list 'hank 6 'c)
 (list 'ian 8 'a)
 (list 'john 7 'd)
 (list 'karel 9 'e))

requires 11 uses of list in contrast to 40 of cons and 11 of empty.

Exercise 13.1.1. Use cons and empty to construct the equivalent of the following lists:

1. (list 0 1 2 3 4 5)
2. (list (list 'adam 0) (list 'eve 1) (list 'louisXIV 2))
3. (list 1 (list 1 2) (list 1 2 3)).

Exercise 13.1.2. Use list to construct the equivalent of the following lists:

1. (cons 'a (cons 'b (cons 'c (cons 'd (cons 'e empty)))))
2. (cons (cons 1 (cons 2 empty)) empty)
3. (cons 'a (cons (cons 1 empty) (cons false empty))).
4. (cons (cons 1 (cons 2 empty)) (cons (cons 2 (cons 3 empty)) empty))

Start by determining how many items each list and each nested list contains.

Exercise 13.1.3. On rare occasions, we encounter lists formed with cons and list.
Reformulate the following lists using cons and empty exclusively:

1. (cons 'a (list 0 false))
2. (list (cons 1 (cons 13 empty)))
3. (list empty empty (cons 1 empty))
4. (cons 'a (cons (list 1) (list false empty))).

Then formulate the lists using list.

Exercise 13.1.4. Determine the values of the following expressions:

1. (list (symbol=? 'a 'b) (symbol=? 'c 'c) false)
2. (list (+ 10 20) (* 10 20) (/ 10 20))
3. (list 'dana 'jane 'mary 'laura)

TE
AM
FL
Y

TEAM FLY PRESENTS

-164-

Exercise 13.1.5. Determine the values of

(first (list 1 2 3))

(rest (list 1 2 3))

The use of list makes it significantly easier to evaluate expressions involving lists. Here are the
recursive steps from an example from section 9.5:

 (sum (list (make-ir 'robot 22.05) (make-ir 'doll 17.95)))
= (+ (ir-price (first (list (make-ir 'robot 22.05) (make-ir 'doll
17.95))))
 (sum (rest (list (make-ir 'robot 22.05) (make-ir 'doll 17.95)))))
= (+ (ir-price (make-ir 'robot 22.05))
 (sum (list (make-ir 'doll 17.95))))
At this place, we use one of the equations governing
the new primitive operations for the first time:
= (+ 22.05
 (sum (list (make-ir 'doll 17.95))))
= (+ 22.05
 (+ (ir-price (first (list (make-ir 'doll 17.95))))
 (sum (rest (list (make-ir 'doll 17.95))))))
= (+ 22.05
 (+ (ir-price (make-ir 'doll 17.95))
 (sum empty)))
= (+ 22.05 (+ 17.95 (sum empty)))
= (+ 22.05 (+ 17.95 0))

Since the laws of first and rest carry over to list values in a natural manner, an evaluation
using list does not need to expand list into uses of cons and empty.

Following an old programming language convention,39 we may abbreviate lists and symbols even
further. If a list is formulated with list, we can simply agree to drop list and that each opening
parenthesis stands for itself and the word list. For example,

'(1 2 3)
abbreviates
(list 1 2 3)
or
(cons 1 (cons 2 (cons 3 empty))) .

Similarly,

'((1 2) (3 4) (5 6))
stands for
(list (list 1 2) (list 3 4) (list 5 6)),

which can be further expanded into cons and empty expressions.

If we drop quotes in front of symbols, writing lists of symbols is a breeze:

'(a b c)
This short-hand is an abbreviation for
(list 'a 'b 'c)

And, more impressively,

TE
AM
FL
Y

TEAM FLY PRESENTS

-165-

'(<html>
 (<title> My First Web Page)
 (<body> Oh!))
stands for
(list '<html>
 (list '<title> 'My 'First 'Web 'Page)
 (list '<body> 'Oh!)) .

Exercise 13.1.6. Restore list and quotes where necessary:

1.
2. '(1 a 2 b 3 c)

3.
4. '((alan 1000)
5. (barb 2000)
6. (carl 1500)
7. (dawn 2300))

8.
9. '((My First Paper)
10. (Sean Fisler)
11. (Section 1
12. (Subsection 1 Life is difficult)
13. (Subsection 2 But learning things makes it interesting))
14. (Section 2
15. Conclusion? What conclusion?))

39 The convention is due to LISP, an early but highly advanced programming language designed
in 1958. Scheme inherited many ideas from LISP, but it is a different language.

TE
AM
FL
Y

TEAM FLY PRESENTS

-166-

Part III

More on Processing Arbitrarily Large Data

TE
AM
FL
Y

TEAM FLY PRESENTS

-167-

Section 14

More Self-referential Data Definitions
Lists and natural numbers are two classes of data whose description requires self-referential data
definitions. Both data definitions consist of two clauses; both have a single self-reference. Many
interesting classes of data, however, require more complex definitions than that. Indeed, there is
no end to the variations. It is therefore necessary to learn how to formulate data definitions on
our own, starting with informal descriptions of information. Once we have those, we can just
follow a slightly modified design recipe for self-referential data definitions.

14.1 Structures in Structures
Medical researchers rely on family trees to do research on hereditary diseases. They may, for
example, search a family tree for a certain eye color. Computers can help with these tasks, so it is
natural to design representations of family trees and functions for processing them.

One way to maintain a family tree of a family is to add a node to the tree every time a child is
born. From the node, we can draw connections to the node for the father and the one for the
mother, which tells us how the people in the tree are related. For those people in the tree whose
parents are unknown, we do not draw any connections. The result is a so-called ancestor family
tree because, given any node in the tree, we can find the ancestors of that person if we follow the
arrows but not the descendants.

As we record a family tree, we may also want to record certain pieces of information. The birth
date, birth weight, the color of the eyes, and the color of the hair are the pieces of information
that we care about. Others record different information.

Figure 35: A sample ancestor family tree

TE
AM
FL
Y

TEAM FLY PRESENTS

-168-

See figure 35 for a drawing of an ancestor family tree. Adam is the child of Bettina and Carl; he
has yellow eyes and was born in 1950. Similarly, Gustav is the child of Eva and Fred, has brown
eyes, and was born in 1988. To represent a child in a family tree is to combine several pieces of
information: information about the father, the mother, the name, the birth date, and eye color.
This suggests that we define a new structure:

(define-struct child (father mother name date eyes))

The five fields of child structures record the required information, which suggests the following
data definition:

A child is a structure:
 (make-child f m na da ec)

where f and m are child structures; na and ec are symbols; and da is a number.
While this data definition is simple, it is unfortunately also useless. The definition refers to itself
but, because it doesn't have any clauses, there is no way to create a child structure. If we tried to
create a child structure, we would have to write

(make-child
 (make-child
 (make-child
 (make-child
 ...
)))
 )

without end. It is for this reason that we demand that all self-referential data definitions consist
of several clauses (for now) and that at least one of them does not refer to the data definition.

Let's postpone the data definition for a moment and study instead how we can use child
structures to represent family trees. Suppose we are about to add a child to an existing family tree,
and furthermore suppose that we already have representations for the parents. Then we can just
construct a new child structure. For example, for Adam we could create the following child
structure:

(make-child Carl Bettina 'Adam 1950 'yellow)

assuming Carl and Bettina stand for representations of Adam's parents.

The problem is that we don't always know a person's parents. In the family depicted in figure 35,
we don't know Bettina's parents. Yet, even if we don't know a person's father or mother, we must
still use some Scheme value for the two fields in a child structure. We could use all kinds of
values to signal a lack of information (5, false, or 'none); here, we use empty. For example, to
construct a child structure for Bettina, we do the following:

(make-child empty empty 'Bettina 1926 'green)

Of course, if only one of the two parents is missing, we fill just that field with empty.

Our analysis suggests that a child node has the following data definition:

A child node is (make-child f m na da ec) where

TE
AM
FL
Y

TEAM FLY PRESENTS

-169-

1. f and m are either
a. empty or
b. child nodes;

2. na and ec are symbols;
3. da is a number.

This definition is special in two regards. First, it is a self-referential data definition involving
structures. Second, the data definition mentions two alternatives for the first and second
component. This violates our conventions concerning the shape of data definitions.

We can avoid this problem by defining the collection of nodes in a family tree instead:

A family-tree-node (short: ftn) is either

1. empty; or
2. (make-child f m na da ec)

where f and m are ftns, na
and ec are symbols, and da is a number.

This new definition satisfies our conventions. It consists of two clauses. One of the clauses is
self-referential, the other is not.

In contrast to previous data definitions involving structures, the definition of ftn is not a plain
explanation of what kind of data can show up in which field. Instead, it is multi-clausal and self-
referential. Considering that this is the first such data definition, let us carefully translate the
example from figure 35 and thus reassure ourselves that the new class of data can represent the
information of interest.

The information for Carl is easy to translate into a ftn:

(make-child empty empty 'Carl 1926 'green)

Bettina and Fred are represented with similar nodes. Accordingly, the node for Adam is created
with

(make-child (make-child empty empty 'Carl 1926 'green)
 (make-child empty empty 'Bettina 1926 'green)
 'Adam
 1950
 'yellow)

As the examples show, a simple-minded, node-by-node transliteration of figure 35 requires
numerous repetitions of data. For example, if we constructed the child structure for Dave like
the one for Adam, we would get

(make-child (make-child empty empty 'Carl 1926 'green)
 (make-child empty empty 'Bettina 1926 'green)
 'Dave
 1955
 'black)

TE
AM
FL
Y

TEAM FLY PRESENTS

-170-

Hence it is a good idea to introduce a variable definition per node and to use the variable
thereafter. To make things easy, we use Carl to stand for the child structure that describes Carl,
and so on. The complete transliteration of the family tree into Scheme can be found in figure 36.

;; Oldest Generation:
(define Carl (make-child empty empty 'Carl 1926 'green))
(define Bettina (make-child empty empty 'Bettina 1926 'green))

;; Middle Generation:
(define Adam (make-child Carl Bettina 'Adam 1950 'yellow))
(define Dave (make-child Carl Bettina 'Dave 1955 'black))
(define Eva (make-child Carl Bettina 'Eva 1965 'blue))
(define Fred (make-child empty empty 'Fred 1966 'pink))

;; Youngest Generation:
(define Gustav (make-child Fred Eva 'Gustav 1988 'brown))

Figure 36: A Scheme representation of the sample family tree

The structure definitions in figure 36 naturally correspond to an image of deeply nested boxes.
Each box has five compartments. The first two contain boxes again, which in turn contain boxes
in their first two compartments, and so on. Thus, if we were to draw the structure definitions for
the family tree using nested boxes, we would quickly be overwhelmed by the details of the
picture. Furthermore, the picture would copy certain portions of the tree just like our attempt to
use make-child without variable definitions. For these reasons, it is better to imagine the
structures as boxes and arrows, as originally drawn in figure 35. In general, a programmer must
flexibly switch back and forth between both of these graphical illustrations. For extracting values
from structures, the boxes-in-boxes image works best; for finding our way around large
collections of interconnected structures, the boxes-and-arrows image works better.

Equipped with a firm understanding of the family tree representation, we can turn to the design
of functions that consume family trees. Let us first look at a generic function of this kind:

;; fun-for-ftn : ftn -> ???
(define (fun-for-ftn a-ftree) ...)

After all, we should be able to construct the template without considering the purpose of a
function.

Since the data definition for ftns contains two clauses, the template must consist of a cond-
expression with two clauses. The first deals with empty, the second with child structures:

;; fun-for-ftn : ftn -> ???
(define (fun-for-ftn a-ftree)
 (cond
 [(empty? a-ftree) ...]
 [else ; (child? a-ftree)
 ...]))

Furthermore, for the first clause, the input is atomic so there is nothing further to be done. For
the second clause, though, the input contains five pieces of information: two other family tree
nodes, the person's name, birth date, and eye color:

TE
AM
FL
Y

TEAM FLY PRESENTS

-171-

;; fun-for-ftn : ftn -> ???
(define (fun-for-ftn a-ftree)
 (cond
 [(empty? a-ftree) ...]
 [else
 ... (fun-for-ftn (child-father a-ftree)) ...
 ... (fun-for-ftn (child-mother a-ftree)) ...
 ... (child-name a-ftree) ...
 ... (child-date a-ftree) ...
 ... (child-eyes a-ftree) ...]))

We also apply fun-for-ftn to the father and mother fields because of the self-references in
the second clause of the data definition.

Let us now turn to a concrete example: blue-eyed-ancestor?, the function that determines
whether anyone in some given family tree has blue eyes:

;; blue-eyed-ancestor? : ftn -> boolean
;; to determine whether a-ftree contains a child
;; structure with 'blue in the eyes field
(define (blue-eyed-ancestor? a-ftree) ...)

Following our recipe, we first develop some examples. Consider the family tree node for Carl.
He does not have blue eyes, and because he doesn't have any (known) ancestors in our family
tree, the family tree represented by this node does not contain a person with blue eyes. In short,

(blue-eyed-ancestor? Carl)

evaluates to false. In contrast, the family tree represented by Gustav contains a node for Eva
who does have blue eyes. Hence

(blue-eyed-ancestor? Gustav)

evaluates to true.

The function template is like that of fun-for-ftn, except that we use the name blue-eyed-
ancestor?. As always, we use the template to guide the function design. First we assume that
(empty? a-ftree) holds. In that case, the family tree is empty, and nobody has blue eyes.
Hence the answer must be false.

The second clause of the template contains several expressions, which we must interpret:

1. (blue-eyed-ancestor? (child-father a-ftree)), which determines whether
someone in the father's ftn has blue eyes;

2. (blue-eyed-ancestor? (child-mother a-ftree)), which determines whether
someone in the mother's ftn has blue eyes;

3. (child-name a-ftree), which extracts the child's name;
4. (child-date a-ftree), which extracts the child's date of birth; and
5. (child-eyes a-ftree), which extracts the child's eye color.

TE
AM
FL
Y

TEAM FLY PRESENTS

-172-

It is now up to us to use these values properly. Clearly, if the child structure contains 'blue in
the eyes field, the function's answer is true. Otherwise, the function produces true if there is a
blue-eyed person in either the father's or the mother's family tree. The rest of the data is useless.

Our discussion suggests that we formulate a conditional expression and that the first condition is

(symbol=? (child-eyes a-ftree) 'blue)

The two recursions are the other two conditions. If either one produces true, the function
produces true. The else-clause produces false.

In summary, the answer in the second clause is the expression:

(cond
 [(symbol=? (child-eyes a-ftree) 'blue) true]
 [(blue-eyed-ancestor? (child-father a-ftree)) true]
 [(blue-eyed-ancestor? (child-mother a-ftree)) true]
 [else false])

The first definition in figure 37 pulls everything together. The second definition shows how to
formulate this cond-expression as an equivalent or-expression, testing one condition after the
next, until one of them is true or all of them have evaluated to false.

;; blue-eyed-ancestor? : ftn -> boolean
;; to determine whether a-ftree contains a child
;; structure with 'blue in the eyes field
;; version 1: using a nested cond-expression
(define (blue-eyed-ancestor? a-ftree)
 (cond
 [(empty? a-ftree) false]
 [else (cond
 [(symbol=? (child-eyes a-ftree) 'blue) true]
 [(blue-eyed-ancestor? (child-father a-ftree)) true]
 [(blue-eyed-ancestor? (child-mother a-ftree)) true]
 [else false])]))

;; blue-eyed-ancestor? : ftn -> boolean
;; to determine whether a-ftree contains a child
;; structure with 'blue in the eyes field
;; version 2: using an or-expression
(define (blue-eyed-ancestor? a-ftree)
 (cond
 [(empty? a-ftree) false]
 [else (or (symbol=? (child-eyes a-ftree) 'blue)
 (or (blue-eyed-ancestor? (child-father a-ftree))
 (blue-eyed-ancestor? (child-mother a-ftree))))]))

Figure 37: Two functions for finding a blue-eyed ancestor

The function blue-eyed-ancestor? is unusual in that it uses the recursions as conditions in a
cond-expressions. To understand how this works, let us evaluate an application of blue-eyed-
ancestor? to Carl by hand:

 (blue-eyed-ancestor? Carl)

TE
AM
FL
Y

TEAM FLY PRESENTS

-173-

= (blue-eyed-ancestor? (make-child empty empty 'Carl 1926 'green))
= (cond
 [(empty? (make-child empty empty 'Carl 1926 'green)) false]
 [else
 (cond
 [(symbol=?
 (child-eyes (make-child empty empty 'Carl 1926 'green))
 'blue)
 true]
 [(blue-eyed-ancestor?
 (child-father (make-child empty empty 'Carl 1926 'green)))
 true]
 [(blue-eyed-ancestor?
 (child-mother (make-child empty empty 'Carl 1926 'green)))
 true]
 [else false])])
= (cond
 [(symbol=? 'green 'blue) true]
 [(blue-eyed-ancestor? empty) true]
 [(blue-eyed-ancestor? empty) true]
 [else false])
= (cond
 [false true]
 [false true]
 [false true]
 [else false])
= false

The evaluation confirms that blue-eyed-ancestor? works properly for Carl, and it also
illustrates how the function works.

Exercise 14.1.1. The second definition of blue-eyed-ancestor? in figure 37 uses an or-
expression instead of a nested conditional. Use a hand-evaluation to show that this definition
produces the same output for the inputs empty and Carl.

Exercise 14.1.2. Confirm that

(blue-eyed-ancestor? empty)

evaluates to false with a hand-evaluation.

Evaluate (blue-eyed-ancestor? Gustav) by hand and with DrScheme. For the hand-
evaluation, skip those steps in the evaluation that concern extractions, comparisons, and
conditions involving empty?. Also reuse established equations where possible, especially the one
above.

Exercise 14.1.3. Develop count-persons. The function consumes a family tree node and
produces the number of people in the corresponding family tree.

Exercise 14.1.4. Develop the function average-age. It consumes a family tree node and the
current year. It produces the average age of all people in the family tree.

Exercise 14.1.5. Develop the function eye-colors, which consumes a family tree node and
produces a list of all eye colors in the tree. An eye color may occur more than once in the list.

TE
AM
FL
Y

TEAM FLY PRESENTS

-174-

Hint: Use the Scheme operation append, which consumes two lists and produces the
concatenation of the two lists. For example:

 (append (list 'a 'b 'c) (list 'd 'e))
= (list 'a 'b 'c 'd 'e)

We discuss the development of functions like append in section 17.

Exercise 14.1.6. Suppose we need the function proper-blue-eyed-ancestor?. It is like
blue-eyed-ancestor? but responds with true only when some proper ancestor, not the given
one, has blue eyes.

The contract for this new function is the same as for the old one:

;; proper-blue-eyed-ancestor? : ftn -> boolean
;; to determine whether a-ftree has a blue-eyed ancestor
(define (proper-blue-eyed-ancestor? a-ftree) ...)

The results differ slightly.

To appreciate the difference, we need to look at Eva, who is blue-eyed, but does not have a blue-
eyed ancestor. Hence

(blue-eyed-ancestor? Eva)

is true but

(proper-blue-eyed-ancestor? Eva)

is false. After all Eva is not a proper ancestor of herself.

Suppose a friend sees the purpose statement and comes up with this solution:

(define (proper-blue-eyed-ancestor? a-ftree)
 (cond
 [(empty? a-ftree) false]
 [else (or (proper-blue-eyed-ancestor? (child-father a-ftree))
 (proper-blue-eyed-ancestor? (child-mother a-ftree)))]))

What would be the result of (proper-blue-eyed-ancestor? A) for any ftn A?

Fix the friend's solution.

14.2 Extended Exercise: Binary Search Trees
Programmers often work with trees, though rarely with family trees. A particularly well-known
form of tree is the binary search tree. Many applications employ binary search trees to store and
to retrieve information.

To be concrete, we discuss binary trees that manage information about people. In this context, a
binary tree is similar to a family tree but instead of child structures it contains nodes:

TE
AM
FL
Y

TEAM FLY PRESENTS

-175-

(define-struct node (ssn name left right))

Here we have decided to record the social security number, the name, and two other trees. The
latter are like the parent fields of family trees, though the relationship between a node and its
left and right trees is not based on family relationships.

The corresponding data definition is just like the one for family trees: A binary-tree (short: BT)
is either

1. false; or
2. (make-node soc pn lft rgt)

where soc is a number, pn is a symbol, and lft and rgt are BTs.

The choice of false to indicate lack of information is arbitrary. We could have chosen empty
again, but false is an equally good and equally frequent choice that we should become familiar
with.

Here are two binary trees:

 (make-node
 15
 'd
 false
 (make-node 24 'i false false))

(make-node
 15
 'd
 (make-node 87 'h false false)
 false)

Figure 38 shows how we should think about such trees. The trees are drawn upside down, that is,
with the root at the top and the crown of the tree at the bottom. Each circle corresponds to a node,
labeled with the ssn field of a corresponding node structure. The trees omit false.

Exercise 14.2.1. Draw the two trees above in the manner of figure 38. Then develop
contains-bt. The function consumes a number and a BT and determines whether the number
occurs in the tree.

Exercise 14.2.2. Develop search-bt. The function consumes a number n and a BT. If the tree
contains a node structure whose soc field is n, the function produces the value of the pn field in
that node. Otherwise, the function produces false.

Hint: Use contains-bt. Or, use boolean? to find out whether search-bt was successfully
used on a subtree. We will discuss this second technique, called backtracking, in the intermezzo
at the end of this part.

Tree A: Tree B:

TE
AM
FL
Y

TEAM FLY PRESENTS

-176-

Figure 38: A binary search tree and a binary tree

Both trees in figure 38 are binary trees but they differ in a significant way. If we read the
numbers in the two trees from left to right we obtain two sequences:

The sequence for tree A is sorted in ascending order, the one for B is not.

A binary tree that has an ordered sequence of information is a BINARY SEARCH TREE. Every binary
search tree is a binary tree, but not every binary tree is a binary search tree. We say that the class
of binary search trees is a PROPER SUBCLASS of that of binary trees, that is, a class that does not
contain all binary trees. More concretely, we formulate a condition -- or data invariant -- that
distinguishes a binary search tree from a binary tree:

 The BST Invariant

A binary-search-tree (short: BST) is a BT:

1. false is always a BST;
2. (make-node soc pn lft rgt) is a BST if

a. lft and rgt are BSTs,
b. all ssn numbers in lft are smaller than soc, and
c. all ssn numbers in rgt are larger than soc.

The second and third conditions are different from what we have seen in previous data
definitions. They place an additional and unusual burden on the construction BSTs. We must
inspect all numbers in these trees and ensure that they are smaller (or larger) than soc.

Exercise 14.2.3. Develop the function inorder. It consumes a binary tree and produces a list of
all the ssn numbers in the tree. The list contains the numbers in the left-to-right order we have
used above.

Hint: Use the Scheme operation append, which concatenates lists:

(append (list 1 2 3) (list 4) (list 5 6 7))
evaluates to
(list 1 2 3 4 5 6 7)

TE
AM
FL
Y

TEAM FLY PRESENTS

-177-

What does inorder produce for a binary search tree?

Looking for a specific node in a BST takes fewer steps than looking for the same node in a BT. To
find out whether a BT contains a node with a specific ssn field, a function may have to look at
every node of the tree. In contrast, to inspect a binary search tree requires far fewer inspections
than that. Suppose we are given the BST:

(make-node 66 'a L R)

If we are looking for 66, we have found it. Now suppose we are looking for 63. Given the above
node, we can focus the search on L because all nodes with ssns smaller than 66 are in L.
Similarly, if we were to look for 99, we would ignore L and focus on R because all nodes with
ssns larger than 66 are in R.

Exercise 14.2.4. Develop search-bst. The function consumes a number n and a BST. If the
tree contains a node structure whose soc field is n, the function produces the value of the pn
field in that node. Otherwise, the function produces false. The function organization must
exploit the BST Invariant so that the function performs as few comparisons as necessary.
Compare searching in binary search trees with searching in sorted lists (exercise 12.2.2).

Building a binary tree is easy; building a binary search tree is a complicated, error-prone affair.
To create a BT we combine two BTs, an ssn number and a name with make-node. The result is,
by definition, a BT. To create a BST, this procedure fails because the result would typically not be
a BST. For example, if one tree contains 3 and 5, and the other one contains 2 and 6, there is no
way to join these two BSTs into a single binary search tree.

We can overcome this problem in (at least) two ways. First, given a list of numbers and symbols,
we can determine by hand what the corresponding BST should look like and then use make-node
to build it. Second, we can write a function that builds a BST from the list, one node after another.

Exercise 14.2.5. Develop the function create-bst. It consumes a BST B, a number N, and a
symbol S. It produces a BST that is just like B and that in place of one false subtree contains the
node structure

(make-node N S false false)

Test the function with (create-bst false 66 'a); this should create a single node. Then
show that the following holds:

 (create-bst (create-bst false 66 'a) 53 'b)
= (make-node 66
 'a
 (make-node 53 'b false false)
 false)

Finally, create tree A from figure 38 using create-bst.

Exercise 14.2.6. Develop the function create-bst-from-list. It consumes a list of numbers
and names; it produces a BST by repeatedly applying create-bst.

TE
AM
FL
Y

TEAM FLY PRESENTS

-178-

The data definition for a list of numbers and names is as follows:

A list-of-number/name is either

1. empty or
2. (cons (list ssn nom) lonn)

where ssn is a number, nom a symbol,
and lonn is a list-of-number/name.

Consider the following examples:

(define sample

 '((99 o)

 (77 l)

 (24 i)

 (10 h)

 (95 g)

 (15 d)

 (89 c)

 (29 b)

 (63 a)))

(define sample

 (list (list 99 'o)

 (list 77 'l)

 (list 24 'i)

 (list 10 'h)

 (list 95 'g)

 (list 15 'd)

 (list 89 'c)

 (list 29 'b)

 (list 63 'a)))

They are equivalent, although the left one is defined with the quote abbreviation, the right one
using list. The left tree in figure 38 is the result of using create-bst-from-list on this list.

14.3 Lists in Lists
The World Wide Web, or just ``the Web,'' has become the most interesting part of the Internet, a
global network of computers. Roughly speaking, the Web is a collection of Web pages. Each
Web page is a sequence of words, pictures, movies, audio messages, and many more things.
Most important, Web pages also contain links to other Web pages.

A Web browser enables people to view Web pages. It presents a Web page as a sequence of
words, images, and so on. Some of the words on a page may be underlined. Clicking on
underlined words leads to a new Web page. Most modern browsers also provide a Web page
composer. These are tools that help people create collections of Web pages. A composer can,
among other things, search for words or replace one word with another. In short, Web pages are
things that we should be able to represent on computers, and there are many functions that
process Web pages.

TE
AM
FL
Y

TEAM FLY PRESENTS

-179-

To simplify our problem, we consider only Web pages of words and nested Web pages. One way
of understanding such a page is as a sequence of words and Web pages. This informal
description suggests a natural representation of Web pages as lists of symbols, which represent
words, and Web pages, which represent nested Web pages. After all, we have emphasized before
that a list may contain different kinds of things. Still, when we spell out this idea as a data
definition, we get something rather unusual:

A Web-page (short: WP) is either

1. empty;
2. (cons s wp)

where s is a symbol and wp is a Web page; or
3. (cons ewp wp)

where both ewp and wp are Web pages.

This data definition differs from that of a list of symbols in that it has three clauses instead of
two and that it has three self-references instead of one. Of these self-references, the one at the
beginning of a constructed list is the most unusual. We refer to such Web pages as immediately
embedded Web pages.

Because the data definition is unusual, we construct some examples of Web pages before we
continue. Here is a plain page:

'(The TeachScheme! Project aims to improve the
 problem-solving and organization skills of high
 school students. It provides software and lecture
 notes as well as exercises and solutions for teachers.)

It contains nothing but words. Here is a complex page:

'(The TeachScheme Web Page
 Here you can find:
 (LectureNotes for Teachers)
 (Guidance for (DrScheme: a Scheme programming environment))
 (Exercise Sets)
 (Solutions for Exercises)
 For further information: write to scheme@cs)

The immediately embedded pages start with parentheses and the symbols 'LectureNotes,
'Guidance, 'Exercises, and 'Solutions. The second embedded Web page contains another
embedded page, which starts with the word 'DrScheme. We say this page is embedded with
respect to the entire page.

Let's develop the function size, which consumes a Web page and produces the number of words
that it and all of its embedded pages contain:

;; size : WP -> number
;; to count the number of symbols that occur in a-wp
(define (size a-wp) ...)

The two Web pages above suggest two good examples, but they are too complex. Here are three
examples, one per subclass of data:

TE
AM
FL
Y

TEAM FLY PRESENTS

-180-

(= (size empty)
 0)
(= (size (cons 'One empty))
 1)
(= (size (cons (cons 'One empty) empty))
 1)

The first two examples are obvious. The third one deserves a short explanation. It is a Web page
that contains one immediately embedded Web page, and nothing else. The embedded Web page
is the one of the second example, and it contains the one and only symbol of the third example.

To develop the template for size, let's carefully step through the design recipe. The shape of the
data definition suggests that we need three cond-clauses: one for the empty page, one for a page
that starts with a symbol, and one for a page that starts with an embedded Web page. While the
first condition is the familiar test for empty, the second and third need closer inspection because
both clauses in the data definition use cons, and a simple cons? won't distinguish between the
two forms of data.

If the page is not empty, it is certainly constructed, and the distinguishing feature is the first item
on the list. In other words, the second condition must use a predicate that tests the first item on
a-wp:

;; size : WP -> number
;; to count the number of symbols that occur in a-wp
(define (size a-wp)
 (cond
 [(empty? a-wp) ...]
 [(symbol? (first a-wp)) ... (first a-wp) ... (size (rest a-wp)) ...]
 [else ... (size (first a-wp)) ... (size (rest a-wp)) ...]))

The rest of the template is as usual. The second and third cond clauses contain selector
expressions for the first item and the rest of the list. Because (rest a-wp) is always a Web page
and because (first a-wp) is one in the third case, we also add a recursive call to size for these
selector expressions.

Using the examples and the template, we are ready to design size: see figure 39. The differences
between the definition and the template are minimal, which shows again how much of a function
we can design by merely thinking systematically about the data definition for its inputs.

;; size : WP -> number
;; to count the number of symbols that occur in a-wp
(define (size a-wp)
 (cond
 [(empty? a-wp) 0]
 [(symbol? (first a-wp)) (+ 1 (size (rest a-wp)))]
 [else (+ (size (first a-wp)) (size (rest a-wp)))]))

Figure 39: The definition of size for Web pages

Exercise 14.3.1. Briefly explain how to define size using its template and the examples. Test
size using the examples from above.

TE
AM
FL
Y

TEAM FLY PRESENTS

-181-

Exercise 14.3.2. Develop the function occurs1. The function consumes a Web page and a
symbol. It produces the number of times the symbol occurs in the Web page, ignoring the nested
Web pages.

Develop the function occurs2. It is like occurs1, but counts all occurrences of the symbol,
including in embedded Web pages.

Exercise 14.3.3. Develop the function replace. The function consumes two symbols, new and
old, and a Web page, a-wp. It produces a page that is structurally identical to a-wp but with all
occurrences of old replaced by new.

Exercise 14.3.4. People do not like deep Web trees because they require too many page
switches to reach useful information. For that reason a Web page designer may also want to
measure the depth of a page. A page containing only symbols has depth 0. A page with an
immediately embedded page has the depth of the embedded page plus 1. If a page has several
immediately embedded Web pages, its depth is the maximum of the depths of embedded Web
pages plus 1. Develop depth, which consumes a Web page and computes its depth.

14.4 Extended Exercise: Evaluating Scheme
DrScheme is itself a program that consists of several parts. One function checks whether the
definitions and expressions we wrote down are grammatical Scheme expressions. Another one
evaluates Scheme expressions. With what we have learned in this section, we can now develop
simple versions of these functions.

Our first task is to agree on a data representation for Scheme programs. In other words, we must
figure out how to represent a Scheme expression as a piece of Scheme data. This sounds unusual,
but it is not difficult. Suppose we just want to represent numbers, variables, additions, and
multiplications for a start. Clearly, numbers can stand for numbers and symbols for variables.
Additions and multiplications, however, call for a class of compound data because they consist
of an operator and two subexpressions.

A straightforward way to represent additions and multiplications is to use two structures: one for
additions and another one for multiplications. Here are the structure definitions:

(define-struct add (left right))
(define-struct mul (left right))

Each structure has two components. One represents the left expression and the other one the right
expression of the operation.

Scheme expression representation of Scheme expression
3 3
x 'x
(* 3 10) (make-mul 3 10)
(+ (* 3 3) (* 4 4)) (make-add (make-mul 3 3) (make-mul 4 4))
(+ (* x x) (* y y)) (make-add (make-mul 'x 'x) (make-mul 'y 'y))

TE
AM
FL
Y

TEAM FLY PRESENTS

-182-

(* 1/2 (* 3 3)) (make-mul 1/2 (make-mul 3 3))

Let's look at some examples:

These examples cover all cases: numbers, variables, simple expressions, and nested expressions.

Exercise 14.4.1. Provide a data definition for the representation of Scheme expressions. Then
translate the following expressions into representations:

1. (+ 10 -10)
2. (+ (* 20 3) 33)
3. (* 3.14 (* r r))
4. (+ (* 9/5 c) 32)
5. (+ (* 3.14 (* o o)) (* 3.14 (* i i)))

A Scheme evaluator is a function that consumes a representation of a Scheme expression and
produces its value. For example, the expression 3 has the value 3, (+ 3 5) has the value 8, (+
(* 3 3) (* 4 4)) has the value 25, etc. Since we are ignoring definitions for now, an
expression that contains a variable, for example, (+ 3 x), does not have a value; after all, we do
not know what the variable stands for. In other words, our Scheme evaluator should be applied
only to representations of expressions that do not contain variables. We say such expressions are
numeric.

Exercise 14.4.2. Develop the function numeric?, which consumes (the representation of) a
Scheme expression and determines whether it is numeric.

Exercise 14.4.3. Provide a data definition for numeric expressions. Develop the function
evaluate-expression. The function consumes (the representation of) a numeric Scheme
expression and computes its value. When the function is tested, modify it so it consumes all
kinds of Scheme expressions; the revised version raises an error when it encounters a variable.

Exercise 14.4.4. When people evaluate an application (f a) they substitute a for f's parameter
in f's body. More generally, when people evaluate expressions with variables, they substitute the
variables with values.

Develop the function subst. The function consumes (the representation of) a variable (V), a
number (N), and (the representation of) a Scheme expression. It produces a structurally
equivalent expression in which all occurrences of V are substituted by N.

TE
AM
FL
Y

TEAM FLY PRESENTS

-183-

Section 15

Mutually Referential Data Definitions
In the preceding section, we developed data representations of family trees, Web pages, and
Scheme expressions. Developing functions for these data definitions was based on one and the
same design recipe. If we wish to develop more realistic representations of Web pages or
Scheme expressions, or if we wish to study descendant family trees rather than ancestor trees, we
must learn to describe classes of data that are interrelated. That is, we must formulate several
data definitions at once where the data definitions not only refer to themselves, but also refer to
other data definitions.

15.1 Lists of Structures, Lists in Structures
When we build a family tree retroactively, we often start from the child's perspective and
proceed from there to parents, grandparents, etc. As we construct the tree, we write down who is
whose child rather than who is whose parents. We build a descendant family tree.

Drawing a descendant tree proceeds just like drawing an ancestor tree, except that all arrows are
reversed. Figure 40 represents the same family as that of figure 35, but drawn from the
descendant perspective.

Figure 40: A descendant family tree

Representing these new kinds of family trees and their nodes in a computer requires a different
class of data than do the ancestor family trees. This time a node must include information about
the children instead of the two parents. Here is a structure definition:

(define-struct parent (children name date eyes))

TE
AM
FL
Y

TEAM FLY PRESENTS

-184-

The last three fields in a parent structure contain the same basic information as a corresponding
child structure, but the contents of the first one poses an interesting question. Since a parent may
have an arbitrary number of children, the children field must contain an undetermined number
of nodes, each of which represents one child.

The natural choice is to insist that the children field always stands for a list of parent
structures. The list represents the children; if a person doesn't have children, the list is empty.
This decision suggests the following data definition:

A parent is a structure:
(make-parent loc n d e)

where loc is a list of children, n and e are symbols, and d is a number.
Unfortunately, this data definition violates our criteria concerning definitions. In particular, it
mentions the name of a collection that is not yet defined: list of children.

Since it is impossible to define the class of parents without knowing what a list of children is,
let's start from the latter:

A list of children is either

1. empty or
2. (cons p loc) where p is a parent and loc is a list of children.

This second definition looks standard, but it suffers from the same problem as the one for
parents. The unknown class it refers to is that of the class of parents, which cannot be defined
without a definition for the list of children, and so on.

The conclusion is that the two data definitions refer to each other and are only meaningful if
introduced together:

A parent is a structure:

 (make-parent loc n d e)
where loc is a list of children, n and e are symbols, and d is a number.

A list-of-children is either

1. empty or
2. (cons p loc) where p is a parent and loc is a list of children.

When two (or more) data definitions refer to each other, they are said to be MUTUALLY RECURSIVE or
MUTUALLY REFERENTIAL.

Now we can translate the family tree of figure 40 into our Scheme data language. Before we can
create a parent structure, of course, we must first define all of the nodes that represent children.
And, just as in section 14.1, the best way to do this is to name a parent structure before we reuse
it in a list of children. Here is an example:

(define Gustav (make-parent empty 'Gustav 1988 'brown))

TE
AM
FL
Y

TEAM FLY PRESENTS

-185-

(make-parent (list Gustav) 'Fred 1950 'yellow)

To create a parent structure for Fred, we first define one for Gustav so that we can form (list
Gustav), the list of children for Fred.

Figure 41 contains the complete Scheme representation for our descendant tree. To avoid
repetitions, it also includes definitions for lists of children. Compare the definitions with
figure 36 (see page 19), which represents the same family as an ancestor tree.

;; Youngest Generation:
(define Gustav (make-parent empty 'Gustav 1988 'brown))

(define Fred&Eva (list Gustav))

;; Middle Generation:
(define Adam (make-parent empty 'Adam 1950 'yellow))
(define Dave (make-parent empty 'Dave 1955 'black))
(define Eva (make-parent Fred&Eva 'Eva 1965 'blue))
(define Fred (make-parent Fred&Eva 'Fred 1966 'pink))

(define Carl&Bettina (list Adam Dave Eva))

;; Oldest Generation:
(define Carl (make-parent Carl&Bettina 'Carl 1926 'green))
(define Bettina (make-parent Carl&Bettina 'Bettina 1926 'green))

Figure 41: A Scheme representation of the descendant family tree

Let us now study the development of blue-eyed-descendant?, the natural companion of blue-
eyed-ancestor?. It consumes a parent structure and determines whether it or any of its
descendants has blue eyes:

;; blue-eyed-descendant? : parent -> boolean
;; to determine whether a-parent or any of its descendants (children,
;; grandchildren, and so on) have 'blue in the eyes field
(define (blue-eyed-descendant? a-parent) ...)

Here are three simple examples, formulated as tests:

(boolean=? (blue-eyed-descendant? Gustav) false)
(boolean=? (blue-eyed-descendant? Eva) true)
(boolean=? (blue-eyed-descendant? Bettina) true)

A glance at figure 40 explains the answers in each case.

According to our rules, the template for blue-eyed-descendant? is simple. Since its input is a
plain class of structures, the template contains nothing but selector expressions for the fields in
the structure:

(define (blue-eyed-descendant? a-parent)
 ... (parent-children a-parent) ...
 ... (parent-name a-parent) ...
 ... (parent-date a-parent) ...
 ... (parent-eyes a-parent) ...)

TE
AM
FL
Y

TEAM FLY PRESENTS

-186-

The structure definition for parent specifies four fields so there are four expressions.

The expressions in the template remind us that the eye color of the parent is available and can be
checked. Hence we add a cond-expression that compares (parent-eyes a-parent) to 'blue:

(define (blue-eyed-descendant? a-parent)
 (cond
 [(symbol=? (parent-eyes a-parent) 'blue) true]
 [else
 ... (parent-children a-parent) ...
 ... (parent-name a-parent) ...
 ... (parent-date a-parent) ...]))

The answer is true if the condition holds. The else clause contains the remaining expressions.
The name and date field have nothing to do with the eye color of a person, so we can ignore
them. This leaves us with

(parent-children a-parent)

an expression that extracts the list of children from the parent structure.

If the eye color of some parent structure is not 'blue, we must clearly search the list of children
for a blue-eyed descendant. Following our guidelines for complex functions, we add the function
to our wish list and continue from there. The function that we want to put on a wish list
consumes a list of children and checks whether any of these or their grandchildren has blue eyes.
Here are the contract, header, and purpose statement:

;; blue-eyed-children? : list-of-children -> boolean
;; to determine whether any of the structures on aloc is blue-eyed
;; or has any blue-eyed descendant
(define (blue-eyed-children? aloc) ...)

Using blue-eyed-children? we can complete the definition of blue-eyed-descendant?:

(define (blue-eyed-descendant? a-parent)
 (cond
 [(symbol=? (parent-eyes a-parent) 'blue) true]
 [else (blue-eyed-children? (parent-children a-parent))]))

That is, if a-parent doesn't have blue eyes, we just look through the list of its children.

Before we can test blue-eyed-descendant?, we must define the function on our wish list. To
make up examples and tests for blue-eyed-children?, we use the list-of-children definitions in
figure 41:

(not (blue-eyed-children? (list Gustav)))
(blue-eyed-children? (list Adam Dave Eva))

Gustav doesn't have blue eyes and doesn't have any recorded descendants. Hence, blue-eyed-
children? produces false for (list Gustav). In contrast, Eva has blue eyes, and therefore
blue-eyed-children? produces true for the second list of children.

Since the input for blue-eyed-children? is a list, the template is the standard pattern:

TE
AM
FL
Y

TEAM FLY PRESENTS

-187-

(define (blue-eyed-children? aloc)
 (cond
 [(empty? aloc) ...]
 [else
 ... (first aloc) ...
 ... (blue-eyed-children? (rest aloc)) ...]))

Next we consider the two cases. If blue-eyed-children?'s input is empty, the answer is false.
Otherwise we have two expressions:

1. (first aloc), which extracts the first item, a parent structure, from the list; and
2. (blue-eyed-children? (rest aloc)), which determines whether any of the structures

on aloc is blue-eyed or has any blue-eyed descendant.

Fortunately we already have a function that determines whether a parent structure or any of its
descendants has blue eyes: blue-eyed-descendant?. This suggests that we check whether

(blue-eyed-descendant? (first aloc))

holds and, if so, blue-eyed-children? can produce true. If not, the second expression
determines whether we have more luck with the rest of the list.

Figure 42 contains the complete definitions for both functions: blue-eyed-descendant? and
blue-eyed-children?. Unlike any other group of functions, these two functions refer to each
other. They are MUTUALLY RECURSIVE. Not surprisingly, the mutual references in the definitions
match the mutual references in data definitions. The figure also contains a pair of alternative
definitions that use or instead of nested cond-expressions.

;; blue-eyed-descendant? : parent -> boolean
;; to determine whether a-parent any of the descendants (children,
;; grandchildren, and so on) have 'blue in the eyes field
(define (blue-eyed-descendant? a-parent)
 (cond
 [(symbol=? (parent-eyes a-parent) 'blue) true]
 [else (blue-eyed-children? (parent-children a-parent))]))

;; blue-eyed-children? : list-of-children -> boolean
;; to determine whether any of the structures in aloc is blue-eyed
;; or has any blue-eyed descendant
(define (blue-eyed-children? aloc)
 (cond
 [(empty? aloc) false]
 [else
 (cond
 [(blue-eyed-descendant? (first aloc)) true]
 [else (blue-eyed-children? (rest aloc))])]))

;; blue-eyed-descendant? : parent -> boolean
;; to determine whether a-parent any of the descendants (children,
;; grandchildren, and so on) have 'blue in the eyes field
(define (blue-eyed-descendant? a-parent)
 (or (symbol=? (parent-eyes a-parent) 'blue)
 (blue-eyed-children? (parent-children a-parent))))

;; blue-eyed-children? : list-of-children -> boolean

TE
AM
FL
Y

TEAM FLY PRESENTS

-188-

;; to determine whether any of the structures in aloc is blue-eyed
;; or has any blue-eyed descendant
(define (blue-eyed-children? aloc)
 (cond
 [(empty? aloc) false]
 [else (or (blue-eyed-descendant? (first aloc))
 (blue-eyed-children? (rest aloc)))]))

Figure 42: Two programs for finding a blue-eyed descendant

Exercise 15.1.1. Evaluate (blue-eyed-descendant? Eva) by hand. Then evaluate (blue-
eyed-descendant? Bettina).

Exercise 15.1.2. Develop the function how-far-removed. It determines how far a blue-eyed
descendant, if one exists, is removed from the given parent. If the given parent has blue eyes,
the distance is 0; if eyes is not blue but some of the structure's children's eyes are, the distance is
1; and so on. If no descendant of the given parent has blue eyes, the function returns false
when it is applied to the corresponding family tree.

Exercise 15.1.3. Develop the function count-descendants, which consumes a parent and
produces the number of descendants, including the parent.

Develop the function count-proper-descendants, which consumes a parent and produces the
number of proper descendants, that is, all nodes in the family tree, not counting the
parent. Solution

Exercise 15.1.4. Develop the function eye-colors, which consumes a parent and produces a
list of all eye colors in the tree. An eye color may occur more than once in the list.

Hint: Use the Scheme operation append, which consumes two lists and produces the
concatenation of the two lists.

15.2 Designing Functions for Mutually Referential
Definitions
The recipe for designing functions on mutually referential data definitions generalizes that for
self-referential data. Indeed, it offers only two pieces of additional advice. First, we must create
several templates simultaneously, one for each data definition. Second, we must annotate
templates with self-references and CROSS-REFERENCES, that is, references among different templates.
Here is a more detailed explanation of the differences:

• The data analysis and design: If a problem mentions a number of different classes of
information (of arbitrary size), we need a group of data definitions that are self-referential
and that refer to each other. In these groups, we identify the self-references and the cross-
references between two data definitions.

In the above example, we needed two interrelated definitions:

TE
AM
FL
Y

TEAM FLY PRESENTS

-189-

The first one concerns parents and another one for list of children. The first
(unconditionally) defines a parent in terms of symbols, numbers, and a list of children,
that is, it contains a cross-reference to the second definition. This second definition is a
conditional definition. Its first clause is simple; its second clause references both the
definition for parents and list-of-children.

• Contract, Purpose, Header: To process interrelated classes of data, we typically need
as many functions as there are class definitions. Hence, we must formulate as many
contracts, purpose statements, and headers in parallel as there are data definitions.

• Templates: The templates are created in parallel, following the advice concerning
compound data, mixed data, and self-referential data. Finally, we must determine for
each selector expression in each template whether it corresponds to a cross-reference to
some definition. If so, we annotate it in the same way we annotate cross-references.

Here are the templates for our running example:

The fun-parent template is unconditional because the data definition for parents does
not contain any clauses. It contains a cross-reference to the second template: to process
the children field of a parent structure. By the same rules, fun-children is
conditional. The second cond-clause contains one self-reference, for the rest of the list,
and one cross-reference for the first item of the list, which is a parent structure.

A comparison of the data definitions and the templates shows how analogous the two are.
To emphasize the similarity in self-references and cross-references, the data definitions
and templates have been annotated with arrows. It is easy to see how corresponding
arrows have the same origin and destination in the two pictures.

• The body: As we proceed to create the final definitions, we start with a template or a
cond-clause that does not contain self-references to the template and cross-references to

TE
AM
FL
Y

TEAM FLY PRESENTS

-190-

other templates. The results are typically easy to formulate for such templates or cond-
clauses.

The rest of this step proceeds as before. When we deal with other clauses or functions, we
remind ourselves what each expression in the template computes, assuming that all
functions already work as specified in the contracts. Then we decide how to combine
these pieces of data into a final answer. As we do that, we must not forget the guidelines
concerning the composition of complex functions (sections 7.3 and 12).

Figure 43 summarizes the extended design recipe.

Phase Goal Activity
Data
 Analysis
and Design

to formulate a
group of related
data definitions

develop a group of mutually recursive data definitions
at least one definition or one alternative in a definition
must refer to basic data explicitly identify all
references among the data definitions

Template to formulate a
group of function
outlines

develop as many templates as there are data definitions
simultaneously develop each templates according to
the rules for compound and/or mixed data definitions as
appropriate annotate the templates with recursions and
cross-applications to match the (cross-)references in the
data definitions

Body to define a group of
functions

formulate a Scheme expression for each template, and
for each cond-clause in a template explain what each
expression in each template computes use additional
auxiliary functions where necessary

Figure 43: Designing groups of functions for groups of data definitions

 the essential steps; for others see figures 4 (pg. 5), 12 (pg. 9), and 18 (pg. 10)

15.3 Extended Exercise: More on Web Pages
With mutually referential data definitions we can represent Web pages in a more accurate
manner than in section 14.3. Here is the basic structure definition:

(define-struct wp (header body))

The two fields contain the two essential pieces of data in a Web page: a header and a body. The
data definition specifies that a body is a list of words and Web pages:

A Web-page (short: WP) is a structure:

 (make-wp h p)
where h is a symbol and p is a (Web) document.

A (Web) document is either

TE
AM
FL
Y

TEAM FLY PRESENTS

-191-

1. empty,
2. (cons s p)

where s is a symbol and p is a document, or
3. (cons w p)

where w is a Web page and p is a document.

Exercise 15.3.1. Develop the function size, which consumes a Web page and produces the
number of symbols (words) it contains.

Exercise 15.3.2.

Develop the function wp-to-file. The function consumes a Web page and produces a list of
symbols. The list contains all the words in a body and all the headers of embedded Web pages.
The bodies of immediately embedded Web pages are ignored.

Exercise 15.3.3. Develop the function occurs. It consumes a symbol and a Web page and
determines whether the former occurs anywhere in the latter, including the embedded Web
pages.

Exercise 15.3.4. Develop the program find. The function consumes a Web page and a symbol.
It produces false, if the symbol does not occur in the body of the page or its embedded Web
pages. If the symbol occurs at least once, it produces a list of the headers that are encountered on
the way to the symbol.

Hint: Define an auxiliary like find that produces only true when a Web page contains the
desired word. Use it to define find. Alternatively, use boolean? to determine whether a natural
recursion of find produced a list or a boolean. Then compute the result again. We will discuss
this second technique, called backtracking, in the intermezzo at the end of this part.

TE
AM
FL
Y

TEAM FLY PRESENTS

-192-

Section 16

Development through Iterative Refinement
When we develop real functions, we are often confronted with the task of designing a data
representation for complicated forms of information. The best strategy to approach this task is
apply a well-known scientific technique: ITERATIVE REFINEMENT. A scientist's problem is to represent
a part of the real world using mathematics. The result of the effort is called a MODEL. The scientist
then tests the model in many ways, in particular by predicting certain properties of events. If the
model truly captured the essential elements of the real world, the prediction will be accurate;
otherwise, there will be discrepancies between the predictions and the actual outcomes. For
example, a physicist may start by representing a jet plane as a point and by predicting its
movement in a straight line using Newton's equations. Later, if there is a need to understand the
plane's friction, the physicist may add certain aspects of the jet plane's contour to the model. In
general, a scientist refines a model and retests its usefulness until it is sufficiently accurate.

A programmer or a computing scientist should proceed like a scientist. Since the representation
of data plays a central role in the work of a programmer, the key is to find an accurate data
representation of the real-world information. The best way to get there in complicated situations
is to develop the representation in an iterative manner, starting with the essential elements and
adding more attributes when the current model is fully understood.

In this book, we have encountered iterative refinement in many of our extended exercises. For
example, the exercise on moving pictures started with simple circles and rectangles; later on we
developed programs for moving entire lists of shapes. Similarly, we first introduced Web pages
as a list of words and embedded Web pages; in section 15.3 we refined the representation of
embedded Web pages. For all of these exercises, however, the refinement was built into the
presentation.

This section illustrates iterative refinement as a principle of program development. The goal is to
model a file system. A file system is that part of the computer that remembers programs and data
when the computer is turned off. We first discuss files in more detail and then iteratively develop
three data representations. The last part of the section suggests some programming exercises for
the final model. We will use iterative refinement again in later sections.

16.1 Data Analysis
When we turn a computer off, it should remember the functions and the data we worked on.
Otherwise we have to reenter everything when we turn it on again. Things that a computer is to
remember for a long time are put into files. A file is a sequence of small pieces of data. For our
purposes, a file resembles a list; we ignore why and how a computer stores a file in a permanent
manner.

TE
AM
FL
Y

TEAM FLY PRESENTS

-193-

Figure 44: A sample directory tree

It is more important to us that, on most computer systems, the collection of files is organized in
directories.40 Roughly speaking, a directory contains some files and some more directories. The
latter are called subdirectories and may contain yet more subdirectories and files, and so on. The
entire collection is collectively called a file system or a directory tree.

Figure 44 contains a graphical sketch of a small directory tree.41 The tree's root directory is TS. It
contains one file, called read!, and two subdirectories, called Text and Libs. The first
subdirectory, Text, contains only three files; the latter, Libs, contains only two subdirectories,
each of which contains at least one file. Each box has one of two annotations. A directory is
annotated with DIR, and a file is annotated with a number, which signifies the file's size.
Altogether TS contains seven files and consists of five (sub)directories.

Exercise 16.1.1. How many times does a file name read! occur in the directory tree TS? What
is the total size of all the files in the tree? How deep is the tree (how many levels does it
contain)?

16.2 Defining Data Classes and Refining Them
Let's develop a data representation for file systems using the method of iterative refinement. The
first decision we need to make is what to focus on and what to ignore.

Consider the directory tree in figure 44 and let's imagine how it is created. When a user first
creates a directory, it is empty. As time goes by, the user adds files and directories. In general, a
user refers to files by names but thinks of directories as containers of other things.

Model 1: Our thought experiment suggests that our first and most primitive model should focus
on files as atomic entities, say, a symbol that represents a file's name, and on the directories'
nature as containers. More concretely, we should think of a directory as just a list that contains
files and directories.

All of this suggests the following two data definitions:

TE
AM
FL
Y

TEAM FLY PRESENTS

-194-

A file is a symbol.

A directory (short: dir) is either

1. empty;
2. (cons f d) where f is a file and d is a dir; or
3. (cons d1 d2) where d1 and d2 are dirs.

The first data definition says that files are represented by their names. The second one captures
how a directory is gradually constructed by adding files and directories.

A closer look at the second data definition shows that the class of directories is the class of Web
pages of section 14.3. Hence we can reuse the template for Web-page processing functions to
process directory trees. If we were to write a function that consumes a directory (tree) and counts
how many files are contained, it would be identical to a function that counts the number of words
in a Web tree.

Exercise 16.2.1. Translate the file system in figure 44 into a Scheme representation according
to model 1.

Exercise 16.2.2. Develop the function how-many, which consumes a dir and produces the
number of files in the dir tree.

Model 2: While the first data definition is familiar to us and easy to use, it obscures the nature of
directories. In particular, it hides the fact that a directory is not just a collection of files and
directories but has several interesting attributes. To model directories in a more faithful manner,
we must introduce a structure that collects all relevant properties of a directory. Here is a
minimal structure definition:

(define-struct dir (name content))

It suggests that a directory has a name and a content; other attributes can now be added as needed.

The intention of the new definition is that a directory has two attributes: a name, which is a
symbol, and a content, which is a list of files and directories. This, in turn, suggests the following
data definitions:

A directory (short: dir) is a structure:

 (make-dir n c)
where n is a symbol and c is a list of files and directories.

A list-of-files-and-directories (short: LOFD) is either

1. empty;
2. (cons f d) where f is a file and d is a LOFD; or
3. (cons d1 d2) where d1 is a dir and d2 is a LOFD.

TE
AM
FL
Y

TEAM FLY PRESENTS

-195-

Since the data definition for dir refers to the definition for LOFDs, and the definition for LOFDs
refers back to that of dirs, the two are mutually recursive definitions and must be introduced
together.

Roughly speaking, the two definitions are related like those of parent and list-of-children
in section 15.1. This, in turn, means that the design recipe for programming from section 15.2
directly applies to dirs and LOFDs. More concretely, to design a function that processes dirs, we
must develop templates for dir-processing functions and LOFD-processing functions in parallel.

Exercise 16.2.3. Show how to model a directory with two more attributes: a size and a systems
attribute. The former measures how much space the directory itself (as opposed to its files and
subdirectories) consumes; the latter specifies whether the directory is recognized by the
operating system.

Exercise 16.2.4. Translate the file system in figure 44 into a Scheme representation according
to model 2.

Exercise 16.2.5. Develop the function how-many, which consumes a dir according to model 2
and produces the number of files in the dir tree.

Model 3: The second data definition refined the first one with the introduction of attributes for
directories. Files also have attributes. To model those, we proceed just as above. First, we define
a structure for files:

(define-struct file (name size content))

Second, we provide a data definition:

A file is a structure:

 (make-file n s x)
where n is a symbol, s is a number, and x is some Scheme value.

For now, we think of the content field of a file as set to empty. Later, we will discuss how to get
access to the data in a file.

Finally, let's split the content field of dirs into two pieces: one for a list of files and one for a
list of subdirectories. The data definition for a list of files is straightforward and relies on nothing
but the definition for files:

A list-of-files is either

1. empty, or
2. (cons s lof) where s is a file and lof is a list of files.

In contrast, the data definitions for dirs and its list of subdirectories still refer to each other and
must therefore be introduced together. Of course, we first need a structure definition for dirs
that has a field for files and another one for subdirectories:

(define-struct dir (name dirs files))

TE
AM
FL
Y

TEAM FLY PRESENTS

-196-

Here are the data definitions: A dir is a structure:

 (make-dir n ds fs)
where n is a symbol, ds is a list of directories, and fs is a list of files.

A list-of-directories is either

1. empty or
2. (cons s lod) where s is a dir and lod is a list of directories.

This third model (or data representation) of a directory hierarchy captures the nature of a file
system as a user typically perceives it. With two structure definitions and four data definitions, it
is, however, far more complicated than the first model. But, by starting with a the simple
representation of the first model and refining it step by step, we have gained a good
understanding of how to work with this complex web of classes. It is now our job to use the
design recipe from section 15.2 for developing functions on this set of data definitions.
Otherwise, we cannot hope to understand our functions at all.

16.3 Refining Functions and Programs
The goal of the following sequence of exercises is to develop several common utility functions
for directory and file systems, using our third and most refined model. Even though these
functions process Scheme-based representations of files and directories, they give us a good idea
how such real-world programs work.

Exercise 16.3.1. Translate the file system in figure 44 into a Scheme representation. Remember
to use empty for the content of the files.

To make the exercise more realistic, DrScheme supports the teachpack dir.ss. It introduces the
two necessary structure definitions and a function to create representations of directories
according to our third model:

;; create-dir : string -> dir
;; to create a representation of the directory that a-path specifies:
;; 1. Windows: (create-dir "c:\\windows")
;; 2. Mac: (create-dir "My Disk:")
;; 3. Unix: (create-dir "/home/scheme/")
(define (create-dir a-path) ...)

Use the function to create some small and large examples based on the directories in a real
computer. Warning: For large directory trees, DrScheme may need a lot of time to build a
representation. Use create-dir on small directory trees first. Do not define your own dir
structures.

Exercise 16.3.2. Develop the function how-many, which consumes a dir (according to model 3)
and produces the number of files in the dir tree. Test the function on the directories created in
exercise 16.3.1. Why are we confident that the function produces correct results?

TE
AM
FL
Y

TEAM FLY PRESENTS

-197-

Exercise 16.3.3. Develop the function du-dir. The function consumes a directory and
computes the total size of all the files in the entire directory tree. This function approximates a
true disk-usage meter in that it assumes that directories don't require storage.

Refine the function to compute approximate sizes for subdirectories. Let's assume that storing a
file and a directory in a dir structure costs 1 storage unit.

Exercise 16.3.4. Develop the function find?, which consumes a dir and a file name and
determines whether or not a file with this name occurs in the directory tree.

Challenge: Develop the function find. It consumes a directory d and a file name f. If (find? d
f) is true, it produces a path to the file; otherwise it produces false. A path is a list of directory
names. The first one is that of the given directory; the last one is that of the subdirectory whose
files list contains f. For example:

(find TS 'part3)
;; expected value:
(list 'TS 'Text)
(find TS 'read!)
;; expected value:
(list 'TS)

assuming TS is defined to be the directory in figure 44.

Which read! file in figure 44 should find discover? Generalize the function to return a list of
paths if the file name occurs more than once. Each path should lead to a different occurrence,
and there should be a path for each occurrence.

40 On some computers, a directory is called a folder.

41 The picture explains why computer scientists call such directories trees. TE
AM
FL
Y

TEAM FLY PRESENTS

-198-

Section 17

Processing Two Complex Pieces of Data
On occasion, a function consumes two arguments that belong to classes with non-trivial data
definitions. In some cases, one of the arguments should be treated as if it were atomic; a
precisely formulated purpose statement typically clarifies this. In other cases, the two arguments
must be processed in lockstep. Finally, in a few rare cases, the function must take into account all
possible cases and process the arguments accordingly. This section illustrates the three cases
with examples and provides an augmented design recipe for the last one. The last section
discusses the equality of compound data and its relationship to testing; it is essential for
automating test suites for functions.

17.1 Processing Two Lists Simultaneously: Case 1
Consider the following contract, purpose statement, and header:

;; replace-eol-with : list-of-numbers list-of-numbers -> list-of-numbers
;; to construct a new list by replacing empty in alon1 with alon2
(define (replace-eol-with alon1 alon2) ...)

The contract says that the function consumes two lists, which we haven't seen in the past. Let's
see how the design recipe works in this case.

First, we make up examples. Suppose the first input is empty. Then replace-eol-with should
produce the second argument, no matter what it is:

 (replace-eol-with empty L)
= L

In this equation, L stands for an arbitrary list of numbers. Now suppose the first argument is not
empty. Then the purpose statement requires that we replace empty at the end of alon1 with
alon2:

(replace-eol-with (cons 1 empty) L)
;; expected value:
(cons 1 L)
(replace-eol-with (cons 2 (cons 1 empty)) L)
;; expected value:
(cons 2 (cons 1 L))
(replace-eol-with (cons 2 (cons 11 (cons 1 empty))) L)
;; expected value:
(cons 2 (cons 11 (cons 1 L)))

Again, L stands for any list of numbers in these examples.

;; replace-eol-with : list-of-numbers list-of-numbers -> list-of-numbers
;; to construct a new list by replacing empty in alon1 with alon2

TE
AM
FL
Y

TEAM FLY PRESENTS

-199-

(define (replace-eol-with alon1 alon2)
 (cond
 ((empty? alon1) alon2)
 (else (cons (first alon1) (replace-eol-with (rest alon1) alon2)))))

Figure 45: The complete definition of replace-eol-with

The examples suggest that it doesn't matter what the second argument is -- as long as it is a list;
otherwise, it doesn't even make sense to replace empty with the second argument. This implies
that the template should be that of a list-processing function with respect to the first argument:

(define (replace-eol-with alon1 alon2)
 (cond
 ((empty? alon1) ...)
 (else ... (first alon1) ... (replace-eol-with (rest alon1)
alon2) ...)))

The second argument is treated as it were an atomic piece of data.

Let's fill the gaps in the template, following the design recipe and using our examples. If alon1
is empty, replace-eol-with produces alon2 according to our examples. For the second cond-
clause, when alon1 is not empty, we must proceed by inspecting the available expressions:

1. (first alon1) evaluates to the first item on the list, and
2. (replace-eol-with (rest alon1) alon2) replaces empty in (rest alon1) with

alon2.

To gain a better understanding of what this means, consider one of the examples:

(replace-eol-with (cons 2 (cons 11 (cons 1 empty))) L)
;; expected value:
(cons 2 (cons 11 (cons 1 L)))

Here (first alon1) is 2, (rest alon1) is (cons 11 (cons 1 empty)), and (replace-eol-
with (rest alon1) alon2) is (cons 11 (cons 1 alon2)). We can combine 2 and the latter
with cons and can thus obtain the desired result. More generally,

(cons (first alon1) (replace-eol-with (rest alon1) alon2))

is the answer in the second cond-clause. Figure 45 contains the complete definition.

Exercise 17.1.1. In several exercises, we have used the Scheme operation append, which
consumes three lists and juxtaposes their items:

(append (list 'a) (list 'b 'c) (list 'd 'e 'f))
;; expected value:
(list 'a 'b 'c 'd 'e 'f)

Use replace-eol-with to define our-append, which acts just like Scheme's append.

TE
AM
FL
Y

TEAM FLY PRESENTS

-200-

Exercise 17.1.2. Develop cross. The function consumes a list of symbols and a list of numbers
and produces all possible pairs of symbols and numbers.

Example:

(cross '(a b c) '(1 2))
;; expected value:
(list (list 'a 1) (list 'a 2) (list 'b 1) (list 'b 2) (list 'c 1) (list
'c 2))

17.2 Processing Two Lists Simultaneously: Case 2
In section 10.1, we developed the function hours->wages for the computation of weekly wages.
It consumed a list of numbers -- hours worked per week -- and produced a list of weekly wages.
We had based the function on the simplifying assumption that all employees received the same
pay rate. Even a small company, however, employs people at different rate levels. Typically, the
company's accountant also maintains two collections of information: a permanent one that,
among other things, includes an employee's personal pay-rate, and a temporary one that records
how much time an employee has worked during the past week.

The revised problem statement means that the function should consume two lists. To simplify the
problem, let us assume that the lists are just lists of numbers, pay rates and weekly hours. Then
here is the problem statement:

;; hours->wages : list-of-numbers list-of-numbers -> list-of-numbers
;; to construct a new list by multiplying the corresponding items on
;; alon1 and alon2
;; ASSUMPTION: the two lists are of equal length
(define (hours->wages alon1 alon2) ...)

We can think of alon1 as the list of pay-rates and of alon2 as the list of hours worked per week.
To get the list of weekly wages, we must multiply the corresponding numbers in the two input
lists.

Let's look at some examples:

(hours->wages empty empty)
;; expected value:
empty
(hours->wages (cons 5.65 empty) (cons 40 empty))
;; expected value:
(cons 226.0 empty)
(hours->wages (cons 5.65 (cons 8.75 empty))
 (cons 40.0 (cons 30.0 empty)))
;; expected value:
(cons 226.0 (cons 262.5 empty))

For all three examples the function is applied to two lists of equal length. As stated in the
addendum to the purpose statement, the function assumes this and, indeed, using the function
makes no sense if the condition is violated.

The condition on the inputs can also be exploited for the development of the template. Put more
concretely, the condition says that (empty? alon1) is true if, and only if, (empty? alon2) is

TE
AM
FL
Y

TEAM FLY PRESENTS

-201-

true; and furthermore, (cons? alon1) is true if, and only if, (cons? alon2) is true. In other
words, the condition simplifies the design of the template's cond-structure, because it says the
template is similar to that of a plain list-processing function:

(define (hours->wages alon1 alon2)
 (cond
 ((empty? alon1) ...)
 (else ...)))

In the first cond-clause, both alon1 and alon2 are empty. Hence no selector expressions are
needed. In the second clause, both alon1 and alon2 are constructed lists, which means we need
four selector expressions:

(define (hours->wages alon1 alon2)
 (cond
 ((empty? alon1) ...)
 (else
 ... (first alon1) ... (first alon2) ...
 ... (rest alon1) ... (rest alon2) ...)))

Finally, because the last two are lists of equal length, they make up a natural candidate for the
natural recursion of hours->wages:

(define (hours->wages alon1 alon2)
 (cond
 ((empty? alon1) ...)
 (else
 ... (first alon1) ... (first alon2) ...
 ... (hours->wages (rest alon1) (rest alon2)) ...)))

The only unusual aspect of this template is that the recursive application consists of two
expressions, both selector expressions for the two arguments. But, as we have seen, the idea is
easily explicable owing to the assumption that alon1 and alon2 are of equal length.

;; hours->wages : list-of-numbers list-of-numbers -> list-of-numbers
;; to construct a new list by multiplying the corresponding items on
;; ASSUMPTION: the two lists are of equal length
;; alon1 and alon2
(define (hours->wages alon1 alon2)
 (cond
 ((empty? alon1) empty)
 (else (cons (weekly-wage (first alon1) (first alon2))
 (hours->wages (rest alon1) (rest alon2))))))

;; weekly-wage : number number -> number
;; to compute the weekly wage from pay-rate and hours-worked
(define (weekly-wage pay-rate hours-worked)
 (* pay-rate hours-worked))

Figure 46: The complete definition of hours-->wage

To define the function from here, we follow the design recipe. The first example implies that the
answer for the first cond-clause is empty. In the second one, we have three values available:

TE
AM
FL
Y

TEAM FLY PRESENTS

-202-

1. (first alon1) evaluates to the first item on the list of pay-rates;
2. (first alon2) evaluates to the first item on the list of hours worked; and
3. (hours->wages (rest alon1) (rest alon2)) computes the list of weekly wages for

the remainders of alon1 and alon2.

We merely need to combine these values to get the final answer. More specifically, given the
purpose statement, we must compute the weekly wage for the first employee and construct a list
from that wage and the rest of the wages. This suggests the following answer for the second
cond-clause:

(cons (weekly-wage (first alon1) (first alon2))
 (hours->wages (rest alon1) (rest alon2)))

The auxiliary function weekly-wage consumes the two first items and computes the weekly
wage. Figure 46 contains the complete definitions.

Exercise 17.2.1. In the real world, hours->wages consumes lists of employee structures and
lists of work structures. An employee structure contains an employee's name, social security
number, and pay rate. A work structure contains an employee's name and the number of hours
worked in a week. The result is a list of structures that contain the name of the employee and the
weekly wage.

Modify the function in figure 46 so that it works on these classes of data. Provide the necessary
structure definitions and data definitions. Use the design recipe to guide the modification
process.

Exercise 17.2.2. Develop the function zip, which combines a list of names and a list phone
numbers into a list of phone records. Assuming the following structure definition:

(define-struct phone-record (name number)) ,

a phone record is constructed with (make-phone-record s n) where s is a symbol and n is a
number. Assume the lists are of equal length. Simplify the definition, if possible.

17.3 Processing Two Lists Simultaneously: Case 3
Here is a third problem statement, given as in the form of a function contract, purpose statement,
and header:

;; list-pick : list-of-symbols N[>= 1] -> symbol
;; to determine the nth symbol from alos, counting from 1;
;; signals an error if there is no nth item
(define (list-pick alos n) ...)

That is, the problem is to develop a function that consumes a natural number and a list of
symbols. Both belong to classes with complex data definitions, though, unlike for the previous
two problems, the classes are distinct. Figure 47 recalls the two definitions.

The data definitions:

TE
AM
FL
Y

TEAM FLY PRESENTS

-203-

A natural number [>= 1] (N[>= 1]) is either

1. 1 or
2. (add1 n) if n is a N[>= 1].

A list-of-symbols is either

1. the empty list, empty, or
2. (cons s lof) where s is a symbol and lof is a list of symbols.

Figure 47: Data definitions for list-pick

Because the problem is non-standard, we should ensure that our examples cover all important
cases. We usually accomplish this goal by picking one item per clause in the definition and
choosing elements from basic forms of data on a random basis. In this example, this procedure
implies that we pick at least two elements from list-of-symbols and two from N[>= 1]. Let's
choose empty and (cons 'a empty) for the former, and 1 and 3 for the latter. But two choices
per argument means four examples total; after all, there is no immediately obvious connection
between the two arguments and no restriction in the contract:

(list-pick empty 1)
;; expected behavior:
(error 'list-pick "...")
(list-pick (cons 'a empty) 1)
;; expected value:
'a
(list-pick empty 3)
;; expected behavior:
(error 'list-pick "...")
(list-pick (cons 'a empty) 3)
;; expected behavior:
(error 'list-pick "...")

Only one of the four results is a symbol; in the other cases, we see an error, indicating that the
list doesn't contain enough items.

The discussion on examples indicates that there are indeed four possible, independent cases that
we must consider for the design of the function. We can discover the four cases by arranging the
necessary conditions in a table format:

 (empty? alos) (cons? alos)
(= n 1)
(> n 1)

The horizontal dimension of the table lists those questions that list-pick must ask about the list
argument; the vertical dimension lists the questions about the natural number. Furthermore, the
partitioning of the table yields four squares. Each square represents the case when both the

TE
AM
FL
Y

TEAM FLY PRESENTS

-204-

condition on the horizontal and the one on the vertical are true. We can express this fact with
and-expressions in the squares:

 (empty? alos) (cons? alos)

(= n 1)

(and (= n 1)

 (empty? alos))

(and (= n 1)

 (cons? alos))

(> n 1)

(and (> n 1)

 (empty? alos))

(and (> n 1)

 (cons? alos))

It is straightforward to check that for any given pair of arguments exactly one of the four
composite claims must evaluate to true.

Using our cases analysis, we can now design the first part of the template, the conditional
expression:

(define (list-pick alos n)
 (cond
 [(and (= n 1) (empty? alos)) ...]
 [(and (> n 1) (empty? alos)) ...]
 [(and (= n 1) (cons? alos)) ...]
 [(and (> n 1) (cons? alos)) ...]))

The cond-expression asks all four questions, thus distinguishing all possibilities. Next we must
add selector expressions to each cond-clause if possible:

(define (list-pick alos n)
 (cond
 [(and (= n 1) (empty? alos))
 ...]
 [(and (> n 1) (empty? alos))
 ... (sub1 n) ...]
 [(and (= n 1) (cons? alos))
 ... (first alos) ... (rest alos)...]
 [(and (> n 1) (cons? alos))
 ... (sub1 n) ... (first alos) ... (rest alos) ...]))

For n, a natural number, the template contains at most one selector expression, which determines
the predecessor of n. For alos, it might contain two. In those cases where either (= n 1) or
(empty? alos) holds, one of the two arguments is atomic and there is no need for a
corresponding selector expression.

The final step of the template construction demands that we annotate the template with
recursions where the results of selector expressions belong to the same class as the inputs. In the
template for list-pick, this makes sense only in the last cond-clause, which contains both a
selector expression for N[>= 1] and one for list-of-symbols. All other clauses contain at most
one relevant selector expression. It is, however, unclear how to form the natural recursions. If we

TE
AM
FL
Y

TEAM FLY PRESENTS

-205-

disregard the purpose of the function, and the template construction step asks us to do just that,
there are three possible recursions:

1. (list-pick (rest alos) (sub1 n))
2. (list-pick alos (sub1 n))
3. (list-pick (rest alos) n)

Since we cannot know which one matters or whether all three matter, we move on to the next
development stage.

;; list-pick : list-of-symbols N[>= 1] -> symbol
;; to determine the nth symbol from alos, counting from 1;
;; signals an error if there is no nth item
(define (list-pick alos n)
 (cond
 [(and (= n 1) (empty? alos)) (error 'list-pick "list too short")]
 [(and (> n 1) (empty? alos)) (error 'list-pick "list too short")]
 [(and (= n 1) (cons? alos)) (first alos)]
 [(and (> n 1) (cons? alos)) (list-pick (rest alos) (sub1 n))]))

Figure 48: The complete definition of list-pick

Following the design recipe, let us analyze each cond-clause in the template and decide what a
proper answer is:

1. If (and (= n 1) (empty? alos)) holds, list-pick was asked to pick the first item
from an empty list, which is impossible. The answer must be an application of error.

2. If (and (> n 1) (empty? alos)) holds, list-pick was again asked to pick an item
from an empty list. The answer is also an error.

3. If (and (= n 1) (cons? alos)) holds, list-pick is supposed to produce the first
item from some list. The selector expression (first alos) reminds us how to get this
item. It is the answer.

4. For the final clause, if (and (> n 1) (cons? alos)) holds, we must analyze what the
selector expressions compute:

a. (first alos) selects the first item from the list of symbols;
b. (rest alos) is the rest of the list; and
c. (sub1 n) is one less that the original given list index.

Let us consider an example to illustrate the meaning of these expressions. Suppose list-
pick is applied to (cons 'a (cons 'b empty)) and 2:

 (list-pick (cons 'a (cons 'b empty)) 2)

The answer must be 'b, (first alos) is 'a, and (sub1 n) is 1. Here is what the three
natural recursions would compute with these values:

d. (list-pick (cons 'b empty) 1) produces 'b, the desired answer;
e. (list-pick (cons 'a (cons 'b empty)) 1) evaluates to 'a, which is a

symbol, but the the wrong answer for the original problem; and

TE
AM
FL
Y

TEAM FLY PRESENTS

-206-

f. (list-pick (cons 'b empty) 2) signals an error because the index is larger
than the length of the list.

This suggests that we use (list-pick (rest alos) (sub1 n)) as the answer in the
last cond-clause. But, example-based reasoning is often treacherous, so we should try to
understand why the expression works in general.

Recall that, according to the purpose statement,

(list-pick (rest alos) (sub1 n))

picks the (n - 1)st item from (rest alos). In other words, for the second application, we
have decreased the index by 1, shortened the list by one item, and now look for an item.
Clearly, the second application always produces the same answer as the first one,
assuming alos and n are ``compound'' values. Hence our choice for the last clause is
truly justified.

Exercise 17.3.1. Develop list-pick0, which picks items from a list like list-pick but starts
counting at 0.

Examples:

(symbol=? (list-pick0 (list 'a 'b 'c 'd) 3)
 'd)
(list-pick0 (list 'a 'b 'c 'd) 4)
;; expected behavior:
(error 'list-pick0 "the list is too short")

17.4 Function Simplification
The list-pick function in figure 48 is more complicated than necessary. Both the first and the
second cond-clause produce the same answer: an error. In other words, if either

(and (= n 1) (empty? alos))

or

(and (> n 1) (empty? alos))

evaluates to true, the answer is an error. We can translate this observation into a simpler cond-
expression:

(define (list-pick alos n)
 (cond
 [(or (and (= n 1) (empty? alos))
 (and (> n 1) (empty? alos))) (error 'list-pick "list too short")]
 [(and (= n 1) (cons? alos)) (first alos)]
 [(and (> n 1) (cons? alos)) (list-pick (rest alos) (sub1 n))]))

The new expression is a direct transliteration of our English observation.

TE
AM
FL
Y

TEAM FLY PRESENTS

-207-

To simplify this function even more, we need to get acquainted with an algebraic law concerning
booleans:

 (or (and condition1 a-condition)
 (and condition2 a-condition))
= (and (or condition1 condition2)
 a-condition)

The law is called de Morgan's law of distributivity. Applying it to our function yields the
following:

(define (list-pick n alos)
 (cond
 [(and (or (= n 1) (> n 1))
 (empty? alos)) (error 'list-pick "list too short")]
 [(and (= n 1) (cons? alos)) (first alos)]
 [(and (> n 1) (cons? alos)) (list-pick (rest alos) (sub1 n))]))

Now consider the first part of the condition: (or (= n 1) (> n 1)). Because n belongs to
N[>= 1], the condition is always true. But, if we replace it with true we get

(and true
 (empty? alos))

which is clearly equivalent to (empty? alos). In other words, the function can be written as

(define (list-pick alos n)
 (cond
 [(empty? alos) (error 'list-pick "list too short")]
 [(and (= n 1) (cons? alos)) (first alos)]
 [(and (> n 1) (cons? alos)) (list-pick (rest alos) (sub1 n))]))

which is already significantly simpler than that in figure 48.

Still, we can do even better than that. The first condition in the latest version of list-pick
filters out all those cases when alos is empty. Hence (cons? alos) in the next two clauses is
always going to evaluate to true. If we replace the condition with true and simplify the and-
expressions, we get the simplest possible version of list-pick, which is displayed in figure 49.
While this last function is simpler than the original, it is important to understand that we
designed both the original and the simplified version in a systematic manner and that we can
therefore trust both. If we try to find the simple versions directly, we sooner or later fail to
consider a case and produce flawed functions.

;; list-pick : list-of-symbols N[>= 1] -> symbol
;; to determine the nth symbol from alos, counting from 1;
;; signals an error if there is no nth item
(define (list-pick alos n)
 (cond
 [(empty? alos) (error 'list-pick "list too short")]
 [(= n 1) (first alos)]
 [(> n 1) (list-pick (rest alos) (sub1 n))]))

Figure 49: The simplified definition of list-pick

TE
AM
FL
Y

TEAM FLY PRESENTS

-208-

Exercise 17.4.1. Develop the function replace-eol-with following the strategy of
section 17.2. Then simplify it systematically.

Exercise 17.4.2. Simplify the function list-pick0 from exercise 17.3.1 or explain why it can't
be simplified.

17.5 Designing Functions that Consume Two Complex
Inputs
On occasion, we will encounter problems that require functions on two complex classes of inputs.
The most interesting situation occurs when both inputs are of unknown size. As we have seen in
the first three subsections, we may have to deal with such functions in three different ways.

The proper approach to this problem is to follow the general design recipe. In particular, we must
conduct a data analysis and we must define the relevant classes of data. Then we can state the
contract and the purpose of the function, which, in turn, puts us in a position where we can think
ahead. Before we continue from this point, we should decide which one of the following three
situations we are facing:

1. In some cases, one of the parameters plays a dominant role. Conversely, we can think of
one of the parameters as an atomic piece of data as far as the function is concerned.

2. In some other cases, the two parameters are synchronized. They must range over the
same class of values, and they must have the same structure. For example, if we are given
two lists, they must have the same length. If we are given two Web pages, they must have
the same length, and where one of them contains an embedded page, the other one does,
too. If we decide that the two parameters have this equal status and must be processed in
a synchronized manner, then we can pick one of them and organize the function around it.

3. Finally, in some rare cases, there may not be any obvious connection between the two
parameters. In this case, we must analyze all possible cases before we pick examples and
design the template.

For the first two cases, we use an existing design recipe. The last case deserves some special
consideration.

After we have decided that a function falls into the third category but before we develop
examples and the function template, we develop a two-dimensional table. Here is the table for
list-pick again:

 alos

 (empty? alos) (cons? alos)

n (= n 1)

TE
AM
FL
Y

TEAM FLY PRESENTS

-209-

 (> n 1)

Along the horizontal direction we enumerate the conditions that recognize the subclasses for the
first parameter, and along the vertical direction we enumerate the conditions for the second
parameter.

The table guides the development of both the set of function examples and the function template.
As far as the examples are concerned, they must cover all possible cases. That is, there must be
at least one example for each cell in the table.

As far as the template is concerned, it must have one cond-clause per cell. Each cond-clause, in
turn, must contain all feasible selector expressions for both parameters. If one of the parameters
is atomic, there is no need for a selector expression. Finally, instead of a single natural recursion,
we might have several. For list-pick, we discovered three cases. In general, all possible
combinations of selector expressions are candidates for a natural recursion. Because we can't
know which ones are necessary and which ones aren't, we write them all down and pick the
proper ones for the actual function definition.

In summary, the design of multi-parameter functions is just a variation on the old design-recipe
theme. The key idea is to translate the data definitions into a table that shows all feasible and
interesting combinations. The development of function examples and the template exploit the
table as much as possible. Filling in the gaps in the template takes practice, just like anything
else.

17.6 Exercises on Processing Two Complex Inputs
Exercise 17.6.1. Develop the function merge. It consumes two lists of numbers, sorted in
ascending order. It produces a single sorted list of numbers that contains all the numbers on both
inputs lists (and nothing else). A number occurs in the output as many times as it occurs on the
two input lists together.

Examples:

(merge (list 1 3 5 7 9) (list 0 2 4 6 8))
;; expected value:
(list 0 1 2 3 4 5 6 7 8 9)
(merge (list 1 8 8 11 12) (list 2 3 4 8 13 14))
;; expected value:
(list 1 2 3 4 8 8 8 11 12 13 14) ;

Exercise 17.6.2. The goal of this exercise is to develop a version of the Hangman game of
section 6.7 for words of arbitrary length.

Provide a data definition for representing words of arbitrary length with lists. A letter is
represented with the symbols 'a through 'z plus '_.

TE
AM
FL
Y

TEAM FLY PRESENTS

-210-

Develop the function reveal-list. It consumes three arguments:

1. the chosen word, which is the word that we have to guess;
2. the status word, which states how much of the word we have guessed so far; and
3. a letter, which is our current guess.

It produces a new status word, that is, a word that contains ordinary letters and '_. The fields in
the new status word are determined by comparing the guess with each pair of letters from the
status word and the chosen word:

1. If the guess is equal to the letter in the chosen word, the guess is the corresponding letter
in the new status word.

2. Otherwise, the new letter is the corresponding letter from the status word.

Test the function with the following examples:

1. (reveal-list (list 't 'e 'a) (list '_ 'e '_) 'u)
2. (reveal-list (list 'a 'l 'e) (list 'a '_ '_) 'e)
3. (reveal-list (list 'a 'l 'l) (list '_ '_ '_) 'l)

First determine what the result should be.

Use the teachpack hangman.ss and the functions draw-next-part (from exercise 6.7.1) and
reveal-list to play the Hangman game. Evaluate the following expression:

(hangman-list reveal-list draw-next-part)

The function hangman-list chooses a word randomly and pops up a window with a choice
menu for letters. Choose letters and, when ready, click on the Check button to see whether your
guess is correct. Enjoy!

Exercise 17.6.3. In a factory, employees punch time cards as they arrive in the morning and
leave in the evening. In the modern age of electronic punch cards, a punch card contains an
employee number and the number of hours worked. Also, employee records always contain the
name of the employee, an employee number, and a pay rate.

Develop the function hours->wages2. The function consumes a list of employee records and a
list of (electronic) punch cards. It computes the weekly wage for each employee by matching the
employee record with a punch card based on employee numbers. If a pair is missing or if a pair's
employee numbers are mismatched, the function stops with an appropriate error message.
Assume that there is at most one card per employee and employee number.

Hint: An accountant would sort the two lists by employee number first.

Exercise 17.6.4. A linear combination is the sum of many linear terms, that is, products of
variables and numbers. The latter are called coefficients in this context. Here are some examples:

TE
AM
FL
Y

TEAM FLY PRESENTS

-211-

In all three examples, the coefficient of x is 5, that of y is 17, and the one for z is 3.

If we are given values for variables, we can determine the value of a polynomial. For example, if
x = 10, the value of 5 · x is 50; if x = 10 and y = 1, the value of 5 · x + 17 · y is 67; and if x = 10, y
= 1, and z = 2, the value of 5 · x + 17 · y + 3 · z is 73.

