

The
Design and Evolution

of
C++

Bjarne Stroustrup

AT&T Bell Laboratories
Murray Hill, New Jersey

ADDISON-WESLEY PUBLISHING COMPANY

Reading, Massachusetts • Menlo Park, California • New York
Don Mills, Ontario • Wokingham, England • Amsterdam • Bonn • Sydney

Singapore • Tokyo • Madrid • San Juan • Milan • Paris

Library of Congress Cataloging-in-Publication Data

Stroustrup, Bjarne.
The Design and Evolution of C++ / Bjarne Stroustrup.

p. cm.
Includes bibliographical references and index.
ISBN 0-201-54330-3
1. C++ (Computer program language) I. Title.

II. Title: Design and Evolution of C plus plus.
QA76.73.C153S79 1994
005.13'3—dc20 93-50758

CIP

1 2 3 4 5 6 7 8 9 10-MA-969594

Copyright © 1994 by AT&T Bell Labs.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher. Printed in the United States of
America.

This book was typeset in Times Roman and Courier by the author.

AT&T

Preface

He who does not plow,
must write.

- Martin A. Hansen

The ACM HOPL-2 conference on the History of Programming Languages asked me
to write a paper on the history of C++. This seemed a reasonable idea and a bit of an
honor, so I started writing. To get a more comprehensive and balanced view of C++'s
growth, I asked a few friends from the early days of C++ for their recollections. That
caused news of this project to travel through the grapevine. There, the story mutated,
and one day I received a message from a friend asking where he could buy my new
book on the design of C++. That email message is the real origin of this book.

Traditional books about programming and programming languages explain what a
language is and how to use it. However, many people are also curious about why a
language is the way it is and how it came to be that way. This book answers these last
two questions for C++. It explains how C++ evolved from its first design to the lan
guage in use today. It describes the key problems, design aims, language ideas, and
constraints that shaped C++, and how they changed over time.

Naturally, C++ and the ideas about design and programming that shaped it didn't
just mutate by themselves. What really evolved was the C++ users' understanding of
their practical problems and of the tools needed to help solve them. Consequently,
this book also traces the key problems tackled using C++ and the views of the people
who tackled them in ways that influenced C++.

C++ is still a young language. Some of the issues discussed here are yet unknown
to many users. Many implications of decisions described here will not become obvi
ous for years to come. This book presents my view of how C++ came about, what it
is, and what it ought to be. I hope this will be of help to people trying to understand
how best to use C++ and in the continuing evolution of C++.

iv Preface

The emphasis is on the overall design goals, practical constraints, and people that
shaped C++. The key design decisions relating to language features are discussed and
put into their historical context. The evolution of C++ is traced from C with Classes
through Release 1.0 and 2.0 to the current ANSI/ISO standards work and the explo
sion of use, interest, commercial activity, compilers, tools, environments, and
libraries. C++'s relationship to C and Simula is discussed in detail. C++'s relation
ship to other languages is discussed briefly. The design of major language facilities
such as classes, inheritance, abstract classes, overloading, memory management, tem
plates, exception handling, run-time type information, and namespaces are discussed
in some detail.

The primary aim of this book is to give C++ programmers a better idea of the
background and fundamental concepts of their language and hopefully to inspire them
to experiment with ways of using C++ that are new to them. This book can also be
read by experienced programmers and students of programming languages and might
help them decide whether using C++ might be worth their while.

Acknowledgments
I am very grateful to Steve Clamage, Tony Hansen, Lorraine Juhl, Peter Juhl, Brian
Kernighan, Lee Knight, Doug Lea, Doug McIlroy, Barbara Moo, Jens Palsberg, Steve
Rumsby, and Christopher Skelly for reading complete drafts of this book. Their con
structive comments caused major changes to the contents and organization of this
book. Steve Buroff, Martin Carroll, Sean Corfield, Tom Hagelskjær, Rick Hollin-
beck, Dennis Mancl, and Stan Lippman helped by commenting on selected chapters.
Also, thanks to Archie Lachner for asking for this book before I had thought of writ
ing it.

Naturally, I owe thanks to the many people who helped make C++. In a sense, this
book is a tribute to them and some of their names can be found throughout the chap
ters and in the index. Should I single out individuals, it must be Brian Kernighan,
Andrew Koenig, Doug McIlroy, and Jonathan Shopiro, each of whom has been a
steady source of help, encouragement, and ideas for more than a decade. Also, thanks
to Kristen Nygaard and Dennis Ritchie as the designers of Simula and C from which
the key ingredients of C++ were borrowed. Over the years, I have come to appreciate
them not only as brilliant and practical language designers, but also as gentlemen and
thoroughly likable individuals.

Murray Hill, New Jersey Bjarne Stroustrup

Contents

Preface iii

Acknowledgments iv

Contents v

Notes to the Reader 1

Introduction 1
How to Read this Book 2
C++ Timeline 4
Focus on Use and Users 4
Programming Languages 5
References 7

Part I: 17

The Prehistory of C++ 19

1.1 Simula and Distributed Systems 19
1.2 C and Systems Programming 22
1.3 General Background 23

vi Contents

C with Classes 27

2.1 The Birth of C with Classes 27
2.2 Feature overview 29
2.3 Classes 30
2.4 Run-Time Efficiency 32
2.5 The Linkage Model 34
2.6 Static Type Checking 40
2.7 Why C? 43
2.8 Syntax Problems 45
2.9 Derived Classes 49

2.10 The Protection Model 53
2.11 Run-Time Guarantees 56
2.12 Minor Features 58
2.13 Features Considered, but not Provided 59
2.14 Work Environment 60

The Birth of C++ 63

3.1 From C with Classes to C++ 63
3.2 Aims 65
3.3 Cfront 66
3.4 Language Features 71
3.5 Virtual Functions 72
3.6 Overloading 78
3.7 References 85
3.8 Constants 89
3.9 Memory Management 91

3.10 Type Checking 92
3.11 Minor Features 93
3.12 Relationship to Classic C 100
3.13 Tools for Language Design 103
3.14 The C++ Programming Language (1st edition) 105
3.15 The Whatis? Paper 106

C++ Language Design Rules 109

4.1 Rules and Principles 109
4.2 General Rules 110
4.3 Design Support Rules 114
4.4 Language-Technical Rules 117
4.5 Low-Level Programming Support Rules 120
4.6 A Final Word 122

Contents vii

Chronology 1985-1993 123

5.1 Introduction 123
5.2 Release 2.0 124
5.3 The Annotated Reference Manual 126
5.4 ANSI and ISO Standardization 128

Standardization 133

6.1 What is a Standard? 133
6.2 How does the Committee Operate? 136
6.3 Clarifications 138
6.4 Extensions 147
6.5 Examples of Proposed Extensions 153

Interest and Use 163

7.1 The Explosion in Interest and Use 163
7.2 Teaching and Learning C++ 168
7.3 Users and Applications 173
7.4 Commercial Competition 175

Libraries 181

8.1 Introduction 181
8.2 C++ Library Design 182
8.3 Early Libraries 184
8.4 Other Libraries 191
8.5 A Standard Library 194

Looking Ahead 195

9.1 Introduction 195
9.2 Retrospective 195
9.3 Only a Bridge? 200
9.4 What Will Make C++ Much More Effective? 205

viii Contents

Part II: 209

Memory Management 211

10.1 Introduction 211
10.2 Separating Allocation and Initialization 212
10.3 Array Allocation 213
10.4 Placement 214
10.5 Deallocation Problems 216
10.6 Memory Exhaustion 218
10.7 Automatic Garbage Collection 219

Overloading 223

11.1 Introduction 223
11.2 Overload Resolution 224
11.3 Type-Safe Linkage 232
11.4 Object Creation and Copying 237
11.5 Notational Convenience 241
11.6 Adding Operators to C++ 247
11.7 Enumerations 253

Multiple Inheritance 257

12.1 Introduction 257
12.2 Ordinary Base Classes 258
12.3 Virtual Base Classes 259
12.4 The Object Layout Model 264
12.5 Method Combination 268
12.6 The Multiple Inheritance Controversy 269
12.7 Delegation 272
12.8 Renaming 273
12.9 Base and Member Initializers 275

Class Concept Refinements 277

13.1 Introduction 277
13.2 Abstract Classes 277
13.3 c o n s t Member Functions 284
13.4 Static Member Functions 288
13.5 Nested Classes 289
13.6 Inherited:: 290

Contents ix

13.7 Relaxation of Overriding Rules 293
13.8 Multi-methods 297
13.9 Protected Members 301

13.10 Improved Code Generation 302
13.11 Pointers to Members 303

Casting 305

14.1 Major Extensions 305
14.2 Run-Time Type Information 306
14.3 A New Cast Notation 327

Templates 337

15.1 Introduction 337
15.2 Templates 338
15.3 Class Templates 341
15.4 Constraints on Template Arguments 343
15.5 Avoiding Code Replication 346
15.6 Function Templates 348
15.7 Syntax 355
15.8 Composition Techniques 356
15.9 Template Class Relationships 360

15.10 Template Instantiation 365
15.11 Implications of Templates 378

Exception Handling 383

16.1 Introduction 383
16.2 Aims and Assumptions 384
16.3 Syntax 385
16.4 Grouping 386
16.5 Resource Management 388
16.5 Resumption vs. Termination 390
16.5 Asynchronous Events 393
16.6 Multi-level Propagation 394
16.7 Static Checking 395
16.8 Invariants 397

Namespaces 399

17.1 Introduction 399

x Contents

17.2 The Problem 400
17.3 Ideals for a Solution 402
17.4 The Solution: Namespaces 404
17.5 Implications for Classes 417
17.6 C Compatibility 420

The C Preprocessor 423

18.1 Cpp 423

Index 427

0
Notes to the Reader

Writing is the only art
that must be learned by wrote.

-anon

Main themes of this book — how to read this book — a timeline for C++
— C++ and other programming languages — references.

Introduction
C++ was designed to provide Simula's facilities for program organization together
with C's efficiency and flexibility for systems programming. It was intended to
deliver that to real projects within half a year of the idea. It succeeded.

At the time, mid-1979, neither the modesty nor the preposterousness of that goal
was realized. The goal was modest in that it did not involve innovation, and prepos
terous in both its time scale and its Draconian demands on efficiency and flexibility.
While a modest amount of innovation did emerge over the years, efficiency and flexi
bility have been maintained without compromise. While the goals for C++ have been
refined, elaborated, and made more explicit over the years, C++ as used today directly
reflects its original aims.

The purpose of this book is to document those aims, track their evolution, and pre
sent C++ as it emerged from the efforts of many people to create a language that
served its users according to those aims. In doing so, I try to balance historical facts
(such as names, places, and events) against technical issues of language design,
implementation, and use. It is not my aim to document every little event, but to focus
on the key events, ideas, and trends that actually influenced the definition of C++ or
might influence its further evolution and use.

Wherever events are presented, I try to describe them as they happened rather than
how I or others might have liked them to have happened. Where reasonable, I use

2 Notes to the Reader Chapter 0

quotes from papers to illustrate the aims, principles, and features as they appeared at
the time. I try not to project hindsight into events; rather, retrospective comments and
comments about the implications of a decision are presented separately and are
explicitly marked as retrospective. Basically, I abhor revisionist history and try to
avoid it. For example, I mention that "I had found Pascal's type system worse than
useless - a straitjacket that caused more problems than it solved by forcing me to
warp my designs to suit an implementation-oriented artifact." That I thought that at
the time is a fact, and it is a fact that had important implications for the evolution of
C++. Whether that harsh judgement on Pascal was fair and whether I would make the
same judgement today (more than a decade later) is irrelevant. I could not delete the
fact (say, to spare the feelings of Pascal fans or to spare myself embarrassment or con
troversy) or modify it (by providing a more complete and balanced view) without
warping the history of C++.

I try to mention people who contributed to the design and evolution of C++, and I
try to be specific about their contribution and about when it occurred. This is some
what hazardous. Since I don't have a perfect memory, I will overlook some contribu
tions. I offer my apologies. I name the people who caused a decision to be made for
C++. Inevitably, these will not always be the people who first encountered a particu
lar problem or who first thought of a solution. This can be unfortunate, but to be
vague or to refrain from mentioning names would be worse. Feel free to send me
information that might help clarify such points.

Where I describe historical events, there is a question of how objective my
descriptions are. I have tried to compensate for unavoidable bias by obtaining infor
mation about events I wasn't part of, by talking to other people involved in events,
and by having several of the people involved in the evolution of C++ read this book.
Their names can be found at the end of the preface. In addition, the History of Pro
gramming Languages (HOPL-2) paper [Stroustrup,1993] that contains the central his
torical facts from this book was extensively reviewed and deemed free of unsuitable
bias.

How to Read this Book
Part I goes through the design, evolution, use, and standardization of C++ in roughly
chronological order. I chose this organization because during the early years, major
design decisions map onto the timeline as a neat, logical sequence. Chapters 1, 2, and
3 describe the origins of C++ and its evolution through C with Classes to Release 1.0.
Chapter 4 describes the rules that guided C++'s growth during that period and beyond.
Chapter 5 provides a chronology of post-1.0 developments, and Chapter 6 describes
the ANSI/ISO C++ standards effort. To provide perspective, Chapters 7 and 8 discuss
applications, tools, and libraries. Finally, Chapter 9 presents a retrospective and some
thoughts on the future.

Part II presents the post-Release-1.0 development of C++. The language grew
within a framework laid down around the time of Release 1.0. This framework
included a set of desired features, such as templates and exception handling, and rules
guiding their design. After Release 1.0, chronology didn't matter much to the

How to Read this Book 3

development of C++. The current definition of C++ would have been substantially the
same had the chronological sequence of post-1.0 extensions been different. The
actual sequence in which the problems were solved and features provided is therefore
of historical interest only. A strictly chronological presentation would interfere with
the logical flow of ideas, so Part II is organized around major language features
instead. Part II chapters are independent, so they can be read in any order: Chapter
10, memory management; Chapter 11, overloading; Chapter 12, multiple inheritance;
Chapter 13, class concept refinements; Chapter 14, casting; Chapter 15, templates;
Chapter 16, exception handling; Chapter 17, namespaces; Chapter 18, the C prepro
cessor.

Different people expect radically different things from a book on the design and
evolution of a programming language. In particular, no two people seem to agree on
what level of detail is appropriate for a discussion of this topic. Every review I
received on the various versions of the HOPL-2 paper (well over a dozen reviews)
was of the form, "This paper is too long ... please add information on topics X, Y,
and Z." Worse, about a third of the reviews had comments of the form, "Cut the
philosophical/religious nonsense and give us proper technical details instead."
Another third commented, "Spare me the boring details and add information on your
design philosophy."

To wiggle out of this dilemma, I have written a book within a book. If you are not
interested in details, then at first skip all subsections (numbered §x.y.z, where x is the
chapter number and y is the section number). Later, read whatever else looks interest
ing. You can also read this book sequentially starting at page one and carry on until
the end. Doing that, you might get bogged down in details. This is not meant to
imply that details are unimportant. On the contrary, no programming language can be
understood by considering principles and generalizations only; concrete examples are
essential. However, looking at the details without an overall picture to fit them into is
a way of getting seriously lost.

As an additional help, I have concentrated most of the discussion of new features
and features generally considered advanced in Part II. This allows Part I to concen
trate on basics. Almost all of the information on nontechnical aspects of C++'s evolu
tion is found in Part I. People with little patience for "philosophy" can break up the
discussion in Chapters 4 through 9 by looking ahead to the technical details of lan
guage features in Part II.

I assume that some will use this book as a reference and that many will read indi
vidual chapters without bothering with all preceding chapters. To make such use fea
sible, I have made the individual chapters relatively self-contained for the experienced
C++ programmer and been liberal with cross references and index terms.

Please note that I don't try to define the features of C++ here, I present only as
much detail as is necessary to provide a self-contained description of how the features
came about. I don't try to teach C++ programming or design either; for a tutorial, see
[2nd]. \

Notes to the Reader Chapter 0

C++ Timeline
This C++ timeline might help you keep track of where the story is taking you:

1979

1980
1982
1983

1984
1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

May
Oct
Apr
Jan
Aug
Dec
Jan
Feb
Oct
Oct
Aug
Sep
Nov
Feb
Nov
Dec
Jan
June
Oct
June
Dec
May
Mar
May
July
Nov
June
June
Oct
Feb
Mar
May
Mar
July
Sep

Work on C with Classes starts
1st C with Classes implementation in use
1st internal Bell Labs paper on C with Classes [Stroustrup,1980]
1st external paper on C with Classes [Stroustrup,1982]
1st C++ implementation in use
C++ named
1st C++ manual
1st external C++ release (Release E)
Cfront Release 1.0 (first commercial release)
The C+ + Programming Language [Stroustrup,1986]
The "whatis paper" [Stroustrup, 1986b]
1st OOPSLA conference (start of OO hype centered on Smalltalk)
1st commercial Cfront PC port (Cfront 1.1, Glockenspiel)
Cfront Release 1.2
1st USENIX C++ conference (Santa Fe, NM)
1st GNU C++ release (1.13)
1st Oregon Software C++ release
1st Zortech C++ release
1st USENIX C++ implementers workshop (Estes Park, CO)
Cfront Release 2.0
ANSI X3J16 organizational meeting (Washington, DC)
1st Borland C++ release
1st ANSI X3J16 technical meeting (Somerset, NJ)
The Annotated C++ Reference Manual [ARM]
Templates accepted (Seattle, WA)
Exceptions accepted (Palo Alto, CA)
The C++ Programming Language (second edition) [2nd]
1st ISO WG21 meeting (Lund, Sweden)
Cfront Release 3.0 (including templates)
1st DEC C++ release (including templates and exceptions)
1st Microsoft C++ release
1st IBM C++ release (including templates and exceptions)
Run-time type identification accepted (Portland, OR)
Namespaces accepted (Munich, Germany)
Draft ANSI/ISO standard due

Focus on Use and Users
This book is written for C++ users, that is, for programmers and designers. I have
tried (believe it or not) to avoid truly obscure and esoteric topics to give a user's view
of the C++ language, its facilities, and its evolution. Purely language-technical

Focus on Use and Users 5

discussions are presented only if they shed light on issues that directly impact users.
The discussions of name lookup in templates (§15.10) and of lifetime of temporaries
(§6.3.2) are examples.

Programming language specialists, language lawyers, and implementers will find
many tidbits in this book, but the aim is to present the large picture rather than to be
precise and comprehensive about every little detail. If precise language-technical
details is what you want the definition of C++ can be found in The Annotated C++
Reference Manual (the ARM) [ARM], in The C++ Programming Language (second
edition) [2nd], and in the ANSI/ISO standards committee's working paper. However,
the details of a language definition are incomprehensible without an understanding of
the purpose of the language. The language, details and all, exists to help build pro
grams. My intent with this book is to provide insights that can help in this endeavor.

Programming Languages
Several reviewers asked me to compare C++ to other languages. This I have decided
against doing. Thereby, I have reaffirmed a long-standing and strongly held view:
Language comparisons are rarely meaningful and even less often fair. A good com
parison of major programming languages requires more effort than most people are
willing to spend, experience in a wide range of application areas, a rigid maintenance
of a detached and impartial point of view, and a sense of fairness. I do not have the
time, and as the designer of C++, my impartiality would never be fully credible.

I also worry about a phenomenon I have repeatedly observed in honest attempts at
language comparisons. The authors try hard to be impartial, but are hopelessly biased
by focusing on a single application, a single style of programming, or a single culture
among programmers. Worse, when one language is significantly better known than
others, a subtle shift in perspective occurs: Flaws in the well-known language are
deemed minor and simple workarounds are presented, whereas similar flaws in other
languages are deemed fundamental. Often, the workarounds commonly used in the
less-well-known languages are simply unknown to the people doing the comparison
or deemed unsatisfactory because they would be unworkable in the more familiar lan
guage.

Similarly, information about the well-known language tends to be completely up-
to-date, whereas for the less-known language, the authors rely on several-year-old
information. For languages that are worth comparing, a comparison of language X as
defined three years ago vs. language Y as it appears in the latest experimental imple
mentation is neither fair nor informative. Thus, I restrict my comments about lan
guages other than C++ to generalities and to very specific comments. This is a book
about C++, its design, and the factors that shaped its evolution. It is not an attempt to
contrast C++ language features with those found in other languages.

To fit C++ into a historical context, here is a chart of the first appearances of lan
guages that often crop up in discussions about C++:

6 Notes to the Reader Chapter 0

The chart is not intended to be anywhere near complete except for significant influ
ences on C++. In particular, the chart understates the influence of the Simula class
concept; Ada [Ichbiah,1979] and Clu [Liskov,1979] are weakly influenced by Simula
[Birtwistle,1979]; Ada9X [Taft,1992], Beta [Madsen,1993], Eiffel [Meyer, 1988], and
Modula-3 [Nelson, 1991] are strongly influenced. C++'s influence on other languages
is left unrepresented. Solid lines indicate an influence on the structure of the

Programming Languages 7

language; dotted lines indicate an influence on specific features. Adding lines to
show this for every language would make the diagram too messy to be useful. The
dates for the languages are generally those of the first usable implementation. For
example, Algol68 [Woodward, 1974] can be found by the year 1977 rather than 1968.

One conclusion I drew from the wildly divergent comments on the HOPL-2 paper
- and from many other sources - is that there is no agreement on what a programming
language really is and what its main purpose is supposed to be. Is a programming lan
guage a tool for instructing machines? A means of communicating between program
mers? A vehicle for expressing high-level designs? A notation for algorithms? A
way of expressing relationships between concepts? A tool for experimentation? A
means of controlling computerized devices? My view is that a general-purpose pro
gramming language must be all of those to serve its diverse set of users. The only
thing a language cannot be - and survive - is a mere collection of "neat" features.

The difference in opinions reflects differing views of what computer science is
and how languages ought to be designed. Ought computer science be a branch of
mathematics? Of engineering? Of architecture? Of art? Of biology? Of sociology?
Of philosophy? Alternatively, does it borrow techniques and approaches from all of
these disciplines? I think so.

This implies that language design parts ways from the ' 'purer'' and more abstract
disciplines such as mathematics and philosophy. To serve its users, a general-purpose
programming language must be eclectic and take many practical and sociological fac
tors into account. In particular, every language is designed to solve a particular set of
problems at a particular time according to the understanding of a particular group of
people. From this initial design, it grows to meet new demands and reflects new
understandings of problems and of tools and techniques for solving them. This view
is pragmatic, yet not unprincipled. It is my firm belief that all successful languages
are grown and not merely designed from first principles. Principles underlie the first
design and guide the further evolution of the language. However, even principles
evolve.

References
This section contains the references from every chapter of this book.
[2nd] see [Stroustrup,1991].
[Agha,1986] Gul Agha: An Overview of Actor languages. ACM SIGPLAN

Notices. October 1986.
[Aho,1986] Alfred Aho, Ravi Sethi, and Jeffrey D. Ullman: Compilers:

Principles, Techniques, and Tools. Addison-Wesley, Reading,
MA. 1986. ISBN 0-201-10088-6.

[ARM] see [Ellis, 1990].
[Babcisky,1984] Karel Babcisky: Simula Performance Assessment. Proc. IFIP

WG2.4 Conference on System Implementation Languages:
Experience and Assessment. Canterbury, Kent, UK. Septem
ber 1984.

[Barton,1994] John J. Barton and Lee R. Nackman: Scientific and

8 Notes to the Reader Chapter 0

[Birtwistle,1979]

[Boehm,1993]

[Booch,1990]

[Booch,1991]

[Booch,1993]

[Booch, 1993b]

[Budge, 1992]

[Buhr,1992]

[Call, 1987]

[Cameron, 1992]

[Campbell, 1987]

[Cattell,1991]

[Cargill,1991]

[Carroll,1991]

[Carroll, 1993]

[Chandy,1993]

Engineering C++: An Introduction with Advanced Techniques
and Examples. Addison-Wesley, Reading, MA. 1994. ISBN
0-201-53393-6.
Graham Birtwistle, Ole-Johan Dahl, Björn Myrhaug, and Kris-
ten Nygaard: SIMULA BEGIN. Studentlitteratur, Lund, Swe
den. 1979. ISBN 91-44-06212-5.
Hans-J. Boehm: Space Efficient Conservative Garbage Collec
tion. Proc. ACM SIGPLAN '93 Conference on Programming
Language Design and Implementation. ACM SIGPLAN
Notices. June 1993.
Grady Booch and Michael M. Vilot: The Design of the C+ +
Booch Components. Proc. OOPSLA'90. October 1990.
Grady Booch: Object-Oriented Design. Benjamin Cummings,
Redwood City, CA. 1991. ISBN 0-8053-0091-0.
Grady Booch: Object-oriented Analysis and Design with Appli
cations, 2nd edition. Benjamin Cummings, Redwood City,
CA. 1993. ISBN 0-8053-5340-2.
Grady Booch and Michael M. Vilot: Simplify the C++ Booch
Components. The C++ Report. June 1993.
Ken Budge, J.S. Perry, and A.C. Robinson: High-Performance
Scientific Computation using C++. Proc. USENIX C++ Con
ference. Portland, OR. August 1992.
Peter A. Buhr and Glen Ditchfield: Adding Concurrency to a
Programming Language. Proc. USENIX C++ Conference.
Portland, OR. August 1992.
Lisa A. Call, et al.: CLAM - An Open System for Graphical
User Interfaces. Proc. USENIX C++ Conference. Santa Fe,
NM. November 1987.
Don Cameron, et al.: A Portable Implementation of C+ +
Exception Handling. Proc. USENIX C++ Conference. Port
land, OR. August 1992.
Roy Campbell, et al.: The Design of a Multiprocessor Operat
ing System. Proc. USENIX C++ Conference. Santa Fe, NM.
November 1987.
Rich G.G. Cattell: Object Data Management: Object-Oriented
and Extended Relational Database Systems. Addison-Wesley,
Reading, MA. 1991. ISBN 0-201-53092-9.
Tom A. Cargill: The Case Against Multiple Inheritance in
C++. USENIX Computer Systems. Vol 4, no 1, 1991.
Martin Carroll: Using Multiple Inheritance to Implement
Abstract Data Types. The C++ Report. April 1991.
Martin Carroll: Design of the USL Standard Components. The
C++ Report. June 1993.
K. Mani Chandy and Carl Kesselman: Compositional C++:

References 9

[Cristian, 1989]

[Cox, 1986]

[Dahl,1988]
[Dearie, 1990]

[Dorward,1990]

[Eick,1991]

[Ellis, 1990]

[Faust, 1990]

[Fontana,1991]

[Forslund, 1990]

[Gautron,1992]

[Gehani,1988]

[Goldberg, 1983]

[Goodenough, 1975]

[Gorlen,1987]

Compositional Parallel Programming. Proc. Fourth Workshop
on Parallel Computing and Compilers. Springer-Verlag. 1993.
Flaviu Cristian: Exception Handling. Dependability of
Resilient Computers, T. Andersen, editor. BSP Professional
Books, Blackwell Scientific Publications, 1989.
Brad Cox: Object-Oriented Programming: An Evolutionary
Approach. Addison-Wesley, Reading, MA. 1986.
Ole-Johan Dahl: Personal communication.
Fergal Dearie: Designing Portable Applications Frameworks
for C++. Proc. USENIX C++ Conference. San Francisco, CA.
April 1990.
Sean M. Dorward, et al.: Adding New Code to a Running Pro
gram. Proc. USENIX C++ Conference. San Francisco, CA.
April 1990.
Stephen G. Eick: SIMLIB - An Object-Oriented C++ Library
for Interactive Simulation of Circuit-Switched Networks. Proc.
Simulation Technology Conference. Orlando, FL. October
1991.
Margaret A. Ellis and Bjarne Stroustrup: The Annotated C+ +
Reference Manual. Addison-Wesley, Reading, MA. 1990.
ISBN 0-201-51459-1.
John E. Faust and Henry M. Levy: The Performance of an
Object-Oriented Threads Package. Proc. ACM joint ECOOP
and OOPSLA Conference. Ottawa, Canada. October 1990.
Mary Fontana and Martin Neath: Checked Out and Long Over
due: Experiences in the Design of a C++ Class Library. Proc.
USENIX C++ Conference. Washington, DC. April 1991.
David W. Forslund, et al.: Experiences in Writing Distributed
Particle Simulation Code in C++. Proc. USENIX C++ Confer
ence. San Francisco, CA. April 1990.
Philippe Gautron: An Assertion Mechanism based on Excep
tions. Proc. USENIX C++ Conference. Portland, OR. August
1992.
Narain H. Gehani and William D. Roome: Concurrent C++:
Concurrent Programming With Class(es). Software—Practice
& Experience. Vol 18, no 12, 1988.
Adele Goldberg and David Robson: Smalltalk-80, The Lan
guage and its Implementation. Addison-Wesley, Reading, MA.
1983. ISBN 0-201-11371-6.
John Goodenough: Exception Handling: Issues and a Proposed
Notation. Communications of the ACM. December 1975.
Keith E. Gorlen: An Object-Oriented Class Library for C++
Programs. Proc. USENIX C++ Conference. Santa Fe, NM.
November 1987.

10 Notes to the Reader Chapter 0

[Gorlen,1990]

[Hiibel,1992]

[Ichbiah,1979]

[Ingalls,1986]

[Interrante,1990]

[Johnson, 1992]
[Johnson, 1989]

[Keffer,1992]

[Keffer,1993]

[Kemighan,1976]

[Kernighan,1978]

[Kernighan,1981]

[Kernighan,1984]

[Kernighan,1988]

[Kiczales,1992]

[Koenig, 1988]

[Koenig, 1989]

[Koenig, 1989b]

Keith E. Gorlen, Sanford M. Orlow, and Perry S. Plexico: Data
Abstraction and Object-Oriented Programming in C++.
Wiley. West Sussex. England. 1990. ISBN 0-471-92346-X.
Peter Hiibel and J.T. Thorsen: An Implementation of a Persis
tent Store for C++. Computer Science Department. Aarhus
University, Denmark. December 1992.
Jean D. Ichbiah, et al.: Rationale for the Design of the ADA
Programming Language. SIGPLAN Notices Vol 14, no 6,
June 1979 Part B.
Daniel H.H. Ingalls: A Simple Technique for Handlingh Multi
ple Polymorphism. Proc. ACM OOPSLA Conference. Port
land, OR. November 1986.
John A. Interrante and Mark A. Linton: Runtime Access to Type
Information. Proc. USENIX C++ Conference. San Francisco
1990.
Steve C. Johnson: Personal communication.
Ralph E. Johnson: The Importance of Being Abstract. The C++
Report. March 1989.
Thomas Keffer: Why C++ Will Replace Fortran. C++ Supple
ment to Dr. Dobbs Journal. December 1992.
Thomas Keffer: The Design and Architecture of Tools.h++.
The C++ Report. June 1993.
Brian Kernighan and P.J. Plauger: Software Tools. Addison-
Wesley, Reading, MA. 1976. ISBN 0-201-03669.
Brian Kernighan and Dennis Ritchie: The C Programming Lan
guage. Prentice-Hall, Englewood Cliffs, NJ. 1978. ISBN 0-
13-110163-3.
Brian Kernighan: Why Pascal is not my Favorite Programming
Language. AT&T Bell Labs Computer Science Technical
Report No 100. July 1981.
Brian Kernighan and Rob Pike: The UNIX Programming Envi
ronment. Prentice-Hall, Englewood Cliffs, NJ. 1984. ISBN
0-13-937699-2.
Brian Kernighan and Dennis Ritchie: The C Programming Lan
guage (second edition). Prentice-Hall, Englewood Cliffs, NJ.
1988. ISBN 0-13-110362-8.
Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow: The
Art of the Metaobject Protocol. The MIT Press. Cambridge,
Massachusetts. 1991. ISBN 0-262-11158-6.
Andrew Koenig: Associative arrays in C++. Proc. USENIX
Conference. San Francisco, CA. June 1988.
Andrew Koenig and Bjarne Stroustrup: C++: As close to C as
possible - but no closer. The C++ Report. July 1989.
Andrew Koenig and Bjarne Stroustrup: Exception Handling for

References 11

[Koenig, 1990]

[Koenig,1991]

[Koenig, 1992]

[Krogdahl,1984]

[Lea, 1990]

[Lea,1991]
[Lea, 1993]

[Lenkov,1989]

[Lenkov,1991]

[Linton, 1987]

[Lippman,1988]

[Liskov,1979]

[Liskov,1987]

[Madsen,1993]

[McCluskey, 1992]

[Meyer, 1988]

[Miller, 1988]

[Mitchell, 1979]

C++. Proc. "C++ at Work" Conference. November 1989.
Andrew Koenig and Bjarne Stroustrup: Exception Handling for
C++ (revised). Proc. USENIX C++ Conference. San Fran
cisco, CA. April 1990. Also, Journal of Object-Oriented Pro
gramming. July 1990.
Andrew Koenig: Applicators, Manipulators, and Function
Objects. C++ Journal, vol. 1, #1. Summer 1990.
Andrew Koenig: Space Efficient Trees in C++. Proc. USENIX
C++ Conference. Portland, OR. August 1992.
Stein Krogdahl: An Efficient Implementation of Simula Classes
with Multiple Prefixing. Research Report No 83. June 1984.
University of Oslo, Institute of Informatics.
Doug Lea and Marshall P. Cline: The Behavior of C++
Classes. Proc. ACM SOOPPA Conference. September 1990.
Doug Lea: Personal Communication.
Doug Lea: The GNU C++ Library. The C++ Report. June
1993.
Dmitry Lenkov: C++ Standardization Proposal. #X3Jll/89-
016.
Dmitry Lenkov, Michey Mehta, and Shankar Unni: Type Iden
tification in C++. Proc. USENIX C++ Conference. Washing
ton, DC. April 1991.
Mark A. Linton and Paul R. Calder: The Design and Implemen
tation of Interviews. Proc. USENIX C++ Conference. Santa
Fe, NM. November 1987.
Stan Lippman and Bjarne Stroustrup: Pointers to Class Mem
bers in C++. Proc. USENIX C++ Conference. Denver, CO.
October 1988.
Barbara Liskov, et al.: CLU Reference manual. MIT/LCS/TR-
225. October 1979.
Barbara Liskov: Data Abstraction and Hierarchy. Addendum
to Proceedings of OOPSLA'87. October 1987.
Ole Lehrmann Madsen, et al.: Object-Oriented Programming
in the Beta Programming Language. Addison-Wesley, Read
ing, MA. 1993. ISBN 0-201-62430.
Glen McCluskey: An Environment for Template Instantiation.
The C++ Report. February 1992.
Bertrand Meyer: Object-Oriented Software Construction.
Prentice-Hall, Englewood Cliffs, NJ. 1988. ISBN 0-13-
629049.
William M. Miller: Exception Handling without Language
Extensions. Proc. USENIX C++ Conference. Denver CO.
October 1988.
James G. Mitchell, et.al.: Mesa Language Manual. XEROX

12 Notes to the Reader Chapter 0

[Murray, 1992]

[Nelson, 1991]

[Rose, 1984]

[Parrington,1990]

[Reiser, 1992]

[Richards, 1980]

[Rovner,1986]

[Russo, 1988]

[Russo, 1990]

[Sakkinen, 1992]

[Sethi, 1980]

[Sethi, 1981]

[Sethi, 1989]

[Shopiro,1985]

[Shopiro,1987]

PARC, Palo Alto, CA. CSL-79-3. April 1979.
Rob Murray: A Statically Typed Abstract Representation for
C++ Programs. Proc. USENIX C++ Conference. Portland,
OR. August 1992.
Nelson, G. (editor): Systems Programming with Modula-3.
Prentice-Hall, Englewood Cliffs, NJ. 1991. ISBN 0-13-
590464-1.
Leonie V. Rose and Bjarne Stroustrup: Complex Arithmetic in
C++. Internal AT&T Bell Labs Technical Memorandum. Jan
uary 1984. Reprinted in AT&T C++ Translator Release Notes.
November 1985.
Graham D. Parrington: Reliable Distributed Programming in
C++. Proc. USENIX C++ Conference. San Francisco, CA.
April 1990.
John F. Reiser: Static Initializers: Reducing the Value-Added
Tax on Programs. Proc. USENIX C++ Conference. Portland,
OR. August 1992.
Martin Richards and Colin Whitby-Strevens: BCPL - the lan
guage and its compiler. Cambridge University Press, Cam
bridge, England. 1980. ISBN 0-521-21965-5.
Paul Rovner: Extending Modula-2 to Build Large, Integrated
Systems. IEEE Software Vol 3, No 6, November 1986.
Vincent F. Russo and Simon M. Kaplan: A C++ Interpreter for
Scheme. Proc. USENIX C++ Conference. Denver, CO. Octo
ber 1988.
Vincent F. Russo, Peter W. Madany, and Roy H. Campbell:
C++ and Operating Systems Performance: A Case Study.
Proc. USENIX C++ Conference. San Francisco, CA. April
1990.
Markku Sakkinen: A Critique of the Inheritance Principles of
C++. USENIX Computer Systems, vol 5, no 1, Winter 1992.
Ravi Sethi: A case study in specifying the semantics of a pro
gramming language. Seventh Annual ACM Symposium on
Principles of Programming Languages. January 1980.
Ravi Sethi: Uniform Syntax for Type Expressions and Declara
tors. Software - Practice and Experience, Vol 11. 1981.
Ravi Sethi: Programming Languages - Concepts and Con
structs. Addison-Wesley, Reading, MA. 1989. ISBN 0-201-
10365-6.
Jonathan E. Shopiro: Strings and Lists for C++. AT&T Bell
Labs Internal Technical Memorandum. July 1985.
Jonathan E. Shopiro: Extending the C++ Task System for
Real-Time Control. Proc. USENIX C++ Conference. Santa Fe,
NM. November 1987.

References 13

[Shopiro,1989]

[Schwarz,1989]

[Snyder, 1986]

[Stal,1993]

[Stepanov,1993]

[Stroustrup, 1978]

[Stroustrup, 1979]

[Stroustrup, 1979b]

[Stroustrup, 1980]

[Stroustrup, 1980b]

[Stroustrup,1981]

[Stroustrup, 198 lb]

[Stroustrup, 1982]

[Stroustrup, 1982b]

[Stroustrup, 1984]

[Stroustrup, 1984b]

Jonathan E. Shopiro: An Example of Multiple Inheritance in
C++: A Model of the IOStream Library. ACM SIGPLAN
Notices. December 1989.
Jerry Schwarz: IOStreams Examples. AT&T C++ Translator
Release Notes. June 1989.
Alan Snyder: Encapsulation and Inheritance in Object-
Oriented Programming Languages. Proc. OOPSLA'86.
September 1986.
Michael Stal and Uwe Steinmuller: Generic Dynamic Arrays.
The C++ Report. October 1993.
Alexander Stepanov and David R. Musser: Algorithm-Oriented
Genric Software Library Development. HP Laboratories Tech
nical Report HPL-92-65. November 1993.
Bjarne Stroustrup: On Unifying Module Interfaces. ACM
Operating Systems Review Vol 12 No 1. January 1978.
Bjarne Stroustrup: Communication and Control in Distributed
Computer Systems. Ph.D. thesis, Cambridge University, 1979.
Bjarne Stroustrup: An Inter-Module Communication System for
a Distributed Computer System. Proc. 1st International Conf.
on Distributed Computing Systems. October 1979.
Bjarne Stroustrup: Classes: An Abstract Data Type Facility for
the C Language. Bell Laboratories Computer Science Techni
cal Report CSTR-84. April 1980. Revised, August 1981.
Revised yet again and published as [Stroustrup, 1982].
Bjarne Stroustrup: A Set of C Classes for Co-routine Style Pro
gramming. Bell Laboratories Computer Science Technical
Report CSTR-90. November 1980.
Bjarne Stroustrup: Long Return: A Technique for Improving
The Efficiency of Inter-Module Communication. Software
Practice and Experience. January 1981.
Bjarne Stroustrup: Extensions of the C Language Type Con
cept. Bell Labs Internal Memorandum. January 1981.
Bjarne Stroustrup: Classes: An Abstract Data Type Facility for
the C Language. ACM SIGPLAN Notices. January 1982.
Revised version of [Stroustrup,1980].
Bjarne Stroustrup: Adding Classes to C: An Exercise in Lan
guage Evolution. Bell Laboratories Computer Science internal
document. April 1982. Software: Practice & Experience, Vol
13. 1983.
Bjarne Stroustrup: The C++ Reference Manual. AT&T Bell
Labs Computer Science Technical Report No 108. January
1984. Revised, November 1984.
Bjarne Stroustrup: Operator Overloading in C++. Proc. IFIP
WG2.4 Conference on System Implementation Languages:

14 Notes to the Reader Chapter 0

[Stroustrup, 1984c]

[Stroustrup,1985]

[Stroustrup, 1986]

[Stroustrup, 1986b]

[Stroustrup, 1986c]

[Stroustrup,1987]

[Stroustrup, 1987b]

[Stroustrup, 1987c]

[Stroustrup, 1987d]

[Stroustrup, 1988]

[Stroustrup, 1988b]

[Stroustrup, 1989]

[Stroustrup, 1989b]

[Stroustrup, 1990]

[Stroustrup, 1990b]

[Stroustrup,1991]

[Stroustrup, 1992]

Experience & Assessment. September 1984.
Bjarne Stroustrup: Data Abstraction in C. Bell Labs Technical
Journal. Vol 63, No 8. October 1984.
Bjarne Stroustrup: An Extensible I/O Facility for C++. Proc.
Summer 1985 USENIX Conference. June 1985.
Bjarne Stroustrup: The C++ Programming Language.
Addison-Wesley, Reading, MA. 1986. ISBN 0-201-12078-X.
Bjarne Stroustrup: What is Object-Oriented Programming?
Proc. 14th ASU Conference. August 1986. Revised version in
Proc. ECOOP'87, May 1987, Springer Verlag Lecture Notes in
Computer Science Vol 276. Revised version in IEEE Software
Magazine. May 1988.
Bjarne Stroustrup: An Overview of C++. ACM SIGPLAN
Notices. October 1986.
Bjarne Stroustrup: Multiple Inheritance for C++. Proc. EUUG
Spring Conference, May 1987. Also, USENIX Computer Sys
tems, Vol 2 No 4. Fall 1989.
Bjarne Stroustrup and Jonathan Shopiro: A Set of C classes for
Co-Routine Style Programming. Proc. USENIX C++ Confer
ence. Santa Fe, NM. November 1987.
Bjarne Stroustrup: The Evolution of C++: 1985-1987. Proc.
USENIX C++ Conference. Santa Fe, NM. November 1987.
Bjarne Stroustrup: Possible Directions for C++. Proc.
USENIX C++ Conference. Santa Fe, NM. November 1987.
Bjarne Stroustrup: Type-safe Linkage for C++. USENIX Com
puter Systems, Vol 1 No 4. Fall 1988.
Bjarne Stroustrup: Parameterized Types for C++. Proc.
USENIX C++ Conference, Denver, CO. October 1988. Also,
USENIX Computer Systems, Vol 2 No 1. Winter 1989.
Bjarne Stroustrup: Standardizing C++. The C++ Report. Vol
1 No 1. January 1989.
Bjarne Stroustrup: The Evolution of C++: 1985-1989.
USENIX Computer Systems, Vol 2 No 3. Summer 1989.
Revised version of [Stroustrup,1987c].
Bjarne Stroustrup: On Language Wars. Hotline on Object-
Oriented Technology. Vol 1, No 3. January 1990.
Bjarne Stroustrup: Sixteen Ways to Stack a Cat. The C++
Report. October 1990.
Bjarne Stroustrup: The C++ Programming Language (2nd edi
tion). Addison-Wesley, Reading, MA. 1991. ISBN 0-201-
53992-6.
Bjarne Stroustrup and Dmitri Lenkov: Run-Time Type Identifi
cation for C++. The C++ Report. March 1992. Revised ver
sion: Proc. USENIX C++ Conference. Portland, OR. August

References 15

[Stroustrup, 1992b]

[Stroustrup, 1993]

[Taft,1992]

[Tiemann, 1987]

[Tiemann, 1990]

[Weinand,1988]

[Wikstrom,1987]

[Waldo, 1991]

[Waldo, 1993]

[Wilkes, 1979]

[Woodward, 1974]

1992.
Bjarne Stroustrup: How to Write a C++ Language Extension
Proposal. The C++ Report. May 1992.
Bjarne Stroustrup: The History of C++: 1979-1991. Proc.
ACM History of Programming Languages Conference
(HOPL-2). April 1993. ACM SIGPLAN Notices. March
1993.
S. Tucker Taft: Ada 9X: A Technical Summary. CACM.
November 1992.
Michael Tiemann: "Wrappers:" Solving the RPC problem in
GNU C++. Proc. USENIX C++ Conference. Denver, CO.
October 1988.
Michael Tiemann: An Exception Handling Implementation for
C++. Proc. USENIX C++ Conference. San Francisco, CA.
April 1990.
Andre Weinand, et al.: ET++ - An Object-Oriented Applica
tion Framework in C++. Proc. OOPSLA'88. September 1988.
Ake Wikstrom: Functional Programming in Standard ML.
Prentice-Hall, Englewood Cliffs, NJ. 1987. ISBN 0-13-
331968-7.
Jim Waldo: Controversy: The Case for Multiple Inheritance in
C++. USENIX Computer Systems, vol 4, no 2, Spring 1991.
Jim Waldo (editor): The Evolution of C++. A USENIX Asso
ciation book. The MIT Press, Cambridge, MA. 1993. ISBN
0-262-73107-X.
M.V. Wilkes and R.M. Needham: The Cambridge CAP Com
puter and its Operating System. North-Holland, New York.
1979. ISBN 0-444-00357-6.
P.M. Woodward and S.G. Bond: Algol 68-R Users Guide. Her
Majesty's Stationery Office, London. 1974. ISBN 0-11-
771600-6.

Part I

Part I describes the origins of C++ and its evolution through C with
Classes to Release 1.0. It also describes the rules that guided C++'s
growth during that period and beyond. A chronology of post-1.0 devel
opments is provided, and the C++ standardization effort is described. To
provide perspective, the use of C++ is discussed. Finally, a retrospective
and some thoughts on the future is presented.

Chapters

1 The Prehistory of C++
2 C with Classes
3 The Birth of C++
4 C++ Language Design Rules
5 Chronology 1985-1993
6 Standardization
7 Interest and Use
8 Libraries
9 Looking Ahead

1
The Prehistory of C++

In olden days,
when EVIL ruled!

- Kristen Nygaard

Simula and distributed systems — C and systems programming — the
influence of mathematics, history, philosophy, and literature.

1.1 Simula and Distributed Systems
The prehistory of C++ - the couple of years before the idea of adding Simula-like fea
tures to C occurred to me - is important because during this time, the criteria and ide
als that later shaped C++ emerged. I was working on my Ph.D. Thesis in the Comput
ing Laboratory of Cambridge University in England. My aim was to study alterna
tives for the organization of system software for distributed systems. The conceptual
framework was provided by the capability-based Cambridge CAP computer and its
experimental and continuously evolving operating system [Wilkes,1979]. The details
of this work and its outcome [Stroustrup,1979] are of little relevance to C++. What is
relevant, though, was the focus on composing software out of well-delimited modules
and that the main experimental tool was a relatively large and detailed simulator I
wrote for simulating software running on a distributed system.

The initial version of this simulator was written in Simula [Birtwistle,1979] and
ran on the Cambridge University computer center's IBM 360/165 mainframe. It was
a pleasure to write that simulator. The features of Simula were almost ideal for the
purpose, and I was particularly impressed by the way the concepts of the language
helped me think about the problems in my application. The class concept allowed me
to map my application concepts into the language constructs in a direct way that made
my code more readable than I had seen in any other language. The way Simula

20 The Prehistory of C++ Chapter 1

classes can act as co-routines made the inherent concurrency of my application easy to
express. For example, an object of class computer could trivially be made to work
in pseudo-parallel with other objects of class computer . Class hierarchies were
used to express variants of application-level concepts. For example, different types of
computers could be expressed as classes derived from class compute r and different
types of inter-module communication mechanisms could be expressed as classes
derived from class IPC. The use of class hierarchies was not heavy, though; the use
of classes to express concurrency was much more important in the organization of my
simulator.

During writing and initial debugging, I acquired a great respect for the expressive
ness of Simula's type system and its compiler's ability to catch type errors. I
observed that type errors almost invariably reflected either a silly programming error
or a conceptual flaw in the design. The latter was by far the most significant and a
help that I had not experienced in the use of more primitive "strong" type systems.
In contrast, I had found Pascal's type system to be worse than useless - a straitjacket
that caused more problems than it solved by forcing me to warp my designs to suit an
implementation-oriented artifact. The contrast I perceived between the rigidity of
Pascal and the flexibility of Simula was essential for the development of C++.
Simula's class concept was seen as the key difference, and ever since I have seen
classes as the proper primary focus of program design.

I had used Simula before (during my studies at the University of Aarhus, Den
mark), but was very pleasantly surprised by the way the mechanisms of the Simula
language became increasingly helpful as the size of the program increased. The class
and co-routine mechanisms and the comprehensive type checking ensured that prob
lems and errors did not (as I - and I guess most people - would have expected) grow
more than linearly with the size of the program. Instead, the total program acted more
like a collection of very small programs than a single large program and was therefore
easier to write, comprehend, and debug.

The implementation of Simula, however, did not scale in the same way. As a
result, the whole project came close to disaster. My conclusion at the time was that
the Simula implementation (as opposed to the Simula language) was geared to small
programs and was inherently unsuitable for larger programs [Stroustrup,1979]. Link
times for separately compiled classes were abysmal: It took longer to compile l/30th
of the program and link it to a precompiled version of the rest than it took to compile
and link the program as a monolith. This I believe, was more a problem with the
mainframe linker than with Simula, but it was still a burden. On top of that, the run
time performance was such that there was no hope of obtaining useful data from the
simulator. The poor run-time characteristics were a function of the language and its
implementation rather than a function of the application. The overhead problems
were fundamental to Simula and could not be remedied. The cost arose from several
language features and their interactions: run-time type checking, guaranteed initial
ization of variables, concurrency support, and garbage collection of both user-
allocated objects and procedure activation records. For example, measurements
showed that more than 80% of the time was spent in the garbage collector despite the

Section 1.1 Simula and Distributed Systems 21

fact that resource management was part of the simulated system so that no garbage
was ever produced. Simula implementations are better these days (15 years later), but
the order-of-magnitude improvement in run-time performance still has not (to the best
of my knowledge) materialized.

To avoid terminating the project - and thus having to leave Cambridge without a
Ph.D. - I rewrote the simulator in BCPL and ran it on the experimental CAP com
puter. The experience of coding and debugging the simulator in BCPL
[Richards, 1980] was horrible. BCPL makes C look like a very high-level language
and provides absolutely no type checking or run-time support. The resulting simula
tor did, however, run suitably fast and gave a whole range of useful results that clari
fied many issues for me and provided the basis for several papers on operating system
issues [Stroustrup,1978,1979b,1981].

Upon leaving Cambridge, I swore never again to attack a problem with tools as
unsuitable as those I had suffered while designing and implementing the simulator.
The significance of this to C++ was the notion I had evolved of what constituted a
"suitable tool" for projects such as writing a significant simulator, an operating sys
tem, and similar systems programming tasks:

[1] A good tool would have Simula's support for program organization - that is,
classes, some form of class hierarchies, some form of support for concurrency,
and strong (that is, static) checking of a type system based on classes. This I
saw (as I still see it today) as support for the process of inventing programs, as
support for design rather than just for implementation.

[2] A good tool would produce programs that run as fast as BCPL programs and
share BCPL's ability to easily combine separately compiled units into a pro
gram. A simple linkage convention is essential for combining units written in
languages such as C, Algol68, Fortran, BCPL, assembler, etc., into a single
program so that programmers can avoid getting caught by inherent limitations
in a single language.

[3] A good tool should also allow for highly portable implementations. My expe
rience was that the "good" implementation I needed would typically not be
available until "next year" and then only on a machine I couldn't afford. This
implied that a tool must have multiple sources of implementations (no mono
poly would be sufficiently responsive to users of "unusual" machines or to
poor graduate students), that there should be no complicated run-time support
system to port, and that there should be only very limited integration between
the tool and its host operating system.

These criteria were not fully formed when I left Cambridge. Some matured only
on further reflection on my experience with the simulator, on programs written over
the next couple of years, and on the experiences of others that I learned of through
discussions and reading of code. C++ as defined at the time of Release 2.0 strictly ful
fills these criteria; the fundamental tensions in the effort to design templates and
exception handling mechanisms for C++ arise from the need to depart from some
aspects of these criteria. I think the most important aspect of these criteria is that they
are only loosely connected with specific programming language features. Instead,

22 The Prehistory of C++ Chapter 1

they specify constraints on a solution.
At the time I was there, the Cambridge Computing Laboratory was headed by

Maurice Wilkes. I received my main technical guidance from my supervisor, David
Wheeler, and from Roger Needham. My background in operating systems and my
interest in modularization and communication had permanent effects on C++. The
C++ model of protection, for example, is based on the notion of granting and transfer
ring access rights; the distinction between initialization and assignment has its root in
thoughts about transferring capabilities; C++'s notion of c o n s t is derived from hard
ware read/write access protection mechanisms; and the design of C++'s exception
handling mechanism was influenced by work on fault-tolerant systems done by Brian
Randell's group in Newcastle during the seventies.

1.2 C and Systems Programming
I had briefly encountered C in London in 1975 and acquired some respect for it com
pared to other languages of the kind referred to as systems programming languages,
machine-oriented languages, or low-level languages. Of those, I knew PL360, Coral,
Mary, and others, but my main experience with languages of this class was BCPL. In
addition to being a BCPL user, I had once implemented BCPL by microcoding its
intermediate form, O-code, so I had a detailed understanding of the low-level effi
ciency implications of this class of languages.

After finishing my Ph.D. Thesis in Cambridge and getting a job at Bell Labs, I
(re)learned C from [Kernighan,1978]. Thus, at the time, I was not a C expert and saw
C primarily as the most modern and prominent example of the systems programming
languages. Only later did I achieve a fuller understanding of C based on personal
experience and discussion with people such as Stu Feldman, Steve Johnson, Brian
Kernighan, and Dennis Ritchie. The general idea of a systems programming language
thus determined the growth of C++ to at least the same extent as did the specific
language-technical details of C.

I knew Algol68 [Woodward, 1974] pretty well from using it for minor projects in
Cambridge. I appreciated the relationship between its constructs and those of C, and
sometimes find it useful to consider C constructs as specialized versions of Algol68's
more general concepts. Curiously enough, I did not see Algol68 as a systems pro
gramming language (despite having used an operating system written in Algol68). I
suspect the reason was the emphasis I placed on portability, ease of linkage to code
written in other languages, and run-time efficiency. I have on occasion described my
dream language as Algol68 with Simula-like classes. However, for building a practi
cal tool, C seemed a much better choice than Algol68.

Section 1.3 General Background 23

1.3 General Background
It is often claimed that the structure of a system reflects the structure of the organiza
tion that created it. Within reason, I subscribe to that idea. It follows that when a sys
tem is primarily the work of an individual, the system reflects the fundamental out
look of that individual. In retrospect, I think the overall structure of C++ was shaped
as much by my general "world view" as it was shaped by the detailed computer sci
ence concepts used to form its individual parts.

I studied pure and applied mathematics so that my Danish "masters degree" (a
Cand.Scient. degree) is in mathematics and computer science. This left me with an
appreciation of the beauty of mathematics, but also with a bias towards mathematics
as a practical tool for problem solving as opposed to an apparently purposeless monu
ment to abstract truth and beauty. I have a lot of sympathy for the student Euclid
reputedly had evicted for asking, "But what is mathematics for?" Similarly, my
interest in computers and programming languages is fundamentally pragmatic. Com
puters and programming languages can be appreciated as works of art, but aesthetic
factors should complement and enhance utility, not substitute for or compromise util
ity.

My long-term (continuous for at least 25 years) hobby is history, and I spent sig
nificant time in university and later studying philosophy. This has given me a rather
conscious view of where my intellectual sympathies lie and why. Among the long
standing schools of thought, I feel most at home with the empiricists rather than with
the idealists - the mysticists I just can't appreciate. That is, I tend to prefer Aristotle
to Plato, Hume to Descartes, and shake my head sadly over Pascal. I find comprehen
sive "systems" like those of Plato and Kant fascinating, yet fundamentally unsatisfy
ing in that they appear to me dangerously remote from everyday experiences and the
essential peculiarities of individuals.

I find Kierkegaard's almost fanatical concern for the individual and keen psycho
logical insights much more appealing than the grandiose schemes and concern for
humanity in the abstract of Hegel or Marx. Respect for groups that doesn't include
respect for individuals of those groups isn't respect at all. Many C++ design decisions
have their roots in my dislike for forcing people to do things in some particular way.
In history, some of the worst disasters have been caused by idealists trying to force
people into "doing what is good for them." Such idealism not only leads to suffering
among its innocent victims, but also to delusion and corruption of the idealists apply
ing the force. I also find idealists prone to ignore experience and experiment that
inconveniently clashes with dogma or theory. Where ideals clash and sometimes
even when pundits seem to agree, I prefer to provide support that gives the program
mer a choice.

My preferences in literature have reinforced this unwillingness to make a decision
based on theory and logic alone. In this sense, C++ owes as much to novelists and
essayists such as Martin A. Hansen, Albert Camus, and George Orwell, who never
saw a computer, as it does to computer scientists such as David Gries, Don Knuth,
and Roger Needham. Often, when I was tempted to outlaw a feature I personally

24 The Prehistory of C++ Chapter 1

disliked, I refrained from doing so because I did not think I had the right to force my
views on others. I know that much can be achieved in a relatively short time by the
energetic pursuit of logic and by ruthless condemnation of "bad, outdated, and con
fused habits of thought." However, the human cost is often high. A high degree of
tolerance and acceptance that different people do think in different ways and strongly
prefer to do things differently is to me far preferable.

My preference is to slowly - often painfully slowly - persuade people to try new
techniques and adapt the ones that suit their needs and tastes. There are effective
techniques for achieving "religious conversions" and "revolutions," but I have fun
damental qualms about those techniques and grave doubts about their effects in the
long term and on a large scale. Often, if someone can be easily converted to "reli
gion" X, a further conversion to "religion" Y is likely, and the gain ephemeral. I
prefer skeptics to "true believers." I value a small piece of solid evidence over most
theories, and a solid experimental result over most logical arguments.

These views could easily lead to fatalistic acceptance of status quo. After all, one
cannot make an omelet without cracking a few eggs and most people do not actually
want to change - at least "not just now" or in ways that will disrupt their everyday
lives. This is where respect for facts comes in - and a modicum of idealism. Things
in programming and in the world in general really aren't in a very good state, and
much can be done to improve them. I designed C++ to solve a problem, not to prove
a point, and it grew to serve its users. The underlying view is that it is possible to
achieve improvements through gradual change. The ideal situation is to maintain the
greatest rate of change that improves the welfare of the individuals involved. The
main difficulties are to determine what constitutes progress, to develop techniques to
smooth transitions, and to avoid excesses caused by over-enthusiasm.

I'm willing to work hard for the adoption of ideas that I have become convinced
will be of help to people. In fact, I consider it the obligation of scientists and intellec
tuals to ensure that their ideas are made accessible and thus useful to society instead
of being mere playthings for specialists. However, I'm not willing to sacrifice people
to ideas. In particular, I do not try to enforce a single style of design through a nar
rowly defined programming language. People's ways of thinking and working are so
diverse that an attempt to force a single style would do more harm than good. Thus,
C++ is deliberately designed to support a variety of styles rather than a would-be "one
true way."

Chapter 4 presents the more detailed and practical rules that guided the design of
C++. In those rules, you can find the echoes of the general ideas and ideals mentioned
here.

A programming language can be the most important factor in a programmer's day.
However, a programming language is really a very tiny part of the world, and as such,
it ought not be taken too seriously. Keep a sense of proportion and - most impor
tantly - keep a sense of humor. Among major programming languages, C++ is the
richest source of puns and jokes. That is no accident.

Philosophy, like discussion of language features, does tend to get overly serious
and preachy. For this, I apologize, but I felt like acknowledging my intellectual roots

Section 1.3 General Background 25

and I guess this is harmless - well, mostly harmless. And no, my preferences in liter
ature are not limited to writers emphasizing philosophical and political themes; those
are just the ones who left the most obvious traces in the fabric of C++.

2
C with Classes

Specialization is for insects.
- R.A.Heinlein

C++'s immediate predecessor, C with Classes — key design principles —
classes — run-time and space efficiency — the linkage model — static
(strong) type checking — why C? — syntax problems — derived classes
— living without virtual functions and templates — access-control mecha
nisms — constructors and destructors — my work environment.

2.1 The Birth of C with Classes

The work on what eventually became C++ started with an attempt to analyze the
UNIX kernel to determine how it could be distributed over a network of computers
connected by a local area network. This work started in April 1979 in the Computing
Science Research Center of Bell Laboratories in Murray Hill, New Jersey. Two sub-
problems soon emerged: how to analyze the network traffic that would result from the
kernel distribution and how to modularize the kernel. Both required a way to express
the module structure of a complex system and the communication pattern of the mod
ules. This was exactly the kind of problem that I had become determined never again
to attack without proper tools. Consequently, I set about developing a proper tool
according to the criteria I had formed in Cambridge.

In October 1979 I had a running preprocessor, called Cpre, which added Simula
like classes to C, and by March 1980 this preprocessor had been refined to the point
where it supported one real project and several experiments. My records show the
preprocessor was in use on 16 systems by then. The first key C++ library, the task
system supporting a co-routine style of programming [Stroustrup, 1980b]
[Stroustrup, 1987b] [Shopiro,1987], was crucial to these projects. The language

28 C with Classes Chapter 2

accepted by the preprocessor was called "C with Classes."
During the April to October period the transition from thinking about a tool to

thinking about a language had occurred, but C with Classes was still thought of pri
marily as an extension to C for expressing modularity and concurrency. A crucial
decision had been made, though. Even though support of concurrency and Simula-
style simulations was a primary aim of C with Classes, the language contained no
primitives for expressing concurrency; rather, a combination of inheritance (class
hierarchies) and the ability to define class member functions with special meanings
recognized by the preprocessor was used to write the library that supported the desired
styles of concurrency. Please note that "styles" is plural. I considered it crucial - as
I still do - that more than one notion of concurrency should be expressible in the lan
guage. There are many applications for which support for concurrency is essential,
but there is no one dominant model for concurrency support; thus, when support is
needed, it should be provided through a library or a special-purpose extension so that
a particular form of concurrency support does not preclude other forms.

The language thus provided general mechanisms for organizing programs, rather
than support for specific application areas. This was what made C with Classes - and
later, C++ - a general-purpose language rather than a C variant with extensions to
support specialized applications. Later, the choice between providing support for spe
cialized applications or general abstraction mechanisms has come up repeatedly.
Each time the decision has been to improve the abstraction mechanisms. Thus, C++
does not have built-in complex number, string, or matrix types, or direct support for
concurrency, persistence, distributed computing, pattern matching, or file system
manipulation, to mention a few of the most frequently suggested extensions. Instead,
libraries supporting those needs exist.

An early description of C with Classes was published as a Bell Labs technical
report in April 1980 [Stroustrup,1980] and in SIGPLAN Notices [Stroustrup,1982].
A more detailed Bell Labs technical report, Adding Classes to the C Language: An
Exercise in Language Evolution [Stroustrup, 1982b] was published in Software: Prac
tice and Experience. These papers set a good example by describing only features
that were fully implemented and had been used. This was in accordance with Bell
Labs Computing Science Research Center tradition. That policy was modified only
when more openness about the future of C++ became needed to ensure a free and open
debate over the evolution of C++ among its many non-AT&T users.

C with Classes was explicitly designed to allow better organization of programs;
"computation" was considered a problem solved by C. I was very concerned that
improved program structure was not achieved at the expense of run-time overhead
compared to C. The explicit aim was to match C in terms of run-time, code compact
ness, and data compactness. To wit: Someone once demonstrated a 3% systematic
decrease in overall run-time efficiency compared with C caused by the use of a spuri
ous temporary introduced into the function return mechanism by the C with Classes
preprocessor. This was deemed unacceptable and the overhead promptly removed.
Similarly, to ensure layout compatibility with C and thereby avoid space overhead, no
"housekeeping data'' was placed in class objects.

Section 2.1 The Birth of C with Classes 29

Another major concern was to avoid restrictions on the domain where C with
Classes could be used. The ideal - which was achieved - was that C with Classes
could be used for whatever C could be used for. This implied that in addition to
matching C in efficiency, C with Classes could not provide benefits at the expense of
removing "dangerous" or "ugly" features of C. This observation/principle had to be
repeated often to people (rarely C with Classes users) who wanted C with Classes
made safer by increasing static type checking along the lines of early Pascal. The
alternative way of providing "safety," inserting run-time checks for all unsafe opera
tions, was (and is) considered reasonable for debugging environments, but the lan
guage could not guarantee such checks without leaving C with a large advantage in
run-time and space efficiency. Consequently, such checks were not provided for C
with Classes, although some C++ environments do provide such checks for debug
ging. In addition, users can and do insert run-time checks (see §16.10 and [2nd])
where needed and affordable.

C allows low-level operations, such as bit manipulation and choosing between dif
ferent sizes of integers. There are also facilities, such as explicit unchecked type con
versions, for deliberately breaking the type system. C with Classes and later C++ fol
low this path by retaining the low-level and unsafe features of C. In contrast to C,
C++ systematically eliminates the need to use such features except where they are
essential and performs unsafe operations only at the explicit request of the program
mer. I strongly felt then, as I still do, that there is no one right way of writing every
program, and a language designer has no business trying to force programmers to use
a particular style. The language designer does, on the other hand, have an obligation
to encourage and support a variety of styles and practices that have proven effective
and to provide language features and tools to help programmers avoid the well-known
traps and pitfalls.

2.2 Feature overview
The features provided in the initial 1980 implementation can be summarized:

[1] Classes (§2.3)
[2] Derived classes (but no virtual functions yet, §2.9)
[3] Public/private access control (§2.10)
[4] Constructors and destructors (§2.11.1)
[5] Call and return functions (later removed, §2.11.3)
[6] f r i e n d classes (§2.10)
[7] Type checking and conversion of function arguments (§2.6)

During 1981, three more features were added:
[8] Inline functions (§2.4.1)
[9] Default arguments (§2.12.2)
[10] Overloading of the assignment operator (§2.12.1)

Since a preprocessor was used for the implementation of C with Classes, only new
features (that is, features not present in C) had to be described and the full power of C

30 C with Classes Chapter 2

was available to users. Both aspects were appreciated at the time. Having C as a sub
set dramatically reduced the support and documentation work needed. This was most
important because for several years I did all of the C with Classes and C++ documen
tation and support in addition to doing the experimentation, design, and implementa
tion. Having all C features available further ensured that no limitations introduced
through prejudice or lack of foresight on my part would deprive a user of features
already available in C. Naturally, portability to machines supporting C was ensured.
Initially, C with Classes was implemented and used on a DEC PDP/11, but soon it
was ported to machines such as the DEC VAX and Motorola 68000 based machines.

C with Classes was still seen as a dialect of C rather than as a separate language.
Furthermore, classes were referred to as "an abstract data type facility" [Strous-
trup,1980]. Support for object-oriented programming was not claimed until the provi
sion of virtual functions in C++ in 1983 [Stroustrup,1984].

2.3 Classes
Clearly, the most important aspect of C with Classes - and later of C++ - was the
class concept. Many aspects of the C with Classes class concept can be observed by
examining a simple example from [Stroustrup,1980]†:

c l a s s s tack {
char s[SIZE]; /* array of characters */
char* min; /* pointer to bottom of stack */
char* top; /* pointer to top of stack */
char* max; /* pointer to top of allocated space */
void new(); /* initialize function (constructor) */

public:
void push(char);
char pop();

};

A class is a user-defined data type. A class specifies the type of class members that
define the representation of a variable of the type (an object of the class), the set of
operations (functions) that manipulate such objects, and the access users have to these
members. Member functions are typically defined "elsewhere:"

c h a r s t a c k . p o p ()
{

if (top <= min) error("stack underflow");
return *(--top);

}

Objects of class s t a c k can now be defined and used:

† I have retained the original C with Classes syntax and style in the examples. The differences from C++
and modern style should not cause problems with comprehension and may be of interest to some readers. I
have, however, fixed obvious bugs and added comments to compensate for the lack of the original context.

Section 2.3 Classes 31

class stack s1, s2; /* two stack variables */
class stack * p1 = &s2 ; /* p1 points to s2 */
class stack * p2 = new stack; /* p2 points to stack object

allocated on free store */

s1.push('h'); /* use object directly */
pl->push('s'); /* use object through pointer */

Several key design decisions are reflected here:
[1] C with Classes follows Simula in letting the programmer specify types from

which variables (objects) can be created, rather than, say, the Modula approach
of specifying a module as a collection of objects and functions. In C with
Classes (as in C++), a class is a type (§2.9). This is a key notion in C++.
When c l a s s means user-defined type in C++, why didn't I call it t ype? I
chose c l a s s primarily because I dislike inventing new terminology and
found Simula's quite adequate in most cases.

[2] The representation of objects of the user-defined type is part of the class decla
ration. This has far-reaching implications (§2.4, §2.5). For example, it means
that true local variables of a user-defined type can be implemented without the
use of free store (also called heap store and dynamic store) or garbage collec
tion. It also means that a function must be recompiled if the representation of
an object it uses directly is changed. See §13.2 for C++ facilities for express
ing interfaces that avoid such recompilation.

[3] Compile-time access control is used to restrict access to the representation. By
default, only the functions mentioned in the class declaration can use names of
class members (§2.10). Members (usually function members) specified in the
public interface - the declarations after the p u b l i c : label - can be used by
other code.

