
ptg

A
D

D
ISO

N
-W

ESLEY
PR

O
FESSIO

N
A

L
C

O
M

PU
TIN

G
SER

IES

Scott Meyers

More Effective C++
35 New Ways
to Improve Your
Programs and Designs

Conforms to the
new ISO/ANSI
C++ standard!

From the Library of Yuri Khan

ptg
Praise for More Effective C++: 35 New Ways
to Improve Your Programs and Designs

“This is an enlightening book on many aspects of C++: both the regions of the
language you seldom visit, and the familiar ones you THOUGHT you understood.
Only by understanding deeply how the C++ compiler interprets your code can
you hope to write robust software using this language. This book is an invaluable
resource for gaining that level of understanding. After reading this book, I feel like
I've been through a code review with a master C++ programmer, and picked up
many of his most valuable insights.”

— Fred Wild, Vice President of Technology,
Advantage Software Technologies

“This book includes a great collection of important techniques for writing
programs that use C++ well. It explains how to design and implement the ideas,
and what hidden pitfalls lurk in some obvious alternative designs. It also includes
clear explanations of features recently added to C++. Anyone who wants to use
these new features will want a copy of this book close at hand for ready reference.”

— Christopher J. Van Wyk, Professor,
Mathematics and Computer Science, Drew University

“Industrial strength C++ at its best. The perfect companion to those who have
read Effective C++.”

— Eric Nagler, C++ Instructor and Author,
University of California Santa Cruz Extension

“More Effective C++ is a thorough and valuable follow-up to Scott's first book,
Effective C++. I believe that every professional C++ developer should read and
commit to memory the tips in both Effective C++ and More Effective C++. I've
found that the tips cover poorly understood, yet important and sometimes arcane
facets of the language. I strongly recommend this book, along with his first, to
developers, testers, and managers ... everyone can benefit from his expert
knowledge and excellent presentation.”

— Steve Burkett, Software Consultant
From the Library of Yuri Khan

ptg

From the Library of Yuri Khan

More Effective C++
ptg

From the Library of Yuri Khan

ptg

Addison-Wesley Professional Computing Series
Brian W. Kernighan, Consulting Editor

Matthew H. Austern, Generic Programming and the STL: Using and Extending the C++ Standard Template Library
David R. Butenhof, Programming with POSIX® Threads
Brent Callaghan, NFS Illustrated
Tom Cargill, C++ Programming Style
William R. Cheswick/Steven M. Bellovin/Aviel D. Rubin, Firewalls and Internet Security, Second Edition: Repelling

the Wily Hacker
David A. Curry, UNIX® System Security: A Guide for Users and System Administrators
Stephen C. Dewhurst, C++ Gotchas: Avoiding Common Problems in Coding and Design
Dan Farmer/Wietse Venema, Forensic Discovery
Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design Patterns: Elements of Reusable Object-

Oriented Software
Erich Gamma/Richard Helm/Ralph Johnson/John Vlissides, Design Patterns CD: Elements of Reusable Object-

Oriented Software
Peter Haggar, Practical Java™ Programming Language Guide
David R. Hanson, C Interfaces and Implementations: Techniques for Creating Reusable Software
Mark Harrison/Michael McLennan, Effective Tcl/Tk Programming: Writing Better Programs with Tcl and Tk
Michi Henning/Steve Vinoski, Advanced CORBA® Programming with C++
Brian W. Kernighan/Rob Pike, The Practice of Programming
S. Keshav, An Engineering Approach to Computer Networking: ATM Networks, the Internet, and the Telephone Network
John Lakos, Large-Scale C++ Software Design
Scott Meyers, Effective C++ CD: 85 Specific Ways to Improve Your Programs and Designs
Scott Meyers, Effective C++, Third Edition: 55 Specific Ways to Improve Your Programs and Designs
Scott Meyers, More Effective C++: 35 New Ways to Improve Your Programs and Designs
Scott Meyers, Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library
Robert B. Murray, C++ Strategies and Tactics
David R. Musser/Gillmer J. Derge/Atul Saini, STL Tutorial and Reference Guide, Second Edition:

C++ Programming with the Standard Template Library
John K. Ousterhout, Tcl and the Tk Toolkit
Craig Partridge, Gigabit Networking
Radia Perlman, Interconnections, Second Edition: Bridges, Routers, Switches, and Internetworking Protocols
Stephen A. Rago, UNIX® System V Network Programming
Eric S. Raymond, The Art of UNIX Programming
Marc J. Rochkind, Advanced UNIX Programming, Second Edition
Curt Schimmel, UNIX® Systems for Modern Architectures: Symmetric Multiprocessing and Caching for Kernel Programmers
W. Richard Stevens, TCP/IP Illustrated, Volume 1: The Protocols
W. Richard Stevens, TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the UNIX®

Domain Protocols
W. Richard Stevens/Bill Fenner/Andrew M. Rudoff, UNIX Network Programming Volume 1, Third Edition: The

Sockets Networking API
W. Richard Stevens/Stephen A. Rago, Advanced Programming in the UNIX® Environment, Second Edition
W. Richard Stevens/Gary R. Wright, TCP/IP Illustrated Volumes 1-3 Boxed Set
John Viega/Gary McGraw, Building Secure Software: How to Avoid Security Problems the Right Way
Gary R. Wright/W. Richard Stevens, TCP/IP Illustrated, Volume 2: The Implementation
Ruixi Yuan/W. Timothy Strayer, Virtual Private Networks: Technologies and Solutions

Visit www.awprofessional.com/series/professionalcomputing for more information about these titles.

From the Library of Yuri Khan

http://www.awprofessional.com/series/professionalcomputing

ptg
More Effective C++
35 New Ways to Improve Your Programs and Designs

Scott Meyers

▲
▼▼

ADDISON-WESLEY

Boston • San Francisco • New York • Toronto • Montreal
London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City
From the Library of Yuri Khan

ptg

This e-book reproduces in electronic form the printed book content of More Effective C++: 35 New
Ways to Improve Your Programs and Designs, by Scott Meyers. Copyright © 1996 by Addison-Wesley,
an imprint of Pearson Education, Inc. ISBN: 0-201-63371-X.

LICENSE FOR PERSONAL USE: For the convenience of readers, this e-book is licensed and sold in
its PDF version without any digital rights management (DRM) applied. Purchasers of the PDF version
may, for their personal use only, install additional copies on multiple devices and copy or print excerpts
for themselves. The duplication, distribution, transfer, or sharing of this e-book’s content for any pur-
pose other than the purchaser’s personal use, in whole or in part, by any means, is strictly prohibited.

PERSONALIZATION NOTICE: To discourage unauthorized uses of this e-book and thereby allow its
publication without DRM, each copy of the PDF version identifies its purchaser. To encourage a DRM-
free policy, please protect your files from access by others.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in the original printed book and this e-book, and we were
aware of a trademark claim, the designations have been printed in initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of the original printed book and this e-book,
but make no expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or arising out
of the use of the information or programs contained herein.

DISCOUNTS AND SITE LICENSES: The publisher offers discounted prices on this e-book when pur-
chased with its corresponding printed book or with other e-books by Scott Meyers. The publisher also
offers site licenses for these e-books (not available in some countries). For more information, please
visit: www.ScottMeyers-EBooks.com or www.informit.com/aw.

Copyright © 2008 by Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

E-book ISBN 13: 978-0-321-51581-0
E-book ISBN 10: 0-321-51581-1

First e-book release, July 2008 (essentially identical to the 25th Paper Printing).

From the Library of Yuri Khan

http://www.ScottMeyers-EBooks.com
http://www.informit.com/aw

ptg

For Clancy,
my favorite enemy within.

From the Library of Yuri Khan

ptg

From the Library of Yuri Khan

ptg

Contents

Acknowledgments xi

Introduction 1

Basics 9

Item 1: Distinguish between pointers and references. 9

Item 2: Prefer C++-style casts. 12

Item 3: Never treat arrays polymorphically. 16

Item 4: Avoid gratuitous default constructors. 19

Operators 24

Item 5: Be wary of user-defined conversion functions. 24

Item 6: Distinguish between prefix and postfix forms of
increment and decrement operators. 31

Item 7: Never overload &&, ||, or ,. 35

Item 8: Understand the different meanings of new
and delete. 38

Exceptions 44

Item 9: Use destructors to prevent resource leaks. 45

Item 10: Prevent resource leaks in constructors. 50

Item 11: Prevent exceptions from leaving destructors. 58

Item 12: Understand how throwing an exception differs from
passing a parameter or calling a virtual function. 61

Item 13: Catch exceptions by reference. 68

Item 14: Use exception specifications judiciously. 72

Item 15: Understand the costs of exception handling. 78

From the Library of Yuri Khan

ptg

x Contents

Efficiency 81

Item 16: Remember the 80-20 rule. 82

Item 17: Consider using lazy evaluation. 85

Item 18: Amortize the cost of expected computations. 93

Item 19: Understand the origin of temporary objects. 98

Item 20: Facilitate the return value optimization. 101

Item 21: Overload to avoid implicit type conversions. 105

Item 22: Consider using op= instead of stand-alone op. 107

Item 23: Consider alternative libraries. 110

Item 24: Understand the costs of virtual functions, multiple
inheritance, virtual base classes, and RTTI. 113

Techniques 123

Item 25: Virtualizing constructors and non-member
functions. 123

Item 26: Limiting the number of objects of a class. 130

Item 27: Requiring or prohibiting heap-based objects. 145

Item 28: Smart pointers. 159

Item 29: Reference counting. 183

Item 30: Proxy classes. 213

Item 31: Making functions virtual with respect to more
than one object. 228

Miscellany 252

Item 32: Program in the future tense. 252

Item 33: Make non-leaf classes abstract. 258

Item 34: Understand how to combine C++ and C in the
same program. 270

Item 35: Familiarize yourself with the language standard. 277

Recommended Reading 285

An auto_ptr Implementation 291

General Index 295

Index of Example Classes, Functions, and Templates 313

From the Library of Yuri Khan

ptg
Acknowledgments

A great number of people helped bring this book into existence. Some
contributed ideas for technical topics, some helped with the process of
producing the book, and some just made life more fun while I was
working on it.

When the number of contributors to a book is large, it is not uncom-
mon to dispense with individual acknowledgments in favor of a ge-
neric “Contributors to this book are too numerous to mention.” I
prefer to follow the expansive lead of John L. Hennessy and David A.
Patterson in Computer Architecture: A Quantitative Approach (Morgan
Kaufmann, first edition 1990). In addition to motivating the compre-
hensive acknowledgments that follow, their book provides hard data
for the 90-10 rule, which I refer to in Item 16.

The Items

With the exception of direct quotations, all the words in this book are
mine. However, many of the ideas I discuss came from others. I have
done my best to keep track of who contributed what, but I know I have
included information from sources I now fail to recall, foremost among
them many posters to the Usenet newsgroups comp.lang.c++ and
comp.std.c++.

Many ideas in the C++ community have been developed independently
by many people. In what follows, I note only where I was exposed to
particular ideas, not necessarily where those ideas originated.

Brian Kernighan suggested the use of macros to approximate the syn-
tax of the new C++ casting operators I describe in Item 2.

In Item 3, my warning about deleting an array of derived class objects
through a base class pointer is based on material in Dan Saks’ “Got-
chas” talk, which he’s given at several conferences and trade shows.
From the Library of Yuri Khan

http://www.amazon.com/gp/product/0123704901?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0123704901

ptg

xii Acknowledgments
In Item 5, the proxy class technique for preventing unwanted applica-
tion of single-argument constructors is based on material in Andrew
Koenig's column in the January 1994 C++ Report.

James Kanze made a posting to comp.lang.c++ on implementing
postfix increment and decrement operators via the corresponding pre-
fix functions; I use his technique in Item 6.

David Cok, writing me about material I covered in Effective C++,
brought to my attention the distinction between operator new and the
new operator that is the crux of Item 8. Even after reading his letter, I
didn’t really understand the distinction, but without his initial prod-
ding, I probably still wouldn’t.

The notion of using destructors to prevent resource leaks (used in
Item 9) comes from section 15.3 of Margaret A. Ellis’ and Bjarne
Stroustrup’s The Annotated C++ Reference Manual (see page 285).
There the technique is called resource acquisition is initialization. Tom
Cargill suggested I shift the focus of the approach from resource acqui-
sition to resource release.

Some of my discussion in Item 11 was inspired by material in Chapter
4 of Taligent’s Guide to Designing Programs (Addison-Wesley, 1994).

My description of over-eager memory allocation for the DynArray class
in Item 18 is based on Tom Cargill’s article, “A Dynamic vector is
harder than it looks,” in the June 1992 C++ Report. A more sophisti-
cated design for a dynamic array class can be found in Cargill’s follow-
up column in the January 1994 C++ Report.

Item 21 was inspired by Brian Kernighan’s paper, “An AWK to C++
Translator,” at the 1991 USENIX C++ Conference. His use of over-
loaded operators (sixty-seven of them!) to handle mixed-type arith-
metic operations, though designed to solve a problem unrelated to the
one I explore in Item 21, led me to consider multiple overloadings as a
solution to the problem of temporary creation.

In Item 26, my design of a template class for counting objects is based
on a posting to comp.lang.c++ by Jamshid Afshar.

The idea of a mixin class to keep track of pointers from operator new
(see Item 27) is based on a suggestion by Don Box. Steve Clamage
made the idea practical by explaining how dynamic_cast can be used
to find the beginning of memory for an object.

The discussion of smart pointers in Item 28 is based in part on Steven
Buroff’s and Rob Murray’s C++ Oracle column in the October 1993 C++
Report; on Daniel R. Edelson’s classic paper, “Smart Pointers: They’re
Smart, but They’re Not Pointers,” in the proceedings of the 1992
From the Library of Yuri Khan

http://www.amazon.com/gp/product/0201408880?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201408880

ptg

Acknowledgments xiii
USENIX C++ Conference; on section 15.9.1 of Bjarne Stroustrup’s The
Design and Evolution of C++ (see page 285); on Gregory Colvin’s “C++
Memory Management” class notes from C/C++ Solutions ’95; and on
Cay Horstmann’s column in the March-April 1993 issue of the C++ Re-
port. I developed some of the material myself, though. Really.

In Item 29, the use of a base class to store reference counts and of
smart pointers to manipulate those counts is based on Rob Murray’s
discussions of the same topics in sections 6.3.2 and 7.4.2, respec-
tively, of his C++ Strategies and Tactics (see page 286). The design for
adding reference counting to existing classes follows that presented by
Cay Horstmann in his March-April 1993 column in the C++ Report.

In Item 30, my discussion of lvalue contexts is based on comments in
Dan Saks’ column in the C User’s Journal (now the C/C++ Users Jour-
nal) of January 1993. The observation that non-proxy member func-
tions are unavailable when called through proxies comes from an
unpublished paper by Cay Horstmann.

The use of runtime type information to build vtbl-like arrays of func-
tion pointers (in Item 31) is based on ideas put forward by Bjarne
Stroustrup in postings to comp.lang.c++ and in section 13.8.1 of his
The Design and Evolution of C++ (see page 285).

The material in Item 33 is based on several of my C++ Report columns
in 1994 and 1995. Those columns, in turn, included comments I re-
ceived from Klaus Kreft about how to use dynamic_cast to implement
a virtual operator= that detects arguments of the wrong type.

Much of the material in Item 34 was motivated by Steve Clamage’s ar-
ticle, “Linking C++ with other languages,” in the May 1992 C++ Re-
port. In that same Item, my treatment of the problems caused by
functions like strdup was motivated by an anonymous reviewer.

The Book

Reviewing draft copies of a book is hard — and vitally important —
work. I am grateful that so many people were willing to invest their
time and energy on my behalf. I am especially grateful to Jill Huchital,
Tim Johnson, Brian Kernighan, Eric Nagler, and Chris Van Wyk, as
they read the book (or large portions of it) more than once. In addition
to these gluttons for punishment, complete drafts of the manuscript
were read by Katrina Avery, Don Box, Steve Burkett, Tom Cargill,
Tony Davis, Carolyn Duby, Bruce Eckel, Read Fleming, Cay Horst-
mann, James Kanze, Russ Paielli, Steve Rosenthal, Robin Rowe, Dan
Saks, Chris Sells, Webb Stacy, Dave Swift, Steve Vinoski, and Fred
Wild. Partial drafts were reviewed by Bob Beauchaine, Gerd Hoeren,
From the Library of Yuri Khan

ptg

xiv Acknowledgments
Jeff Jackson, and Nancy L. Urbano. Each of these reviewers made
comments that greatly improved the accuracy, utility, and presenta-
tion of the material you find here.

Once the book came out, I received corrections and suggestions from
many people: Luis Kida, John Potter, Tim Uttormark, Mike Fulkerson,
Dan Saks, Wolfgang Glunz, Clovis Tondo, Michael Loftus, Liz Hanks, Wil
Evers, Stefan Kuhlins, Jim McCracken, Alan Duchan, John Jacobsma,
Ramesh Nagabushnam, Ed Willink, Kirk Swenson, Jack Reeves, Doug
Schmidt, Tim Buchowski, Paul Chisholm, Andrew Klein, Eric Nagler,
Jeffrey Smith, Sam Bent, Oleg Shteynbuk, Anton Doblmaier, Ulf
Michaelis, Sekhar Muddana, Michael Baker, Yechiel Kimchi, David Pap-
urt, Ian Haggard, Robert Schwartz, David Halpin, Graham Mark, David
Barrett, Damian Kanarek, Ron Coutts, Lance Whitesel, Jon Lachelt,
Cheryl Ferguson, Munir Mahmood, Klaus-Georg Adams, David Goh,
Chris Morley, Rainer Baumschlager, Christopher Tavares, Brian Ker-
nighan, Charles Green, Mark Rodgers, Bobby Schmidt, Sivaramakrish-
nan J., Eric Anderson, Phil Brabbin, Feliks Kluzniak, Evan McLean,
Kurt Miller, Niels Dekker, Balog Pal, Dean Stanton, William Mattison,
Chulsu Park, Pankaj Datta, John Newell, Ani Taggu, Christopher
Creutzi, Chris Wineinger, Alexander Bogdanchikov, Michael Tegtmeyer,
Aharon Robbins, Davide Gennaro, Adrian Spermezan, Matthias Hof-
mann, Chang Chen, John Wismar, Mark Symonds, Thomas Kim, Ita
Ryan, Rice Yeh, and Colas Schretter. Their suggestions allowed me to
improve More Effective C++ in updated printings (such as this one), and I
greatly appreciate their help.

During preparation of this book, I faced many questions about the
emerging ISO/ANSI standard for C++, and I am grateful to Steve
Clamage and Dan Saks for taking the time to respond to my incessant
email queries.

John Max Skaller and Steve Rumsby conspired to get me the HTML for
the draft ANSI C++ standard before it was widely available. Vivian Neou
pointed me to the Netscape WWW browser as a stand-alone HTML
viewer under (16 bit) Microsoft Windows, and I am deeply grateful to the
folks at Netscape Communications for making their fine viewer freely
available on such a pathetic excuse for an operating system.

Bryan Hobbs and Hachemi Zenad generously arranged to get me a
copy of the internal engineering version of the MetaWare C++ compiler
so I could check the code in this book using the latest features of the
language. Cay Horstmann helped me get the compiler up and running
in the very foreign world of DOS and DOS extenders. Borland provided
a beta copy of their most advanced compiler, and Eric Nagler and
Chris Sells provided invaluable help in testing code for me on compil-
ers to which I had no access.
From the Library of Yuri Khan

ptg

Acknowledgments xv
Without the staff at the Corporate and Professional Publishing Divi-
sion of Addison-Wesley, there would be no book, and I am indebted to
Kim Dawley, Lana Langlois, Simone Payment, Marty Rabinowitz,
Pradeepa Siva, John Wait, and the rest of the staff for their encourage-
ment, patience, and help with the production of this work.

Chris Guzikowski helped draft the back cover copy for this book, and
Tim Johnson stole time from his research on low-temperature physics
to critique later versions of that text.

Tom Cargill graciously agreed to make his C++ Report article on excep-
tions (see page 287) available at the Addison-Wesley Internet site.

The People

Kathy Reed was responsible for my introduction to programming;
surely she didn’t deserve to have to put up with a kid like me. Donald
French had faith in my ability to develop and present C++ teaching
materials when I had no track record. He also introduced me to John
Wait, my editor at Addison-Wesley, an act for which I will always be
grateful. The triumvirate at Beaver Ridge — Jayni Besaw, Lorri Fields,
and Beth McKee — provided untold entertainment on my breaks as I
worked on the book.

My wife, Nancy L. Urbano, put up with me and put up with me and
put up with me as I worked on the book, continued to work on the
book, and kept working on the book. How many times did she hear me
say we’d do something after the book was done? Now the book is
done, and we will do those things. She amazes me. I love her.

Finally, I must acknowledge our puppy, Persephone, whose existence
changed our world forever. Without her, this book would have been
finished both sooner and with less sleep deprivation, but also with
substantially less comic relief.
From the Library of Yuri Khan

ptg

From the Library of Yuri Khan

ptg
Introduction

IntroductionThese are heady days for C++ programmers. Commercially available
less than a decade, C++ has nevertheless emerged as the language of
choice for systems programming on nearly all major computing plat-
forms. Companies and individuals with challenging programming
problems increasingly embrace the language, and the question faced
by those who do not use C++ is often when they will start, not if. Stan-
dardization of C++ is complete, and the breadth and scope of the ac-
companying library — which both dwarfs and subsumes that of C —
makes it possible to write rich, complex programs without sacrificing
portability or implementing common algorithms and data structures
from scratch. C++ compilers continue to proliferate, the features they
offer continue to expand, and the quality of the code they generate con-
tinues to improve. Tools and environments for C++ development grow
ever more abundant, powerful, and robust. Commercial libraries all
but obviate the need to write code in many application areas.

As the language has matured and our experience with it has increased,
our needs for information about it have changed. In 1990, people
wanted to know what C++ was. By 1992, they wanted to know how to
make it work. Now C++ programmers ask higher-level questions: How
can I design my software so it will adapt to future demands? How can
I improve the efficiency of my code without compromising its correct-
ness or making it harder to use? How can I implement sophisticated
functionality not directly supported by the language?

In this book, I answer these questions and many others like them.

This book shows how to design and implement C++ software that is
more effective: more likely to behave correctly; more robust in the face
of exceptions; more efficient; more portable; makes better use of lan-
guage features; adapts to change more gracefully; works better in a
mixed-language environment; is easier to use correctly; is harder to
use incorrectly. In short, software that’s just better.
From the Library of Yuri Khan

ptg

2 Introduction
The material in this book is divided into 35 Items. Each Item summa-
rizes accumulated wisdom of the C++ programming community on a
particular topic. Most Items take the form of guidelines, and the expla-
nation accompanying each guideline describes why the guideline ex-
ists, what happens if you fail to follow it, and under what conditions it
may make sense to violate the guideline anyway.

Items fall into several categories. Some concern particular language
features, especially newer features with which you may have little ex-
perience. For example, Items 9 through 15 are devoted to exceptions.
Other Items explain how to combine the features of the language to
achieve higher-level goals. Items 25 through 31, for instance, describe
how to constrain the number or placement of objects, how to create
functions that act “virtual” on the type of more than one object, how to
create “smart pointers,” and more. Still other Items address broader
topics; Items 16 through 24 focus on efficiency. No matter what the
topic of a particular Item, each takes a no-nonsense approach to the
subject. In More Effective C++, you learn how to use C++ more effec-
tively. The descriptions of language features that make up the bulk of
most C++ texts are in this book mere background information.

An implication of this approach is that you should be familiar with C++
before reading this book. I take for granted that you understand
classes, protection levels, virtual and nonvirtual functions, etc., and I
assume you are acquainted with the concepts behind templates and
exceptions. At the same time, I don’t expect you to be a language ex-
pert, so when poking into lesser-known corners of C++, I always ex-
plain what’s going on.

The C++ in More Effective C++

The C++ I describe in this book is the language specified by the 1998
International Standard for C++. This means I may use a few features
your compilers don’t yet support. Don’t worry. The only “new” feature
I assume you have is templates, and templates are now almost univer-
sally available. I use exceptions, too, but that use is largely confined to
Items 9 through 15, which are specifically devoted to exceptions. If you
don’t have access to a compiler offering exceptions, that’s okay. It
won’t affect your ability to take advantage of the material in the other
parts of the book. Furthermore, you should read Items 9 through 15
even if you don’t have support for exceptions, because those items ex-
amine issues you need to understand in any case.

I recognize that just because the standardization committee blesses a
feature or endorses a practice, there’s no guarantee that the feature is
present in current compilers or the practice is applicable to existing
From the Library of Yuri Khan

ptg

Introduction 3
environments. When faced with a discrepancy between theory (what
the committee says) and practice (what actually works), I discuss both,
though my bias is toward things that work. Because I discuss both,
this book will aid you as your compilers approach conformance with
the standard. It will show you how to use existing constructs to ap-
proximate language features your compilers don’t yet support, and it
will guide you when you decide to transform workarounds into newly-
supported features.

Notice that I refer to your compilers — plural. Different compilers im-
plement varying approximations to the standard, so I encourage you to
develop your code under at least two compilers. Doing so will help you
avoid inadvertent dependence on one vendor’s proprietary language
extension or its misinterpretation of the standard. It will also help keep
you away from the bleeding edge of compiler technology, e.g., from new
features supported by only one vendor. Such features are often poorly
implemented (buggy or slow — frequently both), and upon their intro-
duction, the C++ community lacks experience to advise you in their
proper use. Blazing trails can be exciting, but when your goal is pro-
ducing reliable code, it’s often best to let others test the waters before
jumping in.

There are two constructs you’ll see in this book that may not be famil-
iar to you. Both are relatively recent language extensions. Some com-
pilers support them, but if your compilers don’t, you can easily
approximate them with features you do have.

The first construct is the bool type, which has as its values the key-
words true and false. If your compilers haven’t implemented bool,
there are two ways to approximate it. One is to use a global enum:

enum bool { false, true };

This allows you to overload functions on the basis of whether they take
a bool or an int, but it has the disadvantage that the built-in compar-
ison operators (i.e., ==, <, >=, etc.) still return ints. As a result, code
like the following will not behave the way it’s supposed to:

void f(int);
void f(bool);

int x, y;
...
f(x < y); // calls f(int), but it

// should call f(bool)

The enum approximation may thus lead to code whose behavior
changes when you submit it to a compiler that truly supports bool.
From the Library of Yuri Khan

ptg

4 Introduction
An alternative is to use a typedef for bool and constant objects for
true and false:

typedef int bool;

const bool false = 0;
const bool true = 1;

This is compatible with the traditional semantics of C and C++, and the
behavior of programs using this approximation won’t change when
they’re ported to bool-supporting compilers. The drawback is that you
can’t differentiate between bool and int when overloading functions.
Both approximations are reasonable. Choose the one that best fits
your circumstances.

The second new construct is really four constructs, the casting forms
static_cast, const_cast, dynamic_cast, and reinterpret_cast.
If you’re not familiar with these casts, you’ll want to turn to Item 2 and
read all about them. Not only do they do more than the C-style casts
they replace, they do it better. I use these new casting forms whenever
I need to perform a cast in this book.

There is more to C++ than the language itself. There is also the stan-
dard library. Where possible, I employ the standard string type in-
stead of using raw char* pointers, and I encourage you to do the
same. string objects are no more difficult to manipulate than char*-
based strings, and they relieve you of most memory-management con-
cerns. Furthermore, string objects are less susceptible to memory
leaks if an exception is thrown (see Items 9 and 10). A well-imple-
mented string type can hold its own in an efficiency contest with its
char* equivalent, and it may even do better. (For insight into how this
could be, see Item 29.) If you don’t have access to an implementation
of the standard string type, you almost certainly have access to some
string-like class. Use it. Just about anything is preferable to raw
char*s.

I use data structures from the standard library whenever I can. Such
data structures are drawn from the Standard Template Library (the
“STL” — see Item 35). The STL includes bitsets, vectors, lists, queues,
stacks, maps, sets, and more, and you should prefer these standard-
ized data structures to the ad hoc equivalents you might otherwise be
tempted to write. Your compilers may not have the STL bundled in, but
don’t let that keep you from using it. Thanks to Silicon Graphics, you
can download a free copy that works with many compilers from the
SGI STL web site: http://www.sgi.com/tech/stl/.
From the Library of Yuri Khan

http://www.sgi.com/tech/stl/

ptg

Introduction 5
If you currently use a library of algorithms and data structures and are
happy with it, there’s no need to switch to the STL just because it’s
“standard.” However, if you have a choice between using an STL com-
ponent or writing your own code from scratch, you should lean toward
using the STL. Remember code reuse? STL (and the rest of the stan-
dard library) has lots of code that is very much worth reusing.

Conventions and Terminology

Any time I mention inheritance in this book, I mean public inheritance.
If I don’t mean public inheritance, I’ll say so explicitly. When drawing
inheritance hierarchies, I depict base-derived relationships by drawing
arrows from derived classes to base classes. For example, here is a hi-
erarchy from Item 31:

This notation is the reverse of the convention I employed in the first
(but not the second) edition of Effective C++. I’m now convinced that
most C++ practitioners draw inheritance arrows from derived to base
classes, and I am happy to follow suit. Within such diagrams, abstract
classes (e.g., GameObject) are shaded and concrete classes (e.g.,
SpaceShip) are unshaded.

Inheritance gives rise to pointers and references with two different
types, a static type and a dynamic type. The static type of a pointer or
reference is its declared type. The dynamic type is determined by the
type of object it actually refers to. Here are some examples based on
the classes above:

GameObject *pgo = // static type of pgo is
new SpaceShip; // GameObject*, dynamic

// type is SpaceShip*

Asteroid *pa = new Asteroid; // static type of pa is
// Asteroid*. So is its
// dynamic type

pgo = pa; // static type of pgo is
// still (and always)
// GameObject*. Its
// dynamic type is now
// Asteroid*

GameObject

SpaceShip SpaceStation Asteroid
From the Library of Yuri Khan

ptg

6 Introduction
GameObject& rgo = *pa; // static type of rgo is
// GameObject, dynamic
// type is Asteroid

These examples also demonstrate a naming convention I like. pgo is a
pointer-to-GameObject; pa is a pointer-to-Asteroid; rgo is a refer-
ence-to-GameObject. I often concoct pointer and reference names in
this fashion.

Two of my favorite parameter names are lhs and rhs, abbreviations
for “left-hand side” and “right-hand side,” respectively. To understand
the rationale behind these names, consider a class for representing ra-
tional numbers:

class Rational { ... };

If I wanted a function to compare pairs of Rational objects, I’d declare
it like this:

bool operator==(const Rational& lhs, const Rational& rhs);

That would let me write this kind of code:

Rational r1, r2;

...

if (r1 == r2) ...

Within the call to operator==, r1 appears on the left-hand side of the
“==” and is bound to lhs, while r2 appears on the right-hand side of
the “==” and is bound to rhs.

Other abbreviations I employ include ctor for “constructor,” dtor for
“destructor,” and RTTI for C++’s support for runtime type identification
(of which dynamic_cast is the most commonly used component).

When you allocate memory and fail to free it, you have a memory leak.
Memory leaks arise in both C and C++, but in C++, memory leaks leak
more than just memory. That’s because C++ automatically calls con-
structors when objects are created, and constructors may themselves
allocate resources. For example, consider this code:

class Widget { ... }; // some class — it doesn’t
// matter what it is

Widget *pw = new Widget; // dynamically allocate a
// Widget object

... // assume pw is never
// deleted

This code leaks memory, because the Widget pointed to by pw is never
deleted. However, if the Widget constructor allocates additional re-
From the Library of Yuri Khan

ptg

Introduction 7
sources that are to be released when the Widget is destroyed (such as
file descriptors, semaphores, window handles, database locks, etc.),
those resources are lost just as surely as the memory is. To emphasize
that memory leaks in C++ often leak other resources, too, I usually
speak of resource leaks in this book rather than memory leaks.

You won’t see many inline functions in this book. That’s not because I
dislike inlining. Far from it, I believe that inline functions are an im-
portant feature of C++. However, the criteria for determining whether a
function should be inlined can be complex, subtle, and platform-de-
pendent. As a result, I avoid inlining unless there is a point about in-
lining I wish to make. When you see a non-inline function in More
Effective C++, that doesn’t mean I think it would be a bad idea to de-
clare the function inline, it just means the decision to inline that
function is independent of the material I’m examining at that point in
the book.

A few C++ features have been deprecated by the standardization com-
mittee. Such features are slated for eventual removal from the lan-
guage, because newer features have been added that do what the
deprecated features do, but do it better. In this book, I identify depre-
cated constructs and explain what features replace them. You should
try to avoid deprecated features where you can, but there’s no reason
to be overly concerned about their use. In the interest of preserving
backward compatibility for their customers, compiler vendors are
likely to support deprecated features for many years.

A client is somebody (a programmer) or something (a class or function,
typically) that uses the code you write. For example, if you write a Date
class (for representing birthdays, deadlines, when the Second Coming
occurs, etc.), anybody using that class is your client. Furthermore, any
sections of code that use the Date class are your clients as well. Cli-
ents are important. In fact, clients are the name of the game! If nobody
uses the software you write, why write it? You will find I worry a lot
about making things easier for clients, often at the expense of making
things more difficult for you, because good software is “clientcentric”
— it revolves around clients. If this strikes you as unreasonably phil-
anthropic, view it instead through a lens of self-interest. Do you ever
use the classes or functions you write? If so, you’re your own client, so
making things easier for clients in general also makes them easier for
you.

When discussing class or function templates and the classes or func-
tions generated from them, I reserve the right to be sloppy about the
difference between the templates and their instantiations. For exam-
ple, if Array is a class template taking a type parameter T, I may refer
to a particular instantiation of the template as an Array, even though
From the Library of Yuri Khan

ptg

8 Introduction
Array<T> is really the name of the class. Similarly, if swap is a func-
tion template taking a type parameter T, I may refer to an instantiation
as swap instead of swap<T>. In cases where this kind of shorthand
might be unclear, I include template parameters when referring to tem-
plate instantiations.

Reporting Bugs, Making Suggestions, Getting Book Updates

I have tried to make this book as accurate, readable, and useful as
possible, but I know there is room for improvement. If you find an error
of any kind — technical, grammatical, typographical, whatever —
please tell me about it. I will try to correct the mistake in future print-
ings of the book, and if you are the first person to report it, I will gladly
add your name to the book’s acknowledgments. If you have other sug-
gestions for improvement, I welcome those, too.

I continue to collect guidelines for effective programming in C++. If you
have ideas for new guidelines, I’d be delighted if you’d share them with
me. Send your guidelines, your comments, your criticisms, and your
bug reports to:

Scott Meyers
c/o Editor-in-Chief, Corporate and Professional Publishing
Addison-Wesley Publishing Company
1 Jacob Way
Reading, MA 01867
U. S. A.

Alternatively, you may send electronic mail to mec++@aristeia.com.

I maintain a list of changes to this book since its first printing, includ-
ing bug-fixes, clarifications, and technical updates. This list, along
with other book-related information, is available from Addison-Wesley
at World Wide Web URL http://www.awl.com/cp/mec++.html. It is
also available via anonymous FTP from ftp.awl.com in the directory
cp/mec++. If you would like a copy of the list of changes to this book,
but you lack access to the Internet, please send a request to one of the
addresses above, and I will see that the list is sent to you.

If you’d like to be notified when I make changes to this book, consider
joining my mailing list. For details, consult http://www.aristeia.com/
MailingList/index.html.

Enough preliminaries. On with the show!
From the Library of Yuri Khan

http://www.awl.com/cp/mec++.html
http://www.aristeia.com/MailingList/index.html
http://www.aristeia.com/MailingList/index.html
mailto:mec++@aristeia.com
ftp://ftp.awl.com

ptg
Basics

BasicsAh, the basics. Pointers, references, casts, arrays, constructors — you
can’t get much more basic than that. All but the simplest C++ pro-
grams use most of these features, and many programs use them all.

In spite of our familiarity with these parts of the language, sometimes
they can still surprise us. This is especially true for programmers mak-
ing the transition from C to C++, because the concepts behind refer-
ences, dynamic casts, default constructors, and other non-C features
are usually a little murky.

This chapter describes the differences between pointers and references
and offers guidance on when to use each. It introduces the new C++
syntax for casts and explains why the new casts are superior to the C-
style casts they replace. It examines the C notion of arrays and the C++
notion of polymorphism, and it describes why mixing the two is an idea
whose time will never come. Finally, it considers the pros and cons of
default constructors and suggests ways to work around language re-
strictions that encourage you to have one when none makes sense.

By heeding the advice in the items that follow, you’ll make progress to-
ward a worthy goal: producing software that expresses your design in-
tentions clearly and correctly.

Item 1: Distinguish between pointers and references.
Pointers versus ReferencesPointers and references look different enough (pointers use the “*” and
“->” operators, references use “.”), but they seem to do similar things.
Both pointers and references let you refer to other objects indirectly.
How, then, do you decide when to use one and not the other?

First, recognize that there is no such thing as a null reference. A refer-
ence must always refer to some object. As a result, if you have a vari-
able whose purpose is to refer to another object, but it is possible that
there might not be an object to refer to, you should make the variable
From the Library of Yuri Khan

ptg

10 Item 1
a pointer, because then you can set it to null. On the other hand, if the
variable must always refer to an object, i.e., if your design does not
allow for the possibility that the variable is null, you should probably
make the variable a reference.

“But wait,” you wonder, “what about underhandedness like this?”

char *pc = 0; // set pointer to null

char& rc = *pc; // make reference refer to
// dereferenced null pointer

Well, this is evil, pure and simple. The results are undefined (compilers
can generate output to do anything they like), and people who write
this kind of code should be shunned until they agree to cease and de-
sist. If you have to worry about things like this in your software, you’re
probably best off avoiding references entirely. Either that or finding a
better class of programmers to work with. We’ll henceforth ignore the
possibility that a reference can be “null.”

Because a reference must refer to an object, C++ requires that refer-
ences be initialized:

string& rs; // error! References must
// be initialized

string s("xyzzy");

string& rs = s; // okay, rs refers to s

Pointers are subject to no such restriction:

string *ps; // uninitialized pointer:
// valid but risky

The fact that there is no such thing as a null reference implies that it
can be more efficient to use references than to use pointers. That’s be-
cause there’s no need to test the validity of a reference before using it:

void printDouble(const double& rd)
{

cout << rd; // no need to test rd; it
} // must refer to a double

Pointers, on the other hand, should generally be tested against null:

void printDouble(const double *pd)
{
if (pd) { // check for null pointer
cout << *pd;

}
}

From the Library of Yuri Khan

ptg

Pointers versus References 11
Another important difference between pointers and references is that
pointers may be reassigned to refer to different objects. A reference,
however, always refers to the object with which it is initialized:

string s1("Nancy");
string s2("Clancy");

string& rs = s1; // rs refers to s1

string *ps = &s1; // ps points to s1

rs = s2; // rs still refers to s1,
// but s1’s value is now
// "Clancy"

ps = &s2; // ps now points to s2;
// s1 is unchanged

In general, you should use a pointer whenever you need to take into
account the possibility that there’s nothing to refer to (in which case
you can set the pointer to null) or whenever you need to be able to refer
to different things at different times (in which case you can change
where the pointer points). You should use a reference whenever you
know there will always be an object to refer to and you also know that
once you’re referring to that object, you’ll never want to refer to any-
thing else.

There is one other situation in which you should use a reference, and
that’s when you’re implementing certain operators. The most common
example is operator[]. This operator typically needs to return some-
thing that can be used as the target of an assignment:

vector<int> v(10); // create an int vector of size 10;
// vector is a template in the
// standard C++ library (see Item 35)

v[5] = 10; // the target of this assignment is
// the return value of operator[]

If operator[] returned a pointer, this last statement would have to be
written this way:

*v[5] = 10;

But this makes it look like v is a vector of pointers, which it’s not. For
this reason, you’ll almost always want operator[] to return a refer-
ence. (For an interesting exception to this rule, see Item 30.)

References, then, are the feature of choice when you know you have
something to refer to and when you’ll never want to refer to anything
else. They’re also appropriate when implementing operators whose
syntactic requirements make the use of pointers undesirable. In all
other cases, stick with pointers.
From the Library of Yuri Khan

ptg

12 Item 2
Item 2: Prefer C++-style casts.
New Casting OperatorsConsider the lowly cast. Nearly as much a programming pariah as the
goto, it nonetheless endures, because when worse comes to worst and
push comes to shove, casts can be necessary. Casts are especially nec-
essary when worse comes to worst and push comes to shove.

Still, C-style casts are not all they might be. For one thing, they’re
rather crude beasts, letting you cast pretty much any type to pretty
much any other type. It would be nice to be able to specify more pre-
cisely the purpose of each cast. There is a great difference, for example,
between a cast that changes a pointer-to-const-object into a pointer-
to-non-const-object (i.e., a cast that changes only the constness of an
object) and a cast that changes a pointer-to-base-class-object into a
pointer-to-derived-class-object (i.e., a cast that completely changes an
object’s type). Traditional C-style casts make no such distinctions.
(This is hardly a surprise. C-style casts were designed for C, not C++.)

A second problem with casts is that they are hard to find. Syntacti-
cally, casts consist of little more than a pair of parentheses and an
identifier, and parentheses and identifiers are used everywhere in C++.
This makes it tough to answer even the most basic cast-related ques-
tions, questions like, “Are any casts used in this program?” That’s be-
cause human readers are likely to overlook casts, and tools like grep
cannot distinguish them from non-cast constructs that are syntacti-
cally similar.

C++ addresses the shortcomings of C-style casts by introducing four
new cast operators, static_cast, const_cast, dynamic_cast, and
reinterpret_cast. For most purposes, all you need to know about
these operators is that what you are accustomed to writing like this,

(type) expression

you should now generally write like this:

static_cast<type>(expression)

For example, suppose you’d like to cast an int to a double to force an
expression involving ints to yield a floating point value. Using C-style
casts, you could do it like this:

int firstNumber, secondNumber;

...

double result = ((double)firstNumber)/secondNumber;

With the new casts, you’d write it this way:

double result = static_cast<double>(firstNumber)/secondNumber;
From the Library of Yuri Khan

ptg

New Casting Operators 13
Now there’s a cast that’s easy to see, both for humans and for pro-
grams.

static_cast has basically the same power and meaning as the gen-
eral-purpose C-style cast. It also has the same kind of restrictions. For
example, you can’t cast a struct into an int or a double into a
pointer using static_cast any more than you can with a C-style cast.
Furthermore, static_cast can’t remove constness from an expres-
sion, because another new cast, const_cast, is designed specifically
to do that.

The other new C++ casts are used for more restricted purposes.
const_cast is used to cast away the constness or volatileness of
an expression. By using a const_cast, you emphasize (to both hu-
mans and compilers) that the only thing you want to change through
the cast is the constness or volatileness of something. This mean-
ing is enforced by compilers. If you try to employ const_cast for any-
thing other than modifying the constness or volatileness of an
expression, your cast will be rejected. Here are some examples:

class Widget { ... };
class SpecialWidget: public Widget { ... };

void update(SpecialWidget *psw);

SpecialWidget sw; // sw is a non-const object,
const SpecialWidget& csw = sw; // but csw is a reference to

// it as a const object

update(&csw); // error! can’t pass a const
// SpecialWidget* to a function
// taking a SpecialWidget*

update(const_cast<SpecialWidget*>(&csw));
// fine, the constness of &csw is
// explicitly cast away (and
// csw — and sw — may now be
// changed inside update)

update((SpecialWidget*)&csw);
// same as above, but using a
// harder-to-recognize C-style cast

Widget *pw = new SpecialWidget;

update(pw); // error! pw’s type is Widget*, but
// update takes a SpecialWidget*

update(const_cast<SpecialWidget*>(pw));
// error! const_cast can be used only
// to affect constness or volatileness,
// never to cast down the inheritance
// hierarchy

By far the most common use of const_cast is to cast away the con-
stness of an object.
From the Library of Yuri Khan

ptg

14 Item 2
The second specialized type of cast, dynamic_cast, is used to perform
safe casts down or across an inheritance hierarchy. That is, you use
dynamic_cast to cast pointers or references to base class objects into
pointers or references to derived or sibling base class objects in such a
way that you can determine whether the casts succeeded.† Failed casts
are indicated by a null pointer (when casting pointers) or an exception
(when casting references):

Widget *pw;

...

update(dynamic_cast<SpecialWidget*>(pw));
// fine, passes to update a pointer
// to the SpecialWidget pw points to
// if pw really points to one,
// otherwise passes the null pointer

void updateViaRef(SpecialWidget& rsw);

updateViaRef(dynamic_cast<SpecialWidget&>(*pw));
// fine, passes to updateViaRef the
// SpecialWidget pw points to if pw
// really points to one, otherwise
// throws an exception

dynamic_casts are restricted to helping you navigate inheritance hi-
erarchies. They cannot be applied to types lacking virtual functions
(see also Item 24), nor can they cast away constness:

int firstNumber, secondNumber;
...
double result = dynamic_cast<double>(firstNumber)/secondNumber;

// error! int has no virtual functions

const SpecialWidget sw;
...
update(dynamic_cast<SpecialWidget*>(&sw));

// error! dynamic_cast can’t cast
// away constness

If you want to perform a cast on a type where inheritance is not in-
volved, you probably want a static_cast. To cast constness away,
you always want a const_cast.

The last of the four new casting forms is reinterpret_cast. This op-
erator is used to perform type conversions whose result is nearly al-
ways implementation-defined. As a result, reinterpret_casts are
rarely portable.

† A second, unrelated use of dynamic_cast is to find the beginning of the memory oc-
cupied by an object. We explore that capability in Item 27.
From the Library of Yuri Khan

ptg

New Casting Operators 15
The most common use of reinterpret_cast is to cast between func-
tion pointer types. For example, suppose you have an array of pointers
to functions of a particular type:

typedef void (*FuncPtr)(); // a FuncPtr is a pointer
// to a function taking no
// args and returning void

FuncPtr funcPtrArray[10]; // funcPtrArray is an array
// of 10 FuncPtrs

Let us suppose you wish (for some unfathomable reason) to place a
pointer to the following function into funcPtrArray:

int doSomething();

You can’t do what you want without a cast, because doSomething has
the wrong type for funcPtrArray. The functions in funcPtrArray re-
turn void, but doSomething returns an int:

funcPtrArray[0] = &doSomething; // error! type mismatch

A reinterpret_cast lets you force compilers to see things your way:

funcPtrArray[0] = // this compiles
reinterpret_cast<FuncPtr>(&doSomething);

Casting function pointers is not portable (C++ offers no guarantee that
all function pointers are represented the same way), and in some cases
such casts yield incorrect results (see Item 31), so you should avoid
casting function pointers unless your back’s to the wall and a knife’s
at your throat. A sharp knife. A very sharp knife.

If your compilers lack support for the new casting forms, you can use
traditional casts in place of static_cast, const_cast, and
reinterpret_cast. Furthermore, you can use macros to approxi-
mate the new syntax:

#define static_cast(TYPE,EXPR) ((TYPE)(EXPR))
#define const_cast(TYPE,EXPR) ((TYPE)(EXPR))
#define reinterpret_cast(TYPE,EXPR) ((TYPE)(EXPR))

You’d use the approximations like this:

double result = static_cast(double, firstNumber)/secondNumber;

update(const_cast(SpecialWidget*, &sw));

funcPtrArray[0] = reinterpret_cast(FuncPtr, &doSomething);

These approximations won’t be as safe as the real things, of course,
but they will simplify the process of upgrading your code when your
compilers support the new casts.
From the Library of Yuri Khan

ptg

16 Item 3
There is no easy way to emulate the behavior of a dynamic_cast, but
many libraries provide functions to perform safe inheritance-based
casts for you. If you lack such functions and you must perform this
type of cast, you can fall back on C-style casts for those, too, but then
you forego the ability to tell if the casts fail. Needless to say, you can
define a macro to look like dynamic_cast, just as you can for the other
casts:

#define dynamic_cast(TYPE,EXPR) ((TYPE)(EXPR))

Remember that this approximation is not performing a true
dynamic_cast; there is no way to tell if the cast fails.

I know, I know, the new casts are ugly and hard to type. If you find
them too unpleasant to look at, take solace in the knowledge that C-
style casts continue to be valid. However, what the new casts lack in
beauty they make up for in precision of meaning and easy recogniz-
ability. Programs that use the new casts are easier to parse (both for
humans and for tools), and they allow compilers to diagnose casting
errors that would otherwise go undetected. These are powerful argu-
ments for abandoning C-style casts, and there may also be a third:
perhaps making casts ugly and hard to type is a good thing.

Item 3: Never treat arrays polymorphically.
Arrays and PolymorphismOne of the most important features of inheritance is that you can ma-
nipulate derived class objects through pointers and references to base
class objects. Such pointers and references are said to behave polymor-
phically — as if they had multiple types. C++ also allows you to manip-
ulate arrays of derived class objects through base class pointers and
references. This is no feature at all, because it almost never works the
way you want it to.

For example, suppose you have a class BST (for binary search tree ob-
jects) and a second class, BalancedBST, that inherits from BST:

class BST { ... };

class BalancedBST: public BST { ... };

In a real program such classes would be templates, but that’s unim-
portant here, and adding all the template syntax just makes things
harder to read. For this discussion, we’ll assume BST and Bal-
ancedBST objects contain only ints.

Consider a function to print out the contents of each BST in an array
of BSTs:
From the Library of Yuri Khan

ptg

Arrays and Polymorphism 17
void printBSTArray(ostream& s,
const BST array[],
int numElements)

{
for (int i = 0; i < numElements; ++i) {
s << array[i]; // this assumes an

} // operator<< is defined
} // for BST objects

This will work fine when you pass it an array of BST objects:

BST BSTArray[10];

...

printBSTArray(cout, BSTArray, 10); // works fine

Consider, however, what happens when you pass printBSTArray an
array of BalancedBST objects:

BalancedBST bBSTArray[10];

...

printBSTArray(cout, bBSTArray, 10); // works fine?

Your compilers will accept this function call without complaint, but
look again at the loop for which they must generate code:

for (int i = 0; i < numElements; ++i) {
s << array[i];

}

Now, array[i] is really just shorthand for an expression involving
pointer arithmetic: it stands for *(array+i). We know that array is a
pointer to the beginning of the array, but how far away from the mem-
ory location pointed to by array is the memory location pointed to by
array+i? The distance between them is i*sizeof(an object in the
array), because there are i objects between array[0] and array[i].
In order for compilers to emit code that walks through the array cor-
rectly, they must be able to determine the size of the objects in the ar-
ray. This is easy for them to do. The parameter array is declared to be
of type array-of-BST, so each element of the array must be a BST, and
the distance between array and array+i must be i*sizeof(BST).

At least that’s how your compilers look at it. But if you’ve passed an
array of BalancedBST objects to printBSTArray, your compilers are
probably wrong. In that case, they’d assume each object in the array is
the size of a BST, but each object would actually be the size of a Bal-
ancedBST. Derived classes usually have more data members than their
base classes, so derived class objects are usually larger than base
class objects. We thus expect a BalancedBST object to be larger than a
From the Library of Yuri Khan

ptg

18 Item 3
BST object. If it is, the pointer arithmetic generated for printBSTArray
will be wrong for arrays of BalancedBST objects, and there’s no telling
what will happen when printBSTArray is invoked on a BalancedBST
array. Whatever does happen, it’s a good bet it won’t be pleasant.

The problem pops up in a different guise if you try to delete an array of
derived class objects through a base class pointer. Here’s one way you
might innocently attempt to do it:

// delete an array, but first log a message about its
// deletion
void deleteArray(ostream& logStream, BST array[])
{
logStream << "Deleting array at address "

<< static_cast<void*>(array) << ’\n’;

delete [] array;
}

BalancedBST *balTreeArray = // create a BalancedBST
new BalancedBST[50]; // array

...

deleteArray(cout, balTreeArray); // log its deletion

You can’t see it, but there’s pointer arithmetic going on here, too. When
an array is deleted, a destructor for each element of the array must be
called (see Item 8). When compilers see the statement

delete [] array;

they must generate code that does something like this:

// destruct the objects in *array in the inverse order
// in which they were constructed
for (int i = the number of elements in the array - 1;

i >= 0;
--i)

{
array[i].BST::~BST(); // call array[i]’s

} // destructor

Just as this kind of loop failed to work when you wrote it, it will fail to
work when your compilers write it, too. The language specification
says the result of deleting an array of derived class objects through a
base class pointer is undefined, but we know what that really means:
executing the code is almost certain to lead to grief. Polymorphism and
pointer arithmetic simply don’t mix. Array operations almost always
involve pointer arithmetic, so arrays and polymorphism don’t mix.

Note that you’re unlikely to make the mistake of treating an array poly-
morphically if you avoid having a concrete class (like BalancedBST) in-
From the Library of Yuri Khan

ptg

Default Constructors 19
herit from another concrete class (such as BST). As Item 33 explains,
designing your software so that concrete classes never inherit from one
another has many benefits. I encourage you to turn to Item 33 and
read all about them.

Item 4: Avoid gratuitous default constructors.
Default ConstructorsA default constructor (i.e., a constructor that can be called with no ar-
guments) is the C++ way of saying you can get something for nothing.
Constructors initialize objects, so default constructors initialize ob-
jects without any information from the place where the object is being
created. Sometimes this makes perfect sense. Objects that act like
numbers, for example, may reasonably be initialized to zero or to un-
defined values. Objects that act like pointers (see Item 28) may reason-
ably be initialized to null or to undefined values. Data structures like
linked lists, hash tables, maps, and the like may reasonably be initial-
ized to empty containers.

Not all objects fall into this category. For many objects, there is no rea-
sonable way to perform a complete initialization in the absence of out-
side information. For example, an object representing an entry in an
address book makes no sense unless the name of the thing being en-
tered is provided. In some companies, all equipment must be tagged
with a corporate ID number, and creating an object to model a piece of
equipment in such companies is nonsensical unless the appropriate
ID number is provided.

In a perfect world, classes in which objects could reasonably be cre-
ated from nothing would contain default constructors and classes in
which information was required for object construction would not.
Alas, ours is not the best of all possible worlds, so we must take addi-
tional concerns into account. In particular, if a class lacks a default
constructor, there are restrictions on how you can use that class.

Consider a class for company equipment in which the corporate ID
number of the equipment is a mandatory constructor argument:

class EquipmentPiece {
public:
EquipmentPiece(int IDNumber);
...

};

Because EquipmentPiece lacks a default constructor, its use may be
problematic in three contexts. The first is the creation of arrays. There
From the Library of Yuri Khan

ptg

20 Item 4
is, in general, no way to specify constructor arguments for objects in
arrays, so it is not usually possible to create arrays of Equipment-
Piece objects:

EquipmentPiece bestPieces[10]; // error! No way to call
// EquipmentPiece ctors

EquipmentPiece *bestPieces =
new EquipmentPiece[10]; // error! same problem

There are three ways to get around this restriction. A solution for non-
heap arrays is to provide the necessary arguments at the point where
the array is defined:

int ID1, ID2, ID3, ..., ID10; // variables to hold
// equipment ID numbers

...

EquipmentPiece bestPieces[] = { // fine, ctor arguments
EquipmentPiece(ID1), // are provided
EquipmentPiece(ID2),
EquipmentPiece(ID3),
...,
EquipmentPiece(ID10)

};

Unfortunately, there is no way to extend this strategy to heap arrays.

A more general approach is to use an array of pointers instead of an
array of objects:

typedef EquipmentPiece* PEP; // a PEP is a pointer to
// an EquipmentPiece

PEP bestPieces[10]; // fine, no ctors called

PEP *bestPieces = new PEP[10]; // also fine

Each pointer in the array can then be made to point to a different
EquipmentPiece object:

for (int i = 0; i < 10; ++i)
bestPieces[i] = new EquipmentPiece(ID Number);

There are two disadvantages to this approach. First, you have to re-
member to delete all the objects pointed to by the array. If you forget,
you have a resource leak. Second, the total amount of memory you
need increases, because you need the space for the pointers as well as
the space for the EquipmentPiece objects.

You can avoid the space penalty if you allocate the raw memory for the
array, then use “placement new” (see Item 8) to construct the Equip-
mentPiece objects in the memory:
From the Library of Yuri Khan

ptg

Default Constructors 21
// allocate enough raw memory for an array of 10
// EquipmentPiece objects; see Item 8 for details on
// the operator new[] function
void *rawMemory =
operator new[](10*sizeof(EquipmentPiece));

// make bestPieces point to it so it can be treated as an
// EquipmentPiece array
EquipmentPiece *bestPieces =
static_cast<EquipmentPiece*>(rawMemory);

// construct the EquipmentPiece objects in the memory
// using "placement new" (see Item 8)
for (int i = 0; i < 10; ++i)
new (bestPieces+i) EquipmentPiece(ID Number);

Notice that you still have to provide a constructor argument for each
EquipmentPiece object. This technique (as well as the array-of-point-
ers idea) allows you to create arrays of objects when a class lacks a de-
fault constructor; it doesn’t show you how to bypass required
constructor arguments. There is no way to do that. If there were, it
would defeat the purpose of constructors, which is to guarantee that
objects are initialized.

The downside to using placement new, aside from the fact that most
programmers are unfamiliar with it (which will make maintenance
more difficult), is that you must manually call destructors on the ob-
jects in the array when you want them to go out of existence, then you
must manually deallocate the raw memory by calling operator de-
lete[] (again, see Item 8):

// destruct the objects in bestPieces in the inverse
// order in which they were constructed
for (int i = 9; i >= 0; --i)
bestPieces[i].~EquipmentPiece();

// deallocate the raw memory
operator delete[](rawMemory);

If you forget this requirement and use the normal array-deletion syn-
tax, your program will behave unpredictably. That’s because the result
of deleting a pointer that didn’t come from the new operator is unde-
fined:

delete [] bestPieces; // undefined! bestPieces
// didn’t come from the new
// operator

For more information on the new operator, placement new and how
they interact with constructors and destructors, see Item 8.
From the Library of Yuri Khan

ptg

22 Item 4
The second problem with classes lacking default constructors is that
they are ineligible for use with many template-based container classes.
That’s because it’s a common requirement for such templates that the
type used to instantiate the template provide a default constructor.
This requirement almost always grows out of the fact that inside the
template, an array of the template parameter type is being created. For
example, a template for an Array class might look something like this:

template<class T>
class Array {
public:
Array(int size);
...

private:
T *data;

};

template<class T>
Array<T>::Array(int size)
{
data = new T[size]; // calls T::T() for each
... // element of the array

}

In most cases, careful template design can eliminate the need for a de-
fault constructor. For example, the standard vector template (which
generates classes that act like extensible arrays) has no requirement
that its type parameter have a default constructor. Unfortunately,
many templates are designed in a manner that is anything but careful.
That being the case, classes without default constructors will be in-
compatible with many templates. As C++ programmers learn more
about template design, this problem should recede in significance.
How long it will take for that to happen, however, is anyone’s guess.

The final consideration in the to-provide-a-default-constructor-or-not-
to-provide-a-default-constructor dilemma has to do with virtual base
classes. Virtual base classes lacking default constructors are a pain to
work with. That’s because the arguments for virtual base class con-
structors must be provided by the most derived class of the object
being constructed. As a result, a virtual base class lacking a default
constructor requires that all classes derived from that class — no mat-
ter how far removed — must know about, understand the meaning of,
and provide for the virtual base class’s constructors’ arguments. Au-
thors of derived classes neither expect nor appreciate this require-
ment.

Because of the restrictions imposed on classes lacking default con-
structors, some people believe all classes should have them, even if a
From the Library of Yuri Khan

ptg

Default Constructors 23
default constructor doesn’t have enough information to fully initialize
objects of that class. For example, adherents to this philosophy might
modify EquipmentPiece as follows:

class EquipmentPiece {
public:
EquipmentPiece(int IDNumber = UNSPECIFIED);
...

private:
static const int UNSPECIFIED; // magic ID number value

// meaning no ID was
}; // specified

This allows EquipmentPiece objects to be created like this:

EquipmentPiece e; // now okay

Such a transformation almost always complicates the other member
functions of the class, because there is no longer any guarantee that
the fields of an EquipmentPiece object have been meaningfully initial-
ized. Assuming it makes no sense to have an EquipmentPiece without
an ID field, most member functions must check to see if the ID is
present. If it’s not, they’ll have to figure out how to stumble on anyway.
Often it’s not clear how to do that, and many implementations choose
a solution that offers nothing but expediency: they throw an exception
or they call a function that terminates the program. When that hap-
pens, it’s difficult to argue that the overall quality of the software has
been improved by including a default constructor in a class where
none was warranted.

Inclusion of meaningless default constructors affects the efficiency of
classes, too. If member functions have to test to see if fields have truly
been initialized, clients of those functions have to pay for the time
those tests take. Furthermore, they have to pay for the code that goes
into those tests, because that makes executables and libraries bigger.
They also have to pay for the code that handles the cases where the
tests fail. All those costs are avoided if a class’s constructors ensure
that all fields of an object are correctly initialized. Often default con-
structors can’t offer that kind of assurance, so it’s best to avoid them
in classes where they make no sense. That places some limits on how
such classes can be used, yes, but it also guarantees that when you do
use such classes, you can expect that the objects they generate are
fully initialized and are efficiently implemented.
From the Library of Yuri Khan

ptg
Operators

OperatorsOverloadable operators — you gotta love ’em! They allow you to give
your types the same syntax as C++’s built-in types, yet they let you put
a measure of power into the functions behind the operators that’s un-
heard of for the built-ins. Of course, the fact that you can make sym-
bols like “+” and “==” do anything you want also means you can use
overloaded operators to produce programs best described as impene-
trable. Adept C++ programmers know how to harness the power of op-
erator overloading without descending into the incomprehensible.

Regrettably, it is easy to make the descent. Single-argument construc-
tors and implicit type conversion operators are particularly trouble-
some, because they can be invoked without there being any source
code showing the calls. This can lead to program behavior that is diffi-
cult to understand. A different problem arises when you overload op-
erators like && and ||, because the shift from built-in operator to user-
defined function yields a subtle change in semantics that’s easy to
overlook. Finally, many operators are related to one another in stan-
dard ways, but the ability to overload operators makes it possible to vi-
olate the accepted relationships.

In the items that follow, I focus on explaining when and how over-
loaded operators are called, how they behave, how they should relate
to one another, and how you can seize control of these aspects of over-
loaded operators. With the information in this chapter under your belt,
you’ll be overloading (or not overloading) operators like a pro.

Item 5: Be wary of user-defined conversion functions.
Conversion FunctionsC++ allows compilers to perform implicit conversions between types. In
honor of its C heritage, for example, the language allows silent conver-
sions from char to int and from short to double. This is why you can
pass a short to a function that expects a double and still have the call
succeed. The more frightening conversions in C — those that may lose
From the Library of Yuri Khan

ptg

Conversion Functions 25
information — are also present in C++, including conversion of int to
short and double to (of all things) char.

You can’t do anything about such conversions, because they’re hard-
coded into the language. When you add your own types, however, you
have more control, because you can choose whether to provide the
functions compilers are allowed to use for implicit type conversions.

Two kinds of functions allow compilers to perform such conversions:
single-argument constructors and implicit type conversion operators. A
single-argument constructor is a constructor that may be called with
only one argument. Such a constructor may declare a single parameter
or it may declare multiple parameters, with each parameter after the
first having a default value. Here are two examples:

class Name { // for names of things
public:
Name(const string& s); // converts string to

// Name
...

};

class Rational { // for rational numbers
public:
Rational(int numerator = 0, // converts int to

int denominator = 1); // Rational
...

};

An implicit type conversion operator is simply a member function with
a strange-looking name: the word operator followed by a type specifi-
cation. You aren’t allowed to specify a type for the function’s return
value, because the type of the return value is basically just the name
of the function. For example, to allow Rational objects to be implicitly
converted to doubles (which might be useful for mixed-mode arith-
metic involving Rational objects), you might define class Rational
like this:

class Rational {
public:
...
operator double() const; // converts Rational to

}; // double

This function would be automatically invoked in contexts like this:

Rational r(1, 2); // r has the value 1/2

double d = 0.5 * r; // converts r to a double,
// then does multiplication
From the Library of Yuri Khan

ptg

26 Item 5
Perhaps all this is review. That’s fine, because what I really want to ex-
plain is why you usually don’t want to provide type conversion func-
tions of any ilk.

The fundamental problem is that such functions often end up being
called when you neither want nor expect them to be. The result can be
incorrect and unintuitive program behavior that is maddeningly diffi-
cult to diagnose.

Let us deal first with implicit type conversion operators, as they are the
easiest case to handle. Suppose you have a class for rational numbers
similar to the one above, and you’d like to print Rational objects as if
they were a built-in type. That is, you’d like to be able to do this:

Rational r(1, 2);

cout << r; // should print "1/2"

Further suppose you forgot to write an operator<< for Rational ob-
jects. You would probably expect that the attempt to print r would fail,
because there is no appropriate operator<< to call. You would be mis-
taken. Your compilers, faced with a call to a function called opera-
tor<< that takes a Rational, would find that no such function
existed, but they would then try to find an acceptable sequence of im-
plicit type conversions they could apply to make the call succeed. The
rules defining which sequences of conversions are acceptable are com-
plicated, but in this case your compilers would discover they could
make the call succeed by implicitly converting r to a double by calling
Rational::operator double. The result of the code above would be to
print r as a floating point number, not as a rational number. This is
hardly a disaster, but it demonstrates the disadvantage of implicit type
conversion operators: their presence can lead to the wrong function
being called (i.e., one other than the one intended).

The solution is to replace the operators with equivalent functions that
don’t have the syntactically magic names. For example, to allow con-
version of a Rational object to a double, replace operator double
with a function called something like asDouble:

class Rational {
public:
...
double asDouble() const; // converts Rational

}; // to double

Such a member function must be called explicitly:

Rational r(1, 2);

cout << r; // error! No operator<<
// for Rationals
From the Library of Yuri Khan

ptg

Conversion Functions 27
cout << r.asDouble(); // fine, prints r as a
// double

In most cases, the inconvenience of having to call conversion functions
explicitly is more than compensated for by the fact that unintended
functions can no longer be silently invoked. In general, the more expe-
rience C++ programmers have, the more likely they are to eschew type
conversion operators. The members of the committee working on the
standard C++ library (see Item 35), for example, are among the most
experienced in the business, and perhaps that’s why the string type
they added to the library contains no implicit conversion from a
string object to a C-style char*. Instead, there’s an explicit member
function, c_str, that performs that conversion. Coincidence? I think
not.

Implicit conversions via single-argument constructors are more diffi-
cult to eliminate. Furthermore, the problems these functions cause are
in many cases worse than those arising from implicit type conversion
operators.

As an example, consider a class template for array objects. These ar-
rays allow clients to specify upper and lower index bounds:

template<class T>
class Array {
public:
Array(int lowBound, int highBound);
Array(int size);

T& operator[](int index);

...

};

The first constructor in the class allows clients to specify a range of
array indices, for example, from 10 to 20. As a two-argument construc-
tor, this function is ineligible for use as a type-conversion function. The
second constructor, which allows clients to define Array objects by
specifying only the number of elements in the array (in a manner sim-
ilar to that used with built-in arrays), is different. It can be used as a
type conversion function, and that can lead to endless anguish.

For example, consider a template specialization for comparing Ar-
ray<int> objects and some code that uses such objects:

bool operator==(const Array<int>& lhs,
const Array<int>& rhs);
From the Library of Yuri Khan

ptg

28 Item 5
Array<int> a(10);
Array<int> b(10);

...

for (int i = 0; i < 10; ++i)
if (a == b[i]) { // oops! "a" should be "a[i]"
do something for when
a[i] and b[i] are equal;

}
else {
do something for when they’re not;

}

We intended to compare each element of a to the corresponding ele-
ment in b, but we accidentally omitted the subscripting syntax when
we typed a. Certainly we expect this to elicit all manner of unpleasant
commentary from our compilers, but they will complain not at all.
That’s because they see a call to operator== with arguments of type
Array<int> (for a) and int (for b[i]), and though there is no opera-
tor== function taking those types, our compilers notice they can con-
vert the int into an Array<int> object by calling the Array<int>
constructor that takes a single int as an argument. This they proceed
to do, thus generating code for a program we never meant to write, one
that looks like this:

for (int i = 0; i < 10; ++i)
if (a == static_cast< Array<int> >(b[i])) ...

Each iteration through the loop thus compares the contents of a with
the contents of a temporary array of size b[i] (whose contents are pre-
sumably undefined). Not only is this unlikely to behave in a satisfac-
tory manner, it is also tremendously inefficient, because each time
through the loop we both create and destroy a temporary Array<int>
object (see Item 19).

The drawbacks to implicit type conversion operators can be avoided by
simply failing to declare the operators, but single-argument construc-
tors cannot be so easily waved away. After all, you may really want to
offer single-argument constructors to your clients. At the same time,
you may wish to prevent compilers from calling such constructors in-
discriminately. Fortunately, there is a way to have it all. In fact, there
are two ways: the easy way and the way you’ll have to use if your com-
pilers don’t yet support the easy way.

The easy way is to avail yourself of one of the newest C++ features, the
explicit keyword. This feature was introduced specifically to address
the problem of implicit type conversion, and its use is about as
straightforward as can be. Constructors can be declared explicit,
and if they are, compilers are prohibited from invoking them for pur-
From the Library of Yuri Khan

ptg

Conversion Functions 29
poses of implicit type conversion. Explicit conversions are still legal,
however:

template<class T>
class Array {
public:
...
explicit Array(int size); // note use of "explicit"
...