In the past, we would have developed functions to compute the values of linear combinations for
specific values. An alternative representation is a list of its coefficients. The above combinations
would be represented as:

(list 5)
(list 5 17)
(list 5 17 3)

This representation assumes that we always agree on using variables in a fixed order.

Develop the function value. It consumes the representation of a polynomial and a list of
numbers. The lists are of equal length. It produces the value of the polynomial for these values.

Exercise 17.6.5. Louise, Jane, Laura, Dana, and Mary are sisters who would like to save money
and work spent on Christmas gifts. So they decide to hold a lottery that assigns to each one of
them a single gift recipient. Since Jane is a computer programmer, they ask her to write a
program that performs the lottery in an impartial manner. Of course, the program must not assign
any of the sisters to herself.

Here is the definition of gift-pick. It consumes a list of distinct names (symbols) and randomly
picks one of those arrangements of the list that do not agree with the original list at any position:

;; gift-pick: list-of-names -> list-of-names
;; to pick a ``random'' non-identity arrangement of names
(define (gift-pick names)
 (random-pick
 (non-same names (arrangements names))))

Recall that arrangements (see exercise 12.4.2) consumes a list of symbols and produces the list
of all rearrangements of the items in the list.

Develop the auxiliary functions

1. random-pick : list-of-list-of-names -> list-of-names, which consumes a list
of items and randomly picks one of them as the result;

2. non-same : list-of-names list-of-list-of-names -> list-of-list-of-names,
which consumes a list of names L and a list of arrangements and produces the list of those
that do not agree with L at any position.

Two permutations agree at some position if we can extract the same name from both lists
by applying first and the same number of rest operations to both. For example, (list
'a 'b 'c) and (list 'c 'a 'b) do not agree, but (list 'a 'b 'c) and (list 'c
'b 'a) agree at the second position. We can prove that by applying rest followed by
first to both lists.

TE
AM
FL
Y

TEAM FLY PRESENTS

-212-

Follow the appropriate recipe in each case carefully.

Hint: Recall that (random n) picks a random number between 0 and n-1 (compare with
exercise 11.3.1).

Exercise 17.6.6. Develop the function DNAprefix. The function takes two arguments, both lists
of symbols (only 'a, 'c, 'g, and 't occur in DNA, but we can safely ignore this issue here). The
first list is called a pattern, the second one a search-string. The function returns true if the
pattern is a prefix of the search-string. In all other cases, the function returns false.

Examples:

(DNAprefix (list 'a 't) (list 'a 't 'c))
(not (DNAprefix (list 'a 't) (list 'a)))
(DNAprefix (list 'a 't) (list 'a 't))
(not (DNAprefix (list 'a 'c 'g 't) (list 'a 'g)))
(not (DNAprefix (list 'a 'a 'c 'c) (list 'a 'c)))

Simplify DNAprefix, if possible.

Modify DNAprefix so that it returns the first item beyond the pattern in the search-string if the
pattern is a proper prefix of the search-string. If the lists do not match or if the pattern is no
shorter than the search-string, the modified function should still return false. Similarly, if the
lists are equally long and match, the result is still true.

Examples:

(symbol=? (DNAprefix (list 'a 't) (list 'a 't 'c))
 'c)
(not (DNAprefix (list 'a 't) (list 'a)))
(DNAprefix (list 'a 't) (list 'a 't))

Can this variant of DNAprefix be simplified? If so, do it. If not, explain.

17.7 Extended Exercise: Evaluating Scheme, Part 2
The goal of this section is to extend the evaluator of section 14.4 so that it can cope with function
applications and function definitions. In other words, the new evaluator simulates what happens
in DrScheme when we enter an expression in the Interactions window after clicking Execute.
To make things simple, we assume that all functions in the Definitions window consume one
argument.

Exercise 17.7.1. Extend the data definition of exercise 14.4.1 so that we can represent the
application of a user-defined function to an expression such as (f (+ 1 1)) or (* 3 (g 2)).
The application should be represented as a structure with two fields. The first field contains the
name of the function, the second one the representation of the argument expression.

A full-fledged evaluator can also deal with function definitions.

Exercise 17.7.2. Provide a structure definition and a data definition for definitions. Recall that a
function definition has three essential attributes:

TE
AM
FL
Y

TEAM FLY PRESENTS

-213-

1. the function's name,
2. the parameter name, and
3. the function's body.

This suggests the introduction of a structure with three fields. The first two contain symbols, the
last one a representation of the function's body, which is an expression.

Translate the following definitions into Scheme values:

1. (define (f x) (+ 3 x))
2. (define (g x) (* 3 x))
3. (define (h u) (f (* 2 u)))
4. (define (i v) (+ (* v v) (* v v)))
5. (define (k w) (* (h w) (i w)))

Make up more examples and translate them, too.

Exercise 17.7.3. Develop evaluate-with-one-def. The function consumes (the
representation of) a Scheme expression and (the representation of) a single function definition, P.

The remaining expressions from exercise 14.4.1 are evaluated as before. For (the representation
of) a variable, the function signals an error. For an application of the function P, evaluate-
with-one-def

1. evaluates the argument;
2. substitutes the value of the argument for the function parameter in the function's body;

and
3. evaluates the new expression via recursion. Here is a sketch:42

4. (evaluate-with-one-def (subst)
5. a-fun-def)

For all other function applications, evaluate-with-one-def signals an error.

Exercise 17.7.4. Develop the function evaluate-with-defs. The function consumes (the
representation of) a Scheme expression and a list of (representations of) function definitions,
defs. The function produces the number that DrScheme would produce if we were to evaluate
the actual Scheme expression in the Interactions window and if the Definitions window
contained the actual definitions.

The remaining expressions from exercise 14.4.1 are evaluated as before. For an application of
the function P, evaluate-with-defs

1. evaluates the argument;
2. looks up the definition of P in defs;
3. substitutes the value of the argument for the function parameter in the function's body;

and
4. evaluates the new expression via recursion.

Like DrScheme, evaluate-with-defs signals an error for a function application whose function
name is not on the list and for (the representation of) a variable.

TE
AM
FL
Y

TEAM FLY PRESENTS

-214-

17.8 Equality and Testing
Many of the functions we designed produce lists. When we test these functions, we must
compare their results with the predicted value, both of which are lists. Comparing lists by hand is
tedious and error-prone. Let's develop a function that consumes two lists of numbers and
determines whether they are equal:

;; list=? : list-of-numbers list-of-numbers -> boolean
;; to determine whether a-list and another-list
;; contain the same numbers in the same order
(define (list=? a-list another-list) ...)

The purpose statement refines our general claim and reminds us that, for example, shoppers may
consider two lists equal if they contain the same items, regardless of the order, but programmers
are more specific and include the order in the comparison. The contract and the purpose
statement also show that list=? is a function that processes two complex values, and indeed, it
is an interesting case study.

Comparing two lists means looking at each item in both lists. This rules out designing list=?
along the lines of replace-eol-with in section 17.1. At first glance, there is also no connection
between the two lists, which suggests that we should use the modified design recipe.

Let's start with the table:

 (empty? a-list) (cons? a-list)
(empty? another-list)
(cons? another-list)

It has four cells, which implies that we need (at least) four tests and four cond-clauses in the
template.

Here are five tests:

(list=? empty empty)
(not
 (list=? empty (cons 1 empty)))
(not
 (list=? (cons 1 empty) empty))
(list=? (cons 1 (cons 2 (cons 3 empty)))
 (cons 1 (cons 2 (cons 3 empty))))
(not
 (list=? (cons 1 (cons 2 (cons 3 empty)))
 (cons 1 (cons 3 empty))))

The second and third show that list=? must deal with its arguments in a symmetric fashion. The
last two show how list=? can produce true and false.

Three of the template's four cond-clauses contain selector expressions and one contains natural
recursions:

TE
AM
FL
Y

TEAM FLY PRESENTS

-215-

(define (list=? a-list another-list)
 (cond
 [(and (empty? a-list) (empty? another-list)) ...]
 [(and (cons? a-list) (empty? another-list))
 ... (first a-list) ... (rest a-list) ...]
 [(and (empty? a-list) (cons? another-list))
 ... (first another-list) ... (rest another-list) ...]
 [(and (cons? a-list) (cons? another-list))
 ... (first a-list) ... (first another-list) ...
 ... (list=? (rest a-list) (rest another-list)) ...
 ... (list=? a-list (rest another-list)) ...
 ... (list=? (rest a-list) another-list) ...]))

There are three natural recursions in the fourth clause because we can pair the two selector
expressions and we can pair each parameter with one selector expression.

From the template to the complete definition is only a small step. Two lists can contain the same
items only if they are both empty or constructed. This immediately implies true as the answer
for the first clause and false for the next two. In the last clause, we have two numbers, the first
of both lists, and three natural recursions. We must compare the two numbers. Furthermore,
(list=? (rest a-list) (rest another-list)) computes whether the rest of the two lists
are equal. The two lists are equal if, and only if, both conditions hold, which means we must
combine them with an and:

(define (list=? a-list another-list)
 (cond
 [(and (empty? a-list) (empty? another-list)) true]
 [(and (cons? a-list) (empty? another-list)) false]
 [(and (empty? a-list) (cons? another-list)) false]
 [(and (cons? a-list) (cons? another-list))
 (and (= (first a-list) (first another-list))
 (list=? (rest a-list) (rest another-list)))]))

The other two natural recursions play no role.

Let us now take a second look at the connection between the two parameters. The first
development suggests that the second parameter must have the same shape as the first one, if the
two lists are to be equal. Put differently, we could develop the function based on the structure of
the first parameter and check structure of the other one as needed.

The first parameter is a list of numbers, so we can reuse the template for list-processing functions:

(define (list=? a-list another-list)
 (cond
 [(empty? a-list) ...]
 [(cons? a-list)
 ... (first a-list) ... (first another-list) ...
 ... (list=? (rest a-list) (rest another-list)) ...]))

The only difference is that the second clause processes the second parameter in the same way as
the first one. This mimics the development of hours->wages in section 17.2.

Filling the gaps in this template is more difficult than for the first development of list=?. If a-
list is empty, the answer depends on another-list. As the examples show, the answer is true

TE
AM
FL
Y

TEAM FLY PRESENTS

-216-

if, and only if, another-list is also empty. Translated into Scheme this means that the answer
in the first cond-clause is (empty? another-list).

If a-list is not empty, the template suggests that we compute the answer from

1. (first a-list), the first number of a-list;
2. (first another-list), the first number on another-list; and
3. (list=? (rest a-list) (rest another-list)), which determines whether the rest

of the two lists are equal.

Given the purpose of the function and the examples, we now simply compare (first a-list)
and (first another-list) and combine the result with the natural recursion in an and-
expression:

(and (= (first a-list) (first another-list))
 (list=? (rest a-list) (rest another-list)))

While this step appears to be simple and straightforward, the result is an improper definition. The
purpose of spelling out the conditions in a cond-expression is to ensure that all selector
expressions are appropriate. Nothing in the specification of list=?, however, suggests that
another-list is constructed if a-list is constructed.

We can overcome this problem with an additional condition:

(define (list=? a-list another-list)
 (cond
 [(empty? a-list) (empty? another-list)]
 [(cons? a-list)
 (and (cons? another-list)
 (and (= (first a-list) (first another-list))
 (list=? (rest a-list) (rest another-list))))]))

The additional condition is (cons? another-list), which means that list=? produces false
if (cons? a-list) is true and (cons? another-list) is empty. As the examples show, this is
the desired outcome.

In summary, list=? shows that, on occasion, we can use more than one design recipe to develop
a function. The outcomes are different, though closely related; indeed, we could prove that the
two always produce the same results for the same inputs. Also, the second development
benefited from the first one.

Exercise 17.8.1. Test both versions of list=?.

Exercise 17.8.2. Simplify the first version of list=?. That is, merge neighboring cond-clauses
with the same result by combining their conditions in an or-expression; switch cond-clauses as
needed; and use else in the last clause of the final version.

Exercise 17.8.3. Develop sym-list=?. The function determines whether two lists of symbols
are equal.

TE
AM
FL
Y

TEAM FLY PRESENTS

-217-

Exercise 17.8.4. Develop contains-same-numbers. The function determines whether two lists
of numbers contain the same numbers, regardless of the ordering. Thus, for example,

(contains-same-numbers (list 1 2 3) (list 3 2 1))

evaluates to true.

Exercise 17.8.5. The class of numbers, symbols, and booleans are sometimes called atoms:43

An atom is either

1. a number
2. a boolean
3. a symbol

Develop the function list-equal?, which consumes two lists of atoms and determines whether
they are equal.

A comparison between the two versions of list=? suggests that the second one is easier to
understand than the first. It says that two compound values are equal if the second is made from
the same constructor and the components are equal. In general, this idea is a good guide for the
development of other equality functions.

Let's look at an equality function for simple Web pages to confirm this conjecture:

;; web=? : web-page web-page -> boolean
;; to determine whether a-wp and another-wp have the same tree shape
;; and contain the same symbols in the same order
(define (web=? a-wp another-wp) ...)

Recall the data definition for simple Web pages:

A Web-page (short: WP) is either

1. empty;
2. (cons s wp)

where s is a symbol and wp is a Web page; or
3. (cons ewp wp)

where both ewp and wp are Web pages.

The data definition has three clauses, which means that if we were to develop web=? with the
modified design recipe, we would need to study nine cases. By using the insight gained from the
development of list=? instead, we can start from the plain template for Web sites:

(define (web=? a-wp another-wp)
 (cond
 [(empty? a-wp) ...]
 [(symbol? (first a-wp))
 ... (first a-wp) ... (first another-wp) ...
 ... (web=? (rest a-wp) (rest another-wp)) ...]
 [else
 ... (web=? (first a-wp) (first another-wp)) ...

TE
AM
FL
Y

TEAM FLY PRESENTS

-218-

 ... (web=? (rest a-wp) (rest another-wp)) ...]))

In the second cond-clause, we follow the example of hours->wages and list=? again. That is,
we say that another-wp must have the same shape as a-wp if it is to be equal and process the
two pages in an analogous manner. The reasoning for the third clause is similar.

As we refine this template into a full definition now, we must again add conditions on another-
wp to ensure that the selector expressions are justified:

(define (web=? a-wp another-wp)
 (cond
 [(empty? a-wp) (empty? another-wp)]
 [(symbol? (first a-wp))
 (and (and (cons? another-wp) (symbol? (first another-wp)))
 (and (symbol=? (first a-wp) (first another-wp))
 (web=? (rest a-wp) (rest another-wp))))]
 [else
 (and (and (cons? another-wp) (list? (first another-wp)))
 (and (web=? (first a-wp) (first another-wp))
 (web=? (rest a-wp) (rest another-wp))))]))

In particular, we must ensure in the second and third clause that another-wp is a constructed list
and that the first item is a symbol or a list, respectively. Otherwise the function is analogous to
list=? and works in the same way.

Exercise 17.8.6. Draw the table based on the data definition for simple Web pages. Develop (at
least) one example for each of the nine cases. Test web=? with these examples.

Exercise 17.8.7. Develop the function posn=?, which consumes two binary posn structures and
determines whether they are equal.

Exercise 17.8.8. Develop the function tree=?, which consumes two binary trees and
determines whether they are equal.

Exercise 17.8.9. Consider the following two, mutually recursive data definitions:

A Slist is either

1. empty
2. (cons s sl) where s is a Sexpr and sl is a Slist.

A Sexpr is either

1. a number
2. a boolean
3. a symbol
4. a Slist

Develop the function Slist=?, which consumes two Slists and determines whether they are
equal. Like lists of numbers, two Slists are equal if they contain the same item at analogous
positions.

TE
AM
FL
Y

TEAM FLY PRESENTS

-219-

Now that we have explored the idea of equality of values, we can return to the original
motivation of the section: testing functions. Suppose we wish to test hours->wages from
section 17.2:

 (hours->wages (cons 5.65 (cons 8.75 empty))
 (cons 40 (cons 30 empty)))
= (cons 226.0 (cons 262.5 empty))

If we just type in the application into Interactions window or add it to the bottom of the
Definitions window, we must compare the result and the predicted value by inspection. For
short lists, like the ones above, this is feasible; for long lists, deep Web pages, or other large
compound data, manual inspection is error-prone.

Using equality functions like list=?, we can greatly reduce the need for manual inspection of
test results. In our running example, we can add the expression

(list=?
 (hours->wages (cons 5.65 (cons 8.75 empty))
 (cons 40 (cons 30 empty)))
 (cons 226.0 (cons 262.5 empty)))

to the bottom of the Definitions window. When we click the Execute button now, we just
need to make sure that all test cases produce true as their results are displayed in the
Interactions window.

;; test-hours->wages : list-of-numbers list-of-numbers list-of-numbers ->
test-result
;; to test hours->wages
(define (test-hours->wages a-list another-list expected-result)
 (cond
 [(list=? (hours->wages a-list another-list) expected-result)
 true]
 [else
 (list "bad test result:" a-list another-list expected-result)]))

Figure 50: A test function

Indeed, we can go even further. We can write a test function like the one in figure 50. The class
of test-results consists of the value true and lists of four items: the string "bad test
result:" followed by three lists. Using this new auxiliary function, we can test hours->wages
as follows:

(test-hours->wages
 (cons 5.65 (cons 8.75 empty))
 (cons 40 (cons 30 empty))
 (cons 226.0 (cons 262.5 empty)))

If something goes wrong with the test, the four-item list will stand out and specify precisely
which test case failed.

Testing with equal?: The designers of Scheme anticipated the need of a general equality
procedure and provide:

TE
AM
FL
Y

TEAM FLY PRESENTS

-220-

;; equal? : any-value any-value -> boolean
;; to determine whether two values are structurally equivalent
;; and contain the same atomic values in analogous positions

When equal? is applied to two lists, it compares them in the same manner as list=?; when it
encounters a pair of structures, it compares their corresponding fields, if they are the same kind
of structures; and when it consumes a pair of atomic values, it compares them with =, symbol=?,
or boolean=?, whatever is appropriate.

Guideline on Testing
Use equal? for testing (when comparisons of values are necessary).

Unordered Lists: On some occasions, we use lists even though the ordering of the items doesn't
play a role. For those cases, it is important to have functions such as contains-same-numbers
(see exercise 17.8.4) if we wish to determine whether the result of some function application
contains the proper items.

Exercise 17.8.10. Define a test function for replace-eol-with from section 17.1 using equal?
and formulate the examples as test cases using this function.

Exercise 17.8.11. Define the function test-list-pick, which manages test cases for the
list-pick function from section 17.3. Formulate the examples from the section as test cases
using test-list-pick

Exercise 17.8.12. Define test-interpret, which tests interpret-with-defs from
exercise 17.7.4, using equal?. Reformulate the test cases using this function.

42 We discuss this form of recursion in detail in part V.

43 Some people also include empty and keyboard characters (chars). TE
AM
FL
Y

TEAM FLY PRESENTS

-221-

Section 18

Intermezzo 3: Local Definitions and Lexical
Scope
Programs do not just consist of single definitions. In many cases, a program requires the
definition of auxiliary functions or of functions with mutual references. Indeed, as we become
more experienced, we write programs that consist of numerous auxiliary functions. If we are not
careful, these large collections of functions overwhelm us. As the size of our functions grows, we
need to organize them so that we (and other readers) can quickly identify the relationships
between parts.

This section introduces local, a simple construct for organizing collections of functions. With
local, a programmer can group function definitions that belong together so that readers
immediately recognize the connection between the functions. Finally, the introduction of local
also forces us to discuss the concept of variable binding. While the variable and function
definitions of Beginning Student Scheme already introduce bindings into a program, a good
understanding of local definitions is possible only with a thorough familiarity of this concept.

18.2 Organizing Programs with local
A local-expression groups together an arbitrarily long sequence of definitions similar to those
found in the Definitions window. Following our established rules, we first introduce the
syntax and then the semantics and pragmatics of local-expressions.

Syntax of local

A local-expression is just another kind of expression:

<exp> = (local (<def-1> ...<def-n>) <exp>)
As usual, <def-1> ... <def-n> is an arbitrarily long sequence of definitions (see figure 51) and
<exp> is an arbitrary expression. In other words, a local-expression consists of the keyword
local, followed by a sequence of definitions grouped with (and), followed by an expression.

<def> = (define (<var> <var> ...<var>) <exp>)
 | (define <var> <exp>)
 | (define-struct <var> (<var> ...<var>))

Figure 51: Scheme definitions

The keyword local distinguishes this new class of expressions from other expressions, just as
cond distinguishes conditional expressions from applications. The parenthesized sequence that

TE
AM
FL
Y

TEAM FLY PRESENTS

-222-

follows local is referred to as the LOCAL DEFINITION .The definitions are called the LOCALLY DEFINED
variables, functions, or structures. All those in the Definitions window are called TOP-LEVEL
DEFINITIONS. Each name may occur at most once on the left-hand side, be it in a variable definition
or a function definition. The expression in each definition is called the RIGHT-HAND SIDE expression.
The expression that follows the definitions is the BODY.

Let us take a look at an example:

(local ((define (f x) (+ x 5))
 (define (g alon)
 (cond
 [(empty? alon) empty]
 [else (cons (f (first alon)) (g (rest alon)))])))
 (g (list 1 2 3)))

The locally defined functions are f and g. The right-hand side of the first function definition is
(+ x 5); the second one is

(cond
 [(empty? alon) empty]
 [else (cons (f (first alon)) (g (rest alon)))])

Finally, the body of the local-expression is (g (list 1 2 3)).

Exercise 18.2.1. Circle the locally defined variables and functions in red, the right-hand sides in
green, and the body of the following local-expression in blue:

1. (local ((define x (* y 3)))
 (* x x))
2. (local ((define (odd an)
 (cond
 [(zero? an) false]
 [else (even (sub1 an))]))
 (define (even an)
 (cond
 [(zero? an) true]
 [else (odd (sub1 an))])))
 (even a-nat-num))
3. (local ((define (f x) (g x (+ x 1)))
 (define (g x y) (f (+ x y))))
 (+ (f 10) (g 10 20)))

Exercise 18.2.2. The following phrases are not syntactically legal:

1. (local ((define x 10)
 (y (+ x x)))
 y)
2. (local ((define (f x) (+ (* x x) (* 3 x) 15))
 (define x 100)
 (define f@100 (f x)))
 f@100 x)
3. (local ((define (f x) (+ (* x x) (* 3 x) 14))
 (define x 100)
 (define f (f x)))
 f)

TE
AM
FL
Y

TEAM FLY PRESENTS

-223-

Explain why!

Exercise 18.2.3. Determine which of the following definitions or expressions are legal and
which ones are not:

1. (define A-CONSTANT
 (not
 (local ((define (odd an)
 (cond
 [(= an 0) false]
 [else (even (- an 1))]))
 (define (even an)
 (cond
 [(= an 0) true]
 [else (odd (- an 1))])))
 (even a-nat-num))))
2. (+ (local ((define (f x) (+ (* x x) (* 3 x) 15))
 (define x 100)
 (define f@100 (f x)))
 f@100)
 1000)
3. (local ((define CONST 100)
 (define f x (+ x CONST)))
 (define (g x y z) (f (+ x (* y z)))))

Explain why each expression is legal or illegal.

Semantics of local

The purpose of a local-expression is to define a variable, a function, or a structure for the
evaluation of the body expression. Outside of the local-expression the definitions have no effect.
Consider the following expression:

(local ((define (f x) exp-1)) exp)

It defines the function f during the evaluation of exp. The result of exp is the result of the entire
local-expression. Similarly,

(local ((define PI 3)) exp)

temporarily lets the variable PI stand for 3 during the evaluation of exp.

We can describe the evaluation of local-expressions with a single rule, but the rule is extremely
complex. More specifically, the rule requires two steps in a hand-evaluation. First, we must
systematically replace all locally defined variables, functions, and structures so that the names do
not overlap with those used in the Definitions window. Second, we move the entire sequence
of definitions to the top level and proceed as if we had just created a new function.

Here is the evaluation rule, stated symbolically:

 def-1 ... def-n
 E[(local ((define (f-1 x) exp-1) ... (define (f-n x) exp-n)) exp)]
=
 def-1 ... def-n (define (f-1' x) exp-1') ... (define (f-n' x) exp-n')

TE
AM
FL
Y

TEAM FLY PRESENTS

-224-

 E[exp']

For simplicity, the local-expression in this rule defines only one-argument functions, but it is
straightforward to generalize from here. As usual, the sequence def-1 ... def-n represents
top-level definitions.

The unusual part of the rule is the notation E[exp]. It represents an expression exp and its
context E. More specifically, exp is the next expression that must be evaluated; E is called its
EVALUATION CONTEXT.

For example, the expression

 (+ (local ((define (f x) 10)) (f 13)) 5)

is an addition. Before we can compute its result, we must evaluate the two subexpressions to
numbers. Since the first subexpression is not a number, we focus on it:

 (local ((define (f x) 10)) (f 13))

This local-expression must and can be evaluated, so

 exp = (local ((define (f x) 10)) (f 13))
 E = (+ ... 5)

On the right-hand side of the rule for local, we can see several primed names and expressions.
The primed names f-1', ..., f-n' are new function names, distinct from all other names in top-
level definitions; the primes on the expressions exp-1', ..., exp-n' indicate that these
expressions are structurally identical to exp-1, ..., exp-n but contain f-1' instead of f-1, etc.

The evaluation rule for local-expressions is the most complex rule that we have encountered so
far, and indeed, it is the most complex rule that we will ever encounter. Each of the two steps is
important and serves a distinct purpose. Their purpose is best illustrated by a series of simple
examples.

The first part of the rule eliminates name clashes between names that are already defined in the
top-level environment and those that will be inserted there. Consider the following example:

(define y 10)
(+ y
 (local ((define y 10)
 (define z (+ y y)))
 z))

The expression introduces a local definition for y, adds y to itself to get z, and returns the value
of z.

The informal description of local says that the result should be 30. Let's verify this with our rule.
If we simply added the definitions in local to the top level, the two definitions for y would clash.
The renaming step prevents this clash and clarifies which of the y's belong together:

= (define y 10)
 (+ y (local ((define y1 10) (define z1 (+ y1 y1))) z1))

TE
AM
FL
Y

TEAM FLY PRESENTS

-225-

= (define y 10)
 (define y1 10)
 (define z1 (+ y1 y1))
 (+ y z1)

= (define y 10)
 (define y1 10)
 (define z1 20)
 (+ 10 z1)

= (define y 10)
 (define y1 10)
 (define z1 20)
 (+ 10 z1)

= (define y 10)
 (define y1 10)
 (define z1 20)
 (+ 10 20)

As expected, the result is 30.

Since local-expressions may occur inside of function bodies, renaming is important if such
functions are applied more than once. The following second example illustrates this point:

 (define (D x y)
 (local ((define x2 (* x x))
 (define y2 (* y y)))
 (sqrt (+ x2 y2))))
 (+ (D 0 1) (D 3 4))

The function D computes the square root of the sum of the squares of its arguments. Hence the
result of (+ (D 0 1) (D 3 4)) should be 6.

As D computes its answer, it introduces two local variables: x2 and y2. Since D is applied twice, a
modified version of its body is evaluated twice and therefore its local definitions must be added
to the top-level twice. The renaming step ensures that no matter how often we lift such
definitions, they never interfere with each other. Here is how this works:

= (define (D x y)
 (local ((define x2 (* x x))
 (define y2 (* y y)))
 (sqrt (+ x2 y2))))
 (+ (local ((define x2 (* 0 0))
 (define y2 (* 1 1)))
 (sqrt (+ x2 y2)))
 (D 3 4))

The expression (D 0 1) is evaluated according to the regular rules. Now we rename and lift the
local definitions:

= (define (D x y)
 (local ((define x2 (* x x))
 (define y2 (* y y)))
 (sqrt (+ x2 y2))))
 (define x21 (* 0 0))

TE
AM
FL
Y

TEAM FLY PRESENTS

-226-

 (define y21 (* 1 1))
 (+ (sqrt (+ x21 y21))
 (D 3 4))

From here, the evaluation proceeds according to the standard rules until we encounter a second
nested local-expression in the expression that we are evaluating:

= (define (D x y)
 (local ((define x2 (* x x))
 (define y2 (* y y)))
 (sqrt (+ x2 y2))))
 (define x21 0)
 (define y21 1)
 (+ 1 (local ((define x2 (* 3 3))
 (define y2 (* 4 4)))
 (sqrt (+ x2 y2))))
= (define (D x y)
 (local ((define x2 (* x x))
 (define y2 (* y y)))
 (sqrt (+ x2 y2))))
 (define x21 0)
 (define y21 1)
 (define x22 9)
 (define y22 16)
 (+ 1 (sqrt (+ x22 y22)))

By renaming x2 and y2 again, we avoided clashes. From here, the evaluation of the expression is
straightforward:

 (+ 1 (sqrt (+ x22 y22)))
= (+ 1 (sqrt (+ 9 y22)))
= (+ 1 (sqrt (+ 9 16)))
= (+ 1 (sqrt 25))
= (+ 1 5)
= 6

The result is 6, as expected.44

Exercise 18.2.4. Since local definitions are added to the Definitions window during an
evaluation, we might wish to try to see their values by just typing in the variables into the
Interactions window. Is this possible? Why or why not?

Exercise 18.2.5. Evaluate the following expressions by hand:

1. (local ((define (x y) (* 3 y)))
 (* (x 2) 5))
2. (local ((define (f c) (+ (* 9/5 c) 32)))
 (- (f 0) (f 10)))
3. (local ((define (odd? n)
 (cond
 [(zero? n) false]
 [else (even? (sub1 n))]))
 (define (even? n)
 (cond
 [(zero? n) true]
 [else (odd? (sub1 n))])))
 (even? 1))

TE
AM
FL
Y

TEAM FLY PRESENTS

-227-

4. (+ (local ((define (f x) (g (+ x 1) 22))
 (define (g x y) (+ x y)))
 (f 10))
 555)
5. (define (h n)
 (cond
 [(= n 0) empty]
 [else (local ((define r (* n n)))
 (cons r (h (- n 1))))]))
 (h 2)

The evaluations should show all local-reductions.

Pragmatics of local, Part 1

The most important use of local-expressions is to ENCAPSULATE a collection of functions that serve
one purpose. Consider for an example the definitions for our sort function from section 12.2:

;; sort : list-of-numbers -> list-of-numbers
(define (sort alon)
 (cond
 [(empty? alon) empty]
 [(cons? alon) (insert (first alon) (sort (rest alon)))]))

;; insert : number list-of-numbers (sorted) -> list-of-numbers
(define (insert an alon)
 (cond
 [(empty? alon) (list an)]
 [else (cond
 [(> an (first alon)) (cons an alon)]
 [else (cons (first alon) (insert an (rest alon)))])]))

The first definition defines sort per se, and the second one defines an auxiliary function that
inserts a number into a sorted list of numbers. The first one uses the second one to construct the
result from a natural recursion, a sorted version of the rest of the list, and the first item.

The two functions together form the program that sorts a list of numbers. To indicate this
intimate relationship between the functions, we can, and should, use a local-expression.
Specifically, we define a program sort that immediately introduces the two functions as
auxiliary definitions:

;; sort : list-of-numbers -> list-of-numbers
(define (sort alon)
 (local ((define (sort alon)
 (cond
 [(empty? alon) empty]
 [(cons? alon) (insert (first alon)
 (sort (rest alon)))]))
 (define (insert an alon)
 (cond
 [(empty? alon) (list an)]
 [else (cond
 [(> an (first alon)) (cons an alon)]
 [else (cons (first alon)
 (insert an (rest alon)))])])))
 (sort alon)))

TE
AM
FL
Y

TEAM FLY PRESENTS

-228-

Here the body of local-expressions simply passes on the argument to the locally defined function
sort.

Guideline on the Use of local
Develop a function following the design recipes. If the function requires the use of auxiliary
definitions, group them in a local-expression and put the local-expression into a new function
definition. The body of the local should apply the main function to the arguments of the newly
defined function.

Exercise 18.2.6. Evaluate (sort (list 2 1 3)) by hand until the locally defined sort
function is used. Do the same for (equal? (sort (list 1)) (sort (list 2))).

Exercise 18.2.7. Use a local expression to organize the functions for moving pictures from
section 10.3.

Exercise 18.2.8. Use a local expression to organize the functions for drawing a polygon in
figure 34.

Exercise 18.2.9. Use a local expression to organize the functions for rearranging words from
section 12.4.

Exercise 18.2.10. Use a local expression to organize the functions for finding blue-eyed
descendants from section 15.1.

Pragmatics of local, Part 2

Suppose we need a function that produces the last occurrence of some item in a list. To be
precise, assume we have lists of records of rock stars. For simplicity, each star is represented as a
pair of values:

(define-struct star (name instrument))

A star (record) is a structure:

 (make-star s t)
where s and t are symbols.

Here is an example:

(define alos
 (list (make-star 'Chris 'saxophone)
 (make-star 'Robby 'trumpet)
 (make-star 'Matt 'violin)
 (make-star 'Wen 'guitar)
 (make-star 'Matt 'radio)))

This list contains two occurrences of 'Matt. So, if we wanted to determine the instrument that
goes with the last occurrence of 'Matt, we would want 'radio. For 'Wen, on the other hand, our

TE
AM
FL
Y

TEAM FLY PRESENTS

-229-

function would produce 'guitar. Of course, looking for the instrument of 'Kate should yield
false to indicate that there is no record for 'Kate.

Let's write down a contract, a purpose statement, and a header:

;; last-occurrence : symbol list-of-star -> star or false
;; to find the last star record in alostars that contains s in name field
(define (last-occurrence s alostars) ...)

The contract is unusual because it mentions two classes of data to the right of the arrow: star
and false. Although we haven't seen this kind of contract before, its meaning is obvious. The
function may produce a star or false.

We have already developed some examples, so we can move directly to the template stage of our
design recipe:

(define (last-occurrence s alostars)
 (cond
 [(empty? alostars) ...]
 [else ... (first alostars) ... (last-occurrence s (rest
alostars)) ...]))

The real problem with this function, of course, shows up only when we want to fill in the gaps in
this template. The answer in the first case is false, per specification. How to form the answer in
the second case is far from clear. Here is what we have:

1. (first alostars) is the first star record on the given list. If its name field is equal to s,
it may or may not be the final result. It all depends on the records in the rest of the list.

2. (last-occurrence s (rest alostars)) evaluates to one of two things: a star record
with s as the name field or false. In the first case, the star record is the result; in the
second case, the result is either false or the first record.

The second point implies that we need to use the result of the natural recursion twice, first to
check whether it is a star or a boolean, and second, to use it as the answer if it is a star.

The dual-use of the natural recursion is best expressed with a local-expression:

(define (last-occurrence s alostars)
 (cond
 [(empty? alostars) false]
 [else (local ((define r (last-occurrence s (rest alostars))))
 (cond
 [(star? r) r]
 ...))]))

The nested local-expression gives a name to the result of the natural recursion. The cond-
expression uses it twice. We could eliminate the local-expression by replacing r with the right-
hand side:

(define (last-occurrence s alostars)
 (cond
 [(empty? alostars) false]
 [else (cond

TE
AM
FL
Y

TEAM FLY PRESENTS

-230-

 [(star? (last-occurrence s (rest alostars)))
 (last-occurrence s (rest alostars))]
 ...)]))

But even a superficial glance shows that reading a natural recursion twice is difficult. The
version with local is superior.

From the partially refined template it is only a short step to the full definition:

;; last-occurrence : symbol list-of-star -> star or false
;; to find the last star record in alostars that contains s in name field
(define (last-occurrence s alostars)
 (cond
 [(empty? alostars) false]
 [else (local ((define r (last-occurrence s (rest alostars))))
 (cond
 [(star? r) r]
 [(symbol=? (star-name (first alostars)) s) (first alostars)]
 [else false]))]))

The second clause in the nested cond-expression compares the first record's name field with s if
r is not a star record. In that case, there is no record with the matching name in the rest of the
list, and, if the first record is the appropriate one, it is the result. Otherwise, the entire list does
not contain the name we're looking for and the result is false.

Exercise 18.2.11. Evaluate the following test by hand:

(last-occurrence 'Matt
 (list (make-star 'Matt 'violin)
 (make-star 'Matt 'radio)))

How many local-expressions are lifted?

Exercise 18.2.12. Consider the following function definition:

;; max : non-empty-lon -> number
;; to determine the largest number on alon
(define (max alon)
 (cond
 [(empty? (rest alon)) (first alon)]
 [else (cond
 [(> (first alon) (max (rest alon))) (first alon)]
 [else (max (rest alon))])]))

Both clauses in the nested cond-expression compute (max (rest an-inv)), which is therefore
a natural candidate for a local-expression. Test both versions of max with

(list 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)

Explain the effect.

Exercise 18.2.13. Develop the function to-blue-eyed-ancestor. The function consumes a
family tree (ftn) (see section 14.1) and produces a list that explains how to get to a blue-eyed
ancestor. If there is no blue-eyed ancestor, the function produces false.

TE
AM
FL
Y

TEAM FLY PRESENTS

-231-

The function's contract, purpose statement, and header are as follows:

;; to-blue-eyed-ancestor : ftn -> path or false
;; to compute the path from a-ftn tree to a blue-eyed ancestor
(define (to-blue-eyed-ancestor a-ftn) ...)

A path is a list of 'father and 'mother, which we call a direction. Here are the two data
definitions:

A direction is either

1. the symbol 'father or
2. the symbol 'mother .

A path is either

1. empty or
2. (cons s los) where s is a direction and los is a path.

The empty path indicates that a-ftn has 'blue in the eyes field. If the first item is 'mother, we
may search in the mother's family tree for a blue-eyed ancestor using the rest of the path.
Similarly, we search in the father's family tree if the first item is 'father and use the rest of the
path for further directions.

Examples:

1. (to-blue-eyed-ancestor Gustav) produces (list 'mother) for the family tree in
figure 35;

2. (to-blue-eyed-ancestor Adam) produces false in the same setting; and
3. if we added (define Hal (make-child Gustav Eva 'Gustav 1988 'hazel)) then

(to-blue-eyed-ancestor Hal) would yield (list 'father 'mother).

Build test cases from these examples. Formulate them as boolean expressions, using the strategy
of section 17.8.

Backtracking: The functions last-occurrence and to-blue-eyed-ancestor produce two
kinds of results: one to indicate a successful search and another one to indicate a failure. Both are
recursive. If a natural recursion fails to find the desired result, each tries to compute a result in a
different manner. Indeed, to-blue-eyed-ancestor may use another natural recursion.

This strategy of computing an answer is a simple form of BACKTRACKING. In the world of data that
we have dealt with so far, backtracking is simple and just a device to save computing steps. It is
always possible to write two separate recursive functions that accomplish the same purpose as
one of the backtracking functions here.

We will take an even closer look at backtracking in section 28. Also, we will discuss counting
computing steps in intermezzo 5.

Exercise 18.2.14. Discuss the function find from exercise 15.3.4 in terms of backtracking.

TE
AM
FL
Y

TEAM FLY PRESENTS

-232-

Pragmatics of local, Part 3

Consider the following function definition:

;; mult10 : list-of-digits -> list-of-numbers
;; to create a list of numbers by multiplying each digit on alod
;; by (expt 10 p) where p is the number of digits that follow
(define (mult10 alod)
 (cond
 [(empty? alod) 0]
 [else (cons (* (expt 10 (length (rest alod))) (first alod))
 (mult10 (rest alod)))]))

Here is a test:

(equal? (mult10 (list 1 2 3)) (list 100 20 3))

Clearly, the function could be used to convert a list of digits into a number.

A small problem with the definition of mult10 is the computation of the first item of the result in
the second clause. It is a large expression and doesn't quite correspond to the purpose statement.
By using a local-expression in the second clause, we can introduce names for some intermediate
values in the computation of the answer:

;; mult10 : list-of-digits -> list-of-numbers
;; to create a list of numbers by multiplying each digit on alod
;; by (expt 10 p) where p is the number of digits that follow
(define (mult10 alon)
 (cond
 [(empty? alon) empty]
 [else (local ((define a-digit (first alon))
 (define p (length (rest alon))))
 ;; --
 (cons (* (expt 10 p) a-digit) (mult10 (rest alon))))]))

The use of names helps us understand the expression when we read the definition again because
we can study one local-definition at a time.

The use of local for such cases is most appropriate when a value is computed twice as, for
example, the expression (rest alon) in mult10. By introducing names for repeated expressions,
we might also avoid some (small) effort on DrScheme's side:

(define (mult10 alon)
 (cond
 [(empty? alon) empty]
 [else (local ((define a-digit (first alon))
 (define the-rest (rest alon))
 (define p (length the-rest)))
 ;; --
 (cons (* (expt 10 p) a-digit) (mult10 the-rest)))]))

For the programs that we have developed, this third usage of local is hardly ever useful. An
auxiliary function is almost always better. We will, however, encounter many different styles of
functions in the remaining parts of the book and with them the opportunity, and sometimes the
necessity, to use local-expressions like the one for mult10.

TE
AM
FL
Y

TEAM FLY PRESENTS

-233-

Exercise 18.2.15. Consider the following function definition:

;; extract1 : inventory -> inventory
;; to create an inventory from an-inv for all
;; those items that cost less than $1
(define (extract1 an-inv)
 (cond
 [(empty? an-inv) empty]
 [else (cond
 [(<= (ir-price (first an-inv)) 1.00)
 (cons (first an-inv) (extract1 (rest an-inv)))]
 [else (extract1 (rest an-inv))])]))

Both clauses in the nested cond-expression extract the first item from an-inv and both compute
(extract1 (rest an-inv)).

Introduce a local-expression for these expressions.

18.3 Lexical Scope and Block Structure
The introduction of local requires some additional terminology concerning the syntax of
Scheme and the structure of functions. Specifically, we need words to discuss the usage of names
for variables, functions, and structures. For a simple example, consider the following two
definitions:

(define (f x) (+ (* x x) 25))

(define (g x) (* 12 (expt x 5)))

Clearly, the underlined occurrences of x in f are completely unrelated to the occurrences of x in
g. As mentioned before, if we systematically replaced the underlined occurrences with y, the
function would still compute the exact same numbers. In short, the underlined occurrences of x
mean something only in the definition of f and nowhere else.

At the same time, the first occurrence of x is different from the others. When we apply f to a
number n, this occurrence completely disappears; in contrast, the others are replaced with n. To
distinguish these two forms of variable occurrences, we call the one to the right of the function
name BINDING occurrence of x and those in the body the BOUND occurrences of x. We also say that
the binding occurrence of x binds all occurrences of x in the body of f, and from the discussion
above, the body of f is clearly the only textual region of the function where the underlined
binding occurrence of x can bind other occurrences. The name of this region is x's LEXICAL SCOPE.
We also say that the definitions of f and g (or other definitions in the Definitions window)
have GLOBAL SCOPE. On occasion, people also use the word FREE OCCURRENCE.

The description of an application of f to a number n suggests the following pictorial
representation of the definition:

TE
AM
FL
Y

TEAM FLY PRESENTS

-234-

The bullet over the first occurrence indicates that it is a binding occurrence. The arrow that
originates from the bullet suggests the flow of values. That is, when the value of a binding
occurrence becomes known, the bound occurrences receive their values from there. Put
differently, when we know which is the binding occurrence of a variable, we know where the
value will come from during an evaluation.

Along similar lines, the scope of a variable also dictates where we can rename it. If we wish to
rename a parameter, say, from x to y, we search for all bound occurrences in the scope of the
parameter and replace them with y. For example, if the function definition is the one from above:

(define (f x) (+ (* x x) 25))

renaming x to y affects two bound occurrences:

(define (f y) (+ (* y y) 25))

No other occurrences of x outside of the definitions need to be changed.

Obviously function definitions also introduce a binding occurrence for the function name. If a
definition introduces a function named f, the scope of f is the entire sequence of definitions:

That is, the scope of f includes all definitions above and below the definition of f.

Exercise 18.3.1. Here is a simple Scheme program:

(define (p1 x y)
 (+ (* x y)
 (+ (* 2 x)
 (+ (* 2 y) 22))))

(define (p2 x)
 (+ (* 55 x) (+ x 11)))

(define (p3 x)
 (+ (p1 x 0)
 (+ (p1 x 1) (p2 x))))

Draw arrows from p1's x parameter to all its bound occurrences. Draw arrows from p1 to all
bound occurrences of p1.

Copy the function and rename the parameter x of p1 to a and the parameter x of p3 to b.

Check the results with DrScheme's Check Syntax button.

TE
AM
FL
Y

TEAM FLY PRESENTS

-235-

In contrast to top-level function definitions, the scope of the definitions in a local are limited.
Specifically, the scope of local definitions is the local-expression. Consider the definition of an
auxiliary function f in a local-expression. It binds all occurrences within the local-expression but
none that occur outside:

The two occurrences outside of local are not bound by the local definition of f.

As always, the parameters of a function definition, local or not, is only bound in the function's
body and nowhere else:

Since the scope of a function name or a function parameter is a textual region, people often draw
a box to indicate some scope. More precisely, for parameters a box is drawn around the body of a
function:

In the case of a local definition, the box is drawn aorund the entire local-expression:

In this example, the box describes the scope of the definitions of f and g.

Using a box for a scope, we can also easily understand what it means to reuse the name of
function inside a local-expression:

TE
AM
FL
Y

TEAM FLY PRESENTS

-236-

The inner box describes the scope of the inner definition of f; the outer box is the scope of the
outer definition of f. Accordingly, all occurrences of f in the inner box refer to the inner local;
all those in the outer box refer to the definition in the outer local. In other words, the scope of
the outer definition of f has a hole: the inner box, which is the scope of the inner definition of f.

Holes can also occur in the scope of a parameter definition. Here is an example:

In this function, the parameter x is used twice: for the function f and for g. The scope of the
latter is nested in the scope of the former and is thus a hole for the scope of the outer use of x.

In general, if the same name occurs more than once in a function, the boxes that describe the
corresponding scopes never overlap. In some cases the boxes are nested within each other, which
gives rise to holes. Still, the picture is always that of a hierarchy of smaller and smaller nested
boxes.

Exercise 18.3.2. Here is a simple Scheme function:

;; sort : list-of-numbers -> list-of-numbers
(define (sort alon)
 (local ((define (sort alon)
 (cond
 [(empty? alon) empty]
 [(cons? alon) (insert (first alon) (sort (rest alon)))]))
 (define (insert an alon)
 (cond
 [(empty? alon) (list an)]
 [else (cond
 [(> an (first alon)) (cons an alon)]
 [else (cons (first alon) (insert an (rest alon)))])])))
 (sort alon)))

Draw a box around the scope of each binding occurrence of sort and alon. Then draw arrows
from each occurrence of sort to the matching binding occurrence.

Exercise 18.3.3. Recall that each occurrence of a variable receives its value from the
corresponding binding occurrence. Consider the following definition:

(define x (cons 1 x))

TE
AM
FL
Y

TEAM FLY PRESENTS

-237-

Where is the underlined occurrence of x bound? Since the definition is a variable definition and
not a function definition, we need to evaluate the right-hand side if we wish to work with this
function. What is the value of the right-hand side according to our rules?

44 As we evaluate expressions in this manner, our list of definitions grows longer and longer.
Fortunately, DrScheme knows how to manage such growing lists. Indeed, it occasionally throws
out definitions that will never be used again.

TE
AM
FL
Y

TEAM FLY PRESENTS

-238-

Part IV

Abstracting Designs

TE
AM
FL
Y

TEAM FLY PRESENTS

-239-

Section 19

Similarities in Definitions
Many of our data definitions and function definitions look alike. For example, the definition for a
list of symbols differs from that of a list of numbers in only two regards: the name of the class of
data and the words ``symbol'' and ``number.'' Similarly, a function that looks for a specific
symbol in a list of symbols is nearly indistinguishable from one that looks for a specific number
in a list of numbers.

Repetitions are the source of many programming mistakes. Therefore good programmers try to
avoid repetitions as much as possible. As we develop a set of functions, especially functions
derived from the same template, we soon learn to spot similarities. It is then time to revise the
functions so as to eliminate the repetitions as much as possible. Put differently, a set of functions
is just like an essay or a memo or a novel or some other piece of writing: the first draft is just a
draft. Unless we edit the essay several times, it does not express our ideas clearly and concisely.
It is a pain for others to read it. Because functions are read by many other people and because
real functions are modified after reading, we must learn to ``edit'' functions.

The elimination of repetitions is the most important step in the (program) editing process. In this
section, we discuss similarities in function definitions and in data definitions and how to avoid
them. Our means of avoiding similarities are specific to Scheme and functional programming
languages; still, other languages, in particular object-oriented ones, support similar mechanisms
for factoring out similarities -- or (code) patterns as they are somtimes called.

19.1 Similarities in Functions
The use of our design recipes entirely determines a function's template -- or basic organization --
from the data definition for the input. Indeed, the template is an alternative method of expressing
what we know about the input data. Not surprisingly, functions that consume the same kind of
data look alike.

;; contains-doll? : los ->
boolean
;; to determine whether alos
contains
;; the symbol 'doll
(define (contains-doll? alos)
 (cond
 [(empty? alos) false]
 [else
 (cond
 [(symbol=? (first alos)
'doll)
 true]
 [else
 (contains-doll? (rest

;; contains-car? : los ->
boolean
;; to determine whether alos
contains
;; the symbol 'car
(define (contains-car? alos)
 (cond
 [(empty? alos) false]
 [else
 (cond
 [(symbol=? (first alos) 'car)
 true]
 [else
 (contains-car? (rest
alos))])]))

TE
AM
FL
Y

TEAM FLY PRESENTS

-240-

alos))])]))
Figure 52: Two similar functions

Take a look at the two functions in figure 52, which consume lists of symbols (names of toys)
and look for specific toys. The function on the left looks for 'doll, the one on the right for 'car
in a list of symbols (los). The two functions are nearly indistinguishable. Each consumes lists of
symbols; each function body consists of a cond-expressions with two clauses. Each produces
false if the input is empty; each uses a second, nested cond-expression to determine whether
the first item is the desired item. The only difference is the symbol that is used in the comparison
of the nested cond-expression: contains-doll? uses 'doll and contains-car? uses 'car, of
course. To highlight the differences, the two symbols are boxed.

Good programmers are too lazy to define several closely related functions. Instead they define a
single function that can look for both a 'doll and a 'car in a list of toys. This more general
function consumes an additional piece of data, the symbol that we are looking for, but is
otherwise like the two original functions:

;; contains? : symbol los -> boolean
;; to determine whether alos contains the symbol s
(define (contains? s alos)
 (cond
 [(empty? alos) false]
 [else (cond
 [(symbol=? (first alos) s)
 true]
 [else
 (contains? s (rest alos))])]))

We can now look for 'doll by applying contains? to 'doll and a list of symbols. But
contains? works for any other symbol, too. Defining the single version has solved many related
problems at once.

The process of combining two related functions into a single definition is called FUNCTIONAL
ABSTRACTION. Defining abstract versions of functions is highly beneficial. The first benefit is that a
single function can perform many different tasks. In our first example, contains? can search for
many different symbols instead of just one concrete symbol.45

;; below : lon number -> lon
;; to construct a list of those
numbers
;; on alon that are below t
(define (below alon t)
 (cond
 [(empty? alon) empty]
 [else
 (cond
 [(< (first alon) t)
 (cons (first alon)
 (below (rest alon) t))]
 [else
 (below (rest alon) t)])]))

;; above : lon number -> lon
;; to construct a list of those
numbers
;; on alon that are above t
(define (above alon t)
 (cond
 [(empty? alon) empty]
 [else
 (cond
 [(> (first alon) t)
 (cons (first alon)
 (above (rest alon) t))]
 [else
 (above (rest alon) t)])]))

TE
AM
FL
Y

TEAM FLY PRESENTS

-241-

Figure 53: Two more similar functions

In the case of contains-doll? and contains-car?, abstraction is uninteresting. There are,
however, more interesting cases: see figure 53. The function on the left consumes a list of
numbers and a threshold and produces a list of all those numbers that are below the threshold;
the one on the right produces all those that are above a threshold.

The difference between the two functions is the comparison operator. The left uses <, the right
one >. Following the first example, we abstract over the two functions with an additional
parameter that stands for the concrete relational operator in below and above:

(define (filter1 rel-op alon t)
 (cond
 [(empty? alon) empty]
 [else (cond
 [(rel-op (first alon) t)
 (cons (first alon)
 (filter1 rel-op (rest alon) t))]
 [else
 (filter1 rel-op (rest alon) t)])]))

To apply this new function, we must supply three arguments: a relational operator R that
compares two numbers, a list L of numbers, and a number N. The function then extracts all those
items i in L for which (R i N) evaluates to true. Since we do not know how to write down
contracts for functions like filter1, we omit the contract for now. We will discuss the problem
of contracts in section 20.2 below.

Let us see how filter1 works with an example. Clearly, as long as the input list is empty, the
result is empty, too, no matter what the other arguments are:

 (filter1 < empty 5)
= empty

So next we look at a slightly more complicated case:

 (filter1 < (cons 4 empty) 5)

The result should be (cons 4 empty) because the only item of this list is 4 and (< 4 5) is true.

The first step of the evaluation is based on the rule of application:

 (filter1 < (cons 4 empty) 5)

= (cond
 [(empty? (cons 4 empty)) empty]
 [else (cond
 [(< (first (cons 4 empty)) 5)
 (cons (first (cons 4 empty))
 (filter1 < (rest (cons 4 empty)) 5))]
 [else (filter1 < (rest (cons 4 empty)) 5)])])

TE
AM
FL
Y

TEAM FLY PRESENTS

-242-

That is, it is the body of filter1 with all occurrences of rel-op replaced by <, t replaced by 5,
and alon replaced by (cons 4 empty).

The rest of the evaluation is straightforward:

 (cond
 [(empty? (cons 4 empty)) empty]
 [else (cond
 [(< (first (cons 4 empty)) 5)
 (cons (first (cons 4 empty))
 (filter1 < (rest (cons 4 empty)) 5))]
 [else (filter1 < (rest (cons 4 empty)) 5)])])

= (cond
 [(< (first (cons 4 empty)) 5)
 (cons (first (cons 4 empty))
 (filter1 < (rest (cons 4 empty)) 5))]
 [else (filter1 < (rest (cons 4 empty)) 5)])

= (cond
 [(< 4 5) (cons (first (cons 4 empty))
 (filter1 < (rest (cons 4 empty)) 5))]
 [else (filter1 < (rest (cons 4 empty)) 5)])

= (cond
 [true (cons (first (cons 4 empty))
 (filter1 < (rest (cons 4 empty)) 5))]
 [else (filter1 < (rest (cons 4 empty)) 5)])

= (cons 4 (filter1 < (rest (cons 4 empty)) 5))
= (cons 4 (filter1 < empty 5))
= (cons 4 empty)

The last step is the equation we discussed as our first case.

Our final example is an application of filter1 to a list of two items:

 (filter1 < (cons 6 (cons 4 empty)) 5)
= (filter1 < (cons 4 empty) 5)
= (cons 4 (filter1 < empty 5))
= (cons 4 empty)

The only new step is the first one. It says that filter1 determines that the first item on the list is
not less than the threshold, and that it therefore is not added to the result of the natural recursion.

Exercise 19.1.1. Verify the equation

 (filter1 < (cons 6 (cons 4 empty)) 5)
= (filter1 < (cons 4 empty) 5)

with a hand-evaluation that shows every step.

Exercise 19.1.2. Evaluate the expression

 (filter1 > (cons 8 (cons 6 (cons 4 empty))) 5)

TE
AM
FL
Y

TEAM FLY PRESENTS

-243-

by hand. Show only the essential steps.

The calculations show that (filter1 < alon t) computes the same result as (below alon t),
which is what we expected. Similar reasoning shows that (filter1 > alon t) produces the
same output as (above alon t). So suppose we define the following:

;; below1 : lon number -> lon
(define (below1 alon t)
 (filter1 < alon t))

;; above1 : lon number -> lon
(define (above1 alon t)
 (filter1 > alon t))

Clearly, below1 produces the same results as below when given the same inputs, and above1 is
related to above in the same manner. In short, we have defined below and above as one-liners
using filter1.

Better yet: once we have an abstract function like filter1, we can put it to other uses, too. Here
are three of them:

1. (filter1 = alon t): This expression extracts all those numbers in alon that are equal
to t.

2. (filter1 <= alon t): This one produces the list of numbers in alon that are less than
or equal to t.

3. (filter1 >= alon t): This last expression computes the list of numbers that are
greater than or equal to the threshold.

In general, filter1's first argument need not even be one of Scheme's predefined operations; it
can be any function that consumes two numbers and produces a boolean value. Consider the
following example:

;; squared>? : number number -> boolean
(define (squared>? x c)
 (> (* x x) c))

The function produces true whenever the area of a square with side x is larger than some
threshold c, that is, the function tests whether the claim x2 > c holds. We now apply filter1 to
this function and a list of numbers:

(filter1 squared>? (list 1 2 3 4 5) 10)

This particular application extracts those numbers in (list 1 2 3 4 5) whose square is larger
than 10.

Here is the beginning of a simple hand-evaluation:

 (filter1 squared>? (list 1 2 3 4 5) 10)
= (cond
 [(empty? (list 1 2 3 4 5)) empty]
 [else (cond
 [(squared>? (first (list 1 2 3 4 5)) 10)
 (cons (first (list 1 2 3 4 5))
 (filter1 squared>? (rest (list 1 2 3 4 5)) 10))]
 [else
 (filter1 squared>? (rest (list 1 2 3 4 5)) 10)])])

TE
AM
FL
Y

TEAM FLY PRESENTS

-244-

That is, we apply our standard law of application and calculate otherwise as usual:

= (cond
 [(squared>? 1 10)
 (cons (first (list 1 2 3 4 5))
 (filter1 squared>? (rest (list 1 2 3 4 5)) 10))]
 [else
 (filter1 squared>? (rest (list 1 2 3 4 5)) 10)])
= (cond
 [false
 (cons (first (list 1 2 3 4 5))
 (filter1 squared>? (rest (list 1 2 3 4 5)) 10))]
 [else
 (filter1 squared>? (rest (list 1 2 3 4 5)) 10)])

The last step consists of several steps concerning squared>?, which we can skip at this point:

= (filter1 squared>? (list 2 3 4 5) 10)
= (filter1 squared>? (list 3 4 5) 10)
= (filter1 squared>? (list 4 5) 10)

We leave the remainder of the evaluation to the exercises.

Exercise 19.1.3. Show that

 (filter1 squared>? (list 4 5) 10)
= (cons 4 (filter1 squared>? (list 5) 10))

with a hand-evaluation. Act as if squared>? were primitive.

Exercise 19.1.4. The use of squared>? also suggests that the following function will work, too:

;; squared10? : number number -> boolean
(define (squared10? x c)
 (> (sqr x) 10))

In other words, the relational function that filter1 uses may ignore its second argument. After
all, we already know it and it stays the same throughout the evaluation of (filter1 squared>?
alon t).

This, in turn, implies another simplification of the function:

(define (filter predicate alon)
 (cond
 [(empty? alon) empty]
 [else (cond
 [(predicate (first alon))
 (cons (first alon)
 (filter predicate (rest alon)))]
 [else
 (filter predicate (rest alon))])]))

The function filter consumes only a relational function, called predicate, and a list of
numbers. Every item i on the list is checked with predicate. If (predicate i) holds, i is
included in the output; if not, i does not appear in the result.

TE
AM
FL
Y

TEAM FLY PRESENTS

-245-

Show how to use filter to define functions that are equivalent to below and above. Test the
definitions.

So far we have seen that abstracted function definitions are more flexible and more widely
usable than specialized definitions. A second, and in practice equally important, advantage of
abstracted definitions is that we can change a single definition to fix and improve many different
uses. Consider the two variants of filter1 in figure 54. The first variant flattens the nested
cond-expression, something that an experienced programmer may wish to do. The second
variant uses a local-expression that makes the nested cond-expression more readable.

(define (filter1 rel-op alon
t)
 (cond
 [(empty? alon) empty]
 [(rel-op (first alon) t)
 (cons (first alon)
 (filter1 rel-op (rest
alon) t))]
 [else
 (filter1 rel-op (rest
alon) t)]))

(define (filter1 rel-op alon t)
 (cond
 [(empty? alon) empty]
 [else
 (local ((define first-item
(first alon))
 (define rest-filtered
 (filter1 rel-op (rest
alon) t)))
 (cond
 [(rel-op first-item t)
 (cons first-item rest-
filtered)]
 [else
 rest-filtered]))]))

Figure 54: Two modifications of filter1

Although both of these changes are trivial, the key is that all uses of filter1, including those to
define the functions below1 and above1, benefit from this change. Similarly, if the modification
had fixed a logical mistake, all uses of the function would be improved. Finally, it is even
possible to add new tasks to abstracted functions, for example, a mechanism for counting how
many elements are filtered. In that case all uses of the function would benefit from the new
functionality. We will encounter this form of improvement later.

Exercise 19.1.5.

Abstract the following two functions into a single function:

;; min : nelon -> number
;; to determine the smallest
number
;; on alon
(define (min alon)
 (cond
 [(empty? (rest alon)) (first
alon)]
 [else (cond
 [(< (first alon)
 (min (rest alon)))
 (first alon)]
 [else
 (min (rest alon))])]))

;; max : nelon -> number
;; to determine the largest
number
;; on alon
(define (max alon)
 (cond
 [(empty? (rest alon)) (first
alon)]
 [else (cond
 [(> (first alon)
 (max (rest alon)))
 (first alon)]
 [else
 (max (rest alon))])]))

TE
AM
FL
Y

TEAM FLY PRESENTS

-246-

Both consume non-empty lists of numbers and produce a single number. The left one produces
the smallest number in the list, the right one the largest.

Define min1 and max1 in terms of the abstracted function. Test each of them with the following
three lists:

1. (list 3 7 6 2 9 8)
2. (list 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1)
3. (list 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)

Why are they slow on the long lists?

Improve the abstracted function. First, introduce a local name for the result of the natural
recursion. Then introduce a local, auxiliary function that picks the ``interesting'' one of two
numbers. Test min1 and max1 with the same inputs again.

Exercise 19.1.6. Recall the definition of sort, which consumes a list of numbers and produces
a sorted version:

;; sort : list-of-numbers -> list-of-numbers
;; to construct a list with all items from alon in descending order
(define (sort alon)
 (local ((define (sort alon)
 (cond
 [(empty? alon) empty]
 [else (insert (first alon) (sort (rest alon)))]))
 (define (insert an alon)
 (cond
 [(empty? alon) (list an)]
 [else (cond
 [(> an (first alon)) (cons an alon)]
 [else (cons (first alon) (insert an (rest alon)))])])))
 (sort alon)))

Define an abstract version of sort that consumes the comparison operation in addition to the list
of numbers. Use the abstract version to sort (list 2 3 1 5 4) in ascending and descending
order.

19.2 Similarities in Data Definitions
Inspect the following two data definitions:

A list-of-numbers is either

• empty
• (cons n l)

where n is a number
and n is a list-of-numbers.

A list-of-IRs is either

• empty
• (cons n l)

where n is an IR
and n is a list-of-IRs.

TE
AM
FL
Y

TEAM FLY PRESENTS

-247-

Both define a class of lists. The one on the left is the data definition for lists of numbers; the one
on the right describes lists of inventory records, which we represent with structures. The
necessary structure and data definitions follow:

(define-struct ir (name price))

An IR is a structure:

 (make-ir n p)
where n is a symbol and p is a number.

Given the similarity between the data definitions, functions that consume elements of these
classes are similar, too. Take a look at the illustrative example in figure 55. The function on the
left is the function below, which filters numbers from a list of numbers. The one on the right is
below-ir, which extracts those inventory records from a list whose prices are below a certain
threshold. Except for the name of the function, which is arbitrary, the two definitions differ in
only one point: the relational operator.

;; below : number lon -> lon
;; to construct a list of those
numbers
;; on alon that are below t
(define (below alon t)
 (cond
 [(empty? alon) empty]
 [else (cond
 [(< (first alon) t)
 (cons (first alon)
 (below (rest alon)
t))]
 [else
 (below (rest alon)
t)])]))

;; below-ir : number loIR ->
loIR
;; to construct a list of those
records
;; on aloir that contain a price
below t
(define (below aloir t)
 (cond
 [(empty? aloir) empty]
 [else (cond
 [(<ir (first aloir) t)
 (cons (first aloir)
 (below-ir (rest aloir)
t))]
 [else
 (below-ir (rest aloir)
t)])]))

;; <ir : IR number -> boolean
(define (<ir ir p)
 (< (ir-price ir) p))

Figure 55: Marking the differences in similar functions

If we abstract the two functions, we obviously obtain filter1. Conversely, we can define
below-ir in terms of filter1:

(define (below-ir1 aloir t)
 (filter1 <ir aloir t))

It should not surprise us to discover yet another use for filter1 -- after all, we already argued
that abstraction promotes the reuse of functions for different purposes. Here we see that filter1
not only filters lists of numbers but lists of arbitrary things -- as long as we can define a function
that compares these arbitrary things with numbers.

TE
AM
FL
Y

TEAM FLY PRESENTS

-248-

Indeed, all we need is a function that compares items on the list with the items we pass to
filter1 as the second argument. Here is a function that extracts all items with the same label
from a list of inventory records:

;; find : loIR symbol -> boolean
;; to determine whether aloir contains a record for t
(define (find aloir t)
 (cons? (filter1 eq-ir? aloir t)))

;; eq-ir? : IR symbol -> boolean
;; to compare ir's name and p
(define (eq-ir? ir p)
 (symbol=? (ir-name ir) p))

This new relational operator compares the name in an inventory record with some other symbol.

Exercise 19.2.1. Determine the values of

1. (below-ir1 10 (list (make-ir 'doll 8) (make-ir 'robot 12)))
2. (find 'doll (list (make-ir 'doll 8) (make-ir 'robot 12) (make-ir 'doll

13)))

by hand and with DrScheme. Show only those lines that introduce new applications of filter1
to values.

In short, filter1 uniformly works on many shapes of input data. The word ``uniformly'' means
that if filter1 is applied to a list of X, its result is also a list of X -- no matter what kind of
Scheme data X is. Such functions are called POLYMORPHIC46 or GENERIC functions.

Of course, filter1 is not the only function that can process arbitrary lists. There are many other
functions that process lists independently of what they contain. Here are two functions that
determine the length of lists of numbers and IRs:

;; length-lon : lon -> number
(define (length-lon alon)
 (cond
 [(empty? alon) empty]
 [else
 (+ (length-lon (rest
alon)) 1)]))

;; length-ir : loIR -> number
(define (length-ir alon)
 (cond
 [(empty? alon) empty]
 [else
 (+ (length-ir (rest alon))
1)]))

The two functions differ only in their names. If we had chosen the same name, say, length, the
two definitions would be identical.

To write precise contracts for functions such as length, we need data definitions with
parameters. We call these PARAMETRIC DATA DEFINITIONS and agree that they do not specify everything
about a class of data. Instead they use variables to say that any form of Scheme data can be used
in a certain place. Roughly speaking, a parametric data definition abstracts from a reference to a
particular collection of data in the same manner as a function abstracts from a particular value.

Here is a parametric definition of lists of ITEMs:

A list of ITEM is either

TE
AM
FL
Y

TEAM FLY PRESENTS

-249-

1. empty or
2. (cons s l) where

a. s is an ITEM and
b. l is a list of ITEM.

The token ITEM is a TYPE VARIABLE that stands for any arbitrary collection of Scheme data: symbols,
numbers, booleans, IRs, etc. By replacing ITEM with one of these names, we get a concrete
instance of this abstract data definition for lists of symbols, numbers, booleans, IRs, etc. To make
the language of contracts more concise, we introduce an additional abbreviation:

(listof ITEM)

We use (listof ITEM) as the name of abstract data definitions such as the above. Then we can
use (listof symbol) for the class of all lists of symbols, (listof number) for the class of all
lists of numbers, (listof (listof number)) for the class of all lists of lists of numbers, etc.

In contracts we use (listof X) to say that a function works on all lists:

;; length : (listof X) -> number
;; to compute the length of a list
(define (length alon)
 (cond
 [(empty? alon) empty]
 [else (+ (length (rest alon)) 1)]))

The X is just a variable, a name that stands for some class of data. If we now apply length to an
element of, say, (listof symbol) or (listof IR), we get a number.

The function length is an example of simple polymorphism. It works on all classes of lists.
While there are other useful examples of simple polymorphic functions, the more common cases
require that we define functions like filter1, which consume a parametric form of data and
functions that work on this data. This combination is extremely powerful and greatly facilitates
the construction and maintenance of software systems. To understand it better, we will next
discuss a revision of Scheme's grammar and new ways to write contracts.

Exercise 19.2.2. Show how to use the abstracted version of sort from exercise 19.1.6 to sort a
list of IRs in ascending and descending order.

Exercise 19.2.3. Here is a structure definition for pairs

(define-struct pair (left right))

and its parametric data definition:

A (pair X Y) is a structure:

 (make-pair l r)
where l is an X and r is a Y.

Using this abstract data definition, we can describe many different forms of pairs:

TE
AM
FL
Y

TEAM FLY PRESENTS

-250-

1. (pair number number), which is the class of pairs that combine two numbers;
2. (pair symbol number), which is the class of pairs that combine a number with a

symbol; and
3. (pair symbol symbol), which is the class of pairs that combine two symbols.

Still, in all of these examples, each pair contains two values that are accessible via pair-left
and pair-right.

By combining the abstract data definition for lists and pairs we can describe lists of parametric
pairs with a single line:

 (listof (pair X Y)) .

Some concrete examples of this abstract class of data are:

1. (listof (pair number number)), the list of pairs of numbers;
2. (listof (pair symbol number)), the list of pairs of symbols and numbers;
3. (listof (pair symbol symbol)), the list of pairs of symbols.

Make an example for each of these classes.

Develop the function lefts, which consumes a list of (pair X Y) and produces a
corresponding list of X's; that is, it extracts the left part of each item in its input.

Exercise 19.2.4. Here is a parametric data definition of non-empty lists:

A (non-empty-listof ITEM) is either

1. (cons s empty), or
2. (cons s l) where l is a (non-empty-listof ITEM)

and s is always an ITEM.

Develop the function last, which consumes a (non-empty-listof ITEM) and produces the last
ITEM in that list.

Hint: Replace ITEM with a fixed class of data to develop an initial draft of last. When finished,
replace the class with ITEM throughout the function development.

45 Computing borrows the term ``abstract'' from mathematics. A mathematician refers to ``6'' as
an abstract number because it only represents all different ways of naming six things. In contrast,
``6 inches'' or ``6 eggs'' are concrete instances of ``6'' because they express a measurement and a
count.

46 The word ``poly'' means ``many'' and ``morphic'' means shape.

TE
AM
FL
Y

TEAM FLY PRESENTS

-251-

Section 20

Functions are Values
The functions of section 19 stretch our understanding of evaluation. It is easy to understand how
functions consume numbers and symbols; cosuming structures and lists is a bit more complicated,
but still within our grasp; but functions consuming functions is a strange idea. As a matter of fact,
the functions of section 19 violate the Scheme grammar of section 8.

In this section, we discuss how to adjust Scheme's grammar and evaluation rules so that we can
understand the role of functions as data or values. Without a good understanding of these ideas,
we cannot hope to abstract functions. Once we understand these ideas, we can turn to the
problem of writing contracts for such functions. Finally, the last part of the section introduces
functions that produce functions, another powerful abstraction technique.

20.1 Syntax and Semantics
The abstract functions of section 19 violate Scheme's basic grammar in two ways. First, the
names of functions and primitive operations are used as arguments in applications. An argument,
though, is an expression, and the class of expressions does not contain primitive operations and
function names. It does contain variables, but we agreed that they are only those variables
mentioned in variable definitions and as function parameters. Second, parameters are used as if
they were functions, that is, the first position of applications. But the grammar of section 8
allows only the names of functions and primitive operations in this place.

<def> = (define (<var> <var> ...<var>) <exp>)
 | (define <var> <exp>)
 | (define-struct <var> (<var> <var> ...<var>))
<exp> = <var>
 | <boo>
 | <sym>
 | <prm>
 | empty
 | (<exp> <exp> ...<exp>)
 | (cond (<exp> <exp>) ...(<exp> <exp>))
 | (cond (<exp> <exp>) ...(else <exp>))
 | (local (<def> ...<def>) <exp>)

<var> = x | area-of-disk | circumference | ...
<boo> = true | false

TE
AM
FL
Y

TEAM FLY PRESENTS

-252-

<sym> = 'a | 'doll | 'sum | ...
<num> = 1 | -1 | 3/5 | 1.22 | ...
<prm> = + | - | cons | first | rest | ...

Figure 56: Intermediate Student Scheme: The grammar

Spelling out the problem suggests the necessary changes. First, we should include the names of
functions and primitive operations in the definition of <exp>. Second, the first position in an
application should allow things other than function names and primitive operations; at a
minimum, it must allow variables that play the role of function parameters. In anticipation of
other uses of functions, we agree on allowing expressions in that position.

Here is a summary of the three changes:

<exp> = <var>
 | <prm>
 | (<exp> <exp> ...<exp>)

Figure 56 displays the entire Scheme grammar, with all the extensions we have encountered so
far. It shows that the accommodation of abstract functions does not lengthen the grammar, but
makes it simpler.

The same is true of the evaluation rules. Indeed, they don't change at all. What changes is the set
of values. To accommodate functions as arguments of functions, the simplest change is to say
that the set of values includes the names of functions and primitive operations:

<val> = <boo> | <sym> | <num> | empty | <lst>
 | <var> (names of defined functions)
 | <prm>
<lst> = empty | (cons <val> <lst>)

Put differently, if we now wish to decide whether we can apply the substitution rule for functions,
we must still ensure that all arguments are values, but we must recognize that function names
and primitive operations count as values, too.

Exercise 20.1.1. Assume the Definitions window in DrScheme contains (define (f x) x).
Identify the values among the following expressions:

1. (cons f empty)
2. (f f)
3. (cons f (cons 10 (cons (f 10) empty)))

Explain why they are values and why the remaining expressions are not values.

Exercise 20.1.2. Argue why the following sentences are legal definitions:

1. (define (f x) (x 10))

TE
AM
FL
Y

TEAM FLY PRESENTS

-253-

2. (define (f x) f)
3. (define (f x y) (x 'a y 'b))

Exercise 20.1.3. Develop a-function=?. The function determines whether two functions from
numbers to numbers produce the same results for 1.2, 3, and -5.7.

Can we hope to define function=?, which determines whether two functions (from numbers to
numbers) are equal?

20.2 Contracts for Abstract and Polymorphic Functions
When we first abstracted below and above into filter1, we did not formulate a contract. Unlike
the functions we had defined before, filter1 consumed a type of values that we never before
used as data: primitive operations and other functions. Still, we eventually agreed in plain
English writing that filter1's first argument, rel-op, would always be a function that
consumes two numbers and produces a boolean value.

If, in the past, we had been asked to write a contract for rel-op, we would have written

;; rel-op : number number -> boolean

Considering that functions and primitive operations are values, this contract says that an arrow
symbol, ->, describes a class of values: functions and primitive operations. The names on the left
of -> specify what each value in the class of functions must be applied to; the name on the right
says what each value is going to produce if it is applied to proper values. In general, we say that

(A B -> C)

means the class of all functions and primitives that consume an element in A and an element in B
and produce an element in C. Or more succinctly, they are functions ``from A and B to C.''

The arrow notation is like the (listof ...) notation from the previous section. Both specify a
class of data via a combination of other classes. For listof, we used data definitions to agree on
what they mean. Others can follow the example and introduce their own abbreviations based on
data definitions. For arrows, we just made an agreement, and it stays with us for good.

Using the arrow notation, we can formulate a first contract and a proper purpose statement for
filter1:

;; filter1 : (number number -> boolean) lon number -> lon
;; to construct the list of those numbers n on alon for which
;; (rel-op n t) evaluates to true
(define (filter1 rel-op alon t) ...)

The unusual part of the contract is that it specifies the class to which the first argument must
belong not with a name introduced by a data definition but with a direct data definition, using the
arrow notation. More concretely, it specifies that the first argument must be a function or a
primitive operation and, as discussed, what kind of arguments it consumes and what kind of
value it produces.

TE
AM
FL
Y

TEAM FLY PRESENTS

-254-

Exercise 20.2.1. Explain the following classes of functions:

1. (number -> boolean),
2. (boolean symbol -> boolean),
3. (number number number -> number),
4. (number -> (listof number)), and
5. ((listof number) -> boolean).

Exercise 20.2.2. Formulate contracts for the following functions:

1. sort, which consumes a list of numbers and a function that consumes two numbers and
produces a boolean; sort produces a list of numbers.

2. map, which consumes a function from numbers to numbers and a list of numbers; it also
produces a list of numbers.

3. project, which consumes a list of lists of symbols and a function from lists of symbols
to symbols; it produces a list of symbols.

The second version of filter1 was the result of abstracting below and below-ir. Its definition
did not differ from the first version, but the process of abstracting from below-ir clarified that
filter1 could be applied to all kinds of lists, not just lists of numbers.

To describe all kinds of lists, we use (listof X). Here is a first attempt at a contract for
filter1:

;; filter1 : ... (listof X) number -> (listof X)

The key to using filter1 with different classes of lists is to use a comparison function that can
compare the items on the list with the second argument, which is a number. That is, the first
argument is a function in the class

(X number -> boolean)

which means it consumes an element of X and a number, and produces a boolean. Put together,
we get the following contract for filter1:

;; filter1 : (X number -> boolean) (listof X) number -> (listof X)

As in our contract for length, X here stands for an arbitrary collection of Scheme data. We can
replace it with anything, as long as all three occurrences are replaced by the same thing. Hence,
by using X in the description of the first parameter, the second parameter, and the result, we
specify that rel-op consumes elements of class X, that the second argument is a list of Xs, and
that the result of filter1 is also a list of Xs.

When we wish to apply filter1, we must check that the arguments make sense. Suppose we
wish to evaluate

(filter1 < (list 3 8 10) 2)

TE
AM
FL
Y

TEAM FLY PRESENTS

-255-

Before we do that, we should confirm that filter1 can indeed consume < and (list 3 8 10),
given its contract. A quick check shows that < makes sense because it belongs to the class

(number number -> boolean)

and (list 3 8 10) makes sense because it belongs to

(listof number)

The two classes are identical to the first two argument parts of filter1's contract if X is replaced
by number. More generally, to ensure that arguments make sense, we must find replacements of
the variables in contracts so that the functions contract and the classes of the arguments match.

For a second example, consider

(filter1 <ir LOIR 10)

Here, we must replace X with IR, because <ir has the contract

(IR number -> boolean)

and LOIR belongs to (listof IR). Again, the application is legitimate because all the arguments
belong to the required collections of data.

Let us look at one more example: the use of filter1 to extract all toys with the same name from
a list of inventory records:

;; find : (listof IR) symbol -> (listof IR)
(define (find aloir t)
 (filter1 eq-ir? aloir t))

;; eq-ir? : IR symbol -> boolean
(define (eq-ir? ir p)
 (symbol=? (ir-name ir) p))

It is straightforward to check with examples that the function works properly. Our task here is to
understand how this agrees with filter1's contract. The obvious problem is that the ``threshold''
argument is a symbol, not a number. The use of filter1 is therefore in conflict with its current
contract. To overcome this deficiency, we must introduce another variable, say, TH for thresholds,
that stands for some collection of data:

;; filter1 : (X TH -> boolean) (listof X) TH -> (listof X)

Now we can replace X with the name of one data collection and TH with that of a second one or
possibly the same. In particular, the application

(filter1 eq-ir? LOIR 'doll)

works because a replacement of X by IR and TH by symbol in filter1's contract shows that the
arguments are legitimate.

TE
AM
FL
Y

TEAM FLY PRESENTS

-256-

Exercise 20.2.3. Use filter1 to develop a function that consumes a list of symbols and
extracts all those that are not equal to 'car. Give filter1's corresponding contract.

Exercise 20.2.4. Formulate general contracts for the following functions:

1. sort, which consumes a list and a function that consumes two items from the list and
produces a boolean; it produces a list of numbers.

2. map, which consumes a function from list items to Xs and a list; it produces a list of Xs.
3. project, which consumes a list of lists and a function from lists to Xs; it produces a list

of Xs.

Compare with exercise 20.2.2.

Contracts and Types: In summary, the contracts for functions are made up of types. A TYPE is
either

1. a basic type, such as number, symbol, boolean, or empty;
2. a defined type, such as inventory-record, list-of-numbers, or family-tree;
3. a function type, such as (number -> number) or (boolean -> symbol);
4. a parametric type, which is either a defined type or a function type with type variables.

When we wish to use a function with a parametric type, we must first find a replacement for all
the variables in the function's contract so that we know the arguments belong to proper classes. If
this cannot be done, we must either revise the contract or question our decision to reuse this
function.

TE
AM
FL
Y

TEAM FLY PRESENTS

-257-

Section 21

Designing Abstractions from Examples
When we first learn to add, we use concrete examples. Later on, we study how to add two
arbitrary numbers; that is, we form an abstraction of the addition operation. Much later still, we
learn to formulate abstractions directly as expressions: expressions that compute the wage of
some employee, expressions that convert temperatures, or expressions that determine the area of
a geometric shape. In short, we initially go from concrete examples to abstraction, but eventually
we learn to form abstractions directly without thinking (much) about concrete instances.

In this section, we discuss a design recipe for creating abstractions from concrete examples.
Later, in sections 21.5 and 22 we study additional approaches to function abstraction.

21.1 Abstracting from Examples
Forming abstractions from examples is easy. As we have seen in section 19, we start from two
concrete function definitions, compare them, mark the differences, and abstract. Let us formulate
these steps as a recipe:

• The comparison: When we find two function definitions that are almost the same
except at a few places and for their names, we compare them and mark the differences
with boxes. If the boxes contain only values, we can abstract.

Warning: Abstracting over Non-values: The recipe requires a substantial modification
for non-values.

Here is a pair of similar function definitions:

;; convertCF : lon -> lon
(define (convertCF alon)
 (cond
 [(empty? alon) empty]
 [else
 (cons (C->F (first
alon))
 (convertCF (rest
alon)))]))

;; names : loIR -> los
(define (names aloIR)
 (cond
 [(empty? aloIR) empty]
 [else
 (cons (IR-name (first
aloIR))
 (names (rest aloIR)))]))

The two functions apply a function to each item in a list. They differ in only one aspect:
what they apply to each item on the list. The two boxes emphasize the difference. Each
contains a functional value, so we can abstract.

• The abstraction: Next we replace the contents of corresponding pairs of boxes with
new names and add these names to the parameter list. For example, if there are three

TE
AM
FL
Y

TEAM FLY PRESENTS

-258-

pairs of boxes, we need three new names. The two definitions must now be the same,
except for the function name. To obtain the abstraction, we systematically replace the
function names with one new name.

For our running example, we obtain the following pair of functions:

(define (convertCF f alon)
 (cond
 [(empty? alon) empty]
 [else
 (cons (f (first alon))
 (convertCF f (rest
alon)))]))

(define (names f aloIR)
 (cond
 [(empty? aloIR) empty]
 [else
 (cons (f (first
aloIR))
 (names f (rest
aloIR)))]))

We have replaced the boxed names with f and added f as a parameter. Now we replace
convertCF and names with a new name and thus obtain the abstract function:

(define (map f lon)
 (cond
 [(empty? lon) empty]
 [else (cons (f (first lon))
 (map f (rest lon)))]))

We use the name map for the result in our running example, because it is the traditional
name in programming languages for this specific function.

• The test: Now we must validate that the new function is a correct abstraction of the
original concrete functions. The very definition of abstraction suggests that we define the
original functions in terms of the abstract one and test the new versions with the original
examples.

In most cases, defining the original function based on the abstract one is straightforward.
Suppose the abstract function is called f-abstract, and furthermore suppose that one
original function is called f-original and consumes one argument. If f-original
differs from the other concrete function in the use of one value, say, boxed-value, then
we define the following function:

(define (f-from-abstract x)
 (f-abstract boxed-value x))

For every proper value V, (f-from-abstract V) now produces the same answer as (f-
original V).

Let us return to our example. Here are the two new definitions:

;; convertCF-from-map : lon ->
lon
(define (convertCF-from-map
alon)
 (map C->F alon))

;; names-from-map : loIR ->
los
(define (names-from-map
aloIR)
 (map IR-name aloIR))

TE
AM
FL
Y

TEAM FLY PRESENTS

-259-

To ensure that these two definitions are equivalent to the old one and, indirectly, that map
is a correct abstraction, we now apply these two functions to the examples that we
specified for the development of convertCF and names.

• The contract: To make the abstraction truly useful, we must also formulate a contract.
If the boxed values in stage 2 of our recipe are functions, a contract requires the use of
arrow types. Furthermore, to obtain a widely usable contract, we may have to develop or
use parametric data definitions and formulate a parametric type.

A case in point is the contract for map. On one hand, if we view map as an abstraction of
convertCF, the contract could be construed as

;; map : (number -> number) (listof number) -> (listof number)

On the other hand, if we view map as an abstraction of names, the contract could be
construed as

;; map : (IR -> symbol) (listof IR) -> (listof symbol)

But the first contract would be useless in the second case, and vice versa. To
accommodate both cases, we must understand what map does and then fix a contract.

By looking at the definition, we can see that map applies its first argument, a function, to
every item on the second argument, a list. This implies that the function must consume
the class of data that the list contains. That is, we know f has the contract

;; f : X -> ???

if lon contains Xs. Furthermore, map creates a list from the results of applying f to each
item. Thus, if f produces Ys, then map produces a list of Ys. Translated into our language
of contracts we get this:

;; map : (X -> Y) (listof X) -> (listof Y)

This contract says that map can produce a list of Ys from a list of Xs and a function from X
to Y -- no matter for what collection of X and Y stand.

Once we have abstracted two (or more) functions, we should check whether there are other uses
for the abstract function. In many cases, an abstract function is useful in a much broader array of
contexts than we first anticipate and makes functions easier to read, understand, and maintain.
For example, we can now use map every time we need a function to produce a new list by
processing all items on an existing list. If that function is a primitive operation or a function we
have defined, we don't even write a function. Instead, we simply write an expression that
performs the task. Unfortunately, there is no recipe that guides this discovery process. We must
practice it and develop an eye for matching abstract functions to situations.