[4] The full type (including both the return type and the argument types) of a func
tion is specified for function members. Static (compile-time) type checking is
based on this type specification (§2.6). This differed from C at the time, where
function argument types were neither specified in interfaces nor checked in
calls.

[5] Function definitions are typically specified "elsewhere" to make a class more
like an interface specification than a lexical mechanism for organizing source
code. This implies that separate compilation for class member functions and
their users is easy and the linker technology traditionally used for C is suffi
cient to support C++ (§2.5).

[6] The function new () is a constructor, a function with a special meaning to the
compiler. Such functions provided guarantees about classes (§2.11). In this
case, the guarantee is that the constructor - known somewhat confusingly as a
new-function at the time - is guaranteed to be called to initialize every object
of its class before the first use of the object.

[7] Both pointers and non-pointer types are provided (as in both C and Simula).

32 C with Classes Chapter 2

Like C and unlike Simula, pointers can point to objects of both user-defined
and built-in types (§2.4).

[8] Like C, objects can be allocated in three ways: on the stack (automatic stor
age), at a fixed address (static storage), and on the free store (on the heap,
dynamic storage). Unlike C, C with Classes provides specific operators new
and d e l e t e for free store allocation and deallocation (§2.11.2).

Much of the further development of C with Classes and C++ can be seen as exploring
the consequences of these design choices, exploiting their good sides, and compensat
ing for the problems caused by their bad sides. Many, but by no means all, of the
implications of these design choices were understood at the time; [Stroustrap,1980] is
dated April 3, 1980. This section tries to explain what was understood at the time and
gives pointers to sections that explain consequences and later realizations.

2.4 Run-Time Efficiency
In Simula, it is not possible to have local or global variables of class types; that is,
every object of a class must be allocated on the free store using the new operator.
Measurements of my Cambridge simulator had convinced me this was a major source
of inefficiency. Later, Karel Babcisky from the Norwegian Computer Centre pre
sented data on Simula run-time performance that confirmed my conjecture [Bab-
cisky,1984]. For that reason alone, I wanted global and local variables of class types.

In addition, having different rules for the creation and scope of built-in and user-
defined types is inelegant, and I felt that on occasion my programming style had been
cramped by the absence of local and global class variables from Simula. Similarly, I
had missed the ability to have pointers to built-in types in Simula, so I wanted the C
notion of pointers to apply uniformly over user-defined and built-in types. This is the
origin of the notion that over the years grew into a rule of thumb for the design of
C++: User-defined and built-in types should behave the same relative to the language
rules and receive the same degree of support from the language and its associated
tools. When the ideal was formulated built-in types received by far the best support,
but C++ has overshot that target so that built-in types now receive slightly inferior
support compared to user-defined types (_temp.impl.rest_).

The initial version of C with Classes did not provide inline functions to take fur
ther advantage of the availability of the representation. Inline functions were soon
provided, though. The general reason for the introduction of inline functions was
concern that the cost of crossing a protection barrier would cause people to refrain
from using classes to hide representation. In particular, [Stroustrup, 1982b] observes
that people had made data members public to avoid the function call overhead
incurred by a constructor for simple classes where only one or two assignments are
needed for initialization. The immediate cause for the inclusion of inline functions
into C with Classes was a project that couldn't afford function call overhead for some
classes involved in real-time processing. For classes to be useful in that application,
crossing the protection barrier had to be free. Only the combination of having the

Section 2.4 Run-Time Efficiency 33

representation available in the class declaration and having the calls of the public
(interface) functions inlined could deliver that.

Over the years, considerations along these lines grew into the C++ rule that it was
not sufficient to provide a feature, it had to be provided in an affordable form. Most
definitely, affordable was seen as meaning "affordable on hardware common among
developers" as opposed to "affordable to researchers with high-end equipment" or
"affordable in a couple of years when hardware will be cheaper." C with Classes
was always considered as something to be used now or next month rather than simply
a research project to deliver something in a couple of years hence.

2.4.1 Inlining

Inlining was considered important for the utility of classes. Therefore, the issue was
more how to provide it than whether to provide it. Two arguments won the day for
the notion of having the programmer select which functions the compiler should try to
inline. First, I had had poor experiences with languages that left the job of inlining to
compilers "because clearly the compiler knows best." The compiler only knows best
if it has been programmed to inline and it has a notion of time/space optimization that
agrees with mine. My experience with other languages was that only "the next
release" would actually inline, and it would do so according to an internal logic that a
programmer couldn't effectively control. To make matters worse, C (and therefore C
with Classes and later C++) has genuine separate compilation so that a compiler never
has access to more than a small part of the program (§2.5). Mining a function for
which you don't know the source appears feasible given advanced linker and opti
mizer technology, but such technology wasn't available at the time (and still isn't in
most environments). Furthermore, techniques that require global analysis, such as
automatic inlining without user support, tend not to scale well to very large programs.
C with Classes was designed to deliver efficient code given a simple, portable imple
mentation on traditional systems. Given that, the programmer had to help. Even
today, the choice seems right.

In C with Classes, only member functions could be inlined and the only way to
request a function to be inlined was to place its body within the class declaration. For
example:

class stack {
/* ... */
char pop()
{ if (top <= min) error("stack underflow");

return *--top;
}

};

The fact that this made class declarations messier was observed at the time and seen
as a good thing in that it discourages overuse of inline functions. The i n l i n e key
word and the ability to inline nonmember functions came with C++. For example, in
C++ one can write the example like this:

34 C with Classes Chapter 2

class stack { // C++
// . ..
char pop();

};

inline char stack::pop() // C++
{

if (top <= min) error("stack underflow");
return *--top;

}

An i n l i n e directive is only a hint that the compiler can and often does ignore. This
is a logical necessity because one can write recursive inline functions that cannot at
compile time be proven not to cause infinite recursions; trying to inline one of those
would lead to infinite compilations. Leaving i n l i n e a hint is also a practical advan
tage because it allows the compiler writer to handle "pathological" cases by simply
not inlining.

C with Classes required - as its successor still requires - that an inline function
must have a unique definition in a program. Defining a function like pop () above
differently in different compilation units would lead to chaos by subverting the type
system. Given separate compilation, it is extremely hard to guarantee that such sub
version hasn't taken place in a large system. C with Classes didn't check, and most
C++ implementations still don't try to guarantee that an inline function hasn't been
defined differently in separate compilation units. However, this theoretical problem
has not surfaced as a real problem largely because inline functions tend to be defined
in header files together with classes - and class declarations also need to be unique in
a program.

2.5 The Linkage Model
The issue of how separately compiled program fragments are linked together is criti
cal for any programming language and to some extent determines the features the lan
guage can provide. One of the critical influences on the development of C with
Classes and C++ was the decision that

[1] Separate compilation should be possible with traditional C/Fortran UNIX/DOS
style linkers.

[2] Linkage should be type safe.
[3] Linkage should not require any form of database (although one could be used

to improve a given implementation).
[4] Linkage to program fragments written in other languages such as C, assembler,

and Fortran should be easy and efficient.
C uses header files to ensure consistent separate compilation. Declarations of data
structure layouts, functions, variables, and constants are placed in header files that are
typically textually included into every source file that needs the declarations.

Section 2.5 The Linkage Model 35

Consistency is ensured by placing adequate information in the header files and ensur
ing that the header files are consistently included. C++ follows this model up to a
point.

The reason that layout information can be present in a C++ class declaration
(though it doesn't have to be; see §13.2) is to ensure that the declaration and use of
true local variables is easy and efficient. For example:

void f()
{

class stack s;
int c ;
s.push('h');
c = s.pop();

}

Using the s t a c k declaration from §2.3 and §2.4.1, even a simple-minded C with
Classes implementation can ensure that no use is made of free store for this example,
that the call of pop () is inlined so that no function call overhead is incurred and that
the non-inlined call of push () can invoke a separately compiled function. In this,
C++ resembles Ada.

At the time, I felt there was a trade-off between having separate interface and
implementation declarations (as in Modula-2) plus a tool (linker) to match them up,
and having a single class declaration plus a tool (a dependency analyzer) that consid
ered the interface part separately from the implementation details for the purposes of
recompilation. It appears I underestimated the complexity of the latter and that the
proponents of the former approach underestimate the cost (in terms of porting prob
lems and run-time overhead) of the former.

I also made matters worse for the C++ community by not properly explaining the
use of derived classes to achieve the separation of interface and implementation. I
tried (see for example [Stroustrup,1986,§7.6.2]), but somehow I never got the mes
sage across. I think the reason for this failure was primarily that it never occurred to
me that many (most?) C++ programmers and non-C++ programmers looking at C++
thought that because you could put the representation right in the class declaration
that specified the interface, you had to.

I made no attempt to provide tools to enforce type-safe linkage for C with Classes;
that had to wait for Release 2.0 of C++. However, I remember talking to Dennis
Ritchie and Steve Johnson to establish that type safety across compilation boundaries
was considered a part of C. We just lacked the means of enforcement for real pro
grams and had to rely on tools such as Lint [Kernighan,1984].

In particular, Steve Johnson and Dennis Ritchie affirmed that C was intended to
have name equivalence rather than structural equivalence. For example:

struct A { int x, y; };
struct B { int x, y; };

defines two incompatible types A and B. Further:

36 C with Classes Chapter 2

struct C { int x, y; }; // in file 1
struct C { int x, y; }; // in file 2

defines two different types, both called C, and a compiler that can do checking across
compilation unit boundaries should give a "double definition" error. The reason for
this rule is to minimize maintenance problems. Such identical declarations are
unlikely to occur except through copying. Once copied into different source files,
however, the declarations are unlikely to stay identical forever. The moment one dec
laration - and not the other - is changed, the program will mysteriously fail to work
correctly.

As a practical matter, C and therefore C++ guarantees that similar structures such
as A and B have similar layout so that it is possible to convert between them and use
them in the obvious manner:

extern f(struct A*);

void g(struct A* pa, struct B* pb)
{

f(pa); /* fine */
f(pb); /* error: A* expected */

pa = pb; /* error: A* expected */
pa = (struct A*)pb; /* ok: explicit conversion */

pb->x = 1;
if (pa->x != pb->x) error("bad implementation");

}

Name equivalence is the bedrock of the C++ type system and the layout compatibility
rules ensure that explicit conversions can be used to provide low-level services that in
other languages have been supplied through structural equivalence. I prefer name
equivalence over structural equivalence because I consider it the safest and cleanest
model. I was therefore pleased to find that this decision didn't get me into compati
bility problems with C and didn't complicate the provision of low-level services.

This later grew into the "one-definition rule:" every function, variable, type, con
stant, etc., in C++ has exactly one definition.

2.5.1 Simple-Minded Implementations

The concern for simple-minded implementations was partly a necessity caused by the
lack of resources for developing C with Classes and partly a distrust of languages and
mechanisms that required clever techniques. An early formulation of a design goal
was that C with Classes "should be implementable without using an algorithm more
complicated than a linear search." Wherever that rule of thumb was violated - as in
the case of function overloading (§11.2) - it led to semantics that were more compli
cated than I felt comfortable with. Frequently, it also led to implementation

Section 2.5.1 Simple-Minded Implementations 37

complications.
The aim - based on my Simula experience - was to design a language that would

be easy enough to understand to attract users and easy enough to implement to attract
implementers. A relatively simple implementation had to be able to deliver code that
compared favorably with C code in correctness, run-time speed, and code size. A rel
atively novice user in a relatively unsupportive programming environment had to be
able to use this implementation for real projects. Only when both of these criteria
were met could C with Classes and later C++ expect to survive in competition with C.
An early formulation of that principle was that "C with Classes has to be a weed like
C or Fortran because we cannot afford to take care of a rose like Algol68 or Simula.
If we deliver an implementation and go away for a year, we want to find several sys
tems running when we come back. That will not happen if complicated maintenance
is needed or if a simple port to a new machine takes more than a week."

This was part of a philosophy of fostering self-sufficiency among users. The aim
was always - and explicitly - to develop local expertise in all aspects of using C++.
Most organizations must follow the opposite strategy. They keep users dependent on
services that generate revenues for a central support organization, consultants, or both.
In my opinion, this contrast is a fundamental difference between C++ and many other
languages.

The decision to work in the relatively primitive - and almost universally available
- framework of the C linking facilities caused the fundamental problem that a C++
compiler must always work with only partial information about a program. An
assumption made about a program could possibly be violated by a program written
tomorrow in some other language (such as C, Fortran, or assembler) and linked in -
possibly after the program has started executing. This problem surfaces in many con
texts. It is hard for an implementation to guarantee that

[1] Something is unique.
[2] Information is consistent (in particular, that type information is consistent).
[3] Something is initialized.

In addition, C provides only the feeblest support for the notion of separate name
spaces so that avoiding namespace pollution by separately written program segments
becomes a problem. Over the years, C++ has tried to face all of these challenges with
out departing from the fundamental model and technology that gives portability and
efficiency, but in the C with Classes days we simply relied on the C technique of
header files.

Through the acceptance of the C linker came another rule of thumb for the devel
opment of C++: C++ is just one language in a system and not a complete system. In
other words, C++ accepts the role of a traditional programming language with a fun
damental distinction between the language, the operating system, and other important
parts of the programmer's world. This delimits the role of the language in a way that
is hard to do for a language, such as Smalltalk or Lisp, that is conceived as a complete
system or environment. It makes it essential that a C++ program fragment can call
program fragments written in other languages and that a C++ program fragment can
itself be called by program fragments written in other languages. Being "just a

38 C with Classes Chapter 2

language'' also allows C++ implementations to benefit directly from tools written for
other languages.

The need for a programming language and the code written in it to be just a cog in
a much larger machine is of utmost importance to most industrial users. Yet such
coexistence with other languages and systems was apparently not a major concern to
most theoreticians, would-be perfectionists, and academic users. I believe this to be
one of the main reasons for C++'s success.

C with Classes was almost source-compatible with C. However, it was never
100% C compatible; for example, words such as c l a s s and new are perfectly good
identifier names in C, but they are keywords in C with Classes and its successors. It
was, however, link compatible. C functions could be called from C with Classes, C
with Classes functions could be called from C, a s t r u c t had the same layout in both
languages so that passing both simple and composite objects between the languages
was simple and efficient. This link compatibility has been maintained for C++ (with a
few simple and explicit exceptions that can be avoided by programmers when neces
sary (§3.5.1). Over the years, my experience and that of my colleagues has been that
link compatibility is much more important than source compatibility. This, at least, is
the case when identical source code gives the same results on both C and C++ or alter
natively fails to compile or link in one of the languages.

2.5.2 The Object Layout Model

The basic model of an object was fundamental to the design of C with Classes in the
sense that I always maintained a clear view of what an object looked like in memory
and considered how language features affected operations on such objects. The evo
lution of the object model is fundamental to the evolution of C++.

A C with Classes object was simply a C structure. Thus, the layout of

class stack {
char s[10];
char* min;
char* top;
char* max;
void new();

public:
void push();
char pop();

};

is the same as for

struct stack { /* generated C code */
char s[10];
char* min;
char* top;
char* max;

};

Section 2.5.2 The Object Layout Model 39

that is

char s
char*
char*
char*

[10]
min
top
max

A compiler may add some "padding'' between and after the members for alignment,
but otherwise the size of the object is the sum of the sizes of the members. Thus,
memory usage is minimized.

Run-time overhead is similarly minimized by a direct mapping from a call of a
member function

void stack.push(char c)
{

if (top>max) error("stack overflow");
*top++ = c;

}

void g(class stack* p)
{

p->push(' c ');
}

to the call of an equivalent C function in the generated code:

void stack push(this,c) /* generated C code */
struct stack* this;
char c;
{

if ((this->top)>(this->max)) error("stack overflow");
*(this->top)++ = c;

}

void g(p) struct stack* p; /* generated C code */
{

stack push(p, ' c ');
}

In every member function, a pointer called t h i s refers to the object for which the
member function was called. Stu Feldman remembers that in the very first C with
Classes implementation, the programmer couldn't refer directly to t h i s . After he
pointed that out to me, I promptly remedied the problem. Without t h i s or some
equivalent mechanism, member functions cannot be used for linked list manipulation.

The t h i s pointer is C++'s version of the Simula THIS reference. Sometimes,
people ask why t h i s is a pointer rather than a reference and why it is called t h i s
rather than s e l f . When t h i s was introduced into C with Classes, the language

40 C with Classes Chapter 2

didn't have references, and C++ borrows its terminology from Simula rather than
from Smalltalk.

Had s t a c k . p u s h () been declared i n l i n e , the generated code would have
looked like this:

void g(p) /* generated C code */
struct stack* p;
{

if ((p->top)>(p->max)) error("stack overflow");
*(p->top)++ = 'c';

}

This is of course exactly the code a programmer would have written in C.

2.6 Static Type Checking
I have no recollection of discussions, no design notes, and no recollection of any
implementation problems concerning the introduction of static ("strong") type
checking into C with Classes. The C with Classes syntax and rules, the ones subse
quently adopted for the ANSI C standard, simply appeared fully formed in the first C
with Classes implementation. After that, a minor series of experiments led to the cur
rent (stricter) C++ rules. Static type checking was to me, after my experience with
Simula and Algol68, a simple must and the only question was exactly how it was to
be added.

To avoid breaking C code, I decided to allow the call of an undeclared function
and not perform type checking on such undeclared functions. This was of course a
major hole in the type system, and several attempts were made to decrease its impor
tance as the major source of programming errors before finally - in C++ - the hole
was closed by making a call of an undeclared function illegal. One simple observa
tion defeated all attempts to compromise, and thus maintain a greater degree of C
compatibility: As programmers learned C with Classes, they lost the ability to find
run-time errors caused by simple type errors. Having come to rely on the type check
ing and type conversion provided by C with Classes, they lost the ability to quickly
find the silly errors that creep into C programs through the lack of checking. Further,
they failed to take the precautions against such silly errors that good C programmers
take as a matter of course. After all, "such errors don't happen in C with Classes."
Thus, as the frequency of run-time errors caused by uncaught argument type errors
decreases, their seriousness and the time spent finding them increases. The result was
seriously annoyed programmers demanding further tightening of the type system.

The most interesting experiment with "incomplete static checking" was the tech
nique of allowing calls of undeclared functions, but noting the type of the arguments
used so that a consistency check could be done when further calls were seen. When
Walter Bright many years later independently discovered this trick he named it
autoprototyping, using the ANSI C term prototype for a function declaration. The
experience was that autoprototyping caught many errors and initially increased a

Section 2.6 Static Type Checking 41

programmer's confidence in the type system. However, since consistent errors and
errors in a function called only once in a compilation were not caught, autoprototyp-
ing ultimately destroyed programmer confidence in the type checker and induced a
sense of paranoia even worse than I have seen in C or BCPL programmers.

C with Classes introduced the notation f (vo id) for a function f that takes no
arguments as a contrast to f () that in C declares a function that can take any number
of arguments of any type without any type check. My users soon convinced me, how
ever, that the f (vo id) notation wasn't elegant, and that having functions declared
f () accept arguments wasn't intuitive. Consequently, the result of the experiment
was to have f () mean a function f that takes no arguments, as any novice would
expect. It took support from both Doug McIlroy and Dennis Ritchie for me to build
up the courage to make this break from C. Only after they used the word abomination
about f (vo id) did I dare give f () the obvious meaning. However, to this day, C's
type rules are much more lax than C++'s, and ANSI C adopted "the abominable
f (vo id) " from C with Classes.

2.6.1 Narrowing Conversions

Another early attempt to tighten C with Classes' type rules was to disallow "informa
tion destroying" implicit conversions. Like others, I had been badly bitten by exam
ples equivalent to (but naturally not as easy to spot in a real program) as these:

v o i d f ()
{

long int lng = 65000;
int il = lng; /* il becomes negative (-536) */

/* on machines with 16 bit ints */
int i2 = 257;
char c = i2; /* truncates: c becomes 1 */

/* on machines with 8 bit chars */
}

I decided to try to ban all conversions that were not value preserving, that is, to
require an explicit conversion operator wherever a larger object was stored into a
smaller:

void g(long lng, int i) /* experiment */
{

int il = lng; /* error: narrowing conversion */
il = (int)lng; /* truncates for 16 bit ints */

char c = i; /* error: narrowing conversion */
c = (char)i; /* truncates */

}

The experiment failed miserably. Every C program I looked at contained large num
bers of assignments of i n t s to c h a r variables. Naturally, since these were working
programs, most of these assignments were perfectly safe. That is, either the value was

42 C with Classes Chapter 2

small enough not to become truncated, or the truncation was expected or at least
harmless in that particular context. There was no willingness in the C with Classes
community to make such a break from C. I'm still looking for ways to compensate
for these problems (§14.3.5.2).

2.6.2 Use of Warnings

I considered introducing run-time checks for the values assigned, but that would
imply a high cost in time and code size, and also detect the problems far too late for
my taste. Therefore, run-time checks for conversions - and more importantly, in gen
eral - were relegated to the category of "ideas for future debugging support."
Instead, I used a technique that was to become standard for dealing with what I con
sidered deficiencies in the C language that were too serious to ignore, but too
ingrained in the structure of C to remove. I made the C with Classes preprocessor
(and later my C++ compiler) issue warnings:

void f(long lng, int i)
{

int il = lng; // implicit conversion: warning
il = (int)lng; // explicit conversion: no warning

char c = i; // too common to repair: no warning
}

Unconditional warnings were (and still are) issued for long->int and double->int con
versions, because I really don't see any excuse for having such conversions legal.
They are simply a result of the historical accident that floating point arithmetic was
introduced into C before explicit conversions were. I have had no complaints about
these warnings, and I and others have been saved by them many times. The int->char
conversion, however, I didn't feel able to do anything about. To this day, such con
versions pass the AT&T C++ compiler without even a warning.

The reason for this is that I decided to use unconditional warnings exclusively for
things that "had a higher than 90% chance of actually catching an error." This
reflected the experience that C-compiler and Lint warnings more often than not are
"wrong" in the sense that they warn against something that doesn't in fact cause the
program to misbehave. This leads programmers to ignore warnings from C compilers
or to heed them only under protest. My intent was to ensure that ignoring a C++
warning would be seen as a dangerous folly; I feel I succeeded. Thus, warnings are
used to compensate for problems that cannot be fixed through language changes
because of C compatibility requirements and also as a way of easing the transition
from C to C++. For example:

c l a s s X {
/ / . . .

}

Section 2.6.2 Use of Warnings 43

g(int i, int x, int j)
// warning: class X defined as return type for g()
// (did you forget a ';' after '}' ?)
// warning: j not used

{
if (i = 7) { // warning: constant assignment

// in condition
// . . .

}
// . . .

if (x&077 ==0) { // warning: == expression
// as operand for &

// . . .
}

}

Even the first Cfront release (§3.3) produced these warnings. They were the result of
a design decision and not an afterthought.

Much later, the first of these warnings was made into an error by banning the defi
nition of new types in return types and argument types.

2.7 Why C?

A common question at C with Classes presentations was "Why use C? Why didn't
you build on, say, Pascal?" One version of my answer can be found in
[Stroustrup,1986c]:

"C is clearly not the cleanest language ever designed nor the easiest to use so why
do so many people use it?

[1] C is flexible: It is possible to apply C to most every application area and to
use most every programming technique with C. The language has no
inherent limitations that preclude particular kinds of programs from being
written.

[2] C is efficient. The semantics of C are "low level"; that is, the fundamental
concepts of C mirror the fundamental concepts of a traditional computer.
Consequently, it is relatively easy for a compiler and/or a programmer to
efficiently utilize hardware resources for C programs.

[3] C is available: Given a computer, whether the tiniest micro or the largest
super-computer, chances are that there is an acceptable quality C compiler
available and that that C compiler supports an acceptably complete and
standard C language and library. Libraries and support tools are also avail
able, so that a programmer rarely needs to design a new system from
scratch.

[4] C is portable: A C program is not automatically portable from one machine
(and operating system) to another, nor is such a port necessarily easy to do.
It is, however, usually possible and the level of difficulty is such that

44 C with Classes Chapter 2

porting even major pieces of software with inherent machine dependences
is typically technically and economically feasible.

Compared with these first-order advantages, the second-order drawbacks like the
curious C declarator syntax and the lack of safety of some language constructs
become less important. Designing "a better C" implies compensating for the
major problems involved in writing, debugging, and maintaining C programs
without compromising the advantages of C. C++ preserves all these advantages
and compatibility with C at the cost of abandoning claims to perfection and of
some compiler and language complexity. However, designing a language from
scratch does not ensure perfection and the C++ compilers compare favorably in
run-time, have better error detection and reporting, and equal the C compilers in
code quality."

This formulation is more polished than I could have managed in the early C with
Classes days, but it does capture the essence of what I considered important about C
and that I did not want to lose in C with Classes. Pascal was considered a toy lan
guage [Kernighan,1981], so it seemed easier and safer to add type checking to C than
to add the features considered necessary for systems programming to Pascal. At the
time, I had a positive dread of making mistakes of the sort where the designer, out of
misguided paternalism or plain ignorance, makes the language unusable for real work
in important areas. The ten years that followed clearly showed that choosing C as a
base left me in the mainstream of systems programming where I intended to be. The
cost in language complexity has been considerable, but manageable.

At the time, I considered Modula-2, Ada, Smalltalk, Mesa [Mitchell, 1979], and
Clu as alternatives to C and as sources for ideas for C++ [Stroustrup, 1984c] so there
was no shortage of inspiration. However, only C, Simula, Algol68, and in one case
BCPL left noticeable traces in C++ as released in 1985. Simula gave classes, Algol68
operator overloading (§3.6), references (§3.7), and the ability to declare variables any
where in a block (§3.11.5), and BCPL gave // comments (§3.11.1).

There were several reasons for avoiding major departures from C style. I saw the
merging of C's strengths as a systems programming language with Simula's strengths
for organizing programs as a significant challenge in itself. Adding significant fea
tures from other sources could easily lead to a "shopping list" language and destroy
the integrity of the resulting language. To quote from [Stroustrup, 1986]:

"A programming language serves two related purposes: it provides a vehicle for
the programmer to specify actions to be executed and a set of concepts for the pro
grammer to use when thinking about what can be done. The first aspect ideally
requires a language that is "close to the machine," so that all important aspects of
a machine are handled simply and efficiently in a way that is reasonably obvious
to the programmer. The C language was primarily designed with this in mind.
The second aspect ideally requires a language that is "close to the problem to be
solved'' so that the concepts of a solution can be expressed directly and concisely.
The facilities added to C to create C++ were primarily designed with this in
mind."

Again, this formulation is more polished than I could have managed during the early

Section 2.7 Why C? 45

stages of the design of C with Classes, but the general idea was clear. Departures
from the known and proven techniques of C and Simula would have to wait for fur
ther experience with C with Classes and C++ and for further experiments. I firmly
believe - and believed then - that language design is not just design from first princi
ples, but an art that requires experience, experiments, and sound engineering trade
offs. Adding a major feature or concept to a language should not be a leap of faith,
but a deliberate action based on experience and fitting into a framework of other fea
tures and ideas of how the resulting language can be used. The post-1985 evolution
of C++ shows the influence of ideas from Ada (templates, §15; exceptions, §16;
namespaces, §17), Clu (exceptions, §16), and ML (exceptions, §16).

2.8 Syntax Problems
Could I have "fixed" the most annoying deficiencies of the C syntax and semantics
at some point before C++ was made generally available? Could I have done so with
out removing useful features (to C with Classes' users in their environments - as
opposed to an ideal world) or introducing incompatibilities that were unacceptable to
C programmers wanting to migrate to C with Classes? I think not. In some cases, I
tried, but I backed out my changes after receiving complaints from outraged users.

2.8.1 The C Declaration Syntax

The part of the C syntax I disliked most was the declaration syntax. Having both pre
fix and postfix declarator operators is the source of a fair amount of confusion. For
example:

int *p[10]; /* array of 10 pointers to int, or */
/* pointer to array of 10 ints? */

Allowing the type specifier to be omitted (meaning i n t by default) also led to com
plications. For example:

/* C style (proposed banned): */

static a; /* implicit: type of 'a' is int */
f(); /* implicit: returns int */

// proposed C with Classes style:
static int a;
int f();

The negative reaction to changes in this area from users was very strong. They con
sidered the "terseness" allowed by C essential to the point of refusing to use a "fas
cist" language that required them to write redundant type specifiers. I backed out the
change. I don't think I had a choice. Allowing that implicit i n t is the source of,
many of the annoying problems with the C++ grammar today. Note that the pressure
came from users, not management or arm-chair language experts. Finally, ten years

46 C with Classes Chapter 2

later, the C++ ANSI/ISO standard committee (§6) has decided to deprecate implicit
i n t . That means that we may get rid of it in another decade or so. With the help of
tools and compiler warnings, individual users can now start protecting themselves
from confusions caused by implicit i n t , such as

void f(const T); // const argument of type T, or
// const int argument named T?
// (it's a const argument of type T)

The function definition syntax with the argument types within the function parenthe
ses was, however, used for C with Classes and C++, and later adopted for ANSI C:

f(a,b) char b; /* K&R C style function definition */

{

/* ... */

}

int f(int a, char b) // C++ style function definition

{

// . . .

}

Similarly, I considered the possibility of introducing a linear notation for declarators.
The C trick of having the declaration of a name mimic its use leads to declarations
that are hard to read and write, and maximizes the opportunity for humans and pro
grams to confuse declarations and expressions. Many people had observed that the
problem with C's declarator syntax was that the declarator operator * ("pointer to")
is prefix, whereas the declarator operators [] ("array of") and () ("function return
ing") are postfix. This forces people to use parentheses to disambiguate cases such
as:

/* C style: */
int* v[10]; /* array of pointers to ints */
int (*p) [10]; /* pointer to array of ints */

Together with Doug McIlroy, Andrew Koenig, Jonathan Shopiro, and others I consid
ered introducing postfix "pointer to" operator -> as an alternative to the prefix *:

// radical alternative:
v: [10]->int ; // array of pointers to ints
p: ->[10]int; // pointer to array of ints

// less radical alternative:
int v[10]->; // array of pointers to ints
int p->[10]; // pointer to array of ints

The less radical alternative has the advantage of allowing the postfix -> declarator to
coexist with the prefix * declarator during a transition period. After a transition
period the * declarator and the redundant parentheses could have been removed from
the language. A noticeable benefit of this scheme is that parentheses are only needed

Section 2.8.1 The C Declaration Syntax 47

to express "function" so that an opportunity for confusion and grammar subtleties
could be removed (see also [Sethi, 1981]). Having all declarator operators postfix
would ensure that declarations can be read from left to right. For example:

i n t f (char) ->[10] ->(doub le) -> ;

meaning a function f returning a pointer to an array of pointers to functions returning
a pointer to i n t . Try to write that in straight C/C++! Unfortunately, I fumbled the
idea and didn't ever deliver a complete implementation. Instead, people build up
complicated types incrementally using typedef :

typedef int* DtoI(double); // function taking a double and
// returning a pointer to int

typedef DtoI* V10[10]; // array of 10 pointers to Dtol
V10* f(char); // f takes a char and returns

// a pointer to V10

My eventual rationale for leaving things as they were was that any new syntax
would (temporarily at least) add complexity to a known mess. Also, even though the
old style is a boon to teachers of trivia and to people who want to ridicule C, it is not a
significant problem for C programmers. In this case, I'm not sure if I did the right
thing, though. The agony to me and other C++ implementers, documenters, and tool
builders caused by the perversities of syntax has been significant. Users can - and do
- of course insulate themselves from such problems by writing in a small and easily
understood subset of the C/C++ declaration syntax (§7.2).

2.8.2 Structure Tags vs. Type Names

A significant syntactic simplification for the benefit of users was introduced into C++
at the cost of some extra work to implementers and some C compatibility problems.
In C, the name of a structure, a "structure tag," must always be preceded by the key
word s t r u c t . For example

struct buffer a; /* 'struct' is necessary in C */

In the context of C with Classes, this had annoyed me for some time because it made
user-defined types second-class citizens syntactically. Given my lack of success with
other attempts to clean up the syntax, I was reluctant and only made the change - at
the time C with Classes evolved into C++ - at the urging of Tom Cargill. The name
of a s t r u c t , un ion , or c l a s s is a type name in C++ and requires no special syn
tactic identification:

buffer a; // C++

The resulting fights over C compatibility lasted for years (see also §3.12). For exam
ple, the following is legal C:

struct S { int a; };
int S;

48 C with Classes Chapter 2

void f(struct S x)
{

x.a = S; // S is an int variable
}

It is also legal C with Classes and legal C++, yet for years we struggled to find a for
mulation that would allow such (marginally crazy, but harmless) examples in C++ for
compatibility. Allowing such examples implies that we must reject

void g(S x) // error: S is an int variable
{

x.a = S; // S is an int variable
}

The real need to address this particular issue came from the fact that some standard
UNIX header files, notably, s t a t . h , rely on a s t r u c t and a variable or function
having the same name. Such compatibility issues are important and a delight for lan
guage lawyers. Unfortunately, until a satisfactory - and usually trivially simple -
solution is found, such problems absorb an undesirable amount of time and energy.
Once a solution is found, a compatibility problem becomes indescribably boring
because it has no inherent intellectual value, only practical importance. The C++
solution to the C multiple namespace problem is that a name can denote a class and
also a function or a variable. If it does, the name denotes the non-class unless explic
itly qualified by one of the keywords s t r u c t , c l a s s , and un ion .

Dealing with stubborn old-time C users, would-be C experts, and genuine C/C++
compatibility issues has been one of the most difficult and frustrating aspects of
developing C++. It still is.

2.8.3 The Importance of Syntax

I am of the opinion that most people focus on syntax issues to the detriment of type
issues. The critical issues in the design of C++ were always those of type, ambiguity,
and access control, not those of syntax.

It is not that syntax isn't important; it is immensely important because the syntax
is quite literally what people see. A well-chosen syntax significantly helps program
mers learn new concepts and avoids silly errors by making them harder to express
than their correct alternatives. However, the syntax of a language should be designed
to follow the semantic notions of the language, not the other way around. This
implies that language discussions should focus on what can be expressed rather than
how it is expressed. An answer to the what often yields an answer to the how,
whereas a focus on syntax usually degenerates into an argument over personal taste.

A subtle aspect of C compatibility discussions is that old-time C programmers are
comfortable with the old ways of doing things and can therefore be quite intolerant of
the incompatibilities needed to support styles of programming that C wasn't designed
for. Conversely, non-C programmers usually underestimate the value that C program
mers attribute to the C syntax.

Section 2.9 Derived Classes 49

2.9 Derived Classes
The derived class concept is C++'s version of Simula's prefixed class notion and thus
a sibling of Smalltalk's subclass concept. The names derived and base were chosen
because I never could remember what was sub and what was super and observed that
I was not the only one with this particular problem. I also noted that many people
found it counterintuitive that a subclass typically has more information than its super
class. In inventing the terms derived class and base class, I departed from my usual
principle of not inventing new names where old ones exist. In my defense, I note that
I have never observed any confusion about what is base and what is derived among
C++ programmers, and that the terms are trivially easy to learn even for people who
don't have a grounding in mathematics.

The C with Classes concept was provided without any form of run-time support.
In particular, the Simula (and later C++) concept of a virtual function was missing.
The reason for this was that I - with good reason, I think - doubted my ability to
teach people how to use them, and even more, my ability to convince people that a
virtual function is as efficient in time and space as an ordinary function as typically
used. Often, people with Simula and Smalltalk experience still don't quite believe
that until they have had the C++ implementation explained to them in detail - and
many still harbor irrational doubts after that.

Even without virtual functions, derived classes in C with Classes were useful for
building new data structures out of old ones and for associating operations with the
resulting types. In particular, they allowed list and task classes to be defined
[Stroustrup,1980,1982b].

2.9.1 Polymorphism without Virtual Functions

In the absence of virtual functions, a user could use objects of a derived class and treat
base classes as implementation details. For example, given a vector class with ele
ments indexed from 0 and no range checking:

class vector {
/* ... */
int get_elem(int i);

};

one can build a range-checked vector with elements in a specified range:

class vec : vector {
int hi, lo;

public:
/* ... */
new(int lo, int hi);
get_elem(int i);

};

50 C with Classes Chapter 2

int vec.get_elem(int i)
{

if (i<lo || hi<i) error("range error");
return vector.get_elem(i-lo);

}

Alternatively, an explicit type field could be introduced in a base class and used
together with explicit type casts. The former strategy was used where the user only
sees specific derived classes and "the system" sees only the base classes. The latter
strategy was used for various application classes where, in effect, a base class was
used to implement a variant record for a set of derived classes.

For example, [Stroustrup, 1982b] presents this ugly code for retrieving an object
from a table and using it based on a type field:

class elem { /* properties to be put "into a table */ };
class table { /* table data and lookup functions */ };

class cl_name * cl; /* cl_name is derived from elem */
class po_name * po; /* po_name is derived from elem */
class hashed * table; /* hashed is derived from table */

elem * p = table->look("carrot");

if (P) {
switch (p->type) { /* type field in elem objects */

case PO_NAME:
po = (class po_name *) p; /* explicit type conversion */

break;
case CL_NAME:

cl = (class cl_name *) p; /* explicit type conversion */

break;
default:

error("unknown type of element");
}

}
else

error("carrot not defined");

Much of the effort in C with Classes and C++ has been to ensure that programmers
needn't write such code.

2.9.2 Container Classes Without Templates

Most important in my thinking at the time and in my own code was the combination
of base classes, explicit type conversions, and (occasionally) macros to provide gen
eric container classes. For example, [Stroustrup, 1982b] demonstrates how a list that
holds objects of a single type can be built from a list of 1 inks:

Section 2.9.2 Container Classes Without Templates 51

class wordlink : link
{

char word[SIZE];
public:

void clear(void);
class wordlink * get(void)

{ return (class wordlink *) link.get(); };
void put(class wordlink * p) { link.put(p); };

};

Because every l i n k that is p u t () onto a list through a w o r d l i n k must be a
w o r d l i n k , it is safe to cast every l i n k that is taken off the list using g e t () back
to a w o r d l i n k . Note the use of private inheritance (the default in the absence of the
keyword p u b l i c in the specification of the base class l i n k ; §2.10). Allowing a
w o r d l i n k to be used as a plain l i n k would have compromised type safety.

Macros were used to provide generic types. Quoting from [Stroustrup,1982b]:
"The class s t a c k example in the introduction explicitly defined the stack to be a
stack of characters. That is sometimes too specific. What if a stack of long inte
gers was also needed? What if a class s t a c k was needed for a library so that the
actual stack element type could not be known in advance? In these cases the class
s t a c k declaration and its associated function declarations should be written so
that the element type can be provided as an argument when a stack is created in
the same way as the size was.

There is no direct language support for this, but the effect can be achieved
through the facilities of the standard C preprocessor. For example:

class ELEM_stack {
ELEM * min, * top, * max;
void new(int), delete(void);

public:
void push(ELEM);
ELEM pop(void);

};

This declaration can then be placed in a header file and macro-expanded once for
each type ELEM for which it is used:

#define ELEM long
#define ELEM_stack long_stack
#include "stack.h"
#undef ELEM
#undef ELEM_stack

typedef class x X;
#define ELEM X
#define ELEM_stack X_stack
#include "stack.h"

52 C with Classes Chapter 2

#undef ELEM
#undef ELEM_stack

class long_stack ls(1024);
class long_stack ls2(512);
class X_stack xs(512);

This is certainly not perfect, but it is simple."
This was one of the earliest and crudest techniques. It proved too error-prone for real
use, so I soon defined a few "standard" token-pasting macros and recommended a
stylized macro usage based on them for generic classes [Stroustrup,1986,§7.3.5].
Eventually, these techniques matured into C++'s template facility and the techniques
for using templates together with base classes to express commonality among instanti
ated templates (§15.5).

2.9.3 The Object Layout Model

The implementation of derived classes was simply concatenation of the members of
the base and derived classes. For example, given:

class A {
int a;

public:
/* member functions */

};

class B : public A {
int b;

public:
/* member functions */

};

an object of class B will be represented by a structure:

struct B { /* generated C code */
i n t a ;
i n t b ;

} ;

that is

Name clashes between base members and derived members are handled by the com
piler internally assigning suitably unambiguous names to the members. Calls are han
dled exactly as when no derivation is used. No added overhead in time or space is
imposed relative to C.

i n t a
i n t b

Section 2.9.4 Retrospective S3

2.9.4 Retrospective

Was it reasonable to avoid virtual functions in C with Classes? Yes, the language was
useful without them, and their absence postponed time-consuming debates about their
utility, proper use, and efficiency. Their absence led to development of language
mechanisms and techniques that have proven useful even in the presence of more
powerful inheritance mechanisms and provided a counterweight to the tendency of
some programmers to use inheritance to the exclusion of all other techniques (see
§14.2.3). In particular, classes were used to implement concrete types, such as
complex and s t r i n g , and interface classes became popular. A class s t a c k used
as an interface to a more general class dequeue is an example of inheritance without
virtual functions.

Were virtual functions needed for C with Classes to serve the needs it aimed to
serve? Yes, and therefore they were added as the first major extension to make C++.

2.10 The Protection Model
Before starting work on C with Classes, I worked with operating systems. The
notions of protection from the Cambridge CAP computer and similar systems - rather
than any work in programming languages - inspired the C++ protection mechanisms.
The class is the unit of protection and the fundamental rule is that you cannot grant
yourself access to a class; only the declarations placed in the class declaration (sup
posedly by its owner) can grant access. By default, all information is private.

Access is granted by declaring a member in the public part of a class declaration,
or by specifying a function or a class as a f r i e n d . For example:

c l a s s X {
/* representation */

public:
void f(); /* member function with access */

/* to representation */

friend void g(); /* global function with access */
/* to representation */

};

Initially, only classes could be friends, thus granting access to all member functions of
the f r i e n d class, but later it was found convenient to be able to grant access (friend
ship) to individual functions. In particular, it was found useful to be able to grant
access to global functions; see also §3.6.1.

A friendship declaration was seen as a mechanism similar to that of one protection
domain granting a read-write capability to another. It is an explicit and specific part
of a class declaration. Consequently, I have never been able to see the recurring
assertions that a f r i e n d declaration "violates encapsulation" as anything but a
combination of ignorance and confusion with non-C++ terminology.

Even in the first version of C with Classes, the protection model applied to base

54 C with Classes Chapter 2

classes as well as members. Thus, a class could be either publicly or privately derived
from another. The private/public distinction for base classes predates the debate on
implementation inheritance vs. interface inheritance by about five years [Sny
der, 1986] [Liskov,1987]. If you want to inherit an implementation only, you use pri
vate derivation in C++. Public derivation gives users of the derived class access to the
interface provided by the base class. Private derivation leaves the base as an imple
mentation detail; even the public members of the private base class are inaccessible
except through the interface explicitly provided for the derived class.

To provide "semi-transparent scopes" a mechanism was provided to allow indi
vidual public names from a private base class to be made public [Stroustrup,1982b]:

class vector {
/* ... */

public:
/* ... */
void print(void);

};

class hashed : vector /* vector is private base of hashed */
{

/* ... */
public:

vector.print; /* semi-transparent scope */
/* other vector functions cannot */
/* be applied to hashed objects */

/* ... */
};

The syntax for making an otherwise inaccessible name accessible is simply naming it.
This is an example of a perfectly logical, minimalistic, and unambiguous syntax. It is
also unnecessarily obscure; almost any other syntax would have been an improve
ment. This syntax problem has now been solved by the introduction of using-
declarations (see §17.5.2).

In the [ARM], the C++ notion of protection is summarized:
[1] Protection is provided by compile-time mechanisms against accident, not

against fraud or explicit violation.
[2] Access is granted by a class, not unilaterally taken.
[3] Access control is done for names and does not depend on the type of what is

named.
[4] The unit of protection is the class, not the individual object.
[5] Access is controlled, not visibility.

All of this was true in 1980, though some of the terminology was different then. The
last point can be explained like this:

Section 2.10 The Protection Model 55

i n t a; / / g lobal a

class X {
private:

int a; // member X::a
};

class XX : public X {
void f() { a = l ; } // which a?

};

Had visibility been controlled, X: : a would have been invisible, and XX: : f ()
would have referred to the global a. In fact, C with Classes and C++ deem the global
a hidden by the inaccessible X: : a and thus XX: : f () gets a compile-time error for
trying to access an inaccessible variable X: : a. Why did I define it that way, and was
it the right choice? My recollection on this point is vague, and the stored records are
of no use. One point I do remember from the discussion at the time is that given the
example above, the rule adopted ensures that f () 's reference to a refers to the same
a independently of what access is declared for X: : a. Making p u b l i c / p r i v a t e
control visibility, rather than access, would have a change from public to private qui
etly change the meaning of the program from one legal interpretation (access X: : a)
to another (access the global a). I no longer consider this argument conclusive (if I
ever did), but the decision made has proven useful in that it allows programmers to
add and remove p u b l i c and p r i v a t e specifications during debugging without
quietly changing the meaning of programs. I do wonder if this aspect of the C++ defi
nition is the result of a genuine design decision. It could simply be a default outcome
of the preprocessor technology used to implement C with Classes that didn't get
reviewed when C++ was implemented with more appropriate compiler technology
(§3.3).

Another aspect of C++'s protection mechanism that shows operating system influ
ence is the attitude towards circumvention of the rules. I assume that any competent
programmer can circumvent any rule that is not enforced by hardware so it is not
worth even trying to protect against fraud [ARM]:

"The C++ access control mechanisms provide protection against accident - not
against fraud. Any programming language that supports access to raw memory
will leave data open to deliberate tampering in ways that violate the explicit type
rules specified for a given data item."

The task of the protection system is to make sure that any such violation of the type
system is explicit and to minimize the need for such violations.

The operating system notion of read/write protection grew into C++'s notion of
c o n s t (§3.8).

Over the years, there have been many proposals for providing access to a unit
smaller than a whole class. For example:

grant X::f(int) access to Y::a, Y::b, and Y::g(char);

56 C with Classes Chapter 2

I have resisted such suggestions on the grounds that such finer-grain control gives no
added protection: Any member function can modify any data member of a class, so a
function granted access to a function member can indirectly modify every member. I
considered, as I still do, the complications in specification, implementation, and use to
outweigh the benefits of more explicit control.

2.11 Run-Time Guarantees
The access-control mechanisms described above simply prevent unauthorized access.
A second kind of guarantee was provided by "special member functions," such as
constructors, that were recognized and implicitly invoked by the compiler. The idea
was to allow the programmer to establish guarantees, sometimes called invariants,
that other member functions could rely on (see also §16.10).

2.11.1 Constructors and Destructors

One way I often explained the concept at the time was that a "new function'' (a con
structor) created the environment in which the member functions would operate and
the "delete function" (a destructor) would destroy that environment and release all
resources acquired for it. For example:

class monitor : object {
/* ... */

public:
new() { /* create the monitor's lock */ }
delete() { /* release and delete lock */ }
/* ... */

};

See also §3.9 and §13.2.4.

Where did the notion of constructors come from? I suspect I just invented it. I
was acquainted with Simula's class object initialization mechanism. However, I saw
a class declaration as primarily the definition of an interface so I wanted to avoid hav
ing to put code in there. Because C with Classes followed C in having three storage
classes, some form of initialization functions almost had to be recognized by the com
piler (§2.11.2). The observation that several constructors would be useful was soon
made, and this became one of the major sources of the C++ overloading mechanisms
(§3.6).

2.11.2 Allocation and Constructors

Like in C, objects can be allocated in three ways: on the stack (automatic storage), at a
fixed address (static storage), and on the free store (on the heap, dynamic storage). In
each case, the constructor must be called for the created object. Allocating an object
on the free store in C involves only a call of an allocation function. For example:

Section 2.11.2 Allocation and Constructors 57

monitor* p = (monitor*)malloc(sizeof(monitor));

This was clearly insufficient for C with Classes because there was no way of guaran
teeing that a constructor was called. Consequently, I introduced an operator to ensure
that both allocation and initialization was done:

monitor* p = new monitor;

The operator was called new because that was the name of the corresponding Simula
operator. The new operator invokes some allocation function to obtain memory and
then invokes a constructor to initialize that memory. The combined operation is often
called instantiation or simply object creation; it creates an object out of raw memory.

The notational convenience offered by operator new is significant (§3.9). How
ever, combining allocation and initialization in a single operation without an explicit
error-reporting mechanism led to some practical problems. Handling and reporting
errors in constructors was rarely critical, though, and the introduction of exceptions
(§16.5) provided a general solution.

To minimize recompilation, Cfront implemented a use of operator new for a class
with a constructor as simply a call of the constructor. The constructor then did both
the allocation and the initialization. This implied that if a translation unit allocates all
objects of class X using new and calls no inline functions from X then that translation
unit need not be recompiled if the size and representation of X changes. Translation
unit is the ANSI C term for a source file after preprocessing; that is, for the informa
tion given to a compiler at one time for separate compilation. I found it very useful to
organize my simulation programs to minimize recompilation. However, the impor
tance of such minimizing wasn't generally appreciated in the C with Classes and C++
community until much later (§13.2).

An operator d e l e t e was introduced to complement new in the same way as the
deallocation function f r e e () complements m a l l o c () (§3.9, §10.7).

2.11.3 Call and Return Functions

Curiously enough, the initial implementation of C with Classes contained a feature
that is not provided by C++, but is often requested. One could define a function that
would implicitly be called before every call of every member function (except the
constructor) and another that would be implicitly called before every return from
every member function (except the destructor). They were called c a l l and r e t u r n
functions. They were used to provide synchronization for the monitor class in the
original task library [Stroustrup, 1980b]:

class monitor : object {
/* ... */
call() { /* grab lock */ }
return() { /* release lock */ }
/* ... */

};

58 C with Classes Chapter 2

These are similar in intent to the CLOS : b e f o r e and : a f t e r methods. Call and
return functions were removed from the language because nobody (but me) used them
and because I seemed to have completely failed to convince people that c a l l () and
r e t u r n () had important uses. In 1987 Mike Tiemann suggested an alternative
solution called "wrappers" [Tiemann, 1987], but at the USENIX implemented'
workshop in Estes Park this idea was determined to have too many problems to be
accepted into C++.

2.12 Minor Features
Two very minor features, overloading of assignment and default arguments were
introduced into C with Classes. They were the precursors of C++'s overloading
mechanisms (§3.6).

2.12.1 Overloading of Assignment

It was soon noticed that classes with a nontrivial representation such as s t r i n g and
v e c t o r couldn't be copied successfully because C's semantics of assignment (bit
wise copy) wasn't right for such types. This default copy semantics led to shared rep
resentations rather than true copies. My response was to allow the programmer to
specify the meaning of assignment [Stroustrup,1980]:

"Unfortunately, this standard struct-like assignment is not always ideal. Typi
cally a class object is only the root of a tree of information and a simple copy of
that root without any notice taken of the branches is undesirable. Similarly, sim
ply overwriting a class object can create chaos.

Changing the meaning of assignment for objects of a class provides a way of
handling these problems. This is done by declaring a class member function
called o p e r a t o r s For example:

class x {
public:

int a ;
class y * p;
void operator = (class x *) ;

};

void x.operator = (class x * from)
{

a = from->a;
delete p;
p = from->p;
from->p = 0;

}

This defines a destructive read for objects of class x, as opposed to the copy oper
ation implied by the standard semantics."

Section 2.12.1 Overloading of Assignment 59

The [Stroustrup,1982] version uses an example that checks for t h i s = = f rom to han
dle self-assignment correctly. Apparently, I learned that technique the hard way.

Where defined, an assignment operator was used to implement all explicit and
implicit copy operations. Initialization was handled by first initializing to a default
value using a new-function (constructor) taking no arguments and then assigning.
This was found to be inefficient and led to the introduction of copy constructors in
C++(§11.4.1).

2.12.2 Default Arguments

The heavy use of default constructors implied by the user-defined assignment opera
tors naturally led to the introduction of default arguments [Stroustrup,1980]:

"The default argument list was a very late addition to the class mechanism. It was
added to curb the proliferation of identical "standard argument lists" for class
objects passed as function arguments, for class objects that were members of other
classes, and for base class arguments. Providing argument lists in these cases
proved enough of a nuisance to overcome the aversion to include yet another
"feature," and they can be used to make c l a s s object declarations less verbose
and more similar to s t r u c t declarations."

Here is an example:
"It is possible to declare a default argument list for a new () function. This list is
then used whenever an object of the class is declared without an argument. For
example, the declaration:

class char_stack
{

void new(int=512);

} ;

makes the declaration

class char_stack,s3;

legal, and initializes s3 by the call s3 . new (512) . "
Given general function overloading (§3.6, §11), default arguments are logically
redundant and at best a minor notational convenience. However, C with Classes had
default argument lists for years before general overloading became available in C++.

2.13 Features Considered, but not Provided
In the early days many features were considered that later appeared in C++ or are still
discussed. These included virtual functions, s t a t i c members, templates, and multi
ple inheritance. However,

"All of these generalizations have their uses, but every "feature" of a language
takes time and effort to design, implement, document, and learn.... The base class

60 C with Classes Chapter 2

concept is an engineering compromise, like the C class concept
[Stroustrup,1982b]."

I just wish I had explicitly mentioned the need for experience. With that, the case
against featurism and for a pragmatic approach would have been complete.

The possibility of automatic garbage collection was considered on several occa
sions before 1985 and deemed unsuitable for a language already in use for real-time
processing and hard-core systems tasks such as device drivers. In those days, garbage
collectors were less sophisticated than they are today, and the processing power and
memory capacity of the average computer were small fractions of what today's sys
tems offer. My personal experience with Simula and reports on other garbage-
collection-based systems convinced me that garbage collection was unaffordable by
me and my colleagues for the kind of applications we were writing. Had C with
Classes (or even C++) been defined to require automatic garbage collection, it would
have been more elegant, but stillborn.

Direct support for concurrency was also considered, but I rejected that in favor of
a library-based approach (§2.1).

2.14 Work Environment
C with Classes was designed and implemented by me as a research project in the
Computing Science Research Center of Bell Labs. This center provided - and still
provides - a possibly unique environment for such work. When I joined, I was basi
cally told to "do something interesting," given suitable computer resources, encour
aged to talk to interesting and competent people, and given a year before having to
formally present my work for evaluation.

There was a cultural bias against "grand projects" that required more than a cou
ple of people, against "grand plans" like untested paper designs for others to imple
ment, and against a class distinction between designers and implementers. If you
liked such things, Bell Labs and others have many places where you could indulge
such preferences. However, in the Computing Science Research Center it was almost
a requirement that you - if you were not into theory - personally implemented some
thing embodying your ideas and found users that could benefit from what you built.
The environment was very supportive for such work and the Labs provided a large
pool of people with ideas and problems to challenge and test anything built. Thus, I
could write in [Stroustrup,1986]:

"There never was a C++ paper design; design, documentation, and implementa
tion went on simultaneously. Naturally, the C++ front-end is written in C++.
There never was a "C++ project" either, or a "C++ design committee".
Throughout, C++ evolved, and continues to evolve, to cope with problems
encountered by users, and through discussions between the author and his friends
and colleagues."

Only after C++ was an established language did more conventional organizational
structures emerge and even then I was officially in charge of the reference manual and

Section 2.14 Work Environment 61

had the final say over what went into it until that task was handed over to the ANSI
C++ committee in early 1990. As the standards committee's chairman of the working
group for extensions, I'm still directly responsible for every feature that enters C++
(§6.4). On the other hand, after the first few months I never had the freedom to design
just for the sake of designing something beautiful or to make arbitrary changes in the
language as it stood at any given time. Every language feature required an implemen
tation to make it real, and any change or extension required the concurrence and usu
ally enthusiasm of key C with Classes and later C++ users.

Since there was no guaranteed user population, the language and its implementa
tions could only survive by serving the needs of its users well enough to counteract
the organizational pull of established languages and the marketing hype of newer lan
guages. In particular, introducing even a minor incompatibility required delivering
some much larger benefit to the users, so major incompatibilities were not often intro
duced even in the early days. Since to a user almost any incompatibility can seem
major, incompatibilities were as rare as I could manage. Only in the move from C
with Classes to C++ were many programs deliberately broken.

The absence of a formal organizational structure, of larger-scale support in terms
of money, people, "captive'' users, and marketing was more than compensated for by
the informal help and insights of my peers in the Computing Science Research Center
and the protection from nontechnical demands from development organizations
offered by the center management. Had it not been for the insights of members of the
center and the insulation from political nonsense, the design of C++ would have been
compromised by fashions and special interests and its implementation bogged down
in a bureaucratic quagmire. It was also most important that Bell Labs provided an
environment where there was no need to hoard ideas for personal advancement.
Instead, discussion could, did, and still does flow freely, allowing people to benefit
from the ideas and opinions of others. Unfortunately, the Computing Science
Research Center is not typical even within Bell Labs.

C with Classes grew through discussions with people in the Computing Science
Research Center and early users there and elsewhere in the Labs. Most of C with
Classes and later C++ was designed on somebody else's blackboard and the rest on
mine. Most such ideas were rejected as being too elaborate, too limited in usefulness,
too hard to implement, too hard to teach for use in real projects, not efficient enough
in time or space, too incompatible with C, or simply too weird. The few ideas that
made it through this filter - invariably involving discussions with at least two people
- I then implemented. Typically, the idea mutated through the effort of implementa
tion, testing, and early use by me and a few others. The resulting version was tried on
a larger audience and would often mutate a bit further before finding its way into the
"official" version of C with Classes as shipped by me. Usually, a tutorial was writ
ten somewhere along the way. Writing a tutorial was considered an essential design
tool, because if a feature cannot be explained simply, the burden of supporting it will
be too great. This point was never far from my mind because during the early years I
was the support organization.

In the early days Sandy Fraser, my department head at the time, was very

62 C with Classes Chapter 2

influential. For example, I believe he was the one to encourage me to break from the
Simula style of class definition where the complete function definition is included and
adopt the style where function definitions are typically elsewhere thus emphasizing
the class declaration's role as an interface. Much of C with Classes was designed to
allow simulators to be built that could be used in Sandy Fraser's work in network
design. The first real application of C with Classes was such network simulators.
Sudhir Agrawal was another early user who influenced the development of C with
Classes through his work with network simulations. Jonathan Shopiro provided much
feedback on the C with Classes design and implementation based on his simulation of
a "dataflow database machine."

For more general discussions on programming language issues, as opposed to
looking at applications to determine which problems needed to be solved, I turned to
Dennis Ritchie, Steve Johnson, and in particular Doug McIlroy. Doug's influence on
the development of both C and C++ cannot be overestimated. I cannot remember a
single critical design decision in C++ that I have not discussed at length with Doug.
Naturally, we didn't always agree, but I still have a strong reluctance to make a deci
sion that goes against Doug's opinion. He has a knack for being right and an appar
ently infinite amount of experience and patience.

Since the main design work for C with Classes and C++ was done on blackboards,
the thinking tended to focus on solutions to "archetypical" problems: small examples
that are considered characteristic for a large class of problems. Thus, a good solution
to the small example will provide significant help in writing programs dealing with
real problems of that class. Many of these problems have entered the C++ literature
and folklore through my use of them as examples in my papers, books, and talks. For
C with Classes, the example considered most critical was the t a s k class that was the
basis of the task-library supporting Simula-style simulation. Other key classes were
queue, l i s t , and h i s t o g r a m classes. The queue and l i s t classes were based
on the idea - borrowed from Simula - of providing a 1 i n k class from which users
derived their own classes.

The danger inherent in this approach is to create a language and tools that provide
elegant solutions to small selected examples, yet don't scale to building complete sys
tems or large programs. This was counteracted by the simple fact that C with Classes
(and later C++) had to pay for itself during its early years. This ensured that C with
Classes couldn't evolve into something that was elegant but useless.

Being an individual working closely with users also gave me the freedom to prom
ise only what I could actually deliver, rather than having to inflate my promises to the
point where it would appear to make economic sense for an organization to allocate
significant resources to the development, support, and marketing of "a product."
Like all languages that have worked for a living during childhood, C++ matured with
a distinct practical and pragmatic bent and a number of scars. The simulations of net
works, board layouts, chips, network protocols, etc., based on the task library were
my bread and butter in those early years.

3
The Birth of C++

No ties bind so strongly
as the links of inheritance.

- Stephen Jay Gould

From C with Classes to C++ — Cfront, the initial implementation of C++
— virtual functions and object-oriented programming — operator over
loading and references — constants — memory management — type
checking — C++'s relationship to C — dynamic initialization — declara
tion syntax — description and evaluation of C++.

3.1 From C with Classes to C++
During 1982 it became clear to me that C with Classes was a "medium success" and
would remain so until it died. I defined a medium success as something so useful that
it easily paid for itself and its developer, but not so attractive and useful that it would
pay for a support and development organization. Thus, continuing with C with
Classes and its C preprocessor implementation would condemn me to support C with
Classes indefinitely. I saw only two ways out of this dilemma:

[1] Stop supporting C with Classes so that the users would have to go elsewhere
(freeing me to do something else).

[2] Develop a new and better language based on my experience with C with
Classes that would serve a large enough set of users to pay for a support and
development organization (thus freeing me to do something else). At the time
I estimated that 5,000 industrial users was the necessary minimum.

The third alternative, increasing the user population through marketing (hype), never
occurred to me. What actually happened was that the explosive growth of C++, as the
new language was eventually named, kept me so busy that to this day I haven't

64 The Birth of C++ Chapter 3

managed to get sufficiently detached to do something else of significance.
The success of C with Classes was, I think, a simple consequence of meeting its

design aim: C with Classes did help organize a large class of programs significantly
better than C without the loss of run-time efficiency and without requiring enough
cultural changes to make its use infeasible in organizations that were unwilling to
undergo major changes. The factors limiting its success were partly the limited set of
new facilities offered over C and partly the preprocessor technology used to imple
ment C with Classes. There simply wasn't enough support in C with Classes for peo
ple who were willing to invest significant efforts to reap matching benefits: C with
Classes was an important step in the right direction, but it was only one small step.
As a result of this analysis, I began designing a cleaned-up and extended successor to
C with Classes and implementing it using traditional compiler technology.

The resulting language was at first still called C with Classes, but after a polite
request from management it was given the name C84. The reason for the naming was
that people had taken to calling C with Classes "new C," and then C. This abbrevia
tion led to C being called "plain C," "straight C," and "old C." The last name, in
particular, was considered insulting, so common courtesy and a desire to avoid confu
sion led me to look for a new name.

The name C84 was used only for a few months, partly because it was ugly and
institutional, partly because there would still be confusion if people dropped the
"84." Also, Larry Rosier, the editor of the X3J11 ANSI committee for the standard
ization of C, asked me to find another name. He explained, "standardized languages
are often referred to by their name followed by the year of the standard and it would
be embarrassing and confusing to have a superset (C84, a.k.a. C with Classes, and
later C++) with a lower number than its subset (C, possibly C85, and later ANSI C)."
That seemed eminently reasonable - although Larry turned out to have been some
what optimistic about the date of the C standard - and I started asking for ideas for a
new name among the C with Classes user community.

I picked C++ because it was short, had nice interpretations, and wasn't of the form
"adjective C." In C, ++ can, depending on context, be read as "next," "successor,"
or "increment," though it is always pronounced "plus plus." The name C++ and its
runner up ++C are fertile sources for jokes and puns - almost all of which were
known and appreciated before the name was chosen. The name C++ was suggested
by Rick Mascitti. It was first used in December of 1983 when it was edited into the
final copies of [Stroustrup,1984] and [Stroustrup,1984c].

The " C " in C++ has a long history. Naturally, it is the name of the language Den
nis Ritchie designed. C's immediate ancestor was an interpreted descendant of BCPL
class B designed by Ken Thompson. BCPL was designed and implemented by Mar
tin Richards from Cambridge University while visiting MIT in the other Cambridge.
BCPL in turn was Basic CPL, where CPL is the name of a rather large (for its time)
and elegant programming language developed jointly by the universities of Cam
bridge and London. Before the London people joined the project " C " stood for
Cambridge. Later, " C " officially stood for Combined. Unofficially, " C " stood for
Christopher because Christopher Stratchey was the main power behind CPL.

Section 3.2 Aims 65

3.2 Aims
During the 1982 to 1984 period, the aims for C++ gradually became more ambitious
and more definite. I had come to see C++ as a language separate from C, and libraries
and tools had emerged as areas of work. Because of that, because tool developers
within Bell Labs were beginning to show interest in C++, and because I had embarked
on a completely new implementation that would become the C++ compiler front-end,
Cfront, I had to answer several key questions:

[1] Who will the users be?
[2] What kind of systems will they use?
[3] How will I get out of the business of providing tools?
[4] How should the answers to [1], [2], and [3] affect the language definition?

My answer to [1], "Who will the users be?," was that first my friends within Bell
Labs and I would use it, then more widespread use within AT&T would provide more
experience, then some universities would pick up the ideas and the tools, and finally
AT&T and others would be able to make some money by selling the set of tools that
had evolved. At some point, the initial and somewhat experimental implementation
done by me would be faded out in favor of more industrial-strength implementations
by AT&T and others.

This made practical and economic sense; the initial (Cfront) implementation
would be tool-poor, portable, and cheap because that was what I, my colleagues, and
many university users needed and could afford. Later, there would be ample scope
for better tools and more specialized environments. Such better tools aimed primarily
at industrial users needn't be cheap either, and would thus be able to pay for the sup
port organizations necessary for large-scale use of the language. That was my answer
to [3], "How will I get out of the business of providing tools?" Basically, the strat
egy worked. However, just about every detail actually happened in an unforeseen
way.

To get an answer to [2], "What kind of systems will they use?" I simply looked
around to see what kind of systems the C with Classes users actually did use. They
used everything from systems that were so small they couldn't run a compiler to
mainframes and supercomputers. They used more operating systems than I had heard
of. Consequently, I concluded that extreme portability and the ability to do cross
compilation were necessities and that I could make no assumption about the size and
speed of the machines running generated code. To build a compiler, however, I
would have to make assumptions about the kind of system people would develop their
programs on. I assumed that one MIPS plus one Mbyte would be available. That
assumption, I considered a bit risky because most of my prospective users at the time
had a shared PDP11 or some other relatively low-powered and/or timeshared system.

I did not predict the PC revolution, but by over-shooting my performance target
for Cfront I happened to build a compiler that (barely) could run on an IBM PC/AT,
thus providing an existence proof that C++ could be an effective language on a PC
and thereby spurring commercial software developers to beat it.

As the answer to [4], "How does all this affect the language definition?" I

66 The Birth of C++ Chapter 3

concluded that no feature must require really sophisticated compiler or run-time sup
port, that available linkers must be used, and that the code generated would have to be
efficient (comparable to C) even initially.

3.3 Cfront
The Cfront compiler front-end for the C84 language was designed and implemented
by me between the spring of 1982 and the summer of 1983. The first user outside the
computer science research center, Jim Coplien, received his copy in July of 1983. Jim
was in a group that had been doing experimental switching work using C with Classes
in Bell Labs in Naperville, Illinois for some time.

In that same time period, I designed C84, drafted the reference manual published
January 1, 1984 [Stroustrup,1984], designed the complex number library and imple
mented it together with Leonie Rose [Rose, 1984], designed and implemented the first
s t r i n g class together with Jonathan Shopiro, maintained and ported the C with
Classes implementation, supported the C with Classes users, and helped them become
C84 users. That was a busy year and a half.

Cfront was (and is) a traditional compiler front-end that performs a complete
check of the syntax and semantics of the language, builds an internal representation of
its input, analyzes and rearranges that representation, and finally produces output suit
able for some code generator. The internal representation is a graph with one symbol
table per scope. The general strategy is to read a source file one global declaration at
a time and produce output only when a complete global declaration has been com
pletely analyzed.

In practice, this means that the compiler needs enough memory to hold the repre
sentation of all global names and types plus the complete graph of one function. A
few years later, I measured Cfront and found that its memory usage leveled out at
about 600 Kbytes on a DEC VAX just about independently of which real program I
fed it. This fact was what made my initial port of Cfront to a PC/AT in 1986 feasible.
At the time of Release 1.0 in 1985 Cfront was about 12,000 lines of C++.

The organization of Cfront is fairly traditional except maybe for the use of many
symbol tables instead of just one. Cfront was originally written in C with Classes
(what else?) and soon transcribed into C84 so that the very first working C++ com
piler was done in C++. Even the first version of Cfront used classes and derived
classes heavily. It did not use virtual functions, though, because they were not avail
able at the start of the project.

Cfront is a compiler front-end (only) and can never be used for real programming
by itself. It needs a driver to run a source file through the C preprocessor, Cpp, then
run the output of Cpp through Cfront and the output from Cfront through a C com
piler:

Section 3.3 Cfront 67

In addition, the driver must ensure that dynamic (run-time) initialization is done. In
Cfront 3.0, the driver becomes yet more elaborate as automatic template instantiation
(§15.2) is implemented [McClusky,1992].

3.3.1 Generating C
The most unusual - for its time - aspect of Cfront was that it generated C code. This
has caused no end of confusion. Cfront generated C because I needed extreme porta
bility for an initial implementation and I considered C the most portable assembler
around. I could easily have generated some internal back-end format or assembler
from Cfront, but that was not what my users needed. No assembler or compiler
back-end served more than maybe a quarter of my user community and there was no
way that I could produce the, say, six backends needed to serve just 90% of that com
munity. In response to this need, I concluded that using C as a common input format
to a large number of code generators was the only reasonable choice. The strategy of
building a compiler as a C generator later became popular. Languages such as Ada,
Eiffel, Modula-3, Lisp, and Smalltalk have been implemented that way. I got a high
degree of portability at a modest cost in compile-time overhead. The sources of over
head were

[1] The time needed for Cfront to write the intermediate C.
[2] The time needed for a C compiler to read the intermediate C.
[3] The time "wasted" by the C compiler analyzing the intermediate C.
[4] The time needed to control this process.