};

Array<int> a(10); // okay, explicit ctors can
// be used as usual for
// object construction

Array<int> b(10); // also okay

if (a == b[i]) ... // error! no way to
// implicitly convert
// int to Array<int>

if (a == Array<int>(b[i])) ... // okay, the conversion
// from int to Array<int> is
// explicit (but the logic of
// the code is suspect)

if (a == static_cast< Array<int> >(b[i])) ...
// equally okay, equally
// suspect

if (a == (Array<int>)b[i]) ... // C-style casts are also
// okay, but the logic of
// the code is still suspect

In the example using static_cast (see Item 2), the space separating
the two “>” characters is no accident. If the statement were written like
this,

if (a == static_cast<Array<int>>(b[i])) ...

it would have a different meaning. That’s because C++ compilers parse
“>>” as a single token. Without a space between the “>” characters, the
statement would generate a syntax error.

If your compilers don’t yet support explicit, you’ll have to fall back
on home-grown methods for preventing the use of single-argument
constructors as implicit type conversion functions. Such methods are
obvious only after you’ve seen them.

I mentioned earlier that there are complicated rules governing which
sequences of implicit type conversions are legitimate and which are
not. One of those rules is that no sequence of conversions is allowed to
contain more than one user-defined conversion (i.e., a call to a single-
argument constructor or an implicit type conversion operator). By con-
From the Library of Yuri Khan

ptg

30 Item 5
structing your classes properly, you can take advantage of this rule so
that the object constructions you want to allow are legal, but the im-
plicit conversions you don’t want to allow are illegal.

Consider the Array template again. You need a way to allow an integer
specifying the size of the array to be used as a constructor argument,
but you must at the same time prevent the implicit conversion of an in-
teger into a temporary Array object. You accomplish this by first cre-
ating a new class, ArraySize. Objects of this type have only one
purpose: they represent the size of an array that’s about to be created.
You then modify Array’s single-argument constructor to take an Ar-
raySize object instead of an int. The code looks like this:

template<class T>
class Array {
public:

class ArraySize { // this class is new
public:
ArraySize(int numElements): theSize(numElements) {}
int size() const { return theSize; }

private:
int theSize;

};

Array(int lowBound, int highBound);
Array(ArraySize size); // note new declaration

...

};

Here you’ve nested ArraySize inside Array to emphasize the fact that
it’s always used in conjunction with that class. You’ve also made Ar-
raySize public in Array so that anybody can use it. Good.

Consider what happens when an Array object is defined via the class’s
single-argument constructor:

Array<int> a(10);

Your compilers are asked to call a constructor in the Array<int> class
that takes an int, but there is no such constructor. Compilers realize
they can convert the int argument into a temporary ArraySize ob-
ject, and that ArraySize object is just what the Array<int> construc-
tor needs, so compilers perform the conversion with their usual gusto.
This allows the function call (and the attendant object construction) to
succeed.

The fact that you can still construct Array objects with an int argu-
ment is reassuring, but it does you little good unless the type conver-
From the Library of Yuri Khan

ptg

Increment and Decrement Operators 31
sions you want to avoid are prevented. They are. Consider this code
again:

bool operator==(const Array<int>& lhs,
const Array<int>& rhs);

Array<int> a(10);
Array<int> b(10);

...

for (int i = 0; i < 10; ++i)
if (a == b[i]) ... // oops! "a" should be "a[i]";

// this is now an error

Compilers need an object of type Array<int> on the right-hand side of
the “==” in order to call operator== for Array<int> objects, but there
is no single-argument constructor taking an int argument. Further-
more, compilers cannot consider converting the int into a temporary
ArraySize object and then creating the necessary Array<int> object
from this temporary, because that would call for two user-defined con-
versions, one from int to ArraySize and one from ArraySize to Ar-
ray<int>. Such a conversion sequence is verboten, so compilers must
issue an error for the code attempting to perform the comparison.

The use of the ArraySize class in this example might look like a spe-
cial-purpose hack, but it’s actually a specific instance of a more gen-
eral technique. Classes like ArraySize are often called proxy classes,
because each object of such a class stands for (is a proxy for) some
other object. An ArraySize object is really just a stand-in for the inte-
ger used to specify the size of the Array being created. Proxy objects
can give you control over aspects of your software’s behavior — in this
case implicit type conversions — that is otherwise beyond your grasp,
so it’s well worth your while to learn how to use them. How, you might
wonder, can you acquire such learning? One way is to turn to Item 30;
it’s devoted to proxy classes.

Before you turn to proxy classes, however, reflect a bit on the lessons
of this Item. Granting compilers license to perform implicit type con-
versions usually leads to more harm than good, so don’t provide con-
version functions unless you’re sure you want them.

Item 6: Distinguish between prefix and postfix forms
of increment and decrement operators.

Increment and Decrement OperatorsLong, long ago (the late ’80s) in a language far, far away (C++ at that
time), there was no way to distinguish between prefix and postfix invo-
cations of the ++ and -- operators. Programmers being programmers,
From the Library of Yuri Khan

ptg

32 Item 6
they kvetched about this omission, and C++ was extended to allow
overloading both forms of increment and decrement operators.

There was a syntactic problem, however, and that was that overloaded
functions are differentiated on the basis of the parameter types they
take, but neither prefix nor postfix increment or decrement takes an
argument. To surmount this linguistic pothole, it was decreed that
postfix forms take an int argument, and compilers silently pass 0 as
that int when those functions are called:

class UPInt { // "unlimited precision int"
public:
UPInt& operator++(); // prefix ++
const UPInt operator++(int); // postfix ++

UPInt& operator--(); // prefix --
const UPInt operator--(int); // postfix --

UPInt& operator+=(int); // a += operator for UPInts
// and ints

...

};

UPInt i;

++i; // calls i.operator++();
i++; // calls i.operator++(0);

--i; // calls i.operator--();
i--; // calls i.operator--(0);

This convention is a little on the odd side, but you’ll get used to it. More
important to get used to, however, is this: the prefix and postfix forms
of these operators return different types. In particular, prefix forms re-
turn a reference, postfix forms return a const object. We’ll focus here
on the prefix and postfix ++ operators, but the story for the -- operators
is analogous.

From your days as a C programmer, you may recall that the prefix
form of the increment operator is sometimes called “increment and
fetch,” while the postfix form is often known as “fetch and increment.”
These two phrases are important to remember, because they all but act
as formal specifications for how prefix and postfix increment should be
implemented:

// prefix form: increment and fetch
UPInt& UPInt::operator++()
{
*this += 1; // increment
return *this; // fetch

}

From the Library of Yuri Khan

ptg

Increment and Decrement Operators 33
// postfix form: fetch and increment
const UPInt UPInt::operator++(int)
{
const UPInt oldValue = *this; // fetch
++(*this); // increment

return oldValue; // return what was
} // fetched

Note how the postfix operator makes no use of its parameter. This is
typical. The only purpose of the parameter is to distinguish prefix from
postfix function invocation. Many compilers issue warnings if you fail
to use named parameters in the body of the function to which they ap-
ply, and this can be annoying. To avoid such warnings, a common
strategy is to omit names for parameters you don’t plan to use; that’s
what’s been done above.

It’s clear why postfix increment must return an object (it’s returning
an old value), but why a const object? Imagine that it did not. Then
the following would be legal:

UPInt i;

i++++; // apply postfix increment
// twice

This is the same as

i.operator++(0).operator++(0);

and it should be clear that the second invocation of operator++ is
being applied to the object returned from the first invocation.

There are two reasons to abhor this. First, it’s inconsistent with the be-
havior of the built-in types. A good rule to follow when designing
classes is when in doubt, do as the ints do, and the ints most cer-
tainly do not allow double application of postfix increment:

int i;

i++++; // error!

The second reason is that double application of postfix increment al-
most never does what clients expect it to. As noted above, the second
application of operator++ in a double increment changes the value of
the object returned from the first invocation, not the value of the orig-
inal object. Hence, if

i++++;

were legal, i would be incremented only once. This is counterintuitive
and confusing (for both ints and UPInts), so it’s best prohibited.
From the Library of Yuri Khan

ptg

34 Item 6
C++ prohibits it for ints, but you must prohibit it yourself for classes
you write. The easiest way to do this is to make the return type of post-
fix increment a const object. Then when compilers see

i++++; // same as i.operator++(0).operator++(0);

they recognize that the const object returned from the first call to op-
erator++ is being used to call operator++ again. operator++, how-
ever, is a non-const member function, so const objects — such as
those returned from postfix operator++ — can’t call it.† If you’ve ever
wondered if it makes sense to have functions return const objects,
now you know: sometimes it does, and postfix increment and decre-
ment are examples.

If you’re the kind who worries about efficiency, you probably broke into
a sweat when you first saw the postfix increment function. That func-
tion has to create a temporary object for its return value (see Item 19),
and the implementation above also creates an explicit temporary ob-
ject (oldValue) that has to be constructed and destructed. The prefix
increment function has no such temporaries. This leads to the possibly
startling conclusion that, for efficiency reasons alone, clients of UPInt
should prefer prefix increment to postfix increment unless they really
need the behavior of postfix increment. Let us be explicit about this.
When dealing with user-defined types, prefix increment should be
used whenever possible, because it’s inherently more efficient.

Let us make one more observation about the prefix and postfix incre-
ment operators. Except for their return values, they do the same thing:
they increment a value. That is, they’re supposed to do the same thing.
How can you be sure the behavior of postfix increment is consistent
with that of prefix increment? What guarantee do you have that their
implementations won’t diverge over time, possibly as a result of differ-
ent programmers maintaining and enhancing them? Unless you’ve fol-
lowed the design principle embodied by the code above, you have no
such guarantee. That principle is that postfix increment and decre-
ment should be implemented in terms of their prefix counterparts. You
then need only maintain the prefix versions, because the postfix ver-
sions will automatically behave in a consistent fashion.

As you can see, mastering prefix and postfix increment and decrement
is easy. Once you know their proper return types and that the postfix
operators should be implemented in terms of the prefix operators,
there’s very little more to learn.

† Alas, it is not uncommon for compilers to fail to enforce this restriction. Before you
write programs that rely on it, test your compilers to make sure they behave correctly.
From the Library of Yuri Khan

ptg

Overloading &&, ||, and , 35
Item 7: Never overload &&, ||, or ,.
Overloading &&, ||, and ,Like C, C++ employs short-circuit evaluation of boolean expressions.
This means that once the truth or falsehood of an expression has been
determined, evaluation of the expression ceases, even if some parts of
the expression haven’t yet been examined. For example, in this case,

char *p;

...

if ((p != 0) && (strlen(p) > 10)) ...

there is no need to worry about invoking strlen on p if it’s a null
pointer, because if the test of p against 0 fails, strlen will never be
called. Similarly, given

int rangeCheck(int index)
{
if ((index < lowerBound) || (index > upperBound)) ...

...

}

index will never be compared to upperBound if it’s less than lower-
Bound.

This is the behavior that has been drummed into C and C++ program-
mers since time immemorial, so this is what they expect. Furthermore,
they write programs whose correct behavior depends on short-circuit
evaluation. In the first code fragment above, for example, it is impor-
tant that strlen not be invoked if p is a null pointer, because the stan-
dard for C++ states (as does the standard for C) that the result of
invoking strlen on a null pointer is undefined.

C++ allows you to customize the behavior of the && and || operators
for user-defined types. You do it by overloading the functions opera-
tor&& and operator||, and you can do this at the global scope or on
a per-class basis. If you decide to take advantage of this opportunity,
however, you must be aware that you are changing the rules of the
game quite radically, because you are replacing short-circuit seman-
tics with function call semantics. That is, if you overload operator&&,
what looks to you like this,

if (expression1 && expression2) ...

looks to compilers like one of these:

if (expression1.operator&&(expression2)) ...
// when operator&& is a
// member function
From the Library of Yuri Khan

ptg

36 Item 7
if (operator&&(expression1, expression2)) ...
// when operator&& is a
// global function

This may not seem like that big a deal, but function call semantics dif-
fer from short-circuit semantics in two crucial ways. First, when a
function call is made, all parameters must be evaluated, so when call-
ing the functions operator&& and operator||, both parameters are
evaluated. There is, in other words, no short circuit. Second, the lan-
guage specification leaves undefined the order of evaluation of param-
eters to a function call, so there is no way of knowing whether
expression1 or expression2 will be evaluated first. This stands in
stark contrast to short-circuit evaluation, which always evaluates its
arguments in left-to-right order.

As a result, if you overload && or ||, there is no way to offer program-
mers the behavior they both expect and have come to depend on. So
don’t overload && or ||.

The situation with the comma operator is similar, but before we delve
into that, I’ll pause and let you catch the breath you lost when you
gasped, “The comma operator? There’s a comma operator?” There is in-
deed.

The comma operator is used to form expressions, and you’re most
likely to run across it in the update part of a for loop. The following
function, for example, is based on one in the second edition of Ker-
nighan’s and Ritchie’s classic The C Programming Language (Prentice-
Hall, 1988):

// reverse string s in place
void reverse(char s[])
{

for (int i = 0, j = strlen(s)-1;
i < j;
++i, --j) // aha! the comma operator!

{
int c = s[i];
s[i] = s[j];
s[j] = c;

}
}

Here, i is incremented and j is decremented in the final part of the for
loop. It is convenient to use the comma operator here, because only an
expression is valid in the final part of a for loop; separate statements
to change the values of i and j would be illegal.
From the Library of Yuri Khan

http://www.amazon.com/gp/product/0131103628?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0131103628

ptg

Overloading &&, ||, and , 37
Just as there are rules in C++ defining how && and || behave for built-
in types, there are rules defining how the comma operator behaves for
such types. An expression containing a comma is evaluated by first
evaluating the part of the expression to the left of the comma, then
evaluating the expression to the right of the comma; the result of the
overall comma expression is the value of the expression on the right.
So in the final part of the loop above, compilers first evaluate ++i, then
--j, and the result of the comma expression is the value returned
from --j.

Perhaps you’re wondering why you need to know this. You need to
know because you need to mimic this behavior if you’re going to take
it upon yourself to write your own comma operator. Unfortunately, you
can’t perform the requisite mimicry.

If you write operator, as a non-member function, you’ll never be able
to guarantee that the left-hand expression is evaluated before the
right-hand expression, because both expressions will be passed as ar-
guments in a function call (to operator,). But you have no control
over the order in which a function’s arguments are evaluated. So the
non-member approach is definitely out.

That leaves only the possibility of writing operator, as a member
function. Even here you can’t rely on the left-hand operand to the
comma operator being evaluated first, because compilers are not con-
strained to do things that way. Hence, you can’t overload the comma
operator and also guarantee it will behave the way it’s supposed to. It
therefore seems imprudent to overload it at all.

You may be wondering if there’s an end to this overloading madness.
After all, if you can overload the comma operator, what can’t you over-
load? As it turns out, there are limits. You can’t overload the following
operators:

. .* :: ?:

new delete sizeof typeid

static_cast dynamic_cast const_cast reinterpret_cast

You can overload these:

operator new operator delete

operator new[] operator delete[]

+ - * / % ^ & | ~

! = < > += -= *= /= %=

^= &= |= << >> >>= <<= == !=

<= >= && || ++ -- , ->* ->

() []
From the Library of Yuri Khan

ptg

38 Item 8
(For information on the new and delete operators, as well as opera-
tor new, operator delete, operator new[], and operator de-
lete[], see Item 8.)

Of course, just because you can overload these operators is no reason
to run off and do it. The purpose of operator overloading is to make
programs easier to read, write, and understand, not to dazzle others
with your knowledge that comma is an operator. If you don’t have a
good reason for overloading an operator, don’t overload it. In the case
of &&, ||, and ,, it’s difficult to have a good reason, because no matter
how hard you try, you can’t make them behave the way they’re sup-
posed to.

Item 8: Understand the different meanings of new
and delete.

The Different Meanings of new and deleteIt occasionally seems as if people went out of their way to make C++
terminology difficult to understand. Case in point: the difference be-
tween the new operator and operator new.

When you write code like this,

string *ps = new string("Memory Management");

the new you are using is the new operator. This operator is built into
the language and, like sizeof, you can’t change its meaning: it always
does the same thing. What it does is twofold. First, it allocates enough
memory to hold an object of the type requested. In the example above,
it allocates enough memory to hold a string object. Second, it calls a
constructor to initialize an object in the memory that was allocated.
The new operator always does those two things; you can’t change its
behavior in any way.

What you can change is how the memory for an object is allocated. The
new operator calls a function to perform the requisite memory alloca-
tion, and you can rewrite or overload that function to change its behav-
ior. The name of the function the new operator calls to allocate memory
is operator new. Honest.

The operator new function is usually declared like this:

void * operator new(size_t size);

The return type is void*, because this function returns a pointer to
raw, uninitialized memory. (If you like, you can write a version of op-
erator new that initializes the memory to some value before returning
a pointer to it, but this is not commonly done.) The size_t parameter
specifies how much memory to allocate. You can overload operator
From the Library of Yuri Khan

ptg

The Different Meanings of new and delete 39
new by adding additional parameters, but the first parameter must al-
ways be of type size_t.

You’ll probably never want to call operator new directly, but on the off
chance you do, you’ll call it just like any other function:

void *rawMemory = operator new(sizeof(string));

Here operator new will return a pointer to a chunk of memory large
enough to hold a string object.

Like malloc, operator new’s only responsibility is to allocate memory.
It knows nothing about constructors. All operator new understands is
memory allocation. It is the job of the new operator to take the raw
memory that operator new returns and transform it into an object.
When your compilers see a statement like

string *ps = new string("Memory Management");

they must generate code that more or less corresponds to this:

void *memory = // get raw memory
operator new(sizeof(string)); // for a string

// object

call string::string("Memory Management") // initialize the
on *memory; // object in the

// memory

string *ps = // make ps point to
static_cast<string*>(memory); // the new object

Notice that the second step above involves calling a constructor, some-
thing you, a mere programmer, are prohibited from doing. Your com-
pilers are unconstrained by mortal limits, however, and they can do
whatever they like. That’s why you must use the new operator if you
want to conjure up a heap-based object: you can’t directly call the con-
structor necessary to initialize the object (including such crucial com-
ponents as its vtbl — see Item 24).

Placement new

There are times when you really want to call a constructor directly. In-
voking a constructor on an existing object makes no sense, because
constructors initialize objects, and an object can only be initialized —
given its first value — once. But occasionally you have some raw mem-
ory that’s already been allocated, and you need to construct an object
in the memory you have. A special version of operator new called
placement new allows you to do it.

As an example of how placement new might be used, consider this:
From the Library of Yuri Khan

ptg

40 Item 8
class Widget {
public:
Widget(int widgetSize);
...

};

Widget * constructWidgetInBuffer(void *buffer,
int widgetSize)

{
return new (buffer) Widget(widgetSize);

}

This function returns a pointer to a Widget object that’s constructed
within the buffer passed to the function. Such a function might be use-
ful for applications using shared memory or memory-mapped I/O, be-
cause objects in such applications must be placed at specific
addresses or in memory allocated by special routines. (For a different
example of how placement new can be used, see Item 4.)

Inside constructWidgetInBuffer, the expression being returned is

new (buffer) Widget(widgetSize)

This looks a little strange at first, but it’s just a use of the new operator
in which an additional argument (buffer) is being specified for the im-
plicit call that the new operator makes to operator new. The operator
new thus called must, in addition to the mandatory size_t argument,
accept a void* parameter that points to the memory the object being
constructed is to occupy. That operator new is placement new, and it
looks like this:

void * operator new(size_t, void *location)
{
return location;

}

This is probably simpler than you expected, but this is all placement
new needs to do. After all, the purpose of operator new is to find mem-
ory for an object and return a pointer to that memory. In the case of
placement new, the caller already knows what the pointer to the mem-
ory should be, because the caller knows where the object is supposed
to be placed. All placement new has to do, then, is return the pointer
that’s passed into it. (The unused (but mandatory) size_t parameter
has no name to keep compilers from complaining about its not being
used; see Item 6.) Placement new is part of the standard C++ library.
To use placement new, all you have to do is #include <new> (or, if your
compilers don’t yet support the new-style header names, <new.h>).

If we step back from placement new for a moment, we’ll see that the re-
lationship between the new operator and operator new, though per-
haps terminologically confusing, is conceptually straightforward. If
From the Library of Yuri Khan

ptg

The Different Meanings of new and delete 41
you want to create an object on the heap, use the new operator. It both
allocates memory and calls a constructor for the object. If you only
want to allocate memory, call operator new; no constructor will be
called. If you want to customize the memory allocation that takes place
when heap objects are created, write your own version of operator
new and use the new operator; it will automatically invoke your custom
version of operator new. If you want to construct an object in memory
you’ve already got a pointer to, use placement new.

Deletion and Memory Deallocation

To avoid resource leaks, every dynamic allocation must be matched by
an equal and opposite deallocation. The function operator delete is
to the built-in delete operator as operator new is to the new operator.
When you say something like this,

string *ps;
...
delete ps; // use the delete operator

your compilers must generate code both to destruct the object ps
points to and to deallocate the memory occupied by that object.

The memory deallocation is performed by the operator delete func-
tion, which is usually declared like this:

void operator delete(void *memoryToBeDeallocated);

Hence,

delete ps;

causes compilers to generate code that approximately corresponds to
this:

ps->~string(); // call the object’s dtor

operator delete(ps); // deallocate the memory
// the object occupied

One implication of this is that if you want to deal only with raw, unini-
tialized memory, you should bypass the new and delete operators en-
tirely. Instead, you should call operator new to get the memory and
operator delete to return it to the system:

void *buffer = // allocate enough
operator new(50*sizeof(char)); // memory to hold 50

// chars; call no ctors

...

operator delete(buffer); // deallocate the memory;
// call no dtors
From the Library of Yuri Khan

ptg

42 Item 8
This is the C++ equivalent of calling malloc and free.

If you use placement new to create an object in some memory, you
should avoid using the delete operator on that memory. That’s be-
cause the delete operator calls operator delete to deallocate the
memory, but the memory containing the object wasn’t allocated by op-
erator new in the first place; placement new just returned the pointer
that was passed to it. Who knows where that pointer came from? In-
stead, you should undo the effect of the constructor by explicitly call-
ing the object’s destructor:

// functions for allocating and deallocating memory in
// shared memory
void * mallocShared(size_t size);
void freeShared(void *memory);

void *sharedMemory = mallocShared(sizeof(Widget));

Widget *pw = // as above,
constructWidgetInBuffer(sharedMemory, 10); // placement

// new is used

...

delete pw; // undefined! sharedMemory came from
// mallocShared, not operator new

pw->~Widget(); // fine, destructs the Widget pointed to
// by pw, but doesn’t deallocate the
// memory containing the Widget

freeShared(pw); // fine, deallocates the memory pointed
// to by pw, but calls no destructor

As this example demonstrates, if the raw memory passed to placement
new was itself dynamically allocated (through some unconventional
means), you must still deallocate that memory if you wish to avoid a
memory leak.

Arrays

So far so good, but there’s farther to go. Everything we’ve examined so
far concerns itself with only one object at a time. What about array al-
location? What happens here?

string *ps = new string[10]; // allocate an array of
// objects

The new being used is still the new operator, but because an array is
being created, the new operator behaves slightly differently from the
case of single-object creation. For one thing, memory is no longer allo-
cated by operator new. Instead, it’s allocated by the array-allocation
equivalent, a function called operator new[] (often referred to as “ar-
From the Library of Yuri Khan

ptg

The Different Meanings of new and delete 43
ray new.”) Like operator new, operator new[] can be overloaded.
This allows you to seize control of memory allocation for arrays in the
same way you can control memory allocation for single objects.

(operator new[] is a relatively recent addition to C++, so your compil-
ers may not support it yet. If they don’t, the global version of operator
new will be used to allocate memory for every array, regardless of the
type of objects in the array. Customizing array-memory allocation
under such compilers is daunting, because it requires that you rewrite
the global operator new. This is not a task to be undertaken lightly.
By default, the global operator new handles all dynamic memory allo-
cation in a program, so any change in its behavior has a dramatic and
pervasive effect. Furthermore, there is only one global operator new
with the “normal” signature (i.e., taking the single size_t parameter),
so if you decide to claim it as your own, you instantly render your soft-
ware incompatible with any library that makes the same decision. (See
also Item 27.) As a result of these considerations, custom memory
management for arrays is not usually a reasonable design decision for
compilers lacking support for operator new[].)

The second way in which the new operator behaves differently for ar-
rays than for objects is in the number of constructor calls it makes. For
arrays, a constructor must be called for each object in the array:

string *ps = // call operator new[] to allocate
new string[10]; // memory for 10 string objects,

// then call the default string
// ctor for each array element

Similarly, when the delete operator is used on an array, it calls a de-
structor for each array element and then calls operator delete[] to
deallocate the memory:

delete [] ps; // call the string dtor for each
// array element, then call
// operator delete[] to
// deallocate the array’s memory

Just as you can replace or overload operator delete, you can replace
or overload operator delete[]. There are some restrictions on how
they can be overloaded, however; consult a good C++ text for details.
(For ideas on good C++ texts, see the recommendations beginning on
page 285.)

So there you have it. The new and delete operators are built-in and
beyond your control, but the memory allocation and deallocation func-
tions they call are not. When you think about customizing the behavior
of the new and delete operators, remember that you can’t really do it.
You can modify how they do what they do, but what they do is fixed by
the language.
From the Library of Yuri Khan

ptg
Exceptions

ExceptionsThe addition of exceptions to C++ changes things. Profoundly. Radi-
cally. Possibly uncomfortably. The use of raw, unadorned pointers, for
example, becomes risky. Opportunities for resource leaks increase in
number. It becomes more difficult to write constructors and destruc-
tors that behave the way we want them to. Special care must be taken
to prevent program execution from abruptly halting. Executables and
libraries typically increase in size and decrease in speed.

And these are just the things we know. There is much the C++ commu-
nity does not know about writing programs using exceptions, includ-
ing, for the most part, how to do it correctly. There is as yet no
agreement on a body of techniques that, when applied routinely, leads
to software that behaves predictably and reliably when exceptions are
thrown. (For insight into some of the issues involved, see the article by
Tom Cargill I refer to on page 287.)

We do know this much: programs that behave well in the presence of
exceptions do so because they were designed to, not because they hap-
pen to. Exception-safe programs are not created by accident. The
chances of a program behaving well in the presence of exceptions when
it was not designed for exceptions are about the same as the chances
of a program behaving well in the presence of multiple threads of con-
trol when it was not designed for multi-threaded execution: about zero.

That being the case, why use exceptions? Error codes have sufficed for
C programmers ever since C was invented, so why mess with excep-
tions, especially if they’re as problematic as I say? The answer is sim-
ple: exceptions cannot be ignored. If a function signals an exceptional
condition by setting a status variable or returning an error code, there
is no way to guarantee the function’s caller will check the variable or
examine the code. As a result, execution may continue long past the
point where the condition was encountered. If the function signals the
From the Library of Yuri Khan

ptg

Using Destructors to Prevent Resource Leaks 45
condition by throwing an exception, however, and that exception is not
caught, program execution immediately ceases.

This is behavior that C programmers can approach only by using set-
jmp and longjmp. But longjmp exhibits a serious deficiency when
used with C++: it fails to call destructors for local objects when it ad-
justs the stack. Most C++ programs depend on such destructors being
called, so setjmp and longjmp make a poor substitute for true excep-
tions. If you need a way of signaling exceptional conditions that cannot
be ignored, and if you must ensure that local destructors are called
when searching the stack for code that can handle exceptional condi-
tions, you need C++ exceptions. It’s as simple as that.

Because we have much to learn about programming with exceptions,
the Items that follow comprise an incomplete guide to writing excep-
tion-safe software. Nevertheless, they introduce important consider-
ations for anyone using exceptions in C++. By heeding the guidance in
the material below, you’ll improve the correctness, robustness, and ef-
ficiency of the software you write, and you’ll sidestep many problems
that commonly arise when working with exceptions.

Item 9: Use destructors to prevent resource leaks.
Using Destructors to Prevent Resource LeaksSay good-bye to pointers. Admit it: you never really liked them that
much anyway.

Okay, you don’t have to say good-bye to all pointers, but you do need
to say sayonara to pointers that are used to manipulate local re-
sources. Suppose, for example, you’re writing software at the Shelter
for Adorable Little Animals, an organization that finds homes for pup-
pies and kittens. Each day the shelter creates a file containing infor-
mation on the adoptions it arranged that day, and your job is to write
a program to read these files and do the appropriate processing for
each adoption.

A reasonable approach to this task is to define an abstract base class,
ALA (“Adorable Little Animal”), plus concrete derived classes for pup-
pies and kittens. A virtual function, processAdoption, handles the
necessary species-specific processing:

ALA

KittenPuppy
From the Library of Yuri Khan

ptg

46 Item 9
class ALA {
public:
virtual void processAdoption() = 0;
...

};

class Puppy: public ALA {
public:
virtual void processAdoption();
...

};

class Kitten: public ALA {
public:
virtual void processAdoption();
...

};

You’ll need a function that can read information from a file and pro-
duce either a Puppy object or a Kitten object, depending on the infor-
mation in the file. This is a perfect job for a virtual constructor, a kind
of function described in Item 25. For our purposes here, the function’s
declaration is all we need:

// read animal information from s, then return a pointer
// to a newly allocated object of the appropriate type
ALA * readALA(istream& s);

The heart of your program is likely to be a function that looks some-
thing like this:

void processAdoptions(istream& dataSource)
{
while (dataSource) { // while there’s data
ALA *pa = readALA(dataSource); // get next animal
pa->processAdoption(); // process adoption
delete pa; // delete object that

} // readALA returned
}

This function loops through the information in dataSource, process-
ing each entry as it goes. The only mildly tricky thing is the need to re-
member to delete pa at the end of each iteration. This is necessary
because readALA creates a new heap object each time it’s called. With-
out the call to delete, the loop would contain a resource leak.

Now consider what would happen if pa->processAdoption threw an
exception. processAdoptions fails to catch exceptions, so the excep-
tion would propagate to processAdoptions’s caller. In doing so, all
statements in processAdoptions after the call to pa->processAdop-
tion would be skipped, and that means pa would never be deleted. As
From the Library of Yuri Khan

ptg

Using Destructors to Prevent Resource Leaks 47
a result, anytime pa->processAdoption throws an exception, pro-
cessAdoptions contains a resource leak.

Plugging the leak is easy enough,

void processAdoptions(istream& dataSource)
{
while (dataSource) {
ALA *pa = readALA(dataSource);

try {
pa->processAdoption();

}
catch (...) { // catch all exceptions

delete pa; // avoid resource leak when an
// exception is thrown

throw; // propagate exception to caller
}

delete pa; // avoid resource leak when no
} // exception is thrown

}

but then you have to litter your code with try and catch blocks. More
importantly, you are forced to duplicate cleanup code that is common
to both normal and exceptional paths of control. In this case, the call
to delete must be duplicated. Like all replicated code, this is annoy-
ing to write and difficult to maintain, but it also feels wrong. Regard-
less of whether we leave processAdoptions by a normal return or by
throwing an exception, we need to delete pa, so why should we have to
say that in more than one place?

We don’t have to if we can somehow move the cleanup code that must
always be executed into the destructor for an object local to process-
Adoptions. That’s because local objects are always destroyed when
leaving a function, regardless of how that function is exited. (The only
exception to this rule is when you call longjmp, and this shortcoming
of longjmp is the primary reason why C++ has support for exceptions
in the first place.) Our real concern, then, is moving the delete from
processAdoptions into a destructor for an object local to processA-
doptions.

The solution is to replace the pointer pa with an object that acts like a
pointer. That way, when the pointer-like object is (automatically) de-
stroyed, we can have its destructor call delete. Objects that act like
pointers, but do more, are called smart pointers, and, as Item 28 ex-
plains, you can make pointer-like objects very smart indeed. In this
case, we don’t need a particularly brainy pointer, we just need a
From the Library of Yuri Khan

ptg

48 Item 9
pointer-like object that knows enough to delete what it points to when
the pointer-like object goes out of scope.

It’s not difficult to write a class for such objects, but we don’t need to.
The standard C++ library contains a class template called auto_ptr
that does just what we want. Each auto_ptr class takes a pointer to a
heap object in its constructor and deletes that object in its destructor.
Boiled down to these essential functions, auto_ptr looks like this:

template<class T>
class auto_ptr {
public:
auto_ptr(T *p = 0): ptr(p) {} // save ptr to object
~auto_ptr() { delete ptr; } // delete ptr to object

private:
T *ptr; // raw ptr to object

};

The standard version of auto_ptr is much fancier, and this stripped-
down implementation isn’t suitable for real use† (we must add at least
the copy constructor, assignment operator, and pointer-emulating
functions discussed in Item 28), but the concept behind it should be
clear: use auto_ptr objects instead of raw pointers, and you won’t
have to worry about heap objects not being deleted, not even when ex-
ceptions are thrown. (Because the auto_ptr destructor uses the sin-
gle-object form of delete, auto_ptr is not suitable for use with
pointers to arrays of objects. If you’d like an auto_ptr-like template
for arrays, you’ll have to write your own. In such cases, however, it’s
often a better design decision to use a vector instead of an array, any-
way.)

Using an auto_ptr object instead of a raw pointer, processAdop-
tions looks like this:

void processAdoptions(istream& dataSource)
{
while (dataSource) {
auto_ptr<ALA> pa(readALA(dataSource));
pa->processAdoption();

}
}

This version of processAdoptions differs from the original in only
two ways. First, pa is declared to be an auto_ptr<ALA> object, not a
raw ALA* pointer. Second, there is no delete statement at the end of
the loop. That’s it. Everything else is identical, because, except for de-
struction, auto_ptr objects act just like normal pointers. Easy, huh?

† A complete implementation of an almost-standard auto_ptr appears on pages 291-294.
From the Library of Yuri Khan

ptg

Using Destructors to Prevent Resource Leaks 49
The idea behind auto_ptr — using an object to store a resource that
needs to be automatically released and relying on that object’s de-
structor to release it — applies to more than just pointer-based re-
sources. Consider a function in a GUI application that needs to create
a window to display some information:

// this function may leak resources if an exception
// is thrown
void displayInfo(const Information& info)
{
WINDOW_HANDLE w(createWindow());

display info in window corresponding to w;

destroyWindow(w);
}

Many window systems have C-like interfaces that use functions like
createWindow and destroyWindow to acquire and release window re-
sources. If an exception is thrown during the process of displaying
info in w, the window for which w is a handle will be lost just as surely
as any other dynamically allocated resource.

The solution is the same as it was before. Create a class whose con-
structor and destructor acquire and release the resource:

// class for acquiring and releasing a window handle
class WindowHandle {
public:
WindowHandle(WINDOW_HANDLE handle): w(handle) {}
~WindowHandle() { destroyWindow(w); }

operator WINDOW_HANDLE() { return w; } // see below

private:
WINDOW_HANDLE w;

// The following functions are declared private to prevent
// multiple copies of a WINDOW_HANDLE from being created.
// See Item 28 for a discussion of a more flexible approach.
WindowHandle(const WindowHandle&);
WindowHandle& operator=(const WindowHandle&);

};

This looks just like the auto_ptr template, except that assignment
and copying are explicitly prohibited, and there is an implicit conver-
sion operator that can be used to turn a WindowHandle into a
WINDOW_HANDLE. This capability is essential to the practical applica-
tion of a WindowHandle object, because it means you can use a Win-
dowHandle just about anywhere you would normally use a raw
WINDOW_HANDLE. (See Item 5, however, for why you should generally be
leery of implicit type conversion operators.)
From the Library of Yuri Khan

ptg

50 Item 10
Given the WindowHandle class, we can rewrite displayInfo as fol-
lows:

// this function avoids leaking resources if an
// exception is thrown
void displayInfo(const Information& info)
{
WindowHandle w(createWindow());

display info in window corresponding to w;

}

Even if an exception is thrown within displayInfo, the window cre-
ated by createWindow will always† be destroyed.

By adhering to the rule that resources should be encapsulated inside
objects, you can usually avoid resource leaks in the presence of excep-
tions. But what happens if an exception is thrown while you’re in the
process of acquiring a resource, e.g., while you’re in the constructor of
a resource-acquiring class? What happens if an exception is thrown
during the automatic destruction of such resources? Don’t construc-
tors and destructors call for special techniques? They do, and you can
read about them in Items 10 and 11.

Item 10: Prevent resource leaks in constructors.
Avoiding Resource Leaks in ConstructorsImagine you’re developing software for a multimedia address book.
Such an address book might hold, in addition to the usual textual in-
formation of a person’s name, address, and phone numbers, a picture
of the person and the sound of their voice (possibly giving the proper
pronunciation of their name).

To implement the book, you might come up with a design like this:

class Image { // for image data
public:
Image(const string& imageDataFileName);
...

};

class AudioClip { // for audio data
public:
AudioClip(const string& audioDataFileName);
...

};

class PhoneNumber { ... }; // for holding phone numbers

† Well, almost always. If the exception is not caught, the program will terminate. In that
case, there is no guarantee that local objects (such as w in the example) will have their
destructors called. Some compilers call them, some do not. Both behaviors are valid.
From the Library of Yuri Khan

ptg

Avoiding Resource Leaks in Constructors 51
class BookEntry { // for each entry in the
public: // address book

BookEntry(const string& name,
const string& address = "",
const string& imageFileName = "",
const string& audioClipFileName = "");

~BookEntry();

// phone numbers are added via this function
void addPhoneNumber(const PhoneNumber& number);
...

private:
string theName; // person’s name
string theAddress; // their address
list<PhoneNumber> thePhones; // their phone numbers
Image *theImage; // their image
AudioClip *theAudioClip; // an audio clip from them

};

Each BookEntry must have name data, so you require that as a con-
structor argument (see Item 4), but the other fields — the person’s ad-
dress and the names of files containing image and audio data — are
optional. Note the use of the list class to hold the person’s phone
numbers. This is one of several container classes that are part of the
standard C++ library (see Item 35).

A straightforward way to write the BookEntry constructor and de-
structor is as follows:

BookEntry::BookEntry(const string& name,
const string& address,
const string& imageFileName,
const string& audioClipFileName)

: theName(name), theAddress(address),
theImage(0), theAudioClip(0)

{
if (imageFileName != "") {
theImage = new Image(imageFileName);

}

if (audioClipFileName != "") {
theAudioClip = new AudioClip(audioClipFileName);

}
}

BookEntry::~BookEntry()
{
delete theImage;
delete theAudioClip;

}

From the Library of Yuri Khan

ptg

52 Item 10
The constructor initializes the pointers theImage and theAudioClip
to null, then makes them point to real objects if the corresponding ar-
guments are non-empty strings. The destructor deletes both pointers,
thus ensuring that a BookEntry object doesn’t give rise to a resource
leak. Because C++ guarantees it’s safe to delete null pointers, BookEn-
try’s destructor need not check to see if the pointers actually point to
something before deleting them.

Everything looks fine here, and under normal conditions everything is
fine, but under abnormal conditions — under exceptional conditions —
things are not fine at all.

Consider what will happen if an exception is thrown during execution
of this part of the BookEntry constructor:

if (audioClipFileName != "") {
theAudioClip = new AudioClip(audioClipFileName);

}

An exception might arise because operator new (see Item 8) is unable
to allocate enough memory for an AudioClip object. One might also
arise because the AudioClip constructor itself throws an exception.
Regardless of the cause of the exception, if one is thrown within the
BookEntry constructor, it will be propagated to the site where the
BookEntry object is being created.

Now, if an exception is thrown during creation of the object theAudi-
oClip is supposed to point to (thus transferring control out of the
BookEntry constructor), who deletes the object that theImage already
points to? The obvious answer is that BookEntry’s destructor does,
but the obvious answer is wrong. BookEntry’s destructor will never be
called. Never.

C++ destroys only fully constructed objects, and an object isn’t fully
constructed until its constructor has run to completion. So if a
BookEntry object b is created as a local object,

void testBookEntryClass()
{
BookEntry b("Addison-Wesley Publishing Company",

"One Jacob Way, Reading, MA 01867");

...

}

and an exception is thrown during construction of b, b’s destructor will
not be called. Furthermore, if you try to take matters into your own
hands by allocating b on the heap and then calling delete if an excep-
tion is thrown,
From the Library of Yuri Khan

ptg

Avoiding Resource Leaks in Constructors 53
void testBookEntryClass()
{
BookEntry *pb = 0;

try {
pb = new BookEntry("Addison-Wesley Publishing Company",

"One Jacob Way, Reading, MA 01867");
...

}
catch (...) { // catch all exceptions

delete pb; // delete pb when an
// exception is thrown

throw; // propagate exception to
} // caller

delete pb; // delete pb normally
}

you’ll find that the Image object allocated inside BookEntry’s con-
structor is still lost, because no assignment is made to pb unless the
new operation succeeds. If BookEntry’s constructor throws an excep-
tion, pb will be the null pointer, so deleting it in the catch block does
nothing except make you feel better about yourself. Using the smart
pointer class auto_ptr<BookEntry> (see Item 9) instead of a raw
BookEntry* won’t do you any good either, because the assignment to
pb still won’t be made unless the new operation succeeds.

There is a reason why C++ refuses to call destructors for objects that
haven’t been fully constructed, and it’s not simply to make your life
more difficult. It’s because it would, in many cases, be a nonsensical
thing — possibly a harmful thing — to do. If a destructor were invoked
on an object that wasn’t fully constructed, how would the destructor
know what to do? The only way it could know would be if bits had been
added to each object indicating how much of the constructor had been
executed. Then the destructor could check the bits and (maybe) figure
out what actions to take. Such bookkeeping would slow down con-
structors, and it would make each object larger, too. C++ avoids this
overhead, but the price you pay is that partially constructed objects
aren’t automatically destroyed.

Because C++ won’t clean up after objects that throw exceptions during
construction, you must design your constructors so that they clean up
after themselves. Often, this involves simply catching all possible ex-
ceptions, executing some cleanup code, then rethrowing the exception
so it continues to propagate. This strategy can be incorporated into the
BookEntry constructor like this:
From the Library of Yuri Khan

ptg

54 Item 10
BookEntry::BookEntry(const string& name,
const string& address,
const string& imageFileName,
const string& audioClipFileName)

: theName(name), theAddress(address),
theImage(0), theAudioClip(0)

{
try { // this try block is new
if (imageFileName != "") {
theImage = new Image(imageFileName);

}

if (audioClipFileName != "") {
theAudioClip = new AudioClip(audioClipFileName);

}
}
catch (...) { // catch any exception

delete theImage; // perform necessary
delete theAudioClip; // cleanup actions

throw; // propagate the exception
}

}

There is no need to worry about BookEntry’s non-pointer data mem-
bers. Data members are automatically initialized before a class’s con-
structor is called, so if a BookEntry constructor body begins
executing, the object’s theName, theAddress, and thePhones data
members have already been fully constructed. As fully constructed ob-
jects, these data members will be automatically destroyed even if an
exception arises in the BookEntry constructor†. Of course, if these ob-
jects’ constructors call functions that might throw exceptions, those
constructors have to worry about catching the exceptions and per-
forming any necessary cleanup before allowing them to propagate.

You may have noticed that the statements in BookEntry’s catch block
are almost the same as those in BookEntry’s destructor. Code dupli-
cation here is no more tolerable than it is anywhere else, so the best
way to structure things is to move the common code into a private
helper function and have both the constructor and the destructor call
it:

class BookEntry {
public:
... // as before

private:
...
void cleanup(); // common cleanup statements

};

† Provided, again, that the exception is caught.
From the Library of Yuri Khan

ptg

Avoiding Resource Leaks in Constructors 55
void BookEntry::cleanup()
{
delete theImage;
delete theAudioClip;

}

BookEntry::BookEntry(const string& name,
const string& address,
const string& imageFileName,
const string& audioClipFileName)

: theName(name), theAddress(address),
theImage(0), theAudioClip(0)

{
try {
... // as before

}
catch (...) {
cleanup(); // release resources
throw; // propagate exception

}
}

BookEntry::~BookEntry()
{
cleanup();

}

This is nice, but it doesn’t put the topic to rest. Let us suppose we de-
sign our BookEntry class slightly differently so that theImage and
theAudioClip are constant pointers:

class BookEntry {
public:
... // as above

private:
...
Image * const theImage; // pointers are now
AudioClip * const theAudioClip; // const

};

Such pointers must be initialized via the member initialization lists of
BookEntry’s constructors, because there is no other way to give const
pointers a value. A common temptation is to initialize theImage and
theAudioClip like this,
From the Library of Yuri Khan

ptg

56 Item 10
// an implementation that may leak resources if an
// exception is thrown
BookEntry::BookEntry(const string& name,

const string& address,
const string& imageFileName,
const string& audioClipFileName)

: theName(name), theAddress(address),
theImage(imageFileName != ""

? new Image(imageFileName)
: 0),

theAudioClip(audioClipFileName != ""
? new AudioClip(audioClipFileName)
: 0)

{}

but this leads to the problem we originally wanted to eliminate: if an
exception is thrown during initialization of theAudioClip, the object
pointed to by theImage is never destroyed. Furthermore, we can’t
solve the problem by adding try and catch blocks to the constructor,
because try and catch are statements, and member initialization lists
allow only expressions. (That’s why we had to use the ?: syntax in-
stead of the if-then-else syntax in the initialization of theImage and
theAudioClip.)

Nevertheless, the only way to perform cleanup chores before excep-
tions propagate out of a constructor is to catch those exceptions, so if
we can’t put try and catch in a member initialization list, we’ll have
to put them somewhere else. One possibility is inside private member
functions that return pointers with which theImage and theAudio-
Clip should be initialized:

class BookEntry {
public:
... // as above

private:
... // data members as above

Image * initImage(const string& imageFileName);
AudioClip * initAudioClip(const string&

audioClipFileName);
};

BookEntry::BookEntry(const string& name,
const string& address,
const string& imageFileName,
const string& audioClipFileName)

: theName(name), theAddress(address),
theImage(initImage(imageFileName)),
theAudioClip(initAudioClip(audioClipFileName))

{}
From the Library of Yuri Khan

ptg

Avoiding Resource Leaks in Constructors 57
// theImage is initialized first, so there is no need to
// worry about a resource leak if this initialization
// fails. This function therefore handles no exceptions
Image * BookEntry::initImage(const string& imageFileName)
{
if (imageFileName != "") return new Image(imageFileName);
else return 0;

}

// theAudioClip is initialized second, so it must make
// sure theImage’s resources are released if an exception
// is thrown during initialization of theAudioClip. That’s
// why this function uses try...catch.
AudioClip * BookEntry::initAudioClip(const string&

audioClipFileName)
{
try {
if (audioClipFileName != "") {
return new AudioClip(audioClipFileName);

}
else return 0;

}
catch (...) {
delete theImage;
throw;

}
}

This is perfectly kosher, and it even solves the problem we’ve been la-
boring to overcome. The drawback is that code that conceptually be-
longs in a constructor is now dispersed across several functions, and
that’s a maintenance headache.

A better solution is to adopt the advice of Item 9 and treat the objects
pointed to by theImage and theAudioClip as resources to be man-
aged by local objects. This solution takes advantage of the facts that
both theImage and theAudioClip are pointers to dynamically allo-
cated objects and that those objects should be deleted when the point-
ers themselves go away. This is precisely the set of conditions for
which the auto_ptr classes (see Item 9) were designed. We can there-
fore change the raw pointer types of theImage and theAudioClip to
their auto_ptr equivalents:

class BookEntry {
public:
... // as above

private:
...
const auto_ptr<Image> theImage; // these are now
const auto_ptr<AudioClip> theAudioClip; // auto_ptr objects

};
From the Library of Yuri Khan

ptg

58 Item 11
Doing this makes BookEntry’s constructor leak-safe in the presence of
exceptions, and it lets us initialize theImage and theAudioClip using
the member initialization list:

BookEntry::BookEntry(const string& name,
const string& address,
const string& imageFileName,
const string& audioClipFileName)

: theName(name), theAddress(address),
theImage(imageFileName != ""

? new Image(imageFileName)
: 0),

theAudioClip(audioClipFileName != ""
? new AudioClip(audioClipFileName)
: 0)

{}

In this design, if an exception is thrown during initialization of theAu-
dioClip, theImage is already a fully constructed object, so it will au-
tomatically be destroyed, just like theName, theAddress, and
thePhones. Furthermore, because theImage and theAudioClip are
now objects, they’ll be destroyed automatically when the BookEntry
object containing them is. Hence there’s no need to manually delete
what they point to. That simplifies BookEntry’s destructor consider-
ably:

BookEntry::~BookEntry()
{} // nothing to do!

This means you could eliminate BookEntry’s destructor entirely.

It all adds up to this: if you replace pointer class members with their
corresponding auto_ptr objects, you fortify your constructors against
resource leaks in the presence of exceptions, you eliminate the need to
manually deallocate resources in destructors, and you allow const
member pointers to be handled in the same graceful fashion as non-
const pointers.

Dealing with the possibility of exceptions during construction can be
tricky, but auto_ptr (and auto_ptr-like classes) can eliminate most
of the drudgery. Their use leaves behind code that’s not only easy to
understand, it’s robust in the face of exceptions, too.

Item 11: Prevent exceptions from leaving destructors.
Exceptions and DestructorsThere are two situations in which a destructor is called. The first is
when an object is destroyed under “normal” conditions, e.g., when it
goes out of scope or is explicitly deleted. The second is when an object
is destroyed by the exception-handling mechanism during the stack-
unwinding part of exception propagation.
From the Library of Yuri Khan

ptg

Exceptions and Destructors 59
That being the case, an exception may or may not be active when a de-
structor is invoked. Regrettably, there is no way to distinguish between
these conditions from inside a destructor.† As a result, you must write
your destructors under the conservative assumption that an exception
is active, because if control leaves a destructor due to an exception
while another exception is active, C++ calls the terminate function.
That function does just what its name suggests: it terminates execu-
tion of your program. Furthermore, it terminates it immediately; not
even local objects are destroyed.

As an example, consider a Session class for monitoring on-line com-
puter sessions, i.e., things that happen from the time you log in
through the time you log out. Each Session object notes the date and
time of its creation and destruction:

class Session {
public:
Session();
~Session();
...

private:
static void logCreation(Session *objAddr);
static void logDestruction(Session *objAddr);

};

The functions logCreation and logDestruction are used to record
object creations and destructions, respectively. We might therefore ex-
pect that we could code Session’s destructor like this:

Session::~Session()
{
logDestruction(this);

}

This looks fine, but consider what would happen if logDestruction
throws an exception. The exception would not be caught in Session’s
destructor, so it would be propagated to the caller of that destructor.
But if the destructor was itself being called because some other excep-
tion had been thrown, the terminate function would automatically be
invoked, and that would stop your program dead in its tracks.

In many cases, this is not what you’ll want to have happen. It may be
unfortunate that the Session object’s destruction can’t be logged, it
might even be a major inconvenience, but is it really so horrific a pros-

† Now there is. In July 1995, the ISO/ANSI standardization committee for C++ added a
function, uncaught_exception, that returns true if an exception is active and has
not yet been caught.
From the Library of Yuri Khan

ptg

60 Item 11
pect that the program can’t continue running? If not, you’ll have to
prevent the exception thrown by logDestruction from propagating
out of Session’s destructor. The only way to do that is by using try
and catch blocks. A naive attempt might look like this,

Session::~Session()
{
try {
logDestruction(this);

}
catch (...) {
cerr << "Unable to log destruction of Session object "

<< "at address "
<< this
<< ".\n";

}
}

but this is probably no safer than our original code. If one of the calls
to operator<< in the catch block results in an exception being
thrown, we’re back where we started, with an exception leaving the
Session destructor.

We could always put a try block inside the catch block, but that
seems a bit extreme. Instead, we’ll just forget about logging Session
destructions if logDestruction throws an exception:

Session::~Session()
{
try {
logDestruction(this);

}
catch (...) {}

}

The catch block appears to do nothing, but appearances can be de-
ceiving. That block prevents exceptions thrown from logDestruction
from propagating beyond Session’s destructor. That’s all it needs to
do. We can now rest easy knowing that if a Session object is destroyed
as part of stack unwinding, terminate will not be called.

There is a second reason why it’s bad practice to allow exceptions to
propagate out of destructors. If an exception is thrown from a destruc-
tor and is not caught there, that destructor won’t run to completion. (It
will stop at the point where the exception is thrown.) If the destructor
doesn’t run to completion, it won’t do everything it’s supposed to do.
For example, consider a modified version of the Session class where
the creation of a session starts a database transaction and the termi-
nation of a session ends that transaction:
From the Library of Yuri Khan

ptg

Throwing Exceptions Compared to Calling Functions 61
Session::Session() // to keep things simple,
{ // this ctor handles no

// exceptions
logCreation(this);
startTransaction(); // start DB transaction

}

Session::~Session()
{
logDestruction(this);
endTransaction(); // end DB transaction

}

Here, if logDestruction throws an exception, the transaction started
in the Session constructor will never be ended. In this case, we might
be able to reorder the function calls in Session’s destructor to elimi-
nate the problem, but if endTransaction might throw an exception,
we’ve no choice but to revert to try and catch blocks.

We thus find ourselves with two good reasons for keeping exceptions
from propagating out of destructors. First, it prevents terminate from
being called during the stack-unwinding part of exception propaga-
tion. Second, it helps ensure that destructors always accomplish ev-
erything they are supposed to accomplish. Each argument is
convincing in its own right, but together, the case is ironclad.

Item 12: Understand how throwing an exception
differs from passing a parameter or calling a
virtual function.

Throwing Exceptions Compared to Calling FunctionsThe syntax for declaring function parameters is almost the same as
that for catch clauses:

class Widget { ... }; // some class; it makes no
// difference what it is

void f1(Widget w); // all these functions
void f2(Widget& w); // take parameters of
void f3(const Widget& w); // type Widget, Widget&, or
void f4(Widget *pw); // Widget*
void f5(const Widget *pw);

catch (Widget w) ... // all these catch clauses
catch (Widget& w) ... // catch exceptions of
catch (const Widget& w) ... // type Widget, Widget&, or
catch (Widget *pw) ... // Widget*
catch (const Widget *pw) ...

You might therefore assume that passing an exception from a throw
site to a catch clause is basically the same as passing an argument
From the Library of Yuri Khan

ptg

62 Item 12
from a function call site to the function’s parameter. There are some
similarities, to be sure, but there are significant differences, too.

Let us begin with a similarity. You can pass both function parameters
and exceptions by value, by reference, or by pointer. What happens
when you pass parameters and exceptions, however, is quite different.
This difference grows out of the fact that when you call a function, con-
trol eventually returns to the call site (unless the function fails to re-
turn), but when you throw an exception, control does not return to the
throw site.

Consider a function that both passes a Widget as a parameter and
throws a Widget as an exception:

// function to read the value of a Widget from a stream
istream operator>>(istream& s, Widget& w);

void passAndThrowWidget()
{
Widget localWidget;

cin >> localWidget; // pass localWidget to operator>>

throw localWidget; // throw localWidget as an exception
}

When localWidget is passed to operator>>, no copying is per-
formed. Instead, the reference w inside operator>> is bound to lo-
calWidget, and anything done to w is really done to localWidget. It’s
a different story when localWidget is thrown as an exception. Re-
gardless of whether the exception is caught by value or by reference (it
can’t be caught by pointer — that would be a type mismatch), a copy
of localWidget will be made, and it is the copy that is passed to the
catch clause. This must be the case, because localWidget will go out
of scope once control leaves passAndThrowWidget, and when local-
Widget goes out of scope, its destructor will be called. If localWidget
itself were passed to a catch clause, the clause would receive a de-
structed Widget, an ex-Widget, a former Widget, the carcass of what
once was but is no longer a Widget. That would not be useful, and
that’s why C++ specifies that an object thrown as an exception is cop-
ied.

This copying occurs even if the object being thrown is not in danger of
being destroyed. For example, if passAndThrowWidget declares lo-
calWidget to be static,

void passAndThrowWidget()
{
static Widget localWidget; // this is now static; it

// will exist until the
// end of the program
From the Library of Yuri Khan

ptg

Throwing Exceptions Compared to Calling Functions 63
cin >> localWidget; // this works as before

throw localWidget; // a copy of localWidget is
} // still made and thrown

a copy of localWidget would still be made when the exception was
thrown. This means that even if the exception is caught by reference,
it is not possible for the catch block to modify localWidget; it can
only modify a copy of localWidget. This mandatory copying of excep-
tion objects† helps explain another difference between parameter pass-
ing and throwing an exception: the latter is typically much slower than
the former (see Item 15).

When an object is copied for use as an exception, the copying is per-
formed by the object’s copy constructor. This copy constructor is the
one in the class corresponding to the object’s static type, not its dy-
namic type. For example, consider this slightly modified version of
passAndThrowWidget:

class Widget { ... };
class SpecialWidget: public Widget { ... };

void passAndThrowWidget()
{
SpecialWidget localSpecialWidget;

...

Widget& rw = localSpecialWidget; // rw refers to a
// SpecialWidget

throw rw; // this throws an
// exception of type

} // Widget!

Here a Widget exception is thrown, even though rw refers to a Spe-
cialWidget. That’s because rw’s static type is Widget, not Special-
Widget. That rw actually refers to a SpecialWidget is of no concern
to your compilers; all they care about is rw’s static type. This behavior
may not be what you want, but it’s consistent with all other cases in
which C++ copies objects. Copying is always based on an object’s static
type (but see Item 25 for a technique that lets you make copies on the
basis of an object’s dynamic type).

The fact that exceptions are copies of other objects has an impact on
how you propagate exceptions from a catch block. Consider these two
catch blocks, which at first glance appear to do the same thing:

† Compiler writers are actually allowed a slight bit of leeway regarding the “mandatory”
nature of the copying; it can be eliminated under certain circumstances. Similar lee-
way provides the foundation for the return value optimization (see Item 20).
From the Library of Yuri Khan

ptg

64 Item 12
catch (Widget& w) // catch Widget exceptions
{
... // handle the exception

throw; // rethrow the exception so it
} // continues to propagate

catch (Widget& w) // catch Widget exceptions
{
... // handle the exception

throw w; // propagate a copy of the
} // caught exception

The only difference between these blocks is that the first one rethrows
the current exception, while the second one throws a new copy of the
current exception. Setting aside the performance cost of the additional
copy operation, is there a difference between these approaches?

There is. The first block rethrows the current exception, regardless of
its type. In particular, if the exception originally thrown was of type
SpecialWidget, the first block would propagate a SpecialWidget ex-
ception, even though w’s static type is Widget. This is because no copy
is made when the exception is rethrown. The second catch block
throws a new exception, which will always be of type Widget, because
that’s w’s static type. In general, you’ll want to use the

throw;

syntax to rethrow the current exception, because there’s no chance
that that will change the type of the exception being propagated. Fur-
thermore, it’s more efficient, because there’s no need to generate a new
exception object.

(Incidentally, the copy made for an exception is a temporary object. As
Item 19 explains, this gives compilers the right to optimize it out of ex-
istence. I wouldn’t expect your compilers to work that hard, however.
Exceptions are supposed to be rare, so it makes little sense for com-
piler vendors to pour a lot of energy into their optimization.)

Let us examine the three kinds of catch clauses that could catch the
Widget exception thrown by passAndThrowWidget. They are:

catch (Widget w) ... // catch exception by value

catch (Widget& w) ... // catch exception by
// reference

catch (const Widget& w) ... // catch exception by
// reference-to-const

Right away we notice another difference between parameter passing
and exception propagation. A thrown object (which, as explained
From the Library of Yuri Khan

ptg

Throwing Exceptions Compared to Calling Functions 65
above, is always a temporary) may be caught by simple reference; it
need not be caught by reference-to-const. Passing a temporary object
to a non-const reference parameter is not allowed for function calls
(see Item 19), but it is for exceptions.

Let us overlook this difference, however, and return to our examina-
tion of copying exception objects. We know that when we pass a func-
tion argument by value, we make a copy of the passed object, and we
store that copy in a function parameter. The same thing happens when
we pass an exception by value. Thus, when we declare a catch clause
like this,

catch (Widget w) ... // catch by value

we expect to pay for the creation of two copies of the thrown object, one
to create the temporary that all exceptions generate, the second to
copy that temporary into w. Similarly, when we catch an exception by
reference,

catch (Widget& w) ... // catch by reference

catch (const Widget& w) ... // also catch by reference

we still expect to pay for the creation of a copy of the exception: the
copy that is the temporary. In contrast, when we pass function param-
eters by reference, no copying takes place. When throwing an excep-
tion, then, we expect to construct (and later destruct) one more copy of
the thrown object than if we passed the same object to a function.

We have not yet discussed throwing exceptions by pointer, but throw
by pointer is equivalent to pass by pointer. Either way, a copy of the
pointer is passed. About all you need to remember is not to throw a
pointer to a local object, because that local object will be destroyed
when the exception leaves the local object’s scope. The catch clause
would then be initialized with a pointer to an object that had already
been destroyed. This is the behavior the mandatory copying rule is de-
signed to avoid.

The way in which objects are moved from call or throw sites to param-
eters or catch clauses is one way in which argument passing differs
from exception propagation. A second difference lies in what consti-
tutes a type match between caller or thrower and callee or catcher.
Consider the sqrt function from the standard math library:

double sqrt(double); // from <cmath> or <math.h>

We can determine the square root of an integer like this:

int i;

double sqrtOfi = sqrt(i);
From the Library of Yuri Khan

ptg

66 Item 12
There is nothing surprising here. The language allows implicit conver-
sion from int to double, so in the call to sqrt, i is silently converted
to a double, and the result of sqrt corresponds to that double. (See
Item 5 for a fuller discussion of implicit type conversions.) In general,
such conversions are not applied when matching exceptions to catch
clauses. In this code,

void f(int value)
{
try {
if (someFunction()) { // if someFunction() returns
throw value; // true, throw an int

}
...

}
catch (double d) { // handle exceptions of
... // type double here

}

...

}

the int exception thrown inside the try block will never be caught by
the catch clause that takes a double. That clause catches only excep-
tions that are exactly of type double; no type conversions are applied.
As a result, if the int exception is to be caught, it will have to be by
some other (dynamically enclosing) catch clause taking an int or an
int& (possibly modified by const or volatile).

Two kinds of conversions are applied when matching exceptions to
catch clauses. The first is inheritance-based conversions. A catch
clause for base class exceptions is allowed to handle exceptions of (pub-
licly) derived class types, too. For example, consider the diagnostics por-
tion of the hierarchy of exceptions defined by the standard C++ library:

invalid_argument

exception

runtime_errorlogic_error

length_error range_error overflow_errordomain_error

out_of_range underflow_error
From the Library of Yuri Khan

ptg

Throwing Exceptions Compared to Calling Functions 67
A catch clause for runtime_errors can catch exceptions of type
range_error, underflow_error, and overflow_error, too, and a
catch clause accepting an object of the root class exception can
catch any kind of exception derived from this hierarchy.

This inheritance-based exception-conversion rule applies to values,
references, and pointers in the usual fashion (though Item 13 explains
why catching values or pointers is generally a bad idea):

catch (runtime_error) ... // can catch errors of type
catch (runtime_error&) ... // runtime_error,
catch (const runtime_error&) ... // range_error, or

// overflow_error

catch (runtime_error*) ... // can catch errors of type
catch (const runtime_error*) ... // runtime_error*,

// range_error*, or
// overflow_error*

The second type of allowed conversion is from a typed to an untyped
pointer, so a catch clause taking a const void* pointer will catch an
exception of any pointer type:

catch (const void*) ... // catches any exception
// that’s a pointer

The final difference between passing a parameter and propagating an
exception is that catch clauses are always tried in the order of their ap-
pearance. Hence, it is possible for an exception of a (publicly) derived
class type to be handled by a catch clause for one of its base class
types — even when a catch clause for the derived class is associated
with the same try block! For example,

try {
...

}
catch (logic_error& ex) { // this block will catch
... // all logic_error

} // exceptions, even those
// of derived types

catch (invalid_argument& ex) { // this block can never be
... // executed, because all

} // invalid_argument
// exceptions will be caught
// by the clause above

Contrast this behavior with what happens when you call a virtual
function. When you call a virtual function, the function invoked is the
one in the class closest to the dynamic type of the object invoking the
function. You might say that virtual functions employ a “best fit” algo-
rithm, while exception handling follows a “first fit” strategy. Compilers
may warn you if a catch clause for a derived class comes after one for
a base class (some issue an error, because such code used to be illegal
From the Library of Yuri Khan

ptg

68 Item 13
in C++), but your best course of action is preemptive: never put a
catch clause for a base class before a catch clause for a derived class.
The code above, for example, should be reordered like this:

try {
...

}
catch (invalid_argument& ex) { // handle invalid_argument
... // exceptions here

}
catch (logic_error& ex) { // handle all other
... // logic_errors here

}

There are thus three primary ways in which passing an object to a
function or using that object to invoke a virtual function differs from
throwing the object as an exception. First, exception objects are always
copied; when caught by value, they are copied twice. Objects passed to
function parameters need not be copied at all. Second, objects thrown
as exceptions are subject to fewer forms of type conversion than are
objects passed to functions. Finally, catch clauses are examined in
the order in which they appear in the source code, and the first one
that can succeed is selected for execution. When an object is used to
invoke a virtual function, the function selected is the one that provides
the best match for the type of the object, even if it’s not the first one
listed in the source code.

Item 13: Catch exceptions by reference.
Catching ExceptionsWhen you write a catch clause, you must specify how exception ob-
jects are to be passed to that clause. You have three choices, just as
when specifying how parameters should be passed to functions: by
pointer, by value, or by reference.

Let us consider first catch by pointer. In theory, this should be the
least inefficient way to implement the invariably slow process of mov-
ing an exception from throw site to catch clause (see Item 15). That’s
because throw by pointer is the only way of moving exception informa-
tion without copying an object (see Item 12). For example:

class exception { ... }; // from the standard C++
// library exception
// hierarchy (see Item 12)

void someFunction()
{
static exception ex; // exception object

...
From the Library of Yuri Khan

ptg

Catching Exceptions 69
throw &ex; // throw a pointer to ex

...

}

void doSomething()
{
try {
someFunction(); // may throw an exception*

}
catch (exception *ex) { // catches the exception*;
... // no object is copied

}
}

This looks neat and tidy, but it’s not quite as well-kept as it appears.
For this to work, programmers must define exception objects in a way
that guarantees the objects exist after control leaves the functions
throwing pointers to them. Global and static objects work fine, but it’s
easy for programmers to forget the constraint. If they do, they typically
end up writing code like this:

void someFunction()
{
exception ex; // local exception object;

// will be destroyed when
// this function’s scope is

... // exited

throw &ex; // throw a pointer to an
... // object that’s about to

} // be destroyed

This is worse than useless, because the catch clause handling this ex-
ception receives a pointer to an object that no longer exists.

An alternative is to throw a pointer to a new heap object:

void someFunction()
{
...
throw new exception; // throw a pointer to a new heap-
... // based object (and hope that

} // operator new — see Item 8 —
// doesn’t itself throw an
// exception!)

This avoids the I-just-caught-a-pointer-to-a-destroyed-object problem,
but now authors of catch clauses confront a nasty question: should
they delete the pointer they receive? If the exception object was allo-
cated on the heap, they must, otherwise they suffer a resource leak. If
From the Library of Yuri Khan

ptg

70 Item 13
the exception object wasn’t allocated on the heap, they mustn’t, other-
wise they suffer undefined program behavior. What to do?

It’s impossible to know. Some clients might pass the address of a glo-
bal or static object, others might pass the address of an exception on
the heap. Catch by pointer thus gives rise to the Hamlet conundrum:
to delete or not to delete? It’s a question with no good answer. You’re
best off ducking it.

Furthermore, catch-by-pointer runs contrary to the convention estab-
lished by the language itself. The four standard exceptions —
bad_alloc (thrown when operator new (see Item 8) can’t satisfy a
memory request), bad_cast (thrown when a dynamic_cast to a refer-
ence fails; see Item 2), bad_typeid (thrown when typeid is applied to
a dereferenced null pointer), and bad_exception (available for unex-
pected exceptions; see Item 14) — are all objects, not pointers to ob-
jects, so you have to catch them by value or by reference, anyway.

Catch-by-value eliminates questions about exception deletion and
works with the standard exception types. However, it requires that ex-
ception objects be copied twice each time they’re thrown (see Item 12).
It also gives rise to the specter of the slicing problem, whereby derived
class exception objects caught as base class exceptions have their de-
rivedness “sliced off.” Such “sliced” objects are base class objects: they
lack derived class data members, and when virtual functions are called
on them, they resolve to virtual functions of the base class. (Exactly
the same thing happens when an object is passed to a function by
value.) For example, consider an application employing an exception
class hierarchy that extends the standard one:

class exception { // as above, this is a
public: // standard exception class

virtual const char * what() const throw();
// returns a brief descrip.

... // of the exception (see
// Item 14 for info about

}; // the "throw()" at the
// end of the declaration)

class runtime_error: // also from the standard
public exception { ... }; // C++ exception hierarchy

class Validation_error: // this is a class added by
public runtime_error { // a client

public:
virtual const char * what() const throw();

// this is a redefinition
... // of the function declared

}; // in class exception above
From the Library of Yuri Khan

ptg

Catching Exceptions 71
void someFunction() // may throw a validation
{ // exception
...

if (a validation test fails) {
throw Validation_error();

}

...