Exercise 21.1.1. Define tabulate, which is the abstraction of the following two functions:

TE
AM
FL
Y

TEAM FLY PRESENTS

-260-

;; tabulate-sin : number -> lon
;; to tabulate sin between n
;; and 0 (inclusive) in a list
(define (tabulate-sin n)
 (cond
 [(= n 0) (list (sin 0))]
 [else
 (cons (sin n)
 (tabulate-sin (sub1 n)))]))

;; tabulate-sqrt : number -> lon
;; to tabulate sqrt between n
;; and 0 (inclusive) in a list
(define (tabulate-sqrt n)
 (cond
 [(= n 0) (list (sqrt 0))]
 [else
 (cons (sqrt n)
 (tabulate-sqrt (sub1 n)))]))

Be sure to define the two functions in terms of tabulate. Also use tabulate to define a
tabulation function for sqr and tan. What would be a good, general contract?

Exercise 21.1.2. Define fold, which is the abstraction of the following two functions:

;; sum : (listof number) ->
number
;; to compute the sum of
;; the numbers on alon
(define (sum alon)
 (cond
 [(empty? alon) 0]
 [else (+ (first alon)
 (sum (rest alon)))]))

;; product : (listof number) ->
number
;; to compute the product of
;; the numbers on alon
(define (product alon)
 (cond
 [(empty? alon) 1]
 [else (* (first alon)
 (product (rest alon)))]))

Don't forget to test fold.

After fold is defined and tested, use it to define append, which juxtaposes the items of two lists
or, equivalently, replaces empty at the end of the first list with the second list:

(equal? (append (list 1 2 3) (list 4 5 6 7 8))
 (list 1 2 3 4 5 6 7 8))

Finally, define map using fold.

Compare the four examples to formulate a contract.

Exercise 21.1.3. Define natural-f, which is the abstraction of the following two functions:

;; copy : N X -> (listof X)
;; to create a list that contains
;; obj n times
(define (copy n obj)
 (cond
 [(zero? n) empty]
 [else (cons obj
 (copy (sub1 n)
obj))]))

;; n-adder : N number -> number
;; to add n to x using
;; (+ 1 ...) only
(define (n-adder n x)
 (cond
 [(zero? n) x]
 [else (+ 1
 (n-adder (sub1 n)
x))]))

Don't forget to test natural-f. Also use natural-f to define n-multiplier, which consumes n
and x and produces n times x with additions only. Use the examples to formulate a contract.

Hint: The two function differ more than, say, the functions sum and product in exercise 21.1.2.
In particular, the base case in one instance is a argument of the function, where in the other it is
just a constant value.

TE
AM
FL
Y

TEAM FLY PRESENTS

-261-

Formulating General Contracts: To increase the usefulness of an abstract function, we must
formulate a contract that describes its applicability in the most general terms possible. In
principle, abstracting contracts follows the same recipe that we use for abstracting functions. We
compare and contrast the old contracts; then we replace the differences with variables. But the
process is complicated and requires a lot of practice.

Let us start with our running example: convertCF and names:

(listof number) -> (listof number)
(listof IR) -> (listof symbol)

Comparing the two contracts shows that they differ in two places. To the left of ->, we have
number and IR; to the right, it is number versus symbol.

Consider the second stage of our abstraction recipe. The most natural contracts are as follows:

(number -> number) (listof number) -> (listof number)
(IR -> symbol) (listof IR) -> (listof symbol)

These new contracts suggest a pattern. Specifically, they suggest that the first argument, a
function, consumes the items on the second argument, a list, and furthermore, that the results
produced by these applications make up the output. The second contract is particularly telling. If
we replace IR and symbol with variables, we get an abstract contract, and it is indeed a contract
for map:

map : (X -> Y) (listof X) -> (listof Y)
It is straightforward to check that by replacing X with number and Y with number, we get the first
of the intermediate contracts.

Here is a second pair of examples:

number (listof number) -> (listof number)
number (listof IR) -> (listof IR)

They are the contracts for below and below-ir. The contracts differ in two places: the lists
consumed and produced. As usual, the functions of the second stage consume an additional
argument:

(number number -> boolean) number (listof number) -> (listof number)
(number IR -> boolean) number (listof IR) -> (listof IR)

The new argument is a function, which in the first case consumes a number, and in the second
case an IR.

A comparison of the two contracts suggests that number and IR occupy related positions and that
we should replace them with a variable. Doing so makes the two contracts equal:

(number X -> boolean) number (listof X) -> (listof X)
(number X -> boolean) number (listof X) -> (listof X)

A closer inspection of filter1's definition shows that we can also replace number with Y
because the second argument is always just the first argument of filter1's first argument.

Here is the new contract:

TE
AM
FL
Y

TEAM FLY PRESENTS

-262-

filter1 : (Y X -> boolean) Y (listof X) -> (listof X)
The result of the first argument must be boolean, because it is used as a condition. Hence we
have found the most general contract possible.

The two examples illustrate how to find general contracts. We compare the contracts of the
examples from which we create abstractions. By replacing specific, distinct classes in
corresponding positions, one at a time, we make the contract gradually more general. To ensure
that our generalized contract works, we check that the contract describes the specific instances of
the abstracted function properly.

21.2 Finger Exercises with Abstract List Functions
Scheme provides a number of abstract functions for processing lists. Figure 57 collects the
specification of the most important ones. Using these functions greatly simplifies many
programming tasks and helps readers understand programs quickly. The following exercises
provide an opportunity to get acquainted with these functions.

;; build-list : N (N -> X) -> (listof X)
;; to construct (list (f 0) ... (f (- n 1)))
(define (build-list n f) ...)

;; filter : (X -> boolean) (listof X) -> (listof X)
;; to construct a list from all those items on alox for which p holds
(define (filter p alox) ...)

;; quick-sort : (X X -> boolean) (listof X) -> (listof X)
;; to construct a list from all items on alox in an order according to
cmp
(define (quick-sort cmp alox) ...)

;; map : (X -> Y) (listof X) -> (listof Y)
;; to construct a list by applying f to each item on alox
;; that is, (map f (list x-1 ... x-n)) = (list (f x-1) ... (f x-n))
(define (map f alox) ...)

;; andmap : (X -> boolean) (listof X) -> boolean
;; to determine whether p holds for every item on alox
;; that is, (andmap p (list x-1 ... x-n)) = (and (p x-1) (and ... (p x-
n)))
(define (andmap p alox) ...)

;; ormap : (X -> boolean) (listof X) -> boolean
;; to determine whether p holds for at least one item on alox
;; that is, (ormap p (list x-1 ... x-n)) = (or (p x-1) (or ... (p x-n)))
(define (ormap p alox) ...)

;; foldr : (X Y -> Y) Y (listof X) -> Y
;; (foldr f base (list x-1 ... x-n)) = (f x-1 ... (f x-n base))
(define (foldr f base alox) ...)

;; foldl : (X Y -> Y) Y (listof X) -> Y
;; (foldl f base (list x-1 ... x-n)) = (f x-n ... (f x-1 base))
(define (foldl f base alox) ...)

;; assf : (X -> boolean) (listof (list X Y)) -> (list X Y) or false
;; to find the first item on alop for whose first item p? holds

TE
AM
FL
Y

TEAM FLY PRESENTS

-263-

(define (assf p? alop) ...)
Figure 57: Scheme's built-in abstract functions for list-processing

Exercise 21.2.1. Use build-list

1. to create the lists (list 0 ... 3) and (list 1 ... 4);
2. to create the list (list .1 .01 .001 .0001);
3. to define evens, which consumes a natural number n and creates the list of the first n

even numbers;
4. to define tabulate from exercise 21.1.1; and
5. to define diagonal, which consumes a natural number n and creates a list of lists of 0

and 1.
Example:
6. (equal? (diagonal 3)
7. (list
8. (list 1 0 0)
9. (list 0 1 0)
10. (list 0 0 1)))

Use local if function definitions require auxiliary functions.

Exercise 21.2.2. Use map to define the following functions:

1. convert-euro, which converts a list of U.S. dollar amounts into a list of euro amounts
based on an exchange rate of 1.22 euro for each dollar;

2. convertFC, which converts a list of Fahrenheit measurements to a list of Celsius
measurements;

3. move-all, which consumes a list of posn structures and translates each by adding 3 to
the x-component.

Exercise 21.2.3. Here is the version of filter that DrScheme provides:

;; filter : (X -> boolean) (listof X) -> (listof X)
;; to construct a list of X from all those items on alon
;; for which predicate? holds
(define (filter predicate? alon)
 (cond
 [(empty? alon) empty]
 [else (cond
 [(predicate? (first alon))
 (cons (first alon) (filter predicate? (rest alon)))]
 [else (filter predicate? (rest alon))])]))

Use filter to define the following functions:

1. eliminate-exp, which consumes a number, ua, and a list of toy structures (containing
name and price) and produces a list of all those descriptions whose price is below ua;

2. recall, which consumes the name of a toy, called ty, and a list of names, called lon,
and produces a list of names that contains all components of lon with the exception of ty;

TE
AM
FL
Y

TEAM FLY PRESENTS

-264-

3. selection, which consumes two lists of names and selects all those from the second one
that are also on the first.

21.3 Abstraction and a Single Point of Control
Just like editing papers, abstracting programs has many advantages. Creating an abstraction often
simplifies other definitions. The process of abstracting may uncover problems with existing
functions. But, the single most important advantage of abstraction is that it creates a SINGLE POINT
OF CONTROL for the functionality in a program. In other words, it (as much as possible) puts in one
place the definitions related to some specific task.

Putting the definitions for a specific task in one place makes it easier to maintain a program.
Roughly put, program maintenance means fixing the program so that it functions properly in
previously untested cases; extending the program so that it can deal with new or unforeseen
situations; or changing the representation of some information as data (for example, calendar
dates). With everything in one place, fixing an error means fixing it in one function, not four or
five similar versions. Extending a function's capabilities means fixing one function, not its
related copies. And changing a data representation means changing a general data-traversal
function, not all those that came from the same template. Translated into a guideline, this
becomes:

Guideline on Creating Abstractions
Form an abstraction instead of copying and modifying a piece of a program.

Experience teaches us that maintaining software is expensive. Programmers can reduce the
maintenance cost by organizing programs correctly. The first principle of function organization
is to match the function's structure to the structure of its input data. If every programmer follows
this rule, it is easy to modify and extend functions when the set of possible input data changes.
The second principle is to introduce proper abstractions. Every abstracted function creates a
single point of control for at least two different functions, often for several more. After we have
abstracted, we often find more uses of the new function.

Our design recipe for abstracting functions is the most basic tool to create abstractions. To use it
requires practice. As we practice, we expand our capabilities for building and using abstractions.
The best programmers are those who actively edit their programs to build new abstractions so
that they collect things related to a task at a single point. Here we use functional abstraction to
study this practice. While not all languages provide the freedom to abstract functions as easily as
Scheme, modern languages often support similar concepts and practicing in powerful languages
such as Scheme is the best possible preparation.47

21.4 Extended Exercise: Moving Pictures, Again
In sections 6.6, 7.4, and 10.3, we studied the problem of moving pictures across a canvas. The
problem had two parts: moving individual shapes and moving a picture, which is a list of shapes.
For the first part, we need functions to draw, clear, and translate a shape. For the second part, we
need functions that draw all shapes on a list, that clear all shapes on a list, and that translate all

TE
AM
FL
Y

TEAM FLY PRESENTS

-265-

shapes on a list. Even the most cursory look at the functions shows many repetitions. The
following exercises aim to eliminate these repetitions via manual abstraction and Scheme's built-
in operations.

Exercise 21.4.1. Abstract the functions draw-a-circle and clear-a-circle into a single
function process-circle.

Define translate-circle using process-circle. Hint: If a primitive function doesn't quite fit
an abstraction, we have to define auxiliary functions. For now, use define to do so.
Intermezzo 4 introduces a handy and important short-hand for that purpose.

Exercise 21.4.2. Abstract the functions draw-a-rectangle and clear-a-rectangle into a
single function process-rectangle.

Define translate-rectangle using process-rectangle.

Exercise 21.4.3. Abstract the functions draw-shape and clear-shape into a single function
process-shape. Compare the function with the template fun-for-shape.

Define translate-shape using process-shape.

Exercise 21.4.4. Use Scheme's map and andmap to define draw-losh, clear-losh, and
translate-losh.

TE
AM
FL
Y

TEAM FLY PRESENTS

-266-

Figure 58: The Apollo 11 lunar lander

 NASA: National Space Science Data Center

Exercise 21.4.5. Modify the functions of exercises 21.4.3 and 21.4.4 so that pictures move up
and down on a canvas.

Modify all definitions so that a shape can also be a line; a line has a start position, an end
position, and a color.

Define LUNAR, a list that sketches a lunar lander picture (see figure 58). The list should consist of
rectangles, circles, and lines.

Develop the program lunar-lander. It places LUNAR at the top of a canvas and then uses the
modified functions to move the lander up or down.

Use the teachpack arrow.ss to give users control over how fast and when the lunar lander
should move:

(start 500 100)
(draw LUNAR)
(control-up-down LUNAR 10 move-lander draw-losh)

TE
AM
FL
Y

TEAM FLY PRESENTS

-267-

If time permits, modify the function so that a player can move the lander up, down, left or right.
Use controller from arrow.ss to control the movements in all directions.

21.5 Note: Designing Abstractions from Templates
At the very beginning of this part of the book, we discussed how we design sets of functions
from the same template. More specifically, when we design a set of functions that all consume
the same kind of data, we reuse the same template over and over again. It is therefore not
surprising that the function definitions look similar and that we will abstract them later.

Indeed, we could abstract from the templates directly. While this topic is highly advanced and
still a subject of research in the area of programming languages, we can discuss it with a short
example. Consider the template for lists:

(define (fun-for-l l)
 (cond
 [(empty? l) ...]
 [else ... (first l) ... (fun-for-l (rest l)) ...]))

It contains two gaps, one in each clause. When we define a list-processing function, we fill these
gaps. In the first clause, we typically place a plain value. For the second one, we combine
(first l) and (f (rest l)) where f is the recursive function.

We can abstract over this programming task with the following function:

;; reduce : X (X Y -> Y) (listof Y) -> Y
(define (reduce base combine l)
 (cond
 [(empty? l) base]
 [else (combine (first l)
 (reduce base combine (rest l)))]))

It consumes two extra arguments: base, which is the value for the base case, and combine,
which is a function that performs the value combination for the second clause.

Using reduce we can define many plain list-processing functions as well as almost all the
functions of figure 57. Here are two of them:

;; sum : (listof number) ->
number
(define (sum l) (reduce 0 +
l))

;; product : (listof number) ->
number
(define (product l) (reduce 1 *
l))

For sum, the base case always produces 0; adding the first item and the result of the natural
recursion combines the values of the second clause. Analogous reasoning explains product.

To define sort, we need to define an auxiliary function first:

;; sort : (listof number) -> (listof number)
(define (sort l)
 (local ((define (insert an alon)
 (cond
 [(empty? alon) (list an)]
 [else (cond

TE
AM
FL
Y

TEAM FLY PRESENTS

-268-

 [(> an (first alon)) (cons an alon)]
 [else (cons (first alon) (insert an (rest alon)))])])))
 (reduce empty insert l)))

Other list-processing functions can be defined in a similar manner.

47 A currently popular method of abstraction is INHERITANCE in class-based object-oriented
programming languages. Inheritance is quite similar to functional abstraction, though it
emphasizes those aspects that change over those that stay the same.

TE
AM
FL
Y

TEAM FLY PRESENTS

-269-

Section 22

Designing Abstractions with First-Class
Functions
We have seen that functions can consume functions and how important that is for creating single
points of control in a function. But functions not only can consume functions, they can also
produce them. More precisely, expressions in the new Scheme can evaluate to functions.
Because the body of a function definition is also an expression, a function can produce a function.
In this section, we first discuss this surprising idea and then show how it is useful for abstracting
functions and in other contexts.

22.1 Functions that Produce Functions
While the idea of producing a function may seem strange at first, it is extremely useful. Before
we can discuss the usefulness of the idea, though, we must explore how a function can produce a
function. Here are three examples:

(define (f x) first)
(define (g x) f)
(define (h x)
 (cond
 ((empty? x) f)
 ((cons? x) g)))

The body of f is first, a primitive operation, so applying f to any argument always evaluates to
first. Similarly, the body of g is f, so applying g to any argument always evaluates to f. Finally,
depending on what kind of list we supply as an argument to h, it produces f or g.

None of these examples is useful but each illustrates the basic idea. In the first two cases, the
body of the function definition is a function. In the last case, it evaluates to a function. The
examples are useless because the results do not contain or refer to the argument. For a function f
to produce a function that contains one of f's arguments, f must define a function and return it as
the result. That is, f's body must be a local-expression.

Recall that local-expressions group definitions and ask DrScheme to evaluate a single expression
in the context of these definitions. They can occur wherever an expression can occur, which
means the following definition is legal:

(define (add x)
 (local ((define (x-adder y) (+ x y)))
 x-adder))

The function add consumes a number; after all, x is added to y. It then defines the function x-
adder with a local-expression. The body of the local-expression is x-adder, which means the
result of add is x-adder.

TE
AM
FL
Y

TEAM FLY PRESENTS

-270-

To understand add better, let us look at how an application of add to some number evaluates:

 (define f (add 5))
= (define f (local ((define (x-adder y) (+ 5 y)))
 x-adder))
= (define f (local ((define (x-adder5 y) (+ 5 y)))
 x-adder5))
= (define (x-adder5 y) (+ 5 y))
 (define f x-adder5)

The last step adds the function x-adder5 to the collection of our definitions; the evaluation
continues with the body of the local-expression, x-adder5, which is the name of a function and
thus a value. Now f is defined and we can use it:

 (f 10)
= (x-adder5 10)
= (+ 5 10)
= 15

That is, f stands for x-adder5, a function, which adds 5 to its argument.

Using this example, we can write add's contract and a purpose statement:

;; add : number -> (number -> number)
;; to create a function that adds x to its input
(define (add x)
 (local ((define (x-adder y) (+ x y)))
 x-adder))

The most interesting property of add is that its result ``remembers'' the value of x. For example,
every time we use f, it uses 5, the value of x, when add was used to define f. This form of
``memory'' is the key to our simple recipe for defining abstract functions, which we discuss in the
next section.

22.2 Designing Abstractions with Functions-as-Values
The combination of local-expressions and functions-as-values simplifies our recipe for creating
abstract functions. Consider our very first example in figure 53 again. If we replace the contents
of the boxes with rel-op, we get a function that has a free variable. To avoid this, we can either
add rel-op to the parameters or we can wrap the definition in a local and prefix it with a
function that consumes rel-op. Figure 59 shows what happnes when we use this idea with
filter. If we also make the locally defined function the result of the function, we have defined
an abstraction of the two original functions.

(define (filter2 rel-op)
 (local ((define (abs-fun alon t)
 (cond
 [(empty? alon) empty]
 [else
 (cond
 [(rel-op (first alon) t)
 (cons (first alon)
 (abs-fun (rest alon) t))]

TE
AM
FL
Y

TEAM FLY PRESENTS

-271-

 [else
 (abs-fun (rest alon) t)])])))
 abs-fun))

Figure 59: Abstracting with local

Put differently, we follow the example of add in the preceding section. Like add, filter2
consumes an argument, defines a function, and returns this function as a result. The result
remembers the rel-op argument for good as the following evaluation shows:

 (filter2 <)
= (local ((define (abs-fun alon t)
 (cond
 [(empty? alon) empty]
 [else
 (cond
 [(< (first alon) t)
 (cons (first alon)
 (abs-fun (rest alon) t))]
 [else
 (abs-fun (rest alon) t)])])))
 abs-fun)
= (define (below3 alon t)
 (cond
 [(empty? alon) empty]
 [else
 (cond
 [(< (first alon) t)
 (cons (first alon)
 (below3 (rest alon) t))]
 [else
 (below3 (rest alon) t)])]))
 below3

Remember that as we lift a local definition to the top-level definitions, we also rename the
function in case the same local is evaluated again. Here we choose the name below3 to indicate
what the function does. And indeed, a comparison between below and below3 reveals that the
only difference is the name of the function.

From the calculation, it follows that we can give the result of (filter2 <) a name and use it as
if it were below. More succinctly,

(define below2 (filter2 <))

is equivalent to

(define (below3 alon t)
 (cond
 [(empty? alon) empty]
 [else
 (cond
 [(< (first alon) t)
 (cons (first alon)
 (below3 (rest alon) t))]
 [else

TE
AM
FL
Y

TEAM FLY PRESENTS

-272-

 (below3 (rest alon) t)])]))

(define below2 below3)

which means below2 is just another name for below3 and which directly proves that our abstract
function correctly implements below.

The example suggests a variant of the abstraction recipe from section 21:

• The comparison: The new recipe still requires us to compare and to mark the
differences.

• The abstraction: The new step concerns the way we define the abstract function. We
place one of the functions into a local-expression and use the name of the function as the
body of the local:
• (local ((define (concrete-fun x y z)
• ... op1 ... op2 ...))
• concrete-fun)

From that, we can create the abstract function by listing the names in the boxes as
parameters:

(define (abs-fun op1 op2)
 (local ((define (concrete-fun x y z)
 ... op1 ... op2 ...))
 concrete-fun))

If op1 or op2 is a special symbol, say <, we name it something that is more meaningful in
the new context.

• The test: To test the abstract function, we define the concrete functions again, as before.
Consider the example of below and above. Obtaining below and above as instances of
filter2 is now straightforward:
• (define below2 (filter2 <))
•
• (define above2 (filter2 >))

We simply apply filter2 to the contents of the box in the respective concrete function
and that application produces the old function.

• The contract: The contract of an abstract function contains two arrows. After all, the
function produces a function, and to describe this relationship the type to the right of the
first arrow must contain another arrow.

Here is the contract for filter2:

;; filter2 : (X Y -> boolean) -> ((listof X) Y -> (listof X))

It consumes a comparison function and produces a concrete filter-style function.

The generalization of the contract works as before.

TE
AM
FL
Y

TEAM FLY PRESENTS

-273-

Given our experience with the first design recipe, the second one is only a question of practice.

Exercise 22.2.1. Define an abstraction of the functions convertCF and names from section 21.1
using the new recipe for abstraction.

Exercise 22.2.2. Define an abstract version of sort (see exercise 19.1.6) using the new recipe
for abstraction.

Exercise 22.2.3. Define fold using the new recipe for abstraction. Recall that fold abstracts
the following pair of functions:

;; sum : (listof number) ->
number
;; to compute the sum of alon
(define (sum alon)
 (cond
 [(empty? alon) 0]
 [else (+ (first alon)
 (sum (rest alon)))]))

;; product : (listof number) ->
number
;; to compute the product of alon
(define (product alon)
 (cond
 [(empty? alon) 1]
 [else (* (first alon)
 (product (rest alon)))]))

22.3 A First Look at Graphical User Interfaces
Functions as first-class values play a central role in the design of graphical user interfaces. The
term ``interface'' refers to the boundary between the program and a user. As long as we are the
only users, we can apply functions to data in DrScheme's Interactions window. If we want
others to use our programs, though, we must provide a way to interact with the program that does
not require any programming knowledge. The interaction between a program and a casual user is
the USER INTERFACE.

A GRAPHICAL USER INTERFACE (GUI) is the most convenient interface for casual users. A GUI is a
window that contains GUI items. Some of these items permit users to enter text; others are
included so that users can apply a specific function; and yet others exist to display a function's
results. Examples include buttons, which the user can click with the mouse and which trigger a
function application; choice menus, from which the user can choose one of a collection of values;
text fields, into which the user can type arbitrary text; and message fields, into which a program
can draw text.

Figure 60: A simple GUI for looking up a phone number

Take a look at the simple GUI in figure 60. The left-most picture shows its initial state. In that
state, the GUI contains a text field labeled ``Name'' and a message field labeled ``Number'' plus a
``LookUp'' button. In the second picture, the user has entered the name ``Sean'' but hasn't yet

TE
AM
FL
Y

TEAM FLY PRESENTS

-274-

clicked the ``LookUp'' button.48 Finally, the right-most picture shows how the GUI displays the
phone number of ``Sean'' after the user clicks the ``LookUp'' button.

The core of the program is a function that looks up a phone number for a name in a list. We
wrote several versions of this function in part II but always used it with DrScheme's
Interactions window. Using the GUI of figure 60, people who know nothing about Scheme
can now use our function, too.

To build a graphical user interface, we build structures49 that correspond to the GUI items and
hand them over to a GUI manager. The latter constructs the visible window from these items.
Some of the structures' fields describe the visual properties of the GUI's elements, such as the
label of a button, the initial content of a message field, or the available choices on a menu. Other
fields stand for functions. They are called CALL-BACK FUNCTIONS because the GUI manager calls --
or applies -- these functions when the user manipulates the corresponding GUI element. Upon
application, a call-back function obtains strings and (natural) numbers from the elements of the
GUI and then applies the function proper. This last step computes answers, which the call-back
function can place into GUI elements just like graphics functions draw shapes on a canvas.

Figure 61: The model-view arrangement

The ideal program consists of two completely separate components: the MODEL, which is the kind
of program we are learning to design, and a VIEW, which is the GUI program that manages the
display of information and the user's mouse and keyboard manipulations. The bridge between the
two is the CONTROL expression. Figure 61 graphically illustrates the organization, known as the
MODEL-VIEW-CONTROL architecture. The lowest arrow indicates how a program makes up a button
along with a call-back function. The left-to-right arrow depicts the mouse-click event and how it
triggers an application of the call-back function. It, in turn, uses other GUI functions to obtain
user input before it applies a core function or to display results of the core function.

The separation of the program into two parts means that the definitions for the model contain no
references to the view, and that the definitions for the view contain no references to the data or
the functionality of the model. The organization principle evolved over two decades from many
good and bad experiences. It has the advantage that, with an adaptation of just the bridge
expression, we can use one and the same program with different GUIs and vice versa.
Furthermore, the construction of views requires different tools than does the construction of
models. Constructing views is a labor-intensive effort and involves graphical design, but
fortunately, it is often possible to generate large portions automatically. The construction of
models, in contrast, will always demand a serious program design effort.

TE
AM
FL
Y

TEAM FLY PRESENTS

-275-

A gui-item is either

1. (make-button string (X -> true))
2. (make-text string)
3. (make-choices (listof string)) or
4. (make-message string).

;; create-window : (listof (listof gui-item)) -> true
;; to add gui-items to the window and to show the window
;; each list of gui-items defines one row of gui items in the window

;; hide-window : -> true
;; to hide the window

;; make-button : string (event% -> true) -> gui-item
;; to create a button with label and call-back function

;; make-message : string -> gui-item
;; to create an item that displays a message

;; draw-message : gui-item[message%] string -> true
;; to display a message in a message item
;; it erases the current message

;; make-text : string -> gui-item
;; to create an item (with label) that allows users to enter text

;; text-contents : gui-item[text%] -> string
;; to determine the contents of a text field

;; make-choice : (listof string) -> gui-item
;; to create a choice menu that permits users to choose from some
;; string alternatives

;; get-choice : gui-item[choice%] -> num
;; to determine which choice is currently selected in a choice-item
;; the result is the 0-based index in the choice menu

Figure 62: The gui.ss operations

Here we study the simplified GUI world of the teachpack gui.ss. Figure 62 specifies the
operations that the teachpack provides.50 The GUI manager is represented by the function
create-window. Its contract and purpose statement are instructive. They explain that we create a
window from a list. The function arranges these lists in a corresponding number of rows on the
visible window. Each row is specified as a list of gui-items. The data definition for gui-items
in figure 62 shows that there are four kinds:

• text fields, which are created with (make-text a-string) and allow users to enter
arbitrary text into an area in the window;

• buttons, which are created with (make-button a-string a-function) and allow
users to apply a function with the click of a mouse button;

• choice menus, which are created with (make-choice a-list-of-strings) and allow
users to pick a choice from a specified set of choices; and

TE
AM
FL
Y

TEAM FLY PRESENTS

-276-

• message fields, which are created with (make-message a-string) and enable the
model to inform users of results.

The function that goes with a button is a function of one argument: an event. For most uses, we
can ignore the event; it is simply a token that signals the user's click action.

How all this works is best illustrated with examples. Our first example is a canonical GUI
program:

(create-window (list (list (make-button "Close" hide-window))))

It creates a window with a single button and equips it with the simplest of all call-backs: hide-
window, the function that hides the window. When the user clicks the button labeled "Close",
the window disappears.

The second sample GUI copies what the user enters into a text field to a message field. We first
create a text field and a message field:

(define a-text-field
 (make-text "Enter Text:"))

(define a-message
 (make-message "`Hello World' is a silly program."))

Now we can refer to these fields in a call-back function:

;; echo-message : X -> true
;; to extract the contents of a-text-field and to draw it into a-message
(define (echo-message e)
 (draw-message a-message (text-contents a-text-field)))

The definition of the call-back function is based on our (domain) knowledge about the gui-
items. Specifically, the function echo-message obtains the current contents of the text field with
text-contents as a string, and it draws this string into the message field with the draw-
message function. To put everything together, we create a window with two rows:

(create-window
 (list (list a-text-field a-message)
 (list (make-button "Copy Now" echo-message))))

The first row contains the text and the message field; the second one contains a button with the
label "Copy Now" whose call-back function is echo-message. The user can now enter text into
the text field, click the button, and see the text appear in the message field of the window.

The purpose of the third and last example is to create a window with a choice menu, a message
field, and a button. Clicking the button puts the current choice into the message field. As before,
we start by defining the input and output gui-items:

(define THE-CHOICES
 (list "green" "red" "yellow"))

(define a-choice
 (make-choice THE-CHOICES))

TE
AM
FL
Y

TEAM FLY PRESENTS

-277-

(define a-message
 (make-message (first THE-CHOICES)))

Because the list of choices is used more than once in the program, it is specified in a separate
variable definition.

As before, the call-back function for the button interacts with a-choice and a-message:

;; echo-choice : X -> true
;; to determine the current choice of a-choice and
;; to draw the corresponding string into a-message
(define (echo-choice e)
 (draw-message a-message
 (list-ref THE-CHOICES
 (choice-index a-choice))))

Specifically, the call-back function finds the 0-based index of the user's current choice with
choice-index, uses Scheme's list-ref function to extract the corresponding string from THE-
CHOICES, and then draws the result into the message field of the window. To create the window,
we arrange a-choice and a-message in one row and the button in a row below:

(create-window
 (list (list a-choice a-message)
 (list (make-button "Confirm Choice" echo-choice))))

;; Model:
;; build-number : (listof digit) -> number
;; to translate a list of digits into a number
;; example: (build-number (list 1 2 3)) = 123
(define (build-number x) ...)

;;

;; View:
;; the ten digits as strings
(define DIGITS
 (build-list 10 number-> string))

;; a list of three digit choice menus
(define digit-choosers
 (local ((define (builder i) (make-choice DIGITS)))
 (build-list 3 builder)))

;; a message field for saying hello and displaying the number
(define a-msg
 (make-message "Welcome"))

;;

;; Controller:
;; check-call-back : X -> true
;; to get the current choices of digits, convert them to a number,

TE
AM
FL
Y

TEAM FLY PRESENTS

-278-

;; and to draw this number as a string into the message field
(define (check-call-back b)
 (draw-message a-msg
 (number-> string
 (build-number
 (map choice-index digit-choosers)))))

(create-window
 (list
 (append digit-choosers (list a-msg))
 (list (make-button "Check Guess" check-call-back))))

Figure 63: A GUI for echoing digits as numbers

Now that we have examined some basic GUI programs, we can study a program with full-
fledged core and GUI components. Take a look at the definitions in figure 63. The program's
purpose is to echo the values of several digit choice menus as a number into some message field.
The model consists of the build-number function, which converts a list of (three) digits into a
number. We have developed several such functions, so the figure mentions only what it does.
The GUI component of the program sets up three choice menus, a message field, and a button.
The control part consists of a single call-back function, which is attached to the single button in
the window. It determines the (list of) current choice indices, hands them over to build-number,
and draws the result as a string into the message field.

Let's study the organization of the call-back functions in more detail. It composes three kinds of
functions:

1. The innermost function determines the current state of the gui-items. This is the user's
input. With the given functions, we can determine the string that the user entered into
either a text field or the 0-based index of a choice menu.

2. This user input is consumed by the main function of the model. The call-back function
may convert the user's string into some other data, say, a symbol or a number.

3. The result of the model function, in turn, is drawn into a message field, possibly after
converting it to a string first.

The control component of a program is also responsible for the visual composition of the
window. The teachpack provides only one function for this purpose: create-window. Standard
GUI toolboxes provide many more functions, though all of these toolboxes differ from each
other and are changing rapidly.

Exercise 22.3.1. Modify the program of figure 63 so that it implements the number-guessing
game from exercises 5.1.2, 5.1.3, and 9.5.5. Make sure that the number of digits that the player
must guess can be changed by editing a single definition in the program.

Hint: Recall that exercise 11.3.1 introduces a function that generates random numbers.

Exercise 22.3.2. Develop a program for looking up phone numbers. The program's GUI should
consist of a text field, a message field, and a button. The text field permits users to enter names.
The message field should display the number that the model finds or the message "name not
found", if the model produces false.

TE
AM
FL
Y

TEAM FLY PRESENTS

-279-

Generalize the program so that a user can also enter a phone number (as a sequence of digits
containing no other characters).

Hints: (1) Scheme provides the function string->symbol for converting a string to a symbol. (2)
It also provides the function string-> number, which converts a string to a number if possible.
If the function consumes a string that doesn't represent a number, it produces false:

 (string-> number "6670004")
= 6670004
 (string-> number "667-0004")
= false

The generalization demonstrates how one and the same GUI can use two distinct models.

Real-world GUIs: The graphical user interface in figure 60 was not constructed from the items
provided by the teachpack. GUIs constructed with the teachpack's gui-items are primitive. They
are sufficient, however, to study the basic principles of GUI programming. The design of real-
world GUIs involves graphics designers and tools that generate GUI programs (rather than
making them by hand).

Exercise 22.3.3. Develop pad->gui. The function consumes a title (string) and a gui-table. It
turns the table into a list of lists of gui-items that create-window can consume. Here is the data
definition for gui-tables:

A cell is either

1. a number,
2. a symbol.

A gui-table is a (listof (listof cell)) .

Here are two examples of gui-tables:

(define pad
 '((1 2 3)
 (4 5 6)
 (7 8 9)
 (\# 0 *)))

(define pad2
 '((1 2 3 +)
 (4 5 6 -)
 (7 8 9 *)
 (0 = \. /)))

The table on the left lays out a virtual phone pad, the right one a calculator pad.

The function pad->gui should turn each cell into a button. The resulting list should be prefixed
with two messages. The first one displays the title and never changes. The second one displays
the latest button that the user clicked. The two examples above should produce the following two
GUIs:

TE
AM
FL
Y

TEAM FLY PRESENTS

-280-

Hint: The second message header requires a short string, for example, "N", as the initial value.

48 The program has also cleared the result field to avoid any misunderstanding. Similarly, the
user could also just hit the enter key instead of clicking the button. We ignore such subtleties
here.

49 More precisely, we construct an object, but we do not need to understand the distinction
between a structure and an object here.

50 The gui-items aren't really structures, which explains the font of the operations' names.

TE
AM
FL
Y

TEAM FLY PRESENTS

-281-

Section 23

Mathematical Examples
Applying mathematics to real-world problems requires programs that implement mathematical
functions. In many cases, the programs also employ functions that consume and produce
functions. Mathematics is therefore a great starting point for practicing programming with
functions and, more generally, for creating abstract functions.

The first subsection covers sequences and series, a key element of mathematics. The second
section discusses integration, which relies heavily on series. Finally, the third section introduces
function differentiation.

23.1 Sequences and Series
In pre-algebra and algebra, we encounter sequences (also known as progressions) of numbers.
Here are three examples:

1. 0, 2, 4, 6, 8;
2. 1, 3, 5, 7, 9;
3. 5, 10, 15, 20, 25.

The first two enumerate the first five even and odd natural numbers, respectively; the last one
lists the first five positive integers, evenly divisible by 5. Sequences can also be infinite:

1. 0, 2, 4, 6, 8, ...;
2. 1, 3, 5, 7, 9, ...;
3. 5, 10, 15, 20, 25, ...

Following mathematical tradition, infinite sequences end in ``...'' and the reader must determine
how to find more of the terms in the sequence.

One way to understand sequences of numbers, especially infinite ones, is to match them up with
an enumeration of the natural numbers. For example, the even and odd (natural) numbers match
up like this:

It is easy to see from this table that every even number is 2 · i for its index i and that an odd
number is 2 · i + 1.

Both statements can be translated into simple Scheme functions:

TE
AM
FL
Y

TEAM FLY PRESENTS

-282-

;; make-even : N -> N[even]
;; to compute the i-th even
number
(define (make-even i)
 (* 2 i))

;; make-odd : N -> N[odd]
;; to compute the i-th odd
number
(define (make-odd i)
 (+ (* 2 i) 1))

In short, functions from natural numbers to numbers are representations of infinite sequences.

A mathematical series is the sum of a sequence. The three finite sequences have the sums 20, 25,
and 75, respectively. In the case of infinite sequences it is often interesting to consider a finite
portion, staring with the first one.51 For example, adding the first 10 even numbers yields 90, and
adding the first 10 odd numbers yields 100. Computing a series is clearly a job for a computer.
Here are functions that add up the first n odd or even numbers, respectively, using make-even
and make-odd to compute the required numbers:

;; series-even : N -> number
;; to sum up the first

;; n even numbers
(define (series-even n)
 (cond
 [(= n 0) (make-even n)]
 [else (+ (make-even n)
 (series-even (- n
1)))]))

;; series-odd : N -> number
;; to sum up the first

;; n odd numbers
(define (series-odd n)
 (cond
 [(= n 0) (make-odd n)]
 [else (+ (make-odd n)
 (series-odd (- n
1)))]))

The two functions are natural candidates for abstraction and here is the result of following our
basic abstraction recipe:

;; series : N (N -> number) -> number
;; to sum up the first n numbers in the sequence a-term,
(define (series n a-term)
 (cond
 [(= n 0) (a-term n)]
 [else (+ (a-term n)
 (series (- n 1) a-term))]))

The first argument specifies where the addition starts. The second argument of series is a
function that maps a natural number to the corresponding term in the series. To test series, we
apply it to make-even and make-odd:

;; series-even1 : N -> number
(define (series-even1 n)
 (series n make-even))

;; series-odd1 : N -> number
(define (series-odd1 n)
 (series n make-odd))

For over a century, mathematicians have used the Greek symbol Sigma to communicate about
series. The two series above would be expressed as

A true (lazy) mathematician would also replace make-even and make-odd by their definitions,
that is, 2 · i and 2 · i + 1, but we refrain from doing so to emphasize the analogy to our (well-
organized) functions.

TE
AM
FL
Y

TEAM FLY PRESENTS

-283-

Exercise 23.1.1. Use local to create series-local from series-even and
series-odd. Show with a hand-evaluation that (series-local make-even) is equivalent to
series-even.

23.2 Arithmetic Sequences and Series
In an arithmetic sequence

each successor term an+1 is the result of adding a fixed constant to an. Here is a concrete example,
matched up with the natural numbers:

Here the starting point is 3 and the constant is 5. From these two facts, called starting point and
summand, respectively, all other terms in the sequence can be determined.

Exercise 23.2.1. Develop the recursive function a-fives, which consumes a natural number
and recursively determines the corresponding term in the above series.

Exercise 23.2.2. Develop the non-recursive function a-fives-closed. It consumes a natural
number and determines the corresponding term in the above series. A non-recursive function is
sometimes called a closed form.

Exercise 23.2.3. Use series to determine the sum of the a-fives sequence for the bounds 3, 7,
and 88. Can an infinite arithmetic series have a sum?

Exercise 23.2.4. Develop the function seq-a-fives, which consumes a natural number n and
creates the sequence of the first n terms according to a-fives or a-fives-closed. Hint: Use
build-list.

Exercise 23.2.5. Develop arithmetic-series. The function consumes two numbers: start
and s. Its result is a function that represents the arithmetic series whose starting point is start
and whose summand is s. For example, (arithmetic-series 3 5) yields a-fives (or a-
fives-closed). Similarly, (arithmetic-series 0 2) produces a function that represents the
series of even numbers.

23.3 Geometric Sequences and Series
In a geometric sequence

each succesor term gn+1 is the result of multiplying a fixed constant with gn. Here is a concrete
example, matched up with the natural numbers:

TE
AM
FL
Y

TEAM FLY PRESENTS

-284-

Here the starting point is 3 and the constant is 5. From these, called starting point and factor,
respectively, every other term in the sequence is determined.

Exercise 23.3.1. Develop the recursive function g-fives, which consumes a natural number
and recursively determines the corresponding term in the above geometric sequence.

Exercise 23.3.2. Develop the non-recursive function g-fives-closed. It consumes a natural
number and determines the corresponding term in the above series.

Exercise 23.3.3. Develop the function seq-g-fives, which consumes a natural number n and
creates the sequence of the first n terms according to g-fives or g-fives-closed. Hint: Use
build-list.

Exercise 23.3.4. Develop geometric-series. The function consumes two numbers: start and
s. Its result is a function that represents the geometric series whose starting point is start and
whose factor is s. For example, (geometric-series 3 5) yields g-fives (or g-fives-
closed).

Exercise 23.3.5. Use series to determine the sum of the g-fives sequence for the bounds 3, 7,
and 88. Use series to determine the sum of (geometric-series 1 .1) for the bounds 3, 7, 88.
Can an infinite geometric series have a sum?

Taylor Series

Mathematical constants like and e or functions like sin, cos, log are difficult to compute. Since
these functions are important for many daily engineering applications, mathematicians have
spent a lot of time and energy looking for better ways to compute these functions. One method is
to replace a function with its Taylor series, which is, roughly speaking, an infinitely long
polynomial.

A Taylor series is the sum of a sequence of terms. In contrast to arithmetic or geometric
sequences, the terms of a Taylor series depend on two unknowns: some variable x and the
position i in the sequence. Here is the Taylor series for the exponential function:

That is, if we wish to compute ex for any specific x, we replace x with the number and determine
the value of the series. In other words, for a specific value of x, say, 1, the Taylor series becomes
an ordinary series, that is, a sum of some sequence of numbers:

While this series is the sum of an infinitely long sequence, it actually is a number, and it often
suffices to add just the first few terms to have an idea what the number is.

TE
AM
FL
Y

TEAM FLY PRESENTS

-285-

The key to computing a Taylor series is to formulate each term in the underlying sequence as a
function of x and its position i. In our running example, the Taylor sequence for the exponential
function has the shape

Assuming a fixed x, here is an equivalent Scheme definition:

;; e-taylor : N -> number
(define (e-taylor i)
 (/ (expt x i) (! i)))

;; ! : N -> number
(define (! n)
 (cond
 [(= n 0) 1]
 [else (* n (! (sub1 n)))]))

The first function computes the term; the second computes the factorial of a natural number. To
compute the value of ex, we now just need to ask for (series 10 e-taylor), assuming we
want the first 10 items of the sequence included.

Putting everything together, we can define a function that computes the xth power of e. Since the
function requires two auxiliaries, we use a local:

(define (e-power x)
 (local ((define (e-taylor i)
 (/ (expt x i) (! i)))
 (define (! n)
 (cond
 [(= n 0) 1]
 [else (* n (! (sub1 n)))])))
 (series 10 e-taylor)))

Exercise 23.3.6. Replace 10 by 3 in the definition of e-power and evaluate (e-power 1) by
hand. Show only those lines that contain new applications of e-taylor to a number.

The results of e-power are fractions with large numerators and denominators. In contrast,
Scheme's built-in exp function produces an inexact number. We can turn exact fractions into
inexact numbers with the following function:

;; exact-> inexact : number [exact] -> number [inexact]

Test the function and add it to e-power's body. Then compare the results of exp and e-power.
Increase the number of items in the series until the difference between the results is small.

Exercise 23.3.7. Develop the function ln, which computes the Taylor series for the natural
logarithm. The mathematical definition of the series is

TE
AM
FL
Y

TEAM FLY PRESENTS

-286-

This Taylor series has a value for all x that are greater than 0.

DrScheme also provides log, a primitive for computing the natural logarithm. Compare the
results for ln and log. Then use exact-> inexact (see exercise 23.3.6) to get results that are
easier to compare.

Exercise 23.3.8. Develop the function my-sin, which computes the Taylor series for sin, one
of the trigonometric functions. The Taylor series is defined as follows:

It is defined for all x.

Hint: The sign of a term is positive if the index is even and negative otherwise. Mathematicians
compute (- 1)i to determine the sign; programmers can use cond instead.

Exercise 23.3.9. Mathematicians have used series to determine the value of for many centuries.
Here is the first such sequence, discovered by Gregory (1638-1675):

Define the function greg, which maps a natural number to the corresponding term in this
sequence. Then use series to determine approximations of the value of .

Note on : The approximation improves as we increase the number of items in the series.
Unfortunately, it is not practical to compute with this definition.

23.4 The Area Under a Function
Consider the function graph in figure 64. Suppose we wish to know the area between the x axis,
the fat lines labeled a and b, and the graph. Determining the area under the graph of a function
for some specific interval is called integrating a function. Since engineers had to solve this kind
of problem before computers were available, mathematicians have studied it extensively. For a
small class of functions, it is indeed possible to determine the area exactly. For the other cases,
mathematicians have developed several methods to determine close estimates. Since these
methods involve lots of mechanical calculations, they are natural candidates for computer
functions.

TE
AM
FL
Y

TEAM FLY PRESENTS

-287-

Figure 64: Integrating a function f between a and b

A general integration function must consume three inputs: a, b, and the function f. The fourth
part, the x axis, is implied. This suggests the following contract:

;; integrate : (number -> number) number number -> number
;; to compute the area under the graph of f between a and b
(define (integrate f a b) ...)

Kepler suggested one simple integration method. It consists of three steps:

1. divide the interval into two parts: [a,(a + b/2)] and [(a + b/2),b];
2. compute the area of each trapezoid; and
3. add the two areas to get an estimate at the integral.

Exercise 23.4.1. Develop the function integrate-kepler. It computes the area under some the
graph of some function f between left and right using Kepler's rule.

Another simple method is to think of the area as a sequence of many small rectangles. Each
rectangle is as tall as the function graph in, say, the middle of the rectangle. Figure 64 shows two
examples. By adding up the area of the rectangles, we get a good estimate at the area under the
graph. The more rectangles we consider, the closer the estimate is to the actual area.

Let us agree that R stands for the number of rectangles that we wish to consider. To determine
how large these rectangles are, we need to figure out how large their sides are. The length of the
side on the x axis is the length of the interval divided by the number of rectangles:

For the height of the rectangle, we need to determine its midpoint and then the value of f at the
midpoint. The first midpoint is clearly at a plus half of the width of the rectangle, that is, if

TE
AM
FL
Y

TEAM FLY PRESENTS

-288-

the area is

where W stands for width and S for step from now on.

To get from the rectangle starting at a to the next one on the right, we must add the width of one
rectangle. That is, the next midpoint (called x1 in figure 64) is at

the third one at

and so on. The following table explains the three sequences that are involved in the usual manner:

In the second row, M stands for midpoint. The first rectangle has index 0, the last one R - 1.

Using this sequence of rectangles, we can now determine the area under the graph as a series:

Exercise 23.4.2. Develop the function integrate. It computes the area under some the graph
of some function f between left and right using the rectangle-series method.

Use test cases for f, a, and b for which one can determine the area exactly and easily by hand,
for example, (define (id x) x). Compare the results with those of integrate from
exercise 23.4.1.

Make R a top-level constant:

;; R : number of rectangles to approximate integral
(define R ...)

Test integrate on sin and increase R gradually from 10 to 10000. What happens to the result?

23.5 The Slope of a Function
Let us take another look at the function graph in figure 64. For many problems, we need to be
able to draw a line that has the same slope as some curve at a certain point. Indeed, computing

TE
AM
FL
Y

TEAM FLY PRESENTS

-289-

the slope is often the true goal. In economics problems, the slope is the growth rate of a company
if the curve represents the income over time. In a physics problem, the curve could represent the
velocity of some object; its slope, at any point, is then the current acceleration of the object.

Determining the slope of some function f at some point x is to differentiate the function. The
differential operator (also called a functional) returns a function f' (pronounced ``f prime''). It
tells us for any x what the slope of f is at that point. Computing f' is complicated, so it is again a
good task for a computer program. The program consumes some function f and produces f'.

Figure 65: The graph of some function

To design a ``differentiator'' we must study how we could construct lines that have the same
slope as a curve. In principle, such a line touches the curve at just that point. But suppose we
relax this constraint for a moment and look at straight lines that intersect the curve close to the
point of interest. We pick two points that are equally far away from x, say, x - and x + ; the
constant , pronounced epsilon, represents some small distance. Using the two corresponding
points on the curve, we can determine a straight line that has the proper slope.

The situation is sketched in figure 65. If the point of interest has coordinate x, the two points are
(x,f(x -)) and (x,f(x +)). Hence the slope of the line is

That is, the difference between the height of the right point and the left point divided by their
horizontal distance. Determining the line from the slope and one of the points or even from two
points is an exercise.

Exercise 23.5.1. The equation for a line is

By now, it is straightforward to translate this equation into Scheme:

(define (y x)

TE
AM
FL
Y

TEAM FLY PRESENTS

-290-

 (+ (* a x) b))

To obtain a concrete line we must replace a and b with numbers.

The teachpack graphing.ss provides one operation for drawing lines: graph-line. The
operation consumes a line like y and a color, say, 'red. Use graph-line to draw the graphs of
the following lines:

1. y1(x) = x + 4
2. y2(x) = 4 - x
3. y3(x) = x + 10
4. y4(x) = 10 - x
5. y5(x) = 12

Exercise 23.5.2. It is a standard mathematical exercise to develop the equation for a line from a
point on the line and its slope. Look up the method in your mathematics book. Then develop the
function line-from-point+slope, which implements the method. The function consumes a
posn (the point) and a number (the slope). It produces a function that represents the line in the
spirit of exercise 23.5.1.

Testing a function-producing function like line-from-point+slope can be done in two ways.
Suppose we apply the function to (0,4) and 1. The result should be line y1 from exercise 23.5.1.
To check this, we can either apply the result of

(line-from-point+slope (make-posn 0 4) 1)

to some numbers, or we can draw the result using the operations in graphing.ss. In the first
case, we must use y1 to compare outputs; in the second case we can draw the result in one color
and the hand-constructed line in a different one and observe the effect.

Once we have an intersecting line through (x,f(x -)) and (x,f(x +)), we can also get a line with
the proper slope. By decreasing until it is (almost) indistinguishable from 0, the two intersection
points move closer and closer until they are one, namely, (x,f(x)), the point for which we wish to
know the slope.52

Exercise 23.5.3. Use the operation graph-fun in the teachpack graphing.ss to draw the
mathematical function

The operation works just like draw-line (see exercise 23.5.1.)

Suppose we wish to determine the slope at x = 2. Pick an > 0 and determine the slope of the line
that goes through (x,f(x -)) and (x,f(x +)) with the above formula. Compute the line with line-
from-point+slope from exercise 23.5.2 and use draw-line to draw it into the same coordinate
system as y. Repeat the process with /2 and then with /4.

If our goal is to define the differential operator as a Scheme function, we can approximate it by
setting to a small number and by translating the mathematical formula into a Scheme expression:

TE
AM
FL
Y

TEAM FLY PRESENTS

-291-

;; d/dx : (num -> num) -> (num -> num)
;; to compute the derivative function of f numerically
(define (d/dx f)
 (local ((define (fprime x)
 (/ (- (f (+ x)) (f (- x)))
 (* 2)))
 (define ...))
 fprime))

Note that d/dx consumes and produces functions -- just like the differential operator in
mathematics.

As mentioned in the introduction to this section, the differential operator computes the function f'
from some function f. The former computes the slope of f for any x. For straight lines, the slope
is always known. Hence a function that represents a straight line is an ideal test case for d/dx.
Let us consider

(define (a-line x)
 (+ (* 3 x) 1))

The evaluation of (d/dx a-line) proceeds as follows:

 (d/dx a-line)

= (local ((define (fprime x)
 (/ (- (a-line (+ x)) (a-line (- x)))
 (* 2)))
 (define ...))
 fprime)

= (define (fprime x)
 (/ (- (a-line (+ x)) (a-line (- x)))
 (* 2)))
 (define ...)
 fprime

Now, if we think of (+ x) and (- x) as numbers, we can evaluate the application of a-line
in the definition of fprime:53

 (define (fprime x)
 (/ (- (+ (* 3 (+ x)) 1) (+ (* 3 (- x)) 1))
 (* 2)))

= (define (fprime x)
 (/ (- (* 3 (+ x)) (* 3 (- x)))
 (* 2)))

= (define (fprime x)
 (/ (* 3 (- (+ x) (- x)))
 (* 2)))

= (define (fprime x)
 (/ (* 3 (* 2))
 (* 2)))

= (define (fprime x)
 3)

TE
AM
FL
Y

TEAM FLY PRESENTS

-292-

In other words, the result of (d/dx a-line) always returns 3, which is the slope of a-line. In
short, we not only got a close approximation because is small, we actually got the correct
answer. In general, however, the answer will depend on and will not be precise.

Exercise 23.5.4. Pick a small and use d/dx to compute the slope of

at x = 2. How does the result compare with your calculation in exercise 23.5.3?

Exercise 23.5.5. Develop the function line-from-two-points. It consumes two points p1 and
p2. Its result is a Scheme function that represents the line through p1 and p2.

Question: Are there any situations for which this function may fail to compute a function? If so,
refine the definition to produce a proper error message in this case.

Exercise 23.5.6. Compute the slope of the following function

(define (f x)
 (+ (* 1/60 (* x x x))
 (* -1/10 (* x x))
 5))

at x = 4. Set to 2, 1, .5. Try the same for some other value of x.

51 In some cases, an infinite sequence may also have a sum. Specifically, adding up more and
more of the terms of a sequence produces numbers that are closer and closer to some number,
which we call the sum. For example, the sum of the sequence

is 2. In contrast, the sequence

does not have a sum.

52 The process of decreasing to 0 is a convergence (or limit) process. It does not always succeed,
that is, for some function graphs, the process does not end properly. We ignore those cases, but
they are common and require special attention.

53 If x is a number, then adding or subtracting yields a number. If, by accident, we apply fprime
to something else, both expressions signal an error. It is therefore acceptable to act as if the
expressions were values. In general, this is not true.

TE
AM
FL
Y

TEAM FLY PRESENTS

-293-

Section 24

Intermezzo 4: Defining Functions on the Fly
Many uses of abstract functions require the definition of auxiliary functions. Consider filter1,
which consumes a filtering function, a list, and a filtering item. In the previous section alone, we
encountered three uses of filter1 with three different auxiliary functions: squared?, <ir, and
eq-ir?.

Since these auxiliary functions are only used as arguments to filter1, we should employ the
program organization guidelines from the preceding intermezzo (18). That is, we should use a
local-expression to indicate that the application of filter1 and the auxiliary function definition
belong together. Here is one possible arrangement for the filter1-eq-ir? combination:

;; find : list-of-IRs symbol -> boolean
(define (find aloir t)
 (local ((define (eq-ir? ir p)
 (symbol=? (ir-name ir) p)))
 (filter1 eq-ir? aloir t)))

An alternative arrangement places the local-expression where the function is needed:

;; find : list-of-IRs symbol -> boolean
(define (find aloir t)
 (filter1 (local ((define (eq-ir? ir p)
 (symbol=? (ir-name ir) p)))
 eq-ir?)
 aloir t))

This alternative is feasible because the names of functions -- like eq-ir? -- are now legitimate
expressions and can play the role of local's body. Thus the local-expression introduces a
function definition and returns the function as its result.

Because good programmers use abstract functions and organize their programs in a tidy manner,
it is not surprising that Scheme provides a short-hand for this particular, frequent use of local.
The short-hand is called a lambda-expression and greatly facilitates the introduction of functions
like eq-ir?, squared?, or <ir. The following two subsections introduce the syntax and
semantics of lambda-expressions. The last subsection discusses its pragmatics.

Syntax of lambda

A lambda-expression is just a new form of expression:

<exp> = (lambda (<var> ... <var>) <exp>)

Its distinguishing characteristic is the keyword lambda. It is followed by a sequence of variables,
enclosed in a pair of parentheses. The last component is an expression.

TE
AM
FL
Y

TEAM FLY PRESENTS

-294-

Here are three useful examples:

1. (lambda (x c) (> (* x x) c))
2. (lambda (ir p) (< (ir-price ir) p))
3. (lambda (ir p) (symbol=? (ir-name ir) p))

They correspond to squared?, <ir, and eq-ir?, respectively, the three motivating examples
discussed above.

A lambda-expression defines an anonymous function, that is, a function without a name. The
sequence of variables behind lambda are the function's parameters; the third component is the
function's body.

Scope and Semantics of lambda

As discussed in the introduction, a lambda-expression is just a short-hand for a local-expression.
In general, we can think of

 (lambda (x-1 ... x-n) exp)
as

 (local ((define (a-new-name x-1 ... x-n) exp))
 a-new-name)

The name of the function, a-new-name, may not occur in exp.

The short-hand explanation suggests that

 (lambda (x-1 ... x-n) exp)
introduces x-1 ...x-n as binding occurrences and that the scope of parameters is exp. Of course,
if exp contains further binding constructs (say, a nested local-expression), then the scope of the
variables may have a hole.

Similarly, the explanation implies basic facts that govern the evaluation of lambda-expressions:

1. A lambda-expression is a value because functions are values.
2. The application of lambda-expressions to values proceeds according to our usual laws of

function application, assuming we expand the short-hand first.

Here is a sample use of lambda:

 (filter1 (lambda (ir p) (< (ir-price ir) p))
 (list (make-ir 'doll 10))
 8)

The application of filter1 consumes the lambda-expression, a (short) list of inventory records,
and a threshold. Given our suggestion, the evaluation can be understood by an expansion of the
lambda-expression into a corresponding local-expression:

...
= (filter1 (local ((define (<ir ir p) (< (ir-price ir) p))) <ir)
 (list (make-ir 'doll 10))

TE
AM
FL
Y

TEAM FLY PRESENTS

-295-

 8)
= (filter1 <ir
 (list (make-ir 'doll 10))
 8)

For the last step, the local definition of <ir is lifted and added to the top-level definitions. From
here, the evaluation proceeds as in section 19.2.

While it is natural to think of lambda as a short-hand, the last two points also suggest a way of
understanding lambda-expressions directly. In particular, we can adapt the law of application to
lambda-expressions:

 ((lambda (x-1 ... x-n)
exp)
 val-1 ... val-n)

 = exp
 with all occurrences of x-1 ... x-
n
 replaced by val-1 ... val-n

That is, the application of a lambda-expression proceeds just like that of an ordinary function.
We replace the parameters of the function with the actual argument values and compute the
value of the function body.

Let us reconsider the above example in this light:

 (filter1 (lambda (ir p) (< (ir-price ir) p))
 (list (make-ir 'doll 10))
 8)

As usual, this application is replaced by the body of filter1
with all parameters replaced by their values. This step places a
lambda-expression into the function position of an application:

= (cond
 [((lambda (ir p) (< (ir-price ir) p))
 (make-ir 'doll 10) 8)
 (cons (first (list (make-ir 'doll 10)))
 (filter1 (lambda (ir p) (< (ir-price ir) p))
 (rest (list (make-ir 'doll 10)))
 8))]
 [else
 (filter1 (lambda (ir p) (< (ir-price ir) p))
 (rest (list (make-ir 'doll 10)))
 8)])

= (cond
 [(< (ir-price (make-ir 'doll 10)) 8)
 (cons (first (list (make-ir 'doll 10)))
 (filter1 (lambda (ir p) (< (ir-price ir) p))
 (rest (list (make-ir 'doll 10)))
 8))]
 [else
 (filter1 (lambda (ir p) (< (ir-price ir) p))
 (rest (list (make-ir 'doll 10)))
 8)])

= ...

TE
AM
FL
Y

TEAM FLY PRESENTS

-296-

From here, the evaluation proceeds as usual. Still, even this short-hand evaluation shows that,
while using lambda-expressions in programs is convenient, replacing it with a named function
(often) simplifies calculations.

Exercise 24.1.1. Decide which of the following phrases are legal lambda-expressions:

1. (lambda (x y) (x y y))
2. (lambda () 10)
3. (lambda (x) x)
4. (lambda (x y) x)
5. (lambda x 10)

Explain why they are legal or illegal.

Exercise 24.1.2. Draw arrows from the underlined occurrences of x to their binding
occurrences in each of the following three lambda-expressions:

1.
2. (lambda (x y)
3. (+ x (* x y)))

4.
5. (lambda (x y)
6. (+ x
7. (local ((define x (* y y)))
8. (+ (* 3 x)
9. (/ 1 x)))))

10.
11. (lambda (x y)
12. (+ x
13. ((lambda (x)
14. (+ (* 3 x)
15. (/ 1 x)))
16. (* y y))))

Also draw a box for the corresponding scope of each underlined x and holes in the scope where
necessary.

Exercise 24.1.3. Evaluate the following expressions by hand:

1.
2. ((lambda (x y)
3. (+ x (* x y)))
4. 1 2)

5.
6. ((lambda (x y)
7. (+ x
8. (local ((define x (* y y)))
9. (+ (* 3 x)
10. (/ 1 x)))))
11. 1 2)

12.
13. ((lambda (x y)
14. (+ x
15. ((lambda (x)

TE
AM
FL
Y

TEAM FLY PRESENTS

-297-

16. (+ (* 3 x)
17. (/ 1 x)))
18. (* y y))))
19. 1 2)

Pragmatics of lambda

The guideline for using lambda-expressions is straightforward:

Guideline on Lambda Expressions
Use lambda-expressions when a function is not recursive and is only needed once in an
argument position.

If we were to apply the guideline to the programs in the preceding sections, we would quickly
see how much lambda simplifies the use of abstracted functions. For that reason, Scheme offers
many abstracted functions in its libraries. In future sections, we will encounter many more
examples where lambda-expressions are convenient.

TE
AM
FL
Y

TEAM FLY PRESENTS

-298-

Part V

Generative Recursion

TE
AM
FL
Y

TEAM FLY PRESENTS

-299-

Section 25

A New Form of Recursion
The functions we have developed so far fall into two broad categories. On one hand, we have the
category of functions that encapsulate domain knowledge. On the other hand, we have functions
that consume structured data. These functions typically decompose their arguments into their
immediate structural components and then process those components. If one of the immediate
components belongs to the same class of data as the input, the function is recursive. For that
reason, we refer to these functions as (STRUCTURALLY) RECURSIVE FUNCTIONS. In some cases, however,
we also need functions based on a different form of recursion, namely, generative recursion. The
study of this form of recursion is as old as mathematics and is often called the study of ALGORITHMS.

The inputs of an algorithm represent a problem. Except for rare occasions, the problem is an
instance of a large class of problems and the algorithm works for all of these problems. In
general, an algorithm partitions a problem into other, smaller problems and solves those. For
example, an algorithm for planning a vacation trip requires arrangements for a trip from our
home to a nearby airport, a flight to an airport near our vacation spot, and a trip from that airport
to our vacation hotel. The entire problem is solved by combining the solutions for these problems.

Designing an algorithm distinguishes two kinds of problems: those that are TRIVIALLY SOLVABLE54
and those that are not. If a given problem is trivially solvable, an algorithm produces the
matching solution. For example, the problem of getting from our home to a nearby airport might
be trivially solvable. We can drive there, take a cab, or ask a friend to drop us off. If not, the
algorithm generates a new problem and solves those new problems. A multistage trip is an
example of a problem that is non-trivial and can be solved by generating new, smaller problems.
In a computational setting one of the smaller problems often belongs to the same class of
problems as the original one, and it is for this reason that we call the approach GENERATIVE
RECURSION.

In this part of the book, we study the design of algorithms, that is, functions based on generative
recursion. From the description of the idea, we know that this process is much more of an ad hoc
activity than the data-driven design of structurally recursive functions. Indeed, it is almost better
to call it inventing an algorithm than designing one. Inventing an algorithm requires a new
insight -- a ``eureka.'' Sometimes very little insight is required. For example, solving a
``problem'' might just require the enumeration of a series of numbers. At other times, however, it
may rely on a mathematical theorem concerning numbers. Or, it may exploit a series of
mathematical results on systems of equations. To acquire a good understanding of the design
process, it is necessary to study examples and to develop a sense for the various classes of
examples. In practice, new complex algorithms are often developed by mathematicians and
mathematical computer scientists; programmers, though, must throughly understand the
underlying ideas so that they can invent the simple algorithms on their own and communicate
with scientists about the others.

TE
AM
FL
Y

TEAM FLY PRESENTS

-300-

The two subsections illustrate two vastly different algorithms. The first one is an example of
something programmers invent on a daily basis. The second one describes a fast sorting
algorithm, one of the first applications of generative recursion in computing.

Terminology: Mathematical computer scientists often do not distinguish between structural
recursion and generative recursion and refer to both kinds of functions as algorithms. Instead
they use the terminology of RECURSIVE and ITERATIVE methods. The latter refers to a subclass of
function definitions whose recursive function applications are in a particular position in the
definition. We will strictly adhere to the terminology of algorithm and generative recursion when
we work with this class of functions because this classification matches our thinking of design
recipes better than the purely syntactic classification of applied mathematicians.

25.1 Modeling a Ball on a Table
Let's consider the simple-looking problem of modeling the moves of a ball across a table.
Assume the ball rolls at a constant speed until it drops off the table. We can model the table with
a canvas of some fixed width and height. The ball is a disk that moves across the canvas, which
we express with drawing the disk, waiting, and clearing it, until it is out of bounds.

;; TeachPack: draw.ss

(define-struct ball (x y delta-x delta-y))
;; A ball is a structure:
;; (make-ball number number number number)

;; draw-and-clear : a-ball -> true
;; draw, sleep, clear a disk from the canvas
;; structural design, Scheme knowledge
(define (draw-and-clear a-ball)
 (and
 (draw-solid-disk (make-posn (ball-x a-ball) (ball-y a-ball)) 5 'red)
 (sleep-for-a-while DELAY)
 (clear-solid-disk (make-posn (ball-x a-ball) (ball-y a-ball)) 5
'red)))

;; move-ball : ball -> ball
;; to create a new ball, modeling a move by a-ball
;; structural design, physics knowledge
(define (move-ball a-ball)
 (make-ball (+ (ball-x a-ball) (ball-delta-x a-ball))
 (+ (ball-y a-ball) (ball-delta-y a-ball))
 (ball-delta-x a-ball)
 (ball-delta-y a-ball)))

;; Dimension of canvas
(define WIDTH 100)
(define HEIGHT 100)
(define DELAY .1)

Figure 66: Auxiliaries for move-until-out

Figure 66 collects the function, structure, data, and variable definitions that model the ball:

TE
AM
FL
Y

TEAM FLY PRESENTS

-301-

1. A ball is a structure with four fields: the current position and the velocity in each
direction. That is, the first two numbers in a ball structure are the current position on the
canvas, and the next two numbers describe how far the ball moves in the two directions
per step.

2. The function move-ball models the physical movement of the ball. It consumes a ball
and creates a new one, modeling one step.

3. The function draw-and-clear draws the ball at its current position, then waits for a short
time, and clears it again.

The variable definitions specify the dimensions of the canvas and the delay time.

To move the ball a few times we can write

(define the-ball (make-ball 10 20 -5 +17))

(and
 (draw-and-clear the-ball)
 (and
 (draw-and-clear (move-ball the-ball))
 ...))

though this gets tedious after a while. We should instead develop a function that moves the ball
until it is out of bounds.

The easy part is to define out-of-bounds?, a function that determines whether a given ball is
still visible on the canvas:

;; out-of-bounds? : a-ball -> boolean
;; to determine whether a-ball is outside of the bounds
;; domain knowledge, geometry
(define (out-of-bounds? a-ball)
 (not
 (and
 (<= 0 (ball-x a-ball) WIDTH)
 (<= 0 (ball-y a-ball) HEIGHT))))

 We have defined numerous functions like out-of-bounds? in the first few sections of the
book.

In contrast, writing a function that draws the ball on the canvas until it is out of bounds belongs
to a group of programs that we haven't encountered thus far. Let's start with the basics of the
function:

;; move-until-out : a-ball -> true
;; to model the movement of a ball until it goes out of bounds
(define (move-until-out a-ball) ...)

Because the function consumes a ball and draws its movement on a canvas, it produces true like
all other functions that draw onto a canvas. Designing it with the recipe for structures makes no
sense, however. After all, it is already clear how to draw-and-clear the ball and how to move it,
too. What is needed instead is a case distinction that checks whether the ball is out of bounds or
not.

TE
AM
FL
Y

TEAM FLY PRESENTS

-302-

Let us refine the function header with an appropriate cond-expression:

(define (move-until-out a-ball)
 (cond
 [(out-of-bounds? a-ball) ...]
 [else ...]))

 We have already defined the function out-of-bounds? because it was clear from the
problem description that ``being out of bounds'' was a separate concept.

If the ball consumed by move-until-out is outside of the canvas's boundaries, the function can
produce true, following the contract. If the ball is still inside the boundaries, two things must
happen. First, the ball must be drawn and cleared from the canvas. Second, the ball must be
moved, and then we must do things all over again. This implies that after moving the ball, we
apply move-until-out again, which means the function is recursive:

;; move-until-out : a-ball -> true
;; to model the movement of a ball until it goes out of bounds
(define (move-until-out a-ball)
 (cond
 [(out-of-bounds? a-ball) true]
 [else (and (draw-and-clear a-ball)
 (move-until-out (move-ball a-ball)))]))

 Both (draw-and-clear a-ball) and (move-until-out (move-ball a-ball)) produce
true, and both expressions must be evaluated. So we combine them with an and-expression.

We can now test the function as follows:

(start WIDTH HEIGHT)
(move-until-out (make-ball 10 20 -5 +17))
(stop)

 This creates a canvas of proper size and a ball that moves left and down.

A close look at the function definition reveals two peculiarities. First, although the function is
recursive, its body consists of a cond-expression whose conditions have nothing to do with the
input data. Second, the recursive application in the body does not consume a part of the input.
Instead, move-until-out generates an entirely new and different ball structure, which
represents the original ball after one step, and uses it for the recursion. Clearly, none of our
design recipes could possibly produce such a definition. We have encountered a new way of
programming.

Exercise 25.1.1. What happens if we place the following three expressions

(start WIDTH HEIGHT)
(move-until-out (make-ball 10 20 0 0))
(stop)

 at the bottom of the Definitions window and click Execute? Does the second expression
ever produce a value so that the third expression is evaluated and the canvas disappears? Could
this happen with any of the functions designed according to our old recipes?

TE
AM
FL
Y

TEAM FLY PRESENTS

-303-

Exercise 25.1.2. Develop move-balls. The function consumes a list of balls and moves each
one until all of them have moved out of bounds.

Hint: It is best to write this function using filter, andmap, and similar abstract functions from
part IV.

25.2 Sorting Quickly
Hoare's quicksort algorithm is the classic example of generative recursion in computing. Like
sort in section 12.2, qsort is a function that consumes a list of numbers and produces a version
that contains the same numbers in ascending order. The difference between the two functions is
that sort is based on structural recursion and qsort is based on generative recursion.

The underlying idea of the generative step is a time-honored strategy: divide and conquer. That is,
we divide the non-trivial instances of the problem into two smaller, related problems, solve those
smaller problems, and combine their solutions into a solution for the original problem. In the
case of qsort, the intermediate goal is to divide the list of numbers into two lists: one that
contains all the items that are strictly smaller than the first item, and another one with all those
items that are strictly larger than the first item. Then the two smaller lists are sorted using the
same procedure. Once the two lists are sorted, we simply juxtapose the pieces. Owing to its
special role, the first item on the list is often called the pivot item.

(list 11 8 14 7)
(list 8 7)

(list 7)
empty 7 empty

(list 7)

8 empty

(list 7 8)

11 (list 14)
empty 14 empty

(list 14)

(list 7 8 11 14)

Figure 67: A tabular illustration of quick-sort

To develop a better understanding of the process, let's walk through one step of the evaluation by
hand. Suppose the input is

(list 11 8 14 7)

The pivot item is 11. Partioning the list into items larger and smaller than 11 produces two lists:

(list 8 7)

and

(list 14)

TE
AM
FL
Y

TEAM FLY PRESENTS

-304-

The second one is already sorted in ascending order; sorting the first one produces (list 7 8).
This leaves us with three pieces from the original list:

1. (list 7 8), the sorted version of the list with the smaller numbers;
2. 11; and
3. (list 14), the sorted version of the list with the larger numbers.

To produce a sorted version of the original list, we concatenate the three pieces, which yields the
desired result: (list 7 8 11 14).

Our illustration leaves open how qsort knows when to stop. Since it is a function based on
generative recursion, the general answer is that it stops when the sorting problem has become
trivial. Clearly, empty is one trivial input for qsort, because the only sorted version of it is
empty. For now, this answer suffices; we will return to this question in the next section.

Figure 67 provides a tabular overview of the entire sorting process for (list 11 8 14 7). Each
box has three compartments:

list to be sorted
sort process for partition with items
smaller than pivot

pivot
item

sort process for partition with items
larger than pivot

sorted list

The top compartment shows the list that we wish to sort, and the bottommost contains the result.
The three columns in the middle display the sorting process for the two partitions and the pivot
item.

Exercise 25.2.1. Simulate all qsort steps for (list 11 9 2 18 12 14 4 1).

Now that we have a good understanding of the generative step, we can translate the process
description into Scheme. The description suggests that qsort distinguishes two cases. If the
input is empty, it produces empty. Otherwise, it performs a generative recursion. This case-split
suggests a cond-expression:

;; quick-sort : (listof number) -> (listof number)
;; to create a list of numbers with the same numbers as
;; alon sorted in ascending order
(define (quick-sort alon)
 (cond
 [(empty? alon) empty]
 [else ...]))

The answer for the first case is given. For the second case, when qsort's input is non-empty, the
algorithm uses the first item to partition the rest of the list into two sublists: a list with all items
smaller than the pivot item and another one with those larger than the pivot item.

Since the rest of the list is of unknown size, we leave the task of partitioning the list to two
auxiliary functions: smaller-items and larger-items. They process the list and filter out
those items that are smaller and larger, respectively, than the first one. Hence each auxiliary

TE
AM
FL
Y

TEAM FLY PRESENTS

-305-

function accepts two arguments, namely, a list of numbers and a number. Developing these
functions is, of course, an exercise in structural recursion; their definitions are shown in figure 68.

;; quick-sort : (listof number) -> (listof number)
;; to create a list of numbers with the same numbers as
;; alon sorted in ascending order
(define (quick-sort alon)
 (cond
 [(empty? alon) empty]
 [else (append
 (quick-sort (smaller-items alon (first alon)))
 (list (first alon))
 (quick-sort (larger-items alon (first alon))))]))

;; larger-items : (listof number) number -> (listof number)
;; to create a list with all those numbers on alon
;; that are larger than threshold
(define (larger-items alon threshold)
 (cond
 [(empty? alon) empty]
 [else (if (> (first alon) threshold)
 (cons (first alon) (larger-items (rest alon) threshold))
 (larger-items (rest alon) threshold))]))

;; smaller-items : (listof number) number -> (listof number)
;; to create a list with all those numbers on alon
;; that are smaller than threshold
(define (smaller-items alon threshold)
 (cond
 [(empty? alon) empty]
 [else (if (< (first alon) threshold)
 (cons (first alon) (smaller-items (rest alon) threshold))
 (smaller-items (rest alon) threshold))]))

Figure 68: The quick-sort algorithm

Each sublist is sorted separately, using quick-sort. This implies the use of recursion and, more
specifically, the following two expressions:

1. (quick-sort (smaller-items alon (first alon))), which sorts the list of items
smaller than the pivot; and

2. (quick-sort (larger-items alon (first alon))), which sorts the list of items
larger than the pivot.

Once we get the sorted versions of the two lists, we need a function that combines the two lists
and the pivot item. Scheme's append function accomplishes this:

(append (quick-sort (smaller-items alon (first alon)))
 (list (first alon))
 (quick-sort (larger-items alon (first alon))))

Clearly, all items in list 1 are smaller than the pivot and the pivot is smaller than all items in list 2,
so the result is a sorted list. Figure 68 contains the full function. It includes the definition of
quick-sort, smaller-items, and larger-items.

TE
AM
FL
Y

TEAM FLY PRESENTS

-306-

Let's take a look at the beginning of a sample hand evaluation:

 (quick-sort (list 11 8 14 7))
= (append (quick-sort (list 8 7))
 (list 11)
 (quick-sort (list 14)))
= (append (append (quick-sort (list 7))
 (list 8)
 (quick-sort empty))
 (list 11)
 (quick-sort (list 14)))
= (append (append (append (quick-sort empty)
 (list 7)
 (quick-sort empty))
 (list 8)
 (quick-sort empty))
 (list 11)
 (quick-sort (list 14)))
= (append (append (append empty
 (list 7)
 empty)
 (list 8)
 empty)
 (list 11)
 (quick-sort (list 14)))
= (append (append (list 7)
 (list 8)
 empty)
 (list 11)
 (quick-sort (list 14)))
= ...

The calculation shows the essential steps of the sorting process, that is, the partitioning steps, the
recursive sorting steps, and the concatenation of the three parts. From this calculation, we can see
that quick-sort implements the process illustrated in figure 67.

Exercise 25.2.2. Complete the above hand-evaluation.

The hand-evaluation of (quick-sort (list 11 8 14 7)) suggests an additional trivial case
for quick-sort. Every time quick-sort consumes a list of one item, it produces the very same
list. After all, the sorted version of a list of one item is the list itself.

Modify the definition of quick-sort to take advantage of this observation.

Hand-evaluate the same example again. How many steps does the extended algorithm save?

Exercise 25.2.3. While quick-sort quickly reduces the size of the problem in many cases, it is
inappropriately slow for small problems. Hence people often use quick-sort to reduce the size
of the problem and switch to a different sort function when the list is small enough.

Develop a version of quick-sort that uses sort from section 12.2 if the length of the input is
below some threshold.

TE
AM
FL
Y

TEAM FLY PRESENTS

-307-

Exercise 25.2.4. If the input to quick-sort contains the same number several times, the
algorithm returns a list that is strictly shorter than the input. Why? Fix the problem so that the
output is as long as the input.

Exercise 25.2.5. Use the filter function to define smaller-items and larger-items as one-
liners.

Exercise 25.2.6. Develop a variant of quick-sort that uses only one comparison function, say,
<. Its partitioning step divides the given list alon into a list that contains the items of alon
smaller than (first alon) and another one with those that are not smaller.

Use local to combine the functions into a single function. Then abstract the new version to
consume a list and a comparison function:

;; general-quick-sort : (X X -> bool) (list X) -> (list X)
(define (general-quick-sort a-predicate a-list) ...)

54 For this part of the book, trivial is a technical term. It will be explained in section 26.

TE
AM
FL
Y

TEAM FLY PRESENTS

-308-

Section 26

Designing Algorithms
At first glance, the algorithms move-until-out and quick-sort have little in common. One
processes structures; the other processes lists. One creates a new structure for the generative step;
the other splits up a list into three pieces and recurs on two of them. In short, a comparison of the
two examples of generative recursion suggests that the design of algorithms is an ad hoc activity
and that it is impossible to come up with a general design recipe. A closer look, however,
suggests a different picture.

First, even though we speak of algorithms as processes that solve problems, they are still
functions that consume and produce data. In other words, we still choose data to represent a
problem, and we must definitely understand the nature of our data if we wish to understand the
process. Second, we describe the processes in terms of data, for example, ``creating a new
structure'' or ``partitioning a list of numbers.'' Third, we always distinguish between input data
for which it is trivial to produce a solution and those for which it is not. Fourth, the generation of
problems is the key to the design of algorithms. Although the idea of how to generate a new
problem might be independent of a data representation, it must certainly be implemented for
whatever form of representation we choose for our problem. Finally, once the generated
problems have been solved, the solutions must be combined with other values.

Let us examine the six general stages of our structural design recipe in light of our discussion:

• Data analysis and design: The choice of a data representation for a problem often
affects our thinking about the process. Sometimes the description of a process dictates a
particular choice of representation. On other occasions, it is possible and worthwhile to
explore alternatives. In any case, we must analyze and define our data collections.

• Contract, purpose, header: We also need a contract, a definition header, and a purpose
statement. Since the generative step has no connection to the structure of the data
definition, the purpose statement should not only specify what the function does but
should also include a comment that explains in general terms how it works.

• Function examples: In our previous design recipes, the function examples merely
specified which output the function should produce for some given input. For algorithms,
examples should illustrate how the algorithm proceeds for some given input. This helps
us to design, and readers to understand, the algorithm. For functions such as move-
until-out the process is trivial and doesn't need more than a few words. For others,
including, quick-sort, the process relies on a non-trivial idea for its generative step, and
its explanation requires a good example such as the one in figure 67.

• Template: Our discussion suggests a general template for algorithms:
• (define (generative-recursive-fun problem)
• (cond
• [(trivially-solvable? problem)
• (determine-solution problem)]
• [else
• (combine-solutions

TE
AM
FL
Y

TEAM FLY PRESENTS

-309-

• ... problem ...
• (generative-recursive-fun (generate-problem-1 problem))
•
• (generative-recursive-fun (generate-problem-n

problem)))]))
• Definition: Of course, this template is only a suggestive blueprint, not a definitive shape.

Each function in the template is to remind us that we need to think about the following
four questions:

1. What is a trivially solvable problem?
2. What is a corresponding solution?
3. How do we generate new problems that are more easily solvable than the original

problem? Is there one new problem that we generate or are there several?
4. Is the solution of the given problem the same as the solution of (one of) the new

problems? Or, do we need to combine the solutions to create a solution for the
original problem? And, if so, do we need anything from the original problem data?

To define the algorithm, we must express the answers to these four questions in terms of
our chosen data representation.

• Test: Once we have a complete function, we must also test it. As before, the goal of
testing is to discover bugs and to eliminate them. Remember that testing cannot validate
that the function works correctly for all possible inputs. Also remember that it is best to
formulate tests as boolean-valued expressions that automatically compare the expected
value with the computed value (see section 17.8).

Exercise 26.0.7. Formulate informal answers to the four key questions for the problem of
modeling a ball's movement across a canvas until it is out of bounds.

Exercise 26.0.8. Formulate informal answers to the four key questions for the quick-sort
problem. How many instances of generate-problem are there?

26.1 Termination
Unfortunately, the standard recipe is not good enough for the design of algorithms. Up to now, a
function has always produced an output for any legitimate input. That is, the evaluation has
always stopped. After all, by the nature of our recipe, each natural recursion consumes an
immediate piece of the input, not the input itself. Because data is constructed in a hierarchical
manner, this means that the input shrinks at every stage. Hence the function sooner or later
consumes an atomic piece of data and stops.

With functions based on generative recursion, this is no longer true. The internal recursions don't
consume an immediate component of the input but some new piece of data, which is generated
from the input. As exercise 25.1.1 shows, this step may produce the input over and over again
and thus prevent the evaluation from ever producing a result. We say that the program LOOPS or is
in an INFINITE LOOP.

In addition, even the slightest mistake in translating the process description into a function
definition may cause an infinite loop. The problem is most easily understood with an example.
Consider the following definition of smaller-items, one of the two ``problem generators'' for
quick-sort:

TE
AM
FL
Y

TEAM FLY PRESENTS

-310-

;; smaller-items : (listof number) number -> (listof number)
;; to create a list with all those numbers on alon
;; that are smaller than or equal to threshold
(define (smaller-items alon threshold)
 (cond
 [(empty? alon) empty]
 [else (if (<= (first alon) threshold)
 (cons (first alon) (smaller-items (rest alon) threshold))
 (smaller-items (rest alon) threshold))]))

Instead of < it employs <= to compare numbers. As a result, this function produces (list 5)
when applied to (list 5) and 5.

Worse, if the quick-sort function from figure 68 is combined with this new version of
smaller-items, it doesn't produce any output for (list 5):

 (quick-sort (list 5))
= (append (quick-sort (smaller-items 5 (list 5)))
 (list 5)
 (quick-sort (larger-items 5 (list 5))))
= (append (quick-sort (list 5))
 (list 5)
 (quick-sort (larger-items 5 (list 5))))

The first recursive use demands that quick-sort solve the problem of sorting (list 5) -- but
that is the exact problem that we started with. Since this is a circular evaluation, (quick-sort
(list 5)) never produces a result. More generally, there is no guarantee that the size of the
input for a recursive call brings us closer to a solution than the original input.

Phase Goal Activity
Examples to characterize the

input-
output relationship
and the
computational
process via examples

create and show examples of trivially solvable
problems create and show examples that require
recursive processing illustrate how to work through
the examples

Body to define an
algorithm

formulate tests for trivially solvable problems
formulate answers for the trivial cases determine how
to generate new problems from the given problem,
possibly using auxiliary functions determine how to
combine the solutions of these problems into a
solution for the given problem

Termin. to argue that the

algorithm terminates
for all possible
inputs

show that the inputs to the recursive applications are
smaller than the given input

Figure 69: Designing algorithms

TE
AM
FL
Y

TEAM FLY PRESENTS

-311-

The lesson from this example is that the design of algorithms requires one more step in our
design recipe: a TERMINATION ARGUMENT, which explains why the process produces an output for
every input and how the function implements this idea; or a warning, which explains when the
process may not terminate. For quick-sort, the argument might look like this:

At each step, quick-sort partitions the list into two sublists using smaller-items and larger-
items. Each function produces a list that is smaller than the input (the second argument), even if
the threshold (the first argument) is an item on the list. Hence each recursive application of
quick-sort consumes a strictly shorter list than the given one. Eventually, quick-sort receives
and returns empty.
Without such an argument an algorithm must be considered incomplete.