The size of this overhead depends critically on the time needed to read and write the
intermediate C representation and that primarily depends on the disc read/write strat
egy of a system. Over the years I have measured this overhead on various systems
and found it to be between 25% and 100% of the "necessary" parts of a compilation.
I have also seen C++ compilers that didn't use intermediate C yet were slower than

68 The Birth of C++ Chapter 3

Cfront plus a C compiler.
Please note that the C compiler is used as a code generator only. Any error mes

sage from the C compiler reflects an error in the C compiler or in Cfront, but not in
the C++ source text. Every syntactic and semantic error is in principle caught by
Cfront, the C++ compiler front-end. In this, C++ and its Cfront implementation dif
fered from preprocessor-based languages such as Ratfor [Kernighan,1976] and Objec
tive C [Cox, 1986].

I stress this because there has been a long history of confusion about what Cfront
is. It has been called a preprocessor because it generates C, and for people in the C
community (and elsewhere) that has been taken as proof that Cfront was a rather sim
ple program - something like a macro preprocessor. People have thus "deduced"
(wrongly) that a line-for-line translation from C++ to C is possible, that symbolic
debugging at the C++ level is impossible when Cfront is used, that code generated by
Cfront must be inferior to code generated by "real compilers," that C++ wasn't a
"real language," etc. Naturally, I have found such unfounded claims most annoying
- especially when they were leveled as criticisms of the C++ language. Several C++
compilers now use Cfront together with local code generators without going through a
C front end. To the user, the only obvious difference is faster compile times.

The irony is that I dislike most forms of preprocessors and macros. One of C++'s
aims is to make C's preprocessor redundant (§4.4, §18) because I consider its actions
inherently error prone. Cfront's primary aim was to allow C++ to have rational
semantics that could not be implemented with the kind of compilers that were used
for C at the time: Such compilers simply don't know enough about types and scopes
to do the kind of resolution C++ requires. C++ was designed to rely heavily on tradi
tional compiler technology, rather than on run-time support or detailed programmer
resolution of expressions (as you need in languages without overloading). Conse
quently, C++ cannot be compiled with any traditional preprocessor technology. I con
sidered and rejected such alternatives for language semantics and translator technol
ogy at the time. Cfront's immediate predecessor, Cpre, was a fairly traditional pre
processor that didn't understand every syntax, scope, and type rule of C. This had
been a source of many problems both in the language definition and in actual use. I
was determined not to see these problems repeated for my revised language and new
implementation. C++ and Cfront were designed together and language definition and
compiler technology definitely affected each other, but not in the simple-minded man
ner people sometimes assume.

3.3.2 Parsing C++

In 1982 when I first planned Cfront, I wanted to use a recursive descent parser
because I had experience writing and maintaining such a beast, because I liked such
parsers' ability to produce good error messages, and because I liked the idea of having
the full power of a general-purpose programming language available when decisions
had to be made in the parser. However, being a conscientious young computer scien
tist I asked the experts. Al Aho and Steve Johnson were in the Computer Science

Section 3.3.2 Parsing C++ 69

Research Center and they, primarily Steve, convinced me that writing a parser by
hand was most old-fashioned, would be an inefficient use of my time, would almost
certainly result in a hard-to-understand and hard-to-maintain parser, and would be
prone to unsystematic and therefore unreliable error recovery. The right way was to
use an LALR(l) parser generator, so I used Al and Steve's YACC [Aho,1986].

For most projects, it would have been the right choice. For almost every project
writing an experimental language from scratch, it would have been the right choice.
For most people, it would have been the right choice. In retrospect, for me and C++ it
was a bad mistake. C++ was not a new experimental language, it was an almost com
patible superset of C - and at the time nobody had been able to write an LALR(l)
grammar for C. The LALR(l) grammar used by ANSI C was constructed by Tom
Pennello about a year and a half later - far too late to benefit me and C++. Even Steve
Johnson's PCC, which was the preeminent C compiler at the time, cheated at details
that were to prove troublesome to C++ parser writers. For example, PCC didn't han
dle redundant parentheses correctly so that i n t (x) ; wasn't accepted as a declara
tion of x. Worse, it seems that some people have a natural affinity to some parser
strategies and others work much better with other strategies. My bias towards top-
down parsing has shown itself many times over the years in the form of constructs
that are hard to fit into a YACC grammar. To this day, Cfront has a YACC parser
supplemented by much lexical trickery relying on recursive descent techniques. On
the other hand, it is possible to write an efficient and reasonably nice recursive
descent parser for C++. Several modern C++ compilers use recursive descent.

3.3.3 Linkage Problems

As mentioned, I decided to live within the constraints of traditional linkers. However,
there was one constraint I found insufferable, yet so silly that I had a chance of fight
ing it if I had sufficient patience: Most traditional linkers had a very low limit on the
number of characters that can be used in external names. A limit of eight characters
was common, and six characters and one case only are guaranteed to work as external
names in K&R C; ANSI/ISO C also accepts that limit. Given that the name of a
member function includes the name of its class and that the type of an overloaded
function has to be reflected in the linkage process somehow or other (see §11.3.1), I
had little choice.

Consider:

void task::schedule() { / * . . . * / } / / 4+8 characters

void hashed::print() { /* ... */ } // 6 + 5 characters

complex sqrt(complex); // 4 character plus 'complex'
double sqrt(double); // 4 character plus 'double'

Representing these names with only six upper case characters would require some
form of compression that would complicate tool building. It would probably also
involve some form of hashing so that a rudimentary "program database" would be

70 The Birth of C++ Chapter 3

needed to resolve hash overflows. The former is a nuisance, and the latter could be a
serious problem because there is no concept of a ' 'program database'' in the tradi
tional C/Fortran linkage model.

Consequently, I started (in 1982) lobbying for longer names in linkers. I don't
know if my efforts actually had any effect, but these days most linkers do give me the
much larger number of characters I need. Cfront uses encodings to implement type-
safe linkage in a way that makes a limit of 32 characters too low for comfort, and
even 256 is a bit tight at times (see §11.3.2). In the interim, systems of hash coding of
long identifiers have been used with archaic linkers, but that was never completely
satisfactory.

3.3.4 Cfront Releases

The first C with Classes and C++ implementations to make their way out of Bell Labs
were early versions that people in various university departments had requested
directly from me. In that way, people in dozens of educational institutions got to use
C with Classes. Examples are Stanford University (December 1981, first Cpre ship
ment), University of California at Berkeley, University of Wisconsin in Madison, Cal-
tech, University of North Carolina at Chapel Hill, MIT, University of Sydney,
Carnegie-Mellon University, University of Illinois at Urbana-Champaign, University
of Copenhagen, Rutherford Labs (Oxford), IRCAM, INRIA. The shipments of imple
mentations to individual educational institutions continued after the design and imple
mentation of C++. Examples are University of California at Berkeley (August 1984,
first Cfront shipment), Washington University (St. Louis), University of Texas in
Austin, University of Copenhagen, and University of New South Wales. In addition,
students showed their usual creativity in avoiding paperwork. Even then, handling
individual releases soon became a burden for me and a source of annoyance for uni
versity people wanting C++. Consequently, my department head, Brian Kernighan,
AT&T's C++ product manager, Dave Kallman, and I came up with the idea of having
a more general release of Cfront. The idea was to avoid commercial problems such as
determining prices, writing contracts, handling support, advertising, getting documen
tation to conform to corporate standards, etc., by basically giving Cfront and a few
libraries to university people at the cost of the tapes used for shipping. This was
called Release E, " E " for "Educational." The first tapes were shipped in January
1985 to organizations such as Rutherford Labs (Oxford).

Release E was an eye opener for me. In fact, Release E was a flop. I had expected
interest in C++ in universities to surge. Instead, the growth of C++ users continued
along its usual curve (§7.1) and what we saw instead of a flood of new users was a
flood of complaints from professors because C++ wasn't commercially available.
Again and again I was contacted and told ' 'Yes, I want to use C++, and I know that I
can get Cfront for free, but unfortunately I can't use it because I need something I can
use in my consulting and something my students can use in industry." So much for
the pure academic pursuit of learning. Steve Johnson, then the department head in
charge of C and C++ development, Dave Kallman, and I went back to the drawing

Section 3.3.4 Cfront Releases 71

board and came back with the plan for a commercial Release 1.0. However, the pol
icy of ' 'almost free'' C++ implementations (with source and libraries) to educational
institutions that originated with Release E remains in place to this day.

Versions of C++ are often named by Cfront release numbers. Release 1.0 was the
language as defined in The C+ + Programming Language [Stroustrup,1986]. Releases
1.1 (June 1986) and 1.2 (February 1987) were primarily bug-fix releases, but also
added pointers to members and protected members (§13.9).

Release 2.0 was a major cleanup that also introduced multiple inheritance (§12.1)
in June 1989. It was widely perceived as a significant improvement both in function
ality and quality. Release 2.1 (April 1990) was primarily a bug-fix release that
brought Cfront (almost) into line with the definition in The Annotated C++ Reference
Manual [ARM] (§5.3).

Release 3.0 (September 1991) added templates (§15) as specified in the ARM. A
variant of 3.0 supporting exception handling (§16) as specified in the ARM was pro
duced by Hewlett-Packard [Cameron, 1992] and shipped starting late 1992.

I wrote the first versions of Cfront (1.0, 1.1, 1.2) and maintained them; Steve
Dewhurst worked on it with me for a few months before Release 1.0 in 1985. Laura
Eaves did much of the work on the Cfront parser for Release 1.0, 1.1, 2.1, and 3.0. I
also did the lion's share of the programming for Release 1.2 and 2.0, but starting with
Release 1.2, Stan Lippman also spent most of his time on Cfront. Laura Eaves, Stan
Lippman, George Logothetis, Judy Ward, and Nancy Wilkinson did most of the work
for Release 2.1 and 3.0. The work on 1.2, 2.0, 2.1, and 3.0 was managed by Barbara
Moo. Andrew Koenig organized Cfront testing for 2.0. Sam Haradhvala from Object
Design Inc. did an initial implementation of templates in 1989 that Stan Lippman
extended and completed for Release 3.0 in 1991. The initial implementation of
exception handling in Cfront was done by Hewlett-Packard in 1992. In addition to
these people who have produced code that has found its way into the main version of
Cfront, many people have built local C++ compilers from it. Over the years a wide
variety of companies including Apple, Centerline (formerly Saber), Comeau Comput
ing, Glockenspiel, ParcPlace, Sun, Hewlett-Packard, and others have shipped products
that contain locally modified versions of Cfront.

3.4 Language Features

The major additions to C with Classes introduced to produce C++ were:
[1] Virtual functions (§3.5)
[2] Function name and operator overloading (§3.6)
[3] References (§3.7)
[4] Constants (§3.8)
[5] User-controlled free-store memory control (§3.9)
[6] Improved type checking (§3.10)

In addition, the notion of call and return functions (§2.11) was dropped due to lack of
use and many minor details were changed to produce a cleaner language.

72 The Birth of C++ Chapter 3

3.5 Virtual Functions
The most obvious new feature in C++ - and certainly the one that had the greatest
impact on the style of programming one could use for the language - was virtual
functions. The idea was borrowed from Simula and presented in a form that was
intended to make a simple and efficient implementation easy. The rationale for vir
tual functions was presented in [Stroustrup,1986] and [Stroustrup,1986b]. To empha
size the central role of virtual functions in C++ programming, I will quote it in detail
here [Stroustrup,1986]:

"An abstract data type defines a sort of black box. Once it has been defined, it
does not really interact with the rest of the program. There is no way of adapting
it to new uses except by modifying its definition. This can lead to severe inflexi
bility. Consider defining a type s h a p e for use in a graphics system. Assume for
the moment that the system has to support circles, triangles, and squares. Assume
also that you have some classes:

class point{ /* ... */ };
class color{ /* ... */ } ;

You might define a shape like this:

enum kind { circle, triangle, square };

class shape {
point center;
color col;
kind k;
// representation of shape

public:
point where() { return center; }
void move(point to) { center = to; draw(); }
void draw();
void rotate(int);
// more operations

};

The "type field" k is necessary to allow operations such as d raw() and
r o t a t e () to determine what kind of shape they are dealing with (in a Pascal
like language, one might use a variant record with tag k). The function draw ()
might be defined like this:

void shape::draw()
{

switch (k) {
case circle:

// draw a circle
break;

Section 3.5 Virtual Functions 73

case triangle:
// draw a triangle
break;

case square:
// draw a square
break;

}
}

This is a mess. Functions such as draw() must "know about" all the kinds of
shapes there are. Therefore the code for any such function grows each time a new
shape is added to the system. If you define a new shape, every operation on a
shape must be examined and (possibly) modified. You are not able to add a new
shape to a system unless you have access to the source code for every operation.
Since adding a new shape involves ' 'touching'' the code of every important opera
tion on shapes, it requires great skill and potentially introduces bugs into the code
handling other (older) shapes. The choice of representation of particular shapes
can get severely cramped by the requirement that (at least some of) their represen
tation must fit into the typically fixed sized framework presented by the definition
of the general type shape .

The problem is that there is no distinction between the general properties of
any shape (a shape has a color, it can be drawn, etc.) and the properties of a spe
cific shape (a circle is a shape that has a radius, is drawn by a circle-drawing func
tion, etc.). Expressing this distinction and taking advantage of it defines object-
oriented programming. A language with constructs that allows this distinction to
be expressed and used supports object-oriented programming. Other languages
don't.

The Simula inheritance mechanism provides a solution that I adopted for C++.
First, specify a class that defines the general properties of all shapes:

c l a s s shape {
point center;

color col;

// . . .
public:

point where() { return center; }

void move(point to) { center = to; draw(); }

virtual void draw();

virtual void rotate(int);

// . . .

};

The functions for which the calling interface can be defined, but where the
implementation cannot be defined except for a specific shape, have been marked
v i r t u a l (the Simula and C++ term for "may be redefined later in a class
derived from this one"). Given this definition, we can write general functions
manipulating shapes:

74 The Birth of C++ Chapter 3

void rotate_all(shape** v, int size, int angle)
// rotate all members of vector "v"
// of size "size" "angle" degrees

{
for (int i = 0; i < size; i++) v[i]->rotate(angle);

}

To define a particular shape, we must say that it is a shape and specify its par
ticular properties (including the virtual functions).

class circle : public shape {
int radius;

public:
void draw() { /* ... */ };
void rotate(int) {} // yes, the null function

};

In C++, class c i r c l e is said to be derived from class shape , and class shape
is said to be a base of class c i r c l e . An alternative terminology calls c i r c l e
and shape subclass and superclass, respectively."

For further discussion of virtual functions and object-oriented programming see
§13.2, §12.3.1, §13.7, §13.8, and §14.2.3.

I don't remember much interest in virtual functions at the time. I probably didn't
explain the concepts involved well, but the main reaction I received from people in
my immediate vicinity was one of indifference and skepticism. A common opinion
was that virtual functions were simply a kind of crippled pointer to function and thus
redundant. Worse, it was sometimes argued that a well-designed program wouldn't
need the extensibility and openness provided by virtual functions so that proper analy
sis would show which non-virtual functions could be called directly. Therefore, the
argument went, virtual functions were simply a form of inefficiency. Clearly, I dis
agreed and added virtual functions anyway.

I deliberately did not provide a mechanism for explicit inquiry about the type of an
object in C++:

"The Simula67 INSPECT statement was deliberately not introduced into C++.
The reason for that is to encourage modularity through the use of virtual functions
[Stroustrup,1986]."

The Simula INSPECT statement is a switch on a system-provided type field. I had
seen enough misuses to be determined to rely on static type checking and virtual func
tions in C++ as long as possible. A mechanism for run-time type inquiry was eventu
ally added to C++ (§14.2). I hope its form will make it less seductive than the Simula
INSPECT was and is.

3.5.1 The Object Layout Model

The key implementation idea was that the set of virtual functions in a class defines an
array of pointers to functions so that a call of a virtual function is simply an indirect
function call through that array. There is one such array, usually called a virtual

Section 3.5.1 The Object Layout Model 75

A call to a virtual function is transformed by the compiler into an indirect call. For
example,

becomes something like

(*(p->vptr[1]))(p,2); /* generated code */

This implementation is not the only one possible. Its virtues are simplicity and run
time efficiency; its problem is that recompilation of user code is necessary if you

v o i d f (C* p)
{

p - > g (2) ;
}

function table or v t b l , per class with virtual functions. Each object of such a class
contains a hidden pointer, often called the v p t r , to its class's virtual function table.
Given:

class A {
int a ;

public:
virtual void f();
virtual void g(int);
virtual void h(double);

};

class B : public A {
public:

int b ;
void g(int); // overrides A::g()
virtual void m(B*);

};

class C : public B {
public:

int c ;
void h(double); // overrides A::h()
virtual void n(C*);

};

a class C obiect looked something like this:

76 The Birth of C++ Chapter 3

change the set of virtual functions for a class.
At this point, the object model becomes real in the sense that an object is more

than the simple aggregation of the data members of a class. An object of a C++ class
with a virtual function is a fundamentally different beast from a simple C s t r u c t .
Then why did I not at this point choose to make structs and classes different notions?

My intent was to have a single concept: a single set of layout rules, a single set of
lookup rules, a single set of resolution rules, etc. Maybe we could have lived with
two set of rules, but a single concept provides a smoother integration of features and
simpler implementations. I was convinced that if s t r u c t came to mean "C and
compatibility" to users and c l a s s to mean "C++ and advanced features," the com
munity would fall into two distinct camps that would soon stop communicating.
Being able to use as many or as few language features as needed when designing a
class was an important idea to me. Only a single concept would support my ideas of a
smooth and gradual transition from "traditional C-style programming," through data
abstraction, to object-oriented programming. Only a single concept would support the
notion of "you only pay for what you use" ideal.

In retrospect, I think these notions have been very important for C++'s success as
a practical tool. Over the years, just about everybody has had some kind of expensive
idea that could be implemented "for classes only," leaving low overhead and low
features to s t r u c t s . I think the idea of keeping s t r u c t and c l a s s the same con
cept saved us from classes supporting an expensive, diverse, and rather different set of
features than we have now. In other words, the "a s t r u c t is a c l a s s " notion is
what has stopped C++ from drifting into becoming a much higher-level language with
a disconnected low-level subset. Some would have preferred that to happen.

3.5.2 Overriding and Virtual Function Matching

A virtual function could only be overridden by a function in a derived class with the
same name and exactly the same argument and return type. This avoided any form of
run-time type checking of arguments and any need to keep more extensive type infor
mation around at run time. For example:

class Base {
public:

virtual void f();
virtual void g(int);

};

class Derived : public Base {
public:

void f(); // overrides Base::f()
void g(char); // doesn't override Base::g()

};

This opens an obvious trap for the unwary: The non-virtual D e r i v e d : : g () is actu
ally unrelated to the virtual B a s e : : g () and hides it. This is a problem if you work

Section 3.5.2 Overriding and Virtual Function Matching 77

with a compiler that doesn't warn you about the problem. However, the problem is
trivial for a compiler to detect and is a non-problem given an implementation that
does warn. Cfront 1.0 didn't warn, thus causing some grief, but Cfront 2.0 and higher
do.

The rule requiring an exact type match for an overriding function was later relaxed
for the return type; see §13.7.

3.5.3 Base Member Hiding

A name in a derived class hides any object or function of the same name in a base
class. Whether this is a good design decision has been the subject of some debate
over the years. The rule was first introduced in C with Classes. I saw it as a simple
consequence of the usual scope rules. When arguing the point, I hold that the oppo
site rule - names from derived and base classes are merged into a single scope - gives
at least as many problems. In particular, state-changing functions would occasionally
be called for sub-objects by mistake:

class X {
int x;

public:
virtual void copy(X* p) { x = p->x; }

};

class XX: public X {
int xx;

public:
virtual void copy(XX* p) { xx = p->xx; X::Copy(p); }

};

void f(X a, XX b)
{

a.copy(&b); // ok: copy X part of b

b.copy(&a); // error: copy(X*) is hidden by copy(XX*)
}

Allowing the second copy operation, as would happen if base and derived scopes
were merged, would cause b's state to be partially updated. In most real cases, this
would lead to very strange behavior of operations on XX objects. I have seen exam
ples of people getting caught in exactly this way when using the GNU C++ compiler
(§7.1.4), which allowed the overloading.

In the case where copy () is virtual, one might consider having XX: : copy ()
override X: : copy () , but then one would need run-time type checking to catch the
problem with b . copy(&a) and programmers would have to code defensively to
catch such errors at run time (§13.7.1). This was understood at the time, and I feared
that there were further problems that I didn't understand, so I chose the current rules
as the strictest, simplest, and most efficient.

In retrospect, I suspect that the overloading rules introduced in 2.0 (§11.2.2) might

78 The Birth of C++ Chapter 3

have been able to handle this case. Consider the call:

b .copy(&a)

The variable b is an exact type match for the implicit argument of XX: : copy, but
requires a standard conversion to match X: : copy. The variable a on the other hand,
is an exact match for the explicit argument of X: : copy, but requires a standard con
version to match XX: :copy. Thus, had the overloading been allowed, the call
would have been an error because it was ambiguous.

3.6 Overloading

Several people had asked for the ability to overload operators. Operator overloading
"looked neat'' and I knew from experience with Algol68 how the idea could be made
to work. However, I was reluctant to introduce the notion of overloading into C++
because:

[1] Overloading was reputed to be hard to implement and caused compilers to
grow to monstrous size.

[2] Overloading was reputed to be hard to teach and hard to define precisely.
Consequently, manuals and tutorials would grow to monstrous size.

[3] Code written using operator overloading was reputed to be inherently ineffi
cient.

[4] Overloading was reputed to make code incomprehensible.
If [3] or [4] were true, C++ would be better off without overloading. If [1] or [2] were
true, I didn't have the resources to provide overloading.

However, if all of these conjectures were false, overloading would solve some real
problems for C++ users. There were people who would like to have complex num
bers, matrices, and APL-like vectors in C++. There were people who would like
range-checked arrays, multidimensional arrays, and strings. There were at least two
separate applications for which people wanted to overload logical operators such as |
(or), & (and), and ^ (exclusive or). The way I saw it, the list was long and would
grow with the size and the diversity of the C++ user population. My answer to [4],
"overloading makes code obscure," was that several of my friends, whose opinion I
valued and whose experience was measured in decades, claimed that their code would
become cleaner if they had overloading. So what if one can write obscure code with
overloading? It is possible to write obscure code in any language. It matters more
how a feature can be used well than how it can be misused.

Next, I convinced myself that overloading wasn't inherently inefficient
[Stroustrup, 1984b] [ARM,§ 12.1c]. The details of the overloading mechanism were
mostiy worked out on my blackboard and those of Stu Feldman, Doug McIlroy, and
Jonathan Shopiro.

Thus, having worked out an answer to [3], "code written using overloading is
inefficient," I needed to concern myself with [1] and [2], the issue of compiler and
language complexity. I first observed that use of classes with overloaded operators,

Section 3.6 Overloading 79

such as complex and s t r i n g , was quite easy and didn't put a major burden on the
programmer. Next, I wrote the manual sections to prove that the added complexity
wasn't a serious issue; the manual needed less than a page and a half extra (out of a
42-page manual). Finally, I did the first implementation in two hours using only 18
lines of extra code in Cfront, and I felt I had demonstrated that the fears about defini
tion and implementation complexity were somewhat exaggerated. Nevertheless, § 11
will show that overloading problems did appear.

Naturally, all these issues were not really tackled in this strict sequential order, but
the emphasis of the work did slowly shift from utility issues to implementation issues.
The overloading mechanisms were described in detail in [Stroustrup, 1984b], and
examples of classes using the mechanisms were written up [Rose, 1984] [Sho-
piro,1985].

In retrospect, I think that operator overloading has been a major asset to C++. In
addition to the obvious use of overloaded arithmetic operators (+, *, +=, *=, etc.) for
numerical applications, [] subscripting, () application, and = assignment are often
overloaded to control access, and << and » have become the standard I/O operators
(§8.3.1).

3.6.1 Basic Overloading

Here is an example that illustrates the basic techniques:

class complex {
double re, im;

public:
complex(double);
complex(double,double);

friend complex operator*(complex,complex);
friend complex operator*(complex,complex) ,•
// . . .

};

This allows simple complex expressions to be resolved into function calls:

void f(complex z1, complex z2)
{

complex z3 = zl+z2; // operator+(zl,z2)
}

Assignment and initialization needn't be explicitly defined. They are by default
defined as memberwise copy; see §11.4.1.

In my design of the overloading mechanism, I relied on conversions to decrease
the number of overloading functions needed. For example:

80 The Birth of C++ Chapter 3

void g(complex zl, complex z2, double d)
{

complex z3 = zl+z2; // operator*(zl,z2)
complex z4 = z1+d; // operator+(zl,complex(d))
complex z5 = d+z2; // operator+(complex(d),z2)

}

That is, I rely on the implicit conversion of d o u b l e to complex to allow me to sup
port "mixed-mode arithmetic" with a single complex add function. Additional func
tions can be introduced to improve efficiency or numerical accuracy.

In principle, we could do without implicit conversions all together by either
requiring explicit conversion or by providing the full set of complex add functions:

class complex {

// . . .
public:

/ / n o implicit double->complex conversion

// . . .

friend complex operator+(complex,complex);

friend complex operator*(complex,double);

friend complex operator*(double,complex);

// . . .

};

Would we have been better off without implicit conversions? The language would
have been simpler without them, implicit conversions can certainly be overused, and a
call involving a conversion function is typically less efficient than a call of an exactly
matching function.

Consider the four basic arithmetic operations. Defining the full set of mixed-
mode operations for complex and d o u b l e requires 12 arithmetic functions com
pared to 3 plus a conversion function when implicit conversion is used. Where the
number of operations and the number of types involved are higher, the difference
between the linear increase in the number of functions that we get from using conver
sions and the quadratic explosion we get from requiring all combinations becomes
significant. I have seen examples in which the complete set of operators was pro
vided because conversion operators couldn't be safely defined. The result was more
than 100 functions defining operators. I consider that acceptable in special cases, but
not as a standard practice.

3.6.2 Members and Friends

Note how a global o p e r a t o r * , a f r i e n d function, was used in preference to a
member function to ensure that the operands of + are handled symmetrically. Had
member functions been used, we would have needed a resolution like this:

Section 3.6.2 Members and Friends 81

void f(complex zl, complex z2, double d)
{

complex z3 = zl+z2; // zl.operator+(z2);
complex z4 = zl+d; // zl.operatort(complex(d))

complex z5 = d+z2; // d.operator+(z2)
}

This would have required us to define how to add a complex to the built-in type
d o u b l e . This would not only require more functions, but also require modification
of code in separate places (that is, the definition of class complex and the definition
of the built-in type doub le) . This was deemed undesirable. I considered allowing
the definition of additional operations on built-in types. However, I rejected the idea
because I did not want to change the rule that no type - built-in or user-defined - can
have operations added after its definition is complete. Other reasons were that the
definition of conversions between C's built-in types is too messy to allow additions,
and that the member-function solution to provide mixed-mode arithmetic is intrinsi
cally more messy than the global-function-plus-conversion-function solution adopted.

The use of a global function allows us to define operators so that their arguments
are logically equivalent. Conversely, defining an operator as a member ensures that
no conversions are invoked for the first (leftmost) operand. This allows us to mirror
the rules for operands that require an lvalue as their leftmost operand, such as the
assignment operators:

class String {
// . . .

public:
String(const char*);
String& operator=(const String&);
String& operator+=(const String&); // add to end
// . . .

};

void f(String& s1, String& s2)
{

s1 = s2;
s1 = "asdf"; // fine: s1.operator=(String("asdf"));
"asdf" = s2; // error: String assigned to char*

}

Later, Andrew Koenig observed that the assignment operators such as += are more
fundamental and more efficient than their ordinary arithmetic cousins such as +. It is
often best to define only the operator functions as members and define the others as
global functions later:

String& String::operator+=(const String& s)
{

// add s onto the end of *this

82 The Birth of C++ Chapter 3

return *this;
}

String operator+(const String& s1, const String& s2)
{

String sum = s1;
sum+=s2;
return sum;

}

Note that no friendship is required, and that the definition of the binary operator is
trivial and stylized. No temporary variables are needed to implement the call of +=,
and the local variable sum is all the temporary variable management that the user has
to consider. The rest can be handled simply and efficiently by the compiler (see
§3.6.4).

My original idea was to allow every operator to be either a member or a global
function. In particular, I had found it convenient to provided simple access operations
as member functions and then let users implement their own operators as global func
tions. For operators such as + and - my reasoning was sound, but for operator = itself
we ran into problems. Consequently, Release 2.0 required operator = to be a member.
This was an incompatible change that broke a few programs, so the decision wasn't
taken lightly. The problem was that unless operator = is a member, a program can
have two different interpretations of = dependent on the location in the source code.
For example:

c l a s s X {
//no operator=

};

void f(X a, X b)
{

a = b; // predefined meaning of =
}

void operator=(X&,X); // disallowed by 2.0

void g(X a, X b)
{

a = b; // user-defined meaning of =
}

This could be most confusing, especially where the two assignments appeared in sep
arately compiled source files. Since there is no built-in meaning for += for a class
that problem cannot occur for +=.

However, even in the original design of C++, I restricted operators [], () , and - >
to be members. It seemed a harmless restriction that eliminated the possibility of
some obscure errors because these operators invariably depend on and typically

Section 3.6.2 Members and Friends 83

modify the state of their left-hand operand. However, it is probably a case of unnec
essary nannyism.

3.6.3 Operator Functions

Having decided to support implicit conversions and the model of mixed mode opera
tions supported by them, I needed a way of specifying such conversions. Construc
tors of a single argument provide one such mechanism. Given

class complex {
// . . .
complex(double); // converts a double to a complex
// .. .

};

we can explicitly or implicitly convert a d o u b l e to a complex. However, this
allows the designer of a class to define conversions to that class only. It was not
uncommon to want to write a new class that had to fit into an existing framework.
For example, the C library has dozens of functions taking string arguments, that is,
arguments of type cha r* . When Jonathan Shopiro first wrote a full-blown S t r i n g
class, he found that he would either have to replicate every C library function taking a
string argument:

int strlen(const char*); // original C function
int strlen(const Strings); // new C++ function

or provide a S t r i n g to c o n s t c h a r * conversion operator.
Consequently, I added the notion of conversion operator functions to C++:

class String {
// ...
operator const char*();
// . ..

};

int strlen(const char*); // original C function

void f(String& s)
{

// . . .
strlen(s); // strlen(s.operator const char*())
// ...

}

In real use, implicit conversion has sometimes proven tricky to use. However, provid
ing the full set of mixed-mode operations isn't pretty either. I would like a better
solution, but of the solutions I know, implicit conversions is the least bad.

84 The Birth of C++ Chapter 3

3.6.4 Efficiency and Overloading

Contrary to (frequently expressed) naive superstition there is no fundamental differ
ence between operations expressed as function calls and operations expressed as oper
ators. The efficiency issues for overloading were (and are) inlining and the avoidance
of spurious temporaries.

To convince myself of that, I first noted that code generated from something like
a+b or v [i] was identical to what one would get from function calls a d d (a , b)
and v. e l e m (i) .

Next, I observed that by using inlining, a programmer could ensure that simple
operations would not carry function-call overhead (in time or space). Finally, I
observed that call-by-reference would be necessary to support this style of program
ming effectively for larger objects (more about that in §3.7). This left the problems of
how to avoid spurious copying in examples such as a=b+c. Generating

assign(add(b,c),t); assign(t,a);

would not compare well to the

add_and_assign(b,c,a);

that a compiler can generate for a built-in type and a programmer can write explicitly.
In the end, I demonstrated [Stroustrup, 1984b] how to generate

add_and_initialize(b,c,t); assign(t,a);

That left one "spurious" copy operation that can be removed only where it can be
proved that the + and = operations don't actually depend on the value assigned to
(aliasing). For a more accessible reference for this optimization, see [ARM]. This
optimization did not become available in Cfront until Release 3.0. I believe the first
available C++ implementation using that technique was Zortech's compiler. Walter
Bright easily implemented the optimization after I explained it to him over an ice
cream sundae at the top of the Space Needle in Seattle after an ANSI C++ standards
meeting in 1990.

The reason I considered this slightly sub-optimal scheme acceptable was that more
explicit operators such as += are available for hand-optimization of the most common
operations, and also that the absence of aliasing can be assumed in initializations.
Borrowing the Algol68 notion that a declaration can be introduced wherever it is
needed (and not just at the top of some block), I could enable an "initialize-only" or
"single-assignment" style of programming that would be inherently efficient - and
also less error-prone than traditional styles where variables are assigned again and
again. For example, one can write

Section 3.6.4 Efficiency and Overloading 85

complex compute(complex z, int i)
{

if {/*...*/) {
// ...

}
complex t = f(z,i);
// . ..
z += t;
// . . .
return t;

}

rather than the more verbose and less efficient:

complex compute(complex z, int i)
{

complex t;
if (/*...*/) {

// . . .
}
t = f (z,i);
// . ..
z = z + t;
// .. .
return t;

}

For yet another idea for increasing run-time efficiency by eliminating temporaries, see
§11.6.3.

3.6.5 Mutation and New Operators

I considered it important to provide overloading as a mechanism for extending the
language and not for mutating it; that is, it is possible to define operators to work on
user-defined types (classes), but not to change the meaning of operators on built-in
types. In addition, I didn't want to allow programmers to introduce new operators. I
feared cryptic notation and having to adopt complicated parsing strategies like those
needed for Algol68. In this matter, I think my restraint was reasonable. See also
§11.6.1 and §11.6.3.

3.7 References
References were introduced primarily to support operator overloading. Doug McIlroy
recalls that once I was explaining some problems with a precursor to the current oper
ator overloading scheme to him. He used the word reference with the startling effect
that I muttered "Thank you," and left his office to reappear the next day with the cur
rent scheme essentially complete. Doug had reminded me of Algol68.

C passes every function argument by value, and where passing an object by value

86 The Birth of C++ Chapter 3

would be inefficient or inappropriate the user can pass a pointer. This strategy
doesn't work where operator overloading is used. In that case, notational convenience
is essential because users cannot be expected to insert address-of operators if the
objects are large. For example:

a = b - c;

is acceptable (that is, conventional) notation, but

a = &b - &c;

is not. Anyway, &b-&c already has a meaning in C, and I didn't want to change that.
It is not possible to change what a reference refers to after initialization. That is,

once a C++ reference is initialized it cannot be made to refer to a different object later;
it cannot be re-bound. I had in the past been bitten by Algol68 references where
r1= r2 can either assign through r1 to the object referred to or assign a new refer
ence value to r1 (re-binding r l) depending on the type of r 2 . I wanted to avoid
such problems in C++.

If you want to do more complicated pointer manipulation in C++, you can use
pointers. Because C++ has both pointers and references, it does not need operations
for distinguishing operations on the reference itself from operations on the object
referred to (like Simula) or the kind of deductive mechanism employed by Algol68.

I made one serious mistake, though, by allowing a non-const reference to be ini
tialized by a non-lvalue. For example:

void incr(int& rr) { rr++; }

void g()
{

double ss = 1;
incr(ss); // note: double passed, int expected

// (fixed: error in Release 2.0)
}

Because of the difference in type the in t& cannot refer to the d o u b l e passed so a
temporary was generated to hold an i n t initialized by s s ' s value. Thus, i n c r ()
modified the temporary, and the result wasn't reflected back to the calling function.

The reason to allow references to be initialized by non-lvalues was to allow the
distinction between call-by-value and call-by-reference to be a detail specified by the
called function and of no interest to the caller. For c o n s t references, this is possible;
for non-const references it is not. For Release 2.0 the definition of C++ was
changed to reflect this.

It is important that c o n s t references can be initialized by non-lvalues and lvalues
of types that require conversion. In particular, this is what allows a Fortran function
to be called with a constant:

Section 3.7 References 87

extern "Fortran" float sqrt(const float&);

void f()
{

sqrt(2); // call by reference
}

In addition to the obvious uses of references, such as reference arguments, we consid
ered the ability to use references as return types important. This allowed us to have a
very simple index operator for a string class:

class String {
// . . .
char& operator[](int index); // subscript operator

// return a reference
};

void f(Strings s, int i)
{

char c1 = s[i]; // assign operator[]'s result
s[i] = cl; // assign to operator[]'s result
// . . .

}

Returning a reference to the internal representation of a S t r i n g assumes responsible
behavior by the users. That assumption is reasonable in many situations.

3.7.1 Lvalue vs. Rvalue

Overloading o p e r a t o r [] () to return a reference doesn't allow the writer of
o p e r a t o r [] () to provide different semantics for reading and writing an element
identified by subscripting. For example,

s 1 [i] = s 2 [j] ;

we can't cause one action on the S t r i n g written to, s i , and another on the string
read, s2 . Jonathan Shopiro and I considered it essential to provide separate semantics
for read access and write access when we considered strings with shared representa
tion and database accesses. In both cases, a read is a very simple and cheap operation,
whereas a write is a potentially expensive and complicated operation involving repli
cation of data structures.

We considered two alternatives:
[1] Specifying separate functions for lvalue use and rvalue use.
[2] Having the programmer use an auxiliary data structure.

The latter approach was chosen because it avoided a language extension and because
we considered the technique of returning an object describing a location in a container
class, such as a S t r i n g , more general. The basic idea is to have a helper class that
identifies a position in the container class much as a reference does, but has separate

88 The Birth of C++ Chapter 3

semantics for reading and writing. For example:

class char_ref { // identify a character in a String
friend class String;

int i ;
String* s;
char_ref(String* ss, int ii) { s=ss; i=ii; }

public:
void operator=(char c);
operator char();

};

Assigning to a c h a r _ r e f is implemented as assignment to the character referenced.
Reading from a c h a r _ r e f is implemented as a conversion to c h a r returning the
value of the character identified:

void char_ref::operator=(char c) { s->r[i]=c; }
char_ref::operator char() { return s->r[i]; }

Note that only a S t r i n g can create a c h a r _ r e f . The actual assignment is imple
mented by the S t r i n g :

class String {

friend class char_ref;

char* r;

public:

char_ref operator[](int i)

{ return char_ref(this,i); }

// . . .

};

Given these definitions,

s l [i] = s 2 [j] ;

means

s1.operator[](i) = s2.operator[](j)

where both s 1 . o p e r a t o r [] (i) and s 2 . o p e r a t o r [] (j) return temporary
objects of class c h a r _ r e f . That in turn means

s1.operator[](i).operator=(s2.operator[](j).operator char())

Inlining makes the performance of this technique acceptable in many cases, and the
use of friendship to restrict the creation of c h a r _ r e f s ensures that we do not get
lifetime temporary problems (§6.3.2). For example, this technique has been used in
successful S t r i n g classes. However, it does seem complicated and heavyweight for
simple uses such as access to individual characters, so I have often considered alterna
tives. In particular, I have been looking for an alternative that would be both more
efficient and not a special-purpose wart. Composite operators (§11.6.3) is one possi
bility.

Section 3.8 Constants 89

3.8 Constants
In operating systems, it is common to have access to some piece of memory con
trolled directly or indirectly by two bits: one that indicates whether a user can write to
it and one that indicates whether a user can read it. This idea seemed to me directly
applicable to C++, and I considered allowing every type to be specified r e a d o n l y or
w r i t e o n l y . An internal memo dated January 1981 [Stroustrup,1981b] describes
the idea:

' 'Until now it has not been possible in C to specify that a data item should be read
only, that is, that its value must remain unchanged. Neither has there been any
way of restricting the use of arguments passed to a function. Dennis Ritchie
pointed out that if r e a d o n l y was a type operator, both facilities could be
obtained easily, for example:

readonly char table[1024]; /* the chars in "table"
cannot be updated */

int f(readonly int * p)
{

/* "f" cannot update the data denoted by "p" */
/* ... */

}

The r e a d o n l y operator is used to prevent the update of some location. It speci
fies that out of the usually legal ways of accessing the location, only the ones that
do not change the value stored there are legal."

The memo goes on to point out that
"The r e a d o n l y operator can be used on pointers, too. * r e a d o n l y is inter
preted as "readonly pointer to," for example:

readonly int * p; /* pointer to read only int */
int * readonly pp; /* read only pointer to int */
readonly int * readonly ppp; /* read only pointer

to read only int */

Here, it is legal to assign a new value to p, but not to * p . It is legal to assign to
*pp, but not to p p , and it is illegal to assign to ppp , or *ppp."

Finally, the memo introduces w r i t e o n l y :
"There is the type operator w r i t e o n l y , which is used like r e a d o n l y , but
prevents reading rather than writing. For example:

struct device_registers {
readonly int input_reg, status_reg;

writeonly int output_reg, command_reg;
};

90 The Birth of C++ Chapter 3

void f(readonly char * readonly from,
writeonly char * readonly to)

/*
"f" can obtain data through "from",
deposit results through "to",
but can change neither pointer

*/
{

}

int * writeonly p;

Here, ++p is illegal because it involves reading the old value of p, but p=0 is
legal."

The proposal focused on specifying interfaces rather than on providing symbolic con
stants for C. Clearly, a r e a d o n l y value is a symbolic constant, but the scope of the
proposal is far greater. Initially, I proposed pointers to r e a d o n l y but not
r e a d o n l y pointers. A brief discussion with Dennis Ritchie evolved the idea into
the r e a d o n l y / w r i t e o n l y mechanism that I implemented and proposed to an
internal Bell Labs C standards group chaired by Larry Rosier. There, I had my first
experience with standards work. I came away from a meeting with an agreement (that
is, a vote) that r e a d o n l y would be introduced into C - yes C, not C with Classes or
C++ - provided it was renamed c o n s t . Unfortunately, a vote isn't executable, so
nothing happened to our C compilers. Later, the ANSI C committee (X3J11) was
formed and the c o n s t proposal resurfaced there and became part of ANSI/ISO C.

In the meantime, I had experimented further with c o n s t in C with Classes and
found that c o n s t was a useful alternative to macros for representing constants only
if global c o n s t s were implicitly local to their compilation unit. Only in that case
could the compiler easily deduce that their value really didn't change. Knowing that
allows us to use simple c o n s t s in constant expressions and to avoid allocating space
for such constants. C did not adopt this rule. For example, in C++ we can write:

const int max = 14;

void f(int i)
{

int a[max+l]; // const 'max' used in constant expression

switch (i) {
case max: // const 'max' used in constant expression

// . ..
}

}

whereas in C, even today we must write

/ * */

Section 3.8 Constants 91

#define max 14
// - . .

because in C, c o n s t s may not be used in constant expressions. This makes c o n s t s
far less useful in C than in C++ and leaves C dependent on the preprocessor while C++
programmers can use properly typed and scoped cons t s .

3.9 Memory Management

Long before the first C with Classes program was written, I knew that free store
(dynamic memory) would be used more heavily in a language with classes than in
most C programs. This was the reason for the introduction of the new and d e l e t e
operators in C with Classes. The new operator that both allocates memory from the
free store and invokes a constructor to ensure initialization was borrowed from Sim
ula. The d e l e t e operator was a necessary complement because I did not want C
with Classes to depend on a garbage collector (§2.13, §10.7). The argument for the
new operator can be summarized like this. Would you rather write:

X* p = new X(2);

or

struct X * p = (struct X *) malloc(sizeof(struct X)) ;
if (p == 0) error("memory exhausted");
p->init(2);

and which version are you most likely to make a mistake in? Note that the checking
against memory exhaustion is done in both cases. Allocation using new involves an
implicit check and may invoke a user-supplied new_hand le r function; see
[2nd,§9.4.3]. The arguments against - which were voiced quite a lot at the time -
were, "but we don't really need it," and, "but someone will have used new as an
identifier." Both observations are correct, of course.

Introducing operator new thus made the use of free store more convenient and less
error-prone. This increased its use even further so that the C free-store allocation rou
tine m a l l o c () used to implement new became the most common performance bot
tleneck in real systems. This was no surprise either; the only problem was what to do
about it. Having real programs spend 50% or more of their time in m a l l o c ()
wasn't acceptable.

I found per-class allocators and deallocators very effective. The fundamental idea
is that free-store memory usage is dominated by the allocation and deallocation of lots
of small objects from very few classes. Take over the allocation of those objects in a
separate allocator and you can save both time and space for those objects and also
reduce the amount of fragmentation of the general free store.

I don't remember the earliest discussions about how to provide such a mechanism
to the users, but I do remember presenting the "assignment to t h i s " technique
(described below) to Brian Kernighan and Doug McIlroy and summing up, "This is

92 The Birth of C++ Chapter 3

ugly as sin, but it works, and if you can't think of a better way either then that's the
way I'll do it," or words to that effect. They couldn't, so we had to wait until Release
2.0 for the cleaner solution now in C++ (see §10.2).

The idea was that, by default, memory for an object is allocated "by the system"
without requiring any specific action from the user. To override this default behavior,
a programmer simply assigns to the t h i s pointer. By definition, t h i s points to the
object for which a member function is called. For example:

class X {

// . . .
public:

X(int i) ;

// . ..

};

X::X(int i)

{
this = my_alloc(sizeof(X));

// initialize

}

Whenever the X: : X (i n t) constructor is used, allocation will be done using
m y _ a l l o c () . This mechanism was powerful enough to serve its purpose, and sev
eral others, but far too low level. It didn't interact well with stack allocation or with
inheritance. It was error-prone and repetitive to use when - as is typical - an impor
tant class had many constructors.

Note that static and automatic (stack allocated) objects were always possible and
that the most effective memory management techniques relied heavily on such
objects. The string class was a typical example. S t r i n g objects are typically on the
stack, so they require no explicit memory management, and the free store they rely on
is managed exclusively and invisibly to the user by the S t r i n g member functions.

The constructor notation used here is discussed in §3.11.2 and §3.11.3.

3.10 Type Checking

The C++ type checking rales were the result of experience with C with Classes. All
function calls are checked at compile time. The checking of trailing arguments can be
suppressed by explicit specification in a function declaration. This is essential to
allow C's p r i n t f () :

int printf(const char* . . .) ; // accept any argument after
// the initial character string

// .. .

printf("date: %s %d 19%d\n",month,day,year); // maybe right

Section 3.10 Type Checking 93

Several mechanisms were provided to alleviate the withdrawal symptoms that many C
programmers feel when they first experience strict checking. Overriding type check
ing using the ellipsis was the most drastic and least recommended of those. Function
name overloading (§3.6.1) and default arguments [Stroustrup,1986] (§2.12.2) made it
possible to give the appearance of a single function taking a variety of argument lists
without compromising type safety.

In addition, I designed the stream I/O system to demonstrate that weak checking
wasn't necessary even for I/O (see §8.3.1):

cout<<"date: "<<month<<' '<<day<<" 19"<<year<<'\n';

is a type-safe version of the example above.
I saw, and still see, type checking as a practical tool rather than a goal in itself. It

is essential to realize that eliminating every type violation in a program doesn't imply
that the resulting program is correct or even that the resulting program cannot crash
because an object was used in a way that was inconsistent with its definition. For
example, a stray electric pulse may cause a critical memory bit to change its value in a
way that is impossible according to the language definition. Equating type insecuri
ties with program crashes and program crashes with catastrophic failures such as air
plane crashes, telephone system breakdowns, and nuclear power station meltdowns is
irresponsible and misleading.

People who make statements to that effect fail to appreciate that the reliability of a
system depends on all of its parts. Ascribing an error to a particular part of the total
system is simply pin-pointing the error. We try to design life-critical systems so that
a single error or even many errors will not lead to a "crash." The responsibility for
the integrity of the system is in the people who produce the system and not in any one
part of the system. In particular, type safety is not a substitute for testing even though
it can be a great help in getting a system ready for testing. Blaming programming lan
guage features for a specific system failure, even a purely software one, is confusing
the issue; see also §16.2.

3.11 Minor Features
During the transition from C with Classes to C++, several minor features were added.

3.11.1 Comments

The most visible minor change was the introduction of BCPL-style comments:

int a; /* C-style explicitly terminated comment */
int b; // BCPL-style comment terminated by end-of-line

Since both styles of comments are allowed, people can use the style they like best.
Personally, I like the BCPL-style for one-line comments. The immediate cause for
introducing the / / comments was that I sometimes made silly mistakes forgetting to
terminate C comments and found that the three extra characters I used to terminate a

94 The Birth of C++ Chapter 3

/ * comment sometimes made my lines wrap around on my screen. I also noted that
/ / comments were more convenient than / * comments for commenting out small
sections of code.

The addition of / / was soon discovered not to be 100% C compatible because of
examples such as

x = a/ /* d i v i d e * / b

which means x=a in C++ and x = a / b in C. At the time and also now, most C++ pro
grammers considered such examples of little real importance.

3.11.2 Constructor Notation

The name ' 'new-function'' for constructors had been a source of confusion, so the
named constructor was introduced. At the same time, the concept was extended to
allow constructors to be used explicitly in expressions. For example,

complex i = complex(0,1);

complex operator+(complex a, complex b)
{

return complex(a.re+b.re,a.im+b.im);
}

The expressions of the form complex (x, y) are explicit invocations of a construc
tor for class complex.

To minimize the number of new keywords, I didn't use an explicit syntax like this:

c l a s s X {
constructor();

destructor();

// . . .

};

Instead, I chose a declaration syntax that mirrored the use of constructors:

c l a s s X {
X(); // constructor

~X(); // destructor (~ is the C complement operator)

// . . .

};

This may have been overly clever.
The explicit invocation of constructors in expressions proved very useful, but it is

also a fertile source of C++ parsing problems. In C with Classes, new () and
d e l e t e () functions had been p u b l i c by default. This anomaly was eliminated so
that C++ constructors and destructors obey the same access control rules as other
functions. For example:

Section 3.11.2 Constructor Notation 95

class Y {

Y(); // private constructor

// . . .

};

Y a; // error: cannot access Y::Y(): private member

This led to several useful techniques based on the idea of controlling operations by
hiding the functions that perform them; see §11.4.

3.11.3 Qualification

In C with Classes, a dot was used to express membership of a class as well as to
express selection of a member of a particular object. This had been the cause of some
minor confusion and could also be used to construct ambiguous examples. Consider:

class X {

int a ;
public:

void set(X);

};

void X.set(X arg) { a = arg.a; }; // so far so good

class X X; // common C practice:

// class and object with the same name

void f()

{

// . . .

X.a; // now, which X do I mean?

// the class or the object?

// .. .

}

To alleviate this, : : was introduced to mean membership of class, and . was retained
exclusively for membership of object. The example thus becomes:

void X::set(X arg) { a = arg.a; };

class X X;

void g()

{
// . . .

X.a; // object.member

X::a; // class::member

// .. .

}

96 The Birth of C++ Chapter 3

3.11.4 Initialization of Global Objects

It was my aim to make user-defined types usable wherever built-in types were, and I
had experienced the lack of global variables of class type as a source of performance
problems in Simula. Consequently, global variables of class type were allowed in
C++. This had important and somewhat unexpected ramifications. Consider:

class Double {
// . . .
Double(double);

};

Double s1 = 2; // construct s1 from 2
Double s2 = sqrt(2); // construct s1 from sqrt(2)

Such initialization cannot in general be done completely at compile time or at link
time. Dynamic (run-time) initialization is necessary. Dynamic initialization is done
in declaration order within a translation unit. No order is defined for initialization of
objects in different translation units except that all static initialization takes place
before any dynamic initialization.

3.11.4.1 Problems with Dynamic Initialization

My assumption had been that global objects would be rather simple and therefore
require relatively uncomplicated initialization. In particular, I had expected that glo
bal objects with initialization that depended on other global objects in other compila
tion units would be rare. I regarded such dependencies simply as poor design and
therefore didn't feel obliged to provide specific language support to resolve them. For
simple examples, such as the one above, I was right. Such examples are useful and
cause no problems. Unfortunately, I found another and more interesting use of
dynamically initialized global objects.

A library often has some actions that need to be performed before its individual
parts can be used. Alternatively, a library may provide objects that are supposed to be
pre-initialized so that users can use them directly without first having to initialize
them. For example, you don't have to initialize C's s t d i n and s t d o u t : the C
startup routine does that for you. Similarly, C's e x i t () closes s t d i n and
s t d o u t . This is a very special treatment, and no equivalent facilities are offered for
other libraries. When I designed the stream I/O library, I wanted to match the conve
nience of C's I/O without introducing special-purpose warts into C++. Thus, I simply
relied on dynamic initialization of c o u t and c i n .

That worked nicely, except that I had to rely on an implementation detail to ensure
that c o u t and c i n were constructed before user code was run and destroyed after the
last user code had completed. Other implementers were less considerate and/or care
ful. People found their programs could dump core because c o u t was used before
constructed, or some of their output could be lost because c o u t had been destroyed
(and flushed) too soon. In other words, we had been bitten by the order dependency
that I had considered "unlikely and poor design."

Section 3.11.4.2 Workarounds for Order Dependencies 97

3.11.4.2 Workarounds for Order Dependencies

The problem wasn't insurmountable, though. There are two solutions: The obvious
one is to add a first-time switch to every member function. This relies on global data
being initialized to 0 by default. For example:

c l a s s Z {
static int first_time;

void init();
// . ..

public:

void f1();

// . . .

void fn() ;

};

Every member function would look like this:

void Z::fl()
{

if (first_time ==0) {
init() ;
first_time = 1;

}
// . . .

}

This is tedious and the overhead is potentially significant for simple functions such as
a single character output operation.

In his redesign of stream I/O (§8.3.1), Jerry Schwarz used a clever variant of this
[Schwarz,1989]. An < i o s t r e a m . h> header contains something like this:

class io_counter {
static int count;

public:
io_counter()
{

if (count++ == 0) { /* initialize cin, cout, etc. */ }
}

~io_counter()
{

if (--count == 0) { /* clean up cin, cout, etc. */ }
}

};

s t a t i c io_counter i o _ i n i t ;
Now every file that includes the iostream header also creates an i o _ c o u n t e r object
and initializes it with the effect of increasing i o _ c o u n t e r : : coun t . The first time
this happens the library objects will be initialized. Since the library header appears
before any use of the library facilities proper initialization is ensured. Since

98 The Birth of C++ Chapter 3

destruction is done in reverse order of construction, this technique also ensures that
cleanup is done after the last use of the library.

This technique solves the order dependency problem in general at the trivial cost
of having the library provider add a few lines of highly stylized code. Unfortunately,
the performance implications can be serious. Where such tricks are used, most C++
object files will contain dynamic initialization code and (assuming an ordinary linker)
that means that these dynamic initialization routines are scattered throughout the
address space of a process. On a virtual memory system, it means that most pages of
a program will be brought into primary memory during the initial startup phase and
during the final cleanup. This is not well-behaved virtual memory use and can lead to
seconds of delays in the startup of significant applications.

A trivial solution for an implementer is to modify the linker to coalesce dynamic
startup code in a single place. Also, the problem doesn't occur unless a system sup
ports some form of dynamic loading of program into primary memory. However, that
is cold comfort for a C++ user who suffers from the problem [Reiser, 1992]. Funda
mentally, this violates the dictum that a C++ feature not only has to be useful, it also
has to be affordable (§4.3). Can the problem be solved by adding a feature? On the
surface, it can't because neither a language design nor even an official standards com
mittee can legislate efficiency. The proposals I have seen attack the ordering problem
- which has already been solved by Jerry's initialization trick - rather than the effi
ciency problems they imply. I suspect that the real solution is to find some means to
encourage implementers to avoid "virtual memory bashing" by dynamic initial
ization routines. Techniques for achieving that are known, but some explicit wording
in the standard may be needed as encouragement.

3.11.4.3 Dynamic Initialization of Built-in Types

In C, a static object can only be initialized using a slightly extended form of constant
expressions. For example:

double PI = 22/7; /* ok */
double sqrt2 = sqrt(2); /* error in C */

However, C++ allows completely general expressions for the initialization of class
objects. For example:

Double s2 = sqrt(2); //ok

Thus, the built-in types had been made "second-class citizens" because the support
for classes had progressed beyond what was provided for the built-in types. The ano
maly was easily removed, but the facility was not made generally available until
Release 2.0:

double sqrt2 = sqrt(2); // ok in C++ (2.0 and higher)

Section 3.11.5 Declaration Statements 99

3.11.5 Declaration Statements

I borrowed the Algol68 notion that a declaration can be introduced wherever it is
needed (and not just at the top of some block). Thus, I enabled an "initialize-only"
or "single-assignment" style of programming that is less error-prone than traditional
styles. This style is essential for references and constants that cannot be assigned and
inherently more efficient for types where default initialization is expensive. For
example:

void f(int i, const char* p)

{

if (i<=0) error("negative index");

const int len = strlen(p);

String s(p);

// . . .

}

Having constructors guarantee initialization (§2.11) is another part of the effort to
minimize problems caused by uninitialized variables.

3.11.5.1 Declarations in for-statements

One of the most common reasons to introduce a new variable in the middle of a block
is to get a variable for a loop. For example:

int i ;
for (i=0; i<MAX; i++) // ...

To avoid separating the declaration of the variable from its initialization, I allowed the
declaration to be moved after the fo r :

for (i n t i=0; i<MAX; i++) // . . .

Unfortunately, I didn't take the opportunity to change the semantics to limit the scope
of a variable introduced in this way to the scope of the for-statement. The reason for
this omission was primarily to avoid adding a special case to the rule that says ' 'the
scope of a variable extends from its point of declaration to the end of its block."

This rule is the subject of much discussion and may be revised to match the rule
for declarations in conditions (§3.11.5.2).

3.11.5.2 Declarations in Conditions

Where people conscientiously try to avoid uninitialized variables, they are left with:
[1] Variables used for input:

i n t i ;
c in>>i ;

[2] Variables used in conditions:

100 The Birth of C++ Chapter 3

Tok* c t ;
if (ct = g e t t o k ()) { /* . . . */ }

During the design of the run-time type identification mechanism in 1991 (§14.2.2.1), I
realized that the latter cause of uninitialized variables could be eliminated by allowing
declarations to be used as conditions. For example:

if (Tok* ct = g e t t o k ()) {
// ct is in scope here

}

// ct is not in scope here

This feature is not merely a cute trick to save typing. It is a direct consequence of the
ideal of locality. By joining the declaration of a variable, its initialization, and the test
on the result of that initialization, we achieve a compactness of expression that helps
eliminate errors arising from variables being used before they are initialized. By lim
iting their scope to the statement controlled by the condition, we also eliminate the
problem of variables being "reused" for other purposes or accidentally used after
they were supposed to have outlived their usefulness. This eliminated a further minor
source of errors.

The inspiration for allowing declarations in expressions came from expression lan
guages - in particular from Algol68. I "remembered" that Algol68 declarations
yielded values and based my design on that. Later, I found my memory had failed
me: declarations are one of the very few constructs in Algol68 that do not yield val
ues! I asked Charles Lindsey about this and received the answer, "Even Algol68 has a
few blemishes where it isn't completely orthogonal." I guess this just proves that a
language doesn't have to live up to its own ideals to provide inspiration.

If I were to design a language from scratch, I would follow the Algol68 path and
make every statement and declaration an expression that yields a value. I would prob
ably also ban uninitialized variables and abandon the idea of declaring more that one
name in a declaration. However, these ideas are clearly far beyond what would be
acceptable for C++.

3.12 Relationship to Classic C

With the introduction of the name C++ and the writing of a C++ reference manual
[Stroustrup,1984], compatibility with C became an issue of major importance and a
point of controversy.

Also, in late 1983 the branch of Bell Labs that developed and supported UNIX
and produced AT&T's 3B series of computers became interested in C++ to the point
where they were willing to put resources into the development of C++ tools. Such
development was necessary for the evolution of C++ from a one-man show to a lan
guage that a corporation could base critical projects on. Unfortunately, it also implied
that development management needed to consider C++.

Section 3.12 Relationship to Classic C 101

The first demand to emerge from development management was that of 100%
compatibility with C. The ideal of C compatibility is quite obvious and reasonable,
but the reality of programming isn't that simple. For starters, which C should C++ be
compatible with? C dialects abounded, and though ANSI C was emerging, it was still
years from having a stable definition, and its definition allowed many dialects. I
remember at the time calculating - partly in jest - that there were about 342 strictly-
conforming ANSI C dialects. That number was based on taking the number of unde
fined and implementation-defined aspects and using it as the exponent for the average
number of alternatives.

Naturally, the average user who wanted C compatibility wanted C++ to be com
patible with the local C dialect. This was an important practical problem and a great
concern to me and my friends. It seemed far less of a concern to business-oriented
managers and salesmen, who either didn't quite understand the technical details or
would like to use C++ to tie users into their software and/or hardware. The Bell Labs
C++ developers, on the other hand, independently of who they worked for, were
"emotionally committed to portability as a concept [Johnson, 1992]" and resisted
management pressure to enshrine a particular C dialect in the C++ definition.

Another side of the compatibility issue was more critical: "In which ways must
C++ differ from C to meet its fundamental goals?" Also, "In which ways must C++
be compatible with C to meet its fundamental goals?" Both sides of the issue are
important, and revisions were made in both directions during the transition from C
with Classes to Release 1.0 of C++. Slowly and painfully, an agreement emerged that
there would be no gratuitous incompatibilities between C++ and ANSI C (when it
became a standard) [Stroustrup,1986] but also that there was such a thing as an
incompatibility that was not gratuitous. Naturally, the concept of "gratuitous incom
patibilities" was a topic of much debate and it took up a disproportionate part of my
time and effort. This principle has lately been known as "C++: As close to C as pos
sible - but no closer," after the title of a paper by Andrew Koenig and me
[Koenig,1989]. One measure of the success of this policy is that every example in
K&R2 [Kernighan,1988] is written in the C subset of C++. Cfront was the compiler
used for the primary testing of the K&R2 code examples.

Some conclusions about modularity and how a program is composed out of sepa
rately compiled parts were explicitly reflected in the original C++ reference manual
[Stroustrup,1984]:

[a] Names are private unless they are explicitly declared public.
[b] Names are local to their file unless explicitly exported from it.
[c] Static type rules are checked unless the check is explicitly suppressed.
[d] A class is a scope (implying that classes nest properly).

Point [a] doesn't affect C compatibility, but [b], [c], [d] imply incompatibilities:
[1] The name of a non-local C function or object is by default accessible from

other compilation units.
[2] C functions need not be declared before use and calls are by default not type

checked.
[3] C structure names don't nest (even when they are lexically nested).

102 The Birth of C++ Chapter 3

In addition,
[4] C++ has a single namespace, whereas C had a separate namespace for ' 'struc

ture tags" (§2.8.2).
The "compatibility wars" now seem petty and boring, but some of the underlying
issues are still unresolved, and we are still struggling with them in the ANSI/ISO stan
dards committee. I strongly suspect that the reason the compatibility wars were
drawn out and curiously inconclusive was that we never quite faced the deeper issues
related to the differing goals of C and C++ and saw compatibility as a set of separate
issues to be resolved individually.

Typically, the least fundamental issue, [4] "namespaces," took up the most effort,
but was eventually resolved by a compromise in [ARM].

I had to compromise the notion of a class as a scope, [3], and accept the C "solu
tion' ' to be allowed to ship Release 1.0. One practical problem was that I had never
realized that a C struct didn't constitute a scope so that examples like this:

struct outer {
struct inner {

int i ;
};

i n t j ;

};

s t r u c t inner a = { 1 };
are legal C. Not only that, but such code was found in the standard UNIX header
files. When the issue came up towards the end of the compatibility wars, I didn't
have time to fathom the implications of the C "solution," and it was much easier to
agree than to fight the issue. Later, after many technical problems and much discon
tent from users, nested class scopes were reintroduced into C++ in 1989 [ARM]
(§13.5).

After much hassle, C++'s stronger type checking of function calls was accepted
(unmodified). An implicit violation of the static type system is the original example
of a C/C++ incompatibility that is not gratuitous. The ANSI C committee adopted a
slightly weaker version of C++'s rules and notation on this point and declared uses
that don't conform to the C++ rules obsolete.

I had to accept the C rule that global names are by default accessible from other
compilation units. There simply wasn't any support for the more restrictive C++ rule.
This meant that C++, like C, lacked an effective mechanism for expressing modularity
above the level of the class and the file. This led to a series of complaints until the
ANSI/ISO committee accepted namespaces (§17) as the mechanisms to avoid name
space pollution. However, Doug McIlroy and others argued that C programmers
would not accept a language in which every object and function meant to be accessi
ble from another compilation unit had to be explicitly declared as such. They were
probably right at the time and saved me from making a serious mistake. I am now
convinced that the original C++ solution wasn't elegant enough anyway.

One problem with compatibility issues is that there always seem to be two camps

Section 3.12 Relationship to Classic C 103

that are so sure of their views they hardly feel the need to argue their cases. The first
camp demands 100% compatibility - often without having understood the implica
tions. For example, many who demand 100% C compatibility are surprised to learn
that this would imply incompatibilities with existing C++ that would cause tens of
millions of lines of C++ code to stop compiling. In many cases, the demand for 100%
compatibility is based on the assumption that C++ has few users. It is also not
unusual for people to hide ignorance of C++ or dislike of newer features behind a
demand for 100% compatibility.

The other camp can be equally annoying by declaring C compatibility a non-issue
and arguing for new features that would seriously inconvenience people who want to
mix C and C++ code. Naturally, the more extreme claims of each camp make the
other camp even further entrenched out of fear of losing aspects of a language they
care about. Where - as almost always - cooler heads prevail and the needs of the
people involved and the actual facts of C and C++ usage are taken into account, the
debates usually converge on the more constructive examination of the minutiae of the
compromise. At the organizational meeting of the X3J16 ANSI committee, Larry
Rosier, the original ANSI C committee editor, explained to a skeptical Tom Plum,
"C++ is C as we tried to make it, but couldn't." This is probably an overstatement,
but not too far from the truth for the common subset of C and C++.

3.13 Tools for Language Design
Theory and tools more advanced than a blackboard have not been given much space
in the description of the design and evolution of C++. I tried to use YACC (an
LALR(l) parser generator [Aho,1986]) for the grammar work, and was defeated by
C's syntax (§2.8.1). I looked at denotational semantics, but was again defeated by
quirks in C. Ravi Sethi had looked into that problem and found that he couldn't
express the C semantics that way [Sethi,1980].

The main problem was the irregularity of C and the number of implementation-
dependent and undefined aspects of a C implementation. Much later, the ANSI/ISO
C++ committee had a stream of formal definition experts explain their techniques and
tools and give their opinions of the extent to which a genuine formal approach to the
definition of C++ would help us in the standards effort. I also looked at the formal
specifications of ML and Modula-2 to see if a formal approach was likely to lead to a
shorter and more elegant description than traditional English text would. I don't think
that such a description of C++ would be less likely to be misinterpreted by imple-
menters and expert users. My conclusion is that a formal definition of a language that
is not designed together with a formal definition method is beyond the ability of all
but a handful of experts in formal definition. This confirms my conclusion at the
time.

However, abandoning hope of a formal specification left us at the mercy of impre
cise and insufficient terminology. Given that, what could I do to compensate? I tried
to reason about new features both on my own and with others to check my logic.

104 The Birth of C++ Chapter 3

However, I soon developed a healthy disrespect for arguments (definitely including
my own) because I found that it is possible to construct a plausible logical argument
for just about any feature. On the other hand, you simply don't get a useful language
by accepting every feature that makes life better for someone. There are far too many
reasonable features and no language could provide them all and stay coherent. Conse
quently, wherever possible, I tried to experiment.

Unfortunately, you usually cannot conduct proper experiments either. It is not
possible to provide full-scale systems with implementation, tools, and education and
have some people use the one and some people use the other and measure the differ
ences. People are too different, projects are too different, and suggested features
mutate during the effort to define, implement, and explain them. So I used the effort
to define, implement, and explain features as a design aid. Once a feature was imple
mented, I and a few others used it and I tried as best I could to be highly suspicious of
any positive claims made. As far as possible, I relied on the opinions of experienced
programmers considering real applications only. Thus, I tried to compensate for the
fundamental limitations of my "experiments." These experiments were usually only
comparisons of implementations, examinations of quality of source code for small
examples, together with run-time and space measurements on those examples. At
least I had feedback in the design process so I could rely on experience rather than on
pure thought alone. I firmly believe that language design isn't an exercise in pure
thought, but a very practical exercise in balancing needs, ideals, techniques, and con
straints. A good language is not merely designed, it is grown. The exercise has more
to do with engineering, sociology, and philosophy than with mathematics.

In retrospect, I wish I had known a way of formalizing the rules for type conver
sion and argument matching. This topic has proven very hard to get right and to doc
ument unambiguously. Unfortunately, I suspect that no rational and general formal
ism would be able to deal with the very irregular C rules governing the built-in types
and operators in a convenient manner.

There is a great temptation for a language designer to provide features and ser
vices where the alternative is for users to use a workaround. The screams when an
addition is rejected are usually far louder than the complaints that ' 'yet another use
less feature has been added." This is also a serious problem for standards committees
(§6.4). The worst variant of this argument is the cult of orthogonality. Many people
feel that if the language would be more orthogonal if it provided a feature, then that is
a conclusive argument for accepting that feature. I agree that orthogonality is a good
thing in principle, but note that it also carries costs. Usually, despite all good inten
tions about orthogonality, the definition of a combination of features does require
extra work on the manual and the tutorial material. Most often, implementation of
combinations prescribed by the ideal of orthogonality is harder than people realize. In
the case of C++, I always considered the run-time and space cost of orthogonality for
people who did not use a combination. If that cost couldn't at least in principle be
made zero, I was most reluctant to admit the feature - however orthogonal. Thus
orthogonality is a secondary principle - after the primary but subjective concerns of
utility and efficiency.