}

void doSomething()
{
try {
someFunction(); // may throw a validation

} // exception

catch (exception ex) { // catches all exceptions
// in or derived from
// the standard hierarchy

cerr << ex.what(); // calls exception::what(),
... // never

} // Validation_error::what()
}

The version of what that is called is that of the base class, even though
the thrown except ion is o f type Validation_error and
Validation_error redefines that virtual function. This kind of slicing
behavior is almost never what you want.

That leaves only catch-by-reference. Catch-by-reference suffers from
none of the problems we have discussed. Unlike catch-by-pointer, the
question of object deletion fails to arise, and there is no difficulty in
catching the standard exception types. Unlike catch-by-value, there is
no slicing problem, and exception objects are copied only once.

If we rewrite the last example using catch-by-reference, it looks like
this:

void someFunction() // nothing changes in this
{ // function
...

if (a validation test fails) {
throw Validation_error();

}

...

}

From the Library of Yuri Khan

ptg

72 Item 14
void doSomething()
{
try {
someFunction(); // no change here

}
catch (exception& ex) { // here we catch by reference

// instead of by value

cerr << ex.what(); // now calls
// Validation_error::what(),

... // not exception::what()
}

}

There is no change at the throw site, and the only change in the catch
clause is the addition of an ampersand. This tiny modification makes
a big difference, however, because virtual functions in the catch block
now work as we expect: functions in Validation_error are invoked if
they redefine those in exception. Of course, if there is no need to
modify the exception object in the handler, you’d catch not just by ref-
erence, but by reference to const.

What a happy confluence of events! If you catch by reference, you side-
step questions about object deletion that leave you damned if you do
and damned if you don’t; you avoid slicing exception objects; you re-
tain the ability to catch standard exceptions; and you limit the number
of times exception objects need to be copied. So what are you waiting
for? Catch exceptions by reference!

Item 14: Use exception specifications judiciously.
Exception SpecificationsThere’s no denying it: exception specifications have appeal. They make
code easier to understand, because they explicitly state what excep-
tions a function may throw. But they’re more than just fancy com-
ments. Compilers are sometimes able to detect inconsistent exception
specifications during compilation. Furthermore, if a function throws
an exception not listed in its exception specification, that fault is de-
tected at runtime, and the special function unexpected is automati-
cally invoked. Both as a documentation aid and as an enforcement
mechanism for constraints on exception usage, then, exception speci-
fications seem attractive.

As is often the case, however, beauty is only skin deep. The default be-
havior for unexpected is to call terminate, and the default behavior
for terminate is to call abort, so the default behavior for a program
with a violated exception specification is to halt. Local variables in ac-
tive stack frames are not destroyed, because abort shuts down pro-
gram execution without performing such cleanup. A violated exception
specification is therefore a cataclysmic thing, something that should
almost never happen.
From the Library of Yuri Khan

ptg

Exception Specifications 73
Unfortunately, it’s easy to write functions that make this terrible thing
occur. Compilers only partially check exception usage for consistency
with exception specifications. What they do not check for — what the
language standard prohibits them from rejecting (though they may
issue a warning) — is a call to a function that might violate the excep-
tion specification of the function making the call.

Consider a declaration for a function f1 that has no exception specifi-
cation. Such a function may throw any kind of exception:

extern void f1(); // might throw anything

Now consider a function f2 that claims, through its exception specifi-
cation, it will throw only exceptions of type int:

void f2() throw(int);

It is perfectly legal C++ for f2 to call f1, even though f1 might throw
an exception that would violate f2’s exception specification:

void f2() throw(int)
{
...
f1(); // legal even though f1 might throw

// something besides an int
...

}

This kind of flexibility is essential if new code with exception specifica-
tions is to be integrated with older code lacking such specifications.

Because your compilers are content to let you call functions whose ex-
ception specifications are inconsistent with those of the routine con-
taining the calls, and because such calls might result in your
program’s execution being terminated, it’s important to write your
software in such a way that these kinds of inconsistencies are mini-
mized. A good way to start is to avoid putting exception specifications
on templates that take type arguments. Consider this template, which
certainly looks as if it couldn’t throw any exceptions:

// a poorly designed template wrt exception specifications
template<class T>
bool operator==(const T& lhs, const T& rhs) throw()
{
return &lhs == &rhs;

}

This template defines an operator== function for all types. For any
pair of objects of the same type, it returns true if the objects have the
same address, otherwise it returns false.
From the Library of Yuri Khan

ptg

74 Item 14
This template contains an exception specification stating that the
functions generated from the template will throw no exceptions. But
that’s not necessarily true, because it’s possible that operator& (the
address-of operator) has been overloaded for some types. If it has, op-
erator& may throw an exception when called from inside opera-
tor==. If it does, our exception specification is violated, and off to
unexpected we go.

This is a specific example of a more general problem, namely, that
there is no way to know anything about the exceptions thrown by a
template’s type parameters. We can almost never provide a meaningful
exception specification for a template, because templates almost in-
variably use their type parameter in some way. The conclusion? Tem-
plates and exception specifications don’t mix.

A second technique you can use to avoid calls to unexpected is to omit
exception specifications on functions making calls to functions that
themselves lack exception specifications. This is simple common
sense, but there is one case that is easy to forget. That’s when allowing
users to register callback functions:

// Function pointer type for a window system callback
// when a window system event occurs
typedef void (*CallBackPtr)(int eventXLocation,

int eventYLocation,
void *dataToPassBack);

// Window system class for holding onto callback
// functions registered by window system clients
class CallBack {
public:
CallBack(CallBackPtr fPtr, void *dataToPassBack)
: func(fPtr), data(dataToPassBack) {}

void makeCallBack(int eventXLocation,
int eventYLocation) const throw();

private:
CallBackPtr func; // function to call when

// callback is made

void *data; // data to pass to callback
}; // function

// To implement the callback, we call the registered func-
// tion with event’s coordinates and the registered data
void CallBack::makeCallBack(int eventXLocation,

int eventYLocation) const throw()
{
func(eventXLocation, eventYLocation, data);

}

From the Library of Yuri Khan

ptg

Exception Specifications 75
Here the call to func in makeCallBack runs the risk of a violated ex-
ception specification, because there is no way of knowing what excep-
tions func might throw.

This problem can be eliminated by tightening the exception specifica-
tion in the CallBackPtr typedef:†

typedef void (*CallBackPtr)(int eventXLocation,
int eventYLocation,
void *dataToPassBack) throw();

Given this typedef, it is now an error to register a callback function
that fails to guarantee it throws nothing:

// a callback function without an exception specification
void callBackFcn1(int eventXLocation, int eventYLocation,

void *dataToPassBack);

void *callBackData;

...

CallBack c1(callBackFcn1, callBackData);
// error! callBackFcn1
// might throw an exception

// a callback function with an exception specification
void callBackFcn2(int eventXLocation,

int eventYLocation,
void *dataToPassBack) throw();

CallBack c2(callBackFcn2, callBackData);
// okay, callBackFcn2 has a
// conforming ex. spec.

This checking of exception specifications when passing function point-
ers is a relatively recent addition to the language, so don’t be surprised
if your compilers don’t yet support it. If they don’t, it’s up to you to en-
sure you don’t make this kind of mistake.

A third technique you can use to avoid calls to unexpected is to handle
exceptions “the system” may throw. Of these exceptions, the most com-
mon is bad_alloc, which is thrown by operator new and operator
new[] when a memory allocation fails (see Item 8). If you use the new
operator (again, see Item 8) in any function, you must be prepared for
the possibility that the function will encounter a bad_alloc exception.

Now, an ounce of prevention may be better than a pound of cure, but
sometimes prevention is hard and cure is easy. That is, sometimes it’s
easier to cope with unexpected exceptions directly than to prevent
them from arising in the first place. If, for example, you’re writing soft-

† Alas, it can’t, at least not portably. Though many compilers accept the code shown on
this page, the standardization committee has inexplicably decreed that “an exception
specification shall not appear in a typedef.” I don’t know why. If you need a portable
solution, you must — it hurts me to write this — make CallBackPtr a macro, sigh.
From the Library of Yuri Khan

ptg

76 Item 14
ware that uses exception specifications rigorously, but you’re forced to
call functions in libraries that don’t use exception specifications, it’s
impractical to prevent unexpected exceptions from arising, because
that would require changing the code in the libraries.

If preventing unexpected exceptions isn’t practical, you can exploit the
fact that C++ allows you to replace unexpected exceptions with excep-
tions of a different type. For example, suppose you’d like all unex-
pected exceptions to be replaced by UnexpectedException objects.
You can set it up like this,

class UnexpectedException {}; // all unexpected exception
// objects will be replaced
// by objects of this type

void convertUnexpected() // function to call if
{ // an unexpected exception
throw UnexpectedException(); // is thrown

}

and make it happen by replacing the default unexpected function
with convertUnexpected:

set_unexpected(convertUnexpected);

Once you’ve done this, any unexpected exception results in conver-
tUnexpected being called. The unexpected exception is then replaced
by a new exception of type UnexpectedException. Provided the ex-
ception specification that was violated includes UnexpectedExcep-
tion, exception propagation will then continue as if the exception
specification had always been satisfied. (If the exception specification
does not include UnexpectedException, terminate will be called,
just as if you had never replaced unexpected.)

Another way to translate unexpected exceptions into a well known type
is to rely on the fact that if the unexpected function’s replacement re-
throws the current exception, that exception will be replaced by a new
exception of the standard type bad_exception. Here’s how you’d ar-
range for that to happen:

void convertUnexpected() // function to call if
{ // an unexpected exception
throw; // is thrown; just rethrow

} // the current exception

set_unexpected(convertUnexpected);
// install convertUnexpected
// as the unexpected
// replacement
From the Library of Yuri Khan

ptg

Exception Specifications 77
If you do this and you include bad_exception (or its base class, the
standard class exception) in all your exception specifications, you’ll
never have to worry about your program halting if an unexpected ex-
ception is encountered. Instead, any wayward exception will be re-
placed by a bad_exception, and that exception will be propagated in
the stead of the original one.

By now you understand that exception specifications can be a lot of
trouble. Compilers perform only partial checks for their consistent us-
age, they’re problematic in templates, they’re easy to violate inadvert-
ently, and, by default, they lead to abrupt program termination when
they’re violated. Exception specifications have another drawback, too,
and that’s that they result in unexpected being invoked even when a
higher-level caller is prepared to cope with the exception that’s arisen.
For example, consider this code, which is taken almost verbatim from
Item 11:

class Session { // for modeling online
public: // sessions
~Session();
...

private:
static void logDestruction(Session *objAddr) throw();

};

Session::~Session()
{
try {
logDestruction(this);

}
catch (...) {}

}

The Session destructor calls logDestruction to record the fact that
a Session object is being destroyed, but it explicitly catches any ex-
ceptions that might be thrown by logDestruction. However, logDe-
struction comes with an exception specification asserting that it
throws no exceptions. Now, suppose some function called by logDe-
struction throws an exception that logDestruction fails to catch.
This isn’t supposed to happen, but as we’ve seen, it isn’t difficult to
write code that leads to the violation of exception specifications. When
this unanticipated exception propagates through logDestruction,
unexpected will be called, and, by default, that will result in termina-
tion of the program. This is correct behavior, to be sure, but is it the
behavior the author of Session’s destructor wanted? That author took
pains to handle all possible exceptions, so it seems almost unfair to
halt the program without giving Session’s destructor’s catch block a
chance to work. If logDestruction had no exception specification,
From the Library of Yuri Khan

ptg

78 Item 15
this I’m-willing-to-catch-it-if-you’ll-just-give-me-a-chance scenario
would never arise. (One way to prevent it is to replace unexpected as
described above.)

It’s important to keep a balanced view of exception specifications. They
provide excellent documentation on the kinds of exceptions a function
is expected to throw, and for situations in which violating an exception
specification is so dire as to justify immediate program termination,
they offer that behavior by default. At the same time, they are only
partly checked by compilers and they are easy to violate inadvertently.
Furthermore, they can prevent high-level exception handlers from
dealing with unexpected exceptions, even when they know how to.
That being the case, exception specifications are a tool to be applied ju-
diciously. Before adding them to your functions, consider whether the
behavior they impart to your software is really the behavior you want.

Item 15: Understand the costs of exception handling.
The Costs of Exception HandlingTo handle exceptions at runtime, programs must do a fair amount of
bookkeeping. At each point during execution, they must be able to
identify the objects that require destruction if an exception is thrown;
they must make note of each entry to and exit from a try block; and
for each try block, they must keep track of the associated catch
clauses and the types of exceptions those clauses can handle. This
bookkeeping is not free. Nor are the runtime comparisons necessary to
ensure that exception specifications are satisfied. Nor is the work ex-
pended to destroy the appropriate objects and find the correct catch
clause when an exception is thrown. No, exception handling has costs,
and you pay at least some of them even if you never use the keywords
try, throw, or catch.

Let us begin with the things you pay for even if you never use any ex-
ception-handling features. You pay for the space used by the data
structures needed to keep track of which objects are fully constructed
(see Item 10), and you pay for the time needed to keep these data
structures up to date. These costs are typically quite modest. Never-
theless, programs compiled without support for exceptions are typi-
cally both faster and smaller than their counterparts compiled with
support for exceptions.

In theory, you don’t have a choice about these costs: exceptions are
part of C++, compilers have to support them, and that’s that. You can’t
even expect compiler vendors to eliminate the costs if you use no ex-
ception-handling features, because programs are typically composed
of multiple independently generated object files, and just because one
object file doesn’t do anything with exceptions doesn’t mean others
From the Library of Yuri Khan

ptg

The Costs of Exception Handling 79
don’t. Furthermore, even if none of the object files linked to form an ex-
ecutable use exceptions, what about the libraries they’re linked with?
If any part of a program uses exceptions, the rest of the program must
support them, too. Otherwise it may not be possible to provide correct
exception-handling behavior at runtime.

That’s the theory. In practice, most vendors who support exception
handling allow you to control whether support for exceptions is in-
cluded in the code they generate. If you know that no part of your pro-
gram uses try, throw, or catch, and you also know that no library
with which you’ll link uses try, throw, or catch, you might as well
compile without exception-handling support and save yourself the size
and speed penalty you’d otherwise probably be assessed for a feature
you’re not using. As time goes on and libraries employing exceptions
become more common, this strategy will become less tenable, but
given the current state of C++ software development, compiling with-
out support for exceptions is a reasonable performance optimization if
you have already decided not to use exceptions. It may also be an at-
tractive optimization for libraries that eschew exceptions, provided
they can guarantee that exceptions thrown from client code never
propagate into the library. This is a difficult guarantee to make, as it
precludes client redefinitions of library-declared virtual functions; it
also rules out client-defined callback functions.

A second cost of exception-handling arises from try blocks, and you
pay it whenever you use one, i.e., whenever you decide you want to be
able to catch exceptions. Different compilers implement try blocks in
different ways, so the cost varies from compiler to compiler. As a rough
estimate, expect your overall code size to increase by 5-10% and your
runtime to go up by a similar amount if you use try blocks. This as-
sumes no exceptions are thrown; what we’re discussing here is just the
cost of having try blocks in your programs. To minimize this cost, you
should avoid unnecessary try blocks.

Compilers tend to generate code for exception specifications much as
they do for try blocks, so an exception specification generally incurs
about the same cost as a try block. Excuse me? You say you thought
exception specifications were just specifications, you didn’t think they
generated code? Well, now you have something new to think about.

Which brings us to the heart of the matter, the cost of throwing an ex-
ception. In truth, this shouldn’t be much of a concern, because excep-
tions should be rare. After all, they indicate the occurrence of events
that are exceptional. The 80-20 rule (see Item 16) tells us that such
events should almost never have much impact on a program’s overall
performance. Nevertheless, I know you’re curious about just how big a
hit you’ll take if you throw an exception, and the answer is it’s proba-
From the Library of Yuri Khan

ptg

80 Item 15
bly a big one. Compared to a normal function return, returning from a
function by throwing an exception may be as much as three orders of
magnitude slower. That’s quite a hit. But you’ll take it only if you throw
an exception, and that should be almost never. If, however, you’ve been
thinking of using exceptions to indicate relatively common conditions
like the completion of a data structure traversal or the termination of
a loop, now would be an excellent time to think again.

But wait. How can I know this stuff? If support for exceptions is a rel-
atively recent addition to most compilers (it is), and if different compil-
ers implement their support in different ways (they do), how can I say
that a program’s size will generally grow by about 5-10%, its speed will
decrease by a similar amount, and it may run orders of magnitude
slower if lots of exceptions are thrown? The answer is frightening: a lit-
tle rumor and a handful of benchmarks (see Item 23). The fact is that
most people — including most compiler vendors — have little experi-
ence with exceptions, so though we know there are costs associated
with them, it is difficult to predict those costs accurately.

The prudent course of action is to be aware of the costs described in
this item, but not to take the numbers very seriously. Whatever the
cost of exception handling, you don’t want to pay any more than you
have to. To minimize your exception-related costs, compile without
support for exceptions when that is feasible; limit your use of try
blocks and exception specifications to those locations where you hon-
estly need them; and throw exceptions only under conditions that are
truly exceptional. If you still have performance problems, profile your
software (see Item 16) to determine if exception support is a contribut-
ing factor. If it is, consider switching to different compilers, ones that
provide more efficient implementations of C++’s exception-handling
features.
From the Library of Yuri Khan

ptg
Efficiency

EfficiencyI harbor a suspicion that someone has performed secret Pavlovian ex-
periments on C++ software developers. How else can one explain the
fact that when the word “efficiency” is mentioned, scores of program-
mers start to drool?

In fact, efficiency is no laughing matter. Programs that are too big or
too slow fail to find acceptance, no matter how compelling their merits.
This is perhaps as it should be. Software is supposed to help us do
things better, and it’s difficult to argue that slower is better, that de-
manding 32 megabytes of memory is better than requiring a mere 16,
that chewing up 100 megabytes of disk space is better than swallowing
only 50. Furthermore, though some programs take longer and use
more memory because they perform more ambitious computations,
too many programs can blame their sorry pace and bloated footprint
on nothing more than bad design and slipshod programming.

Writing efficient programs in C++ starts with the recognition that C++
may well have nothing to do with any performance problems you’ve
been having. If you want to write an efficient C++ program, you must
first be able to write an efficient program. Too many developers over-
look this simple truth. Yes, loops may be unrolled by hand and multi-
plications may be replaced by shift operations, but such micro-tuning
leads nowhere if the higher-level algorithms you employ are inherently
inefficient. Do you use quadratic algorithms when linear ones are
available? Do you compute the same value over and over? Do you
squander opportunities to reduce the average cost of expensive opera-
tions? If so, you can hardly be surprised if your programs are de-
scribed like second-rate tourist attractions: worth a look, but only if
you’ve got some extra time.

The material in this chapter attacks the topic of efficiency from two an-
gles. The first is language-independent, focusing on things you can do
in any programming language. C++ provides a particularly appealing
From the Library of Yuri Khan

ptg

82 Item 16
implementation medium for these ideas, because its strong support for
encapsulation makes it possible to replace inefficient class implemen-
tations with better algorithms and data structures that support the
same interface.

The second focus is on C++ itself. High-performance algorithms and
data structures are great, but sloppy implementation practices can re-
duce their effectiveness considerably. The most insidious mistake is
both simple to make and hard to recognize: creating and destroying too
many objects. Superfluous object constructions and destructions act
like a hemorrhage on your program’s performance, with precious
clock-ticks bleeding away each time an unnecessary object is created
and destroyed. This problem is so pervasive in C++ programs, I devote
four separate items to describing where these objects come from and
how you can eliminate them without compromising the correctness of
your code.

Programs don’t get big and slow only by creating too many objects.
Other potholes on the road to high performance include library selec-
tion and implementations of language features. In the items that fol-
low, I address these issues, too.

After reading the material in this chapter, you’ll be familiar with sev-
eral principles that can improve the performance of virtually any pro-
gram you write, you’ll know exactly how to prevent unnecessary
objects from creeping into your software, and you’ll have a keener
awareness of how your compilers behave when generating executables.

It’s been said that forewarned is forearmed. If so, think of the informa-
tion that follows as preparation for battle.

Item 16: Remember the 80-20 rule.
The 80-20 RuleThe 80-20 rule states that 80 percent of a program’s resources are
used by about 20 percent of the code: 80 percent of the runtime is
spent in approximately 20 percent of the code; 80 percent of the mem-
ory is used by some 20 percent of the code; 80 percent of the disk ac-
cesses are performed for about 20 percent of the code; 80 percent of
the maintenance effort is devoted to around 20 percent of the code.
The rule has been repeatedly verified through examinations of count-
less machines, operating systems, and applications. The 80-20 rule is
more than just a catchy phrase; it’s a guideline about system perfor-
mance that has both wide applicability and a solid empirical basis.

When considering the 80-20 rule, it’s important not to get too hung up
on numbers. Some people favor the more stringent 90-10 rule, and
there’s experimental evidence to back that, too. Whatever the precise
From the Library of Yuri Khan

ptg

The 80-20 Rule 83
numbers, the fundamental point is this: the overall performance of
your software is almost always determined by a small part of its con-
stituent code.

As a programmer striving to maximize your software’s performance,
the 80-20 rule both simplifies and complicates your life. On one hand,
the 80-20 rule implies that most of the time you can produce code
whose performance is, frankly, rather mediocre, because 80 percent of
the time its efficiency doesn’t affect the overall performance of the sys-
tem you’re working on. That may not do much for your ego, but it
should reduce your stress level a little. On the other hand, the rule im-
plies that if your software has a performance problem, you’ve got a
tough job ahead of you, because you not only have to locate the small
pockets of code that are causing the problem, you have to find ways to
increase their performance dramatically. Of these tasks, the more
troublesome is generally locating the bottlenecks. There are two funda-
mentally different ways to approach the matter: the way most people
do it and the right way.

The way most people locate bottlenecks is to guess. Using experience,
intuition, tarot cards and Ouija boards, rumors or worse, developer
after developer solemnly proclaims that a program’s efficiency prob-
lems can be traced to network delays, improperly tuned memory allo-
cators, compilers that don’t optimize aggressively enough, or some
bonehead manager’s refusal to permit assembly language for crucial
inner loops. Such assessments are generally delivered with a conde-
scending sneer, and usually both the sneerers and their prognostica-
tions are flat-out wrong.

Most programmers have lousy intuition about the performance char-
acteristics of their programs, because program performance charac-
teristics tend to be highly unintuitive. As a result, untold effort is
poured into improving the efficiency of parts of programs that will
never have a noticeable effect on their overall behavior. For example,
fancy algorithms and data structures that minimize computation may
be added to a program, but it’s all for naught if the program is I/O-
bound. Souped-up I/O libraries (see Item 23) may be substituted for
the ones shipped with compilers, but there’s not much point if the pro-
grams using them are CPU-bound.

That being the case, what do you do if you’re faced with a slow program
or one that uses too much memory? The 80-20 rule means that im-
proving random parts of the program is unlikely to help very much.
The fact that programs tend to have unintuitive performance charac-
teristics means that trying to guess the causes of performance bottle-
necks is unlikely to be much better than just improving random parts
of your program. What, then, will work?
From the Library of Yuri Khan

ptg

84 Item 16
What will work is to empirically identify the 20 percent of your program
that is causing you heartache, and the way to identify that horrid 20
percent is to use a program profiler. Not just any profiler will do, how-
ever. You want one that directly measures the resources you are inter-
ested in. For example, if your program is too slow, you want a profiler
that tells you how much time is being spent in different parts of the
program. That way you can focus on those places where a significant
improvement in local efficiency will also yield a significant improve-
ment in overall efficiency.

Profilers that tell you how many times each statement is executed or
how many times each function is called are of limited utility. From a
performance point of view, you do not care how many times a state-
ment is executed or a function is called. It is, after all, rather rare to
encounter a user of a program or a client of a library who complains
that too many statements are being executed or too many functions
are being called. If your software is fast enough, nobody cares how
many statements are executed, and if it’s too slow, nobody cares how
few. All they care about is that they hate to wait, and if your program
is making them do it, they hate you, too.

Still, knowing how often statements are executed or functions are
called can sometimes yield insight into what your software is doing. If,
for example, you think you’re creating about a hundred objects of a
particular type, it would certainly be worthwhile to discover that you’re
calling constructors in that class thousands of times. Furthermore,
statement and function call counts can indirectly help you understand
facets of your software’s behavior you can’t directly measure. If you
have no direct way of measuring dynamic memory usage, for example,
it may be helpful to know at least how often memory allocation and
deallocation functions (e.g., operators new, new[], delete, and de-
lete[] — see Item 8) are called.

Of course, even the best of profilers is hostage to the data it’s given to
process. If you profile your program while it’s processing unrepresen-
tative input data, you’re in no position to complain if the profiler leads
you to fine-tune parts of your software — the parts making up some 80
percent of it — that have no bearing on its usual performance. Remem-
ber that a profiler can only tell you how a program behaved on a par-
ticular run (or set of runs), so if you profile a program using input data
that is unrepresentative, you’re going to get back a profile that is
equally unrepresentative. That, in turn, is likely to lead to you to opti-
mize your software’s behavior for uncommon uses, and the overall im-
pact on common uses may even be negative.

The best way to guard against these kinds of pathological results is to
profile your software using as many data sets as possible. Moreover,
From the Library of Yuri Khan

ptg

Lazy Evaluation 85
you must ensure that each data set is representative of how the soft-
ware is used by its clients (or at least its most important clients). It is
usually easy to acquire representative data sets, because many clients
are happy to let you use their data when profiling. After all, you’ll then
be tuning your software to meet their needs, and that can only be good
for both of you.

Item 17: Consider using lazy evaluation.
Lazy EvaluationFrom the perspective of efficiency, the best computations are those you
never perform at all. That’s fine, but if you don’t need to do something,
why would you put code in your program to do it in the first place? And
if you do need to do something, how can you possibly avoid executing
the code that does it?

The key is to be lazy.

Remember when you were a child and your parents told you to clean
your room? If you were anything like me, you’d say “Okay,” then
promptly go back to what you were doing. You would not clean your
room. In fact, cleaning your room would be the last thing on your mind
— until you heard your parents coming down the hall to confirm that
your room had, in fact, been cleaned. Then you’d sprint to your room
and get to work as fast as you possibly could. If you were lucky, your
parents would never check, and you’d avoid all the work cleaning your
room normally entails.

It turns out that the same delay tactics that work for a five year old
work for a C++ programmer. In Computer Science, however, we dignify
such procrastination with the name lazy evaluation. When you employ
lazy evaluation, you write your classes in such a way that they defer
computations until the results of those computations are required. If
the results are never required, the computations are never performed,
and neither your software’s clients nor your parents are any the wiser.

Perhaps you’re wondering exactly what I’m talking about. Perhaps an
example would help. Well, lazy evaluation is applicable in an enormous
variety of application areas, so I’ll describe four.

Reference Counting

Consider this code:

class String { ... }; // a string class (the standard
// string type may be implemented
// as described below, but it
// doesn’t have to be)
From the Library of Yuri Khan

ptg

86 Item 17
String s1 = "Hello";

String s2 = s1; // call String copy ctor

A common implementation for the String copy constructor would re-
sult in s1 and s2 each having its own copy of “Hello” after s2 is ini-
tialized with s1. Such a copy constructor would incur a relatively large
expense, because it would have to make a copy of s1’s value to give to
s2, and that would typically entail allocating heap memory via the new
operator (see Item 8) and calling strcpy to copy the data in s1 into the
memory allocated by s2. This is eager evaluation: making a copy of s1
and putting it into s2 just because the String copy constructor was
called. At this point, however, there has been no real need for s2 to
have a copy of the value, because s2 hasn’t been used yet.

The lazy approach is a lot less work. Instead of giving s2 a copy of s1’s
value, we have s2 share s1’s value. All we have to do is a little book-
keeping so we know who’s sharing what, and in return we save the
cost of a call to new and the expense of copying anything. The fact that
s1 and s2 are sharing a data structure is transparent to clients, and it
certainly makes no difference in statements like the following, because
they only read values, they don’t write them:

cout << s1; // read s1’s value

cout << s1 + s2; // read s1’s and s2’s values

In fact, the only time the sharing of values makes a difference is when
one or the other string is modified; then it’s important that only one
string be changed, not both. In this statement,

s2.convertToUpperCase();

it’s crucial that only s2’s value be changed, not s1’s also.

To handle statements like this, we have to implement String’s con-
vertToUpperCase function so that it makes a copy of s2’s value and
makes that value private to s2 before modifying it. Inside convert-
ToUpperCase, we can be lazy no longer: we have to make a copy of s2’s
(shared) value for s2’s private use. On the other hand, if s2 is never
modified, we never have to make a private copy of its value. It can con-
tinue to share a value as long as it exists. If we’re lucky, s2 will never
be modified, in which case we’ll never have to expend the effort to give
it its own value.

The details on making this kind of value sharing work (including all the
code) are provided in Item 29, but the idea is lazy evaluation: don’t
bother to make a copy of something until you really need one. Instead,
be lazy — use someone else’s copy as long as you can get away with it.
In some application areas, you can often get away with it forever.
From the Library of Yuri Khan

ptg

Lazy Evaluation 87
Distinguishing Reads from Writes

Pursuing the example of reference-counting strings a bit further, we
come upon a second way in which lazy evaluation can help us. Con-
sider this code:

String s = "Homer’s Iliad"; // Assume s is a
// reference-counted string

...

cout << s[3]; // call operator[] to read s[3]
s[3] = ’x’; // call operator[] to write s[3]

The first call to operator[] is to read part of a string, but the second
call is to perform a write. We’d like to be able to distinguish the read
call from the write, because reading a reference-counted string is
cheap, but writing to such a string may require splitting off a new copy
of the string’s value prior to the write.

This puts us in a difficult implementation position. To achieve what we
want, we need to do different things inside operator[] (depending on
whether it’s being called to perform a read or a write). How can we de-
termine whether operator[] has been called in a read or a write con-
text? The brutal truth is that we can’t. By using lazy evaluation and
proxy classes as described in Item 30, however, we can defer the deci-
sion on whether to take read actions or write actions until we can de-
termine which is correct.

Lazy Fetching

As a third example of lazy evaluation, imagine you’ve got a program
that uses large objects containing many constituent fields. Such ob-
jects must persist across program runs, so they’re stored in a data-
base. Each object has a unique object identifier that can be used to
retrieve the object from the database:

class LargeObject { // large persistent objects
public:
LargeObject(ObjectID id); // restore object from disk

const string& field1() const; // value of field 1
int field2() const; // value of field 2
double field3() const; // ...
const string& field4() const;
const string& field5() const;
...

};

Now consider the cost of restoring a LargeObject from disk:
From the Library of Yuri Khan

ptg

88 Item 17
void restoreAndProcessObject(ObjectID id)
{
LargeObject object(id); // restore object

...

}

Because LargeObject instances are big, getting all the data for such
an object might be a costly database operation, especially if the data
must be retrieved from a remote database and pushed across a net-
work. In some cases, the cost of reading all that data would be unnec-
essary. For example, consider this kind of application:

void restoreAndProcessObject(ObjectID id)
{
LargeObject object(id);

if (object.field2() == 0) {
cout << "Object " << id << ": null field2.\n";

}
}

Here only the value of field2 is required, so any effort spent setting
up the other fields is wasted.

The lazy approach to this problem is to read no data from disk when a
LargeObject object is created. Instead, only the “shell” of an object is
created, and data is retrieved from the database only when that partic-
ular data is needed inside the object. Here’s one way to implement this
kind of “demand-paged” object initialization:

class LargeObject {
public:
LargeObject(ObjectID id);

const string& field1() const;
int field2() const;
double field3() const;
const string& field4() const;
...

private:
ObjectID oid;

mutable string *field1Value; // see below for a
mutable int *field2Value; // discussion of "mutable"
mutable double *field3Value;
mutable string *field4Value;
...

};
From the Library of Yuri Khan

ptg

Lazy Evaluation 89
LargeObject::LargeObject(ObjectID id)
: oid(id), field1Value(0), field2Value(0), field3Value(0), ...
{}

const string& LargeObject::field1() const
{
if (field1Value == 0) {
read the data for field 1 from the database and make
field1Value point to it;

}

return *field1Value;
}

Each field in the object is represented as a pointer to the necessary
data, and the LargeObject constructor initializes each pointer to null.
Such null pointers signify fields that have not yet been read from the
database. Each LargeObject member function must check the state
of a field’s pointer before accessing the data it points to. If the pointer
is null, the corresponding data must be read from the database before
performing any operations on that data.

When implementing lazy fetching, you must confront the problem that
null pointers may need to be initialized to point to real data from inside
any member function, including const member functions like field1.
However, compilers get cranky when you try to modify data members
inside const member functions, so you’ve got to find a way to say, “It’s
okay, I know what I’m doing.” The best way to say that is to declare the
pointer fields mutable, which means they can be modified inside any
member function, even inside const member functions. That’s why
the fields inside LargeObject above are declared mutable.

The mutable keyword is a relatively recent addition to C++, so it’s pos-
sible your vendors don’t yet support it. If not, you’ll need to find an-
other way to convince your compilers to let you modify data members
inside const member functions. One workable strategy is the “fake
this” approach, whereby you create a pointer-to-non-const that
points to the same object as this does. When you want to modify a
data member, you access it through the “fake this” pointer:

class LargeObject {
public:
const string& field1() const; // unchanged
...

private:
string *field1Value; // not declared mutable
... // so that older

}; // compilers will accept it
From the Library of Yuri Khan

ptg

90 Item 17
const string& LargeObject::field1() const
{
// declare a pointer, fakeThis, that points where this
// does, but where the constness of the object has been
// cast away
LargeObject * const fakeThis =
const_cast<LargeObject* const>(this);

if (field1Value == 0) {
fakeThis->field1Value = // this assignment is OK,
the appropriate data // because what fakeThis
from the database; // points to isn’t const

}

return *field1Value;
}

This function employs a const_cast (see Item 2) to cast away the
constness of *this. If your compilers don’t support const_cast, you
can use an old C-style cast:

// Use of old-style cast to help emulate mutable
const string& LargeObject::field1() const
{
LargeObject * const fakeThis = (LargeObject* const)this;

... // as above

}

Look again at the pointers inside LargeObject. Let’s face it, it’s te-
dious and error-prone to have to initialize all those pointers to null,
then test each one before use. Fortunately, such drudgery can be au-
tomated through the use of smart pointers, which you can read about
in Item 28. If you use smart pointers inside LargeObject, you’ll also
find you no longer need to declare the pointers mutable. Alas, it’s only
a temporary respite, because you’ll wind up needing mutable once you
sit down to implement the smart pointer classes. Think of it as conser-
vation of inconvenience.

Lazy Expression Evaluation

A final example of lazy evaluation comes from numerical applications.
Consider this code:

template<class T>
class Matrix { ... }; // for homogeneous matrices

Matrix<int> m1(1000, 1000); // a 1000 by 1000 matrix
Matrix<int> m2(1000, 1000); // ditto

...

Matrix<int> m3 = m1 + m2; // add m1 and m2
From the Library of Yuri Khan

ptg

Lazy Evaluation 91
The usual implementation of operator+ would use eager evaluation;
in this case it would compute and return the sum of m1 and m2. That’s
a fair amount of computation (1,000,000 additions), and of course
there’s the cost of allocating the memory to hold all those values, too.

The lazy evaluation strategy says that’s way too much work, so it
doesn’t do it. Instead, it sets up a data structure inside m3 that indi-
cates that m3’s value is the sum of m1 and m2. Such a data structure
might consist of nothing more than a pointer to each of m1 and m2, plus
an enum indicating that the operation on them is addition. Clearly, it’s
going to be faster to set up this data structure than to add m1 and m2,
and it’s going to use a lot less memory, too.

Suppose that later in the program, before m3 has been used, this code
is executed:

Matrix<int> m4(1000, 1000);

... // give m4 some values

m3 = m4 * m1;

Now we can forget all about m3 being the sum of m1 and m2 (and
thereby save the cost of the computation), and in its place we can start
remembering that m3 is the product of m4 and m1. Needless to say, we
don’t perform the multiplication. Why bother? We’re lazy, remember?

This example looks contrived, because no good programmer would
write a program that computed the sum of two matrices and failed to
use it, but it’s not as contrived as it seems. No good programmer would
deliberately compute a value that’s not needed, but during mainte-
nance, it’s not uncommon for a programmer to modify the paths
through a program in such a way that a formerly useful computation
becomes unnecessary. The likelihood of that happening is reduced by
defining objects immediately prior to use, but it’s still a problem that
occurs from time to time.

Nevertheless, if that were the only time lazy evaluation paid off, it
would hardly be worth the trouble. A more common scenario is that we
need only part of a computation. For example, suppose we use m3 as
follows after initializing it to the sum of m1 and m2:

cout << m3[4]; // print the 4th row of m3

Clearly we can be completely lazy no longer — we’ve got to compute the
values in the fourth row of m3. But let’s not be overly ambitious, either.
There’s no reason we have to compute any more than the fourth row of
m3; the remainder of m3 can remain uncomputed until it’s actually
needed. With luck, it never will be.
From the Library of Yuri Khan

ptg

92 Item 17
How likely are we to be lucky? Experience in the domain of matrix
computations suggests the odds are in our favor. In fact, lazy evalua-
tion lies behind the wonder that is APL. APL was developed in the
1960s for interactive use by people who needed to perform matrix-
based calculations. Running on computers that had less computa-
tional horsepower than the chips now found in high-end microwave
ovens, APL was seemingly able to add, multiply, and even divide large
matrices instantly! Its trick was lazy evaluation. The trick was usually
effective, because APL users typically added, multiplied, or divided ma-
trices not because they needed the entire resulting matrix, but only be-
cause they needed a small part of it. APL employed lazy evaluation to
defer its computations until it knew exactly what part of a result ma-
trix was needed, then it computed only that part. In practice, this al-
lowed users to perform computationally intensive tasks interactively in
an environment where the underlying machine was hopelessly inade-
quate for an implementation employing eager evaluation. Machines are
faster today, but data sets are bigger and users less patient, so many
contemporary matrix libraries continue to take advantage of lazy eval-
uation.

To be fair, laziness sometimes fails to pay off. If m3 is used in this way,

cout << m3; // print out all of m3

the jig is up and we’ve got to compute a complete value for m3. Simi-
larly, if one of the matrices on which m3 is dependent is about to be
modified, we have to take immediate action:

m3 = m1 + m2; // remember that m3 is the
// sum of m1 and m2

m1 = m4; // now m3 is the sum of m2
// and the OLD value of m1!

Here we’ve got to do something to ensure that the assignment to m1
doesn’t change m3. Inside the Matrix<int> assignment operator, we
might compute m3’s value prior to changing m1 or we might make a
copy of the old value of m1 and make m3 dependent on that, but we
have to do something to guarantee that m3 has the value it’s supposed
to have after m1 has been the target of an assignment. Other functions
that might modify a matrix must be handled in a similar fashion.

Because of the need to store dependencies between values; to maintain
data structures that can store values, dependencies, or a combination
of the two; and to overload operators like assignment, copying, and ad-
dition, lazy evaluation in a numerical domain is a lot of work. On the
other hand, it often ends up saving significant amounts of time and
space during program runs, and in many applications, that’s a payoff
that easily justifies the significant effort lazy evaluation requires.
From the Library of Yuri Khan

ptg

Amortizing the Cost of Expected Computations 93
Summary

These four examples show that lazy evaluation can be useful in a vari-
ety of domains: to avoid unnecessary copying of objects, to distinguish
reads from writes using operator[], to avoid unnecessary reads from
databases, and to avoid unnecessary numerical computations. Never-
theless, it’s not always a good idea. Just as procrastinating on your
clean-up chores won’t save you any work if your parents always check
up on you, lazy evaluation won’t save your program any work if all your
computations are necessary. Indeed, if all your computations are es-
sential, lazy evaluation may slow you down and increase your use of
memory, because, in addition to having to do all the computations you
were hoping to avoid, you’ll also have to manipulate the fancy data
structures needed to make lazy evaluation possible in the first place.
Lazy evaluation is only useful when there’s a reasonable chance your
software will be asked to perform computations that can be avoided.

There’s nothing about lazy evaluation that’s specific to C++. The tech-
nique can be applied in any programming language, and several lan-
guages — notably APL, some dialects of Lisp, and virtually all dataflow
languages — embrace the idea as a fundamental part of the language.
Mainstream programming languages employ eager evaluation, how-
ever, and C++ is mainstream. Yet C++ is particularly suitable as a ve-
hicle for user-implemented lazy evaluation, because its support for
encapsulation makes it possible to add lazy evaluation to a class with-
out clients of that class knowing it’s been done.

Look again at the code fragments used in the above examples, and you
can verify that the class interfaces offer no hints about whether eager
or lazy evaluation is used by the classes. That means it’s possible to
implement a class using a straightforward eager evaluation strategy,
but then, if your profiling investigations (see Item 16) show that class’s
implementation is a performance bottleneck, you can replace its im-
plementation with one based on lazy evaluation. The only change your
clients will see (after recompilation or relinking) is improved perfor-
mance. That’s the kind of software enhancement clients love, one that
can make you downright proud to be lazy.

Item 18: Amortize the cost of expected computations.
Amortizing the Cost of Expected ComputationsIn Item 17, I extolled the virtues of laziness, of putting things off as
long as possible, and I explained how laziness can improve the effi-
ciency of your programs. In this item, I adopt a different stance. Here,
laziness has no place. I now encourage you to improve the perfor-
mance of your software by having it do more than it’s asked to do. The
From the Library of Yuri Khan

ptg

94 Item 18
philosophy of this item might be called over-eager evaluation: doing
things before you’re asked to do them.

Consider, for example, a template for classes representing large collec-
tions of numeric data:

template<class NumericalType>
class DataCollection {
public:
NumericalType min() const;
NumericalType max() const;
NumericalType avg() const;
...

};

Assuming the min, max, and avg functions return the current mini-
mum, maximum, and average values of the collection, there are three
ways in which these functions can be implemented. Using eager eval-
uation, we’d examine all the data in the collection when min, max, or
avg was called, and we’d return the appropriate value. Using lazy eval-
uation, we’d have the functions return data structures that could be
used to determine the appropriate value whenever the functions’ re-
turn values were actually used. Using over-eager evaluation, we’d keep
track of the running minimum, maximum, and average values of the
collection, so when min, max, or avg was called, we’d be able to return
the correct value immediately — no computation would be required. If
min, max, and avg were called frequently, we’d be able to amortize the
cost of keeping track of the collection’s minimum, maximum, and av-
erage values over all the calls to those functions, and the amortized
cost per call would be lower than with eager or lazy evaluation.

The idea behind over-eager evaluation is that if you expect a computa-
tion to be requested frequently, you can lower the average cost per re-
quest by designing your data structures to handle the requests
especially efficiently.

One of the simplest ways to do this is by caching values that have al-
ready been computed and are likely to be needed again. For example,
suppose you’re writing a program to provide information about em-
ployees, and one of the pieces of information you expect to be re-
quested frequently is an employee’s cubicle number. Further suppose
that employee information is stored in a database, but, for most appli-
cations, an employee’s cubicle number is irrelevant, so the database is
not optimized to find it. To avoid having your specialized application
unduly stress the database with repeated lookups of employee cubicle
numbers, you could write a findCubicleNumber function that caches
the cubicle numbers it looks up. Subsequent requests for cubicle
From the Library of Yuri Khan

ptg

Amortizing the Cost of Expected Computations 95
numbers that have already been retrieved can then be satisfied by con-
sulting the cache instead of querying the database.

Here’s one way to implement findCubicleNumber; it uses a map object
from the Standard Template Library (the “STL” — see Item 35) as a
local cache:

int findCubicleNumber(const string& employeeName)
{
// define a static map to hold (employee name, cubicle number)
// pairs. This map is the local cache.
typedef map<string, int> CubicleMap;
static CubicleMap cubes;

// try to find an entry for employeeName in the cache;
// the STL iterator "it" will then point to the found
// entry, if there is one (see Item 35 for details)
CubicleMap::iterator it = cubes.find(employeeName);

// "it"’s value will be cubes.end() if no entry was
// found (this is standard STL behavior). If this is
// the case, consult the database for the cubicle
// number, then add it to the cache
if (it == cubes.end()) {
int cubicle =
the result of looking up employeeName’s cubicle
number in the database;

cubes[employeeName] = cubicle; // add the pair
// (employeeName, cubicle)
// to the cache

return cubicle;
}
else {
// "it" points to the correct cache entry, which is a
// (employee name, cubicle number) pair. We want only
// the second component of this pair, and the member
// "second" will give it to us
return (*it).second;

}
}

Try not to get bogged down in the details of the STL code (which will be
clearer after you’ve read Item 35). Instead, focus on the general strat-
egy embodied by this function. That strategy is to use a local cache to
replace comparatively expensive database queries with comparatively
inexpensive lookups in an in-memory data structure. Provided we’re
correct in assuming that cubicle numbers will frequently be requested
more than once, the use of a cache in findCubicleNumber should re-
duce the average cost of returning an employee’s cubicle number.
From the Library of Yuri Khan

ptg

96 Item 18
(One detail of the code requires explanation. The final statement re-
turns (*it).second instead of the more conventional it->second.
Why? The answer has to do with the conventions followed by the STL.
In brief, the iterator it is an object, not a pointer, so there is no guar-
antee that “->” can be applied to it.† The STL does require that “.” and
“*” be valid for iterators, however, so (*it).second, though syntacti-
cally clumsy, is guaranteed to work.)

Caching is one way to amortize the cost of anticipated computations.
Prefetching is another. You can think of prefetching as the computa-
tional equivalent of a discount for buying in bulk. Disk controllers, for
example, read entire blocks or sectors of data when they read from
disk, even if a program asks for only a small amount of data. That’s be-
cause it’s faster to read a big chunk once than to read two or three
small chunks at different times. Furthermore, experience has shown
that if data in one place is requested, it’s quite common to want nearby
data, too. This is the infamous locality of reference phenomenon, and
systems designers rely on it to justify disk caches, memory caches for
both instructions and data, and instruction prefetches.

Excuse me? You say you don’t worry about such low-level things as
disk controllers or CPU caches? No problem. Prefetching can yield div-
idends for even one as high-level as you. Imagine, for example, you’d
like to implement a template for dynamic arrays, i.e., arrays that start
with a size of one and automatically extend themselves so that all non-
negative indices are valid:

template<class T> // template for dynamic
class DynArray { ... }; // array-of-T classes

DynArray<double> a; // at this point, only a[0]
// is a legitimate array
// element

a[22] = 3.5; // a is automatically
// extended: valid indices
// are now 0-22

a[32] = 0; // a extends itself again;
// now a[0]-a[32] are valid

How does a DynArray object go about extending itself when it needs
to? A straightforward strategy would be to allocate only as much addi-
tional memory as needed, something like this:

† In July 1995, the ISO/ANSI committee standardizing C++ added a requirement that
most STL iterators support the “->” operator, so it->second should now work. Some
STL implementations fail to satisfy this requirement, however, so (*it).second is
still the more portable construct.
From the Library of Yuri Khan

ptg

Amortizing the Cost of Expected Computations 97
template<class T>
T& DynArray<T>::operator[](int index)
{
if (index < 0) {
throw an exception; // negative indices are

} // still invalid

if (index > the current maximum index value) {
call new to allocate enough additional memory so that
index is valid;

}

return the indexth element of the array;
}

This approach simply calls new each time it needs to increase the size
of the array, but calls to new invoke operator new (see Item 8), and
calls to operator new (and operator delete) are usually expensive.
That’s because they typically result in calls to the underlying operating
system, and system calls are generally slower than are in-process
function calls. As a result, we’d like to make as few system calls as pos-
sible.

An over-eager evaluation strategy employs this reasoning: if we have to
increase the size of the array now to accommodate index i, the locality
of reference principle suggests we’ll probably have to increase it in the
future to accommodate some other index a bit larger than i. To avoid
the cost of the memory allocation for the second (anticipated) expan-
sion, we’ll increase the size of the DynArray now by more than is re-
quired to make i valid, and we’ll hope that future expansions occur
within the range we have thereby provided for. For example, we could
write DynArray::operator[] like this:

template<class T>
T& DynArray<T>::operator[](int index)
{
if (index < 0) throw an exception;

if (index > the current maximum index value) {
int diff = index - the current maximum index value;

call new to allocate enough additional memory so that
index+diff is valid;

}

return the indexth element of the array;
}

This function allocates twice as much memory as needed each time the
array must be extended. If we look again at the usage scenario we saw
earlier, we note that the DynArray must allocate additional memory
only once, even though its logical size is extended twice:
From the Library of Yuri Khan

ptg

98 Item 19
DynArray<double> a; // only a[0] is valid

a[22] = 3.5; // new is called to expand
// a’s storage through
// index 44; a’s logical
// size becomes 23

a[32] = 0; // a’s logical size is
// changed to allow a[32],
// but new isn’t called

If a needs to be extended again, that extension, too, will be inexpen-
sive, provided the new maximum index is no greater than 44.

There is a common theme running through this Item, and that’s that
greater speed can often be purchased at a cost of increased memory
usage. Keeping track of running minima, maxima, and averages re-
quires extra space, but it saves time. Caching results necessitates
greater memory usage but reduces the time needed to regenerate the
results once they’ve been cached. Prefetching demands a place to put
the things that are prefetched, but it reduces the time needed to access
those things. The story is as old as Computer Science: you can often
trade space for time. (Not always, however. Using larger objects means
fewer fit on a virtual memory or cache page. In rare cases, making ob-
jects bigger reduces the performance of your software, because your
paging activity increases, your cache hit rate decreases, or both. How
do you find out if you’re suffering from such problems? You profile,
profile, profile (see Item 16).)

The advice I proffer in this Item — that you amortize the cost of antic-
ipated computations through over-eager strategies like caching and
prefetching — is not contradictory to the advice on lazy evaluation I
put forth in Item 17. Lazy evaluation is a technique for improving the
efficiency of programs when you must support operations whose re-
sults are not always needed. Over-eager evaluation is a technique for
improving the efficiency of programs when you must support opera-
tions whose results are almost always needed or whose results are
often needed more than once. Both are more difficult to implement
than run-of-the-mill eager evaluation, but both can yield significant
performance improvements in programs whose behavioral character-
istics justify the extra programming effort.

Item 19: Understand the origin of temporary objects.
Temporary ObjectsWhen programmers speak amongst themselves, they often refer to
variables that are needed for only a short while as “temporaries.” For
example, in this swap routine,
From the Library of Yuri Khan

ptg

Temporary Objects 99
template<class T>
void swap(T& object1, T& object2)
{
T temp = object1;
object1 = object2;
object2 = temp;

}

it’s common to call temp a “temporary.” As far as C++ is concerned,
however, temp is not a temporary at all. It’s simply an object local to a
function.

True temporary objects in C++ are invisible — they don’t appear in
your source code. They arise whenever a non-heap object is created
but not named. Such unnamed objects usually arise in one of two sit-
uations: when implicit type conversions are applied to make function
calls succeed and when functions return objects. It’s important to un-
derstand how and why these temporary objects are created and de-
stroyed, because the attendant costs of their construction and
destruction can have a noticeable impact on the performance of your
programs.

Consider first the case in which temporary objects are created to make
function calls succeed. This happens when the type of object passed to
a function is not the same as the type of the parameter to which it is
being bound. For example, consider a function that counts the number
of occurrences of a character in a string:

// returns the number of occurrences of ch in str
size_t countChar(const string& str, char ch);

char buffer[MAX_STRING_LEN];
char c;

// read in a char and a string; use setw to avoid
// overflowing buffer when reading the string
cin >> c >> setw(MAX_STRING_LEN) >> buffer;

cout << "There are " << countChar(buffer, c)
<< " occurrences of the character " << c
<< " in " << buffer << endl;

Look at the call to countChar. The first argument passed is a char ar-
ray, but the corresponding function parameter is of type const
string&. This call can succeed only if the type mismatch can be elim-
inated, and your compilers will be happy to eliminate it by creating a
temporary object of type string. That temporary object is initialized
by calling the string constructor with buffer as its argument. The
str parameter of countChar is then bound to this temporary string
object. When the statement containing the call to countChar finishes
executing, the temporary object is automatically destroyed.
From the Library of Yuri Khan

ptg

100 Item 19
Conversions such as these are convenient (though dangerous — see
Item 5), but from an efficiency point of view, the construction and de-
struction of a temporary string object is an unnecessary expense.
There are two general ways to eliminate it. One is to redesign your code
so conversions like these can’t take place. That strategy is examined in
Item 5. An alternative tack is to modify your software so that the con-
versions are unnecessary. Item 21 describes how you can do that.

These conversions occur only when passing objects by value or when
passing to a reference-to-const parameter. They do not occur when
passing an object to a reference-to-non-const parameter. Consider
this function:

void uppercasify(string& str); // changes all chars in
// str to upper case

In the character-counting example, a char array could be successfully
passed to countChar, but here, trying to call uppercasify with a
char array fails:

char subtleBookPlug[] = "Effective C++";

uppercasify(subtleBookPlug); // error!

No temporary is created to make the call succeed. Why not?

Suppose a temporary were created. Then the temporary would be
passed to uppercasify, which would modify the temporary so its
characters were in upper case. But the actual argument to the func-
tion call — subtleBookPlug — would not be affected; only the tempo-
rary string object generated from subtleBookPlug would be
changed. Surely this is not what the programmer intended. That pro-
grammer passed subtleBookPlug to uppercasify, and that pro-
grammer expected subtleBookPlug to be modified. Implicit type
conversion for references-to-non-const objects, then, would allow
temporary objects to be changed when programmers expected non-
temporary objects to be modified. That’s why the language prohibits
the generation of temporaries for non-const reference parameters.
Reference-to-const parameters don’t suffer from this problem, be-
cause such parameters, by virtue of being const, can’t be changed.

The second set of circumstances under which temporary objects are
created is when a function returns an object. For instance, operator+
must return an object that represents the sum of its operands. Given
a type Number, for example, operator+ for that type would be declared
like this:

const Number operator+(const Number& lhs,
const Number& rhs);
From the Library of Yuri Khan

http://www.amazon.com/gp/product/0321334876?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0321334876

ptg

The Return Value Optimization 101
The return value of this function is a temporary, because it has no
name: it’s just the function’s return value. You must pay to construct
and destruct this object each time you call operator+. (For an expla-
nation of why the return value is const, see Item 6.)

As usual, you don’t want to incur this cost. For this particular func-
tion, you can avoid paying by switching to a similar function, opera-
tor+=; Item 22 tells you about this transformation. For most functions
that return objects, however, switching to a different function is not an
option and there is no way to avoid the construction and destruction
of the return value. At least, there’s no way to avoid it conceptually. Be-
tween concept and reality, however, lies a murky zone called optimiza-
tion, and sometimes you can write your object-returning functions in a
way that allows your compilers to optimize temporary objects out of ex-
istence. Of these optimizations, the most common and useful is the re-
turn value optimization, which is the subject of Item 20.

The bottom line is that temporary objects can be costly, so you want to
eliminate them whenever you can. More important than this, however,
is to train yourself to look for places where temporary objects may be
created. Anytime you see a reference-to-const parameter, the possibil-
ity exists that a temporary will be created to bind to that parameter.
Anytime you see a function returning an object, a temporary will be
created (and later destroyed). Learn to look for such constructs, and
your insight into the cost of “behind the scenes” compiler actions will
markedly improve.

Item 20: Facilitate the return value optimization.
The Return Value OptimizationA function that returns an object is frustrating to efficiency aficiona-
dos, because the by-value return, including the constructor and de-
structor calls it implies (see Item 19), cannot be eliminated. The
problem is simple: a function either has to return an object in order to
offer correct behavior or it doesn’t. If it does, there’s no way to get rid
of the object being returned. Period.

Consider the operator* function for rational numbers:
From the Library of Yuri Khan

ptg

102 Item 20
class Rational {
public:
Rational(int numerator = 0, int denominator = 1);
...
int numerator() const;
int denominator() const;

};

// For an explanation of why the return value is const,
// see Item 6
const Rational operator*(const Rational& lhs,

const Rational& rhs);

Without even looking at the code for operator*, we know it must re-
turn an object, because it returns the product of two arbitrary num-
bers. These are arbitrary numbers. How can operator* possibly avoid
creating a new object to hold their product? It can’t, so it must create
a new object and return it. C++ programmers have nevertheless ex-
pended Herculean efforts in a search for the legendary elimination of
the by-value return.

Sometimes people return pointers, which leads to this syntactic trav-
esty:

// an unreasonable way to avoid returning an object
const Rational * operator*(const Rational& lhs,

const Rational& rhs);

Rational a = 10;
Rational b(1, 2);

Rational c = *(a * b); // Does this look "natural"
// to you?

It also raises a question. Should the caller delete the pointer returned
by the function? The answer is usually yes, and that usually leads to
resource leaks.

Other developers return references. That yields an acceptable syntax,

// a dangerous (and incorrect) way to avoid returning
// an object
const Rational& operator*(const Rational& lhs,

const Rational& rhs);

Rational a = 10;
Rational b(1, 2);

Rational c = a * b; // looks perfectly reasonable

but such functions can’t be implemented in a way that behaves cor-
rectly. A common attempt looks like this:
From the Library of Yuri Khan

ptg

The Return Value Optimization 103
// another dangerous (and incorrect) way to avoid
// returning an object
const Rational& operator*(const Rational& lhs,

const Rational& rhs)
{
Rational result(lhs.numerator() * rhs.numerator(),

lhs.denominator() * rhs.denominator());
return result;

}

This function returns a reference to an object that no longer exists. In
particular, it returns a reference to the local object result, but re-
sult is automatically destroyed when operator* is exited. Returning
a reference to an object that’s been destroyed is hardly useful.

Trust me on this: some functions (operator* among them) just have
to return objects. That’s the way it is. Don’t fight it. You can’t win.

That is, you can’t win in your effort to eliminate by-value returns from
functions that require them. But that’s the wrong war to wage. From
an efficiency point of view, you shouldn’t care that a function returns
an object, you should only care about the cost of that object. What you
need to do is channel your efforts into finding a way to reduce the cost
of returned objects, not to eliminate the objects themselves (which we
now recognize is a futile quest). If no cost is associated with such ob-
jects, who cares how many get created?

It is frequently possible to write functions that return objects in such
a way that compilers can eliminate the cost of the temporaries. The
trick is to return constructor arguments instead of objects, and you can
do it like this:

// an efficient and correct way to implement a
// function that returns an object
const Rational operator*(const Rational& lhs,

const Rational& rhs)
{
return Rational(lhs.numerator() * rhs.numerator(),

lhs.denominator() * rhs.denominator());
}

Look closely at the expression being returned. It looks like you’re call-
ing a Rational constructor, and in fact you are. You’re creating a tem-
porary Rational object through this expression,

Rational(lhs.numerator() * rhs.numerator(),
lhs.denominator() * rhs.denominator());

and it is this temporary object the function is copying for its return
value.
From the Library of Yuri Khan

ptg

104 Item 20
This business of returning constructor arguments instead of local ob-
jects doesn’t appear to have bought you a lot, because you still have to
pay for the construction and destruction of the temporary created in-
side the function, and you still have to pay for the construction and de-
struction of the object the function returns. But you have gained
something. The rules for C++ allow compilers to optimize temporary
objects out of existence. As a result, if you call operator* in a context
like this,

Rational a = 10;
Rational b(1, 2);

Rational c = a * b; // operator* is called here

your compilers are allowed to eliminate both the temporary inside op-
erator* and the temporary returned by operator*. They can con-
struct the object defined by the return expression inside the memory
allotted for the object c. If your compilers do this, the total cost of tem-
porary objects as a result of your calling operator* is zero: no tempo-
raries are created. Instead, you pay for only one constructor call — the
one to create c. Furthermore, you can’t do any better than this, be-
cause c is a named object, and named objects can’t be eliminated (see
also Item 22).† You can, however, eliminate the overhead of the call to
operator* by declaring that function inline:

// the most efficient way to write a function returning
// an object
inline const Rational operator*(const Rational& lhs,

const Rational& rhs)
{
return Rational(lhs.numerator() * rhs.numerator(),

lhs.denominator() * rhs.denominator());
}

“Yeah, yeah,” you mutter, “optimization, schmoptimization. Who cares
what compilers can do? I want to know what they do do. Does any of
this nonsense work with real compilers?” It does. This particular opti-
mization — eliminating a local temporary by using a function’s return
location (and possibly replacing that with an object at the function’s
call site) — is both well-known and commonly implemented. It even
has a name: the return value optimization. In fact, the existence of a
name for this optimization may explain why it’s so widely available.
Programmers looking for a C++ compiler can ask vendors whether the
return value optimization is implemented. If one vendor says yes and
another says “The what?,” the first vendor has a notable competitive
advantage. Ah, capitalism. Sometimes you just gotta love it.

† In July 1996, the ISO/ANSI standardization committee declared that both named and
unnamed objects may be optimized away via the return value optimization.
From the Library of Yuri Khan

ptg

Overloading to Avoid Implicit Type Conversions 105
Item 21: Overload to avoid implicit type conversions.
Overloading to Avoid Implicit Type ConversionsHere’s some code that looks nothing if not eminently reasonable:

class UPInt { // class for unlimited
public: // precision integers
UPInt();
UPInt(int value);
...

};

// For an explanation of why the return value is const,
// see Item 6
const UPInt operator+(const UPInt& lhs, const UPInt& rhs);

UPInt upi1, upi2;

...

UPInt upi3 = upi1 + upi2;

There are no surprises here. upi1 and upi2 are both UPInt objects, so
adding them together just calls operator+ for UPInts.

Now consider these statements:

upi3 = upi1 + 10;

upi3 = 10 + upi2;

These statements also succeed. They do so through the creation of
temporary objects to convert the integer 10 into UPInts (see Item 19).

It is convenient to have compilers perform these kinds of conversions,
but the temporary objects created to make the conversions work are a
cost we may not wish to bear. Just as most people want government
benefits without having to pay for them, most C++ programmers want
implicit type conversions without incurring any cost for temporaries.
But without the computational equivalent of deficit spending, how can
we do it?

We can take a step back and recognize that our goal isn’t really type
conversion, it’s being able to make calls to operator+ with a combina-
tion of UPInt and int arguments. Implicit type conversion happens to
be a means to that end, but let us not confuse means and ends. There
is another way to make mixed-type calls to operator+ succeed, and
that’s to eliminate the need for type conversions in the first place. If we
want to be able to add UPInt and int objects, all we have to do is say
so. We do it by declaring several functions, each with a different set of
parameter types:

const UPInt operator+(const UPInt& lhs, // add UPInt
const UPInt& rhs); // and UPInt
From the Library of Yuri Khan

ptg

106 Item 21
const UPInt operator+(const UPInt& lhs, // add UPInt
int rhs); // and int

const UPInt operator+(int lhs, // add int and
const UPInt& rhs); // UPInt

UPInt upi1, upi2;

...

UPInt upi3 = upi1 + upi2; // fine, no temporary for
// upi1 or upi2

upi3 = upi1 + 10; // fine, no temporary for
// upi1 or 10

upi3 = 10 + upi2; // fine, no temporary for
// 10 or upi2

Once you start overloading to eliminate type conversions, you run the
risk of getting swept up in the passion of the moment and declaring
functions like this:

const UPInt operator+(int lhs, int rhs); // error!

The thinking here is reasonable enough. For the types UPInt and int,
we want to overload on all possible combinations for operator+. Given
the three overloadings above, the only one missing is operator+ tak-
ing two int arguments, so we want to add it.

Reasonable or not, there are rules to this C++ game, and one of them
is that every overloaded operator must take at least one argument of a
user-defined type. int isn’t a user-defined type, so we can’t overload
an operator taking only arguments of that type. (If this rule didn’t ex-
ist, programmers would be able to change the meaning of predefined
operations, and that would surely lead to chaos. For example, the at-
tempted overloading of operator+ above would change the meaning of
addition on ints. Is that really something we want people to be able to
do?)

Overloading to avoid temporaries isn’t limited to operator functions.
For example, in most programs, you’ll want to allow a string object
everywhere a char* is acceptable, and vice versa. Similarly, if you’re
using a numerical class like complex (see Item 35), you’ll want types
like int and double to be valid anywhere a numerical object is. As a
result, any function taking arguments of type string, char*, com-
plex, etc., is a reasonable candidate for overloading to eliminate type
conversions.

Still, it’s important to keep the 80-20 rule (see Item 16) in mind. There
is no point in implementing a slew of overloaded functions unless you
From the Library of Yuri Khan

ptg

op= Compared to Stand-Alone op 107
have good reason to believe that it will make a noticeable improvement
in the overall efficiency of the programs that use them.

Item 22: Consider using op= instead of stand-alone op.
op= Compared to Stand-Alone opMost programmers expect that if they can say things like these,

x = x + y; x = x - y;

they can also say things like these:

x += y; x -= y;

If x and y are of a user-defined type, there is no guarantee that this is
so. As far as C++ is concerned, there is no relationship between oper-
ator+, operator=, and operator+=, so if you want all three operators
to exist and to have the expected relationship, you must implement
that yourself. Ditto for the operators -, *, /, etc.

A good way to ensure that the natural relationship between the assign-
ment version of an operator (e.g., operator+=) and the stand-alone
version (e.g., operator+) exists is to implement the latter in terms of
the former (see also Item 6). This is easy to do:

class Rational {
public:
...
Rational& operator+=(const Rational& rhs);
Rational& operator-=(const Rational& rhs);

};

// operator+ implemented in terms of operator+=; see
// Item 6 for an explanation of why the return value is
// const and page 109 for a warning about implementation
const Rational operator+(const Rational& lhs,

const Rational& rhs)
{
return Rational(lhs) += rhs;

}

// operator- implemented in terms of operator -=
const Rational operator-(const Rational& lhs,

const Rational& rhs)
{
return Rational(lhs) -= rhs;

}

In this example, operators += and -= are implemented (elsewhere)
from scratch, and operator+ and operator- call them to provide
their own functionality. With this design, only the assignment versions
of these operators need to be maintained. Furthermore, assuming the
From the Library of Yuri Khan

ptg

108 Item 22
assignment versions of the operators are in the class’s public interface,
there is never a need for the stand-alone operators to be friends of the
class.

If you don’t mind putting all stand-alone operators at global scope, you
can use templates to eliminate the need to write the stand-alone func-
tions:

template<class T>
const T operator+(const T& lhs, const T& rhs)
{
return T(lhs) += rhs; // see discussion below

}

template<class T>
const T operator-(const T& lhs, const T& rhs)
{
return T(lhs) -= rhs; // see discussion below

}

...

With these templates, as long as an assignment version of an operator
is defined for some type T, the corresponding stand-alone operator will
automatically be generated if it’s needed.

All this is well and good, but so far we have failed to consider the issue
of efficiency, and efficiency is, after all, the topic of this chapter. Three
aspects of efficiency are worth noting here. The first is that, in general,
assignment versions of operators are more efficient than stand-alone
versions, because stand-alone versions must typically return a new
object, and that costs us the construction and destruction of a tempo-
rary (see Items 19 and 20). Assignment versions of operators write to
their left-hand argument, so there is no need to generate a temporary
to hold the operator’s return value.

The second point is that by offering assignment versions of operators
as well as stand-alone versions, you allow clients of your classes to
make the difficult trade-off between efficiency and convenience. That
is, your clients can decide whether to write their code like this,

Rational a, b, c, d, result;
...
result = a + b + c + d; // probably uses 3 temporary

// objects, one for each call
// to operator+

or like this:

result = a; // no temporary needed
result += b; // no temporary needed
result += c; // no temporary needed
result += d; // no temporary needed
From the Library of Yuri Khan

ptg

op= Compared to Stand-Alone op 109
The former is easier to write, debug, and maintain, and it offers accept-
able performance about 80% of the time (see Item 16). The latter is
more efficient, and, one supposes, more intuitive for assembly lan-
guage programmers. By offering both options, you let clients develop
and debug code using the easier-to-read stand-alone operators while
still reserving the right to replace them with the more efficient assign-
ment versions of the operators. Furthermore, by implementing the
stand-alones in terms of the assignment versions, you ensure that
when clients switch from one to the other, the semantics of the opera-
tions remain constant.

The final efficiency observation concerns implementing the stand-
alone operators. Look again at the implementation for operator+:

template<class T>
const T operator+(const T& lhs, const T& rhs)
{ return T(lhs) += rhs; }

The expression T(lhs) is a call to T’s copy constructor. It creates a
temporary object whose value is the same as that of lhs. This tempo-
rary is then used to invoke operator+= with rhs, and the result of
that operation is returned from operator+.† This code seems unnec-
essarily cryptic. Wouldn’t it be better to write it like this?

template<class T>
const T operator+(const T& lhs, const T& rhs)
{
T result(lhs); // copy lhs into result
return result += rhs; // add rhs to it and return

}

This template is almost equivalent to the one above, but there is a cru-
cial difference. This second template contains a named object, result.
The fact that this object is named means that the return value optimi-
zation (see Item 20) was, until relatively recently, unavailable for this
implementation of operator+ (see the footnote on page 104). The first
implementation has always been eligible for the return value optimi-
zation, so the odds may be better that the compilers you use will gen-
erate optimized code for it.