A good termination argument may on occasion also reveal additional termination cases. For
example, (smaller-items N (list N)) and (larger-items N (list N)) always produce
empty for any N. Therefore we know that quick-sort's answer for (list N) is (list N).55 To
add this knowledge to quick-sort, we simply add a cond-clause:

(define (quick-sort alon)
 (cond
 [(empty? alon) empty]
 [(empty? (rest alon)) alon]
 [else (append
 (quick-sort (smaller-items alon (first alon)))
 (list (first alon))
 (quick-sort (larger-items alon (first alon))))]))

The condition (empty? (rest alon)) is one way to ask whether alon contains one item.

Figure 69 summarizes the suggestions on the design of algorithms. The dots indicate that the
design of an algorithm requires a new step: the termination argument. Read the table in
conjunction with those of the preceding chapters.

Exercise 26.1.1. Define the function tabulate-div, which accepts a number n and tabulates
the list of all of its divisors, starting with 1 and ending in n. A number d is a divisior of a number
n if the remainder of dividing n by d is 0, that is, (= (remainder n d) 0) is true. The smallest
divisior of any number is 1; the largest one is the number itself.

Exercise 26.1.2. Develop the function merge-sort, which sorts a list of numbers in ascending
order, using the following two auxiliary functions:

1. The first one, make-singles, constructs a list of one-item lists from the given list of
numbers. For example,
2. (equal? (make-singles (list 2 5 9 3))
3. (list (list 2) (list 5) (list 9) (list 3)))

4. The second one, merge-all-neighbors, merges pairs of neighboring lists. More
specifically, it consumes a list of lists (of numbers) and merges neighbors. For example,
5. (equal? (merge-all-neighbors (list (list 2) (list 5) (list 9)

(list 3)))
6. (list (list 2 5) (list 3 9)))

TE
AM
FL
Y

TEAM FLY PRESENTS

-312-

7.
8. (equal? (merge-all-neighbors (list (list 2 5) (list 3 9)))
9. (list (list 2 3 5 9)))

In general, this function yields a list that is approximately half as long as the input. Why
is the output not always half as long as the input?

Make sure to develop the functions independently.

The function merge-sort first uses make-singles to create a list of single lists; then it relies on
merge-all-neighbors to shorten the list of lists until it contains a single list. The latter is the
result.

26.2 Structural versus Generative Recursion
The template for algorithms is so general that it even covers functions based on structural
recursion. Consider the version with one termination clause and one generation step:

(define (generative-recursive-fun problem)
 (cond
 [(trivially-solvable? problem)
 (determine-solution problem)]
 [else
 (combine-solutions
 problem
 (generative-recursive-fun (generate-problem problem)))]))

If we replace trivially-solvable? with empty? and generate-problem with rest, the
outline is a template for a list-processing function:

(define (generative-recursive-fun problem)
 (cond
 [(empty? problem) (determine-solution problem)]
 [else
 (combine-solutions
 problem
 (generative-recursive-fun (rest problem)))]))

Exercise 26.2.1. Define determine-solution and combine-solutions so that the function
generative-recursive-fun computes the length of its input.

This discussion raises the question of whether there is a difference between between functions
based on structural recursion and those based on generative recursion. The answer is ``it
depends.'' Of course, we could say that all functions using structural recursion are just special
cases of generative recursion. This ``everything is equal'' attitude, however, is of no help if we
wish to understand the process of designing functions. It confuses two classes of functions that
are designed with different approaches and that have different consequences. One relies on a
systematic data analysis and not much more; the other requires a deep, often mathematical,
insight into the problem-solving process itself. One leads programmers to naturally terminating
functions; the other requires a termination argument.

A simple inspection of a function's definition quickly shows whether a function uses structural or
generative recursion. All self-applications of a structurally recursive function always receive an

TE
AM
FL
Y

TEAM FLY PRESENTS

-313-

immediate component of the current input for further processing. For example, for a constructed
list, the immediate components are the first item and the rest of the list. Hence, if a function
consumes a plain list and its recursive use does not consume the rest of the list, its definition is
not structural but generative. Or, put positively, properly recursive algorithms consume newly
generated input, which may or may not contain components of the input. In any case, the new
piece of data represents a different problem than the given one, but still a problem of the same
general class of problems.

26.3 Making Choices
A user cannot distinguish sort and quick-sort. Both consume a list of numbers; both produce
a list that consists of the same numbers arranged in ascending order. To an observer, the
functions are completely equivalent.56 This raises the question of which of the two a programmer
should provide. More generally, if we can develop a function using structural recursion and an
equivalent one using generative recursion, what should we do?

To understand this choice better, let's discuss another classical example of generative recursion
from mathematics: the problem of finding the greatest common divisor of two positive natural
numbers.57 All such numbers have at least one divisor in common: 1. On occasion, this is also the
only common divisor. For example, 2 and 3 have only 1 as common divisor because 2 and 3,
respectively, are the only other divisors. Then again, 6 and 25 are both numbers with several
divisors:

1. 6 is evenly divisible by 1, 2, 3, and 6;
2. 25 is evenly divisible by 1, 5, and 25.

Still, the greatest common divisior of 25 and 6 is 1. In contrast, 18 and 24 have many common
divisors:

1. 18 is evenly divisible by 1, 2, 3, 6, 9, and 18;
2. 24 is evenly divisible by 1, 2, 3, 4, 6, 8, 12, and 24.

The greatest common divisor is 6.

Following the design recipe, we start with a contract, a purpose statement, and a header:

;; gcd : N[>= 1] N[>= 1] -> N
;; to find the greatest common divisior of n and m
(define (gcd n m)
 ...)

The contract specifies the precise inputs: natural numbers that are greater or equal to 1 (not 0).

Now we need to make a decision whether we want to pursue a design based on structural or on
generative recursion. Since the answer is by no means obvious, we develop both. For the
structural version, we must consider which input the function should process: n, m, or both. A
moment's consideration suggests that what we really need is a function that starts with the
smaller of the two and outputs the first number smaller or equal to this input that evenly divides
both n and m.

TE
AM
FL
Y

TEAM FLY PRESENTS

-314-

;; gcd-structural : N[>= 1] N[>= 1] -> N
;; to find the greatest common divisior of n and m
;; structural recursion using data definition of N[>= 1]
(define (gcd-structural n m)
 (local ((define (first-divisior-<= i)
 (cond
 [(= i 1) 1]
 [else (cond
 [(and (= (remainder n i) 0)
 (= (remainder m i) 0))
 i]
 [else (first-divisior-<= (- i 1))])])))
 (first-divisior-<= (min m n))))

Figure 70: Finding the greatest common divisor via structural recursion

We use local to define an appropriate auxiliary function: see figure 70. The conditions ``evenly
divisible'' have been encoded as (= (remainder n i) 0) and (= (remainder m i) 0). The
two ensure that i divides n and m without a remainder. Testing gcd-structural with the
examples shows that it finds the expected answers.

Although the design of gcd-structural is rather straightforward, it is also naive. It simply tests
for every number whether it divides both n and m evenly and returns the first such number. For
small natural numbers, this process works just fine. Consider the following example, however:

(gcd-structural 101135853 45014640)

The result is 177 and to get there gcd-structural had to compare 101135676, that is,
101135853 - 177, numbers. This is a large effort and even reasonably fast computers spend
several minutes on this task.

Exercise 26.3.1. Enter the definition of gcd-structural into the Definitions window and
evaluate (time (gcd-structural 101135853 45014640)) in the Interactions window.

Hint: After testing gcd-structural conduct the performance tests in the Full Scheme language
(without debugging), which evaluates expressions faster than the lower language levels but with
less protection. Add (require-library "core.ss") to the top of the Definitions window.
Have some reading handy!

Since mathematicians recognized the inefficiency of the ``structural algorithm'' a long time ago,
they studied the problem of finding divisiors in more depth. The essential insight is that for two
natural numbers larger and smaller, their greatest common divisor is equal to the greatest
common divisior of smaller and the remainder of larger divided into smaller. Here is how
we can put this insight into equational form:

 (gcd larger smaller)
= (gcd smaller (remainder larger smaller))

Since (remainder larger smaller) is smaller than both larger and smaller, the right-hand
side use of gcd consumes smaller first.

TE
AM
FL
Y

TEAM FLY PRESENTS

-315-

Here is how this insight applies to our small example:

1. The given numbers are 18 and 24.
2. According to the mathematicians' insight, they have the same greatest common divisor as

18 and 6.
3. And these two have the same greatest common divisor as 6 and 0.

And here we seem stuck because 0 is nothing expected. But, 0 can be evenly divided by every
number, so we have found our answer: 6.

Working through the example not only explains the idea but also suggests how to discover the
case with a trivial solution. When the smaller of the two numbers is 0, the result is the larger
number. Putting everything together, we get the following definition:

;; gcd-generative : N[>= 1] N[>=1] -> N
;; to find the greatest common divisior of n and m
;; generative recursion: (gcd n m) = (gcd n (remainder m n)) if (<= m n)
(define (gcd-generative n m)
 (local ((define (clever-gcd larger smaller)
 (cond
 [(= smaller 0) larger]
 [else (clever-gcd smaller (remainder larger smaller))])))
 (clever-gcd (max m n) (min m n))))

The local definition introduces the workhorse of the function: clever-gcd, a function based on
generative recursion. Its first line discovers the trivially solvable case by comparing smaller to
0 and produces the matching solution. The generative step uses smaller as the new first
argument and (remainder larger smaller) as the new second argument to clever-gcd,
exploiting the above equation.

If we now use gcd-generative with our complex example from above:

(gcd-generative 101135853 45014640)

we see that the response is nearly instantaneous. A hand-evaluation shows that clever-gcd
recurs only nine times before it produces the solution: 177. In short, generative recursion has
helped find us a much faster solution to our problem.

Exercise 26.3.2. Formulate informal answers to the four key questions for gcd-
generative. Exercise 26.3.3. Define gcd-generative and evaluate

(time (gcd-generative 101135853 45014640))

in the Interactions window.

Evaluate (clever-gcd 101135853 45014640) by hand. Show only those lines that introduce a
new recursive call to clever-gcd.

Exercise 26.3.4. Formulate a termination argument for gcd-generative.

TE
AM
FL
Y

TEAM FLY PRESENTS

-316-

Considering the above example, it is tempting to develop functions using generative recursion.
After all, they produce answers faster! This judgment is too rash for three reasons. First, even a
well-designed algorithm isn't always faster than an equivalent structurally recursive function. For
example, quick-sort wins only for large lists; for small ones, the standard sort function is
faster. Worse, a badly designed algorithm can wreak havoc on the performance of a program.
Second, it is typically easier to design a function using the recipe for structural recursion.
Conversely, designing an algorithm requires an idea of how to generate new, smaller problems, a
step that often requires deep mathematical insight. Finally, people who read functions can easily
understand structurally recursive functions, even without much documentation. To understand an
algorithm, the generative step must be well explained, and even with a good explanation, it may
still be difficult to grasp the idea.

Experience shows that most functions in a program employ structural recursion; only a few
exploit generative recursion. When we encounter a situation where a design could use either the
recipe for structural or generative recursion, the best approach is often to start with a structural
version. If it turns out to be too slow, the alternative design using generative recursion should be
explored. If it is chosen, it is important to document the problem generation with good examples
and to give a good termination argument.

Exercise 26.3.5. Evaluate

(quick-sort (list 10 6 8 9 14 12 3 11 14 16 2))

by hand. Show only those lines that introduce a new recursive call to quick-sort. How many
recursive applications of quick-sort are required? How many recursive applications of append?
Suggest a general rule for a list of length N.

Evaluate

(quick-sort (list 1 2 3 4 5 6 7 8 9 10 11 12 13 14))

by hand. How many recursive applications of quick-sort are required? How many recursive
applications of append? Does this contradict the first part of the exercise?

Exercise 26.3.6. Add sort and quick-sort to the Definitionswindow. Test the functions
and then explore how fast each works on various lists. The experiment should confirm the claim
that the plain sort function wins (in many comparisons) over quick-sort for short lists and
vice versa. Determine the cross-over point. Then build a sort-quick-sort function that
behaves like quick-sort for large lists and switches over to the plain sort function for lists
below the cross-over point.

Hints: (1) Use the ideas of exercise 26.3.5 to create test cases. (2) Develop create-tests, a
function that creates large test cases randomly. Then evaluate

(define test-case (create-tests 10000))
(collect-garbage)
(time (sort test-case))
(collect-garbage)
(time (quick-sort test-case))

The uses of collect-garbage helps DrScheme deal with large lists.

TE
AM
FL
Y

TEAM FLY PRESENTS

-317-

55 Of course, we could have just argued that the sorted version of a one-item list is the list, which
is the basis of exercise 25.2.2.

56 The concept of observably equivalent functions and expressions plays a central role in the
study of programming languages and their meaning.

57 The material on the greatest common divisor was suggested by John Stone.

TE
AM
FL
Y

TEAM FLY PRESENTS

-318-

Section 27

Variations on a Theme
As we have seen in the previous two sections, the design of an algorithm usually starts with an
informal description of a mechanism. The kernel of this description is about how to create a
problem that is more easily solvable than the given one and whose solution contributes to the
solution of the given problem. Coming up with such ideas requires studying many different
examples. This section presents several illustrative examples of the design recipe for generative
recursion. Some are directly drawn from mathematics, which is the source of many ideas for
general problem-solving processes; others come from computational contexts. The important
point is to understand the generative ideas behind the algorithms so that they can be applied in
other contexts.

The first example is a graphical illustration of our principle: the Sierpinski triangle. The second
one concerns ``parsing,'' that is, the process of dissecting sequences of symbols. The third one
explains the divide-and-conquer principle with a simple mathematical example: finding the root
of a function. Many mathematical processes exploit this idea, and it is important to understand
the idea for applied mathematics. In the fourth section, we discuss yet another way of finding a
root, this time based on Newton's method. The last section is an extended exercise; it introduces
Gaussian elimination, the first step in solving a system of equations.

27.1 Fractals
Fractals play an important role in computational geometry. Flake (The Computational Beauty of
Nature, The MIT Press, 1998) says that ``geometry can be extended to account for objects with a
fractional dimension. Such objects, known as fractals, come very close to capturing the richness
and variety of forms found in nature. Fractals possess structural self-similarity on multiple ...
scales, meaning that a piece of a fractal will often look like the whole.''

TE
AM
FL
Y

TEAM FLY PRESENTS

-319-

Figure 71: The Sierpinski triangle

Figure 71 displays an example of a fractal, widely known as the Sierpinski triangle. The basic
shape is an (equilateral) triangle, as shown in the left-most picture. In the right-most example we
see that the triangle is repated many times and in many sizes inside of the outermost triangle. The
picture in the middle is a snapshot from the middle of the drawing process.

The middle picture also suggests what the generative step might look like. Given the three
endpoints of a triangle, we draw the triangle and then compute the midpoint of each side. If we
were to connect these midpoints to each other, we would divide the given triangle into four
triangles. The middle picture illustrates this idea. The Sierpinski triangle is the result of repeating
the process for the three outer triangles and leaving the inner one alone.

A function that draws this nest of triangles must mirror this process. Its input data must represent
the triangle that we start with. The process stops when the input data specifies a triangle that is
too small to be drawn. Since all of our drawing functions produce true when they are done, we
agree that our Sierpinski function should also produce true.

If the given triangle is still large enough, the function must draw the triangle and possibly some
nested ones. The trick is to translate the partitioning of the triangle into Scheme. Let us
summarize our discussion with a skeletal Scheme definition:

;; sierpinski : posn posn posn -> true
;; to draw a Sierpinski triangle down at a, b, and c,
;; assuming it is large enough
(define (sierpinski a b c)
 (cond
 [(too-small? a b c) true]
 [else ... (draw-triangle a b c) ...]))

The function consumes three posn structures and returns true when it is done. The cond-
expression reflects the general outline of an algorithm. It is our task to define too-small?, the
function that determines whether the problem is trivially solvable, and draw-triangle. In
addition, we must still add a Scheme expression that formulates the partitioning of the triangle.

The partitioning step requires the function to determine the three mid-points between the three
end-points. Let us call these new mid-points a-b, b-c, and c-a. Together with the given
endpoints, a, b, and c, they determine four triangles: a, a-b, c-a; b, a-b, b-c; c, c-a, b-c;
a-b, b-c, c-a. Thus, if we wanted to create the Sierpinski triangle for, say, the first listed
triangle, we would use (sierpinski a a-b c-a).

Since each midpoint is used twice, we use a local-expression to translate the generative step into
Scheme. The local-expression introduces the three new midpoints. Its body contains three
recursive applications of sierpinski and the draw-triangle application mentioned earlier. To
combine the solutions of the three problems, we use an and-expression, which ensures that all
three recursions must succeed. Figure 72 collects all the relevant definitions, including two small
functions based on domain knowledge from geometry.

;; sierpinski : posn posn posn -> true

TE
AM
FL
Y

TEAM FLY PRESENTS

-320-

;; to draw a Sierpinski triangle down at a, b, and c,
;; assuming it is large enough
(define (sierpinski a b c)
 (cond
 [(too-small? a b c) true]
 [else
 (local ((define a-b (mid-point a b))
 (define b-c (mid-point b c))
 (define c-a (mid-point a c)))
 (and
 (draw-triangle a b c)
 (sierpinski a a-b c-a)
 (sierpinski b a-b b-c)
 (sierpinski c c-a b-c)))]))

;; mid-point : posn posn -> posn
;; to compute the mid-point between a-posn and b-posn
(define (mid-point a-posn b-posn)
 (make-posn
 (mid (posn-x a-posn) (posn-x b-posn))
 (mid (posn-y a-posn) (posn-y b-posn))))

;; mid : number number -> number
;; to compute the average of x and y
(define (mid x y)
 (/ (+ x y) 2))

Figure 72: The Sierpinski algorithm

Since sierpinski is based on generative recursion, collecting the code and testing it is not the
last step. We must also consider why the algorithm terminates for any given legal input. The
inputs of sierpinski are three positions. The algorithm terminates if the corresponding triangle
is too small. But, each recursive step subdivides the triangle so that the sum of its sides is only
half of the given triangle. Hence the size of the triangles indeed decreases and sierpinski is
bound to produce true.

Exercise 27.1.1. Develop the functions

1. ;; draw-triangle : posn posn posn -> true
2. ;; too-small? : posn posn posn -> bool

to complete the definitions in figure 72.

Use the teachpack draw.ss to test the code. For a first test of the complete function, use the
following definitions:

(define A (make-posn 200 0))
(define B (make-posn 27 300))
(define C (make-posn 373 300)

Create a canvas with (start 400 400). Experiment with other end points and canvas
dimensions.

TE
AM
FL
Y

TEAM FLY PRESENTS

-321-

Exercise 27.1.2. The process of drawing a Sierpinski triangle usually starts from an equilateral
shape. To compute the endpoints of an equilateral Sierpinski triangle, we can pick a large circle
and three points on the circle that are 120 degrees apart. For example, they could be at 0, 120,
240:

(define CENTER (make-posn 200 200))

(define RADIUS 200)

;; cicrcl-pt : number -> posn
;; to compute a position on the circle with CENTER
;; and RADIUS as defined above
(define (circle-pt factor) ...)

(define A (circle-pt 120/360))
(define B (circle-pt 240/360))
(define C (circle-pt 360/360))

Develop the function circle-pt.

Hints: Recall that DrScheme's sin and cos compute the sine and cosine in terms of radians, not
degrees. Also keep in mind that on-screen positions grow downwards not upwards.

Exercise 27.1.3. Rewrite the function in figure 72 to use structures for the representation of
triangles. Then apply the new function to a list of triangles and observe the effect.

Exercise 27.1.4. Take a look at the following two pictures:

The left one is the basic step for the generation of the ``Savannah'' tree on the right. It is
analogous to the middle picture on page 34. Develop a function that draws trees like the one in
the right picture.

Hint: Think of the problem as drawing a straight line, given its starting point and an angle in, say,
radians. Then, the generative step divides a single straight line into three pieces and uses the two

TE
AM
FL
Y

TEAM FLY PRESENTS

-322-

intermediate points as new starting points for straight lines. The angle changes at each step in a
regular manner.

Exercise 27.1.5. In mathematics and computer graphics, people must often connect some given
points with a smooth curve. One popular method for this purpose is due to Bezier.58 Here is a
sequence of pictures that illustrate the idea:

For simplicity, we start with three points: p1, p2, and p3. The goal is to draw a smooth curve
from p1 to p3, viewed from p2. The original triangle is shown on the left; the desired curve
appears on the right.

To draw the curve from a given triangle, we proceed as follows. If the triangle is small enough,
draw it. It appears as a large point. If not, generate two smaller triangles as illustrated in the
center picture. The outermost points, p1 and p3, remain the respective outermost points. The
replacements for the point in the middle are r2 and q2, which are the midpoints between p1 and
p2 and between p2 and p3, respectively. The midpoint between r2 and q2 (marked with) is the
new left-most and right-most endpoint, respectively, for the two new triangles.

To test the function, use the teachpack draw.ss. Here is some good test data:

(define p1 (make-posn 50 50))
(define p2 (make-posn 150 150))
(define p3 (make-posn 250 100))

Use (start 300 200) to create the canvas. Experiment with other positions.

27.2 From Files to Lines, from Lists to Lists of Lists
In section 16, we discussed the organization of computer files, which is one way to equip a
computer with permanent memory. We did not discuss the nature of files per se. Roughly put, we
can think of a file as a list of symbols:

A file is either

TE
AM
FL
Y

TEAM FLY PRESENTS

-323-

1. empty, or
2. (cons s f) where s is a symbol and f is a file.

A fully faithful representation of files should include only symbols that correspond to characters,
but for our purposes we may ignore this distinction.

Following a tradition that predates computers,59 one symbol is almost always treated differently:
'NL. The symbol stands for newline and separates two lines from each other. That is, 'NL
indicates the end of one line and the beginning of another. In most cases, it is therefore better to
think of files as data with more structure. In particular, a file could be represented as a list of
lines, where each line is a list of symbols.

For example, the file

(list 'how 'are 'you 'NL
 'doing '? 'NL
 'any 'progress '?)

should be processed as a list of three lines:

(list (list 'how 'are 'you)
 (list 'doing '?)
 (list 'any 'progress '?))

Similarly, the file

(list 'a 'b 'c 'NL
 'd 'e 'NL
 'f 'g 'h 'NL)

is also represented as a list of three lines, because, by convention, an empty line at the end is
ignored:

(list (list 'a 'b 'c)
 (list 'd 'e)
 (list 'f 'g 'h))

Exercise 27.2.1. Determine what the list-of-lines representation for empty, (list 'NL), and
(list 'NL 'NL) should be. Why are these examples important test cases?

Hint: Keep in mind that an empty line at the end is ignored.

Here are the contract, purpose statement, and header:

;; file->list-of-lines : file -> (listof (listof symbols))
;; to convert a file into a list of lines
(define (file->list-of-lines afile) ...)

Describing the process of separating a file into a list of lines is easy. The problem is trivially
solvable if the file is empty; in that case, the file doesn't contain a line. Otherwise, the file
contains at least one symbol and thus at least one line. This line must be separated from the rest
of the file, and then the rest of the file must be translated into a list of lines.

TE
AM
FL
Y

TEAM FLY PRESENTS

-324-

Let us sketch this process description in Scheme:

(define (file->list-of-lines afile)
 (cond
 [(empty? afile) ...]
 [else
 ... (first-line afile) ...
 ... (file->list-of-lines (remove-first-line afile)) ...]))

Because the separation of the first line from the rest of the file requires a scan of an arbitrarily
long list of symbols, we add two auxiliary functions to our wish list: first-line, which collects
all symbols up to, but excluding, the first occurrence of 'NL or the end of the list; and remove-
first-line, which removes all those symbols and produces the remainder of afile.

;; file->list-of-lines : file -> (listof (listof symbol))
;; to convert a file into a list of lines
(define (file->list-of-lines afile)
 (cond
 [(empty? afile) empty]
 [else
 (cons (first-line afile)
 (file->list-of-lines (remove-first-line afile)))]))

;; first-line : file -> (listof symbol)
;; to compute the prefix of afile up to the first occurrence of NEWLINE
(define (first-line afile)
 (cond
 [(empty? afile) empty]
 [else (cond
 [(symbol=? (first afile) NEWLINE) empty]
 [else (cons (first afile) (first-line (rest afile)))])]))

;; remove-first-line : file -> (listof symbol)
;; to compute the suffix of afile behind the first occurrence of NEWLINE
(define (remove-first-line afile)
 (cond
 [(empty? afile) empty]
 [else (cond
 [(symbol=? (first afile) NEWLINE) (rest afile)]
 [else (remove-first-line (rest afile))])]))

(define NEWLINE 'NL)

Figure 73: Translating a file into a list of lines

From here, we can fill the gaps easily. In file->list-of-lines, the answer in the first clause
must be empty because an empty file does not contain any lines. The answer in the second clause
must cons the value of (first-line afile) onto the value (file->list-of-lines
(remove-first-line afile)), because the first expression computes the first line and the
second one computes the rest of the lines. Finally, the auxiliary functions process their inputs in a
structurally recursive manner; their development is a straightforward exercise. Figure 73 collects
the three function definitions and a variable definition for NEWLINE.

Let us take a look at the process of turning the first file from above into a list of lines:

TE
AM
FL
Y

TEAM FLY PRESENTS

-325-

 (file->list-of-lines (list 'a 'b 'c 'NL 'd 'e 'NL 'f 'g 'h 'NL))

= (cons (list 'a 'b 'c) (file->list-of-lines (list 'd 'e 'NL 'f 'g 'h
'NL)))

= (cons (list 'a 'b 'c)
 (cons (list 'd 'e)
 (file->list-of-lines (list 'f 'g 'h 'NL))))

= (cons (list 'a 'b 'c)
 (cons (list 'd 'e)
 (cons (list 'f 'g 'h)
 (file->list-of-lines empty))))

= (cons (list 'a 'b 'c)
 (cons (list 'd 'e)
 (cons (list 'f 'g 'h)
 empty)))

= (list (list 'a 'b 'c)
 (list 'd 'e)
 (list 'f 'g 'h))

From this evaluation we can easily tell that the argument of the recursive application of file-
>list-of-lines is almost never the rest of the given file. That is, it is basically never an
immediate component of the given file but always a proper suffix. The only exception occurs
when 'NL occurs twice in a row.

Finally, the evaluation and the definition of file->list-of-lines show that its generative
recursion is simple. Every recursive application consumes a list that is shorter than the given one.
Hence the recursive process eventually stops because the function consumes empty.

Exercise 27.2.2. Organize the program in figure 73 using local.

Abstract the functions first-line and remove-first-line. Then organize the resulting
program using a local again.

Exercise 27.2.3. Design file->list-of-checks. The function consumes a file of numbers
and outputs a list of restaurant records.

A file of numbers is either

1. empty, or
2. (cons N F) where N is a number and F is a file, or
3. (cons 'NL F), where F is a file.

The output of file->list-of-checks is a list of restaurant structures with two fields:

(define-struct rr (table costs))

They are: a table number and a list of amounts charged to that table.

Example:

TE
AM
FL
Y

TEAM FLY PRESENTS

-326-

(equal? (file->list-of-checks
 (list 1 2.30 4.00 12.50 13.50 'NL
 2 4.00 18.00 'NL
 4 2.30 12.50))
 (list (make-rr 1 (list 2.30 4.00 12.50 13.50))
 (make-rr 2 (list 4.00 18.00))
 (make-rr 4 (list 2.30 12.50))))

Exercise 27.2.4. Develop the function create-matrix. It consumes a number n and a list of n2
numbers. It produces a list of n lists of n numbers.

Example:

(equal? (create-matrix 2 (list 1 2 3 4))
 (list (list 1 2)
 (list 3 4)))

27.3 Binary Search
Applied mathematicians model the real-world with non-linear equations and then try to solve
them. Here is a simplistic example:

Given a perfect cube that encloses 27m3. What area do its six walls cover?
We know from geometry that if the length of a cube's side is x, the enclosed space is x3. Hence
we need to know the possible values of x such that

Once we have solved the equation, the covered area is 6 · x2.

In general, we are given a function f from numbers to numbers, and want to know some number r
such that

The value r is called the root of f. In our above example, f(x) = x3 - 27, and the value r is the
length of the side of the cube.60

For the past few centuries, mathematicians have developed many methods for finding the root of
different types of functions. In this section, we study a solution that is based on the Intermediate
Value Theorem, an early result of mathematical analysis. The resulting algorithm is a primary
example of generative recursion based on a deep mathematical theorem. It has been adapted to
other uses and has become known as the binary search algorithm in computer science.

TE
AM
FL
Y

TEAM FLY PRESENTS

-327-

Figure 74: A numeric function f with root in interval [a,b] (stage 1)

The Intermediate Value Theorem says that a continuous function f has a root in an interval [a,b]
if the signs of f(a) and f(b) differ. By continuous we mean a function that doesn't ``jump,'' that
doesn't have gaps, and that always continues in a ``smooth'' fashion. The theorem is best
illustrated with the graph of a function. The function f in figure 74 is below the x axis at a and
above the x-axis at b. It is a continuous function, which we can tell from the uninterrupted,
smooth line. And indeed, the function intersects the x axis somewhere between a and b.

Now take a look at the midpoint between a and b:

It partitions the interval [a,b] into two smaller, equally large intervals. We can now compute the
value of f at m and see whether it is below or above 0. Here f(m) < 0, so according to the
Intermediate Value Theorem, the root is in the right interval: [m,b]. Our picture confirms this
because the root is in the right half of the interval, labeled ``range 2'' in figure 74.

The abstract description of the Intermediate Value Theorem and the illustrative example describe
a process for finding a root. Specifically, we use the halving step as many times as necessary to
determine a tolerably small range in which f must have a root. Let us now translate this
description into a Scheme algorithm, which we call find-root.

To begin with, we must agree on the exact task of find-root. It consumes a function, let's call it
f, for which we need to find a root. In addition, it must consume the boundaries of the interval in
which we expect to find a root. For simplicity, let's say that find-root consumes two numbers:
left and right. But these parameters can't be just any two numbers. For our algorithm to work
we must assume that

(or (<= (f left) 0 (f right))
 (<= (f right) 0 (f left)))

TE
AM
FL
Y

TEAM FLY PRESENTS

-328-

holds. This assumption expresses the condition of the Intermediate Value Theorem that the
function must have different signs for left and right.

According to the informal process description, the task of find-root is to find an interval that
contains a root and that is tolerably small. The size of the given interval is (- right left). For
the moment, we assume that the tolerance is defined as a top-level variable TOLERANCE. Given
that, find-root can produce one of the two boundaries of the interval because we know what its
size is; let's pick the left one.

Here is a translation of our discussion into a contract, a purpose statement, and a header,
including the assumption on the parameters:

;; find-root : (number -> number) number number -> number
;; to determine R such that f has a root in [R,(+ R TOLERANCE)]
;;
;; ASSUMPTION: (or (<= (f left) 0 (f right)) (<= (f right) 0 (f left)))
(define (find-root f left right) ...)

At this stage, we should develop an example of how the function works. We have already seen
one; the following exercise develops a second one.

Exercise 27.3.1. Consider the following function definition:

;; poly : number -> number
(define (poly x)
 (* (- x 2) (- x 4)))

It defines a binomial for which we can determine its roots by hand -- they are 2 and 4. But it is
also a non-trivial input for find-root, so that it makes sense to use it as an example.

Mimic the root-finding process based on the Intermediate Value Theorem for poly, starting with
the interval 3 and 6. Tabulate the information as follows:

#step left (f left) right (f right) mid (f mid)
n = 1 3 -1 6.00 8.00 4.5 1.25
n = 2 3 -1 4.25 1.25 ? ?

Find an interval of size .5 (or less) in which poly contains a root.

Next we turn our attention to the definition of find-root. We start from generative-
recursive-fun and ask the four relevant questions:

1. We need a condition that describes when the problem is solved and a matching answer.
This is straightforward. The problem is solved if the distance from left to right is
smaller than or equal to TOLERANCE:
2. (<= (- right left) TOLERANCE)

The matching result is left.

TE
AM
FL
Y

TEAM FLY PRESENTS

-329-

3. We must formulate an expression that generates new problems for find-root. According
to our informal process description, this step requires determining the midpoint and
choosing the next interval. The midpoint is used several times, so we use a local-
expression to introduce it:
4. (local ((define mid (/ (+ left right) 2)))
5. ...)

Choosing an interval is more complicated than that.

Consider the Intermediate Value Theorem again. It says that a given interval is an
interesting candidate if the function values at the boundaries have different signs. For the
function's purpose statement, we expressed this constraint using

(or (<= (f left) 0 (f right)) (<= (f right) 0 (f left)))

Accordingly, the interval between left and mid is the next candidate if

(or (<= (f left) 0 (f mid)) (<= (f mid) 0 (f left)))

And, the interval between mid and right is it, if

(or (<= (f mid) 0 (f right)) (<= (f right) 0 (f mid)))

In short, the body of the local-expression must be a conditional:

(local ((define mid (/ (+ left right) 2)))
 (cond
 [(or (<= (f left) 0 (f mid)) (<= (f mid) 0 (f left)))
 (find-root left mid)]
 [(or (<= (f mid) 0 (f right)) (<= (f right) 0 (f mid)))
 (find-root mid right)]))

In both clauses, we use find-root to continue the search.

The completed function is displayed in figure 75. The following exercises suggest some tests and
a termination argument.

;; find-root : (number -> number) number number -> number
;; to determine a number R such that f has a
;; root between R and (+ R TOLERANCE)
;;
;; ASSUMPTION: f is continuous and monotonic
(define (find-root f left right)
 (cond
 [(<= (- right left) TOLERANCE) left]
 [else
 (local ((define mid (/ (+ left right) 2)))
 (cond
 [(<= (f mid) 0 (f right))
 (find-root mid right)]
 [else
 (find-root left mid)]))]))

Figure 75: The root-finding algorithm find-root

TE
AM
FL
Y

TEAM FLY PRESENTS

-330-

Exercise 27.3.2. Use poly from 27.3.1 to test find-root. Experiment with different values for
TOLERANCE. Use the strategy of section 17.8 to formulate the tests as boolean-valued
expressions.

Exercise 27.3.3. Suppose the original arguments of find-root describe an interval of size S1.
How large is the distance between left and right for the first recursive call to find-root? The
second one? And the third? After how many evaluation steps is the distance between left and
right smaller than or equal to TOLERANCE? How does the answer to this question show that
find-root produces an answer for all inputs that satisfy the assumption?

Exercise 27.3.4. For every midpoint m, except for the last one, the function find-root needs to
determine the value of (f m) twice. Validate this claim for one example with a hand-evaluation.

Since the evaluation of (f m) may be time-consuming, programmers often implement a variant
of find-root that avoids this recomputation. Modify find-root in figure 75 so that it does not
need to recompute the value of (f mid).

Hint: Define a help function find-root-aux that takes two extra arguments: the values (f
left) and (f right).

Exercise 27.3.5. A table is a function that consumes natural numbers between 0 and VL
(exclusive) and produces numbers:

;; g : N -> num
;; ASSUMPTION: i is between 0 and VL
(define (g i)
 (cond
 [(= i 0) -10]
 [(= i 1) ...]
 ...
 [(= i (- VL 1)) ...]
 [else (error 'g "is defined only between 0 and VL (exclusive)")]))

The number VL is called the table's length. The root of a table is the number in the table that is
closest to 0. Even if we can't read the definition of a table, we can find its root with a search
function.

Develop the function find-root-linear, which consumes a table, the table's length, and finds
the root of the table. Use structural induction on natural numbers. This kind of root-finding
process is often called a LINEAR SEARCH.

A table t is sorted in ascending order if (t 0) is less then (t 1), (t 1) is less than (t 2), and
so on. If a table is monotonic, we can determine the root using binary search. Specifically, we
can use binary search to find an interval of size 1 such that either the left or the right boundary is
the root's index. Develop find-root-discrete, which consumes a table and its length, and
finds the table's root.

TE
AM
FL
Y

TEAM FLY PRESENTS

-331-

Hints: (1) The interval boundary arguments for find-root-discrete must always be natural
numbers. Consider how this affects the midpoint computation. (2) Also contemplate how the first
hint affects the discovery of trivially solvable problem instances. (3) Does the termination
argument from exercise 27.3.3 apply?

If the tabulating function is defined on all natural numbers between 0 and 1024, and if its root is
at 0, how many recursive applications are needed with find-root-discrete and find-root-
lin to determine a root interval?

Exercise 27.3.6. We mentioned in section 23.4 that mathematicians are interested not only
about the roots of functions, but also in the area that a function encloses between two points.
Mathematically put, we are interested in integrating functions over some interval. Take another
look at the graph in figure 64 on page 29. Recall that the area of interest is that enclosed by the
bold vertical lines at a and b, the x axis, and the graph of the function.

In section 23.4, we learned to approximate the area by computing and adding up the area of
rectangles like the two above. Using the divide-and-conquer strategy, we can also design a
function that computes the area based on generative recursion. Roughly speaking, we split the
interval into two pieces, compute the area of each piece, and add the two areas together.

Step 1: Develop the algorithm integrate-dc, which integrates a function f between the
boundaries left and right via the divide-and-conquer strategy employed in find-root. Use
rectangle approximations when an interval has become small enough.

Although the area of a rectangle is easy to compute, a rectangle is often a bad approximation of
the area under a function graph. A better geometric shape is the trapezoid limited by a, (f a), b,
and (f b). Its area is:

Step 2: Modify integrate-dc so that it uses trapezoids instead of rectangles.

The plain divide-and-conquer approach is wasteful. Consider that a function graph is level in one
part and rapidly changes in another. For the level part it is pointless to keep splitting the interval.
We could just compute the trapezoid over a and b instead of the two halves.

To discover when f is level, we can change the algorithm as follows. Instead of just testing how
large the interval is, the new algorithm computes the area of three trapezoids: the given one, and
the two halves. Suppose the difference between the two is less than

This area represents a small rectangle, of height TOLERANCE, and represents the error margin of
our computation. In other words, the algorithm determines whether f changes enough to affect
the error margin, and if not, it stops. Otherwise, it continues with the divide-and-conquer
approach.

Step 3: Develop integrate-adaptive, which integrates a function f between left and right
according to the suggested method. Do not discuss the termination of integrate-adaptive.

TE
AM
FL
Y

TEAM FLY PRESENTS

-332-

Adaptive Integration: The algorithm is called ``adaptive integration'' because it automatically
adapts its strategy. For those parts of f that are level, it performs just a few calculations; for the
other parts, it inspects very small intervals so that the error margin is also decreased
accordingly.

27.4 Newton's Method
Newton invented another method for finding the root of a function. Newton's method exploits the
idea of an approximation. To search a root of some function f, we start with a guess, say, r1.
Then we study the tangent of f at r1, that is, the line that goes through the Cartesian point (r1,
f(r1)) and has the same slope as f. This tangent is a linear approximation of f and it has a root
that is in many cases closer to the root of f than our original guess. Hence, by repeating this
process sufficiently often, we can find an r for which (f r) is close to 0.

To translate this process description into Scheme, we follow the familiar process. The function --
let's call it newton in honor of its inventor -- consumes a function f and a number r0, the current
guess. If (f r0) is close to 0, the problem is solved. Of course, close to 0 could be mean (f r0)
is a small positive number or a small negative number. Hence we translate this idea into

(<= (abs (f r0)) TOLERANCE)

That is, we determine whether the absolute value is small. The answer in this case is r0.

The generative step of the algorithm consists of finding the root of the tangent of f at r0. It
generates a new guess. By applying newton to this new guess, we resume the process with what
we hope is a better guess:

;; newton : (number -> number) number -> number
;; to find a number r such that (< (abs (f r)) TOLERANCE)
(define (newton f r0)
 (cond
 [(<= (abs (f r0)) TOLERANCE) r0]
 [else (newton f (find-root-tangent f r0))]))

Since finding the root of a tangent is domain knowledge, we define a separate function for this
purpose:

;; find-root-tangent : (number -> number) number -> number
;; to find the root of the tagent of f at r0
(define (find-root-tangent f r0)
 (local ((define fprime (d/dx f)))
 (- r0
 (/ (f r0)
 (fprime r0)))))

The function first computes (d/dx f), that is, the derivative of f at r0 (see section 23.5) at r0.
The body of the local-expression computes the root from the current guess, (f r0), and the
slope of f at r0.61

The most interesting aspect of newton is that, unlike all other functions we have discussed, it
does not always terminate. Consider the following function:

TE
AM
FL
Y

TEAM FLY PRESENTS

-333-

;; f : number -> number
(define (f x)
 (- (* x x) x 1.8))

A simple hand-calculation shows that its derivative is

;; fprime : number -> number
(define (fprime x)
 (- (* 2 x) 1))

If we were to use 1/2 as the initial guess, we would have to find the root of a tangent with slope
0, that is, a tangent that is parallel to the x axis. Of course, such a tangent doesn't have a root. As
a result, find-root-of-tangent cannot find a tangent and newton won't find a root.

Exercise 27.4.1. Test newton with f. Use the initial guesses 1, 2, and 3. Also use find-root
from the preceding section to find a root.

Use a hand-evaluation to determine how quickly newton finds a value close to the root (if it finds
one). Compare newton's behavior with find-root's behavior.

Employ the strategy of section 17.8 to formulate the tests as boolean-valued expressions.

27.5 Extended Exercise: Gaussian Elimination
Mathematicians not only search for solutions of equations in one variable; they also study whole
systems of linear equations. Here is a sample system of equations in three variables, x, y, and z:

A solution to a system of equations is a series of numbers, one per variable, such that if we
replace the variable with its corresponding number, the two sides of each equation evaluate to the
same number. In our running example, the solution is x = 1, y = 1, and z = 2, as we can easily
check:

The first equation now reads as 10 = 10, the second one as 31 = 31, and the last one as 1 = 1.

One of the most famous methods for finding a solution is called Gaussian elimination. It consists
of two steps. The first step is to transform the system of equations into a system of different
shape but with the same solution. The second step is to find solutions to one equation at a time.
Here we focus on the first step because it is another interesting instance of generative recursion.

The first step of the Gaussian elimination algorithm is called ``triangulation'' because the result is
a system of equations in the shape of a triangle. In contrast, the original system is typically a
rectangle. To understand this terminology, take a look at this representation of the original
system:

TE
AM
FL
Y

TEAM FLY PRESENTS

-334-

This representation captures the essence of the system, namely, the numeric coefficients of the
variables and the right-hand sides. The names of the variables don't play any role.

The generative step in the triangulation phase is to subtract the first row (list) of numbers from
all the other rows. Subtracting one row from another means subtracting the corresponding items
in the two rows. With our running example, this step would yield

when we subtract the first row from the second.

The goal of these subtractions is to put a 0 into the first column of all but the first row. To
achieve this for the last row, we subtract the first row twice from the second one:

Put differently, we first multiply each item in the first row with 2 and then subtract the result
from the last row. It is easy to check that the solutions for the original system of equations and
for this new one are identical.

Exercise 27.5.1. Check that the following system of equations

has the same solution as the one labeled with (±).

Exercise 27.5.2. Develop subtract. The function consumes two lists of numbers of equal
length. It subtracts the first from the second, item by item, as many times as necessary to obtain 0
in the first position. The result is the rest of this list.

Following convention, we drop the leading 0's from the last two equations:

If, in addition, we use the same process for the remainder of the system to generate shorter rows,
the final representation has a triangular shape.

Let us study this idea with our running example. For the moment we ignore the first row and
focus on the rest of the equations:

TE
AM
FL
Y

TEAM FLY PRESENTS

-335-

By subtracting the first row now -1 times from the second one, we get

after dropping the leading 0. The remainder of this system is a single equation, which cannot be
simplified any further.

Here is the result of adding this last system to the first equation:

As promised, the shape of this system of equations is (roughly) a triangle, and as we can easily
check, it has the same solution as the original system.

Exercise 27.5.3. Check that the following system of equations

has the same solution as the one labeled with (±).

Exercise 27.5.4. Develop the algorithm triangulate, which consumes a rectangular
representation of a system of equations and produces a triangular version according the Gaussian
algorithm.

Unfortunately, the current version of the triangulation algorithm occasionally fails to produce the
solution. Consider the following (representation of a) system of equations:

Its solution is x = 1, y = 1, and z = 1.

The first step is to subtract the first row from the second and to subtract it twice from the last one,
which yields the following matrix:

Next our algorithm would focus on the rest of the matrix:

TE
AM
FL
Y

TEAM FLY PRESENTS

-336-

but the first item of this matrix is 0. Since we cannot divide by 0, we are stuck.

To overcome this problem, we need to use another piece of knowledge from our problem domain,
namely, that we can switch equations around without changing the solution. Of course, as we
switch rows, we must make sure that the first item of the row to be moved is not 0. Here we can
simply swap the two rows:

From here we may continue as before, subtracting the first equation from the remaining ones a
sufficient number of times. The final triangular matrix is:

It is easy to check that this system of equations still has the solution x = 1, y = 1, and z = 1.

Exercise 27.5.5. Revise the algorithm triangulate from exercise 27.5.4 so that it switches
rows when the first item of the matrix is 0.

Hint: DrScheme provides the function remove. It consumes an item I and a list L and produces a
list like L but with the first occurrence of I removed. For example,

(equal? (remove (list 0 1) (list (list 2 1) (list 0 1)))
 (list (list 2 1)))

Exercise 27.5.6. Some systems of equations don't have a solution. Consider the following
system as an example:

Try to produce a triangular system by hand and with triangulate. What happens? Modify the
function so that it signals an error if it encounters this situation.

Exercise 27.5.7. After we obtain a triangular system of equations such as (*) on page 34 (or
exercise 27.5.3), we can solve the equations. In our specific example, the last equation says that z
is 2. Equipped with this knowledge, we can eliminate z from the second equation through a
substitution:

Determine the value for y. Then repeat the substitution step for y and z in the first equation and
find the value for x.

Develop the function solve, which consumes triangular systems of equations and produces a
solution. A triangular system of equations has the shape

TE
AM
FL
Y

TEAM FLY PRESENTS

-337-

where aij and bi are numbers. That is, it is a list of lists and each of the lists is one item shorter
than the preceding one. A solution is a list of numbers. The last number on the list is

Hint: Developing solve requires a solution for the following problem. Suppose we are given a
row:

(list 3 9 21)

and a list of numbers that solve the remainder of the system:

(list 2).

In the world of equations, these two pieces of data represent the following knowledge:

and

which in turn means we must solve the following equation:

Develop the function evaluate, which evaluates the rest of the left-hand side of an equation and
subtracts the right-hand side from this sum. Equivalently, evaluate consumes (list 9 21) and
(list 2) and produces -3, that is, 9 · 2 - 21. Now use evaluate for the intermediate step in
solve.

58 Ms. Geraldine Morin suggested this exercise.

59 The tradition of breaking a file into lines is due to the use of punch cards with early mechanical
computers, dating back to the 1890 census. It is meaningless for file storage in modern
computing. Unfortunately, this historical accident continues to affect the development of
computing and software technology in a negative manner.

60 If the equation is originally presented as g(x) = h(x), we set f(x) = g(x) - h(x) to transform the
equation into the standard form.

61 The tangent of a function f at ri is the linear function

TE
AM
FL
Y

TEAM FLY PRESENTS

-338-

The function f' is the derivative of f, and f'(r0) is the slope of f at r0. Furthermore, the root of a
linear function is the intersection of a straight line with the x axis. In general, if the line's
equation is

then its root is - b/a. In our case, the root of f's tangent is

TE
AM
FL
Y

TEAM FLY PRESENTS

-339-

Section 28

Algorithms that Backtrack
Solving problems does not always proceed on a direct route to the goal. Sometimes we make
progress by pursuing one approach only to discover that we are stuck because we took a wrong
turn. In those cases, we backtrack in our exploration and take a different turn at some branch, in
the hope that it leads us to a solution. Algorithms can proceed like that. In the first subsection,
we deal with an algorithm that can help us traverse a graph, which is of course the situation we
just discussed. The second subsection is an extended exercise that uses backtracking in the
context of chess.

28.1 Traversing Graphs
On occasion, we need to navigate through a maze of one-way streets. Or, we may wish to draw a
graph of whom we consider a friend, whom they consider a friend, and so on. Or, we need to
plan a route through a network of pipelines. Or, we ask the Internet to find some way to send a
message from one place to another.

All these situations share a common element: a directed graph.

Specifically, there is always some collection of nodes and a collection of edges. The edges
represent one-way connections between the nodes. Consider figure 76. The black bullets are the
nodes; the arrows between them are the one-way connections. The sample graph consists of
seven nodes and nine edges.

Now suppose we wish to plan routes in the graph of figure 76. For example, if we plan to go
from C to D, the route is simple: it consists of the origination node C and the destination node D.
In contrast, if we wish to travel from E to D, we have two choices:

1. We either travel from E to F and then to D.
2. Or, we travel from E to C and then to D.

For some nodes, however, it is impossible to connect them. In particular, it is impossible in our
sample graph to move from C to G by following the arrows.

TE
AM
FL
Y

TEAM FLY PRESENTS

-340-

Figure 76: A directed graph

In the real world, graphs have more than just seven nodes and many more edges. Hence it is
natural to develop functions that plan routes in graphs. Following the general design recipe, we
start with a data analysis. Here is a compact representation of the graph in figure 76 using lists:

(define Graph
 '((A (B E))
 (B (E F))
 (C (D))
 (D ())
 (E (C F))
 (F (D G))
 (G ())))

The list contains one list per node. Each of these lists starts with the name of a node followed by
the list of its neighbors. For example, the second list represents node B with its two outgoing
edges to E and F.

Exercise 28.1.1. Translate the above definition into proper list form using list and proper
symbols.

The data definition for node is straightforward: A node is a symbol.

Formulate a data definition for graphs with arbitrarily many nodes and edges. The data definition
must specify a class of data that contains Graph.

Based on the data definitions for node and graph, we can now produce the first draft of a
contract for find-route, the function that searches a route in a graph:

;; find-route : node node graph -> (listof node)
;; to create a path from origination to destination in G
(define (find-route origination destination G) ...)

What this header leaves open is the exact shape of the result. It implies that the result is a list of
nodes, but it does not say exactly which nodes the list contains. To understand this aspect, we
must study some examples.

Consider the first problem mentioned above. Here is an expression that formulates the problem
in Scheme:

(find-route 'C 'D Graph)

A route from 'C to 'D consists of just two nodes: the origination and the destination node. Hence,
we should expect the answer (list 'C 'D). Of course, one might argue that since both the
origination node and the destination node are known, the result should be empty. Here we choose
the first alternative since it is more natural, but it requires only a minor change of the final
function definition to produce the latter.

TE
AM
FL
Y

TEAM FLY PRESENTS

-341-

Now consider our second problem, going from 'E to 'D, which is more representative of the
kinds of problems we might encounter. One natural idea is to inspect all of the neighbors of 'E
and to find a route from one of them to 'D. In our sample graph, 'E has two neighbors: 'C and 'F.
Suppose for a moment that we didn't know the route yet. In that case, we could again inspect all
of the neighbors of 'C and find a route from those to our goal. Of course, 'C has a single
neighbor and it is 'D. Putting together the results of all stages shows that the final result is (list
'E 'C 'D).

Our final example poses a new problem. Suppose find-route is given the arguments 'C, 'G,
and Graph. In this case, we know from inspecting figure 76 that there is no connecting route. To
signal the lack of a route, find-route should produce a value that cannot be mistaken for a route.
One good choice is false, a value that isn't a list and naturally denotes the failure of a function
to compute a proper result.

This new agreement requires another change in our contract:

;; find-route : node node graph -> (listof node) or false
;; to create a path from origination to destination in G
;; if there is no path, the function produces false
(define (find-route origination destination G) ...)

Our next step is to understand the four essential pieces of the function: the ``trivial problem''
condition, a matching solution, the generation of a new problem, and the combination step. The
discussion of the three examples suggests answers. First, if the origination argument of find-
route is equal to its destination, the problem is trivial; the matching answer is (list
destination). Second, if the arguments are different, we must inspect all neighbors of
origination in graph and determine whether there is a route from one of those to destination.

Since a node can have an arbitrary number of neighbors, this task is too complex for a single
primitive. We need an auxiliary function. The task of the auxiliary function is to consume a list
of nodes and to determine for each one of them whether there is a route to the destination node in
the given graph. Put differently, the function is a list-oriented version of find-route. Let us call
this function find-route/list. Here is a translation of this informal description into a contract,
header, and purpose statement:

;; find-route/list : (listof node) node graph -> (listof node) or false
;; to create a path from some node on lo-originations to destination
;; if there is no path, the function produces false
(define (find-route/list lo-originations destination G) ...)

Now we can write a first draft of find-route as follows:

(define (find-route origination destination G)
 (cond
 [(symbol=? origination destination) (list destination)]
 [else ... (find-route/list (neighbors origination G) destination
G) ...]))

The function neighbors generates a whole list of problems: the problems of finding routes from
the neighbors of origination to destination. Its definition is a straightforward exercise in
structural processing.

TE
AM
FL
Y

TEAM FLY PRESENTS

-342-

Exercise 28.1.2. Develop the function neighbors. It consumes a node n and a graph g (see
exercise 28.1.1) and produces the list of neighbors of n in g.

Next we need to consider what find-route/list produces. If it finds a route from any of the
neighbors, it produces a route from that neighbor to the final destination. But, if none of the
neighbors is connected to the destination, the function produces false. Clearly, find-route's
answer depends on what find-route/list produces. Hence we should distinguish the answers
with a cond-expression:

(define (find-route origination destination G)
 (cond
 [(symbol=? origination destination) (list destination)]
 [else (local ((define possible-route
 (find-route/list (neighbors origination G)
 destination G)))
 (cond
 [(boolean? route) ...]
 [else ; (cons? route)
 ...]))]))

The two cases reflect the two kinds of answers we might receive: a boolean or a list. If find-
route/list produces false, it failed to find a route from origination's neighbors, and it is
therefore impossible to reach destination at all. The answer in this case must therefore be
false. In contrast, if find-route/list produces a list, the answer must be route from
origination to destination. Since possible-route starts with one of origination's
neighbors, it suffices to add origination to the front of possible-route.

;; find-route : node node graph -> (listof node) or false
;; to create a path from origination to destination in G
;; if there is no path, the function produces false
(define (find-route origination destination G)
 (cond
 [(symbol=? origination destination) (list destination)]
 [else (local ((define possible-route
 (find-route/list (neighbors origination G) destination
G)))
 (cond
 [(boolean? possible-route) false]
 [else (cons origination possible-route)]))]))

;; find-route/list : (listof node) node graph -> (listof node) or false
;; to create a path from some node on lo-Os to D
;; if there is no path, the function produces false
(define (find-route/list lo-Os D G)
 (cond
 [(empty? lo-Os) false]
 [else (local ((define possible-route (find-route (first lo-Os) D G)))
 (cond
 [(boolean? possible-route) (find-route/list (rest lo-Os) D G)]
 [else possible-route]))]))

Figure 77: Finding a route in a graph

Figure 77 contains the complete definition of find-route. It also contains a definition of find-
route/list, which processes its first argument via structural recursion. For each node in the list,

TE
AM
FL
Y

TEAM FLY PRESENTS

-343-

find-route/list uses find-route to check for a route. If find-route indeed produces a route,
that route is the answer. Otherwise, if find-route fails and produces false, the function recurs.
In other words, it backtracks its current choice of a starting position, (first lo-Os), and
instead tries the next one in the list. For that reason, find-route is often called a BACKTRACKING
ALGORITHM.

Backtracking in the Structural World: Intermezzo 3 discusses backtracking in the structural
world. A particularly good example is exercise 18.2.13, which concerns a backtracking function
for family trees. The function first searches one branch of a family tree for a blue-eyed ancestor
and, if this search produces false, it searches the other half of the tree. Since graphs generalize
trees, comparing the two functions is an instructive exercise.

Last, but not least, we need to understand whether the function produces an answer in all
situations. The second one, find-route/list, is structurally recursive and therefore always
produces some value, assuming find-route always does. For find-route the answer is far
from obvious. For example, when given the graph in figure 76 and two nodes in the graph, find-
route always produces some answer. For other graphs, however, it does not always terminate.

Exercise 28.1.3. Test find-route. Use it to find a route from A to G in the graph of figure 76.
Ensure that it produces false when asked to find a route from C to G.

Exercise 28.1.4. Develop the function test-on-all-nodes, which consumes a graph g and
tests find-route on all pairs of nodes in g. Test the function on Graph.

Figure 78: A directed graph with cycle

Consider the graph in figure 78. It differs radically from the graph in figure 76 in that it is
possible to start a route in a node and to return to the same node. Specifically, it is possible to
move from B to E to C and back to B. And indeed, if applied find-route to 'B, 'D, and a
representation of the graph, it fails to stop. Here is the hand-evaluation:

 (find-route 'B 'D Cyclic-graph)
= ... (find-route 'B 'D Cyclic-graph) ...
= ... (find-route/list (list 'E 'F) 'D Cyclic-graph) ...
= ... (find-route 'E 'D Cyclic-graph) ...
= ... (find-route/list (list 'C 'F) 'D Cyclic-graph) ...
= ... (find-route 'C 'D Cyclic-graph) ...
= ... (find-route/list (list 'B 'D) 'D Cyclic-graph) ...
= ... (find-route 'B 'D Cyclic-graph) ...
= ...

TE
AM
FL
Y

TEAM FLY PRESENTS

-344-

where Cyclic-Graph stands for a Scheme representation of the graph in figure 78. The hand-
evaluation shows that after seven applications of find-route and find-route/list the
computer must evaluate the exact same expression from which we started. Since the same input
produces the same output and the same behavior for functions, we know that the function loops
forever and does not produce a value.

In summary, if some given graph is cycle-free, find-route produces some output for any given
inputs. After all, every route can only contain a finite number of nodes, and the number of routes
is finite, too. The function therefore either exhaustively inspects all solutions starting from some
given node or finds a route from the origination to the destination node. If, however, a graph
contains a cycle, that is, a route from some node back to itself, find-route may not produce a
result for some inputs. In the next part, we will study a programming technique that helps us
finds routes even in the presence of cycles in a graph.

Exercise 28.1.5. Test find-route on 'B, 'C, and the graph in figure 78. Use the ideas of
section 17.8 to formulate the tests as boolean-valued expression.

Exercise 28.1.6. Organize the find-route program as a single function definition. Remove
parameters from the locally defined functions.

28.2 Extended Exercise: Checking (on) Queens
A famous problem in the game of chess concerns the placement of queens on a board. For our
purposes, a chessboard is a ``square'' of, say, eight-by-eight or three-by-three tiles. The queen is a
game piece that can move in a horizontal, vertical, or diagonal direction arbitrarily far. We say
that a queen threatens a tile if it is on the tile or can move to it. Figure 79 shows an example. The
solid disk represents a queen in the second column and sixth row. The solid lines radiating from
the disk go through all those tiles that are threatened by the queen.

Figure 79: A chessboard with a single queen

TE
AM
FL
Y

TEAM FLY PRESENTS

-345-

The queen-placement problem is to place eight queens on a chessboard of eight-by-eight tiles
such that the queens on the board don't threaten each other. In computing, we generalize the
problem of course and ask whether we can place n queens on some board of arbitrary size m by m.

Even a cursory glance at the problem suggests that we need a data representation of boards and
some basic functions on boards before we can even think of designing a program that solves the
problem. Let's start with some basic data and function definitions.

Exercise 28.2.1. Develop a data definition for chessboards.

Hint: Use lists. Represent tiles with true and false. A value of true should indicate that a
position is available for the placement of a queen; false should indicate that a position is
occupied by, or threatened by, a queen.

Next we need a function for creating a board and another one for checking on a specific tile.
Following the examples of lists, let's define build-board and board-ref.

Exercise 28.2.2. Develop the following two functions on chessboards:

;; build-board : N (N N -> boolean) -> board
;; to create a board of size n x n,
;; fill each position with indices i and j with (f i j)
(define (build-board n f) ...)

;; board-ref : board N N -> boolean
;; to access a position with indices i, j on a-board
(define (board-ref a-board i j) ...)

Test them rigorously! Use the ideas of section 17.8 to formulate the tests as boolean-valued
expressions.

In addition to these generic functions on a chessboard representation, we also need at least one
function that captures the concept of a ``threat'' as mentioned in the problem statement.

Exercise 28.2.3. Develop the function threatened?, which computes whether a queen can
reach a position on the board from some given position. That is, the function consumes two
positions, given as posn structures, and produces true if a queen on the first position can
threaten the second position.

Hint: The exercise translate the chess problem of ``threatening queens'' into the mathematical
problem of determining whether in some given grid, two positions are on the same vertical,
horizontal, or diagonal line. Keep in mind that each position belongs to two diagonals and that
the slope of a diagonal is either +1 or -1.

Once we have data definitions and functions for the ``language of chessboards,'' we can turn our
attention to the main task: the algorithm for placing a number of queens on some given board.

Exercise 28.2.4. Develop placement. The function consumes a natural number and a board and
tries to place that many queens on the board. If the queens can be placed, the function produces
an appropriate board. If not, it produces false.

TE
AM
FL
Y

TEAM FLY PRESENTS

-346-

Section 29

Intermezzo 5: The Cost of Computing and
Vectors
In section 26.3 we discussed the differences between a structurally recursive program and an
equivalent, generative version. The comparison revealed that the generative one is much faster
than the structural version. We used both informal arguments, using the number of recursive
calls, and measurements, using time expressions (exercises 26.3.1 and 26.3.3), to support our
conclusion.

While timing the application of a program to specific arguments can help us understand a
program's behavior in one situation, it is not a fully convincing argument. After all, applying the
same program to some other inputs may require a radically different amount of time. In short,
timing programs for specific inputs has the same status as testing programs for specific examples.
Just as testing may reveal bugs, timing may reveal anomalies concerning the execution behavior
for specific inputs. It does not provide a firm foundation for general statements about the
behavior of a program.

This intermezzo introduces a tool for making general statements about the time that programs
take to compute a result. The first subsection motivates the tool and illustrates it with several
examples, though on an informal basis. The second one provides a rigorous definition. The last
one uses the tool to motivate an additional class of Scheme data and some of its basic operations.

29.2 Concrete Time, Abstract Time
Let's study the behavior of how-many, a function that we understand well:

(define (how-many a-list)
 (cond
 [(empty? a-list) 0]
 [else (+ (how-many (rest a-list)) 1)]))

It consumes a list and computes how many items the list contains.

Here is a sample evaluation:

 (how-many (list 'a 'b 'c))
= (+ (how-many (list 'b 'c)) 1)
= (+ (+ (how-many (list 'c)) 1) 1)
= (+ (+ (+ (how-many empty) 1) 1) 1)
= 3

It consists of only those steps that are natural recursions. The steps in between are always the
same. For example, to get from the original application to the first natural recursion, we go
through the following steps:

TE
AM
FL
Y

TEAM FLY PRESENTS

-347-

 (how-many (list 'a 'b 'c))
= (cond
 [(empty? (list 'a 'b 'c)) 0]
 [else (+ (how-many (rest (list 'a 'b 'c))) 1)])
= (cond
 [false 0]
 [else (+ (how-many (rest (list 'a 'b 'c))) 1)])
= (cond
 [else (+ (how-many (rest (list 'a 'b 'c))) 1)])
= (+ (how-many (rest (list 'a 'b 'c))) 1)

The steps between the remaing natural recursions differ only as far as the substitution for a-list
is concerned.

If we apply how-many to a shorter list, we need fewer natural recursion steps:

 (how-many (list 'e))
= (+ (how-many empty) 1)
= 1

If we apply how-many to a longer list, we need more natural recursion steps. The number of steps
between natural recursions remains the same.

The example suggests that, not surprisingly, the number of evaluation steps depends on the size
of the input. More importantly, though, it also implies that the number of natural recrusions is a
good measure of the size of an evaluation sequence. After all, we can reconstruct the actual
number of steps from this measure and the function definition. For this reason, programmers
have come to express the ABSTRACT RUNNING TIME of a program as a relationship between the size of
the input and the number of recursion steps in an evaluation.62

In our first example, the size of the input is simply the size of the list. More specifically, if the
list contains one item, the evaluation requires one natural recursion. For two items, we recur
twice. For a list with N items, the evaluation requires N steps.

Not all functions have such a uniform measure for their abstract running time. Take a look at our
first recursive function:

(define (contains-doll? a-list-of-symbols)
 (cond
 [(empty? a-list-of-symbols) false]
 [else (cond
 [(symbol=? (first a-list-of-symbols) 'doll) true]
 [else (contains-doll? (rest a-list-of-symbols))])]))

If we evaluate

(contains-doll? (list 'doll 'robot 'ball 'game-boy 'pokemon))

the application requires no natural recursion step. In contrast, for the expression

(contains-doll? (list 'robot 'ball 'game-boy 'pokemon 'doll))

TE
AM
FL
Y

TEAM FLY PRESENTS

-348-

the evaluation requires as many natural recursion steps as there are items in the list. Put
differently, in the best case, the function can find the answer immediately; in the worst case, the
function must search the entire input list.

Programmers cannot assume that inputs are always of the best posisble shape; and they must
hope that the inputs are not of the worst possible shape. Instead, they must analyze how much
time their functions take on the average. For example, contains-doll? may -- on the average --
find 'doll somewhere in the middle of the list. Thus, we could say that if the input contains N
items, the abstract running time of contains-doll? is (roughly)

-- that is, it naturally recurs half as often as the number of items on the input. Because we already
measure the running time of a function in an abstract manner, we can ignore the division by 2.
More precisely, we assume that each basic step takes K units of time. If, instead, we use K/2 as
the constant, we can calculate

which shows that we can ignore other constant factors. To indicate that we are hiding such
constants we say that contains-doll? takes ``on the order of N steps'' to find 'doll in a list of
N items.

Now consider our standard sorting function from figure 33. Here is a hand-evaluation for a small
input:

 (sort (list 3 1 2))
= (insert 3 (sort (list 1 2)))
= (insert 3 (insert 1 (sort (list 2))))
= (insert 3 (insert 1 (insert 2 (sort empty))))
= (insert 3 (insert 1 (insert 2 empty)))
= (insert 3 (insert 1 (list 2)))
= (insert 3 (cons 2 (insert 1 empty)))
= (insert 3 (list 2 1))
= (insert 3 (list 2 1))
= (list 3 2 1)

The evaluation is more complicated than those for how-many or contains-doll?. It also
consists of two phases. During the first one, the natural recursions for sort set up as many
applications of insert as there are items in the list. During the second phase, each application of
insert traverses a list of 1, 2, 3, ... up to the number of items in the original list (minus one).

Inserting an item is similar to finding an item, so it is not surprising that insert behaves like
contains-doll?. More specifically, the applications of insert to a list of N items may trigger
N natural recursions or none. On the average, we assume it requires N/2, which means on the
order of N. Because there are N applications of insert, we have an average of on the order of N2
natural recursions of insert.

In summary, if l contains N items, evaluating (sort l) always requires N natural recursions of
sort and on the order of N2 natural recursions of insert. Taken together, we get

TE
AM
FL
Y

TEAM FLY PRESENTS

-349-

steps, but we will see in exercise 29.3.1 that this is equivalent to saying that insertion sort
requires on the order of N2 steps.

Our final example is the function max:

;; max : ne-list-of-numbers -> number
;; to determine the maximum of a non-empty list of numbers
(define (max alon)
 (cond
 [(empty? (rest alon)) (first alon)]
 [else (cond
 [(> (max (rest alon)) (first alon)) (max (rest alon))]
 [else (first alon)])]))

In exercise 18.2.12, we investigated its behavior and the behavior of an observationally
equivalent function that uses local. Here we study its abstract running time rather than just
observe some concrete running time.

Let's start with a small example: (max (list 0 1 2 3)). We know that the result is 3. Here is
the first important step of a hand-evaluation:

 (max (list 0 1 2 3))
= (cond
 [(> (max (list 1 2 3)) 0) (max (list 1 2 3))]
 [else 0])

From here, we must evaluate the left of the two underlined natural recursions. Because the result
is 3 and the condition is thus true, we must evaluate the second underlined natural recursion as
well.

Focusing on just the natural recursion we see that its hand-evaluation begins with similar steps:

 (max (list 1 2 3))
= (cond
 [(> (max (list 2 3)) 1) (max (list 2 3))]
 [else 1])

Again, (max (list 2 3)) is evaluated twice because it produces the maximum. Finally, even
determining the maximum of (max (list 2 3)) requires two natural recursions:

 (max (list 2 3))
= (cond
 [(> (max (list 3)) 2) (max (list 3))]
 [else 2])

To summarize, max requires two natural recursions for each application. The following table
counts the instances for our example:

original expression requires 2 evaluations of
(max (list 0 1 2 3)) (max (list 1 2 3))

TE
AM
FL
Y

TEAM FLY PRESENTS

-350-

(max (list 1 2 3)) (max (list 2 3))
(max (list 2 3)) (max (list 3))

Altogether the hand-evaluation requires eight natural recursions for a list of four items. If we add
4 (or a larger number) at the end of the list, we need to double the number of natural recursions.
Thus, in general we need on the order of

recursions for a list of N numbers when the last number is the maximum.63

While the scenario we considered is the worst possible case, the analysis of max's abstract
running time explains the phenomenon we studied in exercise 18.2.12. It also explains why a
version of max that uses a local-expression to name the result of the natural recursion is faster:

;; max2 : ne-list-of-numbers -> number
;; to determine the maximum of a list of numbers
(define (max2 alon)
 (cond
 [(empty? (rest alon)) (first alon)]
 [else (local ((define max-of-rest (max2 (rest alon))))
 (cond
 [(> max-of-rest (first alon)) max-of-rest]
 [else (first alon)])])))

Instead of recomputing the maximum of the rest of the list, this version just refers to the variable
twice when the variable stands for the maximum of the rest of the list.

Exercise 29.2.1. A number tree is either a number or a pair of number trees. Develop the
function sum-tree, which determines the sum of the numbers in a tree. How should we measure
the size of a tree? What is its abstract running time?

Exercise 29.2.2. Hand-evaluate (max2 (list 0 1 2 3)) in a manner similar to our evaluation
of (max (list 0 1 2 3)). What is the abstract running time of max2?

29.3 The Definition of ``on the Order of''
It is time to introduce a rigorous description of the phrase ``on the order of'' and to explain why it
is acceptable to ignore some constants. Any serious programmer must be thoroughly familiar
with this notion. It is the most fundamental method for analyzing and comparing the behavior of
programs. This intermezzo provides a first glimpse at the idea; a second course on computing
usually provides some more in-depth considerations.

TE
AM
FL
Y

TEAM FLY PRESENTS

-351-

Figure 80: A comparison of two running time expressions

Let's consider a sample ``order of'' claim with concrete examples before we agree on a definition.
Recall that a function F may require on the order of N steps and a function G N2 steps, even
though both compute the same results for the same inputs. Now suppose the basic time constants
are 1000 for F and 1 for G. One way to compare the two claims is to tabulate the abstract running
time:

N 1 10 50 100 500 1000
F (1000 · N) 1000 10000 50000 100000 500000 1000000
G (N · N) 1 100 2500 10000 250000 1000000

At first glance the table seems to say that G's performance is better than F's, because for inputs of
the same size (N), G's running time is always smaller than F's. But a closer look reveals that as the
inputs get larger, G's advantage decreases. Indeed, for an input of size 1000, the two functions
need the same number of steps, and thereafter G is always slower than F. Figure 80 compares the
graphs of the two expressions. It shows that the linear graph for 1000 · N dominates the curve of
N · N for some finite number of points but thereafter it is below the curve.

The concrete example recalls two important facts about our informal discussion of abstract
running time. First, our abstract description is always a claim about the relationship between two
quantities: the size of the input and the number of natural recursions evaluated. More precisely,
the relationship is a (mathematical) function that maps an abstract size measure of the input to an
abstract measure of the running time. Second, when we compare ``on the order of'' properties of
functions, such as

TE
AM
FL
Y

TEAM FLY PRESENTS

-352-

we really mean to compare the corresponding functions that consume N and produce the above
results. In short, a statement concerning the order of things compares two functions on natural
numbers (N).

The comparison of functions on N is difficult because they are infinite. If a function f produces
larger outputs than some other function g for all natural numbers, then f is clearly larger than g.
But what if this comparison fails for just a few inputs? Or for 1,000 such as the one illustrated in
figure 80? Because we would still like to make approximate judgments, programmers and
scientists adapt the mathematical notion of comparing functions up to some factor and some
finite number of exceptions.

ORDER-OF (BIG-O): Given a function g on the natural numbers, O(g) (pronounced: ``big-O of g'') is
a class of functions on natural numbers. A function f is in O(g) if there exist numbers c and
bigEnough such that for all n > bigEnough, it is true that

Recall the performance of F and G above. For the first, we assumed that it consumed time
according to the following function

the performance of second one obeyed the function g:

Using the definition of big-O, we can say that f is O(g), because for all n > 1000,

which means bigEnough = 1000 and c = 1.

More important, the definition of big-O provides us with a shorthand for stating claims about a
function's running time. For example, from now on, we say how-many's running time is O(N).
Keep in mind that N is the standard abbreviation of the (mathematical) function g(N) = N.
Similarly, we can say that, in the worst case, sort's running time is O(N2) and max's is O(2N).

Finally, the definition of big-O explains why we don't have to pay attention to specific constants
in our comparsions of abstract running time. Consider max and max2. We know that max's worst-
case running time is in O(2N), max2's is in O(N). Say, we need the maximum of a list with 10
numbers. Assuming max and max2 roughly consume the same amount of time per basic step, max
will need 210 = 1024 steps and max2 will need 10 steps, which means max2 will be faster. Now
even if max2's basic step requires twice as much time as max's basic step, max2 is still around 50
times faster. Futhermore, if we double the size of the input list, max's apparent disadvantage
totally disappears. In general, the larger the input is, the less relevant are the specific constants.

Exercise 29.3.1. In the first subsection, we stated that the function f(n) = n2 + n belongs to the
class O(n2). Determine the pair of numbers c and bigEnough that verify this claim.

TE
AM
FL
Y

TEAM FLY PRESENTS

-353-

Exercise 29.3.2. Consider the functions f(n) = 2n and g(n) = 1000 · n. Show that g belongs to
O(f), which means that f is abstractly speaking more (or at least equally) expensive than g. If the
input size is guaranteed to be between 3 and 12, which function is better?

Exercise 29.3.3. Compare f(n) = n log n and g(n) = n2. Does f belong to O(g) and/or g to O(f)?

29.4 A First Look at Vectors
Until now we have paid little attention to how much time it takes to retrieve data from structures
or lists. Now that we have a tool for stating general judgments, let's take a close look at this basic
computation step. Recall the last problem of the preceding part: finding a route in a graph. The
program find-route requires two auxiliaries: find-route/list and neighbors. We paid a lot
of attention to find-route/list and none to neighbors. Indeed, developing neighbors was
just an exercise (see 28.1.2), because looking up a value in a list is by now a routine
programming task.

Here is a possible definition for neighbors:

;; neighbors : node graph -> (listof node)
;; to lookup the node in graph
(define (neighbors node graph)
 (cond
 [(empty? graph) (error 'neighbors "can't happen")]
 [else (cond
 [(symbol=? (first (first graph)) node) (second (first graph))]
 [else (neighbors node (rest graph))])]))

The function is similar to contains-doll? and has roughly the same behavior. More concretely,
neighbors is O(N) when we assume that graph is a list of N nodes.

Considering that neighbors is used at every stage of the evaluation of find-route, neighbors
is possibly a bottleneck. As a matter of fact, if the route we are looking for involves N nodes (the
maximum), neighbors is applied N times, so the algorithm requires O(N2) steps in neighbors.

In contrast to lists, structures deal with value extractions as a constant time operation. At first
glance this observation seems to suggest that we use structures as representations of graphs. A
closer look, however, shows that this idea doesn't work easily. The graph algorithm works best if
we are able to work with the names of nodes and access a node's neighbors based on the name. A
name could be a symbol or the node's number in the graph. In general, what we really wish to
have in a programming language is

a class of compound values size with constant lookup time,
based on ``keys.''
Because the problem is so common, Scheme and most other languages offer at least one built-in
solution.

Here we study the class of vectors. A vector is a well-defined mathematical class of data with
specific basic operations. For our purposes, it suffices to know how to construct them, how to
extract values, and how to recognize them:

TE
AM
FL
Y

TEAM FLY PRESENTS

-354-

1. The operation vector is like list. It consumes an arbitrary number of values and creates
a compound value from them: a vector. For example, (vector V-0 ... V-n) creates a
vector from V-0 through V-n.

2. DrScheme also provides a vector analogue to build-list. It is called build-vector.
Here is how it works:
3. (build-vector N f) = (vector (f 0) ... (f (- N 1)))

That is, build-vector consumes a natural number N and a function f on natural numbers.
It then builds a vector of N items by applying f to 0, ..., N-1.

4. The operation vector-ref extracts a value from a vector in constant time, that is, for i
between 0 and n (inclusive):
5. (vector-ref (vector V-0 ... V-n) i) = V-i

In short, extracting values from a vector is O(1).

If vector-ref is applied to a vector and a natural number that is smaller than 0 or larger
than n, vector-ref signals an error.

6. The operation vector-length produces the number of items in a vector:
7. (vector-length (vector V-0 ... V-n)) = (+ n 1)

8. The operation vector? is the vector-predicate:
9. (vector? (vector V-0 ... V-n)) = true
10. (vector? U) = false

if U is a value that isn't created with vector.

We can think of vectors as functions on a small, finite range of natural numbers. Their range is
the full class of Scheme values. We can also think of them as tables that associate a small, finite
range of natural numbers with Scheme values. Using vectors we can represent graphs like those
in figures 76 and 78 if we use numbers as names. For example:

A B C D E F G
0 1 2 3 4 5 6

Using this translation, we can also produce a vector-based representation of the graph in
figure 76:

(define Graph-as-list
 '((A (B E))
 (B (E F))
 (C (D))
 (D ())
 (E (C F))
 (F (D G))
 (G ())))

(define Graph-as-vector
 (vector (list 1 4)
 (list 4 5)
 (list 3)
 empty
 (list 2 5)
 (list 3 6)
 empty))

The definition on the left is the original list-based representation; the one on the right is a vector
representation. The vector's i-th field contains the list of neighbors of the i-th node.

The data definitions for node and graph change in the expected manner. Let's assume that N is
the number of nodes in the given graph:

TE
AM
FL
Y

TEAM FLY PRESENTS

-355-

A node is an natural number between 0 and N - 1.

A graph is a vector of nodes: (vectorof (listof node)).

The notation (vectorof X) is similar to (listof X). It denotes a vector that contains items
from some undetermined class of data X.

Now we can redefine neighbors:

;; neighbors : node graph -> (listof node)
;; to lookup the node in graph
(define (neighbors node graph)
 (vector-ref graph node))

As a result, looking up the neighbors of a node becomes a constant-time operation, and we can
truly ignore it when we study the abstract running time of find-route.

Exercise 29.4.1. Test the new neighbors function. Use the strategy of section 17.8 to
formulate the tests as boolean expressions.

Exercise 29.4.2. Adapt the rest of the find-route program to the new vector representation.
Adapt the tests from exercises 28.1.3 through 28.1.5 to check the new program.

Measure how much time the two find-route programs consume to compute a route from node
A to node E in the graph of figure 76. Recall that (time expr) measures how long it takes to
evaluate expr. It is good practice to evaluate expr, say, 1000 times when we measure time. This
produces more accurate measurements.

Exercise 29.4.3. Translate the cyclic graph from figure 78 into our vector representation of
graphs.

Before we can truly program with vectors, we must understand the data definition. The situation
is comparable to that when we first encountered lists. We know that vector, like cons, is
provided by Scheme, but we don't have a data definition that directs our program development
efforts.

So, let us take a look at vectors. Roughly speaking, vector is like cons. The cons primitive
constructs lists, the vector primitive creates vectors. Since programming with lists usually
means programming with the selectors first and rest, programming with vectors must mean
programming with vector-ref. Unlike first and rest, however, vector-ref requires
manipulating the vector and an index into a vector. This suggests that programming with vectors
really means thinking about indices, which are natural numbers.

Let's look at some simple examples to confirm this abstract judgment. Here is the first one:

;; vector-sum-for-3 : (vector number number number) -> number
(define (vector-sum-for-3 v)
 (+ (vector-ref v 0)
 (vector-ref v 1)
 (vector-ref v 2)))

TE
AM
FL
Y

TEAM FLY PRESENTS

-356-

The function vector-sum-for-3 consumes vectors of three numbers and produces their sum. It
uses vector-ref to extract the three numbers and adds them up. What varies in the three
selector expressions is the index; the vector remains the same.

Consider a second, more interesting example: vector-sum, a generalization of vector-sum-
for-3. It consumes an arbitrarily large vector of numbers and produces the sum of the numbers:

;; vector-sum : (vectorof number) -> number
;; to sum up the numbers in v
(define (vector-sum v) ...)

Here are some examples:

(= (vector-sum (vector -1 3/4 1/4))
 0)

(= (vector-sum (vector .1 .1 .1 .1 .1 .1 .1 .1 .1 .1))
 1)

(= (vector-sum (vector))
 0)

The last example suggests that we want a reasonable answer even if the vector is empty. As with
empty, we use 0 as the answer in this case.

The problem is that the one natural number associated with v, its length, is not an argument of
vector-sum. The length of v is of course just an indication of how many items in v are to be
processed, which in turn refers to legal indices of v. This reasoning forces us to develop an
auxiliary function that consumes the vector and a natural number:

;; vector-sum-aux : (vectorof number) N -> number
;; to sum up the numbers in v relative to i
(define (vector-sum-aux v i) ...)

The natural choice for the initial value of i is the length of v, which suggests the following
completion of vector-sum:

(define (vector-sum v)
 (vector-sum-aux v (vector-length v)))

Based on this definition, we can also adapt the examples for vector-sum to vector-sum-aux:

(= (vector-sum-aux (vector -1 3/4 1/4) 3)
 0)

(= (vector-sum-aux (vector .1 .1 .1 .1 .1 .1 .1 .1 .1 .1) 10)
 1)

(= (vector-sum-aux (vector) 0)
 0)

Unfortunately, this doesn't clarify the role of the second argument. To do that, we need to
proceed to the next stage of the design process: template development.

TE
AM
FL
Y

TEAM FLY PRESENTS

-357-

When we develop templates for functions of two arguments, we must first decide which of the
arguments must be processed, that is, which of the two will vary in the course of a computation.
The vector-sum-for-3 example suggests that it is the second argument in this case. Because
this argument belongs to the class of natural numbers, we follow the design recipe for those:

(define (vector-sum-aux v i)
 (cond
 [(zero? i) ...]
 [else ... (vector-sum-aux v (sub1 i)) ...]))

Although we considered i to be the length of the vector initially, the template suggests that we
should consider it the number of items of v that vector-sum-aux must consider and thus as an
index into v.

The elaboration of i's use naturally leads to a better purpose statement for vector-sum-aux:

;; vector-sum-aux : (vectorof number) N -> number
;; to sum up the numbers in v with index in [0, i)
(define (vector-sum-aux v i)
 (cond
 [(zero? i) ...]
 [else ... (vector-sum-aux v (sub1 i)) ...]))

Excluding i is natural because it is initially (vector-length v) and thus not an index.

;; vector-sum : (vectorof number) -> number
;; to compute the sum of the numbers in v
(define (vector-sum v)
 (vector-sum-aux v (vector-length v)))
;; vector-sum-aux : (vectorof number) N -> number
;; to sum the numbers in v with index in [0, i)
(define (vector-sum-aux v i)
 (cond
 [(zero? i) 0]
 [else (+ (vector-ref v (sub1 i))
 (vector-sum-aux v (sub1 i)))]))

Figure 81: Summing up the numbers in a vector (version 1)

;; lr-vector-sum : (vectorof number) -> number
;; to sum up the numbers in v
(define (lr-vector-sum v)
 (vector-sum-aux v 0))

;; vector-sum : (vectorof number) -> number
;; to sum up the numbers in v with index in [i, (vector-length v))
(define (vector-sum-aux v i)
 (cond
 [(= i (vector-length v)) 0]
 [else (+ (vector-ref v i) (vector-sum-aux v (add1 i)))]))

Figure 82: Summing up the numbers in a vector (version 2)

To transform the template into a complete function definition, we consider each clause of the
cond:

TE
AM
FL
Y

TEAM FLY PRESENTS

-358-

1. If i is 0, there are no further items to be considered because there are no vector fields
between 0 and i with i excluded. Therefore the result is 0.

2. Otherwise, (vector-sum-aux v (sub1 i)) computes the sum of the numbers in v
between 0 and (sub1 i) [exclusive]. This leaves out the vector field with index (sub1
i), which according to the purpose statement must be included. By adding (vector-ref
v (sub1 i)), we get the desired result:
3. (+ (vector-ref v (sub1 i)) (vector-sum-aux v (sub1 i)))

See figure 81 for the complete program.

If we were to evaluate one of the examples for vector-sum-aux by hand, we would see that it
extracts the numbers from the vector in a right to left order as i decreases to 0. A natural
question is whether we can invert this order. In other words: is there a function that extracts the
numbers in a left to right order?

The answer is to develop a function that processes the class of natural numbers below (vector-
length v) and to start at the first feasible index: 0. Developing this function is just another
instance of the design recipe for variants of natural numbers from section 11.4. The new function
definition is shown in figure 82. The new auxiliary function now consumes 0 and counts up to
(vector-length v). A hand-evaluation of

(lr-vector-sum (vector 0 1 2 3))

shows that vector-sum-aux indeed extracts the items from v from left to right.

The definition of lr-vector-sum shows why we need to study alternative definitions of classes
of natural numbers. Sometimes it is necessary to count down to 0. But at other times it is equally
useful, and natural, to count from 0 up to some other number.

The two functions also show how important it is to reason about intervals. The auxiliary vector-
processing functions process intervals of the given vector. A good purpose statement specifies
the exact interval that the function works on. Indeed, once we understand the exact interval
specification, formulating the full function is relatively straightforward. We will see the
importance of this point when we return to the study of vector-processing functions in the last
section.

Exercise 29.4.4. Evaluate (vector-sum-aux (vector -1 3/4 1/4) 3) by hand. Show the
major steps only. Check the evaluation with DrScheme's stepper. In what order does the function
add up the numbers of the vector?

Use a local-expression to define a single function vector-sum. Then remove the vector
argument from the inner function definition. Why can we do that?

Exercise 29.4.5. Evaluate (lr-vector-sum (vector -1 3/4 1/4)) by hand. Show the major
steps only. Check the evaluation with DrScheme's stepper. In what order does the function add
up the numbers of the vector?