Section 3.13 Tools for Language Design 105

My impression was and is that many programming languages and tools represent
solutions looking for problems, and I was determined that my work should not fall
into that category. Thus, I follow the literature on programming languages and the
debates about programming languages primarily looking for ideas for solutions to
problems my colleagues and I have encountered in real applications. Other program
ming languages constitute a mountain of ideas and inspiration - but it has to be mined
carefully to avoid featurism and inconsistencies. The main sources for ideas for C++
were Simula, Algol68, and later Clu, Ada, and ML. The key to good design is insight
into problems, not the provision of the most advanced features.

3.14 The C++ Programming Language (1st edition)

In the autumn of 1984, my next-door neighbor at work, Al Aho, suggested that I write
a book on C++ structured along the lines of Brian Kernighan and Dennis Ritchie's
The C Programming Language [Kernighan, 1978] based on my published papers,
internal memoranda, and the C++ reference manual. Completing the book took nine
months. I completed the book mid-August 1985 and the first copies appeared mid-
October. Thanks to a curiosity in the US publishing industry the book has a 1986
copyright.

The preface mentions the people who had by then contributed the most to C++:
Tom Cargill, Jim Coplien, Stu Feldman, Sandy Fraser, Steve Johnson, Brian Ker
nighan, Bart Locanthi, Doug McIlroy, Dennis Ritchie, Larry Rosier, Jerry Schwarz,
and Jonathan Shopiro. My criterion for adding a person to that list was that I was able
to identify a specific C++ feature that the person has caused to be added.

The book's opening line, "C++ is a general-purpose programming language
designed to make programming more enjoyable for the serious programmer," was
deleted twice by reviewers who refused to believe that the purpose of programming-
language design could be anything but some serious mutterings about productivity,
management, and software engineering. However,

' 'C++ was designed primarily so that the author and his friends would not have to
program in assembler, C, or various modern high-level languages. Its main pur
pose is to make writing good programs easier and more pleasant for the individual
programmer."

This was the case whether those reviewers were willing to believe it or not. The focus
of my work is the person, the individual (whether part of a group or not), the program
mer. This line of reasoning has been strengthened over the years and is even more
prominent in second edition [2nd] where design and software development issues are
discussed in greater depth.

The C++ Programming Language was the definition of C++ and the introduction
to C++ for an unknown number of programmers, and its presentation techniques and
organization (borrowed with acknowledgments if not always sufficient skill from The
C Programming Language) have become the basis for an almost embarrassing num
ber of articles and books. It was written with a fierce determination not to preach any

106 The Birth of C++ Chapter 3

particular programming technique. In the same way I feared to build limitations into
the language out of ignorance and misguided paternalism, I didn't want the book to
turn into a manifesto for my personal preferences.

3.15 The Whatis? Paper
Having shipped Release 1.0 and sent the camera-ready copy of the book to the print
ers, I finally found time to reconsider larger issues and to document overall design
issues. Just then, Karel Babcisky (the chairman of the Association of Simula Users)
phoned from Oslo with an invitation to give a talk on C++ at the 1986 ASU confer
ence in Stockholm. Naturally, I wanted to go, but I was worried that presenting C++
at a Simula conference would be seen as a vulgar example of self-advertisement and
an attempt to steal users away from Simula. After all, I said, ' 'C++ is not Simula so
why would Simula-users want to hear about it." Karel replied, "Ah, we are not hung
up on syntax." This provided me with an opportunity to write not only about what
C++ was but also what it was supposed to be and where it didn't measure up to those
ideals. The result was the paper What is "Object-Oriented Programming?"
[Stroustrup,1986b]. An extended version was presented to the first ECOOP confer
ence in June 1987 in Paris.

The significance of this paper is that it is the first exposition of the set of tech
niques that C++ was aiming to provide support for. All previous presentations, to
avoid dishonesty and hype, had been restricted to describe what features were already
implemented and in use. The "whatis paper" defined the set of problems I thought a
language supporting data abstraction and object-oriented programming ought to solve
and gave examples of language features needed.

The result was a reaffirmation of the importance of the "multi-paradigm" nature
of C++:

"Object-oriented programming is programming using inheritance. Data abstrac
tion is programming using user-defined types. With few exceptions, object-
oriented programming can and ought to be a superset of data abstraction. These
techniques need proper support to be effective. Data abstraction primarily needs
support in the form of language features, and object-oriented programming needs
further support from a programming environment. To be general purpose, a lan
guage supporting data abstraction or object-oriented programming must enable
effective use of traditional hardware."

The importance of static type checking was also strongly emphasized. In other words,
C++ follows the Simula rather than the Smalltalk model of inheritance and type
checking:

"A Simula or C++ class specifies a fixed interface to a set of objects (of any
derived class), whereas a Smalltalk class specifies an initial set of operations for
objects (of any subclass). In other words, a Smalltalk class is a minimal specifica
tion and the user is free to try operations not specified, whereas a C++ class is an
exact specification and the user is guaranteed that only operations specified in the

Section 3.15 The Whatis? Paper 107

class declaration will be accepted by the compiler."
This has deep implications for the way one designs systems and for what language
facilities are needed. A dynamically typed language such as Smalltalk simplifies the
design and implementation of libraries by postponing type checking to run time. For
example (using C++ syntax):

void f() // dynamic checking only, not C++
{

stack cs;
cs.push(new Saab900);
cs.pop()->takeoff(); // Oops! Run-time error:

//a car does not have a
// takeoff method.

}

This delayed type-error detection was considered unacceptable for C++, yet there had
to be a way of matching the notational convenience and the standard libraries of a
dynamically typed language. The notion of parameterized types was presented as the
(future) solution for that problem in C++:

The key reason for considering compile-time detection of such problems essential was
the observation that C++ is often used for programs executing where no programmer
is present. Fundamentally, the notion of static type checking was seen as the best way
of providing as strong guarantees as possible for a program rather than merely a way
of gaining run-time efficiency.

This is partly a special case of the general notion that what can be guaranteed by
machine and from general rules shouldn't be done by people and by debugging. Nat
urally, it also helps debugging. However, the most fundamental reason for relying on
statically checked interfaces was that I was - as I still am - firmly convinced that a
program composed out of statically type-checked parts is more likely to faithfully
express a well-thought-out design than a program relying on weakly-typed interfaces
or dynamically-checked interfaces. Please remember though, that not every interface
can be exclusively statically checked and that statical checking doesn't imply the
absence of errors.

The "whatis" paper lists three aspects in which C++ was deficient:
[1] "Ada, Clu, and ML support parameterized types. C++ does not; the syntax

void g()
{

stack(plane*) cs;

cs.push(new Saab37b); // ok a Saab37b is a plane
cs.push(new Saab900); // error, type mismatch:

// car passed, plane* expected.

cs.pop()->takeoff() ; // no run-time check needed
cs.pop()->takeoff(); // no run-time check needed

}

108 The Birth of C++ Chapter 3

used here is simply devised as an illustration. Where needed, parameterized
classes are "faked" using macros. Parameterized classes would clearly be
extremely useful in C++. They could easily be handled by the compiler, but
the current C++ programming environment is not sophisticated enough to sup
port them without significant overhead and/or inconvenience. There need not
be any run-time overheads compared with a type specified directly."

[2] "As programs grow, and especially when libraries are used extensively, stan
dards for handling errors (or more generally: "exceptional circumstances")
become important. Ada, Algol68, and Clu each support a standard way of
handling exceptions. Unfortunately, C++ does not. Where needed, exceptions
are "faked" using pointers to functions, "exception objects," "error states,"
and the C library s i g n a l and longjmp facilities. This is not satisfactory in
general and fails even to provide a standard framework for error handling."

[3] "Given this explanation, it seems obvious that it might be useful to have a
class B inherit from two base classes Al and A2. This is called multiple inher
itance."

All three facilities were linked to the need to provide better (that is, more general and
more flexible) libraries. All are now available in C++ (templates, §15; exceptions,
§16; multiple inheritance, §12). Note that adding multiple inheritance and templates
was considered plausible directions for further evolution as early as
[Stroustrup, 1982b]. That paper also mentions exception handling as a possibility, but
I was worried rather that positive about the possible need to move in that direction.

As usual, I pointed out that demands on run-time and space efficiency, and of the
ability to coexist with other languages on traditional systems provided "limits to per
fection" that could not be violated by a language claiming to be "general purpose."

4
C++ Language Design Rules

If the map and the terrain disagree,
trust the terrain.

- Swiss army aphorism

4.1 Rules and Principles

To be genuinely useful and pleasant to work with, a programming language must be
designed according to an overall view that guides the design of its individual language
features. For C++, this overall view takes the form of a set of rules and constraints. I
call them rules because I find the term principles pretentious in a field as poor in gen
uine scientific principles as programming language design. Also, to many people the
term principle implies the unrealistic implication that no exceptions are acceptable.
My rules for the design of C++ most certainly have exceptions. In fact, if a rule and
practical experience are in conflict, the rule gives way. This may sound crude, but it
is a variant of the principle that theory must account for experimental data or be
replaced by a better theory.

These rules cannot be brainlessly applied; nor can they be replaced by a few glib
slogans. I saw my job as language designer as deciding which problems needed to be
addressed, deciding which problems could be addressed within the framework of C++,
and then maintaining balance between the various rules of design for the actual lan
guage feature.

The rules guided the working out of features. However, the framework for
improvements was provided by the fundamental aims of C++:

Rules for the design of C++ — overall design aims — sociological rules —
C++ as a language supporting design — language-technical rules — C++ as
a language for low-level programming.

110 C++ Language Design Rules Chapter 4

C++'s evolution must be driven by real problems: In computer science, as in
many other fields, we see too many people searching for a problem to apply their pet
solution to. I don't know any foolproof way of keeping fads from distorting my view
of what is important, but I am acutely aware that many of the language features pre
sented to me as essential are infeasible within the framework of C++ and often irrele
vant to real-world programmers.

I have organized the rules into four broad sections. The first contains overall ide
als for the whole language. These are so general that individual language features
don't enter directly into the picture. The second set of rules primarily addresses
C++'s role in supporting design. The third addresses technicalities related to the form
of the language, and the fourth focuses on C++'s role as a language for low-level sys
tems programming.

The formulation of the rules here has the benefit of hindsight, but the rules and
sentiments expressed dominated my thinking from before the completion of the first
C++ release in 1985, and - as described in the previous chapters - many of these rules
were part of the original conception of C with Classes.

4.2 General Rules

The most general and most important C++ rules have little to do with language-
technical issues. They are almost sociological in their focus on the community C++
serves. The nature of the C++ language is largely determined by my choice to serve
the current generation of systems programmers solving current problems on current
computer systems. Importantly, because the meaning and nature of current changes
with time, C++ had to evolve to meet the needs of its users; it could not be defined
once and for all.

Aims:
C++ makes programming more enjoyable for serious programmers.
C++ is a general-purpose programming language that

- is a better C
- supports data abstraction
- supports object-oriented programming

General rules:
C++'s evolution must be driven by real problems.
Don't get involved in a sterile quest for perfection.
C++ must be useful now.
Every feature must have a reasonably obvious implementation.
Always provide a transition path.
C++ is a language, not a complete system.
Provide comprehensive support for each supported style.
Don't try to force people.

Section 4.2 General Rules 111

The right motivation for a change to C++ is for several independent programmers
to demonstrate how the language is insufficiently expressive for their projects. I pre
fer input from non-research projects. Whenever possible, I involve real users in the
effort to find and complete a solution. I read the programming language literature
avidly looking for solutions to such problems and also for general techniques that
might help. However, I find the literature wholly unreliable on the subject of what is
a genuine problem. Theory itself is never sufficient justification for adding or remov
ing a feature.

Don't get involved in a sterile quest for perfection: No programming language
is perfect, and none will ever be as long as problems and systems keep changing. Pol
ishing a language for years trying to reach some notion of perfection simply deprives
programmers of benefits from the progress made thus far. It also deprives the lan
guage designer of genuine feedback. Without appropriate feedback, a language can
be evolved into irrelevance. Problems, computer systems, and - most importantly -
people differ radically between environments so that a "perfect fit" to some small
environment is almost certainly too specialized to thrive in the larger real world. On
the other hand, programmers spend most of their time modifying or interfacing to old
code. They need stability to get real work done. Once a language is in real use, radi
cal changes are infeasible, and even small changes are difficult without harming users.
Consequently, the necessary quest for significant improvement must rely on genuine
feedback and must be accompanied by a serious concern for compatibility, transition,
and education. As the language matures, one must increasingly prefer alternatives
based on tools, techniques, and libraries over language changes.

Not every problem needs to be solved by C++, and not every problem in C++ is
significant enough to warrant a solution. For example, C++ need not be extended to
cope directly with pattern matching or theorem proving, and the well-known C opera
tor precedence pitfalls (§2.6.2) are better left alone or addressed through warning
messages.

C++ must be useful now: Most programming is relatively mundane, done on rel
atively low-powered computers, running relatively dated operating systems and tools.
Most programmers have less formal training than they would have liked and most
have insufficient time to upgrade their knowledge. To serve these programmers, C++
must be useful to someone with average skills, using an average computer.

Though tempted at times, I had no real desire to abandon these people to gain the
freedom to adjust my designs to top-of-the-line systems and the tastes of computer
science researchers.

The meaning of this rule - like most of the others - changes with time and partly
as a result of C++'s success. More powerful computers are now available, and more
programmers are now acquainted with the basic concepts and techniques that C++
relies on. Further, as people's ambitions and expectations grow, the problems faced
by programmers change. This implies that features requiring more computer resources
and more maturity from programmers can and must be considered. Exception hand
ling (§16) and run-time type identification (§14.2) are examples of this.

Every feature must have a reasonably obvious implementation: No feature

112 C++ Language Design Rules Chapter 4

should require complicated algorithms for correct or efficient implementation. Ide
ally, obvious analysis and code-generation strategies should exist, and these should be
good enough for real use. If added thought can produce even better results, so much
the better. Most features were implemented, used experimentally, and revised before
being accepted. Where this pattern was not followed, as in the case of the template
instantiation mechanism (§15.10), problems surfaced.

However, there are many more users than there are compiler writers, so where
there is a real tradeoff between compiler complexity and complexity of use, the reso
lution must favor the users. I have earned the right to this opinion through years of
compiler maintenance.

Always provide a transition path: C++ must grow gradually to serve its users
and to benefit from feedback. This implies that great care must be taken to ensure
that older code continues to work. When an incompatibility is unavoidable, great care
must be taken to help users update their programs. Similarly, there has to be a path
from the use of error-prone C-like techniques to a more effective use of C++.

The general strategy for eliminating an unsafe, error-prone, or simply awkward
language feature is first to provide a better alternative, then recommend that people
avoid the old feature or technique, and only years later - if at all - remove the offend-[
ing feature. This strategy can be effectively supported by warning messages from the
compilers. Often, it is not feasible to eliminate a feature or correct a mistake (the rea
son is typically the need for C compatibility); the alternative is warnings (§2.6.2).
Thus, a C++ implementation can be safer than it appears from the language definition.

C++ is a language, not a complete system: A programming environment has
many components. One approach has been to merge all parts into a single, "inte
grated" system. Another approach has been to maintain the classical distinctions
between parts of a system such as compilers, linkers, language run-time support
libraries, I/O libraries, editors, file systems, databases, etc. C++ follows the latter
approach. Through libraries, calling conventions, etc., C++ adapts to the system con
ventions guiding interoperability of language and tools on each system. This is key
for easy portability of implementations and - more importantly - the key to coopera
tion between code written in different languages. This also allows sharing of tools,
eases the cooperation between programmers with different preferences in program
ming languages, and eases the use of many languages by an individual programmer.

C++ is designed to be one language among many. C++ enables tool development,
but does not mandate particular forms. The programmer retains freedom of choice. A
key idea is that C++ and its associated tools should "feel" right for a given system
rather than impose some particular view of what a system and an environment is.
This is especially important for large systems and systems with unusual constraints.
Such systems are not usually well supported because "standard" systems tend to be
specialized to serve individuals or small groups doing fairly ' 'average'' work.

Provide comprehensive support for each supported style: C++ must grow to
meet the needs of serious developers. Simplicity is essential, but it is considered rela
tive to the complexity of the projects in which C++ is used. Maintainability and run
time performance of systems written in C++ is considered more important than

Section 4.2 General Rules 113

keeping the language definition short. This implies a relatively large language.
It also implies - as experience showed - that many hybrid styles of programming

must be supported. People don't just write classes that fit a narrowly defined abstract
data type or object-oriented style; they also - often for perfectly good reasons - write
classes that take on aspects of both. They also write programs in which different parts
use different styles to match needs and taste.

Consequently, features must be designed to be used in combination. This leads to
a degree of orthogonality in the design of C++. The opportunity for "unusual" uses
is an important source of flexibility and has repeatedly allowed C++ to be used in
areas where a more restricted and narrowly focused language would have failed. For
example, the C++ rules for access protection, name lookup, v i r t u a l / n o n
v i r t u a l binding, and type are orthogonal. This opens the possibility for a variety
of techniques relying on information hiding and derived classes. Some who would
prefer to see only a few narrowly defined styles of programming supported deem this
"hackery." On the other hand, orthogonality is not a first-order principle; it is
applied wherever it doesn't conflict with one of the rules and whenever it provides
some benefit without complicating implementations.

Having a relatively large language implies that some of the effort to manage com
plexity moves from the understanding of libraries and individual programs to learning
the language and its basic design techniques. For most people, this change in empha
sis, the adoption of new programming techniques, and the application of "advanced"
features must be gradual. Few can completely absorb the new techniques ' 'in one sit
ting" or apply all of their new skills to their work at once (§7.2). C++ is designed to
make such a gradual approach feasible and natural. The ideal is: What you don't
know won't hurt you. The static type system and compiler warning messages help,
i Don't try to force people: Programmers are smart people. They are engaged in
challenging tasks and need all the help they can get from a programming language as
well as from other supporting tools and techniques. Trying to seriously constrain pro
grammers to do "only what is right" is inherently wrongheaded and will fail. Pro
grammers will find a way around rules and restrictions they find unacceptable. The
language should support a range of reasonable design and programming styles rather
than try to force people into adopting a single notion.

This does not imply that all ways of programming are equally good or that C++
should try to support every kind of programming style. C++ was designed to directly
support styles of design relying on extensive static type checking, data abstraction,
and inheritance. However, moralizing over how to use the features is kept to a mini
mum, language mechanisms are as far as possible kept policy free, and no feature is
added to or subtracted from C++ exclusively to prevent a coherent style of program
ming.

I am well aware that not everyone appreciates choice and variety. However, peo
ple who prefer a more restrictive environment can impose one through style rules in
C++ or choose a language designed to provide the programmer with a smaller set of
alternatives.

Many programmers particularly dislike being told that something might be an

114 C++ Language Design Rules Chapter 4

Support sound design notions: Each individual language feature must fit into an
overall pattern. That overall pattern must help answer questions of what abilities are
desirable. The language itself cannot provide that; the guiding pattern must come
from a different conceptual level. For C++, that level is provided by ideas of how pro
grams can be designed.

My aim is to raise the level of abstraction in systems programming in a way simi
lar to what C did by replacing assembler as the mainstay of systems work. Ideas for
new features are considered in light of how they might enhance C++ as a language for
expressing designs. In particular, individual features are considered in light of how
they can make the notion that a concept is represented by a class effective. This is the
key to C++'s support for data abstraction and object-oriented programming.

A programming language is not and should not be a complete design language. A
design language should be richer and less concerned with details than a language suit
able for systems programming must be. However, the programming language should
support some notions of design as directly as possible to ease communication between
designers and programmers (who are often the same people ' 'wearing different hats'')
and to simplify tool building.

Viewing the programming language in terms of design techniques allows sug
gested language features to be accepted or excluded based on their relationship to the
design styles supported. No language can support every style, and a language sup
porting only one narrowly defined design philosophy will fail for lack of adaptability.
Enhancing C++ to support the continuum of design techniques that map into the

Design support rules:
Support sound design notions.
Provide facilities for program organization.
Say what you mean.
All features must be affordable.
It is more important to allow a useful feature than to prevent every misuse.
Support composition of software from separately developed parts.

error when it happens not to be. Consequently, "potential errors" are not errors in
C++. For example, it is not an error to write declarations that will allow an ambigu
ous use. The error is an ambiguous use, not the mere possibility of such an error. In
my experience, most "potential errors" never manifest themselves so to defer the
error message is to avoid giving it. Much convenience and flexibility result from such
deferrals.

4.3 Design Support Rules

The rules listed here relate primarily to C++'s role in supporting design based on
notions of data abstraction and object-oriented programming. That is, they are more
concerned with the language's role as a support for thinking and expression of high-
level ideas than its role as a ' 'high-level assembler'' along the lines of C or Pascal.

Section 4.3 Design Support Rules 115

"better C" / data abstraction / object-oriented programming spectrum helped avoid
the temptation to try to make C++ everything to all people while providing a constant
stimulus to improvements.

Provide facilities for program organization: Compared to C, C++ helps orga
nize programs to be easier to write, read, and maintain. I considered computation a
problem solved by C. Like just about everybody else, I have ideas of how the expres
sion and statement part of C could be improved, but I decided to focus my efforts
elsewhere. Whenever a new kind of expression or statement has been suggested, it
has been evaluated based on whether it affected the structure of the program or merely
made the expression of some local computation easier. With few exceptions, such as
allowing declarations to appear where a variable is first needed (§3.11.5), the C
expressions and statements have been left unchanged.

Say what you mean: The fundamental problem with lower-level languages is the
gap between what people can express when they talk to each other and what they can
express directly in the programming language. The basic structure of a program dis
appears in a mess of bits, bytes, pointers, loops, etc.

The primary means of narrowing this semantic gap is to make a language more
declarative. Almost every facility provided by C++ hinges on making something
declarative and then exploiting the added structure in consistency checking, detection
of silly errors, and improved code generation.

Where a declarative structure cannot be employed, a more explicit notation can
often help. The allocation/deallocation operators (§10.2) and the new cast syntax
(§14.3) are examples. An early expression of the ideal of direct and explicit expres
sion of intent was "to allow expression of all important things in the language itself
rather than in the comments or through macro hackery." This implies that the lan
guage in general, and its type system in particular, must be more expressive and flexi
ble than earlier general-purpose languages.

All features must be affordable: It is not enough to provide a user with a lan
guage feature or recommend a technique for some problem. The solution offered
must also be affordable. Otherwise, the advice is almost an insult: "Rent an execu
tive jet,'' may be a valid response to, ' 'What is the best way of getting to Memphis?"
but to all but millionaires, it is not a very helpful answer.

A feature was added to C++ only when there was no way of achieving similar
functionality at significantly lesser cost. My experience is that if programmers are
given the choice of doing something efficiently or elegantly, most will choose effi
ciency unless there is an obvious major reason not to. For example, inline functions
were provided to allow cost-free crossing of protection boundaries and to be a better-
behaved alternative to many uses of macros. The ideal is of course for facilities to be
elegant and efficient. Where that is not feasible, the facility either isn't provided or -
if it is deemed essential - it is provided efficiently.

It is more important to allow a useful feature than to prevent every misuse:
You can write bad programs in any language. It is important to minimize the chance
of accidental misuse of features, and much effort has been spent trying to ensure that
the default behavior of C++ constructs is either sensible or leads to compile-time

116 C++ Language Design Rules Chapter 4

errors. For example, by default all function argument types are checked - even across
separate compilation boundaries - and by default, all class members are private.
However, a systems programming language cannot prevent a determined programmer
from breaking the system so design effort is better expended providing facilities for
writing good programs than preventing the inevitable bad ones. In the longer run,
programmers seem to learn. This is a variant of the old C "trust the programmer"
slogan. The various type checking and access control rules exist to allow a class pro
vider to state clearly what is expected from users, to protect against accidents. Those
rules are not intended as protection against deliberate violation (§2.10).

Support composition of software from separately developed parts: Program
mers need more support for complex applications than simple ones, more support for
large programs than small ones, and more support for applications under efficiency
constraints than applications with ample resources. Much of the effort in the design
of C++ was spent addressing the first two of those observations under the constraints
of the third. As applications get larger and more complex, they must be composed out
of semi-independent parts to be manageable.

Anything that allows a component of a larger system to be developed indepen
dently and then used without modification in a larger system serves this purpose.
Much of the evolution of C++ has been driven by that idea. Classes themselves are the
original such C++ feature, and abstract classes (§13.2.2) explicitly support separation
between interfaces and implementations. In fact, classes can be used to express a con
tinuum of coupling strategies [Stroustrup, 1990b]. Exceptions allow error handling to
be decoupled from a library (§16.1), templates allow composition based on types
(§15.3, §15.6, §15.8), namespaces solve the namespace pollution problem (§17.2),
and run-time type identification addresses the problem of what to do when the exact
type of an object has been "lost" by passing it through a library (§14.2.1).

The notion that programmers need more support when developing larger systems
implies that efficiency mustn't be compromised by reliance on optimization tech
niques that work best for small programs. Consequently, object layout can be deter
mined given a single compilation unit in isolation, and virtual function calls can be
compiled into efficient code without relying on cross-compilation-unit optimizations.
This is true even when efficient means efficiently compared to C. Further optimiza
tions are possible when information about a complete program is available. For
example, looking at a complete program and a call of a virtual function, one can - in
the absence of dynamic linking - sometimes determine the actual function called. In
that case, one can call replace the virtual function call with an ordinary function call
or even inline. C++ implementations that can do that exist. However, such optimiza
tions are not necessary for generating efficient code; they are simply an added benefit
when run-time efficiency is preferred to compile-time efficiency and dynamic linking
of new derived classes. When such global optimization is not deemed reasonable, a
virtual function call can still be optimized away when the virtual function is applied to
an object of known type; even Cfront Release 1.0 did that.

Support for larger systems is often discussed under the heading "support for
libraries" (§8).

Section 4.4 Language-Technical Rules 117

4.4 Language-Technical Rules

The following rules address questions of how things are expressed in C++ rather than
questions of what can be expressed.

Language-technical rules:
No implicit violations of the static type system.
Provide as good support for user-defined types as for built-in types.
Locality is good.
Avoid order dependencies.
If in doubt, pick the variant of a feature that is easiest to teach.
Syntax matters (often in perverse ways).
Preprocessor usage should be eliminated.

No implicit violations of the static type system: Every object is created with a
specific type such as doub le , cha r* , or d i a l _ b u f f e r . If an object is used in a
way that is inconsistent with its given type the type system has been violated. A lan
guage where such violation can never happen is strongly typed. A language where
every such violation is detected at compile time is strongly statically typed.

C++ inherits features from C, such as unions, casts, and arrays, that make it impos
sible to detect every violation at compile time. Currently, C++ does not admit implicit
violation of the type system. That is, you need to explicitly use a union, cast, array,
an explicitly unchecked function argument, or explicitly unsafe C linkage to break the
system. Any use of the unsafe features can be made to cause a (compile time) warn
ing. More importantly, C++ now possesses language features that make it more con
venient and equally efficient to avoid the unsafe features than to use them. Examples
are derived classes (§2.9), a standard array template (§8.5), type-safe linkage (§11.3),
and dynamically checked casts (§14.2). Because of C compatibility requirements and
common practice, the path to this state of affairs has been long and hard; most pro
grammers have yet to adopt the safer practices.

Wherever possible, checking is done at compile time. Wherever possible, things
that cannot be checked given only the information in a single compilation units are
checked at link time. Finally, run-time type information (§14.2) and exceptions (§16)
are provided to help the programmer cope with error conditions that a compiler and a
linker cannot catch. Where applicable, compile-time checking is cheaper and more
dependable, though.

Provide as good support for user-defined types as for built-in types: Since
user-defined types are intended to be central to C++ programs, they need as much sup
port as possible from the language. Therefore, restrictions such as ' 'class objects can
be allocated only on the free store" were not acceptable. The need to provide genuine
local variables for arithmetic types such as complex led to support for value-
oriented types (concrete types) comparable to or even superior to the built-in types.

Locality is good: When writing a piece of code, one would prefer it to be self-
contained except where it needs a service from elsewhere. One would also prefer
such services to be available without too much fuss and bother. Conversely, one

118 C++ Language Design Rules Chapter 4

would like to supply functions, classes, etc., to others without fear of interference
between implementation details and other people's code.

C is about as far from these ideals as one can get. Every global function and vari
able name is visible to the linker and will clash with other uses of the same name
unless explicitly declared s t a t i c . Every name can be used as a function name with
out previous declaration. As a relic of the days when the names of structure members
were global, the names of structures declared within structures are global. In addition,
the preprocessor's macro processing doesn't respect scope, so any sequence of charac
ters in the program text just might be changed into something different if a change is
made to a header file or a compiler option (§18.1). All this adds up to very powerful
stuff if you want to affect the meaning of some apparently local code or want to affect
the rest of the world by a small ' 'local'' change. On average, I consider this most dis
ruptive to my comprehension of complex software and to maintenance. Conse
quently, I set out to provide better insulation against disruptions from "elsewhere"
and better control over what is "exported" from my code.

Classes provide the first and most important mechanisms for localizing code and
channeling access through a well-defined interface. Nested classes (§3.12, §13.5) and
namespaces (§17) extend notions of local scope and explicit granting of access fur
ther. In each case, the amount of global information in a system decreases signifi
cantly.

Access control localizes access without imposing run-time or space overheads
needed for complete decoupling (§2.10). Abstract classes allow a greater degree of
decoupling at minimal cost (§13.2).

Within classes and namespaces, it is important that people can separate the decla
rations from the implementations, thus making it easier to see what a class does with
out having to skip past function bodies specifying how it is done. Inline functions in
class declarations are allowed so that locality can be achieved when this separation is
not helpful.

Finally, code is easier to understand and manipulate if significant chunks fit on a
screen. C's traditional terseness helps here, and the C++ rules that allow new vari
ables to be introduced where they are first needed (§3.11.5) is a further step in this
direction.

Avoid order dependencies: An order dependence is an opportunity for confusion
and for errors when code is reorganized. People are aware that statements are exe
cuted in a definite order, but dependencies between global declarations and between
class member declarations are often overlooked. The overloading rules (§11.2) and
the rules for the use of base classes (§12.2) were specifically crafted to avoid order
dependencies. Ideally, it should be an error if the reversal of the order of two declara
tions could cause a different meaning. That is the rule for class members (§6.3.1), but
it cannot be imposed for global declarations. The C preprocessor can wreak havoc by
introducing unexpected and ill-behaved dependencies through macro processing
(§18.1).

I sometime express my desire to avoid subtle resolutions by saying, ' 'It is not the
compiler's job to make up your mind for you." In other words, a compile-time error

Section 4.4 Language-Technical Rules 119

is more acceptable than an obscure resolution. The ambiguity rules for multiple
inheritance are a good example of this (§12.2). The ambiguity rules for overloaded
functions are an example of how hard this is to achieve under constraints of compati
bility and flexibility (§11.2.2).

If in doubt, pick the variant of a feature that is easiest to teach: This is a sec
ondary rule for choosing between alternatives. It is tricky to apply because it can be
an argument for logical beauty and also for sticking to the familiar. Writing tutorials
and reference manual descriptions to see how easy they are for people to understand is
a practical application of this rule. One intent is to ease the task for educators and
support personnel. It is important to remember that programmers are not stupid; sim
plicity mustn't be achieved at the expense of important functionality.

Syntax matters (often in perverse ways): It is essential to have the type system
coherent and in general to have the semantics of the language clean and well defined.
Syntax is a secondary issue, and it appears that programmers can learn to love abso
lutely any syntax.

However, syntax is what people see. Syntax is the language's primary user inter
face. People are devoted to certain forms of syntax and express their opinions with
curious fanaticism. I see no hope of changing this or introducing new semantic
notions and design ideas in the face of emotional opposition to a particular syntax.
Consequently, the C++ syntax is crafted with care to avoid offending programmers'
prejudices, while aiming to make the syntax more rational and regular over time. My
aim is to fade out warts such as implicit i n t (§2.8.1) and old-style casts (§14.3.1),
while minimizing the use of the more complicated forms of the declarator syntax
(§2.8.1).

My experience is that people are addicted to keywords for introducing concepts to
the point where a concept that doesn't have its own keyword is surprisingly hard to
teach. This effect is more important and deep-rooted than people's vocally expressed
dislike for new keywords. Given a choice and time to consider, people invariably
choose the new keyword over a clever workaround.

I try to make significant operations highly visible. For example, one significant
problem with old-style casts is that they are almost invisible. In addition, I prefer to
make semantically ugly operations, such as ill-behaved casts, syntactically ugly to
match (§14.3.3). In general, verbosity is avoided.

Preprocessor usage should be eliminated: Without the C preprocessor, C itself
and later C++ would have been stillborn. Without Cpp, they simply weren't suffi
ciently expressive and flexible to handle every task needed in significant projects. On
the other hand, the ugly and low-level semantics of Cpp are the primary reason more
advanced and elegant C programming environments have been too difficult and
expensive to build and use.

Consequently, alternatives that fit with the syntax and semantics of C++ must be
found for every essential Cpp feature. That done, we'll get cheaper and much
improved C++ programming environments. Along the way, we'll root out the sources
of many difficult bugs. Templates (§15), inline functions (§2.4.1), c o n s t (§3.8), and
namespaces (§17) are steps on the way.

120 C++ Language Design Rules Chapter 4

4.5 Low-Level Programming Support Rules

Naturally, the rules mentioned above apply to essentially all language features. The
rules below also affect C++ as a language for expressing high-level designs.

Low-level programming support rules:
Use traditional (dumb) linkers.
No gratuitous incompatibilities with C.
Leave no room for a lower-level language below C++ (except assembler).
What you don't use, you don't pay for (zero-overhead rule).
If in doubt, provide means for manual control.

Use traditional (dumb) linkers: Ease of porting and ease of cooperation with
software written in other languages were early goals. Insisting that C++ should be
implementable with traditional linkers ensures that. Having to manage with linker
technology that dates from early Fortran days can be painful, though. Several features
of C++, notably type-safe linkage (§11.3) and templates (§15), can be implemented
using traditional linkers, but they can be implemented better with more linker support.
A secondary aim has been for C++ to provide a stimulus to improved linker design.

Using traditional linkers makes it relatively easy to maintain link compatibility
with C. This is essential for smooth use of operating system facilities, for using C,
Fortran, etc., libraries, and for writing code to be used as libraries from other lan
guages. Using traditional linkers is also essential for writing code intended to be part
of the lower levels of a system, such as device drivers.

No gratuitous incompatibilities with C: C is the most successful systems pro
gramming language ever. Hundreds of thousands of programmers know C well, bil
lions of lines of C exist, and a tools and services industry focused on C exists. C++ is
based on C. The question is, "How closely should the C++ definition match that of
C?" C++ doesn't aim at 100% compatibility with C because that would have com
promised the aims of type safety and support for design. However, where these aims
are not interfered with incompatibilities are avoided - even at the cost of inelegance.
In most cases, C incompatibilities have been accepted only when a C rule left a gap
ing hole in the type system.

Over the years, C++'s greatest strength and its greatest weakness has been its C
compatibility. This came as no surprise. The degree of C compatibility will be a
major issue in the future. Over the coming years, C compatibility will become less
and less of an advantage and more and more of a liability. A path of evolution must
be provided (§9).

Leave no room for a lower-level language below C++ (except assembler): If a
language aims at being truly high level - that is, it completely protects its program
mers from the ugly and boring details of the underlying computer - it must relinquish
the dirtier tasks of systems programming to some other language. Typically, that lan
guage has been C. Typically, C has then replaced the higher-level language in most
areas where control or speed were deemed essential. Often, this has led to a system
programmed completely in C or to one that could only be mastered by someone who

Section 4.5 Low-Level Programming Support Rules 121

knows both languages well. In the latter case, a programmer is too often left with a
difficult choice of which level of programming is most suitable for a given task and
has to keep the primitives and principle of both in mind. C++ tried another path by
providing low-level features, abstraction mechanisms, and support for creating hybrid
systems out of both.

To remain a viable systems programming language, C++ must maintain C's ability
to access hardware directly, to control data structure layout, and to have primitive
operation and data types that map on to hardware in a one-to-one fashion. The alter
native is to use C or assembler. The language design task is to isolate the low-level
features and render them unnecessary for code that doesn't deal directly with system
details. The aim is to protect programmers against accidental misuse without impos
ing undue burdens.

What you don't use, you don't pay for (zero-overhead rule): Large languages
have a well-earned reputation for generating large and slow code. The usual reason is
that the overhead of supporting supposedly advanced features is distributed over all
the features in the language. For example, all objects are large to hold information
needed for various kinds of housekeeping, indirect access is imposed on all data
because some features are best managed through indirections, or control structures are
elaborated to accommodate "advanced control abstractions." This kind of "dis
tributed fat" was deemed unsuitable for C++. Accepting it would leave room for a
lower-level language below C++ and make C a better choice than C++ for low-level
and high-performance work.

This rule has repeatedly been crucial for C++ design decisions. Virtual functions
(§3.5), multiple inheritance (§12.4.2), run-time type identification (§14.2.2.2), excep
tion handling, and templates are all features that owe part of their design to this rule.
In each case, the feature was accepted only after I convinced myself that an imple
mentation that obeyed the zero-overhead rule could be constructed. Naturally, an
implementer can decide to make a tradeoff between the zero-overhead rule and some
other desirable property of a system, but this has to be done very carefully. Many
programmers react harshly and emotionally to distributed fat.

Of all the rules, the zero-overhead rule is probably the one that has the sharpest
edge when it comes to rejecting a suggested feature.

If in doubt, provide means for manual control: I am reluctant to trust
"advanced technology" and particularly loath to assume that something really
sophisticated will be universally and cheaply available. Inline functions are a good
example of this (§2.4.1). Template instantiation is an example where I should have
been more careful and later had to add a mechanism for explicit control (§15.10). The
detailed control of memory management is an example of where important gains were
made through manual control, yet only time will tell if these gains were made at the
expense of getting in the way of automated techniques (§ 10.7).

122 C++ Language Design Rules Chapter 4

4.6 A Final Word
All of these rules must be taken into account for a major language feature. Leaving
one out would most likely lead to an imbalance that could hurt a group of users. Sim
ilarly, letting one rule dominate at the expense of others would cause similar prob
lems.

I have tried to keep my rules positive and prescriptive rather than building up a list
of prohibitions. This makes it inherently more difficult to exclude new ideas. My
view of C++ as a language for production software and a focus on facilities that affect
program structure counteracts the natural tendency to make minor adjustments.

A more specific and detailed list of issues considered for a language feature is the
checklist suggested by the ANSI/ISO committee's working group for extensions
(§6.4.1).

5
Chronology 1985-1993

Remember, things take time.
— Piet Hein

Post-Release-1.0 chronology — Release 2.0 — 2.0 feature overview —
The Annotated C+ + Reference Manual and informal standardization —
ARM feature overview — ANSI and ISO standardization — standard fea
ture overview.

5.1 Introduction

Part II presents features added to complete C++. The presentation is organized around
language features rather than chronologically. This chapter provides the chronology.

The reason to depart from the chronological organization is that the actual time
order was not important to the final definition of C++. I knew in general terms where
the language was going, what problems needed to be addressed, and what kind of fea
tures might be needed to address them. However, there was no way I could just sit
down and do it all in one major revision of the language. That would have taken too
long and would have left me working in a vacuum without essential feedback. Conse
quently, extensions were developed and added to the language piecemeal. The actual
order was of crucial importance to the users at the time and essential for keeping the
language coherent at all times. It was, however, not of major importance to the final
shape of C++. Presenting the extensions in chronological order would therefore
obscure the logical structure of the language.

124 Chronology 1985-1993 Chapter 5

This chapter presents the work leading to Release 2.0 of Cfront, the work leading
to The Annotated C++ Reference Manual, and the standards effort:

1986-1989: Release 2.0 rounded off C++ with features such as abstract classes,
type-safe linkage, and multiple inheritance, but didn't add anything
radically new.

1988-1990: The Annotated C++ Reference Manual added templates and excep
tion handling, and in doing so presented a major challenge to
implementers and opened the way to radical changes in the way
C++ programs could be written.

1989-1993: The standards effort added namespaces, run-time type identifica
tion, and many minor features to the C++ programmers toolset.

In all three cases, significant work was done to make the definition of C++ more pre
cise and to clean up the language by minor changes. From my perspective, it was all
one continuing effort.

5.2 Release 2.0
By mid-1986, the course for C++ was set for all who cared to see. The key design
decisions were made. The direction of the future evolution was set with the aim for
parameterized types, multiple inheritance, and exception handling. Much experimen
tation and adjustment based on experience was needed, but the glory days were over.
C++ had never been silly putty, but there was now no real possibility for radical
change. For good and bad, what was done was done. What was left was an incredible
amount of solid work. At this point, C++ had about 2,000 users worldwide.

This was the point where the plan - as originally conceived by Steve Johnson and
me - was for a development and support organization to take over the day-to-day
work on tools (primarily Cfront), thus freeing me to work on the new features and the
libraries that were expected to depend on them. This was also the point where I
expected that first AT&T and then others to start building compilers and other tools
that eventually would make Cfront redundant.

Actually, they had already started, but the good plan was soon derailed due to
development management indecisiveness, ineptness, and lack of focus. A project to
develop a brand new C++ compiler diverted attention and resources from Cfront
maintenance and development. A plan to ship a Release 1.3 in early 1988 completely
fell through the cracks. The net effect was that we had to wait until June 1989 for
Release 2.0 and that even though 2.0 was significantly better than Release 1.2 in
almost all ways, 2.0 did not provide the language features outlined in the "whatis
paper" (§3.15) and - partly as a consequence - a significantly improved and extended
library wasn't part of it. Shipping such a library would have been feasible because
much of what became the USL† Standard Components library had by then been in
internal AT&T production use for some time. However, my wish for direct support

USL started out as an AT&T organization supporting and distributing Unix and related tools; later, it be
came a separate company called Unix System Laboratories; later it was bought by Novell.

Section 5.2 Release 2.0 125

for templates still blinded me to alternatives. There was also a misguided belief
among some development managers that the library might become both a standard
and a significant source of income.

Release 2.0 was the work of a group consisting of Andrew Koenig, Barbara Moo,
Stan Lippman, Pat Philip, and me. Barbara coordinated; Pat integrated; Stan and I
coded; Andy and I evaluated bug reports and discussed language details; Andy and
Barbara did the testing. In all, I implemented all of the new features and something
like 80% of the bug fixes for 2.0. In addition, I wrote most of the documentation. As
ever, language design issues and the maintenance of the reference manual were my
responsibility. Barbara Moo and Stan Lippman became the nucleus of the team that
eventually produced Release 2.1 and 3.0.

Many of the people who influenced C with Classes and the original C++ continued
to help with the evolution in various ways. Phil Brown, Tom Cargill, Jim Coplien,
Steve Dewhurst, Keith Gorlen, Laura Eaves, Bob Kelley, Brian Kernighan, Andy
Koenig, Archie Lachner, Stan Lippman, Larry Mayka, Doug McIlroy, Pat Philip,
Dave Prosser, Peggy Quinn, Roger Scott, Jerry Schwarz, Jonathan Shopiro, and Kathy
Stark were explicitly acknowledged in [Stroustrup,1989b]. The most active in lan
guage discussion during this period were Doug McIlroy, Andy Koenig, Jonathan Sho
piro, and I.

Stability of the language definition and its implementation was considered essen
tial [Stroustrup, 1987c]:

"It is emphasized that these language modifications are extensions; C++ has been
and will remain a stable language suitable for long term software development."

And so was C++'s role as a general-purpose language for industrial use
[Stroustrup, 1987c]:

"Portability of at least some C++ implementations is a key design goal. Conse
quently, extensions that would add significantly to the porting time or to the
demands on resources for a C++ compiler have been avoided. This ideal of lan
guage evolution can be contrasted with plausible alternative directions such as
making programming convenient

- at the expense of efficiency or structure;
- for novices at the expense of generality;
- in a specific application area by adding special purpose features to the lan

guage;
- by adding language features to increase integration into a specific C++

environment."
Release 2.0 was a major improvement, but not by providing anything radically new.
At the time, I liked to explain that "all of the 2.0 features - including multiple inheri
tance - are simply removal of restrictions that we had come to see as too constraining;
so we removed them." This was an exaggeration, but a prudent counter to the general
tendency to overrate every new feature. From a language design point of view, the
most important aspect of Release 2.0 was that it increased the generality of the indi
vidual language features and improved their integration into the language. From a
user's point of view, I suspect that the most important aspects of Release 2.0 were the

126 Chronology 1985-1993 Chapter 5

more solid implementation and the improved support.

5.2.1 Feature Overview

The main features of 2.0 were first presented in [Stroustrup, 1987c] and summarized in
the revised version of that paper [Stroustrup, 1989b] that accompanied 2.0 as part of
its documentation:

[1] Multiple inheritance (§12.1)
[2] Type-safe linkage (§11.3)
[3] Better resolution of overloaded functions (§11.2)
[4] Recursive definition of assignment and initialization (§ 11.4.4)
[5] Better facilities for user-defined memory management (§ 10.2, § 10.4)
[6] Abstract classes (§13.2)
[7] Static member functions (§13.4)
[8] c o n s t member functions (§13.3)
[9] p r o t e c t e d members (first provided in Release 1.2) (§13.9)
[10] Generalized initializers (§3.11.4)
[11] Base and member initializers (§12.9)
[12] Overloading of operator -> (§11.5.4)
[13] Pointers to members (first provided in Release 1.2) (§13.11)

Most of these extensions and refinements represented experience gained with C++ and
couldn't have been added earlier without more foresight than I possessed. Naturally,
integrating these features involved significant work, but it was most unfortunate that
this was allowed to take priority over the completion of the language as outlined in
the "whatis" paper (§3.15).

Most features enhanced the safety of the language in some way or other. Cfront
2.0 checked the consistency of function types across separate compilation units
(type-safe linkage), made the overload resolution rules order-independent, and
ensured that more calls were considered ambiguous. The notion of c o n s t was made
more comprehensive, pointers to members closed a loophole in the type system, and
explicit class-specific memory allocation and deallocation operations were provided
to make the error-prone "assignment to t h i s " technique (§3.9) redundant.

Of these features, [1], [3], [4], [5], [9], [10], [11], [12], and [13] were in use within
Bell Labs at the time of my 1987 USENIX presentation (§7.1.2).

5.3 The Annotated Reference Manual
Sometime in 1988 it became clear that C++ would eventually have to be standardized
[Stroustrup,1989]. There were now a handful of independent implementations being
produced. Clearly, an effort had to be made to write a more precise and comprehen
sive definition of the language. Further, it would be necessary to gain wide accep
tance for that definition. At first, formal standardization wasn't considered an option.
Many people involved with C++ considered - and still consider - standardization
before genuine experience has been gained abhorrent. However, making an improved

Section 5.3 The Annotated Reference Manual 127

reference manual wasn't something that could be done by one person (me) in private.
Input and feedback from the C++ community was needed. Thus I came upon the idea
of rewriting the C++ reference manual and circulating its draft among important and
insightful members of the C++ community worldwide.

At about the same time, the part of AT&T that sold C++ commercially (USL)
wanted a new and improved C++ reference manual and gave one of its employees,
Margaret Ellis, the task of writing it. It seemed only reasonable to combine the efforts
and produce a single, externally reviewed reference manual. It also seemed obvious
to me that publishing this manual with some additional information would help the
acceptance of the new definition and make C++ more widely understood. Thus, The
Annotated C++ Reference Manual was written [ARM]:

"to provide a firm basis for the further evolution of C++ ... [and] to serve as a
starting point for the formal standardization of C++. ... The C++ reference manual
alone provides a complete definition of C++, but the terse reference manual style
leaves many reasonable questions unanswered. Discussions of what is not in the
language, why certain features are defined as they are, and how one might imple
ment some particular feature have no place in a reference manual but are neverthe
less of interest to most users. Such discussions are presented as annotations and in
the commentary sections.

The commentary also helps the reader appreciate the relationships among dif
ferent parts of the language and emphasizes points and implications that might
have been overlooked in the reference manual itself. Examples and comparisons
with C also make this book more approachable than the bare reference manual''

After some minor squabbling with the product people it was agreed that we'd write
the ARM (as The Annotated C+ + Reference Manual is commonly called) describing
the whole of C++, that is, with templates and exception handling, rather than as a
manual for the subset implemented by the most recent AT&T release. This was
important because it clearly established the language itself as different from any one
implementation of it. This principle had been present from the very beginning, but it
needs to be restated often because users, implementers, and salesmen seem to have
difficulty remembering it.

Of the ARM, I wrote every word of the reference manual proper except the section
on the preprocessor (§18) that Margaret Ellis adapted from the ANSI C Standard.
The annotations and the commentary sections were jointly written and partly based on
my earlier papers [Stroustrup,1984b,1987,1988,1988b,1989b].

The reference manual proper of the ARM was reviewed by about a hundred peo
ple from two dozen organizations. Most are named in the acknowledgment section of
the ARM. In addition, many contributed to the whole of the ARM. The contributions
of Brian Kernighan, Andrew Koenig, and Doug McIlroy were specifically noted. The
reference manual proper from the ARM was accepted as the basis for the ANSI stan
dardization of C++ in March 1990.

The ARM doesn't explain the techniques that the language features support: "this
book does not attempt to teach C++ programming; it explains what the language is -
not how to use it [ARM]." That job was left for the second edition of The C++

128 Chronology 1985-1993 Chapter 5

Programming Language [2nd]. Unfortunately, some people discard the advice. The
result is often a view of C++ as a mere collection of obscure details and a consequen
tial inability to write elegant and maintainable C++ code; see §7.2.

5.3.1 Feature Overview

The ARM presented a few minor features that were not implemented until Release 2.1
from AT&T and other C++ compiler vendors. The most obvious of these were nested
classes. I was strongly encouraged to revert to the original definition of nested class
scopes by comments from external reviewers of the reference manual. I also
despaired over ever making the scope rules of C++ coherent while the C rule was in
place (§2.8.1).

The major new features presented in the ARM were templates (§15) and exception
handling (§16). In addition, the ARM allows people to overload prefix and postfix
increment (++) independently (§11.5.3).

To match ANSI C, initialization of local static arrays was allowed.
To match ANSI C, the v o l a t i l e modifier was introduced to help optimizer

implementers. I am not at all sure that the syntactic parallel with c o n s t is warranted
by semantic similarities. However, I never had strong feelings about v o l a t i l e and
see no reason to try to improve on the ANSI C committee's decisions in this area.

To sum up, the features presented in the ARM were:
- The 2.0 features (§5.2.1)
- Templates (§15)
- Exceptions (§16)

Nested classes (§13.5)
Separate overloading of prefix and suffix + + and --(§11.5.3)

- v o l a t i l e
- Local static arrays

The ARM features, excluding exceptions, first became widely available in Release 3.0
of Cfront in September 1991. The complete set of ARM features were first made
available in the DEC and IBM C++ compilers in early 1992.

5.4 ANSI and ISO Standardization

From 1990 onward, the ANSI/ISO C++ standards committee has been the primary
forum for the effort to complete C++.

The initiative to formal (ANSI) standardization of C++ was taken by Hewlett-
Packard in conjunction with AT&T, DEC, and IBM. Larry Rosier from Hewlett-
Packard was important in this initiative. In particular, Larry approached me sometime
near the end of 1988, and we had a discussion about the need for formal standardiza
tion. The key problem was one of timing. Larry presented the case for urgency on
behalf of major users, and I presented the case for delay to allow for further experi
mentation and experience before standardization. After weighing the multitude of
nebulous technical and commercial issues, we agreed that there was a window of

Section 5.4 ANSI and ISO Standardization 129

about a year during which formal standardization had to begin for us to have a fair
chance of success. As I remember it, the first technical meeting of the ANSI commit
tee took place three days before our one-year window opened (March 1990).

The proposal for ANSI standardization was written by Dmitry Lenkov [Len-
kov,1989] from Hewlett-Packard. Dmitry's proposal cites several reasons for imme
diate standardization of C++:

- C++ is going through a much faster public, acceptance than most other lan
guages. /

- Delay ... will lead to dialects.
- C++ requires a careful and detailed definition providing full semantics ... for

each language feature.
- C++ lacks some important features ... [including] exception handling, aspects

of multiple inheritance, features supporting parametric polymorphism, and
standard libraries.

The proposal also stressed the need for compatibility with ANSI C. The organiza
tional meeting of the ANSI C++ committee, X3J16, took place in December 1989 in
Washington, DC, and was attended by about 40 people, including people who took
part in the C standardization, people who by now were "old-time C++ programmers,"
and others. Dmitry Lenkov became its chairman, and Jonathan Shopiro became its
editor.

The first technical meeting was hosted by AT&T in Somerset, New Jersey, in
March 1990. AT&T gained that honor not because of any judgement about the
company's contribution to C++, but because we (the members of X3J16 present at the
Washington, DC meeting) decided to schedule the first years' meetings based on the
weather. Thus, Microsoft hosted the second meeting in Seattle in July, and Hewlett-
Packard hosted the third meeting in Palo Alto in November. This way, we had splen
did weather for all three meetings and defused jockeying for status among the corpo
rations represented.

The committee now has more than 250 members out of which something like 70
turn up at meetings. The original aim of the committee was a draft standard for public
review in late 1993 or early 1994 with the hope of an official standard about two years
later. This was an ambitious schedule for the standardization of a general-purpose
programming language. To compare, the standardization of C took seven years. The
current schedule, which I think we have a good chance of meeting, calls for delivery
of a draft standard for public review in September of 1994.

Naturally, standardization of C++ isn't just an American concern. From the start,
representatives from other countries attended the ANSI C++ meetings. In Lund, Swe
den, in June 1991 the ISO C++ committee WG21 was convened, and the two C++
standards committees decided to hold joint meetings - starting immediately in Lund.
Representatives from Canada, Denmark, France, Japan, Sweden, the UK, and USA
were present. Notably, the vast majority of these national representatives were actu
ally long-time C++ programmers.

The C++ committee had a difficult charter:
- The definition of the language must be precise and comprehensive.

130 Chronology 1985-1993 Chapter 5

- C/C++ compatibility had to be addressed.
- Extensions beyond current C++ practice had to be considered.
- Libraries had to be considered.

On top of that, the C++ community was already very diverse and totally unorganized
so that the standards committee naturally became an important focal point of the com
munity. In the short run, that is actually the most important role for the committee:

' 'The C++ committee is a place where compiler writers, tools writers, their friends
and representatives can meet and discuss language definition and - as far as com
mercial rivalries allow - implementation issues. Thus, the C++ committee has
already served the C++ community by helping the implementations to become
more similar (more "correct") by providing a forum where issues can be aired.
The alternative is a compiler writer alone or together with a few friends finding
questions that they see no answer to in the ARM and having to make a guess.
Maybe they would mail me - many do - but I can't cope with every problem that
arises and some people do feel that dealing with an individual on such issues isn't
quite proper. Lack of communication inevitably leads to dialects. The committee
counteracts such trends. I don't see how someone who is not directly or indirectly
represented on the committee could currently hope to build a tool that was in line
with the assumptions made by the major players in the C++ market
[Stroustrup,1992b]."

Standardization isn't easy. There are people on the committee who are there to pre
serve status quo, there are people with an idea of status quo that makes them want to
turn the clock back several years, there are people who want to make a clean break
from the past and design a completely new language, there are people who care only
about a single issue, there are people who care only about a single class of systems,
there are people whose votes are tied by their employers, there are people who repre
sent only themselves, there are people with a primarily theoretical view of program
ming and programming languages, there are people who want a standard now! even if
it means some details left unresolved, there are people who want nothing short of a
perfect definition, there are people who come thinking that C++ is a brand new lan
guage with hardly any users, there are people who represent users with many millions
of lines of code built over a decade, etc. Under the rules of standardization, we all
have to more or less agree. We have to reach "consensus" (usually defined as a large
voting majority). These are reasonable rules - and even if they were not, they would
still be the national and international rules the committee would have to follow. All
the interests are legitimate and having a majority squelch significant minority interests
would yield a standard that was useful only to an unnecessarily narrowly defined user
community. Thus, every member of the committee must learn to respect points of
view that seem alien and learn to compromise. That is actually very much in the spirit
of C++.

C compatibility was the first major controversial issue we had to face. After some
occasionally heated debate, it was decided that 100% C/C++ compatibility wasn't an
option. Neither was significantly decreasing C compatibility. C++ is a separate lan
guage and not a strict superset of ANSI C and can't be changed to be such a superset

Section 5.4 ANSI and ISO Standardization 131

without seriously weakening the guarantees provided by the C++ type system - and
without breaking millions of lines of C++ code. Similarly, any significant decrease in
C compatibility would break code, complicate the creation and maintenance of mixed
C and C++ systems, and complicate a transition from C to C++. This decision, often
referred to as "As close to C as possible - but no closer" after a paper written by
Andrew Koenig and me [Koenig,1989], is the same conclusion that has been reached
over and over again by individuals and groups considering C++ and the direction of
its evolution (§3.12). Working out all the details of "As close to C as possible - but
no closer" after the independent changes C++ and ANSI C made to the original C
manual takes a major part of the standards committee's effort. Thomas Plum has
been a major contributor to this effort.

5.4.1 Feature Overview

The features provided by C++ after the November 1993 meeting in San Jose specified
by the standard committee's working paper can be summarized as:

- Features specified in the ARM (§5.3)
- European character set representation of C++ (§6.5.3.1)
- Relaxing rule for return types for overriding functions (§13.7)
- Run-time type identification (§14.2)
- Overloading based on enumerations (§11.7.1)
- User-defined allocation and deallocation operators for arrays (§ 10.3)
- Forward declaration of nested classes (§13.5)
- Namespaces (§17)
- Mutable (§3.8)
- New casts (§ 14.3)
- A Boolean type (§11.7.2)
- Explicit template instantiation (§15.10.4)
- Explicit template argument specification in template function calls (§15.6.2)

For more details, see §6.4.2.

6
Standardization

Don't you try to outweird me,
I get stranger things than you
free with my breakfast cereal.

- Zaphod Beeblebrox

What is a standard? — aims of the C++ standards effort — how does the
committee operate? — who is on the committee? — language clarifications
— name lookup rules — lifetime of temporaries — criteria for language
extension — list of proposed extensions — keyword arguments — an
exponentiation operator — restricted pointers — character sets.

6.1 What is a Standard?
There is much confusion in the minds of programmers about what a standard is and
what it ought to be. One ideal for a standard is to completely specify exactly which
programs are legal and exactly what the meaning of every such program is. For C and
C++ at least, that is not the whole story. In fact, it can't and shouldn't be the ideal for
languages designed to exploit the diverse world of hardware architectures and gad
gets. For such languages, it is essential to have some behavior implementation-
dependent. Thus, a standard is often described as ' 'a contract between the program
mer and the implementer." It describes not only what is "legal" source text, but also
what a programmer can rely on in general and what behavior is implementation-
dependent. For example, in C and C++ one can declare variables of type i n t , but the
standard doesn't specify how large an i n t is, only that it has at least 16 bits.

It is possible to have long and somewhat learned debates about what the standard
really is and what terminology can best be employed to express it. However, the key
points are to sharply distinguish what is and what is not a valid program, and further

134 Standardization Chapter 6

to specify what behavior should be the same in all implementations and what is
implementation-dependent. Exactly how those distinctions are drawn is important,
but not very interesting to practical programmers. Most committee members focus on
the more language-technical aspects of standardization so the main burden of tackling
the thorny issues of what the standard standardizes falls on the committee's project
editor. Fortunately, our original project editor Jonathan Shopiro has an interest in
such matters. Jonathan has now retired as editor in favor of Andrew Koenig, but
Jonathan is still a member of the committee.

Another interesting (that is, very difficult) question is to which extent an imple
mentation with features not specified in the standard is acceptable. It seems unreason
able to ban all such extensions. After all, some extensions are necessary to important
sub-sections of the C++ community. For example, some machines have hardware that
supports specific concurrency mechanisms, special addressing constraints, or special
vector hardware. We can't burden every C++ user with features to support all these
incompatible special-purpose extensions. They will be incompatible and will often
impose a cost even on non-users. However, it would be unfortunate to discourage
implementers serving such communities from trying to be perfectly conforming
except for their essential extensions. On the other hand, I was once presented with an
"extension'' that allowed access to private members of a class from every function in
the program; that is, the implementer had not bothered to implement access control. I
didn't consider that a reasonable extension. Wordsmithing the standard to allow the
former and not the latter is a nontrivial task.

An important point is to ensure that nonstandard extensions are detectable; other
wise, a programmer might wake up some morning and find significant code depen
dent on a supplier's unique extensions and thus without the option to change suppliers
with reasonable ease. As a naive student, I remember being surprised and pleased to
find that the Fortran on our university mainframe was an "extended Fortran" with
some neat features. My surprise turned to dismay when I realized that this implied
that my programs would be useless except on CDC6000 series machines.

Thus, 100% portability of standards-conforming programs is not in general an
achievable or desirable ideal for C++. A program that conforms to a standard is not
necessarily 100% portable because it may display implementation-dependent behav
ior. Actually, most do. For example, a perfectly legal C or C++ program may change
its meaning if it happens to depend on the results of the built-in remainder operator %
applied to a negative number.

Further, real programs tend to have dependencies on libraries providing services
not offered on every system. For example, a Microsoft Windows program is unlikely
to run unchanged under X, and a program using the Borland foundation classes will
not trivially be ported to run under MacApp. Portability of real programs comes from
design that encapsulates implementation and environment dependencies, not just from
adherence to a few simple rules in a standards document.

Knowing what a standard doesn't guarantee is at least as important as knowing
what it does promise.

Section 6.1.1 Implementation Details 135

6.1.1 Implementation Details

Every week, there seems to be a new request for standardizing things like the virtual
table layout, the type-safe linkage name encoding scheme, or the debugger. However,
these are quality-of-implementation issues or implementation details that are beyond
the scope of the standard. Users would like libraries compiled with one compiler to
work with code compiled with another, would like binaries to be transferable from
one machine architecture to another, and would like debuggers to be independent of
the implementation used to compile the code being examined.

However, standardization of instruction sets, operating-system interfaces, debug
ger formats, calling sequences, and object layouts is far beyond the ability of the stan
dards group for a programming language that is merely one little cog in a much bigger
system. Such universal standardization probably isn't even desirable because it would
stifle progress in machine architectures and operating systems. If a user needs total
independence from hardware the system/environment must be built as an interpreter
with its own standard environment for applications. That approach has its own prob
lems; in particular, specialized hardware becomes hard to exploit and local style
guides cannot be followed. If those problems are overcome by interfacing to code
written in another language that allows nonportable code, such as C++, the problem
recurs.

For a language suitable for serious systems work, we must live with the fact that
every now and again a naive user posts a message to the net: "I moved my object
code from my Mac to my SPARC and now it won't work." Like portability, interop
erability is a matter of design and understanding of the constraints imposed by the
environments. I often meet C programmers who are unaware that code compiled with
two different C compilers for the same system is not guaranteed to link and in fact is
unlikely to do so - yet express horror that C++ doesn't guarantee such interoperabil
ity. As usual, we have a major task in educating users.

6.1.2 Reality Check

In addition to the many formal constraints on a standards committee, there is an infor
mal and practical one: Many standards are simply ignored by their intended users.
For example, the Pascal and Pascal2 standards are almost completely forgotten. For
most Pascal programmers, "Pascal" means Borland's greatly extended Pascal dialect.
The language defined by the Pascal standard didn't provide features users considered
essential and the Pascal2 standard didn't appear until a different informal "industry
standard" had established itself. Another cautionary observation is that on UNIX
most work is still done in K&R C; ANSI C is struggling in that community. The rea
son seems to be that some users don't see the technical benefits of ANSI/ISO C com
pared to K&R C outweighing the short-term costs of a transition. Even an unchal
lenged standard can be slow finding its way into use. To become accepted, a standard
must be timely and relevant to users' needs. In my opinion, delivering a good stan
dard for a good language in a timely manner is essential. Trying to change C++ into a
"perfect" language or to produce a standard that cannot be misread by anyone -

136 Standardization Chapter 6

however devious or ill-educated - is far beyond the abilities of the committee (§3.13).
In fact, it is beyond anyone working under the time constraint provided by a large user
community (§7.1).

6.2 How does the Committee Operate?
There are actually several committees formed to standardize C++. The first and larg
est is the American National Standards Institute's ANSI-X3J16 committee. That
committee is the responsibility of the Computer and Business Equipment Manufac
tures Association, CBEMA, and operates under its rules. In particular, this means
one-company-one-vote voting and a person who doesn't work for a company counts
as a company. A member can start voting at the second meeting attended. Officially,
the most important committee is the International Standards Organization's ISO-
WG-21. That committee operates under international rules and is the one that will
finally make the result an international standard. In particular, this means one-
country-one-vote voting. Other countries, including Britain, Denmark, France, Ger
many, Japan, Russia, and Sweden now have their own national committees for stan
dardizing C++. These national committees send requests, recommendations, and rep
resentatives to the joint ANSI/ISO meetings.

Basically, we have decided not to accept anything that doesn't pass under both
ANSI and ISO voting rules. This implies that the committee operates rather like a
bicameral parliament with a "lower house" (ANSI) doing most of the arguing and an
"upper house" (ISO) ratifying the decisions of the lower house provided they make
sense and duly respect the interests of the international community.

On one occasion, this procedure led to the rejection of a proposal that would oth
erwise have passed by a small majority. Thus, I think the national representatives
saved us from a mistake that could have caused dissension. I couldn't interpret that
majority as reflecting a consensus and I therefore think that - independently of the
technical merit of the proposal - the national representatives gave the committee an
important reminder of their responsibilities under their charter. The issue in question
was that of whether C++ should have a specific form of defined minimum translation
limits. A significantly improved proposal was accepted at a later meeting.

The ANSI and ISO committees meet jointly three times a year. To avoid confu
sion I will refer to them using the singular committee. A meeting lasts a week out of
which many hours are taken up with legally mandated procedural stuff. Yet more
hours are taken up by the kind of confusion you might expect when 70 people try to
understand what the issues really are. Some daytime hours and several evenings are
taken up by technical sessions where major C++ issues, such as international character
handling and run-time type identification, and issues relevant to standards work, such
as formal methods and organizations of international standardization bodies, are pre
sented and discussed. The rest of the time is mostly taken up by working group meet
ings and discussions based on the reports from those working groups.

Section 6.2 How does the Committee Operate? 137

The current working groups are:
- C compatibility
- Core language
- Editorial
- Environment
- Extensions
- International issues
- Libraries
- Syntax

Clearly, there is too much work for the committee to handle in only three weeks of
meetings a year, so much of the actual work goes on between meetings. To aid com
munication, we use email a lot. Every meeting involves something like three inches
of double-sided paper memos. These memos are sent in two packages: one arrives a
couple of weeks before a meeting to help members prepare, and one a couple of
weeks after to reflect work done between the first mailing and the end of the meeting.

6.2.1 Who is on the C++ Standards Committee?

The C++ committee consists of individuals of diverse interests, concerns, and back
grounds. Some represent themselves, some represent giant corporations. Some use
PCs, some use UNIX boxes, some use mainframes, etc. Some use C++, some don't.
Some want C++ to be more of an object-oriented language (according to a variety of
definitions of "object-oriented"), others would have been more comfortable had
ANSI C been the end-point of C's evolution. Many have a background in C, some
don't. Some have a background in standards work, many don't. Some have a com
puter science background, some don't. Some are programmers, some are not. Some
are language lawyers, some are not. Some serve end-users, some are tools suppliers.
Some are interested in large projects, some are not. Some are interested in C compati
bility, some are not.

Except that all are officially unpaid volunteers (though most represent companies),
it is hard to find a generalization that covers all. This is good; only a very diverse
group could ensure that the diverse interests of the C++ community are represented. It
does make constructive discussion difficult and slow at times. In particular, this very
open process is vulnerable to disruption by individuals whose technical or personal
level of maturity doesn't allow them to understand or respect the views of others. I
also worry that the voice of C++ users (that is, programmers and designers of C++
applications) can be drowned by the voices of language lawyers, would-be language
designers, standards bureaucrats, implementers, etc.

Usually about 70 people attend a meeting, and of those, about half attend almost
all meetings. The number of voting, alternate, and observing members is more than
250. I'm an alternate member, meaning that I represent my company, but someone
else from my company votes. Let me give you a idea about who is represented here
by simply glancing over a list of members and copying out some of the better-known
names chosen from the membership list in 1990: Amdahl, Apple, AT&T, Bellcore,

138 Standardization Chapter 6

Borland, British Aerospace, CDC, Data General, DEC, Fujitsu, Hewlett-Packard,
IBM, Los Alamos National Labs, Lucid, Mentor Graphics, Microsoft, MIPS, NEC,
NIH, Object Design, Ontologies, Prime Computer, SAS Institute, Siemens Nixdorf,
Silicon Graphics, Sun, Tandem Computers, Tektronix, Texas Instruments, Unisys, US
WEST, Wang, and Zortech. This list is of course biased towards companies I know
of and towards large companies, but I hope you get the idea that the industry is well
represented. Naturally, the individuals involved are as important as the companies
they represent, but I will refrain from turning this into an advertisement for my friends
by naming them.

6.3 Clarifications
Much of the best standards work is invisible to the average programmer and appears
quite esoteric and often boring when presented. The reason is that a lot of effort is
expended in finding ways of expressing clearly and completely "what everyone
already knows, but just happens not to be spelled out in the manual'' and in resolving
obscure issues that - at least in theory - don't affect most programmers. Naturally,
these issues are essential to implementers trying to ensure that a given language use is
correctly handled. In turn, these issues become essential to programmers because
even the most carefully written large program will deliberately or accidentally depend
on some feature that would appear obscure or esoteric to some. Unless implementers
agree, the programmer has little choice between implementations and becomes the
hostage of a single compiler purveyor - and that would be contrary to my view of
what C++ is supposed to be (see §2.1).