Now, truth in advertising compels me to point out that the expression

return T(lhs) += rhs;

is more complex than most compilers are willing to subject to the re-
turn value optimization. The first implementation above may thus cost
you one temporary object within the function, just as you’d pay for
using the named object result. However, the fact remains that un-
named objects have historically been easier to eliminate than named
objects, so when faced with a choice between a named object and a

† At least that’s what’s supposed to happen. Alas, some compilers treat T(lhs) as a cast
to remove lhs’s constness, then add rhs to lhs and return a reference to the modified
lhs! Test your compilers before relying on the behavior described above.
From the Library of Yuri Khan

ptg

110 Item 23
temporary object, you may be better off using the temporary. It should
never cost you more than its named colleague, and, especially with
older compilers, it may cost you less.

All this talk of named objects, unnamed objects, and compiler optimi-
zations is interesting, but let us not forget the big picture. The big pic-
ture is that assignment versions of operators (such as operator+=)
tend to be more efficient than stand-alone versions of those operators
(e.g. operator+). As a library designer, you should offer both, and as
an application developer, you should consider using assignment ver-
sions of operators instead of stand-alone versions whenever perfor-
mance is at a premium.

Item 23: Consider alternative libraries.
Considering Alternative LibrariesLibrary design is an exercise in compromise. The ideal library is small,
fast, powerful, flexible, extensible, intuitive, universally available, well
supported, free of use restrictions, and bug-free. It is also nonexistent.
Libraries optimized for size and speed are typically not portable. Li-
braries with rich functionality are rarely intuitive. Bug-free libraries
are limited in scope. In the real world, you can’t have everything; some-
thing always has to give.

Different designers assign different priorities to these criteria. They
thus sacrifice different things in their designs. As a result, it is not un-
common for two libraries offering similar functionality to have quite
different performance profiles.

As an example, consider the iostream and stdio libraries, both of which
should be available to every C++ programmer. The iostream library has
several advantages over its C counterpart. It’s type-safe, for example,
and it’s extensible. In terms of efficiency, however, the iostream library
generally suffers in comparison with stdio, because stdio usually re-
sults in executables that are both smaller and faster than those arising
from iostreams.

Consider first the speed issue. One way to get a feel for the difference
in performance between iostreams and stdio is to run benchmark ap-
plications using both libraries. Now, it’s important to bear in mind that
benchmarks lie. Not only is it difficult to come up with a set of inputs
that correspond to “typical” usage of a program or library, it’s also use-
less unless you have a reliable way of determining how “typical” you or
your clients are. Nevertheless, benchmarks can provide some insight
into the comparative performance of different approaches to a prob-
lem, so though it would be foolish to rely on them completely, it would
also be foolish to ignore them.
From the Library of Yuri Khan

ptg

Considering Alternative Libraries 111
Let’s examine a simple-minded benchmark program that exercises
only the most rudimentary I/O functionality. This program reads
30,000 floating point numbers from standard input and writes them to
standard output in a fixed format. The choice between the iostream
and stdio libraries is made during compilation and is determined by
the preprocessor symbol STDIO. If this symbol is defined, the stdio li-
brary is used, otherwise the iostream library is employed.

#ifdef STDIO
#include <stdio.h>
#else
#include <iostream>
#include <iomanip>
using namespace std;
#endif

const int VALUES = 30000; // # of values to read/write

int main()
{
double d;

for (int n = 1; n <= VALUES; ++n) {
#ifdef STDIO

scanf("%lf", &d);
printf("%10.5f", d);

#else
cin >> d;
cout << setw(10) // set field width

<< setprecision(5) // set decimal places
<< setiosflags(ios::showpoint) // keep trailing 0s
<< setiosflags(ios::fixed) // use these settings
<< d;

#endif

if (n % 5 == 0) {
#ifdef STDIO

printf("\n");
#else

cout << '\n';
#endif

}
}

return 0;
}

When this program is given the natural logarithms of the positive inte-
gers as input, it produces output like this:
From the Library of Yuri Khan

ptg

112 Item 23
0.00000 0.69315 1.09861 1.38629 1.60944
1.79176 1.94591 2.07944 2.19722 2.30259
2.39790 2.48491 2.56495 2.63906 2.70805
2.77259 2.83321 2.89037 2.94444 2.99573
3.04452 3.09104 3.13549 3.17805 3.21888

Such output demonstrates, if nothing else, that it’s possible to produce
fixed-format I/O using iostreams. Of course,

cout << setw(10)
<< setprecision(5)
<< setiosflags(ios::showpoint)
<< setiosflags(ios::fixed)
<< d;

is nowhere near as easy to type as

printf("%10.5f", d);

but operator<< is both type-safe and extensible, and printf is nei-
ther.

I have run this program on several combinations of machines, operat-
ing systems, and compilers, and in every case the stdio version has
been faster. Sometimes it’s been only a little faster (about 20%), some-
times it’s been substantially faster (nearly 200%), but I’ve never come
across an iostream implementation that was as fast as the correspond-
ing stdio implementation. In addition, the size of this trivial program’s
executable using stdio tends to be smaller (sometimes much smaller)
than the corresponding program using iostreams. (For programs of a
realistic size, this difference is rarely significant.)

Bear in mind that any efficiency advantages of stdio are highly imple-
mentation-dependent, so future implementations of systems I’ve
tested or existing implementations of systems I haven’t tested may
show a negligible performance difference between iostreams and stdio.
In fact, one can reasonably hope to discover an iostream implementa-
tion that’s faster than stdio, because iostreams determine the types of
their operands during compilation, while stdio functions typically
parse a format string at runtime.

The contrast in performance between iostreams and stdio is just an
example, however, it’s not the main point. The main point is that dif-
ferent libraries offering similar functionality often feature different per-
formance trade-offs, so once you’ve identified the bottlenecks in your
software (via profiling — see Item 16), you should see if it’s possible to
remove those bottlenecks by replacing one library with another. If your
program has an I/O bottleneck, for example, you might consider re-
placing iostreams with stdio, but if it spends a significant portion of its
time on dynamic memory allocation and deallocation, you might see if
From the Library of Yuri Khan

ptg

The Costs of Various Language Features 113
there are alternative implementations of operator new and operator
delete available (see Item 8). Because different libraries embody dif-
ferent design decisions regarding efficiency, extensibility, portability,
type safety, and other issues, you can sometimes significantly improve
the efficiency of your software by switching to libraries whose design-
ers gave more weight to performance considerations than to other fac-
tors.

Item 24: Understand the costs of virtual functions,
multiple inheritance, virtual base classes,
and RTTI.

The Costs of Various Language FeaturesC++ compilers must find a way to implement each feature in the lan-
guage. Such implementation details are, of course, compiler-depen-
dent, and different compilers implement language features in different
ways. For the most part, you need not concern yourself with such mat-
ters. However, the implementation of some features can have a notice-
able impact on the size of objects and the speed at which member
functions execute, so for those features, it’s important to have a basic
understanding of what compilers are likely to be doing under the hood.
The foremost example of such a feature is virtual functions.

When a virtual function is called, the code executed must correspond
to the dynamic type of the object on which the function is invoked; the
type of the pointer or reference to the object is immaterial. How can
compilers provide this behavior efficiently? Most implementations use
virtual tables and virtual table pointers. Virtual tables and virtual table
pointers are commonly referred to as vtbls and vptrs, respectively.

A vtbl is usually an array of pointers to functions. (Some compilers use
a form of linked list instead of an array, but the fundamental strategy
is the same.) Each class in a program that declares or inherits virtual
functions has its own vtbl, and the entries in a class’s vtbl are pointers
to the implementations of the virtual functions for that class. For ex-
ample, given a class definition like this,
From the Library of Yuri Khan

ptg

114 Item 24
class C1 {
public:
C1();

virtual ~C1();
virtual void f1();
virtual int f2(char c) const;
virtual void f3(const string& s);

void f4() const;

...
};

C1’s virtual table array will look something like this:

Note that the nonvirtual function f4 is not in the table, nor is C1’s con-
structor. Nonvirtual functions — including constructors, which are by
definition nonvirtual — are implemented just like ordinary C func-
tions, so there are no special performance considerations surrounding
their use.

If a class C2 inherits from C1, redefines some of the virtual functions it
inherits, and adds some new ones of its own,

class C2: public C1 {
public:
C2(); // nonvirtual function
virtual ~C2(); // redefined function
virtual void f1(); // redefined function
virtual void f5(char *str); // new virtual function
...

};

its virtual table entries point to the functions that are appropriate for
objects of its type. These entries include pointers to the C1 virtual
functions that C2 chose not to redefine:

This discussion brings out the first cost of virtual functions: you have
to set aside space for a virtual table for each class that contains virtual

implementation of C1::f1
implementation of C1::f2
implementation of C1::f3

C1’s
vtbl

implementation of C1::~C1

implementation of C2::f1
implementation of C1::f2
implementation of C1::f3

C2’s
vtbl

implementation of C2::~C2

implementation of C2::f5
From the Library of Yuri Khan

ptg

The Costs of Various Language Features 115
functions. The size of a class’s vtbl is proportional to the number of vir-
tual functions declared for that class (including those it inherits from
its base classes). There should be only one virtual table per class, so
the total amount of space required for virtual tables is not usually sig-
nificant, but if you have a large number of classes or a large number of
virtual functions in each class, you may find that the vtbls take a sig-
nificant bite out of your address space.

Because you need only one copy of a class’s vtbl in your programs,
compilers must address a tricky problem: where to put it. Most pro-
grams and libraries are created by linking together many object files,
but each object file is generated independently of the others. Which ob-
ject file should contain the vtbl for any given class? You might think to
put it in the object file containing main, but libraries have no main,
and at any rate the source file containing main may make no mention
of many of the classes requiring vtbls. How could compilers then know
which vtbls they were supposed to create?

A different strategy must be adopted, and compiler vendors tend to fall
into two camps. For vendors who provide an integrated environment
containing both compiler and linker, a brute-force strategy is to gener-
ate a copy of the vtbl in each object file that might need it. The linker
then strips out duplicate copies, leaving only a single instance of each
vtbl in the final executable or library.

A more common design is to employ a heuristic to determine which ob-
ject file should contain the vtbl for a class. Usually this heuristic is as
follows: a class’s vtbl is generated in the object file containing the def-
inition (i.e., the body) of the first non-inline non-pure virtual function
in that class. Thus, the vtbl for class C1 above would be placed in the
object file containing the definition of C1::~C1 (provided that function
wasn’t inline), and the vtbl for class C2 would be placed in the object
file containing the definition of C2::~C2 (again, provided that function
wasn’t inline).

In practice, this heuristic works well, but you can get into trouble if
you go overboard on declaring virtual functions inline. If all virtual
functions in a class are declared inline, the heuristic fails, and most
heuristic-based implementations then generate a copy of the class’s
vtbl in every object file that uses it. In large systems, this can lead to
programs containing hundreds or thousands of copies of a class’s vtbl!
Most compilers following this heuristic give you some way to control
vtbl generation manually, but a better solution to this problem is to
avoid declaring virtual functions inline. As we’ll see below, there are
From the Library of Yuri Khan

ptg

116 Item 24
good reasons why present compilers typically ignore the inline direc-
tive for virtual functions, anyway.

Virtual tables are half the implementation machinery for virtual func-
tions, but by themselves they are useless. They become useful only
when there is some way of indicating which vtbl corresponds to each
object, and it is the job of the virtual table pointer to establish that cor-
respondence.

Each object whose class declares virtual functions carries with it a hid-
den data member that points to the virtual table for that class. This
hidden data member — the vptr — is added by compilers at a location
in the object known only to the compilers. Conceptually, we can think
of the layout of an object that has virtual functions as looking like this:

This picture shows the vptr at the end of the object, but don’t be fooled:
different compilers put them in different places. In the presence of in-
heritance, an object’s vptr is often surrounded by data members. Mul-
tiple inheritance complicates this picture, but we’ll deal with that a bit
later. At this point, simply note the second cost of virtual functions:
you have to pay for an extra pointer inside each object that is of a class
containing virtual functions.

If your objects are small, this can be a significant cost. If your objects
contain, on average, four bytes of member data, for example, the addi-
tion of a vptr can double their size (assuming four bytes are devoted to
the vptr). On systems with limited memory, this means the number of
objects you can create is reduced. Even on systems with uncon-
strained memory, you may find that the performance of your software
decreases, because larger objects mean fewer fit on each cache or vir-
tual memory page, and that means your paging activity will probably
increase.

Suppose we have a program with several objects of types C1 and C2.
Given the relationships among objects, vptrs, and vtbls that we have

Data members
for

the object

Object’s vptr
From the Library of Yuri Khan

ptg

The Costs of Various Language Features 117
just seen, we can envision the objects in our program like this:

Now consider this program fragment:

void makeACall(C1 *pC1)
{
pC1->f1();

}

This is a call to the virtual function f1 through the pointer pC1. By
looking only at this code, there is no way to know which f1 function —
C1::f1 or C2::f1 — should be invoked, because pC1 might point to a C1
object or to a C2 object. Your compilers must nevertheless generate
code for the call to f1 inside makeACall, and they must ensure that
the correct function is called, no matter what pC1 points to. They do
this by generating code to do the following:

1. Follow the object’s vptr to its vtbl. This is a simple operation, be-
cause the compilers know where to look inside the object for the
vptr. (After all, they put it there.) As a result, this costs only an
offset adjustment (to get to the vptr) and a pointer indirection (to
get to the vtbl).

2. Find the pointer in the vtbl that corresponds to the function be-
ing called (f1 in this example). This, too, is simple, because com-
pilers assign each virtual function a unique index within the
table. The cost of this step is just an offset into the vtbl array.

3. Invoke the function pointed to by the pointer located in step 2.

C2’s
vtbl

C1’s
vtbl

C1 Object

vptr

Data
Members

C1 Object

vptr

Data
Members

C1 Object

vptr

Data
Members

C2 Object

vptr

Data
Members

C2 Object

vptr

Data
Members

C2 Object

vptr

Data
Members

Implementations
of C1’s virtual

functions

Implementations
of C2’s virtual

functions
From the Library of Yuri Khan

ptg

118 Item 24
If we imagine that each object has a hidden member called vptr and
that the vtbl index of function f1 is i, the code generated for the state-
ment

pC1->f1();

is

(*pC1->vptr[i])(pC1); // call the function pointed to by the
// i-th entry in the vtbl pointed to
// by pC1->vptr; pC1 is passed to the
// function as the "this" pointer

This is almost as efficient as a non-virtual function call: on most ma-
chines it executes only a few more instructions. The cost of calling a
virtual function is thus basically the same as that of calling a function
through a function pointer. Virtual functions per se are not usually a
performance bottleneck.

The real runtime cost of virtual functions has to do with their interac-
tion with inlining. For all practical purposes, virtual functions aren’t
inlined. That’s because “inline” means “during compilation, replace the
call site with the body of the called function,” but “virtual” means “wait
until runtime to see which function is called.” If your compilers don’t
know which function will be called at a particular call site, you can un-
derstand why they won’t inline that function call. This is the third cost
of virtual functions: you effectively give up inlining. (Virtual functions
can be inlined when invoked through objects, but most virtual function
calls are made through pointers or references to objects, and such calls
are not inlined. Because such calls are the norm, virtual functions are
effectively not inlined.)

Everything we’ve seen so far applies to both single and multiple inher-
itance, but when multiple inheritance enters the picture, things get
more complex. There is no point in dwelling on details, but with multi-
ple inheritance, offset calculations to find vptrs within objects become
more complicated; there are multiple vptrs within a single object (one
per base class); and special vtbls must be generated for base classes in
addition to the stand-alone vtbls we have discussed. As a result, both
the per-class and the per-object space overhead for virtual functions
increases, and the runtime invocation cost grows slightly, too.

Multiple inheritance often leads to the need for virtual base classes.
Without virtual base classes, if a derived class has more than one in-
heritance path to a base class, the data members of that base class are
replicated within each derived class object, one copy for each path be-
tween the derived class and the base class. Such replication is almost
never what programmers want, and making base classes virtual elim-
inates the replication. Virtual base classes may incur a cost of their
From the Library of Yuri Khan

ptg

The Costs of Various Language Features 119
own, however, because implementations of virtual base classes often
use pointers to virtual base class parts as the means for avoiding the
replication, and one or more of those pointers may be stored inside
your objects.

For example, consider this, which I generally call “the dreaded multiple
inheritance diamond:”

Here A is a virtual base class because B and C virtually inherit from it.
With some compilers (especially older compilers), the layout for an ob-
ject of type D is likely to look like this:

It seems a little strange to place the base class data members at the
end of the object, but that’s often how it’s done. Of course, implemen-
tations are free to organize memory any way they like, so you should
never rely on this picture for anything more than a conceptual over-
view of how virtual base classes may lead to the addition of hidden
pointers to your objects. Some implementations add fewer pointers,
and some find ways to add none at all. (Such implementations make
the vptr and vtbl serve double duty).

If we combine this picture with the earlier one showing how virtual
table pointers are added to objects, we realize that if the base class A

class A { ... };
class B: virtual public A { ... };
class C: virtual public A { ... };
class D: public B, public C { ... };

B

D

C

A

B Data Members

C Data Members

D Data Members

A Data Members

Pointer to virtual base class

Pointer to virtual base class
From the Library of Yuri Khan

ptg

120 Item 24
in the hierarchy on page 119 has any virtual functions, the memory
layout for an object of type D could look like this:

Here I’ve shaded the parts of the object that are added by compilers.
The picture may be misleading, because the ratio of shaded to un-
shaded areas is determined by the amount of data in your classes. For
small classes, the relative overhead is large. For classes with more
data, the relative overhead is less significant, though it is typically no-
ticeable.

An oddity in the above diagram is that there are only three vptrs even
though four classes are involved. Implementations are free to generate
four vptrs if they like, but three suffice (it turns out that B and D can
share a vptr), and most implementations take advantage of this oppor-
tunity to reduce the compiler-generated overhead.

We’ve now seen how virtual functions make objects larger and pre-
clude inlining, and we’ve examined how multiple inheritance and vir-
tual base classes can also increase the size of objects. Let us therefore
turn to our final topic, the cost of runtime type identification (RTTI).

RTTI lets us discover information about objects and classes at runt-
ime, so there has to be a place to store the information we’re allowed
to query. That information is stored in an object of type type_info,
and you can access the type_info object for a class by using the
typeid operator.

There only needs to be a single copy of the RTTI information for each
class, but there must be a way to get to that information for any object.
Actually, that’s not quite true. The language specification states that
we’re guaranteed accurate information on an object’s dynamic type

B Data Members

C Data Members

D Data Members

A Data Members

Pointer to virtual base class

Pointer to virtual base class

vptr

vptr

vptr
From the Library of Yuri Khan

ptg

The Costs of Various Language Features 121
only if that type has at least one virtual function. This makes RTTI
data sound a lot like a virtual function table. We need only one copy of
the information per class, and we need a way to get to the appropriate
information from any object containing a virtual function. This parallel
between RTTI and virtual function tables is no accident: RTTI was de-
signed to be implementable in terms of a class’s vtbl.

For example, index 0 of a vtbl array might contain a pointer to the
type_info object for the class corresponding to that vtbl. The vtbl for
class C1 on page 114 would then look like this:

With this implementation, the space cost of RTTI is an additional entry
in each class vtbl plus the cost of the storage for the type_info object
for each class. Just as the memory for virtual tables is unlikely to be
noticeable for most applications, however, you’re unlikely to run into
problems due to the size of type_info objects.

The following table summarizes the primary costs of virtual functions,
multiple inheritance, virtual base classes, and RTTI:

Increases Increases Reduces
Feature Size of Objects Per-Class Data Inlining

Virtual Functions Yes Yes Yes

Multiple Inheritance Yes Yes No

Virtual Base Classes Often Sometimes No

RTTI No Yes No

Some people look at this table and are aghast. “I’m sticking with C!”,
they declare. Fair enough. But remember that each of these features
offers functionality you’d otherwise have to code by hand. In most
cases, your manual approximation would probably be less efficient
and less robust than the compiler-generated code. Using nested
switch statements or cascading if-then-elses to emulate virtual
function calls, for example, yields more code than virtual function calls
do, and the code runs more slowly, too. Furthermore, you must man-
ually track object types yourself, which means your objects carry
around type tags of their own; you thus often fail to gain even the ben-
efit of smaller objects.

implementation of C1::f1
implementation of C1::f2
implementation of C1::f3

implementation of C1::~C1
C1’s type_info object

C1’s
vtbl
From the Library of Yuri Khan

ptg

122 Item 24
It is important to understand the costs of virtual functions, multiple
inheritance, virtual base classes, and RTTI, but it is equally important
to understand that if you need the functionality these features offer,
you will pay for it, one way or another. Sometimes you have legitimate
reasons for bypassing the compiler-generated services. For example,
hidden vptrs and pointers to virtual base classes can make it difficult
to store C++ objects in databases or to move them across process
boundaries, so you may wish to emulate these features in a way that
makes it easier to accomplish these other tasks. From the point of view
of efficiency, however, you are unlikely to do better than the compiler-
generated implementations by coding these features yourself.
From the Library of Yuri Khan

ptg
Techniques

TechniquesMost of this book is concerned with programming guidelines. Such
guidelines are important, but no programmer lives by guidelines alone.
According to the old TV show Felix the Cat, “Whenever he gets in a fix,
he reaches into his bag of tricks.” Well, if a cartoon character can have
a bag of tricks, so too can C++ programmers. Think of this chapter as
a starter set for your bag of tricks.

Some problems crop up repeatedly when designing C++ software. How
can you make constructors and non-member functions act like virtual
functions? How can you limit the number of instances of a class? How
can you prevent objects from being created on the heap? How can you
guarantee that they will be created there? How can you create objects
that automatically perform some actions anytime some other class’s
member functions are called? How can you have different objects
share data structures while giving clients the illusion that each has its
own copy? How can you distinguish between read and write usage of
operator[]? How can you create a virtual function whose behavior
depends on the dynamic types of more than one object?

All these questions (and more) are answered in this chapter, in which
I describe proven solutions to problems commonly encountered by C++
programmers. I call such solutions techniques, but they’re also known
as idioms and, when documented in a stylized fashion, patterns. Re-
gardless of what you call them, the information that follows will serve
you well as you engage in the day-to-day skirmishes of practical soft-
ware development. It should also convince you that no matter what
you want to do, there is almost certainly a way to do it in C++.

Item 25: Virtualizing constructors and non-member
functions.

Virtualizing Constructors and Non-Member FunctionsOn the face of it, it doesn’t make much sense to talk about “virtual con-
structors.” You call a virtual function to achieve type-specific behavior
From the Library of Yuri Khan

ptg

124 Item 25
when you have a pointer or reference to an object but you don’t know
what the real type of the object is. You call a constructor only when you
don’t yet have an object but you know exactly what type you’d like to
have. How, then, can one talk of virtual constructors?

It’s easy. Though virtual constructors may seem nonsensical, they are
remarkably useful. (If you think nonsensical ideas are never useful,
how do you explain the success of modern physics?) For example, sup-
pose you write applications for working with newsletters, where a
newsletter consists of components that are either textual or graphical.
You might organize things this way:

class NLComponent { // abstract base class for
public: // newsletter components

... // contains at least one
}; // pure virtual function

class TextBlock: public NLComponent {
public:
... // contains no pure virtual

}; // functions

class Graphic: public NLComponent {
public:
... // contains no pure virtual

}; // functions

class NewsLetter { // a newsletter object
public: // consists of a list of
... // NLComponent objects

private:
list<NLComponent*> components;

};

The classes relate in this way:

The list class used inside NewsLetter is part of the Standard Tem-
plate Library, which is part of the standard C++ library (see Item 35).

NLComponent

TextBlock Graphic

NewsLetter
object

list
object public

inheritance

pointers
From the Library of Yuri Khan

ptg

Virtualizing Constructors and Non-Member Functions 125
Objects of type list behave like doubly linked lists, though they need
not be implemented in that way.

NewsLetter objects, when not being worked on, would likely be stored
on disk. To support the creation of a Newsletter from its on-disk rep-
resentation, it would be convenient to give NewsLetter a constructor
that takes an istream. The constructor would read information from
the stream as it created the necessary in-core data structures:

class NewsLetter {
public:
NewsLetter(istream& str);
...

};

Pseudocode for this constructor might look like this,

NewsLetter::NewsLetter(istream& str)
{
while (str) {
read the next component object from str;

add the object to the list of this
newsletter’s components;

}
}

or, after moving the tricky stuff into a separate function called read-
Component, like this:

class NewsLetter {
public:
...

private:
// read the data for the next NLComponent from str,
// create the component and return a pointer to it
static NLComponent * readComponent(istream& str);
...

};

NewsLetter::NewsLetter(istream& str)
{
while (str) {
// add the pointer returned by readComponent to the
// end of the components list; "push_back" is a list
// member function that inserts at the end of the list
components.push_back(readComponent(str));

}
}

Consider what readComponent does. It creates a new object, either a
TextBlock or a Graphic, depending on the data it reads. Because it
From the Library of Yuri Khan

ptg

126 Item 25
creates new objects, it acts much like a constructor, but because it can
create different types of objects, we call it a virtual constructor. A virtual
constructor is a function that creates different types of objects depend-
ing on the input it is given. Virtual constructors are useful in many
contexts, only one of which is reading object information from disk (or
off a network connection or from a tape, etc.).

A particular kind of virtual constructor — the virtual copy constructor
— is also widely useful. A virtual copy constructor returns a pointer to
a new copy of the object invoking the function. Because of this behav-
ior, virtual copy constructors are typically given names like copySelf,
cloneSelf, or, as shown below, just plain clone. Few functions are
implemented in a more straightforward manner:

class NLComponent {
public:
// declaration of virtual copy constructor
virtual NLComponent * clone() const = 0;
...

};

class TextBlock: public NLComponent {
public:
virtual TextBlock * clone() const // virtual copy
{ return new TextBlock(*this); } // constructor
...

};

class Graphic: public NLComponent {
public:
virtual Graphic * clone() const // virtual copy
{ return new Graphic(*this); } // constructor
...

};

As you can see, a class’s virtual copy constructor just calls its real copy
constructor. The meaning of “copy” is hence the same for both func-
tions. If the real copy constructor performs a shallow copy, so does the
virtual copy constructor. If the real copy constructor performs a deep
copy, so does the virtual copy constructor. If the real copy constructor
does something fancy like reference counting or copy-on-write (see
Item 29), so does the virtual copy constructor. Consistency — what a
wonderful thing.

Notice that the above implementation takes advantage of a relaxation
in the rules for virtual function return types that was adopted rela-
tively recently. No longer must a derived class’s redefinition of a base
class’s virtual function declare the same return type. Instead, if the
From the Library of Yuri Khan

ptg

Virtualizing Constructors and Non-Member Functions 127
function’s return type is a pointer (or a reference) to a base class, the
derived class’s function may return a pointer (or reference) to a class
derived from that base class. This opens no holes in C++’s type system,
and it makes it possible to accurately declare functions such as virtual
copy constructors. That’s why TextBlock’s clone can return a Text-
Block* and Graphic’s clone can return a Graphic*, even though the
return type of NLComponent’s clone is NLComponent*.

The existence of a virtual copy constructor in NLComponent makes it
easy to implement a (normal) copy constructor for NewsLetter:

class NewsLetter {
public:
NewsLetter(const NewsLetter& rhs);
...

private:
list<NLComponent*> components;

};

NewsLetter::NewsLetter(const NewsLetter& rhs)
{
// iterate over rhs’s list, using each element’s
// virtual copy constructor to copy the element into
// the components list for this object. For details on
// how the following code works, see Item 35.
for (list<NLComponent*>::const_iterator it =

rhs.components.begin();
it != rhs.components.end();
++it) {

// "it" points to the current element of rhs.components,
// so call that element’s clone function to get a copy
// of the element, and add that copy to the end of
// this object’s list of components
components.push_back((*it)->clone());

}
}

Unless you are familiar with the Standard Template Library, this code
looks bizarre, I know, but the idea is simple: just iterate over the list of
components for the NewsLetter object being copied, and for each
component in the list, call its virtual copy constructor. We need a vir-
tual copy constructor here, because the list contains pointers to
NLComponent objects, but we know each pointer really points to a
TextBlock or a Graphic. We want to copy whatever the pointer really
points to, and the virtual copy constructor does that for us.
From the Library of Yuri Khan

ptg

128 Item 25
Making Non-Member Functions Act Virtual

Just as constructors can’t really be virtual, neither can non-member
functions. However, just as it makes sense to conceive of functions
that construct new objects of different types, it makes sense to con-
ceive of non-member functions whose behavior depends on the dy-
namic types of their parameters. For example, suppose you’d like to
implement output operators for the TextBlock and Graphic classes.
The obvious approach to this problem is to make the output operator
virtual. However, the output operator is operator<<, and that func-
tion takes an ostream& as its left-hand argument; that effectively rules
out the possibility of making it a member function of the TextBlock or
Graphic classes.

(It can be done, but then look what happens:

class NLComponent {
public:
// unconventional declaration of output operator
virtual ostream& operator<<(ostream& str) const = 0;
...

};

class TextBlock: public NLComponent {
public:
// virtual output operator (also unconventional)
virtual ostream& operator<<(ostream& str) const;

};

class Graphic: public NLComponent {
public:
// virtual output operator (still unconventional)
virtual ostream& operator<<(ostream& str) const;

};

TextBlock t;
Graphic g;

...

t << cout; // print t on cout via
// virtual operator<<; note
// unconventional syntax

g << cout; // print g on cout via
// virtual operator<<; note
// unconventional syntax

Clients must place the stream object on the right-hand side of the “<<”
symbol, and that’s contrary to the convention for output operators. To
get back to the normal syntax, we must move operator<< out of the
TextBlock and Graphic classes, but if we do that, we can no longer
declare it virtual.)
From the Library of Yuri Khan

ptg

Virtualizing Constructors and Non-Member Functions 129
An alternate approach is to declare a virtual function for printing (e.g.,
print) and define it for the TextBlock and Graphic classes. But if we
do that, the syntax for printing TextBlock and Graphic objects is in-
consistent with that for the other types in the language, all of which
rely on operator<< as their output operator.

Neither of these solutions is very satisfying. What we want is a non-
member function called operator<< that exhibits the behavior of a
virtual function like print. This description of what we want is in fact
very close to a description of how to get it. We define both operator<<
and print and have the former call the latter!

class NLComponent {
public:
virtual ostream& print(ostream& s) const = 0;
...

};

class TextBlock: public NLComponent {
public:
virtual ostream& print(ostream& s) const;
...

};

class Graphic: public NLComponent {
public:
virtual ostream& print(ostream& s) const;
...

};

inline
ostream& operator<<(ostream& s, const NLComponent& c)
{
return c.print(s);

}

Virtual-acting non-member functions, then, are easy. You write virtual
functions to do the work, then write a non-virtual function that does
nothing but call the virtual function. To avoid incurring the cost of a
function call for this syntactic sleight-of-hand, of course, you inline the
non-virtual function.

Now that you know how to make non-member functions act virtually
on one of their arguments, you may wonder if it’s possible to make
them act virtually on more than one of their arguments. It is, but it’s
not easy. How hard is it? Turn to Item 31; it’s devoted to that question.
From the Library of Yuri Khan

ptg

130 Item 26
Item 26: Limiting the number of objects of a class.
Limiting Object InstantiationsOkay, you’re crazy about objects, but sometimes you’d like to bound
your insanity. For example, you’ve got only one printer in your system,
so you’d like to somehow limit the number of printer objects to one. Or
you’ve got only 16 file descriptors you can hand out, so you’ve got to
make sure there are never more than that many file descriptor objects
in existence. How can you do such things? How can you limit the num-
ber of objects?

If this were a proof by mathematical induction, we might start with
n = 1, then build from there. Fortunately, this is neither a proof nor an
induction. Moreover, it turns out to be instructive to begin with n = 0,
so we’ll start there instead. How do you prevent objects from being in-
stantiated at all?

Allowing Zero or One Objects

Each time an object is instantiated, we know one thing for sure: a con-
structor will be called. That being the case, the easiest way to prevent
objects of a particular class from being created is to declare the con-
structors of that class private:

class CantBeInstantiated {
private:
CantBeInstantiated();
CantBeInstantiated(const CantBeInstantiated&);

...

};

Having thus removed everybody’s right to create objects, we can selec-
tively loosen the restriction. If, for example, we want to create a class
for printers, but we also want to abide by the constraint that there is
only one printer available to us, we can encapsulate the printer object
inside a function so that everybody has access to the printer, but only
a single printer object is created:

class PrintJob; // forward declaration

class Printer {
public:
void submitJob(const PrintJob& job);
void reset();
void performSelfTest();

...

friend Printer& thePrinter();
From the Library of Yuri Khan

ptg

Limiting Object Instantiations 131
private:
Printer();
Printer(const Printer& rhs);

...

};

Printer& thePrinter()
{
static Printer p; // the single printer object
return p;

}

There are three separate components to this design. First, the con-
structors of the Printer class are private. That suppresses object cre-
ation. Second, the global function thePrinter is declared a friend of
the class. That lets thePrinter escape the restriction imposed by the
private constructors. Finally, thePrinter contains a static Printer
object. That means only a single object will be created.

Client code refers to thePrinter whenever it wishes to interact with
the system’s lone printer. By returning a reference to a Printer object,
thePrinter can be used in any context where a Printer object itself
could be:

class PrintJob {
public:
PrintJob(const string& whatToPrint);
...

};

string buffer;

... // put stuff in buffer

thePrinter().reset();
thePrinter().submitJob(buffer);

It’s possible, of course, that thePrinter strikes you as a needless ad-
dition to the global namespace. “Yes,” you may say, “as a global func-
tion it looks more like a global variable, but global variables are
gauche, and I’d prefer to localize all printer-related functionality inside
the Printer class.” Well, far be it from me to argue with someone who
uses words like gauche. thePrinter can just as easily be made a
static member function of Printer, and that puts it right where you
want it. It also eliminates the need for a friend declaration, which
many regard as tacky in its own right. Using a static member function,
Printer looks like this:
From the Library of Yuri Khan

ptg

132 Item 26
class Printer {
public:
static Printer& thePrinter();
...

private:
Printer();
Printer(const Printer& rhs);
...

};

Printer& Printer::thePrinter()
{
static Printer p;
return p;

}

Clients must now be a bit wordier when they refer to the printer:

Printer::thePrinter().reset();
Printer::thePrinter().submitJob(buffer);

Another approach is to move Printer and thePrinter out of the glo-
bal scope and into a namespace. Namespaces are a recent addition to
C++. Anything that can be declared at global scope can also be de-
clared in a namespace. This includes classes, structs, functions, vari-
ables, objects, typedefs, etc. The fact that something is in a namespace
doesn’t affect its behavior, but it does prevent name conflicts between
entities in different namespaces. By putting the Printer class and the
thePrinter function into a namespace, we don’t have to worry about
whether anybody else happened to choose the names Printer or
thePrinter for themselves; our namespace prevents name conflicts.

Syntactically, namespaces look much like classes, but there are no
public, protected, or private sections; everything is public. This is how
we’d put Printer and thePrinter into a namespace called Print-
ingStuff:

namespace PrintingStuff {
class Printer { // this class is in the
public: // PrintingStuff namespace

void submitJob(const PrintJob& job);
void reset();
void performSelfTest();
...

friend Printer& thePrinter();
From the Library of Yuri Khan

ptg

Limiting Object Instantiations 133
private:
Printer();
Printer(const Printer& rhs);
...

};

Printer& thePrinter() // so is this function
{
static Printer p;
return p;

}
} // this is the end of the

// namespace

Given this namespace, clients can refer to thePrinter using a fully-
qualified name (i.e., one that includes the name of the namespace),

PrintingStuff::thePrinter().reset();
PrintingStuff::thePrinter().submitJob(buffer);

but they can also employ a using declaration to save themselves key-
strokes:

using PrintingStuff::thePrinter; // import the name
// "thePrinter" from the
// namespace "PrintingStuff"
// into the current scope

thePrinter().reset(); // now thePrinter can be
thePrinter().submitJob(buffer); // used as if it were a

// local name

There are two subtleties in the implementation of thePrinter that are
worth exploring. First, it’s important that the single Printer object be
static in a function and not in a class. An object that’s static in a class
is, for all intents and purposes, always constructed (and destructed),
even if it’s never used. In contrast, an object that’s static in a function
is created the first time through the function, so if the function is never
called, the object is never created. (You do, however, pay for a check
each time the function is called to see whether the object needs to be
created.) One of the philosophical pillars on which C++ was built is the
idea that you shouldn’t pay for things you don’t use, and defining an
object like our printer as a static object in a function is one way of ad-
hering to this philosophy. It’s a philosophy you should adhere to when-
ever you can.

There is another drawback to making the printer a class static versus
a function static, and that has to do with its time of initialization. We
know exactly when a function static is initialized: the first time
through the function at the point where the static is defined. The situ-
From the Library of Yuri Khan

ptg

134 Item 26
ation with a class static (or, for that matter, a global static, should you
be so gauche as to use one) is less well defined. C++ offers certain
guarantees regarding the order of initialization of statics within a par-
ticular translation unit (i.e., a body of source code that yields a single
object file), but it says nothing about the initialization order of static
objects in different translation units. In practice, this turns out to be a
source of countless headaches. Function statics, when they can be
made to suffice, allow us to avoid these headaches. In our example
here, they can, so why suffer?

The second subtlety has to do with the interaction of inlining and static
objects inside functions. Look again at the code for the non-member
version of thePrinter:

Printer& thePrinter()
{
static Printer p;
return p;

}

Except for the first time through this function (when p must be con-
structed), this is a one-line function — it consists entirely of the state-
ment “return p;”. If ever there were a good candidate for inlining, this
function would certainly seem to be the one. Yet it’s not declared in-
line. Why not?

Consider for a moment why you’d declare an object to be static. It’s
usually because you want only a single copy of that object, right? Now
consider what inline means. Conceptually, it means compilers
should replace each call to the function with a copy of the function
body, but for non-member functions, it also means something else. It
means the functions in question have internal linkage.

You don’t ordinarily need to worry about such linguistic mumbo
jumbo, but there is one thing you must remember: functions with in-
ternal linkage may be duplicated within a program (i.e., the object code
for the program may contain more than one copy of each function with
internal linkage), and this duplication includes static objects contained
within the functions. The result? If you create an inline non-member
function containing a local static object, you may end up with more
than one copy of the static object in your program! So don’t create in-
line non-member functions that contain local static data.†

But maybe you think this business of creating a function to return a
reference to a hidden object is the wrong way to go about limiting the
number of objects in the first place. Perhaps you think it’s better to
simply count the number of objects in existence and throw an excep-

† In July 1996, the ISO/ANSI standardization committee changed the default linkage of
inline functions to external, so the problem I describe here has been eliminated, at
least on paper. Your compilers may not yet be in accord with the standard, however,
so your best bet is still to shy away from inline functions with static data.
From the Library of Yuri Khan

ptg

Limiting Object Instantiations 135
tion in a constructor if too many objects are requested. In other words,
maybe you think we should handle printer creation like this:

class Printer {
public:
class TooManyObjects{}; // exception class for use

// when too many objects
// are requested

Printer();
~Printer();

...

private:
static size_t numObjects;

Printer(const Printer& rhs); // there is a limit of 1
// printer, so never allow

}; // copying

The idea is to use numObjects to keep track of how many Printer ob-
jects are in existence. This value will be incremented in the class con-
structor and decremented in its destructor. If an attempt is made to
construct too many Printer objects, we throw an exception of type
TooManyObjects:

// Obligatory definition of the class static
size_t Printer::numObjects = 0;

Printer::Printer()
{
if (numObjects >= 1) {
throw TooManyObjects();

}

proceed with normal construction here;

++numObjects;
}

Printer::~Printer()
{
perform normal destruction here;

--numObjects;
}

This approach to limiting object creation is attractive for a couple of
reasons. For one thing, it’s straightforward — everybody should be
able to understand what’s going on. For another, it’s easy to generalize
so that the maximum number of objects is some number other than
one.
From the Library of Yuri Khan

ptg

136 Item 26
Contexts for Object Construction

There is also a problem with this strategy. Suppose we have a special
kind of printer, say, a color printer. The class for such printers would
have much in common with our generic printer class, so of course we’d
inherit from it:

class ColorPrinter: public Printer {
...

};

Now suppose we have one generic printer and one color printer in our
system:

Printer p;
ColorPrinter cp;

How many Printer objects result from these object definitions? The
answer is two: one for p and one for the Printer part of cp. At runt-
ime, a TooManyObjects exception will be thrown during the construc-
tion of the base class part of cp. For many programmers, this is neither
what they want nor what they expect. (Designs that avoid having con-
crete classes inherit from other concrete classes do not suffer from this
problem. For details on this design philosophy, see Item 33.)

A similar problem occurs when Printer objects are contained inside
other objects:

class CPFMachine { // for machines that can
private: // copy, print, and fax

Printer p; // for printing capabilities
FaxMachine f; // for faxing capabilities
CopyMachine c; // for copying capabilities

...

};

CPFMachine m1; // fine

CPFMachine m2; // throws TooManyObjects exception

The problem is that Printer objects can exist in three different con-
texts: on their own, as base class parts of more derived objects, and
embedded inside larger objects. The presence of these different con-
texts significantly muddies the waters regarding what it means to keep
track of the “number of objects in existence,” because what you con-
sider to be the existence of an object may not jibe with your compilers’.

Often you will be interested only in allowing objects to exist on their
own, and you will wish to limit the number of those kinds of instantia-
tions. That restriction is easy to satisfy if you adopt the strategy exem-
From the Library of Yuri Khan

ptg

Limiting Object Instantiations 137
plified by our original Printer class, because the Printer
constructors are private, and (in the absence of friend declarations)
classes with private constructors can’t be used as base classes, nor
can they be embedded inside other objects.

The fact that you can’t derive from classes with private constructors
leads to a general scheme for preventing derivation, one that doesn’t
necessarily have to be coupled with limiting object instantiations. Sup-
pose, for example, you have a class, FSA, for representing finite state
automata. (Such state machines are useful in many contexts, among
them user interface design.) Further suppose you’d like to allow any
number of FSA objects to be created, but you’d also like to ensure that
no class ever inherits from FSA. (One reason for doing this might be to
justify the presence of a nonvirtual destructor in FSA. As Item 24 ex-
plains, classes without virtual functions yield smaller objects than do
equivalent classes with virtual functions.) Here’s how you can design
FSA to satisfy both criteria:

class FSA {
public:
// pseudo-constructors
static FSA * makeFSA();
static FSA * makeFSA(const FSA& rhs);
...

private:
FSA();
FSA(const FSA& rhs);
...

};

FSA * FSA::makeFSA()
{ return new FSA(); }

FSA * FSA::makeFSA(const FSA& rhs)
{ return new FSA(rhs); }

Unlike the thePrinter function that always returned a reference to a
single object, each makeFSA pseudo-constructor returns a pointer to a
unique object. That’s what allows an unlimited number of FSA objects
to be created.

This is nice, but the fact that each pseudo-constructor calls new im-
plies that callers will have to remember to call delete. Otherwise a re-
source leak will be introduced. Callers who wish to have delete called
automatically when the current scope is exited can store the pointer
returned from makeFSA in an auto_ptr object (see Item 9); such ob-
jects automatically delete what they point to when they themselves go
out of scope:
From the Library of Yuri Khan

ptg

138 Item 26
// indirectly call default FSA constructor
auto_ptr<FSA> pfsa1(FSA::makeFSA());

// indirectly call FSA copy constructor
auto_ptr<FSA> pfsa2(FSA::makeFSA(*pfsa1));

... // use pfsa1 and pfsa2 as normal pointers,
// but don’t worry about deleting them

Allowing Objects to Come and Go

We now know how to design a class that allows only a single instanti-
ation, we know that keeping track of the number of objects of a partic-
ular class is complicated by the fact that object constructors are called
in three different contexts, and we know that we can eliminate the con-
fusion surrounding object counts by making constructors private. It is
worthwhile to make one final observation. Our use of the thePrinter
function to encapsulate access to a single object limits the number of
Printer objects to one, but it also limits us to a single Printer object
for each run of the program. As a result, it’s not possible to write code
like this:

create Printer object p1;

use p1;

destroy p1;

create Printer object p2;

use p2;

destroy p2;

...

This design never instantiates more than a single Printer object at a
time, but it does use different Printer objects in different parts of the
program. It somehow seems unreasonable that this isn’t allowed. After
all, at no point do we violate the constraint that only one printer may
exist. Isn’t there a way to make this legal?

There is. All we have to do is combine the object-counting code we used
earlier with the pseudo-constructors we just saw:

class Printer {
public:
class TooManyObjects{};

// pseudo-constructor
static Printer * makePrinter();

~Printer();
From the Library of Yuri Khan

ptg

Limiting Object Instantiations 139
void submitJob(const PrintJob& job);
void reset();
void performSelfTest();
...

private:
static size_t numObjects;

Printer();

Printer(const Printer& rhs); // we don’t define this
}; // function, because we’ll

// never allow copying

// Obligatory definition of class static
size_t Printer::numObjects = 0;

Printer::Printer()
{
if (numObjects >= 1) {
throw TooManyObjects();

}

proceed with normal object construction here;

++numObjects;
}

Printer * Printer::makePrinter()
{ return new Printer; }

If the notion of throwing an exception when too many objects are re-
quested strikes you as unreasonably harsh, you could have the
pseudo-constructor return a null pointer instead. Clients would then
have to check for this before doing anything with it, of course.

Clients use this Printer class just as they would any other class, ex-
cept they must call the pseudo-constructor function instead of the real
constructor:

Printer p1; // error! default ctor is
// private

Printer *p2 =
Printer::makePrinter(); // fine, indirectly calls

// default ctor

Printer p3 = *p2; // error! copy ctor is
// private

p2->performSelfTest(); // all other functions are
p2->reset(); // called as usual

...

delete p2; // avoid resource leak; this
// would be unnecessary if
// p2 were an auto_ptr
From the Library of Yuri Khan

ptg

140 Item 26
This technique is easily generalized to any number of objects. All we
have to do is replace the hard-wired constant 1 with a class-specific
value, then lift the restriction against copying objects. For example, the
following revised implementation of our Printer class allows up to 10
Printer objects to exist:

class Printer {
public:
class TooManyObjects{};

// pseudo-constructors
static Printer * makePrinter();
static Printer * makePrinter(const Printer& rhs);

...

private:
static size_t numObjects;
static const size_t maxObjects = 10; // see below

Printer();
Printer(const Printer& rhs);

};

// Obligatory definitions of class statics
size_t Printer::numObjects = 0;
const size_t Printer::maxObjects;

Printer::Printer()
{
if (numObjects >= maxObjects) {
throw TooManyObjects();

}

...

}

Printer::Printer(const Printer& rhs)
{
if (numObjects >= maxObjects) {
throw TooManyObjects();

}

...

}

Printer * Printer::makePrinter()
{ return new Printer; }

Printer * Printer::makePrinter(const Printer& rhs)
{ return new Printer(rhs); }

Don’t be surprised if your compilers get all upset about the declaration
of Printer::maxObjects in the class definition above. In particular, be
From the Library of Yuri Khan

ptg

Limiting Object Instantiations 141
prepared for them to complain about the specification of 10 as an ini-
tial value for that variable. The ability to specify initial values for static
const members (of integral type, e.g., ints, chars, enums, etc.) inside
a class definition was added to C++ only relatively recently, so some
compilers don’t yet allow it. If your compilers are as-yet-unupdated,
pacify them by declaring maxObjects to be an enumerator inside a pri-
vate anonymous enum,

class Printer {
private:
enum { maxObjects = 10 }; // within this class,
... // maxObjects is the

}; // constant 10

or by initializing the constant static like a non-const static member:

class Printer {
private:
static const size_t maxObjects; // no initial value given

...

};

// this goes in a single implementation file
const size_t Printer::maxObjects = 10;

This latter approach has the same effect as the original code above, but
explicitly specifying the initial value is easier for other programmers to
understand. When your compilers support the specification of initial
values for const static members in class definitions, you should take
advantage of that capability.

An Object-Counting Base Class

Initialization of statics aside, the approach above works like the pro-
verbial charm, but there is one aspect of it that continues to nag. If we
had a lot of classes like Printer whose instantiations needed to be
limited, we’d have to write this same code over and over, once per
class. That would be mind-numbingly dull. Given a fancy-pants lan-
guage like C++, it somehow seems we should be able to automate the
process. Isn’t there a way to encapsulate the notion of counting in-
stances and bundle it into a class?

We can easily come up with a base class for counting object instances
and have classes like Printer inherit from that, but it turns out we
can do even better. We can actually come up with a way to encapsulate
the whole counting kit and kaboodle, by which I mean not only the
functions to manipulate the instance count, but also the instance
count itself. (We’ll see the need for a similar trick when we examine ref-
erence counting in Item 29.)
From the Library of Yuri Khan

ptg

142 Item 26
The counter in the Printer class is the static variable numObjects, so
we need to move that variable into an instance-counting class. How-
ever, we also need to make sure that each class for which we’re count-
ing instances has a separate counter. Use of a counting class template
lets us automatically generate the appropriate number of counters, be-
cause we can make the counter a static member of the classes gener-
ated from the template:

template<class BeingCounted>
class Counted {
public:
class TooManyObjects{}; // for throwing exceptions

static size_t objectCount() { return numObjects; }

protected:
Counted();
Counted(const Counted& rhs);

~Counted() { --numObjects; }

private:
static size_t numObjects;
static const size_t maxObjects;

void init(); // to avoid ctor code
}; // duplication

template<class BeingCounted>
Counted<BeingCounted>::Counted()
{ init(); }

template<class BeingCounted>
Counted<BeingCounted>::Counted(const Counted<BeingCounted>&)
{ init(); }

template<class BeingCounted>
void Counted<BeingCounted>::init()
{
if (numObjects >= maxObjects) throw TooManyObjects();
++numObjects;

}

The classes generated from this template are designed to be used only
as base classes, hence the protected constructors and destructor. Note
the use of the private member function init to avoid duplicating the
statements in the two Counted constructors.

We can now modify the Printer class to use the Counted template:
From the Library of Yuri Khan

ptg

Limiting Object Instantiations 143
class Printer: private Counted<Printer> {
public:
// pseudo-constructors
static Printer * makePrinter();
static Printer * makePrinter(const Printer& rhs);

~Printer();

void submitJob(const PrintJob& job);
void reset();
void performSelfTest();
...

using Counted<Printer>::objectCount; // see below
using Counted<Printer>::TooManyObjects; // see below

private:
Printer();
Printer(const Printer& rhs);

};

The fact that Printer uses the Counted template to keep track of how
many Printer objects exist is, frankly, nobody’s business but the au-
thor of Printer’s. Such implementation details are best kept private,
and that’s why private inheritance is used here. The alternative would
be to use publ ic inher i tance between Printer and
Counted<Printer>, but then we’d be obliged to give the Counted
classes a virtual destructor. (Otherwise we’d risk incorrect behavior if
somebody deleted a Printer object through a Counted<Printer>*
pointer.) As Item 24 makes clear, the presence of a virtual function in
Counted would almost certainly affect the size and layout of objects of
classes inheriting from Counted. We don’t want to absorb that over-
head, and the use of private inheritance lets us avoid it.

Quite properly, most of what Counted does is hidden from Printer’s
clients, but those clients might reasonably want to find out how many
Printer objects exist. The Counted template offers the objectCount
function to provide this information, but that function becomes private
in Printer due to our use of private inheritance. To restore the public
accessibility of that function, we employ a using declaration:

class Printer: private Counted<Printer> {
public:
...
using Counted<Printer>::objectCount; // make this function

// public for clients
... // of Printer

};
From the Library of Yuri Khan

ptg

144 Item 26
This is perfectly legitimate, but if your compilers don’t yet support
namespaces, they won’t allow it. If they don’t, you can use the older ac-
cess declaration syntax:

class Printer: private Counted<Printer> {
public:
...
Counted<Printer>::objectCount; // make objectCount

// public in Printer
...

};

This more traditional syntax has the same meaning as the using dec-
laration, but it’s deprecated. The class TooManyObjects is handled in
the same fashion as objectCount, because clients of Printer must
have access to TooManyObjects if they are to be able to catch excep-
tions of that type.

When Printer inherits from Counted<Printer>, it can forget about
counting objects. The class can be written as if somebody else were
doing the counting for it, because somebody else (Counted<Printer>)
is. A Printer constructor now looks like this:

Printer::Printer()
{
proceed with normal object construction;

}

What’s interesting here is not what you see, it’s what you don’t. No
checking of the number of objects to see if the limit is about to be ex-
ceeded, no incrementing the number of objects in existence once the
constructor is done. All that is now handled by the Counted<Printer>
constructors, and because Counted<Printer> is a base class of
Printer, we know that a Counted<Printer> constructor will always
be called before a Printer constructor. If too many objects are cre-
ated, a Counted<Printer> constructor throws an exception, and the
Printer constructor won’t even be invoked. Nifty, huh?

Nifty or not, there’s one loose end that demands to be tied, and that’s
the mandatory definitions of the statics inside Counted. It’s easy
enough to take care of numObjects — we just put this in Counted’s
implementation file:

template<class BeingCounted> // defines numObjects
size_t Counted<BeingCounted>::numObjects; // and automatically

// initializes it to 0

The situation with maxObjects is a bit trickier. To what value should
we initialize this variable? If we want to allow up to 10 printers, we
should initialize Counted<Printer>::maxObjects to 10. If, on the
From the Library of Yuri Khan

ptg

Requiring or Prohibiting Heap-Based Objects 145
other hand, we want to allow up to 16 file descriptor objects, we should
initialize Counted<FileDescriptor>::maxObjects to 16. What to do?

We take the easy way out: we do nothing. We provide no initialization
at all for maxObjects. Instead, we require that clients of the class pro-
vide the appropriate initialization. The author of Printer must add
this to an implementation file:

const size_t Counted<Printer>::maxObjects = 10;

Similarly, the author of FileDescriptor must add this:

const size_t Counted<FileDescriptor>::maxObjects = 16;

What will happen if these authors forget to provide a suitable definition
for maxObjects? Simple: they’ll get an error during linking, because
maxObjects will be undefined. Provided we’ve adequately documented
this requirement for clients of Counted, they can then say “Duh” to
themselves and go back and add the requisite initialization.

Item 27: Requiring or prohibiting heap-based objects.
Requiring or Prohibiting Heap-Based ObjectsSometimes you want to arrange things so that objects of a particular
type can commit suicide, i.e., can “delete this.” Such an arrange-
ment clearly requires that objects of that type be allocated on the heap.
Other times you’ll want to bask in the certainty that there can be no
memory leaks for a particular class, because none of the objects could
have been allocated on the heap. This might be the case if you are
working on an embedded system, where memory leaks are especially
troublesome and heap space is at a premium. Is it possible to produce
code that requires or prohibits heap-based objects? Often it is, but it
also turns out that the notion of being “on the heap” is more nebulous
than you might think.

Requiring Heap-Based Objects

Let us begin with the prospect of limiting object creation to the heap.
To enforce such a restriction, you’ve got to find a way to prevent clients
from creating objects other than by calling new. This is easy to do. Non-
heap objects are automatically constructed at their point of definition
and automatically destructed at the end of their lifetime, so it suffices
to simply make these implicit constructions and destructions illegal.

The straightforward way to make these calls illegal is to declare the
constructors and the destructor private. This is overkill. There’s no
reason why they both need to be private. Better to make the destructor
private and the constructors public. Then, in a process that should be
familiar from Item 26, you can introduce a privileged pseudo-destruc-
From the Library of Yuri Khan

ptg

146 Item 27
tor function that has access to the real destructor. Clients then call the
pseudo-destructor to destroy the objects they’ve created.

If, for example, we want to ensure that objects representing unlimited
precision numbers are created only on the heap, we can do it like this:

class UPNumber {
public:
UPNumber();
UPNumber(int initValue);
UPNumber(double initValue);
UPNumber(const UPNumber& rhs);

// pseudo-destructor (a const member function, because
// even const objects may be destroyed)
void destroy() const { delete this; }

...

private:
~UPNumber();

};

Clients would then program like this:

UPNumber n; // error! (legal here, but
// illegal when n’s dtor is
// later implicitly invoked)

UPNumber *p = new UPNumber; // fine

...

delete p; // error! attempt to call
// private destructor

p->destroy(); // fine

An alternative is to declare all the constructors private. The drawback
to that idea is that a class often has many constructors, and the class’s
author must remember to declare each of them private. This includes
the copy constructor, and it may include a default constructor, too, if
these functions would otherwise be generated by compilers; compiler-
generated functions are always public. As a result, it’s easier to declare
only the destructor private, because a class can have only one of those.

Restricting access to a class’s destructor or its constructors prevents
the creation of non-heap objects, but, in a story that is told in Item 26,
it also prevents both inheritance and containment:

class UPNumber { ... }; // declares dtor or ctors
// private

class NonNegativeUPNumber:
public UPNumber { ... }; // error! dtor or ctors

// won’t compile
From the Library of Yuri Khan

ptg

Requiring or Prohibiting Heap-Based Objects 147
class Asset {
private:
UPNumber value;
... // error! dtor or ctors

// won’t compile
};

Neither of these difficulties is insurmountable. The inheritance prob-
lem can be solved by making UPNumber’s destructor protected (while
keeping its constructors public), and classes that need to contain ob-
jects of type UPNumber can be modified to contain pointers to UPNumber
objects instead:

class UPNumber { ... }; // declares dtor protected

class NonNegativeUPNumber:
public UPNumber { ... }; // now okay; derived

// classes have access to
// protected members

class Asset {
public:
Asset(int initValue);
~Asset();
...

private:
UPNumber *value;

};

Asset::Asset(int initValue)
: value(new UPNumber(initValue)) // fine
{ ... }

Asset::~Asset()
{ value->destroy(); } // also fine

Determining Whether an Object is On The Heap

If we adopt this strategy, we must reexamine what it means to be “on
the heap.” Given the class definition sketched above, it’s legal to define
a non-heap NonNegativeUPNumber object:

NonNegativeUPNumber n; // fine

Now, the UPNumber part of the NonNegativeUPNumber object n is not
on the heap. Is that okay? The answer depends on the details of the
class’s design and implementation, but let us suppose it is not okay,
that all UPNumber objects — even base class parts of more derived ob-
jects — must be on the heap. How can we enforce this restriction?

There is no easy way. It is not possible for a UPNumber constructor to
determine whether it’s being invoked as the base class part of a heap-
From the Library of Yuri Khan

ptg

148 Item 27
based object. That is, there is no way for the UPNumber constructor to
detect that the following contexts are different:

NonNegativeUPNumber *n1 =
new NonNegativeUPNumber; // on heap

NonNegativeUPNumber n2; // not on heap

But perhaps you don’t believe me. Perhaps you think you can play
games with the interaction among the new operator, operator new and
the constructor that the new operator calls (see Item 8). Perhaps you
think you can outsmart them all by modifying UPNumber as follows:

class UPNumber {
public:
// exception to throw if a non-heap object is created
class HeapConstraintViolation {};

static void * operator new(size_t size);

UPNumber();
...

private:
static bool onTheHeap; // inside ctors, whether

// the object being
... // constructed is on heap

};

// obligatory definition of class static
bool UPNumber::onTheHeap = false;

void *UPNumber::operator new(size_t size)
{
onTheHeap = true;
return ::operator new(size);

}

UPNumber::UPNumber()
{
if (!onTheHeap) {
throw HeapConstraintViolation();

}

proceed with normal construction here;

onTheHeap = false; // clear flag for next obj.
}

There’s nothing deep going on here. The idea is to take advantage of
the fact that when an object is allocated on the heap, operator new is
called to allocate the raw memory, then a constructor is called to ini-
tialize an object in that memory. In particular, operator new sets
onTheHeap to true, and each constructor checks onTheHeap to see if
the raw memory of the object being constructed was allocated by op-
From the Library of Yuri Khan

ptg

Requiring or Prohibiting Heap-Based Objects 149
erator new. If not, an exception of type HeapConstraintViolation is
thrown. Otherwise, construction proceeds as usual, and when con-
struction is finished, onTheHeap is set to false, thus resetting the de-
fault value for the next object to be constructed.

This is a nice enough idea, but it won’t work. Consider this potential
client code:

UPNumber *numberArray = new UPNumber[100];

The first problem is that the memory for the array is allocated by op-
erator new[], not operator new, but (provided your compilers sup-
port it) you can write the former function as easily as the latter. What
is more troublesome is the fact that numberArray has 100 elements,
so there will be 100 constructor calls. But there is only one call to al-
locate memory, so onTheHeap will be set to true for only the first of
those 100 constructors. When the second constructor is called, an ex-
ception is thrown, and woe is you.

Even without arrays, this bit-setting business may fail. Consider this
statement:

UPNumber *pn = new UPNumber(*new UPNumber);

Here we create two UPNumbers on the heap and make pn point to one
of them; it’s initialized with the value of the second one. This code has
a resource leak, but let us ignore that in favor of an examination of
what happens during execution of this expression:

new UPNumber(*new UPNumber)

This contains two calls to the new operator, hence two calls to opera-
tor new and two calls to UPNumber constructors (see Item 8). Program-
mers typically expect these function calls to be executed in this order,

1. Call operator new for first object (the leftmost one above)

2. Call constructor for first object

3. Call operator new for second object (the one used as an argu-
ment to the first UPNumber’s constructor)

4. Call constructor for second object

but the language makes no guarantee that this is how it will be done.
Some compilers generate the function calls in this order instead:

1. Call operator new for first object

2. Call operator new for second object

3. Call constructor for second object

4. Call constructor for first object
From the Library of Yuri Khan

ptg

150 Item 27
There is nothing wrong with compilers that generate this kind of code,
but the set-a-bit-in-operator-new trick fails with such compilers.
That’s because the bit set in steps 1 and 2 is cleared in step 3, thus
making the object constructed in step 3 think it’s not on the heap, even
though it is.

These difficulties don’t invalidate the basic idea of having each con-
structor check to see if *this is on the heap. Rather, they indicate that
checking a bit set inside operator new (or operator new[]) is not a
reliable way to determine this information. What we need is a better
way to figure it out.

If you’re desperate enough, you might be tempted to descend into the
realm of the unportable. For example, you might decide to take advan-
tage of the fact that on many systems, a program’s address space is or-
ganized as a linear sequence of addresses, with the program’s stack
growing down from the top of the address space and the heap rising up
from the bottom:

On systems that organize a program’s memory in this way (many do,
but many do not), you might think you could use the following func-
tion to determine whether a particular address is on the heap:

// incorrect attempt to determine whether an address
// is on the heap
bool onHeap(const void *address)
{
char onTheStack; // local stack variable

return address < &onTheStack;
}

The thinking behind this function is interesting. Inside onHeap,
onTheStack is a local variable. As such, it is, well, it’s on the stack.

High
Addresses

Low
Addresses

Heap

Stack
(Grows Down)

(Grows Up)

Program’s
Address

Space
(Incomplete

Picture)
From the Library of Yuri Khan

ptg

Requiring or Prohibiting Heap-Based Objects 151
When onHeap is called, its stack frame (i.e., its activation record) will
be placed at the top of the program’s stack, and because the stack
grows down (toward lower addresses) in this architecture, the address
of onTheStack must be less than the address of any other stack-based
variable or object. If the parameter address is less than the location of
onTheStack, it can’t be on the stack, so it must be on the heap.

Such logic is fine, as far as it goes, but it doesn’t go far enough. The
fundamental problem is that there are three places where objects may
be allocated, not two. Yes, the stack and the heap hold objects, but let
us not forget about static objects. Static objects are those that are ini-
tialized only once during a program run. Static objects comprise not
only those objects explicitly declared static, but also objects at global
and namespace scope. Such objects have to go somewhere, and that
somewhere is neither the stack nor the heap.

Where they go is system-dependent, but on many of the systems that
have the stack and heap grow toward one another, they go below the
heap. The earlier picture of memory organization, while telling the
truth and nothing but the truth for many systems, failed to tell the
whole truth for those systems. With static objects added to the picture,
it looks like this:

Suddenly it becomes clear why onHeap won’t work, not even on sys-
tems where it’s purported to: it fails to distinguish between heap ob-
jects and static objects:

void allocateSomeObjects()
{
char *pc = new char; // heap object: onHeap(pc)

// will return true

High
Addresses

Low
Addresses

Heap

Stack

Static
Objects

(Grows Down)

(Grows Up)

Program’s
Address

Space
(Complete

Picture)
From the Library of Yuri Khan

ptg

152 Item 27
char c; // stack object: onHeap(&c)
// will return false

static char sc; // static object: onHeap(&sc)
// will return true

...
}

Now, you may be desperate for a way to tell heap objects from stack ob-
jects, and in your desperation you may be willing to strike a deal with
the portability Devil, but are you so desperate that you’ll strike a deal
that fails to guarantee you the right answers? Surely not, so I know
you’ll reject this seductive but unreliable compare-the-addresses trick.

The sad fact is there’s not only no portable way to determine whether
an object is on the heap, there isn’t even a semi-portable way that
works most of the time.† If you absolutely, positively have to tell
whether an address is on the heap, you’re going to have to turn to un-
portable, implementation-dependent system calls, and that’s that.
That being the case, you’re better off trying to redesign your software
so you don’t need to determine whether an object is on the heap in the
first place.

If you find yourself obsessing over whether an object is on the heap,
the likely cause is that you want to know if it’s safe to invoke delete
on it. Often such deletion will take the form of the infamous “delete
this.” Knowing whether it’s safe to delete a pointer, however, is not the
same as simply knowing whether that pointer points to something on
the heap, because not all pointers to things on the heap can be safely
deleted. Consider again an Asset object that contains a UPNumber
object:

class Asset {
private:
UPNumber value;
...

};

Asset *pa = new Asset;

Clearly *pa (including its member value) is on the heap. Equally
clearly, it’s not safe to invoke delete on a pointer to pa->value, be-
cause no such pointer was ever returned from new.

As luck would have it, it’s easier to determine whether it’s safe to delete
a pointer than to determine whether a pointer points to something on
the heap, because all we need to answer the former question is a col-
lection of addresses that have been returned by operator new. Since
we can write operator new ourselves, it’s easy to construct such a col-
lection. Here’s how we might approach the problem:

† I have since become convinced that signature-based techniques are all but foolproof.
For details, consult http://www.aristeia.com/BookErrata/M27Comments.html.
From the Library of Yuri Khan

http://www.aristeia.com/BookErrata/M27Comments.html

ptg

Requiring or Prohibiting Heap-Based Objects 153
void *operator new(size_t size)
{
void *p = getMemory(size); // call some function to

// allocate memory and
// handle out-of-memory
// conditions

add p to the collection of allocated addresses;

return p;

}

void operator delete(void *ptr)
{
releaseMemory(ptr); // return memory to

// free store

remove ptr from the collection of allocated addresses;
}

bool isSafeToDelete(const void *address)
{
return whether address is in collection of
allocated addresses;

}

This is about as simple as it gets. operator new adds entries to a col-
lection of allocated addresses, operator delete removes entries, and
isSafeToDelete does a lookup in the collection to see if a particular
address is there. If the operator new and operator delete functions
are at global scope, this should work for all types, even the built-ins.

In practice, three things are likely to dampen our enthusiasm for this
design. The first is our extreme reluctance to define anything at global
scope, especially functions with predefined meanings like operator
new and operator delete. Knowing as we do that there is but one glo-
bal scope and but a single version of operator new and operator de-
lete with the “normal” signatures (i.e., sets of parameter types) within
that scope, the last thing we want to do is seize those function signa-
tures for ourselves. Doing so would render our software incompatible
with any other software that also implements global versions of oper-
ator new and operator delete (such as many object-oriented data-
base systems).

Our second consideration is one of efficiency: why burden all heap al-
locations with the bookkeeping overhead necessary to keep track of re-
turned addresses if we don’t need to?

Our final concern is pedestrian, but important. It turns out to be es-
sentially impossible to implement isSafeToDelete so that it always
works. The difficulty has to do with the fact that objects with multiple
From the Library of Yuri Khan

ptg

154 Item 27
or virtual base classes have multiple addresses, so there’s no guaran-
tee that the address passed to isSafeToDelete is the same as the one
returned from operator new, even if the object in question was allo-
cated on the heap. For details, see Items 24 and 31.

What we’d like is the functionality provided by these functions without
the concomitant pollution of the global namespace, the mandatory
overhead, and the correctness problems. Fortunately, C++ gives us ex-
actly what we need in the form of an abstract mixin base class.

An abstract base class is a base class that can’t be instantiated, i.e.,
one with at least one pure virtual function. A mixin (“mix in”) class is
one that provides a single well-defined capability and is designed to be
compatible with any other capabilities an inheriting class might pro-
vide. Such classes are nearly always abstract. We can therefore come
up with an abstract mixin base class that offers derived classes the
ability to determine whether a pointer was allocated from operator
new. Here’s such a class:

class HeapTracked { // mixin class; keeps track of
public: // ptrs returned from op. new

class MissingAddress{}; // exception class; see below

virtual ~HeapTracked() = 0;

static void *operator new(size_t size);
static void operator delete(void *ptr);

bool isOnHeap() const;

private:
typedef const void* RawAddress;
static list<RawAddress> addresses;

};

This class uses the list data structure that’s part of the standard C++
library (see Item 35) to keep track of all pointers returned from oper-
ator new. That function allocates memory and adds entries to the list;
operator delete deallocates memory and removes entries from the
list; and isOnHeap returns whether an object’s address is in the list.