Use a local-expression to define a single function lr-vector-sum. Then remove those
arguments from the inner function definition that remain the same during an evaluation. Also

TE
AM
FL
Y

TEAM FLY PRESENTS

-359-

introduce definitions for those expressions that always evaluate to the same value during the
evaluation. Why is this useful?

Exercise 29.4.6. The list-based analogue of vector-sum is list-sum:

;; list-sum : (listof number) -> number
;; to compute the sum of the numbers on alon
(define (list-sum alon)
 (list-sum-aux alon (length alon)))

;; list-sum-aux : N (listof number) -> number
;; to compute the sum of the first L numbers on alon
(define (list-sum-aux L alon)
 (cond
 [(zero? L) 0]
 [else (+ (list-ref alon (sub1 L)) (list-sum-aux (sub1 L) alon))]))

Instead of using the structural definition of the list, the developer of this program used the size of
the list -- a natural number -- as the guiding element in the design process.

The resulting definition uses Scheme's list-ref function to access each item on the list.
Looking up an item in a list with list-ref is an O(N) operation for lists of N items. Determine
the abstract running time of sum (from section 9.5), vector-sum-aux and list-sum-aux. What
does this suggest about program development?

Exercise 29.4.7. Develop the function norm, which consumes a vector of numbers and produces
the square root of the sum of the squares of its numbers. Another name for norm is distance-
to-0, because the result is the distance of a vector to the origin, when we interpret the vector as a
point.

Exercise 29.4.8. Develop the function vector-contains-doll?. It consumes a vector of
symbols and determines whether the vector contains the symbol 'doll. If so, it produces the
index of 'doll's field; otherwise, it produces false.

Determine the abstract running time of vector-contains-doll? and compare with that of
contains-doll?, which we discussed in the preceding subsection.

Now discuss the following problem. Suppose we are to represent a collection of symbols. The
only interesting problem concerning the collection is to determine whether it contains some
given symbol. Which data representation is preferable for the collection: lists or vectors? Why?

Exercise 29.4.9. Develop the function binary-contains?. It consumes a sorted vector of
numbers and a key, which is also a number. The goal is to determine the index of the key, if it
occurs in the vector, or false. Use the binary-search algorithm from section 27.3.

Determine the abstract running time of binary-contains? and compare with that of contains?,
the function that searches for a key in a vector in the linear fashion of vector-contains-doll?.

Suppose we are to represent a collection of numbers. The only interesting problem concerning
the collection is to determine whether it contains some given number. Which data representation
is preferable for the collection: lists or vectors? Why?

TE
AM
FL
Y

TEAM FLY PRESENTS

-360-

Exercise 29.4.10. Develop the function vector-count. It consumes a vector v of symbols and
a symbol s. Its result is the number of s that occur in v.

Determine the abstract running time of vector-count and compare with that of count, which
counts how many times s occurs in a list of symbols.

Suppose we are to represent a collection of symbols. The only interesting problem concerning
the collection is to determine how many times it contains some given symbol. Which data
representation is preferable for the collection: lists or vectors? Why? What do exercises 29.4.8,
29.4.9, and this exercise suggest?

While accessing the items of a vector is one kind of programming problem, constructing vectors
is an entirely different problem. When we know the number of items in a vector, we can
construct it using vector. When we we wish to write programs that work on a large class of
vectors independent of their size, however, we need build-vector.

Consider the following simple example. Suppose we represent the velocity of an object with a
vector. For example, (vector 1 2) represents the velocity of an object on a plane that moves 1
unit to the right and 2 down in each time unit. For comparison, (vector -1 2 1) is the veloicity
of an object in space; it moves -6 units in the x direction in 6 time units, 12 units in the y
direction in 6 time units, and 6 units in the z direction in 6 time units. We call (vector -6 12 6)
the displacement of the object in 6 time units.

Let's develop a function that computes the displacement for an object with some velocity v in t
time units:

;; displacement : (vectorof number) number -> (vectorof number)
;; to compute the displacement of v and t
(define (displacement v t) ...)

Computing the displacement is straightforward for some examples:

(equal? (displacement (vector 1 2) 3)
 (vector 3 6))

(equal? (displacement (vector -1 2 1) 6)
 (vector -6 12 6))

(equal? (displacement (vector -1 -2) 2)
 (vector -2 -4))

We just multiply each component of the object with the number, which yields a new vector.

The examples' meaning for our programming problem is that displacement must construct a
vector of the same length as v and must use the items in v to compute those of the new vectors.
Here is how we build a vector of the same how-many as some given vector v:

(build-vector (vector-length v) ...)

Now we need to replace ... with a function that computes the 0-th, 1-st, and so on items of the
new vector:

TE
AM
FL
Y

TEAM FLY PRESENTS

-361-

;; new-item : N -> number
;; to compute the contents of the new vector at the i-th position
(define (new-item index) ...)

Following our discussion, we multiply (vector-ref v i) with t and that's all.

Take a look at the complete definition:

;; displacement : (vectorof number) number -> (vectorof number)
;; to compute the displacement of v and t
(define (displacement v t)
 (local ((define (new-item i) (* (vector-ref v i) t)))
 (build-vector (vector-length v) new-item)))

The locally defined function is not recursive. We can thus replace it with a plain lambda-
expression:

;; displacement : (vectorof number) number -> (vectorof number)
;; to compute the displacement of v and t
(define (displacement v t)
 (build-vector (vector-length v) (lambda (i) (* (vector-ref v i) t))))

Mathematicians call this function scalar product. They have also studied many other operations
on vectors, and in Scheme we can develop those in a natural manner.

Exercise 29.4.11. Develop the function id-vector, which consumes a natural number and
produces a vector of that many 1's.

Exercise 29.4.12. Develop the functions vector+ and vector - , which compute the
pointwise sum and differences of two vectors. That is, each consumes two vectors and produces
a vector by manipulating corresponding programs. Assume the given vectors are of the same
length. Also develop the functions checked-vector+ and checked-vector - .

Exercise 29.4.13. Develop the function distance, which consumes two vectors and computes
their distance. Think of the distance of two vectors as the length of the line between them.

Exercise 29.4.14. Develop a vector representation for chessboards of size n × n for n in N. Then
develop the following two functions on chessboards:

;; build-board : N (N N -> boolean) -> board
;; to create a board of size n x n,
;; fill each position with indices i and j with (f i j)
(define (build-board n f) ...)

;; board-ref : board N N -> boolean
;; to access a position with indices i, j on a-board
(define (board-ref a-board i j) ...)

Can we now run the program of section 28.2 using vectors instead of lists? Inspect the solution
of exercises 28.2.3 and 28.2.4.

Exercise 29.4.15. A matrix is a chessboard of numbers. Use the chessboard representation of
exercise 29.4.14 to represent the matrix

TE
AM
FL
Y

TEAM FLY PRESENTS

-362-

Using build-board, develop the function transpose, which creates a mirror image of the
matrix along its diagonal from the upper-left corner to the lower-right one. For example, the
given matrix turns into

More generally, the item at (i,j) becomes the item at (j,i).

62 We speak of an abstract running time because the measure ignores the details of how much
time primitive steps take and how much time the overall evaluation takes.

63 More precisely, the evaluation consists of 2N-1 steps, but

which shows that we ignore a (small) constant when we say on the order of 2N.

TE
AM
FL
Y

TEAM FLY PRESENTS

-363-

Section 30

The Loss of Knowledge
When we design recursive functions, we don't think about the context of their use. Whether they
are applied for the first time or whether they are called for the hundredth time in a recursive
manner doesn't matter. They are to work according to their purpose statement, and that's all we
need to know as we design the bodies of the functions.

Altough this principle of context-independence greatly facilitates the development of functions,
it also causes occasional problems. In this section, we illustrate the most important problem with
two examples. Both concern the loss of knowledge that occurs during a recursive evaluation. The
first subsection shows how this loss makes a structurally recursive function more complicated
and less efficient than necessary; the second one shows how the loss of knowledge causes a fatal
flaw in an algorithm.

30.1 A Problem with Structural Processing
Suppose we are given the relative distances between a series of points, starting at the origin, and
suppose we are to compute the absolute distances from the origin. For example, we might be
given a line such as this:

Each number specifies the distance between two dots. What we need is the following picture,
where each dot is annotated with the distance to the left-most dot:

;; relative-2-absolute : (listof number) -> (listof number)
;; to convert a list of relative distances to a list of absolute
distances
;; the first item on the list represents the distance to the origin
(define (relative-2-absolute alon)
 (cond
 [(empty? alon) empty]
 [else (cons (first alon)
 (add-to-each (first alon) (relative-2-absolute (rest
alon))))]))

;; add-to-each : number (listof number) -> (listof number)
;; to add n to each number on alon
(define (add-to-each n alon)
 (cond
 [(empty? alon) empty]
 [else (cons (+ (first alon) n) (add-to-each n (rest alon)))]))

TE
AM
FL
Y

TEAM FLY PRESENTS

-364-

Figure 83: Converting relative distances to absolute distances

Developing a program that performs this calculation is at this point an exercise in structural
function design. Figure 83 contains the complete Scheme program. When the given list is not
empty, the natural recursion computes the absolute distance of the remainder of the dots to the
first item on (rest alon). Because the first item is not the actual origin and has a distance of
(first alon) to the origin, we must add (first alon) to each and every item on the result of
the recursive application. This second step, adding a number to each item on a list of numbers,
requires an auxiliary function.

While the development of the program is straightforward, using it on larger and larger lists
reveals a problem. Consider the evaluation of the following definition:64

(define x (relative-2-absolute (list 0 ... N)))

As we increase N, the time needed grows even faster:65

N time of evaluation
100 220
200 880
300 2050
400 5090
500 7410
600 10420
700 14070
800 18530

Instead of doubling as we go from 100 to 200 items, the time quadruples. This is also the
approximate relationship for going from 200 to 400, 300 to 600, and so on.

Exercise 30.1.1. Reformulate add-to-each using map and lambda.

Exercise 30.1.2. Determine the abstract running time of relative-2-absolute.

Hint: Evaluate the expression

(relative-2-absolute (list 0 ... N))

by hand. Start by replacing N with 1, 2, and 3. How many natural recursions of relative-2-
absolute and add-to-each are required each time?

Considering the simplicity of the problem, the amount of ``work'' that the two functions perform
is surprising. If we were to convert the same list by hand, we would tally up the total distance
and just add it to the relative distances as we take another step along the line.

TE
AM
FL
Y

TEAM FLY PRESENTS

-365-

Let's attempt to design a second version of the function that is closer to our hand method. The
new function is still a list-processing function, so we start from the appropriate template:

(define (rel-2-abs alon)
 (cond
 [(empty? alon) ...]
 [else ... (first alon) ... (rel-2-abs (rest alon)) ...]))

Now imagine an ``evaluation'' of (rel-2-abs (list 3 2 7)):

 (rel-2-abs (list 3 2 7))

= (cons ... 3 ...
 (convert (list 2 7)))

= (cons ... 3 ...
 (cons ... 2 ...
 (convert (list 7))))

= (cons ... 3 ...
 (cons ... 2 ...
 (cons ... 7 ...
 (convert empty))))

The first item of the result list should obviously be 3, and it is easy to construct this list. But, the
second one should be (+ 3 2), yet the second instance of rel-2-abs has no way of ``knowing''
that the first item of the original list is 3. The ``knowledge'' is lost.

Put differently, the problem is that recursive functions are independent of their context. A
function processes the list L in (cons N L) in the exact same manner as L in (cons K L).
Indeed, it would also process L in that manner if it were given L by itself. While this property
makes structurally recursive functions easy to design, it also means that solutions are, on
occasion, more complicated than necessary, and this complication may affect the performance of
the function.

To make up for the loss of ``knowledge,'' we equip the function with an additional parameter:
accu-dist. The new parameter represents the accumulated distance, which is the tally that we
keep when we convert a list of relative distances to a list of absolute distances. Its initial value
must be 0. As the function processes the numbers on the list, it must add them to the tally.

Here is the revised definition:

(define (rel-2-abs alon accu-dist)
 (cond
 [(empty? alon) empty]
 [else (cons (+ (first alon) accu-dist)
 (rel-2-abs (rest alon) (+ (first alon) accu-dist)))]))

The recursive application consumes the rest of the list and the new absolute distance of the
current point to the origin. Although this means that two arguments are changing simultaneously,
the change in the second one strictly depends on the first argument. The function is still a plain
list-processing procedure.

TE
AM
FL
Y

TEAM FLY PRESENTS

-366-

Evaluating our running example with rel-2-abs shows how much the use of an accumulator
simplifies the conversion process:

= (rel-2-abs (list 3 2 7) 0)
= (cons 3 (rel-2-abs (list 2 7) 3))
= (cons 3 (cons 5 (rel-2-abs (list 7) 5)))
= (cons 3 (cons 5 (cons 12 (rel-2-abs empty 12))))
= (cons 3 (cons 5 (cons 12 empty)))

Each item in the list is processed once. When rel-2-abs reaches the end of the argument list,
the result is completely determined and no further work is needed. In general, the function
performs on the order of N natural recursion steps for a list with N items.

One minor problem with the new definition is that the function consumes two arguments and is
thus not equivalent to relative-2-absolute, a function of one argument. Worse, someone
might accidentally misuse rel-2-abs by applying it to a list of numbers and a number that isn't
0. We can solve both problems with a function definition that contains rel-2-abs in a local
definition: see figure 84. Now, relative-2-absolute and relative-2-absolute2 are
indistinguishable.

;; relative-2-absolute2 : (listof number) -> (listof number)
;; to convert a list of relative distances to a list of absolute
distances
;; the first item on the list represents the distance to the origin
(define (relative-2-absolute2 alon)
 (local ((define (rel-2-abs alon accu-dist)
 (cond
 [(empty? alon) empty]
 [else (cons (+ (first alon) accu-dist)
 (rel-2-abs (rest alon) (+ (first alon) accu-
dist)))])))
 (rel-2-abs alon 0)))

Figure 84: Converting relative distances with an accumulator

30.2 A Problem with Generative Recursion
Let us revisit the problem of finding a path in a graph from section 28. Recall that we are given a
collection of nodes and connections between nodes, and that we need to determine whether there
is a route from a node labeled orig to one called dest. Here we study the slightly simpler
version of the problem of simple graphs where each node has exactly one (one-directional)
connection to another node.

Consider the example in figure 85. There are six nodes: A through F, and six connections. To get
from A to E, we go through B, C, and E. It is impossible, though, to reach F from A or from any
other node (besides F itself).

(define SimpleG

TE
AM
FL
Y

TEAM FLY PRESENTS

-367-

 '((A B)
 (B C)
 (C E)
 (D E)
 (E B)
 (F F)))

Figure 85: A simple graph

The right part of figure 85 contains a Scheme definition that represents the graph. Each node is
represented by a list of two symbols. The first symbol is the label of the node; the second one is
the reachable node. Here are the relevant data definitions:

A node is a symbol.

A pair is a list of two nodes:

 (cons S (cons T empty))
where S, T are symbols.

A simple-graph is a list of pairs:

 (listof pair).

They are straightforward translations of our informal descriptions.

Finding a route in a graph is a problem of generative recursion.

We have data definitions, we have (informal) examples, and the header material is standard:

;; route-exists? : node node simple-graph -> boolean
;; to determine whether there is a route from orig to dest in sg
(define (route-exists? orig dest sg) ...)

What we need are answers to the four basic questions of the recipe for generative recursion:

• What is a trivially solvable problem? The problem is trivial if the nodes orig and
dest are the same.

• What is a corresponding solution? Easy: true.
• How do we generate new problems? If orig is not the same as dest, there is only one

thing we can do, namely, go to the node to which orig is connected and determine
whether a route exists between it and dest.

• How do we relate the solutions? There is no need to do anything after we find the
solution to the new problem. If orig's neighbor is connected to dest, then so is orig.

From here we just need to express these answers in Scheme, and we get an algorithm. Figure 86
contains the complete function, including a function for looking up the neighbor of a node in a
simple graph.

TE
AM
FL
Y

TEAM FLY PRESENTS

-368-

;; route-exists? : node node simple-graph -> boolean
;; to determine whether there is a route from orig to dest in sg
(define (route-exists? orig dest sg)
 (cond
 [(symbol=? orig dest) true]
 [else (route-exists? (neighbor orig sg) dest sg)]))
;; neighbor : node simple-graph -> node
;; to determine the node that is connected to a-node in sg
(define (neighbor a-node sg)
 (cond
 [(empty? sg) (error "neighbor: impossible")]
 [else (cond
 [(symbol=? (first (first sg)) a-node)
 (second (first sg))]
 [else (neighbor a-node (rest sg))])]))

Figure 86: Finding a route in a simple graph (version 1)

Even a casual look at the function suggests that we have a problem. Although the function is
supposed to produce false if there is no route from orig to dest, the function definition doesn't
contain false anywhere. Conversely, we need to ask what the function actually does when there
is no route between two nodes.

Take another look at figure 85. In this simple graph there is no route from C to D. The
connection that leaves C passes right by D and instead goes to E. So let's look at how route-
exists? deals with the inputs 'C and 'D for SimpleG:

 (route-exists? 'C 'D '((A B) (B C) (C E) (D E) (E B) (F F)))
= (route-exists? 'E 'D '((A B) (B C) (C E) (D E) (E B) (F F)))
= (route-exists? 'B 'D '((A B) (B C) (C E) (D E) (E B) (F F)))
= (route-exists? 'C 'D '((A B) (B C) (C E) (D E) (E B) (F F)))

The hand-evaluation confirms that as the function recurs, it calls itself with the exact same
arguments again and again. In other words, the evaluation never stops.

Our problem with route-exists? is again a loss of ``knowledge,'' similar to that of relative-
2-absolute in the preceding section. Like relative-2-absolute, route-exists? was
developed according to the recipe and is independent of its context. That is, it doesn't ``know''
whether some application is the first or the hundredth of a recursive chain. In the case of route-
exists? this means, in particular, that the function doesn't ``know'' whether a previous
application in the current chain of recursions received the exact same arguments.

The solution follows the pattern of the preceding section. We add a parameter, which we call
accu-seen and which represents the accumulated list of origination nodes that the function has
encountered, starting with the original application. Its initial value must be empty. As the
function checks on a specific orig and moves to its neighbors, orig is added to accu-seen.

Here is a first revision of route-exists?, dubbed route-exists-accu?:

;; route-exists-accu? : node node simple-graph (listof node) -> boolean
;; to determine whether there is a route from orig to dest in sg,
;; assuming the nodes in accu-seen have already been inspected
;; and failed to deliver a solution

TE
AM
FL
Y

TEAM FLY PRESENTS

-369-

(define (route-exists-accu? orig dest sg accu-seen)
 (cond
 [(symbol=? orig dest) true]
 [else (route-exists-accu? (neighbor orig sg) dest sg
 (cons orig accu-seen))]))

The addition of the new parameter alone does not solve our problem, but, as the following hand-
evaluation shows, provides the foundation for one:

 (route-exists-accu? 'C 'D '((A B) (B C) (C E) (D E) (E B) (F F)) empty)
= (route-exists-accu? 'E 'D '((A B) (B C) (C E) (D E) (E B) (F F)) '(C))
= (route-exists-accu? 'B 'D '((A B) (B C) (C E) (D E) (E B) (F F)) '(E C))
= (route-exists-accu? 'C 'D '((A B) (B C) (C E) (D E) (E B) (F F))
 '(B E C))

In contrast to the original function, the revised function no longer calls itself with the exact same
arguments. While the three arguments proper are again the same for the third recursive
application, the accumulator argument is different from that of the first application. Instead of
empty, it is now '(B E C). The new value represents the fact that during the search of a route
from 'C to 'D, the function has inspected 'B, 'E, and 'C as starting points.

All we need to do at this point is exploit the accumulated knowledge in the function definition.
Specifically, we determine whether the given orig is already an item on accu-seen. If so, the
problem is trivially solvable with false. Figure 87 contains the definition of route-exists2?,
which is the revision of route-exists?. The definition refers to contains, our first recursive
function (see part II), which determines whether a specific symbol is on a list of symbols.

;; route-exists2? : node node simple-graph -> boolean
;; to determine whether there is a route from orig to dest in sg
(define (route-exists2? orig dest sg)
 (local ((define (re-accu? orig dest sg accu-seen)
 (cond
 [(symbol=? orig dest) true]
 [(contains orig accu-seen) false]
 [else (re-accu? (neighbor orig sg) dest sg (cons orig accu-
seen))])))
 (re-accu? orig dest sg empty)))

Figure 87: Finding a route in a simple graph (version 2)

The definition of route-exists2? also eliminates the two minor problems with the first revision.
By localizing the definition of the accumulating function, we can ensure that the first call to
re-accu? always uses empty as the initial value for accu-seen. And, route-exists2? satisfies
the exact same contract and purpose statement as route-exists?.

Still, there is a significant difference between route-exists2? and relative-to-absolute2.
Whereas the latter was equivalent to the original function, route-exists2? is an improvement
over the route-exists? function. After all, it corrects a fundamental flaw in route-exists?,
which completely failed to find an answer for some inputs.

Exercise 30.2.1. Complete the definition in figure 87 and test it with the running example. Use
the strategy of section 17.8 to formulate the tests as boolean-valued expressions.

TE
AM
FL
Y

TEAM FLY PRESENTS

-370-

Check with a hand-evaluation that this function computes the proper result for 'A, 'C, and
SimpleG

Exercise 30.2.2. Edit the function in figure 87 so that the locally defined function consumes
only those arguments that change during an evaluation.

Exercise 30.2.3. Develop a vector-based representation of simple graphs. Adapt the function in
figure 87 so that it works on a vector-based representation of simple graphs.

Exercise 30.2.4. Modify the definitions of find-route and find-route/list in figure 77 so
that they produce false, even if they encounter the same starting point twice.

64 The most convenient way to construct this list is to evaluate (build-list (add1 N)
identity).

65 The time of evaluation will differ from computer to computer. These measurements were
conducted on a Pentium 166Mhz running Linux. Measuring timings is also difficult. At a
minimum, each evaluation should be repeated several times, and the time reported should be the
average of those measurements.

TE
AM
FL
Y

TEAM FLY PRESENTS

-371-

Section 31

Designing Accumulator-Style Functions
Section 30 illustrated with two examples the need for accumulating extra knowledge. In some
cases, the accumulation makes it easier to understand a function; in others it is necessary for the
function to work properly. In both cases, however, we first chose one of the available design
recipes, inspected the function, and then revised or fixed it. Put more generally, adding an
ACCUMULATOR, that is, a parameter that accumulates knowledge, is something that we add to a
function after we have designed a function, not before.

The keys to the development of an accumulator-style function are:

1. to recognize that the function benefits from, or needs, an accumulator;
2. to understand what the accumulator represents.

The first two subsections address these two questions. Because the second one is a difficult topic,
the third subsection illustrates how to formulate precise claims about accumulators. More
concretely, in this section, we transform several standard recursive functions into functions that
use auxiliary functions with accumulators.

31.1 Recognizing the Need for an Accumulator
Recognizing the need for accumulators is not an easy task. We have seen two reasons, and they
are the most prevalent reasons for adding accumulator parameters. In either case, it is critical that
we first built a complete function based on a design recipe. Then we study the function and look
for one of the following characteristics:

1. If the function is structurally recursive and if the result of a recursive application is
processed by an auxiliary, recursive function, then we should consider the use of an
accumulator parameter.

Take the function invert as an example:

;; invert : (listof X) -> (listof X)
;; to construct the reverse of alox
;; structural recursion
(define (invert alox)
 (cond
 [(empty? alox) empty]
 [else (make-last-item (first alox) (invert (rest alox)))]))

;; make-last-item : X (listof X) -> (listof X)
;; to add an-x to the end of alox
;; structural recursion
(define (make-last-item an-x alox)

TE
AM
FL
Y

TEAM FLY PRESENTS

-372-

 (cond
 [(empty? alox) (list an-x)]
 [else (cons (first alox) (make-last-item an-x (rest alox)))]))

The result of the recursive application produces the reverse of the rest of the list. It is
processed by make-last-item, which adds the first item to the reverse of the rest and
thus creates the reverse of the entire list. This second, auxiliary function is also recursive.
We have thus identified a potential candidate. It is now time to study some hand-
evaluations, as we did in section 30.1, to see whether an accumulator helps.

2. If we are dealing with a function based on generative recursion, we are faced with a much
more difficult task. Our goal must be to understand whether the algorithm can fail to
produce a result for inputs for which we expect a result. If so, adding a parameter that
accumulates knowledge may help. Because these situations are complex, we postpone the
discussion of an example until section 32.2.

These two situations are by no means the only ones; they are just the most common ones. To
sharpen our perception, we will discuss an additional array of possibilities in the following
section.

31.2 Accumulator-Style Functions
When we have decided that an accumulator-style function is necessary, we introduce it in two
steps:

• Setting-up an accumulator: First, we must understand what knowledge the
accumulator needs to remember about the parameters proper and then how it is to
remember it. For example, for the conversion of relative distances to absolute distances,
it suffices to accumulate the total distance encountered so far. For the routing problem,
we needed the accumulator to remember every node inspected so far. Thus the first
accumulator was just a number, the second one a list of nodes.

The best way to discuss the accumulation process is to introduce a template of the
accumulator-style function via a local definition and to name the parameters of the
function proper differently from those of the auxiliary function.

Let's take a look at the invert example:

;; invert : (listof X) -> (listof X)
;; to construct the reverse of alox
(define (invert alox0)
 (local (;; accumulator ...
 (define (rev alox accumulator)
 (cond
 [(empty? alox) ...]
 [else
 ... (rev (rest alox) ... (first alox) ... accumulator)
 ...])))
 (rev alox0 ...)))

Here we have a definition of invert with an auxiliary function rev in template form.
This auxiliary template has one parameter in addition to those of invert: the

TE
AM
FL
Y

TEAM FLY PRESENTS

-373-

accumulating parameter. The box in the recursive application indicates that we need an
expression that maintains the accumulation process and that this process depends on the
current value of accumulator and (first alox), the value rev is about to forget.

Clearly, invert cannot forget anything, because it only reverses the order of items on the
list. Hence we might just wish to accumulate all items that rev encounters. This means

1. that accumulator stands for a list, and
2. that it stands for all those items in alox0 that precede the alox argument of rev.

For the second part of the analysis, it is critical that we can distinguish the original
argument, alox0, from the current one, alox.

Now that we know the rough purpose of the accumulator, let's consider what the first
value should be and what we should do for the recursion. When we apply rev in the body
of the local-expression, it receives alox0, which means that it hasn't encountered any of
its items. The initial value for accumulator is empty. When rev recurs, it has just
encountered one extra item: (first alox). To remember it, we can cons it onto the
current value of accumulator.

Here is the enhanced definition:

;; invert : (listof X) -> (listof X)
;; to construct the reverse of alox
(define (invert alox0)
 (local (;; accumulator is the reversed list of all those items
 ;; on alox0 that precede alox
 (define (rev alox accumulator)
 (cond
 [(empty? alox) ...]
 [else
 ... (rev (rest alox) (cons (first alox) accumulator))
 ...])))
 (rev alox0 empty)))

A close inspection reveals that accumulator is not just the items on alox0 that precede
but a list of these items in reverse order.

• Exploiting an accumulator: Once we have decided what knowledge the accumulator
maintains and how it is maintained, we can move to the question of how to exploit this
knowledge for our function.

In the case of invert, the answer is almost obvious. If accumulator is the list of all
items on alox0 that precede alox in reverse order, then, if alox is empty, accumulator
stands for the reverse of alox0. Put differently: if alox is empty, rev's answer is
accumulator, and that is the answer we want in both cases:

;; invert : (listof X) -> (listof X)
;; to construct the reverse of alox
(define (invert alox0)
 (local (;; accumulator is the reversed list of all those items
 ;; on alox0 that precede alox
 (define (rev alox accumulator)

TE
AM
FL
Y

TEAM FLY PRESENTS

-374-

 (cond
 [(empty? alox) accumulator]
 [else
 (rev (rest alox) (cons (first alox) accumulator))])))
 (rev alox0 empty)))

The key step of this development is the precise description of the role of accumulator. In
general, an ACCUMULATOR INVARIANT describes a relationship between the argument proper of the
function, the current argument of the auxiliary function, and the accumulator that must always
hold when an accumulator-style function is used.

31.3 Transforming Functions into Accumulator-Style
The most complex part of the design recipe is the requirement to formulate an accumulator
invariant. Without that we cannot produce functioning accumulator-style functions. Because
formulating invariants is clearly an art that deserves a lot of practice, we practice it in this section
with three small, well-understood structural functions that do not need an accumulator. The
section concludes with a group of exercises concerning this step.

For the first example, consider the function sum:

;; sum : (listof number) -> number
;; to compute the sum of the numbers on alon
;; structural recursion
(define (sum alon)
 (cond
 [(empty? alon) 0]
 [else (+ (first alon) (sum (rest alon)))]))

Here is the first step toward an accumulator version:

;; sum : (listof number) -> number
;; to compute the sum of the numbers on alon0
(define (sum alon0)
 (local (;; accumulator ...
 (define (sum-a alon accumulator)
 (cond
 [(empty? alon) ...]
 [else
 ... (sum-a (rest alon) ... (first alon) ... accumulator)
 ...])))
 (sum-a alon0 ...)))

As suggested by our first step, we have put the template for sum-a into a local definition, added
an accumulator parameter, and renamed sum's parameter.

Our goal is to develop an accumulator invariant for sum. To do so, we must consider how sum
proceeds and what the goal of the process is. Like rev, sum-a processes the numbers on the list
one by one. The goal is to add up these numbers. This suggests that accumulator represents the
sum of the numbers seen so far:

...
 (local (;; accumulator is the sum of the numbers that preceded
 ;; those in alon on alon0

TE
AM
FL
Y

TEAM FLY PRESENTS

-375-

 (define (sum-a alon accumulator)
 (cond
 [(empty? alon) ...]
 [else
 ... (sum-a (rest alon) (+ (first alon) accumulator))
 ...])))
 (sum-a alon0 0)))

When we apply sum-a we must use 0 as the value of accumulator, because it hasn't processed
any of the numbers on alon yet. For the second clause, we must add (first alon) to
accumulator so that the invariant holds again for the function application.

Given a precise invariant, the rest is straightforward again. If alon is empty, sum-a returns
accumulator because it represents the sum of all numbers on alon now. Figure 88 contains the
final definition of the accumulator-style version of sum.

;; sum : (listof number) -> number
;; to compute the sum of the numbers on alon0
(define (sum alon0)
 (local (;; accumulator is the sum of the numbers that preceded
 ;; those in alon on alon0
 (define (sum-a alon accumulator)
 (cond
 [(empty? alon) accumulator]
 [else (sum-a (rest alon) (+ (first alon) accumulator))])))
 (sum-a alon0 0)))
;; ! : N -> N
;; to compute n · (n - 1) · ... · 2 · 1
(define (! n0)
 (local (;; accumulator is the product of all natural numbers in [n0, n)
 (define (!-a n accumulator)
 (cond
 [(zero? n) accumulator]
 [else (!-a (sub1 n) (* n accumulator))])))
 (!-a n0 1)))

Figure 88: Some simple accumulator-style functions

Let's compare how the original definition of sum and the accumulator-style definition produce an
answer for the same input:

 (sum (list 10.23 4.50 5.27))
= (+ 10.23 (sum (list 4.50 5.27)))
= (+ 10.23 (+ 4.50 (sum (list
5.27))))
= (+ 10.23 (+ 4.50 (+ 5.27 (sum
empty))))
= (+ 10.23 (+ 4.50 (+ 5.27 0)))
= (+ 10.23 (+ 4.50 5.27))
= (+ 10.23 9.77)
= 20.0

 (sum (list 10.23 4.50
5.27))
= (sum-a (list 10.23 4.50
5.27) 0)
= (sum-a (list 4.50 5.27)
10.23)
= (sum-a (list 5.27) 14.73)
= (sum-a empty 20.0)
= 20.0

On the left side, we see how the plain recursive function descends the list of numbers all the way
to the end and sets up addition operations on the way. On the right side, we see how the
accumulator-style version adds up the numbers as it goes. Furthermore, we see that for each

TE
AM
FL
Y

TEAM FLY PRESENTS

-376-

application of sum-a the invariant holds with respect to the application of sum. When sum-a is
finally applied to empty, the accumulator is the final result, and sum-a returns it.

Exercise 31.3.1. A second difference between the two functions concerns the order of addition.
While the original version of sum adds up the numbers from right to left, the accumulator-style
version adds them up from left to right. For exact numbers, this difference has no effect on the
final result. For inexact numbers, the difference is significant.

Consider the following definition:

(define (g-series n)
 (cond
 [(zero? n) empty]
 [else (cons (expt -0.99 n) (g-series (sub1 n)))]))

Applying g-series to a natural number produces the beginning of a decreasing geometric series
(see section 23.1).

Depending on which function we use to sum up the items of this list, we get vastly different
results. Evaluate the expression

(sum (g-series #i1000))

with both the original version of sum as well as its accumulator-style version. Then evaluate

(* 10e15 (sum (g-series #i1000)))

which proves that, depending on the context, the difference can be arbitrarily large.

For the second example, we return to the factorial function from part II:

;; ! : N -> N
;; to compute n · (n - 1) · ... · 2 · 1
;; structural recursion
(define (! n)
 (cond
 [(zero? n) 1]
 [else (* n (! (sub1 n)))]))

While relative-2-absolute and invert processed lists, the factorial function works on
natural numbers. Its template is that for N-processing functions.

We proceed as before by creating a local definition of !:

;; ! : N -> N
;; to compute n · (n - 1) · ... · 2 · 1
(define (! n0)
 (local (;; accumulator ...
 (define (!-a n accumulator)
 (cond
 [(zero? n) ...]
 [else
 ... (!-a (sub1 n) ... n ... accumulator) ...])))
 (!-a n0 ...)))

TE
AM
FL
Y

TEAM FLY PRESENTS

-377-

This sketch suggests that if ! is applied to the natural number n, !-a processes n, then n - 1, n -
2, and so on until it reaches 0. Since the goal is to multiply these numbers, the accumulator
should be the product of all those numbers that !-a has encountered:

...
 (local (;; accumulator is the product of all natural numbers between
 ;; n0 (inclusive) and n (exclusive)
 (define (!-a n accumulator)
 (cond
 [(zero? n) ...]
 [else
 ... (!-a (sub1 n) (* n accumulator)) ...])))
 (!-a n0 1)))

To make the invariant true at the beginning, we must use 1 for the accumulator. When !-a recurs,
we must multiply the current value of the accumulator with n to reestablish the invariant.

From the purpose statement for the accumulator of !-a, we can see that if n is 0, the accumulator
is the product of n, ..., 1. That is, it is the desired result. So, like sum, !-a returns accumulator
in the first case and simply recurs in the second one. Figure 88 contains the complete definition.

It is instructive to compare hand-evaluations for the two versions of !:

 (! 3)
= (* 3 (! 2))
= (* 3 (* 2 (! 1)))
= (* 3 (* 2 (* 1 (! 0))))
= (* 3 (* 2 (* 1 1)))
= (* 3 (* 2 1))
= (* 3 2)
= 6

 (! 3)
= (!-a 3 1)
= (!-a 2 3)
= (!-a 1 6)
= (!-a 0 6)
= 6

The left column shows how the original version works, the right one how the accumulator-style
function proceeds. Both traverse the natural number until they reach 0, but while the original
version only schedules multiplications, the new one multiplies the numbers as they are processed.
In addition, the right column illustrates how the new factorial function maintains the accumulator
invariant. For each application, the accumulator is the product of 3 to n where n is the first
argument to !-a.

Exercise 31.3.2. Like sum, ! performs the primitive computation steps (multiplication) in
reverse order. Surprisingly, this affects the performance of the function in a negative manner.

Use DrScheme's time-facility to determine how long the two variants need to evaluate (! 20)
1000 times.

Hint: (1) Develop the function

;; many : N (N -> N) -> true
;; to evaluate (f 20) n times
(define (many n f) ...)

(2) Evaluating (time an-expression) determines how much time the evaluation of an-
expression takes.

TE
AM
FL
Y

TEAM FLY PRESENTS

-378-

For the last example, we study a function on simplified binary trees. The example illustrates that
accumulator-style programming is not just for data definitions with a single self-reference.
Indeed, it is as common for complicated data definitions as it is for lists and natural numbers.

Here is the structure definition for stripped-down binary trees:

(define-struct node (left right))

and here is its companion data definition:

A binary-tree (short: tree) is either

1. empty
2. (make-node tl tr) where tl, tr are trees.

These trees contain no information, and all of them end in empty. Still, there are many different
trees as figure 89 shows. The table indicates how to think of each tree as a graphical element,
that is, of empty as a plain dot and make-node as a dot that combines two trees.

empty
(make-node empty empty)

(make-node
 (make-node
 empty
 (make-node empty empty))
 empty)

Figure 89: Some stripped-down binary trees

Using the graphical representation of binary trees we can easily determine properties of trees.
For example, we can count how many nodes it contains, how many emptys there are, or how
high it is. Let's look at the function height, which consumes a tree and determines how high it is:

;; height : tree -> number
;; to measure the height of abt0
;; structural recursion
(define (height abt)
 (cond
 [(empty? abt) 0]
 [else (+ (max (height (node-left abt)) (height (node-right abt)))
1)]))

Like the data definition, this function definition has two self-references.

TE
AM
FL
Y

TEAM FLY PRESENTS

-379-

To transform this function into an accumulator-style function, we follow the standard path. We
begin with putting an appropriate template into a local definition:

;; height : tree -> number
;; to measure the height of abt0
(define (height abt0)
 (local (;; accumulator ...
 (define (height-a abt accumulator)
 (cond
 [(empty? abt) ...]
 [else
 ... (height-a (node-left abt)
 ... (node-right abt) ... accumulator) ...
 ... (height-a (node-right abt)
 ... (node-left abt) ...
accumulator) ...])))
 (height abt0 ...)))

The problem, as always, is to determine what knowledge the accumulator should represent.

An obvious choice is that accumulator should be a number. More specifically, accumulator
should represent the number of nodes that height-a has processed so far. Initially, it has seen 0
nodes; as it descends the tree, it must increase the accumulator as it processes a node:

...
 (local (;; accumulator represents how many nodes height-a
 ;; has encountered on its way to abt from abt0
 (define (height-a abt accumulator)
 (cond
 [(empty? abt) ...]
 [else
 ... (height-a (node-left abt) (+ accumulator 1)) ...
 ... (height-a (node-right abt) (+ accumulator 1)) ...])))
 (height abt0 0))

That is, the accumulator invariant is that accumulator counts how many steps height-a has
taken on a particular path into the tree abt.

The result in the base case is accumulator again; after all it represents the height or length of the
particular path. But, in contrast to the first two examples, it is not the final result. In the second
cond-clause, the new function has two heights to deal with. Given that we are interested in the
larger one, we use Scheme's max operation to select it.

;; height : tree -> number
;; to measure the height of abt0
(define (height abt0)
 (local (;; accumulator represents how many nodes height-a
 ;; has encountered on its way to abt from abt0
 (define (height-a abt accumulator)
 (cond
 [(empty? abt) accumulator]
 [else (max (height-a (node-left abt) (+ accumulator 1))
 (height-a (node-right abt) (+ accumulator
1)))])))
 (height-a abt0 0)))

TE
AM
FL
Y

TEAM FLY PRESENTS

-380-

Figure 90: The accumulator-style version of height

Figure 90 contains the complete definition for height. Our final step is to check out a hand-
evaluation of the new function. We use the most complex example from the above table:

 (height (make-node
 (make-node empty
 (make-node empty empty))
 empty))
= (height-a (make-node
 (make-node empty
 (make-node empty empty))
 empty)
 0)
= (max (height-a
 (make-node empty
 (make-node empty empty))
 1)
 (height-a empty 1))
= (max (max
 (height-a empty 2)
 (height-a (make-node empty empty) 2))
 (height-a empty 1))
= (max (max
 (height-a empty 2)
 (max (height-a empty 3) (height-a empty 3)))
 (height-a empty 1))
= (max (max
 2
 (max 3 3))
 1)

= 3

It shows how height-a increments the accumulator at each step and that the accumulator at the
top of a path represents the number of lines traversed. The hand-evaluation also shows that the
results of the various branches are combined at each branching point.

Exercise 31.3.3. Develop an accumulator-style version of product, the function that computes
the product of a list of numbers. Show the stage that explains what the accumulator represents.

Exercise 31.3.4. Develop an accumulator-style version of how-many, which is the function that
determines the number of items on a list. Show the stage that explains what the accumulator
represents.

Exercise 31.3.5. Develop an accumulator-style version of add-to-pi, the function that adds a
natural number to pi without using + (see section 11.5). Show the stage that explains what the
accumulator represents.

Generalize the function so that it adds two numbers, the first one a natural number, without using
+.

TE
AM
FL
Y

TEAM FLY PRESENTS

-381-

Exercise 31.3.6. Develop the function make-palindrome, which accepts a non-empty list and
constructs a palindrome by mirroring the list around the last item. Thus, if we were to represent
the word ``abc'' and apply make-palindrome, we would get back the representation of ``abcba''.

Exercise 31.3.7. Develop to10. It consumes a list of digits and produces the corresponding
number. The first item on the list is the most significant digit.

Examples:

(= (to10 (list 1 0 2))
 102)

(= (to10 (list 2 1))
 21)

Now generalize the function so that it consumes a base b and a list of b-digits. The conversion
produces the decimal (10-based) value of the list. The base is between 2 and 10. A b-digit is a
number between 0 and b - 1.

Examples:

(= (to10-general 10 (list 1 0 2))
 102)

(= (to10-general 08 (list 1 0 2))
 66)

Hint: In the first example, the result is determined by

the second one is

That is, the exponent represents the number of digits that follow.

Exercise 31.3.8. Develop the function is-prime?, which consumes a natural number and
returns true if it is prime and false otherwise. A number n is prime if it is not divisible by any
number between 2 and n - 1.

Hints: (1) The design recipe for N[>=1] suggests the following template:

;; is-prime? : N[>=1] -> boolean
;; to determine whether n is a prime number
(define (is-prime? n)
 (cond
 [(= n 1) ...]
 [else ... (is-prime? (sub1 n)) ...]))

TE
AM
FL
Y

TEAM FLY PRESENTS

-382-

From this outline, we can immediately conclude that the function forgets n, its initial argument
as it recurs. Since n is definitely needed to determine whether n is divisible by 2 ... n - 1, this
suggests that we design an accumulator-style local function that remembers n as it recurs.

Pitfalls: People who encounter accumulator-style programming for the first time often get the
impression that they are always faster or easier to understand (design) than their recursive
counterparts. Both parts are plain wrong. While it is impossible to deal with the full scope of the
mistake, let us take a look at a small counterexample.

Consider the following table:

plain factorial accumulator-style factorial
5.760 5.970
5.780 5.940
5.800 5.980
5.820 5.970
5.870 6.690
5.806 6.110

It represents the results for exercise 31.3.2. Specifically, the left column shows the number of
seconds for 1000 evaluations of (! 20) with the plain factorial function; the right column shows
what the same experiment yields when we use the factorial function with an accumulator
parameter. The last row shows the averages for the two columns. The table shows that the
performance of the accumulator-style version of factorial is always worse than that of the
original factorial function.

TE
AM
FL
Y

TEAM FLY PRESENTS

-383-

Section 32

More Uses of Accumulation
This section presents three extended exercises that require the whole range of skills: design by
recipe, including generative recursion, and the addition of accumulators for various purposes.

32.1 Extended Exercise: Accumulators on Trees

(define-struct child (father mother name date eyes))

A node in a family tree (short: ftn) is either

1. empty, or
2. (make-child f m na da ec) where f and m are ftns, na and ec are symbols, and da is

a number.

;; all-blue-eyed-ancestors : ftn -> (listof symbol)
;; to construct a list of all blue-eyed ancestors in a-ftree
(define (all-blue-eyed-ancestors a-ftree)
 (cond
 [(empty? a-ftree) empty]
 [else (local ((define in-parents
 (append (all-blue-eyed-ancestors (child-father a-
ftree))
 (all-blue-eyed-ancestors (child-mother a-
ftree)))))
 (cond
 [(symbol=? (child-eyes a-ftree) 'blue)
 (cons (child-name a-ftree) in-parents)]
 [else in-parents]))]))

Figure 91: Collecting family trees with blue-eyed-ancestor?

Figure 91 recalls the structure and data definitions of family trees from section 14.1 where we
developed the function blue-eyed-ancestor?, which determined whether an ancestor family
tree contained a blue-eyed family member. In contrast, all-blue-eyed-ancestors, the function
in figure 91, collects the names of all blue-eyed family in a given family tree.

The function's structure is that of a tree-processing function. It has two cases: one for the empty
tree and another one for a child node. The latter clause contains two self-references: one per
parent. These recursive applications collect the names of all blue-eyed ancestors from the father's
and the mother's family tree; append combines the two lists into one.

The append function is a structurally recursive function. Here it processes the two lists that the
natural recursions of all-blue-eyed-ancestors produce. According to section 17.1, this

TE
AM
FL
Y

TEAM FLY PRESENTS

-384-

observation suggests that the function is a natural candidate for a transformation into
accumulator-style.

Let's get started:

;; all-blue-eyed-ancestors : ftn -> (listof symbol)
;; to construct a list of all blue-eyed ancestors in a-ftree
(define (all-blue-eyed-ancestors a-ftree0)
 (local (;; accumulator ...
 (define (all-a a-ftree accumulator)
 (cond
 [(empty? a-ftree) ...]
 [else
 (local ((define in-parents
 (all-a ... (child-father a-ftree) ...
 ... accumulator ...)
 (all-a ... (child-mother a-ftree) ...
 ... accumulator ...)))
 (cond
 [(symbol=? (child-eyes a-ftree) 'blue)
 (cons (child-name a-ftree) in-parents)]
 [else in-parents]))])))
 (all-a a-ftree0 ...)))

Our next goal is the formulation of an accumulator invariant. The general purpose of the
accumulator is to remember knowledge about a-ftree0 that all-a loses as it traverses the tree.
A look at the definition in figure 91 shows two recursive applications. The first one processes
(child-father a-ftree), which means this application of all-blue-eyed-ancestors loses
knowledge about the mother of a-ftree. Conversely, the second recursive application has no
knowledge of the father of a-ftree as it processes the mother's family tree.

At this point, we have two choices:

1. The accumulator could represent all blue-eyed ancestors encountered so far, including
those in the mother's family tree, as it descends into the father's tree.

2. The alternative is to have the accumulator stand for the lost items in the tree. That is, as
all-a processes the father's family tree, it remembers the mother's tree in the
accumulator (and everything else it hasn't seen before).

Let's explore both possibilities, starting with the first.

Initially, all-a has not seen any of the nodes in the family tree, so accumulator is empty. As
all-a is about to traverse the father's family tree, we must create a list that represents all blue-
eyed ancestors in the tree that we are about to forget, which is the mother's tree. This suggests
the following accumulator invariant formulation:

;; accumulator is the list of blue-eyed ancestors
;; encountered on the mother-side trees of the path in
;; a-ftree0 to a-ftree

To maintain the invariant for the natural recursion, we must collect the ancestors on the mother's
side of the tree. Since the purpose of all-a is to collect those ancestors, we use the expression

(all-a (child-mother a-ftree) accumulator)

TE
AM
FL
Y

TEAM FLY PRESENTS

-385-

to compute the new accumulator for the application of all-a to (child-father a-ftree).
Putting everything together for the second cond-clause yields this:

(local ((define in-parents
 (all-a (child-father a-ftree)
 (all-a (child-mother a-ftree)
 accumulator))))
 (cond
 [(symbol=? (child-eyes a-ftree) 'blue)
 (cons (child-name a-ftree) in-parents)]
 [else in-parents]))

This leaves us with the answer in the first cond-clause. Since accumulator represents all blue-
eyed ancestors encountered so far, it is the result. Figure 92 contains the complete definition.

;; all-blue-eyed-ancestors : ftn -> (listof symbol)
;; to construct a list of all blue-eyed ancestors in a-ftree
(define (all-blue-eyed-ancestors a-ftree)
 (local (;; accumulator is the list of blue-eyed ancestors
 ;; encountered on the mother-side trees of the path in
 ;; a-ftree0 to a-ftree
 (define (all-a a-ftree accumulator)
 (cond
 [(empty? a-ftree) accumulator]
 [else
 (local ((define in-parents
 (all-a (child-father a-ftree)
 (all-a (child-mother a-ftree)
accumulator))))
 (cond
 [(symbol=? (child-eyes a-ftree) 'blue)
 (cons (child-name a-ftree) in-parents)]
 [else in-parents]))])))
 (all-a a-ftree empty)))

Figure 92: Collecting blue-eyed ancestors, accumulator-style (version 1)

For the second version, we want the accumulator to represent a list of all of the family trees that
haven't been processed yet. Because of the different intention, let us call the accumulator
parameter todo:

;; todo is the list of family trees
;; encountered but not processed

Like the accumulator-style invert, all-a initializes todo to empty. It updates it by extending
the list for the natural recursion:

(local ((define in-parents
 (all-a (child-father a-ftree)
 (cons (child-mother a-ftree) todo))))
 (cond
 [(symbol=? (child-eyes a-ftree) 'blue)
 (cons (child-name a-ftree) in-parents)]
 [else in-parents]))

TE
AM
FL
Y

TEAM FLY PRESENTS

-386-

The problem now is that when all-a is applied to the empty tree, todo does not represent the
result but what is left to do for all-a. To visit all those family trees, all-a must be applied to
them, one at a time. Of course, if todo is empty, there is nothing left to do; the result is empty. If
todo is a list, we pick the first tree on the list as the next one to be processed:

(cond
 [(empty? todo) empty]
 [else (all-a (first todo) (rest todo))])

The rest of the list is what is now left to do.

;; all-blue-eyed-ancestors : ftn -> (listof symbol)
;; to construct a list of all blue-eyed ancestors in a-ftree
(define (all-blue-eyed-ancestors a-ftree0)
 (local (;; todo is the list of family trees encountered but not
processed
 (define (all-a a-ftree todo)
 (cond
 [(empty? a-ftree)
 (cond
 [(empty? todo) empty]
 [else (all-a (first todo) (rest todo))])]
 [else
 (local ((define in-parents
 (all-a (child-father a-ftree)
 (cons (child-mother a-ftree) todo))))
 (cond
 [(symbol=? (child-eyes a-ftree) 'blue)
 (cons (child-name a-ftree) in-parents)]
 [else in-parents]))])))
 (all-a a-ftree0 empty)))

Figure 93: Collecting blue-eyed ancestors, accumulator-style (version 2)

Figure 93 contains the complete definition for this second accumulator-style variant of all-
blue-eyed-ancestors. The auxiliary definition is the most unusual recursive function
definition we have seen. It contains a recursive application of all-a in both the first and the
second cond-clause. That is, the function definition does not match the data definition for family
trees, the primary inputs. While a function like that can be the result of a careful chain of
development steps, starting from a working function developed with a design recipe, it should
never be a starting point.

The use of accumulators is also fairly common in programs that process representations of
programs. We encountered these forms of data in section 14.4, and like family trees, they have
complicated data definitions. In intermezzo 3, we also discussed some concepts concerning
variables and their mutual association, though without processing these concepts. The following
exercises introduce simple functions that work with the scope of parameters, binding occurrences
of variables, and other notions.

Exercise 32.1.1. Develop a data representation for the following tiny subset of Scheme
expressions:

TE
AM
FL
Y

TEAM FLY PRESENTS

-387-

<exp> = <var> | (lambda (<var>) <exp>) | (<exp> <exp>)
The subset contains only three kinds of expressions: variables, functions of one argument, and
function applications.

Examples:

1. (lambda (x) y)

2. ((lambda (x) x)
 (lambda (x) x))

3. (((lambda (y)
 (lambda (x)
 y))
 (lambda (z) z))
 (lambda (w) w))

Represent variables as symbols. Call the class of data Lam.

Recall that lambda-expressions are functions without names. Thus they bind their parameter in
the body. In other words, the scope of a lambda-expression's parameter is the body. Explain the
scope of each binding occurrence in the above examples. Draw arrows from all bound
occurrences to the binding occurrences.

If a variable occurs in an expression but has no corresponding binding occurrence, the
occurrence is said to be free. Make up an expression in which x occurs both free and bound.

Exercise 32.1.2. Develop the function

;; free-or-bound : Lam -> Lam
;; to replace each non-binding occurrence of a variable in a-lam
;; with 'free or 'bound, depending on whether the
;; occurrence is bound or not.
(define (free-or-bound a-lam) ...)

where Lam is the class of expression representations from exercise 32.1.1.

Exercise 32.1.3. Develop the function

;; unique-binding : Lam -> Lam
;; to replace variables names of binding occurrences and their bound
;; counterparts so that no name is used twice in a binding occurrence
(define (unique-binding a-lam) ...)

where Lam is the class of expression representations from exercise 32.1.1.

Hint: The function gensym creates a new and unique symbol from a given symbol. The result is
guaranteed to be distinct from all other symbols in the program, including those previously
generated with gensym.

Use the technique of this section to improve the function. Hint: The accumulator relates old
parameter names to new parameter names.

TE
AM
FL
Y

TEAM FLY PRESENTS

-388-

32.2 Extended Exercise: Missionaries and Cannibals
On occasion, accumulators are a part of a piece of compound data because a function manages
many pieces of data (in the same class) at the same time. The following story poses just such a
problem:

Once upon a time, three cannibals were guiding three missionaries through a jungle. They were
on their way to the nearest mission station. After some time, they arrived at a wide river, filled
with deadly snakes and fish. There was no way to cross the river without a boat. Fortunately,
they found a row boat with two oars after a short search. Unfortunately, the boat was too small to
carry all of them. It could barely carry two people at a time. Worse, because of the river's width
there was no way to bring the boat back other than to row it back.

Since the missionaries could not trust the cannibals they had to figure out a plan to get all six of
them safely across the river. The problem was that these cannibals would kill and eat
missionaries as soon as there were more cannibals than missionaries at some place. Thus our
missionary-programmer had to devise a plan that guaranteed that there were never any
missionaries in the minority at either side of the river. The cannibals, however, can be trusted to
cooperate otherwise. Specifically, they won't abandon any potential food, just as the missionaries
won't abandon any potential converts.

Luckily one of the missionaries had taken a Scheme course and knew how to solve this problem.

While we can solve the problem by hand, solving it with a Scheme function is more fun and
more general. If the same story comes up again with different numbers of cannibals and
missionaries or different boat sizes, we can use the same function to solve the problem again.

As with every problem, we begin by laying out how to represent the problem in our data
language and then study how to represent certain actions in the real world in our programming
language. Here are two basic constants concerning the data representation:

(define MC 3)
(define BOAT-CAPACITY 2)

Formulate the function in terms of these constants.

Exercise 32.2.1. Provide a data representation for the states of a river crossing. A state should
record the number of missionaries and cannibals on each side of the river and the location of the
boat. Here is a graphical representation of the states:

The two lines represent the river, the black and white dots the missionaries and cannibals, the
black rectangle the boat. Determine the initial and final state of the game.

Exercise 32.2.2. Develop a data representation for boat loads. Define BOAT-LOADS, the list of
all possible boat loads.

TE
AM
FL
Y

TEAM FLY PRESENTS

-389-

Develop the function make-BOAT-LOADS, which consumes the boat's maximal capacity and
constructs the list of possible boat loads.

One way to deal with search problems in a systematic manner is to generate all possible
successor states for the states we have reached so far, to filter out the interesting ones, and to
start the search over from those. A successor state is reached by using a feasible transition, for
example, an enabled move in a game, a boat trip, etc.

Here is a graphical illustration of the situation for our problem:

The initial state in the top row has five possible successor states, one per feasible boat load. They
are shown in the second row. Two of these successor states are illegal, because one side contains
more cannibals than missionaries. One of the legal ones is the state in which one missionary and
cannibal reached the right side of the river; it has three successor states in turn. The following
exercises deal with generating the successor states and filtering out the interesting ones.

Testing: Formulate all tests as boolean-valued expressions that produce true if the expected
value is the computed one, and false if not.

Exercise 32.2.3. Develop a function that consumes a state and returns a list of all possible
successor states, that is, all those states that are reachable with one boat trip from one side of the
river to the other.

Develop a generalized version that consumes a list of states, and returns a list of states reachable
with one crossing.

Exercise 32.2.4. Develop a function that determines whether a given state is legal. A state is
legal if it contains the proper number of missionaries and cannibals and if the missionaries on
each side of the river are safe.

Develop a generalized function that consumes a list of states and returns the sublist of legal
states.

Exercise 32.2.5. Develop a function that consumes a state and determines if it is final.

Develop a generalized version that consumes a list of states and returns the sublist of final
states.

The functions we have developed can generate the successor states of a list of states and can
detect whether any of the states reached so far are legal. Now we can develop a function that
determines whether we can transport the missionaries and cannibals across the river.

TE
AM
FL
Y

TEAM FLY PRESENTS

-390-

Exercise 32.2.6. Develop mc-solvable?, which consumes a list of states and generates the list
of all successor states until it has found a final state. The function should simply produce true
when it finds a final state.

Exercise 32.2.7. Develop mc-solution. The function is an adaptation of mc-solvable? that
not only produces true when it finds a solution but a list of river crossings if a given missionary-
and-cannibal problem is solvable.

Hint: Modify the state representations so that they accumulate the list of crossings that got the
group to this particular state. For the initial state, this is just the empty list; for a final state, it is
the desired solution.

Exercise 32.2.8. A series of boat trips may bring the group of missionaries and cannibals back
to the initial state (or some other previous state). The series may include two, four, or more boat
trips. In short, the ``game'' contains cycles. Make up an example.

The function mc-solution generates all those states reachable with, say, seven boat trips before
it generates all those states reachable with eight crossings. Therefore we do not have to worry
about cycles in solution attempts. Why?

Modify the solution so that a state reached via a cycle is also illegal.

Note: This shows how the accumulator inside the state representation has two uses.

32.3 Extended Exercise: Board Solitaire
Peg Solitaire is a board game for individuals. The board comes in various shapes. Here is the
simplest one:

The circle without a black dot represents an unoccupied hole; the other circles are holes
containing little pegs.

The goal of the game is to eliminate the pegs one by one, until only one peg is left. A player can
eliminate a peg if one of the neighboring holes is unoccupied and if there is a peg in the hole in
the opposite direction. In that case, the second peg can jump over the first one and the first one is
eliminated. Consider the following configuration:

Here the pegs labeled 1 and 2 could jump. If the player decides to move the peg labeled 2, the
next configuration is

TE
AM
FL
Y

TEAM FLY PRESENTS

-391-

Some configurations are dead-ends. For a simple example, consider the first board configuration.
Its hole is in the middle of the board. Hence no peg can jump, because there are no two pegs in a
row, column, or diagonal such that one can jump over the other into the hole. A player who
discovers a dead-end configuration must stop or backtrack by undoing moves and trying
alternatives.

Exercise 32.3.1. Develop a representation for triangular Solitaire boards.

Develop a data representation for peg moves. Pegs can move along a row, a column, and a
diagonal.

Hints: (1) There are at least four rows, because it is impossible to play the game with three or
fewer. Still, develop the data definition independently of such constraints. (2) Translate our
examples from above into the chosen data representations.

Exercise 32.3.2. Develop a function that, given a board and the board position of a peg,
determines whether or not the peg can jump. We call such a peg enabled.

Develop a function that, given a board and the board position of an enabled peg, creates a board
that represents the next configuration.

Exercise 32.3.3. Develop the function solitaire, which solves a Solitaire problem for
different sizes of the equilateral triangle. The function should consume a board. It produces
false, if the given problem is not solvable. Otherwise, it should produce a list of moves that
specifies in what order the pegs must be moved to solve the given Solitaire problem.

Formulate the tests for all functions as boolean-valued expressions.

TE
AM
FL
Y

TEAM FLY PRESENTS

-392-

Section 33

Intermezzo 6: The Nature of Inexact
Numbers
Computers represent and process information in chunks of a fixed size. Because computers were
first used for numerical calculations, early computer engineers developed a representation for
numbers in terms of fixed-size chunks. Programming languages must mediate the gap between
these fixed-size representations and the true mathematics. Because using the hardware
representation for numbers makes a program's calculations as efficient as possible, most
designers and implementors of programming languages adopted the hardware-based choice.

This intermezzo explains the fixed-size representation for numbers and its consequences in some
detail. The first subsection introduces a concrete fixed-size representation for numbers, discusses
what it implies for the representation of numbers, and shows how to calculate with such numbers.
The second and third section illustrate the two most fundamental problems of fixed-size number
arithmetic: overflow and underflow, respectively.

33.2 Fixed-size Number Arithmetic
Suppose we can use four digits to represent numbers. If we represent natural numbers, the
representable range is 0 ...9999. Alternatively we could represent 10,000 fractions between 0
and 1 with that many digits. In either case, this is a rather small range of numbers and not useful
for most scientific or business computations.

We can represent a larger range of numbers if we use a different notation for numbers instead. In
science, for example, we encounter so-called scientific notation, which represents numbers as
two parts:

1. a MANTISSA, which is a base number, and
2. an EXPONENT, which is used to determine a 10-based factor.

For pure scientific notation, the base is between 0 and 9. We relax this constraint and just write
numbers as

where m is the mantissa and e the exponent. For example, one representation of 1200 with this
scheme is

another one is

TE
AM
FL
Y

TEAM FLY PRESENTS

-393-

In general, a number has several equivalents in mantissa-exponent representation.

We can also use negative exponents, which add fractions at the cost of one extra piece of data:
the sign of the exponent. For example,

stands for

As before, the fraction has several representations in the new notation.

To use a form of mantissa-exponent notation for our problem, we must decide how many digits
we wish to use for the representation of the mantissa and how many for the exponent. Here we
use two for each and a sign for the exponent; other choices are possible. Given this decision, we
can still represent 0 as

The maximal number we can represent is

which is 99 followed by 99 0's. If we use negative exponents in addition to positive ones, we can
also represent

which is a small number close to 0. Thus we can now represent a vastly larger range of numbers
with four digits and a sign than before. But this improvement comes with its own problems.

;; create-inex : N N N -> inex
;; to make an instance of inex after checking the appropriateness
;; of the arguments
(define (create-inex m s e)
 (cond
 [(and (<= 0 m 99) (<= 0 e 99) (or (= s +1) (= s -1)))
 (make-inex m s e)]
 [else
 (error 'make-inex "(<= 0 m 99), +1 or -1, (<= 0 e 99) expected")]))

;; inex->number : inex -> number
;; to convert an inex into its numeric equivalent
(define (inex->number an-inex)
 (* (inex-mantissa an-inex)
 (expt 10 (* (inex-sign an-inex) (inex-exponent an-inex)))))

Figure 94: Functions for inexact representations

TE
AM
FL
Y

TEAM FLY PRESENTS

-394-

To understand the problems, it is best to agree on a fixed representation schema and to
experiment with the number representations. Let's represent a fixed-size number with a structure
that has three fields:

(define-struct inex (mantissa sign exponent))

The first and last field contain the mantissa and exponent of the number, the sign field is +1 or -
1 and represents the sign of the exponent. This sign field enables us to represent numbers
between 0 and 1.

Here is the data definition:

An inex is a structure:

 (make-inex m s e)
where m and e are natural numbers in [0,99] and s is +1 or -1.

Because the conditions on the fields of an inex structure are so stringent, we use the function
create-inex to create these structures. Figure 94 contains the function definition for create-
inex, which is a generalized constructor, that is, a checked constructor (see section 7.5). The
figure also defines the function inex->number, which turns inexs into numbers according to the
principles of our new notation.

Let's translate the above example, 1200, into our Scheme representation:

(create-inex 12 +1 2)

The alternative representation, 120 · 101, is illegal in our Scheme world, however. If we evaluate

(create-inex 120 +1 1)

we get an error message because the arguments don't satisfy the stated data contract. For other
numbers, though, we can find two inex equivalents. One example is 0.0000000000000000005,
which we can express as

(create-inex 50 -1 20)
and
(create-inex 5 -1 19)

Confirm the equivalence of these two representations with inex->number.

The range of inex numbers is vast:

(define MAX-POSITIVE (make-inex 99 +1 99))
(define MIN-POSITIVE (make-inex 1 -1 99))

That is, we can represent large numbers that consist of up to 101 digits in the standard decimal
notation; we can also represent small positive fractions smaller than 1 down to the fraction 1 over
10...0 with 99 zeros. The appearances, however, are deceiving. Not all real numbers in the
range between 0 and MAX-POSITIVE can be translated into an inex structure. In particular, any
positive number less than

TE
AM
FL
Y

TEAM FLY PRESENTS

-395-

has no equivalent inex structure. Similarly, the inex representation has gaps in the middle. For
example, the successor of

(create-inex 12 +1 2)

is

(create-inex 13 +1 2)

The first inex structure corresponds to 1200, the second one to 1300. Numbers in the middle,
such as 1240 or 1260, can only be represented as one or the other. The standard choice is to
round the number to the closest representable equivalent. In short, we must approximate such
mathematical numbers as we translate into a chosen representation.

Finally, we must also consider arithmetic operations on inex structures. Adding two inex
representations with the same exponent means adding the two mantissas:

 (inex+ (create-inex 1 +1 0)
 (create-inex 2 +1 0))
= (create-inex 3 +1 0)

Translated into mathematical notation, we have

When the addition of two mantissas yields too many digits, we may have to find a suitable
representation. Consider the example of adding

to itself. Mathematically we get

but we can't just translate this number naively into our chosen representation because 110 > 99.
The proper corrective action is to represent the result as

Or, translated into Scheme, we must ensure that inex+ computes as follows:

 (inex+ (create-inex 55 +1 0)
 (create-inex 55 +1 0))
= (create-inex 11 +1 1)

More generally, if the mantissa of the result is too large, we must divide it by 10 and increase the
exponent by one.

TE
AM
FL
Y

TEAM FLY PRESENTS

-396-

Sometimes the result contains more mantissa digits than we can represent. In those cases, inex+
must round to the closest equivalent in the inex world. For example:

 (inex+ (create-inex 56 +1 0)
 (create-inex 56 +1 0))
= (create-inex 11 +1 1)

This corresponds to the precise calculation:

Because the result has too many mantissa digits, the integer division of the result mantissa by 10
produces an approximate result:

This is an example of the many approximations that make INEXACT ARITHMETIC inexact.

We can also multiply numbers represented as inex structures. Recall that

Thus we get:

or, in Scheme notation:

 (inex* (create-inex 2 +1 4)
 (create-inex 8 +1 10))
= (make-inex 16 +1 14)

As with addition, things are not always straightforward. When the result has too many significant
digits in the mantissa, inex* has to increase the exponent:

 (inex* (create-inex 20 -1 1)
 (create-inex 5 +1 4))
= (create-inex 10 +1 4)

In the process, inex* will introduce an approximation if the true mantissa doesn't have an exact
equivalent in the class of inex structures:

 (inex* (create-inex 27 -1 1)
 (create-inex 7 +1 4))
= (create-inex 19 +1 4)

Exercise 33.2.1. Develop the function inex+, which adds inex representations that have the
same exponent. The function must be able to deal with examples that increase the exponent.
Furthermore, it must signal its own error if the result is out of range for inex representations.

TE
AM
FL
Y

TEAM FLY PRESENTS

-397-

Challenge: Extend inex+ so that it can deal with inputs whose exponents differ by 1:

(equal? (inex+ (create-inex 1 +1 0) (create-inex 1 -1 1))
 (create-inex 11 -1 1))

Do not attempt to deal with larger classes of inputs than that without reading the following
subsection.

Exercise 33.2.2. Develop the function inex*, which multiplies inex representations. The
function must be able to deal with examples that increase the exponent. Furthermore, it must
signal its own error if the result is out of range for inex representations.

Exercise 33.2.3. The section illustrated how an inexact representation system for real numbers
has gaps. For example, 1240 was represented as (create-inex 12 +1 2) by rounding off the
last significant digit of the mantissa. The problem is, round-off errors can accumulate.

Develop the function add, which adds up n copies of #i1/185. What is the result for (add 185)?
What should it be? What happens if we multiply the result of the second expression with a large
number?

Develop the function sub, which counts how often 1/185 can be subtracted from the argument
until the argument is 0. How often should the evaluation recur before (sub 1) and (sub #i1.)
is evaluated? What happens in the second case? Why?

33.3 Overflow
While the use of scientific notation expands the range of numbers we can represent with fixed-
size chunks of data, it still doesn't cover arbitrarily large numbers. Some numbers are just too big
to fit into a fixed-size number representation. For example,

can't be represented, because the exponent 500 won't fit into two digits, and the mantissa is as
large as it can be.

Numbers that are too large for our representation schema can arise during a computation. For
example, two numbers that we can represent can add up to a number that we cannot represent:

 (inex+ (create-inex 50 +1 99)
 (create-inex 50 +1 99))
= (create-inex 100 +1 99)

which violates the data contract, or

 (inex+ (create-inex 50 +1 99)
 (create-inex 50 +1 99))
= (create-inex 10 +1 100)

which also breaks the contract for inex structures. When the result of inex arithmetic produces
numbers that are too large to be represented, we say (arithmetic) OVERFLOW occurred.

TE
AM
FL
Y

TEAM FLY PRESENTS

-398-

When overflow occurs, some language implementations signal an error and stop the computation.
Others designate some symbol, called infinity, for all numbers that are too large. Arithmetic
operations are aware of infinity and propagate it.

Negative Numbers: If our inex structures had a sign field for the mantissa, then two negative
numbers can add up to one that is so negative that it can't be represented either. This is also
called overflow, though to emphasize the distinction people sometimes say overflow in the
negative direction.

Exercise 33.3.1. DrScheme's inexact number system uses an infinity value to deal with
overflow. Determine the integer n such that (expt #i10. n) is still an inexact Scheme number
and (expt #i10. (+ n 1)) is approximated with infinity. Hint: Use a function to compute n.

33.4 Underflow
At the opposite end of the spectrum, we have already seen small numbers that cannot be
represented with inex structures. For example, 10-500 is not 0, but it's smaller than the smallest
non-zero number we can represent. An arithemtic UNDERFLOW arises when we multiply two small
numbers and the result is too small to fit into our class of inex structures:

 (inex* (create-inex 1 -1 10)
 (create-inex 1 -1 99))
= (create-inex 1 -1 109)

which causes an error.

When underflow occurs, some language implementations signal an error; others use 0 to
approximate the result. An approximation with 0 for underflow is qualitatively different from our
ealier kinds of approximations. In approximating 1250 with (create-inex 12 +1 2), we
approximated by dropping significant digits from the mantissa, but we were left with a non-zero
mantissa. The result is within 10% of the number we wanted to represent. Appromixating on
underflow, however, means dropping the entire mantissa. The result is not within a predictable
precentage range of the true result.

Exercise 33.4.1. DrScheme's inexact number system uses #i0 to approximate underflow.
Determine the smallest integer n such that (expt #i10. n) is still an inexact Scheme number
and (expt #i10. (- n 1)) is approximated with 0. Hint: Use a function to compute n.

33.5 DrScheme's Numbers
Most programming languages support only inexact number representations (and arithmetic) for
both integers and reals. Scheme, in contrast, supports both exact and inexact numbers and
arithmetic. Of course, the base of the representation is 2, not 10, because Scheme uses the
underlying computer's on-off machinery.

As the note on page 5 explained, DrScheme's teaching levels interpret all numbers in our
programs as exact rationals, unless they are prefixed with #i. Some numeric operations, though,
produce inexact numbers. Plain Scheme, which is called Full Scheme in DrScheme, interprets all

TE
AM
FL
Y

TEAM FLY PRESENTS

-399-

numbers with a dot as inexact numbers;66 it also prints inexact reals with just a dot, implying that
all such numbers are inexact and possibly distant from the actual result.

Scheme programmers can thus choose to use exact arithmetic or inexact arithmetic as necessary.
For example, numbers in financial statements should always be interpreted as exact numbers;
arithmetical operations on such numbers should be as precise as possible. For some problems,
however, we may not wish to spend the extra time to produce exact results. Scientific
computations are a primary example. In such cases, we may wish switch to inexact numbers and
arithmetic.

Numerical Analysis: When we use inexact numbers and arithmetic, it is natural to ask how
much the program's results differs from the true results. Over the past few decades, the study of
this complex question has evolved into an advanced topic, called numerical analysis. The
discipline has become a subject of its own right in applied mathematics or in computer science
departments.

Exercise 33.5.1. Evaluate

(expt 1.001 1e-12)

in Full Scheme (any variant) and in Intermediate Student Scheme. Explain the
observations.

Exercise 33.5.2. Develop the function my-expt, which raises one number to the power of some
integer. Using this function, conduct the following experiment. Add

(define inex (+ 1 #i1e-12))
(define exac (+ 1 1e-12))

to the Definitions window. What is (my-expt inex 30)? How about (my-expt exac 30)?
Which answer is more useful?

Exercise 33.5.3. When we add two inexact numbers of vastly different orders of magnitude, we
may get the larger one back as the result. For example, if we are using only 15 significant digits,
then we run into problems when adding numbers which vary by more than a factor of 1016:

but if the number system supports only 15 digits, the closest answer is 1016. At first glance, this
doesn't look too bad. After all, being wrong by one part in 1016 (ten million billion) is close
enough to the accurate result. Unfortunately, this kind of problem can add up to huge problems.

Consider the following list of inexact numbers:

(define JANUS
 (list #i31
 #i2e+34
 #i-1.2345678901235e+80
 #i2749
 #i-2939234
 #i-2e+33
 #i3.2e+270

TE
AM
FL
Y

TEAM FLY PRESENTS

-400-

 #i17
 #i-2.4e+270
 #i4.2344294738446e+170
 #i1
 #i-8e+269
 #i0
 #i99))

Determine the values (sum JANUS) and (sum (reverse JANUS)). Explain the difference. Can
we trust computers?

66 We can force Full Scheme to interpret numbers with a dot as exact by prefixing the numbers
with #e.

TE
AM
FL
Y

TEAM FLY PRESENTS

-401-

Part VII

Changing the State of Variables

TE
AM
FL
Y

TEAM FLY PRESENTS

-402-

Section 34

Memory for Functions
No matter how often we use a function with one and the same argument, we always get the same
result. Even an accumulator-style function produces the same result every time we apply it to the
same argument, as long as the accumulator argument is also the same. Functions simply do not
have any memory about their past uses.

Many programs, though, must remember something about their past uses. Recall that a program
typically consists of several functions. In the past we have always assumed that there is one main
function and that all others are auxiliary and invisible to the user. In some cases, however, a user
may expect more than one service from a program, and each service is best implemented as a
function. When a program provides more than one function as a service to the user, it is common
that, for sheer convenince or possibly because we add a graphical user interface, the functions
must have memory.

Because this point is difficult to grasp in the abstract, we study some examples. The first one
concerns a program for managing telephone numbers in an address book. The standard address
book software provides at least two services:

1. a service for looking up the phone number of some person; and
2. a service for adding a name and a phone number to the address book.

Based on our guidelines, the program provides two functions to the user. The user can apply
those functions in DrScheme's Interactions window to appropriate data. Or, we can develop a
graphical user interface with text fields and buttons so that the user doesn't need to know
anything about programming. Figure 95 displays such an interface.

Figure 95: A phonebook GUI

The two services roughly correspond to two functions:

;; lookup : list-of-symbol-number-pairs symbol -> number or false
;; to lookup the number associated with name in pb
;; if it doesn't find name, the function produces false
(define (lookup pb name) ...)

;; add-to-address-book : symbol number -> void
;; to add name and number to address-book
(define (add-to-address-book name number) ...)

TE
AM
FL
Y

TEAM FLY PRESENTS

-403-

(define ADDRESS-BOOK
 (list (list 'Adam 1)
 (list 'Eve 2)))

We also introduce a variable definition for maintaing a list of name-number associations.

The first function is a variant of our very first recursive function. A user applies it to a list of
name-number associations, such as ADDRESS-BOOK, and a name. It produces a number, if the
name is on the list, or false otherwise. The second function is radically different from what we
have seen. The user would apply it to a name and a number; any future lookup of that name
would then produce that number.

Let's imagine an interaction in DrScheme:

> (lookup ADDRESS-BOOK 'Adam)
1
> (lookup ADDRESS-BOOK 'Dawn)
false
> (add-to-address-book 'Dawn 4)
> (lookup ADDRESS-BOOK 'Dawn)
4

The first two confirm that 'Adam has the phone number 1 and that we don't have a phone number
for 'Dawn. The third one adds the phone number 4 for 'Dawn to ADDRESS-BOOK. And the last
interaction shows that the very same use of lookup as before now produces the expected phone
number.

In the past, the only way we could have achieved this same effect is by editing the definition of
ADDRESS-BOOK. But, we do not wish users to edit our programs. Indeed, they shouldn't even have
access to our programs. We are therefore forced to provide an interface with a function that
permits such changes. We could go even further and implement the graphical interface of
figure 95. A dialogue equivalent to the above interaction would proceed as follows:

1. Type Adam into the text field, click the Lookup button, and ``1'' appears in the lower text
field.

2. Enter Dawn into the text field, click the Lookup button, and some message concerning a
missing number appears in the lower text field.

3. Replace the message with ``4'' and click the Add button.
4. Erase the ``4'' from the lower text field, click the Lookup and the ``4'' shows up again.

In short, providing a convenient interface to a user forces us to develop a program whose
functions know about each other's usage history.

TE
AM
FL
Y

TEAM FLY PRESENTS

-404-

Figure 96: The three stages of a traffic light canvas and its GUI

The second example, a traffic light simulation, illustrates how a single function may need to have
some memory. Recall the function next from exercise 6.2.5. It consumes the current color of a
traffic light and, with the help of clear-bulb and draw-bulb, switches the state of the traffic
light on a canvas to the next traffic color. The result is the next color.

A user who wishes to switch the traffic light four times in a row must enter

(next (next (next (next 'red))))

into the Interactions window. An even more convenient user interface, however, would
provide a button that the user can click.

Providing a button means providing a call-back function that somehow knows about the current
state of the traffic light and changes it. Let's call this function next, too, but let's assume that it
consumes no arguments. Here is an imaginary interaction using this function:

> (next)
> (next)
> (next)

Every time we apply next to no arguments, it produces the invisible value and simulates the
switch of state in the traffic light on the canvas. In other words, the canvas cycles through the
three states depicted in figure 96. Equivalently, we can have a user click the ``NEXT'' button
three times, which would apply the next function and have the same visual effect. To accomplish
this effect, the use of next must affect its own future uses.

TE
AM
FL
Y

TEAM FLY PRESENTS

-405-

Figure 97: Three stages in the hangman game and its GUI

The final example concerns the hangman game, which is also the subject of section 6.7. The
game program requires us to develop three functions: make-word, reveal, and draw-next-part.
We start the game by evaluating

(hangman make-word reveal draw-next-part)

which picks a word, creates the graphical user interface of the lower half of figure 97, and draws
the left-most picture in the sequence of the upper half of the figure. The player can then choose a
letter from the choice menu in the GUI and click on the ``Check'' button to determine whether
the letter occurs in the word. If so, the hangman function reveals where the letter occurs; if not, it
uses our draw-next-part function to draw the next stage in the hangman picture. The more bad
guesses the player makes, the more of the stick figure appears in the picture (see top-half of
figure 97).

Our description suggests that the hangman function in the teachpack employs a callback function
for the ``Check'' button. Let's call this function check. It consumes the letter and produces true
if the check reveals new knowledge:

> (check 'b)
true

TE
AM
FL
Y

TEAM FLY PRESENTS

-406-

If not, because the letter has already been guessed, the function produces false to indicate that
the player didn't gain new knowledge:

> (check 'b)
false

In this case, check also employs draw-next-part to draw another part of the hangman figure.
Of course, to accomplish this, hangman and check must have some memory about how often the
``Check'' button was used and how often it was used with a negative result.

With our current knowledge of Scheme, we cannot formulate functions such as add-to-
address-book, next, or check. To fill this gap in our knowledge, the next section introduces
set!67 expressions. This new form of expression permits functions to change the value that a
defined variable represents. Using this new construct, we can formulate Scheme functions that
have memory. That is, we can define functions that know something about their history and the
history of other functions.

67 This keyword is pronounced set-bang.

TE
AM
FL
Y

TEAM FLY PRESENTS

-407-

Section 35

Assignment to Variables
A set!-expression, also known as an ASSIGNMENT, has the following shape:

(set! var exp)

It consists of a variable, the LEFT-HAND SIDE, and an expression, called RIGHT-HAND SIDE. The left-hand
side of a set!-expression is a fixed variable. In this book, we only use variables that are defined,
either at the top-level or in a local-expression. A set!-expression may occur wherever an
expression is legal.

The value of a set!-expression is always the same and is moreover invisible. It is therefore
irrelevant. What matters about a set!-expression, instead, is the effect of its evaluation.
Specifically, for the first step of the evaluation of a set!-expression, we determine the value of
exp. Let's say this value is V. For the second step, we change the definition of var to

(define var V)

The EFFECT of this second step is that from this point on, all references to var in an evaluation
replace var by V.68 Its former value is lost.

Understanding the true nature of assignments is difficult. We therefore first consider a simple
though useless example.

35.1 Simple Assignments at Work
Consider the following definition and expression:

(define x 3)

(local ((define z (set! x (+ x 2))))
 x)

The definition says that x stands for 3. The local-expression introduces a definition for z. Its
body is x so, in the past, the value of this local-expression would have been 3 (if anything). Now,
with set! in the language, this is no longer true. To understand what happens, we must rewrite
the program step by step until we have a final answer.

The first step in the evaluation lifts the local definition:

(define x 3)

(define z (set! x (+ x 2)))

TE
AM
FL
Y

TEAM FLY PRESENTS

-408-

x

Next we must determine the value of (set! x (+ x 2)). According to the general explanation
of set!, this requires the evaluation of the right-hand side of the assignment:

(define x 3)

(define z (set! x 5))

x

That value is 5 because the current value of x is 3.

Finally, the general explanation says that the effect of the set! expression is to change the value
that the left-hand side variable represents. In our example this means that from now on, x is no
longer 3 but 5. The best way to express this change is to modify the definition of x for the next
step:

(define x 5)

(define z (void))

x

The value of set! is (void), the invisible value. By replacing the set!-expression with the
invisible value, we indicate that its evaluation is finished.

At this point, it is easy to see that the result is 5. The first definition says that x currently
represents 5, and the last expression is x. Hence the value of the function evaluation is 5.

Exercise 35.1.1. Consider the following:

1. (set! x 5)
2.

3. (define x 3)
4.
5. (set! (+ x 1) 5)

6.
7. (define x 3)
8. (define y 7)
9. (define z false)
10.
11. (set! (z x y) 5)

12.

Which ones are syntactically legal programs? Which ones are illegal?

Exercise 35.1.2. Evaluate the following program:

(define x 1)
(define y 1)

(local ((define u (set! x (+ x 1)))

TE
AM
FL
Y

TEAM FLY PRESENTS

-409-

 (define v (set! y (- y 1))))
 (* x y))

If set! were not a part of the language, what could we say about the result of the local-
expression? That is, consider the skeleton

(define x 1)
(define y 1)

(local ((define u ...)
 (define v ...))
 (* x y))

where the right-hand sides of the definitions have been removed. What would this expression
have produced before the introduction of set!-expressions?

35.2 Sequencing Expression Evaluations
The hand-evaluation shows that the local definition for z serves to evaluate a set!-expression
and ``to throw away'' its value. After all, a set!'s true purpose is to change a definition and not
to generate a value. Because this situation is quite common, Scheme also provides the begin-
expression:

(begin exp-1
 ...
 exp-n
 exp)

A begin-expression consists of the keyword begin followed by a sequence of n + 1 expressions.
The evaluation determines the values of all expressions, in order, and then throws away the first
n. The value of the last expression is the value of the entire begin-expression. In general, the first
n subexpressions in a begin-expression change some definitions; only the last one has an
interesting value.

We can now rewrite our first sample program with set! into a short expression:

(define x 3)

(begin (set! x (+ x 2))
 x)

The use of begin not only simplifies the program, it also suggests a straight-line ordering of the
evaluation.

The hand-evaluation also shows that the evaluation of set!-expression introduces additional
timing constraints. More concretely, the above evaluation consists of two parts: the one before
and the one after the assignment exerted its effect on the state of the definitions. Before we
introduced assignments, we could replace a variable by its value or a function application by the
function's body whenever we wished. Now, we must wait until we truly need the value of a
variable before we perform the substitution. After all, definitions may change.

TE
AM
FL
Y

TEAM FLY PRESENTS

-410-

While some partial ordering is always a part of computation, the timing constraints of set! are
new. By altering a definition, an assignment ``destroys'' the current value. Unless the
programmer carefully plans the arrangement of assignments, such an action may be fatal. The
exercises illustrate the problem in more detail.

Exercise 35.2.1. Evaluate the following program by hand:

(define x 1)
(define y 1)

(begin (set! x (+ x 1))
 (set! y (- y 1))
 (* x y))

How many time periods can we distinguish in this hand-evaluation?

Compare this with the evaluation of

(define a 5)

(* (+ a 1) (- a 1)))

Does the nesting imply an ordering among our calculations? Does the order of addition and
subtraction matter?

Exercise 35.2.2. Evaluate the following program by hand:

(define x 3)
(define y 5)

(begin (set! x y)
 (set! y x)
 (list x y))

How many time periods can we distinguish in this hand-evaluation?

Now evaluate the following:

(define x 3)
(define y 5)

(local ((define z x))
 (begin (set! x y)
 (set! y z)
 (list x y)))

Is it true that the definition of x contains the initial value of y and y contains the initial value of x
after the two set!-expressions are evaluated, no matter what the initial values are?

Discuss what the two examples teach us about time and ``destruction of values'' in definitions.

Exercise 35.2.3. Evaluate the following program by hand:

(define x 3)

TE
AM
FL
Y

TEAM FLY PRESENTS

-411-

(define y 5)

(begin
 (set! x y)
 (set! y (+ y 2))
 (set! x 3)
 (list x y))

How many time intervals must we distinguish in this hand-evaluation?