I will present two issues, name lookup and lifetime of temporaries, to illustrate the
difficult and detailed work done. The majority of the committee's efforts are
expended on such issues.

6.3.1 Lookup Issues

The most stubborn problems in the definition of C++ relate to name lookup: exactly
which uses of a name refer to which declarations? Here, I'll describe just one kind of
lookup problems: the ones that relate to order dependencies between class member
declarations. Consider:

int x;

class X {
int f() { return x; }
int x;

};

Which x does X: : f () refer to? Also:

Section 6.3.1 Lookup Issues 139

typedef char* T;

class Y {
T f() { T a = 0; return a; }
typedef int T;

};

Which T does Y: : f () use?
The ARM gives the answers: The x referred to in X: : f () is X: : x, and the defi

nition of class Y is an error because the meaning of the type T changes after its use in
Y: : f () .

Andrew Koenig, Scott Turner, Tom Pennello, Bill Gibbons, and several others
devoted hours to finding precise, complete, useful, logical, and compatible (with the
C standard and existing C++ code) answers to this kind of question at several consecu
tive meetings and weeks of work in between meetings. My involvement in these dis
cussions was limited by my need to focus on extension-related issues.

Difficulties arise because of conflicts between goals:
[1] We want to be able to do syntax analysis reading the source text once only.
[2] Reordering the members of a class should not change the meaning of the class.
[3] A member function body explicitly written inline should mean the same thing

when written out of line.
[4] Names from an outer scope should be usable from an inner scope (in the same

way as they are in C).
[5] The rules for name lookup should be independent of what a name refers to.

If all of these rules hold, the language will be reasonably fast to parse, and users won't
have to worry about these rules because the compiler will catch the ambiguous and
near ambiguous cases. The current rules come very close to this ideal.

6.3.1.1 The ARM Name Lookup Rules

In the ARM, I addressed the problems with moderate success. Names from outer
scopes can be used directly, and I tried to minimize the resulting order dependencies
by two rules:

[1] The type redefinition rule: A type name may not be redefined in a class after it
has been used there.

[2] The rewrite rule: Member functions defined inline are analyzed as if they were
defined immediately after the end of their class declarations.

The redefinition rule makes class Y an error:

typedef char* T;

class Y {
T f() { T a = 0; return a; }
typedef int T; // error T redefined after use

};

The rewrite rule says that class X should be understood as

140 Standardization Chapter 6

i n t x;

c l a s s X {
i n t f () ;
i n t x;

} ;

i n l i n e i n t X: : f () { r e t u r n x; } / / r e t u r n s X::x

Unfortunately, not all examples are this simple. Consider:

const int i = 99;

class Z {
int a[i];
int f() { return i; }
enum { i = 7 } ;

};

According to the ARM rules and (clearly?) contrary to their intent, this example is
legal, and the two uses of i refer to different definitions and yield different values.
The rewrite rule ensures that the i used in Z: : f () is Z: : i with the value 7. How
ever, there is no rewrite rule for the i used as an index, so it refers to the global i
with the value 99. Even though i is used to determine a type, it is not itself a type
name, so it is not covered by the type redefinition rule. The ANSI/ISO rules ensure
the the example is illegal because i is redefined after it has been used.

Also:

class T {
A f () ;
void g() {A a; / * . . . * / }
typedef int A;

};

Assume that no type A was defined outside T. Is the declaration of T: : f () legal? Is
the definition of T: : g () legal? The ARM deems the declaration of T: : f () illegal
because A is undefined at that point; the ANSI/ISO rules agree. On the other hand,
the ARM deems the definition of g () legal if you interpret the rewrite rule to say that
"rewriting" takes place before syntax analysis and illegal if you interpret it to allow
syntax analysis first and rewrite afterward. The issue is whether A is a type name
when the syntax analysis is done. I think that the ARM supports the first view (that
is, the declaration of T: : g () is legal), but I wouldn't claim that to be indisputably
obvious. The ANSI/ISO rules agree with my interpretation of the ARM rules.

6.3.1.2 Why Allow Forward References?

In principle, these problems could be avoided by insisting on strict one-pass analysis:
You can use a name if and only if it has been declared ' 'above/before'' and what hap
pens "below/after" can't affect a declaration. This is, after all, the rule in C and

Section 6.3.1.2 Why Allow Forward References? 141

elsewhere in C++. For example:

int x;

void f()
{

int y = x; // global x
int x = 7;
int z = x; // local x

}

However, when I first designed classes and inline functions, Doug McIlroy argued
convincingly that serious confusion would result from applying that rule to class dec
larations. For example:

int x;

class X {
void f() { int y = x; } // ::x or X::x?
void g () ;
int x;
void h() { int y = x; } // X::x

};

void X::g() { int y = x ; } // X::x

When the declaration of X is large, the fact that different xs are present will often be
unnoticed. Worse, unless the member x was used consistently, a silent change of
meaning would result from a reordering of members. Taking a function body out of
the class declaration into a separate member function declaration could also quietly
change its meaning. The rewrite and redefinition rules provided protection against
subtle errors and some freedom to reorganize classes.

These arguments apply to nonclass examples also, but only for classes is the com
piler overhead of this protection affordable - and only for classes could C compatibil
ity problems be avoided. In addition, class declarations are exactly where reorderings
are most frequent and most likely to have undesirable side effects.

6.3.1.3 The ANSI/ISO Name Lookup Rules

Over the years, we found many examples that weren't covered by the explicit ARM
rules, were order-dependent in obscure and potentially dangerous ways, or the inter
pretation of the rules were uncertain. Some were pathological. One favorite was
found by Scott Turner:

typedef int P();
typedef int Q();

142 Standardization Chapter 6

c l a s s X {
static P(Q); // define Q to be a P.

// equivalent to ''static int Q()''
// the parentheses around Q are redundant

// Q is no longer a type in this scope

static Q(P); // define Q to be a function
// taking an argument of type P
// and returning an int.
// equivalent to ''static int Q(int())''

};

Declaring two functions with the same name in the same scope is fine as long as their
argument types differ sufficiently. Reverse the order of member declarations, and we
define two functions called P instead. Remove the t y p e d e f for either P or Q from
the context, and we get yet other meanings.

This example ought to convince anybody that standards work is dangerous to your
mental health. The rules we finally adopted makes this example undefined.

Note that this example - like many others - is based on the unfortunate "implicit
i n t " rule inherited from C. I tried to get rid of that rule more than ten years ago
(§2.8.1). Unfortunately, not all sick examples rely on the implicit i n t rule. For
example:

i n t b;

c l a s s Z {
static int a[sizeof(b)];
static int b[sizeof(a)];

};

This example is an error because b changes meaning after it has been used. Fortu
nately, this kind of error is easy for a compiler to catch - unlike the P (Q) example.

At the Portland meeting in March 1993 the committee adopted these rules:
[1] The scope of a name declared in a class consists not only of the text following

the name's declarator but also of all function bodies, default arguments, and
constructor initializers in that class (including such things in nested classes). It
excludes the name's own declarator.

[2] A name used in a class S must refer to the same declaration when reevaluated
in its context and in the completed scope of S. The completed scope of S con
sists of the class S, S's base classes, and all classes enclosing S. This is often
called ' 'the reconsideration rule."

[3] If reordering member declarations in a class yields an alternate valid program
under [1] and [2], the program's meaning is undefined. This is often called
' 'the reordering rule."

Note that very few programs are affected by this change of rules. The new rules are
primarily a clearer statement of the original intent. At first glance, these rules seem to

Section 6.3.1.3 The ANSI/ISO Name Lookup Rules 143

require a multi-pass algorithm in a C++ implementation. However, they can be imple
mented by a single pass followed by one or more passes over information gathered
during the first pass, and are not a performance bottleneck.

6.3.2 Lifetime of Temporaries

Many operations in C++ require the use of temporary values. For example:

void f(X a l , X a2)
{

extern void g(const X&);

X z;

// . . .

z = al+a2;

g(al+a2);

// . . .

}

In general, an object (probably of type X) is needed to hold the result of a l+a2
before assigning it to z. Similarly, an object is needed to hold the result of a l+a2
passed to g () . Assume that X is a class with a destructor. Where, then, is the
destructor for this temporary invoked? My original answer to that question was ' 'at
the end of the block just like every other local variable." There proved to be two
problems with this answer:

[1] Sometimes, that doesn't leave a temporary around for long enough. For exam
ple, g () might push a pointer to its argument (the temporary resulting from
a l+a2) onto a stack, and someone might pop that pointer and try to use it
after f () has returned, that is, after the temporary has been destroyed.

[2] Sometimes, that leaves a temporary around for too long. For example, X might
be a 1,000 by 1,000 matrix type and dozens of temporary matrixes might be
created before the end of block is reached. This will exhaust even large real
memories and can send a virtual memory mechanism into spasms of paging.

In my experience, the former problem is rare in real programs, and its general solution
is the use of automatic garbage collection (§10.7). The latter problem, however, is
common and serious. In practice, it forced some people to enclose each statement
suspected of generating temporaries in its own block:

void f(X a l , X a2)
{

extern void g(const X&);

X z;

// . . .

{z = al+a2; }

{g(al+a2);}

// . . .

}

With the point of destruction at the end of the block - as implemented by Cfront -

144 Standardization Chapter 6

users could at least explicitly work around the problem. However, a better resolution
was loudly demanded by some users. Consequently, in the ARM, I relaxed the rule to
allow destruction at any point after the temporary value was first used and the end of
the block. This was a misguided act of intended kindness. It caused confusion and
helped nobody because as different implementers chose different lifetimes of tempo
raries, nobody could write code that was guaranteed to be portable except by assum
ing immediate destruction - and that was quickly shown to be unacceptable by break
ing code using common and well-liked C++ idioms. For example:

class String {

// .. .
public:

friend String operator+(const String&,const String&);

// . . .

operator const char*(); // C-style string

};

void f(String s1, String s2)

{

printf("%s",(const char*)(sl+s2));

// . . .

}

The idea is that S t r i n g ' s conversion operator is invoked to produce a C-style string
for p r i n t f to print. In the typical (naive and efficient) implementation, the conver
sion operator simply returns a pointer to part of the S t r i n g object.

Given this simple implementation of the conversion operator, this example
wouldn't work under an "immediate destruction of temporaries" implementation: A
temporary is created for sl + s2, the conversion to a C-style string obtains a pointer to
the internals of this temporary, the temporary is destroyed, and then the pointer to the
internals of the now-destroyed temporary is passed to p r i n t f () . The destructor for
the S t r i n g temporary holding sl + s2 would have freed the memory holding the C-
style string.

Such code is common and even implementations that generally follow an immedi
ate destruction strategy, such as GNU's G++, tended to delay destruction in such
cases. This kind of thinking led to the idea of destroying temporaries at the end of the
statement in which they were constructed. This would make the example above not
only legal, but guaranteed portable across implementations. However, other "almost
equivalent" examples would break. For example:

void g(String s1, String s2)

{

const char* p = sl+s2;

printf("%s",p);

// . . .

}

Given the "destroy temporaries at the end of statement" strategy the C-string pointed

Section 6.3.2 Lifetime of Temporaries 145

to by p would reside in the temporary representing sl + s2 and be freed at the end of
the statement initializing p.

Discussions of the lifetime of temporaries festered in the standards committee for
about two years until Dag Brack successfully brought it to a close. Before that, the
committee spent much time discussing the relative merits of solutions that all were
good enough. Everyone also agreed that no solution was perfect. My opinion -
somewhat loudly expressed - was that users were hurting for lack of a resolution and
that the time had come to just pick one. I think the best alternative was chosen.

Dag's summary of the issues in July 1993 was primarily based on work by
Andrew Koenig, Scott Turner, and Tom Pennello. It identified seven main alternative
points of destruction of a temporary:

[1] Just after the first use.
[2] At the end of statement.
[3] At the next branching point.
[4] At the end of block (original C++ rule, like Cfront).
[5] At the end of function.
[6] After the last use (implies garbage collection).
[7] Leave undefined between first use and end of block (ARM rule).

I leave it as an exercise to the reader to construct valid arguments in favor of each
alternative. It can be done. However, serious, valid objections can also be made for
each. Consequently, the real problem is picking an alternative with a good balance of
benefits and problems.

In addition, we considered the possibility of having a temporary destroyed after its
last use in a block, but that requires flow analysis, and we didn't feel we could require
every compiler to do a flow analysis well enough to ensure that "after the last use in a
block" was a well-defined point in the computation in every implementation. Please
note that local flow analysis would not be sufficient to provide reliable warning
against "too early destruction;" conversion functions returning a pointer to the inter
nals of an object are often defined in a compilation unit different from the ones in
which they are used. Trying to ban such functions would be pointless because a ban
would break much existing code and couldn't be enforced anyway.

From about 1991, the committee focused on "end of statement," and naturally
that alternative was colloquially known as EOS. The problem was to decide precisely
what EOS should mean. For example:

void h(String s1, String s2)
{

const char* p;

if (p = sl+s2) {
// . . .

}
}

Should the value of p be useful within the statement block? That is, does the
destruction of the object holding sl + s2 take place at the end of the condition or at

146 Standardization Chapter 6

the end of the whole if statement? The answer is that the object holding sl + s2 will
be destroyed at the end of the condition. It would be absurd to guarantee this:

i f (p = s l + s 2) p r i n t f (" % s " , p) ;

while making this

p = sl+s2;
printf("%s",p);

implementation-dependent.
How should branching within an expression be handled? For example, should this

be guaranteed to work?:

if ((p = s l + s 2) && p [0]) {
/ / . . .

}

The answer is yes. It is much easier to explain this answer than to explain special
rules for &&, | |, and ? :. There was some opposition to this, though, because this
rule cannot be implemented in general without introducing flags to ensure that tempo
rary objects are destroyed only if they appeared on a branch actually taken. However,
the compiler writers on the committee rose to the challenge and demonstrated that the
overhead imposed was vanishingly small and basically irrelevant.

Thus, EOS came to mean "end of full expression," where a full expression is an
expression that is not a sub-expression of another expression.

Note that the resolution to destroy temporaries at the end of full expression will
break some Cfront code, but it will not break any code guaranteed to work by the
ARM. The resolution addresses the desire for a well-defined and easy-to-explain
point of destruction. It also satisfies the desire not to have temporaries hanging
around for too long. Objects that need to stay around for longer must be named.
Alternatively, one can use techniques that don't require long-lived objects. For exam
ple:

void f(String s1, String s2)
{

printf("%s",sl+s2); //ok

const char* p = sl+s2;
printf("%s",p); // won't work, temporary destroyed

String s3 = sl+s2;
printf("%s",(const char*)s3); // ok

cout << s3; // ok

cout << sl+s2; //ok
}

Section 6.4 Extensions 147

6.4 Extensions

A critical issue was - and is - how to handle the constant stream of proposals for lan
guage changes and extensions. The focus of that effort is the extensions working
group of which I'm chairman. It is much easier to accept a proposal than to reject it.
You win friends that way, and people praise the language for having so many "neat
features." However, a language made as a shopping list of features without coher
ence will die, so there is no way we could accept even most of the features that would
be of genuine help to some section of the C++ community.

At the Lund (Sweden) meeting this cautionary tale became popular:
' 'We often remind ourselves of the good ship Vasa. It was to be the pride of the
Swedish navy and was built to be the biggest and most beautiful battleship ever.
Unfortunately, to accommodate enough statues and guns, it underwent major
redesigns and extension during construction. The result was that it only made it
half way across Stockholm harbor before a gust of wind blew it over, and it sank
killing about 50 people. It has been raised and you can now see it in a museum in
Stockholm. It is a beauty to behold - far more beautiful at the time than its unex-
tended first design and far more beautiful today than if it had suffered the usual
fate of a 17th century battle ship - but that is no consolation to its designer, build
ers, and intended users [Stroustrup, 1992b]."

But why consider extensions at all? After all, X3J16 is a standards group, not a lan
guage design group chartered to design "C++++." Worse, a group of more than 250
people with its members changing over time isn't a promising forum for language
design.

First of all, the group was mandated to deal with templates and exception hand
ling. Even before the committee had time to work on those, suggestions for exten
sions and even for incompatible changes were being sent to committee members. The
user community, even most users who didn't personally submit proposals, clearly
expected the committee to consider these suggestions. If the committee takes such
suggestions seriously, as it does, it provides a focus for discussion of C++'s future. If
it does not, the activity will simply go elsewhere and incompatible extensions will
appear.

Also, despite paying lip service to minimalism and stability, many people like new
features. Language design is intrinsically interesting, the debates about new features
are stimulating, and they provide a good excuse for new articles and releases. Some
features might even help programmers, but for many that seems to be a secondary
motivation. If ignored, these factors can disrupt progress. I prefer them to have a
constructive outlet.

Thus, the committee has a choice between discussing extensions, discussing
dialects after they have come into use, and ignoring reality. Every one of these alter
natives have been chosen by various standards committees over the years. Most -
including the Ada, C, Cobol, Fortran, Modula-2, and Pascal-2 committees - have cho
sen to consider extensions.

My personal opinion is that extension activity of various sorts is inevitable, and it

148 Standardization Chapter 6

is better to have it out in the open and conducted in a semi-civilized manner in a pub
lic forum under somewhat formal rules. The alternative is a scramble to get ideas
accepted through the mechanism of attracting users in the marketplace. That mecha
nism isn't conducive to calm deliberation, open discussion, and attempts to serve all
users. The result would be the language fracturing into dialects.

I consider the obvious dangers inherent in dealing with extensions preferable to
the certain chaos that would result from not dealing with them. A slowly eroding
majority of the committee has agreed, and we are approaching the point where exten
sions work as conducted until now must cease because standards documents will start
appearing, and all activity must be directed towards responding to comments on
those.

Only time will tell where the energy thus left without an outlet will go to. Some
will go to other languages, some will go into experimental work, some will go into
library building (the traditional C++ alternative to language changes). It is interesting
to note that standards groups, like all other organizations, find it hard to disband
themselves. Often, a standards group reconstitutes itself as a forum for revisions or as
the bureaucratic mechanism for the creation of a next-level standard, that is, as a
design committee for a new language or dialect. The Algol, Fortran, and Pascal com
mittees, and even the ANSI C committee, provide examples of this phenomenon.
Usually, the redirection of effort from standardizing an established language to the
design of a would-be successor is accompanied by a major change in personnel and
also of ideals.

In the meantime, I try to guard against the dangers of design by committee by
spending significant time on every proposed extension. This strategy isn't foolproof,
but it does provide a degree of protection against the acceptance of mutually inconsis
tent features and against the loss of a coherent view of the language.

The danger of design by committee is the danger of losing a coherent view of
what the language is and ought to evolve into in favor of political deals over individ
ual features and resolutions.

A committee can easily fall into the trap of approving a feature just because some
one insists that it is essential. It is always easier to argue for a feature than to argue
that the advantage of the feature - which will be very plausible in all interesting cases
- is outweighed by nebulous concerns of coherence, simplicity, stability, difficulties
of transition, etc. Also, the way language committees work does not seem to lend
itself well to arguments based on experimentation and experience-based reasoning.
I'm not quite sure why this is, but maybe the committee format and resolution by vot
ing favor arguments that are more easily digested by exhausted members. It also
appears that logical arguments (and sometimes even illogical arguments) are more
persuasive than reports on other people's experience and experiments.

Thus, "standardization" can become a force for instability. The results of such
instability can be a change for the better, but there is always the danger that it might
become random change or change for the worse. To avoid this, standardization has to
be done at the right stage of a language's evolution: after its path of evolution has
been clearly outlined and before divergent dialects supported by powerful commercial

Section 6.4 Extensions 149

interests has emerged. I hope this is the case for C++, and that the committee will
continue to show the necessary restraint in innovation.

It it worth remembering that people will manage even without extensions. Propo
nents of language features tend to forget that it is quite feasible to build good software
without fancy language support. No individual language feature is necessary for good
software design, not even the ones we would hate to be without. Good software can
be and often is written in C or in a small subset of C++. The benefits of language fea
tures are the convenience of expressing ideas, the time needed to get a program right,
the clarity of the resulting code, and the maintainability of the resulting code. It is not
an absolute either/or. More good code has been written in languages denounced as
"bad" than in languages proclaimed "wonderful" - much more.

6.4.1 Criteria

To help people understand what was involved in proposing an extension or a change
to C++, the extensions working group formulated a set of questions that is likely to be
asked about every proposed feature [Stroustrup, 1992b]:

' 'The list presents criteria that have been used to evaluate features for C++.
[1] Is it precise? (Can we understand what you are suggesting?) Make a clear,

precise statement of the change as it affects the current draft of the lan
guage reference standard.
[a] What changes to the grammar are needed?
[b] What changes to the description of the language semantics are needed?
[c] Does it fit with the rest of the language?

[2] What is the rationale for the extension? (Why do you want it, and why
would we also want it?)
[a] Why is the extension needed?
[b] Who is the audience for the change?
[c] Is this a general-purpose change?
[d] Does it affect one group of C++ language users more than others?
[e] Is it implementable on all reasonable hardware and systems?
[f] Is it useful on on all reasonable hardware and systems?
[g] What kinds of programming and design styles does it support?
[h] What kinds of programming and design styles does it prevent?
[i] What other languages (if any) provide such features?
[j] Does it ease the design, implementation, or use of libraries?

[3] Has it been implemented? (If so, has it been implemented in the exact form
that you are suggesting; and if not, why can you assume that experience
from "similar" implementations or other languages will carry over to the
feature as proposed?)
[a] What effect does it have on a C++ implementation?

[x] on compiler organization?
[y] on run-time support?

[b] Was the implementation complete?

150 Standardization Chapter 6

[c] Was the implementation used by anyone other than the implementer(s)?
[4] What difference does the feature have on code?

[a] What does the code look like without the change?
[b] What is the effect of not doing the change?
[c] Does use of the new feature lead to demands for new support tools?

[5] What impact does the change have on efficiency and compatibility with C
and existing C++?
[a] How does the change affect run-time efficiency?

[x] of code that uses the new feature?
[y] of code that does not use the new feature?

[b] How does the change affect compile and link times?
[c] Does the change affect existing programs?

[x] Must C++ code that does not use the feature be recompiled?
[y] Does the change affect linkage to languages such as C and Fortran?

[d] Does the change affect the degree of static or dynamic checking possi
ble for C++ programs?

[6] How easy is the change to document and teach?
[a] to novices?
[b] to experts?

[7] What reasons could there be for not making the extension? There will be
counter-arguments and part of our job is to find and evaluate them, so you
can just as well save time by presenting a discussion.
[a] Does it affect old code that does not use the construct?
[b] Is it hard to learn?
[c] Does it lead to demands for further extensions?
[d] Does it lead to larger compilers?
[e] Does it require extensive run-time support?

[8] Are there
[a] Alternative ways of providing a feature to serve the need?
[b] Alternative ways of using the syntax suggested?
[c] Attractive generalizations of the suggested scheme?

Naturally, this list is not exhaustive. Please expand it to cover points relevant to
your specific proposal and leave out points that are irrelevant."

These questions are of course a collection of the kinds of questions practical language
designers have always asked.

6.4.2 Status

So how is the committee doing? We won't really know until the standard appears
because there is no way of knowing which, if any, of the backlog of proposals will be
accepted or how new proposals will fare. Here is an incomplete list summarizing the
backlog of extensions proposals as of December 1993 (after the San Jose meeting):

- In-class initialization of class members
- Binary literals

Section 6.4.2 Status 151

- Extended (international) character sets (§6.5.3.2)
- A few template extensions (§15.4, §15.9.3)

In addition, many ideas have been informally presented or even been widely dis
cussed, but no formal proposals have been brought to the committee:

- Garbage collection (§10.7)
- NCEG proposals (for example, §6.5.2)
- Discriminated unions
- User-defined operators (§11.6.2)
- Evolvable/indirect classes
- Anonymous structs
- Enumerations with predefined ++, «, etc. operators
- Overloading based on return type
- Composite Operators (§11.6.3)
- Keyword for the null pointer (NULL, n i l , etc.) (§11.2.3)
- Pre- and post-conditions
- Improvements to the Cpp macros
- Rebinding of references
- Continuations
- Currying

There is some hope of restraint and that accepted features will be properly integrated
into the language. Only a few new features have been accepted so far:

- Exception handling (' 'mandated") (§ 16)
- Templates ("mandated") (§15)
- European character set representation of C++ (§6.5.3.1)
- Relaxing rule for return types for overriding functions (§13.7)
- Run-time type identification (§14.2)
- Overloading based on enumerations (§11.7.1)
- User-defined allocation and deallocation operators for arrays (§ 10.3)
- Forward declaration of nested classes (§13.5)
- Namespaces (§17)
- Mutable (§13.3.3)
- Boolean type (§11.7.2)
- A new syntax for type conversion (§ 14.3)
- An explicit template instantiation operator (§15.10.4)
- Explicit template arguments in template function calls (§ 15.6.2)

Exceptions and templates stand out among the extensions as being mandated by the
original proposal and described in the ARM, and also by being a couple of magni
tudes more difficult to define and to implement than any of the other proposals.

To contrast, the committee has rejected many proposals:
- Several proposals for direct support for concurrency
- Renaming of inherited names (§ 12.8)
- Keyword arguments (§6.5.1)
- Several proposals for slight modifications of the data hiding rules

152 Standardization Chapter 6

- Restricted pointers ("son of n o a l i a s ") (§6.5.2)
- Exponentiation operator (§ 11.5.2)
- Automatically generated composite operators
- User-defined o p e r a t o r . () (§11.5.2)
- Nested functions

Please note that a rejection doesn't imply that the proposal was deemed bad or even
useless. In fact, most proposals that reach the committee are technically sound and
would help at least some subset of the C++ user community. The reason is that most
ideas never make it through the initial scrutiny and effort to make it into a proposal.

6.4.3 Problems with Good Extensions

Even good extensions cause problems. Assume for a moment that we have an exten
sion everybody likes so that no time is wasted discussing its validity. It will still
divert implementer efforts from tasks that some people will consider more important.
For example, an implementer may have a choice of implementing the new feature or
implementing an optimization in the code generator. Often, the feature will win out
because it is more visible to users.

An extension can be perfect when viewed in isolation, yet flawed from a wider
perspective. Most work on an extension focuses on its integration into the language
and its interactions with other language features. The difficulty of this kind of work
and the time needed to do it well is invariably underestimated.

Any new feature makes existing implementations outdated. They don't handle the
new feature. Thus, users will have to upgrade, live without the feature for a while, or
manage two versions of a system (one for the latest implementations and one for the
old one). This last option is typically the one library and tool builders must choose.
For example, adding a new feature based on a novel syntactic construct will require
updating tools such as syntax-based editors.

Teaching material will have to be updated to reflect the new feature - and maybe
simultaneously reflect how the language used to be for the benefit of users that
haven't yet upgraded.

These are the negative effects of a ' 'perfect'' extension. If a proposed extension is
controversial, it will in addition soak up effort from the committee members and from
the community at large. If the extension has incompatible aspects, these may have to
be addressed when upgrading from an older implementation to a new one - some
times even when the new feature isn't used. The classical example is the introduction
of a new keyword. For example, this innocent looking function

void using(Table* namespace) { /* ... */ }

ceased to be legal when namespaces were introduced because u s i n g and
namespace are new keywords. In my experience, though, the introduction of new
keywords creates few technical problems, and those are easily fixed. Proposing a new
keyword, on the other hand, never fails to cause a howl of outrage. The practical

Section 6.4.3 Problems with Good Extensions 153

problems with new keywords can be minimized by choosing names that aren't too
likely to clash with existing identifiers. For this reason, u s i n g was preferred to
use , and namespace was chosen over scope . When, as an experiment, we intro
duced u s i n g and namespace into a local implementation without any announce
ment, nobody actually noticed their presence for two months.

In addition to the very real problems of getting a new feature accepted and into
use, the mere discussion of extensions can have negative effects by creating an
impression of instability in the minds of some users. Many users and would-be users
do not understand that changes are carefully screened to minimize effects on existing
code. Idealistic proponents of new features often find the constraints of stability and
compatibility with both C and existing C++ hard to accept and rarely do much to allay
fears of instability. Also, enthusiastic proponents of "improvements" tend to over
state the weaknesses of the language to make their extensions look more attractive.

6.4.4 Coherence

I see the main challenge of extension proposals as maintaining the coherence of C++
and communicating a view of this coherence to the user community. Features
accepted into C++ must work in combination, must support each other, must compen
sate for serious real problems in C++ as it stood without them, must fit syntactically
and semanticaily into the language, and must support a manageable style of program
ming. A programming language cannot be just a set of neat features, and the primary
effort involved in evaluating and developing extensions is to refine them so that they
become an integral part of the language. For an extension that I consider seriously, I
estimate that about 95% of my personal effort goes into finding a form of the original
idea/proposal that can be smoothly integrated into C++. Typically, much of this effort
involves working out a clear transition path for implementers and users. Even the
best new feature must be rejected if there is no way users can adopt it without throw
ing away most of their old code and old tools. See Chapter 4 for a more extensive
discussion of acceptance criteria.

6.5 Examples of Proposed Extensions
Generally in this book, I discuss a proposed language feature in the context of related
features. A few, however, don't seem to fit anywhere, so I use them as examples
here. Not surprisingly, the features that don't naturally fit anywhere have a tendency
to get rejected. A feature, however reasonable when considered in isolation, should
be considered with great suspicion unless it can be seen as part of a general effort to
evolve the language in some definite direction.

6.5.1 Keyword Arguments

Roland Hartinger's proposal for keyword arguments, that is, for a mechanism for
specifying function arguments by name in a call, was close to technically perfect. The

154 Standardization Chapter 6

reason the proposal was withdrawn rather than accepted is therefore particularly inter
esting. It was withdrawn because the extensions group reached a consensus that the
proposal was close to redundant, would cause compatibility problems with existing
C++ code, and would encourage programming styles that ought not to be encouraged.
The discussion here reflects the discussions in the extensions working group. As
usual, hundreds of relevant remarks must remain unmentioned for lack of space.

Consider an ugly, but unfortunately not unrealistic, example borrowed from an
analysis paper written by Bruce Eckel:

class window {

// . . .
public:

window(

wintype=standard,

int ul_corner_x=0,

int ul_corner_y=0,

int xsize=100,

int ysize=100,

color Color=black,

border Border=single,

color Border_color=blue,

WSTATE window_state=open);

// . . .

};

If you want to define a default window, all is well. If you want to define a window
that is "almost default," the specification can get tedious and error-prone. The pro
posal was simply to introduce a new operator, : =, to be used in calls to specify a
value for a named argument. For example:

new w i n d o w (C o l o r : = g r e e n , y s i z e : = 1 5 0) ;

would be equivalent to

new w i n d o w (s t a n d a r d , 0 , 0 , 1 0 0 , 1 5 0 , g r e e n) ;

which, thanks to the default arguments, is equivalent to

new window(standard, 0,0,100,150, green, single, blue, open) ,-

This seems to be a useful bit of syntactic sugar that might make programs more read
able and more robust. The proposal was implemented to be sure that all conceptual
and integration problems were ironed out; no significant or difficult problems were
found. In addition, the proposed mechanism was based on experience from other lan
guages, such as Ada.

On the other hand, there is no doubt that we can live without keyword arguments;
they do not provide any new fundamental facility, don't support a significant new pro
gramming paradigm, and don't close a hole in the type system. This leaves questions
with answers that depend more on taste and impression of the state of the C++ user
community:

Section 6.5.1 Keyword Arguments 155

[1] Will keyword arguments lead to better code?
[2] Will keyword arguments lead to confusion or teaching problems?
[3] Will keyword arguments cause compatibility problems?
[4] Should keyword arguments be one of the few extensions we can accept?

The first serious problem discovered with the proposal was that keyword arguments
would introduce a new form of binding between a calling interface and an implemen
tation:

[1] An argument must have the same name in a function declaration as in the func
tion definition.

[2] Once a keyword argument is used, the name of that argument cannot be
changed in the function definition without breaking user code.

Because of the cost of recompilation, many people are worried about any increase in
the degree of binding between interfaces and implementations. Worse, this turned out
to be a compatibility problem of significant magnitude. Some organizations recom
mend a style with "long, informative" argument names in header files, and "short,
convenient" names in the definitions. For example:

void reverse(int* elements, int length_of_element_array);

// . . .

void reverse(int* v, int n)

{

// . . .

}

Naturally, some people find that style abhorrent, whereas others (including me) find it
quite reasonable. Apparently, significant amounts of such code exist. Further, an
implication of keyword arguments would be that no name in a commonly distributed
header file could be changed without risking breaking code. Different suppliers of
header files for common services (for example, Posix or X) would also have to agree
on argument names. This could easily become a bureaucratic nightmare.

Alternatively, the language shouldn't require declarations to have the same name
for the same argument. That seemed viable to me. However, people didn't seem to
like that variant either.

There could be a noticeable impact on link times if the rule that argument names
must match across compilation units is checked. If it isn't checked, the facility would
not be type safe and could become a source of subtle errors.

Both the potential linking cost and the very real binding problem could be easily
avoided by omitting argument names in header files. A cautious user might therefore
avoid specifying argument names in header files. Thus, to quote Bill Gibbons, "The
net impact on readability of C++ might actually be negative."

My main worry about keyword arguments was actually that keyword arguments
might slow the gradual transition from traditional programming techniques to data
abstraction and object-oriented programming in C++. In code that I find best written
and easiest to maintain, long argument lists are very rare. In fact, it is a common

156 Standardization Chapter 6

observation that a transition to a more object-oriented style leads to a significant
decrease in the length of argument lists; what used to be arguments or global values
become local state. Based on experience, I expect the average number of arguments
to drop to less than two and that functions with more than two arguments will become
rare. This implies that keyword arguments would be most useful in code we deemed
poorly written. Would it be sensible to introduce a new feature that primarily sup
ported programming styles that we would prefer to see decline? The consensus, based
on this argument, the compatibility issues, and a few minor details, was no.

6.5.1.1 Alternatives to Keyword Arguments

Given that we don't have keyword arguments, how would I reduce the length of the
argument list in the window example to something convenient? First of all, the
apparent complexity is already reduced by the default arguments. Adding extra types
to represent common variants is another common technique:

class colored_window : public window {
public:

colored_window(color c=black)
:window(standard,0,0,100,100,c) { }

};

class bordered_window : public window {
public:

bordered_window(border b=single, color bc=blue)
:window(standard,0,0,100,100,black,b,be) { }

};

This technique has the advantage of channeling usage into a few common forms and
can therefore be used to make code and behavior more regular. Another technique is
to provide explicit operations for changing settings from the defaults:

class w_args {
wintype wt;
int ulcx, ulcy, xz, yz;
color wc, bc;
border b;
WSTATE ws;

public:
w_args() // set defaults

: wt(standard), ulcx(0), ulcy(0), xz(100), yz(100),
wc(black), b(single), bc(blue), ws(open) { }

Section 6.5.1.1 Alternatives to Keyword Arguments 157

// override defaults:

w_args& ysize(int s) { yz=s; return *this; }
w_args& Color(color c) { wc=c; return *this; }
w_args& Border(border bb) { b = bb; return *this; }
w_args& Border_color(color c) { bc=c; return *this; }
// .. .

};

class window {
// . . .
window(w_args wa); // set options from wa
// ...

};

From this, we get a notational convenience that is roughly equivalent to what key
word arguments provide:

window w; // default window
window w(w_args().color(green).ysize(150));

This technique has the significant advantage that it becomes easy to pass objects rep
resenting arguments around in a program.

Naturally, these techniques can be used in combination. The net effect of such
techniques is to shorten argument lists and thereby decrease the need for keyword
arguments.

A further reduction in the number of arguments could be obtained by using a
P o i n t type rather than expressing interfaces directly in terms of coordinates.

6.5.2 Restricted Pointers

A Fortran compiler is allowed to assume that if a function is given two arrays as argu
ments, then those arrays don't overlap. A C++ function is not allowed to assume that.
The result is an advantage in speed for the Fortran routine of between 15% and 30
times dependent on the quality of the compiler and the machine architecture. The
spectacular savings come from vectorizing operations for machines with special vec
tor hardware such as Crays.

Given C's emphasis on efficiency, this was considered an affront and the ANSI C
committee proposed to solve the problem by a mechanism called n o a l i a s to specify
that a C pointer should be considered alias-free. Unfortunately, the proposal was late
and so half-baked that it provoked Dennis Ritchie to his only intervention in the C
standards process. He wrote a public letter stating, " n o a l i a s must go; this is non-
negotiable."

After that, the C and C++ community was understandably reluctant to tackle alias
ing problems, but the issue is of key importance to C users on Crays so Mike Holly
from Cray grasped the nettle and presented an improved anti-aliasing proposal to the
Numerical C Extensions Group (NCEG) and to the C++ committee. The idea was to

158 Standardization Chapter 6

allow a programmer to state that a pointer should be considered alias-free by declaring
it r e s t r i c t e d . For example:

void* memcopy(void*restrict s1, const void* s2, size_t n);

Since s1 is specified to have no alias, there is no need to declare s2 r e s t r i c t e d ,
also. The keyword r e s t r i c t would syntactically apply to * in the same way that
c o n s t and v o l a t i l e do. This proposal would solve the C/Fortran efficiency dis
crepancy by selectively adopting the Fortran rule.

The C++ committee was naturally sympathetic to any proposal that improves effi
ciency and discussed the proposal at some length, but finally decided to reject it with
hardly a dissenting voice. The key reasons for the rejection were:

[1] The extension is not safe. Declaring a pointer r e s t r i c t e d allows the com
piler to assume that the pointer has no aliases. However, a user wouldn't nec
essarily be aware of this, and the compiler can't ensure it. Because of the
extensive use of pointers and references in C++, more errors are likely to arise
from this source than Fortran experience might suggest.

[2] Alternatives to the extension have not been sufficiently explored. In many
cases, alternatives such as an initial check for overlap combined with special
code for non-overlapping arrays is an option. In other cases, direct calls to
specialized math libraries, such as BLAS, can be used to tune vector opera
tions for efficiency. Promising alternatives for optimization have yet to be
explored. For example, global optimization of relatively small and stylized
vector and matrix operations appears feasible and worthwhile for C++ compil
ers for high-performance machines.

[3] The extension is architecture-specific. High-performance numerical computa
tion is a specialized field using specialized techniques and often specialized
hardware. Because of this, it may be more appropriate to introduce a non
standard architecture specific extension or pragma. Should the need for the
utility of this kind of optimization prove useful beyond a narrow community
using specialized machine architectures, the extension must be reevaluated.

One way of looking at this decision is as a reconfirmation of the idea that C++ sup
ports abstraction through general mechanisms rather than specialized application areas
through special-purpose mechanisms. I would certainly like to help the numerical
computation community. The question is how? Following closely in Fortran's foot
steps for the classical vector and matrix algorithms may not be the best approach. It
would be nice if every kind of numeric software could be written in C++ without loss
of efficiency, but unless something can be found that achieves this without compro
mising the C++ type system it may be preferable to rely on Fortran, assembler, or
architecture-specific extensions.

6.5.3 Character Sets

C relies on the American variant of the international 7-bit character set ISO 646-1983
called ASCII (ANSI3.4-1968). This causes two problems:

Section 6.5.3 Character Sets 159

[1] ASCII contains punctuation characters and operator symbols, such as] and {,
that are not available in many national character sets.

[2] ASCII doesn't contain characters, such as A and as, used in languages other
than English.

6.5.3.1 Restricted Character Sets

The ASCII (ANSI3.4-1968) special characters [,], {, }, |, and \ occupy character
set positions designated as alphabetic by ISO. In most European national ISO-646
character sets, these positions are occupied by letters not found in the English alpha
bet. For example, the Danish national character set uses these values for the vowels
Æ, Å, æ, å, φ, and Φ. No significant amount of text can be written in Danish without
them. This leaves Danish programmers with the unpleasant choice of acquiring com
puter systems that handle full 8-bit character sets, such as ISO-8859/1/2, not using
three vowels of their native language, or not using C++. Speakers of French, German,
Spanish, Italian, etc., face the same alternatives. This has been a notable barrier to the
use of C in Europe, especially in commercial settings (such as banking) where the use
of 7-bit national character sets is pervasive in many countries.

For example, consider this innocent-looking ANSI C and C++ program:

int main(int argc, char* argv[])

{
if (argc<l || *argv[l]=='\0') return 0;

printf("Hello, %s\n",argv[l]);

}

On a standard Danish terminal or printer this program will appear like this:

int main (int argc, char* argvÆÅ)
æ

if (argc<l φφ *argvÆÅ=='Φ0') return 0;
printf("Hello, %sΦn",argvÆÅ) ;

å

It is amazing to realize that some people read and write this with ease. I don't think
that is a skill anyone should have to acquire.

The ANSI C committee adopted a partial solution to this problem by defining a set
of trigraphs that allows national characters to be expressed:

[{ \] } " I ~
??= ??(??< ? ? / ??) ??> ? ? ' ? ? ! ? ? -

This can be useful for interchange of programs, but doesn't make programs readable:

int main(int argc, char* arg??(??))
??<

if (argc<l ??!??! *argv??(1??)=='??/0') return 0;
printf ("Hello, %s??/n", argv?? (1??));

??>

160 Standardization Chapter 6

Naturally, the real solution to this problem is for C and C++ programmers to buy
equipment that supports both their native language and the characters needed by C
and C++ well. Unfortunately, this appears to be infeasible for some, and the introduc
tion of new equipment can be a very slow process. To help programmers stuck with
such equipment and thereby help C++, the C++ standards committee decided to pro
vide a more readable alternative.

The following keywords and digraphs are provided as equivalents to operators
containing national characters:

keywords
and &&
and_eq &=
b i t a n d &
b i t o r |
compl
n o t !
o r | |
o r _ e q | =
x o r ̂
x o r _ e q ^=
n o t _ e q ! =

digraphs

<% {

%> }

< : [

: >]
%: #
%:%: ##

I would have preferred %% for # and <> for ! = but %: and n o t _ e q were the best
that the C and C++ committees could compromise on.

We can now write the example like this:

int main(int argc, char* argv<: :>)
<%

if (argc<l or *argv<:1:>=='??/0') return 0;
printf("Hello, %s??/n",argv<:1:>);

%>

Note that trigraphs are still necessary for putting ' 'missing'' characters such as \ into
strings and character constants.

The introduction of the digraphs and the new keywords was most controversial. A
large number of people - mostly people with English as their native language and
with a strong C background - saw no reason to complicate and corrupt C++ for the
benefit of people who were "unwilling to buy decent equipment." I sympathize with
that position because the digraphs and trigraphs are not pretty, and new keywords are
always a source of incompatibilities. On the other hand, I have had to work on equip
ment that didn't support my native language, and I have seen people drop C as a pos
sible programming language in favor of "a language that doesn't use funny charac
ters." In support of this observation, the IBM representative reported that the absence
of ! in the EBCDIC character set used on IBM mainframes causes frequent and
repeated complaints. I found it interesting to note that even where extended character
sets are available, systems administration issues sometimes force their disuse.

Section 6.5.3.1 Restricted Character Sets 161

My guess is that for a transition period of maybe a decade, keywords, digraphs,
and trigraphs is the least bad solution. My hope is that it will help C++ become
accepted in areas that C failed to penetrate, and thus support programmers who have
not been represented in the C and C++ culture.

6.5.3.2 Extended Character Sets

Support for a restricted character set representation for C++ is essentially backward-
looking. A more interesting and difficult problem is how to support extended charac
ter sets; that is, how to take advantage of character sets with more characters than
ASCII. There are two distinct problems:

[1] How to support manipulation of extended character sets?
[2] How to allow extended character sets in the source text of a C++ program?

The C standards committee approached the former problem by defining a type
wcha r_ t to represent multi-byte characters. In addition, a multi-byte string type
wcha r_ t [] and pr in t f - fami ly I/O for wcha r_ t were provided. C++ continues
in this direction by making wcha r_ t a proper type (rather than merely a synonym
for another type defined using t y p e d e f as it is in C), by providing a standard string
of wcha r_ t class called w s t r i n g , and by supporting these types in stream I/O.

This supports only a single "wide character'' type. If a programmer needs more
types, say a Japanese character, a string of Japanese characters, a Hebrew character, or
a string of Hebrew characters, there are at least two alternative approaches. One can
map these characters into a common character set large enough to hold both, say, Uni
code, and write code that handles that using wcha r_ t . Alternatively one can define
classes for each kind of character and string, say, J c h a r , J s t r i n g , Hchar, and
H s t r i n g , and have these classes supply the correct behavior for each. Such classes
ought to be generated from a common template. My experience is that either approach
can work, but that any decision that touches internationalization and multiple charac
ter sets becomes controversial and emotional faster than any other kind of problem.

The question of if and how to allow extended character sets to be used in C++ pro
gram text is no less tricky. Naturally, I would like to use the Danish words for apple,
tree, boat, and island in programs dealing with such concepts. Allowing æble, træ,
båd, and φ in comments is not difficult, and comments in languages other than
English are indeed not uncommon. Allowing extended character sets in identifiers is
more problematic. In principle, I'd like to allow identifiers written in Danish,
Japanese, and Korean in a C or C++ program. There are no serious technical prob
lems in doing that. In fact, a local C compiler written by Ken Thompson allows all
Unicode characters with no special meaning in C in identifiers.

I worry about portability and comprehension, though. The technical portability
problem can be handled. However, English has an important role as a common lan
guage for programmers, and I suspect that it would be unwise to abandon that without
serious consideration. To most programmers, a systematic use of Hebrew, Chinese,
Korean, etc., would be a significant barrier to comprehension. Even my native Dan
ish could cause some headaches for the average English-speaking programmer.

162 Standardization Chapter 6

The C++ committee hasn't made any decisions on this issue so far, but I suspect it
will have to and that every possible resolution will be controversial.

7
Interest and Use

Some languages are designed to solve a problem;
others are designed to prove a point.

- Dennis M. Ritchie

C++ usage — compilers — conferences, books, and journals — tools and
environments — ways of learning C++ — users and applications — com
mercial competition — alternatives to C++ — expectations and attitudes.

7.1 The Explosion in Interest and Use

C++ was designed to serve users. It was not an academic experiment to design the
perfect programming language, nor was it a commercial product meant to enrich its
developers. Thus, to fulfill its purpose C++ had to have users - and it has:

Date
Oct 1979
Oct 1980
Oct 1981
Oct 1982
Oct 1983
Oct 1984
Oct 1985
Oct 1986
Oct 1987
Oct 1988
Oct 1989
Oct 1990
Oct 1991

Estimated number of C++ users
1
16
38
85
??+2 (no Cpre count)
??+50 (no Cpre count)
500
2,000
4,000
15,000
50,000
150,000
400,000

164 Interest and Use Chapter 7

In other words, the C++ user population on average doubled every seven and a half
months during these twelve years. These are conservative figures. C++ users have
never been easy to count. First, there are implementations such as GNU's G++ and
Cfront shipped to universities for which no meaningful records can be kept. Second,
many companies - both tools suppliers and end-users - consider the number of their
users and the kind of work they do secret. However, I always had many friends, col
leagues, contacts, and compiler suppliers who were willing to trust me with figures as
long as I used them in a responsible manner. This enabled me to estimate the number
of C++ users. These estimates were created by taking the number of users reported to
me or estimated based on personal experience, rounding them all down, adding them,
and then rounding down again. These numbers are the estimates made at the time and
are not adjusted in any way. To support the claim that these figures are conservative,
I can mention that Borland, the largest single C++ compiler supplier, publicly stated
that it had shipped 500,000 compilers by October 1991. That figure is plausible and
also credible because Borland is a public company.

The number of C++ users has now reached the point where I have no reasonable
way of counting them. I don't think I could determine the current number of C++
users to the nearest 100,000. Public figures show that well over 1,000,000 C++ com
pilers had been sold by late 1992.

7.1.1 Lack of C++ Marketing

To me, the most surprising thing about these numbers is that early users were gained
without the benefit of traditional marketing (§7.4). Instead, various forms of elec
tronic communication played a crucial role in this. In the early years, most distribu
tion and all support was done using email. Relatively early on, newsgroups dedicated
to C++ were created by users. This intensive use of networks allowed a wide dissemi
nation of information about the language, techniques, and the current state of tools.
These days this is fairly ordinary, but in 1981 it was relatively new. I suspect C++
was the first major language to take this path.

Later, more conventional forms of communication and marketing arose. After
AT&T released Cfront 1.0, some resellers, notably John Carolan's Glockenspiel in
Ireland and their US distributor Oasys (later part of Green Hills), started some mini
mal advertising in 1986. When independently developed C++ compilers such as Ore
gon Software's C++ Compiler and Zortech's C++ Compiler appeared, C++ became a
common sight in ads (from about 1988).

7.1.2 Conferences

In 1987, David Yost of USENIX, the UNIX Users' association, took the initiative to
hold the first conference specifically devoted to C++. Because David wasn't quite
sure if enough people were interested, the conference was called a "workshop" and
David told me privately that "if not enough people sign up, we have to cancel." He
wouldn't tell me what "enough people" meant, but I suspect a number in the region
of 30. David Yost selected Keith Gorlen from the National Institutes of Health as the

Section 7.1.2 Conferences 165

program chairman and Keith contacted me and others, collected email addresses of
interesting projects we had heard about and emailed calls for papers. In the end, 30
papers were accepted, and 214 people turned up in Santa Fe, NM in November 1987.

The Santa Fe conference set a good example for future conferences with a mix of
papers on applications, programming and teaching techniques, ideas for improve
ments to the language, libraries, and implementation techniques. Notably for a
USENIX conference, there were papers on C++ on the Apple Macintosh, OS/2, the
Connection machine, and for implementing non-UNIX operating systems (for exam
ple, CLAM [Call, 1987] and Choices [Campbell, 1987]). The NIH library [Gor-
len,1987] and the Interviews library [Linton, 1987] also made their public debuts in
Santa Fe. An early version of what became Cfront 2.0 was demonstrated and I gave
the first public presentation of its features [Stroustrup, 1987c]. The USENIX C++ con
ferences continue to be the primary technically and academically oriented C++ confer
ence. The proceedings from these conferences are among the best readings about C++
and its use.

The Santa Fe conference was meant to be a workshop and because of the intensity
of the discussions, it actually was a workshop despite the 200 participants. It was
obvious, however, that at the next conference the experts would be drowned by the
novices and by people trying to figure out what C++ was. That would make a deep
and open technical discussion quite difficult to achieve; tutorial and commercial con
cerns would dominate. At the suggestion of Andrew Koenig, an "implementers
workshop" was tagged on to the 1988 USENIX C++ conference in Denver. After the
conference, a busload of conference speakers, C++ implementers, etc., set off from
Denver to Estes Park for a day's animated discussion. In particular, the ideas of
s t a t i c member functions (§13.4) and c o n s t member functions (§13.3) were so
positively accepted that I decided to make these features part of Cfront 2.0, which was
still delayed due to internal AT&T politics (§3.3.4). At my urging, Mike Miller pre
sented a paper [Miller, 1988] that led to the first serious public discussion of exception
handling in C++.

In addition to the USENIX C++ conferences, there are now many commercial and
semi-commercial conferences devoted to C++, to C including C++, and to object-
oriented programming including C++. In Europe, the Association of C and C++ Users
(ACCU) are also arranges conferences.

7.1.3 Journals and Books

By mid-1992 there were more than 100 books on C++ available in English alone and
both translations and locally written books available in Chinese, Danish, French, Ger
man, Italian, Japanese, Russian, etc. Naturally, the quality varies enormously. I am
pleased to find my books translated into ten languages so far.

The first journal devoted to C++, The C++ Report, started appearing in January
1989 with Rob Murray as its editor. A larger and glossier quarterly The C++ Journal
appeared in the spring of 1991 with Livleen Sing as editor. In addition, there are sev
eral newsletters controlled by C++ tools suppliers, and many journals such as

166 Interest and Use Chapter 7

Computer Language, The Journal of Object-Oriented Programming (JOOP), Dr.
Dobbs Journal, The C Users' Journal, and .EXE run regular columns or features on
C++. Andrew Koenig's column in JOOP is particularly consistent in its quality and
lack of hype. The set of publications that discuss C++-related issues and their edito
rial policies change relatively fast. My purpose in mentioning journals, conferences,
compilers, tools, etc., is not to give an up-to-date "consumer survey," but to illustrate
the breadth of the early C++ community.

Newsgroups and bulletin boards such as comp.lang.c++ on usenet and c.plus.plus
on BIX also produced tens of thousands of messages over the years to the delight and
despair of their readers. Keeping up with what is written about C++ is currently more
than a full-time job.

7.1.4 Compilers

The Santa Fe conference (§7.1.2) marked the announcement of the second wave of
C++ implementations. Steve Dewhurst described the architecture of a compiler he
and others were building in AT&T's Summit facility. Mike Ball presented some
ideas for what became the TauMetric C++ compiler (more often known as the Oregon
Software C++ compiler) that he and Steve Clamage were writing in San Diego. Mike
Tiemann gave a most animated and interesting presentation of how the GNU C++
compiler he was building would do just about everything and put all other C++ com
piler writers out of business. The new AT&T C++ compiler never materialized; GNU
C++ version 1.13 was first released in December 1987; and TauMetric C++ first
shipped in January 1988.

Until June 1988, all C++ compilers on PCs were Cfront ports. Then Zortech
started shipping their compiler developed by Walter Bright in Seattle. The appear
ance of the Zortech compiler made C++ "real" for many PC-oriented people for the
first time. More conservative people reserved judgment until the Borland C++ com
piler was released in May 1990 or even until Microsoft's C++ compiler emerged in
March 1992. DEC released their first independently developed C++ compiler in
February 1992, and IBM released their first independently developed C++ compiler in
May 1992. There are now more than a dozen independently developed C++ compil
ers.

In addition to these compilers, Cfront ports seems to be everywhere. In particular,
Sun, Hewlett-Packard, Centerline, ParcPlace, Glockenspiel, and Comeau Computing
have shipped Cfront-based products on just about every platform.

7.1.5 Tools and Environments

C++ was designed to be a viable language in a tool-poor environment. This was
partly a necessity because of the almost complete lack of resources in the early years
and the relative poverty later on. It was also a conscious decision to allow simple
implementations and, in particular, simple porting of implementations.

C++ programming environments that are a match for the environments routinely
supplied with other object-oriented languages are now emerging. For example,

Section 7.1.5 Tools and Environments 167

ObjectWorks for C++ from ParcPlace is essentially a Smalltalk program development
environment adapted for C++, and Centerline C++ (formerly Saber C++) is an
interpreter-based C++ environment inspired by the Interlisp environment. This gives
C++ programmers the option of using the more whizzy, more expensive, and often
more productive environments that have previously only been available for other lan
guages, as research toys, or both. An environment is a framework in which tools can
cooperate. There is now a host of such environments for C++. Most C++ implemen
tations on PCs are compilers embedded in a framework of editors, tools, file systems,
standard libraries, etc. MacApp and the Mac MPW is the Apple Mac version of that,
ET++ is a public domain version in the style of the MacApp. Lucid's Energize and
Hewlett-Packard's Softbench are yet other examples.

Though sophisticated beyond what has been generally used for C, these environ
ments are only primitive forerunners of much more advanced systems. A well-written
C++ program is a vast reservoir of information waiting to be used. Current tools tend
to focus on syntactic aspects of the language, on the run-time properties of an execu
tion, and on a textual view of the program. To deliver the full benefits of the C++ lan
guage, a programming environment must understand and use the full type system and
escape the simple files-and-characters view of the static program representation. It
must also be able to associate run-time information with the static structure of a pro
gram in a coherent manner. Naturally, such an environment must also scale to handle
the large programs (for example, 500,000 lines of C++) where tools are of the greatest
importance.

Several such systems are under development. I'm personally deeply involved
with one such project [Murray,1992] [Koenig,1992]. I think a caveat is in place,
though. A programming environment can be used by a supplier to lock users into a
closed world of features, libraries, tools, and work patterns that cannot be easily trans
ferred to other systems. Thus a user can become overly dependent on a single sup
plier and deprived of the opportunity to use machine architectures, libraries, data
bases, etc., that that supplier is disinclined to support. One of my major aims for C++
was to give users a choice of a variety of systems; a program development environ
ment can be designed to compromise that aim, but it doesn't have to
[Stroustrup,1987d]:

"Care must be taken to ensure that program source can be cost-effectively trans
ferred between different such environments."

In the same way as I see no hope for a single, grand, standard library, I see no hope
for a single standard C++ software development environment [Stroustrup,1987d]:

' 'For C++ at least, there will always be several different development and execu
tion environments, and there will be radical differences between such environ
ments. It would be unrealistic to expect a common execution environment for,
say, an Intel 80286 and a Cray XMP, and equally unrealistic to expect a common
program development environment for an individual researcher and for a team of
200 programmers engaged in large-scale development. It is also clear, however,
that many techniques can be used to enhance both kinds of environments and that
one must strive to exploit commonality wherever it makes sense."

168 Interest and Use Chapter 7

A multiplicity of libraries, run-time environments, and development environments are
essential to support the range of C++ applications. This view guided the design of
C++ as early as 1987; in fact, it is older yet. Its roots are in the view of C++ as a
general-purpose language (§1.1, §4.2).

7.2 Teaching and Learning C++

The growth and nature of C++ use have been strongly influenced by the way C++ is
learned. It follows that it can be hard to understand C++ without some insight into the
way it can be taught and learned. Aspects of C++'s rapid growth can be incomprehen
sible without such insight.

Thoughts about how C++ could be taught and used effectively by relative novices
influenced the design of C++ from the earliest days. I did a lot of teaching - at least I
did a lot of teaching for someone who is a researcher rather than a professional educa
tor. My successes and failures in getting my ideas across and in seeing the real pro
grams written by people I and others had taught strongly influenced the design of
C++.

After a few years, an approach that emphasized concepts up front followed by an
emphasis on the relationship between the concepts and the main language features
emerged. Details of individual language features were left for people to learn if and
when they needed to know them. Where that approach was found not to work, the
language was modified to support it. The net effect was that the language grew to be
a better tool for design.

The people I worked with and the people I taught tended to be professional pro
grammers and designers who needed to learn on the job rather than taking weeks or
months out of their lives to learn the new techniques. From this came much of the
desire to design C++ so that it can be learned and its features adopted gradually. C++
is organized such that you can learn its concepts in a roughly linear order and gain
practical benefits along the way. Importantly, you can gain benefits roughly in pro
portion to the effort expended.

I think the practical concern underlying many discussions about programming lan
guages, language features, styles of programming, etc., has more to do with education
than with programming language features as such. For many, the key question is:

Given that I don't have much time to learn new techniques
and concepts, how do I start using C++ effectively?

If the answer for some other language is more satisfactory than for C++, that language
will often be chosen because at this stage programmers usually have a choice (as they
ought to have). In early 1993, Ianswered the question on comp.lang.c++ like this:

' 'It is clear that to use C++ ' 'best'' in an arbitrary situation you need a deep under
standing of many concepts and techniques, but that can only be achieved through
years of study and experiment. It is little help to tell a novice (a novice with C++,
typically not a novice with programming in general), first to gain a thorough

Section 7.2 Teaching and Learning C++ 169

understanding of C, Smalltalk, CLOS, Pascal, ML, Eiffel, assembler, capability-
based systems, OODMBSs, program verification techniques, etc., and then apply
the lessons learned to C++ on his or her next project. All of those topics are wor
thy of study and would - in the long run - help, but practical programmers (and
students) cannot take years off from whatever they are doing for a comprehensive
study of programming languages and techniques.

On the other hand, most novices understand that ' 'a little knowledge is a dan
gerous thing'' and would like some assurance that the little they can afford time to
learn before/while starting their next project will be of help and not a distraction or
a hindrance to the success of that project. They would also like to be confident
that the little new they can absorb immediately can be part of a path that can lead
to the more comprehensive understanding actually desired rather than an isolated
skill leading nowhere further.

Naturally, more than one approach can fulfill these criteria and exactly which
to choose depends on the individual's background, immediate needs, and the time
available. I think many educators, trainers, and posters to the net underestimate the
importance of this: after all, it appears so much more cost effective - and easier -
to "educate" people in large batches rather than bothering with individuals.

Consider a few common questions:

I don't know C or C++, should I learn C first?
I want to do OOP, should I learn Smalltalk before C++?
Should I start using C++ as an OOPL or as a better C?
How long does it take to learn C++?

I don't claim to have the only answers to these questions. As I said, the "right"
answer depends on the circumstances. Most C++ textbook writers, teachers, and
programmers have their own answers. My answers are based on years of pro
gramming in C++ and other languages, teaching short C++ design and program
ming courses (mainly to professional programmers), consulting about the intro
duction of and use of C++, discussing C++, and generally thinking about program
ming, design, and C++.

I don't know C or C++, should I learn C first? No. Learn C++ first. The C
subset of C++ is easier to learn for C/C++ novices and easier to use than C itself.
The reason is that C++ provides better guarantees than C (through stronger type
checking). In addition, C++ provides many minor features, such as operator new,
that are notationally more convenient and less error-prone than their C alterna
tives. Thus, if you plan to learn C and C++ (or just C++), you shouldn't take the
detour through C. To use C well, you need to know tricks and techniques that
aren't anywhere near as important or common in C++ as they are in C. Good C
textbooks tend (reasonably enough) to emphasize the techniques that you will
need for completing major projects in C. Good C++ textbooks, on the other hand,
emphasize techniques and features that lead to the use of C++ for data abstraction
and object-oriented programming. Knowing the C++ constructs, their (lower-

170 Interest and Use Chapter 7

level) C alternatives are trivially learned (if necessary).
To show my inclinations: to learn C, use [Kernighan,1988] as the primary text

book; to learn C++, use [2nd]. Both books have the advantage of combining a
tutorial presentation of language features and techniques with a complete refer
ence manual. Both describe their respective languages rather than particular
implementations and neither attempts to describe particular libraries shipped with
particular implementations.

There are many other good textbooks and many other styles of presentation,
but these are my favorites for comprehension of concepts and styles. It is always
wise to look carefully at at least two sources of information to compensate for bias
and possible shortcomings.

I want to do OOP, should I learn Smalltalk before C++? No. If you plan
to use C++, learn C++. Languages such as C++, Smalltalk, Simula, CLOS, Eiffel,
etc., each have their own view of the key notions of abstraction and inheritance
and each supports them in slightly different ways to support different notions of
design. Learning Smalltalk will certainly teach you valuable lessons, but it will
not teach you how to write programs in C++. In fact, unless you have the time to
learn and digest both the Smalltalk and the C++ concepts and techniques, using
Smalltalk as a learning tool can lead to poor C++ designs.

Naturally, learning both C++ and Smalltalk so that you can draw from a wider
field of experience and examples is the ideal, but people who haven't taken the
time to digest all the new ideas often end up "writing Smalltalk in C++," that is,
applying Smalltalk design notions that don't fit well in C++. This can be as sub-
optimal as writing C or Fortran in C++.

One reason often given for learning Smalltalk is that it is "pure" and thus
forces people to think and program "object-oriented." I will not go into the dis
cussion of "purity" beyond mentioning that I think that a general-purpose pro
gramming language ought to and can support more than one programming style
(paradigm).

The point here is that styles that are appropriate and well supported in
Smalltalk are not necessarily appropriate for C++. In particular, a slavish follow
ing of Smalltalk style in C++ leads to inefficient, ugly, and hard-to-maintain C++
programs. The reason is that good C++ requires design that takes advantage of
C++'s static type system rather than fights it. Smalltalk supports a dynamic type
system (only) and that view translated into C++ leads to extensive unsafe and ugly
casting.

I consider most casts in C++ programs signs of poor design. Some casts are
essential, but most aren't. In my experience, old-time C programmers using C++
and C++ programmers introduced to OOP through Smalltalk are among the heavi
est users of casts of the kind that could have been avoided by more careful design.

In addition, Smalltalk encourages people to see inheritance as the sole or at
least the primary way of organizing programs and to organize classes into single-
rooted hierarchies. In C++, classes are types and inheritance is by no means the
only means of organizing programs. In particular, templates are the primary

Section 7.2 Teaching and Learning C++ 171

means for representing container classes.
I am also deeply suspicious of arguments proclaiming the need to force people

to write in an object-oriented style. People who don't want to learn usually cannot
be taught with reasonable effort. In my experience there is no shortage of people
who do want to learn, and time and effort are better spent on those. Unless you
manage to demonstrate the principle behind data abstraction and object-oriented
programming, all you'll get is inappropriate "baroque" misuses of the language
features that support these notions - in C++, Smalltalk, or any other language.

See The C++ Programming (2nd Edition) [2nd] and in particular Chapter 12
for a more thorough discussion of the relationship between C++ language features
and design.

Should I start using C++ as an OOPL or as a better C? That depends.
Why do you want to start using C++? The answer to that question ought to deter
mine the way you approach C++, not "some one-size-fits-all philosophy. In my
experience, the safest bet is to learn C++ bottom-up, that is, first learn the features
C++ provides for traditional procedural programming, the better-C subset, then
learn to use and appreciate the data abstraction features, and then learn to use class
hierarchies to organize sets of related classes.

It is - in my opinion - dangerous to rush through the earlier stages because
there is too high a probability of missing some key point.

For example, an experienced C programmer might consider the better-C subset
of C "well-known" and skip the 100 pages or so of a textbook that describes it.
However, in doing so the C programmer might miss the ability to overload func
tions, the difference between initialization and assignment, the use of operator
new for allocation, the explanation of references, or some other minor feature in
such a way that it will come back to haunt at a later stage where sufficient new
concepts are in play to complicate matters. If the concepts used in the better-C
subset are known the 100 pages will only take a couple of hours to read and some
details will be interesting and useful. If not, the time spent is essential.

Some people have expressed fear that this "gradual approach" leads people to
write in C-style forever. This is of course a possible outcome, but nowhere as
likely as proponents of ' 'pure'' languages and proponents of the use of force in
teaching programming like to believe. The key thing to realize is that using C++
well as a data abstraction and/or object-oriented language requires the understand
ing of a few new concepts that have no direct counterpart in languages such as C
and Pascal.

C++ isn't just a new syntax for expressing the same old ideas - at least not for
most programmers. This implies a need for education, rather than mere training.
New concepts have to be learned and mastered through practice. Old and well-
tried habits of work have to be reevaluated. Rather than dashing off and doing
things "the good old way" one must consider new ways - often doing things a
new way will be harder and more time-consuming than the old way when tried for
the first time.

The overwhelming experience is that taking the time and making the effort to

172 Interest and Use Chapter 7

learn the key data abstraction and object-oriented techniques is worthwhile for
almost all programmers and yields benefits not just in the very long run but also
within three to twelve months. There are benefits in using C++ without making
this effort, but most benefits require the extra effort to learn new concepts -1 won
der why anyone not willing to make that effort would switch to C++.

When approaching C++ for the first time or for the first time after some time,
take the time to read a good textbook or a few well-chosen articles {The C++
Report and The C++ Journal contain many). You may also want to look at the
definition or the source code of some major library and consider the techniques
and concepts used. This is also a good idea for people who have used C++ for
some time. Many could do with a review of the concepts and techniques. Much
has happened to C++ and its associated programming and design techniques since
C++ first appeared. A quick comparison of the first and the second edition of The
C++ Programming Language should convince anyone of that.

How long does it take to learn C++? Again, that depends. It depends both on
your experience and on what you mean by "learning C++." The syntax and
basics for writing C++ in the better-C style plus defining and using a few simple
classes takes a week or two for most programmers. That's the easy part. The
main difficulty, and the most fun and gain, comes from mastering new design and
programming techniques. Most experienced programmers I have talked with
quote times from a half year to one and a half years before becoming really com
fortable with C++ and the key data abstraction and object-oriented techniques it
supports. That assumes that they learn on the job and stay productive - usually by
programming in a "less adventurous" style of C++ during that period. If you
could devote full time to learning C++, you would be comfortable faster, but with
out actual application of the new ideas on real projects that degree of comfort
could be misleading. Object-oriented programming and object-oriented design are
essentially practical rather than theoretical disciplines. Unapplied or applied only
to toy examples, these ideas can become dangerous "religions."

Note that learning C++ is then primarily learning programming and design
techniques, not language details. Having worked through a good textbook I would
suggest a book on design such as [Booch,1991], which has nice longish examples
in five different languages (Ada, CLOS, C++, Smalltalk, and Object Pascal) and is
therefore somewhat immune to the language bigotry that mars some design dis
cussions!. The parts of the book I like best are the presentation of the design con
cepts and the example chapters.

Looking at design contrasts sharply with the approach of looking very care
fully at the details of the definition of C++ - usually using the ARM which con
tains much useful information, but no information about how to write C++ pro
grams. A focus on details can be very distracting and lead to poor use of the lan
guage. You wouldn't try to learn a foreign language from a dictionary and

t Booch's second edition [Booch,1993] uses C++ examples throughout.

Section 7.2 Teaching and Learning C++ 173

grammar, would you?
When learning C++, it is essential to keep the key design notions in mind so

that you don't get lost in the language-technical details. That done, learning and
using C++ can be both fun and productive. A little C++ can lead to significant
benefits compared to C; further efforts to understand data abstraction and object-
oriented techniques yield further benefits."

This view is biased by the current state of affairs in tools and libraries. Given a more
protective environment (for example, including extensive default run-time checks)
and a small well-defined foundation library, you can move to the more adventurous
uses of C++ earlier. This would allow a greater shift of the focus from C++ language
features to the design and programming techniques C++ supports.

It is important to divert interest from syntax and the minute language-technical
details where some long-time programmers like to poke around. Often, such interest
is indistinguishable from an unwillingness to learn new programming techniques.