Implementation of the HeapTracked class is simple, because the glo-
bal operator new and operator delete functions are called to per-
form the real memory allocation and deallocation, and the list class
has functions to make insertion, removal, and lookup single-statement
operations. Here’s the full implementation of HeapTracked:

// mandatory definition of static class member
list<RawAddress> HeapTracked::addresses;
From the Library of Yuri Khan

ptg

Requiring or Prohibiting Heap-Based Objects 155
// HeapTracked’s destructor is pure virtual to make the
// class abstract. The destructor must still be
// defined, however, so we provide this empty definition.
HeapTracked::~HeapTracked() {}

void * HeapTracked::operator new(size_t size)
{
void *memPtr = ::operator new(size);// get the memory

addresses.push_front(memPtr); // put its address at
// the front of the list

return memPtr;
}

void HeapTracked::operator delete(void *ptr)
{
// gracefully hande null pointers
if (ptr == 0) return;

// get an "iterator" that identifies the list
// entry containing ptr; see Item 35 for details
list<RawAddress>::iterator it =
find(addresses.begin(), addresses.end(), ptr);

 if (it != addresses.end()) { // if an entry was found
addresses.erase(it); // remove the entry
::operator delete(ptr); // deallocate the memory

} else { // otherwise
throw MissingAddress(); // ptr wasn’t allocated by

} // op. new, so throw an
} // exception

bool HeapTracked::isOnHeap() const
{
// get a pointer to the beginning of the memory
// occupied by *this; see below for details
const void *rawAddress = dynamic_cast<const void*>(this);

// look up the pointer in the list of addresses
// returned by operator new
list<RawAddress>::iterator it =
find(addresses.begin(), addresses.end(), rawAddress);

 return it != addresses.end(); // return whether it was
} // found

This code is straightforward, though it may not look that way if you are
unfamiliar with the list class and the other components of the Stan-
dard Template Library. Item 35 explains everything, but the comments
in the code above should be sufficient to explain what’s happening in
this example.

The only other thing that may confound you is this statement (in
isOnHeap):

const void *rawAddress = dynamic_cast<const void*>(this);
From the Library of Yuri Khan

ptg

156 Item 27
I mentioned earlier that writing the global function isSafeToDelete is
complicated by the fact that objects with multiple or virtual base
classes have several addresses. That problem plagues us in isOnHeap,
too, but because isOnHeap applies only to HeapTracked objects, we
can exploit a special feature of the dynamic_cast operator (see Item 2)
to eliminate the problem. Simply put, dynamic_casting a pointer to
void* (or const void* or volatile void* or, for those who can’t get
enough modifiers in their usual diet, const volatile void*) yields a
pointer to the beginning of the memory for the object pointed to by the
pointer. But dynamic_cast is applicable only to pointers to objects
that have at least one virtual function. Our ill-fated isSafeToDelete
function had to work with any type of pointer, so dynamic_cast
wouldn’t help it. isOnHeap is more selective (it tests only pointers to
HeapTracked objects), so dynamic_casting this to const void*
gives us a pointer to the beginning of the memory for the current ob-
ject. That’s the pointer that HeapTracked::operator new must have
returned if the memory for the current object was allocated by Heap-
Tracked::operator new in the first place. Provided your compilers
support the dynamic_cast operator, this technique is completely por-
table.

Given this class, even BASIC programmers could add to a class the
ability to track pointers to heap allocations. All they’d need to do is
have the class inherit from HeapTracked. If, for example, we want to
be able to determine whether a pointer to an Asset object points to a
heap-based object, we’d modify Asset’s class definition to specify
HeapTracked as a base class:

class Asset: public HeapTracked {
private:
UPNumber value;
...

};

We could then query Asset* pointers as follows:

void inventoryAsset(const Asset *ap)
{
if (ap->isOnHeap()) {
ap is a heap-based asset — inventory it as such;

}
else {
ap is a non-heap-based asset — record it that way;

}
}

A disadvantage of a mixin class like HeapTracked is that it can’t be
used with the built-in types, because types like int and char can’t in-
From the Library of Yuri Khan

ptg

Requiring or Prohibiting Heap-Based Objects 157
herit from anything. Still, the most common reason for wanting to use
a class like HeapTracked is to determine whether it’s okay to “delete
this,” and you’ll never want to do that with a built-in type because
such types have no this pointer.

Prohibiting Heap-Based Objects

Thus ends our examination of determining whether an object is on the
heap. At the opposite end of the spectrum is preventing objects from
being allocated on the heap. Here the outlook is a bit brighter. There
are, as usual, three cases: objects that are directly instantiated, ob-
jects instantiated as base class parts of derived class objects, and ob-
jects embedded inside other objects. We’ll consider each in turn.

Preventing clients from directly instantiating objects on the heap is
easy, because such objects are always created by calls to new and you
can make it impossible for clients to call new. Now, you can’t affect the
availability of the new operator (that’s built into the language), but you
can take advantage of the fact that the new operator always calls op-
erator new (see Item 8), and that function is one you can declare your-
self. In particular, it is one you can declare private. If, for example,
you want to keep clients from creating UPNumber objects on the heap,
you could do it this way:

class UPNumber {
private:
static void *operator new(size_t size);
static void operator delete(void *ptr);
...

};

Clients can now do only what they’re supposed to be able to do:

UPNumber n1; // okay

static UPNumber n2; // also okay

UPNumber *p = new UPNumber; // error! attempt to call
// private operator new

It suffices to declare operator new private, but it looks strange to have
operator new be private and operator delete be public, so unless
there’s a compelling reason to split up the pair, it’s best to declare
them in the same part of a class. If you’d like to prohibit heap-based
arrays of UPNumber objects, too, you could declare operator new[]
and operator delete[] (see Item 8) private as well.

Interestingly, declaring operator new private often also prevents UP-
Number objects from being instantiated as base class parts of heap-
From the Library of Yuri Khan

ptg

158 Item 27
based derived class objects. That’s because operator new and oper-
ator delete are inherited, so if these functions aren’t declared public
in a derived class, that class inherits the private versions declared in
its base(s):

class UPNumber { ... }; // as above

class NonNegativeUPNumber: // assume this class
public UPNumber { // declares no operator new
...

};

NonNegativeUPNumber n1; // okay

static NonNegativeUPNumber n2; // also okay

NonNegativeUPNumber *p = // error! attempt to call
new NonNegativeUPNumber; // private operator new

If the derived class declares an operator new of its own, that function
will be called when allocating derived class objects on the heap, and a
different way will have to be found to prevent UPNumber base class
parts from winding up there. Similarly, the fact that UPNumber’s oper-
ator new is private has no effect on attempts to allocate objects con-
taining UPNumber objects as members:

class Asset {
public:
Asset(int initValue);
...

private:
UPNumber value;

};

Asset *pa = new Asset(100); // fine, calls
// Asset::operator new or
// ::operator new, not
// UPNumber::operator new

For all practical purposes, this brings us back to where we were when
we wanted to throw an exception in the UPNumber constructors if a UP-
Number object was being constructed in memory that wasn’t on the
heap. This time, of course, we want to throw an exception if the object
in question is on the heap. Just as there is no portable way to deter-
mine if an address is on the heap, however, there is no portable way to
determine that it is not on the heap, so we’re out of luck. This should
be no surprise. After all, if we could tell when an address is on the
heap, we could surely tell when an address is not on the heap. But we
can’t, so we can’t. Oh well.
From the Library of Yuri Khan

ptg

Smart Pointers 159
Item 28: Smart pointers.
Smart PointersSmart pointers are objects that are designed to look, act, and feel like
built-in pointers, but to offer greater functionality. They have a variety
of applications, including resource management (see Items 9, 10, 25,
and 31) and the automation of repetitive coding tasks (see Items 17
and 29).

When you use smart pointers in place of C++’s built-in pointers (i.e.,
dumb pointers), you gain control over the following aspects of pointer
behavior:

■ Construction and destruction. You determine what happens
when a smart pointer is created and destroyed. It is common to
give smart pointers a default value of 0 to avoid the headaches as-
sociated with uninitialized pointers. Some smart pointers are
made responsible for deleting the object they point to when the
last smart pointer pointing to the object is destroyed. This can go a
long way toward eliminating resource leaks.

■ Copying and assignment. You control what happens when a
smart pointer is copied or is involved in an assignment. For some
smart pointer types, the desired behavior is to automatically copy
or make an assignment to what is pointed to, i.e., to perform a
deep copy. For others, only the pointer itself should be copied or
assigned. For still others, these operations should not be allowed
at all. Regardless of what behavior you consider “right,” the use of
smart pointers lets you call the shots.

■ Dereferencing. What should happen when a client refers to the
object pointed to by a smart pointer? You get to decide. You could,
for example, use smart pointers to help implement the lazy fetch-
ing strategy outlined in Item 17.

Smart pointers are generated from templates because, like built-in
pointers, they must be strongly typed; the template parameter speci-
fies the type of object pointed to. Most smart pointer templates look
something like this:
From the Library of Yuri Khan

ptg

160 Item 28
template<class T> // template for smart
class SmartPtr { // pointer objects
public:
SmartPtr(T* realPtr = 0); // create a smart ptr to an

// obj given a dumb ptr to
// it; uninitialized ptrs
// default to 0 (null)

SmartPtr(const SmartPtr& rhs); // copy a smart ptr

~SmartPtr(); // destroy a smart ptr

// make an assignment to a smart ptr
SmartPtr& operator=(const SmartPtr& rhs);

T* operator->() const; // dereference a smart ptr
// to get at a member of
// what it points to

T& operator*() const; // dereference a smart ptr

private:
T *pointee; // what the smart ptr

}; // points to

The copy constructor and assignment operator are both shown public
here. For smart pointer classes where copying and assignment are not
allowed, they would typically be declared private. The two dereferenc-
ing operators are declared const, because dereferencing a pointer
doesn’t modify it (though it may lead to modification of what the
pointer points to). Finally, each smart pointer-to-T object is imple-
mented by containing a dumb pointer-to-T within it. It is this dumb
pointer that does the actual pointing.

Before going into the details of smart pointer implementation, it’s
worth seeing how clients might use smart pointers. Consider a distrib-
uted system in which some objects are local and some are remote. Ac-
cess to local objects is generally simpler and faster than access to
remote objects, because remote access may require remote procedure
calls or some other way of communicating with a distant machine.

For clients writing application code, the need to handle local and re-
mote objects differently is a nuisance. It is more convenient to have all
objects appear to be located in the same place. Smart pointers allow a
library to offer this illusion:

template<class T> // template for smart ptrs
class DBPtr { // to objects in a
public: // distributed DB

DBPtr(T *realPtr = 0); // create a smart ptr to a
// DB object given a local
// dumb pointer to it
From the Library of Yuri Khan

ptg

Smart Pointers 161
DBPtr(DataBaseID id); // create a smart ptr to a
// DB object given its
// unique DB identifier

... // other smart ptr
}; // functions as above

class Tuple { // class for database
public: // tuples
...
void displayEditDialog(); // present a graphical

// dialog box allowing a
// user to edit the tuple

bool isValid() const; // return whether *this
}; // passes validity check

// class template for making log entries whenever a T
// object is modified; see below for details
template<class T>
class LogEntry {
public:
LogEntry(const T& objectToBeModified);
~LogEntry();

};

void editTuple(DBPtr<Tuple>& pt)
{
LogEntry<Tuple> entry(*pt); // make log entry for this

// editing operation; see
// below for details

// repeatedly display edit dialog until valid values
// are provided
do {
pt->displayEditDialog();

} while (pt->isValid() == false);
}

The tuple to be edited inside editTuple may be physically located on
a remote machine, but the programmer writing editTuple need not be
concerned with such matters; the smart pointer class hides that as-
pect of the system. As far as the programmer is concerned, all tuples
are accessed through objects that, except for how they’re declared, act
just like run-of-the-mill built-in pointers.

Notice the use of a LogEntry object in editTuple. A more conven-
tional design would have been to surround the call to displayEdit-
Dialog with calls to begin and end the log entry. In the approach
shown here, the LogEntry’s constructor begins the log entry and its
destructor ends the log entry. As Item 9 explains, using an object to
begin and end logging is more robust in the face of exceptions than ex-
plicitly calling functions, so you should accustom yourself to using
From the Library of Yuri Khan

ptg

162 Item 28
classes like LogEntry. Besides, it’s easier to create a single LogEntry
object than to add separate calls to start and stop an entry.

As you can see, using a smart pointer isn’t much different from using
the dumb pointer it replaces. That’s testimony to the effectiveness of
encapsulation. Clients of smart pointers are supposed to be able to
treat them as dumb pointers. As we shall see, sometimes the substitu-
tion is more transparent than others.

Construction, Assignment, and Destruction of Smart Pointers

Construction of a smart pointer is usually straightforward: locate an
object to point to (typically by using the smart pointer’s constructor ar-
guments), then make the smart pointer’s internal dumb pointer point
there. If no object can be located, set the internal pointer to 0 or signal
an error (possibly by throwing an exception).

Implementing a smart pointer’s copy constructor, assignment opera-
tor(s) and destructor is complicated somewhat by the issue of owner-
ship. If a smart pointer owns the object it points to, it is responsible for
deleting that object when it (the smart pointer) is destroyed. This as-
sumes the object pointed to by the smart pointer is dynamically allo-
cated. Such an assumption is common when working with smart
pointers. (For ideas on how to make sure the assumption is true, see
Item 27.)

Consider the auto_ptr template from the standard C++ library. As
Item 9 explains, an auto_ptr object is a smart pointer that points to a
heap-based object until it (the auto_ptr) is destroyed. When that hap-
pens, the auto_ptr’s destructor deletes the pointed-to object. The
auto_ptr template might be implemented like this:

template<class T>
class auto_ptr {
public:
auto_ptr(T *ptr = 0): pointee(ptr) {}
~auto_ptr() { delete pointee; }
...

private:
T *pointee;

};

This works fine provided only one auto_ptr owns an object. But what
should happen when an auto_ptr is copied or assigned?

auto_ptr<TreeNode> ptn1(new TreeNode);

auto_ptr<TreeNode> ptn2 = ptn1; // call to copy ctor;
// what should happen?
From the Library of Yuri Khan

ptg

Smart Pointers 163
auto_ptr<TreeNode> ptn3;

ptn3 = ptn2; // call to operator=;
// what should happen?

If we just copied the internal dumb pointer, we’d end up with two
auto_ptrs pointing to the same object. This would lead to grief, be-
cause each auto_ptr would delete what it pointed to when the
auto_ptr was destroyed. That would mean we’d delete an object more
than once. The results of such double-deletes are undefined (and are
frequently disastrous).

An alternative would be to create a new copy of what was pointed to by
calling new. That would guarantee we didn’t have too many auto_ptrs
pointing to a single object, but it might engender an unacceptable per-
formance hit for the creation (and later destruction) of the new object.
Furthermore, we wouldn’t necessarily know what type of object to cre-
ate, because an auto_ptr<T> object need not point to an object of type
T; it might point to an object of a type derived from T. Virtual construc-
tors (see Item 25) can help solve this problem, but it seems inappropri-
ate to require their use in a general-purpose class like auto_ptr.

The problems would vanish if auto_ptr prohibited copying and assign-
ment, but a more flexible solution was adopted for the auto_ptr classes:
object ownership is transferred when an auto_ptr is copied or assigned:

template<class T>
class auto_ptr {
public:
...

auto_ptr(auto_ptr<T>& rhs); // copy constructor

auto_ptr<T>& // assignment
operator=(auto_ptr<T>& rhs); // operator

...
};

template<class T>
auto_ptr<T>::auto_ptr(auto_ptr<T>& rhs)
{
pointee = rhs.pointee; // transfer ownership of

// *pointee to *this

rhs.pointee = 0; // rhs no longer owns
} // anything
From the Library of Yuri Khan

ptg

164 Item 28
template<class T>
auto_ptr<T>& auto_ptr<T>::operator=(auto_ptr<T>& rhs)
{
if (this == &rhs) // do nothing if this
return *this; // object is being assigned

// to itself

delete pointee; // delete currently owned
// object

pointee = rhs.pointee; // transfer ownership of
rhs.pointee = 0; // *pointee from rhs to *this

return *this;
}

Notice that the assignment operator must delete the object it owns be-
fore assuming ownership of a new object. If it failed to do this, the ob-
ject would never be deleted. Remember, nobody but the auto_ptr
object owns the object the auto_ptr points to.

Because object ownership is transferred when auto_ptr’s copy con-
structor is called, passing auto_ptrs by value is often a very bad idea.
Here’s why:

// this function will often lead to disaster
void printTreeNode(ostream& s, auto_ptr<TreeNode> p)
{ s << *p; }

int main()
{
auto_ptr<TreeNode> ptn(new TreeNode);

...

printTreeNode(cout, ptn); // pass auto_ptr by value

...

}

When printTreeNode’s parameter p is initialized (by calling
auto_ptr’s copy constructor), ownership of the object pointed to by
ptn is transferred to p. When printTreeNode finishes executing, p
goes out of scope and its destructor deletes what it points to (which is
what ptn used to point to). ptn, however, no longer points to anything
(its underlying dumb pointer is null), so just about any attempt to use
it after the call to printTreeNode will yield undefined behavior. Pass-
ing auto_ptrs by value, then, is something to be done only if you’re
sure you want to transfer ownership of an object to a (transient) func-
tion parameter. Only rarely will you want to do this.
From the Library of Yuri Khan

ptg

Smart Pointers 165
This doesn’t mean you can’t pass auto_ptrs as parameters, it just
means that pass-by-value is not the way to do it. Pass-by-reference-to-
const is:

// this function behaves much more intuitively
void printTreeNode(ostream& s,

const auto_ptr<TreeNode>& p)
{ s << *p; }

In this function, p is a reference, not an object, so no constructor is
called to initialize p. When ptn is passed to this version of print-
TreeNode, it retains ownership of the object it points to, and ptn can
safely be used after the call to printTreeNode. Thus, passing
auto_ptrs by reference-to-const avoids the hazards arising from
pass-by-value.

The notion of transferring ownership from one smart pointer to an-
other during copying and assignment is interesting, but you may have
been at least as interested in the unconventional declarations of the
copy constructor and assignment operator. These functions normally
take const parameters, but above they do not. In fact, the code above
changes these parameters during the copy or the assignment. In other
words, auto_ptr objects are modified if they are copied or are the
source of an assignment!

Yes, that’s exactly what’s happening. Isn’t it nice that C++ is flexible
enough to let you do this? If the language required that copy construc-
tors and assignment operators take const parameters, you’d probably
have to cast away the parameters’ constness or play other games to
implement ownership transferral. Instead, you get to say exactly what
you want to say: when an object is copied or is the source of an assign-
ment, that object is changed. This may not seem intuitive, but it’s sim-
ple, direct, and, in this case, accurate.

If you find this examination of auto_ptr member functions interest-
ing, you may wish to see a complete implementation. You’ll find one on
pages 291-294, where you’ll also see that the auto_ptr template in
the standard C++ library has copy constructors and assignment oper-
ators that are more flexible than those described here. In the standard
auto_ptr template, those functions are member function templates,
not just member functions. (Member function templates are described
later in this Item.)

A smart pointer’s destructor often looks like this:
From the Library of Yuri Khan

ptg

166 Item 28
template<class T>
SmartPtr<T>::~SmartPtr()
{
if (*this owns *pointee) {
delete pointee;

}
}

Sometimes there is no need for the test. An auto_ptr always owns
what it points to, for example. At other times the test is a bit more com-
plicated. A smart pointer that employs reference counting (see Item 29)
must adjust a reference count before determining whether it has the
right to delete what it points to. Of course, some smart pointers are like
dumb pointers: they have no effect on the object they point to when
they themselves are destroyed.

Implementing the Dereferencing Operators

Let us now turn our attention to the very heart of smart pointers, the
operator* and operator-> functions. The former returns the object
pointed to. Conceptually, this is simple:

template<class T>
T& SmartPtr<T>::operator*() const
{
perform "smart pointer" processing;

return *pointee;
}

First the function does whatever processing is needed to initialize or
otherwise make pointee valid. For example, if lazy fetching is being
used (see Item 17), the function may have to conjure up a new object
for pointee to point to. Once pointee is valid, the operator* func-
tion just returns a reference to the pointed-to object.

Note that the return type is a reference. It would be disastrous to re-
turn an object instead, though compilers will let you do it. Bear in
mind that pointee need not point to an object of type T; it may point
to an object of a class derived from T. If that is the case and your op-
erator* function returns a T object instead of a reference to the ac-
tual derived class object, your function will return an object of the
wrong type! (This is the slicing problem — see Item 13.) Virtual func-
tions invoked on the object returned from your star-crossed opera-
tor* will not invoke the function corresponding to the dynamic type of
the pointed-to object. In essence, your smart pointer will not properly
support virtual functions, and how smart is a pointer like that? Be-
sides, returning a reference is more efficient anyway, because there is
no need to construct a temporary object (see Item 19). This is one of
From the Library of Yuri Khan

ptg

Smart Pointers 167
those happy occasions when correctness and efficiency go hand in
hand.

If you’re the kind who likes to worry, you may wonder what you should
do if somebody invokes operator* on a null smart pointer, i.e., one
whose embedded dumb pointer is null. Relax. You can do anything you
want. The result of dereferencing a null pointer is undefined, so there
is no “wrong” behavior. Wanna throw an exception? Go ahead, throw it.
Wanna call abort (possibly by having an assert call fail)? Fine, call it.
Wanna walk through memory setting every byte to your birth date
modulo 256? That’s okay, too. It’s not nice, but as far as the language
is concerned, you are completely unfettered.

The story with operator-> is similar to that for operator*, but before
examining operator->, let us remind ourselves of the unusual mean-
ing of a call to this function. Consider again the editTuple function
that uses a smart pointer-to-Tuple object:

void editTuple(DBPtr<Tuple>& pt)
{
LogEntry<Tuple> entry(*pt);

do {
pt->displayEditDialog();

} while (pt->isValid() == false);
}

The statement

pt->displayEditDialog();

is interpreted by compilers as:

(pt.operator->())->displayEditDialog();

That means that whatever operator-> returns, it must be legal to
apply the member-selection operator (->) to it. There are thus only two
things operator-> can return: a dumb pointer to an object or another
smart pointer object. Most of the time, you’ll want to return an ordi-
nary dumb pointer. In those cases, you implement operator-> as fol-
lows:

template<class T>
T* SmartPtr<T>::operator->() const
{
perform "smart pointer" processing;

return pointee;
}

This will work fine. Because this function returns a pointer, virtual
function calls via operator-> will behave the way they’re supposed to.
From the Library of Yuri Khan

ptg

168 Item 28
For many applications, this is all you need to know about smart point-
ers. The reference-counting code of Item 29, for example, draws on no
more functionality than we’ve discussed here. If you want to push your
smart pointers further, however, you must know more about dumb
pointer behavior and how smart pointers can and cannot emulate it. If
your motto is “Most people stop at the Z — but not me!”, the material
that follows is for you.

Testing Smart Pointers for Nullness

With the functions we have discussed so far, we can create, destroy,
copy, assign, and dereference smart pointers. One of the things we
cannot do, however, is find out if a smart pointer is null:

SmartPtr<TreeNode> ptn;

...

if (ptn == 0) ... // error!

if (ptn) ... // error!

if (!ptn) ... // error!

This is a serious limitation.

It would be easy to add an isNull member function to our smart
pointer classes, but that wouldn’t address the problem that smart
pointers don’t act like dumb pointers when testing for nullness. A dif-
ferent approach is to provide an implicit conversion operator that al-
lows the tests above to compile. The conversion traditionally employed
for this purpose is to void*:

template<class T>
class SmartPtr {
public:
...
operator void*(); // returns 0 if the smart
... // ptr is null, nonzero

}; // otherwise

SmartPtr<TreeNode> ptn;

...

if (ptn == 0) ... // now fine

if (ptn) ... // also fine

if (!ptn) ... // fine

This is similar to a conversion provided by the iostream classes, and it
explains why it’s possible to write code like this:

ifstream inputFile("datafile.dat");
From the Library of Yuri Khan

ptg

Smart Pointers 169
if (inputFile) ... // test to see if inputFile
// was successfully
// opened

Like all type conversion functions, this one has the drawback of letting
function calls succeed that most programmers would expect to fail (see
Item 5). In particular, it allows comparisons of smart pointers of com-
pletely different types:

SmartPtr<Apple> pa;
SmartPtr<Orange> po;

...

if (pa == po) ... // this compiles!

Even if there is no operator== taking a SmartPtr<Apple> and a
SmartPtr<Orange>, this compiles, because both smart pointers can
be implicitly converted into void* pointers, and there is a built-in
comparison function for built-in pointers. This kind of behavior makes
implicit conversion functions dangerous. (Again, see Item 5, and keep
seeing it over and over until you can see it in the dark.)

There are variations on the conversion-to-void* motif. Some designers
advocate conversion to const void*, others embrace conversion to
bool. Neither of these variations eliminates the problem of allowing
mixed-type comparisons.

There is a middle ground that allows you to offer a reasonable syntac-
tic form for testing for nullness while minimizing the chances of acci-
dentally comparing smart pointers of different types. It is to overload
operator! for your smart pointer classes so that operator! returns
true if and only if the smart pointer on which it’s invoked is null:

template<class T>
class SmartPtr {
public:
...
bool operator!() const; // returns true if and only
... // if the smart ptr is null

};

This lets your clients program like this,
From the Library of Yuri Khan

ptg

170 Item 28
SmartPtr<TreeNode> ptn;

...

if (!ptn) { // fine
... // ptn is null

}
else {
... // ptn is not null

}

but not like this:

if (ptn == 0) ... // still an error

if (ptn) ... // also an error

The only risk for mixed-type comparisons is statements such as these:

SmartPtr<Apple> pa;
SmartPtr<Orange> po;

...

if (!pa == !po) ... // alas, this compiles

Fortunately, programmers don’t write code like this very often. Inter-
estingly, iostream library implementations provide an operator! in
addition to the implicit conversion to void*, but these two functions
typically test for slightly different stream states. (In the C++ library
standard (see Item 35), the implicit conversion to void* has been re-
placed by an implicit conversion to bool, and operator bool always
returns the negation of operator!.)

Converting Smart Pointers to Dumb Pointers

Sometimes you’d like to add smart pointers to an application or library
that already uses dumb pointers. For example, your distributed data-
base system may not originally have been distributed, so you may have
some old library functions that aren’t designed to use smart pointers:

class Tuple { ... }; // as before

void normalize(Tuple *pt); // put *pt into canonical
// form; note use of dumb
// pointer

Consider what will happen if you try to call normalize with a smart
pointer-to-Tuple:

DBPtr<Tuple> pt;

...

normalize(pt); // error!
From the Library of Yuri Khan

ptg

Smart Pointers 171
The call will fail to compile, because there is no way to convert a
DBPtr<Tuple> to a Tuple*. You can make it work by doing this,

normalize(&*pt); // gross, but legal

but I hope you’ll agree this is repugnant.

The call can be made to succeed by adding to the smart pointer-to-T
template an implicit conversion operator to a dumb pointer-to-T:

template<class T> // as before
class DBPtr {
public:
...
operator T*() { return pointee; }
...

};

DBPtr<Tuple> pt;

...

normalize(pt); // this now works

Addition of this function also eliminates the problem of testing for
nullness:

if (pt == 0) ... // fine, converts pt to a
// Tuple*

if (pt) ... // ditto

if (!pt) ... // ditto (reprise)

However, there is a dark side to such conversion functions. (There al-
most always is. Have you been seeing Item 5?) They make it easy for
clients to program directly with dumb pointers, thus bypassing the
smarts your pointer-like objects are designed to provide:

void processTuple(DBPtr<Tuple>& pt)
{
Tuple *rawTuplePtr = pt; // converts DBPtr<Tuple> to

// Tuple*

use rawTuplePtr to modify the tuple;

}

Usually, the “smart” behavior provided by a smart pointer is an essen-
tial component of your design, so allowing clients to use dumb pointers
typically leads to disaster. For example, if DBPtr implements the refer-
ence-counting strategy of Item 29, allowing clients to manipulate
dumb pointers directly will almost certainly lead to bookkeeping errors
that corrupt the reference-counting data structures.
From the Library of Yuri Khan

ptg

172 Item 28
Even if you provide an implicit conversion operator to go from a smart
pointer to the dumb pointer it’s built on, your smart pointer will never
be truly interchangeable with the dumb pointer. That’s because the
conversion from a smart pointer to a dumb pointer is a user-defined
conversion, and compilers are forbidden from applying more than one
such conversion at a time. For example, suppose you have a class rep-
resenting all the clients who have accessed a particular tuple:

class TupleAccessors {
public:
TupleAccessors(const Tuple *pt); // pt identifies the
... // tuple whose accessors

}; // we care about

As usual, TupleAccessors’ single-argument constructor also acts as
a type-conversion operator from Tuple* to TupleAccessors (see Item
5). Now consider a function for merging the information in two Tuple-
Accessors objects:

TupleAccessors merge(const TupleAccessors& ta1,
const TupleAccessors& ta2);

Because a Tuple* may be implicitly converted to a TupleAccessors,
calling merge with two dumb Tuple* pointers is fine:

Tuple *pt1, *pt2;

...

merge(pt1, pt2); // fine, both pointers are converted
// to TupleAccessors objects

The corresponding call with smart DBPtr<Tuple> pointers, however,
fails to compile:

DBPtr<Tuple> pt1, pt2;

...

merge(pt1, pt2); // error! No way to convert pt1 and
// pt2 to TupleAccessors objects

That’s because a conversion from DBPtr<Tuple> to TupleAccessors
calls for two user-defined conversions (one from DBPtr<Tuple> to Tu-
ple* and one from Tuple* to TupleAccessors), and such sequences
of conversions are prohibited by the language.

Smart pointer classes that provide an implicit conversion to a dumb
pointer open the door to a particularly nasty bug. Consider this code:

DBPtr<Tuple> pt = new Tuple;

...

delete pt;
From the Library of Yuri Khan

ptg

Smart Pointers 173
This should not compile. After all, pt is not a pointer, it’s an object,
and you can’t delete an object. Only pointers can be deleted, right?

Right. But remember from Item 5 that compilers use implicit type con-
versions to make function calls succeed whenever they can, and recall
from Item 8 that use of the delete operator leads to calls to a destruc-
tor and to operator delete, both of which are functions. Compilers
want these function calls to succeed, so in the delete statement
above, they implicitly convert pt to a Tuple*, then they delete that.
This will almost certainly break your program.

If pt owns the object it points to, that object is now deleted twice, once
at the point where delete is called, a second time when pt’s destruc-
tor is invoked. If pt doesn’t own the object, somebody else does. That
somebody may be the person who deleted pt, in which case all is well.
If, however, the owner of the object pointed to by pt is not the person
who deleted pt, we can expect the rightful owner to delete that object
again later. The first and last of these scenarios leads to an object
being deleted twice, and deleting an object more than once yields un-
defined behavior.

This bug is especially pernicious because the whole idea behind smart
pointers is to make them look and feel as much like dumb pointers as
possible. The closer you get to this ideal, the more likely your clients
are to forget they are using smart pointers. If they do, who can blame
them if they continue to think that in order to avoid resource leaks,
they must call delete if they called new?

The bottom line is simple: don’t provide implicit conversion operators
to dumb pointers unless there is a compelling reason to do so.

Smart Pointers and Inheritance-Based Type Conversions

Suppose we have a public inheritance hierarchy modeling consumer
products for storing music:

class MusicProduct {
public:
MusicProduct(const string& title);
virtual void play() const = 0;
virtual void displayTitle() const = 0;
...

};

MusicProduct

CDCassette
From the Library of Yuri Khan

ptg

174 Item 28
class Cassette: public MusicProduct {
public:
Cassette(const string& title);
virtual void play() const;
virtual void displayTitle() const;
...

};

class CD: public MusicProduct {
public:
CD(const string& title);
virtual void play() const;
virtual void displayTitle() const;
...

};

Further suppose we have a function that, given a MusicProduct ob-
ject, displays the title of the product and then plays it:

void displayAndPlay(const MusicProduct* pmp, int numTimes)
{
for (int i = 1; i <= numTimes; ++i) {
pmp->displayTitle();
pmp->play();

}
}

Such a function might be used like this:

Cassette *funMusic = new Cassette("Alapalooza");
CD *nightmareMusic = new CD("Disco Hits of the 70s");

displayAndPlay(funMusic, 10);
displayAndPlay(nightmareMusic, 0);

There are no surprises here, but look what happens if we replace the
dumb pointers with their allegedly smart counterparts:

void displayAndPlay(const SmartPtr<MusicProduct>& pmp,
int numTimes);

SmartPtr<Cassette> funMusic(new Cassette("Alapalooza"));
SmartPtr<CD> nightmareMusic(new CD("Disco Hits of the 70s"));

displayAndPlay(funMusic, 10); // error!
displayAndPlay(nightmareMusic, 0); // error!

If smart pointers are so brainy, why won’t these compile?

They won’t compile because there is no conversion from a SmartPtr<CD>
or a SmartPtr<Cassette> to a SmartPtr<MusicProduct>. As far as
compilers are concerned, these are three separate classes — they have
no relationship to one another. Why should compilers think otherwise?
After all, it’s not like SmartPtr<CD> or SmartPtr<Cassette> inherits
from SmartPtr<MusicProduct>. With no inheritance relationship be-
From the Library of Yuri Khan

ptg

Smart Pointers 175
tween these classes, we can hardly expect compilers to run around
converting objects of one type to objects of other types.

Fortunately, there is a way to get around this limitation, and the idea
(if not the practice) is simple: give each smart pointer class an implicit
type conversion operator (see Item 5) for each smart pointer class to
which it should be implicitly convertible. For example, in the music hi-
erarchy, you’d add an operator SmartPtr<MusicProduct> to the
smart pointer classes for Cassette and CD:

class SmartPtr<Cassette> {
public:
operator SmartPtr<MusicProduct>()
{ return SmartPtr<MusicProduct>(pointee); }

...

private:
Cassette *pointee;

};

class SmartPtr<CD> {
public:
operator SmartPtr<MusicProduct>()
{ return SmartPtr<MusicProduct>(pointee); }

...

private:
CD *pointee;

};

The drawbacks to this approach are twofold. First, you must manually
specialize the SmartPtr class instantiations so you can add the neces-
sary implicit type conversion operators, but that pretty much defeats
the purpose of templates. Second, you may have to add many such
conversion operators, because your pointed-to object may be deep in
an inheritance hierarchy, and you must provide a conversion operator
for each base class from which that object directly or indirectly inher-
its. (If you think you can get around this by providing only an implicit
type conversion operator for each direct base class, think again. Be-
cause compilers are prohibited from employing more than one user-
defined type conversion function at a time, they can’t convert a smart
pointer-to-T to a smart pointer-to-indirect-base-class-of-T unless they
can do it in a single step.)

It would be quite the time-saver if you could somehow get compilers to
write all these implicit type conversion functions for you. Thanks to a
recent language extension, you can. The extension in question is the
ability to declare (nonvirtual) member function templates (usually just
From the Library of Yuri Khan

ptg

176 Item 28
called member templates), and you use it to generate smart pointer
conversion functions like this:

template<class T> // template class for smart
class SmartPtr { // pointers-to-T objects
public:
SmartPtr(T* realPtr = 0);

T* operator->() const;
T& operator*() const;

template<class newType> // template function for
operator SmartPtr<newType>() // implicit conversion ops.
{
return SmartPtr<newType>(pointee);

}

...
};

Now hold on to your headlights, this isn’t magic — but it’s close. It
works as follows. (I’ll give a specific example in a moment, so don’t de-
spair if the remainder of this paragraph reads like so much gobbledy-
gook. After you’ve seen the example, it’ll make more sense, I promise.)
Suppose a compiler has a smart pointer-to-T object, and it’s faced with
the need to convert that object into a smart pointer-to-base-class-of-T.
The compiler checks the class definition for SmartPtr<T> to see if the
requisite conversion operator is declared, but it is not. (It can’t be: no
conversion operators are declared in the template above.) The compiler
then checks to see if there’s a member function template it can instan-
tiate that would let it perform the conversion it’s looking for. It finds
such a template (the one taking the formal type parameter newType),
so it instantiates the template with newType bound to the base class of
T that’s the target of the conversion. At that point, the only question is
whether the code for the instantiated member function will compile. In
order for it to compile, it must be legal to pass the (dumb) pointer
pointee to the constructor for the smart pointer-to-base-of-T. poin-
tee is of type T, so it is certainly legal to convert it into a pointer to its
(public or protected) base classes. Hence, the code for the type conver-
sion operator will compile, and the implicit conversion from smart
pointer-to-T to smart pointer-to-base-of-T will succeed.

An example will help. Let us return to the music hierarchy of CDs, cas-
settes, and music products. We saw earlier that the following code
wouldn’t compile, because there was no way for compilers to convert
the smart pointers to CDs or cassettes into smart pointers to music
products:
From the Library of Yuri Khan

ptg

Smart Pointers 177
void displayAndPlay(const SmartPtr<MusicProduct>& pmp,
int howMany);

SmartPtr<Cassette> funMusic(new Cassette("Alapalooza"));
SmartPtr<CD> nightmareMusic(new CD("Disco Hits of the 70s"));

displayAndPlay(funMusic, 10); // used to be an error
displayAndPlay(nightmareMusic, 0); // used to be an error

With the revised smart pointer class containing the member function
template for implicit type conversion operators, this code will succeed.
To see why, look at this call:

displayAndPlay(funMusic, 10);

The object funMusic is of type SmartPtr<Cassette>. The function
displayAndPlay expects a SmartPtr<MusicProduct> object. Com-
pilers detect the type mismatch and seek a way to convert funMusic
into a SmartPtr<MusicProduct> object. They look for a single-argu-
ment constructor (see Item 5) in the SmartPtr<MusicProduct> class
that takes a SmartPtr<Cassette>, but they find none. They look for
an implicit type conversion operator in the SmartPtr<Cassette> class
that yields a SmartPtr<MusicProduct> class, but that search also
fails. They then look for a member function template they can instan-
tiate to yield one of these functions. They discover that the template in-
side SmartPtr<Cassette>, when instantiated with newType bound to
MusicProduct, generates the necessary function. They instantiate the
function, yielding the following code:

SmartPtr<Cassette>::operator SmartPtr<MusicProduct>()
{
return SmartPtr<MusicProduct>(pointee);

}

Will this compile? For all intents and purposes, nothing is happening
here except the calling of the SmartPtr<MusicProduct> constructor
with pointee as its argument, so the real question is whether one can
construct a SmartPtr<MusicProduct> object with a Cassette*
pointer. The SmartPtr<MusicProduct> constructor expects a Mu-
sicProduct* pointer, but now we’re on the familiar ground of conver-
sions between dumb pointer types, and it’s clear that Cassette* can
be passed in where a MusicProduct* is expected. The construction of
the SmartPtr<MusicProduct> is therefore successful, and the con-
version of the SmartPtr<Cassette> to SmartPtr<MusicProduct> is
equally successful. Voilà! Implicit conversion of smart pointer types.
What could be simpler?

Furthermore, what could be more powerful? Don’t be misled by this
example into assuming that this works only for pointer conversions up
an inheritance hierarchy. The method shown succeeds for any legal
From the Library of Yuri Khan

ptg

178 Item 28
implicit conversion between pointer types. If you’ve got a dumb pointer
type T1* and another dumb pointer type T2*, you can implicitly con-
vert a smart pointer-to-T1 to a smart pointer-to-T2 if and only if you
can implicitly convert a T1* to a T2*.

This technique gives you exactly the behavior you want — almost. Sup-
pose we augment our MusicProduct hierarchy with a new class,
CasSingle, for representing cassette singles. The revised hierarchy
looks like this:

Now consider this code:

template<class T> // as above, including member tem-
class SmartPtr { ... }; // plate for conversion operators

void displayAndPlay(const SmartPtr<MusicProduct>& pmp,
int howMany);

void displayAndPlay(const SmartPtr<Cassette>& pc,
int howMany);

SmartPtr<CasSingle> dumbMusic(new CasSingle("Achy Breaky Heart"));

displayAndPlay(dumbMusic, 1); // error!

In this example, displayAndPlay is overloaded, with one function
taking a SmartPtr<MusicProduct> object and the other taking a
SmartPtr<Cassette> object. When we invoke displayAndPlay with
a SmartPtr<CasSingle>, we expect the SmartPtr<Cassette> func-
tion to be chosen, because CasSingle inherits directly from Cassette
and only indirectly from MusicProduct. Certainly that’s how it would
work with dumb pointers. Alas, our smart pointers aren’t that smart.
They employ member functions as conversion operators, and as far as
C++ compilers are concerned, all calls to conversion functions are
equally good. As a result, the call to displayAndPlay is ambiguous,
because the convers ion f rom SmartPtr<CasSingle> to

MusicProduct

CasSingle

CDCassette
From the Library of Yuri Khan

ptg

Smart Pointers 179
SmartPtr<Cassette> is no better than the conversion to
SmartPtr<MusicProduct>.

Implementing smart pointer conversions through member templates
has two additional drawbacks. First, support for member templates is
rare, so this technique is currently anything but portable. In the fu-
ture, that will change, but nobody knows just how far in the future
that will be. Second, the mechanics of why this works are far from
transparent, relying as they do on a detailed understanding of argu-
ment-matching rules for function calls, implicit type conversion func-
tions, implicit instantiation of template functions, and the existence of
member function templates. Pity the poor programmer who has never
seen this trick before and is then asked to maintain or enhance code
that relies on it. The technique is clever, that’s for sure, but too much
cleverness can be a dangerous thing.

Let’s stop beating around the bush. What we really want to know is
how we can make smart pointer classes behave just like dumb point-
ers for purposes of inheritance-based type conversions. The answer is
simple: we can’t. As Daniel Edelson has noted, smart pointers are
smart, but they’re not pointers. The best we can do is to use member
templates to generate conversion functions, then use casts (see Item 2)
in those cases where ambiguity results. This isn’t a perfect state of af-
fairs, but it’s pretty good, and having to cast away ambiguity in a few
cases is a small price to pay for the sophisticated functionality smart
pointers can provide.

Smart Pointers and const

Recall that for dumb pointers, const can refer to the thing pointed to,
to the pointer itself, or both:

CD goodCD("Flood");

const CD *p; // p is a non-const pointer
// to a const CD object

CD * const p = &goodCD; // p is a const pointer to
// a non-const CD object;
// because p is const, it
// must be initialized

const CD * const p = &goodCD; // p is a const pointer to
// a const CD object

Naturally, we’d like to have the same flexibility with smart pointers.
Unfortunately, there’s only one place to put the const, and there it ap-
plies to the pointer, not to the object pointed to:

const SmartPtr<CD> p = // p is a const smart ptr
&goodCD; // to a non-const CD object
From the Library of Yuri Khan

ptg

180 Item 28
This seems simple enough to remedy — just create a smart pointer to
a const CD:

SmartPtr<const CD> p = // p is a non-const smart ptr
&goodCD; // to a const CD object

Now we can create the four combinations of const and non-const ob-
jects and pointers we seek:

SmartPtr<CD> p; // non-const object,
// non-const pointer

SmartPtr<const CD> p; // const object,
// non-const pointer

const SmartPtr<CD> p = &goodCD; // non-const object,
// const pointer

const SmartPtr<const CD> p = &goodCD; // const object,
// const pointer

Alas, this ointment has a fly in it. Using dumb pointers, we can initial-
ize const pointers with non-const pointers and we can initialize
pointers to const objects with pointers to non-consts; the rules for
assignments are analogous. For example:

CD *pCD = new CD("Famous Movie Themes");

const CD * pConstCD = pCD; // fine

But look what happens if we try the same thing with smart pointers:

SmartPtr<CD> pCD = new CD("Famous Movie Themes");

SmartPtr<const CD> pConstCD = pCD; // fine?

SmartPtr<CD> and SmartPtr<const CD> are completely different
types. As far as your compilers know, they are unrelated, so they have
no reason to believe they are assignment-compatible. In what must be
an old story by now, the only way these two types will be considered
assignment-compatible is if you’ve provided a function to convert ob-
jects of type SmartPtr<CD> to objects of type SmartPtr<const CD>. If
you’ve got a compiler that supports member templates, you can use
the technique shown above for automatically generating the implicit
type conversion operators you need. (I remarked earlier that the tech-
nique worked anytime the corresponding conversion for dumb pointers
would work, and I wasn’t kidding. Conversions involving const are no
exception.) If you don’t have such a compiler, you have to jump
through one more hoop.

Conversions involving const are a one-way street: it’s safe to go from
non-const to const, but it’s not safe to go from const to non-const.
Furthermore, anything you can do with a const pointer you can do
with a non-const pointer, but with non-const pointers you can do
From the Library of Yuri Khan

ptg

Smart Pointers 181
other things, too (for example, assignment). Similarly, anything you
can do with a pointer-to-const is legal for a pointer-to-non-const, but
you can do some things (such as assignment) with pointers-to-non-
consts that you can’t do with pointers-to-consts.

These rules sound like the rules for public inheritance. You can con-
vert from a derived class object to a base class object, but not vice
versa, and you can do anything to a derived class object you can do to
a base class object, but you can typically do additional things to a de-
rived class object, as well. We can take advantage of this similarity
when implementing smart pointers by having each smart pointer-to-T
class publicly inherit from a corresponding smart pointer-to-const-T
class:

template<class T> // smart pointers to const
class SmartPtrToConst { // objects

... // the usual smart pointer
// member functions

protected:
union {
const T* constPointee; // for SmartPtrToConst access
T* pointee; // for SmartPtr access

};
};

template<class T> // smart pointers to
class SmartPtr: // non-const objects
public SmartPtrToConst<T> {
... // no data members

};

With this design, the smart pointer-to-non-const-T object needs to
contain a dumb pointer-to-non-const-T, and the smart pointer-to-
const-T needs to contain a dumb pointer-to-const-T. The naive way
to handle this would be to put a dumb pointer-to-const-T in the base

Smart

Smart

pointer-to-const-T

pointer-to-non-const-T
From the Library of Yuri Khan

ptg

182 Item 28
class and a dumb pointer-to-non-const-T in the derived class. That
would be wasteful, however, because SmartPtr objects would contain
two dumb pointers: the one they inherited from SmartPtrToConst and
the one in SmartPtr itself.

This problem is resolved by employing that old battle axe of the C
world, a union, which can be as useful in C++ as it is in C. The union
is protected, so both classes have access to it, and it contains both of
the necessary dumb pointer types. SmartPtrToConst<T> objects use
the constPointee pointer, SmartPtr<T> objects use the pointee
pointer. We therefore get the advantages of two different pointers with-
out having to allocate space for more than one. Such is the beauty of a
union. Of course, the member functions of the two classes must con-
strain themselves to using only the appropriate pointer, and you’ll get
no help from compilers in enforcing that constraint. Such is the risk of
a union.

With this new design, we get the behavior we want:

SmartPtr<CD> pCD = new CD("Famous Movie Themes");

SmartPtrToConst<CD> pConstCD = pCD; // fine

Evaluation

That wraps up the subject of smart pointers, but before we leave the
topic, we should ask this question: are they worth the trouble, espe-
cially if your compilers lack support for member function templates?

Often they are. The reference-counting code of Item 29, for example, is
greatly simplified by using smart pointers. Furthermore, as that exam-
ple demonstrates, some uses of smart pointers are sufficiently limited
in scope that things like testing for nullness, conversion to dumb
pointers, inheritance-based conversions, and support for pointers-to-
consts are irrelevant. At the same time, smart pointers can be tricky
to implement, understand, and maintain. Debugging code using smart
pointers is more difficult than debugging code using dumb pointers.
Try as you may, you will never succeed in designing a general-purpose
smart pointer that can seamlessly replace its dumb pointer counter-
part.

Smart pointers nevertheless make it possible to achieve effects in your
code that would otherwise be difficult to implement. Smart pointers
should be used judiciously, but every C++ programmer will find them
useful at one time or another.
From the Library of Yuri Khan

ptg

Reference Counting 183
Item 29: Reference counting.
Reference CountingReference counting is a technique that allows multiple objects with the
same value to share a single representation of that value. There are
two common motivations for the technique. The first is to simplify the
bookkeeping surrounding heap objects. Once an object is allocated by
calling new, it’s crucial to keep track of who owns that object, because
the owner — and only the owner — is responsible for calling delete on
it. But ownership can be transferred from object to object as a program
runs (by passing pointers as parameters, for example), so keeping
track of an object’s ownership is hard work. Classes like auto_ptr (see
Item 9) can help with this task, but experience has shown that most
programs still fail to get it right. Reference counting eliminates the
burden of tracking object ownership, because when an object employs
reference counting, it owns itself. When nobody is using it any longer,
it destroys itself automatically. Thus, reference counting constitutes a
simple form of garbage collection.

The second motivation for reference counting is simple common sense.
If many objects have the same value, it’s silly to store that value more
than once. Instead, it’s better to let all the objects with that value share
its representation. Doing so not only saves memory, it also leads to
faster-running programs, because there’s no need to construct and de-
struct redundant copies of the same object value.

Like most simple ideas, this one hovers above a sea of interesting de-
tails. God may or may not be in the details, but successful implemen-
tations of reference counting certainly are. Before delving into details,
however, let us master basics. A good way to begin is by seeing how we
might come to have many objects with the same value in the first
place. Here’s one way:

class String { // the standard string type may
public: // employ the techniques in this

// Item, but that is not required

String(const char *value = "");
String& operator=(const String& rhs);
...

private:
char *data;

};

String a, b, c, d, e;

a = b = c = d = e = "Hello";

It should be apparent that objects a through e all have the same value,
namely “Hello”. How that value is represented depends on how the
From the Library of Yuri Khan

ptg

184 Item 29
String class is implemented, but a common implementation would
have each String object carry its own copy of the value. For example,
String’s assignment operator might be implemented like this:

String& String::operator=(const String& rhs)
{
if (this == &rhs) return *this;

delete [] data;
data = new char[strlen(rhs.data) + 1];
strcpy(data, rhs.data);

return *this;
}

Given this implementation, we can envision the five objects and their
values as follows:

The redundancy in this approach is clear. In an ideal world, we’d like
to change the picture to look like this:

Here only one copy of the value “Hello” is stored, and all the String
objects with that value share its representation.

In practice, it isn’t possible to achieve this ideal, because we need to
keep track of how many objects are sharing a value. If object a above
is assigned a different value from “Hello”, we can’t destroy the value
“Hello”, because four other objects still need it. On the other hand, if
only a single object had the value “Hello” and that object went out of
scope, no object would have that value and we’d have to destroy the
value to avoid a resource leak.

Helloa

Hellob

Helloc

Hellod

Helloe

a

b

Helloc

d

e

From the Library of Yuri Khan

ptg

Reference Counting 185
The need to store information on the number of objects currently shar-
ing — referring to — a value means our ideal picture must be modified
somewhat to take into account the existence of a reference count:

(Some people call this number a use count, but I am not one of them.
C++ has enough idiosyncrasies of its own; the last thing it needs is ter-
minological factionalism.)

Implementing Reference Counting

Creating a reference-counted String class isn’t difficult, but it does
require attention to detail, so we’ll walk through the implementation of
the most common member functions of such a class. Before we do
that, however, it’s important to recognize that we need a place to store
the reference count for each String value. That place cannot be in a
String object, because we need one reference count per string value,
not one reference count per string object. That implies a coupling be-
tween values and reference counts, so we’ll create a class to store ref-
erence counts and the values they track. We’ll call this class
StringValue, and because its only raison d’être is to help implement
the String class, we’ll nest it inside String’s private section. Further-
more, it will be convenient to give all the member functions of String
full access to the StringValue data structure, so we’ll declare
StringValue to be a struct. This is a trick worth knowing: nesting a
struct in the private part of a class is a convenient way to give access
to the struct to all the members of the class, but to deny access to ev-
erybody else (except, of course, friends of the class).

Our basic design looks like this:

5

a

b

Helloc

d

e

From the Library of Yuri Khan

ptg

186 Item 29
class String {
public:
... // the usual String member

// functions go here

private:
struct StringValue { ... }; // holds a reference count

// and a string value

StringValue *value; // value of this String
};

We could give this class a different name (RCString, perhaps) to em-
phasize that it’s implemented using reference counting, but the imple-
mentation of a class shouldn’t be of concern to clients of that class.
Rather, clients should interest themselves only in a class’s public in-
terface. Our reference-counting implementation of the String inter-
face supports exactly the same operations as a non-reference-counted
version, so why muddy the conceptual waters by embedding imple-
mentation decisions in the names of classes that correspond to ab-
stract concepts? Why indeed? So we don’t.

Here’s StringValue:

class String {
private:
struct StringValue {
size_t refCount;
char *data;

StringValue(const char *initValue);
~StringValue();

};

...

};

String::StringValue::StringValue(const char *initValue)
: refCount(1)
{
data = new char[strlen(initValue) + 1];
strcpy(data, initValue);

}

String::StringValue::~StringValue()
{
delete [] data;

}

That’s all there is to it, and it should be clear that’s nowhere near
enough to implement the full functionality of a reference-counted
string. For one thing, there’s neither a copy constructor nor an assign-
From the Library of Yuri Khan

ptg

Reference Counting 187
ment operator, and for another, there’s no manipulation of the ref-
Count field. Worry not — the missing functionality will be provided by
the String class. The primary purpose of StringValue is to give us a
place to associate a particular value with a count of the number of
String objects sharing that value. StringValue gives us that, and
that’s enough.

We’re now ready to walk our way through String’s member functions.
We’ll begin with the constructors:

class String {
public:
String(const char *initValue = "");
String(const String& rhs);

...

};

The first constructor is implemented about as simply as possible. We
use the passed-in char* string to create a new StringValue object,
then we make the String object we’re constructing point to the newly-
minted StringValue:

String::String(const char *initValue)
: value(new StringValue(initValue))
{}

For client code that looks like this,

String s("More Effective C++");

we end up with a data structure that looks like this:

String objects constructed separately, but with the same initial value
do not share a data structure, so client code of this form,

String s1("More Effective C++");
String s2("More Effective C++");

yields this data structure:

It is possible to eliminate such duplication by having String (or
StringValue) keep track of existing StringValue objects and create
new ones only for truly unique strings, but such refinements on refer-

More Effective C++s 1

More Effective C++s1 1

More Effective C++s2 1
From the Library of Yuri Khan

ptg

188 Item 29
ence counting are somewhat off the beaten path. As a result, I’ll leave
them in the form of the feared and hated exercise for the reader.

The String copy constructor is not only unfeared and unhated, it’s
also efficient: the newly created String object shares the same
StringValue object as the String object that’s being copied:

String::String(const String& rhs)
: value(rhs.value)
{
++value->refCount;

}

Graphically, code like this,

String s1("More Effective C++");
String s2 = s1;

results in this data structure:

This is substantially more efficient than a conventional (non-reference-
counted) String class, because there is no need to allocate memory
for the second copy of the string value, no need to deallocate that mem-
ory later, and no need to copy the value that would go in that memory.
Instead, we merely copy a pointer and increment a reference count.

The String destructor is also easy to implement, because most of the
time it doesn’t do anything. As long as the reference count for a
StringValue is non-zero, at least one String object is using the
value; it must therefore not be destroyed. Only when the String being
destructed is the sole user of the value — i.e., when the value’s refer-
ence count is 1 — should the String destructor destroy the
StringValue object:

class String {
public:
~String();
...

};

String::~String()
{
if (--value->refCount == 0) delete value;

}

More Effective C++
s1

2
s2
From the Library of Yuri Khan

ptg

Reference Counting 189
Compare the efficiency of this function with that of the destructor for
a non-reference-counted implementation. Such a function would al-
ways call delete and would almost certainly have a nontrivial runtime
cost. Provided that different String objects do in fact sometimes have
the same values, the implementation above will sometimes do nothing
more than decrement a counter and compare it to zero.

If, at this point, the appeal of reference counting is not becoming ap-
parent, you’re just not paying attention.

That’s all there is to String construction and destruction, so we’ll
move on to consideration of the String assignment operator:

class String {
public:
String& operator=(const String& rhs);
...

};

When a client writes code like this,

s1 = s2; // s1 and s2 are both String objects

the result of the assignment should be that s1 and s2 both point to the
same StringValue object. That object’s reference count should there-
fore be incremented during the assignment. Furthermore, the
StringValue object that s1 pointed to prior to the assignment should
have its reference count decremented, because s1 will no longer have
that value. If s1 was the only String with that value, the value should
be destroyed. In C++, all that looks like this:

String& String::operator=(const String& rhs)
{
if (value == rhs.value) { // do nothing if the values
return *this; // are already the same; this

} // subsumes the usual test of
// this against &rhs

if (--value->refCount == 0) { // destroy *this’s value if
delete value; // no one else is using it

}

value = rhs.value; // have *this share rhs’s
++value->refCount; // value

return *this;
}

From the Library of Yuri Khan

ptg

190 Item 29
Copy-on-Write

To round out our examination of reference-counted strings, consider
an array-bracket operator ([]), which allows individual characters
within strings to be read and written:

class String {
public:
const char&
operator[](int index) const; // for const Strings

char& operator[](int index); // for non-const Strings

...

};

Implementation of the const version of this function is straightfor-
ward, because it’s a read-only operation; the value of the string can’t
be affected:

const char& String::operator[](int index) const
{
return value->data[index];

}

(This function performs sanity checking on index in the grand C++
tradition, which is to say not at all. As usual, if you’d like a greater de-
gree of parameter validation, it’s easy to add.)

The non-const version of operator[] is a completely different story.
This function may be called to read a character, but it might be called
to write one, too:

String s;

...

cout << s[3]; // this is a read
s[5] = ’x’; // this is a write

We’d like to deal with reads and writes differently. A simple read can be
dealt with in the same way as the const version of operator[] above,
but a write must be implemented in quite a different fashion.

When we modify a String’s value, we have to be careful to avoid mod-
ifying the value of other String objects that happen to be sharing the
same StringValue object. Unfortunately, there is no way for C++
compilers to tell us whether a particular use of operator[] is for a
read or a write, so we must be pessimistic and assume that all calls to
the non-const operator[] are for writes. (Proxy classes can help us
differentiate reads from writes — see Item 30.)

To implement the non-const operator[] safely, we must ensure that
no other String object shares the StringValue to be modified by the
From the Library of Yuri Khan

ptg

Reference Counting 191
presumed write. In short, we must ensure that the reference count for
a String’s StringValue object is exactly one any time we return a ref-
erence to a character inside that StringValue object. Here’s how we
do it:

char& String::operator[](int index)
{
// if we’re sharing a value with other String objects,
// break off a separate copy of the value for ourselves
if (value->refCount > 1) {
--value->refCount; // decrement current value’s

// refCount, because we won’t
// be using that value any more

value = // make a copy of the
new StringValue(value->data); // value for ourselves

}

// return a reference to a character inside our
// unshared StringValue object
return value->data[index];

}

This idea — that of sharing a value with other objects until we have to
write on our own copy of the value — has a long and distinguished his-
tory in Computer Science, especially in operating systems, where pro-
cesses are routinely allowed to share pages until they want to modify
data on their own copy of a page. The technique is common enough to
have a name: copy-on-write. It’s a specific example of a more general
approach to efficiency, that of lazy evaluation (see Item 17).

Pointers, References, and Copy-on-Write

This implementation of copy-on-write allows us to preserve both effi-
ciency and correctness — almost. There is one lingering problem. Con-
sider this code:

String s1 = "Hello";

char *p = &s1[1];

Our data structure at this point looks like this:

Now consider an additional statement:

String s2 = s1;

Hellos1 1

p

From the Library of Yuri Khan

ptg

192 Item 29
The String copy constructor will make s2 share s1’s StringValue, so
the resulting data structure will be this one:

The implications of a statement such as the following, then, are not
pleasant to contemplate:

*p = ’x’; // modifies both s1 and s2!

There is no way the String copy constructor can detect this problem,
because it has no way to know that a pointer into s1’s StringValue
object exists. And this problem isn’t limited to pointers: it would exist
if someone had saved a reference to the result of a call to String’s non-
const operator[].

There are at least three ways of dealing with this problem. The first is
to ignore it, to pretend it doesn’t exist. This approach turns out to be
distressingly common in class libraries that implement reference-
counted strings. If you have access to a reference-counted string, try
the above example and see if you’re distressed, too. If you’re not sure if
you have access to a reference-counted string, try the example any-
way. Through the wonder of encapsulation, you may be using such a
type without knowing it.

Not all implementations ignore such problems. A slightly more sophis-
ticated way of dealing with such difficulties is to define them out of ex-
istence. Implementations adopting this strategy typically put
something in their documentation that says, more or less, “Don’t do
that. If you do, results are undefined.” If you then do it anyway — wit-
tingly or no — and complain about the results, they respond, “Well, we
told you not to do that.” Such implementations are often efficient, but
they leave much to be desired in the usability department.

There is a third solution, and that’s to eliminate the problem. It’s not
difficult to implement, but it can reduce the amount of value sharing
between objects. Its essence is this: add a flag to each StringValue
object indicating whether that object is shareable. Turn the flag on ini-
tially (the object is shareable), but turn it off whenever the non-const
operator[] is invoked on the value represented by that object. Once
the flag is set to false, it stays that way forever.†

† The string type in the standard C++ library (see Item 35) uses a combination of so-
lutions two and three. The reference returned from the non-const operator[] is
guaranteed to be valid until the next function call that might modify the string. After
that, use of the reference (or the character to which it refers) yields undefined results.
This allows the string’s shareability flag to be reset to true whenever a function is
called that might modify the string.

s1

2
s2

Hello

p

From the Library of Yuri Khan

ptg

Reference Counting 193
Here’s a modified version of StringValue that includes a shareability
flag:

class String {
private:
struct StringValue {
size_t refCount;
bool shareable; // add this
char *data;

StringValue(const char *initValue);
~StringValue();

};

...

};

String::StringValue::StringValue(const char *initValue)
: refCount(1),

shareable(true) // add this
{
data = new char[strlen(initValue) + 1];
strcpy(data, initValue);

}

String::StringValue::~StringValue()
{
delete [] data;

}

As you can see, not much needs to change; the two lines that require
modification are flagged with comments. Of course, String’s member
functions must be updated to take the shareable field into account.
Here’s how the copy constructor would do that:

String::String(const String& rhs)
{
if (rhs.value->shareable) {
value = rhs.value;
++value->refCount;

}

else {
value = new StringValue(rhs.value->data);

}
}

All the other String member functions would have to check the
shareable field in an analogous fashion. The non-const version of
operator[] would be the only function to set the shareable flag to
false:
From the Library of Yuri Khan

ptg

194 Item 29
char& String::operator[](int index)
{
if (value->refCount > 1) {
--value->refCount;
value = new StringValue(value->data);

}

value->shareable = false; // add this

return value->data[index];
}

If you use the proxy class technique of Item 30 to distinguish read
usage from write usage in operator[], you can usually reduce the
number of StringValue objects that must be marked unshareable.

A Reference-Counting Base Class

Reference counting is useful for more than just strings. Any class in
which different objects may have values in common is a legitimate can-
didate for reference counting. Rewriting a class to take advantage of
reference counting can be a lot of work, however, and most of us al-
ready have more than enough to do. Wouldn’t it be nice if we could
somehow write (and test and document) the reference counting code in
a context-independent manner, then just graft it onto classes when
needed? Of course it would. In a curious twist of fate, there’s a way to
do it (or at least to do most of it).

The first step is to create a base class, RCObject, for reference-counted
objects. Any class wishing to take advantage of automatic reference
counting must inherit from this class. RCObject encapsulates the ref-
erence count itself, as well as functions for incrementing and decre-
menting that count. It also contains the code for destroying a value
when it is no longer in use, i.e., when its reference count becomes 0.
Finally, it contains a field that keeps track of whether this value is
shareable, and it provides functions to query this value and set it to
false. There is no need for a function to set the shareability field to
true, because all values are shareable by default. As noted above, once
an object has been tagged unshareable, there is no way to make it
shareable again.

RCObject’s class definition looks like this:

class RCObject {
public:
RCObject();
RCObject(const RCObject& rhs);
RCObject& operator=(const RCObject& rhs);
virtual ~RCObject() = 0;
From the Library of Yuri Khan

ptg

Reference Counting 195
void addReference();
void removeReference();

void markUnshareable();
bool isShareable() const;

bool isShared() const;

private:
size_t refCount;
bool shareable;

};

RCObjects can be created (as the base class parts of more derived ob-
jects) and destroyed; they can have new references added to them and
can have current references removed; their shareability status can be
queried and can be disabled; and they can report whether they are
currently being shared. That’s all they offer. As a class encapsulating
the notion of being reference-countable, that’s really all we have a right
to expect them to do. Note the tell-tale virtual destructor, a sure sign
this class is designed for use as a base class. Note also how the de-
structor is a pure virtual function, a sure sign this class is designed to
be used only as a base class.

The code to implement RCObject is, if nothing else, brief:

RCObject::RCObject()
: refCount(0), shareable(true) {}

RCObject::RCObject(const RCObject&)
: refCount(0), shareable(true) {}

RCObject& RCObject::operator=(const RCObject&)
{ return *this; }

RCObject::~RCObject() {} // virtual dtors must always
// be implemented, even if
// they are pure virtual
// and do nothing (see also
// Item 33)

void RCObject::addReference() { ++refCount; }

void RCObject::removeReference()
{ if (--refCount == 0) delete this; }

void RCObject::markUnshareable()
{ shareable = false; }

bool RCObject::isShareable() const
{ return shareable; }

bool RCObject::isShared() const
{ return refCount > 1; }
From the Library of Yuri Khan

ptg

196 Item 29
Curiously, we set refCount to 0 inside both constructors. This seems
counterintuitive. Surely at least the creator of the new RCObject is re-
ferring to it! As it turns out, it simplifies things for the creators of
RCObjects to set refCount to 1 themselves, so we oblige them here by
not getting in their way. We’ll get a chance to see the resulting code
simplification shortly.

Another curious thing is that the copy constructor always sets ref-
Count to 0, regardless of the value of refCount for the RCObject we’re
copying. That’s because we’re creating a new object representing a
value, and new values are always unshared and referenced only by
their creator. Again, the creator is responsible for setting the refCount
to its proper value.

The RCObject assignment operator looks downright subversive: it
does nothing. Frankly, it’s unlikely this operator will ever be called.
RCObject is a base class for a shared value object, and in a system
based on reference counting, such objects are not assigned to one an-
other, objects pointing to them are. In our case, we don’t expect
StringValue objects to be assigned to one another, we expect only
String objects to be involved in assignments. In such assignments, no
change is made to the value of a StringValue — only the
StringValue reference count is modified.

Nevertheless, it is conceivable that some as-yet-unwritten class might
someday inherit from RCObject and might wish to allow assignment of
reference-counted values (see Item 32). If so, RCObject’s assignment
operator should do the right thing, and the right thing is to do nothing.
To see why, imagine that we wished to allow assignments between
StringValue objects. Given StringValue objects sv1 and sv2, what
should happen to sv1’s and sv2’s reference counts in an assignment?

sv1 = sv2; // how are sv1’s and sv2’s reference
// counts affected?

Before the assignment, some number of String objects are pointing to
sv1. That number is unchanged by the assignment, because only
sv1’s value changes. Similarly, some number of String objects are
pointing to sv2 prior to the assignment, and after the assignment, ex-
actly the same String objects point to sv2. sv2’s reference count is
also unchanged. When RCObjects are involved in an assignment,
then, the number of objects pointing to those objects is unaffected,
hence RCObject::operator= should change no reference counts.
That’s exactly what the implementation above does. Counterintuitive?
Perhaps, but it’s still correct.

The code for RCObject::removeReference is responsible not only for
decrementing the object’s refCount, but also for destroying the object
From the Library of Yuri Khan

ptg

Reference Counting 197
if the new value of refCount is 0. It accomplishes this latter task by
deleteing this, which, as Item 27 explains, is safe only if we know
that *this is a heap object. For this class to be successful, we must
engineer things so that RCObjects can be created only on the heap.
General approaches to achieving that end are discussed in Item 27,
but the specific measures we’ll employ in this case are described at the
conclusion of this Item.

To take advantage of our new reference-counting base class, we modify
StringValue to inherit its reference counting capabilities from RCOb-
ject:

class String {
private:
struct StringValue: public RCObject {
char *data;

StringValue(const char *initValue);
~StringValue();

};

...

};

String::StringValue::StringValue(const char *initValue)
{
data = new char[strlen(initValue) + 1];
strcpy(data, initValue);

}

String::StringValue::~StringValue()
{
delete [] data;

}

This version of StringValue is almost identical to the one we saw ear-
lier. The only thing that’s changed is that StringValue’s member
functions no longer manipulate the refCount field. RCObject now
handles what they used to do.

Don’t feel bad if you blanched at the sight of a nested class
(StringValue) inheriting from a class (RCObject) that’s unrelated to
the nesting class (String). It looks weird to everybody at first, but it’s
perfectly kosher. A nested class is just as much a class as any other,
so it has the freedom to inherit from whatever other classes it likes. In
time, you won’t think twice about such inheritance relationships.
From the Library of Yuri Khan

ptg

198 Item 29
Automating Reference Count Manipulations

The RCObject class gives us a place to store a reference count, and it
gives us member functions through which that reference count can be
manipulated, but the calls to those functions must still be manually
inserted in other classes. It is still up to the String copy constructor
and the String assignment operator to call addReference and re-
moveReference on StringValue objects. This is clumsy. We’d like to
move those calls out into a reusable class, too, thus freeing authors of
classes like String from worrying about any of the details of reference
counting. Can it be done? Isn’t C++ supposed to support reuse?