35.3 Assignments and Functions
An assignment can also occur in a function body:

(define x 3)

(define y 5)

(define (swap-x-y x0 y0)
 (begin
 (set! x y0)
 (set! y x0)))

(swap-x-y x y)

Here the function swap-x-y consumes two values and performs two set!s.

Let us see how the evaluation works. Because (swap-x-y x y) is a function application, we
need to evaluate the arguments, which are plain variables here. So we replace the variables with
their (current) values:

(define x 3)

(define y 5)

(define (swap-x-y x0 y0)
 (begin
 (set! x y0)
 (set! y x0)))

(swap-x-y 3 5)

From here we proceed with the usual substitution rule for application:

(define x 3)

(define y 5)

(define (swap-x-y x0 y0)
 (begin
 (set! x y0)
 (set! y x0)))

(begin
 (set! x 5)
 (set! y 3))

TE
AM
FL
Y

TEAM FLY PRESENTS

-412-

That is, the application is now replaced by an assignment of x to the current value of y and of y
to the current value of x.

The next two steps are also the last ones and thus they accomplish what the name of the function
suggests:

(define x 5)

(define y 3)

(define (swap-x-y x0 y0)
 (begin
 (set! x y0)
 (set! y x0)))

(void)

The value of the application is invisible because the last expression evaluated was a set!-
expression.

In summary, functions with set! have results and effects. The result may be invisible.

Exercise 35.3.1. Consider the following function definition:

(define (f x y)
 (begin
 (set! x y)
 y))

Is it syntactically legal or illegal?

Exercise 35.3.2. Evaluate the following program by hand:

(define x 3)

(define (increase-x)
 (begin
 (set! x (+ x 1))
 x))

(increase-x)
(increase-x)
(increase-x)

What is the result? What is increase-x's effect?

Exercise 35.3.3. Evaluate the following program by hand:

(define x 0)

(define (switch-x)
 (begin
 (set! x (- x 1))
 x))

(switch-x)

TE
AM
FL
Y

TEAM FLY PRESENTS

-413-

(switch-x)
(switch-x)

What is the result? What is switch-x's effect?

Exercise 35.3.4. Evaluate the following program by hand:

(define x 0)

(define y 1)

(define (change-to-3 z)
 (begin
 (set! y 3)
 z))

(change-to-3 x)

What is the effect of change-to-3? What is its result?

35.4 A First Useful Example
Let's take a look at the definitions in figure 98. The function add-to-address-book consumes a
symbol and a number. The former represents a name, the latter a phone number. Its body
contains a set!-expression for address-book, a variable defined at top-level. The function
lookup consumes an address book and a name; its result is the matching phone number or false,
if the name is not in address-book.

(define address-book empty)

;; add-to-address-book : symbol number -> void
(define (add-to-address-book name phone)
 (set! address-book (cons (list name phone) address-book)))
;; lookup : symbol (listof (list symbol number)) -> number or false
;; to lookup the phone number for name in ab
(define (lookup name ab)
 (cond
 [(empty? ab) false]
 [else (cond
 [(symbol=? (first (first ab)) name)
 (second (first ab))]
 [else (lookup name (rest ab))])]))

Figure 98: The basic address-book program

Using lookup, we can study the effect of the set! expression in add-to-address-book.
Suppose we evaluate (lookup 'Adam address-book) with the given definitions:

 (lookup 'Adam address-book)
= (lookup 'Adam empty)
= (cond
 [(empty? empty) false]
 [else ...])
= false

TE
AM
FL
Y

TEAM FLY PRESENTS

-414-

Because address-book is empty, we get false, and the calculation is straightforward.

Now let's evaluate the following in the Interactions window:

(begin (add-to-address-book 'Adam 1)
 (add-to-address-book 'Eve 2)
 (add-to-address-book 'Chris 6145384))

The first subexpression is a plain function application. So, the first step relies on the usual law of
substitution:69

(define address-book empty)

(begin (set! address-book (cons (list 'Adam 1) address-book))
 (add-to-address-book 'Eve 2)
 (add-to-address-book 'Chris 6145384))

The next expression to be evaluated is the set!-expression that is nested in the begin-expressions,
in particular its right-hand side. The first argument to cons is a value, but the second one is still a
variable whose current value is empty. With this, we can see what happens next:

(define address-book empty)

(begin (set! address-book (cons (list 'Adam 1) empty))
 (add-to-address-book 'Eve 2)
 (add-to-address-book 'Chris 6145384))

At this point we are ready to evaluate the set!-expression. Specifically, we change the definition
of address-book so that the variable now stands for (cons (list 'Adam 1) empty):

(define address-book
 (cons (list 'Adam 1)
 empty))

(begin (void)
 (add-to-address-book 'Eve 2)
 (add-to-address-book 'Chris 6145384))

The begin-expression throws away the invisible value.

Evaluating the remaining applications of add-to-address-book yields

(define address-book
 (list (list 'Chris 6145384)
 (list 'Eve 2)
 (list 'Adam 1)))

(void)

In short, the three applications turn address-book into a list of three pairs.

If we now evaluate (lookup 'Adam address-book) in the Interactions window again, we
get 1:

 (lookup 'Adam address-book)

TE
AM
FL
Y

TEAM FLY PRESENTS

-415-

= (lookup 'Adam (list (list 'Chris 6145384)
 (list 'Eve 2)
 (list 'Adam 1))
= ...
= 1

The comparison of this evaluation and the one at the beginning of the section shows how set!
changes the meaning of address-book over time and how the two functions, add-to-address-
book and lookup, implement the services that we discussed in section 34. The exercises show
how useful this collaboration of two functions is in the context of a graphical user interface.

Exercise 35.4.1. The software for managing address books permits users to remove entries.
Develop the function

;; remove : symbol -> void
(define (remove name) ...)

which changes address-book so that all future lookups for name yield false.

Exercise 35.4.2. The teachpack phone-book.ss implements a graphical user interface based on
the model-view pattern discussed in section 22.3. Figure 95 shows what the graphical user
interface offers:

1. a text-field for entering a name;
2. a text-field for displaying the search result and for entering a phone number;
3. a button for looking up the phone number for a name;
4. a button for adding a name and a phone number; and
5. a button for removing the phone number for a name.

Use the teachpack's connect function to create a GUI for the functions in this section and in
exercise 35.4.1. The function has the following contract, purpose, and header:

;; model-T = (button% control-event% -> true)
;; connect : model-T model-T model-T -> true
(define (connect lookup-cb change-cb remove-cb) ...)

That is, it consumes three model functions and wires them up with the GUI. The names of the
parameters specify which call-back function goes with which button.

A model function may obtain the contents of the name field with (name-control) and the
contents of the number field with (number-field).

68 We have already encountered several kinds of effects: drawing to a canvas, changing the text
field in a GUI, the creating of files by teachpacks, and so on. These effects aren't as complex as
those of set! because they don't affect the program proper.

69 Because the calculation does not affect the function definitions, we do not include them in the
calculation here. This convention saves space and time, but it should be used carefully.

TE
AM
FL
Y

TEAM FLY PRESENTS

-416-

Section 36

Designing Functions with Memory
Section 34 motivated the idea of functions with memory; section 35 explained how variable
definitions and set! together can achieve the effect of memory. It is now time to discuss the
design of programs with memory.

Designing functions with memory requires three important steps:

1. We must determine that a program requires memory.
2. We must identify the data that goes into the memory.
3. We must understand which of the services are supposed to modify the memory and which

are to use the memory.

The need for the first step is obvious. Once we know that a program requires memory, we must
conduct a data analysis for the program's memory. That is, we must figure out what kind of data
the program puts into memory and retrieves from there. Finally, we must carefully design those
functions for the program that change the memory. The others are those that use the variables
(without modification); they are typically designed with one of the recipes we have already
discussed.

36.1 The Need for Memory
Programs need memory because we want them to work with users who know little or nothing
about programming. Even if we wanted users to employ DrScheme's Interactions window, we
would organize our programs so that each service corresponds to a function and the functions
collaborate through memory. With graphical user interfaces, we are almost forced to think of
programs as a collection of collaborating functions attached to various widgets in a window.
Finally, even programs that work in physical devices such as elevators or VCRs are forced to
interact with the device in some fixed way, and that often includes keeping around information
about the history of device-program interactions. In short, the interface between the program and
the rest of the world dictates whether a program needs memory and what kind of memory it
needs.

Fortunately it is relatively easy to recognize when programs need memory. As discussed already,
there are two situations. The first involves programs that provide more than one service to users.
Each service corresponds to a function. A user may apply these functions in DrScheme's
Interactionswindow, or they may be applied in response to some user action in a graphical
user interface. The second involves a program that provides a single service and is implemented
with a single user-level function. But the program may have to produce different answers when it
is applied to the same arguments.

Let us take a look at some concrete examples for each situation. Software for managing an
address book is a classical example of the first kind. In sections 34 and 35, we saw how one

TE
AM
FL
Y

TEAM FLY PRESENTS

-417-

function adds entries to the address book and another looks them up. Clearly, the use of the
``addition service'' affects future uses of the ``lookup service'' and therefore requires memory.
Indeed, the memory in this case corresponds to a natural physical object: the address book that
people used to keep before there were electronic notebooks.

Figure 99: Organizational charts for programs with memory

Next, consider a warehouse with a clerk that registers the items that people deliver and pick up.
Every time someone delivers an item, the clerk enters it into a ledger; an inquiry for a specific
item triggers a search in the ledger; when someone picks up an item, the clerk removes it from
the ledger. If we were to provide a function for managing the ledger, the program would have to
offer three services: one for entering items, one for searching in the ledger, and one for removing
entries from the ledger. Of course, we can't remove something that isn't in the warehouse, so the
program must ensure that the two services interact properly. The memory in this program will be
similar to the ledgers that warehouse clerks use (or used), that is, a physical object.

The second class of memory need also has classical examples. The traffic light simulation
mentioned in section 34 is one of them. Recall that the description of the program next says that
every time it is applied, it redraws the picture on a canvas according to the common traffic rules.
Because two evaluations of (next) in a row produce two different effects, this program needs
memory.

For another example, take a look at the Scheme function random. It consumes a natural number n
> 1 and produces a number between 0 and n - 1. If we evaluate (random 10) twice in a row, we
may or may not obtain the same digit. Again, to achieve this effect, the implementor of random
needed to equip the function with some memory.

In general, as we analyze a problem statement, we should draw organization charts. Figure 99
contains sample charts for the phone-book and the traffic-light programs. They represent each
service that the program is to support with a rectangular box. Arrows going into the box indicate
what kind of data a service consumes; outgoing arrows specify the output. Memory is
represented with circles. An arrow from a circle to a box means that the service uses the memory
as an input; an arrow to a circle means that the service changes the memory. The two charts
show that services commonly use memory and change it.

36.2 Memory and State Variables

TE
AM
FL
Y

TEAM FLY PRESENTS

-418-

Memory is implemented with variable definitions. The memory-using programs we have seen
use a single variable to represent the memory of a function. In principle, a single variable is
enough to implement all memory needs, but this is usually inconvenient. Typically, the memory
analysis suggests how many variables we need and which services need which variables. When
memory changes, the corresponding variables assume a new value or, put differently, the state of
the variable declaration changes and reflects the memory change over time. We therefore refer to
variables that implement memory as STATE VARIABLES.

Every service in a program corresponds to a function that may employ auxiliary functions. A
service that changes the memory of a program is implemented with a function that uses set! on
some of the state variables. To understand how a function should change a state variable, we
need to know what kind of values the variable may represent and what its purpose is. In other
words, we must develop a contract and a purpose statement for state variables in the same
manner in which we develop contracts and purpose statements for function definitions.

Let us take a look at the address-book and the traffic-light examples. The first one has one state
variable: address-book. It is intended to represent a list of entries, where each entry is a list of
two items: a name and a number. To document that address-book may represent only such lists,
we add a contract as follows:

;; address-book : (listof (list symbol number))
;; to keep track of pairs of names and phone numbers
(define address-book empty)

By the definition of (listof X), it is permissible to use empty as the initial value of address-
book.

From the contract for the state variable, we can conclude that the following assignment is
nonsensical:

(set! address-book 5)

It sets address-book to 5, which is not a list. The expression therefore violates the state
variable's contract. But

(set! address-book empty)

is proper, because it sets address-book back to its initial value. Here is a third assignment:

(set! address-book (cons (list 'Adam 1) address-book))

It helps us gain some understanding of how functions can change the value of address-book in
a useful manner. Because address-book stands for a list of lists, (cons (list 'Adam 1)
address-book) constructs a longer list of the right kind. Hence the set! expression just changes
the state variable to stand for a different value in the class of (listof (list symbol number)).

A program that controls a traffic light should have a state variable for the current color of the
traffic light. This variable should assume one of three values: 'red, 'green, or 'yellow, which
suggests a data definition: A TL-color is either 'green, 'yellow, or 'red.

Here is the variable definition with a contract and purpose statement:

TE
AM
FL
Y

TEAM FLY PRESENTS

-419-

;; current-color : TL-color
;; to keep track of the current color of the traffic light
(define current-color 'red)

As before, the expression

(set! current-color 5)

is nonsensical because 5 is not one of the three legitimate symbols mentioned in the contract. In
contrast,

(set! current-color 'green)

is perfectly okay.

The right-hand side of an assignment does not have to consist of a value or an expression that
almost instantaneously produces a value. In many cases it makes sense to use a function to
compute the new value. Here is a function that computes the next color for our traffic light:

;; next-color : TL-color -> TL-color
;; to compute the next color for a traffic light
(define (next-color c)
 (cond
 [(symbol=? 'red c) 'green]
 [(symbol=? 'green c) 'yellow]
 [(symbol=? 'yellow c) 'red]))

Using this function, we can now write an assignment that switches the state of current-color
appropriately:

(set! current-color (next-color current-color))

Because current-color is one of the three legitimate symbols, we can apply next-color to the
value of current-color. The function also produces one of these three symbols, so that the next
state of current-color is again proper.

36.3 Functions that Initialize Memory
After we have developed contracts and purpose statements for the state variables of a program,
we immediately define a function that sets the state variables to proper values. We call this
function an INITIALIZATION FUNCTION or an INITIALIZER. A program's initializer is the first function
that is used during an execution; a program may also provide other means to invoke the
initializer.

For our current examples, the initializers are straightforward. Here is one for the address-book
example:

;; init-address-book : -> void
(define (init-address-book)
 (set! address-book empty))

The one for traffic-light is equally trivial:

TE
AM
FL
Y

TEAM FLY PRESENTS

-420-

;; init-traffic-light : -> void
(define (init-traffic-light)
 (set! current-color 'red))

In setting current-color to 'red, we follow a conventional rule of engineering to put devices
into their least harmful state when starting it up.70

At first glance, these initializers don't seem to add much to our programs. Both set the respective
state variables to the values that are their defined values. For both cases, however, it is easy to
see that the initializer could do some additional useful work. The first one, for example, could
create and display the graphical user interface for an address book; the second one could create
and display a canvas that displays the current state of the traffic light.

36.4 Functions that Change Memory
Once we have the state variables and their initializers in place, we turn our attention to the design
of functions that modify a program's memory. Unlike the functions in the preceding parts of the
book, the memory-changing functions not only consume and produce data, they also affect the
definitions of the state variables. We therefore speak of the EFFECT that functions have on the state
variables.

;; Data Def.: A TL-color is either 'green, 'yellow, or 'red.

;; State Variable:
;; current-color : TL-color
;; to keep track of the current color of the traffic light
(define current-color 'red)

;; Contract: next : -> void

;; Purpose: the function always produces (void)

;; Effect: to change current-color from 'green to 'yellow,
;; 'yellow to 'red, and 'red to 'green

;; Header: omitted for this particular example

;; Examples:
;; if current-color is 'green and we evaluate (next), then current-color
is 'yellow
;; if current-color is 'yellow and we evaluate (next), then current-color
is 'red
;; if current-color is 'red and we evaluate (next), then current-color is
'green

;; Template: data-directed on state-variable that is to be mutated
;; (define (f)
;; (cond
;; [(symbol=? 'green current-color) (set! current-color ...)]
;; [(symbol=? 'yellow current-color) (set! current-color ...)]
;; [(symbol=? 'red current-color) (set! current-color ...)]))

;; Definition:
(define (next)
 (cond
 [(symbol=? 'green current-color) (set! current-color 'yellow)]

TE
AM
FL
Y

TEAM FLY PRESENTS

-421-

 [(symbol=? 'yellow current-color) (set! current-color 'red)]
 [(symbol=? 'red current-color) (set! current-color 'green)]))

;; Tests:
(begin (set! current-color 'green) (next) (symbol=? current-color
'yellow))
(begin (set! current-color 'yellow) (next) (symbol=? current-color 'red))
(begin (set! current-color 'red) (next) (symbol=? current-color 'green))

Figure 100: The design recipe for state variables: A complete example

Let us now take a look at the stages of our most basic design recipe and how we can
accommodate effects on state variables:

• Data Analysis: Even functions that affect the state of variables consume and (possibly)
produce data. Thus we still need to analyze how to represent information and, if
necessary, introduce structure and data definitions.

For example, the traffic-light example benefits from the data definition for TL-color (see
above).

• Contract, Purpose, and Effect: The first major change concerns the second step. In
addition to specifying what a function consumes and produces, we must also write down
which variables it affects and how it affects those state variables. The effect of a function
on state variables must be consistent with the purpose statement of a variable.

Consider the traffic-light example again. It requires a function that switches the color of
the traffic light in accordance with the traffic laws. The function checks the variable
current-color and affects its state. Here is how we should specify this function:

;; next : -> void
;; effect: to change current-color from 'green to 'yellow,
;; 'yellow to 'red, and 'red to 'green
(define (next) ...)

The function consumes no data and always produces the invisible value; in Scheme this
value is called void. Because the function has no purpose in the traditional sense, it is
accompanied by an effect statement only.

Here is the specification for add-to-address-book:

;; add-to-address-book : symbol number -> void
;; effect: to add (list name phone) to the front of address-book
(define (add-to-address-book name phone) ...)

We can tell from the effect statement that the definition of address-book is modified in
a fashion that's coherent with its purpose statement and contract.

• Program Examples: Examples are as important as ever, but formulating them has
become more difficult. As before, we must develop examples that illustrate the

TE
AM
FL
Y

TEAM FLY PRESENTS

-422-

relationship between inputs and outputs, but, because functions now have effects, we also
need examples that illustrate those.

Let us return to our first running example, the next function for traffic lights. It affects
one state-variable: current-color. Because this variable can stand for one of three
symbols, we can actually characterize all of its possible effects with examples:

;; if current-color is 'green and we evaluate (next),
;; then current-color is 'yellow afterwards
;; if current-color is 'yellow and we evaluate (next),
;; then current-color is 'red afterwards
;; if current-color is 'red and we evaluate (next),
;; then current-color is 'green afterwards

In contrast, the state variable address-book can stand for an infinite number of values,
so it is impossible to make up a comprehensive series of examples. But it is still
important to state a few, because examples make it easier to develop the function body
later:

;; if address-book is empty and
;; we evaluate (add-to-address-book 'Adam 1),
;; then address-book is (list (list 'Adam 1)) afterwards.
;; if address-book is (list (list 'Eve 2)) and
;; we evaluate (add-to-address-book 'Adam 1),
;; then address-book is (list (list 'Adam 1) (list 'Eve 2))
afterwards.
;; if address-book is (list E-1 ... E-2) and
;; we evaluate (add-to-address-book 'Adam 1),
;; then address-book is (list (list 'Adam 1) E-1 ... E-2)
afterwards.

Not surprisingly, the language of examples involves words of a temporal nature. After all,
assignments emphasize the notion of time in programming.

Warning: The state variable is never a parameter of a function.

• The Template: The template for state-changing functions is like that of an ordinary
function, but the body should also contain set! expressions to specify the state variables
that are to be modified:
• (define (fun-for-state-change x y z)
• (set! a-state-variable ...))

The computation of the next value for a-state-variable can be left to an auxiliary
function, which consumes x, y, and z. Our two examples fit this pattern.

On occasion, we should add selector and cond-expressions, based on the data definitions
for the function's inputs. Consider next again. The data definition for its input suggests a
cond-expression:

(define (next)
 (cond
 [(symbol=? 'green current-color) (set! current-color ...)]
 [(symbol=? 'yellow current-color) (set! current-color ...)]
 [(symbol=? 'red current-color) (set! current-color ...)]))

TE
AM
FL
Y

TEAM FLY PRESENTS

-423-

In this simple case, we can indeed go with either alternative and design a proper program.

• The Body: As always, the development of the full function requires a solid
understanding of the examples, of how they are computed, and of the template. For
functions with effects, the completion of the set! expression is the most demanding step.
In some cases, the right-hand side involves nothing but primitive operations, the
function's parameters, and the state variable (or several of them). In others, it is best to
develop an auxiliary function (without effect) that consumes the current value of the state
variable and the function's parameters and that produces the new value of the state
variable.

The function add-to-address-book is an example of the first kind. The right-hand side
of the set!-expression consists of address-book, cons, list, and nothing else.

The traffic-light example, in contrast, is an example for both choices. Here is a definition
that is based on the template:

(define (next)
 (cond
 [(symbol=? 'green current-color) (set! current-color 'yellow)]
 [(symbol=? 'yellow current-color) (set! current-color 'red)]
 [(symbol=? 'red current-color) (set! current-color 'green)]))

Writing one based on an auxiliary function is also straightforward:

(define (next)
 (set! current-color (next-color current-color)))

For the definition of next-color, see page 45.

• Testing: In the past, we have tested functions by translating the examples into boolean-
valued expressions and by adding them to the bottom of the Definitions window. For
functions with effects, we use a similar approach, but to verify that functions have the
desired effect on state variables is a complex task.

There are two ways to test functions with effects. First, we can set the state variable into a
desired state, apply the function, and then check whether the function has the desired
result and effect. The next function is a particularly good one for this approach. We
characterized its complete behavior with three examples. All three can be translated into
begin-expressions that test as suggested. Here is one example:

(begin (set! current-color 'green)
 (next)
 (symbol=? current-color 'yellow))

Each line sets the state variable current-color to the desired color, evaluates (next),
and then checks whether the effect is appropriate. We can also do this for the add-to-
address-book function, though the tests are less comprehensive than those for next:

(begin (set! address-book empty)
 (add-to-address-book 'Adam 1)
 (equal? '((Adam 1)) address-book))

TE
AM
FL
Y

TEAM FLY PRESENTS

-424-

In this test, we check only that Adam and 1 are properly added to the initially empty list.

Second, we can capture the value of a state variable before it is tested, apply the memory-
changing function, and then conduct appropriate tests. Consider the following expression:

(local ([define current-value-of address-book])
 (begin
 (add-to-address-book 'Adam 1)
 (equal? (cons (list 'Adam 1) current-value-of) address-book)))

It defines current-value-of to be the value of address-book at the beginning of the
evaluation, and at the end checks that the appropriate entry was added at the front and
that nothing changed for the rest of the value.

To conduct tests for functions with effects, especially tests of the second kind, it is useful
to abstract the test expression into a function:

;; test-for-address-book : symbol number -> boolean
;; to determine whether add-to-address-book has the appropriate
;; effect on address-book and no more than that
;; effect: same as (add-to-address-book name number)
(define (test-for-address-book name number)
 (local ([define current-value-of address-book])
 (begin
 (add-to-address-book name number)
 (equal? (cons (list name number) current-value-of)
 address-book))))

Using this function, we can now easily test add-to-address-book several times and
ensure for each test that its effects are appropriate:

(and (test-for-address-book 'Adam 1)
 (test-for-address-book 'Eve 2)
 (test-for-address-book 'Chris 6145384))

The and-expression guarantees that the test expressions are evaluated in order and that all
of them produce true.

• Future Reuse: Once we have a complete, tested program, we should remember its
existence, what it computes, and what its effects are. We do not, however, need to
remember how it computes. If we encounter a situation that calls for the same
computation and the same effects, we can reuse the program as if it were a primitive
operation. Warning: In the presence of effects, it is much more difficult to reuse a
function than in the world of algebraic programs.

Figures 100 and 101 summarize our two running examples; the header in the first one is omitted
because it is useless for the purpose and effect statements in this particular case.

;; Data Def.: lists of arbitrary length: (listof X), lists of two items:
(list Y Z)

;; State Variable:
;; address-book : (listof (list symbol number))

TE
AM
FL
Y

TEAM FLY PRESENTS

-425-

;; to keep track of pairs of names and phone numbers
(define address-book empty)

;; Contract: add-to-address-book : symbol number -> void

;; Purpose: the function always produces (void)

;; Effect: to add (list name phone) to the front of address-book

;; Header:
;; (define (add-to-address-book name phone) ...)

;; Examples:
;; if address-book is empty and we evaluate
;; (add-to-address-book 'Adam 1), address-book is (list (list 'Adam 1)).
;; if address-book is (list (list 'Eve 2)) and we evaluate
;; (add-to-address-book 'Adam 1), address-book is (list (list 'Adam 1)
(list 'Eve 2)).
;; if address-book is (list E-1 ... E-2) and we evaluate
;; (add-to-address-book 'Adam 1), address-book is (list (list 'Adam 1)
E-1 ... E-2).

;; Template: omitted

;; Definition:
(define (add-to-address-book name phone)
 (set! address-book (cons (list name phone) address-book)))

;; Tests:
(begin (set! address-book empty)
 (add-to-address-book 'Adam 1)
 (equal? '((Adam 1)) address-book))

Figure 101: The design recipe for state variables: A second example

Exercise 36.4.1. Modify the traffic light program in figure 100 to draw the current state of the
traffic light onto a canvas. Start by adding the initializer. Use the solutions for section 6.2.

Exercise 36.4.2. Modify the phone book program in figure 101 so that it offers a graphical user
interface. Start by adding the initializer. Use the solution of exercise 35.4.2.

70 A device should also go into the least harmful state when it detects an internal failure.
Unfortunately, many software engineers don't follow this rule.

TE
AM
FL
Y

TEAM FLY PRESENTS

-426-

Section 37

Examples of Memory Usage
Designing programs with memory requires experience and practice, which, in turn, come from
studying examples. In this section we study three more examples of programs that use memory.
The first one illustrates the importance of initializers; the second one demonstrates how to design
programs whose effects depend on conditions; and the last one shows how effects can be useful
in recursive functions. The last two subsections provide opportunities for practicing what we've
learned.

37.1 Initializing State
Recall the color-guessing game from exercise 5.1.5. One player picks two colors for two squares;
we call those ``targets.'' The other one tries to guess which color is assigned to which square;
they are guesses. The first player's response to a guess is to compare the colors and to produce
one of the following answers:

1. 'perfect!, if the first target is equal to the first guess and the second target is equal to
the second guess;

2. 'OneColorAtCorrectPosition, if the first guess is equal to the first target or the second
guess is equal to the second target;

3. 'OneColorOccurs, if either of the guesses is one of the two targets;
4. and 'NothingCorrect, otherwise.

These four answers are the only answers that the first player gives. The second player is to guess
the two chosen target colors in as few guesses as possible.

To simplify the game, the choice of colors is limited: see the top of figure 102. Our goal is to
develop a program that plays the role of the master player. That is, we want a program that picks
the colors and checks the guesses of the second player.

;; Constants:

;; the legitimate colors
(define COLORS
 (list 'black 'white 'red 'blue 'green 'gold 'pink 'orange 'purple
'navy))

;; the number of colors
(define COL# (length COLORS))

;; Data Definition:
;; A color is a symbol on COLORS.

Figure 102: Guessing colors

TE
AM
FL
Y

TEAM FLY PRESENTS

-427-

The game description suggests that the program must offer two services: one for setting up two
target colors and another one for checking the guesses. Naturally, each service corresponds to a
function. Let's call the first master and the second one master-check. Here is a possible
dialogue, based on the two functions:

> (master)
> (master-check 'red 'red)
'NothingCorrect
> (master-check 'black 'pink)
'OneColorOccurs
...
> (master)
> (master-check 'red 'red)
'perfect!

The master function consumes nothing and produces the invisible value; its effect is to initialize
the two targets. Depending on what the chosen colors are, checking the same two guesses may
produce 'perfect! or 'NothingCorrect. In other words, master sets up some memory that
master-check uses.

Let us now study how the design recipe applies to the development of the program. The first step
is to define the state variables and to specify the purpose of each variable. Our analysis suggests
that we need two state variables, one per target:

;; target1, target2 : color
;; the variables represent the two colors that the first player chooses
(define target1 (first COLORS))
(define target2 (first COLORS))

Both variables are set to the first item from COLORS, so that they stand for some color.

The second step is to develop an initializer for the two state variables. A single initializer is
enough because the two variables go together. Indeed, the initializer is the desired master
function:

;; master : -> void
;; effect: set target1 and target2 to randomly chosen items in COLORS
(define (master)
 (begin
 (set! target1 (list-ref COLORS (random COL#)))
 (set! target2 (list-ref COLORS (random COL#)))))

The effect comment explains how master changes the two state variables by picking an item
from COLORS based on a random number between 0 and the length of COLORS.

Finally, we can turn to the functions that modify and utilize the program's memory. As it turns
out, the memory isn't modified after the two target variables are initialized; it is only used to
compare to the two guesses of the player. The only other service we need is master-check. It
uses check-color, the solution of exercise 5.1.5, to conduct the comparison. For a summary, see
figure 103, which contains the variable and function definitions that we just discussed.

;; target1, target2 : color
;; the two variables represent the two colors that the first player chose

TE
AM
FL
Y

TEAM FLY PRESENTS

-428-

(define target1 (first COLORS))
(define target2 (first COLORS))

;; master : -> void
;; effect: set target1 and target2 to two randomly chosen items from
COLORS
(define (master)
 (begin
 (set! target1 (list-ref COLORS (random COL#)))
 (set! target2 (list-ref COLORS (random COL#)))))

;; master-check : color color -> symbol
;; to determine how many colors at how many positions are guessed
correctly
;; The function defers to check-color, the solution of exercise 5.1.5.
(define (master-check guess1 guess2)
 (check-color guess1 guess2 target1 target2))

Figure 103: Guessing colors (Part 2)

Exercise 37.1.1. Draw a diagram that shows how master and master-check interact with
memory.

Exercise 37.1.2. Abstract the repeated expressions in master into the function random-pick. It
consumes a list and chooses a random item from that list. Then use the function to eliminate the
repeated expressions in master.

Exercise 37.1.3. Modify the color guessing program so that its final answer isn't just 'perfect!
but a list of two items: the symbol perfect! and the number of guesses that the second player
made. Start by modifying the diagram of exercise 37.1.1.

Exercise 37.1.4. Modify the color guessing program so that it automatically restarts the game
when a player has guessed the correct target colors.

Exercise 37.1.5. Develop a graphical user interface, similar to that of the teachpack master.ss.
Instead of colored buttons, use buttons labeled with the color. Show the current selection in
message fields.

37.2 State Changes from User Interactions
Recall the hangman game from 6.7. The goal of the game is to test a person's active vocabulary.
One player thinks of a word and draws the noose of a gallows; the other player tries to guess the
word, one letter at a time. For every wrong guess, the first player adds another part to the
drawing (see figure 15): first the head, then the body, the arms, and the legs. If, however, the
player's guess reveals new knowledge about the chosen word, the first player indicates where the
the letter occurs in the word. The game is over when the second player guesses the complete
word or when the first player has completed the stick figure.

;; Data Analysis and Definitions:

;; A letter is a symbol in: 'a ... 'z plus '_

TE
AM
FL
Y

TEAM FLY PRESENTS

-429-

;; A word is a (listof letter).

;; A body-part is one of the following symbols:
(define PARTS '(head body right-arm left-arm right-leg left-leg))

;; Constants:
;; some guessing words:
(define WORDS
 '((h e l l o)
 (w o r l d)
 (i s)
 (a)
 (s t u p i d)
 (p r o g r a m)
 (a n d)
 (s h o u l d)
 (n e v e r)
 (b e)
 (u s e d)
 (o k a y)
 ...
))

;; the number of words we can choose from
(define WORDS# (length WORDS))

Figure 104: Hangman Basics

Figure 104 contains the data definitions for letters, words, and body-parts. In particular, PARTS
not only specifies the body parts that are drawn, but also the order in which they are drawn. The
figure also defines an incomplete list of words so that the hangman program can randomly pick a
word for us to guess.

The random picking of words occurs at the beginning of the game, which suggests a random
initialization function, similar to that of the color-guessing program in the preceding section. In
contrast to the latter, the hangman program must also remember the number of guesses that a
player made, because there is only a limited number of them. After 'left-leg is drawn, the
game is over. Counting down the number of body parts also implies that as the program checks
each guess, it must inform the player not only what the guess revealed but also which body part,
if any, was lost.

Let us capture this thought in a data definition that specifies the legitimate class of responses:

A response is either

1. "You won"
2. (list "The End" word)
3. (list "Good guess!" word)
4. (list "Sorry" body-part word)

Three of the responses are lists so that the program can provide several pieces of information at
once. Specifically, the first response says that filling in the guess turns the status word into the

TE
AM
FL
Y

TEAM FLY PRESENTS

-430-

chosen word and that the player survived the game. The second response indicates the opposite;
the list of available body parts is exhausted and the game is over because the player did not guess
all the letters in the word. In the third case, the player's guess was successful and the second item
in the list shows how much the player knows about the word. Finally, the fourth response
represents a bad guess, in which case the response is a list of three items: a greeting, the lost
body part, and a reminder of what the player has found about the word.

We can now imagine the role of the two services in the hangman program. The first, called
hangman, picks a new word; the second, called hangman-guess, consumes a letter and produces
one of the four possible responses. Here is a feasible dialogue:

> (hangman)
> (hangman-guess 'a)
(list "Sorry" 'head (list '_ '_ '_ '_ '_ '_))
> (hangman-guess 'i)
(list "Good guess!" (list '_ '_ '_ '_ 'i '_))
> (hangman-guess 's)
(list "Good guess!" (list 's '_ '_ '_ 'i '_))
> (hangman-guess 'i)
(list "Sorry" 'body (list 's '_ '_ '_ 'i '_))
...
> (hangman)
> (hangman-guess 'a)
"You won"

The dialogue consists of two rounds of hangman. They show that the results of hangman-guess
depend on the prior use of hangman. Furthermore, the first round illustrates how hangman-guess
applied to the same guess twice produces two different answers. This again means that hangman-
guess modifies and uses memory, specifically, it counts down the body parts as the player
makes useless guesses.

;; chosen-word : word
;; the word that the player is to guess
(define chosen-word (first WORDS))

;; status-word : word
;; represents which letters the player has and hasn't guessed
(define status-word (first WORDS))

;; body-parts-left : (listof body-part)
;; represents the list of body parts that are still "available"
(define body-parts-left PARTS)

;; hangman : -> void
;; effect: initialize chosen-word, status-word, and body-parts-left
(define (hangman)
 (begin
 (set! chosen-word (list-ref WORDS (random (length WORDS))))
 (set! status-word ...)
 (set! body-parts-left PARTS)))

Figure 105: Hangman Basics (Part 2)

In addition, the dialogue shows that the player loses a body part whenever a guess doesn't
contribute any new knowledge. Consider the second guess: 'i. It occurs in the penultimate

TE
AM
FL
Y

TEAM FLY PRESENTS

-431-

position of the word and the response of hangman-guess says so. When the player enters 'i
again as the fourth guess, hangman-guess detects no progress because the positions of 'i have
already been revealed. In the informal description of the game, this aspect had been left open. By
putting together an example, we become aware of this ambiguity and can make a decision.

Thus far, our reasoning has revealed the need for two services and three state variables:

1. chosen-word, which is the word to be guessed;
2. status-word, which records how much of the word has been guessed;
3. and body-parts-left, which remembers how many and which imaginary body parts

the player can still lose.

The first two variables always stand for words, as their name says. A natural value for the last
one is a list of body parts; indeed, the list should always be a suffix of PARTS.

Figure 105 contains the definitions of the state variables and their purpose statements. The first
two, chosen-word and status-word, are set to the first items of WORDS, so that they represent
some word. The third one is set to PARTS because this list represents the entire collection of
available body parts.

Next we must develop an initializer for the state variables. As in the preceding section, a single
initializer suffices. It is the hangman function, and its purpose is to set up the program's memory.
Specifically, it picks a word for chosen-word, and it sets status-word and body-parts-left
to values that reflect that the game has just begun. The last one is easy because PARTS is the
appropriate list. The initial value for status-word requires a short analysis. First, the value must
be a word. Second, it must consist of as many letters as chosen-word. Finally, each of the letters
is unknown, because the player hasn't made any guesses yet. Thus, the matching action is to
build a word as long as chosen-word from '_.

Exercise 37.2.1. Develop the function make-status-word, which consumes a word and
produces an equally long word consisting of just '_. Use the function to complete the definition
of hangman in figure 105.

Exercise 37.2.2. Use build-list to create the status word in a single expression. Complete the
definition of hangman in figure 105.

Now we are ready to deal with the most difficult part: the design of hangman-guess, a function
that uses and modifies the memory. It consumes a letter and produces an answer, specifically a
response, which depends on how the current value of status-word, chosen-word, and guess
compare. At the same time, the function must affect the state variable status-word if the
player's guess added new knowledge. If not, the function must shorten body-parts-left, the
list of available body parts. The matching contract, purpose, and effect statements are as follows:

;; hangman-guess : letter -> response
;; to determine whether the player has won, lost, or may continue to
;; play and, if no progress was made, which body part was lost
;; effect:
;; (1) if the guess represents progress, update status-word
;; (2) if not, shorten the body-parts-left by one

TE
AM
FL
Y

TEAM FLY PRESENTS

-432-

We have already considered a sample dialogue that illustrates the workings of hangman-guess.
By dissecting this dialogue, we can develop specific examples for hangman-guess.

The sample dialogue and the purpose/effect statements imply that the result of hangman-guess
depends on whether or not the guess constitutes progress and, if not, whether or not the guess
was the last one. Let's use these distinctions for the development of examples:

1. If status-word is (list 'b '_ '_ '_) and chosen-word is (list 'b 'a 'l 'l),
then evaluating
2. (hangman-guess 'l)

produces (list "Good guess!" (list 'b '_ 'l 'l)) and status-word becomes
(list 'b '_ 'l 'l).

3. If status-word is (list 'b '_ 'l 'l) and chosen-word is (list 'b 'a 'l 'l),
then evaluating
4. (hangman-guess 'a)

produces "You won". The evaluation has no effect in this case.

5. If status-word is (list 'b '_ 'l 'l), chosen-word is (list 'b 'a 'l 'l), and
body-parts-left is (list 'right-leg 'left-leg), then evaluating
6. (hangman-guess 'l)

produces (list "Sorry" 'right-leg (list 'b '_ 'l 'l)) and body-parts-left
becomes (list 'left-leg).

7. Finally, if status-word is (list 'b '_ 'l 'l), chosen-word is (list 'b 'a 'l
'l), and body-parts-left is (list 'left-leg), then evaluating
8. (hangman-guess 'l)

produces (list "The End" (list 'b 'a 'l 'l)) and body-parts-left becomes
empty.

The first two examples illustrate what happens when the player enters a guess that reveals new
information; the last two focus on those cases where the guess contributes nothing.

The case split naturally suggests a basic template based on a distinction between the possible
situations:

(define (hangman-guess guess)
 (cond
 [... ;; guess did reveal new information:
 (cond
 [... ;; guess completed the search for the word
 ...]
 [... ;; guess did not complete the search for the word
 (begin
 (set! status-word ...)
 ...)])]
 [... ;; guess did not reveal any new information:
 (begin
 (set! body-parts-left ...)

TE
AM
FL
Y

TEAM FLY PRESENTS

-433-

 ...)]))

The location of the set!-expressions in the template's nested conds specify exactly under which
conditions effects happen. First, the outermost conditional distinguishes whether or not guess
produces new knowledge about the hidden word; if it doesn't, the function must modify body-
parts-left. Second, if guess reveals new knowledge, the function updates the status-word
variable unless the player has just finished the entire word.

Because we haven't considered yet how to express these tests, we use comments to indicate what
the conditions are. Let us turn to this problem first, so that we can start the function-definition
step with a full-fledged template. The first missing condition concerns the question whether
guess reveals new information. To this end, we must compare guess with the letters in chosen-
word. This comparison should produce the new status word. Here is the specification for the
auxiliary function that conducts this computation:

;; reveal-list : word word letter -> word
;; to compute the new status word from chosen-word,
;; status-word, and guess
(define (reveal-list chosen-word status-word guess) ...)

Fortunately, we have discussed this auxiliary function twice before (see sections 6.7 and
exercise 17.6.2) and know how to define it; figure 106 contains a suitable definition. Using
reveal-list, we can now formulate a condition that determines whether guess reveals new
knowledge:

(equal? status-word (reveal-list status-word chosen-word guess))

The condition uses equal? to compare the current value of status-word with its new value, as
computed by reveal-list. If the two lists are equal, guess doesn't produce new knowledge;
otherwise it does.

The second missing condition concerns the question whether the given guess completes the
search for the word. If guess is equal to all missing letters in status-word, then the player has
found the complete word. Here is the corresponding condition:

(equal? chosen-word (reveal-list status-word chosen-word guess))

That is, the game is over if chosen-word is equal to the result of reveal-list.

Let's put everything together in a single template:

(define (hangman-guess guess)
 (local ((define new-status (reveal-list status-word chosen-word guess)))
 (cond
 [(equal? new-status status-word)
 (begin
 (set! body-parts-left ...)
 ...)]
 [else
 (cond
 [(equal? new-status chosen-word)
 ...]
 [else

TE
AM
FL
Y

TEAM FLY PRESENTS

-434-

 (begin
 (set! status-word ...)
 ...)])])))

The template uses a local-expression because the result of reveal-list is used twice. Also, the
two outer cond-clauses are swapped because it is more natural to write (equal? new-status
status-word) than its negation. We can now turn to the function-design step.

Because the template is conditional, we develop each clause separately:

1. Assume that (equal? new-status status-word) evaluates to true, that is, the player
made no progress. This implies that the player loses an imaginary body part. To capture
this effect, the set!-expression must change the value of body-parts-left. Specifically,
it must set the state variable to the rest of its current value:
2. (set! body-parts-left (rest body-parts-left))

The answer depends on the new value of body-parts-left. If it is empty, the game is
over; the appropriate response is (list "The End" chosen-word) so that the player
finds out what the chosen word was. If body-parts-left is not empty, the response is
(list "Sorry" ??? status-word). The response says that guess is useless. Its last
part is the current value of status-word so that the player sees what he has discovered.
The ??? indicates a problem. To understand the problem, take a look at what we have:

(begin
 (set! body-parts-left (rest body-parts-left))
 (cond
 [(empty? body-parts-left) (list "The End" chosen-word)]
 [else (list "Sorry" ??? status-word)]))

In principle, the question marks should be the body part that the player just lost to the
gallows. But, because set! modifies body-parts-left, we can no longer just say
(first body-parts-left). As mentioned in section 35.2, when programming with set!
timing matters. We can solve the problem with a local-expression that names the first
item on body-parts-left before the state variable is modified.

3. The second case is much simpler than the first. We distinguish two subcases:
a. If new-status is equal to chosen-word, the player has won. The response is

"You won"; there is no effect.
b. If the two are not equal, the player made some progress and must be told.

Furthermore, the function must keep track of the progress; a (set! status-word
new-status) accomplishes this effect. The response consists of an
encouragement and the new status.

Figure 106 contains the complete definition of hangman-guess.

;; hangman-guess : letter -> response
;; to determine whether the player has won, lost, or may continue to play
;; and, if so, which body part was lost, if no progress was made
;; effects: (1) if the guess represents progress, update status-word
;; (2) if not, shorten the body-parts-left by one
(define (hangman-guess guess)
 (local ((define new-status (reveal-list chosen-word status-word

TE
AM
FL
Y

TEAM FLY PRESENTS

-435-

guess)))
 (cond
 [(equal? new-status status-word)
 (local ((define next-part (first body-parts-left)))
 (begin
 (set! body-parts-left (rest body-parts-left))
 (cond
 [(empty? body-parts-left) (list "The End" chosen-word)]
 [else (list "Sorry" next-part status-word)])))]
 [else
 (cond
 [(equal? new-status chosen-word) "You won"]
 [else
 (begin
 (set! status-word new-status)
 (list "Good guess!" status-word))])])))

;; reveal-list : word word letter -> word
;; to compute the new status word
(define (reveal-list chosen-word status-word guess)
 (local ((define (reveal-one chosen-letter status-letter)
 (cond
 [(symbol=? chosen-letter guess) guess]
 [else status-letter])))
 (map reveal-one chosen-word status-word)))

Figure 106: Hangman Basics (Part 3)

Exercise 37.2.3. Draw a diagram that shows how hangman and hangman-guess interact with
the state variables.

Exercise 37.2.4. Formulate the four examples for hangman-guess as boolean-valued
expressions that produce true if hangman-guess is correct. Develop an additional example for
each case; turn these new examples into additional tests.

Exercise 37.2.5. Develop a graphical user interface, similar to that of the teachpack
hangman.ss. Connect the functions in this section as call-backs.

Exercise 37.2.6. Modify the program so that it keeps track of all the guesses. Then, if a player
enters the same guess twice for the same round of a hangman game, the response of hangman-
guess is "You have used this guess before."

Exercise 37.2.7. Consider the following variant of reveal-list!:

;; reveal-list! : letter -> void
;; effect: to modify status-word based on a comparison of chosen-word,
;; the status-word, and the player's guess
(define (reveal-list! cw sw guess)
 (local ((define (reveal-one chosen-letter status-letter)
 (cond
 [(symbol=? chosen-letter guess) guess]
 [else status-letter])))
 (set! status-word (map reveal-one cw sw))))

TE
AM
FL
Y

TEAM FLY PRESENTS

-436-

It changes the state variable status-word to a value that is computed from the old value of
status-word, chosen-word, and the guess.

Modify hangman-guess so that it works properly with the reveal-list! function.

37.3 State Changes from Recursion
Functions that affect the memory of a program may not only process simple forms of data but
also arbitrarily large pieces of data. To understand how this works, let us take a closer look at the
purpose of reveal-list from the hangman game program.

As we have just seen, the function compares guess with each letter in chosen-word. If it is the
same, guess may uncover new knowledge and is included at the appropriate position in the word;
otherwise, the corresponding letter from status-word represents what the player knows.

The hangman-guess function then compares the result of reveal-list with the old value of
status-word to find out whether the player uncovered new knowledge. Furthermore, the result
is compared with chosen-word again if the player found new knowledge, because guess might
have matched all remaining unknown letters. Clearly, both of these comparisons repeat the
computations of reveal-one. The problem is that the result of reveal-one is useful to reveal-
list and that the result of its individual comparisons are useful in the conditionals of hangman-
guess.

We can solve the first part of the problem with the use of an additional piece of memory: a state
variable that records whether reveal-one uncovers a letter. The state variable, let's call it new-
knowledge, is modified by reveal-one if it determines that guess uncovers a currently hidden
letter in chosen-word. The hangman-guess function can use new-knowledge to find out what
reveal-one discovered.

Let us now translate our idea into new program definitions systematically. First, we need to
specify the state variable and its meaning:

;; new-knowledge : boolean
;; the variable represents whether the most recent application of
;; reveal-list has provided the player with new knowledge
(define new-knowledge false)

Second, we must consider what it means to initialize the new state variable. From what we know,
the state variable is used every time reveal-list is applied to guess. When the application
starts, the state variable should be false; it should change to true if guess is useful. This
suggests that new-knowledge is to be initialized to false every time reveal-list is applied.
We can achieve this reinitialization by changing reveal-list so that it sets the state variable
before it computes anything else:

;; reveal-list : word word letter -> word
;; to compute the new status word
;; effect: to set new-knowledge to false first
(define (reveal-list chosen-word status-word guess)
 (local ((define (reveal-one chosen-letter status-letter) ...))
 (begin
 (set! new-knowledge false)

TE
AM
FL
Y

TEAM FLY PRESENTS

-437-

 (map reveal-one chosen-word status-word))))

The underlined expression is the essential modification. The local expression defines the
auxiliary function reveal-one and then evaluates the local's body. The first step of the body is
to initialize new-knowledge.

Third, we must develop the program that modifies new-knowledge. Here the program already
exists: reveal-list, so our task is to modify it in such a way that it changes the state variable
appropriately. Let's describe the idea with a modified effect statement:

;; reveal-list : word word letter -> word
;; to compute the new status word
;; effect:
;; (1) to set new-knowledge to false first
;; (2) to set new-knowledge to true if guess reveals new knowledge

The first part of the effect is necessary for the second one; an experienced programmer may drop
it.

Next we should modify the examples for the function to illustrate what kind of effects happen.
The purpose of the function is to compute the new status word by checking whether guess
occurs in the chosen-word. There are two basic situations depending on whether guess reveals
new knowledge or not:

1. If status-word is (list 'b '_ 'l 'l) and chosen-word is (list 'b 'a 'l 'l),
then evaluating
2. (reveal-one chosen-word status-word 'a)

produces (list 'b 'a 'l 'l) and new-knowledge is true.

3. If status-word is (list 'b '_ '_ '_) and chosen-word is (list 'b 'a 'l 'l),
then evaluating
4. (reveal-one chosen-word status-word 'x)

produces (list 'b '_ '_ '_) and new-knowledge is false.

5. If status-word is (list 'b '_ '_ '_) and chosen-word is (list 'b 'a 'l 'l),
then evaluating
6. (reveal-one chosen-word status-word 'l)

produces (list 'b '_ 'l 'l) and new-knowledge is true.

7. Finally, if status-word is (list 'b '_ 'l 'l) and chosen-word is (list 'b 'a 'l
'l), then evaluating
8. (reveal-one chosen-word status-word 'l)

produces (list 'b '_ 'l 'l) and new-knowledge is false.

The first two examples cover the basic situations; the third one shows that if guess reveals
several new positions in the word, new-knowledge also becomes true; and the last shows how
guessing a letter that has been uncovered before means no new knowledge has been added.

TE
AM
FL
Y

TEAM FLY PRESENTS

-438-

;; reveal-list : word word letter -> word
;; to compute the new status word
;; effect: to set new-knowledge to true if guess reveals new knowledge
(define (reveal-list chosen-word status-word guess)
 (local ((define (reveal-one chosen-letter status-letter)
 (cond
 [(and (symbol=? chosen-letter guess)
 (symbol=? status-letter '_))
 (begin
 (set! new-knowledge true)
 guess)]
 [else status-letter])))
 (begin
 (set! new-knowledge false)
 (map reveal-one chosen-word status-word))))

Figure 107: The reveal-list function

Given that we already have a function, we can skip the template step and instead focus on the
question of what we need to change in the existing function. The given version of reveal-list
maps reveal-one over the two words, which are lists of letters. It is reveal-one that compares
guess with the letters in chosen-word and that determines whether the player has uncovered
new knowledge. Hence we must modify the auxiliary function so that it recognizes when guess
represents new knowledge and to set new-knowledge to true in that case.

As it is currently defined, reveal-one merely compares guess with the letters in chosen-word.
It does not check whether the player discovers truly new knowledge if guess and chosen-
letter are the same. The letter guess, however, represents new knowledge only if the matching
letter in the status word is still '_. This suggests the two modifications shown in figure 107. That
is, reveal-one changes the value of new-knowledge if, and only if, both (symbol=? chosen-
letter guess) and (symbol=? status-letter '_) are true.

In summary, we can use state variables if we wish to communicate several results from one
computation to distant places. For such cases, the interface of a function is under our control but
we choose to design it such that the function has both a result and an effect. The proper way to
achieve these combinations is to develop the computations separately and to merge them later, if
necessary.

Exercise 37.3.1. Draw a diagram that shows how hangman, hangman-guess, and reveal-list
interact with the state variables.

Exercise 37.3.2. Turn the three examples into tests, that is, boolean-valued expressions, and test
the new version of reveal-list. How many times does reveal-one modify new-knowledge
for the third test case?

Exercise 37.3.3. Modify hangman-guess in the hangman program to take advantage of the
additional information that reveal-list provides through new-knowledge.

Exercise 37.3.4. Modify the hangman program a second time to eliminate the second equal? in
hangman-guess. Hint: Introduce a state variable that counts how many letters the player doesn't
know yet.

TE
AM
FL
Y

TEAM FLY PRESENTS

-439-

Let us study a second example of a function that consumes an arbitrarily large piece of data and
modifies the program's memory. The example is a natural extension of the traffic light simulator
in section 36. We developed two functions:

;; init-traffic-light : -> void
;; effects: (1) to initialize current-color; (2) to draw traffic light

and

;; next : -> void
;; effects: (1) to change current-color from 'green to 'yellow,
;; 'yellow to 'red, and 'red to 'green
;; (2) to redraw the traffic light appropriately

The first one starts the process; with the second one, we can repeatedly switch the state of the
light by evaluating (next) in the Interactions window.

Typing in (next) over and over again is tiring, so it is natural to wonder how to write a program
that switches the state of the traffic light 100 or 1000 or 10000 times. In other words, we should
develop a program -- let's call it switch -- that consumes a natural number and that switches the
light from one color to another that many times.

The function consumes a natural number and produces (void), after it succeeds in switching the
traffic light a sufficient number of times. By now we can immediately write down all the basics,
including the template, for a function that consumes a natural number:

;; switch : N -> void
;; purpose: it computes nothing of interest
;; effect: switch the traffic light n times,
;; holding each color for three seconds
(define (switch n)
 (cond
 [(zero? n) ...]
 [else ... (switch (- n 1)) ...]))

The template is that of a conventional, structurally recursive function.

Making up an example is also straightforward. If we evaluate (switch 4), we wish to see a
change from 'red to 'yellow, 'green, and 'red again, with each stage visible for three seconds.

Defining the full function based on the template is straightforward. We proceed by cases. If n is
0, the answer is (void). Otherwise, we know that

(switch (- n 1))

simulates all the necessary switching actions but one. To accomplish this one additional switch,
the function must use (next) to perform all the state changes and the change of canvas and must
wait three seconds. If we put everything together in a begin-expression, things happen in the
right order:

(begin (sleep-for-a-while 3)
 (next)
 (switch (- n 1)))

TE
AM
FL
Y

TEAM FLY PRESENTS

-440-

The top of figure 108 is the complete definition for switch.

;; switch : N -> void
;; effect: switch the traffic light n times, holding each color for 3
seconds
;; structural recursion
(define (switch n)
 (cond
 [(= n 0) (void)]
 [else (begin (sleep-for-a-while 3)
 (next)
 (switch (- n 1)))]))
;; switch-forever : -> void
;; effect: switch the traffic light forever, holding each color for 3
seconds
;; generative recursion
(define (switch-forever)
 (begin (sleep-for-a-while 3)
 (next)
 (switch-forever)))

Figure 108: Two ways of switching traffic lights

An alternative is to switch the traffic light forever or at least until it breaks because of some
external event. In this case, the simulator does not consume any argument and, when applied,
runs forever. This is the simplest form of generative recursion we can possibly encounter:

;; switch-forever : -> void
;; effect: switch the traffic light forever,
;; holding each color for 3 seconds
(define (switch-forever)
 ...
 (switch-forever))

Because the program does not terminate under any conditions, the template contains only one
recursive call. This suffices to construct an eternally looping function.

Using this template, we can define the complete function as before. Before recurring, the
function must sleep and switch the light with next. We can accomplish this with a begin-
expression, as shown in the bottom definition of figure 108.

In summary, when we must develop recursive functions that modify the program's memory, we
choose the design recipe that best matches our situation and proceed accordingly. In particular, if
the function has both an interesting purpose and an effect, as for example reveal-list, we
should first develop the pure function and then add the effects later.

Exercise 37.3.5. In section 30.2, we discussed how to search for routes in simple graphs. The
Scheme representation of a simple graph is a list of pairs (of symbols). The pairs specify the
direct connections between the nodes in the graph. Each node is the beginning of exactly one
connection, but may be the end of several such connections or none. Given two nodes in a simple
graph, the problem is to find out whether one can go from the first to the second.

Recall our first attempt at a function that determines whether the route exists (see also figure 86):

TE
AM
FL
Y

TEAM FLY PRESENTS

-441-

;; route-exists? : node node simple-graph -> boolean
;; to determine whether there is a route from orig to dest in sg
;; generative recursion
(define (route-exists? orig dest sg)
 (cond
 [(symbol=? orig dest) true]
 [else (route-exists? (neighbor orig sg) dest sg)]))

The function checks whether the origination and destination nodes are the same. If not, it
generates a new problem by looking up the neighbor of the origination node in the graph.

On occasion, route-exists? fails to produce an answer if the graph contains a cycle. In
section 30.2 we solved the problem with an accumulator. It is also possible to solve it with a state
variable that keeps track of the origination nodes that route-exists? has visited for one
particular attempt. Modify the function appropriately.

Exercise 37.3.6. In section 16.2, we developed several simple models of a computer's file
system. Develop the function dir-listing, which consumes a directory and produces a list of
all file names in the directory and all of its subdirectories. The function also sets the state
variable how-many-directories to the number of subdirectories it encounters during the
process.

37.4 Finger Exercises on State Changes
Exercise 37.4.1. Modify check-guess-for-list from exercise 9.5.5 so that it also counts how
many times the player has clicked on the ``Check'' button of the interface. Hint: The call-back
function for the button uses check-guess-for-list once per click.

Exercise 37.4.2. Develop a program that manages a task queue. The program should support at
least four services:

1. enter, which adds a task to end of the queue;
2. next, which determines the next task in the queue, if any;
3. remove, which removes the first task from the queue, if any;
4. and count, which computes the number of items in the queue.

A user should start the task manager with start-task-manager.

After the program is developed and tested, use gui.ss to develop a graphical user interface to the
task manager. The interface should start up with a friendly message and should always display
the first task in the queue and the number of items in the queue:

TE
AM
FL
Y

TEAM FLY PRESENTS

-442-

Unless the queue is empty, clicking the ``Next'' button should remove an item from the queue
and display the first item in the remainder of the queue. If the queue is empty, clicking the
``Next'' button should have no effect.

Hint: The greeting and the year are two separate message items.

Exercise 37.4.3. In section 10.3, we developed a program that moves pictures across a canvas.
A picture is a list of shapes; the program consists of functions that draws, erases, and translates
pictures. The main function is move (exercise 10.3.6). It consumes a picture and a number n. It
produces a new picture, moved by n pixels; it also erases the original picture and draws the new
one.

Develop the program drive. It draws a (fixed) picture on a canvas and permits players to move
the picture left or right by a player-specified number of pixels.

Modify drive so that it also keeps track of some given amount of fuel. A move by one pixel
should consume a fixed amount of fuel.

Exercise 37.4.4. Modify the two functions that control the state of a single traffic light so that
they control the state of the two traffic lights at an ordinary intersection. Each light can assume
one of three states: 'red, 'green, and 'yellow. When one is 'green or 'yellow, the other one
must be 'red.

Recall the basics about the two functions for a single traffic light:

;; init-traffic-light : -> void
;; effects: (1) to initialize current-color; (2) to draw traffic light

and

;; next : -> void
;; effects: (1) to change current-color from 'green to 'yellow,
;; 'yellow to 'red, and 'red to 'green
;; (2) to redraw the traffic light appropriately

Modify the basics first.

When the program is developed and tested, develop a graphical display like the following:

TE
AM
FL
Y

TEAM FLY PRESENTS

-443-

Use the functions init-traffic-light and next to drive the display, but keep the functions
that display information separate from these two functions.

Exercise 37.4.5. In sections 14.4 and 17.7 we developed an evaluator for a portion of Scheme.
A typical Scheme implementation also provides an INTERACTIVE user interface. In DrScheme, the
Interactions window plays this role.

An interactive system prompts the reader for definitions and expressions, evaluates them
appropriately, and possibly produces some result. Definitions are added to some repository; to
confirm the addition, the interactive system may produce a value like true. Expressions are
evaluated relative to the definition repository. The function interpret-with-defs from
section 17.7 performs this role.

Develop an interaction system around interpret-with-defs. The system should provide at
least two services:

1. add-definition, which adds (the representation of) some function definition to the
system's repository;

2. evaluate, which consumes (the representation of) some expression and evaluates it
relative to the current repository.

If a user adds two (or more) definitions for some function f, the last addition is the one that
matters. The previous ones can be ignored.

37.5 Extended Exercise: Exploring Places

TE
AM
FL
Y

TEAM FLY PRESENTS

-444-

Figure 109: A tour of a university

TE
AM
FL
Y

TEAM FLY PRESENTS

-445-

Figure 110: Take the tour

Early computer games asked players to find their way through dangerous mazes and caves. The
player wanders from cave to cave, finds treasures, encounters creatures of all kinds, fights, kisses,
picks up energy, and eventually reaches paradise. This section lays out the basics of such a game,
using our iterative approach to program design.

Our tour takes place at one of the scariest places of all: campus. A campus consists of buildings,
some more dangerous than others. Each building has a name and is connected to a group of other
buildings.

The player is always in a building. We refer to this building as the current location. To find out
more about the location, the player can ask for a picture of the building and for the list of
connections. The player can also move to one of the connected buildings by issuing a go
command.

Exercise 37.5.1. Provide structure and data definitions for buildings. Include a picture field in
the structure.

A campus is a list of buildings. Define a sample campus. See figure 109 for a small example.

Exercise 37.5.2. Develop a program that permits a player to move through the sample campus
of exercise 37.5.1. The program should support at least three services:

1. show-me, which produces the picture of the current location: see figure 110;
2. where-to-go, which produces the list of connected buildings;
3. go, which changes the current location of the player.

TE
AM
FL
Y

TEAM FLY PRESENTS

-446-

If the player issues the command (go s) and s is not connected to the current location, the
function must report an error. Develop other functions as necessary or as desired.

Players of early maze games could also gather objects and trade objects at the various sites.
Specifically, the player had a bag for carrying objects, and each site contained objects that the
player could trade for things in the bag.

Exercise 37.5.3. Modify the tour program so that each building contains one object.
Furthermore, the player should have a bag that contains (at most) one object. At each location,
the player can pick up an object, if the bag is empty, or swap the object in the bag for the object
in the building otherwise.

Modify the program further so that the player can carry an arbitrary number of objects in the
bag.

The three exercises in this section illustrate how maze games work. From here it is easy to
experiment with various flavors of the game. Taking a walk from one building to another may
take some energy, and the player may have only a finite amount of energy. Creatures may fight
or kiss the player, which consumes or replenishes the player's energy level. Use your imagination
to extend the game and have friends take the tour.

TE
AM
FL
Y

TEAM FLY PRESENTS

-447-

Section 38

Intermezzo 7: The Final Syntax and
Semantics
With the introduction of set!-expressions and begin-expressions we have covered most of
Scheme's kernel language. In DrScheme, this portion is called Advanced Student Scheme.
Considering the complexity of set!, this is a good place to summarize our programming
language in the spirit of intermezzo 1. Following the organization of that intermezzo, we discuss
the vocabulary, the grammar, and the meaning of Advanced Student Scheme. The last
subsection explains what kind of errors we may encounter in Advanced Student Scheme.

38.2 The Vocabulary of Advanced Scheme
The foundation of any language is its vocabulary. In Beginning Student Scheme, we
distinguish four categories of words: variables, constants, primitive functions, and keywords.
The classification ignores parentheses but we know that every compound phrase is surrounded
by a pair of parentheses, and that every atomic phrase stands on its own.

Advanced Student Scheme respects this basic classification, though it contains four important
new keywords: local, lambda, set!, and begin. The first two are important for organizing and
abstracting programs; the last two are important for the computation of effects. Still, keywords
per se have no meaning. They are road signs that tell us what is ahead so that we can orient
ourselves. It is the grammar and the meaning of a language that explains the role of the keywords.

38.3 The Grammar of Advanced Scheme
Even though Scheme is a full-fledged language with as much power as any other programming
language, its designers have kept its grammar simple. The grammar of Advanced Student
Scheme, which is most of Scheme, is only a few lines longer than that of Beginning Student
Scheme.

<def> = (define (<var> <var> ...<var>) <exp>)
 | (define <var> <exp>)
 | (define-struct <var0> (<var-1> ... <var-n>))

<exp> = <var>
 | <con>
 | <prm>
 | (<exp> <exp> ...<exp>)
 | (cond (<exp> <exp>) ...(<exp> <exp>))

TE
AM
FL
Y

TEAM FLY PRESENTS

-448-

 | (cond (<exp> <exp>) ...(else <exp>))
 | (local (<def> ...<def>) <exp>)
 | (lambda (<var> ...<var>) <exp>)
 | (set! <var> <exp>)
 | (begin <exp> ...<exp>)

Figure 111: Advanced Student Scheme: The core grammar

Figure 111 contains the essential grammar of the Advanced Student Scheme language.71 It
extends Intermediate Student Scheme with three new forms of expressions: lambda-
expressions, set!-expressions, and begin-expressions. The specification of local-expressions
refers to the category of definitions, which refers back to the category of expressions. A lambda-
expression consists of a sequence of variables, enclosed in parentheses, and an expression.
Similarly, a set!-expression consists of a variable and an expression. Finally, a begin-expression
is just a sequence of expressions prefixed with the keyword begin to distinguish it from an
application.

Since functions are values now, the grammar of Advanced Student Scheme is also simpler than
that of Beginning Student Scheme in one regard. Specifically, it merges the lines for primitive
and function application into a single line. The new line specifies applications, which are now
sequences of expressions enclosed in parentheses. Owing to the inclusion of primitive operations
into the set of expressions,

(+ 1 2)

is still an expression. After all, + is now an expression, and so are 1 and 2. The application of
defined functions works similarly:

(f 1 2)

The first expression is a variable, and the others are numbers. The application is thus a legal
expression.

Unfortunately, a language grammar can only specify the large contours of what is a legal
sentence construction. It cannot express restrictions that require some knowledge about the
context of a phrase. Advanced Student Scheme requires a few such restrictions:

1. In a lambda-expression no variable may occur twice in the parameter sequence.
2. In a local-expression no definition may introduce the same variable as any other

definition in the same sequence.
3. A set!-expression must occur in the lexical scope of a define that introduces the set!-

expression's left-hand side.

In addition, the old restriction applies that keywords cannot be used as variables.

Consider the following definition, which uses the new constructs:

(define switch

TE
AM
FL
Y

TEAM FLY PRESENTS

-449-

 (local ((define-struct hide (it))
 (define state (make-hide 1)))
 (lambda ()
 (begin
 (set! state (make-hide (- 1 (hide-it state))))
 state))))

The definition introduces the variable switch. The right-hand side of the definition is a local-
expression. It in turn defines the structure hide and the variable state, which stands for an
instance of hide. The body of the local-expression is a lambda-expression, whose parameter
sequence is empty. The function's body consists of a begin-expression with two expressions: a
set!-expression and an expression that consists of just the variable state.

All expressions in our program satisfy the necessary restrictions. First, the local-expression
introduces four names that are distinct: make-hide, hide?, hide-it, and state. Second, the
parameter list of the lambda-expression is empty, so there is no possible conflict. Finally, the
set!-expression's variable is the locally defined variable state, so it is legal, too.

Exercise 38.3.1. Determine whether the following phrases are syntactically legal or illegal
programs:

1. (define (f x)
 (begin
 (set! y x)
 x))

2. (define (f x)
 (begin
 (set! f x)
 x))

3. (local ((define-struct hide (it))
 (define make-hide 10))
 (hide? 10))

4. (local ((define-struct loc (con))
 (define loc 10))
 (loc? 10))

5. (define f
 (lambda (x y x)
 (* x y z)))

 (define z 3.14)

Explain why a phrase is legal or illegal.

38.4 The Meaning of Advanced Scheme
When we first used Advanced Student Scheme, we did so because we wanted to deal with
functions as ordinary values. The evaluation rules barely changed. We just agreed to allow
expressions in the first position of an application and to deal with the names of functions as
values.

TE
AM
FL
Y

TEAM FLY PRESENTS

-450-

The extension of the language with set!-expressions required another change to our rules. Now
definitions that associate variables and values can change over the course of an evaluation. The
informal rules we've used so far deal with changes to the definition of state variables, because
they matter the most. But the rules are informal and imprecise, so a precise description of how
the addition of set! changes the meaning of the language must be our primary concern.

Let's recall how we determine the meaning of a program. A program consists of two parts: a
collection of definitions and an expression. The goal is to evaluate the expression, which means
to determine the expression's value.72 In Beginning Student Scheme, the collection of values
consists of all the constants plus lists. Only one list has a concise representation: the empty one.
All other lists are written down as a series of constructed lists.

The evaluation of an expression consists of a series of steps. At each step we use the laws of
arithmetic and algebra to simplify a subexpression. This yields another expression. We also say
that we REWRITE the first expression into the second. If the second expression is a value, we are
finished.

The introduction of set!-expressions into our programming language requires a few small
adjustments and extensions to this process:

1. Instead of rewriting just an expression, we must now rewrite definitions and expressions.
More precisely, each step changes the expression and possibly the definition of a state
variable. To make these effects as obvious as possible, each stage in an evaluation
displays the definitions of state variables and the current expression.

2. Furthermore, it is no longer possible to apply the laws of arithmetic and algebra
whenever or wherever we want. Instead, we must determine the subexpression that we
must evaluate if we wish to make progress. This rule still leaves us with choices. For
example, when we rewrite an expression such as
3. (+ (* 3 3) (* 4 4))

we may choose to evaluate (* 3 3) and then (* 4 4) or vice versa. Fortunately, for
such simple expressions, the choice doesn't affect the final outcome, so we don't have to
supply a complete unambigous rule. In general, though, we rewrite subexpressions in a
left-to-right and top-to-bottom order. At each stage in the evaluation, we best start by
underlining the subexpression that must be evaluated next.

4. Suppose the underlined subexpression is a set!-expression. By the restrictions on set!-
expressions, we know that there is a define for the left-hand side of the subexpression.
That is, we face the following situation:
5. (define x aValue)
6. ...
7. ... (set! x anotherValue) ...
8. = (define x anotherValue)
9. ...
10. ... (void) ...

The equation indicates that the program changes in two ways. First, the variable
definition is modified. Second, the underlined set!-expression is replaced by (void), the
invisible value.

TE
AM
FL
Y

TEAM FLY PRESENTS

-451-

11. The next change concerns the replacement of variables in expressions with the value in
their definition. Until now, we could replace a variable with its value wherever we
thought it was convenient or necessary. Indeed, we just thought of the variable as a
shorthand for the value. With set!-expressions in the language, this is no longer possible.
After all, the evaluation of a set!-expression modifies the definition of a state variable,
and if we replace a variable with its value at the wrong time, we get the wrong value.

Suppoe that the underlined expression is a (state) variable. Then we know that we can't
make any progress in our evaluation until we have replaced the variable with the current
value in its definition. This suggests the following revised law for variable evaluation:

 (define x aValue)
 ...
 ... x ...
= (define x aValue)
 ...
 ... aValue ...

In short, substitute the value in a state variable definition for the state variable only when
the value is needed for this particular occurrence of the state variable.

12. Last, but not least, we also need a rule for begin-expressions. The simplest one says to
drop the first subexpression if it is a value:
13. (begin v exp-1 ... exp-n)
14. = (begin exp-1 ... exp-n)

That means we also need a rule for dropping begin completely:

 (begin exp)
= exp

In addition, we use a rule for dropping several values at once:

 (begin v-1 ... v-m exp-1 ... exp-n)
= (begin exp-1 ... exp-n)

But this is only a convenience.

Although the laws are more complicated than those of Beginning Student Scheme, they are
still manageable.

Let's consider some examples. The first one demonstrates how the order of evaluation of
subexpressions makes a difference:

 (define x 5)
 (+ (begin (set! x 11) x) x)

= (define x 11)
 (+ (begin (void) x) x)

= ...

= (define x 11)
 (+ 11 x)

TE
AM
FL
Y

TEAM FLY PRESENTS

-452-

= (define x 11)
 (+ 11 11)

The program consists of one definition and one addition, which is to be evaluated. One of the
addition's arguments is a set!-expression that mutates x; the other is just x. By evaluating the
subexpressions of the addition from left to right, the mutation takes place before we replace the
second subexpression with its value. As a result, the outcome is 22. If we had evaluated the
addition from right to left, the result would have been 16. To avoid such problems, we use the
fixed ordering but give ourselves more freedom when no state variables are involved.

The second example illustrates how a set!-expression that occurs in a local-expression actually
affects a top-level definition:

 (define (make-counter x0)
 (local ((define counter x0)
 (define (increment)
 (begin
 (set! counter (+ counter 1))
 counter)))
 increment))
 ((make-counter 0))

The program again consists of a single definition and an expression that is to be evaluated. The
latter, however, is an application nested in an application. The inner application is underlined,
because we must evaluate it to make progress. Here are the first few steps:

= (define (make-counter x0)
 (local ((define counter x0)
 (define (increment)
 (begin
 (set! counter (+ counter 1))
 counter)))
 increment))
 ((local ((define counter 0)
 (define (increment)
 (begin
 (set! counter (+ counter 1))
 counter)))
 increment))
= (define (make-counter x0)
 (local ((define counter x0)
 (define (increment)
 (begin
 (set! counter (+ counter 1))
 counter)))
 increment))
 (define counter1 0)
 (define (increment1)
 (begin
 (set! counter1 (+ counter1 1))
 counter1))
 (increment1)

The evaluation of the local-expression created additional top-level expressions. One of them
introduces a state variable; the others define functions.

TE
AM
FL
Y

TEAM FLY PRESENTS

-453-

The second part of the evaluation determines what (increment1) accomplishes:

 (define counter1 0)
 (increment1)

= (define counter1 0)
 (begin
 (set! counter1 (+ counter1 1))
 counter1)

= (define counter1 0)
 (begin
 (set! counter1 (+ 0 1))
 counter1)

= (define counter1 0)
 (begin
 (set! counter1 1)
 counter1)

= (define counter1 1)
 (begin
 (void)
 counter1)

= (define counter1 1)
 1

During the evaluation, we replace counter1 with its value twice. First, the second step replaces
counter1 with 0, its value at that point. Second, we substitute 1 for counter1 during the last
step, which is its new value.

Exercise 38.4.1. Underline the subexpression that must be evaluated next in the following
expressions:

1. (define x 11)
 (begin
 (set! x (* x x))
 x)

2. (define x 11)
 (begin
 (set! x
 (cond
 [(zero? 0) 22]
 [else (/ 1 x)]))
 'done)

3. (define (run x)
 (run x))
 (run 10)

4. (define (f x) (* pi x x))
 (define a1 (f 10))
 (begin
 (set! a1 (- a1 (f 5)))
 'done)

5. (define (f x)

TE
AM
FL
Y

TEAM FLY PRESENTS

-454-

 (set! state (- 1 state)))
 (define state 1)
 (f (f (f)))

Explain why the expression must be evaluated.

Exercise 38.4.2. Confirm that the underlined expressions must be evaluated next:

1. (define x 0)
 (define y 1)
 (begin
 (set! x 3)
 (set! y 4)
 (+ (* x x) (* y y)))

2. (define x 0)
 (set! x
 (cond
 [(zero? x) 1]
 [else 0]))

3. (define (f x)
 (cond
 [(zero? x) 1]
 [else 0]))
 (begin
 (set! f 11)
 f)

Rewrite the three programs to show the next state.

Exercise 38.4.3. Evaluate the following programs:

1. (define x 0)
 (define (bump delta)
 (begin
 (set! x (+ x delta))
 x))
 (+ (bump 2) (bump 3))

2. (define x 10)
 (set! x (cond
 [(zeor? x) 13]
 [else (/ 1 x)]))

3. (define (make-box x)
 (local ((define contents x)
 (define (new y)
 (set! contents y))
 (define (peek)
 contents))
 (list new peek)))

 (define B (make-box 55))
 (define C (make-box 'a))

 (begin
 ((first B) 33)
 ((second C)))

TE
AM
FL
Y

TEAM FLY PRESENTS

-455-

Underline for each step the subexpression that must be evaluated next. Show only those steps
that involve a local-expression or a set!-expression.

In principle, we could work with the rules we just discussed. They cover the common cases, and
they explain the behavior of the programs we have encountered. They do not explain, however,
how an assignment works when the left-hand side refers to a defined function. Consider the
following example, for which the rules still work:

 (define (f x) x)

 (begin
 (set! f 10)
 f)

= (define f 10)

 (begin
 (void)
 f)

Here f is a state variable. The set!-expression changes the definition so f stands for a number.
The next step in an evaluation substitutes 10 for the occurrence of f.

Under ordinary circumstances, an assignment would replace a function definition with a different
function definition. Take a look at this program:

 (define (f x) x)
 (define g f)
 (+ (begin (set! f (lambda (x) 22)) 5) (g 1))

The purpose of the underlined set!-expression is to modify the definition of f so that it becomes
a function that always produces 22. But g stands for f initially. Since f is a the name of a
function, we can think of (define g f) as a value definition. The problem is that our current
rules change the definition of f and, by implication, the definition of g, because it stands for f:

= (define f (lambda (x) 22))
 (define g f)
 (+ (begin (void) 5) (g 1))

= (define f (lambda (x) 22))
 (define g f)
 (+ 5 (g 1))

= (define f (lambda (x) 22))
 (define g f)
 (+ 5 22)

Scheme, however, does not behave this way. A set!-expression can modify only one definition at
a time. Here it modifies two: f's, which is intended, and g's, which happens through the
indirection from g to f. In short, our rules do not explain the behavior of all programs with set!-
expressions; we need better rules if we wish to understand Scheme fully.

<vdf> = (define <var> <val>)

TE
AM
FL
Y

TEAM FLY PRESENTS

-456-

 | (define-struct <var> (<var> ...<var>))

<val> = <con> | <lst> | <prm> | <fun> | <void>

<lst> = empty | (cons <val> <lst>)

<fun> = (lambda (<var> ...<var>) <exp>)

Figure 112: Advanced Student Scheme: The values

The problem concerns the definitions of functions, which suggests that we take a second look at
the representation of functions and function definitions. So far, we used the names of functions
as values. As we have just seen, this choice may cause trouble in case the state variable is a
function. The solution is to use a concrete representation of functions. Fortunately, we already
have one in Scheme: lambda-expressions. Furthermore, we rewrite function definitions so that
they turn into variable definitions with a lambda-expression on the right-hand side:

 (define (f x) x)

= (define f (lambda (x) x))

Even recursive definitions are evaluated in this manner:

 (define (g x)
 (cond
 [(zero? x) 1]
 [else (g (sub1 x))]))

= (define g
 (lambda (x)
 (cond
 [(zero? x) 1]
 [else (g (sub1 x))])))

All other rules, including the rule for replacing variables with their values, remain the same.

Figure 112 specifies the set of values,73 as a subset of the set of expressions, and the set of value
definitions, as a subset of the definitions. Using these definitions and the modified rules, we can
take a second look at at the above example:

 (define (f x) x)
 (define g f)
 (+ (begin (set! f (lambda (x) 22)) 5) (g 1))

= (define f (lambda (x) x))
 (define g f)
 (+ (begin (set! f (lambda (x) 22)) 5) (g 1))

= (define f (lambda (x) x))
 (define g (lambda (x) x))
 (+ (begin (set! f (lambda (x) 22)) 5) (g 1))

TE
AM
FL
Y

TEAM FLY PRESENTS

-457-

= (define f (lambda (x) 22))
 (define g (lambda (x) x))
 (+ (begin (void) 5) (g 1))

= (define f (lambda (x) 22))
 (define g (lambda (x) x))
 (+ 5 (g 1))

= (define f (lambda (x) 22))
 (define g (lambda (x) x))
 (+ 5 1)

The key difference is that the definition of g directly associates the variable with a function
representation, not just a name for a function.

The following program shows the effects of set!-expressions on functions with an extreme
example:

(define (f x)
 (cond
 [(zero? x) 'done]
 [else (f (sub1 x))]))

(define g f)

(begin
 (set! f (lambda (x) 'ouch))
 (symbol=? (g 1) 'ouch))

The function f is recursive on natural numbers and always produces 'done. Initially, g is defined
to be f. The final begin-expression first modifies f and then uses g.

At first, we must rewrite the function definitions according to our modified rules:

= (define f
 (lambda (x)
 (cond
 [(zero? x) 'done]
 [else (f (sub1 x))])))
 (define g f)
 (begin
 (set! f (lambda (x) 'ouch))
 (symbol=? (g 1) 'ouch))

= (define f
 (lambda (x)
 (cond
 [(zero? x) 'done]
 [else (f (sub1 x))])))
 (define g
 (lambda (x)
 (cond
 [(zero? x) 'done]
 [else (f (sub1 x))])))
 (begin
 (set! f (lambda (x) 'ouch))
 (set! f (lambda (x) 'ouch))

TE
AM
FL
Y

TEAM FLY PRESENTS

-458-

 (symbol=? (g 1) 'ouch))

Rewriting the definition of f is straightforward. The major change concerns the definition of g.
Instead of f it now contains a copy of the value for which f currently stands. This value contains
a reference to f, but that is not unusual.

Next, the set!-expression modifies the definition of f:

 ...
= (define f
 (lambda (x)
 'ouch))

 (define g
 (lambda (x)
 (cond
 [(zero? x) 'done]
 [else (f (sub1 x))])))

 (begin
 (void)
 (symbol=? (g 1) 'ouch))

No other definition, however, is affected. In particular, the definition of g remains the same,
though the f inside of g's value now refers to a new value. But we have seen this phenomenon
before. The next two steps follow the basic rules of intermezzo 1:

 ...
= (define f
 (lambda (x)
 'ouch))

 (define g
 (lambda (x)
 (cond
 [(zero? x) 'done]
 [else (f (sub1 x))])))

 (begin
 (void)
 (symbol=? (f 0) 'ouch))

= (define f
 (lambda (x)
 'ouch))

 (define g
 (lambda (x)
 (cond
 [(zero? x) 'done]
 [else (f (sub1 x))])))

 (begin
 (void)
 (symbol=? 'ouch 'ouch))

That is, the application of g eventually applies f to 0, which yields 'ouch. Hence the final result
is true.

TE
AM
FL
Y

TEAM FLY PRESENTS

-459-

Exercise 38.4.4. Validate that the following program evaluates to true:

(define (make-box x)
 (local ((define contents x)
 (define (new y) (set! contents y))
 (define (peek) contents))
 (list new peek)))

(define B (make-box 55))

(define C B)

(and
 (begin
 ((first B) 33)
 true)
 (= (second C) 33)
 (begin
 (set! B (make-box 44))
 (= (second C) 33)))

Underline for each step the subexpression that must be evaluated next. Show only those steps
that involve a local-expression or a set!-expression.

While we decided to rewrite function definitions so that their right-hand side are always lambda-
expressions, we stuck with a function application rule that assumes function definitions in the
style of Beginning Student Scheme. More concretely, if the definition context contains a
definition such as

(define f (lambda (x y) (+ x y)))

and the expression is

(* (f 1 2) 5)

then the next step in the evaluation is

(* (+ 1 2) 5)

For other occasions, however, we just replace variables with the values in the respective
definitions. If we followed that rule, we would rewrite

(* (f 1 2) 5)

to

(* ((lambda (x y) (+ x y))
 1 2)
 5)

At first glance, this exploration route ends here, because there are no laws for this application.

We can reconcile the two ideas with a new law, suggested by the last expression:

 ((lambda (x-1 ... x-n) exp)

TE
AM
FL
Y

TEAM FLY PRESENTS

-460-

 v-1 ... v-n)
= exp with all x-1 ... x-n replaced by v-1 ... v-n

The law serves as a replacement of the law of application from algebra in the study of the
foundations of computing. By convention, this law is called the ßv (pronounced ``beta value'')
axiom.

Beta and the Lambda Calculus: The orginal ß axiom was formulated by Alonzo Church in the
late 1920s as follows:

 ((lambda (x) exp)
 exp-1)
= exp with x replaced by exp-1

It does not restrict the argument in a function application to be a value. The interest of Church
and other logicians74 was to explore the principles of computation, what computation could
achieve, and what it couldn't. They confirmed that the axiom and a small sublanguage of Scheme,
namely,

<exp> = <var> | (lambda (<var>) <exp>) | (<exp> <exp>)
are enough to define all computable functions on a (simulation of) the natural numbers.
Functions that cannot be formulated in this language are not computable.

The language and the ß axiom became known as the lambda (pronounced: ``lambda'') calculus.
Gerald Sussman and Guy L. Steele Jr. later based Scheme on the lambda calculus. In the mid-
1970s, Gordon Plotkin suggested the ßv axiom as a better method for understanding function
applications in programming languages such as Scheme.

38.5 Errors in Advanced Scheme
The extension of our language with functions as values introduces not only new powers for the
programmer but also new possibilities for errors. Recall that there are three kinds of errors:
syntax errors, run-time (or semantics) errors, and logical errors. Advanced Student Scheme
turns a class of syntactic errors of Beginning Student Scheme into run-time errors. It also
introduces a new form of logical error.

Consider the following program:

;; how-many-in-list : (listof X) -> N
;; to count how many items alist contains
(define (how-many-in-list alist)
 (cond
 [empty? (alist)]
 [else (+ (how-many-in-list (rest alist)) 1)]))

In Beginning Student Scheme or Intermediate Student Scheme, DrScheme would have
signaled a syntax error because alist is the parameter to a function but is also used as a function.
Because functions are values in Advanced Student Scheme, DrScheme must now accept this
function definition as syntactially correct. When the function is applied to empty or any other list
value, however, DrScheme soon applies empty to no arguments, which is a run-time error. After

TE
AM
FL
Y

TEAM FLY PRESENTS

-461-

all, lists are not functions. DrScheme signals immediately with an error message any attempt to
apply a non-function and stops the evaluation.

The second form of error is logical. That is, a program that suffers from this form of error doesn't
produce a syntax or a run-time error message. Instead, it produces wrong answers. Take a look at
the following two definitions:

(define flip1
 (local ((define state 1))
 (lambda ()
 (begin
 (set! state (- 1 state))
 state))))

(define flip2
 (lambda ()
 (local ((define state 1))
 (begin
 (set! state (- 1 state))
 state))))

They differ in the order of two lines. One introduces a local definition whose body evaluates to
a function. The other defines a function whose body contains a local-expression. According to
our rules, the definition on the left rewrites to

(define state1 1)

(define flip1
 (lambda ()
 (begin
 (set! state1 (- 1
state1))
 state1)))

(define flip2
 (lambda ()
 (local ((define state
1))
 (begin
 (set! state (- 1 state))
 state))))

The one on the right already associates a name with a function.