Similarly, in every course and on every project there is someone who just cannot
believe that C++ features can be affordable and therefore sticks to the familiar and
trusted C subset for future work. Only some actual numbers on performance of indi
vidual C++ features and of systems written in C++ (for example, [Russo,1988]
[Russo,1990] [Keffer,1992]) have any hope of overcoming strongly held opinions to
the effect that facilities more convenient than C's must be unaffordable. Given the
amount of hype and the number of unfulfilled promises in the languages and tools
area people ought to be skeptical and demand evidence.

Every course and project also has someone who is convinced that efficiency
doesn't matter and proceeds to design systems of a generality that implies visible
delays on even the most up-to-date hardware. Unfortunately, such delays are rarely
noticeable for the toy programs people write while learning C++, so the problems with
that attitude tend to be postponed until real projects. I'm still looking for a simple, yet
realistic, problem that'll bring a good workstation to its knees when solved in an
overly general way. Such a problem would allow me to demonstrate the value of lean
designs and thus counteract excess enthusiasm and wishful thinking in the way perfor
mance figures counteract excess caution and conservatism.

7.3 Users and Applications
My view of what C++ was used for and what else it might be applied to affected its
evolution. The growth of C++ features is primarily a response to such real and imag
ined needs.

One aspect of C++ usage has repeatedly reasserted itself in my mind: a dispropor
tionate number of C++ applications seemed to be odd in some way. This may of
course simply reflect that unusual applications are more interesting to discuss, but I
suspect a more fundamental reason. C++'s strength is in its flexibility, efficiency, and
portability. This makes it a strong candidate for projects involving unusual hardware,
unusual operating environments, or interfacing with several different languages. An

174 Interest and Use Chapter 7

example of such a project is a Wall Street system that needed to run on mainframes
cooperating with COBOL code, on workstations cooperating with Fortran code, on
PCs cooperating with C code, and on the network connecting all of them.

I think this reflects that C++ has been at the leading edge of industrial production
code. In this, C++'s focus differs from languages with a bias towards experimental
use - be it industrial or academic - or teaching. Naturally, C++ has been extensively
used for experimental and exploratory work as well as for educational uses. However,
its role in production code has typically been the deciding factor in design decisions.

7.3.1 Early Users

The early world of C with Classes and C++ was a small one characterized by a high
degree of personal contacts that allowed a thorough exchange of ideas and a rapid
response to problems. Thus, I could directly examine the problems of the users and
respond with bug fixes to Cfront or the basic libraries and occasionally even with a
language change. As mentioned in §2.14 and §3.3.4 these users where mainly, though
not exclusively, researchers and developers at Bell Labs.

7.3.2 Later Users

Unfortunately, many users don't bother to document their experiences. Worse yet,
many organizations treat experience data as state secrets. Consequently, much myth
and misinformation - and in cases even disinformation - about programming lan
guages and programming techniques compete with genuine data for the attention of
programmers and managers. This leads to widespread replication of effort and repeti
tion of known mistakes. The purpose of this section is to present a few areas in which
C++ has been used and to encourage developers to document their efforts in a way
that will benefit the C++ community as a whole. My hope is that this will give an
impression of the breadth of use that has influenced the growth of C++. Each of the
areas mentioned represents at least two people's efforts over two years. The largest
project that I have seen documented consists of 5,000,000 lines of C++ developed and
maintained by 200 people over seven years:

Animation, autonomous submersible, billing systems (telecom), bowling alley
control, circuit routing (telecom), CAD/CAM, chemical engineering process simula
tions, car dealership management, CASE, compilers, control panel software, cyclotron
simulation and data processing, database systems, debuggers, decision support sys
tems, digital photography processing, digital signal processing, electronic mail,
embroidery machine control, expert systems, factory automation, financial reporting,
flight mission telemetry, foreign exchange dealing (banking), funds transfer (bank
ing), genealogy search software, gas station pump control and billing, graphics, hard
ware description, hospital records management, industrial robot control, instruction
set simulation, interactive multi-media, magnetohydrodynamics, medical imaging,
medical monitoring, missile guidance, mortgage company management (banking),
networking, network management and maintenance systems (telecom), network moni
toring (telecom), operating systems (real-time, distributed, workstation, mainframe,

Section 7.3.2 Later Users 175

"fully object-oriented"), programming environments, superannuation (insurance),
shock-wave physics simulation, slaughterhouse management, SLR camera software,
switching software, test tools, trading systems (banking), transaction processing,
transmissions systems (telecom), transport system fleet management, user-interfaces,
video games, and virtual reality.

7.4 Commercial Competition

Commercial competitors were largely ignored, and the C++ language was developed
according to the original plan, its own internal logic, and the experience of its users.
There was (and is) always much discussion among programmers, in the press, at con
ferences, and on the electronic bulletin boards about which language "is best" and
which language ' 'will win'' in some sort of competition for users. Personally, I con
sider much of that debate to be misguided and uninformed, but that doesn't make the
issues less real to a programmer, manager, or professor who has to choose a program
ming language for his or her next project. For good and bad, people debate program
ming languages with an almost religious fervor and often consider the choice of pro
gramming language the most important choice of a project or organization.

Ideally, people would choose the best language for each project and use many lan
guages in the course of a year. In reality, most people don't have the time to learn a
new language to the point where it is an effective tool often enough to build up exper
tise in many languages. Because of that, even evaluating a programming language for
an individual programmer or organization becomes a challenging task that is only
rarely done well - and even less often documented in a dispassionate way that would
be useful to others. In addition, organizations (for good and bad reasons) find it
extraordinarily hard to manage mixed-language software development. This problem
is exacerbated by language designers and implementers who don't consider coopera
tion between code written in their language and other languages important.

To make matters worse, practical programmers need to evaluate a language as a
tool rather than as simply an intellectual achievement. This implies looking at imple
mentations, tools, various forms of performance, support organizations, libraries, edu
cational support (books, journals, conferences, teachers, consultants), etc., both at
their current state and their likely short-term development. Looking at the longer term
is usually too hazardous because of the overpowering amount of commercial hype and
wishful thinking.

In the early years, Modula-2 was by many considered a competitor to C++. How
ever, until the commercial release of C++ in 1985, C++ could hardly be considered a
competitor to any language, and by then Modula-2 seemed to me to have been largely
outcompeted by C in the US. Later, it was popular to speculate about whether C++ or
Objective C [Cox, 1986] was to be the object-oriented C. Ada was often a possible
choice for organizations who might use C++. In addition, Smalltalk [Goldberg, 1983]
and some object-oriented variant of Lisp [Kiczales,1992] would often be considered
for applications that did not require hard-core systems work or maximum

176 Interest and Use Chapter 7

performance. Lately, some people have been comparing C++ with Eiffel
[Meyer, 1988] and Modula-3 [Nelson, 1991] for some uses.

7.4.1 Traditional Languages

My personal view is different. The main competitor to C++ was C. The reason that
C++ is the most widely used object-oriented language today is that it was and is the
only language that can consistently match C on C's own turf - and at the same time
offer significant improvements. C++ provides transition paths from C to styles of sys
tem design and implementation based on a more direct mapping between application-
level concepts and language concepts (usually called data abstraction or object-
oriented programming). Secondarily, many organizations that consider a new pro
gramming language have a tradition for the use of an in-house language (usually a
Pascal variant) or Fortran. Except for serious scientific computation, these languages
can be considered roughly equivalent to C when compared with C++.

I have a deep respect for the strengths of C that most language experts don't share.
In my opinion, they are too blinded by C's obvious flaws to see its strengths (§2.7).
My strategy for dealing with C is simple: Do everything C does, do it as well as C or
better in every way and everywhere C does it; in addition, provide significant services
to real programmers that C doesn't.

Fortran is harder to compete with. It has a dedicated following who - like a large
fraction of C programmers - care little for programming languages or the finer points
of computer science. They simply want to get their work done. That is often a rea
sonable attitude; their intellectual interests are focused elsewhere. Many Fortran com
pilers are excellent at generating efficient code for high-performance machines and
that is often of crucial importance to Fortran users. The reason is partly Fortran's lax
anti-aliasing rules, partly that inlining of key mathematical subroutines is the norm on
the machines that really matter, and partly the amount of raw effort and talent
expended on the compilers. C++ has occasionally managed to compete successfully
against Fortran, but rarely head-on in the crucial areas of high-performance scientific
and engineering computation. This will happen. C++ compilers are becoming more
mature and more aggressive in areas such as inlining. Fortran's mature libraries are
also being used directly from C++ programs.

C++ is increasingly being used for numerical and scientific work [Forslund,1990]
[Budge, 1992] [Barton, 1994]. This has given rise to a number of extension proposals.
Generally, these have been inspired by Fortran and haven't been too successful. This
reflects a desire to focus on abstraction mechanisms rather than specific language fea
tures. My hope is that focusing on higher-level features and optimization techniques
will in the long run serve the scientific and numeric community better than simple
addition of low-level Fortran features. I see C++ as a language for scientific computa
tion and would like to support such work better than what is currently provided. The
real question is not "if?" but "how?"

Section 7.4.2 Newer Languages 177

7.4.2 Newer Languages

In the secondary competition between C++ and languages supporting abstraction
mechanisms (that is, object-oriented programming languages and languages support
ing data abstraction) C++ was during the early years (1984 to 1989) consistently the
underdog as far as marketing was concerned. In particular, AT&T's marketing bud
get during that period was usually empty and AT&T's total spending on C++ advertis
ing was about $3,000. Of that, $1,000 were spent to send a plain letter to UNIX
licensees telling them that C++ existed and was for sale. It apparently had no effect.
Another $2,000 was spent on a reception for the attendees at the very first C++ confer
ence in Santa Fe in 1987. That didn't help C++ much either, but at least we enjoyed
the party. At the first OOPSLA conference, the AT&T C++ people could afford only
the smallest booth available. This booth was staffed by volunteers using a blackboard
as an affordable alternative to computers and a sign-up sheet for copies of technical
papers as an alternative to glossy handouts. We thought of making some C++ buttons,
but couldn't find funds.

To this day, most of AT&T's visibility in the C++ arena relies on Bell Labs' tradi
tional policy of encouraging developers and researchers to give talks, write papers,
and attend conferences rather than on any deliberate policy to promote C++. Within
AT&T, C++ was also a grass-roots movement without money or management clout.
Naturally, coming from AT&T Bell Labs helps C++, but that help is earned the hard
way by surviving in a large-company environment.

In competition with newer languages, C++'s fundamental strength is its ability to
operate in a traditional environment (social and computer-wise), its run-time and
space efficiency, the flexibility of its class concept, its low price, and its non
proprietary nature. Its weaknesses are some of the uglier parts inherited from C, its
lack of spectacular new features (such as built-in database support), its lack of spec
tacular program development environments (only lately have the kind of environ
ments that people take for granted with Smalltalk and Lisp become available for C++;
see §7.1.5), its lack of standard libraries (only lately have major libraries become
widely available for C++ - and they are not "standard;" see §8.4), and its lack of
salesmen to balance the efforts of richer competitors. With C++'s recent dominance
in the market the last factor has disappeared. Some C++ salesmen will undoubtedly
embarrass the C++ community by emulating some of the sleazy tricks and unscrupu
lous practices that salesmen and admen have used to attempt to derail C++'s progress.

In competition with traditional languages, C++'s inheritance mechanism was a
major plus. In competition with languages with inheritance, C++'s static type check
ing was a major plus. Of the languages mentioned, only Eiffel and Modula-3 com
bine the two in a way similar to C++. The revision of Ada, Ada9X, also provides
inheritance.

C++ was designed to be a systems programming language and a language for
applications that had a large systems-like component. This was the area my friends
and I knew well. The decision not to compromise C++'s strengths in this area to
broaden its appeal has been crucial in its success. Only time will tell if this has also

178 Interest and Use Chapter 7

compromised its ability to appeal to an even larger audience. I would not consider
that a tragedy because I am not among those who think that a single language should
be all things to all people. C++ already serves the community it was designed for
well. However, I suspect that through the design of libraries, C++'s appeal will be
very wide (§9.3).

7.4.3 Expectations and Attitudes

People often express surprise that AT&T allows others to implement C++. That
shows ignorance of both law and AT&T's aims. Once the C++ reference manual
[Stroustrup,1984] was published, nothing could prevent anyone from writing an
implementation. Further, AT&T didn't just allow others to enter the growing market
for C++ implementations, tools, education, etc., it welcomed and encouraged them.
The fact that most people miss is simply that AT&T is a much larger consumer of
programming products than it is a producer. Consequently, AT&T greatly benefits
from the efforts of "competitors" in the C++ field.

No company language could succeed on the scale AT&T would like C++ to suc
ceed. A proper implementation, tools, library, and education infrastructure is simply
too costly for a single organization - however large - to afford. A company language
would also tend to reflect company policy and politics, which could impede its ability
to survive in a larger, more open, and freer world. In all, I suspect that any language
that can survive both the internal strains of Bell Labs politics and the viciousness of
the open market can't be all bad - even if it is unlikely to follow the dictates of aca
demic fashion.

Naturally, faceless corporations don't just magically produce policies. Policy is
formulated by people and agreement over policy is reached among people. The pol
icy for C++ stemmed from ideas prevalent in Bell Lab's Computer Science Research
Center and elsewhere in AT&T. I was active in formulating the ideas as they related
to C++, but I would have had no chance of getting C++ made widely available had
notions of generally available software not been widely accepted.

Obviously, not everybody agreed all of the time. I was told that one manager once
had the obvious idea of keeping C++ secret as a ' 'competitive advantage'' for AT&T.
He was dissuaded by another manager who added, "Anyway, the issue is moot
because Bjarne has already shipped 700 copies of the reference manual out of the
company." Those manuals were of course shipped with all proper permissions and at
the encouragement of my management.

An important factor, both for and against C++, was the willingness of the C++
community to acknowledge C++'s many imperfections. This openness is reassuring
to many who have become cynics from years of experience with the people and prod
ucts of the software tools industry, but it is also infuriating to perfectionists and a fer
tile source for fair and not-so-fair criticism of C++. On balance, I think that tradition
of throwing rocks at C++ within the C++ community has been a major advantage. It
kept us honest, kept us busy improving the language and its tools, and kept the expec
tations of C++ users and would-be users realistic.

Section 7.4.3 Expectations and Attitudes 179

Some have expressed surprise that I discuss "commercial competition" without
reference to specific language features, specific tools, release dates, marketing strate
gies, surveys, or commercial organizations. Partly, this is a result of being burned in
language wars where proponents of various languages argue with religious fervor and
by marketing campaigns where cynics rule. In both cases, intellectual honesty and
facts are not at a premium and "debating" techniques I thought belonged only in
fringe politics abound. Sadly, people often forget that there always will be a need for
a variety of languages, for genuine niche languages, and for experimental languages.
Praise for one language, say for C++, doesn't imply a criticism of all other languages.

More importantly, my discussion of language choices is based on a belief that
individual language features and individual tools are of little importance in the greater
picture and serve only as a focus for pseudo-scientific skirmishes. Some variant of
the law of large numbers is in effect.

All of the languages mentioned here can do the easy part of a project; so can C.
All of the languages mentioned here can do the easy parts of a project more elegantly
than C. Often, that doesn't matter. What matters in the long run is whether all of a
project can be done well in a language and whether all of the main projects that an
organization - be it a company or a university department - encounters over a period
of time can be handled well by that organization using that language.

The real competition is not a beauty contest between individual language features
or even between complete language specifications, but a contest between user com
munities in all their aspects, all their diversity, and all their inventiveness. A well-
organized user community united by a grand idea has a local advantage, but is in the
longer run and in the larger picture at a severe disadvantage.

Elegance can be achieved at an unacceptable cost. The ' 'elegant'' language will
eventually be discarded if the elegance is bought at the cost of restricting the applica
tion domain, at the expense of run-time or space efficiency, at the cost of restricting
the range of systems a language can be used on, at the cost of techniques too alien for
an organization to absorb, at the cost of dependence on a particular commercial orga
nization, etc., The wide range of C++'s features, the diversity of its user community,
and its ability to handle mundane details well is its real edge. The fact that C++
matches C in run-time efficiency rather than being two, three, or ten times slower also
helps.

8
Libraries

Life can only be understood backwards,
but it must be lived forwards.

- S0ren Kierkegaard

Library design tradeoffs — aims of library design — language support for
libraries — early C++ libraries — the stream I/O library — concurrency
support — foundation libraries — persistence and databases — numeric
libraries — specialized libraries — a standard C++ library.

8.1 Introduction
More often than people realize, designing a library is better than adding a language
feature. Classes can represent almost all the concepts we need. Libraries generally
can't help with syntax, but constructors and operator overloading occasionally come
in handy. Where needed, special semantics or exceptional performance can be imple
mented by coding functions in languages other than C++. An example is libraries that
provide high-performance vector operations through (inlined) operator functions that
expand into code tuned to vector-processing hardware.

Since no language can support every desirable feature and because even accepted
extensions take time to implement and deploy, people ought to always consider
libraries as a first choice. Designing libraries is more often than not the most con
structive outlet for enthusiasm for new facilities. Only if the library route is genuinely
infeasible should the language extension route be followed.

182 Libraries Chapter 8

8.2 C++ Library Design

A Fortran library is a collection of subroutines, a C library is a collection of functions
with some associated data structures, and a Smalltalk library is a hierarchy rooted
somewhere in the standard Smalltalk class hierarchy. What is a C++ library? Clearly,
a C++ library can be very much like a Fortran, C, or Smalltalk library. It might also
be a set of abstract types with several implementations (§13.2.2), a set of templates
(§15), or a hybrid. You can imagine further alternatives. The designer of a C++
library has several choices for the basic structure of a library and can even provide
more than one interface style for a single library. For example, a library organized as
a set of abstract types might be presented as a set of functions to a C program, and a
library organized as a hierarchy might be presented to clients as a set of handles.

We are obviously faced with an opportunity, but can we manage the resulting
diversity? I think we can. The diversity reflects the diversity of needs in the C++
community. A library supporting high-performance scientific computation has differ
ent constraints from a library supporting interactive graphics, and both have different
needs from a library that supplies low-level data structures to builders of other
libraries.

C++ evolved to enable this diversity of library architectures and some of the newer
C++ features are designed to ease the coexistence of libraries.

8.2.1 Library Design Tradeoffs

Early C++ libraries often show a tendency to mimic design styles found in other lan
guages. For example, my original task library [Stroustrup, 1980b] [Stroustrup, 1987b]
- the very first C++ library - provided facilities similar to the Simula67 mechanisms
for simulation, the complex arithmetic library [Rose, 1984] provided functions like
those found for floating point arithmetic in the C math library, and Keith Gorlen's
NIH library [Gorlen,1990] provides a C++ analog to the Smalltalk library. New
' 'early C++'' libraries still appear as programmers migrate from other languages and
produce libraries before they have fully absorbed C++ design techniques and appreci
ate the design tradeoffs possible in C++.

What tradeoffs are there? When answering that question people often focus on
language features: Should I use inline functions? virtual functions? multiple inheri
tance? single-rooted hierarchies? abstract classes? overloaded operators? That is the
wrong focus. These language features exist to support more fundamental tradeoffs:
Should the design

- Emphasize run-time efficiency?
- Minimize recompilation after a change?
- Maximize portability across platforms?
- Enable users to extend the basic library?
- Allow use without source code available?
- Blend in with existing notations and styles?
- Be usable from code not written in C++?
- Be usable by novices?

Section 8.2.1 Library Design Tradeoffs 183

Given answers to these kinds of questions, the answers to the language-level ques
tions will follow. Modern libraries often provide a variety of classes to allow users to
make such tradeoffs. For example, a library may provide a very simple and efficient
string class. In addition, it can also supply a higher-level string class with more facili
ties and more opportunities for user-modification of its behavior (§8.3).

8.2.2 Language Features and Library Building

The C++ class concept and type system is the primary focus for all C++ library design.
Its strengths and weaknesses determine the shape of C++ libraries. My main recom
mendation to library builders and users is simple: Don't fight the type system.
Against the basic mechanisms of a language, a user can win Pyrrhic victories only.
Elegance, ease of use, and efficiency can only be achieved within the basic framework
of a language. If that framework isn't viable for what you want to do, it is time to
consider another programming language.

The basic structure of C++ encourages a strongly-typed style of programming. In
C++, a class is a type. The rules of inheritance, the abstract class mechanism, and the
template mechanism combine to encourage users to manipulate objects strictly in
accordance with the interfaces they present to their users. To put it more crudely:
Don't break the type system with casts. Casts are necessary for many low-level activ
ities and occasionally for mapping from higher-level to lower-level interfaces, but a
library that requires its end users to do extensive casting is imposing an undue and
usually unnecessary burden on them. C's p r i n t f family of functions, v o i d *
pointers, unions, and other low-level features are best kept out of library interfaces
because they imply holes in the library's type system.

8.2.3 Managing Library Diversity

You can't just take two libraries and expect them to work together. Many do, but in
general quite a few concerns must be addressed for successful joint use. Some issues
must be addressed by the programmer, some by the library builder, and a few fall to
the language designer.

For years, C++ has been evolving towards a situation where the language provides
sufficient facilities to cope with the basic problems that arise when a user tries to use
two independently-designed libraries. To complement, library providers are begin
ning to consider multiple library use when they design libraries.

Namespaces address the basic problem of different libraries using the same name
(§ 17.2). Exception handling provides the basis for a common model of error handling
(§16). Templates (§15) provide a mechanism for defining containers and algorithms
independent of individual types; such types can then be supplied by users or by other
libraries. Constructors and destructors provide a common model for initialization and
cleanup of objects (§2.11). Abstract classes provide a mechanism for defining inter
faces independently of the classes they interface to (§13.2.2). Run-time type informa
tion provides a mechanism for recovering type information that was lost when an
object was passed to a library and passed back with less specific type information (as

184 Libraries Chapter 8

a base class) (§14.2.1). Naturally, this is just one use of these language facilities, but
viewing them as supports for composition of programs out of independently devel
oped libraries can be enlightening.

Consider multiple inheritance (§12.1) in this light: Smalltalk-inspired libraries
often rely on a single "universal" root class. If you have two of those you could be
out of luck, but if the libraries were written for distinct application domains, the sim
plest form of multiple inheritance sometimes helps:

class GDB_root :
public GraphicsObject,
public DataBaseObject {};

A problem that cannot be solved that easily arises when the two "universal" base
classes both provide some basic service. For example, both may provide a run-time
type identification mechanism and an object I/O mechanism. Some such problems
are best solved by factoring out the common facility into a standard library or a lan
guage feature. Others can be handled by providing functionality in the new common
root. However, merging ' 'universal'' libraries will never be easy. The best solution
is for library providers to realize that they don't own the whole world and never will,
and that it is in their interest to design their libraries accordingly.

Memory management presents yet another set of problems for library designers in
general and users of multiple libraries in particular (§10.7).

8.3 Early Libraries

The very first real code to be written in C with Classes was the task library
[Stroustrup, 1980b] (§8.3.2.1), which provides Simula-like concurrency for simula
tion. The first real programs were simulations of network traffic, circuit board layout,
etc., using the task library. The task library is still heavily used today. The standard
C library was available from C++ - without additional overhead or complication -
from day one. So are all other C libraries. Classical data types such as character
strings, range-checked arrays, dynamic arrays, and lists were among the examples
used to design C++ and test its early implementations (§2.14).

The early work with container classes such as list and array was severely ham
pered by the lack of support for a way of expressing parameterized types (§9.2.3). In
the absence of proper language support, we had to make do with macros. The best
that can be said for the C preprocessor's macro facilities is that they allowed us to
gain experience with parameterized types and support individual and small group use.

Much of the work on designing classes was done in cooperation with Jonathan
Shopiro who in 1983 produced list and string classes that saw wide use within AT&T
and are the basis for the classes currently found in the "Standard Components"
library that was developed in Bell Labs and sold by USL. The design of these early
libraries interacted directly with the design of the language and in particular with the
design of the overloading mechanisms.

The key aim of these early string and list libraries was to provide relatively simple

Section 8.3 Early Libraries 185

classes that could be used as building blocks in applications and in more ambitious
libraries. Typically, the alternative was hand-written code using C and C++ language
facilities directly, so efficiency in time and space was considered crucial. For this rea
son, there was a premium on self-contained classes rather than hierarchies, on the
inlining of time-critical operations, and on classes that could be used in traditional
programs without major redesign or retraining of programmers. In particular, no
attempts were made to enable users to modify the operation of these classes by over
riding virtual functions in derived classes. If a user wanted a more general and modi
fiable class, it could be written with the "standard" class as a building block. For
example:

class String { // simple and efficient

// . . .

};

class My_string { // general and adaptable

String rep;

// . . .
public:

// . . .

virtual void append(const String&);

virtual void append(const My_string&);

// . . .

};

8.3.1 The Stream I/O Library

C's p r i n t f family of functions is an effective and often convenient I/O mechanism.
It is not, however, type-safe or extensible to user-defined types (classes and enumera
tions). Consequently, I started looking for a type-safe, terse, extensible, and efficient
alternative to the p r i n t f family. Part of the inspiration came from the last page and
a half of the Ada Rationale [Ichbiah,1979], which argues that you cannot have a terse
and type-safe I/O library without special language features to support it. I took that as
a challenge. The result was the stream I/O library that was first implemented in 1984
and presented in [Stroustrup,1985]. Soon after, Dave Presotto reimplemented the
stream library to improve performance by bypassing the standard C I/O functions I
had used in the initial implementation and using operating systems facilities directly.
He did this without changing the stream interfaces; in fact, I only learned about the
change from Dave after having used the new implementation for a morning or so.

To introduce stream I/O, this example was considered:

f p r i n t f (s t d e r r , " x = %s\n" ,x) ;

Because f p r i n t f () relies on unchecked arguments that are handled according to
the format string at run time this is not type safe and [Stroustrup,1985]

"had x been a user-defined type like complex there would have been no way of
specifying the output format of x in the convenient way used for types ' 'known to

186 Libraries Chapter 8

p r i n t f () " (for example, %s and %d). The programmer would typically have
defined a separate function for printing complex numbers and then written some
thing like this:

fprintf(stderr,"x = ") ;
put_complex(stderr,x);
fprintf(stderr,"\n");

This is inelegant. It would have been a major annoyance in C++ programs that use
many user-defined types to represent entities that are interesting/critical to an
application.

Type-security and uniform treatment can be achieved by using a single over
loaded function name for a set of output functions. For example:

p u t (s t d e r r , " x = ") ;
p u t (s t d e r r , x) ;
p u t (s t d e r r , " \ n ") ;

The type of the argument determines which ' 'put function'' will be invoked for
each argument. However, this is too verbose. The C++ solution, using an output
stream for which « has been defined as a "put to" operator, looks like this:

c e r r << "x = " << x << " \ n " ;

where c e r r is the standard error output stream (equivalent to the C s t d e r r) .
So, if x is an i n t with the value 12 3, this statement would print

x = 123

followed by a newline onto the standard error output stream.
This style can be used as long as x is of a type for which operator « is

defined, and a user can trivially define operator « for a new type. So, if x is of
the user-defined type complex with the value (1 , 2 . 4) , the statement above
will print

x = (1,2.4)

on c e r r .
The stream I/O facility is implemented exclusively using language features

available to every C++ programmer. Like C, C++ does not have any I/O facilities
built into the language. The stream I/O facility is provided in a library and con
tains no extra-linguistic magic."

The idea of providing an output operator rather than a named output function was sug
gested by Doug Mcllroy by analogy with the I/O redirection operators in the UNIX
shell (>, », |, etc.). This requires operators that return their left-hand operand for
use by further operations:

"An o p e r a t o r < < function returns a reference to the o s t r e a m it was called for
so that another o s t r e a m can be applied to it. For example:

Section 8.3.1 The Stream I/O Library 187

c e r r << "x = " << x;

where x is an i n t , will be interpreted as

(cerr.operator<<("x = ")).operator<<(x);

In particular, this implies that when several items are printed by a single output
statement, they will be printed in the expected order: left to right."

Had an ordinary, named function been chosen the user would have been forced to
write code like that last example. Several operators were considered for input and
output operations:

' 'The assignment operator was a candidate for both input and output, but it binds
the wrong way. That is, cou t=a=b would be interpreted as cou t= (a=b) , and
most people seemed to prefer the input operator to be different from the output
operator.

The operators < and > were tried, but the meanings ' 'less than'' and ' 'greater
than" were so firmly implanted in people's minds that the new I/O statements
were for all practical purposes unreadable (this does not appear to be the case for
<< and >>). Apart from that, ' < ' is just above ' , ' on most keyboards and peo
ple were writing expressions like this:

cout < x , y , z;

It is not easy to give good error messages for this."
Actually, now we could overload comma (§11.5.5) to give the desired meaning, but
that was not possible in C++ as defined in 1984 and would require messy duplication
of output operators.

The c in the names of the standard I/O streams cou t , c i n , etc., stands for
character, they were designed for character-oriented I/O.

In connection with Release 2.0, Jerry Schwarz reimplemented and partially
redesigned the streams library to serve a larger class of applications and to be more
efficient for file I/O [Schwarz,1989]. A significant improvement was the use of
Andrew Koenig's idea of manipulators [Koenig,1991] [Stroustrup,1991] to control
formatting details such as the precision used for floating point output and the base of
integers. For example:

i n t i = 1234;

cout << i << ' ' // decimal by default: 1234
<< hex << i << ' ' // hexadecimal: 4d2
<< oct << i << '\n'; // octal: 2322

Experience with streams was a major reason for the change to the basic type system
and to the overloading rules to allow c h a r values to be treated as characters rather
than small integers the way they are in C (§ 11.2.1). For example:

188 Libraries Chapter 8

char ch = ' b ' ;
cout << ' a ' << ch;

would in Release 1.0 output a string of digits reflecting the integer values of the char
acters a and b, whereas Release 2.0 outputs ab as one would expect.

The iostreams shipped with Release 2.0 of Cfront became the model for iostream
implementations shipped by other suppliers and for the iostream library that is part of
the upcoming standard (§8.5).

8.3.2 Concurrency Support

Concurrency support has always been a fertile source for libraries and extensions.
One reason has been the firm conviction by pundits that multi-processor systems will
soon be much more common. As far as I can judge, this has been the current wisdom
for at least 20 years.

Multi-processor systems are becoming more common, but so are amazingly fast
single-processors. This implies the need for at least two forms of concurrency:
multi-threading within a single processor, and multi-processing with several proces
sors. In addition, networking (both WAN and LAN) imposes its own demands and
special-purpose architectures abound. Because of this diversity, I recommend paral
lelism be represented by libraries within C++ rather than as a general language fea
ture. Such a feature, say something like Ada's tasks, would be inconvenient for
almost all users.

It is possible to design concurrency support libraries that approach built-in concur
rency support both in convenience and efficiency. By relying on libraries, you can
support a variety of concurrency models, though, and thus serve the users that need
those different models better than can be done by a single built-in concurrency model.
I expect this will be the direction taken by most people and that the portability prob
lems that arise when several concurrency-support libraries are used within the com
munity can be dealt with by a thin layer of interface classes.

Examples of concurrency support libraries can be found in [Stroustrup, 1980b],
[Shopiro,1987], [Faust,1990], and [Parrington,1990]. Examples of language exten
sions supporting some form of concurrency are Concurrent C++ [Gehani,1988], Com
positional C++ [Chandy,1993], and Micro C++ [Buhr,1992]. In addition, proprietary
threads and lightweight process packages abound.

8.3.2.1 A Task Example

As an example of a concurrent program expressed using mechanisms presented
through a library, let me show Eratosthenes' sieve for finding prime numbers using
one task per prime number. The example uses the queues from the task library
[Stroustrup, 1980b] to carry integers to the filters defined as tasks:

#include <task.h>
#include <iostream.h>

Section 8.3.2.1 A Task Example 189

class Int_message : public object {
int i ;

public:
int_message(int n) : i(n) {}
int val() { return i; }

};

The task system queues carry messages of classes derived from class o b j e c t . The
use of the name obj e c t proves that this is a very old library. In a modern program,
I would also have wrapped the queues in templates to provide type safety, but here I
retained the style of the early task library uses. Using the task library queues for car
rying single integers is a bit overblown, but it is easy and the queues ensure proper
synchronizations of p u t () s and g e t () s from different tasks. The use of the queues
illustrates how information can be carried around in a simulation or in a system that
doesn't rely on shared memory.

class sieve : public task {
qtail* dest;

public:
sieve(int prime, qhead* source);

};

A class derived from t a s k will run in parallel with other such tasks. The real work
is done in the task's constructors or in code called from those. In this example, each
sieve is a task. A sieve gets a number from an input queue and checks if that number
is divisible by the prime number represented by the sieve. If not, the sieve passes the
number along to the next sieve. If there isn't a next sieve, we have found a new prime
number and can create a new sieve to represent it:

sieve::sieve(int prime, qhead* source) : dest(O)
{

cout << "prime\t" << prime << '\n';
for(;;) {

Int_message* p = (Int_message*) source->get();
int n = p->val();
if (n%prime) {

if (dest) {
dest->put(p);
continue;

}

// prime found: make new sieve
dest = new qtail;
new sieve(n,dest->head());

}
delete p;

}
}

190 Libraries Chapter 8

A message is created on the free store and deleted by whichever sieve consumes that
message. The tasks run under the control of a scheduler; that is, the task system dif
fers from a pure co-routine system in which the transfer of control between co
routines is explicit.

To complete the program we need a main () to create the first sieve:

i n t main()
{

i n t n = 2;
qtail* q = new qtail;
new sieve(n,q->head()); // make first sieve
for(;;) {

q->put(new Int_message(++n));
thistask->delay(1); // give sieves a chance to run

}
}

This program will run until it has completely consumed some system resource. I have
not bothered to program it to die gracefully. This is not an efficient way of calculat
ing primes. It consumes one task and many task context switches per prime. This
program could be run as a simulation using a single processor and address space
shared between all tasks or as a genuine concurrent program using many processors. I
tested it as a simulation with 10,000 primes/tasks on a DEC VAX. For an even more
amazing variant of Erathostenes's sieve in C++ see [Sethi, 1989].

8.3.2.2 Locking

When dealing with concurrency, the concept of locking is often more fundamental
than the concept of a task. If a programmer can say when exclusive access to some
data is required, there often isn't a need to know exactly what a process, task, thread,
etc., actually is. Some libraries take advantage of this observation by providing a
standard interface to locking mechanisms. Porting the library to a new architecture
involves implementing this interface correctly for whatever notion of concurrency is
found there. For example:

class Lock {

// . . .
public:

Lock(Real_lock&); // grab lock

~Lock(); // release lock

};

void my_fct()

{

Lock lck(q21ock); // grab lock associated with q2

// use q2

}

Releasing the lock in the destructor simplifies code and makes it more reliable. In

Section 8.3.2.2 Locking 191

particular, this style interacts nicely with exceptions (§16.5). Using this style of lock
ing, key data structures and policies can be made independent of concurrency details.

8.4 Other Libraries
Here, I will present only a very short list of other libraries to indicate the diversity of
C++ libraries. Many more libraries exist and several new C++ libraries appear every
month. It seems that one form of the software-components industry that pundits have
promised for years - and bemoaned the lack of - has finally come into existence.

The libraries mentioned here are classified as "other libraries" because they did
not affect the development of C++ significantly. This is not a judgment on their tech
nical merit or importance to users. In fact, a library builder can often serve users best
by being careful and conservative with the set of language features used. This is one
way of maximizing library portability.

8.4.1 Foundation Libraries

There are two almost orthogonal views of what constitutes a foundation library. What
has been called a horizontal foundation library provides a set of basic classes that sup
posedly helps every programmer in every application. Typically, the list of such
classes includes basic data structures such as dynamic and checked arrays, lists, asso
ciative arrays, AVL trees, etc., and also common utility classes such as strings, regular
expressions, date-and-time. Typically, a horizontal foundation library tries hard to be
portable across execution environments.

A vertical foundation library, on the other hand, aims at providing a complete set
of services for a given environment such as the X Window System, MS Windows,
MacApp, or a set of such environments. Vertical foundation libraries typically pro
vide the basic classes found in a horizontal foundation library, but their emphasis is
on classes for exploiting key features of the chosen environment. To this end, classes
supporting interactive user-interfaces and graphics often dominate. Interfaces to spe
cific databases can also be an integral part of such a library. Often, the classes of a
vertical library are welded into a common framework in such a way that it becomes
difficult to use part of the library in isolation.

My personal preference is to keep the horizontal and vertical aspects of a founda
tion library independent to maintain simplicity and choice. Other concerns, both tech
nical and commercial, tug in the direction of integration.

The most significant early foundation libraries were Keith Gorlen's NIH class
library [Gorlen,1990], which provided a Smalltalk-like set of classes, and Mark
Linton's Interviews library [Linton, 1987], which made using the X Window System
convenient from C++. GNU C++ (G++) comes with a library designed by Doug Lea
that is distinguished by effective use of abstract base classes [Lea,1993]. The USL
Standards Components [Carroll, 1993] provide a set of efficient concrete types for data
structures and Unix support used mainly in industry. Rogue Wave sells a library
called Tools++, which originated in a set of foundation classes written by Thomas

192 Libraries Chapter 8

Keffer and Bruce Eckel at the University of Washington starting in 1987 [Kef-
fer,1993]. Glockenspiel has for years supplied libraries for various commercial uses
[Dearie, 1990]. Rational ships a C++ version of The Booch Components that was
originally designed for and implemented in Ada by Grady Booch. Grady Booch and
Mike Vilot designed and implemented the C++ version. The Ada version is 125,000
non-commented source lines compared to the C++ version's 10,000 lines - inheritance
combined with templates can be a very powerful mechanism for organizing libraries
without loss of performance or clarity [Booch, 1993].

8.4.2 Persistence and Databases

Persistence is many different things to different people. Some just want an object-I/O
package as provided by many libraries, others want a seamless migration of objects
from file to main memory and back, others want versioning and transaction logging,
and others will settle for nothing less than a distributed system with proper concur
rency control and full support for schema migration. For that reason, I think that per
sistence must be provided by special libraries, non-standard extensions, and/or third-
party products. I see no hope of standardizing persistence, but the C++ run-time type
identification mechanism contains a few "hooks" deemed useful by people dealing
with persistence (§14.2.5).

Both the NIH library and the GNU library provide basic object I/O mechanisms.
POET is an example of a commercial C++ persistence library. There are about a
dozen object-oriented databases intended for use with C++ and also implemented in
C++. ObjectStore , ONTOS [Cattell,1991], and Versant are examples.

8.4.3 Numeric Libraries

Rogue Wave [Keffer, 1992] and Dyad supply large sets of classes primarily aimed at
scientific users. The basic aim of such libraries is to make nontrivial mathematics
available in a form that is convenient and natural to experts in some scientific or engi
neering field. Here is an example using the RHALE++ library from Sandia National
Labs which supports mathematical physics:

void Decompose(const double delt, SymTensor& V,
Tensors R, const Tensor& L)

{
Symtensor D = Sym(L);
AntiTensor W = Anti(L);
Vector z = Dual(V*D);
Vector omega = Dual(W) - 2.0*Inverse(V-Tr(V)*One)*z;
AntiTensor Omega = 0.5*Dual(omega);

R = Inverse(One-0.5*delt*Omega) * (One+0.5*delt*Omega)*R;
V += delt*Sym(L*V-V*Omega);

}

According to [Budge, 1992], "This code is transparent and its underlying class

Section 8.4.3 Numeric Libraries 193

libraries are versatile and easy to maintain. A physicist familiar with the polar
decomposition algorithm can make immediate sense of this code fragment without the
need for additional documentation."

8.4.4 Specialized Libraries

The libraries mentioned above exist primarily to support some general form of pro
gramming. Libraries that support a specific application area are at least as important
to users. For example, one can find public domain, commercial, and company
libraries that support application areas such as hydrodynamics, molecular biology,
communication network analysis, telephone operator consoles, etc. To many C++
programmers, such libraries are where the real value of C++ manifests itself in terms
of easier programming, fewer programming errors, reduced maintenance, etc. End
users tend never to hear of such libraries; they simply benefit.

Here is an example of a simulation of a circuit switched network [Eick,1991]:

#include <simlib.h>

int trunks[] = { /* ... */ } ;
double load[] = { /* ... */ } ;
class LBA : public Policy { /* ... */ };

main()
{
Sim sim; // event scheduler

sim.networkfnew Network(trunks)); // create the network
sim.traffic(new Traffic(load,3.0)); // traffic matrix
sim.policy(new LBA); // Lba routing policy

sim.run(180); // simulate 180 minutes

cout<<sim; // output results
}

The classes involved are either SIMLIB library classes or classes that the user has
derived from SIMLIB to define the network, load, and policy for this particular analy
sis.

As in the physics example in the previous section, the code makes perfect sense if
and only if you are an expert in the field. In this case, however, the field is so narrow
that the library serves only people in a highly specialized application area.

Many specialized libraries, such as libraries that support graphics and visualiza
tion, are actually quite general, but this book is not the place to try to enumerate C++
libraries or even to try for a complete classification. The variety of C++ libraries is
mind-boggling.

194 Libraries Chapter 8

8.5 A Standard Library
Given the bewildering variety of C++ libraries, the question arises: "Which libraries
should be standard?" That is, which libraries should be specified in the C++ standard
as required for every C++ implementation?

First of all, the key libraries now in almost universal use must be standardized.
This means that the exact interface between C++ and the C standard libraries must be
specified and the iostreams library must be specified. In addition, the basic language
support must be specified. That is, we must specify functions such as : : o p e r a t o r
n e w (s i z e _ t) and s e t _ n e w _ h a n d l e r () , which support the new operator
(§10.6), t e r m i n a t e !) and u n e x p e c t e d () , which support exception handling
(§16.9), and classes t y p e _ i n f o , b a d _ c a s t , and b a d _ t y p e i d , which support
run-time type information (§14.2).

Next, the committee must see if it can respond to the common demand for "more
useful and standard classes," such as s t r i n g without getting into a mess of design
by committee and without competing with the C++ library industry. Any libraries
beyond the C libraries and iostreams accepted by the committee must be in the nature
of building blocks rather than more ambitious frameworks. The key role of a standard
library is to ease communication between separately-developed, more ambitious
libraries.

With this in mind, the committee has accepted a s t r i n g class and a wide charac
ter w s t r i n g class and is trying to unify these into a general string of anything tem
plate. It also accepted an array class, d y n a r r a y [Stal,1993], a template class
b i t s<N> for fixed-sized sets of bits, and a class b i t s t r i n g for sets of bits for
which the size can be changed. In addition, the committee has accepted complex
number classes (grandchildren of my original complex class; see §3.3) and looked at
vector classes intended to support numeric/scientific computation. Because the set of
standard classes, their specifications, and even their names are still vigorously
debated, I'll refrain from giving details and examples.

I would like to see list and associative array (map) templates in the standard
library (§9.2.3). However, as with Release 1.0, these classes may be lost to the
urgency of completing the core language in a timely fashion.

9
Looking Ahead

You cannot bathe in the same river twice.
— Heraclitus

Did C++ succeed at what it was designed for? — is C++ a coherent lan
guage? — what should have been different? — what should have been
added? — what was the biggest mistake? — is C++ only a bridge? — what
is C++ good for? — what will make C++ much more effective?

9.1 Introduction

This chapter is more speculative and relies more on personal opinions and generaliza
tions than I like; I much prefer to present completed work and experience. However,
this chapter answers common questions and presents issues that invariably come up
when the design of C++ is discussed. The chapter consists of three related parts:

- A retrospective trying to assess where C++ currently is relative to its aims and
relative to where it might have been (§9.2).

- A look at probable future problems for software development and program
ming languages to see how C++ might address them and fit into a changed
world (§9.3).

- A look at some areas where C++ and its use can be significantly improved to
make C++ a better tool (§9.4).

Discussing future developments is always hazardous, but it is a necessary hazard:
Language design must in part anticipate future problems.

196 Looking Ahead Chapter 9

9.2 Retrospective
It is often claimed that hindsight is an exact science. It is not. The claim is based on
the false assumptions that we know all relevant facts about the past, that we know the
current state of affairs, and that we have a suitably detached point of view from which
to judge. Typically, none of these conditions hold. Thus, a retrospective on some
thing as large, complex, and dynamic as a programming language in large-scale use is
not just a statement of fact. Anyway, let me try to stand back and answer some hard
questions:

[1] Did C++ succeed at what it was designed for?
[2] Is C++ a coherent language?
[3] What was the biggest mistake?

Naturally, the replies to these questions are related. My basic answers are "yes,"
"yes," and "not shipping a larger library with Release 1.0."

9.2.1 Did C++ succeed at what it was designed for?

"C++ is a general-purpose programming language designed to make programming
more enjoyable for the serious programmer" [Stroustrup, 1986b]. In this goal, C++
clearly succeeded. More specifically, it succeeded by enabling reasonably educated
and experienced programmers to write programs at a higher level of abstraction ("just
like in Simula'') without loss of efficiency compared to C. It allowed this for applica
tions that were simultaneously demanding in time, space, inherent complexity, and
constraints from the execution environment.

More generally, C++ made object-oriented programming and data abstraction
available to the community of software developers that until then had considered such
techniques and the languages that supported them such as Smalltalk, Clu, Simula,
Ada, OO Lisp dialects, etc., with disdain and even scorn: "expensive toys unfit for
real problems." C++ did three things to overcome this formidable barrier:

[1] C++ produced code with run-time and space characteristics that competed
head-on with the perceived leader in that field: C. Anything that matches or
beats C must be fast enough. Anything that doesn't, can and will - out of
necessity or mere prejudice - be ignored. It produced such performance from
code relying on data abstraction and object-oriented techniques as well as for
traditionally organized code.

[2] C++ allowed such code to be integrated into conventional systems and to be
produced on traditional systems. A conventional degree of portability was
essential. So was the ability to coexist with existing code and with traditional
tools, such as debuggers and editors.

[3] C++ allowed a gradual transition to these new programming techniques. It
takes time to learn new techniques. Companies simply cannot afford to have
significant numbers of programmers unproductive while they are learning.
Nor can they afford projects that fail because programmers overenthusiasti-
cally misapply partially-mastered new ideas.

C++ made object-oriented programming and data abstraction cheap and accessible.

Section 9.2.1 Did C++ succeed at what it was designed for? 197

In succeeding, C++ didn't just help its own user community. It also provided a
major impetus to languages that support different aspects of object-oriented program
ming and data abstraction. C++ isn't everything to all people and doesn't deliver on
every promise ever made about some language or other. It wasn't meant to, and I
didn't make extravagant promises. However, C++ did deliver on its own promises
often enough to break down the wall of disbelief that stood in the way of all languages
that allowed programmers to work at a higher level of abstraction. By doing so, C++
opened many doors for itself and also for languages whose supporters tend to see C++
as a competitor only. In addition, C++ helped users of other languages by providing a
strong incentive to implementers to improve the performance and flexibility of those
languages.

9.2.2 Is C++ a Coherent Language?

Basically, I am happy with the language, and quite a few users agree. There are many
details I'd like to improve if I could. However, the fundamental concept of a
statically-typed language relying on classes with virtual functions and providing facil
ities for low-level programming is sound. Also, the major features work together in a
mutually supportive fashion.

9.2.2.1 What Should and Could Have Been Different?

What would be a better language than C++ for the things C++ is meant for? Consider
the first-order decisions (§1.1, §2.3, §2.7):

- Use of static type checking and Simula-like classes.
- Clean separation between language and environment.
- C source compatibility (' 'as close as possible").
- C link and layout compatibility ("genuine local variables").
- No reliance on garbage collection.

I still consider static type checking essential for good design and run-time efficiency.
Were I to design a new language for the kind of work done in C++ today, I would
again follow the Simula model of type checking and inheritance, not the Smalltalk or
Lisp models. As I have said many times, "Had I wanted an imitation Smalltalk, I
would have built a much better imitation. Smalltalk is the best Smalltalk around. If
you want Smalltalk, use it" [Stroustrup,1990]. Having both static type checking and
dynamic type identification (for example, in the form of virtual function calls) implies
some difficult tradeoffs compared to languages with only static or only dynamic type
checking. The static and dynamic type models cannot be identical, and there will
therefore be some complexity and inelegance that could be avoided by supporting
only one type model. However, I wouldn't want to write programs with only one
model.

I also still consider a separation between the environment and the language essen
tial. I do not want to use only one language, one set of tools, and one operating sys
tem. To offer a choice, separation is necessary. However, once the separation exists,
one can provide different environments to suit different tastes and different

198 Looking Ahead Chapter 9

requirements for supportiveness, resource consumption, and portability.
We never have a clean slate. It is not enough to provide something new; we must

also make it possible for people to make a transition from old tools and ideas to new.
Thus, if C hadn't been there for C++ to be almost compatible with, I would have cho
sen to be almost compatible with some other language. However, any compatibility
requirements imply some ugliness. By building on C, C++ inherited some syntactic
oddities, some rather messy conversion rules for built-in types, etc. These imperfec
tions have been a continuing hassle, but the alternatives - significant incompatibilities
with C in a C-based language or getting a language built completely from scratch into
widespread use - would have been much more troublesome. In particular, the link
and library compatibility with C has been essential. Link compatibility with C
implies that C++ can link with most other languages because they provide a binding to
code written in C.

Should a language have reference semantics for variables (that is, a name is really
a pointer to an object allocated elsewhere), such as in Smalltalk or Modula-3, or true
local variables, such as in C and Pascal? This question is critical. It relates to several
issues such as coexistence with other languages, run-time efficiency, memory man
agement, and the use of polymorphic types. Simula dodged the question by having
references to class objects (only) and true local variables for objects of built-in types
(only). I consider it an open issue whether a language can be designed that provides
the benefits of both references and true local variables without ugliness. Given a
choice between elegance and the benefits of having both references and true local
variables, I'll take the two kinds of variables.

Should a new language support garbage collection directly, say, as Modula-3
does? If so, could C++ have met its goals had it provided garbage collection? Gar
bage collection is great when you can afford it. Therefore, the option of having gar
bage collection is clearly desirable. However, garbage collection can be costly in
terms of run time, real-time response, and porting effort (exactly how costly is the
topic of much confused debate). Therefore, being forced to pay for garbage collection
at all times isn't a blessing. C++ allows optional garbage collection [2nd,pp466-468].
Several experiments with garbage-collecting C++ implementations are in progress. I
expect to rely on garbage collection in some, but not all, of my C++ programs within a
couple of years (§10.7). However, I am convinced (after reviewing the issue many
times over the years) that had C++ depended on garbage collection, it would have
been stillborn.

9.2.2.2 What Should Have Been Left Out?

Even [Stroustrup,1980] voiced concern that C with Classes might have become too
large. I think ' 'a smaller language'' is number one on any wish list for C++, yet peo
ple deluge me and the standards committee with extension proposals. I see no major
part of C++ that could be removed without leaving important techniques unsupported.
Even if we could completely disregard compatibility issues, only a few simplifica
tions of C++'s fundamental mechanisms would be possible. These would primarily

Section 9.2.2.2 What Should Have Been Left Out? 199

be in the C subset of C++ - sometimes we forget that C itself is a rather large and
complicated language.

The fundamental reason for the size of C++ is that it supports more than one way
of writing programs, more than one programming paradigm. From one point of view,
C++ is really three languages in one:

- A C-like language (supporting low-level programming)
- An Ada-like language (supporting abstract data type techniques)
- A Simula-like language (supporting object-oriented programming)
- What it takes to integrate those features into a coherent whole.

One can write programs in those styles in a language like C also, but C provides no
direct support for data abstraction or object-oriented programming. C++, on the other
hand, supports several alternatives directly.

There always is a design choice but in most languages the language designer has
made the choice for you. For C++ I did not; the choice is yours. This flexibility is
naturally distasteful to people who believe that there is exactly one right way of doing
things. It can also scare beginners and teachers who feel that a good language is one
that you can completely understand in a week. C++ is not such a language. It was
designed to provide a toolset for professionals, and complaining that there are too
many features is like the "layman" looking into an upholsterer's tool chest and
exclaiming that there couldn't possibly be a need for all those little hammers.

Every language in nontrivial use grows to meet the needs of its user community'.
This invariably implies an increase of complexity. C++ is part of a trend towards
greater language complexity to deal with the even greater complexity of the program
ming tasks attempted. If the complexity doesn't appear in the language itself, it
appears in libraries or tools. Examples of languages/systems that have grown enor
mously compared to their simpler origins are Ada, Eiffel, Lisp (CLOS), and
Smalltalk. Because of C++'s emphasis on static type checking, much of the increase
in complexity has appeared in the form of language extensions.

C++ was designed for serious programmers and grew to serve them in the increas
ing large and complex tasks they face. The result can be overwhelming for newcom
ers, even experienced newcomers. I have tried to minimize the practical effects of
C++'s size by making it possible to learn and use C++ in stages (§7.2). The traditional
negative performance impact of a large language has also been minimized by avoid
ing "distributed fat" (§4.5).

9.2.2.3 What Should Have Been Added?

As ever, the principle is to add as little as possible. A letter published on behalf of the
extensions working group of the C++ standards committee puts it this way
[Stroustrup, 1992b]:

"First, let us try to dissuade you from proposing an extension to the C++ lan
guage. C++ is already too large and complicated for our taste and there are mil
lions of lines of C++ code ' 'out there'' that we endeavor not to break. All changes
to the language must undergo tremendous consideration. Additions to it are

200 Looking Ahead Chapter 9

undertaken with great trepidation. Wherever possible we prefer to see program
ming techniques and library functions used as alternatives to language extensions.

Many communities of programmers want to see their favorite language con
struct or library class propagated into C++. Unfortunately, adding useful features
from diverse communities could turn C++ into a set of incoherent features. C++ is
not perfect, but adding features could easily make it worse instead of better.''

So, given that, what features have caused trouble by their absence and which are
under debate so that they might make it into C++ over the next few years? Basically,
the features described in this book (including the ones in Part II such as templates,
exceptions, namespaces, and run-time type identification) are enough features for me.
I'd like optional garbage collection too, but I classify that as a quality of implementa
tion issue rather than a language feature.

9.2.3 What Was The Biggest Mistake?

To my mind, there really is only one contender for the title of Worst Mistake. Release
1.0 and my first edition [Stroustrup,1986] should have been delayed until a larger
library including some fundamental classes such as singly and doubly linked lists, an
associative array class, a range-checked array class, and a simple string class could
have been included. The absence of those led to everybody reinventing the wheel and
to an unnecessary diversity in the most fundamental classes. It also led to a serious
diversion of effort. In an attempt to build such fundamental classes themselves, far
too many new programmers started dabbling with the ' 'advanced'' features necessary
to construct good foundation classes before they had mastered the basics of C++.
Also, much effort went into techniques and tools to deal with libraries inherently
flawed by the lack of template support.

Could I have avoided that? In a sense, I obviously could have. The original plan
for my book included three library chapters, one on the stream library, one on the con
tainer classes, and one on the task library. I knew roughly what I wanted. Unfortu
nately, I was too tired and couldn't do container classes without some form of tem
plates. The idea of "faking" templates by a preprocessor or an incomplete compiler
hack unfortunately didn't occur to me.

9.3 Only a Bridge?
I built C++ as a bridge over which people could pass from traditional programming to
styles relying on data abstraction and object-oriented programming. Does C++ have a
future beyond that? Is C++ only a bridge? Once across to a world where data abstrac
tion and object-oriented programming are second nature, are the features provided by
C++ valuable by themselves or does its inheritance from C become a fatal liability?
Also, assuming a positive answer, can anything be done for C++ users who don't care
about C compatibility without causing damage to the people who will continue to care
for at least the next decade?

A language exists to help solve problems. If a language is initially successful, it

Section 9.3 Only a Bridge? 201

will survive as long as people face the kinds of problems it helps them to solve. In
addition, it ought to thrive provided no other language provides significantly better
solutions for that set of problems. Thus, the questions become

- Will the problems C++ helps solve remain real?
- Will significantly better solutions emerge?
- Will C++ provide good solutions for new problems?

My basic answers are "many will," "slowly," and "yes."

9.3.1 We Need the Bridge for a Long Time

It will take people a long time to reach the level of sophistication and maturity with
object-oriented programming, object-oriented design, etc., that I envisioned. The
migration to C++ will not be complete five years from now. C++'s role as a bridge
and as a vehicle for hybrid design and development will outlast this century. Its role
as a vehicle for maintenance and upgrading of old code will last longer still.

It is sobering to realize that in places the move from assembler to C isn't yet com
plete. In the same way, the move from C to C++ may last for a long time. However,
in this lies part of C++'s strength. To those who really need some pure C style, those
styles are readily available and efficient in C++. Supporting those styles - both during
a transition and where they simply are the most appropriate style - is part of C++'s
fundamental aims.

9.3.2 If C++ is the Answer, What is the Question?

There is no one such question. C++ is a general-purpose language - or at least a
multi-purpose one. This implies that for every single specific question, you can con
struct a language or system that is a better answer than C++. C++'s strength comes
from being a good answer to many questions rather than being the best answer to one
specific question. For example, like C, C++ is an excellent language for low-level
systems work and typically outperforms any other high-level language for this kind of
work. However, for most machine architectures, a good assembly programmer can
produce code that is significantly smaller and faster than a good C++ compiler can.
Usually, this is not significant because the fraction of a complete system where that
difference is important is small, and the system would be unaffordable and unmain
tainable if written completely in assembler.

I find it hard to imagine an application area for which one couldn't construct a
specialized language better than C++ - and better than any other general-purpose lan
guage. Thus, the most a general-purpose language can hope for is to be "everybody's
second choice."

That said, I'll examine some areas where C++ has fundamental strengths:
- Low-level systems programming
- Higher-level systems programming
- Embedded code
- Numeric/scientific computing
- General application programming

202 Looking Ahead Chapter 9

These categories are not distinct, nor do they have universally agreed-upon defini
tions. C++ will remain a good choice in all of these areas; further, any language that
is a good choice will look a lot like C++ at the level of the fundamental services
offered - though probably not at the syntactic or detailed semantic level. These areas
don't exhaust the kinds of applications in which C++ has been used with success, but
they represent key problems that C++ must address to continue to prosper.

9.3.2.1 Low-level Systems Programming

C++ is the best language available for low-level programming. It combines C's
strengths in this area with the ability to do simple data abstraction at no cost in run
time and space and to manage larger programs of this sort. No new language is going
to be sufficiently better in this area to replace C++. Systems programming involving a
low-level component will remain an area of strength for C++. In this area, C++ fills
its role as a better C. For years, the only real competitor to C++ in this area will
remain C, and here C++ is the better choice exactly because it is a better C. I expect
low-level systems programming to slowly - only slowly - decrease in importance and
remain a significant area of strength for C++. For this reason, care must be taken not
to ' 'improve'' the C++ language or C++ implementations to the point where it is only
a higher-level language.

9.3.2.2 Higher-level Systems Programming

The size and complexity of traditional systems programs are growing rapidly. Exam
ples are operating system kernels, network managers, compilers, email systems, type
setting programs, picture and sound manipulation systems, communication systems,
user interfaces, and database systems. Consequently, the traditional emphasis on
low-level efficiency gives way to a concern about overall structure. Efficiency still
matters, but it becomes secondary in that it is irrelevant unless the larger systems can
be economically constructed and maintained.

C++'s facilities for data abstraction and object-oriented programming directly
address this concern. Templates, namespaces, and exceptions will become increas
ingly important to C++ programmers working on these kinds of applications. Isolat
ing necessary violations of the type system in low-level functions, subsystems, and
libraries will also become more critical. This technique keeps the main application
code type safe and therefore easier to maintain. I expect higher-level systems pro
gramming to continue to grow in importance for many years and to be an area of
strength for C++.

Many other languages can also serve higher-level systems programming well.
Examples are Ada9X, Eiffel, and Modula-3. Except for support for garbage collec
tion and concurrency, these languages are roughly equivalent to C++ in the fundamen
tal mechanisms they offer. Naturally, the quality of individual features and their inte
gration into a language can be discussed forever. Most programmers will have strong
preferences. However, if implementations of sufficient quality become available,
each of these languages can support a wide variety of systems applications. Problems

Section 9.3.2.2 Higher-level Systems Programming 203

unrelated to programming language-technical details, such as management, design
techniques, and programmer education, will dominate development. C++ tends to
have an advantage in run-time efficiency, flexibility, availability, and user community
that gives it a competitive edge.

For some larger systems applications, garbage collection is a major advantage; for
others, it is a hindrance. Unless C++ implementations provide optional garbage col
lection, C++ will suffer a systematic disadvantage in some areas, but I'm confident
that C++ implementations supporting optional garbage collection will become com
mon.

9.3.2.3 Embedded Systems

One area of systems programming that deserves special mention is embedded code;
that is, programs running on computerized devices such as cameras, cars, rockets, and
telephone switches. I expect this kind of work to increase in importance and to con
sist of a mixture of low-level and higher-level systems programming for which C++ is
most suitable. Different applications and different organizations will create a variety
of demands that a specialized language will be hard-pressed to meet. Some designs
will rely heavily on exceptions; others will ban them as being too unpredictable. Sim
ilarly, the requirements for memory management will range from ' 'no dynamic mem
ory allowed" to "automatic garbage collection must be used." In addition, a variety
of different concurrency models will be used. It is important that C++ is a language
rather than a complete system. This allows C++ to fit into specialized systems and to
produce code for specialized execution environments. Being able to run C++ in sepa
rate development environments and in simulators on stock hardware can be essential
for a project. The fact that C++ programs can be put into ROM has also been impor
tant in the past. I have high expectations for C++ in the area of programming comput
erized gadgets of all sorts. In this area, C++ can again build on C's traditional
strengths.

9.3.2.4 Numeric/Scientific Computing

Numeric/scientific computing is a relatively small area in terms of number of pro
grammers, but it is a very interesting and important one. I see a drift towards
advanced algorithms that favor languages capable of expressing a variety of data
structures and using them efficiently. This increased emphasis on flexibility compen
sates for Fortran's advantage in basic vector computation. Importantly, C++ programs
can call basic Fortran and assembler routines where necessary or simply convenient.
The integration of numeric programs into larger applications creates demands that suit
C++. For example, Fortran's advantages in low-level computation are minimized
when the emphasis is on nonnumeric concerns such as visualization, simulation, data
base access, and real-time data gathering.

204 Looking Ahead Chapter 9

9.3.2.5 General Application Programming

C++ is not ideally suited for applications that do not have major systems-
programming components and where the run-time and space efficiency requirements
are not demanding. However, when supported by libraries and possibly by a garbage
collector C++ often is a viable tool.

I expect specialized languages, program generators, and direct manipulation tools
to dominate many such application areas. For example, why write program text to
generate a user interface when you can have the code generated by a program given
an example screen layout composed from a menu? Similarly, why write Fortran or
C++ to do advanced math when you can use much higher-level specialized languages?
In such cases, however, the higher-level language, tool, or generator needs to be
implemented in some suitable language and will often need to generate code in some
lower-level language to actually perform the actions. The requirements for an imple
mentation language and a target language usually fit C++ very well so I predict a
major role for C++ as the implementation language for higher-level languages and
tools. These are other roles that C++ inherits from C. C++ details such as the ability
to declare variables almost anywhere combine with major program organization fea
tures such as namespaces to make C++ even better suited as a target language than C.

Higher-level tools and languages tend to be specialized. Consequently, good ones
provide facilities for users to extend and modify the default behavior by adding code
written in a lower-level language. C++'s abstraction mechanisms can be used to
smoothly fit C++ code into a framework provided by a higher-level tool.

9.3.2.6 Mixed Systems

C++'s most significant strength comes from its ability to function in systems and
organizations that combine aspects of several of these kinds of applications. My con
jecture is that most significant systems and organizations need such combinations.
User interfaces often need graphics; specific applications often rely on specialized
languages and program generators; simulators and analytical subsystems require com
putation; communications subsystems require extensive systems programming; most
large systems rely on some database; special hardware requires low-level work. In all
these areas - and others - C++ will be at least the second choice. Overall, it will be
the first choice often enough to be considered a major language.

All languages die or mutate to meet new challenges. A language with a large and
vigorous user community will mutate rather than die. This is what happened to C
yielding C++ and that is what some day will happen to C++. C++ is a relatively young
language, but it is worthwhile considering its strengths and weaknesses to build on the
former and compensate for the latter.

C++ isn't perfect; it wasn't designed to be and neither is any other general-purpose
language. However, C++ is good enough not to be replaced by a similar language.
Only a fundamentally different language could provide significant enough benefits to
make it clearly superior. Just being a better C++ will not be sufficient to cause a
change. That is why C++ isn't just a better C: Had C++ not provided significant new

Section 9.3.2.6 Mixed Systems 205

ways of writing programs it wouldn't have been worthwhile for programmers to
upgrade from C. That is why Pascal and Modula-2 failed as alternatives to C even
though a solid section of the academic community was pushing these languages for
years: they were not sufficiently different from C to be significantly better. Also, if
something better but not radically different appears, a lively and diverse community
will simply absorb the new ideas and features. The initial design of C++ and its evo
lution into the current language provides ample examples of this.

I don't see a fundamentally different language that in the near future could replace
C++ across its application areas - just languages that provide essentially similar fea
ture sets in different ways, niche languages, and experimental languages. I expect that
some of these experimental languages will in time grow to provide significant
improvements over what C++ is now and will evolve into over the next few years.

9.4 What Will Make C++ Much More Effective?
There is no room for complacency in the world of software development. Over the
years, the growth of expectations has consistently outstripped even the fantastic
improvements of both hardware and software, and I see no reason for this to change
soon. Much can be done to make C++ implementations more helpful to their users,
and much can be learned by programmers and designers to make themselves more
effective. Here, I will hazard a few comments about what I think should be done to
make C++ programming more effective.

9.4.1 Stability and Standards

Stability of the language definition and of key libraries and interfaces comes high on
the list of requirements for further progress. The ANSI/ISO C++ standard should pro
vide the former, and various organizations and companies are working on the latter in
areas such as operating system interfaces, dynamically linked libraries, database inter
faces, etc. I am looking forward to the day - not too far in the future - when C++ as
described in this book is generally available on all major platforms. This will be of
great help to the libraries and tools industry.

People will of course keep asking for new features, but I can live with C++ as
described here. I conjecture that so can most programmers of production code. It is
worth remembering that no single feature is essential for producing good code - for
any definition of "good."

9.4.2 Education and Technique

Of all the areas of C++ and its use, I see the greatest potential for improvement from
simply learning new design and programming techniques. In principle, the easiest
and cheapest improvements can be had by using C++ more effectively. No expensive
tools are necessary. On the other hand, changing habits of thinking isn't easy. For
most programmers, what is needed is not simply training in a new syntax, but an

206 Looking Ahead Chapter 9

education in new concepts. Have a look at §7.2 and read a textbook that touches upon
design issues such as [2nd] or [Booch,1993]. I expect to see significant improve
ments in design and programming technique over the next few years, but that is no
reason for delay. Most of us are far enough behind the current state of the art in one
or more areas that we can reap significant benefits from some reading and experimen
tation right now. That's also more fun than struggling at the bleeding edge of stan
dards and tools.

9.4.3 Systems Issues

C++ is a language rather than a complete system. In most contexts that has been a
strength, and tools are provided to make up a complete software development and
execution environment. However, the interface between the language and the envi
ronment falls through the cracks of this classification. This has led to disappointingly
slow progress in areas such as incremental linking and dynamic loading. By and
large, people have done nothing, relied on mechanisms designed for C, or worked on
mechanisms intended to be general enough to support "all object-oriented program
ming languages." The results have been rather poor from the point of view of a C++
programmer.

Early experiments integrating C++ and dynamic linking were promising so I had
expected dynamic linking of classes to be common years ago. For example, we had a
technique for efficient and type-safe incremental linking based on abstract types run
ning by 1990 [Stroustrup,1987d] [Dorward,1990]. The technique wasn't much used
in real systems, but abstract classes became important in maintaining firewalls, mini
mizing recompilation after change, and in general to ease the use of software compo
nents from multiple sources (§13.2.2).

Another important issue that languished because it didn't fit well with the separa
tion of the programmer's world into distinct areas of concern was support for evolu
tion of software. Fundamentally, the problem is that once a library is in use, you can
change its implementation only if its users either don't depend on implementation
details such as the size of an object or are willing and able to recompile their code
with the new version of the library. Object models such as Microsoft's OLE2, IBM's
SOM, and the Object Management Group's CORBA address this problem by provid
ing an interface that hides implementation details and is supposedly language inde
pendent. The language independence imposes some awkwardness on the C++ pro
grammer and typically some time or space overhead as well. In addition, each major
section of the software industry seems to have its own "standard" for addressing this
problem. Only time will tell to what extent these techniques help and hinder C++ pro
grammers. The namespace mechanism provides an approach to interface evolution
within the C++ language itself (§17.4.4).

I have reluctantly come to accept that some system-related issues would have been
better handled within C++. System-related issues, such as dynamic linking of classes
and interface evolution do not logically belong in a language and language-based
solutions are not preferable on technical grounds. However, the language provides

Section 9.4.3 Systems Issues 207

the only common forum in which a truly standard solution can become accepted. For
example, the Fortran and C calling interfaces have become a de facto standard for
inter-language calls. They are a standard because C and Fortran are popular and
because their calling interfaces are simple and efficient - the lowest common denomi
nator. I dislike this conclusion because it implies a barrier to the use of multiple lan
guages in a system unless the mechanism supplied by a single language becomes
accepted as a standard by other languages.

9.4.4 Beyond Files and Syntax

Let me outline the program development environment I'd like for C++. First of all, I
want incremental compilation. When I make a minor change, I want' 'the system'' to
note that the change was minor and have the new version compiled and ready to run
in a second. Similarly, I want simple requests, such as "Show me the declaration of
this f ?" "What f s are in scope here?" "What is the resolution of this use of +?"
"Which classes are derived from class Shape?" and "What destructors are called at
the end of this block?'' answered in a second.