It can, and it does. There’s no easy way to arrange things so that all ref-
erence-counting considerations can be moved out of application
classes, but there is a way to eliminate most of them for most classes.
(In some application classes, you can eliminate all reference-counting
code, but our String class, alas, isn’t one of them. One member func-
tion spoils the party, and I suspect you won’t be too surprised to hear
it’s our old nemesis, the non-const version of operator[]. Take
heart, however; we’ll tame that miscreant in the end.)

Notice that each String object contains a pointer to the StringValue
object representing that String’s value:

class String {
private:
struct StringValue: public RCObject { ... };

StringValue *value; // value of this String

...

};

We have to manipulate the refCount field of the StringValue object
anytime anything interesting happens to one of the pointers pointing
to it. “Interesting happenings” include copying a pointer, reassigning
one, and destroying one. If we could somehow make the pointer itself
detect these happenings and automatically perform the necessary ma-
nipulations of the refCount field, we’d be home free. Unfortunately,
pointers are rather dense creatures, and the chances of them detecting
anything, much less automatically reacting to things they detect, are
pretty slim. Fortunately, there’s a way to smarten them up: replace
them with objects that act like pointers, but that do more.

Such objects are called smart pointers, and you can read about them
in more detail than you probably care to in Item 28. For our purposes
here, it’s enough to know that smart pointer objects support the mem-
ber selection (->) and dereferencing (*) operations, just like real point-
ers (which, in this context, are generally referred to as dumb pointers),
From the Library of Yuri Khan

ptg

Reference Counting 199
and, like dumb pointers, they are strongly typed: you can’t make a
smart pointer-to-T point to an object that isn’t of type T.

Here’s a template for objects that act as smart pointers to reference-
counted objects:

// template class for smart pointers-to-T objects. T must
// support the RCObject interface, typically by inheriting
// from RCObject
template<class T>
class RCPtr {
public:
RCPtr(T* realPtr = 0);
RCPtr(const RCPtr& rhs);
~RCPtr();

RCPtr& operator=(const RCPtr& rhs);

T* operator->() const; // see Item 28
T& operator*() const; // see Item 28

private:
T *pointee; // dumb pointer this

// object is emulating

void init(); // common initialization
}; // code

This template gives smart pointer objects control over what happens
during their construction, assignment, and destruction. When such
events occur, these objects can automatically perform the appropriate
manipulations of the refCount field in the objects to which they point.

For example, when an RCPtr is created, the object it points to needs to
have its reference count increased. There’s no need to burden applica-
tion developers with the requirement to tend to this irksome detail
manually, because RCPtr constructors can handle it themselves. The
code in the two constructors is all but identical — only the member ini-
tialization lists differ — so rather than write it twice, we put it in a pri-
vate member function called init and have both constructors call
that:

template<class T>
RCPtr<T>::RCPtr(T* realPtr): pointee(realPtr)
{
init();

}

template<class T>
RCPtr<T>::RCPtr(const RCPtr& rhs): pointee(rhs.pointee)
{
init();

}

From the Library of Yuri Khan

ptg

200 Item 29
template<class T>
void RCPtr<T>::init()
{
if (pointee == 0) { // if the dumb pointer is
return; // null, so is the smart one

}

if (pointee->isShareable() == false) { // if the value
pointee = new T(*pointee); // isn’t shareable,

} // copy it

pointee->addReference(); // note that there is now a
} // new reference to the value

Moving common code into a separate function like init is exemplary
software engineering, but its luster dims when, as in this case, the
function doesn’t behave correctly.

The problem is this. When init needs to create a new copy of a value
(because the existing copy isn’t shareable), it executes the following
code:

pointee = new T(*pointee);

The type of pointee is pointer-to-T, so this statement creates a new T
object and initializes it by calling T’s copy constructor. In the case of an
RCPtr in the String class, T will be String::StringValue, so the
statement above will call String::StringValue’s copy constructor.
We haven’t declared a copy constructor for that class, however, so our
compilers will generate one for us. The copy constructor so generated
will, in accordance with the rules for automatically generated copy
constructors in C++, copy only StringValue’s data pointer; it will not
copy the char* string data points to. Such behavior is disastrous in
nearly any class (not just reference-counted classes), and that’s why
you should get into the habit of writing a copy constructor (and an as-
signment operator) for all your classes that contain pointers.
From the Library of Yuri Khan

ptg

Reference Counting 201
The correct behavior of the RCPtr<T> template depends on T contain-
ing a copy constructor that makes a truly independent copy (i.e., a
deep copy) of the value represented by T. We must augment
StringValue with such a constructor before we can use it with the
RCPtr class:

class String {
private:

struct StringValue: public RCObject {
StringValue(const StringValue& rhs);

...

};

...

};

String::StringValue::StringValue(const StringValue& rhs)
{
data = new char[strlen(rhs.data) + 1];
strcpy(data, rhs.data);

}

The existence of a deep-copying copy constructor is not the only as-
sumption RCPtr<T> makes about T. It also requires that T inherit from
RCObject, or at least that T provide all the functionality that RCObject
does. In view of the fact that RCPtr objects are designed to point only
to reference-counted objects, this is hardly an unreasonable assump-
tion. Nevertheless, the assumption must be documented.

A final assumption in RCPtr<T> is that the type of the object pointed
to is T. This seems obvious enough. After all, pointee is declared to be
of type T*. But pointee might really point to a class derived from T.
For example, if we had a class SpecialStringValue that inherited
from String::StringValue,

class String {
private:
struct StringValue: public RCObject { ... };

struct SpecialStringValue: public StringValue { ... };

...

};
From the Library of Yuri Khan

ptg

202 Item 29
we could end up with a String containing a RCPtr<StringValue>
pointing to a SpecialStringValue object. In that case, we’d want this
part of init,

pointee = new T(*pointee); // T is StringValue, but
// pointee really points to
// a SpecialStringValue

to call SpecialStringValue’s copy constructor, not StringValue’s.
We can arrange for this to happen by using a virtual copy constructor
(see Item 25). In the case of our String class, we don’t expect classes
to derive from StringValue, so we’ll disregard this issue.

With RCPtr’s constructors out of the way, the rest of the class’s func-
tions can be dispatched with considerably greater alacrity. Assignment
of an RCPtr is straightforward, though the need to test whether the
newly assigned value is shareable complicates matters slightly. Fortu-
nately, such complications have already been handled by the init
function that was created for RCPtr’s constructors. We take advantage
of that fact by using it again here:

template<class T>
RCPtr<T>& RCPtr<T>::operator=(const RCPtr& rhs)
{
if (pointee != rhs.pointee) { // skip assignments

// where the value
// doesn’t change

T *oldPointee = pointee; // save old pointee value

pointee = rhs.pointee; // point to new value
init(); // if possible, share it

// else make own copy

if (oldPointee) {
oldPointee->removeReference();// remove reference to

} // current value

return *this;
}

The destructor is easier. When an RCPtr is destroyed, it simply re-
moves its reference to the reference-counted object:

template<class T>
RCPtr<T>::~RCPtr()
{
if (pointee) pointee->removeReference();

}

If the RCPtr that just expired was the last reference to the object, that
object will be destroyed inside RCObject’s removeReference member
function. Hence RCPtr objects never need to worry about destroying
the values they point to.
From the Library of Yuri Khan

ptg

Reference Counting 203
Finally, RCPtr’s pointer-emulating operators are part of the smart
pointer boilerplate you can read about in Item 28:

template<class T>
T* RCPtr<T>::operator->() const { return pointee; }

template<class T>
T& RCPtr<T>::operator*() const { return *pointee; }

Putting it All Together

Enough! Finis! At long last we are in a position to put all the pieces to-
gether and build a reference-counted String class based on the reus-
able RCObject and RCPtr classes. With luck, you haven’t forgotten
that that was our original goal.

Each reference-counted string is implemented via this data structure:

The classes making up this data structure are defined like this:

template<class T> // template class for smart
class RCPtr { // pointers-to-T objects; T
public: // must inherit from RCObject
RCPtr(T* realPtr = 0);
RCPtr(const RCPtr& rhs);
~RCPtr();

RCPtr& operator=(const RCPtr& rhs);

T* operator->() const;
T& operator*() const;

private:
T *pointee;

void init();
};

String
object

RCPtr
object

StringValue
object

RCObject
class

Heap Memory

public
inheritance

pointerpointer
From the Library of Yuri Khan

ptg

204 Item 29
class RCObject { // base class for reference-
public: // counted objects
RCObject();
RCObject(const RCObject& rhs);
RCObject& operator=(const RCObject& rhs);
virtual ~RCObject() = 0;

void addReference();
void removeReference();

void markUnshareable();
bool isShareable() const;

bool isShared() const;

private:
size_t refCount;
bool shareable;

};

class String { // class to be used by
public: // application developers

String(const char *value = "");

const char& operator[](int index) const;
char& operator[](int index);

private:
// class representing string values
struct StringValue: public RCObject {
char *data;

StringValue(const char *initValue);
StringValue(const StringValue& rhs);
void init(const char *initValue);
~StringValue();

};

RCPtr<StringValue> value;
};

For the most part, this is just a recap of what we’ve already developed,
so nothing should be much of a surprise. Close examination reveals
we’ve added an init function to String::StringValue, but, as we’ll
see below, that serves the same purpose as the corresponding function
in RCPtr: it prevents code duplication in the constructors.

There is a significant difference between the public interface of this
String class and the one we used at the beginning of this Item. Where
is the copy constructor? Where is the assignment operator? Where is
the destructor? Something is definitely amiss here.
From the Library of Yuri Khan

ptg

Reference Counting 205
Actually, no. Nothing is amiss. In fact, some things are working per-
fectly. If you don’t see what they are, prepare yourself for a C++ epiph-
any.

We don’t need those functions anymore. Sure, copying of String ob-
jects is still supported, and yes, the copying will correctly handle the
underlying reference-counted StringValue objects, but the String
class doesn’t have to provide a single line of code to make this happen.
That’s because the compiler-generated copy constructor for String
will automatically call the copy constructor for String’s RCPtr mem-
ber, and the copy constructor for that class will perform all the neces-
sary manipulations of the StringValue object, including its reference
count. An RCPtr is a smart pointer, remember? We designed it to take
care of the details of reference counting, so that’s what it does. It also
handles assignment and destruction, and that’s why String doesn’t
need to write those functions, either. Our original goal was to move the
unreusable reference-counting code out of our hand-written String
class and into context-independent classes where it would be available
for use with any class. Now we’ve done it (in the form of the RCObject
and RCPtr classes), so don’t be so surprised when it suddenly starts
working. It’s supposed to work.

Just so you have everything in one place, here’s the implementation of
RCObject:

RCObject::RCObject()
: refCount(0), shareable(true) {}

RCObject::RCObject(const RCObject&)
: refCount(0), shareable(true) {}

RCObject& RCObject::operator=(const RCObject&)
{ return *this; }

RCObject::~RCObject() {}

void RCObject::addReference() { ++refCount; }

void RCObject::removeReference()
{ if (--refCount == 0) delete this; }

void RCObject::markUnshareable()
{ shareable = false; }

bool RCObject::isShareable() const
{ return shareable; }

bool RCObject::isShared() const
{ return refCount > 1; }

And here’s the implementation of RCPtr:
From the Library of Yuri Khan

ptg

206 Item 29
template<class T>
void RCPtr<T>::init()
{
if (pointee == 0) return;

if (pointee->isShareable() == false) {
pointee = new T(*pointee);

}

pointee->addReference();
}

template<class T>
RCPtr<T>::RCPtr(T* realPtr)
: pointee(realPtr)
{ init(); }

template<class T>
RCPtr<T>::RCPtr(const RCPtr& rhs)
: pointee(rhs.pointee)
{ init(); }

template<class T>
RCPtr<T>::~RCPtr()
{ if (pointee) pointee->removeReference(); }

template<class T>
RCPtr<T>& RCPtr<T>::operator=(const RCPtr& rhs)
{
if (pointee != rhs.pointee) {
T *oldPointee = pointee;
pointee = rhs.pointee;
init();
if (oldPointee) oldPointee->removeReference();

}

return *this;
}

template<class T>
T* RCPtr<T>::operator->() const { return pointee; }

template<class T>
T& RCPtr<T>::operator*() const { return *pointee; }

The implementation of String::StringValue looks like this:

void String::StringValue::init(const char *initValue)
{
data = new char[strlen(initValue) + 1];
strcpy(data, initValue);

}

String::StringValue::StringValue(const char *initValue)
{ init(initValue); }
From the Library of Yuri Khan

ptg

Reference Counting 207
String::StringValue::StringValue(const StringValue& rhs)
{ init(rhs.data); }

String::StringValue::~StringValue()
{ delete [] data; }

Ultimately, all roads lead to String, and that class is implemented
this way:

String::String(const char *initValue)
: value(new StringValue(initValue)) {}

const char& String::operator[](int index) const
{ return value->data[index]; }

char& String::operator[](int index)
{
if (value->isShared()) {
value = new StringValue(value->data);

}

value->markUnshareable();

return value->data[index];
}

If you compare the code for this String class with that we developed
for the String class using dumb pointers, you’ll be struck by two
things. First, there’s a lot less of it here than there. That’s because
RCPtr has assumed much of the reference-counting burden that used
to fall on String. Second, the code that remains in String is nearly
unchanged: the smart pointer replaced the dumb pointer essentially
seamlessly. In fact, the only changes are in operator[], where we call
isShared instead of checking the value of refCount directly and
where our use of the smart RCPtr object eliminates the need to manu-
ally manipulate the reference count during a copy-on-write.

This is all very nice, of course. Who can object to less code? Who can
oppose encapsulation success stories? The bottom line, however, is de-
termined more by the impact of this newfangled String class on its
clients than by any of its implementation details, and it is here that
things really shine. If no news is good news, the news here is very good
indeed. The String interface has not changed. We added reference
counting, we added the ability to mark individual string values as un-
shareable, we moved the notion of reference countability into a new
base class, we added smart pointers to automate the manipulation of
reference counts, yet not one line of client code needs to be changed.
Sure, we changed the String class definition, so clients who want to
take advantage of reference-counted strings must recompile and
relink, but their investment in code is completely and utterly pre-
served. You see? Encapsulation really is a wonderful thing.
From the Library of Yuri Khan

ptg

208 Item 29
Adding Reference Counting to Existing Classes

Everything we’ve discussed so far assumes we have access to the
source code of the classes we’re interested in. But what if we’d like to
apply the benefits of reference counting to some class Widget that’s in
a library we can’t modify? There’s no way to make Widget inherit from
RCObject, so we can’t use smart RCPtrs with it. Are we out of luck?

We’re not. With some minor modifications to our design, we can add
reference counting to any type.

First, let’s consider what our design would look like if we could have
Widget inherit from RCObject. In that case, we’d have to add a class,
RCWidget, for clients to use, but everything would then be analogous
to our String/StringValue example, with RCWidget playing the role
of String and Widget playing the role of StringValue. The design
would look like this:

We can now apply the maxim that most problems in Computer Science
can be solved with an additional level of indirection. We add a new
class, CountHolder, to hold the reference count, and we have Coun-
tHolder inherit from RCObject. We also have CountHolder contain a
pointer to a Widget. We then replace the smart RCPtr template with an
equally smart RCIPtr template that knows about the existence of the
CountHolder class. (The “I” in RCIPtr stands for “indirect.”) The mod-
ified design looks like this:

RCWidget
object

RCPtr
object

Widget
object

RCObject
class

public
inheritance

pointer

RCWidget

RCIPtr
object

RCObject
class

public
inheritance

pointerpointer
Widget
object

CountHolder
object

object
From the Library of Yuri Khan

ptg

Reference Counting 209
Just as StringValue was an implementation detail hidden from cli-
ents of String, CountHolder is an implementation detail hidden from
clients of RCWidget. In fact, it’s an implementation detail of RCIPtr, so
it’s nested inside that class. RCIPtr is implemented this way:

template<class T>
class RCIPtr {
public:
RCIPtr(T* realPtr = 0);
RCIPtr(const RCIPtr& rhs);
~RCIPtr();

RCIPtr& operator=(const RCIPtr& rhs);

T* operator->() const;
T& operator*() const;

RCObject& getRCObject() // give clients access to
{ return *counter; } // isShared, etc.

private:
struct CountHolder: public RCObject {
~CountHolder() { delete pointee; }
T *pointee;

};

CountHolder *counter;

void init();
};

template<class T>
void RCIPtr<T>::init()
{
if (counter->isShareable() == false) {
T *oldValue = counter->pointee;
counter = new CountHolder;
counter->pointee = oldValue ? new T(*oldValue) : 0;

}

counter->addReference();
}

template<class T>
RCIPtr<T>::RCIPtr(T* realPtr)
: counter(new CountHolder)
{
counter->pointee = realPtr;
init();

}

template<class T>
RCIPtr<T>::RCIPtr(const RCIPtr& rhs)
: counter(rhs.counter)
{ init(); }

template<class T>
RCIPtr<T>::~RCIPtr()
{ counter->removeReference(); }
From the Library of Yuri Khan

ptg

210 Item 29
template<class T>
RCIPtr<T>& RCIPtr<T>::operator=(const RCIPtr& rhs)
{
if (counter != rhs.counter) {
counter->removeReference();
counter = rhs.counter;
init();

}

return *this;
}

template<class T>
T* RCIPtr<T>::operator->() const
{ return counter->pointee; }

template<class T>
T& RCIPtr<T>::operator*() const
{ return *(counter->pointee); }

If you compare this implementation with that of RCPtr, you’ll see they
are conceptually identical. They differ only in that RCPtr objects point
to values directly, while RCIPtr objects point to values through an in-
tervening CountHolder object.

Given RCIPtr, it’s easy to implement RCWidget, because each function
in RCWidget is implemented by forwarding the call through the under-
lying RCIPtr to a Widget object. For example, if Widget looks like this,

class Widget {
public:
Widget(int size);
Widget(const Widget& rhs);
~Widget();

 Widget& operator=(const Widget& rhs);

 void doThis();
int showThat() const;

};

RCWidget will be defined this way:

class RCWidget {
public:
RCWidget(int size): value(new Widget(size)) {}

 void doThis()
{
if (value.getRCObject().isShared()) { // do COW if
value = new Widget(*value); // Widget is shared

}

value->doThis();
}

int showThat() const { return value->showThat(); }

private:
RCIPtr<Widget> value;

};
From the Library of Yuri Khan

ptg

Reference Counting 211
Note how the RCWidget constructor calls the Widget constructor (via
the new operator — see Item 8) with the argument it was passed; how
RCWidget’s doThis calls doThis in the Widget class; and how RCWid-
get::showThat returns whatever its Widget counterpart returns. No-
tice also how RCWidget declares no copy constructor, no assignment
operator, and no destructor. As with the String class, there is no need
to write these functions. Thanks to the behavior of the RCIPtr class,
the default versions do the right things.

If the thought occurs to you that creation of RCWidget is so mechani-
cal, it could be automated, you’re right. It would not be difficult to
write a program that takes a class like Widget as input and produces
a class like RCWidget as output. If you write such a program, please
let me know.

Evaluation

Let us disentangle ourselves from the details of widgets, strings, val-
ues, smart pointers, and reference-counting base classes. That gives
us an opportunity to step back and view reference counting in a
broader context. In that more general context, we must address a
higher-level question, namely, when is reference counting an appro-
priate technique?

Reference-counting implementations are not without cost. Each refer-
ence-counted value carries a reference count with it, and most opera-
tions require that this reference count be examined or manipulated in
some way. Object values therefore require more memory, and we
sometimes execute more code when we work with them. Furthermore,
the underlying source code is considerably more complex for a refer-
ence-counted class than for a less elaborate implementation. An un-
reference-counted string class typically stands on its own, while our
final String class is useless unless it’s augmented with three auxiliary
classes (StringValue, RCObject, and RCPtr). True, our more compli-
cated design holds out the promise of greater efficiency when values
can be shared, it eliminates the need to track object ownership, and it
promotes reusability of the reference counting idea and implementa-
tion. Nevertheless, that quartet of classes has to be written, tested,
documented, and maintained, and that’s going to be more work than
writing, testing, documenting, and maintaining a single class. Even a
manager can see that.

Reference counting is an optimization technique predicated on the as-
sumption that objects will commonly share values (see also Item 18). If
this assumption fails to hold, reference counting will use more memory
than a more conventional implementation and it will execute more
code. On the other hand, if your objects do tend to have common val-
From the Library of Yuri Khan

ptg

212 Item 29
ues, reference counting should save you both time and space. The big-
ger your object values and the more objects that can simultaneously
share values, the more memory you’ll save. The more you copy and as-
sign values between objects, the more time you’ll save. The more ex-
pensive it is to create and destroy a value, the more time you’ll save
there, too. In short, reference counting is most useful for improving ef-
ficiency under the following conditions:

■ Relatively few values are shared by relatively many objects.
Such sharing typically arises through calls to assignment opera-
tors and copy constructors. The higher the objects/values ratio,
the better the case for reference counting.

■ Object values are expensive to create or destroy, or they use
lots of memory. Even when this is the case, reference counting
still buys you nothing unless these values can be shared by multi-
ple objects.

There is only one sure way to tell whether these conditions are satis-
fied, and that way is not to guess or rely on your programmer’s intu-
ition (see Item 16). The reliable way to find out whether your program
can benefit from reference counting is to profile or instrument it. That
way you can find out if creating and destroying values is a perfor-
mance bottleneck, and you can measure the objects/values ratio. Only
when you have such data in hand are you in a position to determine
whether the benefits of reference counting (of which there are many)
outweigh the disadvantages (of which there are also many).

Even when the conditions above are satisfied, a design employing ref-
erence counting may still be inappropriate. Some data structures (e.g.,
directed graphs) lead to self-referential or circular dependency struc-
tures. Such data structures have a tendency to spawn isolated collec-
tions of objects, used by no one, whose reference counts never drop to
zero. That’s because each object in the unused structure is pointed to
by at least one other object in the same structure. Industrial-strength
garbage collectors use special techniques to find such structures and
eliminate them, but the simple reference-counting approach we’ve ex-
amined here is not easily extended to include such techniques.

Reference counting can be attractive even if efficiency is not your pri-
mary concern. If you find yourself weighed down with uncertainty over
who’s allowed to delete what, reference counting could be just the
technique you need to ease your burden. Many programmers are de-
voted to reference counting for this reason alone.

Let us close this discussion on a technical note by tying up one re-
maining loose end. When RCObject::removeReference decrements
an object’s reference count, it checks to see if the new count is 0. If it
From the Library of Yuri Khan

ptg

Proxy Classes 213
is, removeReference destroys the object by deleteing this. This is a
safe operation only if the object was allocated by calling new, so we
need some way of ensuring that RCObjects are created only in that
manner.

In this case we do it by convention. RCObject is designed for use as a
base class of reference-counted value objects, and those value objects
should be referred to only by smart RCPtr pointers. Furthermore, the
value objects should be instantiated only by application objects that
realize values are being shared; the classes describing the value ob-
jects should never be available for general use. In our example, the
class for value objects is StringValue, and we limit its use by making
it private in String. Only String can create StringValue objects, so
it is up to the author of the String class to ensure that all such objects
are allocated via new.

Our approach to the constraint that RCObjects be created only on the
heap, then, is to assign responsibility for conformance to this con-
straint to a well-defined set of classes and to ensure that only that set
of classes can create RCObjects. There is no possibility that random
clients can accidently (or maliciously) create RCObjects in an inappro-
priate manner. We limit the right to create reference-counted objects,
and when we do hand out the right, we make it clear that it’s accom-
panied by the concomitant responsibility to follow the rules governing
object creation.

Item 30: Proxy classes.
Proxy ClassesThough your in-laws may be one-dimensional, the world, in general, is
not. Unfortunately, C++ hasn’t yet caught on to that fact. At least,
there’s little evidence for it in the language’s support for arrays. You
can create two-dimensional, three-dimensional — heck, you can create
n-dimensional — arrays in FORTRAN, in BASIC, even in COBOL (okay,
FORTRAN only allows up to seven dimensions, but let’s not quibble),
but can you do it in C++? Only sometimes, and even then only sort of.

This much is legal:

int data[10][20]; // 2D array: 10 by 20

The corresponding construct using variables as dimension sizes, how-
ever, is not:

void processInput(int dim1, int dim2)
{
int data[dim1][dim2]; // error! array dimensions
... // must be known during

} // compilation
From the Library of Yuri Khan

ptg

214 Item 30
It’s not even legal for a heap-based allocation:

int *data =
new int[dim1][dim2]; // error!

Implementing Two-Dimensional Arrays

Multidimensional arrays are as useful in C++ as they are in any other
language, so it’s important to come up with a way to get decent support
for them. The usual way is the standard one in C++: create a class to
represent the objects we need but that are missing in the language
proper. Hence we can define a class template for two-dimensional ar-
rays:

template<class T>
class Array2D {
public:
Array2D(int dim1, int dim2);
...

};

Now we can define the arrays we want:

Array2D<int> data(10, 20); // fine

Array2D<float> *data =
new Array2D<float>(10, 20); // fine

void processInput(int dim1, int dim2)
{
Array2D<int> data(dim1, dim2); // fine
...

}

Using these array objects, however, isn’t quite as straightforward. In
keeping with the grand syntactic tradition of both C and C++, we’d like
to be able to use brackets to index into our arrays,

cout << data[3][6];

but how do we declare the indexing operator in Array2D to let us do
this?

Our first impulse might be to declare operator[][] functions, like
this:
From the Library of Yuri Khan

ptg

Proxy Classes 215
template<class T>
class Array2D {
public:

// declarations that won’t compile
T& operator[][](int index1, int index2);
const T& operator[][](int index1, int index2) const;

...

};

We’d quickly learn to rein in such impulses, however, because there is
no such thing as operator[][], and don’t think your compilers will
forget it. (For a complete list of operators, overloadable and otherwise,
see Item 7.) We’ll have to do something else.

If you can stomach the syntax, you might follow the lead of the many
programming languages that use parentheses to index into arrays. To
use parentheses, you just overload operator():

template<class T>
class Array2D {
public:

// declarations that will compile
T& operator()(int index1, int index2);
const T& operator()(int index1, int index2) const;

...

};

Clients then use arrays this way:

cout << data(3, 6);

This is easy to implement and easy to generalize to as many dimen-
sions as you like. The drawback is that your Array2D objects don’t
look like built-in arrays any more. In fact, the above access to element
(3, 6) of data looks, on the face of it, like a function call.

If you reject the thought of your arrays looking like FORTRAN refu-
gees, you might turn again to the notion of using brackets as the in-
dexing operator. Although there is no such thing as operator[][], it
is nonetheless legal to write code that appears to use it:

int data[10][20];

...

cout << data[3][6]; // fine

What gives?
From the Library of Yuri Khan

ptg

216 Item 30
What gives is that the variable data is not really a two-dimensional
array at all, it’s a 10-element one-dimensional array. Each of those 10
elements is itself a 20-element array, so the expression data[3][6]
really means (data[3])[6], i.e., the seventh element of the array that
is the fourth element of data. In short, the value yielded by the first ap-
plication of the brackets is another array, so the second application of
the brackets gets an element from that secondary array.

We can play the same game with our Array2D class by overloading op-
erator[] to return an object of a new class, Array1D. We can then
overload operator[] again in Array1D to return an element in our
original two-dimensional array:

template<class T>
class Array2D {
public:
class Array1D {
public:
T& operator[](int index);
const T& operator[](int index) const;
...

};

Array1D operator[](int index);
const Array1D operator[](int index) const;
...

};

The following then becomes legal:

Array2D<float> data(10, 20);

...

cout << data[3][6]; // fine

Here, data[3] yields an Array1D object and the operator[] invoca-
tion on that object yields the float in position (3, 6) of the original two-
dimensional array.

Clients of the Array2D class need not be aware of the presence of the
Array1D class. Objects of this latter class stand for one-dimensional
array objects that, conceptually, do not exist for clients of Array2D.
Such clients program as if they were using real, live, honest-to-Allah
two-dimensional arrays. It is of no concern to Array2D clients that
those objects must, in order to satisfy the vagaries of C++, be syntacti-
cally compatible with one-dimensional arrays of other one-dimen-
sional arrays.
From the Library of Yuri Khan

ptg

Proxy Classes 217
Each Array1D object stands for a one-dimensional array that is absent
from the conceptual model used by clients of Array2D. Objects that
stand for other objects are often called proxy objects, and the classes
that give rise to proxy objects are often called proxy classes. In this ex-
ample, Array1D is a proxy class. Its instances stand for one-dimen-
sional arrays that, conceptually, do not exist. (The terminology for
proxy objects and classes is far from universal; objects of such classes
are also sometimes known as surrogates.)

Distinguishing Reads from Writes via operator[]

The use of proxies to implement classes whose instances act like mul-
tidimensional arrays is common, but proxy classes are more flexible
than that. Item 5, for example, shows how proxy classes can be em-
ployed to prevent single-argument constructors from being used to
perform unwanted type conversions. Of the varied uses of proxy
classes, however, the most heralded is that of helping distinguish
reads from writes through operator[].

Consider a reference-counted string type that supports operator[].
Such a type is examined in detail in Item 29. If the concepts behind
reference counting have slipped your mind, it would be a good idea to
familiarize yourself with the material in that Item now.

A string type supporting operator[] allows clients to write code like
this:

String s1, s2; // a string-like class; the
// use of proxies keeps this
// class from conforming to
// the standard string

... // interface

cout << s1[5]; // read s1

s2[5] = ’x’; // write s2

s1[3] = s2[8]; // write s1, read s2

Note that operator[] can be called in two different contexts: to read
a character or to write a character. Reads are known as rvalue usages;
writes are known as lvalue usages. (The terms come from the field of
compilers, where an lvalue goes on the left-hand side of an assignment
and an rvalue goes on the right-hand side.) In general, using an object
as an lvalue means using it such that it might be modified, and using
it as an rvalue means using it such that it cannot be modified.

We’d like to distinguish between lvalue and rvalue usage of opera-
tor[] because, especially for reference-counted data structures, reads
can be much less expensive to implement than writes. As Item 29 ex-
From the Library of Yuri Khan

ptg

218 Item 30
plains, writes of reference-counted objects may involve copying an en-
tire data structure, but reads never require more than the simple
returning of a value. Unfortunately, inside operator[], there is no
way to determine the context in which the function was called; it is not
possible to distinguish lvalue usage from rvalue usage within opera-
tor[].

“But wait,” you say, “we don’t need to. We can overload operator[] on
the basis of its constness, and that will allow us to distinguish reads
from writes.” In other words, you suggest we solve our problem this
way:

class String {
public:
const char& operator[](int index) const; // for reads
char& operator[](int index); // for writes
...

};

Alas, this won’t work. Compilers choose between const and non-
const member functions by looking only at whether the object invok-
ing a function is const. No consideration is given to the context in
which a call is made. Hence:

String s1, s2;

...

cout << s1[5]; // calls non-const operator[],
// because s1 isn’t const

s2[5] = ’x’; // also calls non-const
// operator[]: s2 isn’t const

s1[3] = s2[8]; // both calls are to non-const
// operator[], because both s1
// and s2 are non-const objects

Overloading operator[], then, fails to distinguish reads from writes.

In Item 29, we resigned ourselves to this unsatisfactory state of affairs
and made the conservative assumption that all calls to operator[]
were for writes. This time we shall not give up so easily. It may be im-
possible to distinguish lvalue from rvalue usage inside operator[],
but we still want to do it. We will therefore find a way. What fun is life
if you allow yourself to be limited by the possible?

Our approach is based on the fact that though it may be impossible to
tell whether operator[] is being invoked in an lvalue or an rvalue
context from within operator[], we can still treat reads differently
from writes if we delay our lvalue-versus-rvalue actions until we see
From the Library of Yuri Khan

ptg

Proxy Classes 219
how the result of operator[] is used. All we need is a way to postpone
our decision on whether our object is being read or written until after
operator[] has returned. (This is an example of lazy evaluation — see
Item 17.)

A proxy class allows us to buy the time we need, because we can mod-
ify operator[] to return a proxy for a string character instead of a
string character itself. We can then wait to see how the proxy is used.
If it’s read, we can belatedly treat the call to operator[] as a read. If
it’s written, we must treat the call to operator[] as a write.

We will see the code for this in a moment, but first it is important to
understand the proxies we’ll be using. There are only three things you
can do with a proxy:

■ Create it, i.e., specify which string character it stands for.

■ Use it as the target of an assignment, in which case you are really
making an assignment to the string character it stands for. When
used in this way, a proxy represents an lvalue use of the string on
which operator[] was invoked.

■ Use it in any other way. When used like this, a proxy represents
an rvalue use of the string on which operator[] was invoked.

Here are the class definitions for a reference-counted String class
using a proxy class to distinguish between lvalue and rvalue usages of
operator[]:

class String { // reference-counted strings;
public: // see Item 29 for details

class CharProxy { // proxies for string chars
public:
CharProxy(String& str, int index); // creation

CharProxy& operator=(const CharProxy& rhs); // lvalue
CharProxy& operator=(char c); // uses

operator char() const; // rvalue
// use

private:
String& theString; // string this proxy pertains to

int charIndex; // char within that string
// this proxy stands for

};

// continuation of String class
const CharProxy
operator[](int index) const; // for const Strings
From the Library of Yuri Khan

ptg

220 Item 30
CharProxy operator[](int index); // for non-const Strings
...

friend class CharProxy;

private:
RCPtr<StringValue> value;

};

Other than the addition of the CharProxy class (which we’ll examine
below), the only difference between this String class and the final
String class in Item 29 is that both operator[] functions now return
CharProxy objects. Clients of String can generally ignore this, how-
ever, and program as if the operator[] functions returned characters
(or references to characters — see Item 1) in the usual manner:

String s1, s2; // reference-counted strings
// using proxies

...

cout << s1[5]; // still legal, still works

s2[5] = ’x’; // also legal, also works

s1[3] = s2[8]; // of course it’s legal,
// of course it works

What’s interesting is not that this works. What’s interesting is how it
works.

Consider first this statement:

cout << s1[5];

The expression s1[5] yields a CharProxy object. No output operator
is defined for such objects, so your compilers labor to find an implicit
type conversion they can apply to make the call to operator<< suc-
ceed (see Item 5). They find one: the implicit conversion from Char-
Proxy to char declared in the CharProxy class. They automatically
invoke this conversion operator, and the result is that the string char-
acter represented by the CharProxy is printed. This is representative
of the CharProxy-to-char conversion that takes place for all Char-
Proxy objects used as rvalues.

Lvalue usage is handled differently. Look again at

s2[5] = ’x’;

As before, the expression s2[5] yields a CharProxy object, but this
time that object is the target of an assignment. Which assignment op-
erator is invoked? The target of the assignment is a CharProxy, so the
assignment operator that’s called is in the CharProxy class. This is
crucial, because inside a CharProxy assignment operator, we know
From the Library of Yuri Khan

ptg

Proxy Classes 221
that the CharProxy object being assigned to is being used as an lvalue.
We therefore know that the string character for which the proxy stands
is being used as an lvalue, and we must take whatever actions are nec-
essary to implement lvalue access for that character.

Similarly, the statement

s1[3] = s2[8];

calls the assignment operator for two CharProxy objects, and inside
that operator we know the object on the left is being used as an lvalue
and the object on the right as an rvalue.

“Yeah, yeah, yeah,” you grumble, “show me.” Okay. Here’s the code for
String’s operator[] functions:

const String::CharProxy String::operator[](int index) const
{
return CharProxy(const_cast<String&>(*this), index);

}

String::CharProxy String::operator[](int index)
{
return CharProxy(*this, index);

}

Each function just creates and returns a proxy for the requested char-
acter. No action is taken on the character itself: we defer such action
until we know whether the access is for a read or a write.

Note that the const version of operator[] returns a const proxy. Be-
cause CharProxy::operator= isn’t a const member function, such
proxies can’t be used as the target of assignments. Hence neither the
proxy returned from the const version of operator[] nor the charac-
ter for which it stands may be used as an lvalue. Conveniently enough,
that’s exactly the behavior we want for the const version of opera-
tor[].

Note also the use of a const_cast (see Item 2) on *this when creating
the CharProxy object that the const operator[] returns. That’s nec-
essary to satisfy the constraints of the CharProxy constructor, which
accepts only a non-const String. Casts are usually worrisome, but in
this case the CharProxy object returned by operator[] is itself
const, so there is no risk the String containing the character to
which the proxy refers will be modified.

Each proxy returned by an operator[] function remembers which
string it pertains to and, within that string, the index of the character
it represents:
From the Library of Yuri Khan

ptg

222 Item 30
String::CharProxy::CharProxy(String& str, int index)
: theString(str), charIndex(index) {}

Conversion of a proxy to an rvalue is straightforward — we just return
a copy of the character represented by the proxy:

String::CharProxy::operator char() const
{
return theString.value->data[charIndex];

}

If you’ve forgotten the relationship among a String object, its value
member, and the data member it points to, you can refresh your mem-
ory by turning to Item 29. Because this function returns a character
by value, and because C++ limits the use of such by-value returns to
rvalue contexts only, this conversion function can be used only in
places where an rvalue is legal.

We thus turn to implementation of CharProxy’s assignment operators,
which is where we must deal with the fact that a character represented
by a proxy is being used as the target of an assignment, i.e., as an
lvalue. We can implement CharProxy’s conventional assignment oper-
ator as follows:

String::CharProxy&
String::CharProxy::operator=(const CharProxy& rhs)
{
// if the string is sharing a value with other String objects,
// break off a separate copy of the value for this string only
if (theString.value->isShared()) {
theString.value = new StringValue(theString.value->data);

}

// now make the assignment: assign the value of the char
// represented by rhs to the char represented by *this
theString.value->data[charIndex] =
rhs.theString.value->data[rhs.charIndex];

return *this;
}

If you compare this with the implementation of the non-const
String::operator[] in Item 29 on page 207, you’ll see that they are
strikingly similar. This is to be expected. In Item 29, we pessimistically
assumed that all invocations of the non-const operator[] were
writes, so we treated them as such. Here, we moved the code imple-
menting a write into CharProxy’s assignment operators, and that al-
lows us to avoid paying for a write when the non-const operator[] is
used only in an rvalue context. Note, by the way, that this function re-
quires access to String’s private data member value. That’s why
From the Library of Yuri Khan

ptg

Proxy Classes 223
CharProxy is declared a friend in the earlier class definition for
String.

The second CharProxy assignment operator is almost identical:

String::CharProxy& String::CharProxy::operator=(char c)
{
if (theString.value->isShared()) {
theString.value = new StringValue(theString.value->data);

}

theString.value->data[charIndex] = c;

return *this;
}

As an accomplished software engineer, you would, of course, banish
the code duplication present in these two assignment operators to a
private CharProxy member function that both would call. Aren’t you
the modular one?

Limitations

The use of a proxy class is a nice way to distinguish lvalue and rvalue
usage of operator[], but the technique is not without its drawbacks.
We’d like proxy objects to seamlessly replace the objects they stand for,
but this ideal is difficult to achieve. That’s because objects are used as
lvalues in contexts other than just assignment, and using proxies in
such contexts usually yields behavior different from using real objects.

Consider again the code fragment from Item 29 that motivated our de-
cision to add a shareability flag to each StringValue object. If
String::operator[] returns a CharProxy instead of a char&, that
code will no longer compile:

String s1 = "Hello";

char *p = &s1[1]; // error!

The expression s1[1] returns a CharProxy, so the type of the expres-
sion on the right-hand side of the “=” is CharProxy*. There is no con-
version from a CharProxy* to a char*, so the initialization of p fails to
compile. In general, taking the address of a proxy yields a different
type of pointer than does taking the address of a real object.

To eliminate this difficulty, you’ll need to overload the address-of oper-
ators for the CharProxy class:
From the Library of Yuri Khan

ptg

224 Item 30
class String {
public:

class CharProxy {
public:
...
char * operator&();
const char * operator&() const;
...

};

...
};

These functions are easy to implement. The const function just re-
turns a pointer to a const version of the character represented by the
proxy:

const char * String::CharProxy::operator&() const
{
return &(theString.value->data[charIndex]);

}

The non-const function is a bit more work, because it returns a
pointer to a character that may be modified. This is analogous to the
behavior of the non-const version of String::operator[] in Item 29,
and the implementation is equally analogous:

char * String::CharProxy::operator&()
{
// make sure the character to which this function returns
// a pointer isn’t shared by any other String objects
if (theString.value->isShared()) {
theString.value = new StringValue(theString.value->data);

}

// we don’t know how long the pointer this function
// returns will be kept by clients, so the StringValue
// object can never be shared
theString.value->markUnshareable();

return &(theString.value->data[charIndex]);
}

Much of this code is common to other CharProxy member functions,
so I know you’d encapsulate it in a private member function that all
would call.

A second difference between chars and the CharProxys that stand for
them becomes apparent if we have a template for reference-counted
arrays that use proxy classes to distinguish lvalue and rvalue invoca-
tions of operator[]:
From the Library of Yuri Khan

ptg

Proxy Classes 225
template<class T> // reference-counted array
class Array { // using proxies
public:
class Proxy {
public:
Proxy(Array<T>& array, int index);
Proxy& operator=(const T& rhs);
operator T() const;
...

};

const Proxy operator[](int index) const;
Proxy operator[](int index);
...

};

Consider how these arrays might be used:

Array<int> intArray;

...

intArray[5] = 22; // fine

intArray[5] += 5; // error!

++intArray[5]; // error!

As expected, use of operator[] as the target of a simple assignment
succeeds, but use of operator[] on the left-hand side of a call to op-
erator+= or operator++ fails. That’s because operator[] returns a
proxy, and there is no operator+= or operator++ for Proxy objects.
A similar situation exists for other operators that require lvalues, in-
cluding operator*=, operator<<=, operator--, etc. If you want
these operators to work with operator[] functions that return prox-
ies, you must define each of these functions for the Array<T>::Proxy
class. That’s a lot of work, and you probably don’t want to do it. Unfor-
tunately, you either do the work or you do without. Them’s the breaks.

A related problem has to do with invoking member functions on real
objects through proxies. To be blunt about it, you can’t. For example,
suppose we’d like to work with reference-counted arrays of rational
numbers. We could define a class Rational and then use the Array
template we just saw:

class Rational {
public:
Rational(int numerator = 0, int denominator = 1);
int numerator() const;
int denominator() const;
...

};

Array<Rational> array;
From the Library of Yuri Khan

ptg

226 Item 30
This is how we’d expect to be able to use such arrays, but, alas, we’d
be disappointed:

cout << array[4].numerator(); // error!

int denom = array[22].denominator(); // error!

By now the difficulty is predictable; operator[] returns a proxy for a
rational number, not an actual Rational object. But the numerator
and denominator member functions exist only for Rationals, not
their proxies. Hence the complaints by your compilers. To make prox-
ies behave like the objects they stand for, you must overload each
function applicable to the real objects so it applies to proxies, too.

Yet another situation in which proxies fail to replace real objects is
when being passed to functions that take references to non-const ob-
jects:

void swap(char& a, char& b); // swaps the value of a and b

String s = "+C+"; // oops, should be "C++"

swap(s[0], s[1]); // this should fix the
// problem, but it won’t
// compile

String::operator[] returns a CharProxy, but swap demands that its
arguments be of type char&. A CharProxy may be implicitly converted
into a char, but there is no conversion function to a char&. Further-
more, the char to which it may be converted can’t be bound to swap’s
char& parameters, because that char is a temporary object (it’s oper-
ator char’s return value) and, as Item 19 explains, there are good rea-
sons for refusing to bind temporary objects to non-const reference
parameters.

A final way in which proxies fail to seamlessly replace real objects has
to do with implicit type conversions. When a proxy object is implicitly
converted into the real object it stands for, a user-defined conversion
function is invoked. For instance, a CharProxy can be converted into
the char it stands for by calling operator char. As Item 5 explains,
compilers may use only one user-defined conversion function when
converting a parameter at a call site into the type needed by the corre-
sponding function parameter. As a result, it is possible for function
calls that succeed when passed real objects to fail when passed prox-
ies. For example, suppose we have a TVStation class and a function,
watchTV:

class TVStation {
public:
TVStation(int channel);
...

};
From the Library of Yuri Khan

ptg

Proxy Classes 227
void watchTV(const TVStation& station, float hoursToWatch);

Thanks to implicit type conversion from int to TVStation (see Item 5),
we could then do this:

watchTV(10, 2.5); // watch channel 10 for
// 2.5 hours

Using the template for reference-counted arrays that use proxy classes
to distinguish lvalue and rvalue invocations of operator[], however,
we could not do this:

Array<int> intArray;

intArray[4] = 10;

watchTV(intArray[4], 2.5); // error! no conversion
// from Proxy<int> to
// TVStation

Given the problems that accompany implicit type conversions, it’s
hard to get too choked up about this. In fact, a better design for the
TVStation class would declare its constructor explicit, in which
case even the first call to watchTV would fail to compile. For all the de-
tails on implicit type conversions and how explicit affects them, see
Item 5.

Evaluation

Proxy classes allow you to achieve some types of behavior that are oth-
erwise difficult or impossible to implement. Multidimensional arrays
are one example, lvalue/rvalue differentiation is a second, suppression
of implicit conversions (see Item 5) is a third.

At the same time, proxy classes have disadvantages. As function re-
turn values, proxy objects are temporaries (see Item 19), so they must
be created and destroyed. That’s not free, though the cost may be more
than recouped through their ability to distinguish write operations
from read operations. The very existence of proxy classes increases the
complexity of software systems that employ them, because additional
classes make things harder to design, implement, understand, and
maintain, not easier.

Finally, shifting from a class that works with real objects to a class that
works with proxies often changes the semantics of the class, because
proxy objects usually exhibit behavior that is subtly different from that
of the real objects they represent. Sometimes this makes proxies a
poor choice when designing a system, but in many cases there is little
need for the operations that would make the presence of proxies ap-
parent to clients. For instance, few clients will want to take the address
From the Library of Yuri Khan

ptg

228 Item 31
of an Array1D object in the two-dimensional array example we saw at
the beginning of this Item, and there isn’t much chance that an Ar-
raySize object (see Item 5) would be passed to a function expecting a
different type. In many cases, proxies can stand in for real objects per-
fectly acceptably. When they can, it is often the case that nothing else
will do.

Item 31: Making functions virtual with respect to
more than one object.

Implementing Multiple DispatchSometimes, to borrow a phrase from Jacqueline Susann, once is not
enough. Suppose, for example, you’re bucking for one of those high-
profile, high-prestige, high-paying programming jobs at that famous
software company in Redmond, Washington — by which of course I
mean Nintendo. To bring yourself to the attention of Nintendo’s man-
agement, you might decide to write a video game. Such a game might
take place in outer space and involve space ships, space stations, and
asteroids.

As the ships, stations, and asteroids whiz around in your artificial
world, they naturally run the risk of colliding with one another. Let’s
assume the rules for such collisions are as follows:

■ If a ship and a station collide at low velocity, the ship docks at the
station. Otherwise the ship and the station sustain damage that’s
proportional to the speed at which they collide.

■ If a ship and a ship or a station and a station collide, both partici-
pants in the collision sustain damage that’s proportional to the
speed at which they hit.

■ If a small asteroid collides with a ship or a station, the asteroid is
destroyed. If it’s a big asteroid, the ship or the station is destroyed.

■ If an asteroid collides with another asteroid, both break into
pieces and scatter little baby asteroids in all directions.

This may sound like a dull game, but it suffices for our purpose here,
which is to consider how to structure the C++ code that handles colli-
sions between objects.

We begin by noting that ships, stations, and asteroids share some
common features. If nothing else, they’re all in motion, so they all have
a velocity that describes that motion. Given this commonality, it is nat-
ural to define a base class from which they all inherit. In practice, such
a class is almost invariably an abstract base class, and, if you heed the
From the Library of Yuri Khan

ptg

Implementing Multiple Dispatch 229
warning I give in Item 33, base classes are always abstract. The hier-
archy might therefore look like this:

class GameObject { ... };

class SpaceShip: public GameObject { ... };

class SpaceStation: public GameObject { ... };

class Asteroid: public GameObject { ... };

Now, suppose you’re deep in the bowels of your program, writing the
code to check for and handle object collisions. You might come up with
a function that looks something like this:

void checkForCollision(GameObject& object1,
GameObject& object2)

{
if (theyJustCollided(object1, object2)) {
processCollision(object1, object2);

}
else {
...

}
}

This is where the programming challenge becomes apparent. When
you call processCollision, you know that object1 and object2
just collided, and you know that what happens in that collision de-
pends on what object1 really is and what object2 really is, but you
don’t know what kinds of objects they really are; all you know is that
they’re both GameObjects. If the collision processing depended only on
the dynamic type of object1, you could make processCollision vir-
tual in GameObject and call object1.processCollision(object2).
You could do the same thing with object2 if the details of the collision
depended only on its dynamic type. What happens in the collision,
however, depends on both their dynamic types. A function call that’s
virtual on only one object, you see, is not enough.

What you need is a kind of function whose behavior is somehow virtual
on the types of more than one object. C++ offers no such function. Nev-

GameObject

SpaceShip SpaceStation Asteroid
From the Library of Yuri Khan

ptg

230 Item 31
ertheless, you still have to implement the behavior required above. The
question, then, is how you are going to do it.

One possibility is to scrap the use of C++ and choose another program-
ming language. You could turn to CLOS, for example, the Common
Lisp Object System. CLOS supports what is possibly the most general
object-oriented function-invocation mechanism one can imagine:
multi-methods. A multi-method is a function that’s virtual on as many
parameters as you’d like, and CLOS goes even further by giving you
substantial control over how calls to overloaded multi-methods are re-
solved.

Let us assume, however, that you must implement your game in C++
— that you must come up with your own way of implementing what is
commonly referred to as double-dispatching. (The name comes from
the object-oriented programming community, where what C++ pro-
grammers know as a virtual function call is termed a “message dis-
patch.” A call that’s virtual on two parameters is implemented through
a “double dispatch.” The generalization of this — a function acting vir-
tual on several parameters — is called multiple dispatch.) There are
several approaches you might consider. None is without its disadvan-
tages, but that shouldn’t surprise you. C++ offers no direct support for
double-dispatching, so you must yourself do the work compilers do
when they implement virtual functions (see Item 24). If that were easy
to do, we’d probably all be doing it ourselves and simply programming
in C. We aren’t and we don’t, so fasten your seat belts, it’s going to be
a bumpy ride.

Using Virtual Functions and RTTI

Virtual functions implement a single dispatch; that’s half of what we
need; and compilers do virtual functions for us, so we begin by declar-
ing a virtual function collide in GameObject. This function is over-
ridden in the derived classes in the usual manner:

class GameObject {
public:
virtual void collide(GameObject& otherObject) = 0;
...

};

class SpaceShip: public GameObject {
public:
virtual void collide(GameObject& otherObject);
...

};

Here I’m showing only the derived class SpaceShip, but SpaceSta-
tion and Asteroid are handled in exactly the same manner.
From the Library of Yuri Khan

ptg

Implementing Multiple Dispatch 231
The most common approach to double-dispatching returns us to the
unforgiving world of virtual function emulation via chains of if-then-
elses. In this harsh world, we first discover the real type of otherOb-
ject, then we test it against all the possibilities:

// if we collide with an object of unknown type, we
// throw an exception of this type:
class CollisionWithUnknownObject {
public:
CollisionWithUnknownObject(GameObject& whatWeHit);
...

};

void SpaceShip::collide(GameObject& otherObject)
{
const type_info& objectType = typeid(otherObject);

if (objectType == typeid(SpaceShip)) {
SpaceShip& ss = static_cast<SpaceShip&>(otherObject);

process a SpaceShip-SpaceShip collision;

}

else if (objectType == typeid(SpaceStation)) {
SpaceStation& ss =
static_cast<SpaceStation&>(otherObject);

process a SpaceShip-SpaceStation collision;

}

else if (objectType == typeid(Asteroid)) {
Asteroid& a = static_cast<Asteroid&>(otherObject);

process a SpaceShip-Asteroid collision;

}

else {
throw CollisionWithUnknownObject(otherObject);

}
}

Notice how we need to determine the type of only one of the objects in-
volved in the collision. The other object is *this, and its type is deter-
mined by the virtual function mechanism. We’re inside a SpaceShip
member function, so *this must be a SpaceShip object. Thus we only
have to figure out the real type of otherObject.

There’s nothing complicated about this code. It’s easy to write. It’s even
easy to make work. That’s one of the reasons RTTI is worrisome: it
looks harmless. The true danger in this code is hinted at only by the
final else clause and the exception that’s thrown there.
From the Library of Yuri Khan

ptg

232 Item 31
We’ve pretty much bidden adios to encapsulation, because each col-
lide function must be aware of each of its sibling classes, i.e., those
classes that inherit from GameObject. In particular, if a new type of
object — a new class — is added to the game, we must update each
RTTI-based if-then-else chain in the program that might encounter
the new object type. If we forget even a single one, the program will
have a bug, and the bug will not be obvious. Furthermore, compilers
are in no position to help us detect such an oversight, because they
have no idea what we’re doing.

This kind of type-based programming has a long history in C, and one
of the things we know about it is that it yields programs that are essen-
tially unmaintainable. Enhancement of such programs eventually be-
comes unthinkable. This is the primary reason why virtual functions
were invented in the first place: to shift the burden of generating and
maintaining type-based function calls from programmers to compilers.
When we employ RTTI to implement double-dispatching, we are hark-
ing back to the bad old days.

The techniques of the bad old days led to errors in C, and they’ll lead
to errors in C++, too. In recognition of our human frailty, we’ve in-
cluded a final else clause in the collide function, a clause where
control winds up if we hit an object we don’t know about. Such a situ-
ation is, in principle, impossible, but where were our principles when
we decided to use RTTI? There are various ways to handle such unan-
ticipated interactions, but none is very satisfying. In this case, we’ve
chosen to throw an exception, but it’s not clear how our callers can
hope to handle the error any better than we can, since we’ve just run
into something we didn’t know existed.

Using Virtual Functions Only

There is a way to minimize the risks inherent in an RTTI approach to
implementing double-dispatching, but before we look at that, it’s con-
venient to see how to attack the problem using nothing but virtual
functions. That strategy begins with the same basic structure as the
RTTI approach. The collide function is declared virtual in GameOb-
ject and is redefined in each derived class. In addition, collide is
overloaded in each class, one overloading for each derived class in the
hierarchy:

class SpaceShip; // forward declarations
class SpaceStation;
class Asteroid;
From the Library of Yuri Khan

ptg

Implementing Multiple Dispatch 233
class GameObject {
public:
virtual void collide(GameObject& otherObject) = 0;
virtual void collide(SpaceShip& otherObject) = 0;
virtual void collide(SpaceStation& otherObject) = 0;
virtual void collide(Asteroid& otherobject) = 0;
...

};

class SpaceShip: public GameObject {
public:
virtual void collide(GameObject& otherObject);
virtual void collide(SpaceShip& otherObject);
virtual void collide(SpaceStation& otherObject);
virtual void collide(Asteroid& otherobject);
...

};

The basic idea is to implement double-dispatching as two single dis-
patches, i.e., as two separate virtual function calls: the first deter-
mines the dynamic type of the first object, the second determines that
of the second object. As before, the first virtual call is to the collide
function taking a GameObject& parameter. That function’s implemen-
tation now becomes startlingly simple:

void SpaceShip::collide(GameObject& otherObject)
{
otherObject.collide(*this);

}

At first glance, this appears to be nothing more than a recursive call to
collide with the order of the parameters reversed, i.e., with other-
Object becoming the object calling the member function and *this
becoming the function’s parameter. Glance again, however, because
this is not a recursive call. As you know, compilers figure out which of
a set of functions to call on the basis of the static types of the argu-
ments passed to the function. In this case, four different collide
functions could be called, but the one chosen is based on the static
type of *this. What is that static type? Being inside a member func-
tion of the class SpaceShip, *this must be of type SpaceShip. The
call is therefore to the collide function taking a SpaceShip&, not the
collide function taking a GameObject&.

All the collide functions are virtual, so the call inside Space-
Ship::collide resolves to the implementation of collide correspond-
ing to the real type of otherObject. Inside that implementation of
collide, the real types of both objects are known, because the left-
hand object is *this (and therefore has as its type the class imple-
From the Library of Yuri Khan

ptg

234 Item 31
menting the member function) and the right-hand object’s real type is
SpaceShip, the same as the declared type of the parameter.

All this may be clearer when you see the implementations of the other
collide functions in SpaceShip:

void SpaceShip::collide(SpaceShip& otherObject)
{
process a SpaceShip-SpaceShip collision;

}

void SpaceShip::collide(SpaceStation& otherObject)
{
process a SpaceShip-SpaceStation collision;

}

void SpaceShip::collide(Asteroid& otherObject)
{
process a SpaceShip-Asteroid collision;

}

As you can see, there’s no muss, no fuss, no RTTI, no need to throw
exceptions for unexpected object types. There can be no unexpected
object types — that’s the whole point of using virtual functions. In fact,
were it not for its fatal flaw, this would be the perfect solution to the
double-dispatching problem.

The flaw is one it shares with the RTTI approach we saw earlier: each
class must know about its siblings. As new classes are added, the code
must be updated. However, the way in which the code must be up-
dated is different in this case. True, there are no if-then-elses to
modify, but there is something that is often worse: each class defini-
tion must be amended to include a new virtual function. If, for exam-
ple, you decide to add a new class Satellite (inheriting from
GameObject) to your game, you’d have to add a new collide function
to each of the existing classes in the program.

Modifying existing classes is something you are frequently in no posi-
tion to do. If, instead of writing the entire video game yourself, you
started with an off-the-shelf class library comprising a video game ap-
plication framework, you might not have write access to the GameOb-
ject class or the framework classes derived from it. In that case,
adding new member functions, virtual or otherwise, is not an option.
Alternatively, you may have physical access to the classes requiring
modification, but you may not have practical access. For example, sup-
pose you were hired by Nintendo and were put to work on programs
using a library containing GameObject and other useful classes.
Surely you wouldn’t be the only one using that library, and Nintendo
would probably be less than thrilled about recompiling every applica-
tion using that library each time you decided to add a new type of ob-
From the Library of Yuri Khan

ptg

Implementing Multiple Dispatch 235
ject to your program. In practice, libraries in wide use are modified
only rarely, because the cost of recompiling everything using those li-
braries is too great.

The long and short of it is if you need to implement double-dispatching
in your program, your best recourse is to modify your design to elimi-
nate the need. Failing that, the virtual function approach is safer than
the RTTI strategy, but it constrains the extensibility of your system to
match that of your ability to edit header files. The RTTI approach, on
the other hand, makes no recompilation demands, but, if implemented
as shown above, it generally leads to software that is unmaintainable.
You pays your money and you takes your chances.

Emulating Virtual Function Tables

There is a way to improve those chances. You may recall from Item 24
that compilers typically implement virtual functions by creating an
array of function pointers (the vtbl) and then indexing into that array
when a virtual function is called. Using a vtbl eliminates the need for
compilers to perform chains of if-then-else-like computations, and
it allows compilers to generate the same code at all virtual function call
sites: determine the correct vtbl index, then call the function pointed
to at that position in the vtbl.

There is no reason you can’t do this yourself. If you do, you not only
make your RTTI-based code more efficient (indexing into an array and
following a function pointer is almost always more efficient than run-
ning through a series of if-then-else tests, and it generates less
code, too), you also isolate the use of RTTI to a single location: the
place where your array of function pointers is initialized. I should men-
tion that the meek may inherit the earth, but the meek of heart may
wish to take a few deep breaths before reading what follows.

We begin by making some modifications to the functions in the
GameObject hierarchy:

class GameObject {
public:
virtual void collide(GameObject& otherObject) = 0;
...

};

class SpaceShip: public GameObject {
public:
virtual void collide(GameObject& otherObject);
virtual void hitSpaceShip(SpaceShip& otherObject);
virtual void hitSpaceStation(SpaceStation& otherObject);
virtual void hitAsteroid(Asteroid& otherobject);
...

};
From the Library of Yuri Khan

ptg

236 Item 31
void SpaceShip::hitSpaceShip(SpaceShip& otherObject)
{
process a SpaceShip-SpaceShip collision;

}

void SpaceShip::hitSpaceStation(SpaceStation& otherObject)
{
process a SpaceShip-SpaceStation collision;

}

void SpaceShip::hitAsteroid(Asteroid& otherObject)
{
process a SpaceShip-Asteroid collision;

}

Like the RTTI-based hierarchy we started out with, the GameObject
class contains only one function for processing collisions, the one that
performs the first of the two necessary dispatches. Like the virtual-
function-based hierarchy we saw later, each kind of interaction is en-
capsulated in a separate function, though in this case the functions
have different names instead of sharing the name collide. There is a
reason for this abandonment of overloading, and we shall see it soon.
For the time being, note that the design above contains everything we
need except an implementation for SpaceShip::collide; that’s where
the various hit functions will be invoked. As before, once we success-
fully implement the SpaceShip class, the SpaceStation and Aster-
oid classes will follow suit.

Inside SpaceShip::collide, we need a way to map the dynamic type
of the parameter otherObject to a member function pointer that
points to the appropriate collision-handling function. An easy way to
do this is to create an associative array that, given a class name, yields
the appropriate member function pointer. It’s possible to implement
collide using such an associative array directly, but it’s a bit easier
to understand what’s going on if we add an intervening function,
lookup, that takes a GameObject and returns the appropriate mem-
ber function pointer. That is, you pass lookup a GameObject, and it
returns a pointer to the member function to call when you collide with
something of that GameObject’s type.

Here’s the declaration of lookup:

class SpaceShip: public GameObject {
private:
typedef void (SpaceShip::*HitFunctionPtr)(GameObject&);

static HitFunctionPtr lookup(const GameObject& whatWeHit);

...
};
From the Library of Yuri Khan

ptg

Implementing Multiple Dispatch 237
The syntax of function pointers is never very pretty, and for member
function pointers it’s worse than usual, so we’ve typedefed HitFunc-
tionPtr to be shorthand for a pointer to a member function of Space-
Ship that takes a GameObject& and returns nothing.

Once we’ve got lookup, implementation of collide becomes the pro-
verbial piece of cake:

void SpaceShip::collide(GameObject& otherObject)
{
HitFunctionPtr hfp =
lookup(otherObject); // find the function to call

if (hfp) { // if a function was found
(this->*hfp)(otherObject); // call it

}
else {
throw CollisionWithUnknownObject(otherObject);

}
}

Provided we’ve kept the contents of our associative array in sync with
the class hierarchy under GameObject, lookup must always find a
valid function pointer for the object we pass it. People are people, how-
ever, and mistakes have been known to creep into even the most care-
fully crafted software systems. That’s why we still check to make sure
a valid pointer was returned from lookup, and that’s why we still
throw an exception if the impossible occurs and the lookup fails.

All that remains now is the implementation of lookup. Given an asso-
ciative array that maps from object types to member function pointers,
the lookup itself is easy, but creating, initializing, and destroying the
associative array is an interesting problem of its own.

Such an array should be created and initialized before it’s used, and it
should be destroyed when it’s no longer needed. We could use new and
delete to create and destroy the array manually, but that would be
error-prone: how could we guarantee the array wasn’t used before we
got around to initializing it? A better solution is to have compilers au-
tomate the process, and we can do that by making the associative
array static in lookup. That way it will be created and initialized the
first time lookup is called, and it will be automatically destroyed some-
time after main is exited.

Furthermore, we can use the map template from the Standard Tem-
plate Library (see Item 35) as the associative array, because that’s
what a map is:
From the Library of Yuri Khan

ptg

238 Item 31
class SpaceShip: public GameObject {
private:
typedef void (SpaceShip::*HitFunctionPtr)(GameObject&);
typedef map<string, HitFunctionPtr> HitMap;
...

};

SpaceShip::HitFunctionPtr
SpaceShip::lookup(const GameObject& whatWeHit)
{
static HitMap collisionMap;
...

}

Here, collisionMap is our associative array. It maps the name of a
class (as a string object) to a SpaceShip member function pointer.
Because map<string, HitFunctionPtr> is quite a mouthful, we use
a typedef to make it easier to swallow. (For fun, try writing the declara-
tion of collisionMap without using the HitMap and HitFunctionPtr
typedefs. Most people will want to do this only once.)

Given collisionMap, the implementation of lookup is rather anticli-
mactic. That’s because searching for something is an operation di-
rectly supported by the map class, and the one member function we
can always (portably) call on the result of a typeid invocation is name
(which, predictably†, yields the name of the object’s dynamic type). To
implement lookup, then, we just find the entry in collisionMap cor-
responding to the dynamic type of lookup’s argument.

The code for lookup is straightforward, but if you’re not familiar with
the Standard Template Library (again, see Item 35), it may not seem
that way. Don’t worry. The comments in the function explain what’s
going on.

SpaceShip::HitFunctionPtr
SpaceShip::lookup(const GameObject& whatWeHit)
{
static HitMap collisionMap; // we’ll see how to

// initialize this below

// look up the collision-processing function for the type
// of whatWeHit. The value returned is a pointer-like
// object called an "iterator" (see Item 35).
HitMap::iterator mapEntry=
collisionMap.find(typeid(whatWeHit).name());

// mapEntry == collisionMap.end() if the lookup failed;
// this is standard map behavior. Again, see Item 35.
if (mapEntry == collisionMap.end()) return 0;

† It turns out that it’s not so predictable after all. The C++ standard doesn’t specify the
return value of type_info::name, and different implementations do behave different-
ly. A preferable design is to use a container-friendly class that wraps type_info ob-
jects, such as Andrei Alexandrescu’s TypeInfo class, which is described in section 2.8
of his Modern C++ Design (Addison Wesley, 2001).
From the Library of Yuri Khan

http://www.amazon.com/gp/product/0201704315?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201704315

ptg

Implementing Multiple Dispatch 239
// If we get here, the search succeeded. mapEntry
// points to a complete map entry, which is a
// (string, HitFunctionPtr) pair. We want only the
// second part of the pair, so that’s what we return.
return (*mapEntry).second;

}

The final statement in the function returns (*mapEntry).second in-
stead of the more conventional mapEntry->second in order to satisfy
the vagaries of the STL. For details, see page 96.

Initializing Emulated Virtual Function Tables

Which brings us to the initialization of collisionMap. We’d like to say
something like this,

// An incorrect implementation
SpaceShip::HitFunctionPtr
SpaceShip::lookup(const GameObject& whatWeHit)
{
static HitMap collisionMap;

collisionMap["SpaceShip"] = &hitSpaceShip;
collisionMap["SpaceStation"] = &hitSpaceStation;
collisionMap["Asteroid"] = &hitAsteroid;

...

}

but this inserts the member function pointers into collisionMap each
time lookup is called, and that’s needlessly inefficient. In addition, this
won’t compile, but that’s a secondary problem we’ll address shortly.

What we need now is a way to put the member function pointers into
collisionMap only once — when collisionMap is created. That’s
easy enough to accomplish; we just write a private static member func-
tion called initializeCollisionMap to create and initialize our map,
then we initialize collisionMap with initializeCollisionMap’s re-
turn value:

class SpaceShip: public GameObject {
private:
static HitMap initializeCollisionMap();
...

};

SpaceShip::HitFunctionPtr
SpaceShip::lookup(const GameObject& whatWeHit)
{
static HitMap collisionMap = initializeCollisionMap();
...

}

From the Library of Yuri Khan

ptg

240 Item 31
But this means we may have to pay the cost of copying the map object
returned from initializeCollisionMap into collisionMap (see
Items 19 and 20). We’d prefer not to do that. We wouldn’t have to pay
if initializeCollisionMap returned a pointer, but then we’d have to
worry about making sure the map object the pointer pointed to was de-
stroyed at an appropriate time.

Fortunately, there’s a way for us to have it all. We can turn colli-
sionMap into a smart pointer (see Item 28) that automatically deletes
what it points to when the pointer itself is destroyed. In fact, the stan-
dard C++ library contains a template, auto_ptr, for just such a smart
pointer (see Item 9). By making collisionMap a static auto_ptr in
lookup, we can have initializeCollisionMap return a pointer to
an initialized map object, yet never have to worry about a resource leak;
the map to which collisionMap points will be automatically destroyed
when collisionMap is. Thus:

class SpaceShip: public GameObject {
private:
static HitMap * initializeCollisionMap();

...

};

SpaceShip::HitFunctionPtr
SpaceShip::lookup(const GameObject& whatWeHit)
{
static auto_ptr<HitMap>
collisionMap(initializeCollisionMap());

...

}

The clearest way to implement initializeCollisionMap would seem
to be this,

SpaceShip::HitMap * SpaceShip::initializeCollisionMap()
{
HitMap *phm = new HitMap;

(*phm)["SpaceShip"] = &hitSpaceShip;
(*phm)["SpaceStation"] = &hitSpaceStation;
(*phm)["Asteroid"] = &hitAsteroid;

return phm;
}

but as I noted earlier, this won’t compile. That’s because a HitMap is
declared to hold pointers to member functions that all take the same
From the Library of Yuri Khan

ptg

Implementing Multiple Dispatch 241
type of argument, namely GameObject. But hitSpaceShip takes a
SpaceShip, hitSpaceStation takes a SpaceStation, and, hitAst-
eroid takes an Asteroid. Even though SpaceShip, SpaceStation,
and Asteroid can all be implicitly converted to GameObject, there is
no such conversion for pointers to functions taking these argument
types.