Let us now see how the two functions have radically different behaviors. To do so, we evaluate
the expressions

(and (= (flip1) 0)
 (= (flip1) 1)
 (= (flip1) 0))

(and (= (flip2) 0)
 (= (flip2) 1)
 (= (flip2) 0))

in the context of the respective definitions.

Here are the first four steps of the evaluation for the expression on the left-hand side:

 (define state1 1)
 (and (= (flip1) 0)
 (= (flip1) 1)
 (= (flip1) 0))

= (define state1 1)
 (and (= (begin
 (set! state1 (- 1 state1))
 state1)
 0)
 (= (flip1) 1)
 (= (flip1) 0))

= (define state1 1)
 (and (= (begin
 (set! state1 0)
 state1)
 0)

TE
AM
FL
Y

TEAM FLY PRESENTS

-462-

 (= (flip1) 1)
 (= (flip1) 0))

= (define state1 0)
 (and (= (begin
 (void)
 state1)
 0)
 (= (flip1) 1)
 (= (flip1) 0))

= (define state1 0)
 (and (= 0 0)
 (= (flip1) 1)
 (= (flip1) 0))

The relevant definition context is the definition of state1, which we see changing from 1 to 0
during the third step. From this point, it is not difficult to validate that the expression produces
true and that state1 ends up being 0.

Compare this with the first three steps in the evaluation of the right-hand expression:

 (and (= (flip2) 0)
 (= (flip2) 1)
 (= (flip2) 0))

= (and (= (local ((define state 1))
 (begin
 (set! state (- 1 state))
 state))
 0)
 (= (flip2) 1)
 (= (flip2) 0))

= (define state1 1)
 (and (= (begin
 (set! state1 (- 1 state1))
 state1)
 0)
 (= (flip2) 1)
 (= (flip2) 0))

= (define state1 0)
 (and (= 0 0)
 (= (flip2) 1)
 (= (flip2) 0))

The only definition that matters here is the one for flip2. Superficially, the two evaluations are
alike. But a closer look shows that the second one differs from the first in crucial way. It creates
the definition for state1 while the first evaluation started with such a definition.

Here is the continuation of the second evaluation:

 ...
= (define state1 0)
 (and true
 (= (local ((define state 1))
 (begin

TE
AM
FL
Y

TEAM FLY PRESENTS

-463-

 (set! state (- 1 state))
 state))
 1)
 (= (flip2) 0))

= (define state1 0)
 (define state2 1)
 (and true
 (= (begin
 (set! state2 (- 1 state2))
 state2)
 1)
 (= (flip2) 0))

= (define state1 0)
 (define state2 0)
 (and true
 (= (begin
 (void)
 state2)
 1)
 (= (flip2) 0))

= (define state1 0)
 (define state2 0)
 (and true
 (= 0 1)
 (= (flip2) 0))

It shows that flip2 creates a new definition every time it is applied and that it always produces 0.
Contrary to its name, it does not flip the value of state upon every application. As a result, the
evaluation ends now with two new top-level definitions and the value false.

The general moral is that a function defined in a local-expression is different from a function
whose body contains a local-expression. The first ensures that some definitions are accessible
only to a function. The definition exists once and only once for this function. In contrast, the
second creates a new (top-level) definition for every evaluation of the function body. In the next
part of the book, we exploit both ideas to create new kinds of programs.

71 The grammar misses and-expression and or-expression, and a few other short-cuts.

72 We also evaluate the right-hand side of definitions if they are not values, but we can safely
ignore this minor issue here.

73 It lacks a specification of structural values, but they play no role in this discussion.

74 Logic is to computing what mathematics is to physics.

TE
AM
FL
Y

TEAM FLY PRESENTS

-464-

Part VIII

Changing Compound Values

TE
AM
FL
Y

TEAM FLY PRESENTS

-465-

Section 39

Encapsulation
When we design a program to control a traffic light, we probably don't want to control just one
traffic light, but several. Similarly, when we design a program to manage names and phone
numbers, we might wish to manage several address books, not just one. Of course, we could
copy the code for a traffic light controller (or an address book manager) and rename the state
variables, but copying code is bad. Furthermore, we might wish to create so many traffic lights
that copying code is plain impractical.

The proper solution is to use the power of abstraction. Here we abstract over several instances of
the address book program and the traffic light program and so on. This differs from the notion of
abstraction in part IV because it involves state variables, but the idea and even the technique is
the same. We encapsulate the state variables and the functions in a local-expression and thus
give ourselves the power to create as many versions as necessary. We learn how to encapsulate
state variables in the first subsection, and practice it in the second one.

39.1 Abstracting with State Variables
Suppose we wish to turn the program in figure 100 (page 45) into a program for managing
(simulated) traffic lights. An operator of the simulation should be able to control each traffic
light independently of the others. Indeed, the operator should be able to add or shut down traffic
lights while the rest of the system remains unchanged and running.

Based on our experience, we know that each traffic light in the simulation requires two
definitions:

1. a state variable, current-color, which keeps track of the light's current color; and
2. a service function, next, which switches the traffic light to the next color according to the

traffic laws.

For a graphical simulation, the service function would also redraw the traffic light so that users
can view the current color. Finally, each traffic light has a unique location on the canvas:

TE
AM
FL
Y

TEAM FLY PRESENTS

-466-

The sample program of figure 100 deals with a single traffic light and lacks the drawing
operation. The problem now is to turn this into a program that can create as many traffic lights as
needed, each with its own state variables and switching functions and at its own location. If we
were to copy the definitions in figure 100 and add definitions for dealing with the canvas, the
various instances would differ in only one aspect: the data concerning the location of the traffic
light. This thought experiment suggests that we should develop an abstract function that creates
and manages traffic lights at various locations.

Because the original program consists of several top-level definitions, we use the recipe of
section 22.2, which suggests wrapping the definitions in a local-expression inside a function.
When local definitions include state variables, as in this example, we prefer to say that we
ENCAPSULATE definitions. This terminology emphasizes that the abstract function hides the state
variables from other parts of the program. In particular, it implies that by putting a state variable
in a local-expression we guarantee that it can change only according to the managed services, not
by arbitrary assignments. Still, the definition encapsulates and abstracts at the same time, and a
programmer must keep this in mind.

;; View:
;; draw-light : TL-color number -> true
;; to (re)draw the traffic light on the canvas
(define (draw-light current-color x-posn) ...))

;; Model:
;; make-traffic-light : symbol number -> (-> true)
;; to create a red light with (make-posn x-posn 0) as the upper-left
corner
;; effect: draw the traffic light on the canvas
(define (make-traffic-light street x-posn)
 (local (;; current-color : TL-color
 ;; to keep track of the current color of the traffic light
 (define current-color 'red)

 ;; init-traffic-light : -> true
 ;; to (re)set current-color to red and to (re)create the view
 (define (init-traffic-light)
 (begin
 (set! current-color 'red)
 (draw-light current-color x-posn)))

 ;; next : -> true
 ;; effect: to change current-color from 'green to 'yellow,
 ;; 'yellow to 'red, and 'red to 'green
 (define (next)
 (begin
 (set! current-color (next-color current-color))
 (draw-light current-color x-posn)))

 ;; next-color : TL-color -> TL-color
 ;; to compute the successor of current-color based on the
traffic laws
 (define (next-color current-color)
 (cond
 [(symbol=? 'green current-color) 'yellow]
 [(symbol=? 'yellow current-color) 'red]
 [(symbol=? 'red current-color) 'green])))
 (begin
 ;; Initialize and produce next

TE
AM
FL
Y

TEAM FLY PRESENTS

-467-

 (init-traffic-light)
 next)))

Figure 113: Managing multiple traffic lights

The next step is to consider what this function should do, that is, what it should consume, what it
should produce, and what effects it should have, if any. Let's start with the name. We call the
new function make-traffic-light; after all, making a simulated traffic light is the purpose of
the abstracted program. Furthermore, according to our abstraction recipes, an abstraction must
consume values that represent the unique aspects of an instance. The unique aspect of a traffic
light is its position on the canvas; for clarity, let's add a physical address, too.

Every use of make-traffic-light should create a traffic light and enable the operator to switch
it from one state to the next. The first part suggests an effect. Specifically, the function should
initialize the state variable and draw the initial state of the traffic light at the designated position
on the canvas. The second part of the statement suggests a result: a function for switching the
state of the traffic light.

Figure 113 contains the outline of the traffic simulator, including the complete definition of
make-traffic-light. The simulator consists of a model and a view. The model is make-
traffic-light. The view is called draw-light and is only sketched; the full definition of the
view is left as an exercise.

The definition of make-traffic-light is an ordinary function definition. It uses a local
definition to set up the single state variable, the initializer, and the state-changing function. The
body of the local-expression uses the initializer and then produces next as the function's value.

Using make-traffic-light we can create several individual traffic lights or entire collections
of them. We could also add lights as time goes by. First, we create a sufficiently large canvas:

;; create the canvas first
(start 300 160)

Second, we apply make-traffic-light as often as needed:

;; lights : (listof traffic-light)
;; to manage the lights along Sunrise
(define lights
 (list (make-traffic-light 'sunrise@rice 50)
 (make-traffic-light 'sunrise@cmu 150)))

Here we define lights to be a list of two traffic lights. Each traffic light is a function, so lights
stands for a list of two functions.

After creating the traffic lights, we can change their states as desired. To do so, we must keep in
mind that each traffic light is represented by a function that consumes nothing and produces
true. Its effect is to change the hidden state variable and the drawing on the canvas. In our
running example, we could use the Interactions window as follows:

> ((second lights))
true

TE
AM
FL
Y

TEAM FLY PRESENTS

-468-

> (andmap (lambda (a-light) (a-light)) lights)
true

The first interaction extracts the second item from lights and applies it. This sets the light at
'sunrise@cmu to green. The second one switches the state of all items on lights.

Each application of make-traffic-light turns variants of the local definitions into top-level
definitions, after renaming them. Because the above define contains two applications of make-
traffic-light, it creates two copies of each locally defined function and state variable during
an evaluation:

;; definitions for 'sunrise@rice
(define current-color@rice 'red)

(define (init-traffic-light@rice)
 (begin
 (set! current-color@rice 'red)
 (draw-light current-color@rice 50)))

(define (next@rice) ...)

(define (next-color@rice current-color) ...)

;; definitions for 'sunrise@cmu
(define current-color@cmu 'red)

(define (init-traffic-light@cmu)
 (begin
 (set! current-color@cmu 'red)
 (draw-light current-color@cmu 150)))

(define (next@cmu) ...)

(define (next-color@cmu current-color) ...)

(define lights
 (list next@rice
 next@cmu))

The new top-level definitions of init-traffic-light show how the renaming ensures that one
of them takes care of 'sunrise@rice and the other one of 'sunrise@cmu.

Exercise 39.1.1. What is the effect of the second interaction above?

Exercise 39.1.2. Fill in the bodies of next@rice and next@cmu in the hand-evaluated program.
Then evaluate ((second lights)) in the context of these definitions.

Exercise 39.1.3. Develop the function draw-light. It realizes the view part of the traffic light
simulation in figure 113. Each traffic light should be as tall as the canvas, delineated by solid
lines on the left and right. The suggested dimensions of a single light are

TE
AM
FL
Y

TEAM FLY PRESENTS

-469-

(define WIDTH 50)
(define RADIUS 20)
(define DISTANCE-BETWEEN-BULBS 10)
;; the minimum canvas height
(define HEIGHT
 (+ DISTANCE-BETWEEN-BULBS
 (* 2 RADIUS)
 DISTANCE-BETWEEN-BULBS
 (* 2 RADIUS)
 DISTANCE-BETWEEN-BULBS
 (* 2 RADIUS)
 DISTANCE-BETWEEN-BULBS))

Develop the necessary definitons separate from the rest of the traffic light program, then create a
single function definition using local. Solution

Now suppose we wish to provide the additional service of resetting an individual traffic light.
That is, in addition to switching from the current color to the next, an operator should be able to
set a traffic light to red. The function for doing so already exists: init-traffic-light. It sets
current-color to 'red and redraws the image on the canvas. But, init-traffic-light is
inaccessible because it is defined within the local-expression of make-traffic-light. If we
wish the function to be visible, it must be the result of make-traffic-light just like next.

;; make-traffic-light : symbol number -> (symbol -> true)
;; to create a red light with (make-posn x-posn 0) as the upper-left
corner
;; effect: draw the traffic light on the canvas
(define (make-traffic-light street x-posn)
 (local (;; Model:
 ;; current-color : TL-color
 ;; to keep track of the current color of the traffic light
 (define current-color 'red)

 ;; init-traffic-light : -> true
 ;; to (re)set current-color to red and to (re)create the view
 (define (init-traffic-light) ...)

 ;; next : -> true
 ;; effect: to change current-color from 'green to 'yellow,
 ;; 'yellow to 'red, and 'red to 'green
 (define (next) ...)

 ;; next-color : TL-color -> TL-color
 ;; to compute the successor of current-color based on the
traffic laws
 (define (next-color current-color) ...)
 ;; service-manager : (symbol -> true)
 ;; to apply either next or init-traffic-light
 (define (service-manager msg)
 (cond
 [(symbol=? msg 'next) (next)]
 [(symbol=? msg 'reset) (init-traffic-light)]
 [else (error 'traffic-light "message not understood")])))
 (begin
 ;; Initialize and produce service-manager
 (init-traffic-light)
 service-manager)))

TE
AM
FL
Y

TEAM FLY PRESENTS

-470-

Figure 114: Managing multiple traffic lights with a reset service

To make both next and init-traffic-light a result of make-traffic-light requires some
way of combining the two functions into a single value. Since functions are values in Scheme,
we could combine the two functions in a list, a structure, or even a vector. Another possibility is
to combine the two functions in a third function. Here we discuss this third possibility because it
is an important technique in the context of managing state variables and services.

We call the new kind of function service-manager, because it hides and manages functions that
implement services. The function accepts two symbols:

1. 'next, which indicates that (next) should be evaluated, and
2. 'reset, which indicates that (reset) should be evaluated.

Furthermore, the function is the result of the revised version of make-traffic-light.

Figure 114 contains the modified definition of make-traffic-light. Since an operator may
mistakenly apply functions to inappropriate arguments, service-manager is a checked function
in the sense of section 7.5. It signals an error if the input is a symbol other than 'next or 'reset.

We use the new make-traffic-light function exactly like the old one:

;; create the canvas first
(start 300 160)

;; lights : (listof traffic-light)
;; to manage the lights along Sunrise
(define lights
 (list (make-traffic-light 'sunrise@rice 50)
 (make-traffic-light 'sunrise@cmu 150)))

The result, however, is that now every traffic light is represented as a function on symbols:

> ((second lights) 'next)
true
> (andmap (lambda (a-light) (a-light 'reset)) lights)
true

The first interaction switches the initially red light labeled 'sunrise@cmu to 'green. The second
one changes the state of every light back to 'red skipping the 'yellow stage for the light at
'sunrise@cmu.

Exercise 39.1.4. Complete the definition of the program in figure 114, using the function from
exercise 39.1.3. Then use DrScheme's Interactions window to switch and reset traffic lights.

Exercise 39.1.5. Evaluate the above program by hand and confirm that the light labeled
'sunrise@rice switches from 'green directly back to 'red.

For the address-book example from part VII, the need for managing two services is even more
apparent. After all, the motivating idea behind the example is that users can access one state

TE
AM
FL
Y

TEAM FLY PRESENTS

-471-

variable with two different services: add-to-address-book for adding new entries and lookup
for looking up the phone number for a given name. Following our encapsulation recipe, we must

1. define a function make-address-book whose body is a local-expression;
2. place the definitions in this local-expression; and
3. introduce a function called service-manager to manage the two services.

By now, we have the first two steps firmly under control; the last one, however, is complex here,
because unlike in the previous case, the two functions that implement the services consume
different numbers of arguments and produce different kinds of results.

Let's first agree on the inputs for service-manager. Two good mnemonic symbols are 'add for
adding phone numbers and 'search for looking up the number for some given name. This
suggests the following template:

(define (service-manager msg)
 (cond
 [(symbol=? msg 'add) ... A ...]
 [(symbol=? msg 'search) ... B ...]
 [else (error 'address-book "message not understood")]))

The problem is that it is not clear how to replace A and B with valid Scheme expressions that
compute the appropriate value and effect. For A, we need not only msg but also a name and a
phone number. For B, we need the name.

One solution is to produce functions that consume the additional arguments and then perform the
appropriate computation. In other words, service-manager is now a function that produces a
function for two symbols. Since we have not encountered this kind of result before, we introduce
a new form of data definition:

An address-book is an interface:

1. 'add :: symbol number -> void
2. 'search :: symbol -> number

The data definition refers to the concept of INTERFACE, which is a function that consumes a finite
number of symbols and produces functions with different types in return. Because this kind of
function is radically different from what we have seen before, we use a different name.

Now it is possible to write a contract and a purpose statement:

;; service-manager : address-book
;; to manage addition to, and searches in, the address book
(define (service-manager msg) ...)

To define the function, we distinguish the two cases. In the case of 'add, it is obvious what we
produce: add-to-address-book.

In the case of 'search, we need a function that consumes a symbol and then applies lookup to
this symbol and the locally defined address-book. Using lambda, we can create such a
function on the fly:

TE
AM
FL
Y

TEAM FLY PRESENTS

-472-

(lambda (name)
 (lookup name address-book))

Since the function is a value, it is the natural answer to 'search.

;; make-address-book : string -> address-book
;; to create a function that manages all the services for a hidden
address book
(define (make-address-book title)
 (local ((define-struct entry (name number))
 ;; address-book : (listof (list name number))
 ;; to maintain a list of name-phone number associations
 (define address-book empty)

 ;; add-to-address-book : symbol number void
 ;; effect: to add a name-phone number association to address-book
 (define (add-to-address-book name phone)
 (set! address-book (cons (make-entry name phone) address-
book)))

 ;; lookup : symbol (listof (list symbol number)) -> number or
false
 ;; to lookup the phone number for name in address-book
 (define (lookup name ab)
 (cond
 [(empty? ab) false]
 [else (cond
 [(symbol=? (entry-name (first ab)) name)
 (entry-number (first ab))]
 [else (lookup name (rest ab))])]))

 ;; service-manager : address-book object
 ;; to manage addition to, and searches in, the address book
 (define (service-manager msg)
 (cond
 [(symbol=? msg 'add)
 add-to-address-book]
 [(symbol=? msg 'search)
 (lambda (name)
 (lookup name address-book))]
 [else (error 'address-book "message not understood")])))
 service-manager))

Figure 115: Managing multiple address books

Figure 115 shows the complete definition of make-address-book. The definition is standard by
now. It consists of a local-expression, which in turn produces the locally defined service-
manager as the result. There is no need for an initializer because the only state variable is
immediately initialized and there is no graphical view.

To use an address book, we first create it with make-address-book:

;; friends : an address book
;; to maintain an address book for friends
(define friends
 (make-address-book "Friends of Charles"))

TE
AM
FL
Y

TEAM FLY PRESENTS

-473-

;; business : an address book
;; to maintain an address book for business colleagues
(define business
 (make-address-book "Colleagues @ Rice, Inc."))

The two definitions create two distinct address books, one for a collection of friends and a
second one for business acquaintances.

Second, we add names and phone numbers to the address book, or we retrieve numbers as
desired:

> ((friends 'add) 'Bill 2)
> ((friends 'add) 'Sally 3)
> ((friends 'add) 'Dave 4)
> ((business 'add) 'Emil 5)
> ((business 'add) 'Faye 18)

In this case, we added three entries to the address book named friends and two to the one called
business.

An addition to, say, friends works in two steps. The first step is to apply friends to 'add. This
yields the (hidden) function add-to-address-book. The second step is to apply this resulting
function to a name and a number. In a similar vein, looking up a phone number also works in
two steps. The application of, say, friends to 'search yields a function that consumes a name.
This function is then applied to a symbol:

> ((friends 'search) 'Bill)
2
> ((business 'search) 'Bill)
false

The two applications show that the number for 'Bill in friends is 2 and that there is no
number for 'Bill in colleagues. According to the above additions, that's exactly what we should
expect. Of course, we could also co-mingle the two actions in the Interactions window,
adding and searching for phone numbers at will.

Exercise 39.1.6. Develop an interface definition for the results of the revised version of make-
traffic-light (see figure 114).

Exercise 39.1.7. Show the top-level definitions that the evaluation of friends and colleagues
creates.

What is the state of these definitions after the five 'add expressions have been evaluated?
Evaluate ((friends 'search) 'Bill) in this context.

Exercise 39.1.8. Design gui-for-address-book. The function consumes a list of strings and
creates a new address book for each one of them. It also creates and displays a graphical user
interface for an address book with a choice menu that lets users choose to which address book
they want to add an entry and in which address book the program should search for a number.

39.2 Practice with Encapsulation

TE
AM
FL
Y

TEAM FLY PRESENTS

-474-

Exercise 39.2.1. Develop the program make-city. It manages a collection of traffic lights. The
program should provide four services:

1. adding a traffic light with a label (string);
2. removing a traffic light by label;
3. switching the state of a traffic light with some given label; and
4. resetting a traffic light to red with some given label.

Hint: The first two services are provided directly; the last two are implemented by the simulated
traffic lights.

After the development of the program is completed, develop a graphical user interface.

Exercise 39.2.2. Develop make-master. The program consumes nothing, creates an instance of
the color-guessing game of section 37.1, and produces the master-check function as the only
result. After the player has guessed the answer, the function should simply respond with ``game
over.'' A typical dialog would proceed as follows:

> (define master1 (make-master))
> (master-check 'red 'red)
'NothingCorrect
> (master-check 'black 'pink)
'OneColorOccurs
...

Compare this with the first dialogue in section 37.1.

Add a service to make-master that reveals the hidden colors. That way a player who is tired of
playing the game can find out the answer.

Exercise 39.2.3. Develop make-hangman. The program consumes a list of words, creates a
hangman game using the list, and produces the hangman-guess function as a result. A player
would use the dialogue as follows:

> (define hangman-easy (make-hangman (list 'a 'an 'and 'able 'adler)))
> (define hangman-difficult (make-hangman (list 'ardvark ...)))
> (hangman-easy 'a)
"You won"
> (hangman-difficult 'a)
(list 'head (list '_ '_ '_ '_ '_ '_))
> ...

Compare this with the first dialogue in section 37.2.

Add a service to make-master that reveals the chosen word.

An optional extension is to equip the program with a graphical user interface and a graphical
view of the stick figure. Reuse existing solutions as much as possible.

Exercise 39.2.4. Develop make-player. The program abstracts over the functions of
section 37.5. Using the program, we can create several players that wander through the campus:

TE
AM
FL
Y

TEAM FLY PRESENTS

-475-

(define player1 (make-player 'BioEngineering))
(define player2 (make-player 'MuddBuilding))
...

The argument to make-player specifies the initial position of the player.

Each instance should be able to produce

1. a picture of the current surroundings;
2. a list of the available building connections; and
3. a move from one place to another through an available connection.

Extension: Two players may be in the same building at the same time, but they cannot interact.
Extend the game so that two players in the same building can interact in some form.

Exercise 39.2.5. Develop the program moving-pictures. It consumes a position and a picture,
that is, a list of shapes as defined in sections 6.6, and 7.4, and 10.3. (Also see 21.4 for functions
on moving pictures.) It supports two services. First, it can place the shape at a specific position.
Second, it can reset the picture to the initially given position.

TE
AM
FL
Y

TEAM FLY PRESENTS

-476-

Section 40

Mutable Structures
Encapsulating and managing state variables is similar to forming and managing structures. When
we first apply a function that abstracts over state variables we provide initial values for some of
the variables. The service manager serves the (current) value of these variables, which is similar
to extracting the values of fields in structures. Not surprisingly then, the technique can simulate
the constructors and selectors of a define-struct definition. This simulation naturally suggests
the introduction of functions that modify the value in a structure's field. The following
subsections spell out the details behind this idea; the last subsection generalizes it to vectors.

40.1 Structures from Functions

(define-struct posn (x
y))

(define (f-make-posn x0 y0)
 (local ((define x y0)
 (define y y0)
 (define (service-manager msg)
 (cond
 [(symbol=? msg 'x) x]
 [(symbol=? msg 'y) y]
 [else (error 'posn
"...")])))
 service-manager))

(define (f-posn-x p)
 (p 'x))

(define (f-posn-y p)
 (p 'y))

Figure 116: A functional analog of posn

Take a look at figure 116. The left-hand side is the one-line definition of a posn structure. The
right-hand side is a functional definition that provides almost all the same services. In particular,
the definition provides a constructor that consumes two values and constructs a compound value,
and two selectors for extracting the values that went into the construction of a compound value.

To understand why f-make-posn is a constructor and why f-posn-x and f-posn-y are selectors,
we can discuss how they work, and we can confirm that they validate the expected equations.
Here we do both, because the definitions are unusual.

The definition of f-make-posn encapsulates two variable definitions and one function definition.
The two variables stand for the arguments of f-make-posn and the function is a service manager;
it produces the value of x when given 'x and the value of y when given 'y. In the preceding
section, we might have written something like

(define a-posn (f-make-posn 3 4))

TE
AM
FL
Y

TEAM FLY PRESENTS

-477-

(+ (a-posn 'x) (a-posn 'y))

to define and to compute with f-make-posn. Since selecting values is such a frequent operation,
figure 116 introduces the functions f-posn-x and f-posn-y, which perform these computations.

When we first introduced structures rigorously in intermezzo 1, we said that the selectors and
constructors can be described with equations. For a definition such as that for posn, the two
relevant equations are:

 (posn-x (make-posn V-1 V-2))
= V-1
and
 (posn-y (make-posn V-1 V-2))
= V-2

where V-1 and V-2 are arbitrary values.

To confirm that f-posn-x and f-make-posn are in the same relationship as posn-x and make-
posn, we can validate that they satisfy the first equation:

 (f-posn-x (f-make-posn 3 4))
= (f-posn-x (local ((define x 3)
 (define y 4)
 (define (service-manager msg)
 (cond
 [(symbol=? msg 'x) x]
 [(symbol=? msg 'y) y]
 [else (error 'posn "...")])))
 service-manager))
= (f-posn-x service-manager)
 ;; add to top-level definitions:
 (define x 3)
 (define y 4)
 (define (service-manager msg)
 (cond
 [(symbol=? msg 'x) x]
 [(symbol=? msg 'y) y]
 [else (error 'posn "...")]))
= (service-manager 'x)

= (cond
 [(symbol=? 'x 'x) x]
 [(symbol=? 'x 'y) y]
 [else (error 'posn "...")])

= x

= 3

It is an exercise to show that f-posn-y and f-make-posn satisfy the analogous equation.

Exercise 40.1.1. Which function does the simulation of structures not provide? Why not?

Exercise 40.1.2. Here is yet another implementation of posn structures:

TE
AM
FL
Y

TEAM FLY PRESENTS

-478-

(define (ff-make-posn x y)
 (lambda (select)
 (select x y)))

(define (ff-posn-x a-ff-posn)
 (a-ff-posn (lambda (x y) x)))

(define (ff-posn-y a-ff-posn)
 (a-ff-posn (lambda (x y) y)))

Evaluate (ff-posn-x (ff-make-posn V-1 V2)) in this context. What does the calculation
demonstrate?

Exercise 40.1.3. Show how to implement the following structure definitions as functions:

1. (define-struct movie (title producer))
2. (define-struct boyfriend (name hair eyes phone))
3. (define-struct cheerleader (name number))
4. (define-struct CD (artist title price))
5. (define-struct sweater (material size producer))

Pick one and demonstrate that the expected laws hold.

40.2 Mutable Functional Structures

(define (fm-make-posn x0 y0)
 (local ((define x y0)
 (define y y0)
 (define (service-manager msg)
 (cond
 [(symbol=? msg 'x) x]
 [(symbol=? msg 'y) y]
 [(symbol=? msg 'set-x) (lambda (x-new) (set! x x-new))]
 [(symbol=? msg 'set-y) (lambda (y-new) (set! y y-new))]
 [else (error 'posn "...")])))
 service-manager))

(define (fm-posn-x p)
 (p 'x))

(define (fm-posn-y p)
 (p 'y))

(define (fm-set-posn-x! p new-value)
 ((p 'set-x) new-value))

(define (fm-set-posn-y! p new-value)
 ((p 'set-y) new-value))

Figure 117: An implementation of posns with mutators

Together, sections 39 and 40.1 suggest that structures are mutable. That is, we should be able to
change the values of some field in a structure. After all, we introduced the service managers in
section 39 to hide state variables, not just ordinary variable definitions.

TE
AM
FL
Y

TEAM FLY PRESENTS

-479-

Figure 117 shows how a small change to the definitions of figure 116 turns the locally hidden
variables into state variables. The modified service manager offers two services per state variable:
one for looking up the current value and one for changing it.

Consider the following definition and expression:

(define a-posn (fm-make-posn 3 4))

(begin
 (fm-set-posn-x! a-posn 5)
 (+ (posn-x a-posn) 8))

Evaluating them by hand shows how structures change. Here is the first step:

 ...
=
 (define x-for-a-posn 3)
 (define y-for-a-posn 4)
 (define (service-manager-for-a-posn msg)
 (cond
 [(symbol=? msg 'x) x-for-a-posn]
 [(symbol=? msg 'y) y-for-a-posn]
 [(symbol=? msg 'set-x)
 (lambda (x-new) (set! x-for-a-posn x-new))]
 [(symbol=? msg 'set-y)
 (lambda (y-new) (set! y-for-a-posn y-new))]
 [else (error 'posn "...")]))
 (define a-posn service-manager-for-a-posn)

 (begin
 (fm-set-posn-x! a-posn 5)
 (+ (posn-x a-posn) 8))

It renames and lifts the local definitions from inside of fm-make-posn. Because the function
definition doesn't change for the rest of the evaluation, we focus on just the variable definitions:

 (define x-for-a-posn 3)
 (define y-for-a-posn 4)
 (begin
 (fm-set-posn-x! a-posn 5)
 (+ (posn-x a-posn) 8))

= (define x-for-a-posn 3)
 (define y-for-a-posn 4)
 (begin
 (fm-set-posn-x! service-manager-for-a-posn 5)
 (+ (posn-x a-posn) 8))

= (define x-for-a-posn 3)
 (define y-for-a-posn 4)
 (begin
 ((service-manager-for-a-posn 'set-x) 5)
 (+ (posn-x a-posn) 8))

= (define x-for-a-posn 3)
 (define y-for-a-posn 4)
 (begin
 (set! x-for-a-posn 5)

TE
AM
FL
Y

TEAM FLY PRESENTS

-480-

 (+ (posn-x a-posn) 8))

= (define x-for-a-posn 5)
 (define y-for-a-posn 4)
 (+ (posn-x a-posn) 8)

At this point, the definition of x-for-a-posn has been modified in the expected manner. From
now on every reference to this state variable, which represents the (simulated) x field a-posn,
stands for 5. Every further reference to x-for-a-posn produces 5.

Exercise 40.2.1. Develop a functional representation for the following structure definition:

(define-struct boyfriend (name hair eyes phone))

such that the fields of the simulated structure can be changed.

Exercise 40.2.2. Here is a modification of the function-based implementation of posn
structures in exercise 40.1.2:

(define (ffm-make-posn x0 y0)
 (local ((define x x0)
 (define (set-x new-x) (set! x new-x))
 (define y y0)
 (define (set-y new-y) (set! y new-y)))
 (lambda (select)
 (select x y set-x set-y))))

(define (ffm-posn-x a-ffm-posn)
 (a-ffm-posn (lambda (x y sx sy) x)))

(define (ffm-posn-y a-ffm-posn)
 (a-ffm-posn (lambda (x y sx sy) y)))

(define (ffm-set-posn-x! a-ffm-posn new-value)
 (a-ffm-posn (lambda (x y sx sy) (sx new-value))))

(define (ffm-set-posn-y! a-ffm-posn new-value)
 (a-ffm-posn (lambda (x y sx sy) (sy new-value))))

Demonstrate how to modify a structure like (ffm-make-posn 3 4) so that its y field contains
5.

40.3 Mutable Structures
Scheme structures are mutable. In Advanced Student Scheme, a structure definition such as

(define-struct posn (x y))

introduces six primitives, not just four:

1. make-posn, the constructor;
2. posn-x and posn-y, the selectors;
3. posn?, the predicate; and
4. set-posn-x! and set-posn-y!, the MUTATORS.

TE
AM
FL
Y

TEAM FLY PRESENTS

-481-

The mutators are operations that change the contents of a structure.

Recall that we think of a structure as a box with compartments. For example, the structure

(make-posn 3 4)

should be visualized as a box with two compartments:

A constructor creates a box; a selector extracts the value from a particular compartment; the
predicate recognizes it; and the mutator changes the content of a compartment. That is, a mutator
has an effect on its arguments; its result is the invisible value. Pictorially, we should imagine an
evaluation step for an expression such as

(define p (make-posn 3 4))
(set-posn-x! p 5)

as a box with the old x value deleted and a new one inserted into the same box:

Consider the following definitions:

(define-struct star (name instrument))

(define p (make-star 'PhilCollins 'drums))

Let's consider the effect and computation of the following expression:

(begin
 (set-star-instrument! p 'vocals)
 (list (star-instrument p)))

According to our explanation, the first subexpression modifies the instrument field of the star
structure named p; the second one produces a list of one item, the current value the instrument
field in the structure named p. By analogy to section 40.2, the evaluation proceeds as follows:

 (define-struct star (name instrument))
 (define p (make-star 'PhilCollins 'drums))
 (begin
 (set-star-instrument! p 'vocals)
 (list (star-instrument p)))

= (define-struct star (name instrument))
 (define p (make-star 'PhilCollins 'vocals))
 (begin
 (void)
 (list (star-instrument p)))

= (define-struct star (name instrument))
 (define p (make-star 'PhilCollins 'vocals))
 (list 'vocals)

TE
AM
FL
Y

TEAM FLY PRESENTS

-482-

The first step changes one part of the value in the definition of p, but not the entire value. The
second one extracts the current value of the instrument field and places it in a list.

The introduction of mutators for structures requires two changes to our system of evaluation
rules:

1. Every constructor expression adds a definition with a new, unique name to the top level,
unless it already occurs in a definition.75

2. A name that stands for a structure is a value.

We can understand these changes if we think of each structure as a function that manages
services such as looking up the current value of a field and modifying the field. After all, local
function definitions also create top-level definitions with unique names. And the names of
functions are values, too.

Using these two new rules we can study the unusual behavior of mutators in more depth. Here is
a first example:

(define-struct star (name instrument))

(define p (make-star 'PhilCollins 'drums))

(define q p)

(begin
 (set-star-instrument! p 'vocals)
 (list (star-instrument q)))

It differs from the first in two ways. First, it defines q to be p. Second, the second subexpression
of the begin-expression refers to q, not p. Let's check our understanding of the evaluation
process:

 (define-struct star (name instrument))
 (define p (make-star 'PhilCollins 'drums))
 (define q p)
 (begin
 (set-star-instrument! p 'vocals)
 (list (star-instrument q)))

= (define-struct star (name instrument))
 (define p (make-star 'PhilCollins 'vocals))
 (define q p)
 (begin
 (void)
 (list (star-instrument q)))

As before, the first step changes one part of the definition of p. The second step is to look up q's
current value:

 ...
= (define-struct star (name instrument))
 (define p (make-star 'PhilCollins 'vocals))
 (define q p)
 (list (star-instrument p))

TE
AM
FL
Y

TEAM FLY PRESENTS

-483-

= (define-struct star (name instrument))
 (define p (make-star 'PhilCollins 'vocals))
 (define q p)
 (list 'vocals)

Because q is p and the current value of the instrument field of p instrument is 'vocals, the
result is again (list 'vocals).

What we have just seen is the effect of SHARING (the effects of mutators), which means that a
modification of a struture affects the program in more than one place. Sharing is also visible
inside lists as our second example shows:

(define-struct star (name instrument))

(define q (list (make-star 'PhilCollins 'drums)))

(begin
 (set-star-instrument! (first q) 'vocals)
 (list (star-instrument (first q))))

Here, the right-hand side of the definition of q is an expression whose only subexpression isn't a
value. More precisely, it is a structure expression that must be evaluated:

 ...
= (define-struct star (name instrument))
 (define p (make-star 'PhilCollins 'drums))
 (define q (list p))
 (begin
 (set-star-instrument! (first q) 'vocals)
 (list (star-instrument (first q))))

= (define-struct star (name instrument))
 (define p (make-star 'PhilCollins 'drums))
 (define q (list p))
 (begin
 (set-star-instrument! p 'vocals)
 (list (star-instrument (first q))))

Thus the first step is to introduce a new definition, for which we choose p as the name. The
second step replaces (first q) by p, because q is a list of one item: p. The rest proceeds almost
as above:

...
= (define-struct star (name instrument))
 (define p (make-star 'PhilCollins 'vocals))
 (define q (list p))
 (begin
 (void)
 (list (star-instrument (first q))))

= (define-struct star (name instrument))
 (define p (make-star 'PhilCollins 'vocals))
 (define q (list p))
 (list (star-instrument p))

= (define-struct star (name instrument))
 (define p (make-star 'PhilCollins 'vocals))

TE
AM
FL
Y

TEAM FLY PRESENTS

-484-

 (define q (list p))
 (list 'vocals)

Finally, effects can be shared among items in different lists. Take a look at this third variant of
our program:

(define-struct star (name instrument))

(define q (list (make-star 'PhilCollins 'drums)))

(define r (list (first q) (star-instrument (first q))))

(begin
 (set-star-instrument! (first q) 'vocals)
 (list (star-instrument (first r))))

The new definition introduces the variable r, which stands for a list that contains two items. Let's
use our new rules to determine the values and the effects of this program:

...
= (define-struct star (name instrument))
 (define p (make-star 'PhilCollins 'drums))
 (define q (list p))
 (define r (list (first q) (star-instrument (first q))))
 (begin
 (set-star-instrument! (first q) 'vocals)
 (list (star-instrument (first r))))

= (define-struct star (name instrument))
 (define p (make-star 'PhilCollins 'drums))
 (define q (list p))
 (define r (list p (star-instrument p)))
 (begin
 (set-star-instrument! (first q) 'vocals)
 (list (star-instrument (first r))))

= (define-struct star (name instrument))
 (define p (make-star 'PhilCollins 'drums))
 (define q (list p))
 (define r (list p 'drums))
 (begin
 (set-star-instrument! (first q) 'vocals)
 (list (star-instrument (first r))))

As above, the first step introduces a definition for the new star structure. The second and third
step create the list named r, which contains p, the newly created structure, and 'vocals, its
current instrument value.

The next step selects the first item from q and modifies its instrument field:

...
= (define-struct star (name instrument))
 (define p (make-star 'PhilCollins 'vocals))
 (define q (list p))
 (define r (list p 'drums))
 (begin
 (void)
 (list (star-instrument (first r))))

TE
AM
FL
Y

TEAM FLY PRESENTS

-485-

= (define-struct star (name instrument))
 (define p (make-star 'PhilCollins 'vocals))
 (define q (list p))
 (define r (list p 'drums))
 (list (star-instrument p))

= (define-struct star (name instrument))
 (define p (make-star 'PhilCollins 'vocals))
 (define q (list p))
 (define r (list p 'drums))
 (list 'vocals)

Because r contains p as the first item and because the instrument field of p is still 'vocals, the
result is (list 'vocals) here, too. But, this program still has some knowledge of 'drums, the
original value of the star structure.

In summary, mutators give us more power than constructors and selectors. Instead of just
creating new structures and revealing their contents, we can now change their contents, while the
structures remain the same. Next we must contemplate what this means for the design of
programs.

Exercise 40.3.1. Name the mutators that the following structure definitions introduce:

1. (define-struct movie (title producer))
2. (define-struct boyfriend (name hair eyes phone))
3. (define-struct cheerleader (name number))
4. (define-struct CD (artist title price))
5. (define-struct sweater (material size producer))

Exercise 40.3.2. Develop the function swap-posn, which consumes a posn structure and swaps
the values in the two fields. Its result is (void).

Exercise 40.3.3. Develop the function one-more-date, which consumes a girlfriends
structure and increases the contents of the number-past-dates field by 1. The structure
definition is

(define-struct girlfriends (name hair eyes number-past-dates))

The result of one-more-date is (void).

Exercise 40.3.4. Evaluate the following program, step by step:

(define-struct cheerleader (name number))

(define A (make-cheerleader 'JoAnn 2))

(define B (make-cheerleader 'Belle 1))

(define C (make-cheerleader 'Krissy 1))

(define all (list A B C))

(list

TE
AM
FL
Y

TEAM FLY PRESENTS

-486-

 (cheerleader-number (second all))
 (begin
 (set-cheerleader-number! (second all) 17)
 (cheerleader-number (second all))))

Underline in the last program where definitions differ from the initial program.

Exercise 40.3.5. Evaluate the following program:

(define-struct CD (artist title price))

(define in-stock
 (list
 ((make-CD 'R.E.M "New Adventures in Hi-fi" 0)
 (make-CD 'France "simple je" 0)
 (make-CD 'Cranberries "no need to argue" 0))))

(begin
 (set-CD-price! (first in-stock) 12)
 (set-CD-price! (second in-stock) 19)
 (set-CD-price! (third in-stock) 11)
 (+ (CD-price (first in-stock))
 (CD-price (second in-stock))
 (CD-price (third in-stock))))

Show every step.

40.4 Mutable Vectors
Recall from intermezzo 29 that vectors, like structures, are compound values. To extract a value
from a structure, programs use selector operations. To extract a value from a vector, programs
use natural numbers as indices. Hence functions that process vectors defer to auxiliary functions
that process vectors and natural numbers.

Not surprisingly, vectors, like structures, are mutable compound values. The only mutator for
vectors is vector-set!, a function that consumes a vector, an index, and a value. Thus, for
example, the following program evaluates to 'blank:

(define X (vector 'a 'b 'c 'd))

(begin
 (vector-set! X 0 'blank)
 (vector-set! X 1 'blank)
 (vector-set! X 2 'blank)
 (vector-set! X 3 'blank)
 (vector-ref X 2))

The four vector-set! expressions change X so that all of its four fields contain 'blank. The last
expression extracts the value of one of the fields.

In general, an evaluation concerning mutable vectors proceeds just like an evaluation for mutable
structures. In particular, a vector expression introduces a new definition:

 (list (vector 1 2 3))
= (list v)

TE
AM
FL
Y

TEAM FLY PRESENTS

-487-

 ;; add to top-level definitions:
 (define v (vector 1 2 3))

The variable name v is new and unique. Similarly, a vector-set! expression modifies a part of
a vector definition:

 (set-vector! (vector 1 2 3) 0 'a)

= (define v (vector 1 2 3))
 (set-vector! v 0 'a)

= (define v (vector 'a 2 3))
 (void)

Finally, effects to vectors are shared just like effects to structures.

Exercise 40.4.1. Evaluate the following program:

(define X (vector 0 0 0 0))

(define Y X)

(begin
 (vector-set! X 0 2)
 (vector-set! Y 1 (+ (vector-ref Y 0) (vector-ref Y 1)))
 (vector-ref Y 1))

Show all steps.

Exercise 40.4.2. Develop the function clear, which consumes a vector with three slots and sets
them to 0.

Exercise 40.4.3. Develop the function swap, which consumes a vector with two slots and swaps
the values in these slots.

Exercise 40.4.4. Extend the board representation of exercise 29.4.14 with the function

;; board-flip! : board N N -> boolean
;; to negate the board position with indices i, j on a-board
(define (board-flip! a-board i j) ...)

Don't forget to develop examples and tests for the function.

40.5 Changing Variables, Changing Structures
Structure mutators and set!-expressions are related. Indeed, in section 40.2 we explained the
effects of the first with the second. Still, there are also important differences that a programmer
must understand. Let's start with the syntax:

 (set! <variable> <expression>) set-<structure-tag>-<field>!
A set!-expression is an expression that consists of two pieces: a variable and an expression. The
variable is fixed; it is never evaluated. The expression is evaluated. In contrast, a structure
mutator is a function. As such, it is a value that the program can apply (to two arguments), pass

TE
AM
FL
Y

TEAM FLY PRESENTS

-488-

to other functions, store inside of structures, and so on. Structure mutators are created in response
to structure definitions, just as structure constructors and selectors.

Next we must consider lexical scope issues (see section 18.3). A set!-expression contains a
variable. For the set!-expression to be valid, this variable must be bound. The connection
between a set!-expression's variable and its binding occurrence is static and can never be
changed.

The scope of a mutator is that of its corresponding define-struct. Thus, in the following
program

(define-struct aaa (xx yy))

(define UNIQUE
 (local ((define-struct aaa (xx yy)))
 (make-aaa 'my 'world)))

...

the underlined occurrence of define-struct has a limited lexical scope, and its scope is a hole
in the scope of the top-level define-struct. A result of this scoping is that the mutator for the
top-level define-struct cannot mutate the structure called UNIQUE. The two mutators are
unrelated functions that coincidentally have the same name; the rules for the evaluation of local-
expression dictate that we rename one consistently.

To highlight the differences in syntax and lexical scope, take a look at the following two,
apparently similar programs:

(define the-point (make-posn 3
4))

(set! x 17)

(define the-point (make-posn 3
4))

(set-posn-x! the-point 17)

The one on the left is illegal, because the x in the set!-expression is an unbound variable. The
program on the right is perfectly legal; it refers to the field x of a posn structure.

The largest difference between set!-expressions and mutators concerns their semantics. Let's
study two examples to understand the differences once and for all. The first illustrates how
similar looking expressions evaluate in a radically different manner:

(define the-point (make-posn 3
4))

(set! the-point 17)

(define the-point (make-posn 3
4))

(set-posn-x! the-point 17)

The program on the left consists of a definition for the-point and an assignment to the-point;
the one on the right starts with the same definition for the-point followed by an application of
the mutator. The evaluation of both affects the variable definition but in different ways:

(define the-point 17)

(void)

(define the-point (make-posn 17 4))

(void)

On the left, the-point now stands for a number; on the right, it is still a posn structure but with
a new value in the x-field. More generally, a set!-expression changes the value on the right-hand

TE
AM
FL
Y

TEAM FLY PRESENTS

-489-

side of a definition, and the application of a mutator changes the value of just one field in a
structure that occurs on the right-hand side of a definition.

The second example shows how an application of mutator evaluates the arguments, which is not
the case for set!-expressions:

(define the-point (make-posn 3
4))
(define an-other (make-posn 12
5))

(set! (cond
 [(zero? (point-x the-point))
 the-point]
 [else
 an-other])
 1)

(define the-point (make-posn 3
4))
(define an-other (make-posn 12
5))

(set-posn-x!
 (cond
 [(zero? (point-x the-point))
 the-point]
 [else
 an-other])
 1)

Whereas the program on the left is illegal, because a set!-expression must contain a fixed
variable in the second position, the one on the right is legitimate. The evaluation of the program
on the right changes the x-field in an-other to 1.

Finally, mutators are values, which means a function can consume a mutator and apply it:

;; set-to-2 : S-mutator S-structure -> void
;; to change a field in s to 2 via mutator
(define (set-to-2 mutator s)
 (mutator s 2))

(define-struct bbb (zz ww))

(local ((define s (make-posn 3 4))
 (define t (make-bbb 'a 'b)))
 (begin
 (set-to-2 set-posn-x! s)
 (set-to-2 set-bbb-ww! t)))

The function set-to-2 consumes a mutator and a structure that the mutator can modify. The
program uses it to change the x-field in a posn structure and the ww-field in a bbb structure. In
contrast, if we were to apply a function to a set!-expression, it would receive (void) and nothing
else.

Mixing set! and Structure Mutators: When a program uses both set!-expressions and structure
mutators, our evaluation rules fail for some cases. Specifically, they don't explain sharing
properly. Consider this program fragment:

(define the-point (make-posn 3 4))

(define another-point the-point)

(begin
 (set! the-point 17)
 (= (posn-x another-point) 3))

TE
AM
FL
Y

TEAM FLY PRESENTS

-490-

According to our rules, the two definitions refer to the same structure. The second one does so by
indirection. The set!-expression changes what the-point stands for, but it shouldn't affect the
second definition. In particular, the program should produce true. If we were to use our rules in
a naive manner, we would not be able to validate this point.

A proper explanation of structures must introduce a new definition for every application of a
structure constructor, including those on the right-hand side of definitions in the original program.
We will place the new definitions at the beginning of the sequence of definitions. Furthermore,
the variable in the new definition must be unique so that it cannot occur in a set!-expression. We
will use variables such as struct-1, struct-2, and so on, and agree to use them for this purpose
only. These names, and only these names, are values.

Using the minor changes to our rules, we can evaluate the program fragment properly:

 (define the-point (make-posn 3 4))

 (define another-point the-point)

 (begin
 (set! the-point 17)
 (= (posn-x another-point) 3))
= (define struct-1 (make-posn 3 4))
 (define the-point struct-1)
 ;; evaluate from here:
 (define another-point the-point)
 (begin
 (set! the-point 17)
 (= (posn-x another-point) 3))

= (define struct-1 (make-posn 3 4))
 (define the-point struct-1)
 (define another-point struct-1)
 ;; evaluate from here:
 (begin
 (set! the-point 17)
 (= (posn-x another-point) 3))

At this point, the structure is created, and both of the original variables refer to the new structure.
The rest of the evaluation changes the definition of the-point but not another-point:

 ...
= (define struct-1 (make-posn 3 4))
 (define the-point 17)
 (define another-point struct-1)
 ;; evaluate from here:
 (begin
 (void)
 (= (posn-x another-point) 3))

= (define struct-1 (make-posn 3 4))
 (define the-point 17)
 (define another-point struct-1)
 ;; evaluate from here:
 (= (posn-x another-point) 3)

= (define struct-1 (make-posn 3 4))
 (define the-point 17)

TE
AM
FL
Y

TEAM FLY PRESENTS

-491-

 (define another-point struct-1)
 ;; evaluate from here:
 (= 3 3)

The final result is true, as expected.

The modified evaluation rules are a bit more cumbersome than the old ones. But they fully
explain the difference between the effects of set!-expressions and those of structure mutation,
which, for programming in modern languages, is an essential concept.

75 For simplicity, we use this simple approximation. When a program also uses set!-expression,
we must rely on the refinement of intermezzo 8.3 to understand its behavior completely. Also see
the note on this topic on page 50.

TE
AM
FL
Y

TEAM FLY PRESENTS

-492-

Section 41

Designing Functions that Change Structures
Sections 39 and 40 gradually introduced the idea of mutable structures. In the first of the two
sections we studied the idea of changing a locally defined variable through a function. In the
second one, we discussed how structures could be modified, too.

Now we need to learn when and how to use this new power. The first subsection concerns the
question of why a program should modify a structure. The second reviews how the existing
design recipes apply when we wish to use mutators. The third one discusses some difficult cases.
The last one is dedicated to the differences between set! and structure mutators.

41.1 Why Mutate Structures
Whenever we apply a structure constructor, we create a new structure. On some occasions, this is
truly what we want. Consider a function that consumes a list of personnel records and produces a
list of phone book entries. The personnel records may contain information about a person's
address, including the phone number, date of birth, marital status, closest relatives, and salary
level. The entry for the phone book should contain the name and the phone number and nothing
else. This kind of program should definitely generate a new structure from each structure in the
given list.

On other occasions, though, creating a new structure doesn't correspond to our intuition. Suppose
we wish to give someone a raise. The only way of accomplishing this at the moment is to create
a new personnel record that contains all the old information and the new salary information. Or,
suppose someone has moved and received a new phone number, and we wish to update the
phone book on our PDA. Just like the program that changes a person's salary level, the program
that updates the phone book would create a new phone book entry. In reality, however, we would
not create a new personnel record or a new entry in the phone book. We would instead correct
the existing personnel record and the existing entry in our phone book. A program should be able
to perform the same kind of corrective action and, with mutators, we can indeed develop such
programs.

Roughly speaking, the examples suggest two cases. First, if a structure corresponds to a physical
object and the computation corresponds to a corrective action, the program may mutate the
structure. Second, if a structure does not correspond to a physical object or if the computation
creates a new kind of value from existing information, the program should create a new structure.
These two rules are not clear-cut. We will often encounter situations where both solutions are
feasible. In that case, we must consider an ease-of-programming argument. If one of the two
solutions is easier to design -- often the creation of a new structure, choose it. If the decision
leads to a performance bottleneck -- and only then, restructure it.

41.2 Structural Design Recipes and Mutation, Part 1

TE
AM
FL
Y

TEAM FLY PRESENTS

-493-

Surprisingly, programming with mutators does not require any new design recipes -- as long as
the mutated fields always contain atomic values. Our receipes work perfectly fine. While the
design of non-mutating programs requires the combination of values, programming with
mutators requires the combination of effects. Hence the key is to add a well-formulated effect
statement to a function's contract and to make up examples that illustrate the effects. We
practiced both of these activities for set! expressions already in section 36. In this section we
learn to adapt the design recipes and effect statements to structural mutations. To do that, we
consider a short series of examples. Each illustrates how an applicable design recipe helps with
the design of structure-modifying or vector-modifying functions.

The first example concerns the mutation of plain structures. Suppose we are given a structure and
a data definition for personnel records:

(define-struct personnel (name address salary))
;; A personnel record (PR) is a structure:
;; (make-personnel n a s)
;; where n is a symbol, a is a string, and s is a number.

A function that consumes such a record is based on the following template:

(define (fun-for-personnel pr)
 ... (personnel-name pr) ...
 ... (personnel-address pr) ...
 ... (personnel-salary pr) ...)

Consider a function for increasing the salary field:

;; increase-salary : PR number -> void
;; effect: to modify the salary field of a-pr by adding a-raise
(define (increase-salary a-pr a-raise) ...)

The contract specifies that the function consumes a PR and a number. The purpose statement is
an effect statement, which explains how the argument of increase-salary is modified.

Developing examples for increase-salary requires the techniques of section 36. Specifcially,
we must be able to compare the before and after state of some PR structure:

(local ((define pr1 (make-personnel 'Bob 'Pittsburgh 70000)))
 (begin
 (increase-salary pr1 10000)
 (= (personnel-salary pr1) 80000)))

The result of the expression is true if, and only if, increase-salary works properly for this
example.

We can now use the template and the example to define the function:

;; increase-salary : PR number -> void
;; effect: to modify the salary field of a-pr by adding in a-raise
(define (increase-salary a-pr a-raise)
 (set-personnel-salary! a-pr (+ (personnel-salary a-pr) a-raise)))

TE
AM
FL
Y

TEAM FLY PRESENTS

-494-

As usual, the full definition uses only one of several subexpressions from the template, but the
template reminds us of what information we can use: the arguments and their pieces; and what
parts we can modify: the fields for which we have selectors.

Exercise 41.2.1. Make up examples for increase-salary and test the function. Formulate the
tests as boolean-valued expressions.

Exercise 41.2.2. Adapt increase-salary such that it accepts only values for a-raise between
3% and 7% of the salary. It calls error otherwise.

Exercise 41.2.3. Develop increase-percentage. The function consumes a PR and a
percentage between 3% and 7%. It increases the value in the salary field of the PR by the lesser
of the percentage increase or 7000.

Exercise 41.2.4. Develop the function new-date. It consumes a cheerleader record and adds
a date to the beginning of a list. Here are the relevant definitions:

(define-struct cheerleader (name dates))
;; A cheerleader is a structure:
;; (make-cheerleader n d)
;; where n is a symbol and d is a list of symbols.

For example, (make-cheerleader 'JoAnn '(Carl Bob Dude Adam Emil)) is a valid
cheerleader record. Develop an example that shows what it means to add 'Frank as a date.

Exercise 41.2.5. Recall the structure definitions for squares:

(define-struct square (nw length))

The matching data definition specifies that the nw field is always a posn structure and that
length is a number:

A square is a structure:

 (make-square p s)
where p is a posn and s is a number.

Develop the function move-square!. It consumes a square, called sq, and a number, called
delta. It modifies sq by adding delta to its x coordinate.

Look up the structure and data definition for circles and develop the function move-circle,
which is analogous to move-square.

The second example recalls the design recipe for functions that work on unions of classes. One
of our first examples of this kind concerned the class of geometric shapes. Here is the relevant
data definition:

A shape is either

1. a circle, or

TE
AM
FL
Y

TEAM FLY PRESENTS

-495-

2. a square.

See exercise 41.2.5 or part I for the definitions of circle and square.

Following our recipe, a template for shape-processing functions consists of a two-clause cond-
expression:

(define (fun-for-shape a-shape)
 (cond
 [(circle? a-shape) ... (fun-for-circle a-shape) ...]
 [(square? a-shape) ... (fun-for-square a-shape) ...]))

Each cond-clause refers to a function with the same purpose for the matching kind of shape.

So, suppose we wish to move a shape in the x direction by a fixed number of pixels. In part I, we
created a new structure for this purpose. Now we can use the mutators for circle and square
structures instead -- that is, the function can have an effect:

;; move-shape! : shape number -> void
;; effect: to move a-shape in the x direction by delta pixels
(define (move-shape! a-shape)
 (cond
 [(circle? a-shape) (move-circle a-shape delta)]
 [(square? a-shape) (move-square a-shape delta)]))

The functions move-circle and move-square are the subject of execise 41.2.5 because they
consume and affect plain structures.

Exercise 41.2.6. Make up examples for move-shape! and test the function. Formulate the tests
as boolean-valued expressions!

Exercise 41.2.7. The following structure definitions are to represent items that a music store
sells:

(define-struct CD (price title artist))
(define-struct record (price antique title artist))
(define-struct DVD (price title artist to-appear))
(define-struct tape (price title artist))

Provide a data definition for the class of music items, which comprises cds, records, dvds, and
tapes. The price must be a number in each case.

Develop the program inflate!, which consumes a music-item and a percentage. Its effect is to
increase the price in the given structure according to the percentage.

Exercise 41.2.8. Develop a program that keeps track of the feeding of zoo animals. Our zoo has
three kinds of animals: elephants, monkeys, and spiders. Each animal has a name and two
feeding times per day: morning and evening. Initially a structure that represents an animal
(structure) contains false in the fields for feeding times. The program feed-animal should
consume a structure that represents an animal and the name of a feeding time. It should switch
the corresponding field in the animal structure to true.

TE
AM
FL
Y

TEAM FLY PRESENTS

-496-

The next two examples are about mutations when the underlying data definitions involve self-
references. Self-references are needed if we wish to deal with data that has no size limit. Lists
were the first class of such data we encountered and natural numbers the second one.

Let's first take a look at mutation of lists of structures, using the running data example of this part:
the address book. An address book is a list of entries; for completeness, here are the structure and
data definitions:

(define-struct entry (name number))

An entry is a structure:

 (make-entry n p)
where n is a symbol and p is a number.

An address-book is

1. the empty list, empty, or
2. (cons an-e an-ab) where an-e is an entry and an-ab is an address book.

Only the second one is self-referential, so we focus on the template for it:

;; fun-for-ab : address-book -> XYZ
(define (fun-for-ab ab)
 (cond
 [(empty? ab) ...]
 [else ... (fun-for-entry (first ab)) ... (fun-for-ab (rest ab)) ...]))

If we needed an auxiliary function for processing an entry, we might also wish to write out the
template for structure-processing functions.

So suppose we want a function that updates an existing entry. The function consumes an
address-book, a name, and a phone number. The first entry that contains the name is modified
to contain the new phone number:

;; change-number! : symbol number address-book -> void
;; effect: to modify the first entry for name in ab so that its
;; number field is phone
(define (change-number! name phone ab) ...)

It is justified to develop this function with mutators because just as in reality, most of the address
book stays the same while one entry is changed.

Here is an example:

(define ab
 (list
 (make-entry 'Adam 1)
 (make-entry 'Chris 3)
 (make-entry 'Eve 2)))

(begin
 (change-number! 'Chris 17 ab)

TE
AM
FL
Y

TEAM FLY PRESENTS

-497-

 (= (entry-number (second ab)) 17))

The definition introduces ab, an address-book with three items. The begin-expression first
changes ab by associating 'Chris with 17; then it compares the phone number of the second
item on ab with 17. If change-number! functions properly, the result of the begin-expression is
true. An even better test would ensure that nothing else in ab changes.

The next step is to develop the function definition, using the template and the examples. Let's
consider each case separately:

1. If ab is empty, name doesn't occur in it. Unfortunately, the purpose statement doesn't
specify what the function should compute in this case, and there is indeed nothing
sensible the function can do. To be safe, we use error to signal that no matching entry
was found.

2. If ab contains a first entry, it might or might not contain name. To find out, the function
must distinguish the two cases with a cond-expression:
3. (cond
4. [(symbol=? (entry-name (first ab)) name) ...]
5. [else ...])

In the first subcase, the function must modify the structure. In the second, name can occur
only in (rest ab), which means the function must mutate some entry in the rest of the
list. Fortunately, the natural recursion accomplishes just that.

Putting everything together, we get the following definition:

(define (change-number! name phone ab)
 (cond
 [(empty? ab) (error 'change-number! "name not in list")]
 [else (cond
 [(symbol=? (entry-name (first ab)) name)
 (set-entry-number! (first ab) phone)]
 [else
 (change-number! name phone (rest ab))])]))

The only unique aspect of this function is that it uses a structure mutator in one of the cases.
Otherwise it has the familiar recursive shape: a cond with two clauses and a natural recursion. It
is especially instructive to compare the function with contains-doll? from section 9.3 and
contains? from exercise 9.3.3.

Exercise 41.2.9. Define test-change-number. The function consumes a name, a phone
number, and an address book. It uses change-number! to update the address book, and then
ensures that it was changed properly. If so, it produces true; if not, it produces an error message.
Use this new function to test change-number! with at least three different examples.

Exercise 41.2.10. Develop move-squares. It consumes a list of squares, as defined above, and
a number delta. The function modifies each on the list by adding delta to the x-component of
its position.

Exercise 41.2.11. Develop the function all-fed. It consumes a list of animals, as defined in
exercise 41.2.8, and modifies them so that their field for morning feedings is switched to true.

TE
AM
FL
Y

TEAM FLY PRESENTS

-498-

Exercise 41.2.12. Develop the function for-all, which abstracts move-squares and all-fed
from exercises 41.2.10 and 41.2.11. It consumes two values: a function that consumes structures
and produces (void); and a list of structures. Its result is (void).

Exercise 41.2.13. Develop the function ft-descendants. It consumes a descendant family tree
(see section 15.1) based on the following structure definition:

(define-struct parent (children name date eyes no-descendants))

The last field in a parent structure is originally 0. The function ft-descendants traverses the
tree and modifies these slots so that they contain the total number of descendants of the
corresponding family member. Its result is the number of total descendants of the given tree.

Natural numbers make up another class of values that requires a self-referential description.
Recursion on natural numbers per se isn't useful in conjunction with mutation, but recursion on
natural numbers as indices into vectors is useful when a problem's data representation involves
vectors.

Let's start with a snippet of an elevator control program. An elevator control program must know
at which floor people have pressed the call buttons. We assume that the elevator hardware can
mutate some status vector of booleans. That is, we assume that the program contains a vector,
call it call-status, and that a field in call-status is true if someone has pushed the call
button at the corresponding floor.

One important elevator operation is to reset all the buttons. For example, an operator may have
to restart the elevator after it has been out of service for a while. We start the development of
reset by restating the known facts in a Scheme outline:76

;; call-status : (vectorof boolean)
;; to keep track of the floors from which calls have been issued
(define call-status (vector true true true false true true true false))

;; reset : -> void
;; effect: to set all fields in call-status to false
(define (reset) ...)

The first definition specifies call-status as a state variable, but of course we use each slot in
the vector as a state value, not the entire variable. The second part consists of three pieces: a
contract, an effect statement, and a header for the function reset, which implements the
informally specified service.

While it is possible to implement the service as

(define (reset)
 (set! call-status
 (build-vector (vector-length call-status) (lambda (i) false))))

this trivial solution is clearly not what we want because it creates a new vector. Instead, we want
a function that modifies each field of the existing vector. Following the suggestions of
intermezzo 5, we develop an auxiliary function with the following template:

;; reset-aux : (vectorof boolean) N -> void

TE
AM
FL
Y

TEAM FLY PRESENTS

-499-

;; effect: to set the fields of v with index in [0, i) to false
(define (reset-aux v i)
 (cond
 [(zero? i) ...]
 [else ... (reset-aux v (sub1 i)) ...]))

That is, the auxiliary function consumes not only the vector but also an interval bound. The
shape of the template is based on the data definition of the latter.

The effect statement suggests the following examples:

1. (reset-aux call-status 0) leaves call-status unchanged, because the purpose
statement says to change all indices in [0,0) and there are none;

2. (reset-aux 1) changes call-status so that (vector-ref call-status 0) is false,
because 0 is the only natural number in [0, 1);

3. (reset-aux call-status (vector-length call-status)) sets all fields of call-
status to false.

The last example implies that we can define reset with (reset-aux call-status (vector-
length call-status)).

Equipped with examples, we can turn our attention to the definition. The key is to remember that
the additional argument must be interpreted as an index into the vector. Keeping the example and
the guideline in mind, let's look at each of the two cases separately:

1. If (zero? i) holds, the function has no effect and produces (void).
2. Otherwise i is positive. In that case, the natural recursion sets all fields in call-status

with an index in [0,(sub1 i)) to false. Furthermore, to complete the task, the function
must set the vector field with index (sub1 i) to false. The combination of the two
effects is achieved with a begin-expression that sequences the natural recursion and the
additional vector-set!.

Figure 118 puts everything together. The second clause in the definition of reset-aux changes
the vector at index (sub1 i) and then uses the natural recursion. Its result is the result of the
begin-expression.

;; call-status : (vectorof boolean)
;; to keep track of the floors from which calls have been issued
(define call-status (vector true true true false true true true false))

;; reset : -> void
;; effect: to set all fields in call-status to false
(define (reset)
 (reset-aux call-status (vector-length call-status)))

;; reset-aux : (vectorof boolean) N -> void
;; effect: to set the fields of v with index in [0, i) to false
(define (reset-aux v i)
 (cond
 [(zero? i) (void)]
 [else (begin
 (vector-set! v (sub1 i) false)
 (reset-aux v (sub1 i)))]))

TE
AM
FL
Y

TEAM FLY PRESENTS

-500-

Figure 118: Resetting call-buttons for an elevator

Exercise 41.2.14. Use the examples to develop tests for reset-aux. Formulate the tests as
boolean-valued expressions.

Exercise 41.2.15. Develop the following variant of reset:

;; reset-interval : N N -> void
;; effect: to set all fields in [from, to] to false
;; assume: (<= from to) holds
(define (reset-interval from to) ...)

Use reset-interval to define reset.

Exercise 41.2.16. Suppose we represent the position of an object with a vector and the velocity
of an object with a second vector. Develop the function move!, which consumes a position vector
and an equally long velocity vector. It modifies the position vector by adding in the numbers of
the speed vector, field by field:

;; move! : (vectorof number) (vectorof number) -> void
;; effect: to add the fields of v to the corresponding fields of pos
;;
;; assumption: pos and v have equal length
(define (move! pos v) ...)

Justify why the use of a vector-modifying function is appropriate to model the movement of an
object.

Exercise 41.2.17. Develop the function vec-for-all, which abstracts reset-aux and the
auxiliary vector-processing function for move! from exercise 41.2.16. It consumes two values: a
function f and a vector vec. The function f consumes indices (N) and vector items. The result of
vec-for-all is (void); its effect is to apply f to each index and corresponding value in vec:

;; vec-for-all : (N X -> void) (vectorof X) -> void
;; effect: to apply f to all indices and values in vec
;; equation:
;; (vec-for-all f (vector v-0 ... v-N))
;; =
;; (begin (f N v-N) ... (f 0 v-0) (void))
(define (vec-for-all f vec) ...)

Use vec-for-all to define vector*!, which consumes a number s and a vector of numbers and
modifies the vector by multiplying each field's value with s.

The last example covers the common situation when we wish to compute several numeric values
at once and place them in a vector. In section 37 we saw that the use of effects is on occasion
useful to communicate several results. In the same manner, it is sometimes best to create a vector
and to modify it within the same function. Consider the problem of counting how many times
each vowel occurs in a list of letters:

;; count-vowels : (listof letter)

TE
AM
FL
Y

TEAM FLY PRESENTS

-501-

;; -> (vector number number number number number)
;; where a letter is a symbol in 'a ... 'z
;; to determine how many times the five vowels occur in chars
;; the resulting vector lists the counts in the lexicographic order
(define (count-vowels chars) ...)

The choice of vector as a result is appropriate because the function must combine five values into
one and each of the values is equally interesting.

Using the purpose statement, we can also come up with examples:

 (count-vowels '(a b c d e f g h i))
= (vector 1 1 1 0 0)

 (count-vowels '(a a i u u))
= (vector 2 0 1 0 2)

Given that the input is a list, the natural choice for the template is that for a list-processing
function:

(define (count-vowels chars)
 (cond
 [(empty? chars) ...]
 [else ... (first chars) ... (count-vowels (rest chars)) ...]))
;; count-vowels : (listof letter)
;; -> (vector number number number number number)
;; where a letter is a symbol in 'a ... 'z
;; to determine how many times the five vowels occur in chars
;; the resulting vector lists the counts in the lexicographic order
(define (count-vowels chars)
 (cond
 [(empty? chars) (vector 0 0 0 0 0)]
 [else
 (local ((define count-rest (count-vowels (rest chars))))
 (begin
 (count-a-vowel (first chars) count-rest)
 count-rest))]))

;; count-a-vowel : letter (vector number number number number number) ->
void
;; effect: to modify counts at the appropriate place if l is a vowel,
;; none otherwise
(define (count-a-vowel l counts)
 ...)

Figure 119: Counting vowels

To fill the gaps in the template, we consider each of the two clauses:

1. If (empty? chars) is true, the result is a vector of five 0's. After all, there are no
vowels in an empty list.

2. If chars isn't empty, the natural recursion counts how many vowels and which ones
occur in (rest chars). To get the correct result, we also have to check whether (first
chars) is a vowel, and depending on the outcome, increase one of the vector fields.
Since this kind of task is a separate, repeated task, we leave it to an auxiliary function:

TE
AM
FL
Y

TEAM FLY PRESENTS

-502-

3. ;; count-a-vowel : letter
4. ;; (vector number number number number number) -> void
5. ;; effect: to modify counts at the appropriate place if l is a

vowel,
6. (define (count-a-vowel l counts)
7. ...)

In other words, the second clause first counts the vowels in the rest of the list. This
computation is guaranteed to yield a vector according to the purpose statement. Let's call
this vector counts. Then, it uses count-a-vowel to increase the appropriate field in
counts, if any. The result is counts, after the first letter on the list has been counted.

Figure 119 contains the complete definition of the main function. Defining the auxiliary function
follows the recipe for non-recursive structure mutations.

Exercise 41.2.18. Develop the function count-a-vowel. Then test the complete count-vowels
program.

Exercise 41.2.19. At the end of intermezzo 5, we could have defined count-vowels as shown
in figure 120. This version does not use vector-set!, but constructs the vector directly using
build-vector.

(define (count-vowels-bv chars)
 (local ((define (count-vowel x chars)
 (cond
 [(empty? chars) 0]
 [else (cond
 [(symbol=? x (first chars))
 (+ (count-vowel x (rest chars)) 1)]
 [else (count-vowel x (rest chars))])])))
 (build-vector 5 (lambda (i)
 (cond
 [(= i 0) (count-vowel 'a chars)]
 [(= i 1) (count-vowel 'e chars)]
 [(= i 2) (count-vowel 'i chars)]
 [(= i 3) (count-vowel 'o chars)]
 [(= i 4) (count-vowel 'u chars)])))))

Figure 120: Another way of counting vowels

Measure the performance difference between count-vowels-bv and count-vowels. Hint:
Define a function that generates a large list of random letters (with, say, 5,000 or 10,000 items).

Explain the performance difference between count-vowels-bv and count-vowels. Does the
explanation reflect the measured difference? What does this suggest concerning the vector-set!
operation?

Exercise 41.2.20. Develop histogram. The function consumes a list of grades between 0 and
100; it produces a vector of size 101 where each slot contains the number of grades at that level.

Exercise 41.2.21. Develop count-children. The function consumes a descendant family tree,
which is a family tree that leads from a family member to the descendants. It produces a vector

TE
AM
FL
Y

TEAM FLY PRESENTS

-503-

with six fields. The first five slots contain the number of family members that have that many
children; the sixth field contains the number of family members that have five or more children.

41.3 Structural Design Recipes and Mutation, Part 2
In the preceding sections, we studied structure mutation for fields that contain atomic data. We
know, however, that structures can contain structures. Starting in section 14.1, we even
encountered self-referential data definitions involving structures in structures. On occasion,
processing such classes of data may also require mutations of structure fields that contain
structures. In this section, we work through one such example.

Figure 121: Playing with cards

Suppose we wish to simulate a card game as a program. Each card has two important
characteristics: its suit and its rank. A player's collection of cards is called a hand. For now we
also assume that every player has at least one card, that is, a hand is never empty.

Figure 121 contains a screen shot of DrScheme with structure and data definitions for
manipulating cards and hands. The program fragment does not introduce separate classes of

TE
AM
FL
Y

TEAM FLY PRESENTS

-504-

cards and hands, but a single structure and a single data definition for hands. A hand consists of a
hand structure, which contains a rank, a suit, and a next field. The data definition shows that
the next field may contain two kinds of values: empty, which means that there are no other cards,
and a hand structure, which contains the remainder of the cards. From a global perspective, a
hand forms a chain of cards; only the last one contains empty in the next field.77

At first, a player has no cards. Picking up the first card creates a hand. Others cards are then
inserted into the existing hand as needed. This calls for two functions: one for creating a hand
and another one for inserting a card into a hand. Because a hand exists only once and
corresponds to a physical object, it is natural to think of the second function as one that modifies
an existing value rather than building a new one. For now, we accept this premise and explore its
consequences.

Creating a hand is a simple act and easy to implement as a function:

;; create-hand : rank suit -> hand
;; to create a single-card hand from r and s
(define (create-hand r s)
 (make-hand r s empty))

The function consumes the properties of a card; it creates a hand with one card and no others.

(define hand0 (create-hand 13 spades))

rank suit next

13 empty

(add-at-end! diamonds 1 hand0)

rank suit next

13

rank suit next

13 empty

Figure 122: Building a hand

Adding a card to the end of a hand is a more difficult task. To simplify our life a bit, let's say that
a player always adds new cards to the end of the hand. In this case we must process an arbitrarily
large value, which means we need a recursive function. Here are the contract, effect statement,
and header:

;; add-at-end! : rank suit hand -> void
;; effect : to add a card with r as rank and s as suit at the end
(define (add-at-end! rank suit a-hand) ...)

TE
AM
FL
Y

TEAM FLY PRESENTS

-505-

These specifications say that the function has the invisible value as the result and that it
communicates with the rest of the program exclusively through its effects.

Let's start with examples:

(define hand0 (create-hand 13 SPADES))

If we were to evaluate the following expression

(add-at-end! 1 DIAMONDS hand0)

in the context of this definition, hand0 becomes a hand with two cards: a spades-13 followed by
a diamonds-1. Figure 122 depicts the change of hand0; the top half displays the initial state of
hand0, the lower half displays the state after add-at-end! has added a card. If we furthermore
evaluate

(add-at-end! 2 CLUBS hand0))

in this context, hand0 becomes a hand with three cards. The last one is a clubs-2. In terms of an
evaluation, the definition of hand0 should change to

(define hand0
 (make-hand 13 SPADES
 (make-hand 1 DIAMONDS
 (make-hand 2 CLUBS empty))))

after both additions have been carried out.

Given that the rank and suit argument to add-at-end! are atomic values, the template must be
based on the data definition for hands:

(define (add-at-end! rank suit a-hand)
 (cond
 [(empty? (hand-next a-hand))
 ... (hand-rank a-hand) ... (hand-suit a-hand) ...]
 [else ... (hand-rank a-hand) ... (hand-suit a-hand) ...
 ... (add-at-end! rank suit (hand-next a-hand)) ...]))

The template consists of two clauses, which check the content of the next field of a-hand. It is
recursive in the second clause, because the data definition for hands is self-referential in that
clause. In short, the template is completely conventional.

The next step is to consider how the function should affect a-hand in each clause:

1. In the first case, a-hand's next field is empty. In that case, we can modify the next field
so that it contains the new card:
2. (set-next-hand! a-hand (make-hand rank suit empty))

The newly created hand structure is now the one that contains empty in its next field, that
is, it is the new end of the a-hand value.

TE
AM
FL
Y

TEAM FLY PRESENTS

-506-

3. In the second case, the natural recursion adds a new card to the end of a-hand. Indeed,
because the given a-hand isn't the last one in the chain, the natural recursion does
everything that needs to be done.

Here is the complete definition of add-at-end!:

;; add-at-end! : rank suit hand -> void
;; effect: to add a card with v as rank and s as suit at the end of a-
hand
(define (add-at-end! rank suit a-hand)
 (cond
 [(empty? (hand-next a-hand))
 (set-hand-next! a-hand (make-hand rank suit empty))]
 [else (add-at-end! rank suit (hand-next a-hand))]))

It closely resembles the list-processing functions we designed in part II. This should come as no
surprise, because add-at-end! processes values from a class that closely resembles the data
definition of lists and the design recipes are formulated in a general manner.

Exercise 41.3.1. Evaluate the following program by hand:

(define hand0 (create-hand 13 SPADES))

(begin
 (add-at-end! 1 DIAMONDS hand0)
 (add-at-end! 2 CLUBS hand0)
 hand0)

Test the function with this example.

Make up two other examples. Recall that each example consists of an initial hand, cards to be
added, and a prediction of what the result should be. Then test the function with the additional
examples. Formulate the tests as boolean-valued expressions.

Exercise 41.3.2. Develop the function last-card. It consumes a hand and produces a list with
the last card's rank and suit. How can we use this function to test the add-at-end! function?

Exercise 41.3.3. Suppose a family tree consists of structures that record the name, social
security number, and parents of a person. Describing such a tree requires a structure definition:

(define-struct child (name social father mother))

and a data definition:

A family-tree-node (short: ftn) is either

1. false, or
2. (make-child name socsec f m) where name is a symbol, socsec is a number, and f

and m are ftns.

For now, we assume that everyone has a social security number and that social security numbers
are unique.

TE
AM
FL
Y

TEAM FLY PRESENTS

-507-

Following our convention from part III, false represents a lack of knowledge about someone's
father or mother. As we find out more information, though, we can add nodes to our family tree.

Develop the function add-ftn!. It consumes a family tree a-ft, a social security number ssc, a
symbol anc, and a child structure. Its effect is to modify that structure in a-ft whose social
security number is ssc. If anc is 'father, it modifies the father field to contain the given
child structure; otherwise, anc is the symbol 'mother and add-ftn! mutates the mother field.
If the respective fields already contain a child structure, add-ftn! signals an error.

Using Functions as Arguments: Instead of accepting 'father and 'mother for anc, the
function could also accept one of the two structure mutators: set-child-father! or set-
child-mother!. Modify add-ftn! accordingly.

Exercise 41.3.4. Develop an implementation of a hand with create-hand and add-at-end!
services using encapsulated state variables and function definitions. Use set! expression but no
structure mutators.

Not all mutator functions are as easily designed as the add-at-end! function. Indeed, in some
cases things don't even work out at all. Let's consider two additional services. The first one
removes the last card in a hand. Its contract and effect statement are variations on those for add-
at-end!:

;; remove-last! : hand -> void
;; effect : to remove the last card in a-hand, unless it is the only one
(define (remove-last! a-hand) ...)

The effect is restricted because a hand must always contain one card.

We can also adapt the example for add-at-end! without difficulty:

(define hand0 (create-hand 13 SPADES))

(begin
 (add-at-end! 1 DIAMONDS hand0)
 (add-at-end! 2 CLUBS hand0)
 (remove-last! hand0)
 (remove-last! hand0))

The resulting value is void. The effect of the computation is to return hand0 in its initial state.

The template for remove-last! is the same as that for add-at-end! because both functions
process the same class of values. So the next step is to analyze what effects the function must
compute for each case in the template:

1. Recall that the first clause represents the case when a-hand's next field is empty. In
contrast to the situation with add-at-end!, it is not clear what we need to do now.
According to the effect statement, we must do one of two things:

a. If a-hand is the last item in a chain that consists of more than one hand structure,
it must be removed.

b. If a-hand is the only structure that remove-last! consumed, the function should
have no effect.

TE
AM
FL
Y

TEAM FLY PRESENTS

-508-

But we can't know whether a-hand is the last item in a long chain of hands or the only
one. We have lost knowledge that was available at the beginning of the evaluation!

The analysis of the first clause suggests the use of an accumulator. We tried the natural route and
discovered that knowledge is lost during an evaluation, which is the criterion for considering a
switch to an accumulator-based design recipe.

Once we have recognized the need for an accumulator-style function, we encapsulate the
template in a local-expression and add an accumulator argument to its definition and applications:

(define (remove-last! a-hand0)
 (local (;; accumulator ...
 (define (rem! a-hand accumulator)
 (cond
 [(empty? (hand-next a-hand))
 ... (hand-rank a-hand) ... (hand-suit a-hand) ...]
 [else ... (hand-rank a-hand) ... (hand-suit a-hand) ...
 ... (rem! (hand-next a-hand) ... accumulator ...) ...])))
 ... (rem! a-hand0 ...) ...))

The questions to ask now are what the accumulator represents and what its first value is.

The best way to understand the nature of accumulators is to study why the plain structural design
of remove-last! failed. Hence we return to the analysis of our first clause in the template.
When rem! reaches that clause, two things should have been accomplished. First, rem! should
know that a-hand is not the only hand structure in a-hand0. Second, rem! must be enabled to
remove a-hand from a-hand0. For the first goal, rem!'s first application should be in a context
where we know that a-hand0 contains more than one card. This argument suggests a cond-
expression for the body of the local-expression:

(cond
 [(empty? (hand-next a-hand)) (void)]
 [else (rem! a-hand0 ...)])

For the second goal, rem!'s accumulator argument should always represent the hand structure
that precedes a-hand in a-hand0. Then rem! can remove a-hand by modifying the predecessor's
next field:

(set-hand-next! accumulator empty)

Now the pieces of the design puzzle fall into place. The complete definition of the function is in
figure 123. The accumulator parameter is renamed to predecessor-of:a-hand to emphasize
the relationship to the parameter proper. The first application of rem! in the body of the local-
expression hands it the second hand structure in a-hand0. The second argument is a-hand0,
which establishes the desired relationship.

;; remove-last! : hand -> void
;; effect : to remove the last card in a-hand0, unless it is the only one
(define (remove-last! a-hand0)
 (local (;; predecessor-of:a-hand represents the predecessor of
 ;; a-hand in the a-hand0 chain
 (define (rem! a-hand predecessor-of:a-hand)
 (cond

TE
AM
FL
Y

TEAM FLY PRESENTS

-509-

 [(empty? (hand-next a-hand))
 (set-hand-next! predecessor-of:a-hand empty)]
 [else (rem! (hand-next a-hand) a-hand)])))
 (cond
 [(empty? (hand-next a-hand0)) (void)]
 [else (rem! (hand-next a-hand0) a-hand0)])))

Both applications of rem! have the shape

(rem! (hand-next a-hand) a-hand)

Figure 123: Removing the last card

It is now time to revisit the basic assumption about the card game that the cards are added to the
end of a hand. When human players pick up cards, they hardly ever just add them to the end.
Instead, many use some special arrangement and maintain it over the course of a game. Some
arrange hands according to suits, others according to rank, and yet others according to both
criteria.

Let's consider an operation for inserting a card into a hand based on its rank:

;; sorted-insert! : rank suit hand -> void
;; assume: a-hand is sorted by rank, in descending order
;; effect: to add a card with r as rank and s as suit at the proper place
(define (sorted-insert! r s a-hand) ...)

The function assumes that the given hand is already sorted. The assumption naturally holds if we
always use create-hand to create a hand and sorted-insert! to insert cards.

Suppose we start with the same hand as above for add-at-end!:

(define hand0 (create-hand 13 SPADES))

If we evaluate (sorted-insert! 1 DIAMONDS hand0) in this context, hands0 becomes

(make-hand 13 SPADES
 (make-hand 1 DIAMONDS empty))

If we now evaluate (sorted-insert! 2 CLUBS hand0) in addition, we get

(make-hand 13 SPADES
 (make-hand 2 CLUBS
 (make-hand 1 DIAMONDS empty)))

for hand0. This value shows what it means for a chain to be sorted in descending order. As we
traverse the chain, the ranks get smaller and smaller independent of what the suits are.

Our next step is to analyze the template. Here is the template, adapted to our present purpose:

(define (sorted-insert! r s a-hand)
 (cond
 [(empty? (hand-next a-hand))

TE
AM
FL
Y

TEAM FLY PRESENTS

-510-

 ... (hand-rank a-hand) ... (hand-suit a-hand) ...]
 [else ... (hand-rank a-hand) ... (hand-suit a-hand) ...
 ... (sorted-insert! r s (hand-next a-hand)) ...]))

The key step of the function is to insert the new card between two cards such that first card's rank
is larger than, or equal to, r and r is larger than, or equal to, the rank of the second. Because we
only have two cards in the second clause, we start by formulating the answer for the second
clause. The condition we just specified implies that we need a nested cond-expression:

(cond
 [(>= (hand-rank a-hand) r (hand-rank (hand-next a-hand))) ...]
 [else ...])

The first condition expresses in Scheme what we just discussed. In particular, (hand-rank a-
hand) picks the rank of the first card in a-hand and (hand-rank (hand-next a-hand)) picks
the rank of the second one. The comparison determines whether the three ranks are properly
ordered.

Each case of this new cond-expression deserves its own analysis:

1. If (>= (hand-rank a-hand) r (hand-rank (hand-next a-hand))) is true, then the
new card must go between the two cards that are currently linked. That is, the next field
of a-hand must be changed to contain a new hand structure. The new structure consists
of r, s, and the original value of a-hand's next field. This yields the following
elaboration of the cond-expression:
2. (cond
3. [(>= (hand-rank a-hand) r (hand-rank (hand-next a-hand)))
4. (set-hand-next! a-hand (make-hand r s (hand-next a-hand)))]
5. [else ...])