A C++ program contains a wealth of information that in a typical environment is
available only to a compiler. I want that information at the programmer's fingertips.
However, most people look at a C++ program as a set of source files or as a string of
characters. That is to confuse the representation with what is represented. A program
is a collection of types, functions, statements, etc. To fit into traditional programming
environments, these concepts are represented as characters in files.

Basing C++ implementations on character-oriented tools has been a major impedi
ment to progress. If you have to preprocess and recompile every header file directly
or indirectly included in the file containing a function in which you made a minor
change, one-second recompilation is not going to happen. Several techniques exist
for avoiding redundant recompilation, but dispensing with traditional source text and
basing tools on an abstract internal representation seems to me the most promising
and interesting approach. An early version of such an representation can be found in
[Murray,1992] [Koenig,1992]. Naturally, we need text as input and for people to look
at, but such text is easily absorbed into the system and easily reconstructed upon
request. It need not be fundamental. Text in the C++ syntax formatted according to
some indentation preference is just one of many alternative ways of looking at a pro
gram. The simplest application of this notion is to allow you to look at a program
using your preferred layout style while I at the same time can look at the same pro
gram using my preferences.

A significant use of a non-textual representation would be as a target for code gen
eration from higher-level languages, program generators, direct manipulation tools,
etc. It would allow such tools to bypass the traditional C++ syntax. It might even
become a tool for migrating C++ away from some of the more contorted aspects of its
syntax. I maintain that C++'s type system and semantics are cleaner than its syntax.
Within C++, there is a much smaller and cleaner language struggling to get out. An
environment like the one I'm envisioning might be a way of proving that. Providing

208 Looking Ahead Chapter 9

direct support for various forms for design are obvious applications.
From the notion of the syntax being the user interface of a language follows that

alternative user interfaces are possible. The only really important constant in the sys
tem is the basic semantics of the language. That must be maintained at all times, and
as long as that is the case, traditional C++ code in the familiar text form can always be
produced on request.

An environment based on an abstract representation of C++ allows alternative
ways of producing C++ and alternative ways of looking at C++. It would also provide
alternative ways of linking, compiling, and executing code. For example, linking
could be done before code generation because there would be no need to produce
object code to gain access to linking information. The difference between an inter
preter and a compiler would become somewhat academic because both would rely on
the same information in roughly the same format.

9.4.5 Putting It All Together

C++'s main strength isn't being great at a single thing, but being good at a great vari
ety of things. Similarly, progress isn't going to come primarily from a single
improvement, but from a great variety of improvements in different areas. Better
libraries, better design techniques, better-educated programmers and designers, a lan
guage standard, optional garbage collection, object-communication standards, data
bases, non-text-based environments, better tools, faster compilers, etc., will all con
tribute.

I think that we have barely begun to see what benefits we can reap from C++. The
base has been constructed, but just the base. In the future, I expect to see the major
activity and progress shift from the language proper - which is that base - to the tools,
environments, libraries, applications, etc., that depend on it and build on it.

Part II

Part II describes C++ features developed after Release 1.0. The individ
ual features are grouped into chapters based on their logical relationships.
The chronology of their introduction into C++ is unimportant for the lan
guage as a whole and is not reflected here. The ordering of the chapters
is of little importance; they can be read in any order. The features pre
sented here represent the completion of C++ as envisioned in 1985 tem
pered by experience.

Chapters

10 Memory Management
11 Overloading
12 Multiple Inheritance
13 Class Concept Refinements
14 Casting
15 Templates
16 Exception Handling
17 Namespaces
18 The C Preprocessor

10
Memory Management

No amount of genius can
overcome obsession with detail.

- traditional

The need for fine-grain control of allocation and deallocation — separating
allocation and initialization — array allocation — placement —
deallocation problems — memory exhaustion — handling memory exhaus
tion — automatic garbage collection.

10.1 Introduction

C++ provides the operator new to allocate memory on the free store and the operator
d e l e t e to release store allocated this way (§2.11.2). Occasionally, a user needs a
finer-grained control of allocation and deallocation.

An important case is a per-class allocator for a frequently used class (see
[2nd,pgl77]). Many programs create and delete large numbers of small objects of a
few important classes such as tree nodes, linked lists links, points, lines, messages,
etc. The allocation and deallocation of such objects with a general-purpose allocator
can easily dominate the run time and sometimes also the storage requirements of the
programs. Two factors are at play: the simple run-time and space overhead of a
general-purpose allocation operation and the fragmentation of the free store caused by
a mix of object sizes. I found that the introduction of a per-class allocator typically
doubles the speed of a simulator, compiler, or similar program that hasn't previously
had its memory management tuned. I have seen factors of ten improvements where
fragmentation problems were severe. Inserting a per-class allocator (either handwrit
ten or from a standard library) became a five-minute operation with the 2.0 features.

Another example of a need for fine-grain control was programs that had to run

212 Memory Management Chapter 10

without interruption for a long time with very limited resources. Hard real-time sys
tems often need guaranteed and predictable memory acquisition with minimal over
head that leads to similar requirements. Traditionally, such programs have avoided
dynamic allocation altogether. A special-purpose allocator can be used to manage
these limited resources.

Finally, I encountered several cases where an object had to be placed at a specific
location or in a specific memory area because of hardware or system requirements.

The revision of C++' s memory management mechanisms (§2.11.2) for Release 2.0
was a response to such demands. The improvements consist primarily of mechanisms
for control of allocation and rely on the programmer's understanding of the issues
involved. They were intended to be used together with other language features and
techniques to encapsulate the areas where control is exercised in delicate ways. These
mechanisms were completed in 1992 with the introduction of o p e r a t o r new [] and
o p e r a t o r d e l e t e [] to deal with arrays.

On several occasions, suggestions came from friends at Mentor Graphics where a
very large and complex CAD/CAM system was being built in C++. In this system,
most of the known programming problems had to be faced on the scale of hundreds of
programmers, millions of lines of code, under severe performance requirements, with
resource limitations, and market deadlines. In particular, Archie Lachner from Men
tor provided insights on memory management issues that became significant in the
2.0 overhaul of C++.

10.2 Separating Allocation and Initialization

The pre-2.0 way of controlling allocation and deallocation on a per-class basis, using
assignment to t h i s (§3.9), proved error-prone and was declared obsolete. Release
2.0 allowed separate specification of allocation and initialization as an alternative. In
principle, initialization is done by the constructor after allocation has been done by
some independent mechanism. This allows a variety of allocation mechanisms -
some user-provided - to be used. Static objects are allocated at link time, local
objects on the stack, and objects created by the new operator by an appropriate
o p e r a t o r new () . Deallocation is handled similarly. For example:

class X {

// . . .
public:

void* operator new(size_t sz); // allocate sz bytes
void operator delete(void* p) ; // free p

X(); // initialize

X(int i) ; // initialize

~X(); // cleanup

// . . .

};

Section 10.2 Separating Allocation and Initialization 213

The type s i z e _ t is an implementation-defined integral type used to hold object
sizes; it is borrowed from the ANSI C standard.

It is the new operator's job to ensure that the separately specified allocation and
initialization are correctly used together. For example, it is the compiler's job to gen
erate a call of the allocator X: : o p e r a t o r new() and a call of an X constructor
from a use of new for X. Logically, X: : o p e r a t o r new () is called before the con
structor. It must therefore return a v o i d * rather than an X*. The constructor makes
an X object out of the memory allocated for it.

Conversely, the destructor "deconstructs" an object leaving raw memory only for
o p e r a t o r d e l e t e () to free. Therefore, X : : o p e r a t o r d e l e t e () takes a
v o i d * argument, rather than an X*.

The usual rules for inheritance apply, so objects of a derived class will be allo
cated using a base class' o p e r a t o r new () :

class Y : public X { // objects of class Y are also
// allocated using X::operator new

// . . .
};

For this, X: : o p e r a t o r new () needs an argument specifying the amount of store
to be allocated: s i z e o f (Y) is typically different from s i z e o f (X). Unfortunately,
novice users often get confused when they have to declare that argument, but don't
have to supply it explicitly in calls. The notion of a user-declared function with an
argument that is "magically" supplied by "the system" seems hard to grasp for
some. In exchange for this added complexity, however, we get the ability to have a
base class provide allocation and deallocation services for a set of derived classes -
and more regular inheritance rules.

10.3 Array Allocation
A class specific X: : o p e r a t o r new () is used for individual objects of class X
only (including objects of classes derived from class X that do not have their own
o p e r a t o r new ()). It follows that

X* p = new X[10];

does not involve X: : o p e r a t o r new () because X [10] is an array rather than an
object of type X.

This caused some complaints because it didn't allow users to take control of allo
cations of arrays of X. However, I was adamant that an ' 'array of X'' wasn't an X and
therefore the X allocator couldn't be used. If used for arrays, the writer of
X: : o p e r a t o r new () would have to deal with the problems of array allocation
"just in case," thus complicating the critical common case. If that case wasn't criti
cal, why bother with a special allocator? Also, I pointed out, controlling the alloca
tion of single-dimension arrays such as X[d] isn't sufficient: what about multiple-
dimension arrays such as X [dl] [d2] ?

214 Memory Management Chapter 10

However, the lack of a mechanism for controlling array allocation caused a certain
amount of grief in real cases and eventually the standards committee provided a solu
tion. The most critical problem was that there was no way to prevent users from allo
cating arrays on the free store, yet no way of controlling such allocation. In systems
relying on logically different storage management schemes, this can cause serious
problems as users naively place large dynamic arrays in the default allocation area. I
had not fully appreciated the implications of this.

The solution adopted is simply to provide a pair of functions specifically for array
allocation/deallocation:

c l a s s X {
/ / . . .
void* operator new(size_t sz); // allocate objects
void operator delete(void* p) ;

void* operator new[](size_t sz); // allocate arrays
void operator delete[](void* p);

};

The array allocator is used to obtain space for arrays of any dimension. As for all
allocators, the job of o p e r a t o r new [] is to provide the number of bytes asked for;
it does not concern itself about how that memory is used. In particular, it does not
need to know the dimensions of the array or its number of elements. Laura Yaker
from Mentor Graphics was the prime mover in the introduction of the array allocation
and deallocation operators.

10.4 Placement
Two related problems were solved by a common mechanism:

[1] We needed a mechanism for placing an object at a specific address, for exam
ple, placing an object representing a process at the address required by
special-purpose hardware.

[2] We needed a mechanism for allocating objects from a specific arena, for exam
ple, for allocating an object in the shared memory of a multi-processor or from
an arena controlled by a persistent object manager.

The solution was to allow overloading of o p e r a t o r new () and to provide a syntax
for supplying extra arguments to the new operator. For example, an o p e r a t o r
new () that places an object at a particular address can be defined like this:

void* operator new(size_t, void* p)
{

return p; // place object at 'p'
}

and invoked like this:

Section 10.4 Placement 215

void* buf = (void*)0xF00F; // s i g n i f i c a n t address

X* p2 = new(buf)X; // cons t ruc t an X at l buf'
/ / invokes: opera tor new(sizeof(X),buf)

Because of this usage, the "new (buf) X" syntax for supplying extra arguments to
o p e r a t o r new() is known as the placement syntax. Note that every o p e r a t o r
new () takes a size as its first argument and that the size of the object allocated is
implicitly supplied.

If anything, I underestimated the importance of placement at the time. With
placement, operator new ceases to be simply a memory allocation mechanism.
Because one can associate all kinds of logical properties with specific memory loca
tions, new takes on aspects of general resource management.

An o p e r a t o r new () for a specific allocation arena might be defined like this:

void* operator new(size_t s, fast_arena& a)
{

return a.alloc(s);
}

and used like this:

void f(fast_arena& arena)

{

X* p = new(arena)X; // allocate X in arena

// . . .

}

Here, a f a s t _ a r e n a is assumed to be a class with a member function a l l o c ()
that can be used to obtain memory. For example:

class fast_arena {
// . . .
char* maxp;
char* freep;
char* expand(size_t s); // get more memory from

// general purpose allocator
public:

void* alloc(size_t s) {
char* p = freep;
return ((freep+=s)<maxp) ? p : expand(s);

}
void free(void*) {} // ignore
clear(); // free all allocated memory

};

This would be an arena specialized for fast allocation and almost instant freeing. One
important use of arenas is to provide specialized memory management semantics.

216 Memory Management Chapter 10

10.5 Deallocation Problems
There is an obvious and deliberate asymmetry between o p e r a t o r new () and
o p e r a t o r d e l e t e () . The former can be overloaded, the latter can't. This
matches the similar asymmetry between constructors and destructors. Consequently,
you may be able to choose between four allocators and five constructors when creat
ing an object, but when it comes time to destroy it, there is basically only one choice:

d e l e t e p ;

The reason is that in principle you know everything at the point where you create an
object, but when it comes to deleting it, all you have left is a pointer that may or may
not be of the exact type of the object.

The use of a virtual destructor is crucial for getting destruction right in cases in
which a user deletes an object of a derived class through a pointer to the base class:

class X {

// .. .

virtual ~X () ;

};

class Y : public X {

// . . .

~Y () ;

};

void f(X* pi)

{

X* p2 = new Y;
delete p2; // Y::~Y correctly invoked
delete pi; // correct destructor

// (whichever that may be) invoked
}

This will also ensure that if there are local o p e r a t o r d e l e t e () functions in the
hierarchy, the right one will be called. Had a virtual destructor not been used, the
cleanup specified in Y's destructor would not have been performed.

However, there is no language feature for selecting between deallocation functions
to match the mechanism for selecting between allocation functions:

c l a s s X {
/ / . . .
void* operator new(size_t); // ordinary allocation
void* operator new(size_t, Arena&); // in Arena

void operator delete(void*);
// can't define void operator delete(void*, Arena&);

};

The reason is again that at the point of deletion, the user can't be expected to know

Section 10.5 Deallocation Problems 217

how the object was allocated. Ideally, of course, a user should not have to deallocate
an object at all. That is one use of special arenas. An arena can be defined to be deal
located as a unit at some well-defined point in a program, or one can write a special-
purpose garbage collector for an arena. The former is quite common, the latter isn't
and needs to be done very well to be able to compete with a standard conservative
plug-in garbage collector [Boehm,1993].

More frequently, the o p e r a t o r new () functions are programmed to leave an
indicator of how they want to be deallocated for o p e r a t o r d e l e t e () to find.
Note that this is memory management and therefore at a conceptual level below that
of the objects created by the constructors and destroyed by the destructors. Conse
quently the memory containing this information is not in the object as such but some
where related to it. For example, an o p e r a t o r new () may place memory manage
ment information in the word ahead of the one pointed to by its return value. Alterna
tively, an o p e r a t o r new () can leave information in a place where constructors or
other functions can find them to determine whether an object is allocated on a free
store.

Was it a mistake not to allow users to overload d e l e t e ? If so, it would be a mis
guided attempt to protect people against themselves. I'm undecided, but I'm pretty
certain that this is one of the nasty cases where either solution would cause problems.

The possibility of calling a destructor explicitly was introduced in 2.0 to cater to
rare cases where allocation and deallocation have been completely separated from
each other. An example is a container that does all memory management for its con
tained objects.

10.5.1 Deallocating Arrays

From C, C++ inherited the problem that a pointer points to an individual object but
that object may actually be the initial element of an array. In general, the compiler
cannot tell. An object pointing to the first element of an array is typically said to
point to the array and allocation and deallocation of arrays is handled through such
pointers. For example:

void f(X* p1) / / p 1 may point to an individual object

// or to an array

{

X* p2 = new X[10]; // p2 points to the array

// . . .

}

How do we ensure that an array is correctly deleted? In particular, how do we ensure
that the destructor is called for all elements of an array? Release 1.0 didn't have a sat
isfactory answer. Release 2.0 introduced an explicit delete-array operator
d e l e t e [] :

218 Memory Management Chapter 10

void f(X* pi) / / p i may po in t to an i nd iv idua l object
/ / or to an a r r ay

{
X* p2 = new X[10]; // p2 points to the array
// . ..
delete p2; // error: p2 points to an array
delete[] p2; // ok
delete p1; // maybe ok, trust the programmer
delete[] p1; // maybe ok, trust the programmer

}

Plain d e l e t e isn't required to handle both individual objects and arrays. This
avoids complicating the common case of allocating and deallocating individual
objects. It also avoids encumbering individual objects with information necessary for
array deallocation.

An intermediate version of d e l e t e [] required the programmer to specify the
number of elements of the array. For example:

delete[10] p2;

That proved too error-prone, so the burden of keeping track of the number of elements
was placed on the implementation instead.

10.6 Memory Exhaustion
Finding that a requested resource cannot be obtained is a general and nasty problem. I
had decided (pre-2.0) that exception handling was the direction in which to look for
general solutions to this kind of problem (§3.15). However, exception handling (§16)
was then still far in the future, and the particular problem of free store exhaustion
couldn't wait. Some solution, however ugly, was needed for an interim period of sev
eral years.

Two problems needed immediate solutions:
[1] It must be possible for a user to gain control in all cases in which a library call

fails due to memory exhaustion (more generally, in all cases in which a library
call fails). This was an absolute requirement from important internal AT&T
users.

[2] The average user mustn't be required to test for memory exhaustion after each
allocation operation. In any case, experience from C shows that users don't
test consistently even when they are supposed to.

The first requirement was met by specifying that a constructor isn't executed if
o p e r a t o r new() returns 0. In that case, the new expression also yields 0. This
enables critical software to defend itself against allocation problems. For example:

Section 10.6 Memory Exhaustion 219

void f()
{

X* p = new X;
if (p == 0) {

// handle allocation error
// constructor not called

}
// use p

}

The second requirement was met by what was known as a new_handle r , that is, a
user-supplied function guaranteed to be called if memory can't be found by operator
new. For example:

void my_handler() { /* ... */ }

void f()
{

set_new_handler(&my_handler); // my_handler used for
// memory exhaustion
// from here on

// . . .
}

This technique was presented in [Stroustrup,1986] and is a general pattern for dealing
with resource acquisition that occasionally fails. Basically, a new_hand le r can:

- find more resources (that is, find free memory to allocate), or
- produce an error message and exit (somehow).

With exception handling, "exit" can be less drastic than terminating the program
(§16.5).

10.7 Automatic Garbage Collection
I deliberately designed C++ not to rely on automatic garbage collection (usually just
called garbage collection). I feared the very significant space and time overheads I
had experienced with garbage collectors. I feared the added complexity of implemen
tation and porting that a garbage collector would impose. Also, garbage collection
would make C++ unsuitable for many of the low-level tasks for which it was intended.
I like the idea of garbage collection as a mechanism that simplifies design and elimi
nates a source of errors. However, I am fully convinced that had garbage collection
been an integral part of C++ originally, C++ would have been stillborn.

My opinion was that if you needed garbage collection, you could either implement
some automated memory management scheme yourself or use a language that sup
ported it directly, say, my old favorite Simula. Today, the issue is not so clear cut.
More resources are available for implementation and porting. Much C++ software
exists that can't just be rewritten in other languages. Garbage collectors have

220 Memory Management Chapter 10

improved, and many of the techniques for "home brew" garbage collection that I had
envisioned or used don't scale up from individual projects to general-purpose
libraries. Most importantly, more ambitious projects are now done in C++. Some of
these could benefit from garbage collection and could afford it.

10.7.1 Optional Garbage Collection

Optional garbage collection is, I think, the right approach for C++. Exactly how that
can best be done is not yet known, but we are going to get the option in several forms
over the next couple of years. Implementations already exist, so it is just a matter of
time before they make it out of research and into production code.

The fundamental reasons why garbage collection is desirable are easily stated:
[1] Garbage collection is the easiest for the user. In particular, it simplifies the

building and use of some libraries.
[2] Garbage collection is more reliable than user-supplied memory management

schemes for some applications.
The reasons against are more numerous, but less fundamental in that they are imple
mentation and efficiency issues:

[1] Garbage collection causes run-time and space overheads that are not affordable
for many current C++ applications running on current hardware.

[2] Many garbage collection techniques imply service interruptions that are not
acceptable for important classes of applications, such as hard real-time applica
tions, device drivers, control applications, human interface code on slow hard
ware, and operating system kernels.

[3] Some applications do not have the hardware resources of a traditional general-
purpose computer.

[4] Some garbage collection schemes require banning several basic C facilities
such as pointer arithmetic, unchecked arrays, and unchecked function argu
ments as used by p r i n t f () .

[5] Some garbage collection schemes impose constraints on object layout or object
creation that complicates interfacing with other languages.

I know that there are more reasons for and against, but no further reasons are needed.
These are sufficient arguments against the view that every application would be better
done with garbage collection. Similarly, these are sufficient arguments against the
view that no application would be better done with garbage collection.

When comparing garbage collection and non-garbage-collection systems, remem
ber that not every program needs to run forever, not every piece of code is a founda
tion library, memory leaks are quite acceptable in many applications, and many appli
cations can manage their memory without garbage collection or related techniques
such as reference counting. C++ does not need garbage collection the way a language
without genuine local variables (§2.3) needs garbage collection. When memory man
agement is well-enough behaved to be handled by less general methods (for example,
special purpose allocators (§10.2, §10.4, §15.3.1 [2nd,§5.5.6,§13.10.3]) automatic and
static store (§2.4)), very significant speed and space advantages can be obtained

Section 10.7.1 Optional Garbage Collection 221

compared with both manual and automatic general garbage collection. For many
applications, those advantages are critical and the benefits of automatic garbage col
lection to other applications irrelevant. In an ideal implementation, this advantage
would not be compromised by the presence of a garbage collector; that collector
would simply not be invoked, or invoked infrequently enough to be unimportant to
the overall efficiency of most applications.

My conclusion is that garbage collection is desirable in principle and feasible, but
for current users, uses, and hardware we can't afford to have the semantics of C++ and
of its most basic standard libraries depend on garbage collection.

The real problem is therefore whether optional garbage collection is a viable
option for C++. When (not if) garbage collection becomes available, we will have
two ways of writing C++ programs. This, in principle, is no more difficult than man
aging with several different libraries, several different application platforms, etc., that
we already handle. Having to make such choices is a simple consequence of having a
widely used general-purpose programming language. It would not make sense to
require that the execution environment of a C++ program should be the same whether
it is running in a missile head, a SLR camera, a PC, a telephone switch, a UNIX
clone, an IBM mainframe, a Mac, a supercomputer, or something else. If provided in
a reasonable way, garbage collection will simply become another option for someone
choosing a run-time environment for an application.

Can optional garbage collection be legal and useful if it is not specified as part of
the C++ standard? I think so, and anyway, we don't have the option of specifying gar
bage collection in the standard because we don't have a scheme that is anywhere near
ready for standardization. An experimental scheme must be demonstrated to be good
enough for a wide range of real applications. In addition, it must not have unavoid
able drawbacks that would make C++ an unacceptable choice for significant applica
tions. Given one such successful experiment, implementers will scramble to provide
the best implementations. We can only hope that they don't choose mutually incom
patible schemes.

10.7.2 What should optional garbage collection look like?

There are several options because there are several solutions to the basic problems.
An ideal is to maximize the number of programs that can run in both garbage collec
tion and non-garbage collection environments. This is an important and elusive goal
for implementers, library designers, and application programmers.

Ideally, a garbage collection implementation would simply be as good as a non-
garbage-collection implementation in time and space if you didn't use garbage collec
tion. This is easy to achieve if the programmer has to say ' 'no part of this program
uses garbage collection," but very hard to do if the implementation is obliged to do
garbage collection and tries to achieve the performance of a non-garbage-collection
implementation through adaptive behavior.

Conversely, a garbage-collection implementer might need some "hints" from a
user to make performance acceptable. For example, a scheme might require the user

222 Memory Management Chapter 10

to state which objects require garbage collection and which do not (for example,
because they originate in non-garbage-collected C or Fortran libraries). If at all possi
ble, a non-garbage-collection implementation should be able to ignore such hints.
Alternatively they should be trivial to remove from the source text.

Some C++ operations, such as ill-behaved casts, unions of pointers and non-
pointers, pointer arithmetic, etc., are seriously detrimental to garbage collectors.
These operations are generally infrequent in well-written C++ code, so it is tempting
to ban them. Thus, two ideals clash:

[1] Ban any unsafe operation: that makes programming safer and garbage collec
tion more efficient.

[2] Don't ban any currently legal C++ program.
I think a compromise can be reached. I suspect that a garbage collection scheme can
be concocted that will work with (almost) every legal C++ program, but work even
better when no unsafe operations are used.

When implementing a garbage collection scheme one must decide whether to
invoke the destructor for a collected object or not. Deciding which is the right thing
to do is not easy. In [2nd], I wrote:

"Garbage collection can be seen as a way of simulating an infinite memory in a
limited memory. With this in mind, we can answer a common question: Should a
garbage collector call the destructor for an object it recycles? The answer is no,
because an object placed on free store and never deleted is never destroyed. Seen
in this light, using d e l e t e is simply a way of requesting the destructor to be
called (together with a notification to the system that the object's memory may be
recycled). But what if we actually do want an action performed for an object allo
cated on the free store but never deleted? Note that this problem does not arise for
static and automatic objects; their destructors are always called implicitly. Note
also that actions performed "at garbage-collection time" are unpredictable
because they may happen at essentially any time between the last use of the object
and "the end of the program." This implies that the state of the program at the
time of their execution is unknown. This again makes such actions hard to pro
gram correctly and less useful than is sometimes imagined.

Where such actions are needed, the problem of performing an action at some
unspecified "destruction time" can be solved by providing a registration server.
An object that needs a service performed "at the end of the program" places its
address and a pointer to a "cleanup" function in a global associative array."

I am now less certain. This model would certainly work, but maybe having the gar
bage collector call the destructors would be sufficiently simple to use to be worth
while. That depends on exactly what objects are collected and what actions their
destructors perform. This is a question that can't be decided by armchair philosophy,
and there doesn't seem to be much relevant experience from other languages. Unfor
tunately, it is also a problem for which it is hard to conduct real experiments.

I am under no illusion that building an acceptable garbage collection mechanism
for C++ will be easy - I just don't think it is impossible. Consequently, given the
number of people looking at the problem several solutions will soon emerge.

11
Overloading

The Devil is in the details.
- traditional

Fine-grain overload resolution — ambiguity control — the null pointer —
type-safe linkage — name mangling — controlling copying, allocation,
derivation, etc. — smart pointers — smart references — increment and
decrement — an exponentiation operator — user-defined operators —
composite operators — enumerations — a Boolean type.

11.1 Introduction
Operators are used to provide notational convenience. Consider a simple formula
F=M*A. No basic physics textbook states that as a s s i g n (F, m u l t i p l y (M, A)) †.
When variables can be of different types, we must decide whether to allowed mixed-
mode arithmetic or to require explicit conversion of operands to a common type. For
example, if M is an i n t and A is a d o u b l e we can either accept M*A and deduce that
M must be promoted to a d o u b l e before the multiplication, or we can require the
programmer to write something like d o u b l e (M) *A.

By choosing the former - as C, Fortran, and every other language used extensively
for computation have - C++ entered a difficult area without perfect solutions. On the
one hand, people want "natural" conversions without any fuss from the compiler, but
on the other, they don't want surprises. What is considered natural differs radically
among people, and so do the kinds of surprises people are willing to tolerate. This,

Some may even prefer F=MA, but the explanation of how to make that work ("overloading missing
whitespace") is beyond the scope of this book.

224 Overloading Chapter 11

together with the constraint of compatibility with C's rather chaotic built-in types and
conversions, results in a fundamentally difficult problem.

The desire for flexibility and freedom of expression clashes with wishes for safety,
predictability, and simplicity. This chapter looks at the refinements to the overload
ing mechanisms that resulted from this clash.

11.2 Overload Resolution
Overloading of function names and operators, as originally introduced into C++ (§3.6)
[Stroustrup, 1984b] proved popular, but problems with the overload mechanism had
surfaced. The improvements provided by Release 2.0 were summarized
[Stroustrup, 1989b]:

' 'The C++ overloading mechanism was revised to allow resolution of types that
used to be "too similar" and to gain independence of declaration order. The
resulting scheme is more expressive and catches more ambiguity errors."

The work on fine-grain resolution gave us the ability to overload based on the
i n t / c h a r , f l o a t / d o u b l e , cons t /non-const , and base/derived distinctions.
Order independence eliminated a source of nasty bugs. I will examine these two
aspects of overloading in turn. Finally, I'll explain why the o v e r l o a d keyword was
made obsolete.

11.2.1 Fine-Grain Resolution

As first defined, the C++ overloading rules accepted the limitations of C's built-in
types [Kernighan,1978]. That is, there were no values of type f l o a t (technically, no
rvalues) because in computation a f l o a t is immediately widened to a d o u b l e .
Similarly there were no values of type c h a r because in every use a c h a r is widened
to an i n t . This led to complaints that single-precision floating point libraries
couldn't be provided naturally and that character manipulation functions were unnec
essarily error-prone.

Consider an output function. If we can't overload based on the c h a r / i n t dis
tinction, we have to use two names. In fact, the original stream library (§8.3.1) used:

ostream& operator<<(int); // output ints (incl. promoted
// chars) as sequence of digits,

ostream& put(char c); // output chars as characters.

However, many people wrote

c o u t < < ' X ' ;

and were (naturally) surprised to find 8 8 (the numeric value of ASCII ' X') in their
output instead of the character X.

To overcome this, the type rules of C++ were changed to allow types such as
c h a r and f l o a t to be considered in their unpromoted form by the overload resolu
tion mechanism. In addition, the type of a literal character, such as ' X' , was defined

Section 11.2.1 Fine-Grain Resolution 225

to be cha r . At the same time, the then recently invented ANSI C notation for
expressing u n s i g n e d and f l o a t literals was adopted so that we could write:

float abs(float);
double abs(double);
int abs(int);
unsigned abs(unsigned);
char abs(char);

void f()
{

abs(l); // abs(int)
abs(lU); // abs(unsigned)
abs(l.O); // abs(double)
abs(1.OF); // abs(float)
abs('a'); // abs(char)

}

In C, the type of a character literal such as ' a ' is i n t . Surprisingly, giving ' a '
type c h a r in C++ doesn't cause compatibility problems. Except for the pathological
example s i z e o f (' a '), every construct that can be expressed in both C and C++
gives the same result.

In defining the type of a character literal as cha r , I relied partly on reports from
Mike Tiemann on experience with a compiler option providing that interpretation in
the GNU C++ compiler.

Similarly, it had been discovered that the difference between c o n s t and non-
c o n s t could be used to good effect. An important use of overloading based on
c o n s t was to provide a pair of functions

char* strtok(char*, const char*);
const char* strtok(const char*, const char*);

as an alternative to the ANSI C, a standard function

char* strtok(const char*, const char*);

The C s t r t o k () returns a substring of the c o n s t string passed as its first argu
ment. Having that substring non-const couldn't be allowed for a C++ standard
library because an implicit violation of the type system is not acceptable. On the
other hand, incompatibilities with C had to be minimized, and providing two s t r t o k
functions allows most reasonable uses of s t r t o k .

Allowing overloading based on c o n s t was part of a general tightening up of the
rules for c o n s t and a trend towards enforcing those rules (§13.3).

Experience showed that hierarchies established by public class derivations should
be taken into account in function matching so that the conversion to the "most
derived" class is chosen if there is a choice. A v o i d * argument is chosen only if no
other pointer argument matches. For example:

226 Overloading Chapter 11

c l a s s B { /* . . . */ };
class BB : public B { / * . . . * / };
class BBB : public BB { /* ... */ } ;

void f(B*) ;
void f(BB*);
void f(void*);

void g(BBB* pbbb, BB* pbb, B* pb, int* pi)
{

f(pbbb); // f(BB*)
f(pbb); // f(BB*)
f(pb); // f(B*)
f(pi); // f(void*)

}

This ambiguity resolution rule matches the rule for virtual function calls where the
member from the most derived class is chosen. Its introduction eliminated a source of
errors. This change was so obvious that people greeted it with a yawn ("you mean it
wasn't that way before?"). The bugs disappeared and that was all.

The rule has one interesting property, though. It establishes v o i d * as the root of
the tree of class conversions. This fits with the view that construction makes an
object out of raw memory and a destructor reverses that process by making raw mem
ory out of an object (§2.11.1, §10.2). A conversion such as B* to v o i d * allows an
object to be seen as raw memory where no other property is of interest.

11.2.2 Ambiguity Control

The original C++ overloading mechanism resolved ambiguities by relying on the
order of declaration. Declarations were tried in order and the first match "won." To
make this tolerable, only non-narrowing conversions were accepted in a match. For
example:

overload void print(int); // original (pre 2.0) rules:
void print(double);

void g()
{

print(2.0); // print(double): print(2.0)
// double->int conversion not accepted,

print(2.OF); // print(double): print(double(2.OF))
// float->int conversion not accepted
// float->double conversion accepted,

print(2); // print(int): print(2).
}

This rule was simple to express, simple for users to understand, efficient at compile
time, trivial for implementers to get right, and was a constant source of errors and

Section 11.2.2 Ambiguity Control 227

confusion. Reversing the declaration order could completely change the meaning of a
piece of code:

overload void print(double); // original rules:
void print(int);

void g()
{

print(2.0); // print(double): print(2.0).
print(2.OF); // print(double): print(double(2.OF))

// float->double conversion accepted,
print(2); // print(double): print(double(2))

// int->double conversion accepted.
}

Basically, order dependence was too error-prone. It also became a serious obstacle to
the effort to evolve C++ programming towards a greater use of libraries. My aim was
to move to a view of programming as the composition of programs out of independent
program fragments (see also §11.3) and order dependence was one of many obstacles.

The snag is that order-independent overloading rules complicate C++'s definition
and implementation because a significant degree of compatibility with C and with the
original C++ must be maintained. In particular, the simple rule "if an expression has
two possible legal interpretations, it is ambiguous and thus illegal," wasn't a real
option. For example, under that rule all of the calls of p r i n t () in the example
above would be ambiguous and illegal.

I concluded we needed some notion of a ' 'better match'' rule so that we would
prefer an exact type match to a match involving a conversion and prefer a safe conver
sion such as f l o a t to d o u b l e over an unsafe (narrowing, value destroying, etc.)
conversion such as f l o a t to i n t . The resulting series of discussions, refinements,
and reconsiderations lasted for years. Some details are still being discussed in the
standards committee. The main participants were Doug Mcllroy, Andy Koenig,
Jonathan Shopiro, and me. Early on, Doug pointed out that we were perilously close
to trying to design a "natural" system for implicit conversions. He considered PL/Ts
rules, which he had helped design, proof that such a "natural" system cannot be
designed for a rich set of common data types - and C++ provides a rich set of built-in
types with anarchic conversions plus the ability to define conversions between arbi
trary user-defined types. My stated reason for entering this swamp was that we didn't
have any option but to try.

C compatibility, people's expectations, and the aim to allow users to define types
that can be used exactly as built-in types prevented us from banning implicit conver
sions. In retrospect, I agree with the decision to proceed with implicit conversions. I
also agree with Doug's observation that the task of minimizing surprises caused by
implicit conversions is inherently difficult and that (at least given the requirement of
C compatibility) surprises cannot be completely eliminated. Different programmers
simply have differing expectations so whatever rule you choose, someone is going to
be surprised sometime.

228 Overloading Chapter 11

A fundamental problem is that the graph of built-in implicit conversions contains
cycles. For example, implicit conversions exist not only from c h a r to i n t , but also
from i n t to cha r . This has the potential for endless subtle errors and prevented us
from adopting a scheme for implicit conversions based on a lattice of conversions.
Instead we devised a system of "matches" between types found in function declara
tions and the types of actual arguments. Matches involving conversions we consid
ered less error-prone and surprising were preferred over others. This allowed us to
accommodate C's standard promotion and standard conversion rules. I described the
2.0 version of this scheme like this [Stroustrup, 1989b]:

"Here is a slightly simplified explanation of the new rules. Note that with the
exception of a few cases where the older rules allowed order dependence the new
rules are compatible and old programs produce identical results under the new
rules. For the last two years or so C++ implementations have issued warnings for
the now "outlawed" order-dependent resolutions.

C++ distinguishes 5 kinds of "matches":
[1] Match using no or only unavoidable conversions (for example, array name

to pointer, function name to pointer to function, and T to c o n s t T) .
[2] Match using integral promotions (as defined in the proposed ANSI C stan

dard; that is, c h a r to i n t , s h o r t to i n t and their u n s i g n e d counter
parts) and f l o a t to d o u b l e .

[3] Match using standard conversions (for example, i n t to doub le ,
d e r i v e d * to ba se* , u n s i g n e d i n t to i n t) .

[4] Match using user-defined conversions (both constructors and conversion
operators).

[5] Match using the ellipsis . . . in a function declaration.
Consider first functions of a single argument. The idea is always to choose the

"best" match, that is the one highest on the list above. If there are two best
matches, the call is ambiguous and thus a compile-time error."

The examples above illustrate this rule. A more precise version of the rules can be
found in the ARM.

A further rule is needed to cope with functions of more than one argument
[ARM]:

"For calls involving more than one argument, a function is chosen provided it has
a better match than every other function for at least one argument and at least as
good a match as every other function for every argument. For example:

class complex {
// . . .
complex(double);

};

void f(int,double);
void f(double,int);
void f(complex,int);

Section 11.2.2 Ambiguity Control 229

The unfortunate narrowing from d o u b l e to i n t in the third and the second to
last calls causes warnings. Such narrowings are allowed to preserve compatibility
with C. In this particular case, the narrowing is harmless, but in many cases
d o u b l e to i n t conversions are value destroying and they should never be used
thoughtlessly."

Elaboration and formalization of this rule for multiple arguments led to the "intersect
rule" found in [ARM,pp312-314]. The intersect rule was first formulated by Andrew
Koenig during discussions with Doug Mcllroy, Jonathan Shopiro, and me. I believe
Jonathan was the one who found the truly bizarre examples that proved it necessary
[ARM,pg313].

Please note how seriously the compatibility concerns were taken. My view is that
anything less would have been taken quite badly by the vast majority of existing and
future C++ users. A simpler, stricter, and more easily understood language would
have attracted more adventurous programmers as well as programmers who are per
manently discontented with existing languages. Had design decisions systematically
favored simplicity and elegance over compatibility, C++ would today have been much
smaller and cleaner. It would also have been an unimportant cult language.

11.2.3 The Null Pointer

Nothing seems to create more heat than a discussion of the proper way to express a
pointer that doesn't point to an object, the null pointer. C++ inherited its definition of
the null pointer from Classic C [Kernighan,1978]:

"A constant expression that evaluates to zero is converted to a pointer, commonly
called the null pointer. It is guaranteed that this value will produce a pointer dis
tinguishable from a pointer to any object or function."

The ARM further warns:
' 'Note that the null pointer need not be represented by the same bit pattern as the
integer 0."

The warning reflects the common misapprehension that if p=0 assigns the null
pointer to the pointer p, then the representation of the null pointer must be the same as
the integer zero, that is, a bit pattern of all-zeros. This is not so. C++ is sufficiently

void f(int .. .) ;
void f(complex . . .) ;

void g(complex z)
{

f(1,2.0); // f(int,double)
f(1.0,2); // f(double,int)
f(z,1.2); // f(complex,int)
f(z,l,3) ; // f(complex ...)
f(2.0,z); // f(int ...)
f(l,l); // error: ambiguous,

// f(int,double) or f(double,int) ?
}

230 Overloading Chapter 11

strongly typed that a concept such as the null pointer can be represented in whichever
way the implgmenter chooses, independently of how that concept is represented in the
source text. The one exception is when people use the ellipsis to suppress function
argument checking:

int printf(const char* . . .) ; // C style unchecked calls

printf(fmt, 0, (char)0, (void*)0, (int*)0, (int(*)())0);

Here, the casts are needed to specify exactly which kind of 0 is wanted. In this exam
ple, five different values could conceivably be passed.

In K&R C, function arguments were never checked and even in ANSI C you still
can't rely on argument checking because it is optional. For this reason, because 0 is
not easy to spot in a C or C++ program and because people are used to a symbolic
constant representing the null pointer in other languages, C programmers tend to use a
macro called NULL to represent the null pointer. Unfortunately, there is no portable
correct definition of NULL in K&R C. In ANSI C, (void*) 0 is a reasonable and
increasingly popular definition for NULL.

However, (vo id*) 0 is not a good choice for the null pointer in C++:

char* p = (void*)0; /* legal C, illegal C++ */

A v o i d * cannot be assigned to anything without a cast. Allowing implicit conver
sions of v o i d * to other pointer types would open a serious hole in the type system.
One might make a special case for (void*) 0, but special cases should only be
admitted in dire need. Also, C++ usage was determined long before there was an
ANSI C standard, and I do not want to have any critical part of C++ rely on a macro
(§18). Consequently, I used plain 0, and that has worked very well over the years.
People who insist on a symbolic constant usually define one of

const int NULL = 0; // or
#define NULL 0

As far as the compiler is concerned, NULL and 0 are then synonymous. Unfortu
nately, so many people have added definitions NULL, NIL, N u l l , n u l l , etc., to
their code that providing yet another definition can be hazardous.

There is one kind of mistake that is not caught when 0 (however spelled) is used
for the null pointer. Consider:

void f (c h a r *) ;

void g() { f (0) ; } // c a l l s f(char*)

Now add another f () and the meaning of g () silently changes:

void f(char*);
void f (int);

void g() { f(0); } // calls f(int)

Section 11.2.3 The Null Pointer 231

This is an unfortunate side effect of 0 being an i n t that can be promoted to the null
pointer, rather than a direct specification of the null pointer. I think a good compiler
should warn, but I didn't think of that in time for Cfront. Making the call f (0)
ambiguous rather than resolving it in favor of f (i n t) would be feasible, but would
probably not satisfy the people who want NULL or n i l to be magical.

After one of the regular flame wars on comp.lang.c++ and comp.lang.c, one of my
friends observed, "If 0 is their worst problem, then they are truly lucky." In my
experience, using 0 for the null pointer is not a problem in practice. I am still
amazed, though, by the rule that accepts the result of any constant expression evaluat
ing to 0 as the null pointer. This rule makes 2-2 and ~ - l null pointers. Assigning
2 + 2 of -1 to a pointer is a type error, of course. That is not a rule that I like as an
implementer either.

11.2.4 The o v e r l o a d Keyword

Originally, C++ allowed a name to be used for more than one name (that is, "to be
overloaded") only after an explicit o v e r l o a d declaration. For example:

overload max; // ''overload'' - obsolete in 2.0
int max(int,int);
double max(double,double);

I considered it too dangerous to use the same name for two functions without explic
itly declaring an intent to overload. For example:

int abs(int); // no ''overload abs''
double abs(double); // used to be an error

This fear of overloading had two sources:
[1] Concern that undetected ambiguities could occur.
[2] Concern that a program could not be properly linked unless the programmer

explicitly declared which functions were supposed to be overloaded.
The former fear proved largely groundless. The few problems found in actual use are
dealt with by the order-independent overloading resolution rules. The latter fear
proved to have a basis in a general problem with C separate compilation rules that had
nothing to do with overloading (see § 11.3).

On the other hand, the o v e r l o a d declarations themselves became a serious
problem. One couldn't merge pieces of software using the same function name for
different functions unless both pieces had declared that name overloaded. This wasn't
usually the case. Typically, the name one wants to overload is the name of a C library
function declared in a C header. For example:

/* Header for C standard math library, math.h: */
double sqrt(double);
/* ... */

232 Overloading Chapter 11

// header for C++ complex arithmetic library, complex.h:
overload sqrt;
complex sqrt(complex);
// . . .

Now we could write

#include <complex.h>
ttinclude <math.h>

but not

#include <math.h>
#include <complex.h>

because it was an error to use o v e r l o a d for s q r t () on its second declaration only.
There were ways of alleviating this: rearranging declarations, putting constraints on
the use of header files, and sprinkling o v e r l o a d declarations everywhere "just in
case." However, we found such tricks unmanageable in all but the simplest cases.
Abolishing o v e r l o a d declarations and getting rid of the o v e r l o a d keyword
worked much better.

11.3 Type-Safe Linkage

C linkage is very simple and completely unsafe. You declare a function

ex te rn void f (c h a r) ;

and the linker will merrily link that f to any f in its universe. The f linked to may be
a function taking completely different arguments or even a non-function. This usually
causes a run-time error of some sort (core dump, segment violation, etc.). Linkage
problems are especially nasty because they increase disproportionately with the size
of programs and with the amount of library use. C programmers have learned to live
with this problem. However, the needs of the overloading mechanism caused a sense
of urgency. Any solution for this linkage problem for C++ had to leave it possible to
call C functions without added complication or overhead.

11.3.1 Overloading and Linkage

The solution to the C/C++ linkage problem in pre-2.0 implementations was to let the
name generated for a C++ function be the same as would be generated for a C func
tion of the same name whenever possible. Thus open () gets the name open on
systems where C doesn't modify its names on output, the name _open on systems
where C adds a prefix underscore, etc.

This simple scheme clearly isn't sufficient to cope with overloaded functions. The
keyword o v e r l o a d was introduced partly to distinguish the hard case from the easy
ones (see also §3.6).

The initial solution, like the subsequent ones, was based on the idea of encoding

Section 11.3.1 Overloading and Linkage 233

type information into names given to the linker (§3.3.3). To allow linkage to C func
tions, only the second and subsequent versions of an overloaded function had their
names encoded. Thus the programmer would write:

overload sqrt;
double sqrt(double); // a linker sees: sqrt
complex sqrt(complex); // a linker sees: sqrt F7complex

The C++ compiler generated code referring to s q r t and s q r t F7complex. For
tunately, I documented this trick only in the BUGS section of the C++ manual page.

The overloading scheme used for C++ before 2.0 interacted with the traditional C
linkage scheme in ways that brought out the worst aspects of both. We had to solve
three problems:

[1] Lack of type checking in the linker.
[2] Use of the o v e r l o a d keyword.
[3] Linking C++ and C program fragments.

A solution to 1 is to augment the name of every function with an encoding of its type.
A solution to 2 is to abolish the o v e r l o a d keyword. A solution to 3 is for a C++
programmer to state explicitly when a function is supposed to have C-style linkage.
Consequently, [Stroustrup,1988a]:

' 'The question is whether a solution based on these three premises can be imple
mented without noticeable overhead and with only minimal inconvenience to C++
programmers. The ideal solution would

- Require no C++ language changes.
- Provide type-safe linkage.
- Allow for simple and convenient linkage to C.
- Break no existing C++ code.
- Allow use of (ANSI-style) C headers.
- Provide good error detection and error reporting.
- Be a good tool for library building.
- Impose no run-time overhead.
- Impose no compile-time overhead.
- Impose no link-time overhead.

We have not been able to devise a scheme that fulfills all of these criteria strictly,
but the adopted scheme is a good approximation."

Clearly, the solution was to type check all linkage. The problem then became how to
do that without having to write a new linker for every system.

11.3.2 An Implementation of C++ Linkage

First of all, every C++ function name is encoded by appending its argument types.
This ensures that a program will link only if every function called has a definition and
that the argument types specified in declarations are the same as the types specified in
the function definition. For example, given:

234 Overloading Chapter 11

f (i n t i) { / * . . . * / } / / def ines f Fi
f (i n t i , char* j) { / * . . . * / } / / def ines f FiPc

These examples can be correctly handled:

extern f(int); // refers to f Fi
extern f(int,char*); // refers to f FiPc
extern f(double,double); // refers to f Fdd

void g()
{

f(1); // links to f Fi
f(1,"asdf"); // links to f FiPc
f(l,l); // tries to link to f Fdd

// link-time error: no f Fdd defined
}

This leaves the problem of how to call a C function or a C++ function ' 'masquerad
ing" as a C function. To do this, a programmer must state that a function has C link
age. Otherwise, a function is assumed to be a C++ function and its name is encoded.
To express this, an extension of the linkage-specification was introduced into C++:

ex tern "C" {
double sqrt(double); // sqrt(double) has C linkage

}

The linkage specification does not affect the semantics of the program using
s q r t () but simply tells the compiler to use the C naming conventions for the name
used for s q r t () in the object code. This means that the linkage name of this
s q r t () is s q r t or _ s q r t or whatever is required by the C linkage conventions in
a given system. One could also imagine a system in which the C linkage rules were
the type-safe C++ linkage rules as described above so that the linkage name of the C
function s q r t () was s q r t Fd.

Naturally, suffixing with an encoding of the type is only an example of an imple
mentation technique. It is, however, the technique we successfully used for Cfront,
and it has been widely copied. It has the important properties of being simple and
working with existing linkers. This implementation of the idea of type-safe linkage is
not 100% safe, but then, again, in general, very few useful systems are 100% safe. A
more complete description of the encoding ("name mangling") scheme used by
Cfront can be found in [ARM,§7.2c].

11.3.3 Retrospective

I think the combination of requiring type-safe linkage, providing a reasonable imple
mentation, and providing an explicit escape for linking to other languages was the
right one. As expected, the new linkage system eliminated problems without impos
ing burdens that users found hard to live with. In addition, a surprising number of
linkage errors were found in old C and C++ code converted to the new style. My

Section 11.3.3 Retrospective 235

observation at the time was ' 'switching to type-safe linkage feels like running lint on
a C program for the first time - somewhat embarrassing." Lint is a popular tool for
checking separately compiled units of C programs for consistent use of types [Ker-
nighan,1984]. During the initial introduction period, I tried to keep track of experi
ences. Type-safe linkage detected a hitherto undiscovered error in every significant C
or C++ program we compiled and linked.

One surprise was that several programmers had acquired the nasty habit of supply
ing wrong function declarations simply to shut up the compiler. For example, a call
f (1 , a) causes an error if f () isn't declared. When that happens, I had naively
expected the programmer to either add the right declaration for the function or to add
a header file containing that declaration. It turned out that there was a third alterna
tive - just supply some declaration that fits the call:

void g()
{

void f(int . . .) ; // added to suppress error message
// . . .
f(l,a);

}

Type-safe linkage detects such sloppiness and reports an error whenever a declaration
doesn't match a definition.

We also discovered a portability problem. People declared library functions
directly rather than including the proper header file. I suppose the aim was to mini
mize compilation time, but the effect was that when the code was ported to another
system, the declaration became wrong. Type-safe linkage helped us catch quite a few
porting problems (mainly between UNIX System V and BSD UNIX) of this kind.

We considered several alternatives to the type-safe linkage schemes before decid
ing on the one actually added to the language [Stroustrup,1988]:

- Provide no escape and rely on tools for C linkage
- Provide type-safe linkage and overloading for functions explicitly marked

o v e r l o a d only
- Provide type-safe linkage only for functions that couldn't be C functions

because they had types that couldn't be expressed in C
Experience with the way the adopted scheme has been used convinced me that the
problems I conjectured for the alternatives were genuine. In particular, extending the
checking to all functions by default has been a boon and mixed C/C++ has been so
popular that any complication of C/C++ linkage would have been most painful.

Two details prompted complaints from users and are causes for concern still. In
one case, I think we made the right choice. In the other, I'm not so sure.

A function declared to have C linkage still has C++ calling semantics. That is, the
formal arguments must be declared, and the actual arguments must match under the
C++ matching and ambiguity control rules. Some users wanted functions with C link
age to obey the C calling rules. Allowing that would have allowed more direct use of
C header files. It would also have allowed sloppy programmers to revert to C's

236 Overloading Chapter 11

weaker type checking. Another argument against introducing special rules for C,
however, is that programmers also asked for Pascal, Fortran, and PL/I linkage com
plete with support for the function-calling rules from those languages, such as implicit
conversion of C-style strings to Pascal-type strings for functions with Pascal linkage,
call by reference and added array-type information for functions with Fortran linkage,
etc. Had we provided special services for C, we would have been obliged to add
knowledge of an unbounded set of language calling conventions to C++ compilers.
Resisting that pressure was right, though a significant added service could have been
rendered to individual users of mixed language programming systems. Given the C++
semantics (only), people have found references (§3.7) useful to provide interfaces to
languages such as Fortran and Pascal that support pass-by-reference arguments.

On the other hand, focusing only on linkage led to a problem. The solution
doesn't directly address the problems of an environment that supports mixed-language
programming and pointers to functions with different calling conventions. Using the
C++ linkage rules, we can directly express that a function obeys C++ or C calling con
ventions. Specifying that the function itself obeys C++ conventions but its argument
obeys C conventions cannot be expressed directly. One solution is to express this
indirectly [ARM,pg118]. For example:

typedef void (*PV)(void*,void*);

void* sort1(void*, unsigned, PV) ;
extern "C" void* sort2(void*, unsigned, PV) ;

Here, s o r t 1 () has C++ linkage and takes a pointer to a function with C++ linkage;
s o r t 2 () has C linkage and takes a pointer to a function with C++ linkage. These
are the clear-cut cases. On the other hand, consider:

extern "C" typedef void (*CPV)(void*,void*);

void* sort3(void*, unsigned, CPV);
extern "C" void* sort4(void*, unsigned, CPV);

Here, s o r t 3 () has C++ linkage and takes a pointer to a function with C linkage;
s o r t 4 () has C linkage and takes a pointer to a function with C linkage. That
pushes the limits of what the language specifies and is ugly. The alternatives don't
seem to be attractive either: You could introduce calling conventions into the type
system or use calling stubs extensively to handle such mixtures of calling conven
tions.

Linkage, inter-language calls, and inter-language object passing are inherently dif
ficult problems and have many implementation-dependent aspects. It is also an area
where the ground rules change as new languages, hardware architectures, and imple
mentation techniques are developed. I expect that we haven't heard the last of this
matter.

Section 11.4 Object Creation and Copying 237

11.4 Object Creation and Copying

Over the years, I have been asked for language features to disallow various operations
regularly (say, twice a week for ten years). The reasons vary. Some want to optimize
the implementation of a class in ways that can only be done if operations such as
copying, derivation, or stack allocation are never performed on objects of that class.
In other cases, such as objects representing real-world objects, the required semantics
simply don't include all of the operations C++ supplies by default.

The answer to most such requests was discovered during the work on 2.0: If you
want to prohibit something, make the operation that does it a private member function
(§2.10).

11.4.1 Control of Copying

To prohibit copying of objects of class X, simply make the copy constructor and the
assignment operator private:

c l a s s X {
X& operator=(const X&) ;

X(const X&);

// . . .
public:

X(int);

// . . .

};

void f()

{

X a(l); // fine: can create Xs

X b = a; // error: X::X(const X&) private

b = a; // error: X::operator=(const X&) private
}

Naturally, the implementer of class X can still copy X objects, but in real cases that is
typically acceptable or even required. Unfortunately, I don't remember who thought
of this first; I doubt it was me, see [Stroustrup,1986,pgl72].

I personally consider it unfortunate that copy operations are defined by default and
I prohibit copying of objects of many of my classes. However, C++ inherited its
default assignment and copy constructors from C, and they are frequently used.

11.4.2 Control of Allocation

Other useful effects can be achieved by declaring operations private. For example,
declaring a destructor private prevents stack and global allocation. It also prevents
random use of d e l e t e :

238 Overloading Chapter 11

c l a s s On_free_store {
~On_free_store() ; / / p r i v a t e d e s t r u c t o r
/ / . . .

p u b l i c :
static void free(On_free_store* p) { delete p; }

// . . .

};

On_free_store globl; // error: private destructor

void f()

{
On_free_store loc; // error: private destructor
On_free_store* p = new On_free_store; // fine

// . . .
delete p; // error: private destructor

On_free_store::free(p); // fine

}

Naturally, such a class will typically be used with a highly optimized free store alloca
tor or other semantics taking advantage of objects being on the free store.

The opposite effect - allowing global and local variables, but disallowing free
store allocation - is obtained by declaring only an unusual of o p e r a t o r new () :

class No_free_store {

class Dummy { };

void* operator new(size_t,Dummy);

// . . .

};

No_free_store glob2; // fine

void g()

{
No_free_store loc; // fine

No_free_store* p = new No_free_store; // error:

// no No_free_store::operator new(size_t)

}

11.4.3 Control of Derivation

A private destructor also prevents derivation. For example:

class D : public On_free_store {

// . . .

};

D d; // error: cannot call private base class destructor

Section 11.4.3 Control of Derivation 239

This makes a class with a private destructor the logical complement to an abstract
class. It is impossible to derive from O n _ f r e e _ s t o r e , so calls of
O n _ f r e e _ s t o r e virtual functions need not use the virtual function mechanism.
However, I don't think any current compilers optimize based on that.

Later, Andrew Koenig discovered that it was even possible to prevent derivation
without imposing restrictions on the kind of allocation that could be done:

class Usable_lock {

friend Usable;

private:

Usable_lock() {}

};

class Usable : public virtual Usable_lock {

// . . .
public:

Usable();

Usable(char*);

// . . .

};

Usable a;

class DD : public Usable { };

DD dd; // error: DD::DD() cannot access

// Usable_lock::Usable_lock(): private member

this relies on the rule that a derived class must call the constructor of a virtual base
class (implicitly or explicitly).

Such examples are usually more of an intellectual delight than techniques of real
importance. Maybe that's why discussing them is so popular.

11.4.4 Memberwise Copy

Originally, assignment and initialization were by default defined as bitwise copy.
This caused problems when an object of a class with assignment was used as a mem
ber of a class that did not have assignment defined:

class X { /* ... */ X& operator=(const X&); } ;

struct { X a; };

void f(Y yl, Y y2)
{

yl = y2;
}

Here, y2 . a was copied into y l . a with a bitwise copy. This is clearly wrong and

240 Overloading Chapter 11

simply the result of an oversight when assignment and copy constructors were intro
duced. After some discussion and at the urging of Andrew Koenig, the obvious solu
tion was adopted: Copying of objects is defined as the memberwise copy of non-static
members and base class objects.

This definition states that the meaning of x=y is x. o p e r a t o r = (y) . This has
an interesting (though not always desirable) implication. Consider:

c l a s s X { /* . . . */ };
class Y : public X { /* ... */ };

void g(X x, Y y)
{

x = y; // x.operator=(y): fine
y = x; // y.operator=(x): error x is not a Y

}

By default, assignment to X is X& X: : o p e r a t o r = (c o n s t X&) so x=y is legal
because Y is publicly derived from X. This is usually called slicing because a "slice"
of y is assigned to x. Copy constructors are handled in a similar manner.

I'm leery about slicing from a practical point of view, but I don't see any way of
preventing it except by adding a very special rule. Also, at the time, I had an indepen
dent request for exactly these "slicing semantics" from Ravi Sethi who wanted it
from a theoretical and pedagogical point of view: Unless you can assign an object of a
derived class to an object of its public base class, then that would be the only point in
C++ where a derived object couldn't be used in place of a base object.

This leaves one problem with default copy operations: pointer members are
copied, but what they point to isn't. This is almost always wrong, but can't be disal
lowed because of C compatibility. However, a compiler can easily provide a warning
whenever a class with a pointer member is copied using a default copy constructor or
assignment. For example:

class String {
char* p;
int S2;

public:
//no copy defined here (sloppy)

};

void f(const Strings s)
{

String s2 = s; // warning: pointer copied
s2 = s; // warning: pointer copied

}

By default, assignment and copy construction in C++ defines what is sometimes
called shallow copy; that is, it copies the members of a class, but not objects pointed
to by those members. The alternative that recursively copies objects pointed to (often
called deep copy) must be explicitly defined. Given the possibility of self-referential

Section 11.4.4 Memberwise Copy 241

objects things could hardly be otherwise. In general, it is unwise to try to define
assignment to do deep copy; defining a (virtual) copy function is usually a much bet
ter idea (see [2nd,pp217-220] and §13.7).

11.5 Notational Convenience

My aim was to allow the user to specify the meaning of every operator as long as it
made sense and as long as it didn't interfere seriously with predefined semantics. It
would have been easier if I could have allowed overloading of all operators without
exception, or disallowed overloading of every operator that had a predefined meaning
for class objects. The resulting compromise doesn't please everybody.

Almost all discussion and most problems encountered relate to operators that
don't fit the usual pattern of binary or prefix arithmetic operators.

11.5.1 Smart Pointers

Before 2.0, the pointer dereference operator -> couldn't be defined by users. This
made it hard to create classes of objects intended to behave like "smart pointers."
The reason was simply that when I defined operator overloading, I saw - > as a binary
operator with very special rules for the right-hand operand (the member name). I
remember a meeting at Mentor Graphics where someone sitting to my right jumped
up, marched round a rather large conference table to the blackboard, and disabused
me of this misconception. Operator - >, he pointed out, could be seen as a unary post
fix operator where the result was reapplied to the member name. Unfortunately, I
have forgotten who he was, but when I reworked the overloading mechanism, I used
that idea.

It follows that if the return type of an o p e r a t o r - > () function is used, it must
be a pointer to a class or an object of a class for which o p e r a t o r - > () is defined.
For example:

struct Y { int m; };

class Ptr {
Y* p;

// . . .
public:

Ptr(Symbolic_ref);

Y* operator->()

{

// check p

return p;

}

};

Here, P t r is defined so that P t r s act as pointers to objects of class Y, except that

242 Overloading Chapter 11

some suitable computation is performed on each access.

void f (P t r x, Ptr& xr , Ptr* xp)
{

x->m; // x.operator->()->m; that is, x.p->m
xr->m; // xr.operator->()->m; that is, xr.p->m
xp->m; // error: Ptr does not have a member m

}

Such classes are especially useful when defined as templates (§15.9.1) [2nd]:

template<class Y> class Ptr { /* ... */ };

void f(Ptr<complex> pc, Ptr<Shape> p s) { / * . . . * / }

This was understood when overloading of -> was first implemented in 1986. Unfor
tunately, it was years before templates became available so that such code could actu
ally be written.

For ordinary pointers, use of -> is synonymous with some uses of unary * and
[]. For example, for a Y* p it holds that:

p - > m == (* p) . m == p [0] . m

As usual, no such guarantee is provided for user-defined operators. The equivalence
can be provided where desired:

class Ptr {
Y* p;

public:
Y* operator->() { return p; }
Y& operator*() { return *p; }
Y& operator!](int i) { return p[i]; }

};

The overloading of - > is important to a class of interesting programs and not just a
minor curiosity. The reason is that indirection is a key concept and that overloading
-> provides a clean, direct, and efficient way of representing it in a program. Another
way of looking at operator -> is to consider it a way of providing C++ with a limited,
but very useful, form of delegation (§12.7).

11.5.2 Smart References

When I decided to allow overloading of operator ->, I naturally considered whether
operator . could be similarly overloaded.

At the time, I considered the following arguments conclusive: If obj is a class
object then obj . m has a meaning for every member m of that object's class. We try
not to make the language mutable by redefining built-in operations (though that rule is
violated for = out of dire need, and for unary &).

If we allowed overloading of . for a class X, we would be unable to access mem
bers of X by normal means; we would have to use a pointer and ->, but -> and &

Section 11.5.2 Smart References 243

might also have been re-defined. I wanted an extensible language, not a mutable one.
These arguments are weighty, but not conclusive. In particular, in 1990 Jim

Adcock proposed to allow overloading of operator . exactly the way operator - > is.
Why do people want to overload o p e r a t o r . () ? To provide a class that acts as

a "handle" or a "proxy" for another class in which the real work is done. As an
example, here is a multi-precision integer class used in the early discussions of over
loading of o p e r a t o r . () :

class Num {

// .. .
public:

Num& operator=(const Num&);

int operator[](int); // extract digit

Num operator+(const Num&);

void truncateNdigits(int); // truncate

// . . .

};

I'd like to define a class RefNum that behaves like a Num& except for performing
some added actions. For example, if I can write:

void f(Num a, Num b, Num c, int i)

{
// .. .

c = a+b;

int digit = c[i] ;

c.truncateNdigits(i) ;

// . . .

}

then also I want to be able to write:

void g(RefNum a, RefNum b, RefNum c, int i)

{

// .. .

c = a+b;

int digits = c[i];

c . truncateNdigits (i) ;

// .. .

}

Assume that o p e r a t o r . () is defined in exact parallel to o p e r a t o r - > () . We
first try the obvious definition of Re f Num:

class RefNum {

Num* p;

244 Overloading Chapter 11

public:
RefNum(Num& a) { p = &a; }
Num& operator.() { do_something(p); return *p; }
void bind(Num& q) { p = &q; }

};

Unfortunately, this doesn't have the right effect because . isn't explicitly mentioned
in all cases:

c = a+b; //no dot
int digits = c[i]; //no dot
c.truncateNdigits(i); // call operator.()

We would have to write forwarding functions to ensure the right action is performed
when operators are applied to a Re f Num:

class RefNum {
Num* p;

public:
RefNum(Num& a) { p = &a; }
Num& operator.() { do_something(p); return *p; }
void bind(Num& q) { p = &q; }

// forwarding functions:

RefNum& operator=(const RefNum& a)
{ do_something(p); *p=*a.p; return *this; }

int operator[](int i)
{ do_something(p); return (*p)[i]; }

RefNum operator+(const RefNum& a)
{ do_something(p); return RefNum(*p+*a.p); }

};

This is clearly tedious. Consequently, many people, including Andrew Koenig and
me, considered the effect of applying o p e r a t o r . () to every operation on a
RefNum. That way, the original definition of RefNum would make the original
example work as desired (and initially expected).

However, applying o p e r a t o r . () this way implies that to a member of
RefNum itself you must use a pointer:

void h(RefX r, X& x)
{

r.bind(x); // error: no X::bind
(&r)->bind(x); // ok: call RefX::bind

}

The C++ community seems split over the issue of which interpretation of
o p e r a t o r . () is best. I lean towards the view that if o p e r a t o r . () should be
allowed then it should be invoked for implicit uses as well as explicit ones. After all,
the reason for defining o p e r a t o r . () is to avoid writing forwarding functions.
Unless implicit uses of . are interpreted by o p e r a t o r . () , we'll still have to write

Section 11.5.2 Smart References 245

a lot of forwarding functions, or we would have to eschew operator overloading.
If we can define o p e r a t o r . () , the equivalence of a. m and (&a) ->m would

no longer hold by definition. It could be made to hold by defining both
o p e r a t o r s () and o p e r a t o r - > () to match o p e r a t o r . () , though, so I per
sonally don't see that as a significant problem. However, if we did that there would
be no way of accessing members of the smart reference class. For example,
Ref X: : b i n d () would become completely inaccessible.

Is that important? Some people have answered, "No, like ordinary references,
smart references shouldn't ever be re-bound to a new object." However, my experi
ence is that smart references often need a re-bind operation or some other operation to
make them genuinely useful. Most people seem to agree.

We are thus left in a quandary: We can either maintain the a.m and (&a) ->m
equivalence or have access to members of the smart reference, but not both.

One way out of the dilemma would be to forward using o p e r a t o r . () for a. m
only if the reference class don't itself have a member called m. This happens to be my
favorite resolution.

However, there is no consensus on the importance of overloading o p e r a t o r . ()
either. Consequently, o p e r a t o r . () isn't part of C++ and the debates rage on.

11.5.3 Overloading Increment and Decrement

The increment operator ++ and the decrement operator -- were among the operators
that users could define. However, Release 1.0 did not provide a mechanism for dis
tinguishing prefix from postfix application. Given

c l a s s P t r {
/ / . . .
void operator++() ;

};

the single P t r : : o p e r a t o r + + () will be used for both:

void f(Ptr& p)
{

p++; // p.operator++()
++p; // p.operator++()

}

Several people, notably Brian Kernighan, pointed out that this restriction was unnatu
ral from a C perspective and prevented users from defining a class that could be used
as a replacement for an ordinary pointer.

I had of course considered separate overloading or prefix and postfix increment
when I designed the C++ operator overloading mechanism, but I had decided that
adding syntax to express it wouldn't be worthwhile. The number of suggestions I
received over the years convinced me that I was wrong, provided I could find some
minimal change to express the prefix/postfix distinction.

I considered the obvious solution, adding the keywords p r e f i x and p o s t f i x to

246 Overloading Chapter 11

C++:

class Ptr_to_X {
/ / . . .
X operator prefix++(); // prefix ++
X& operator postf ix++() ; // postfix +-t

};

or
class Ptr_to_X {

// . . .
X prefix operator++(); // prefix ++
X& postfix operator++(); // postfix ++

};

However, I received the usual howl of outrage from people who dislike new key
words. Several alternatives that did not involve new keywords were suggested. For
example:

c l a s s Ptr_to_X {
/ / . . .
X ++operator(); // prefix ++
X& operator++(); // postfix ++

};

or

class Ptr_to_X {
// . . .
X& operator++(); // postfix because it

// returns a reference
X operator++(); // prefix because it

// doesn't return a reference
};

I considered the former too cute and the latter too subtle. Finally, I settled on:

c l a s s Ptr_to_X {
/ / . . .
X operator++(); // prefix: no argument
X& operator++(int); // postfix: because of

// the argument
};

This may be both too cute and too subtle, but it works, requires no new syntax, and
has a logic to the madness. Other unary operators are prefix and take no arguments
when defined as member functions. The "odd" and unused dummy i n t argument is
used to indicate the odd postfix operators. In other words, in the postfix case, + +
comes between the first (real) operand and the second (dummy) argument and is thus
postfix.

These explanations are needed because the mechanism is unique and therefore a

Section 11.5.3 Overloading Increment and Decrement 247

bit of a wart. Given a choice, I would probably have introduced the p r e f i x and
p o s t f i x keywords, but that didn't appear feasible at the time. However, the only
really important point is that the mechanism works and can be understood and used
by the few programmers who really need it.

11.5.4 Overloading ->*

Operator ->* was made overloadable primarily because there wasn't any reason not
to (because of orthogonality, if you must). It turns out to be useful for expressing
binding operations that somehow have semantics that parallel those of the built-in
meaning for ->* (§13.11). No special rules are needed; ->* behaves just like any
other binary operator.

Operator . * wasn't included among the operators a programmer could overload
for the same reason operator . wasn't (§11.5.2).