To placate your compilers, you might be tempted to employ
reinterpret_casts (see Item 2), which are generally the casts of
choice when converting between function pointer types:

// A bad idea...
SpaceShip::HitMap * SpaceShip::initializeCollisionMap()
{
HitMap *phm = new HitMap;

(*phm)["SpaceShip"] =
reinterpret_cast<HitFunctionPtr>(&hitSpaceShip);

(*phm)["SpaceStation"] =
reinterpret_cast<HitFunctionPtr>(&hitSpaceStation);

(*phm)["Asteroid"] =
reinterpret_cast<HitFunctionPtr>(&hitAsteroid);

return phm;
}

This will compile, but it’s a bad idea. It entails doing something you
should never do: lying to your compilers. Telling them that hitSpace-
Ship, hitSpaceStation, and hitAsteroid are functions expecting a
GameObject argument is simply not true. hitSpaceShip expects a
SpaceShip, hitSpaceStation expects a SpaceStation, and hitAs-
teroid expects an Asteroid. The casts say otherwise. The casts lie.

More than morality is on the line here. Compilers don’t like to be lied
to, and they often find a way to exact revenge when they discover
they’ve been deceived. In this case, they’re likely to get back at you by
generating bad code for functions you call through *phm in cases
where GameObject’s derived classes employ multiple inheritance or
have virtual base classes. In other words, if SpaceStation, Space-
Ship, or Asteroid had other base classes (in addition to GameObject),
you’d probably find that your calls to collision-processing functions in
collide would behave quite rudely.
From the Library of Yuri Khan

ptg

242 Item 31
Consider again the A-B-C-D inheritance hierarchy and the possible ob-
ject layout for a D object that is described in Item 24:

Each of the four class parts in a D object has a different address. This
is important, because even though pointers and references behave dif-
ferently (see Item 1), compilers typically implement references by using
pointers in the generated code. Thus, pass-by-reference is typically im-
plemented by passing a pointer to an object. When an object with mul-
tiple base classes (such as a D object) is passed by reference, it is
crucial that compilers pass the correct address — the one correspond-
ing to the declared type of the parameter in the function being called.

But what if you’ve lied to your compilers and told them your function
expects a GameObject when it really expects a SpaceShip or a
SpaceStation? Then they’ll pass the wrong address when you call the
function, and the resulting runtime carnage will probably be grue-
some. It will also be very difficult to determine the cause of the prob-
lem. There are good reasons why casting is discouraged. This is one of
them.

Okay, so casting is out. Fine. But the type mismatch between the func-
tion pointers a HitMap is willing to contain and the pointers to the
hitSpaceShip, hitSpaceStation, and hitAsteroid functions re-
mains. There is only one way to resolve the conflict: change the types
of the functions so they all take GameObject arguments:

class GameObject { // this is unchanged
public:
virtual void collide(GameObject& otherObject) = 0;
...

};

B Data Members

C Data Members

D Data Members

A Data Members

Pointer to virtual base class

Pointer to virtual base class

vptr

vptrB

D

C

A

vptr
From the Library of Yuri Khan

ptg

Implementing Multiple Dispatch 243
class SpaceShip: public GameObject {
public:
virtual void collide(GameObject& otherObject);

// these functions now all take a GameObject parameter
virtual void hitSpaceShip(GameObject& spaceShip);
virtual void hitSpaceStation(GameObject& spaceStation);
virtual void hitAsteroid(GameObject& asteroid);
...

};

Our solution to the double-dispatching problem that was based on vir-
tual functions overloaded the function name collide. Now we are in a
position to understand why we didn’t follow suit here — why we de-
cided to use an associative array of member function pointers instead.
All the hit functions take the same parameter type, so we must give
them different names.

Now we can write initializeCollisionMap the way we always
wanted to:

SpaceShip::HitMap * SpaceShip::initializeCollisionMap()
{
HitMap *phm = new HitMap;

(*phm)["SpaceShip"] = &hitSpaceShip;
(*phm)["SpaceStation"] = &hitSpaceStation;
(*phm)["Asteroid"] = &hitAsteroid;

return phm;
}

Regrettably, our hit functions now get a general GameObject param-
eter instead of the derived class parameters they expect. To bring real-
ity into accord with expectation, we must resort to a dynamic_cast
(see Item 2) at the top of each function:

void SpaceShip::hitSpaceShip(GameObject& spaceShip)
{
SpaceShip& otherShip=
dynamic_cast<SpaceShip&>(spaceShip);

process a SpaceShip-SpaceShip collision;

}

void SpaceShip::hitSpaceStation(GameObject& spaceStation)
{
SpaceStation& station=
dynamic_cast<SpaceStation&>(spaceStation);

process a SpaceShip-SpaceStation collision;

}

From the Library of Yuri Khan

ptg

244 Item 31
void SpaceShip::hitAsteroid(GameObject& asteroid)
{
Asteroid& theAsteroid =
dynamic_cast<Asteroid&>(asteroid);

process a SpaceShip-Asteroid collision;

}

Each of the dynamic_casts will throw a bad_cast exception if the
cast fails. They should never fail, of course, because the hit functions
should never be called with incorrect parameter types. Still, we’re bet-
ter off safe than sorry.

Using Non-Member Collision-Processing Functions

We now know how to build a vtbl-like associative array that lets us im-
plement the second half of a double-dispatch, and we know how to en-
capsulate the details of the associative array inside a lookup function.
Because this array contains pointers to member functions, however,
we still have to modify class definitions if a new type of GameObject is
added to the game, and that means everybody has to recompile, even
people who don’t care about the new type of object. For example, if
Satellite were added to our game, we’d have to augment the Space-
Ship class with a declaration of a function to handle collisions between
satellites and spaceships. All SpaceShip clients would then have to re-
compile, even if they couldn’t care less about the existence of satellites.
This is the problem that led us to reject the implementation of double-
dispatching based purely on virtual functions, and that solution was a
lot less work than the one we’ve just seen.

The recompilation problem would go away if our associative array con-
tained pointers to non-member functions. Furthermore, switching to
non-member collision-processing functions would let us address a de-
sign question we have so far ignored, namely, in which class should
collisions between objects of different types be handled? With the im-
plementation we just developed, if object 1 and object 2 collide and ob-
ject 1 happens to be the left-hand argument to processCollision,
the collision will be handled inside the class for object 1. If object 2
happens to be the left-hand argument to processCollision, how-
ever, the collision will be handled inside the class for object 2. Does
this make sense? Wouldn’t it be better to design things so that colli-
sions between objects of types A and B are handled by neither A nor B
but instead in some neutral location outside both classes?

If we move the collision-processing functions out of our classes, we can
give clients header files that contain class definitions without any hit
or collide functions. We can then structure our implementation file
for processCollision as follows:
From the Library of Yuri Khan

ptg

Implementing Multiple Dispatch 245
#include "SpaceShip.h"
#include "SpaceStation.h"
#include "Asteroid.h"

namespace { // unnamed namespace — see below

// primary collision-processing functions
void shipAsteroid(GameObject& spaceShip,

GameObject& asteroid);

void shipStation(GameObject& spaceShip,
GameObject& spaceStation);

void asteroidStation(GameObject& asteroid,
GameObject& spaceStation);

...

// secondary collision-processing functions that just
// implement symmetry: swap the parameters and call a
// primary function
void asteroidShip(GameObject& asteroid,

GameObject& spaceShip)
{ shipAsteroid(spaceShip, asteroid); }

void stationShip(GameObject& spaceStation,
GameObject& spaceShip)

{ shipStation(spaceShip, spaceStation); }

void stationAsteroid(GameObject& spaceStation,
GameObject& asteroid)

{ asteroidStation(asteroid, spaceStation); }

...

// see below for a description of these types/functions
typedef void (*HitFunctionPtr)(GameObject&, GameObject&);
typedef map< pair<string,string>, HitFunctionPtr > HitMap;

pair<string,string> makeStringPair(const char *s1,
const char *s2);

HitMap * initializeCollisionMap();

HitFunctionPtr lookup(const string& class1,
const string& class2);

} // end namespace

void processCollision(GameObject& object1,
GameObject& object2)

{
HitFunctionPtr phf = lookup(typeid(object1).name(),

typeid(object2).name());

if (phf) phf(object1, object2);
else throw UnknownCollision(object1, object2);

}

From the Library of Yuri Khan

ptg

246 Item 31
Note the use of the unnamed namespace to contain the functions used
to implement processCollision. Everything in such an unnamed
namespace is private to the current translation unit (essentially the
current file) — it’s just like the functions were declared static at file
scope. With the advent of namespaces, however, statics at file scope
have been deprecated, so you should accustom yourself to using un-
named namespaces as soon as your compilers support them.

Conceptually, this implementation is the same as the one that used
member functions, but there are some minor differences. First, Hit-
FunctionPtr is now a typedef for a pointer to a non-member function.
Second, the exception class CollisionWithUnknownObject has been
renamed UnknownCollision and modified to take two objects instead
of one. Finally, lookup must now take two type names and perform
both parts of the double-dispatch. This means our collision map must
now hold three pieces of information: two types names and a HitFunc-
tionPtr.

As fate would have it, the standard map class is defined to hold only
two pieces of information. We can finesse that problem by using the
standard pair template, which lets us bundle the two type names to-
gether as a single object. initializeCollisionMap, along with its
makeStringPair helper function, then looks like this:

// we use this function to create pair<string,string>
// objects from two char* literals. It’s used in
// initializeCollisionMap below. Note how this function
// enables the return value optimization (see Item 20).

namespace { // unnamed namespace again — see below

pair<string,string> makeStringPair(const char *s1,
const char *s2)

{ return pair<string,string>(s1, s2); }

} // end namespace

namespace { // still the unnamed namespace — see below

HitMap * initializeCollisionMap()
{
HitMap *phm = new HitMap;

(*phm)[makeStringPair("SpaceShip","Asteroid")] =
&shipAsteroid;

(*phm)[makeStringPair("SpaceShip", "SpaceStation")] =
&shipStation;

...

return phm;
}

} // end namespace
From the Library of Yuri Khan

ptg

Implementing Multiple Dispatch 247
lookup must also be modified to work with the pair<string,
string> objects that now comprise the first component of the collision
map:

namespace { // I explain this below — trust me

HitFunctionPtr lookup(const string& class1,
const string& class2)

{
static auto_ptr<HitMap>
collisionMap(initializeCollisionMap());

// see below for a description of make_pair
HitMap::iterator mapEntry=
collisionMap->find(make_pair(class1, class2));

if (mapEntry == collisionMap->end()) return 0;

return (*mapEntry).second;
}

} // end namespace

This is almost exactly what we had before. The only real difference is
the use of the make_pair function in this statement:

HitMap::iterator mapEntry=
collisionMap->find(make_pair(class1, class2));

make_pair is just a convenience function (template) in the standard li-
brary (see Item 35) that saves us the trouble of specifying the types
when constructing a pair object. We could just as well have written
the statement like this:

HitMap::iterator mapEntry=
collisionMap->find(pair<string,string>(class1, class2));

This calls for more typing, however, and specifying the types for the
pair is redundant (they’re the same as the types of class1 and
class2), so the make_pair form is more commonly used.

Because makeStringPair, initializeCollisionMap, and lookup
were declared inside an unnamed namespace, each must be imple-
mented within the same namespace. That’s why the implementations
of the functions above are in the unnamed namespace (for the same
translation unit as their declarations): so the linker will correctly asso-
ciate their definitions (i.e., their implementations) with their earlier
declarations.

We have finally achieved our goals. If new subclasses of GameObject
are added to our hierarchy, existing classes need not recompile (unless
they wish to use the new classes). We have no tangle of RTTI-based
switch or if-then-else conditionals to maintain. The addition of new
classes to the hierarchy requires only well-defined and localized
From the Library of Yuri Khan

ptg

248 Item 31
changes to our system: the addition of one or more map insertions in
initializeCollisionMap and the declarations of the new collision-
processing functions in the unnamed namespace associated with the
implementation of processCollision. It may have been a lot of work
to get here, but at least the trip was worthwhile. Yes? Yes?

Maybe.

Inheritance and Emulated Virtual Function Tables

There is one final problem we must confront. (If, at this point, you are
wondering if there will always be one final problem to confront, you
have truly come to appreciate the difficulty of designing an implemen-
tation mechanism for virtual functions.) Everything we’ve done will
work fine as long as we never need to allow inheritance-based type
conversions when calling collision-processing functions. But suppose
we develop a game in which we must sometimes distinguish between
commercial space ships and military space ships. We could modify our
hierarchy as follows, where we’ve heeded the guidance of Item 33 and
made the concrete classes CommercialShip and MilitaryShip in-
herit from the newly abstract class SpaceShip:

Suppose commercial and military ships behave identically when they
collide with something. Then we’d expect to be able to use the same
collision-processing functions we had before CommercialShip and
MilitaryShip were added. In particular, if a MilitaryShip object
and an Asteroid collided, we’d expect

void shipAsteroid(GameObject& spaceShip,
GameObject& asteroid);

to be called. It would not be. Instead, an UnknownCollision exception
would be thrown. That’s because lookup would be asked to find a
function corresponding to the type names “MilitaryShip” and “Aster-
oid,” and no such function would be found in collisionMap. Even

Military
Ship

Commercial
Ship

SpaceStation

GameObject

SpaceShip Asteroid
From the Library of Yuri Khan

ptg

Implementing Multiple Dispatch 249
though a MilitaryShip can be treated like a SpaceShip, lookup has
no way of knowing that.

Furthermore, there is no easy way of telling it. If you need to imple-
ment double-dispatching and you need to support inheritance-based
parameter conversions such as these, your only practical recourse is
to fall back on the double-virtual-function-call mechanism we exam-
ined earlier. That implies you’ll also have to put up with everybody re-
compiling when you add to your inheritance hierarchy, but that’s just
the way life is sometimes.

Initializing Emulated Virtual Function Tables (Reprise)

That’s really all there is to say about double-dispatching, but it would
be unpleasant to end the discussion on such a downbeat note, and un-
pleasantness is, well, unpleasant. Instead, let’s conclude by outlining
an alternative approach to initializing collisionMap.

As things stand now, our design is entirely static. Once we’ve regis-
tered a function for processing collisions between two types of objects,
that’s it; we’re stuck with that function forever. What if we’d like to add,
remove, or change collision-processing functions as the game pro-
ceeds? There’s no way to do it.

But there can be. We can turn the concept of a map for storing colli-
sion-processing functions into a class that offers member functions al-
lowing us to modify the contents of the map dynamically. For example:

class CollisionMap {
public:
typedef void (*HitFunctionPtr)(GameObject&, GameObject&);

void addEntry(const string& type1,
const string& type2,
HitFunctionPtr collisionFunction,
bool symmetric = true); // see below

void removeEntry(const string& type1,
const string& type2);

HitFunctionPtr lookup(const string& type1,
const string& type2);

// this function returns a reference to the one and only
// map — see Item 26
static CollisionMap& theCollisionMap();

private:
// these functions are private to prevent the creation
// of multiple maps — see Item 26
CollisionMap();
CollisionMap(const CollisionMap&);

};
From the Library of Yuri Khan

ptg

250 Item 31
This class lets us add entries to the map, remove them from it, and
look up the collision-processing function associated with a particular
pair of type names. It also uses the techniques of Item 26 to limit the
number of CollisionMap objects to one, because there is only one
map in our system. (More complex games with multiple maps are easy
to imagine.) Finally, it allows us to simplify the addition of symmetric
collisions to the map (i.e., collisions in which the effect of an object of
type T1 hitting an object of type T2 is the same as that of an object of
type T2 hitting an object of type T1) by automatically adding the im-
plied map entry when addEntry is called with the optional parameter
symmetric set to true.

With the CollisionMap class, each client wishing to add an entry to
the map does so directly:

void shipAsteroid(GameObject& spaceShip,
GameObject& asteroid);

CollisionMap::theCollisionMap().addEntry("SpaceShip",
"Asteroid",
&shipAsteroid);

void shipStation(GameObject& spaceShip,
GameObject& spaceStation);

CollisionMap::theCollisionMap().addEntry("SpaceShip",
"SpaceStation",
&shipStation);

void asteroidStation(GameObject& asteroid,
GameObject& spaceStation);

CollisionMap::theCollisionMap().addEntry("Asteroid",
"SpaceStation",
&asteroidStation);

...

Care must be taken to ensure that these map entries are added to the
map before any collisions occur that would call the associated func-
tions. One way to do this would be to have constructors in GameObject
subclasses check to make sure the appropriate mappings had been
added each time an object was created. Such an approach would exact
a small performance penalty at runtime. An alternative would be to
create a RegisterCollisionFunction class:

class RegisterCollisionFunction {
public:
RegisterCollisionFunction(

const string& type1,
const string& type2,
CollisionMap::HitFunctionPtr collisionFunction,
bool symmetric = true)

{
CollisionMap::theCollisionMap().addEntry(type1, type2,

collisionFunction,
symmetric);

}
};
From the Library of Yuri Khan

ptg

Implementing Multiple Dispatch 251
Clients could then use global objects of this type to automatically reg-
ister the functions they need:

RegisterCollisionFunction cf1("SpaceShip", "Asteroid",
&shipAsteroid);

RegisterCollisionFunction cf2("SpaceShip", "SpaceStation",
&shipStation);

RegisterCollisionFunction cf3("Asteroid", "SpaceStation",
&asteroidStation);

...

int main(int argc, char * argv[])
{
...

}

Because these objects are created before main is invoked, the func-
tions their constructors register are also added to the map before main
is called. If, later, a new derived class is added

class Satellite: public GameObject { ... };

and one or more new collision-processing functions are written,

void satelliteShip(GameObject& satellite,
GameObject& spaceShip);

void satelliteAsteroid(GameObject& satellite,
GameObject& asteroid);

these new functions can be similarly added to the map without dis-
turbing existing code:

RegisterCollisionFunction cf4("Satellite", "SpaceShip",
&satelliteShip);

RegisterCollisionFunction cf5("Satellite", "Asteroid",
&satelliteAsteroid);

This doesn’t change the fact that there’s no perfect way to implement
multiple dispatch, but it does make it easy to provide data for a map-
based implementation if we decide such an approach is the best match
for our needs.
From the Library of Yuri Khan

ptg
Miscellany

MiscellanyWe thus arrive at the organizational back of the bus, the chapter con-
taining the guidelines no one else would have. We begin with two Items
on C++ software development that describe how to design systems that
accommodate change. One of the strengths of the object-oriented ap-
proach to systems building is its support for change, and these Items
describe specific steps you can take to fortify your software against the
slings and arrows of a world that refuses to stand still.

We then examine how to combine C and C++ in the same program.
This necessarily leads to consideration of extralinguistic issues, but
C++ exists in the real world, so sometimes we must confront such
things.

Finally, I summarize changes to the C++ language standard since pub-
lication of the de facto reference. I especially cover the sweeping
changes that have been made in the standard library. If you have not
been following the standardization process closely, you are probably in
for some surprises — many of them quite pleasant.

Item 32: Program in the future tense.
Programming in the Future TenseThings change.

As software developers, we may not know much, but we do know that
things will change. We don’t necessarily know what will change, how
the changes will be brought about, when the changes will occur, or
why they will take place, but we do know this: things will change.

Good software adapts well to change. It accommodates new features, it
ports to new platforms, it adjusts to new demands, it handles new in-
puts. Software this flexible, this robust, and this reliable does not
come about by accident. It is designed and implemented by program-
mers who conform to the constraints of today while keeping in mind
the probable needs of tomorrow. This kind of software — software that
From the Library of Yuri Khan

ptg

Programming in the Future Tense 253
accepts change gracefully — is written by people who program in the fu-
ture tense.

To program in the future tense is to accept that things will change and
to be prepared for it. It is to recognize that new functions will be added
to libraries, that new overloadings will occur, and to watch for the po-
tentially ambiguous function calls that might result. It is to acknowl-
edge that new classes will be added to hierarchies, that present-day
derived classes may be tomorrow’s base classes, and to prepare for
that possibility. It is to accept that new applications will be written,
that functions will be called in new contexts, and to write those func-
tions so they continue to perform correctly. It is to remember that the
programmers charged with software maintenance are typically not the
code’s original developers, hence to design and implement in a fashion
that facilitates comprehension, modification, and enhancement by
others.

One way to do this is to express design constraints in C++ instead of
(or in addition to) comments or other documentation. For example, if a
class is designed to never have derived classes, don’t just put a com-
ment in the header file above the class, use C++ to prevent derivation;
Item 26 shows you how. If a class requires that all instances be on the
heap, don’t just tell clients that, enforce the restriction by applying the
approach of Item 27. If copying and assignment make no sense for a
class, prevent those operations by declaring the copy constructor and
the assignment operator private. C++ offers great power, flexibility, and
expressiveness. Use these characteristics of the language to enforce
the design decisions in your programs.

Given that things will change, write classes that can withstand the
rough-and-tumble world of software evolution. Avoid “demand-paged”
virtual functions, whereby you make no functions virtual unless some-
body comes along and demands that you do it. Instead, determine the
meaning of a function and whether it makes sense to let it be redefined
in derived classes. If it does, declare it virtual, even if nobody redefines
it right away. If it doesn’t, declare it nonvirtual, and don’t change it
later just because it would be convenient for someone; make sure the
change makes sense in the context of the entire class and the abstrac-
tion it represents.

Handle assignment and copy construction in every class, even if “no-
body ever does those things.” Just because they don’t do them now
doesn’t mean they won’t do them in the future. If these functions are
difficult to implement, declare them private. That way no one will in-
advertently call compiler-generated functions that do the wrong thing
(as often happens with default assignment operators and copy con-
structors).
From the Library of Yuri Khan

ptg

254 Item 32
Adhere to the principle of least astonishment: strive to provide classes
whose operators and functions have a natural syntax and an intuitive
semantics. Preserve consistency with the behavior of the built-in
types: when in doubt, do as the ints do.

Recognize that anything somebody can do, they will do. They’ll throw
exceptions, they’ll assign objects to themselves, they’ll use objects be-
fore giving them values, they’ll give objects values and never use them,
they’ll give them huge values, they’ll give them tiny values, they’ll give
them null values. In general, if it will compile, somebody will do it. As
a result, make your classes easy to use correctly and hard to use in-
correctly. Accept that clients will make mistakes, and design your
classes so you can prevent, detect, or correct such errors (see, for ex-
ample, Item 33).

Strive for portable code. It’s not much harder to write portable pro-
grams than to write unportable ones, and only rarely will the difference
in performance be significant enough to justify unportable constructs
(see Item 16). Even programs designed for custom hardware often end
up being ported, because stock hardware generally achieves an equiv-
alent level of performance within a few years. Writing portable code al-
lows you to switch platforms easily, to enlarge your client base, and to
brag about supporting open systems. It also makes it easier to recover
if you bet wrong in the operating system sweepstakes.

Design your code so that when changes are necessary, the impact is
localized. Encapsulate as much as you can; make implementation de-
tails private. Where applicable, use unnamed namespaces or file-
static objects and functions (see Item 31). Try to avoid designs that
lead to virtual base classes, because such classes must be initialized
by every class derived from them — even those derived indirectly (see
Item 4). Avoid RTTI-based designs that make use of cascading if-
then-else statements (see Item 31 again). Every time the class hierar-
chy changes, each set of statements must be updated, and if you forget
one, you’ll receive no warning from your compilers.

These are well known and oft-repeated exhortations, but most pro-
grammers are still stuck in the present tense. As are many authors,
unfortunately. Consider this advice by a well-regarded C++ expert:

You need a virtual destructor whenever someone deletes a B*
that actually points to a D.

Here B is a base class and D is a derived class. In other words, this au-
thor suggests that if your program looks like this, you don’t need a vir-
tual destructor in B:
From the Library of Yuri Khan

ptg

Programming in the Future Tense 255
class B { ... }; // no virtual dtor needed
class D: public B { ... };

B *pb = new D;

However, the situation changes if you add this statement:

delete pb; // NOW you need the virtual
// destructor in B

The implication is that a minor change to client code — the addition of
a delete statement — can result in the need to change the class defi-
nition for B. When that happens, all B’s clients must recompile. Follow-
ing this author’s advice, then, the addition of a single statement in one
function can lead to extensive code recompilation and relinking for all
clients of a library. This is anything but effective software design.

On the same topic, a different author writes:

If a public base class does not have a virtual destructor, no de-
rived class nor members of a derived class should have a de-
structor.

In other words, this is okay,

class string { // from the standard C++ library
public:
~string();

};

class B { ... }; // no data members with dtors,
// no virtual dtor needed

but if a new class is derived from B, things change:

class D: public B {
string name; // NOW ~B needs to be virtual

};

Again, a small change to the way B is used (here, the addition of a de-
rived class that contains a member with a destructor) may necessitate
extensive recompilation and relinking by clients. But small changes in
software should have small impacts on systems. This design fails that
test.

The same author writes:

If a multiple inheritance hierarchy has any destructors, every
base class should have a virtual destructor.

In all these quotations, note the present-tense thinking. How do clients
manipulate pointers now? What class members have destructors now?
What classes in the hierarchy have destructors now?
From the Library of Yuri Khan

ptg

256 Item 32
Future-tense thinking is quite different. Instead of asking how a class
is used now, it asks how the class is designed to be used. Future-tense
thinking says, if a class is designed to be used as a base class (even if
it’s not used as one now), it should have a virtual destructor. Such
classes behave correctly both now and in the future, and they don’t af-
fect other library clients when new classes derive from them. (At least,
they have no effect as far as their destructor is concerned. If additional
changes to the class are required, other clients may be affected.)

A commercial class library (one that predates the string specification
in the C++ library standard) contains a string class with no virtual de-
structor. The vendor’s explanation?

We didn’t make the destructor virtual, because we didn’t want
String to have a vtbl. We have no intention of ever having a
String*, so this is not a problem. We are well aware of the dif-
ficulties this could cause.

Is this present-tense or future-tense thinking?

Certainly the vtbl issue is a legitimate technical concern (see Item 24).
The implementation of most String classes contains only a single
char* pointer inside each String object, so adding a vptr to each
String would double the size of those objects. It is easy to understand
why a vendor would be unwilling to do that, especially for a highly vis-
ible, heavily used class like String. The performance of such a class
might easily fall within the 20% of a program that makes a difference
(see Item 16).

Still, the total memory devoted to a string object — the memory for the
object itself plus the heap memory needed to hold the string’s value —
is typically much greater than just the space needed to hold a char*
pointer. From this perspective, the overhead imposed by a vptr is less
significant. Nevertheless, it is a legitimate technical consideration.
(Certainly the ISO/ANSI standardization committee seems to think so:
the standard string type has a nonvirtual destructor.)

Somewhat more troubling is the vendor’s remark, “We have no inten-
tion of ever having a String*, so this is not a problem.” That may be
true, but their String class is part of a library they make available to
thousands of developers. That’s a lot of developers, each with a differ-
ent level of experience with C++, each doing something unique. Do
those developers understand the consequences of there being no vir-
tual destructor in String? Are they likely to know that because
String has no virtual destructor, deriving new classes from String is
a high-risk venture? Is this vendor confident their clients will under-
stand that in the absence of a virtual destructor, deleting objects
through String* pointers will not work properly and RTTI operations
From the Library of Yuri Khan

ptg

Programming in the Future Tense 257
on pointers and references to Strings may return incorrect informa-
tion? Is this class easy to use correctly and hard to use incorrectly?

This vendor should provide documentation for its String class that
makes clear the class is not designed for derivation, but what if pro-
grammers overlook the caveat or flat-out fail to read the documenta-
tion?

An alternative would be to use C++ itself to prohibit derivation. Item 26
describes how to do this by limiting object creation to the heap and
then using auto_ptr objects to manipulate the heap objects. The in-
terface for String creation would then be both unconventional and in-
convenient, requiring this,

auto_ptr<String> ps(String::makeString("Future tense C++"));

... // treat ps as a pointer to
// a String object, but don’t
// worry about deleting it

instead of this,

String s("Future tense C++");

but perhaps the reduction in the risk of improperly behaving derived
classes would be worth the syntactic inconvenience. (For String, this
is unlikely to be the case, but for other classes, the trade-off might well
be worth it.)

There is a need, of course, for present-tense thinking. The software
you’re developing has to work with current compilers; you can’t afford
to wait until the latest language features are implemented. It has to
run on the hardware you currently support and it must do so under
configurations your clients have available; you can’t force your cus-
tomers to upgrade their systems or modify their operating environ-
ment. It has to offer acceptable performance now; promises of smaller,
faster programs some years down the line don’t generally warm the
cockles of potential customers’ hearts. And the software you’re work-
ing on must be available “soon,” which often means some time in the
recent past. These are important constraints. You cannot ignore them.

Future-tense thinking simply adds a few additional considerations:

■ Provide complete classes, even if some parts aren’t currently used.
When new demands are made on your classes, you’re less likely to
have to go back and modify them.
From the Library of Yuri Khan

ptg

258 Item 33
■ Design your interfaces to facilitate common operations and pre-
vent common errors. Make the classes easy to use correctly, hard
to use incorrectly. For example, prohibit copying and assignment
for classes where those operations make no sense. Prevent partial
assignments (see Item 33).

■ If there is no great penalty for generalizing your code, generalize it.
For example, if you are writing an algorithm for tree traversal, con-
sider generalizing it to handle any kind of directed acyclic graph.

Future tense thinking increases the reusability of the code you write,
enhances its maintainability, makes it more robust, and facilitates
graceful change in an environment where change is a certainty. It
must be balanced against present-tense constraints. Too many pro-
grammers focus exclusively on current needs, however, and in doing
so they sacrifice the long-term viability of the software they design and
implement. Be different. Be a renegade. Program in the future tense.

Item 33: Make non-leaf classes abstract.
Making Non-Leaf Classes AbstractSuppose you’re working on a project whose software deals with ani-
mals. Within this software, most animals can be treated pretty much
the same, but two kinds of animals — lizards and chickens — require
special handling. That being the case, the obvious way to relate the
classes for animals, lizards, and chickens is like this:

The Animal class embodies the features shared by all the creatures
you deal with, and the Lizard and Chicken classes specialize Animal
in ways appropriate for lizards and chickens, respectively.

Here’s a sketch of the definitions for these classes:

class Animal {
public:
Animal& operator=(const Animal& rhs);
...

};

Animal

Lizard Chicken
From the Library of Yuri Khan

ptg

Making Non-Leaf Classes Abstract 259
class Lizard: public Animal {
public:
Lizard& operator=(const Lizard& rhs);
...

};

class Chicken: public Animal {
public:
Chicken& operator=(const Chicken& rhs);
...

};

Only the assignment operators are shown here, but that’s more than
enough to keep us busy for a while. Consider this code:

Lizard liz1;
Lizard liz2;

Animal *pAnimal1 = &liz1;
Animal *pAnimal2 = &liz2;

...

*pAnimal1 = *pAnimal2;

There are two problems here. First, the assignment operator invoked
on the last line is that of the Animal class, even though the objects in-
volved are of type Lizard. As a result, only the Animal part of liz1
will be modified. This is a partial assignment. After the assignment,
liz1’s Animal members have the values they got from liz2, but
liz1’s Lizard members remain unchanged.

The second problem is that real programmers write code like this. It’s
not uncommon to make assignments to objects through pointers, es-
pecially for experienced C programmers who have moved to C++. That
being the case, we’d like to make the assignment behave in a more rea-
sonable fashion. As Item 32 points out, our classes should be easy to
use correctly and difficult to use incorrectly, and the classes in the hi-
erarchy above are easy to use incorrectly.

One approach to the problem is to make the assignment operators vir-
tual. If Animal::operator= were virtual, the assignment would invoke
the Lizard assignment operator, which is certainly the correct one to
call. However, look what happens if we declare the assignment opera-
tors virtual:

class Animal {
public:
virtual Animal& operator=(const Animal& rhs);
...

};
From the Library of Yuri Khan

ptg

260 Item 33
class Lizard: public Animal {
public:
virtual Lizard& operator=(const Animal& rhs);
...

};

class Chicken: public Animal {
public:
virtual Chicken& operator=(const Animal& rhs);
...

};

Due to relatively recent changes to the language, we can customize the
return value of the assignment operators so that each returns a refer-
ence to the correct class, but the rules of C++ force us to declare iden-
tical parameter types for a virtual function in every class in which it is
declared. That means the assignment operator for the Lizard and
Chicken classes must be prepared to accept any kind of Animal object
on the right-hand side of an assignment. That, in turn, means we have
to confront the fact that code like the following is legal:

Lizard liz;
Chicken chick;

Animal *pAnimal1 = &liz;
Animal *pAnimal2 = &chick;

...

*pAnimal1 = *pAnimal2; // assign a chicken to
// a lizard!

This is a mixed-type assignment: a Lizard is on the left and a Chicken
is on the right. Mixed-type assignments aren’t usually a problem in
C++, because the language’s strong typing generally renders them ille-
gal. By making Animal’s assignment operator virtual, however, we
opened the door to such mixed-type operations.

This puts us in a difficult position. We’d like to allow same-type assign-
ments through pointers, but we’d like to forbid mixed-type assign-
ments through those same pointers. In other words, we want to allow
this,

Animal *pAnimal1 = &liz1;
Animal *pAnimal2 = &liz2;

...

*pAnimal1 = *pAnimal2; // assign a lizard to a lizard
From the Library of Yuri Khan

ptg

Making Non-Leaf Classes Abstract 261
but we want to prohibit this:

Animal *pAnimal1 = &liz;
Animal *pAnimal2 = &chick;

...

*pAnimal1 = *pAnimal2; // assign a chicken to a lizard

Distinctions such as these can be made only at runtime, because
sometimes assigning *pAnimal2 to *pAnimal1 is valid, sometimes it’s
not. We thus enter the murky world of type-based runtime errors. In
particular, we need to signal an error inside operator= if we’re faced
with a mixed-type assignment, but if the types are the same, we want
to perform the assignment in the usual fashion.

We can use a dynamic_cast (see Item 2) to implement this behavior.
Here’s how to do it for Lizard’s assignment operator:

Lizard& Lizard::operator=(const Animal& rhs)
{
// make sure rhs is really a lizard
const Lizard& rhs_liz = dynamic_cast<const Lizard&>(rhs);

proceed with a normal assignment of rhs_liz to *this;

}

This function assigns rhs to *this only if rhs is really a Lizard. If it’s
not, the function propagates the bad_cast exception that
dynamic_cast throws when the cast to a reference fails. (Actually, the
type of the exception is std::bad_cast, because the components of the
standard library, including the exceptions thrown by the standard
components, are in the namespace std. For an overview of the stan-
dard library, see Item 35.)

Even without worrying about exceptions, this function seems need-
lessly complicated and expensive — the dynamic_cast must consult a
type_info structure; see Item 24 — in the common case where one
Lizard object is assigned to another:

Lizard liz1, liz2;

...

liz1 = liz2; // no need to perform a
// dynamic_cast: this
// assignment must be valid

We can handle this case without paying for the complexity or cost of a
dynamic_cast by adding to Lizard the conventional assignment op-
erator:
From the Library of Yuri Khan

ptg

262 Item 33
class Lizard: public Animal {
public:
virtual Lizard& operator=(const Animal& rhs);

Lizard& operator=(const Lizard& rhs); // add this

...

};

Lizard liz1, liz2;

...

liz1 = liz2; // calls operator= taking
// a const Lizard&

Animal *pAnimal1 = &liz1;
Animal *pAnimal2 = &liz2;

...

*pAnimal1 = *pAnimal2; // calls operator= taking
// a const Animal&

In fact, given this latter operator=, it’s simplicity itself to implement
the former one in terms of it:

Lizard& Lizard::operator=(const Animal& rhs)
{
return operator=(dynamic_cast<const Lizard&>(rhs));

}

This function attempts to cast rhs to be a Lizard. If the cast succeeds,
the normal class assignment operator is called. Otherwise, a bad_cast
exception is thrown.

Frankly, all this business of checking types at runtime and using
dynamic_casts makes me nervous. For one thing, some compilers
still lack support for dynamic_cast, so code that uses it, though the-
oretically portable, is not necessarily portable in practice. More impor-
tantly, it requires that clients of Lizard and Chicken be prepared to
catch bad_cast exceptions and do something sensible with them each
time they perform an assignment. In my experience, there just aren’t
that many programmers who are willing to program that way. If they
don’t, it’s not clear we’ve gained a whole lot over our original situation
where we were trying to guard against partial assignments.

Given this rather unsatisfactory state of affairs regarding virtual as-
signment operators, it makes sense to regroup and try to find a way to
prevent clients from making problematic assignments in the first
place. If such assignments are rejected during compilation, we don’t
have to worry about them doing the wrong thing.
From the Library of Yuri Khan

ptg

Making Non-Leaf Classes Abstract 263
The easiest way to prevent such assignments is to make operator=
private in Animal. That way, lizards can be assigned to lizards and
chickens can be assigned to chickens, but partial and mixed-type as-
signments are forbidden:

class Animal {
private:
Animal& operator=(const Animal& rhs); // this is now
... // private

};

class Lizard: public Animal {
public:
Lizard& operator=(const Lizard& rhs);
...

};

class Chicken: public Animal {
public:
Chicken& operator=(const Chicken& rhs);
...

};

Lizard liz1, liz2;
...
liz1 = liz2; // fine

Chicken chick1, chick2;
...
chick1 = chick2; // also fine

Animal *pAnimal1 = &liz1;
Animal *pAnimal2 = &chick1;
...
*pAnimal1 = *pAnimal2; // error! attempt to call

// private Animal::operator=

Unfortunately, Animal is a concrete class, and this approach also
makes assignments between Animal objects illegal:

Animal animal1, animal2;

...

animal1 = animal2; // error! attempt to call
// private Animal::operator=

Moreover, it makes it impossible to implement the Lizard and
Chicken assignment operators correctly, because assignment opera-
tors in derived classes are responsible for calling assignment operators
in their base classes:
From the Library of Yuri Khan

ptg

264 Item 33
Lizard& Lizard::operator=(const Lizard& rhs)
{
if (this == &rhs) return *this;

Animal::operator=(rhs); // error! attempt to call
// private function. But
// Lizard::operator= must
// call this function to

... // assign the Animal parts
} // of *this!

We can solve this latter problem by declaring Animal::operator= pro-
tected, but the conundrum of allowing assignments between Animal
objects while preventing partial assignments of Lizard and Chicken
objects through Animal pointers remains. What’s a poor programmer
to do?

The easiest thing is to eliminate the need to allow assignments be-
tween Animal objects, and the easiest way to do that is to make Ani-
mal an abstract class. As an abstract class, Animal can’t be
instantiated, so there will be no need to allow assignments between
Animals. Of course, this leads to a new problem, because our original
design for this system presupposed that Animal objects were neces-
sary. There is an easy way around this difficulty. Instead of making
Animal itself abstract, we create a new class — AbstractAnimal, say
— consisting of the common features of Animal, Lizard, and Chicken
objects, and we make that class abstract. Then we have each of our
concrete classes inherit from AbstractAnimal. The revised hierarchy
looks like this,

and the class definitions are as follows:

class AbstractAnimal {
protected:
AbstractAnimal& operator=(const AbstractAnimal& rhs);

public:
virtual ~AbstractAnimal() = 0; // see below
...

};

AbstractAnimal

Lizard Animal Chicken
From the Library of Yuri Khan

ptg

Making Non-Leaf Classes Abstract 265
class Animal: public AbstractAnimal {
public:
Animal& operator=(const Animal& rhs);
...

};

class Lizard: public AbstractAnimal {
public:
Lizard& operator=(const Lizard& rhs);
...

};

class Chicken: public AbstractAnimal {
public:
Chicken& operator=(const Chicken& rhs);
...

};

This design gives you everything you need. Homogeneous assignments
are allowed for lizards, chickens, and animals; partial assignments
and heterogeneous assignments are prohibited; and derived class as-
signment operators may call the assignment operator in the base
class. Furthermore, none of the code written in terms of the Animal,
Lizard, or Chicken classes requires modification, because these
classes continue to exist and to behave as they did before AbstractA-
nimal was introduced. Sure, such code has to be recompiled, but
that’s a small price to pay for the security of knowing that assignments
that compile will behave intuitively and assignments that would be-
have unintuitively won’t compile.

For all this to work, AbstractAnimal must be abstract — it must con-
tain at least one pure virtual function. In most cases, coming up with
a suitable function is not a problem, but on rare occasions you may
find yourself facing the need to create a class like AbstractAnimal in
which none of the member functions would naturally be declared pure
virtual. In such cases, the conventional technique is to make the de-
structor a pure virtual function; that’s what’s shown above. In order to
support polymorphism through pointers correctly, base classes need
virtual destructors anyway, so the only cost associated with making
such destructors pure virtual is the inconvenience of having to imple-
ment them outside their class definitions. (For an example, see
page 195.)

(If the notion of implementing a pure virtual function strikes you as
odd, you just haven’t been getting out enough. Declaring a function
pure virtual doesn’t mean it has no implementation, it means

■ the current class is abstract, and

■ any concrete class inheriting from the current class must declare
the function as a “normal” virtual function (i.e., without the “=0”).
From the Library of Yuri Khan

ptg

266 Item 33
True, most pure virtual functions are never implemented, but pure vir-
tual destructors are a special case. They must be implemented, be-
cause they are called whenever a derived class destructor is invoked.
Furthermore, they often perform useful tasks, such as releasing re-
sources (see Item 9) or logging messages. Implementing pure virtual
functions may be uncommon in general, but for pure virtual destruc-
tors, it’s not just common, it’s mandatory.)

You may have noticed that this discussion of assignment through base
class pointers is based on the assumption that concrete derived
classes like Lizard contain data members. If there are no data mem-
bers in a derived class, you might point out, there is no problem, and
it would be safe to have a dataless concrete class inherit from another
concrete class. However, just because a class has no data now is no
reason to conclude that it will have no data in the future. If it might
have data members in the future, all you’re doing is postponing the
problem until the data members are added, in which case you’re
merely trading short-term convenience for long-term grief (see also
Item 32).

Replacement of a concrete base class like Animal with an abstract
base class like AbstractAnimal yields benefits far beyond simply
making the behavior of operator= easier to understand. It also re-
duces the chances that you’ll try to treat arrays polymorphically, the
unpleasant consequences of which are examined in Item 3. The most
significant benefit of the technique, however, occurs at the design level,
because replacing concrete base classes with abstract base classes
forces you to explicitly recognize the existence of useful abstractions.
That is, it makes you create new abstract classes for useful concepts,
even if you aren’t aware of the fact that the useful concepts exist.

If you have two concrete classes C1 and C2 and you’d like C2 to pub-
licly inherit from C1, you should transform that two-class hierarchy
into a three-class hierarchy by creating a new abstract class A and
having both C1 and C2 publicly inherit from it:

A

C2

C1

C2

Your initial idea Your transformed hierarchy

C1
From the Library of Yuri Khan

ptg

Making Non-Leaf Classes Abstract 267
The primary value of this transformation is that it forces you to identify
the abstract class A. Clearly, C1 and C2 have something in common;
that’s why they’re related by public inheritance. With this transforma-
tion, you must identify what that something is. Furthermore, you must
formalize the something as a class in C++, at which point it becomes
more than just a vague something, it achieves the status of a formal
abstraction, one with well-defined member functions and well-defined
semantics.

All of which leads to some worrisome thinking. After all, every class
represents some kind of abstraction, so shouldn’t we create two
classes for every concept in our hierarchy, one being abstract (to em-
body the abstract part of the abstraction) and one being concrete (to
embody the object-generation part of the abstraction)? No. If you do,
you’ll end up with a hierarchy with too many classes. Such a hierarchy
is difficult to understand, hard to maintain, and expensive to compile.
That is not the goal of object-oriented design.

The goal is to identify useful abstractions and to force them — and only
them — into existence as abstract classes. But how do you identify
useful abstractions? Who knows what abstractions might prove useful
in the future? Who can predict who’s going to want to inherit from
what?

Well, I don’t know how to predict the future uses of an inheritance hi-
erarchy, but I do know one thing: the need for an abstraction in one
context may be coincidental, but the need for an abstraction in more
than one context is usually meaningful. Useful abstractions, then, are
those that are needed in more than one context. That is, they corre-
spond to classes that are useful in their own right (i.e., it is useful to
have objects of that type) and that are also useful for purposes of one
or more derived classes.

This is precisely why the transformation from concrete base class to
abstract base class is useful: it forces the introduction of a new ab-
stract class only when an existing concrete class is about to be used as
a base class, i.e., when the class is about to be (re)used in a new con-
text. Such abstractions are useful, because they have, through demon-
strated need, shown themselves to be so.

The first time a concept is needed, we can’t justify the creation of both
an abstract class (for the concept) and a concrete class (for the objects
corresponding to that concept), but the second time that concept is
needed, we can justify the creation of both the abstract and the con-
crete classes. The transformation I’ve described simply mechanizes
this process, and in so doing it forces designers and programmers to
represent explicitly those abstractions that are useful, even if the de-
From the Library of Yuri Khan

ptg

268 Item 33
signers and programmers are not consciously aware of the useful con-
cepts. It also happens to make it a lot easier to bring sanity to the
behavior of assignment operators.

Let’s consider a brief example. Suppose you’re working on an applica-
tion that deals with moving information between computers on a net-
work by breaking it into packets and transmitting them according to
some protocol. All we’ll consider here is the class or classes for repre-
senting packets. We’ll assume such classes make sense for this appli-
cation.

Suppose you deal with only a single kind of transfer protocol and only
a single kind of packet. Perhaps you’ve heard that other protocols and
packet types exist, but you’ve never supported them, nor do you have
any plans to support them in the future. Should you make an abstract
class for packets (for the concept that a packet represents) as well as a
concrete class for the packets you’ll actually be using? If you do, you
could hope to add new packet types later without changing the base
class for packets. That would save you from having to recompile
packet-using applications if you add new packet types. But that design
requires two classes, and right now you need only one (for the particu-
lar type of packets you use). Is it worth complicating your design now
to allow for future extension that may never take place?

There is no unequivocally correct choice to be made here, but experi-
ence has shown it is nearly impossible to design good classes for con-
cepts we do not understand well. If you create an abstract class for
packets, how likely are you to get it right, especially since your experi-
ence is limited to only a single packet type? Remember that you gain
the benefit of an abstract class for packets only if you can design that
class so that future classes can inherit from it without its being
changed in any way. (If it needs to be changed, you have to recompile
all packet clients, and you’ve gained nothing.)

It is unlikely you could design a satisfactory abstract packet class un-
less you were well versed in many different kinds of packets and in the
varied contexts in which they are used. Given your limited experience
in this case, my advice would be not to define an abstract class for
packets, adding one later only if you find a need to inherit from the
concrete packet class.

The transformation I’ve described here is a way to identify the need for
abstract classes, not the way. There are many other ways to identify
good candidates for abstract classes; books on object-oriented analysis
are filled with them. It’s not the case that the only time you should in-
troduce abstract classes is when you find yourself wanting to have a
concrete class inherit from another concrete class. However, the desire
From the Library of Yuri Khan

ptg

Making Non-Leaf Classes Abstract 269
to relate two concrete classes by public inheritance is usually indica-
tive of a need for a new abstract class.

As is often the case in such matters, brash reality sometimes intrudes
on the peaceful ruminations of theory. Third-party C++ class libraries
are proliferating with gusto, and what are you to do if you find yourself
wanting to create a concrete class that inherits from a concrete class
in a library to which you have only read access?

You can’t modify the library to insert a new abstract class, so your
choices are both limited and unappealing:

■ Derive your concrete class from the existing concrete class, and
put up with the assignment-related problems we examined at the
beginning of this Item. You’ll also have to watch out for the array-
related pitfalls described in Item 3.

■ Try to find an abstract class higher in the library hierarchy that
does most of what you need, then inherit from that class. Of
course, there may not be a suitable class, and even if there is, you
may have to duplicate a lot of effort that has already been put into
the implementation of the concrete class whose functionality you’d
like to extend.

■ Implement your new class in terms of the library class you’d like
to inherit from. For example, you could have an object of the li-
brary class as a data member, then reimplement the library class’s
interface in your new class:

class Window { // this is the library class
public:
virtual void resize(int newWidth, int newHeight);
virtual void repaint() const;

int width() const;
int height() const;

};

class SpecialWindow { // this is the class you
public: // wanted to have inherit
... // from Window

// pass-through implementations of nonvirtual functions
int width() const { return w.width(); }
int height() const { return w.height(); }

// new implementations of "inherited" virtual functions
virtual void resize(int newWidth, int newHeight);
virtual void repaint() const;

private:
Window w;

};
From the Library of Yuri Khan

ptg

270 Item 34
This strategy requires that you be prepared to update your class
each time the library vendor updates the class on which you’re de-
pendent. It also requires that you be willing to forgo the ability to
redefine virtual functions declared in the library class, because
you can’t redefine virtual functions unless you inherit them.

■ Make do with what you’ve got. Use the concrete class that’s in the
library and modify your software so that the class suffices. Write
non-member functions to provide the functionality you’d like to
add to the class, but can’t. The resulting software may not be as
clear, as efficient, as maintainable, or as extensible as you’d like,
but at least it will get the job done.

None of these choices is particularly attractive, so you have to apply
some engineering judgment and choose the poison you find least un-
appealing. It’s not much fun, but life’s like that sometimes. To make
things easier for yourself (and the rest of us) in the future, complain to
the vendors of libraries whose designs you find wanting. With luck
(and a lot of comments from clients), those designs will improve as time
goes on.

Still, the general rule remains: non-leaf classes should be abstract.
You may need to bend the rule when working with outside libraries,
but in code over which you have control, adherence to it will yield div-
idends in the form of increased reliability, robustness, comprehensibil-
ity, and extensibility throughout your software.

Item 34: Understand how to combine C++ and C in the
same program.

Combining C++ and C in the Same ProgramIn many ways, the things you have to worry about when making a pro-
gram out of some components in C++ and some in C are the same as
those you have to worry about when cobbling together a C program out
of object files produced by more than one C compiler. There is no way
to combine such files unless the different compilers agree on imple-
mentation-dependent features like the size of ints and doubles, the
mechanism by which parameters are passed from caller to callee, and
whether the caller or the callee orchestrates the passing. These prag-
matic aspects of mixed-compiler software development are quite prop-
erly ignored by language standardization efforts, so the only reliable
way to know that object files from compiler A and compiler B can be
safely combined in a program is to obtain assurances from the vendors
of A and B that their products produce compatible output. This is as
true for programs made up of C++ and C as it is for all-C++ or all-C
programs, so before you try to mix C++ and C in the same program,
make sure your C++ and C compilers generate compatible object files.
From the Library of Yuri Khan

ptg

Combining C++ and C in the Same Program 271
Having done that, there are four other things you need to consider:
name mangling, initialization of statics, dynamic memory allocation,
and data structure compatibility.

Name Mangling

Name mangling, as you may know, is the process through which your
C++ compilers give each function in your program a unique name. In
C, this process is unnecessary, because you can’t overload function
names, but nearly all C++ programs have at least a few functions with
the same name. (Consider, for example, the iostream library, which de-
clares several versions of operator<< and operator>>.) Overloading
is incompatible with most linkers, because linkers generally take a dim
view of multiple functions with the same name. Name mangling is a
concession to the realities of linkers; in particular, to the fact that link-
ers usually insist on all function names being unique.

As long as you stay within the confines of C++, name mangling is not
likely to concern you. If you have a function name drawLine that a
compiler mangles into xyzzy, you’ll always use the name drawLine,
and you’ll have little reason to care that the underlying object files
happen to refer to xyzzy.

It’s a different story if drawLine is in a C library. In that case, your C++
source file probably includes a header file that contains a declaration
like this,

void drawLine(int x1, int y1, int x2, int y2);

and your code contains calls to drawLine in the usual fashion. Each
such call is translated by your compilers into a call to the mangled
name of that function, so when you write this,

drawLine(a, b, c, d); // call to unmangled function name

your object files contain a function call that corresponds to this:

xyzzy(a, b, c, d); // call to mangled function mame

But if drawLine is a C function, the object file (or archive or dynami-
cally linked library, etc.) that contains the compiled version of draw-
Line contains a function called drawLine; no name mangling has
taken place. When you try to link the object files comprising your pro-
gram together, you’ll get an error, because the linker is looking for a
function called xyzzy, and there is no such function.

To solve this problem, you need a way to tell your C++ compilers not to
mangle certain function names. You never want to mangle the names
of functions written in other languages, whether they be in C, assem-
bler, FORTRAN, Lisp, Forth, or what-have-you. (Yes, what-have-you
From the Library of Yuri Khan

ptg

272 Item 34
would include COBOL, but then what would you have?) After all, if you
call a C function named drawLine, it’s really called drawLine, and
your object code should contain a reference to that name, not to some
mangled version of that name.

To suppress name mangling, use C++’s extern "C" directive:

// declare a function called drawLine; don’t mangle
// its name
extern "C"
void drawLine(int x1, int y1, int x2, int y2);

Don’t be drawn into the trap of assuming that where there’s an extern
"C", there must be an extern "Pascal" and an extern "FORTRAN" as
well. There’s not, at least not in the standard. The best way to view ex-
tern "C" is not as an assertion that the associated function is written
in C, but as a statement that the function should be called as if it were
written in C. (Technically, extern "C" means the function has C link-
age, but what that means is far from clear. One thing it always means,
however, is that name mangling is suppressed.)

For example, if you were so unfortunate as to have to write a function
in assembler, you could declare it extern "C", too:

// this function is in assembler — don’t mangle its name
extern "C" void twiddleBits(unsigned char bits);

You can even declare C++ functions extern "C". This can be useful if
you’re writing a library in C++ that you’d like to provide to clients using
other programming languages. By suppressing the name mangling of
your C++ function names, your clients can use the natural and intui-
tive names you choose instead of the mangled names your compilers
would otherwise generate:

// the following C++ function is designed for use outside
// C++ and should not have its name mangled
extern "C" void simulate(int iterations);

Often you’ll have a slew of functions whose names you don’t want
mangled, and it would be a pain to precede each with extern "C". For-
tunately, you don’t have to. extern "C" can also be made to apply to
a whole set of functions. Just enclose them all in curly braces:

extern "C" { // disable name mangling for
// all the following functions

void drawLine(int x1, int y1, int x2, int y2);
void twiddleBits(unsigned char bits);
void simulate(int iterations);
...

}

From the Library of Yuri Khan

ptg

Combining C++ and C in the Same Program 273
This use of extern "C" simplifies the maintenance of header files that
must be used with both C++ and C. When compiling for C++, you’ll
want to include extern "C", but when compiling for C, you won’t. By
taking advantage of the fact that the preprocessor symbol
__cplusplus is defined only for C++ compilations, you can structure
your polyglot header files as follows:

#ifdef __cplusplus

extern "C" {

#endif

void drawLine(int x1, int y1, int x2, int y2);
void twiddleBits(unsigned char bits);
void simulate(int iterations);
...

#ifdef __cplusplus

}

#endif

There is, by the way, no such thing as a “standard” name mangling al-
gorithm. Different compilers are free to mangle names in different
ways, and different compilers do. This is a good thing. If all compilers
mangled names the same way, you might be lulled into thinking they
all generated compatible code. The way things are now, if you try to
mix object code from incompatible C++ compilers, there’s a good
chance you’ll get an error during linking, because the mangled names
won’t match up. This implies you’ll probably have other compatibility
problems, too, and it’s better to find out about such incompatibilities
sooner than later,

Initialization of Statics

Once you’ve mastered name mangling, you need to deal with the fact
that in C++, lots of code can get executed before and after main. In par-
ticular, the constructors of static class objects and objects at global,
namespace, and file scope are usually called before the body of main is
executed. This process is known as static initialization. This is in direct
opposition to the way we normally think about C++ and C programs,
in which we view main as the entry point to execution of the program.
Similarly, objects that are created through static initialization must
have their destructors called during static destruction; that process
typically takes place after main has finished executing.

To resolve the dilemma that main is supposed to be invoked first, yet
objects need to be constructed before main is executed, many compil-
ers insert a call to a special compiler-written function at the beginning
From the Library of Yuri Khan

ptg

274 Item 34
of main, and it is this special function that takes care of static initial-
ization. Similarly, compilers often insert a call to another special func-
tion at the end of main to take care of the destruction of static objects.
Code generated for main often looks as if main had been written like
this:

int main(int argc, char *argv[])
{
performStaticInitialization(); // generated by the

// implementation

the statements you put in main go here;

performStaticDestruction(); // generated by the
// implementation

}

Now don’t take this too literally. The functions performStaticIni-
tialization and performStaticDestruction usually have much
more cryptic names, and they may even be generated inline, in which
case you won’t see any functions for them in your object files. The im-
portant point is this: if a C++ compiler adopts this approach to the ini-
tialization and destruction of static objects, such objects will be
neither initialized nor destroyed unless main is written in C++. Be-
cause this approach to static initialization and destruction is common,
you should try to write main in C++ if you write any part of a software
system in C++.

Sometimes it would seem to make more sense to write main in C — say
if most of a program is in C and C++ is just a support library. Never-
theless, there’s a good chance the C++ library contains static objects (if
it doesn’t now, it probably will in the future — see Item 32), so it’s still
a good idea to write main in C++ if you possibly can. That doesn’t mean
you need to rewrite your C code, however. Just rename the main you
wrote in C to be realMain, then have the C++ version of main call
realMain:

extern "C" // implement this
int realMain(int argc, char *argv[]); // function in C

int main(int argc, char *argv[]) // write this in C++
{
return realMain(argc, argv);

}

If you do this, it’s a good idea to put a comment above main explaining
what is going on.

If you cannot write main in C++, you’ve got a problem, because there is
no other portable way to ensure that constructors and destructors for
static objects are called. This doesn’t mean all is lost, it just means
From the Library of Yuri Khan

ptg

Combining C++ and C in the Same Program 275
you’ll have to work a little harder. Compiler vendors are well ac-
quainted with this problem, so almost all provide some extralinguistic
mechanism for initiating the process of static initialization and static
destruction. For information on how this works with your compilers,
dig into your compilers’ documentation or contact their vendors.

Dynamic Memory Allocation

That brings us to dynamic memory allocation. The general rule is sim-
ple: the C++ parts of a program use new and delete (see Item 8), and
the C parts of a program use malloc (and its variants) and free. As
long as memory that came from new is deallocated via delete and
memory that came from malloc is deallocated via free, all is well.
Calling free on a newed pointer yields undefined behavior, however, as
does deleteing a malloced pointer. The only thing to remember, then,
is to segregate rigorously your news and deletes from your mallocs
and frees.

Sometimes this is easier said than done. Consider the humble (but
handy) strdup function, which, though standard in neither C nor C++,
is nevertheless widely available:

char * strdup(const char *ps); // return a copy of the
// string pointed to by ps

If a memory leak is to be avoided, the memory allocated inside strdup
must be deallocated by strdup’s caller. But how is the memory to be
deallocated? By using delete? By calling free? If the strdup you’re
calling is from a C library, it’s the latter. If it was written for a C++ li-
brary, it’s probably the former. What you need to do after calling str-
dup, then, varies not only from system to system, but also from
compiler to compiler. To reduce such portability headaches, try to
avoid calling functions that are neither in the standard library (see
Item 35) nor available in a stable form on most computing platforms.

Data Structure Compatibility

Which brings us at long last to passing data between C++ and C pro-
grams. There’s no hope of making C functions understand C++ fea-
tures, so the level of discourse between the two languages must be
limited to those concepts that C can express. Thus, it should be clear
there’s no portable way to pass objects or to pass pointers to member
functions to routines written in C. C does understand normal pointers,
however, so, provided your C++ and C compilers produce compatible
output, functions in the two languages can safely exchange pointers to
objects and pointers to non-member or static functions. Naturally,
From the Library of Yuri Khan

ptg

276 Item 34
structs and variables of built-in types (e.g., ints, chars, etc.) can also
freely cross the C++/C border.

Because the rules governing the layout of a struct in C++ are consis-
tent with those of C, it is safe to assume that a structure definition that
compiles in both languages is laid out the same way by both compilers.
Such structs can be safely passed back and forth between C++ and C.
If you add nonvirtual functions to the C++ version of the struct, its
memory layout should not change, so objects of a struct (or class) con-
taining only non-virtual functions should be compatible with their C
brethren whose structure definition lacks only the member function
declarations. Adding virtual functions ends the game, because the ad-
dition of virtual functions to a class causes objects of that type to use
a different memory layout (see Item 24). Having a struct inherit from
another struct (or class) usually changes its layout, too, so structs with
base structs (or classes) are also poor candidates for exchange with C
functions.

From a data structure perspective, it boils down to this: it is safe to
pass data structures from C++ to C and from C to C++ provided the
definition of those structures compiles in both C++ and C. Adding non-
virtual member functions to the C++ version of a struct that’s other-
wise compatible with C will probably not affect its compatibility, but
almost any other change to the struct will.

Summary

If you want to mix C++ and C in the same program, remember the fol-
lowing simple guidelines:

■ Make sure the C++ and C compilers produce compatible object
files.

■ Declare functions to be used by both languages extern "C".

■ If at all possible, write main in C++.

■ Always use delete with memory from new; always use free with
memory from malloc.

■ Limit what you pass between the two languages to data structures
that compile under C; the C++ version of structs may contain non-
virtual member functions.
From the Library of Yuri Khan

ptg

The C++ Language and Library Standard 277
Item 35: Familiarize yourself with the language
standard.

The C++ Language and Library StandardSince its publication in 1990, The Annotated C++ Reference Manual
(see page 285) has been the definitive reference for working program-
mers needing to know what is in C++ and what is not. In the years
since the ARM (as it’s fondly known) came out, the ISO/ANSI commit-
tee standardizing the language has changed (primarily extended) the
language in ways both big and small. As a definitive reference, the
ARM no longer suffices.

The post-ARM changes to C++ significantly affect how good programs
are written. As a result, it is important for C++ programmers to be fa-
miliar with the primary ways in which the C++ specified by the stan-
dard differs from that described by the ARM.

The ISO/ANSI standard for C++ is what vendors will consult when im-
plementing compilers, what authors will examine when preparing
books, and what programmers will look to for definitive answers to
questions about C++. Among the most important changes to C++ since
the ARM are the following:

■ New features have been added: RTTI, namespaces, bool, the mu-
table and explicit keywords, the ability to overload operators
for enums, and the ability to initialize constant integral static
class members within a class definition.

■ Templates have been extended: member templates are now al-
lowed, there is a standard syntax for forcing template instantia-
tions, non-type arguments are now allowed in function templates,
and class templates may themselves be used as template argu-
ments.

■ Exception handling has been refined: exception specifications
are now more rigorously checked during compilation, and the un-
expected function may now throw a bad_exception object.

■ Memory allocation routines have been modified: operator
new[] and operator delete[] have been added, the operators
new/new[] now throw an exception if memory can’t be allocated,
and there are now alternative versions of the operators new/new[]
that return 0 when an allocation fails.
From the Library of Yuri Khan

ptg

278 Item 35
■ New casting forms have been added: static_cast, dynamic_cast,
const_cast, and reinterpret_cast.

■ Language rules have been refined: redefinitions of virtual func-
tions need no longer have a return type that exactly matches that
of the function they redefine, and the lifetime of temporary objects
has been defined precisely.

Almost all these changes are described in The Design and Evolution of
C++ (see page 285). Current C++ textbooks (those written after 1994)
should include them, too. (If you find one that doesn’t, reject it.) In ad-
dition, More Effective C++ (that’s this book) contains examples of how
to use most of these new features. If you’re curious about something
on this list, try looking it up in the index.

The changes to C++ proper pale in comparison to what’s happened to
the standard library. Furthermore, the evolution of the standard li-
brary has not been as well publicized as that of the language. The De-
sign and Evolution of C++, for example, makes almost no mention of
the standard library. The books that do discuss the library are some-
times out of date, because the library changed quite substantially in
1994.

The capabilities of the standard library can be broken down into the
following general categories:

■ Support for the standard C library. Fear not, C++ still remem-
bers its roots. Some minor tweaks have brought the C++ version of
the C library into conformance with C++’s stricter type checking,
but for all intents and purposes, everything you know and love (or
hate) about the C library continues to be knowable and lovable (or
hateable) in C++, too.

■ Support for strings. As Chair of the working group for the stan-
dard C++ library, Mike Vilot was told, “If there isn’t a standard
string type, there will be blood in the streets!” (Some people get
so emotional.) Calm yourself and put away those hatchets and
truncheons — the standard C++ library has strings.

■ Support for localization. Different cultures use different charac-
ter sets and follow different conventions when displaying dates
and times, sorting strings, printing monetary values, etc. Localiza-
tion support within the standard library facilitates the develop-
ment of programs that accommodate such cultural differences.

■ Support for I/O. The iostream library remains part of the C++
standard, but the committee has tinkered with it a bit. Though
some classes have been eliminated (notably iostream and
fstream) and some have been replaced (e.g., string-based
From the Library of Yuri Khan

ptg

The C++ Language and Library Standard 279
stringstreams replace char*-based strstreams, which are now
deprecated), the basic capabilities of the standard iostream
classes mirror those of the implementations that have existed for
several years.

■ Support for numeric applications. Complex numbers, long a
mainstay of examples in C++ texts, have finally been enshrined in
the standard library. In addition, the library contains special array
classes (valarrays) that restrict aliasing. These arrays are eligible
for more aggressive optimization than are built-in arrays, espe-
cially on multiprocessing architectures. The library also provides a
few commonly useful numeric functions, including partial sum
and adjacent difference.

■ Support for general-purpose containers and algorithms. Con-
tained within the standard C++ library is a set of class and func-
tion templates collectively known as the Standard Template
Library (STL). The STL is the most revolutionary part of the stan-
dard C++ library. I summarize its features below.

Before I describe the STL, though, I must dispense with two idiosyn-
crasies of the standard C++ library you need to know about.

First, almost everything in the library is a template. In this book, I may
have referred to the standard string class, but in fact there is no such
class. Instead, there is a class template called basic_string that rep-
resents sequences of characters, and this template takes as a param-
eter the type of the characters making up the sequences. This allows
for strings to be made up of chars, wide chars, Unicode chars, what-
ever.

What we normally think of as the string class is really the template
instantiation basic_string<char>. Because its use is so common,
the standard library provides a typedef:

typedef basic_string<char> string;

Even this glosses over many details, because the basic_string tem-
plate takes three arguments; all but the first have default values. To re-
ally understand the string type, you must face this full, unexpurgated
declaration of basic_string:

template<class charT,
class traits = char_traits<charT>,
class Allocator = allocator<charT> >

class basic_string;

You don’t need to understand this gobbledygook to use the string
type, because even though string is a typedef for The Template In-
stantiation from Hell, it behaves as if it were the unassuming non-tem-
From the Library of Yuri Khan

ptg

280 Item 35
plate class the typedef makes it appear to be. Just tuck away in the
back of your mind the fact that if you ever need to customize the types
of characters that go into strings, or if you want to fine-tune the behav-
ior of those characters, or if you want to seize control over the way
memory for strings is allocated, the basic_string template allows
you to do these things.

The approach taken in the design of the string type — generalize it
and make the generalization a template — is repeated throughout the
standard C++ library. IOstreams? They’re templates; a type parameter
defines the type of character making up the streams. Complex num-
bers? Also templates; a type parameter defines how the components of
the numbers should be stored. Valarrays? Templates; a type parame-
ter specifies what’s in each array. And of course the STL consists al-
most entirely of templates. If you are not comfortable with templates,
now would be an excellent time to start making serious headway to-
ward that goal.

The other thing to know about the standard library is that virtually ev-
erything it contains is inside the namespace std. To use things in the
standard library without explicitly qualifying their names, you’ll have
to employ a using directive or (preferably) using declarations. Fortu-
nately, this syntactic administrivia is automatically taken care of when
you #include the appropriate headers.

The Standard Template Library

The biggest news in the standard C++ library is the STL, the Standard
Template Library. (Since almost everything in the C++ library is a tem-
plate, the name STL is not particularly descriptive. Nevertheless, this
is the name of the containers and algorithms portion of the library, so
good name or bad, this is what we use.)

The STL is likely to influence the organization of many — perhaps most
— C++ libraries, so it’s important that you be familiar with its general
principles. They are not difficult to understand. The STL is based on
three fundamental concepts: containers, iterators, and algorithms.
Containers hold collections of objects. Iterators are pointer-like objects
that let you walk through STL containers just as you’d use pointers to
walk through built-in arrays. Algorithms are functions that work on
STL containers and that use iterators to help them do their work.

It is easiest to understand the STL view of the world if we remind our-
selves of the C++ (and C) rules for arrays. There is really only one rule
we need to know: a pointer to an array can legitimately point to any el-
ement of the array or to one element beyond the end of the array. If the
pointer points to the element beyond the end of the array, it can be
From the Library of Yuri Khan

ptg

The C++ Language and Library Standard 281
compared only to other pointers to the array; the results of dereferenc-
ing it are undefined.

We can take advantage of this rule to write a function to find a partic-
ular value in an array. For an array of integers, our function might look
like this:

int * find(int *begin, int *end, int value)
{
while (begin != end && *begin != value) ++begin;
return begin;

}

This function looks for value in the range between begin and end (ex-
cluding end — end points to one beyond the end of the array) and re-
turns a pointer to the first occurrence of value in the array; if none is
found, it returns end.

Returning end seems like a funny way to signal a fruitless search.
Wouldn’t 0 (the null pointer) be better? Certainly null seems more nat-
ural, but that doesn’t make it “better.” The find function must return
some distinctive pointer value to indicate the search failed, and for this
purpose, the end pointer is as good as the null pointer. In addition, as
we’ll soon see, the end pointer generalizes to other types of containers
better than the null pointer.

Frankly, this is probably not the way you’d write the find function,
but it’s not unreasonable, and it generalizes astonishingly well. If you
followed this simple example, you have mastered most of the ideas on
which the STL is founded.