6. If (>= (hand-rank a-hand) r (hand-rank (hand-next a-hand))) is false, the new
card must be inserted at some place in the rest of the chain. Of course, the natural
recursion accomplishes just that, which finishes the analysis of the second clause of
sorted-insert!.

Putting all the pieces together yields a partial function definition:

(define (sorted-insert! r s a-hand)
 (cond
 [(empty? (hand-next a-hand))
 ... (hand-rank a-hand) ... (hand-suit a-hand) ...]
 [else
 (cond
 [(>= (hand-rank a-hand) r (hand-rank (hand-next a-hand)))
 (set-hand-next! a-hand (make-hand r s (hand-next a-hand)))]
 [else (sorted-insert! r s (hand-next a-hand))])]))

The only remaining gaps are now in the first clause.

The difference between the first and the second cond-clause is that there is no second hand
structure in the first clause so we cannot compare ranks. Still, we can compare r and (hand-
rank a-hand) and compute something based on the outcome of this comparison:

(cond

TE
AM
FL
Y

TEAM FLY PRESENTS

-511-

 [(>= (hand-rank a-hand) r) ...]
 [else ...])

Clearly, if the comparison expression evaluates to true, the function must mutate the next field
of a-hand and add a new hand structure:

(cond
 [(>= (hand-rank a-hand) r)
 (set-hand-next! a-hand (make-hand r s empty))]
 [else ...])

The problem is that we have nothing to mutate in the second clause. If r is larger than the rank of
a-hand, the new card should be inserted between the predecessor of a-hand and a-hand. But
that kind of situation would have been discovered by the second clause. The seeming
contradiction suggests that the dots in the second clause are a response to a singular case:

The dots are evaluated only if sorted-insert! consumes a rank r that is larger than all the
values in the rank fields of a-hand.
In that singular case, a-hand shouldn't change at all. After all, there is no way to create a
descending chain of cards by mutating a-hand or any of its embedded hand structures.

At first glance, we can overcome the problem with a set! expression that changes the definition
of hand0:

(set! hand0 (make-hand r s hand0))

This fix doesn't work in general though, because we can't assume that we know which variable
definition must be modified. Since expressions can be abstracted over values but not variables,
there is also no way to abstract over hand0 in this set!-expression.

A hand is an interface:

1. 'insert :: rank suit -> void

;; create-hand : rank suit -> hand
;; to create a hand from the rank and suit of a single card
(define (create-hand rank suit)
 (local ((define-struct hand (rank suit next))

 (define the-hand (make-hand rank suit empty))

 ;; insert-aux! : rank suit hand -> void
 ;; assume: hand is sorted by rank in descending order
 ;; effect: to add a card with r as rank and s as suit
 ;; at the proper place
 (define (insert-aux! r s a-hand)
 (cond
 [(empty? (hand-next a-hand))
 (set-hand-next! a-hand (make-hand r s empty))]
 [else (cond
 [(>= (hand-rank a-hand)
 r
 (hand-rank (hand-next a-hand)))
 (set-hand-next! a-hand

TE
AM
FL
Y

TEAM FLY PRESENTS

-512-

 (make-hand r s (hand-next a-hand)))]
 [else (insert-aux! r s (hand-next a-hand))])]))

 ... ;; other services as needed

 (define (service-manager msg)
 (cond
 [(symbol=? msg 'insert!)
 (lambda (r s)
 (cond
 [(> r (hand-rank the-hand))
 (set! the-hand (make-hand r s the-hand))]
 [else (insert-aux! r s the-hand)]))]
 [else (error 'managed-hand "message not understood")])))
 service-manager))

Figure 124: Encapsulation and structure mutation for hands of cards

We're stuck. It is impossible to define sorted-insert!, at least as specified above. The analysis
suggests a remedy, however. If we introduce a single variable that always stands for the current
hand structure, we can use a combination of assignments and structure mutators to insert a new
card. The trick is not to let any other part of the program refer to this variable or even change it.
Otherwise a simple set! won't work, as argued before. In other words, we need a state variable
for each hand structure, and we need to encapsulate it in a local-expression.

Figure 124 displays the complete function definition. It follows the pattern of section 39. The
function itself corresponds to create-hand, though instead of producing a structure the new
create-hand function produces a manager function. At this point, the manager can deal with
only one message: 'insert; all other messages are rejected. An 'insert message first checks
whether the new rank is larger than the first one in the-hand, the hidden state variable. If so, the
manager just changes the-hand; if not, it uses insert-aux!, which may now assume that the
new card belongs into the middle of the chain.

Exercise 41.3.5. Extend the definition in figure 124 with a service for removing the first card of
a given rank, even if it is the only card.

Exercise 41.3.6. Extend the definition in figure 124 with a service for determining the suits of
those cards in the-hand that have a given rank. The function should produce a list of suits.

Exercise 41.3.7. Reformulate create-hand in figure 124 such that the manager uses a single
set!-expression and sorted-insert does not use any structure mutation.

Exercise 41.3.8. Recall the definition of a binary tree from section 14.2:

A binary-tree (short: BT) is either

1. false or
2. (make-node soc pn lft rgt)

where soc is a number, pn is a symbol, and lft and rgt are BTs.

The required structure definition is

TE
AM
FL
Y

TEAM FLY PRESENTS

-513-

(define-struct node (ssn name left right))

A binary tree is a binary-search-tree if every node structure contains a social security number
that is larger than all those in the left subtree and smaller than all those in the right subtree.

Develop the function insert-bst!. The function consumes a name n, a social security number s,
and a bst. It modifies the bst so that it contains a new node with n and s while maintaining it as a
search tree.

Also develop the function remove-bst!, which removes a node with a given social security
number. It combines the two subtrees of the removed node by inserting all the nodes from the
right tree into the left one.

The discussion in this subsection and the exercises suggest that adding or removing items from
linked structures is a messy task. Dealing with an item in the middle of the linked structures is
best done with accumulator-style functions. Dealing with the first structure requires
encapsulation and management functions. In contrast, as exercise 41.3.7 shows, a solution
without mutators is much easier to produce than a solution based on structure mutation. And the
case of cards and hands, which deals with at most 52 structures, is equally efficient. To decide
which of the two approaches to use requires a better understanding of algorithmic analysis (see
intermezzo 5) and of the language mechanisms and program design recipes for encapsulating
state variables.

41.4 Extended Exercise: Moving Pictures, a Last Time
In sections 6.6, 7.4, 10.3, and 21.4 we studied how to move pictures across a canvas. A picture is
a list of shapes; a shape is one of several basic geometric shapes: circles, rectangles, etc.
Following our most basic design principle -- one function per concept -- we first defined
functions for moving basic geometric shapes, then for mixed classes of shapes, and finally for
lists of shapes. Eventually we abstracted over related functions.

The functions for moving basic shapes create a new shape from an existing shape. For example,
the function for moving a circle consumes a circle structure and produces a new circle
structure. If we think of the circle as a painting with a round frame and the canvas as a wall,
however, creating a new shape for each move is inappropriate. Instead, we should change the
shape's current position.

Exercise 41.4.1. Turn the functions translate-circle and translate-rectangle of
exercises 6.6.2 and 6.6.8, respectively, into structure-mutating functions. Adapt move-circle
from section 6.6 and move-rectangle from exercise 6.6.12 so that they use these new
functions.

Exercise 41.4.2. Adapt the function move-picture from exercise 10.3.6 to use the structure-
mutating functions from exercise 41.4.1.

Exercise 41.4.3. Use Scheme's for-each function (see Help Desk) to abstract where possible
in the functions of exercise 41.4.2.

TE
AM
FL
Y

TEAM FLY PRESENTS

-514-

76 The notation (vectorof X) is analogous to (listof X).

77 Scheme proper provides list mutators, and a Scheme programmer would use them to represent
a hand as a list of cards.

TE
AM
FL
Y

TEAM FLY PRESENTS

-515-

Section 42

Equality
As we mutate structures or vectors, we use words such as ``the vector now contains false in its
first field'' to describe what happens. Behind those words is the idea that the vector itself stays
the same -- even though its properties change. What this observation suggests is that there are
really two notions of equality: the one we have used so far and a new one based on effects on a
structure or vector. Understanding these two notions of equality is critically important for a
programmer. We therefore discuss them in detail in the following two subsections.

42.1 Extensional Equality
Recall the class of posn structures from part I. A posn combines two numbers; its fields are
called x and y. Here are two examples:

 (make-posn 3 4) (make-posn 8 6)
They are obviously distinct. In contrast, the following two

 (make-posn 12 1) (make-posn 12 1)
are equal. They both contain 12 in the x-field and 1 in the y-field.

More generally, we consider two structures to be equal if they contain equal components. This
assumes that we know how to compare the components, but that's not surprising. It just reminds
us that processing structures follows the data definition that comes with the structure definition.
Philosophers refer to this notion of equality as EXTENSIONAL EQUALITY.

Section 17.8 introduced extensional equality and discussed its use for building tests. As a
reminder, let's consider a function for determining the extensional equality of posn structures:

;; equal-posn : posn posn -> boolean
;; to determine whether two posns are extensionally equal
(define (equal-posn p1 p2)
 (and (= (posn-x p1) (posn-x p2))
 (= (posn-y p1) (posn-y p2))))

The function consumes two posn structures, extracts their field values, and then compares the
corresponding field values using =, the predicate for comparing numbers. Its organization
matches that of the data definition for posn structures; its design is standard. This implies that for
recursive classes of data, we naturally need recursive equality functions.

Exercise 42.1.1. Develop an extensional equality function for the class of child structures
from exercise 41.3.3. If ft1 and ft2 are family tree nodes, how long is the maximal abstract
running time of the function?

TE
AM
FL
Y

TEAM FLY PRESENTS

-516-

Exercise 42.1.2. Use exercise 42.1.1 to abstract equal-posn so that its instances can test the
extensional equality of any given class of structures.

42.2 Intensional Equality
Consider the following toy program:

(define a (make-posn 12 1))
(define b (make-posn 12 1))

(begin
 (set-posn-x! a 1)
 (equal-posn a b))

It defines two posn structures. The two structures are initially equal in the sense of the preceding
subsection. Yet when we evaluate the begin-expression, the result is false.

Even though the two structures initially consist of the same values, they are different because the
structure mutation in the begin-expression changes the x-field of the first structure and leaves the
second one alone. More generally, the expression has an effect on one structure but not the other.
Now take a look at a slightly different program:

(define a (make-posn 12 1))
(define b a)

(begin
 (set-posn-x! a 1)
 (equal-posn a b))

Here a and b are two different names for the same structure. Therefore, the evaluation of (set-
posn-x! a 1) affects both a and b, which means that (equal-posn a b) is going to yield true
this time.

The two observations have a general moral. If the evaluation of an expression affects one
structure and simultaneously some other structure, the two structures are equal in a deeper sense
than equal-posn can determine. Philosophers refer to this notion of equality as INTENSIONAL
EQUALITY. In contrast to extensional equality, this notion of equality requires not only that two
structures consist of equal parts, but that they also simultaneously react to structure mutations. It
is a direct consequence that two intensionally equal structures are also extensionally equal.

Designing a function for determining the intensional equality of structures is more work than
designing one for determining their extensional equality. We start with a precise description:

;; eq-posn : posn posn -> boolean
;; to determine whether two posn structures
;; are affected by the same mutation
(define (eq-posn p1 p2) ...)

We already have an example, so we move on to a discussion of the template:

(define (eq-posn p1 p2)
 ... (posn-x p1) ... (posn-x p2) ...
 ... (posn-y p1) ... (posn-y p2) ...)

TE
AM
FL
Y

TEAM FLY PRESENTS

-517-

The template contains four expressions, each one reminding us of the available information and
which structure fields we can mutate.

Translating the above observations into a full definition yields the following draft:

(define (eq-posn p1 p2)
 (begin
 (set-posn-x! p1 5)
 (= (posn-x p2) 5)))

This function sets p1's x-field to 5 and then checks whether p2's x-field also became 5. If so, both
structures reacted to the mutation and are, by definition, intensionally equal.

Unfortunately, our reasoning has a problem. Consider the following application:

(eq-posn (make-posn 1 2) (make-posn 5 6))

The two posn's aren't even extensionally equivalent, so they should not be intensionally
equivalent. But our first version of eq-posn would produce true, and that is a problem.

We can improve the first version with a second mutation:

(define (eq-posn p1 p2)
 (begin
 (set-posn-x! p1 5)
 (set-posn-x! p2 6)
 (= (posn-x p1) 6)))

This function changes p1 and then p2. If the structures are intensionally equal, then the mutation
of p2 must affect p1. Furthermore, we know that p1's x-field can't coincidentally contain 6,
because we first changed it to 5. Thus, when (eq-posn a b) produces true, a changes when b
changes and vice versa, and the structures are intensionally equal.

The only problem left now is that eq-posn has effects on the two structures that it consumes but
has no effect statement. Indeed, it should not have a visible effect because its only purpose is to
determine whether two structures are intensionally equal. We can avoid this effect by first saving
the old values in p1's and p2's x fields, mutating the fields, and then restoring the old values.
Figure 125 contains a function definition that performs an intensional equality check without any
visible effects.

;; eq-posn : posn posn -> boolean
;; to determine whether two posn structures
;; are affected by the same mutation
(define (eq-posn p1 p2)
 (local (;; save old x values of p1 and p2
 (define old-x1 (posn-x p1))
 (define old-x2 (posn-x p2))
 ;; modify both x fields of p1 and p2
 (define effect1 (set-posn-x! p1 5))
 (define effect2 (set-posn-x! p2 6))
 ;; now compare the two fields
 (define same (= (posn-x p1) (posn-x p2)))
 ;; restore old values

TE
AM
FL
Y

TEAM FLY PRESENTS

-518-

 (define effect3 (set-posn-x! p1 old-x1))
 (define effect4 (set-posn-x! p2 old-x2)))
 same))

Figure 125: Determining the intensional equality of two structures

The existence of eq-posn says that all structures have a unique ``fingerprint.'' We can inspect
two structures (of the same class) for this fingerprint if we have access to the mutators. Scheme
and many other languages typically provide built-in functions for comparing two structural
values extensionally and intensionally. The corresponding Scheme functions are equal? and eq?.
In Scheme, both functions are applicable to all values, whether mutators and selectors are
accessible or hidden. The existence of eq? suggests a revision for our guideline on testing.

Guideline on Testing
Use eq? for testing when comparing the identity of objects matters. Use equal? for testing
otherwise.

The guideline is general. Still, programmers should use equality functions that indicate what kind
of values they expect to compare, such as symbol=?, boolean?, or =, because the additional
information helps readers understand the purpose of the program more easily.

Exercise 42.2.1. Evaluate the following expressions by hand:

1. (eq-posn (make-posn 1 2) (make-posn 1 2))

2. (local ((define p (make-posn 1 2)))
 (eq-posn p p))

3. (local ((define p (make-posn 1 2))
 (define a (list p)))
 (eq-posn (first a) p))

Check the answers with DrScheme.

Exercise 42.2.2. Develop an intensional equality function for the class of child structures from
exercise 41.3.3. If ft1 and ft2 are family tree nodes, how long is the maximal abstract running
time of the function?

Exercise 42.2.3. Use exercise 42.2.2 to abstract eq-posn so that its instances can test the
intensional equality of any given class of structures.

TE
AM
FL
Y

TEAM FLY PRESENTS

-519-

Section 43

Changing Structures, Vectors, and Objects
This section introduces several small projects on programming with mutable structures. The
ordering of the subsections roughly matches the outline of the book, proceeding from simple
classes of data to complicated ones and from structural recursion to generative recursion with
backtracking and accumulators.

43.1 More Practice with Vectors
Programming with mutable vectors is hardly ever needed in the kinds of programs that we
encountered. Still, because it is far more prevalent in conventional languages, it is an important
skill and deserves more practice than section 41.2 suggests. This section covers sorting with
vectors, but its goal is to practice reasoning about intervals when processing vectors.

We encountered the idea of sorting as early as section 12.2, where we designed the sort function.
It consumes a list of numbers and produces a list of numbers with the same items in sorted
(ascending or descending) order. An analogous function for vectors consumes a vector and
produces a new vector. But, using vector mutation, we can also design a function that changes
the vector so that it contains the same items as before, in a sorted order. Such a function is called
an IN-PLACE SORT because it leaves all the items inside the existing vector.

An in-place-sort function relies exclusively on effects on its input vector to accomplish its task:

;; in-place-sort : (vectorof number) -> void
;; effect: to modify V such that it contains the same items
;; as before but in ascending order
(define (in-place-sort V) ...)

Examples must demonstrate the effect:

(local ((define v1 (vector 7 3 0 4 1)))
 (begin
 (in-place-sort v1)
 (equal? v1 (vector 0 1 3 4 7))))

Of course, given that in-place-sort consumes a vector, the true problem is to design the
auxiliary function that works on specific segments of the vector.

The standard template for a vector-processing function uses an auxiliary function:

(define (in-place-sort V)
 (local ((define (sort-aux V i)
 (cond
 [(zero? i) ...]

TE
AM
FL
Y

TEAM FLY PRESENTS

-520-

 [else
 ... (vector-ref V (sub1 i)) ...
 ... (sort-aux V (sub1 i)) ...])))
 (sort-aux V (vector-length V))))

Following the design ideas of intermezzo 5, the auxiliary function consumes a natural number
and uses it as an index into the vector. Because the initial argument is (vector-length V), the
accessible index is always (sub1 i).

Recall that the key to designing functions such as sort-aux is to formulate a rigorous purpose
and/or effect statement. The statement must clarify on which interval of the possible vector
indices the function works and what exactly it accomplishes. One natural effect statement
follows:

;; sort-aux : (vectorof number) N -> void
;; effect: to sort the interval [0,i) of V in place
(define (sort-aux V i) ...)

To understand this effect statement in the larger context, let's adapt our original example:

(local ((define v1 (vector 7 3 0 4 1)))
 (begin
 (sort-aux v1 5)
 (equal? v1 (vector 0 1 3 4 7))))

If sort-aux is applied to a vector's length, it should sort the entire vector. This statement implies
that if the first argument is less than the vector's length only some initial segment of the vector is
sorted:

(local ((define v1 (vector 7 3 0 4 1)))
 (begin
 (sort-aux v1 4)
 (equal? v1 (vector 0 3 4 7 1))))

In this particular example, the last number remains in its original place, and only the first four
vector items are sorted.

;; in-place-sort : (vectorof number) -> void
;; effect: to modify V such that it contains the same items
;; as before but in ascending order
(define (in-place-sort V)
 (local (;; sort-aux : (vectorof number) N -> void
 ;; effect: to sort the interval [0,i) of V in place
 (define (sort-aux V i)
 (cond
 [(zero? i) (void)]
 [else (begin
 ;; sort the segment [0,(sub1 i)):
 (sort-aux V (sub1 i))
 ;; insert (vector-ref V (sub1 i)) into the segment
 ;; [0,i) so that it becomes sorted''
 (insert (sub1 i) V))]))

 ;; insert : N (vectorof number) -> void
 ;; to place the value in the i-th into its proper place

TE
AM
FL
Y

TEAM FLY PRESENTS

-521-

 ;; in the segement [0,i] of V
 ;; assume: the segment [0,i) of V is sorted
 (define (insert i V)
 ...))
 (sort-aux V (vector-length V))))

Figure 126: An in-place sort function: First part

Now we can analyze each case in the template of sort-aux:

1. If i is 0, the interval of the effect statement is [0,0). This means that the interval is empty
and that the function has nothing to do.

2. The second clause in the template contains two expressions:
3. (vector-ref V (sub1 i))
4. and
5. (sort-aux V (sub1 i))

The first reminds us that we can use the i - 1-st field of V; the second one reminds us of
the natural recursion. In this case, the natural recursion sorts the interval [0,(sub1 i)).
To finish the task, we must insert the value of the i - 1-st field into its proper place in the
interval [0,i).

The above examples make this case concrete. When we evaluate (sort-aux v1 4), the
number in the last field of v1 remains at its place. The first four items in the vectors are: 0,
3, 4, and 7. To sort the entire interval [0,5), we must insert 1, which is (vector-ref V
(sub1 5)), between 0 and 3.

In short, the design of in-place-sort follows the same pattern as that of the function sort in
section 12.2 up to this point. For sort, we also designed the main function only to find out that
we needed to design an auxiliary function for inserting one more item into its proper place.

Figure 126 gathers what we have discussed about in-place-sort so far. It also includes a
specification of insert, the second auxiliary function. To understand its effect statement, we
reformulate the example for the second clause of sort-aux:

(local ((define v1 (vector 0 3 4 7 1)))
 (begin
 (insert 4 v1)
 (equal? v1 (vector 0 1 3 4 7))))

In this case, insert moves 1 over three numbers: first 7, then 4, and finally 3. It stops when the
next number in the leftwards direction, that is, 0, is smaller than the number that is being inserted.

Let's look at a second example for insert:

(local ((define v1 (vector 7 3 0 4 1)))
 (begin
 (insert 1 v1)
 (equal? v1 (vector 3 7 0 4 1))))

TE
AM
FL
Y

TEAM FLY PRESENTS

-522-

Here the problem is to insert 3 into a segment that contains only one number: 7. This means that
insert must swap the values in the first two fields and must stop then, because 3 can't move any
further to the left.

(define (in-place-sort V)
 (local (;; sort-aux : (vectorof number) N -> void
 ;; effect: to sort the interval [0,i) of V in place
 (define (sort-aux V i)
 ...)

 ;; insert : N (vectorof number) -> void
 ;; to place the value in the i-th into its proper place
 ;; in the [0,i] segement of V
 (define (insert i V)
 (cond
 [(zero? i) (void)]
 [else (cond
 [(> (vector-ref V (sub1 i)) (vector-ref V i))
 (begin
 (swap V (- i 1) i)
 (insert (sub1 i) V))]
 [else (void)])]))

 ;; swap : (vectorof X) N N void
 (define (swap V i j)
 (local ((define temp (vector-ref V i)))
 (begin
 (vector-set! V i (vector-ref V j))
 (vector-set! V j temp)))))
 (sort-aux V (vector-length V))))

Figure 127: An in-place sort function: Second part

Now take a look at the template for insert:

(define (insert i V)
 (cond
 [(zero? i) ...]
 [else
 ... (vector-ref V (sub1 i)) ...
 ... (insert (sub1 i) V) ...]))

It is the standard template for a vector-processing auxiliary function. As usual we distinguish two
cases:

1. If i is 0, the goal is to insert (vector-ref V 0) into the segment [0,0]. Since this
interval contains only one number, insert has accomplished its task.

2. If i is positive, the template implies that we may consider another item in V, namely
(vector-ref V (sub1 i)), and that we can perform a natural recursion. The immediate
question is whether (vector-ref V (sub1 i)) is smaller or larger than (vector-ref
V i), the item that is to be moved around. If so, V is sorted on the entire interval [0,i],
because V is sorted on [0,i) by assumption. If not, the item at i is out of order still.

The cond-expression that employs the necessary conditions is

TE
AM
FL
Y

TEAM FLY PRESENTS

-523-

(cond
 [(> (vector-ref V (sub1 i)) (vector-ref V i)) ...]
 [(<= (vector-ref V (sub1 i)) (vector-ref V i)) (void)])

The second clause contains (void) because there is nothing left to do. In the first clause,
insert must -- at a minimum -- swap the values in the two fields. That is, insert must
place (vector-ref V i) into field (sub1 i) and (vector-ref V (sub1 i)) into
field i. But even that may not be enough. After all, the value in the i-th field may have to
wander over several fields as the first example demonstrated. Fortunately, we can easily
solve this problem with the natural recursion, which inserts the (vector-ref V (sub1
i)) into its proper place in [0,(sub1 i)] after the swapping has taken place.

Figure 127 contains the complete definition of insert and swap. This second function is
responsible for swapping the value of two fields.

Exercise 43.1.1. Test the auxiliary functions for in-place-sort from figures 126 and 127.
Formulate the tests as boolean-valued expressions.

Develop and test more examples for in-place-sort.

Integrate the pieces. Test the integrated function. Eliminate superflous arguments from the
auxiliary programs in the integrated definition, step by step, testing the complete function after
each step. Finally, change in-place-sort so that its result is the modified vector.

Figure 128: Inserting an item into a sorted vector segment

Exercise 43.1.2. The insert function of figure 127 performs two vector mutations for each
time the function recurs. Each of these mutations pushes (vector-ref V i), for the original
value of i, to the left in V until its proper place is found.

Figure 128 illustrates a slightly better solution. The situation in the top row assumes that the
values a, b, and c are properly arranged, that is,

(< a b ... c)

holds. Furthermore, d is to be inserted and its place is between a and b, that is,

TE
AM
FL
Y

TEAM FLY PRESENTS

-524-

(< a d b)

holds, too. The solution is to compare d with all the items in k + 1 through i and to shift the items
to the right if they are larger than d. Eventually, we find a (or the left end of the vector) and have
a ``hole'' in the vector, where d must be inserted. (The hole actually contains b.) This situation is
illustrated in the middle row. The last one shows how d is placed between a and b.

Develop a function insert that implements its desired effect according to this description. Hint:
The new function must consume d as an additional argument.

Exercise 43.1.3. For many other programs, we could swap the order of the subexpressions in
begin-expressions and still get a working program. Let's consider this idea for sort-aux:

;; sort2-aux : (vectorof number) N -> void
(define (sort2-aux V i)
 (cond
 [(zero? i) (void)]
 [else (begin
 (insert2 (sub1 i) V)
 (sort2-aux V (sub1 i)))]))

The order implies that sort2-aux first inserts the item from (sub1 i) into some already sorted
part of V and then sorts the remainder of V. Here is a picture that illustrates the situation
graphically:

 i-1
 a

left right

The depicted vector consists of three pieces: a, the item in field (sub1 i), the left fragment, and
the right fragment. The questions are which of the two fragments is sorted and into which
fragment a should be inserted.

Considering that sort2-aux decreases its first argument and thus sweeps over the vector from
right to left, the answers are that the right fragment is initially empty and thus sorted in ascending
order by default; the left fragment is still unordered; and a must be inserted into its proper place
in the right fragment.

Develop a precise effect statement for sort-aux based on these observations. Then develop the
function insert2 so that sort2-aux sorts vectors properly.

In section 25.2, we got to know qsort, a function based on generative recursion. Given a list,
qsort constructs a sorted version in three steps:

1. choose an item from the list, call it pivot;
2. create two sublists: one with all those items strictly smaller than pivot, another one with

all those items strictly larger than pivot;
3. sort each of the two sublists, using the same steps, and then append the two lists with the

pivot item in the middle.

TE
AM
FL
Y

TEAM FLY PRESENTS

-525-

It isn't difficult to see why the result is sorted, why it contains all the items from the original list,
and why the process stops. After all, at every stage, the function removes at least one item from
the list so that the two sublists are shorter than the given one; eventually the list must be empty.

a vector fragment with pivot item p:

left right
p sm-1 la-1 sm-2 sm-3 la-2

partitioning the vector fragment into two regions, separated by p

left1 right1 left2 right2

Figure 129: The partitioning step for in-place quick-sort

Figure 129 illustrates how this idea can be adapted for an in-place version that works on vectors.
At each stage, the algorithm works on a specific fragment of the vector. It picks the first item as
the pivot item and rearranges the fragment so that all items smaller than the pivot appear to the
left of pivot and all items larger than pivot appear to its right. Then qsort is used twice: once
for the fragment between left1 and right1 and again for the fragment between left2 and
right2. Because each of these two intervals is shorter than the originally given interval, qsort
eventually encounters the empty interval and stops. After qsort has sorted each fragment, there
is nothing left to do; the partitioning process has arranged the vector into fragments of ascending
order.

Here is the definition of qsort, an in-place sorting algorithm for vectors:

;; qsort : (vectorof number) -> (vectorof number)
;; effect: to modify V such that it contains the same items as before,
;; in ascending order
(define (qsort V)
 (qsort-aux V 0 (sub1 (vector-length V))))

;; qsort-aux : (vectorof number) N N -> (vectorof number)
;; effect: sort the interval [left,right] of vector V
;; generative recursion
(define (qsort-aux V left right)
 (cond
 [(>= left right) V]
 [else (local ((define new-pivot-position (partition V left right)))
 (begin (qsort-aux V left (sub1 new-pivot-position))
 (qsort-aux V (add1 new-pivot-position) right)))]))

The main function's input is a vector, so it uses an auxiliary function to do its job. As suggested
above, the auxiliary function consumes the vector and two boundaries. Each boundary is an

TE
AM
FL
Y

TEAM FLY PRESENTS

-526-

index into the vector. Initially, the boundaries are 0 and (sub1 (vector-length V)), which
means that qsort-aux is to sort the entire vector.

The definition of qsort-aux closely follows the algoritm's description. If left and right
describe a boundary of size 1 or less, its task is done. Otherwise, it partitions the vector. Because
the partitioning step is a separate complex process, it requires a separate function. It must have
both an effect and a result proper, the new index for the pivot item, which is now at its proper
place. Given this index, qsort-aux continues to sort V on the intervals [left,(sub1 new-
pivot-position)] and [(add1 new-pivot-position), right]. Both intervals are at least one
item shorter than the original, which is the termination argument for qsort-aux.

Naturally, the key problem here is the partitioning step, which is implemented by partition:

;; partition : (vectorof number) N N -> N
;; to determine the proper position p of the pivot-item
;; effect: rearrange the vector V so that
;; -- all items in V in [left,p) are smaller than the pivot item
;; -- all items of V in (p,right] are larger than the pivot item
(define (partition V left right) ...)

For simplicity, we choose the left-most item in the given interval as the pivot item. The question
is how partition can accomplish its task, for example, whether it is a function based on
structural recursion or whether it is based on generative recursion. Furthermore, if it is based on
generative recursion, the question is what the generative step accomplishes.

finding the swapping points for partition:

left right
p sm-1 la-1 sm-2 sm-3 la-2

new-left new-right

swapping the items and recuring on a new interval:

 left right
p sm-1 sm-3 sm-2 la-1 la-2

stopping the generative recursion and clean-up:

 left right
p sm-1 sm-3 sm-2 la-1 la-2

TE
AM
FL
Y

TEAM FLY PRESENTS

-527-

 new-right new-left
Figure 130: The partitioning process for in-place quick-sort

The best strategy is to consider an example and to see how the partitioning step could be
accomplished. The first example is a small vector with six numbers:

(vector 1.1 0.75 1.9 0.35 0.58 2.2)

The pivot's position is 0; the pivot item is 1.1. The boundaries are 0 and 5. One item, 1.9, is
obviously out of place. If we swap it with 0.58, then the vector is almost perfectly partitioned:

(vector 1.1 0.75 0.58 0.35 1.9 2.2)

In this modified vector, the only item out of place is the pivot item itself.

Figure 130 illustrates the swapping process that we just described. First, we must find two items
to swap. To do that, we search V for the first item to the right of left that is larger than the pivot
item. Analogously, we search V for the first item to the left of right that is smaller than the pivot
item. These searches yield two indices: new-left and new-right. Second, we swap the items in
fields new-left and new-right. The result is that the item at new-left is now smaller than the
pivot item and the one at new-right is larger. Finally, we can continue the swapping process
with the new, smaller interval. When the first step yields values for new-left and new-right
that are out of order, as in the bottom row of figure 130, then we have a mostly partitioned vector
(fragment).

Working through this first example suggests that partition is an algorithm, that is, a function
based on generative recursion. Following our recipe, we must ask and answer four questions:

1. What is a trivially solvable problem?
2. What is a corresponding solution?
3. How do we generate new problems that are more easily solvable than the original

problem? Is there one new problem that we generate or are there several?
4. Is the solution of the given problem the same as the solution of (one of) the new problems?

Or, do we need to perform an additional computation to combine these solutions before
we have a final solution? And, if so, do we need anything from the original problem data?

The example addressed issues 1, 3, and 4. The first step is to determine the new-left and new-
right indices. If new-left is smaller than new-right, the generative work is to swap items in
the two fields. Then the process recurs with the two new boundaries. If new-left is larger than
new-right, the partitioning process is finished except for the placement of the pivot item;
placing the pivot item answers question 2. Assuming we can solve this ``trivially solvable''
problem, we also know that the overall problem is solved.

Let's study question 2 with some examples. We stopped working on the first example when the
vector had been changed to

(vector 1.1 0.75 0.58 0.35 1.9 2.2)

TE
AM
FL
Y

TEAM FLY PRESENTS

-528-

and the interval had been narrowed down to [2,4]. The search for new-left and new-right now
yields 4 and 3, respectively. That is,

(<= new-right new-left)

holds. Switching the item in field new-right with the original left-most boundary places the
pivot item in the proper spot:

(vector 0.35 0.75 0.58 1.1 1.9 2.2)

because new-right points to the right-most item in the vector that is smaller than the pivot item.

Before we accept this seemingly simple solution, let's check it with some additional examples,
especially vector fragments where the pivot item is the largest or smallest item. Here is one such
example:

(vector 1.1 0.1 0.5 0.4)

Assuming the initial interval is [0,3], the pivot item is 1.1. Thus, all other items in the vector are
smaller than the pivot item, which means that it should end up in the right-most position.

Our process clearly yields 3 for new-right. After all, 0.4 is smaller than pivot. The search for
new-left, though, works differently. Since none of the items in the vector is larger than the
pivot item, it eventually generates 3 as an index, which is the largest legal index for this vector.
At this point the search must stop. Fortunately, new-left and new-right are equal at this point,
which implies that the partitioning process can stop and means that we can still swap the pivot
item with the one in field new-right. If we do that, we get a perfectly well-partitioned vector:

(vector 0.4 0.1 0.5 0.4 1.1)

The third sample vector's items are all larger than the pivot item:

(vector 1.1 1.2 3.3 2.4)

In this case, the search for new-left and new-right must discover that the pivot item is already
in the proper spot. And indeed, it does. The search for new-left ends at field 1, which is the first
field that contains an item larger than the pivot item. The search for new-right ends with 0,
because it is the smallest legal index and the search must stop there. As a result, new-right once
again points to that field in the vector that must contain the pivot item for the vector (fragment)
to be properly partitioned.

In short, the examples suggest several things:

1. The termination condition for partition is (<= new-right new-left).
2. The value of new-right is the final position of the pivot item, which is in the original

left-most point of the interval of interest. It is always acceptable to swap the contents of
the two fields.

3. The search for new-right starts at the right-most boundary and continues until it either
finds an item that is smaller than the pivot item or until it hits the left-most boundary.

TE
AM
FL
Y

TEAM FLY PRESENTS

-529-

4. Dually, the search for new-left starts at the left-most boundary and continues until it
either finds an item that is larger than the pivot item or until it hits the right-most
boundary.

And, the two searches are complex tasks that deserve their own function.

We can now gradually translate our discussion into Scheme. First, the partitioning process is a
function of not just the vector and some interval, but also of the original left-most position of the
vector and its content. This suggests the use of locally defined functions and variables:

(define (partition V left right)
 (local ((define pivot-position left)
 (define the-pivot (vector-ref V left))
 (define (partition-aux left right)
 ...))
 (partition-aux left right)))

The alternative is to use an auxiliary function that consumes the pivot's original position in
addition to the vector and the current interval.

Second, the auxiliary function consumes an interval's boundaries. It immediately generates a new
pair of indices from these boundaries: new-left and new-right. As mentioned, the searches for
the two new boundaries are complex tasks and deserve their own functions:

;; find-new-right : (vectorof number) number N N [>= left] -> N
;; to determine an index i between left and right (inclusive)
;; such that (< (vector-ref V i) the-pivot) holds
(define (find-new-right V the-pivot left right) ...)

;; find-new-left : (vectorof number) number N N [>= left] -> N
;; to determine an index i between left and right (inclusive)
;; such that (> (vector-ref V i) the-pivot) holds
(define (find-new-left V the-pivot left right) ...)

Using these two functions, partition-aux can generate the new boundaries:

(define (partition V left right)
 (local ((define pivot-position left)
 (define the-pivot (vector-ref V left))
 (define (partition-aux left right)
 (local ((define new-right (find-new-right V the-pivot left
right))
 (define new-left (find-new-left V the-pivot left
right)))
 ...)))
 (partition-aux left right)))

From here the rest of the definition is a plain transliteration of our discussion into Scheme.

;; partition : (vectorof number) N N -> N
;; to determine the proper position p of the pivot-item
;; effect: rearrange the vector V so that
;; -- all items in V in [left,p) are smaller than the pivot item
;; -- all items of V in (p,right] are larger than the pivot item
;; generative recursion

TE
AM
FL
Y

TEAM FLY PRESENTS

-530-

(define (partition V left right)
 (local ((define pivot-position left)
 (define the-pivot (vector-ref V left))
 (define (partition-aux left right)
 (local ((define new-right (find-new-right V the-pivot left
right))
 (define new-left (find-new-left V the-pivot left
right)))
 (cond
 [(>= new-left new-right)
 (begin
 (swap V pivot-position new-right)
 new-right)]
 [else ; (< new-left new-right)
 (begin
 (swap V new-left new-right)
 (partition-aux new-left new-right))]))))
 (partition-aux left right)))

;; find-new-right : (vectorof number) number N N [>= left] -> N
;; to determine an index i between left and right (inclusive)
;; such that (< (vector-ref V i) the-pivot) holds
;; structural recursion: see text
(define (find-new-right V the-pivot left right)
 (cond
 [(= right left) right]
 [else (cond
 [(< (vector-ref V right) the-pivot) right]
 [else (find-new-right V the-pivot left (sub1 right))])]))

Figure 131: Rearranging a vector fragment into two partitions

Figure 131 contains the complete definition of partition, partition-aux, and find-new-
right; the function swap is defined in figure 127. The definition of the search function uses an
unusual structural recursion based on subclasses of natural numbers whose limits are parameters
of the function. Because the search functions are based on a rarely used design recipe, it is best to
design them separately. Still, they are useful only in the context of partition, which means that
they should be integrated into its definition when their design is completed.

Exercise 43.1.4. Complete the definition of find-new-left. The two definitions have the same
structure; develop the common abstraction.

Use the definitions of find-new-right and find-new-left to provide a termination argument
for partition-aux.

Use the examples to develop tests for partition. Recall that the function computes the proper
place for the pivot item and rearranges a fragment of the vector. Formulate the tests as boolean-
valued expressions.

When the functions are properly tested, integrate find-new-right and find-new-left into
partition and eliminate superfluous parameters.

Finally, test qsort and produce a single function definition for the in-place quick-sort
algorithm.

TE
AM
FL
Y

TEAM FLY PRESENTS

-531-

Exercise 43.1.5. Develop the function vector-reverse!. It inverts the contents of a vector; its
result is the modified vector.

Hint: Swap items from both ends until there are no more items to swap.

Exercise 43.1.6. Economists, meteorologists, and many others consistently measure various
things and obtain time series. All of them need to understand the idea of ``n-item averages'' or
``smoothing.'' Suppose we have weekly prices for some basket of groceries:

1.10 1.12 1.08 1.09 1.11
Computing the corresponding three-item average time series proceeds as follows:

There are no averages for the end points, which means a series with k items turns into k - 2
averages.

Develop the function list-3-average, which computes the 3-item sliding averages of a list of
numbers. That is, we represent a series of grocery prices with lists, and list-3-averages
consumes a list such as

(list 1.10 1.12 1.08 1.09 1.11)

and produces

(list 1.10 329/300 82/75)

in return.

Develop the function vector-3-averages, which computes the 3-item sliding averages of a
vector of numbers. Since vectors are mutable, this gives us the alternative of producing a new
vector or mutating the existing one.

Develop both versions of the function: one that produces a new vector and another one that
mutates the vector it is handed.

Warning: This is a difficult exercise. Compare all three versions and the complexity of
designing them.

Exercise 43.1.7. All the examples in this section deal with vector fragments, that is, intervals of
natural numbers. Processing an interval requires a starting point for an interval, an end point, and,
as the definitions of find-new-right and find-new-left show, a direction of traversal. In
addition, processing means applying some function to each point in the interval.

Here is a function for processing intervals:

;; for-interval : N (N -> N) (N -> N) (N -> X) -> X
;; to evaluate (action i (vector-ref V i)) for i, (step i), ...

TE
AM
FL
Y

TEAM FLY PRESENTS

-532-

;; until (end? i) holds (inclusive)
;; generative recursion: step generates new value, end? detects end
;; termination is not guaranteed
(define (for-interval i end? step action)
 (cond
 [(end? i) (action i)]
 [else (begin
 (action i)
 (for-interval (step i) end? step action)])))

It consumes a starting index, called i, a function for determining whether the end of the interval
has been reached, a function that generates the next index, and a function that is applied to each
point in between. Assuming (end? (step (step ... (step i) ...))) holds, for-interval
satisfies the following equation:

 (for-interval i end? step action)
= (begin (action i)
 (action (step i))
 ...
 (action (step (step ... (step i) ...))))

Compare the function definition and the equation with those for map.

With for-interval we can develop (some) functions on vectors without the traditional detour
through an auxiliary function. Instead, we use for-interval the way we used map for
processing each item on a list. Here is a function that adds 1 to each vector field:

;; increment-vec-rl : (vector number) -> void
;; effect: to increment each item in V by 1
(define (increment-vec-rl V)
 (for-interval (sub1 (vector-length V)) zero? sub1
 (lambda (i)
 (vector-set! V i (+ (vector-ref V i) 1)))))

It processes the interval [0,(sub1 (vector-length V))], where the left boundary is determined
by zero?, the termination test. The starting point, however, is (sub1 (vector-length V)),
which is the right-most legal vector index. The third argument to for-interval, sub1,
determines the traversal direction, which is from right to left, until the index is 0. Finally, the
action is to mutate the contents of the i-th field by adding 1.

Here is a function with the same visible effect on vectors but a different processing order:

;; increment-vec-lr : (vector number) -> void
;; effect: to increment each item in V by 1
(define (increment-vec-lr V)
 (for-interval 0 (lambda (i) (= (sub1 (vector-length V)) i)) add1
 (lambda (i)
 (vector-set! V i (+ (vector-ref V i) 1)))))

Its starting point is 0 and the end point is the right-most legal index of V. The add1 function
determines that the vector is processed from left to right.

Develop the following functions, using for-interval:

TE
AM
FL
Y

TEAM FLY PRESENTS

-533-

1. rotate-left, which moves all items in vector into the adjacent field to the left, except
for the first item, which moves to the last field;

2. insert-i-j, which moves all items between two indices i and j to the right, except for
the right-most one, which gets inserted into the i-th field (cmp. figure 128);

3. vector-reverse!, which swaps the left half of a vector with its right half;
4. find-new-right, that is, an alternative to the definition in figure 131;
5. vector-sum!, which computes the sum of the numbers in a vector using set! (Hint: see

section 37.3).

The last two tasks show that for-interval is useful for computations that have no visible
effects. Of course, exercise 29.4 shows that there is no need for a clumsy formulation such as
vector-sum!.

Which of these functions can be defined in terms of vec-for-all from exercise 41.2.17?

Looping Constructs: Many programming languages (must) provide functions like for-
interval as built-in constructs, and force programmers to use them for processing vectors. As a
result, many more programs than necessary use set! and require complex temporal reasoning.

43.2 Collections of Structures with Cycles
Many objects in our world are related to each other in a circular manner. We have parents; our
parents have children. A computer may connect to another computer, which in turn may connect
to the first. And we have seen data definitions that refer to each other.

Since data represents information about real-world objects, we will encounter situations that call
for the design of a class of structures with a circular relationship. In the past, we have skirted the
issue, or we used a trick to represent such collections. The trick is to use an indirection. For
example, in section 28.1, we associated each structure with a symbol, kept a table of symbols and
structures around, and placed symbols into structures. Then, when we needed to find out whether
some structure refers to another, we extracted the relevant symbol and looked in the table to find
the structure for the symbol. While this use of indirection allows us to represent structures with
mutual references or structures in a cyclic relationship, it also leads to awkward data
representations and programs. This section demonstrates that we can simplify the representation
of collections with structure mutation.

To make this idea concrete, we discuss two examples: family trees and simple graphs. Consider
the case of family trees. Thus far, we have used two kinds of family trees to record family
relationships. The first is the ancestor tree; it relates people to their parents, grandparents, and so
on. The second is the descendant tree; it relates people to their children, grandchildren, and so on.
In other words, we have avoided the step of combining the two family trees into one, the way it
is done in the real world. The reason for skirting the joint representation is also clear. Translated
into our data language, a joint tree requires that a structure for a father should contain the
structures for his children, and each of the child structures should contain the father structure. In
the past, we couldn't create such collections of structures. With structure mutations, we can now
create them.

Here is structure definition that makes this discussion concrete:

TE
AM
FL
Y

TEAM FLY PRESENTS

-534-

(define-struct person (name social father mother children))

The goal is to create family trees that consist of person structures. A person structure has five
fields. The content of each is specified by the following data definition:

An family-tree-node (short: ftn) is either

1. false or
2. a person.

A person is a structure:

 (make-person n s f m c)
where n is a symbol, s is number, f and m are ftns, and c is a (listof person).

As usual, the false in the definition of family tree nodes represents missing information
about a portion of the family tree.

Using make-person alone, we cannot establish the mutual reference between a family tree node
for a father and his child. Suppose we follow an ancestral tree strategy, that is, we create the
structure for the father first. Then we can't add any child to the children field, because, by
assumption, the corresponding structure doesn't exist yet. Conversely, if we follow a descendant
tree strategy, we first create a structure for all of a father's children, but those structures can't
contain any information about the father yet.

The (relevant) tree after the creation of the structure for 'Ludwig:

...and after the mutation of the structure for 'Adam and 'Eve:

TE
AM
FL
Y

TEAM FLY PRESENTS

-535-

Figure 132: Adding a child

What this suggests is that a simple constructor for this kind of data isn't really enough. Instead,
we should define a GENERALIZED CONSTRUCTOR that not only creates a person structure but also
initializes it properly when possible. To develop this function, it is best to follow the real world,
where upon the birth of a child, we create a new entry in the family tree, record the child's
parents, and record in the existing parents' entries that they have a newborn. Here is the
specification for just such a function:

;; add-child! : symbol number person person -> person
;; to construct a person structure for a newborn
;; effect: to add the new structure to the children of father and mother
(define (add-child! name soc-sec father mother) ...)

Its task is to create a new structure for a newborn child and to add the structure to an existing
family tree. The function consumes the child's name, social security number, and the structures
representing the father and the mother.

The first step of the design of add-child! is to create the new structure for the child:

(define (add-child! name soc-sec father mother)
 (local ((define the-child
 (make-person name soc-sec father mother empty)))
 ...))

This covers the first part of the contract. By naming the structure in a local-expression we can
mutate it in the body of the expression.

The second step of the design of add-child! is to add a body to the local-expression that
performs the desired effects:

(define (add-child! name soc-sec father mother)
 (local ((define the-child
 (make-person name soc-sec father mother empty)))
 (begin
 (set-person-children! father
 (cons the-child (person-children father)))
 (set-person-children! mother
 (cons the-child (person-children mother)))
 the-child)))

TE
AM
FL
Y

TEAM FLY PRESENTS

-536-

Since there are two specified effects and since the purpose statement also specifies a result, the
body of the local-expression is a begin-expression with three subexpressions. The first mutates
father, adding the-child to the list of children. The second mutates mother in an analogous
manner. The last one produces the desired result.

Figure 132 illustrates the evaluation of an application of add-child!:

(add-child! 'Ludwig 3
 (make-person 'Adam)
 (make-person 'Eve))

The top-half shows the new structure for 'Ludwig and how it refers to the father and mother
structures. Just as in section 14.1, the picture uses arrows to relate the nodes of a family tree. But
now this choice isn't just a convenience, it is dictated by necessity. As the bottom half of the
figure shows, the structure mutation of add-child! modify the children fields of the father
and mother structure. They add an additional item to the list in this field, and this new item is the
structure for 'Ludwig. Without arrows, we wouldn't be able to draw this constellation of
structures because it is impossible to draw the two structures as nested in each other.

With add-child! we can create family trees, one child at a time. What we need to learn is how
to design functions that process this new class of family trees. In this case, we can almost always
pick one of the two views that we used before: the ancestor family tree or the descendant family
tree. Either view just ignores certain fields in the structures. Once we have chosen a view, we
design the desired functions following the known recipes. Even if we decide to use the bi-
directional relations in the new family tree representation, designing a function is usually simply
a matter of formulating those auxiliary functions that correspond to the real-world family
relationships and to compose them properly. The following few exercises demonstrate these
principles.

Exercise 43.2.1. Modify add-child! so that it has the following contract:

;; add-child! : symbol number ftn ftn -> person

The function otherwise behaves just like the original version.

Once we have the modified function, there is no need for make-person any more. We can create
all forms of person structures with add-child! directly.

Transliterate the family tree in figure 35 into the new representation; use the new modified add-
child! function exclusively.

Exercise 43.2.2. Develop the function how-many-ancestors, which consumes a family tree
node and determines how many ancestors there are. The node itself counts as an ancestor.

Exercise 43.2.3. Develop how-many-descendants, which consumes a family tree node and
determines how many descendants there are. The node itself counts as a descendant.

Exercise 43.2.4. Develop names-of-cousins. The function consumes a person and produces
the names of the cousins.

TE
AM
FL
Y

TEAM FLY PRESENTS

-537-

Hints: (1) Don't forget to use Scheme's built-in functions for processing lists. (2) Use a
sufficiently large portion of your own family tree to test the functions. (3) For the testing step,
compare the names of the results of the auxiliary functions with the expected results. Because the
structures are mutually referential, it is difficult to compare them automatically. Alternatively,
use eq?, Scheme's intensional equality predicate, to compare two structures. Why does this
work?

In sections 28.1 and 30.2, we encountered the problem of representing and traversing graphs.
Recall that a graph is a collection of nodes and connections between nodes. The graph traversal
problem is to determine whether there is a route from a node labeled orig to one called dest. In
a simple graph, each node has exactly one one-way connection to another node.

Originally, we represented a graph as a list of named nodes. If one node was connected to
another, the corresponding structure for the first node contained the name of the second node, not
the node itself. Exercise 30.2.3 introduced a vector-based representation. Still, all of our
representations used the indirection trick, so that if we wanted to move from one node to another,
we first had to look up the connection in a table.

Using structure mutation, we can eliminate this indirection and create structures for nodes that
contain each other, even if the graph contains a cycle. To understand how this works in a
concrete manner, let's discuss how to model simple graphs such as those in figure 85 and how to
design programs that find routes through such graphs. First, we need a structure definition for
nodes:

(define-struct node (name to))

The name field records the name of the node, and the to field specifies to which other node it is
connected. Second, we need a data definition:

A simple-graph-node (node) is a structure:

 (make-node n t)
where n is a symbol and t is a node.

The data definition is unusual in that it is self-referential, but it doesn't consist of several clauses.
This immediately raises the question of how we can construct a node that complies with this
definition. Clearly, applying make-node doesn't work; instead, we need to define a generalized
constructor that immediately sets the to field of a node.

The generalized constructor consumes the atomic data for a node structure and constructs a legal
node structure from there:

;; create-node : symbol -> node
;; to create a simple legal graph node with a-name in the name field
(define (create-node a-name)
 (local ((define the-node (make-node a-name false))) ...))

The natural candidate to place into the to field is the node itself. In other words, the generalized
constructor creates a node that contains itself:

;; create-node : symbol -> node

TE
AM
FL
Y

TEAM FLY PRESENTS

-538-

;; to create a simple graph node that contains a-name and itself
(define (create-node a-name)
 (local ((define the-node (make-node a-name false)))
 (begin
 (set-node-to! the-node the-node)
 the-node)))

The generalized constructor makes the node using the ordinary constructor, initializing the name
field properly and putting false into the to field. Although the latter is an improper action
according to our data definition, it is acceptable because it is immediately corrected in the local-
expression's body. Hence an application of create-node produces a node as promised.

With create-node we can create the nodes in a graph, but we can't establish the connections
between them. To connect two nodes, we must modify the to field of one of the structures so
that it contains the other. While this suggestion is generally on target, it raises the problem of
how to identify the nodes. The family tree example suggests one solution, namely, to introduce
one variable definition per node. Another comes from our orginal work with graphs, where we
represented graphs as lists of symbolic pairs of connections or lists of nodes or vectors of nodes.
Here we pursue the second option:

A simple-graph is a (listof node).

Assuming we have a list of all nodes, say the-graph, and a function for looking up the node
with a given name, say lookup-node, we can create a connection from one node to the other
with a structure mutation:

(set-node-to! (lookup-node from-name the-graph)
 (lookup-node to-name the-graph))

We can make connecting two nodes more convenient than that with an auxiliary function:

;; connect-nodes : symbol symbol graph -> void
;; effect: to mutate the to field in the structure with
;; from-name in the name field so that it contains
;; the structure with to-name in the name field
(define (connect-nodes from-name to-name a-graph)
 (set-node-to! (lookup-node from-name a-graph)
 (lookup-node to-name a-graph)))

Defining lookup-node is an exercise in structural function design, though it is best done using
Scheme's assf function, which abstracts this situation.

;; create-node : symbol -> node
;; to create a simple graph node that contains itself
(define (create-node name)
 (local ((define the-node (make-node name false)))
 (begin
 (set-node-to! the-node the-node)
 the-node)))

;; connect-nodes : symbol symbol graph -> void
;; effect: to mutate the to field in the structure named
;; from-name so that it contains the structure named to-name
(define (connect-nodes from-name to-name a-graph)

TE
AM
FL
Y

TEAM FLY PRESENTS

-539-

 (set-node-to! (lookup-node from-name a-graph)
 (lookup-node to-name a-graph)))

;; lookup-node : symbol graph -> node or false
;; to lookup up the node named x in a-graph
(define (lookup-node x a-graph)
 ...)

;; the-graph : graph
;; the list of all available nodes
(define the-graph
 (list (create-node 'A)
 (create-node 'B)
 (create-node 'C)
 (create-node 'D)
 (create-node 'E)
 (create-node 'F)))

;; setting up the graph:
(begin
 (connect-nodes 'A 'B the-graph)
 (connect-nodes 'B 'C the-graph)
 (connect-nodes 'C 'E the-graph)
 (connect-nodes 'D 'E the-graph)
 (connect-nodes 'E 'B the-graph))

Figure 133: Creating a simple graph via mutation

Now we can transliterate simple graphs into a Scheme representation. Suppose we start with the
graph in figure 85, which is reproduced here in a tabular format:

from A B C D E F
to B C E E B F

The first step is to create a list of all the nodes and to name it. The second step is to establish the
connections according to this table. Figure 133 shows the corresponding Scheme expressions.
They are straight transliterations of the columns in the tabular representation of the graph. There
is no need to reconnect the 'F node because it is already connected to itself.

Exercise 43.2.5. Draw a picture of (create-node 'A) using the boxes-in-boxes approach from
part II and the boxes-and-arrow approach from part III.

Exercise 43.2.6. Transliterate the given simple graph without creating a list of all nodes.

Exercise 43.2.7. Develop the function symbolic-graph-to-structures. It consumes a list of
pairs and creates a graph.

Example:

(define the-graph
 (symbolic-graph-to-structures '((A B) (B C) (C E) (D E) (E B) (F F))))

Evaluating this definition is equivalent to evaluating the definitions in figure 133.

TE
AM
FL
Y

TEAM FLY PRESENTS

-540-

Once we have a method for representing simple graphs, we can turn our attention to the problem
of finding a route from one node in the graph to another. Recall the original specification from
section 30.2:

;; route-exists? : node node simple-graph -> boolean
;; to determine whether there is a route from orig to dest in sg
(define (route-exists? orig dest sg) ...)

Of course, we must reinterpret the names for our data classes in the new context, but otherwise
the specification is perfectly fine.

The development of the original function demonstrated two new ideas. First, the function uses
generative recursion. Once it is known that orig and dest are distinct nodes, the search resumes
from the node to which orig is connected. Second, the function requires an accumulator to
remember which nodes have been visited. Without the accumulator, the function may revisit the
same node over and over again.

So, let's start from the template for generative recursion:

(define (route-exists? orig dest sg)
 (cond
 [(eq-node? orig dest) true]
 [else
 (route-exists? ... the node to which orig is connected ... dest
sg)]))

The function eq-node? determines whether the two nodes are the same; this may just use eq?,
Scheme's intentional equality predicate, or it may compare the names of the nodes, assuming
they are unique. If the nodes are the same, a route exists. If not, we can generate a new,
potentially useful problem by moving to the node to which orig is connected. In the graph
representation of section 30.2, this requires looking in sg. In our new graph representation, the
connection is a part of the node representation. Hence we can use node-to instead of looking in
sg:

(define (route-exists? orig dest sg)
 (cond
 [(eq-node? orig dest) true]
 [else (route-exists? (node-to orig) dest sg)]))

The function definition shows that, so far, sg is useless. Because a node in the new graph
representation contains its neighbors, and the neighbor contains its neighbor, and so on, there is
no need to use the table.

The termination argument for this function fails, just as for the original one in section 30.2. To
see why our new function may fail to terminate, take a look at its definition. It doesn't contain
false, and the function cannot possibly produce false -- even though we know that our sample
graph, for example, doesn't contain a path from 'F to 'A or anywhere else. If we inspect what
happens with

(route-exists? (lookup-node the-graph 'F)
 (lookup-node the-graph 'A))

TE
AM
FL
Y

TEAM FLY PRESENTS

-541-

we see that route-exists? repeatedly visits the node 'F. In short, it forgets what it has
processed so far.

We know that equipping route-exists? with an accumulator overcomes this lack of knowledge,
but that requires another table lookup. We can do better than that with a structure mutation that
records a visit by the route-exists? function. To do that, the node structures need an addtional
field; we call it visited:

(define-struct node (name visited to))

Initially the field contains false. As route-exists? visits a node, it puts true into the field:

(define (route-exists? orig dest sg)
 (cond
 [(eq-node? orig dest) true]
 [(node-visited orig) false]
 [else
 (begin
 (set-node-visited! orig true)
 (route-exists? (node-to orig) dest sg))]))

To exploit this new knowledge, the function checks the new structure field as one of the new
termination conditions. If orig has been visited before, there is no route because the function has
discovered a cycle in the graph.

The second structure mutation of this example illustrates two ideas. First, structure mutation can
replace a table-based accumulator. In general, though, it is best to study a table-based version
and to add structure mutations based on a solid understanding of the accumulated knowledge.
Second, structure mutations can play a role in termination tests for generative recursion. After all,
state change is motivated by the desire to remember things across function applications, and
termination tests must discover whether things have changed. While the combination is rare, it is
useful, and it appears time and again in the study of algorithms.

Exercise 43.2.8. The function route-exists? assumes that the visited fields of all the nodes
are initially false. A single use of the function, however, sets some of the fields in a graph to
true. This implies that the function cannot be used twice in a row.

Develop a revised version of route-exists?, with the same specification, that sets all visited
fields to false before it searches for a route between the given nodes.

Determine the abstract running time of the new function, assuming the graph has N nodes.

Exercise 43.2.9. Develop the function reachable. It consumes a node in a simple graph. Its
effect is to place true into the visited fields of all those nodes that are reachable from the
given node and to ensure that the visited fields of all other nodes are false.

Exercise 43.2.10. Develop make-simple-graph, a function that manages the state of a locally
defined graph. The function accepts a simple graph in the form of lists of pairs of symbols:
(listof (list symbol symbol)). It supports four services:

1. adding nodes that are connected to already existing nodes (by name);

TE
AM
FL
Y

TEAM FLY PRESENTS

-542-

2. changing the connection of a node (by name);
3. determining whether a route between two nodes exists;
4. and removing nodes that are not reachable from some given node.

Hint: Instead of using a list, the manager should use a node sequence, which is analogous to the
hand structure from section 41.3. A node sequence relies on the following structure:

(define-struct sequence (node next))

A sequence is similar to a list, but it supports structure mutations.

The discussion of this section confirms the usefulness of the design recipes, even for collections
of structures that refer to each other. The most important lesson is that such situations call for a
generalized constructor, a function that creates a structure and immediately establishes the
necessary connections. Generalized constructors correspond to the initializers of section 35; we
have also seen the idea in section 41.3 where we created a hand from a single card. In some cases,
such as the one for simple graphs, we may also want to introduce auxiliary functions for
mutating the structures a second time. Once we have those functions, we can use the standard
recipes, including those for introducing additional structure fields.

43.3 Backtracking with State
Section 28 introduced algorithms that backtrack. An algorithm is a recursive function that
generates new problems for the recursive step rather than using the pieces of its input data. On
occasion, an algorithm may have to make choices among several branches on the path to a
solution. Some of them may lead nowhere. In such cases, an algorithm can backtrack. That is, it
can restart the search for a solution with a different branch to check if it succeeds.

When the data representation for a problem uses structures or vectors, a backtracking algorithm
can use structure mutation to test different approaches to a solution. The key is to design a pair of
functions that change the state of the problem representation and that undo such a change in case
the attempt fails. In this section, we discuss two examples of this kind: the Queens puzzle and the
Peg Solitaire problem.

Recall the Queens puzzle from section 28.2. The goal of the puzzle is to place n queens on some
board of arbitrary size m-by-m such that the queens do not threaten each other. A queen in chess
threatens all places on the row, the column, and the two diagonals going through her own
position. Figure 79 illustrates the notion with a single queen on an 8-by-8 board.

In section 28.2, we represented chessboards with lists. When we got to know vectors, we also
developed a vector-based representation in exercise 29.4.14, as follows:

;; A chess-board CB is a (vectorof (vectorof boolean))
;; such that all vectors have the same size.

;; make-chess-board : N -> CB
(define (make-chess-board m)
 (build-vector m (lambda (i) (build-vector m (lambda (j) true)))))

The initial value of true indicates that it is still legitimate to place a queen on the corresponding
field.

TE
AM
FL
Y

TEAM FLY PRESENTS

-543-

The queen-placement algorithm places a queen on one of the available fields on the given board
and creates a new board that reflects the addition of the queen. This step is repeated until there
are no more queens to be placed, in which case the puzzle is solved, or until there are no more
places to choose from. In the second case, the algorithm backtracks. That is, the algorithm
removes the last queen that was added and chooses some other available field. If there are no
more fields, it backtracks further. The algorithm signals a complete failure when it becomes
impossible to backtrack.

On one hand, creating a new board at each stage is acceptable because the chosen field may turn
out to be the wrong one in which case the old board is the starting point for the next step. On the
other hand, a human player is more likely to place the queen on the board and to remove it if the
position turns out to be a bad choice. Thus the Queens problem is an example of where the
ability of computer programs to create many alternative ``worlds'' clashes with the human world,
which offers extremely limited possibilities of this kind78 and thus restricts human imagination.
Still, it is worth exploring how the addition of vector mutation to our vocablulary enables us to
mimic the actions of a human player more closely than before.

Exercise 43.3.1. Placing an additional queen on a chessboard means that some of the fields on
the chessboard have to be set to false because they are now threatened and no longer available
for future placements of queens. The placement of a queen is a function of the given chessboard
and the indices of the new queen:

;; place-queen : CB N N -> void
;; effect: to set those fields in CB to false that are threatened by
;; a queen on row i, column j
(define (place-queen CB i j) ...))

Hints: (1) Recall threatened? from exercise 28.2.3. (2) Consider developing an abstract
function for processing all items on a board. The function is analogous to vec-for-all from
exercise 41.2.17.

Exercise 43.3.2. Develop unplace-queen. The function removes a queen and its threats from a
chessboard:

;; unplace-queen : CB N N -> void
;; effect: to set those fields in CB to false that were threatened by
;; a queen on row i, column j
(define (unplace-queen CB i j) ...))

Given any chessboard CB, the following equation holds:

 (begin
 (place-queen CB i j)
 (unplace-queen CB i j)
 CB)
= CB

for all legal positios i and j. Why is this not true if we swap the first two subexpressions?

Exercise 43.3.3. Modify the solution of the Queens problem in section 28.2 to use the vector-
based representation of chessboards and the functions place-queen and unplace-queen from
exercises 43.3.1 and 43.3.2.

TE
AM
FL
Y

TEAM FLY PRESENTS

-544-

Exercise 43.3.4. Use the draw.ss teachpack to develop a view for the Queens problem. Recall
that a view is a function that illustrates certain aspects of a problem in a graphical manner. The
natural solution here is to display the intermediate stages of the solution process according to the
algorithm of exercise 43.3.3, including the backtracking steps.

In section 32.3 we discussed the Peg Solitaire problem. The goal of the game is to eliminate the
pegs one by one, until only one peg is left. A player can eliminate a peg if one of the neighboring
holes is unoccupied and if there is a peg in the hole in the opposite direction. In that case, the
second peg can jump over the first one and the first one is eliminated.

Just as with the Queens puzzle, we can represent the problem state with vectors and indicators
for pegs and holes. In the real world, moving a peg corresponds to a physical action that changes
the state of the board. When a player backtracks, the two pegs are placed back in their original
positions.

Exercise 43.3.5. Design a vector representation for the triangular peg solitaire board. Develop a
function for creating a board with a single hole.

Exercise 43.3.6. Design a data representation for a move in the Peg Solitaire problem. Develop
a function for making a move. Develop a function for undoing a move. The two functions should
rely exclusively on effects. Do the functions satisfy an equation analogous to place-queen and
unplace-queen in exercise 43.3.2?

Exercise 43.3.7. Develop a backtracking algorithm for solving a Peg Solitaire problem whose
hole is placed randomly.

Exercise 43.3.8. Use the draw.ss teachpack to develop a view for the Peg Solitaire problem.
Recall that a view is a function that illustrates certain aspects of a problem in a graphical manner.
The natural solution here is to display the intermediate stages of the solution process according
to the algorithm of exercise 43.3.7, including the backtracking steps.

78 A program could set up an entirely new board for every new stage in the algorithm and search
for solutions in parallel. The additional work is, however, prohibitive for a human being, which
is why humans shy away from such simulations.

TE
AM
FL
Y

TEAM FLY PRESENTS

-545-

Epilogue
ROS: I mean, what exactly do you do?
PLAYER: We keep to our usual stuff, more or less, only
inside out. We do on stage things that are supposed to
happen off. Which is a kind of integrity, if you look on
every exit as being an entrance somewhere else.
 -- Tom Stoppard, Rosencrantz and Guildenstern are
Dead

We have reached the end of this introduction to computing and program design. While there is
more to learn about both subjects, this is a good point to stop, to summarize, and to look ahead.

Computing
From elementary school to high school we learn to compute with one form of data: numbers. Our
first use of numbers is to count real things, say, three apples, five friends, twelve bagels. Later
we use numbers without any appeal to concrete objects, but we have learned that numbers
represent information in the real world.

Computing with software is algebra for all kinds of data, not just numbers. Nowadays, computer
programs process representations of music, molecules, law cases, electrical diagrams,
architectures of houses, and poems. Fortunately, we have learned to represent information with
other forms of data than just numbers. Otherwise, computing and programming would become
extremely tedious tasks.

Above all, we shouldn't forget that computing means manipulating data through proper basic
operations. Some operations create new values. Others extract values from values. Yet others
modify values. Finally, there are also basic operations for determining to which class a piece of
data belongs. Built-in operations and functions are of course just another class of data. Definition
is value creation; application is a form of value extraction.79

When we define a function, we combine basic data operations. There are two fundamental
mechanisms for combining functions: function composition and conditional expressions. The
former means that the result of one function becomes the argument of another one. The latter
represents a choice among several possibilities. When we eventually apply a function, we trigger
a computation.

In this book we have studied the laws of basic operations and the laws of operation combination.
Using these laws we can understand, in principle, how any function processes its input data and
how it produces its results and effects. Because the computer is extremely fast and good at using
these laws, it can perform such evaluations for more data and for larger programs than we can do
with paper and pencil.

Programming
Programs consist of definitions and expressions. Large programs consist of hundreds and
thousands of definitions and expressions. Programmers design functions, use other programmer's

TE
AM
FL
Y

TEAM FLY PRESENTS

-546-

functions, leave, start on the project. Without a strong discipline we cannot hope to produce
software of high quality. The key to programming discipline is to understand the design of
programs as a means to describe computations, which, in turn, is to manipulate data through
combinations of basic operations.

For that reason, the design of every program -- whether it is small and for personal use or large
and for business use -- must start with an analysis of the surrounding world of information and a
description of the classes of data that represent the relevant information. If the classes are
unusual or new, we make up examples so we understand the structure of the class description.
After we understand the world of information surrounding our project and its data representation,
we make a plan.

A project plan identifies what data we wish to produce from the data that the program will be
given. In many cases, though, a program doesn't process data in just one way but in many ways.
For example, a program for managing bank accounts must handle deposits, withdrawals, interest
calculations, tax form generation, and many other tasks. In other cases, a program may have to
compute complex relationships. For example, a program for simulating a ping-pong game must
compute the movement of the ball, bounces on the table, bounces from the paddle, paddle
movements, etc. In either case, we need to describe what the various ways of processing data are
and how they relate to each other. Then we rank them and start with the most important one. We
develop a working product, make sure that it meets our specifications, and refine the product by
adding more functions or taking care of more cases or both.

Designing a function requires a rigorous understanding of what it computes. Unless we can
describe its purpose and its effect with concise statements, we can't produce the function. In
almost all cases, it helps to make up examples and work through the function's computation by
hand. For complicated functions or for functions that use generative recursion, we should include
some examples with the purpose statements. The examples illustrate the purpose and effect
statements for others who may have to read or modify the program.

Studying examples tends to suggest the basic design recipe. In most cases, the design of a
function is structural, even if it uses an accumulator or structure mutation. In a few others, we
must use generative recursion. For these cases, it is important to explain the method for
generating new problems and to sketch why the computation terminates.

When the definition is complete, we must test the function. Testing discovers mistakes, which
we are bound to make due to all kinds of reasons. The best testing process turns independently
developed examples into test suites, that is, a bunch of expressions that apply the function to
select input examples and compare its results and effects with expected results and effects
(mostly) automatically. If a mismatch is discovered, the test suite reports a problem. The test
suite should never be discarded, only commented out. Every time we modify the function, we
must use the test suite to check that we didn't introduce mistakes. If we changed the underlying
process, we may have to adapt the test suite mutatis mutandis.

No matter how hard we work, a function (or program) isn't done the first time it works for our
test suite. We must consider whether the development of the function revealed new interesting
examples and turn such examples into additional tests. And we must edit the program. In
particular, we must use abstraction properly to eliminate all patterns wherever possible.

TE
AM
FL
Y

TEAM FLY PRESENTS

-547-

If we respect these guidelines, we will produce decent software. It will work because we
understand why and how it works. Others who must modify or enhance this software will
understand it, because we include sufficient information on its development process. Still, to
produce great software, we must practice following these guidelines and also learn a lot more
about computing and programming than a first book can teach.

Moving On
The knowledge and design skills from this book are a good foundation for learning more about
programming, computing, and even practical work on software. First, the skills are good for
learning the currently fashionable collection of object-oriented languages, especially Java. The
two languages share a philosophy of programming. In both settings, computing means dealing
with data, and programming means describing classes of values and functions on them. Unlike
Scheme, however, Java requires programmers to spell out the class descriptions in Java, not just
in English, and to place function definitions with class descriptions. As a result, Java requires
programmers to learn a lot of syntactic conventions and is unsuitable as a first language.

Second, a programmer must study the fundamental ideas of computing. Thus far, our studies
have focused on the laws of computing for data-oriented programming languages. Using the
programming skills from this book, we can design and implement a simulation of how the
hardware computes. By doing so we see the laws of computing from a radically different
perspective. The contrast points to a number of interesting questions:

1. The two mechanisms of computing are rather different. Can one mechanism compute
what the other one can compute and vice versa?

2. The laws we have used are mathematical and abstract. They do not take into account any
real-world limitations. Does this mean that we can compute whatever we wish?

3. The (simulated) hardware shows that computers have limitations. How do these
limitations affect what we can compute?

Research on these questions created the discipline of computing and still guides the design of
most computing curricula.

Finally, the design knowledge of this book is enough to build some real-world programs in
Scheme. DrScheme with its built-in Web browser and email capabilities is such a program.
Building large real-world programs, however, requires some more knowledge about the
functions that Scheme uses to create GUIs, to connect computers on a network, to script things
such as shells, common gateway interfaces (CGI), COM objects, and so on.

Material on all three topics is available from this book's Web site in a form that extends the
coverage and the style of the book. The book's Web site is

http://www.htdp.org/

Check in with this site on a regular basis and continue to study computing and programming.

TE
AM
FL
Y

TEAM FLY PRESENTS

-548-

79 An object in a language such as Java is a function with many different bodies. Each method
represents a different way of extracting data from an object.

TE
AM
FL
Y

TEAM FLY PRESENTS

-549-

Index

!, [2], [3], [4]
;

a-line
aaa
above
above1
accumulator, [2]
 invariant
add, [2], [3]
add-at-end
add-child, [2]
add-to-address-book, [2], [3]
add-to-each
add-to-pi
add-up-3
address-book, [2]
airplane
algebra, [2], [3], [4], [5]
algorithm, [2]
 backtracking
 divide and conquer
 trivial
all-blue-eyed-ancestors, [2], [3]
and, [2], [3], [4]
andmap
answer (cond), [2]
area
area-of-disk, [2]
area-of-ring, [2], [3], [4], [5], [6]
arguments
arithmetic, [2], [3], [4], [5], [6], [7]
 error
 exact, [2], [3]
 fixed-number
 inexact, [2], [3]
arrangements
assf
assignment
atom
atomic data
attendees, [2]
auxiliary function

TE
AM
FL
Y

TEAM FLY PRESENTS

-550-

backtracking, [2], [3]
ball, [2]
base case
bbb
begin
below, [2], [3]
below-ir1
below1
below3
beta (ß) axiom
Big-O
binary-search-tree, [2]
binary-tree, [2], [3]
blue-eyed-ancestor, [2]
blue-eyed-children
blue-eyed-descendant, [2]
board-ref, [2]
board-set!
body, [2]
boolean
boyfriend, [2], [3], [4], [5], [6]
BST
BT, [2]
build-board, [2]
build-list
build-number
build-vector

campus tour
 bag
 current location
card game
 hand
 suit
CD, [2], [3], [4], [5], [6]
CD
cell
change-number, [2]
change-to-3
check
check-call-back
checked function
checked-area-of-disk, [2], [3]
cheerleader, [2], [3], [4], [5], [6], [7]
chess-board
child, [2], [3]
Church, Alonzo
circle

TE
AM
FL
Y

TEAM FLY PRESENTS

-551-

circle, [2], [3]
circle-pt
claim
 atomic
 compound
Clinger, William
comment
compound data
cond
 answer
 else
 question
cond, [2]
condition
 atomic
 compound
condition (cond), [2]
conditional function
connect
connect-dots
connect-nodes, [2]
cons
constructor, [2], [3]
 generalized, [2]
contains
contains-car
contains-doll, [2], [3], [4]
continuous
contract, [2], [3], [4], [5], [6], [7], [8], [9], [10]
control (MVC)
convertCF, [2]
convertCF-from-map
copy
cost, [2]
costs
count-vowels, [2], [3]
count-vowels-bv
create-dir
create-hand, [2]
create-inex
create-node, [2]

d/dx
data
 atomic
 compound
 functional
 mixed
 union

TE
AM
FL
Y

TEAM FLY PRESENTS

-552-

data analysis, [2], [3], [4], [5]
data definition, [2], [3], [4], [5], [6]
 compound data
 cross-references
 enumerations
 intervals
 mixed data
 mutually recursive
 mutually referential
 parametric
 recursive
 self-referential
 structure
 symbols
deep-list
definition, [2], [3], [4], [5], [6], [7]
 data
 function, [2], [3], [4], [5], [6], [7]
 local
 structure, [2], [3], [4], [5], [6]
 top-level
 variable, [2], [3], [4], [5]
definition window, [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26], [27]
design recipe, [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]
 abstraction, [2]
 accumulators
 algorithms
 composing functions, [2]
 compound data, [2]
 intervals, enumerations, [2], [3]
 memory, [2]
 mixed data, [2]
 mutually referential data
 recursive data, [2]
 two inputs
differentiation
dir
 list-of-directories
dir, [2]
dir, [2]
direction
directory
 list-of-files
 list-of-files-and-directories
 root
directory, [2]
directory tree
displacement
displacement, [2]

TE
AM
FL
Y

TEAM FLY PRESENTS

-553-

distance-to-0, [2], [3], [4]
distributivity
DNA
 pattern
domain knowledge, [2]
draw-and-clear
draw-light
draw-polygon, [2]
DVD

e-power
e-taylor
echo-choice
echo-message
effect, [2], [3], [4]
elow2
encapsulation, [2]
entry
entry, [2], [3]
eq-ir, [2]
eq-posn, [2]
equal-posn
equality
 extensional
 intensional
 numeric
 structural
 testing, [2]
equation
 degenerate
 line
 linear combination
 non-linear
 proper
 solution, [2]
 systems of
equation1
error
 error
 logical, [2], [3]
 overflow
 run-time, [2]
 syntax, [2]
 underflow
evaluation, [2], [3], [4], [5], [6], [7]
 context
 effect, [2], [3], [4]
 lambda
 local

TE
AM
FL
Y

TEAM FLY PRESENTS

-554-

 sequencing
examples, [2], [3], [4], [5], [6], [7]
exponent
expression
 and, [2], [3], [4], [5]
 arithmetic
 atomic
 begin
 compound
 conditional, [2], [3], [4], [5]
 local, [2], [3], [4]
 nested, [2], [3], [4]
 numeric
 or, [2]
 set!, [2]
 variable
extract1, [2]

f-make-posn
f-posn-x
f-posn-y
family tree
 ancestor
 descendant
family-tree-node, [2], [3]
file, [2]
 newline
file, [2], [3]
file
file of numbers
file system
file -> list-of-lines
file -> list-of-lines
filter, [2]
filter
filter1, [2], [3], [4]
filter2
find, [2], [3]
find-new-left
find-new-right
find-root, [2]
find-root-tangent
find-route, [2]
find-route/list
first
 first
first-line
fm-make-posn
fm-posn-x

TE
AM
FL
Y

TEAM FLY PRESENTS

-555-

fm-posn-y
fm-set-posn-x
fm-set-posn-y
folder
foldl
foldr
for-interval
formal arguments
fractals
Friedman, Daniel P., [2]
ftn, [2], [3]
function
 application, [2], [3], [4], [5], [6], [7]
 call-back
 checked
 composition, [2]
 continuous
 generic
 initialization
 polymorphic
 root
 table
function definition, [2], [3], [4], [5], [6], [7]
functional abstraction
functions
 mutually recursive

g-series
gcd
gcd-generative
gcd-structural
general-quick-sort
gift-pick
girlfriends
global scope
graph
 directed
 edges
 neighbors
 nodes
 simple, [2]
graph
graphical user interface (GUI)
GUI, [2]
 buttons
 choice menus
 sequences
 text fields

TE
AM
FL
Y

TEAM FLY PRESENTS

-556-

gui-item
gui-table

hand
hand
hangman
 chosen word, [2]
 guess, [2]
 letter, [2]
 status word, [2]
 word
hangman
hangman-guess, [2]
Harper, Robert, [2]
header, [2], [3], [4], [5], [6], [7], [8], [9]
height
hellos
hide
hours -> wages, [2], [3], [4]
how-many, [2], [3]
how-many-in-list

image
in-interval-1
in-interval-2
in-interval-3
in-place sort
in-place-sort, [2], [3], [4]
increase-salary, [2]
increase-x
increment-sales, [2], [3]
increment-vec-lr
increment-vec-rl
inex
inex -> number
inexact arithmetic
infinite loop
init-address-book
init-traffic-light
init-traffic-light@cmu
init-traffic-light@rice
input
input variables
insert, [2], [3], [4]
integrate
integration, [2]
 adaptive
 Kepler's rule

TE
AM
FL
Y

TEAM FLY PRESENTS

-557-

 trapezoid
interaction, [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29]
interest-rate, [2], [3], [4], [5], [6], [7]
interface
interval, [2], [3], [4], [5], [6], [7]
 boundary
invariant
 accumulator
 data
inventory
inventory-record
invert, [2], [3]
IR
ir
ir, [2]
is-5
is-between-5-6
is-between-5-6-or-over-10
is-prime
iterative method
iterative refinement, [2], [3], [4], [5], [6], [7], [8]

Jackson, Michael A.

Kelsey, Richard

Lam
lambda (lambda) calculus
language level
larger-items
last, [2]
last-occurrence
left-hand side, [2]
length
length-ir
length-lon
letter
lexical scope
list-of-3-numbers
list-of-children
list-of-number/name
list-of-numbers
list-of-posns
list-of-symbols, [2], [3]
list-pick
list-sum

TE
AM
FL
Y

TEAM FLY PRESENTS

-558-

list-sum-aux
list=
listof
local, [2], [3], [4]
locally defined
LOFD
lookup, [2]
lookup-node
loop, [2]
lr-vector-sum

mail
mail-message
main function
make-address-book
make-chess-board
make-counter
make-even
make-last-item
make-odd
make-traffic-light, [2]
mantissa
many
map
map
master
max, [2], [3]
max2
meaning
method
 iterative
 recursive
Meyer, Albert
mid
mid-point
min
model, [2], [3], [4]
model (MVC)
model-view-control (MVC)
move
move-ball
move-circle
move-rectangle
move-shape
move-until-out, [2]
movie, [2], [3], [4], [5], [6]
mul
mult10
music-item

TE
AM
FL
Y

TEAM FLY PRESENTS

-559-

mutator, [2], [3], [4]
mutually recursive, [2], [3]
mutually referential
my-divide

n-adder
names, [2]
names-from-map
natural-number
neighbor
neighbors, [2]
net pay
new-item
newton
next, [2]
next-color
next-color@cmu
next-color@rice
next@cmu
next@rice
node
 family-tree-node
node, [2], [3]
node, [2], [3], [4], [5]
node-in-a-family-tree
non-empty-list
number
 exact
 inexact
numeric analysis

O
occurrence
 binding
 bound
 free
operation
 primitive, [2], [3], [4], [5]
 relational
operations
or, [2]
order-of (Big-O)
ormap
our-cons, [2], [3]
our-first
our-rest
out-of-bounds
output

TE
AM
FL
Y

TEAM FLY PRESENTS

-560-

pair, [2]
pair, [2]
parameters, [2]
parametric
parent
 list of children
parent, [2]
parent, [2]
partition, [2], [3]
path
pattern
perimeter, [2], [3]
permutation
person
person
personnel
phone-record
pi ()
pixel
pixel-2
place-queen
Plotkin, Gordon
point
poly
polygon
posn
posn, [2], [3]
predicate, [2], [3]
primitive operation, [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]
process-student
product, [2], [3], [4], [5]
product-from-20, [2]
profit
profit, [2]
programming language, [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32]
 functional
 object-oriented
programs
proper-blue-eyed-ancestor, [2]
purpose, [2], [3], [4], [5], [6], [7]
purpose statement

qsort
qsort-aux
queen
 threatens
question

TE
AM
FL
Y

TEAM FLY PRESENTS

-561-

question (cond)
quick-sort, [2], [3]
quick-sort

re, [2]
record
recursion
 generative, [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15]
 natural, [2], [3], [4], [5], [6], [7], [8], [9]
 structural, [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]
recursive method
reduce
Rees, Jonathan
rel-2-abs, [2]
relational operation
relative-2-absolute
relative-2-absolute2
remove
remove-first-line
remove-last, [2], [3]
replace-eol-with
reply
reset, [2]
reset-aux
reset-interval
response
rest
 rest
reveal-list, [2], [3], [4], [5]
revenue
revenue, [2]
rewriting
right-hand side, [2], [3]
root
route-exists, [2], [3], [4], [5], [6], [7]
route-exists-accu
route-exists2
rr
run-time error
running time

scope, [2]
search
 binary
 linear, [2]
search
selector, [2], [3], [4], [5], [6], [7], [8]
semantics

TE
AM
FL
Y

TEAM FLY PRESENTS

-562-

sequence
 arithmetic
 factor
 geometric
 starting point, [2]
 summand
sequence
series
 closed form
 Taylor
series
series-even
series-even1
series-odd
series-odd1
service-manager, [2]
set!, [2], [3]
set-to-2
Sexpr
shape
 circle
 center
 circumference
 perimeter
 polygon
 rectangle
 height
 upper left
 width
 translation
shape, [2], [3], [4]
sharing, [2]
sierpinski, [2]
simple-graph, [2]
simple-graph-node
single point of control
size
Slist
smaller-items, [2]
solitaire
 enabled
sort
 in-place
 insertion
 merge
 quicksort
sort, [2], [3], [4], [5], [6]
sort-aux
sort2-aux
sorted-insert

TE
AM
FL
Y

TEAM FLY PRESENTS

-563-

speed-vector
square, [2]
square, [2], [3], [4]
squared10
squaredgt
star, [2]
star, [2], [3], [4], [5], [6], [7], [8], [9]
state variables
Steele, Guy L., Jr.
string
structure
 constructor, [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]
 mutator, [2], [3]
 predicate, [2], [3]
 selector, [2], [3], [4], [5], [6], [7], [8]
structure definition, [2], [3], [4], [5]
student
student, [2]
subst-teacher
sum, [2], [3], [4], [5], [6], [7], [8]
Sussman, Gerald
swap-x-y, [2], [3]
sweater, [2], [3], [4], [5]
switch, [2]
switch-forever
switch-x
symbol
syntax

table
tabulate-f-up-to-20
tabulate-sin
tabulate-sqrt
Talcott, Carolyn
tape
targets
template, [2], [3], [4], [5], [6]
termination argument
test-for-address-book
test-hours -> wages
testing, [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15]
TL-color
to-blue-eyed-ancestor
transfer
translation
tree
 family-tree-node, [2], [3]
tree
trivial

TE
AM
FL
Y

TEAM FLY PRESENTS

-564-

trivially solvable
type
type variable

unplace-queen
user interface
 graphical
 interactive

variable
 state
variable definition, [2], [3], [4], [5]
variable expression
vec
vec
vec-for-all
vector
 mutation, [2], [3]
 scalar product
vector-sum, [2], [3]
vector-sum-aux, [2], [3]
vector-sum-for-3
vectorof
view (MVC)

wage, [2], [3], [4]
Web page
 embedded
 immediately embedded
Web-document
Web-page, [2], [3]
web=
weekly-wage
wish list
word
WP, [2], [3]

TE
AM
FL
Y

TEAM FLY PRESENTS

-565-

Part VI

Accumulating Knowledge

TE
AM
FL
Y

TEAM FLY PRESENTS