You could use the find function like this:

int values[50];

...

int *firstFive = find(values, // search the range
values+50, // values[0] - values[49]
5); // for the value 5

if (firstFive != values+50) { // did the search succeed?

... // yes

}
else {
... // no, the search failed

}

You can also use find to search subranges of the array:
From the Library of Yuri Khan

ptg

282 Item 35
int *firstFive = find(values, // search the range
values+10, // values[0] - values[9]
5); // for the value 5

int age = 36;

...

int *firstValue = find(values+10, // search the range
values+20, // values[10] - values[19]
age); // for the value in age

There’s nothing inherent in the find function that limits its applicabil-
ity to arrays of ints, so it should really be a template:

template<class T>
T * find(T *begin, T *end, const T& value)
{
while (begin != end && *begin != value) ++begin;
return begin;

}

In the transformation to a template, notice how we switched from
pass-by-value for value to pass-by-reference-to-const. That’s be-
cause now that we’re passing arbitrary types around, we have to worry
about the cost of pass-by-value. Each by-value parameter costs us a
call to the parameter’s constructor and destructor every time the func-
tion is invoked. We avoid these costs by using pass-by-reference,
which involves no object construction or destruction.

This template is nice, but it can be generalized further. Look at the op-
erations on begin and end. The only ones used are comparison for in-
equality, dereferencing, prefix increment (see Item 6), and copying (for
the function’s return value — see Item 19). These are all operations we
can overload, so why limit find to using pointers? Why not allow any
object that supports these operations to be used in addition to point-
ers? Doing so would free the find function from the built-in meaning
of pointer operations. For example, we could define a pointer-like ob-
ject for a linked list whose prefix increment operator moved us to the
next element in the list.

This is the concept behind STL iterators. Iterators are pointer-like ob-
jects designed for use with STL containers. They are first cousins to
the smart pointers of Item 28, but smart pointers tend to be more am-
bitious in what they do than do STL iterators. From a technical view-
point, however, they are implemented using the same techniques.

Embracing the notion of iterators as pointer-like objects, we can re-
place the pointers in find with iterators, thus rewriting find like this:
From the Library of Yuri Khan

ptg

The C++ Language and Library Standard 283
template<class Iterator, class T>
Iterator find(Iterator begin, Iterator end, const T& value)
{
while (begin != end && *begin != value) ++begin;
return begin;

}

Congratulations! You have just written part of the Standard Template
Library. The STL contains dozens of algorithms that work with con-
tainers and iterators, and find is one of them.

Containers in STL include bitset, vector, list, deque, queue,
priority_queue, stack, set, and map, and you can apply find to
any of these container types:

list<char> charList; // create STL list object
// for holding chars

...

// find the first occurrence of ’x’ in charList
list<char>::iterator it = find(charList.begin(),

charList.end(),
’x’);

“Whoa!”, I hear you cry, “This doesn’t look anything like it did in the
array examples above!” Ah, but it does; you just have to know what to
look for.

To call find for a list object, you need to come up with iterators that
point to the first element of the list and to one past the last element of
the list. Without some help from the list class, this is a difficult task,
because you have no idea how a list is implemented. Fortunately,
list (like all STL containers) obliges by providing the member func-
tions begin and end. These member functions return the iterators you
need, and it is those iterators that are passed into the first two param-
eters of find above.

When find is finished, it returns an iterator object that points to the
found element (if there is one) or to charList.end() (if there’s not).
Because you know nothing about how list is implemented, you also
know nothing about how iterators into lists are implemented. How,
then, are you to know what type of object is returned by find? Again,
the list class, like all STL containers, comes to the rescue: it provides
a typedef, iterator, that is the type of iterators into lists. Since
charList is a list of chars, the type of an iterator into such a list is
list<char>::iterator, and that’s what’s used in the example above.
(Each STL container class actually defines two iterator types, itera-
tor and const_iterator. The former acts like a normal pointer, the
latter like a pointer-to-const.)
From the Library of Yuri Khan

ptg

284 Item 35
Exactly the same approach can be used with the other STL containers.
Furthermore, C++ pointers are STL iterators, so the original array ex-
amples work with the STL find function, too:

int values[50];

...

int *firstFive = find(values, values+50, 5); // fine, calls
// STL find

At its core, STL is very simple. It is just a collection of class and func-
tion templates that adhere to a set of conventions. The STL collection
classes provide functions like begin and end that return iterator ob-
jects of types defined by the classes. The STL algorithm functions move
through collections of objects by using iterator objects over STL collec-
tions. STL iterators act like pointers. That’s really all there is to it.
There’s no big inheritance hierarchy, no virtual functions, none of that
stuff. Just some class and function templates and a set of conventions
to which they all subscribe.

Which leads to another revelation: STL is extensible. You can add your
own collections, algorithms, and iterators to the STL family. As long as
you follow the STL conventions, the standard STL collections will work
with your algorithms and your collections will work with the standard
STL algorithms. Of course, your templates won’t be part of the stan-
dard C++ library, but they’ll be built on the same principles and will be
just as reusable.

There is much more to the C++ library than I’ve described here. Before
you can use the library effectively, you must learn more about it than
I’ve had room to summarize, and before you can write your own STL-
compliant templates, you must learn more about the conventions of
the STL. The standard C++ library is far richer than the C library, and
the time you take to familiarize yourself with it is time well spent. Fur-
thermore, the design principles embodied by the library — those of
generality, extensibility, customizability, efficiency, and reusability —
are well worth learning in their own right. By studying the standard
C++ library, you not only increase your knowledge of the ready-made
components available for use in your software, you learn how to apply
the features of C++ more effectively, and you gain insight into how to
design better libraries of your own.
From the Library of Yuri Khan

ptg

Recommended Reading

So your appetite for information on C++ remains unsated. Fear not,
there’s more — much more. In the sections that follow, I put forth my
recommendations for further reading on C++. It goes without saying
that such recommendations are both subjective and selective, but in
view of the litigious age in which we live, it’s probably a good idea to
say it anyway.

Books

There are hundreds — possibly thousands — of books on C++, and
new contenders join the fray with great frequency. I haven’t seen all
these books, much less read them, but my experience has been that
while some books are very good, some of them, well, some of them
aren’t.

What follows is the list of books I find myself consulting when I have
questions about software development in C++. Other good books are
available, I’m sure, but these are the ones I use, the ones I can truly
recommend.

A good place to begin is with the books that describe the language it-
self. Unless you are crucially dependent on the nuances of the official
standards documents, I suggest you do, too.

The Annotated C++ Reference Manual, Margaret A. Ellis and
Bjarne Stroustrup, Addison-Wesley, 1990, ISBN 0-201-51459-1.

The Design and Evolution of C++, Bjarne Stroustrup, Addison-
Wesley, 1994, ISBN 0-201-54330-3.

These books contain not just a description of what’s in the language,
they also explain the rationale behind the design decisions — some-
thing you won’t find in the official standard documents. The Anno-

From the Library of Yuri Khan

http://www.amazon.com/gp/product/0201514591?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201514591
http://www.amazon.com/gp/product/0201543303?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201543303

ptg

286 Recommended Reading

tated C++ Reference Manual is now incomplete (several language fea-
tures have been added since it was published — see Item 35) and is in
some cases out of date, but it is still the best reference for the core
parts of the language, including templates and exceptions. The Design
and Evolution of C++ covers most of what’s missing in The Annotated
C++ Reference Manual; the only thing it lacks is a discussion of the
Standard Template Library (again, see Item 35). These books are not
tutorials, they’re references, but you can’t truly understand C++ un-
less you understand the material in these books.

For a more general reference on the language, the standard library,
and how to apply it, there is no better place to look than the book by
the man responsible for C++ in the first place:

The C++ Programming Language (Third Edition), Bjarne Strous-
trup, Addison-Wesley, 1997, ISBN 0-201-88954-4.

Stroustrup has been intimately involved in the language’s design, im-
plementation, application, and standardization since its inception,
and he probably knows more about it than anybody else does. His de-
scriptions of language features make for dense reading, but that’s pri-
marily because they contain so much information. The chapters on
the standard C++ library provide a good introduction to this crucial
aspect of modern C++.

If you’re ready to move beyond the language itself and are interested
in how to apply it effectively, you might consider my first book on the
subject:

Effective C++, Third Edition: 55 Specific Ways to Improve Your
Programs and Designs, Scott Meyers, Addison-Wesley, 2005,
ISBN 0-321-33487-6.

That book is organized similarly to this one, but it covers different (ar-
guably more fundamental) material.

A book pitched at roughly the same level as my Effective C++ books,
but covering different topics, is

C++ Strategies and Tactics, Robert Murray, Addison-Wesley,
1993, ISBN 0-201-56382-7.

Murray’s book is especially strong on the fundamentals of template
design, a topic to which he devotes two chapters. He also includes a
chapter on the important topic of migrating from C development to
C++ development. Much of my discussion on reference counting (see
Item 29) is based on the ideas in C++ Strategies and Tactics.

If you’re the kind of person who likes to learn proper programming
technique by reading code, the book for you is

From the Library of Yuri Khan

http://www.amazon.com/gp/product/0201514591?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201514591
http://www.amazon.com/gp/product/0201514591?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201514591
http://www.amazon.com/gp/product/0201543303?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201543303
http://www.amazon.com/gp/product/0201543303?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201543303
http://www.amazon.com/gp/product/0201889544?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201889544
http://www.amazon.com/gp/product/0321334876?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0321334876
http://www.amazon.com/gp/product/0321334876?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0321334876
http://www.amazon.com/gp/product/0201563827?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201563827
http://www.amazon.com/gp/product/0201563827?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201563827

ptg

Recommended Reading 287

C++ Programming Style, Tom Cargill, Addison-Wesley, 1992,
ISBN 0-201-56365-7.

Each chapter in this book starts with some C++ software that has
been published as an example of how to do something correctly.
Cargill then proceeds to dissect — nay, vivisect — each program, iden-
tifying likely trouble spots, poor design choices, brittle implementation
decisions, and things that are just plain wrong. He then iteratively re-
writes each example to eliminate the weaknesses, and by the time he’s
done, he’s produced code that is more robust, more maintainable,
more efficient, and more portable, and it still fulfills the original prob-
lem specification. Anybody programming in C++ would do well to heed
the lessons of this book, but it is especially important for those in-
volved in code inspections.

One topic Cargill does not discuss in C++ Programming Style is excep-
tions. He turns his critical eye to this language feature in the following
article, however, which demonstrates why writing exception-safe code
is more difficult than most programmers realize:

“Exception Handling: A False Sense of Security,” C++ Report,
Volume 6, Number 9, November-December 1994, pages 21-24.

If you are contemplating the use of exceptions, read this article before
you proceed. If you don’t have access to back issues of the C++ Report,
you can find the article at the Addison-Wesley Internet site. The World
Wide Web URL is http://www.awl.com/cp/mec++.html. If you pre-
fer anonymous FTP, you can get the article from ftp.awl.com in the
directory cp/mec++.

Once you’ve mastered the basics of C++ and are ready to start push-
ing the envelope, you must familiarize yourself with

Advanced C++: Programming Styles and Idioms, James Coplien,
Addison-Wesley, 1992, ISBN 0-201-54855-0.

I generally refer to this as “the LSD book,” because it’s purple and it
will expand your mind. Coplien covers some straightforward material,
but his focus is really on showing you how to do things in C++ you’re
not supposed to be able to do. You want to construct objects on top of
one another? He shows you how. You want to bypass strong typing?
He gives you a way. You want to add data and functions to classes as
your programs are running? He explains how to do it. Most of the
time, you’ll want to steer clear of the techniques he describes, but
sometimes they provide just the solution you need for a tricky prob-
lem you’re facing. Furthermore, it’s illuminating just to see what

From the Library of Yuri Khan

http://www.awl.com/cp/mec++.html
ftp://ftp.awl.com
http://www.amazon.com/gp/product/0201563657?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201563657
http://www.amazon.com/gp/product/0201563657?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201563657
http://www.amazon.com/gp/product/0201548550?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201548550

ptg

288 Recommended Reading

kinds of things can be done with C++. This book may frighten you, it
may dazzle you, but when you’ve read it, you’ll never look at C++ the
same way again.

If you have anything to do with the design and implementation of C++
libraries, you would be foolhardy to overlook

Designing and Coding Reusable C++, Martin D. Carroll and
Margaret A. Ellis, Addison-Wesley, 1995, ISBN 0-201-51284-X.

Carroll and Ellis discuss many practical aspects of library design and
implementation that are simply ignored by everybody else. Good li-
braries are small, fast, extensible, easily upgraded, graceful during
template instantiation, powerful, and robust. It is not possible to opti-
mize for each of these attributes, so one must make trade-offs that
improve some aspects of a library at the expense of others. Designing
and Coding Reusable C++ examines these trade-offs and offers down-
to-earth advice on how to go about making them.

Regardless of whether you write software for scientific and engineering
applications, you owe yourself a look at

Scientific and Engineering C++, John J. Barton and Lee R.
Nackman, Addison-Wesley, 1994, ISBN 0-201-53393-6.

The first part of the book explains C++ for FORTRAN programmers
(now there’s an unenviable task), but the latter parts cover techniques
that are relevant in virtually any domain. The extensive material on
templates is close to revolutionary; it’s probably the most advanced
that’s currently available, and I suspect that when you’ve seen the
miracles these authors perform with templates, you’ll never again
think of them as little more than souped-up macros.

Finally, the emerging discipline of patterns in object-oriented software
development (see page 123) is described in

Design Patterns: Elements of Reusable Object-Oriented Soft-
ware, Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides, Addison-Wesley, 1995, ISBN 0-201-63361-2.

This book provides an overview of the ideas behind patterns, but its
primary contribution is a catalogue of 23 fundamental patterns that
are useful in many application areas. A stroll through these pages will
almost surely reveal a pattern you’ve had to invent yourself at one
time or another, and when you find one, you’re almost certain to dis-
cover that the design in the book is superior to the ad-hoc approach
you came up with. The names of the patterns here have already be-
come part of an emerging vocabulary for object-oriented design; fail-
ure to know these names may soon be hazardous to your ability to

From the Library of Yuri Khan

http://www.amazon.com/gp/product/020151284X?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=020151284X
http://www.amazon.com/gp/product/020151284X?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=020151284X
http://www.amazon.com/gp/product/020151284X?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=020151284X
http://www.amazon.com/gp/product/0201533936?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201533936
http://www.amazon.com/gp/product/0201633612?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201633612
http://www.amazon.com/gp/product/0201633612?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201633612

ptg

Recommended Reading 289

communicate with your colleagues. A particular strength of the book
is its emphasis on designing and implementing software so that future
evolution is gracefully accommodated (see Items 32 and 33).

Design Patterns is also available as a CD-ROM:

Design Patterns CD: Elements of Reusable Object-Oriented Soft-
ware, Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides, Addison-Wesley, 1998, ISBN 0-201-63498-8.

Magazines†

For hard-core C++ programmers, there’s really only one game in town:

C++ Report, SIGS Publications, New York, NY.

The magazine has made a conscious decision to move away from its
“C++ only” roots, but the increased coverage of domain- and system-
specific programming issues is worthwhile in its own right, and the
material on C++, if occasionally a bit off the deep end, continues to be
the best available.

If you’re more comfortable with C than with C++, or if you find the C++
Report’s material too extreme to be useful, you may find the articles in
this magazine more to your taste:

C/C++ Users Journal, Miller Freeman, Inc., Lawrence, KS.

As the name suggests, this covers both C and C++. The articles on
C++ tend to assume a weaker background than those in the C++ Re-
port. In addition, the editorial staff keeps a tighter rein on its authors
than does the Report, so the material in the magazine tends to be rela-
tively mainstream. This helps filter out ideas on the lunatic fringe, but
it also limits your exposure to techniques that are truly cutting-edge.

Usenet Newsgroups

Three Usenet newsgroups are devoted to C++. The general-purpose
anything-goes newsgroup is comp.lang.c++. The postings there run
the gamut from detailed explanations of advanced programming tech-
niques to rants and raves by those who love or hate C++ to undergrad-
uates the world over asking for help with the homework assignments
they neglected until too late. Volume in the newsgroup is extremely
high. Unless you have hours of free time on your hands, you’ll want to
employ a filter to help separate the wheat from the chaff. Get a good
filter — there’s a lot of chaff.

In November 1995, a moderated version of comp.lang.c++ was cre-
ated. Named comp.lang.c++.moderated, this newsgroup is also de-

† As of January 2008, both of these magazines have ceased publication. There are cur-
rently no broad-circulation paper publications devoted to C++.

From the Library of Yuri Khan

http://www.amazon.com/gp/product/0201634988?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201634988
http://www.amazon.com/gp/product/0201634988?ie=UTF8&tag=mecpp1e-ebook-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0201634988

ptg

290 Recommended Reading

signed for general discussion of C++ and related issues, but the mod-
erators aim to weed out implementation-specific questions and com-
ments, questions covered in the extensive on-line FAQ (“Frequently
Asked Questions” list), flame wars, and other matters of little interest
to most C++ practitioners.

A more narrowly focused newsgroup is comp.std.c++, which is de-
voted to a discussion of the C++ standard itself. Language lawyers
abound in this group, but it’s a good place to turn if your picky ques-
tions about C++ go unanswered in the references otherwise available
to you. The newsgroup is moderated, so the signal-to-noise ratio is
quite good; you won’t see any pleas for homework assistance here.

From the Library of Yuri Khan

ptg

An auto_ptr Implementation

Items 9, 10, 26, 31 and 32 attest to the remarkable utility of the
auto_ptr template. Unfortunately, few compilers currently ship with
a “correct” implementation.† Items 9 and 28 sketch how you might
write one yourself, but it’s nice to have more than a sketch when em-
barking on real-world projects.

Below are two presentations of an implementation for auto_ptr. The
first presentation documents the class interface and implements all
the member functions outside the class definition. The second imple-
ments each member function within the class definition. Stylistically,
the second presentation is inferior to the first, because it fails to sepa-
rate the class interface from its implementation. However, auto_ptr
yields simple classes, and the second presentation brings that out
much more clearly than does the first.

Here is auto_ptr with its interface documented:

template<class T>
class auto_ptr {
public:
explicit auto_ptr(T *p = 0); // see Item 5 for a

// description of "explicit"

template<class U> // copy constructor member
auto_ptr(auto_ptr<U>& rhs); // template (see Item 28):

// initialize a new auto_ptr
// with any compatible
// auto_ptr

~auto_ptr();

template<class U> // assignment operator
auto_ptr<T>& // member template (see
operator=(auto_ptr<U>& rhs); // Item 28): assign from any

// compatible auto_ptr

† This is primarily because the specification for auto_ptr has for years been a moving
target. The final specification was adopted only in November 1997. For details, consult
the auto_ptr information at this book’s WWW and FTP sites (see page 8). Note that
the auto_ptr described here omits a few details present in the official version, such
as the fact that auto_ptr is in the std namespace (see Item 35) and that its member
functions promise not to throw exceptions.

From the Library of Yuri Khan

ptg

292 An auto_ptr Implementation

T& operator*() const; // see Item 28
T* operator->() const; // see Item 28

T* get() const; // return value of current
// dumb pointer

T* release(); // relinquish ownership of
// current dumb pointer and
// return its value

void reset(T *p = 0); // delete owned pointer;
// assume ownership of p

private:
T *pointee;

template<class U> // make all auto_ptr classes
friend class auto_ptr<U>; // friends of one another
};

template<class T>
inline auto_ptr<T>::auto_ptr(T *p)
: pointee(p)
{}

template<class T>
template<class U>
inline auto_ptr<T>::auto_ptr(auto_ptr<U>& rhs)
: pointee(rhs.release())
{}

template<class T>
inline auto_ptr<T>::~auto_ptr()
{ delete pointee; }

template<class T>
template<class U>
inline auto_ptr<T>& auto_ptr<T>::operator=(auto_ptr<U>& rhs)
{
if (this != &rhs) reset(rhs.release());
return *this;

}

template<class T>
inline T& auto_ptr<T>::operator*() const
{ return *pointee; }

template<class T>
inline T* auto_ptr<T>::operator->() const
{ return pointee; }

template<class T>
inline T* auto_ptr<T>::get() const
{ return pointee; }

From the Library of Yuri Khan

ptg

An auto_ptr Implementation 293

template<class T>
inline T* auto_ptr<T>::release()
{
T *oldPointee = pointee;
pointee = 0;
return oldPointee;

}

template<class T>
inline void auto_ptr<T>::reset(T *p)
{
if (pointee != p) {
delete pointee;
pointee = p;

}
}

Here is auto_ptr with all the functions defined in the class definition.
As you can see, there’s no brain surgery going on here:

template<class T>
class auto_ptr {
public:
explicit auto_ptr(T *p = 0): pointee(p) {}

template<class U>
auto_ptr(auto_ptr<U>& rhs): pointee(rhs.release()) {}

~auto_ptr() { delete pointee; }

template<class U>
auto_ptr<T>& operator=(auto_ptr<U>& rhs)
{
if (this != &rhs) reset(rhs.release());
return *this;

}

T& operator*() const { return *pointee; }

T* operator->() const { return pointee; }

T* get() const { return pointee; }

T* release()
{
T *oldPointee = pointee;
pointee = 0;
return oldPointee;

}

void reset(T *p = 0)
{
if (pointee != p) {
delete pointee;
pointee = p;

}
}

From the Library of Yuri Khan

ptg

294 An auto_ptr Implementation

private:
T *pointee;

template<class U> friend class auto_ptr<U>;
};

If your compilers don’t yet support explicit, you may safely #define
it out of existence:

#define explicit

This won’t make auto_ptr any less functional, but it will render it
slightly less safe. For details, see Item 5.

If your compilers lack support for member templates, you can use the
non-template auto_ptr copy constructor and assignment operator de-
scribed in Item 28. This will make your auto_ptrs less convenient to
use, but there is, alas, no way to approximate the behavior of member
templates. If member templates (or other language features, for that
matter) are important to you, let your compiler vendors know. The
more customers ask for new language features, the sooner vendors will
implement them.

From the Library of Yuri Khan

ptg
General Index

This index is for everything in this book except the classes, functions,
and templates I use as examples. If you’re looking for a reference to a
particular class, function, or template I use as an example, please
turn to the index beginning on page 313. For everything else, this is
the place to be. In particular, classes, functions, and templates in the
standard C++ library (e.g., string, auto_ptr, list, vector, etc.) are
indexed here.

For the most part, operators are listed under operator. For example,
operator<< is listed under operator<<, not under <<, etc. However,
operators whose names are words or are word-like (e.g., new, delete,
sizeof, const_cast, etc.) are listed under the appropriate words
(e.g., new, delete, sizeof, const_cast, etc.).

Example uses of new and lesser-known language features are indexed
under example uses.
Before A
#define 294
?:, vs. if/then 56
__cplusplus 273
“>>”, vs. “> >” 29
80-20 rule 79, 82–85, 106
90-10 rule xi, 82

A
abort

and assert 167
and object destruction 72
relationship to terminate 72

abstract classes
and inheritance 258–270

drawing 5
identifying 267, 268
transforming from concrete 266–

269
abstract mixin base classes 154
abstractions

identifying 267, 268
useful 267

access-declarations 144
adding data and functions to

classes at runtime 287
Addison-Wesley Internet site 8, 287
address comparisons to determine

object locations 150–152
address-of operator —

see operator&
From the Library of Yuri Khan

ptg

296 General Index

Advanced C++: Programming Styles
and Idioms 287

Adventure, allusion to 271
allocation of memory — see memory

allocation
amortizing computational

costs 93–98
Annotated C++ Reference Manual,

The 277, 285
ANSI/ISO standardization

committee 59, 96, 256, 277
APL 92
application framework 234
approximating
bool 3–4
C++-style casts 15–16
const static data

members 141
explicit 29–31
in-class using declarations 144
member templates 294
mutable 89–90
virtual functions 121
vtbls 235–251

ARM, the 277
array new 42
arrays

and auto_ptr 48
and default constructors 19–21
and inheritance 17–18
and pointer arithmetic 17
associative 236, 237
dynamic 96–98
memory allocation for 42–43
multi-dimensional 213–217
of pointers to functions 15, 113
of pointers, as substitute for

arrays of objects 20
pointers into 280
using placement new to

initialize 20–21
assert, and abort 167
assignment operators —

see operator=
assignments

in reference-counted value
classes 196

mixed-type 260, 261, 263–265
of pointers and references 11

partial 259, 263–265
through pointers 259, 260

associative arrays 236, 237
auto_ptr 49, 53, 57, 58, 137, 139,

162, 240, 257
and heap arrays 48
and object ownership 183
and pass-by-reference 165
and pass-by-value 164
and preventing resource

leaks 48, 58
assignment of 162–165
copying of 162–165
implementation 291–294

B
bad_alloc class 70, 75
bad_cast class 70, 261, 262
bad_exception class 70, 77
bad_typeid class 70
Barton, John J. 288
base classes

and catch clauses 67
and delete 18
for counting objects 141–145

BASIC 156, 213
basic_string class 279, 280
begin function 283
benchmarks 80, 110, 111
best fit 67
Bible, allusion to 235
bitset template 4, 283
books, recommended 285–289
bool 3, 4
bugs in this book, reporting 8
bypassing

constructors 21
exception-related costs 79
RTTI information 122
smart pointer smartness 171
strong typing 287
virtual base classes 122
virtual functions 122

C
C

dynamic memory allocation 275

From the Library of Yuri Khan

ptg

General Index 297

functions and name
mangling 271

linkage 272
migrating to C++ 286
mixing with C++ 270–276
standard library 278

C Programming Language, The 36
C-style casts 12, 90
C++

dynamic memory allocation 275
migrating from C 286
mixing with C 270–276
standard library — see stan-

dard C++ library
C++ Programming Language,

The 286
C++ Programming Style 287
C++ Report 287, 289
C++-style casts 12–16

approximating 15–16
C/C++ Users Journal 289
c_str 27
caching 94–95, 98
callback functions 74–75, 79
Candide, allusion to 19
Cargill, Tom 44, 287
Carroll, Martin D. 288
casts

C++-style 12–16
C-style 12, 90
of function pointers 15, 242
safe 14
to remove constness or

volatileness 13, 221
catch 56

and inheritance 67
and temporary objects 65
by pointer 70
by reference 71
by value 70
clauses, order of

examination 67–68
clauses, vs. virtual functions 67
see also pass-by-value, pass-by-

reference, and pass-by-
pointer

change, designing for 252–270
char*s, vs. string objects 4

characters
Unicode 279
wide 279

Clancy — see Urbano, Nancy L.
classes

abstract mixin bases 154
abstract, drawing 5
adding members at runtime 287
base — see base classes
concrete, drawing 5
derived — see derived classes
designing — see design
diagnostic, in the standard

library 66
for registering things 250
mixin 154
modifying, and

recompilation 234, 249
nested, and inheritance 197
proxy — see proxy classes
templates for, specializing 175
transforming concrete into

abstract 266–269
cleaning your room 85
client, definition 7
CLOS 230
COBOL 213, 272
code duplication 47, 54, 142, 204,

223, 224
code reuse

via smart pointer templates and
base classes 211

via the standard library 5
code, generalizing 258
comma operator —

see operator,
committee for C++ standardization

— see ANSI/ISO standardiza-
tion committee

comp.lang.c++ 289
comp.lang.c++.moderated 289
comp.std.c++ 290
comparing addresses to determine

object location 150–152
compilers, lying to 241
complex numbers 279, 280

From the Library of Yuri Khan

ptg

298 General Index
concrete classes
and inheritance 258–270
drawing 5
transforming into abstract 266–

269
consistency

among +, =, and +=, etc. 107
between built-in and user-

defined types 254
between prefix and postfix oper-

ator++ and operator-- 34
between real and virtual copy

constructors 126
const member functions 89, 160,

218
const return types 33–34, 101
const static data members,

initialization 140
const_cast 13, 14, 15, 37, 90
const_iterator type 127, 283
constant pointers 55–56
constness, casting away 13, 221
constructing objects on top of one

another 287
constructors

and fully constructed objects 52
and malloc 39
and memory leaks 6
and operator new 39, 149–150
and operator new[] 43
and references 165
and static initialization 273
as type conversion functions 27–

31
bypassing 21
calling directly 39
copy — see copy constructors
default — see default construc-

tors
lazy 88–90
preventing exception-related

resource leaks 50–58
private 130, 137, 146
protected 142
pseudo — see pseudo-construc-

tors
purpose 21
relationship to new operator and

operator new 40
single-argument 25, 27–31, 177
virtual — see virtual constructors

contacting this book’s author 8
containers —

see Standard Template Library
contexts for object

construction 136
conventions

and the STL 284
for I/O operators 128
used in this book 5–8

conversion functions —
see type conversion functions

conversions — see type conversions
Coplien, James 287
copy constructors 146

and classes with pointers 200
and exceptions 63, 68
and non-const parameters 165
and smart pointers 205
for strings 86
virtual — see virtual copy con-

structors
copying objects

and exceptions 68
static type vs. dynamic type 63
when throwing an exception 62–

63
copy-on-write 190–194
counting object instantiations 141–

145
C-style casts 12
ctor, definition 6
customizing memory

management 38–43

D
data members

adding at runtime 287
auto_ptr 58
initialization when const 55–56
initialization when static 140
replication, under multiple

inheritance 118–120
static, in templates 144

dataflow languages 93
Davis, Bette, allusion to 230
decrement operator —

see operator--
From the Library of Yuri Khan

ptg

General Index 299

default constructors
and arrays 19–21
and templates 22
and virtual base classes 22
definition 19
meaningless 23
restrictions from 19–22
when to/not to declare 19

delete
and inheritance 18
and memory not from new 21
and nonvirtual destructors 256
and null pointers 52
and objects 173
and smart pointers 173
and this 145, 152, 157, 197, 213
determining when valid 152–157
see also delete operator and

ownership
delete operator 37, 41, 173

and operator delete[] and
destructors 43

and placement new 42
and this 145, 152, 157, 197, 213

deprecated features 7
access declarators 144
statics at file scope 246
strstream class 279

deque template 283
derived classes

and catch clauses 67
and delete 18
and operator= 263
prohibiting 137

design
and multiple dispatch 235
for change 252–270
of classes 33, 133, 186, 227, 258,

268
of function locations 244
of libraries 110, 113, 284,

288
of templates 286
of virtual function

implementation 248
patterns 123, 288

Design and Evolution of C++,
The 278, 285

Design Patterns: Elements of Reus-
able Object-Oriented
Software 288

Designing and Coding Reusable
C++ 288

destruction, static 273–275
destructors

and delete 256
and exceptions 45
and fully constructed objects 52
and longjmp 47
and memory leaks 6
and operator delete[] 43
and partially constructed

objects 53
and smart pointers 205
private 145
protected 142, 147
pseudo 145, 146
pure virtual 195, 265
virtual 143, 254–257

determining whether a pointer can
be deleted 152–157

determining whether an object is on
the heap 147–157

diagnostics classes of the standard
library 66

dispatching — see multiple dispatch
distinguishing lvalue and rvalue

use of operator[] 87, 217–
223

domain_error class 66
double application of increment

and decrement 33
double-dispatch —

see multiple dispatch
dtor, definition 6
dumb pointers 159, 207
duplication of code 47, 54, 142,

204, 223, 224
dynamic arrays 96–98
dynamic type

vs. static type 5–6
vs. static type, when copying 63

dynamic_cast 6, 37, 261–262
and null pointer 70
and virtual functions 14, 156
approximating 16
meaning 14

From the Library of Yuri Khan

ptg

300 General Index

to get a pointer to the beginning of
an object 155

to reference, failed 70
to void* 156

E
eager evaluation 86, 91, 92, 94, 98

converting to lazy evaluation 93
Edelson, Daniel 179
Effective C++ 5, 100, 286
efficiency

and assigning smart
pointers 163

and benchmarks 110
and cache hit rate 98
and constructors and

destructors 53
and copying smart pointers 163
and encapsulation 82
and function return values 101
and inlining 129
and libraries 110, 113
and maintenance 91
and multiple inheritance 118–

120
and object size 98
and operators new and

delete 97, 113
and paging behavior 98
and pass-by-pointer 65
and pass-by-reference 65
and pass-by-value 65
and profiling 84–85, 93
and reference counting 183, 211
and system calls 97
and temporary objects 99–101
and tracking heap

allocations 153
and virtual functions 113–118
and vptrs 116, 256
and vtbls 114, 256
caching 94–95, 98
class statics vs. function

statics 133
cost amortization 93–98
implications of meaningless

default constructors 23
iostreams vs. stdio 110–112

locating bottlenecks 83
manual methods vs. language

features 122
of exception-related features 64,

70, 78–80
of prefix vs. postfix increment and

decrement 34
of stand-alone operators vs.

assignment versions 108
prefetching 96–98
reading vs. writing reference-

counted objects 87, 217
space vs. time 98
summary of costs of various lan-

guage features 121
virtual functions vs. manual

methods 121, 235
vs. syntactic convenience 108
see also optimization

Ellis, Margaret A. 285, 288
emulating features —

see approximating
encapsulation

allowing class implementations
to change 207

and efficiency 82
end function 283
enums

and overloading operators 277
as class constants 141

evaluation
converting eager to lazy 93
eager 86, 91, 92, 94, 98
lazy 85–93, 94, 98, 191, 219
over-eager 94–98
short-circuit 35, 36

example uses
__cplusplus 273
auto_ptr 48, 57, 138, 164, 165,

240, 247, 257
const pointers 55
const_cast 13, 90, 221
dynamic_cast 14, 155, 243,

244, 261, 262
exception specifications 70, 73,

74, 75, 77
explicit 29, 291, 293
find function 283

From the Library of Yuri Khan

ptg

General Index 301
implicit type conversion
operators 25, 26, 49, 171,
175, 219, 225

in-class initialization of const
static members 140

list template 51, 124, 154, 283
make_pair template 247
map template 95, 238, 245
member templates 176, 291, 292,

293
mutable 88
namespace 132, 245, 246, 247
nested class using

inheritance 197
operator delete 41, 155
operator delete[] 21
operator new 41, 155
operator new[] 21
operator& 224
operator->* (built-in) 237
pair template 246
placement new 21, 40
pointers to member

functions 236, 238
pure virtual destructors 154, 194
reference data member 219
refined return type of virtual

functions 126, 260
reinterpret_cast 15
setiosflags 111
setprecision 111
setw 99, 111
Standard Template Library 95,

125, 127, 155, 238, 247, 283,
284

static_cast 12, 18, 21, 28, 29,
231

typeid 231, 238, 245
using declarations 133, 143
vector template 11

exception class 66, 77
exception specifications 72–78

advantages 72
and callback functions 74–75
and layered designs 77
and libraries 76, 79
and templates 73–74
checking for consistency 72
cost of 79
mixing code with and without 73,
75

exception::what 70, 71
exceptions 287

and destructors 45
and operator new 52
and type conversions 66–67
and virtual functions 79
causing resource leaks in

constructors 52
choices for passing 68
disadvantages 44
efficiency 63, 65, 78–80
mandatory copying 62–63
modifying throw expressions 63
motivation 44
optimization 64
recent revisions to 277
rethrowing 64
specifications — see exception

specifications
standard 66, 70
unexpected — see unexpected

exceptions
use of copy constructor 63
use to indicate common

conditions 80
vs. setjmp and longjmp 45
see also catch, throw

explicit 28–31, 227, 294
extern "C" 272–273

F
fake this 89
false 3
Felix the Cat 123
fetch and increment 32
fetching, lazy 87–90
find function 283
first fit 67
fixed-format I/O 112
Forth 271
FORTRAN 213, 215, 271, 288
free 42, 275
French, gratuitous use of 177, 185
friends, avoiding 108, 131
fstream class 278
From the Library of Yuri Khan

ptg

302 General Index

FTP site
for this book 8, 287

fully constructed objects 52
function call semantics 35–36
functions

adding at runtime 287
C, and name mangling 271
callback 74–75, 79
for type conversions 25–31
inline, in this book 7
member — see member functions
member template — see mem-

ber templates
return types — see return types
virtual — see virtual functions

future tense programming 252–258

G
Gamma, Erich 288
garbage collection 183, 212
generalizing code 258
German, gratuitous use of 31
global overloading of operator

new/delete 43, 153
GUI systems 49, 74–75

H
Hamlet, allusion to 22, 70, 252
heap objects — see objects
Helm, Richard 288
heuristic for vtbl generation 115

I
identifying abstractions 267, 268
idioms 123
Iliad, Homer’s 87
implementation

of + in terms of +=, etc. 107
of libraries 288
of multiple dispatch 230–251
of operators ++ and -- 34
of pass-by-reference 242
of pure virtual functions 265
of references 242
of RTTI 120–121
of virtual base classes 118–120

of virtual functions 113–118
implicit type conversion operators

— see type conversion operators
implicit type conversions —

see type conversions
increment and fetch 32
increment operator —

see operator++
indexing, array

and inheritance 17–18
and pointer arithmetic 17

inheritance
and abstract classes 258–270
and catch clauses 67
and concrete classes 258–270
and delete 18
and emulated vtbls 248–249
and libraries 269–270
and nested classes 197
and operator delete 158
and operator new 158
and private constructors and

destructors 137, 146
and smart pointers 163, 173–179
and type conversions of

exceptions 66
multiple — see multiple inherit-

ance
private 143

initialization
demand-paged 88
of arrays via placement new 20–

21
of const pointer members 55–56
of const static members 140
of emulated vtbls 239–244, 249–

251
of function statics 133
of objects 39, 237
of pointers 10
of references 10
order, in different translation

units 133
static 273–275

inlining
and “virtual” non-member

functions 129

From the Library of Yuri Khan

ptg

General Index 303
and function statics 134
and the return value

optimization 104
and vtbl generation 115
in this book 7

instantiations, of templates 7
internal linkage 134
Internet site

for free STL implementation 4
for this book 8, 287

invalid_argument class 66
iostream class 278
iostreams 280

and fixed-format I/O 112
and operator! 170
conversion to void* 168
vs. stdio 110–112

ISO standardization committee —
see ANSI/ISO standardization
committee

iterators 283
and operator-> 96
vs. pointers 282, 284
see also Standard Template

Library

J
Japanese, gratuitous use of 45
Johnson, Ralph 288

K
Kernighan, Brian W. 36
Kirk, Captain, allusion to 79

L
language lawyers 290
Latin, gratuitous use of 203, 252
lazy construction 88–90
lazy evaluation 85–93, 94, 191, 219

and object dependencies 92
conversion from eager 93
when appropriate 93, 98

lazy fetching 87–90
leaks, memory — see memory leaks
leaks, resource —

see resource leaks
length_error class 66
lhs, definition 6
libraries

and exception specifications 75,
76, 79

design and implementation 110,
113, 284, 288

impact of modification 235
inheriting from 269–270

library, C++ standard — see stan-
dard C++ library

lifetime of temporary objects 278
limitations on type conversion

sequences 29, 31, 172, 175, 226
limiting object instantiations 130–

145
linkage

C 272
internal 134

linkers, and overloading 271
Lisp 93, 230, 271
list template 4, 51, 124, 125, 154,

283
locality of reference 96, 97
localization, support in standard

C++ library 278
logic_error class 66
longjmp

and destructors 47
and setjmp, vs. exceptions 45

LSD 287
lvalue, definition 217
lying to compilers 241

M
magazines, recommended 289
main 251, 273, 274
maintenance 57, 91, 107, 179, 211,

227, 253, 267, 270, 273
and RTTI 232

make_pair template 247
malloc 39, 42, 275

and constructors 39
and operator new 39

map template 4, 95, 237, 246, 283
member data —

see data members
From the Library of Yuri Khan

ptg

304 General Index

member functions
and compatibility of C++ and C

structs 276
const 89, 160, 218
invocation through proxies 226
pointers to 240

member initialization lists 58
and ?: vs. if/then 56
and try and catch 56

member templates 165
and assigning smart

pointers 180
and copying smart pointers 180
approximating 294
for type conversions 175–179
portability of 179

memory allocation 112
for basic_string class 280
for heap arrays 42–43
for heap objects 38
in C++ vs. C 275

memory leaks 6, 7, 42, 145
see also resource leaks

memory management,
customizing 38–43

memory values, after calling oper-
ator new 38

memory, shared 40
memory-mapped I/O 40
message dispatch —

see multiple dispatch
migrating from C to C++ 286
mixed-type assignments 260, 261

prohibiting 263–265
mixed-type comparisons 169
mixin classes 154
mixing code

C++ and C 270–276
with and without exception

specifications 75
multi-dimensional arrays 213–217
multi-methods 230
multiple dispatch 230–251
multiple inheritance 153

and object addresses 241
and vptrs and vtbls 118–120

mutable 88–90

N
Nackman, Lee R. 288
name function 238
name mangling 271–273
named objects 109

and optimization 104
vs. temporary objects 109

namespaces 132, 144
and the standard C++ library 280
std 261
unnamed 246, 247

nested classes, and
inheritance 197

new language features,
summary 277

new operator 37, 38, 42
and bad_alloc 75
and operator new and

constructors 39, 40
and operator new[] and

constructors 43
new, placement —

see placement new
newsgroups, recommended 289
Newton, allusion to 41
non-member functions, acting

virtual 128–129
null pointers

and dynamic_cast 70
and strlen 35
and the STL 281
deleting 52
dereferencing 10
in smart pointers 167
testing for 10

null references 9–10
numeric applications 90, 279

O
objects

addresses 241
allowing exactly one 130–134
and virtual functions 118
as function return type 99
assignments through

pointers 259, 260

From the Library of Yuri Khan

ptg

General Index 305
constructing on top of one
another 287

construction, lazy 88–90
contexts for construction 136
copying, and exceptions 62–63,

68
counting instantiations 141–145
deleting 173
determining location via address

comparisons 150–152
determining whether on the

heap 147–157
initialization 39, 88, 237
limiting the number of 130–145
locations 151
memory layout diagrams 116,

119, 120, 242
modifying when thrown 63
named — see named objects
ownership 162, 163–165, 183
partially constructed 53
preventing instantiations 130
prohibiting from heap 157–158
proxy — see proxy objects
restricting to heap 145–157
size, and cache hit rate 98
size, and paging behavior 98
static — see static objects
surrogate 217
temporary — see temporary

objects
unnamed — see temporary

objects
using dynamic_cast to find the

beginning 155
using to prevent resource

leaks 47–50, 161
vs. pointers, in classes 147

On Beyond Zebra, allusion to 168
operator delete 37, 41, 84, 113,

173
and efficiency 97
and inheritance 158

operator delete[] 37, 84
and delete operator and

destructors 43
private 157
operator new 37, 38, 69, 70, 84,
113, 149

and bad_alloc 75
and constructors 39, 149–150
and efficiency 97
and exceptions 52
and inheritance 158
and malloc 39
and new operator and

constructors 40
calling directly 39
overloading at global scope 43,

153
private 157
values in memory returned

from 38
operator new[] 37, 42, 84, 149

and bad_alloc 75
and new operator and

constructors 43
private 157

operator overloading, purpose 38
operator void* 168–169
operator! 37

in iostream classes 170
in smart pointers classes 169

operator!= 37
operator% 37
operator%= 37
operator& 37, 74, 223
operator&& 35–36, 37
operator&= 37
operator() 37, 215
operator* 37, 101, 103, 104, 107

and null smart pointers 167
and STL iterators 96
as const member function 160

operator*= 37, 107, 225
operator+ 37, 91, 100, 107, 109

template for 108
operator++ 31–34, 37, 225

double application of 33
prefix vs. postfix 34

operator+= 37, 107, 109, 225
operator, 36–37
operator- 37, 107

template for 108
operator-= 37, 107
From the Library of Yuri Khan

ptg

306 General Index

operator-> 37
and STL iterators 96
as const member function 160

operator->* 37
operator-- 31–34, 37, 225

double application of 33
prefix vs. postfix 34

operator. 37
and proxy objects 226

operator.* 37
operator/ 37, 107
operator/= 37, 107
operator:: 37
operator< 37
operator<< 37, 112, 129

why a member function 128
operator<<= 37, 225
operator<= 37
operator= 37, 107, 268

and classes with pointers 200
and derived classes 263
and inheritance 259–265
and mixed-type

assignments 260, 261, 263–
265

and non-const parameters 165
and partial assignments 259,

263–265
and smart pointers 205
virtual 259–262

operator== 37
operator> 37
operator>= 37
operator>> 37
operator>>= 37
operator?: 37, 56
operator[] 11, 37, 216
const vs. non-const 218
distinguishing lvalue and rvalue

use 87, 217–223
operator[][] 214
operator^ 37
operator^= 37
operator| 37
operator|= 37
operator|| 35–36, 37
operator~ 37

operators
implicit type conversion — see

type conversion operators
not overloadable 37
overloadable 37
returning pointers 102
returning references 102
stand-alone vs. assignment

versions 107–110
optimization

and profiling data 84
and return expressions 104
and temporary objects 104
of exceptions 64
of reference counting 187
of vptrs under multiple

inheritance 120
return value — see return value

optimization
via valarray objects 279
see also efficiency

order of examination of catch
clauses 67–68

Ouija boards 83
out_of_range class 66
over-eager evaluation 94–98
overflow_error class 66
overloadable operators 37
overloading

and enums 277
and function pointers 243
and linkers 271
and user-defined types 106
operator new/delete at global

scope 43, 153
resolution of function calls 233
restrictions 106
to avoid type conversions 105–

107
ownership of objects 162, 183

transferring 163–165

P
pair template 246
parameters

passing, vs. throwing
exceptions 62–67

unused 33, 40

From the Library of Yuri Khan

ptg

General Index 307
partial assignments 259, 263–265
partial computation 91
partially constructed objects, and

destructors 53
pass-by-pointer 65
pass-by-reference

and auto_ptrs 165
and const 100
and temporary objects 100
and the STL 282
and type conversions 100
efficiency, and exceptions 65
implementation 242

pass-by-value
and auto_ptrs 164
and the STL 282
and virtual functions 70
efficiency, and exceptions 65

passing exceptions, choices 68
patterns 123, 288
Pavlov, allusion to 81
performance — see efficiency
placement new 39–40

and array initialization 20–21
and delete operator 42

pointer arithmetic
and array indexing 17
and inheritance 17–18

pointers
and object assignments 259, 260
and proxy objects 223
and virtual functions 118
as parameters — see pass-by-

pointer
assignment 11
constant 55
dereferencing when null 10
determining whether they can be

deleted 152–157
dumb 159
implications for copy construc-

tors and assignment
operators 200

initialization 10, 55–56
into arrays 280
null — see null pointers
replacing dumb with smart 207
returning from operators 102
smart — see smart pointers
testing for nullness 10
to functions 15, 241, 243
to member functions 240
vs. iterators 284
vs. objects, in classes 147
vs. references 9–11
when to use 11

polymorphism, definition 16
Poor Richard’s Almanac, allusion

to 75
portability

and non-standard functions 275
of casting function pointers 15
of determining object

locations 152, 158
of dynamic_cast to void* 156
of member templates 179
of passing data between C++ and

C 275
of reinterpret_cast 14
of static initialization and

destruction 274
prefetching 96–98
preventing object instantiation 130
principle of least astonishment 254
printf 112
priority_queue template 283
private inheritance 143
profiling — see program profiling
program profiling 84–85, 93, 98,

112, 212
programming in the future

tense 252–258
protected constructors and

destructors 142
proxy classes 31, 87, 190, 194, 213–

228
definition 217
limitations 223–227
see also proxy objects

proxy objects
and ++, --, +=, etc. 225
and member function

invocations 226
and operator. 226
and pointers 223
as temporary objects 227
passing to non-const reference

parameters 226
see also proxy classes
From the Library of Yuri Khan

ptg

308 General Index

pseudo-constructors 138, 139, 140
pseudo-destructors 145, 146
pure virtual destructors 195, 265
pure virtual functions —

see virtual functions
Python, Monty, allusion to 62

Q
queue template 4, 283

R
range_error class 66
recommended reading

books 285–289
magazines 289
on exceptions 287
Usenet newsgroups 289

recompilation, impact of 234, 249
reference counting 85–87, 171,

183–213, 286
and efficiency 211
and read-only types 208–211
and shareability 192–194
assignments 189
automating 194–203
base class for 194–197
constructors 187–188
cost of reads vs. writes 87, 217
design diagrams 203, 208
destruction 188
implementation of String

class 203–207
operator[] 190–194
optimization 187
pros and cons 211–212
smart pointer for 198–203
when appropriate 212

references
and constructors 165
and virtual functions 118
as operator[] return type 11
as parameters — see pass-by-

reference
assignment 11
implementation 242
mandatory initialization 10
null 9–10

returning from operators 102
to locals, returning 103
vs. pointers 9–11
when to use 11

refined return type of virtual
functions 126

reinterpret_cast 14–15, 37,
241

relationships
among delete operator, opera-

tor delete, and
destructors 41

among delete operator, opera-
tor delete[], and
destructors 43

among new operator, operator
new, and constructors 40

among new operator, operator
new[], and constructors 43

among operator+, operator=,
and operator+= 107

between operator new and
bad_alloc 75

between operator new[] and
bad_alloc 75

between terminate and
abort 72

between the new operator and
bad_alloc 75

between unexpected and
terminate 72

replication of code 47, 54, 142, 204,
223, 224

replication of data under multiple
inheritance 118–120

reporting bugs in this book 8
resolution of calls to overloaded

functions 233
resource leaks 46, 52, 69, 102, 137,

149, 173, 240
and exceptions 45–58
and smart pointers 159
definition 7
in constructors 52, 53
preventing via use of objects 47–

50, 58, 161
vs. memory leaks 7

restrictions on classes with default
constructors 19–22

From the Library of Yuri Khan

ptg

General Index 309

rethrowing exceptions 64
return expression, and

optimization 104
return types

and temporary objects 100–104
const 33–34, 101
objects 99
of operator-- 32
of operator++ 32
of operator[] 11
of smart pointer dereferencing

operators 166
of virtual functions 126
references 103

return value optimization 101–104,
109

reuse — see code reuse
rhs, definition 6
rights and responsibilities 213
Ritchie, Dennis M. 36
Romeo and Juliet, allusion to 166
RTTI 6, 261–262

and maintenance 232
and virtual functions 120, 256
and vtbls 120
implementation 120–121
vs. virtual functions 231–232

runtime type identification —
see RTTI

runtime_error class 66
rvalue, definition 217

S
safe casts 14
Scarlet Letter, The, allusion to 232
Scientific and Engineering C++ 288
semantics of function calls 35–36
sequences of type conversions 29,

31, 172, 175, 226
set template 4, 283
set_unexpected function 76
setiosflags, example use 111
setjmp and longjmp, vs.

exceptions 45
setprecision, example use 111
setw, example uses 99, 111
shared memory 40

sharing values 86
see also reference counting

short-circuit evaluation 35, 36
single-argument constructors —

see constructors
sizeof 37
slicing problem 70, 71
smart pointers 47, 90, 159–182,

240, 282
and const 179–182
and distributed systems 160–162
and inheritance 163, 173–179
and member templates 175–182
and resource leaks 159, 173
and virtual constructors 163
and virtual copy

constructors 202
and virtual functions 166
assignments 162–165, 180
construction 162
conversion to dumb

pointers 170–173
copying 162–165, 180
debugging 182
deleting 173
destruction 165–166
for reference counting 198–203
operator* 166–167
operator-> 166–167
replacing dumb pointers 207
testing for nullness 168–170, 171

Spanish, gratuitous use of 232
sqrt function 65
stack objects — see objects
stack template 4, 283
standard C library 278
standard C++ library 1, 4–5, 11, 48,

51, 280
and code reuse 5
diagnostics classes 66
summary of features 278–279
use of templates 279–280
see also Standard Template

Library
Standard Template Library 4–5,

95–96, 280–284
and pass-by-reference 282
and pass-by-value 282
conventions 284

From the Library of Yuri Khan

ptg

310 General Index

example uses — see example
uses

extensibility 284
free implementation 4
iterators and operator-> 96

standardization committee —
see ANSI/ISO standardization

committee
Star Wars, allusion to 31
static destruction 273–275
static initialization 273–275
static objects 151

and inlining 134
at file scope 246
in classes vs. in functions 133–

134
in functions 133, 237
when initialized 133

static type vs. dynamic type 5–6
when copying 63

static_cast 13, 14, 15, 37
std namespace 261

and standard C++ library 280
stdio, vs. iostreams 110–112
STL — see Standard Template

Library
strdup 275
string class 27, 279–280
c_str member function 27
destructor 256

String class —
see reference counting

string objects, vs. char*s 4
stringstream class 278
strlen, and null pointer 35
strong typing, bypassing 287
Stroustrup, Bjarne 285, 286
strstream class 278
structs

compatibility between C++ and
C 276

private 185
summaries

of efficiency costs of various lan-
guage features 121

of new language features 277
of standard C++ library 278–279

suppressing
type conversions 26, 28–29

warnings for unused
parameters 33, 40

Surgeon General’s tobacco warn-
ing, allusion to 288

surrogates 217
Susann, Jacqueline 228
system calls 97

T
templates 286, 288

and “>>”, vs. “> >” 29
and default constructors 22
and exception specifications 73–

74
and pass-by-reference 282
and pass-by-value 282
and static data members 144
for operator+ and operator-

108
in standard C++ library 279–280
member — see member tem-

plates
recent extensions 277
specializing 175
vs. template instantiations 7

temporary objects 34, 64, 98–101,
105, 108, 109

and efficiency 99–101
and exceptions 68
and function return types 100–

104
and optimization 104
and pass-by-reference 100
and type conversions 99–100
catching vs. parameter

passing 65
eliminating 100, 103–104
lifetime of 278
vs. named objects 109

terminate 72, 76
terminology used in this book 5–8
this, deleting 145, 152, 157, 197,

213
throw

by pointer 70
cost of executing 63, 79
modifying objects thrown 63
to rethrow current exception 64

From the Library of Yuri Khan

ptg

General Index 311

vs. parameter passing 62–67
see also catch

transforming concrete classes into
abstract 266–269

true 3
try blocks 56, 79
type conversion functions 25–31

valid sequences of 29, 31, 172,
175, 226

type conversion operators 25, 26–
27, 49, 168

and smart pointers 175
via member templates 175–179

type conversions 66, 220, 226
and exceptions 66–67
and function pointers 241
and pass-by-reference 100
and temporary objects 99–100
avoiding via overloading 105–107
implicit 66, 99
suppressing 26, 28–29
via implicit conversion

operators 25, 26–27, 49
via single-argument

constructors 27–31
type errors, detecting at

runtime 261–262
type system, bypassing 287
type_info class 120, 121, 261
name member function 238

typeid 37, 120, 238
types, static vs. dynamic 5–6

when copying 63

U
undefined behavior

calling strlen with null
pointer 35

deleting memory not returned by
new 21

deleting objects twice 163, 173
dereferencing null pointers 10,

167
dereferencing pointers beyond

arrays 281
mixing new/free or malloc/

delete 275
unexpected 72, 74, 76, 77, 78

unexpected exceptions 70
handling 75–77
replacing with other

exceptions 76
see also unexpected

Unicode 279
union, using to avoid unnecessary

data 182
unnamed namespaces 246, 247
unnamed objects —

see temporary objects
unused parameters, suppressing

warnings about 33, 40
Urbano, Nancy L. — see Clancy
URL for this book 8, 287
use counting 185

see also reference counting
useful abstractions 267
Usenet newsgroups,

recommended 289
user-defined conversion functions

— see type conversion functions
user-defined types

and overloaded operators 106
consistency with built-ins 254

using declarations 133, 143

V
valarray class 279, 280
values, as parameters —

see pass-by-value
vector template 4, 11, 22, 283
virtual base classes 118–120, 154

and default constructors 22
and object addresses 241

virtual constructors 46, 123–127
and smart pointers 163
definition 126
example uses 46, 125

virtual copy constructors 126–127
and smart pointers 202

virtual destructors 143, 254–257
and delete 256
see also pure virtual destructors

virtual functions
“demand-paged” 253
and dynamic_cast 14, 156
and efficiency 113–118

From the Library of Yuri Khan

ptg

312 General Index

and exceptions 79
and mixed-type

assignments 260, 261
and pass/catch-by-reference 72
and pass/catch-by-value 70
and RTTI 120, 256
and smart pointers 166
design challenges 248
efficiency 118
implementation 113–118
pure 154, 265
refined return type 126, 260
vs. catch clauses 67
vs. RTTI 231–232
vtbl index 117

“virtual” non-member
functions 128–129

virtual table pointers — see vptrs
virtual tables — see vtbls
Vlissides, John 288
void*, dynamic_cast to 156
volatileness, casting away 13
vptrs 113, 116, 117, 256

and efficiency 116
effective overhead of 256
optimization under multiple

inheritance 120
vtbls 113–116, 117, 121, 256

and inline virtual
functions 115

and RTTI 120
emulating 235–251
heuristic for generating 115

W
warnings, suppressing

for unused parameters 33, 40
what function 70, 71
wide characters 279
World Wide Web URL for this

book 8, 287

Y
Yiddish, gratuitous use of 32

From the Library of Yuri Khan

Index of Example Classes,
Functions, and Templates
ptg
Classes and Class Templates
AbstractAnimal 264
ALA 46
Animal 258, 259, 263, 265
Array 22, 27, 29, 30, 225
Array::ArraySize 30
Array::Proxy 225
Array2D 214, 215, 216
Array2D::Array1D 216
Asset 147, 152, 156, 158
Asteroid 229
AudioClip 50
B 255
BalancedBST 16
BookEntry 51, 54, 55, 56, 57
BST 16
C1 114
C2 114
CallBack 74
CantBeInstantiated 130
Cassette 174
CasSingle 178
CD 174
Chicken 259, 260, 263, 265
CollisionMap 249
CollisionWithUnknownObject

231
ColorPrinter 136
Counted 142
CPFMachine 136
D 255
DataCollection 94
DBPtr 160, 171
DynArray 96
EquipmentPiece 19, 23
FSA 137
GameObject 229, 230, 233, 235,

242
Graphic 124, 126, 128, 129
HeapTracked 154
HeapTracked::MissingAddress

154
Image 50
Kitten 46
LargeObject 87, 88, 89
Lizard 259, 260, 262, 263, 265
LogEntry 161
Matrix 90
MusicProduct 173
Name 25
NewsLetter 124, 125, 127
NLComponent 124, 126, 128, 129
NonNegativeUPNumber 146,

147, 158
PhoneNumber 50
Printer 130, 132, 135, 138,

140, 141, 143, 144
Printer::TooManyObjects

135, 138, 140
PrintingStuff::Printer 132
PrintJob 130, 131
Puppy 46
Rational 6, 25, 26, 102, 107,

225
RCIPtr 209
RCObject 194, 204
From the Library of Yuri Khan

ptg

314 Examples Index

RCPtr 199, 203
RCWidget 210
RegisterCollisionFunction

250
Satellite 251
Session 59, 77
SmartPtr 160, 168, 169, 176,

178, 181
SmartPtr<Cassette> 175
SmartPtr<CD> 175
SmartPtrToConst 181
SpaceShip 229, 230, 233, 235,

236, 238, 239, 240, 243
SpaceStation 229
SpecialWidget 13, 63
SpecialWindow 269
String 85, 183, 186, 187, 188,

189, 190, 193, 197, 198,
201, 204, 218, 219, 224

String::CharProxy 219, 224
String::SpecialStringValue

201
String::StringValue 186,

193, 197, 201, 204
TextBlock 124, 126, 128, 129
Tuple 161, 170
TupleAccessors 172
TVStation 226
UnexpectedException 76
UPInt 32, 105
UPNumber 146, 147, 148, 157,

158
UPNumber::
HeapConstraintViolation

148
Validation_error 70
Widget 6, 13, 40, 61, 63, 210
Window 269
WindowHandle 49

Functions and Function
Templates
AbstractAnimal::
~AbstractAnimal 264
operator= 264

ALA::processAdoption 46
allocateSomeObjects 151

Animal::operator= 258, 259,
263, 265

Array::
Array 22, 27, 29, 30
operator[] 27

Array::ArraySize::
ArraySize 30
size 30

Array<T>::Proxy::
operator T 225
operator= 225
Proxy 225

Array2D::
Array2D 214
operator() 215
operator[] 216

Asset::
~Asset 147
Asset 147, 158

asteroidShip 245
asteroidStation 245, 250
AudioClip::AudioClip 50
BookEntry::
~BookEntry 51, 55, 58
BookEntry 51, 54, 55, 56, 58
cleanup 54, 55
initAudioClip 57
initImage 57

C1::
~C1 114
C1 114
f1 114
f2 114
f3 114
f4 114

C2::
~C2 114
C2 114
f1 114
f5 114

CallBack::
CallBack 74
makeCallBack 74

callBackFcn1 75
callBackFcn2 75

From the Library of Yuri Khan

ptg

Examples Index 315

CantBeInstantiated::
CantBeInstantiated 130

Cassette::
Cassette 174
displayTitle 174
play 174

CD::
CD 174
displayTitle 174
play 174

checkForCollision 229
Chicken::operator= 259,

260, 263, 265
CollisionMap::
addEntry 249
CollisionMap 249
lookup 249
removeEntry 249
theCollisionMap 249

CollisionWithUnknownObject::
CollisionWithUnknownObject

231
constructWidgetInBuffer 40
convertUnexpected 76
countChar 99
Counted::
~Counted 142
Counted 142
init 142
objectCount 142

DataCollection::
avg 94
max 94
min 94

DBPtr<T>::
DBPtr 160, 161
operator T* 171

deleteArray 18
displayAndPlay 174, 177, 178
displayInfo 49, 50
doSomething 69, 71, 72
drawLine 271, 272, 273
DynArray::operator[] 97
editTuple 161, 167
EquipmentPiece::
EquipmentPiece 19

f 3, 66
f1 61, 73
f2 61, 73
f3 61
f4 61
f5 61
find 281, 282, 283
findCubicleNumber 95
freeShared 42
FSA::
FSA 137
makeFSA 137

GameObject::collide 230,
233, 235, 242

Graphic::
clone 126
operator<< 128
print 129

HeapTracked::
~HeapTracked 154, 155
isOnHeap 154, 155
operator delete 154, 155
operator new 154, 155

Image::Image 50
initializeCollisionMap

245, 246
inventoryAsset 156
isSafeToDelete 153
Kitten::processAdoption 46
LargeObject::
field1 87, 88, 89, 90
field2 87, 88
field3 87, 88
field4 87, 88
field5 87
LargeObject 87, 88, 89

Lizard::operator= 259, 260,
261, 262, 263, 264, 265

LogEntry::
~LogEntry 161
LogEntry 161

lookup 245, 247
main 111, 251, 274
makeStringPair 245, 246
mallocShared 42
merge 172

From the Library of Yuri Khan

ptg

316 Examples Index

MusicProduct::
displayTitle 173
MusicProduct 173
play 173

Name::Name 25
NewsLetter::
NewsLetter 125, 127
readComponent 125

NLComponent::
clone 126
operator<< 128
print 129

normalize 170
onHeap 150
operator delete 41, 153
operator new 38, 40, 153
operator* 102, 103, 104
operator+ 100, 105, 106, 107,

108, 109
operator- 107, 108
operator<< 129
operator= 6
operator== 27, 31, 73
operator>> 62
passAndThrowWidget 62, 63
printBSTArray 17
printDouble 10
Printer::
~Printer 135, 138, 143
makePrinter 138, 139, 140,

143
performSelfTest 130, 139,

143
Printer 131, 132, 135, 139,

140, 143
reset 130, 139, 143
submitJob 130, 139, 143
thePrinter 132

PrintingStuff::Printer::
performSelfTest 132
Printer 133
reset 132
submitJob 132

PrintingStuff::thePrinter
132, 133

PrintJob::PrintJob 131
printTreeNode 164, 165
processAdoptions 46, 47, 48
processCollision 245
processInput 213, 214
processTuple 171
Puppy::processAdoption 46
rangeCheck 35
Rational::
asDouble 26
denominator 102, 225
numerator 102, 225
operator double 25
operator+= 107
operator-= 107
Rational 25, 102, 225

RCIPtr::
~RCIPtr 209
CountHolder 209
init 209
operator* 209, 210
operator= 209, 210
operator-> 209, 210
RCIPtr 209

RCIPtr::CountHolder::
~CountHolder 209

RCObject::
~RCObject 194, 204, 205
addReference 195, 204, 205
isShareable 195, 204, 205
isShared 195, 204, 205
markUnshareable 195, 204,

205
operator= 194, 195, 204, 205
RCObject 194, 195, 204, 205
removeReference 195, 204,

205
RCPtr::
~RCPtr 199, 202, 203, 206
init 199, 200, 203, 206
operator* 199, 203, 206
operator= 199, 202, 203, 206
operator-> 199, 203, 206
RCPtr 199, 203, 206

From the Library of Yuri Khan

ptg

Examples Index 317

RCWidget::
doThis 210
RCWidget 210
showThat 210

realMain 274
RegisterCollisionFunction::
RegisterCollisionFunction

250
restoreAndProcessObject 88
reverse 36
satelliteAsteroid 251
satelliteShip 251
Session::
~Session 59, 60, 61, 77
logCreation 59
logDestruction 59, 77
Session 59, 61

shipAsteroid 245, 248, 250
shipStation 245, 250
simulate 272, 273
SmartPtr<Cassette>::
operator
SmartPtr<MusicProduct>

175
SmartPtr<CD>::
operator
SmartPtr<MusicProduct>

175
SmartPtr<T>::
~SmartPtr 160, 166
operator SmartPtr<U> 176
operator void* 168
operator! 169
operator* 160, 166, 176
operator= 160
operator-> 160, 167, 176
SmartPtr 160, 176

someFunction 68, 69, 71
SpaceShip::
collide 230, 231, 233, 234,

235, 237, 243
hitAsteroid 235, 236, 243,

244
hitSpaceShip 235, 236, 243
hitSpaceStation 235, 236,

243

initializeCollisionMap
239, 240, 241, 243

lookup 236, 238, 239, 240
SpecialWindow::
height 269
repaint 269
resize 269
width 269

stationAsteroid 245
stationShip 245
String::
~String 188
markUnshareable 207
operator= 183, 184, 189
operator[] 190, 191, 194,

204, 207, 218, 219, 220,
221

String 183, 187, 188, 193,
204, 207

String::CharProxy::
CharProxy 219, 222
operator char 219, 222
operator& 224
operator= 219, 222, 223

String::StringValue::
~StringValue 186, 193, 197,

204, 207
init 204, 206
StringValue 186, 193, 197,

201, 204, 206, 207
swap 99, 226
testBookEntryClass 52, 53
TextBlock::
clone 126
operator<< 128
print 129

thePrinter 130, 131, 134
Tuple::
displayEditDialog 161
isValid 161

TupleAccessors::
TupleAccessors 172

TVStation::TVStation 226
twiddleBits 272, 273
update 13
updateViaRef 14

From the Library of Yuri Khan

ptg

318 Examples Index

UPInt::
operator-- 32
operator++ 32, 33
operator+= 32
UPInt 105

UPNumber::
~UPNumber 146
destroy 146
operator delete 157
operator new 148, 157
UPNumber 146, 148

uppercasify 100
Validation_error::what 70
watchTV 227
Widget::
~Widget 210
doThis 210
operator= 210
showThat 210
Widget 40, 210

Window::
height 269
repaint 269
resize 269
width 269

WindowHandle::
~WindowHandle 49
operator WINDOW_HANDLE 49
operator= 49
WindowHandle 49

From the Library of Yuri Khan

	Contents
	Acknowledgments
	Introduction
	Basics
	Item 1: Distinguish between pointers and references.
	Item 2: Prefer C++-style casts.
	Item 3: Never treat arrays polymorphically.
	Item 4: Avoid gratuitous default constructors.

	Operators
	Item 5: Be wary of user-defined conversion functions.
	Item 6: Distinguish between prefix and postfix forms of increment and decrement operators.
	Item 7: Never overload &&, ||, or ,.
	Item 8: Understand the different meanings of new and delete.

	Exceptions
	Item 9: Use destructors to prevent resource leaks.
	Item 10: Prevent resource leaks in constructors.
	Item 11: Prevent exceptions from leaving destructors.
	Item 12: Understand how throwing an exception differs from passing a parameter or calling a virtual function.
	Item 13: Catch exceptions by reference.
	Item 14: Use exception specifications judiciously.
	Item 15: Understand the costs of exception handling.

	Efficiency
	Item 16: Remember the 80-20 rule.
	Item 17: Consider using lazy evaluation.
	Item 18: Amortize the cost of expected computations.
	Item 19: Understand the origin of temporary objects.
	Item 20: Facilitate the return value optimization.
	Item 21: Overload to avoid implicit type conversions.
	Item 22: Consider using op= instead of stand-alone op.
	Item 23: Consider alternative libraries.
	Item 24: Understand the costs of virtual functions, multiple inheritance, virtual base classes, and RTTI.

	Techniques
	Item 25: Virtualizing constructors and non-member functions.
	Item 26: Limiting the number of objects of a class.
	Item 27: Requiring or prohibiting heap-based objects.
	Item 28: Smart pointers.
	Item 29: Reference counting.
	Item 30: Proxy classes.
	Item 31: Making functions virtual with respect to more than one object.

	Miscellany
	Item 32: Program in the future tense.
	Item 33: Make non-leaf classes abstract.
	Item 34: Understand how to combine C++ and C in the same program.
	Item 35: Familiarize yourself with the language standard.

	Recommended Reading
	An auto_ptr Implementation
	General Index
	Index of Example Classes, Functions, and Templates