11.5.5 Overloading the Comma Operator

At the urging of Margaret Ellis, I allowed overloading of the comma operator. Basi
cally, I couldn't find any reason not to at the time. Actually, there is a reason: a, b is
already defined for any a and b, so allowing overloading enables the programmer to
change the meaning of a built-in operator. Fortunately, that is only possible if either
a or b is a class object. There appear to be few practical uses of o p e r a t o r , () .
Accepting it was primarily a generalization.

11.6 Adding Operators to C++

There never are enough operators to suit everyone's taste. In fact, it seems that with
the exception of people who are against essentially all operators on principle, every
one wants a few extra operators.

11.6.1 An Exponentiation Operator

Why doesn't C++ have an exponentiation operator? The original reason was that C
doesn't have one. The semantics of C operators are supposed to be simple to the
point where they each correspond to a machine instruction on a typical computer. An
exponentiation operator doesn't meet this criterion.

Why didn't I immediately add an exponentiation operator when I first designed
C++? My aim was to provide abstraction mechanisms, not new primitive operations.
An exponentiation operator would have to be given a meaning for built-in arithmetic
types. This was the area of C that I was determined to avoid changing. Further, C
and therefore C++ are commonly criticized for having too many operators with a con
fusing variety of precedences. Despite these significant deterrents, I still considered
adding an exponentiation operator and might have done so had there been no techni
cal problems. I wasn't fully convinced that an exponentiation operator was really
needed in a language with overloading and inline functions, but it was tempting to add

248 Overloading Chapter 11

the operator simply to silence the repeated assertions that it was needed.
The exponentiation operator people wanted was * *. This would cause a problem

because a* *b can be a legal C expression involving a dereference of a pointer b:

double f(double a, double* b)
{

return a**b; // meaning a*(*b)
}

In addition, there seemed to be some disagreement among proponents of an exponen
tiation operator about which precedence that operator ought to have:

a = b**c**d; // (b**c)**d or b**(c**d) ?
a = -b**c; // (-b)**c or -(b**c) ?

Finally, I had little wish to specify the mathematical properties of exponentiation.
At the time, these reasons convinced me that I could serve users better by focusing

on other issues. In retrospect, all of these problems can be overcome. The real ques
tion is "Would it be worthwhile to do so?" The issue was brought to a head when
Matt Austern presented a complete proposal to the C++ standards committee (§6) in
1992. On its way to the committee this proposal had received a lot of comments and
been the subject of much debate on the net.

Why do people want an exponentiation operator?
- They are used to it from Fortran.
- They believe that an exponentiation operator is much more likely to be opti

mized than an exponentiation function.
- A function call is uglier in the kind of expressions actually written by physi

cists and other primary users of exponentiation.
Are these reasons sufficient to counterbalance the technical problems and objections?
Also, how can the technical problems be overcome? The extensions working group
discussed these issues and decided not to add an exponentiation operator. Dag Briick
summarized the reasons:

- An operator provides notational convenience, but does not provide any new
functionality. Members of the working group, representing heavy users of
scientific/engineering computation, indicated that the operator syntax provides
minor syntactic convenience.

- Every user of C++ must learn this new feature.
- Users have stressed the importance of substituting their own specialized expo

nentiation functions for the system default, which would not be possible with
an intrinsic operator.

- The proposal is not sufficiently well motivated. In particular, by looking at
one 30,000 line Fortran program one cannot conclude that the operator would
be widely used in C++.

- The proposal requires adding a new operator and adding another precedence
level, thus increasing the complexity of the language.

This brief statement somewhat understates the depth of the discussion. For example,

Section 11.6.1 An Exponentiation Operator 249

several committee members reviewed significant bodies of corporate code for use of
exponentiation and didn't find the usage as critical as is sometimes asserted. Another
key observation was that the majority of occurrences of * * in the Fortran code exam
ined were of the form a**n where n was a small integer literal; writing a*a and
a*a*a seemed viable alternatives in most cases.

Whether it would have been less work in the long run to accept the proposal
remains to be seen. However, let me present some of the technical issues. Which
operator would be best as a C++ exponentiation operator? C uses all the graphical
characters in the ASCII character set with the exception of @ and $, and these were
for several reasons not suitable. The operators !, ~, *~, ^^, and even plain ^ when
either operand was non-integral were considered. However, @, $, ~, and ! are
national characters that don't appear on all keyboards (see §6.5.3.1); @ and $ are fur
ther perceived by many as ugly for this purpose. The tokens ^ and ^^ read "exclu
sive or" to C programmers. An added constraint is that it should be possible to com
bine the exponentiation operator with the assignment operator in the same way other
arithmetic operators are; for example, + and = gives +=. This eliminates ! because
! = already has a meaning. Matt Austern therefore settled on * ^ and that is probably
the best such choice.

All other technical issues were settled by following their resolution in Fortran.
This is the only sane solution and saves a lot of work. Fortran is the standard in this
area, and it requires very significant reasons to part ways with a de facto standard.

This point led me to revisit * * as an exponentiation operator for C++. I had, of
course, demonstrated that this was impossible using traditional techniques, but when
looking at the question again I realized that the C compatibility issues could be over
come by some compiler trickery. Assume we introduced the operator **. We could
handle the incompatibility by defining it to mean "dereference and multiply" when
its second operand is a pointer:

void f(double a, double b, int* p)
{

a**b; // meaning pow(a,b)
a**p; // meaning a*(*p)
**a; // error: a is not a pointer
**p; // error: means *(*p) and *p is not a pointer

}

To fit into the language * * would of course have to be a token. This implies that
when * * appears as a declarator it must be interpreted as double indirection:

char** p; // means char * * p;

The main problem with this is that the precedence of * * must be higher than * for
a /b**c to mean what mathematicians would expect, that is a/ (b**c) . On the
other hand a /b**p in C means (a /b) * (*p) and would quietly change its meaning
to a / (b * (* p)) . I suspect such code is rare in C and C++. Breaking it would be
worthwhile if we decided to provide an exponentiation operator - especially because
it would be trivial for a compiler to issue a warning where the meaning might change.

250 Overloading Chapter 11

However, we decided not to add an exponentiation operator, so the issue is now
purely academic. I was amused to see the horror that my semi-serious suggestion to
use * * caused. I am also continuously amused and puzzled over the amount of heat
generated by minor syntactic issues such as whether exponentiation should be spelled
p o w (a , b) , a**b, ora*^b .

11.6.2 User-defined Operators

Could I have avoided the whole discussion about an exponentiation operator by
designing a mechanism that allowed users to define their own operators? This would
have solved the problem of missing operators in general.

When you need operators you invariably find that the set provided by C and C++
is insufficient to express every desired operation. The solution is to define functions.
However, once you can say

a*b

for some class, functional forms like

pow(a ,b)
a b s (a)

start to look unsatisfactory. Consequently, people ask for the ability to define a mean
ing for

a pow b
abs a

This can be done. Algol68 showed one way. Further, people ask for the ability to
define a meaning for

a ** b
a / / b
la

etc. This too can be done. The real question is whether allowing user-defined opera
tors is worthwhile. I observed [ARM]:

' 'This extension, however, would imply a significant extension of complexity of
syntax analysis and an uncertain gain in readability. It would be necessary either
to allow the user to specify both the binding strength and the associativity of new
operators or to fix those attributes for all user-defined operators. In either case,
the binding of expressions such as

a = b**c**d; // (b**c)**d or b**(c**d) ?

would be surprising or annoying to many users. It would also be necessary to
resolve clashes with the syntax of the usual operators. Consider this, assuming * *
and / / to be defined as binary operators:

Section 11.6.2 User-defined Operators 251

a = a**p; // a**p OR a*(*p)
a = a//p;
*p = 7; // a = a*p = 7; maybe? ''

Consequently, user-defined operators would either have to be restricted to ordinary
characters or require a distinguishing prefix such as . (dot):

a pow b; // alternative 1
a .pow b; // alternative 2
a .** b; // alternative 3

User-defined operators must be given a precedence. The easiest way to do that is to
specify the precedence of a user-defined operator to be the same as some built-in
operator. However, that would not suffice to define the exponentiation operator ' 'cor
rectly." For that we need something more elaborate. For example:

operator pow: binary, precedence between * and unary

Also, I am seriously worried about the readability of programs with user-defined
operators with user-defined precedences. For example, more than one precedence for
exponentiation has been used in programming languages so different people would
define different precedences for pow. For example,

a = - b pow c * d;

would be parsed differently in different programs.
A simpler alternative is to give all user-defined operators the same precedence.

The latter seemed very attractive until I discovered that even I and my two closest col
laborators at the time, Andrew Koenig and Jonathan Shopiro, were unable to agree on
a precedence. The obvious candidates are "very high" (for example, just above mul
tiply) and "very low" (for example, just above assignment). Unfortunately, the num
ber of cases where one seems ideal and the other absurd appeared endless. For exam
ple, it seems hard to get even the simplest example ' 'right'' with only a single prece
dence level. Consider:

a = b * c pow d;
a = b product c pow d;
a put b + c;

Thus, C++ doesn't support user-defined operators.

11.6.3 Composite Operators

C++ supports overloading of unary and binary operators. I suspect it would be useful
to support overloading of composite operators. In the ARM, I explained the idea like
this:

"For example, the two multiplications in

252 Overloading Chapter 11

Matrix a, b, c, d;
/ / . . .
a = b * c * d;

might be implemented by a specially defined "double multiplication" operator
defined like this:

Matrix opera tor * * (Matrix&, Matrix&, Matrix&);

that would cause the statement above to be interpreted like this:

a = opera to r * * (b , c , d) ;

In other words, having seen the declaration

Matrix operator * * (Matrix&, Matrix&, Matrix&);

the compiler looks for patterns of repeated M a t r i x multiplications and calls the
function to interpret them. Patterns that are different or too complicated are han
dled using the usual (unary and binary) operators.

This extension has been independently invented several times as an efficient
way of coping with common patterns of use in scientific computing using user-
defined types. For example,

Matrix operator = * + (
Matrix&,
const Matrix&,
double,
const Matrix&

) ;

for handling statements like this:

a=b*1.7+d; "

Naturally, the placement of whitespace would be very significant in such declarations.
Alternatively, some other token could be used to signify the position of the operands:

Matrix operator. = .*. + . (
Matrix&,
const Matrix&,
double,
const Matrix&

) ;

I have never seen this idea explained in print prior to the ARM, but it is a common
technique in code generators. I consider the idea promising for supporting optimized
vector and matrix operations, but I have never had time to develop it sufficiently to be
sure. It would be notational support for the old technique of defining functions per
forming composite operations given several arguments.

Section 11.7 Enumerations 253

11.7 Enumerations

C enumerations constitute a curiously half-baked concept. Enumerations were not
part of the original conception of C and were apparently reluctantly introduced into
the language as a concession to people who insisted on getting a form of symbolic
constants more substantial than Cpp's parameterless macros. Consequently, the value
of a C enumerator is of type i n t , and so is the value of a variable declared to be of
"enumerator type." An i n t can be freely assigned to any enumeration variable. For
example:

enum Color { red, green, blue };

void f() /* C function */
{

enum Color c = 2; /* ok */
int i = c; /* ok */

}

I had no need for enumerations in the styles of programming I wished to support and
no particular wish to meddle in the affairs of enumerations, so C++ adopted C's rule
unchanged.

Unfortunately (or fortunately, if you like enumerations), the ANSI C committee
left me with a problem. They changed or clarified the definition of enumerations such
that pointers to different enumerations appeared to be different types:

enum Vehicle { car, horse_buggy, rocket },-

void g(pc,pv) enum Color* pc; enum Vehicle* pv;
{

pc = pv; /* probably illegal in ANSI C */
}

I had a longish discussion of this point involving C experts such as David Hanson,
Brian Kernighan, Andrew Koenig, Doug Mcllroy, David Prosser, and Dennis Ritchie.
The discussion wasn't completely conclusive - that in itself was an ominous sign -
but there was an agreement that the intent of the standard was to outlaw the example,
except maybe leaving a loophole accepting the example if (as is common) C o l o r and
V e h i c l e are represented by the same amount of storage.

This uncertainty was unacceptable to me because of function overloading. For
example:

void f (Color*) ;
void f (Vehic le*) ;

must either declare one function twice or two overloaded functions. I had no wish to
accept any weaselwording or implementation dependency. Similarly,

void f (Co lo r) ;
void f (Veh ic l e) ;

254 Overloading Chapter 11

must either declare one function or two overloaded functions. In C and pre-ARM
C++, those declarations declared a single function twice. However, the cleanest way
out was to deem each enumeration a separate type. For example:

v o i d h () / / C++
{

Color c = 2; // error
c = Color(2); // ok: 2 explicitly converted to Color
int i = c; //ok: col implicitly converted to int

}

This resolution had been vocally demanded by someone every time I had discussed
enumerations with C++ programmers. I suspect I acted rashly - despite months of
delay and endless consulting with C and C++ experts - but nevertheless reached the
best resolution for the future.

11.7.1 Overloading based on Enumerations

Having declared each enumeration a separate type, I forgot something obvious: An
enumeration is a separate type defined by the user. Consequently, it is a user-defined
type just as a class is. Consequently, it is possible to overload operators based on an
enumeration. Martin O'Riordan pointed this out at an ANSI/ISO meeting. Together
with Dag Brack, he worked out the details and overloading based on enumerations
was accepted into C++. For example:

enum Season { winter, spring, summer, fall };

Season operator++(Season s)
{

switch (s) {
case winter: return spring;
case spring: return summer;
case summer: return fall;
case fall: return winter;
}

}

I used the switch to avoid integer arithmetic and casts.

11.7.2 A Boolean Type

One of the most common enumerations is

enum bool { false, true };

Every major program has that one or one of its cousins:

Section 11.7.2 A Boolean Type 255

#define bool char
#define Bool int
typedef unsigned int BOOL;
typedef enum { F, T } Boolean;
const true = 0;
#define TRUE 0
#define False (~True)

The variations are apparently endless. Worse, most variations imply slight variations
in semantics, and most clash with other variations when used together.

Naturally, this problem has been well known for years. Dag Briick and Andrew
Koenig decided to do something about it:

' 'The idea of a Boolean data type in C++ is a religious issue. Some people, partic
ularly those coming from Pascal or Algol, consider it absurd that C should lack
such a type, let alone C++. Others, particularly those coming from C, consider it
absurd that anyone would bother to add such a type to C++."

Naturally, the first idea was to define an enum. However, an examination of hundreds
of thousands of lines of C++ by Dag Briick and Sean Corfield revealed that most
Boolean types were used in ways that required free conversion to and from i n t . This
implied that defining a Boolean enumeration would break too much existing code. So
why bother with a Boolean type?

[1] The Boolean data type is a fact of life whether it is a part of a C++ standard or
not.

[2] The many clashing definitions makes it hard to use any Boolean type conve
niently and safely.

[3] Many people want to overload based on a Boolean type.
Somewhat to my surprise, the ANSI/ISO accepted this argument so b o o l is now a
distinct integral type in C++ with literals t r u e and f a l s e . Non-zero values can be
implicitly converted to t r u e , and t r u e can be implicitly converted to 1. Zero can
be implicitly converted to f a l s e , and f a l s e can be implicitly converted to 0. This
ensures a high degree of compatibility.

12
Multiple Inheritance

Because you have
a mother and a father :-)

- comp.lang.c++

Timing of multiple inheritance — ordinary base classes — virtual base
classes — the dominance rule — the object layout model — casting from a
virtual base — method combination — the multiple inheritance contro
versy — delegation — renaming — base and member initializers.

12.1 Introduction
In most people's minds multiple inheritance, the ability to have two or more direct
base classes, was the feature of 2.0. I disagreed at the time because I felt that the sum
of the improvements to the type system was of far greater practical importance.

Also, adding multiple inheritance in Release 2.0 was a mistake. Multiple inheri
tance belongs in C++, but is far less important than parameterized types - and to some
people, parameterized types are again less important than exception handling. As it
happened, parameterized types in the form of templates appeared only in Release 3.0,
and exceptions even later. I missed parameterized types much more than I would
have missed multiple inheritance.

There were several reasons for choosing to work on multiple inheritance at the
time: The design was further advanced, multiple inheritance fitted into the C++ type
systems without major extensions, and the implementation could be done within
Cfront. Another factor was purely irrational. Nobody seemed to doubt that I could
implement templates efficiently. Multiple inheritance, on the other hand, was widely
supposed to be very difficult to implement efficiently. For example, in a summary of
C++ in his book on Objective C Brad Cox actually claimed that adding multiple

258 Multiple Inheritance Chapter 12

inheritance to C++ was impossible [Cox, 1986]. Thus, multiple inheritance seemed
more of a challenge. Since I had considered multiple inheritance as early as 1982
(§2.13) and found a simple and efficient implementation technique in 1984,1 couldn't
resist the challenge. I suspect this to be the only case in which fashion affected the
sequence of events.

In September 1984, I presented the C++ operator overloading mechanism at the
IFIP WG2.4 conference in Canterbury [Stroustrup, 1984b]. There, I met Stein Krog-
dahl from the University of Oslo, who was just finishing a proposal for adding multi
ple inheritance to Simula [Krogdahl,1984]. His ideas became the basis for the imple
mentation of ordinary multiple base classes in C++. He and I later learned that the
proposal was almost identical to an idea for providing multiple inheritance in Simula.
Ole-Johan Dahl considered it in 1966 and rejected because it would have complicated
the Simula garbage collector [Dahl,1988].

12.2 Ordinary Base Classes

The original and fundamental reason for considering multiple inheritance was simply
to allow two classes to be combined into one in such a way that objects of the result
ing class would behave as objects of either base class [Stroustrup, 1986]:

' 'A fairly standard example of the use of multiple inheritance would be to provide
two library classes d i s p l a y e d and t a s k for representing objects under the con
trol of a display manager and co-routines under the control of a scheduler, respec
tively. A programmer could then create classes such as

class my_displayed_task : public displayed, public task {

// . . .

};

class my_task : public task { // not displayed

// . . .

};

class my_displayed : public displayed { // not a task

// . . .

};

Using (only) single inheritance, only two of these three choices would be open to
the programmer."

At the time, I was worried about library classes growing too large ("bloated with fea
tures") by trying to serve too many needs. I saw multiple inheritance as a potentially
important means of organizing libraries around simpler classes with fewer interclass
dependencies. The t a s k and d i s p l a y e d example shows a way of representing
concurrency and output by distinct classes without putting an added burden on appli
cation programmers.

"Ambiguities are handled at compile time:

Section 12.2 Ordinary Base Classes 259

class A { public: void f(); /* ... */ };
class B { public: void f(); /* ... */ } ;
class C : public A, public B{ /* no f() ... * / } ;

void g()
{

C* p;
p->f(); // error: ambiguous

}

In this, C++ differs from the object-oriented Lisp dialects that support multiple
inheritance [Stroustrup,1987]."

Resolving such ambiguity by an order dependence, say, by preferring A: : f because
A comes before B in the base class list, was rejected because of negative experience
with order dependences elsewhere; see §11.2.2 and §6.3.1. I rejected all forms of
dynamic resolution beyond the use of virtual functions as unsuitable for a statically
typed language intended for use under severe efficiency constraints.

12.3 Virtual Base Classes
Paraphrasing [Stroustrup,1987]:

"A class can appear more than once in an inheritance DAG (Directed Acyclic
Graph):

class task : public link { /* ... */ };
class displayed : public link { /* ... */ };
class displayed_task

: public displayed, public task { /* ... */ };

In this case, an object of class d i s p l a y e d _ t a s k has two sub-objects of class
l i n k : t a s k : : l i n k and d i s p l a y e d : : l i n k . This is often useful, as in the
case of an implementation of lists requiring each element on a list to contain a link
element. This allows a d i s p l a y e d _ t a s k to be on both the list of
d i s p l a y e d s and the list of t a s k s at the same time."

Or graphically, showing the sub-objects needed to represent a d i s p l a y e d _ t a s k :

I don't consider this style of list ideal in all situations, but where it fits, it is usually
optimal, and I would hate to see it prohibited. Thus, C++ supports the example above.
By default, a base class appearing twice will be represented as two sub-objects. How
ever, there is another possible resolution [Stroustrup,1987]:

260 Multiple Inheritance Chapter 12

' 'I call this independent multiple inheritance. However, many proposed uses of
multiple inheritance assume a dependence among base classes (for example, the
style of providing a selection of features for a window). Such dependencies can
be expressed in terms of an object shared between the various derived classes. In
other words, there must be a way of specifying that a base class must give rise to
only one object in the final derived class even if it is mentioned as a base class
several times. To distinguish this usage from independent multiple inheritance
such base classes are specified to be virtual:

class AW : public virtual W { /* ... */ };
class BW : public virtual W { /* ... */ };
class CW : public AW, public BW { /* ... */ };

A single object of class W is to be shared between AW and BW; that is, only one W
object must be included in CW as the result of deriving CW from AW and BW.
Except for giving rise to a unique object in a derived class, a v i r t u a l base class
behaves exactly like a non-virtual base class.

The "virtualness" of W is a property of the derivation specified by AW and BW
and not a property of W itself. Every v i r t u a l base in an inheritance DAG refers
to the same object."

Or graphically:

What might W, AW, BW, and CW be in real programs? My original example was a sim
ple windows system, based on ideas from the Lisp literature:

This, in my experience, is a bit contrived, but was based on a real example and, most
importantly for presentation, it was intuitive. Several examples can be found in the
standard iostreams library [Shopiro,1989]:

Section 12.3 Virtual Base Classes 261

I saw no reason for virtual base classes being more useful or more fundamental than
ordinary base classes or vice versa, so I decided to support both. I chose ordinary
bases as the default because their implementation is cheaper in run time and space
than virtual bases and because ' 'programming using virtual bases is a bit trickier than
programming using non-virtual bases. The problem is to avoid multiple calls of a
function in a virtual class when that is not desired" [2nd]; see also §12.5.

Because of implementation difficulties, I was tempted not to include the notion of
virtual bases in the language. However, I considered the argument that there had to be
a way to represent dependencies between sibling classes conclusive. Sibling classes
can communicate only through a common root class, through global data, or through
explicit pointers. If there were no virtual base classes, the need for a common root
would lead to overuse of "universal" base classes. The mixin style described in
§12.3.1 is an example of such "sibling communication."

If multiple inheritance should be supported, some such facility had to be included.
On the other hand, I consider the simple and unexciting applications of multiple
inheritance, such as defining one class with the sum of the attributes of two otherwise
independent classes, by far the most useful.

12.3.1 Virtual Bases and Virtual Functions
The combination of abstract classes and virtual base classes was intended to support a
style of programming roughly corresponding to the mixin style used in some Lisp
systems. That is, an abstract base class defines an interface, and several derived
classes contribute to the implementation. Each derived class (each mixin) contributes
something to the complete class (mix). The origin of the term mixin is reliably
reported to be the addition of nuts, raisins, gummy bears, cookies, etc., to ice cream in
an ice cream shop somewhere near MIT.

262 Multiple Inheritance Chapter 12

To enable this style, two rules are necessary:
[1] It must be possible to override virtual functions of a base class from different

derived classes; otherwise, the essential parts of an implementation must come
from a single inheritance chain as in the s l i s t _ s e t example in §13.2.2.

[2] It must be possible to determine which function is the one overriding a virtual
function and to catch inconsistent overriding in an inheritance lattice; other
wise we would have to rely on order dependencies or run-time resolution.

Consider the example above. Say W had virtual functions f () and g () :

c l a s s W {
/ / . . .
virtual void f();
virtual void g () ;

};

and AW and BW each overrode one of those:

class AW : public virtual W {

// . . .

void g () ;

};

class BW : public virtual W {

// . . .

void f();

};

class CW : public AW, public BW, public virtual W {

// . . .

};

Then a CW can be used like this:

CW* pew = new CW;
AW* paw = pew;
BW* pbw = pew;

void fff()
{

pcw->f(); // invokes BW::f()
pcw->g(); // invokes AW::g()

paw->f(); // invokes BW::£() !
pbw->g(); // invokes AW::g() !

}

As ever for virtual functions, the same function is called independently of the type of
pointer used for the object. The importance of this is exactly that it allows different
classes to add to a common base class and benefit from each other's contributions.
Naturally, the derived classes have to be designed with this in mind and can

Section 12.3.1 Virtual Bases and Virtual Functions 263

sometimes be composed only with care and some knowledge of sibling classes.
Allowing overriding from different branches requires a rule for what is acceptable

and for what combinations of overriding are to be rejected as errors. The same func
tion must be invoked by a virtual function call independently of how the class object
is specified. Andrew Koenig and I discovered what we consider the only rule that
ensures that [ARM]:

' 'A name B: : f dominates a name A: : f if its class B has A as a base. If a name
dominates another, no ambiguity exists between the two; the dominant name is
used when there is a choice. For example,

class V { public: int f(); int x; };
class B : public virtual V { public: int f(); int x; };
class C : public virtual V { };

class D : public B, public C { void g(); };

void D::g()
{

x++; // ok: B::x dominates V::x
f(); // ok: B::f() dominates V::fC

}

Or graphically,

Note that dominance applies to names and not just to functions.
The dominance rule is necessary for virtual functions - since it is the rule for

which function should be invoked for a virtual call - and experience showed it
applying nicely to non-virtual functions as well. Early use of a compiler that did
not apply the dominance rule to non-virtual functions led to programmer errors
and contorted programs."

From an implementer's point of view, the dominance rule is the usual lookup rules
applied to determine whether there is a unique function that can be put in the virtual
function table. A laxer rule doesn't ensure this, and a stricter rule would disallow rea
sonable calls.

The rules for abstract classes and the dominance rule ensure that objects can be
created only for classes that provide a complete and consistent set of services. With
out these rules, a programmer would have little hope of avoiding serious run-time
errors when using nontrivial frameworks.

264 Multiple Inheritance Chapter 12

12.4 The Object Layout Model
Multiple inheritance complicates the object model in two ways:

[1] An object can have more than one virtual function table.
[2] A virtual function table must provide a way of finding the sub-object corre

sponding to the class that supplied the virtual function.
Consider:

class A {
public:

virtual void f(int);
};

class B {
public:

virtual void f(int);
virtual void g();

};

class C : public A , public B {
public:

void f(int);
};

An object of class C might look like this:

The two v t b l s are necessary because you can have objects of classes A and B as well
as As and Bs that are parts of a C. When you get a pointer to a B, you must be able to
invoke a virtual function without knowing whether that B is a "plain B," a "B part"
of a C, or some third kind of object containing a B. Thus, every B needs a v t b l that
is accessed in the same way in all cases.

The delta is necessary because once the v t b l is found, the function invoked must
be invoked for the sub-object for which it was defined. For example, calling g () for
a C object requires a t h i s pointer pointing to the B sub-object of the C, while a call
of f () for a C object requires a t h i s pointer pointing to the complete C object.

Section 12.4 The Object Layout Model 265

Given the layout suggested above, a call

v o i d f f (B * pb)
{

}

p b - > f (2)

can be implemented by code like this:

/* generated code */
vtbl_entry* vt = &pb->vtbl[index(f)];
(*vt->fct)((B*)((char*)pb+vt->delta), 2) ;

This is the implementation strategy I followed when I first implemented multiple
inheritance in Cfront. It has the virtue of being easily expressed in C and is therefore
portable. The generated code also has the advantage of containing no branching, so it
is fast on heavily pipelined machine architectures.

An alternative implementation avoids storing the delta for the t h i s pointer in the
virtual function table. Instead, a pointer to code to be executed is stored. When no
adjustment to t h i s is needed, the pointer in the v t b l points to the instance of the
virtual function to be executed; when t h i s must be adjusted, the pointer in the v t b l
points to code that adjusts the pointer then executes the appropriate instance of the
virtual function. The class C, declared above, would be represented in this scheme as
follows:

This scheme allows more compact virtual function tables. It also gives faster calls to
virtual functions where the delta is 0 . Note that the delta is 0 in all single inheritance
cases. The change of control after the modification with the delta can be costly on
heavily pipelined machines, but these kinds of costs are very architecture-dependent,
so no general guidelines can be given. The drawback of such a scheme is that it is
less portable. For example, not all machine architectures allow that goto into the
body of another function.

The code that adjusts the t h i s pointer is usually called a thunk. This name goes
back at least as far as the early implementations of Algol60 where such small pieces
of code were used to implement call-by-name.

266 Multiple Inheritance Chapter 12

I knew these two implementation strategies for virtual functions at the time I
designed multiple inheritance and first implemented it. From a language-design point
of view they are almost equivalent, but the thunk implementation has the desirable
property that no cost in time or space is incurred for C++ programs using single inher
itance - thus fulfilling the zero-overhead "design rule" exactly (§4.5). Both imple
mentation strategies provide acceptable performance in the cases I have looked at.

12.4.1 Virtual Base Layout

Why was a "virtual base class" called v i r t u a l ? Often, I just give the flip explana
tion "well, v i r t u a l means magic," and carry on with some more urgent issue, but
there is a better explanation. That explanation emerged in discussions with Doug
Mcllroy long before the first public presentation of multiple inheritance in C++. A
virtual function is a function that you find through an indirection through an object.
Similarly, the object representing a virtual base class isn't in a fixed position in all
classes derived from it and must thus also be accessed through an indirection. Also, a
base class is defined as an unnamed member. Consequently, had virtual data mem
bers been allowed, a virtual base class would have been an example of a virtual data
member. I wish I had implemented virtual bases in the way suggested by this expla
nation. For example, given a class X with a virtual base V and a virtual function f
we'd have:

X:

rather than the ' 'optimized'' implementation I used in Cfront:
X:

What is called &X: : Vob j in these figures is the offset of the object representing the
virtual base V in X. The former model is cleaner and more general. It wastes a minis-
cule amount of run time compared to the "optimized" model while saving some
space.

Virtual data members is one of the extensions that people keep proposing for C++.

Section 12.4.1 Virtual Base Layout 267

Typically, a proposer wants only "static virtual data," "constant virtual data," or
even "constant static virtual data," rather than a more general concept. However, it
has been my experience that the proposer typically has a single application in mind:
run-time identification of an object's type. There are other ways of getting that; see
§14.2.

12.4.2 Virtual Bases and Casting

Sometimes, people express surprise that being a virtual base class is a property of the
derivation rather than a property of the base class itself. However, the object layout
model described above doesn't provide sufficient information to find a derived class
given only a pointer to one of its virtual bases; there is no "back pointer" to the
enclosing objects. For example:

class A : public virtual complex { /* ... */ };
class B : public virtual complex { /* ... */ };
class C : public A, public B { /* ... */ };

void f(complex* p1, complex* p2, complex* p3)
{

(A*)p1; // error: can't cast from virtual base
(A*)p2; // error: can't cast from virtual base
(A*)p3; // error: can't cast from virtual base

}

Given a call:

v o i d g ()
{

f(new A, new B, new C) ;
}

the complex pointed to by p1 is unlikely to be in the same position relative to the A
as it is in the complex pointed to by p2. Consequently, a cast from a virtual base to
a derived class requires a run-time action based on information stored in the base class
object. Such information cannot be available in objects of simple classes under layout
constraints.

Had I viewed casts with less suspicion, I would have viewed the lack of casting
from virtual bases as more serious. Anyway, classes accessed through virtual func
tions and classes that simply hold a few data items often make the best virtual bases.
If a base has only data members, you shouldn't pass a pointer to it around as a repre
sentative of the complete class. If, on the other hand, a base has virtual functions you
can call those functions. In either case, casting ought to be unnecessary. Also, if you
really must cast from a base to its derived class, then d y n a m i c _ c a s t (§14.2.2)
solves this problem for bases with virtual functions.

Ordinary bases are in a fixed position in every object of a given derived class and
that position is known to the compiler. Therefore, a pointer to an ordinary base class
can be cast to a pointer to a derived class without special problems or overhead.

268 Multiple Inheritance Chapter 12

Had it been required that a class should be explicitly declared as a "potential vir
tual base," special rules could have applied to virtual bases. For example, informa
tion could have been added to allow casting from a "virtual base" to a class derived
from it. My reason for not making a ' 'virtual base class'' a special kind of class was
that this would have forced programmers to define two different versions of a con
cept: one for ordinary class use and another for virtual base use.

Alternatively, we could add the overhead necessary for fully general virtual class
use to every class object. However, that would impose significant overhead on appli
cations that don't use virtual bases and would cause layout compatibility problems.

Consequently, I allowed any class to be used as a virtual base and accepted the
ban on casting as a restriction on the use of virtual bases.

12.5 Method Combination

It is quite common to synthesize a derived class function from base class versions of
the same function. This is often called method combination and is supported directly
in some object-oriented languages, but - except for constructors, destructors, and
copy operations - not in C++. Maybe I should have revived the notion of c a l l and
r e t u r n functions (§2.11.3) to mimic the CLOS : b e f o r e and r a f t e r methods.
However, people were already worrying about the complexity of the multiple inheri
tance mechanisms, and I am always reluctant to re-open old wounds.

Instead, I observed that method combination could be achieved manually. The
problem is to avoid multiple calls of a function in a virtual class when that is not
desired. Here is a possible style:

c l a s s W {
// . . .

protected:

void _f() { /* W's own stuff */ }
// . . .

public:

void f() { _ f () ; }

// . . .

};

Each class provides a protected function _f () doing "the class' own stuff" for use
by derived classes. It also provides a public function f () as the interface for use by
the "general public." A derived class's f () does its "own stuff" by calling _f ()
and its base classes' "own stuff" by calling their _f () s:

class A : public virtual W {

// . . .
protected:

void _f() { /* A's own stuff */ }

// . . .

Section 12.5 Method Combination 269

public:

void f() { _ f () ; W::_f(); }

// . . .

};

class B : public virtual W {

// . . .
protected:

void _f() { /* B's own stuff */ }

// . . .

public:

void f() { _ f () ; W::_f(); }

// . . .

};

In particular, this style enables a class that is (indirectly) derived twice from a class W
to call W: : f () only once:

class C : public A, public B, public virtual W {

// . . .

protected:

void _f() { /* C's own stuff */ }

// . . .

public:

void f() { _ f () ; A::_f(); B::_f(); W::_f(); }

// . ..

};

This is less convenient than automatically generated composite functions, but in some
ways it is more flexible.

12.6 The Multiple Inheritance Controversy

Multiple inheritance in C++ became controversial [Cargill,1991] [Carroll, 1991]
[Waldo, 1991] [Sakkinen,1992] [Waldo, 1993] for several reasons. The arguments
against it centered around the real and imaginary complexity of the concept, its utility,
and the impact of multiple inheritance on other language features and on tool build
ing:

[1] Multiple inheritance was seen as the first major extension to C++. Some C++
old-timers saw it as an unnecessary frill, a complication, and possibly as the
wedge that would open the door to an avalanche of new features into C++. For
example, at the very first C++ conference in Santa Fe (§7.1.2) Tom Cargill got
loud applause for the amusing, but not very realistic, suggestion that anyone
who proposed a new feature for C++ should also propose an old feature of sim
ilar complexity to be removed. I approve of the sentiment, but cannot draw the
conclusion that C++ would be better without multiple inheritance or that C++
as of 1985 is better than its larger 1993 incarnation. Jim Waldo later followed

270 Multiple Inheritance Chapter 12

up Tom's suggestion with a further idea: Proposers of new features should be
required to donate a kidney. That would - Jim pointed out - make people
think hard before proposing, and even people without any sense would propose
at most two extensions. I note that not everyone is as keen on new features as
one might think from reading journals, reading netnews, and listening to ques
tions after talks.

[2] I implemented multiple inheritance in a way that imposed an overhead even if
a user didn't use anything but single inheritance. This violated the "you don't
pay for what you don't use" rule (§4.5) and led to the (false) impression that
multiple inheritance is inherently inefficient. I considered the overhead
acceptable because it was small (one array access plus one addition per virtual
function call), and because I knew a simple technique for implementing multi
ple inheritance so that there is absolutely no change in the implementation of a
virtual function call in a single inheritance hierarchy (§12.4). I chose the
"sub-optimal" implementation because it was more portable.

[3] Smalltalk doesn't support multiple inheritance, and a number of people equate
object-oriented programming with both "good" and Smalltalk. Such people
often surmise that "if Smalltalk doesn't have it, multiple inheritance must be
either bad or unnecessary." Naturally, this doesn't follow. Maybe Smalltalk
would benefit from multiple inheritance - and maybe it wouldn't; that is not
the issue. However, it was clear to me that several of the techniques that
Smalltalk aficionados recommended as alternatives to multiple inheritance
didn't apply to a statically typed language such as C++. Language wars are
typically silly; the ones that center on single features in isolation are even more
silly. Attacks on multiple inheritance that are really misdirected attacks on
static type checking or disguised defenses against imagined attacks on
Smalltalk are best ignored.

[4] My presentation of multiple inheritance [Stroustrup,1987] was very technical
and focused on implementation issues at the expense of explanations of pro
gramming techniques using it. This led many people to the conclusion that
multiple inheritance had few uses and was horrendously hard to implement. I
suspect that if I had presented single inheritance in the same manner, they
would have drawn exactly the same conclusions about it.

[5] Some consider multiple inheritance fundamentally bad because ' 'it is too hard
to use and thus leads to poor design and buggy code." Multiple inheritance
can certainly be overused, but so can every interesting language feature. What
matters more to me is that I have seen real programs in which use of multiple
inheritance has yielded a structure that the programmers considered superior to
the single inheritance alternatives and where I didn't see any obvious alterna
tives that would simplify the structure of the program or its maintenance. I
suspect that some of the claims that multiple inheritance is error-prone are
based exclusively on experience with languages that don't provide C++'s level
of compile-time error detection.

[6] Others consider multiple inheritance too weak a mechanism and sometimes

Section 12.6 The Multiple Inheritance Controversy 271

point to delegation as an alternative. Delegation is a mechanism to forward
operations to another object at run time [Stroustrup,1987]. I liked the idea of
delegation, implemented a variant of it for C++, and tried it out. The results
were unanimous and discouraging: Every user encountered serious problems
due to flaws in their delegation-based designs (§12.7).

[7] It has also been claimed that multiple inheritance itself is acceptable, but hav
ing it in C++ leads to difficulties with potential features in the language (such
as garbage collection) and makes it unnecessarily hard to build tools (such as
database systems) for C++. Certainly, multiple inheritance complicates tool
building. Only time will tell if the increase in complexity of tools outweighs
the benefits of having multiple inheritance available for application design and
implementation.

[8] Finally, it has been argued (mostly years after its introduction into C++) that
multiple inheritance itself is a good idea, but that C++'s version of the idea is
wrong. Such arguments may be of interest to the designers of "C++++," but I
don't find the suggestions very helpful in my work to improve C++, its related
tools, and programming techniques. People rarely provide practical evidence
to support their suggested improvements, the suggestions are rarely detailed,
the various suggested improvements differ radically, and the problems of a
transition from the current rules are rarely considered.

I think - as I did then - that the fundamental flaw in these arguments is that they take
multiple inheritance far too seriously. Multiple inheritance doesn't solve all of your
problems, but it doesn't need to because it is quite cheap. Sometimes multiple inheri
tance is very convenient to have. Grady Booch [Booch,1991] expresses a slightly
stronger sentiment: "Multiple inheritance is like a parachute; you don't need it very
often, but when you do it is essential." His opinion is partially based on the experi
enced gained in the reimplementation of the Booch components from Ada into C++
(see §8.4.1). This library of container classes and associated operations, implemented
by Grady Booch and Mike Vilot, is one of the better examples of the use of multiple
inheritance [Booch,1990] [Booch, 1993b].

I have kept out of the multiple inheritance debates: multiple inheritance is in C++
and cannot be taken out or radically changed; I personally find multiple inheritance
useful at times; some people insist that multiple inheritance is essential to their
approach to design and implementation; it is still too early to have solid data and
experience about the value of C++ multiple inheritance in large scale use; and, finally,
I don't like to spend my time on sterile discussions.

As far as I can judge, most successful uses of multiple inheritance have followed a
few simple patterns:

[1] Merging of independent or almost-independent hierarchies; t a s k and
d i s p l a y is an example of this (§12.2).

[2] Composition of interfaces; stream I/O is an example of this (§12.3).
[3] Composing a class out of an interface and an implementation; s l i s t _ s e t is

an example of this (§13.2.2).
More examples of multiple inheritance can be found in § 13.2.2, § 14.2.7, and § 16.4.

272 Multiple Inheritance Chapter 12

Most failures have occurred when someone tried to force an alien style onto C++.
In particular, a direct transcription of a CLOS design relying on linearization for
ambiguity resolution, matching names for sharing within the hierarchy, and
: b e f o r e and : a f t e r methods for creating composite operations tends to get very
unpleasant and complicated for large programs.

12.7 Delegation

The original multiple inheritance design as presented to the European UNIX Users'
Group (EUUG) conference in Helsinki in May 1987 [Stroustrup,1987] contained a
notion of delegation [Agha,1986].

A user was allowed to specify a pointer to some class among the base classes in a
class declaration. The object thus designated would be used exactly as if it was an
object representing a base class. For example:

class B { int b; void f(); };
class C : *p { B* p; int c; };

The : *p meant that the object pointed to by p would be used exactly as if it repre
sented a base class of C:

void f(C* q)
{

q->f(); // meaning q->p->f()
}

An object of class C looked something like this after C : : p has been initialized:

This concept looked very promising for representing structures that require more flex
ibility than is provided by ordinary inheritance. In particular, assignment to a delega
tion pointer could be used to reconfigure an object at run time. The implementation
was trivial and the run-time and space efficiency ideal. Consequently, I tried out an
implementation on a few users. In particular, Bill Hopkins contributed significant
experience and effort to this issue. Unfortunately, every user of this delegation mech
anism suffered serious bugs and confusion. Because of this, the delegation was
removed from the design and from the Cfront that was shipped as Release 2.0.

Two problems appeared to be the cause of bugs and confusion:
[1] Functions in the delegating class do not override functions of the class dele

gated to.
[2] The function delegated to cannot use functions from the delegating class or in

other ways "get back" to the delegating object.

Section 12.7 Delegation 273

Naturally, the two problems are related. Equally naturally, I had considered these
potential problems and warned users about them. The warnings didn't help - I even
forgot my own rules and got caught. Thus the problems didn't seem to belong to the
category of minor blemishes that can be handled through a combination of education
and compiler warnings. At the time, the problems seemed insurmountable. Even if I
had come up with a better idea, I did not have the time to repeat my experiments with
a revised concept and implementation.

In retrospect, I think the problems are fundamental. Solving the problem [1]
would require the virtual function table of the object delegated to be changed when it
is bound to a delegating object. This seems out of line with the rest of the language
and very difficult to define sensibly. We also found examples where we wanted to
have two objects delegate to the same "shared" object. Similarly, we found exam
ples where we needed to delegate through a B* to an object of a derived class D.

Because delegation isn't supported directly in C++, we must use a workaround if
we really need it. Often, the solution to a problem requiring delegation involves a
smart pointer (§11.5.1). Alternatively, the delegating class provides a complete inter
face, and then "manually" forwards the requests to some other object (§11.5.2).

12.8 Renaming
During late 1989 and early 1990 several people discovered a problem arising from
name clashes in multiple inheritance hierarchies [ARM]:

"Merging two class hierarchies by using them as base classes for a common
derived class can cause a practical problem where the same name is used in both
hierarchies, but where it refers to different operations in the different hierarchies.
For example,

class Lottery {
// . . .
virtual int draw();

};

class GraphicalObject {
// . . .
virtual void draw();

};

class LotterySimulation
: pub l i c Lo t te ry , pub l i c GraphicalObject {
/ / . . .

} ;
In L o t t e r y S i m u l a t i o n we would like to override both L o t t e r y : : draw ()
and G r a p h i c a l O b j e c t : : d r a w () , but with two distinct functions, since
draw () has completely different meanings in the two base classes. We would
also like L o t t e r y S i m u l a t i o n to have distinct, unambiguous names for the

274 Multiple Inheritance Chapter 12

inherited functions L o t t e r y : : draw () and G r a p h i c a l O b j e c t : : draw () .
This feature came within an inch of becoming the first non-mandated extension to
be accepted for C++.

The semantics of this concept are simple, and the implementation is trivial; the
problem seems to be to find a suitable syntax. The following has been suggested:

class Lottery-Simulation
: public Lottery , public GraphicalObject {
// . . .
virtual int l_draw() = Lottery::draw;
virtual void go_draw() = GraphicalObject::draw;

};

This would extend the pure virtual syntax in a natural manner."
After some discussion on the extensions working group mail reflector and a few posi
tion papers by Martin O'Riordan and by me, the proposal was presented at the stan
dards meeting in Seattle in July 1990. There appeared to be a massive majority for
making this the first non-mandated extension to C++. At that point, Beth Crockett
from Apple stopped the committee dead in its tracks by invoking what is known as
the "two week rule:" Any member can postpone voting on a proposal that has not
been in the hands of the members at least two weeks before the meeting until the fol
lowing meeting. This rule protects people against being rushed into things they don't
understand and ensures that there will always be time to consult with colleagues.

As you might imagine, Beth didn't gain instant popularity by that veto. However,
her caution was well founded, and she saved us from making a bad mistake. Thanks!
As we reexamined the problem after the meeting, Doug McIlroy observed that, con
trary to our expectations, this problem does have a solution within C++ [ARM]:

"Renaming can be achieved through the introduction of an extra class for each
class with a virtual function that needs to be overridden by a function with a dif
ferent name plus a forwarding function for each such function. For example:

class LLottery : public Lottery {
virtual int l_draw() = 0;
int draw() { return l_draw(); } // overrides

};

class GGraphicalObject : public GraphicalObject {
virtual int go_draw() = 0;
void draw() { go_draw(); } // overrides

};

class LotterySimulation
: public LLottery , public GGraphicalObject {
// .. .
int l_draw(); // overrides
void go_draw(); / / over r ides

} ;
Consequently, a language extension to express renaming is not necessary and is

Section 12.8 Renaming 275

only worthwhile if the need to resolve such name clashes proves common."
At the next meeting, I presented this technique. During the discussion that followed,
we agreed that such name clashes were unlikely to be common enough to warrant a
separate language feature. I also observed that merging large class hierarchies is not
likely to become everyday work for novices. The experts who most likely will be
doing such merging can apply a workaround as easily as a more elegant language fea
ture.

A further - and more general - objection to renaming is that I dislike chasing
chains of aliases while maintaining code. If the name I see spelled f is really the g
defined in the header that actually is described as h in the documentation and what is
called k in your code, then we have a problem. Naturally, this would be an extreme
case, but not out of line with examples created by macro-aficionados. Every renam
ing requires understanding a mapping by both users and tools.

Synonyms can be useful and occasionally essential. However, their use should be
minimized to maintain clarity and commonality of code used in different contexts.
Further features directly supporting renaming would simply encourage (mis)use of
synonyms. This argument resurfaced as a reason for not providing general renaming
features in connection with namespaces (§17).

12.9 Base and Member Initializers
When multiple inheritance was introduced, the syntax for initializing base classes and
members had to be extended. For example:

class X : public A, public B {
int xx;
X(int a, int b)

: A(a), // initialize base A
B(b), // initialize base B
xx(1) // initialize member xx

{ }
};

This initialization syntax is a direct parallel to the syntax for initializing class objects:

A x (l) ;
B y (2) ;

At the same time, the order of initialization was defined to be the order of declaration.
Leaving the initialization order unspecified in the original definition of C++ gave an
unnecessary degree of freedom to language implementers at the expense of the users.

In most cases, the order of initialization of members doesn't matter, and in most
cases where it does matter, the order dependency is an indication of bad design. In a
few cases, however, the programmer absolutely needs control of the order of initial
ization. For example, consider transmitting objects between machines. An object
must be reconstructed by a receiver in exactly the reverse order in which it was

276 Multiple Inheritance Chapter 12

decomposed for transmission by a sender. This cannot be guaranteed for objects com
municated between programs compiled by compilers from different suppliers unless
the language specifies the order of construction. I remember Keith Gorlen, of NIH
library fame (§7.1.2), pointing this out to me.

The original definition of C++ neither required nor allowed a base class to be
named in a base class initializer. For example, given a class v e c t o r :

class vector {

// . . .

vector(int);

};

we may derive another class vec :

class vec : public vector {

// . . .

vec(int,int);

};

The vec constructor must invoke the v e c t o r constructor. For example:

v e c : : v e c (i n t low, i n t high)
: (high-low-1) // argument for base class constructor

{

// . . .

}

This notation caused much confusion over the years.
Using the base class name explicitly as required by 2.0 makes it reasonably clear

even to novices what is going on:

vec::vec(int low, int high) : vector(high-low-1)

{

// . . .

}

I now consider the original syntax as a classic case of a notation being logical, mini
mal, and too terse. The problems that occurred in teaching base class initialization
completely vanished with the new syntax.

The old-style base class initializer was retained for a transition period. It could be
used only in the single inheritance case since it is ambiguous otherwise.

13
Class Concept Refinements

Say what you mean,
simply and directly.
- Brian Kernighan

Abstract classes — virtual functions and constructors — c o n s t members
functions — refinement of the c o n s t concept — static member functions
— nested classes — the i n h e r i t e d : : proposal — relaxation of the
overriding rules — multi-methods — protected members — virtual func
tion table allocation — pointers to members.

13.1 Introduction
Because classes are so central in C++, I receive a steady stream of requests for modifi
cations and extensions of the class concept. Almost all requests for modifications
must be rejected to preserve existing code, and most suggestions for extensions have
been rejected as unnecessary, impractical, not fitting with the rest of the language, or
simply "too difficult to handle just now." Here, I present a few refinements that I
felt essential to consider in detail and in most cases to accept. The central issue is to
make the class concept flexible enough to allow techniques to be expressed within the
type system without casts and other low-level constructs.

13.2 Abstract Classes

The very last feature added to Release 2.0 before it shipped was abstract classes. Late
modifications to releases are never popular, and late changes to the definition of what
will be shipped are even less so. My impression was that several members of

278 Class Concept Refinements Chapter 13

management thought I had lost touch with the real world when I insisted-on this fea
ture. Fortunately, Barbara Moo was willing to back up my insistence that abstract
classes were so important that they ought to ship now rather than being delayed for
another year or more.

An abstract class represents an interface. Direct support for abstract classes
- helps catch errors that arise from confusion of classes' role as interfaces and

their role in representing objects;
- supports a style of design based on separating the specification of interfaces

and implementations.

13.2.1 Abstract Classes for Error Handling

Abstract classes directly address a source of errors [Stroustrup, 1989b]:
"One of the purposes of static type checking is to detect mistakes and inconsisten
cies before a program is run. It was noted that a significant class of detectable
errors was escaping C++'s checking. To add insult to injury, the language actually
forced programmers to write extra code and generate larger programs to make this
happen.

Consider the classic "shape" example. Here, we must first declare a class
shape to represent the general concept of a shape. This class needs two virtual
functions r o t a t e () and draw () . Naturally, there can be no objects of class
shape , only objects of specific shapes. Unfortunately C++ did not provide a way
of expressing this simple notion.

The C++ rules specify that virtual functions, such as r o t a t e () and draw () ,
must be defined in the class in which they are first declared. The reason for this
requirement is to ensure that traditional linkers can be used to link C++ programs
and to ensure that it is not possible to call a virtual function that has not been
defined. So the programmer writes something like this:

c l a s s shape {
point center;
color col;

// . ..
public:

point where() { return center; }

void move(point p) { center=p; draw(); }
virtual void rotate(int)

{ error("cannot rotate"); abort(); }

virtual void draw()

{ error("cannot draw"); abort(); }

// . . .

};

This ensures that innocent errors such as forgetting to define a draw () function
for a class derived from shape and silly errors such as creating a ' 'plain'' shape
and attempting to use it cause run-time errors. Even when such errors are not
made, memory can easily get cluttered with unnecessary virtual tables for classes

Section 13.2.1 Abstract Classes for Error Handling 279

such as shape and with functions that are never called, such as draw () and
r o t a t e () . The overhead for this can be noticeable.

The solution is simply to allow the user to say that a virtual function does not
have a definition; that is, it is a "pure virtual function." This is done by an initial
izer = 0:

c l a s s shape {
point center;
color col;
// . . .

public:
point where() { return center; }
void move(point p) { center=point; draw(); }
virtual void rotate(int) = 0 ; // pure virtual
virtual void draw() = 0 ; // pure virtual
/ / . . .

};

A class with one or more pure virtual functions is an abstract class. An abstract
class can be used only as a base for another class. In particular, it is not possible
to create objects of an abstract class. A class derived from an abstract class must
either define the pure virtual functions from its base or again declare them to be
pure virtual functions.

The notion of pure virtual functions was chosen over the idea of explicitly
declaring a class to be abstract because the selective definition of functions is
much more flexible.

As shown, it was always possible to represent the notion of an abstract class in C++; it
just involved a little more work than one would like. It was also understood by some
to be an important issue (for example, see [Johnson, 1989]). However, not until a few
weeks before the release date for 2.0 did it dawn on me that only a small fraction of
the C++ community had actually understood the concept. Further, I realized that lack
of understanding of the notion of abstract classes was the source of many problems
that people experienced with their designs.

13.2.2 Abstract Types

A common complaint about C++ was (and is) that private data is included in the class
declaration, so when a class' private data is changed, code using that class must be
recompiled. Often, this complaint is expressed as "abstract types in C++ aren't really
abstract" and "the data isn't really hidden." What I hadn't realized was that many
people thought that because they could put the representation of an object in the pri
vate section of a class declaration then they actually had to put it there. This is clearly
wrong (and that is how I failed to spot the problem for years). If you don't want a
representation in a class, don't put it there! Instead, delay the specification of the rep
resentation to some derived class. The abstract class notation allows this to be made
explicit. For example, one can define a s e t of T pointers like this:

280 Class Concept Refinements Chapter 13

class set {
public:

virtual void insert(T*) =0;
virtual void remove(T*) =0;

virtual int is_member(T*) =0;

virtual T* first() =0;
virtual T* next() =0;

virtual ~set() { }
};

This provides all the information that people need to use a s e t . More importantly in
this context, it contains no representation or other implementation details. Only peo
ple who actually create objects of s e t classes need to know how those s e t s are rep
resented. For example, given:

class slist_set : public set, private slist {
slink* current_elem;

public:
void insert(T*);
void remove(T*);

int is_member(T*);

T* first();
T* next();

slist_set() : slist(), current_elem(0) { }
};

we can create s l i s t _ s e t objects that can be used as s e t s by users who have never
heard of an s l i s t _ s e t . For example:

void user1(set& s)
{

for (T* p = s.firstO; p; p=s.next()) {
// use p

}
}

void user2()
{

slist_set ss;
// . . .

user1(ss);
}

Importantly, a user of the abstract class s e t , such as u s e r l () , can be compiled

Section 13.2.2 Abstract Types 281

without including the headers defining s l i s t _ s e t and the classes, such as s l i s t ,
that it in turn depends on.

As mentioned, attempts to create objects of an abstract class are caught at compile
time. For example:

void f(set& s1) // fine
{

set s2; // error: declaration of object
// of abstract class set.

set* p = 0; // fine
set& s3 = s1; // fine

}

The importance of the abstract class concept is that it allows a cleaner separation
between a user and an implementer than is possible without it. An abstract class is
purely an interface to the implementations supplied as classes derived from it. This
limits the amount of recompilation necessary after a change as well as the amount of
information necessary to compile an average piece of code. By decreasing the cou
pling between a user and an implementer, abstract classes provide an answer to people
complaining about long compile times and also serve library providers, who must
worry about the impact on users of changes to a library implementation. I have seen
large systems in which the compile times were reduced by a factor of ten by introduc
ing abstract classes into the major subsystem interfaces. I had unsuccessfully tried to
explain these notions in [Stroustrup, 1986b]. With an explicit language feature sup
porting abstract classes I was much more successful [2nd].

13.2.3 Syntax

The curious =0 syntax was chosen over the obvious alternative of introducing a key
word p u r e or a b s t r a c t because at the time I saw no chance of getting a new key
word accepted. Had I suggested p u r e , Release 2.0 would have shipped without
abstract classes. Given a choice between a nicer syntax and abstract classes, I chose
abstract classes. Rather than risking delay and incurring the certain fights over p u r e ,
I used the traditional C and C++ convention of using 0 to represent "not there." The
= 0 syntax fits with my view that a function body is the initializer for a function and
also with the (simplistic, but usually adequate) view of the set of virtual functions
being implemented as a vector of function pointers (§3.5.1). In fact, =0 is not best
implemented by putting a 0 in the v t b l . My implementation places a pointer to a
function called p u r e _ v i r t u a l _ c a l l e d in the v t b l ; this function can then be
defined to give a reasonable run-time error.

I chose a mechanism for specifying individual functions pure rather than a way of
declaring a complete class abstract because the pure virtual function notion is more
flexible. I value the ability to define a class in stages; that is, I find it useful to define
some virtual functions and leave the definition of the rest to further derived classes.

282 Class Concept Refinements Chapter 13

13.2.4 Virtual Functions and Constructors

The way an object is constructed out of base classes and member objects (§2.11.1) has
implications on the way virtual functions work. Occasionally, people have been con
fused and even annoyed by some of these implications. Let me therefore try to
explain why I consider the way C++ works in this respect almost necessary.

13.2.4.1 Calling a Pure Virtual Function

How can a pure virtual function - rather than a derived class function overriding it -
ever be called? Objects of an abstract class can only exist as bases for other classes.
Once the object for the derived class has been constructed, a pure virtual function has
been defined by an overriding function from the derived class. However, during con
struction it is possible for the abstract class' own constructor to call a pure virtual
function by mistake:

class A {
public:

virtual void f() = 0;
void g();
A() ;

};

A: :A()
{

f(); // error: pure virtual function called
g() ; // looks innocent enough

}

The illegal call of A: : f () is easily caught by the compiler. However, A: : g () may
be declared like this

v o i d A : : g () { f () ; }

in some other translation unit. In that case, only a compiler that does cross-
compilation-unit analysis can detect the error, and a run-time error is the alternative.

13.2.4.2 Base-first Construction

I strongly prefer designs that do not open the possibility of run-time errors to those
that do. However, I don't see the possibility of making programming completely
safe. In particular, constructors create the environment in which other member func
tions operate (§2.11.1). While that environment is under construction, the program
mer must be aware that fewer guarantees can be made. Consider this potentially con
fusing example:

Section 13.2.4.2 Base-first Construction 283

class B {
int b;
virtual void f();
void g () ;
// . . .
B O ;

};

class D : public B {
X x;
void f();
// . . .
D O ;

};

B::B()
{

b++; // undefined: B::b isn't yet initialized.
f(); // calls: B::f(); not D::f().

}

A compiler can easily warn about both potential problems. If you really mean to call
B's own f () say so explicitly: B: : f () .

The way this constructor behaves contrasts with the way an ordinary member
function can be written (relying on the proper behavior of the constructor):

v o i d B : : g ()
{

b++; // fine, since B::b is a member
// B::B should have initialized it.

f(); // calls: D::f() if B::g is called for a D.
}

The difference in the function invoked by f () in B: : B () and B: : g () when
invoked for a B part of a D can be a surprise to novices.

13.2.4.3 What if?

However, consider the implication of the alternative, that is, to have every call of the
virtual function f () invoke the overriding function:

void D::f()
{

// operation relying on D::X having been properly
// initialized by D::D

}

If an overriding function could be called during construction, then no virtual function
could rely on proper initialization by constructors. Consequently, every overriding
function would have to be written with the degree of resilience (and paranoia) usually

284 Class Concept Refinements Chapter 13

reserved for constructors. Actually, writing an overriding function would be worse
than writing a constructor because in a constructor it is relatively easy to determine
what has and hasn't yet been initialized. In the absence of the guarantee that the con
structor has been run, the writer of an overriding function would always have two
choices:

[1] Simply hope/assume that all necessary initializations have been done.
[2] Try to guard against uninitialized bases and members.

The first alternative makes constructors unattractive. The second alternative becomes
truly unmanageable because a derived class can have many direct and indirect base
classes and because there is no run-time check that you can apply to an arbitrary vari
able to see if it has been initialized.

void D::f() // nightmare (not C++)
{

if (base_initialized) {
// operation relying on D::X having
// been initialized by D::D

}
else {

// do what can be done without relying
// on D::X having been initialized

}
}

Consequently, had constructors called overriding functions, the use of constructors
would have had to be severely restricted to allow reasonable coding of overriding
functions.

The basic design point is that until the constructor for an object has run to comple
tion the object is a bit like a building during construction: You have to suffer the
inconveniences of a half-completed structure, often rely on temporary scaffolding,
and take precautions commensurate with the more hazardous environment. In return,
compilers and users are allowed to assume that an object is usable after construction.

13.3 c o n s t Member Functions

In Cfront 1.0, "constness" had been incompletely enforced and when I tightened up
the implementation, we found a couple of holes in the language definition. We
needed a way to allow a programmer to state which member functions update the state
of their object and which don't:

class X {
int aa;

public:
void update() { aa++; }

Section 13.3 const Member Functions 285

int value() const { return aa; }
void cheat() const { aa++; } // error: *this is const

};

A member function declared c o n s t , such as X: : v a l u e () , is called a c o n s t
member function and is guaranteed not to change the value of an object. A c o n s t
member function can be used on both c o n s t and non-const objects, whereas non-
c o n s t member functions, such as X: : u p d a t e () , can only be called for non-
c o n s t objects:

i n t g(X o l , const X& o2)
{

ol.update(); // fine
o2.update(); // error: o2 is const

return ol.value() + o2.value(); // fine
}

Technically, this behavior is achieved by having the t h i s pointer point to an X in a
non-const member function of X and point to a c o n s t X in a c o n s t member func
tion of X.

The distinction between c o n s t and non-const functions allows the useful logi
cal distinction between functions that modify the state of an object and functions that
don't to be directly expressed in C++. Cons t member functions were among the lan
guage features that received a significant boost from the discussions at the Estes Park
implementers workshop (§7.1.2).

13.3.1 Casting away c o n s t

As ever, C++ was concerned with the detection of accidental errors, rather than with
the prevention of fraud. To me, that implied that a function should be allowed to
"cheat" by "casting away c o n s t . " It was not considered the compiler's job to pre
vent the programmer from explicitly subverting the type system. For example
[Stroustrup, 1992b]:

' 'It is occasionally useful to have objects that appear as constants to users but do
in fact change their state. Such classes can be written using explicit casts:

class XX {

int a ;

int calls_of_f;

int f() const { ((XX*)this)->calls_of_f++; return a; }

// . . .

};

The explicit type conversion indicates that something is not quite right. Changing
the state of a c o n s t object can be quite deceptive, is error-prone in some con
texts, and won't work if the object is in read-only memory. It is often better to
represent the variable part of such an object as a separate object:

286 Class Concept Refinements Chapter 13

class xxx {
int a;
int& calls_of_f;
int f() const { calls_of_f++; return a; }

// . . .

XXX() : calls_of_f('new int) { /* ... */ }

~XXX() { delete &calls_of_f; /* ... */ }

// . . .

};

This reflects that the primary aim of c o n s t is to specify interfaces rather than to
help optimizers, and also the observation that though the freedom/flexibility is
occasionally useful it can be misused."

The introduction of c o n s t _ c a s t (§14.3.4) enables programmers to distinguish
casts intended to "cast away c o n s t " from casts intended to do other forms of type
manipulation.

13.3.2 Refinement of the Definition of c o n s t

To ensure that some, but not all, c o n s t objects could be placed in read-only memory
(ROM), I adopted the rule that any object that has a constructor (that is, required run
time initialization) can't be placed in ROM, but other c o n s t objects can. This ties in
to a long-running concern of what can be initialized and how and when. C++ provides
both static (link time) and dynamic (run-time) initialization (§3.11.4) and this rule
allows run-time initialization of c o n s t objects while still allowing for the use of
ROM for objects that don't require run-time initialization. The typical example of the
latter is a large array of simple objects, such as a YACC parser table.

Tying the notion of c o n s t to constructors was a compromise between my ideal
for c o n s t , realities of available hardware, and the view that programmers should be
trusted to know what they are doing when they write an explicit type conversion. At
the initiative of Jerry Schwarz, this rule has now been replaced by one that more
closely reflects my original ideal. An object declared c o n s t is considered
immutable from the completion of its constructor until the start of its destructor. The
result of a write to the object between those points is deemed undefined.

When originally designing c o n s t , I remember arguing that the ideal c o n s t
would be an object that is writable until the constructor had run, then becomes read
only by some hardware magic, and finally upon the entry into the destructor becomes
writable again. One could imagine a tagged architecture that actually worked this
way. Such an implementation would cause a run-time error if someone attempted to
write to an object defined c o n s t . On the other hand, someone could write to an
object not defined c o n s t that had been passed as a c o n s t reference or pointer. In
both cases, the user would have to cast away c o n s t first. The implication of this
view is that casting away c o n s t for an object that was originally defined c o n s t and
then writing to it is at best undefined, whereas doing the same to an object that wasn't
originally defined c o n s t is legal and well defined.

Section 13.3.2 Refinement of the Definition of const 287

Note that with this refinement of the rules, the meaning of c o n s t doesn't depend
on whether a type has a constructor or not; in principle, they all do. Any object
declared c o n s t now may be placed in ROM, be placed in code segments, be pro
tected by access control, etc., to ensure that it doesn't mutate after receiving its initial
value. Such protection is not required, however, because current systems cannot in
general protect every c o n s t from every form of corruption.

An implementation still retains a large degree of discretion over how a c o n s t is
managed. There is no logical problem in having a garbage collector or a database sys
tem change the value of a c o n s t object (say, moving it to disk and back) as long as it
ensures that the object appears unmodified to a user.

13.3.3 Mutable and Casting

Casting away c o n s t is still objectionable to some because it is a cast, and even more
so because it is not guaranteed to work in all cases. How can we write a class like XX
from §13.3.1 that doesn't require casting and doesn't involve an indirection as in class
XXX? Thomas Ngo suggested that it ought to be possible to specify that a member
should never be considered c o n s t even if it is a member of a c o n s t object. This
proposal was kicked around in the committee for years until Jerry Schwarz success
fully championed a variant to acceptance. Originally ~ c o n s t was suggested as a
notation for "can't ever be c o n s t . " Even some of the proponents of the notion con
sidered that notation too ugly, so the keyword m u t a b l e was introduced into the pro
posal that the ANSI/ISO committee accepted:

c l a s s XXX {
i n t a ;
mutable int cnt; // cnt will never be const

public:
int f() const { cnt++; return a; }

// . ..
};

XXX var; // var.cnt is writable (of course)

const XXX cnst; // cnst.cnt is writable because
// XXX::cnt is declared mutable

The notion is still somewhat untried. It does reduce the need for casts in real systems,
but not as much as some people hoped for. Dag Briick and others reviewed consider
able amounts of real code to see which casts were casting away c o n s t and which of
those could be eliminated using m u t a b l e . This study confirmed the conclusion that
"casting away c o n s t " cannot be avoided in general (§14.3.4) and that m u t a b l e
appears to eliminate casting away c o n s t in less than half of the cases where it is
needed in the absence of m u t a b l e . The benefits of m u t a b l e appear to be very
dependent on programming style. In some cases, every cast could be eliminated by
using m u t a b l e ; in others, not a single cast could be eliminated.

288 Class Concept Refinements Chapter 13

Some people had expressed hope that a revised c o n s t notion plus m u t a b l e
would open the door to significant new optimizations. This doesn't appear to be the
case. The benefits are largely in code clarity and in increasing the number of objects
that can have their values precomputed so that they can be placed in ROM, code seg
ments, etc.

13.4 Static Member Functions
A s t a t i c data member of a class is a member for which there is only one copy
rather than one per object. Consequently, a s t a t i c member can be accessed with
out referring to any particular object. Static members are used to reduce the number
of global names, to make obvious which s t a t i c objects logically belong to which
class, and to be able to apply access control to their names. This is a boon for library
providers since it avoids polluting the global namespace and thereby allows easier
writing of library code and safer use of multiple libraries.

These reasons apply to functions as well as objects. In fact, most of the names a
library provider wants non-global are function names. I observed that nonportable
code, such as ((X*) 0) ->f () , was used to simulate s t a t i c member functions.
This trick is a time bomb because sooner or later someone will declare an f () called
this way to be v i r t u a l . Then, the call will fail horribly because there is no X object
at address zero. Even when f () is not virtual, such calls will fail under some imple
mentations of dynamic linking.

At a course I was giving for EUUG (the European UNIX Users' Group) in Hel
sinki in 1987, Martin O'Riordan pointed out to me that s t a t i c member functions
were an obvious and useful generalization. That was probably the first mention of the
idea. Martin was working for Glockenspiel in Ireland at the time and later went on to
become the main architect of the Microsoft C++ compiler. Later, Jonathan Shopiro
championed the idea and made sure it didn't get lost in the mass of work for Release
2.0.

A s t a t i c member function is a member so that its name is in the class scope,
and the usual access control rules apply. For example:

c l a s s t ask {
/ / . . .
static task* chain;

public:

static void schedule(int);

// . . .

};

A s t a t i c member declaration is only a declaration and the object or function it
declares must have a unique definition somewhere in the program. For example:

task* t a s k : : c h a i n = 0;
void task::schedule(int p) { / * . . . * / }

Section 13.4 Static Member Functions 289

A s t a t i c member function is not associated with any particular object and need not
be called using the special member function syntax. For example:

void f(int priority)

{
// . . .

task::schedule(priority);

// .. .

}

In some cases, a class is used simply as a scope in which to put otherwise global
names as s t a t i c members so they don't pollute the global namespace. This is one
of the origins of the notion of namespaces (§17).

S t a t i c member functions were among the language features that received a sig
nificant boost from the discussions at the Estes Park implementers workshop (§7.1.2).

13.5 Nested Classes
As mentioned in §3.12, nested classes were reintroduced into C++ by the ARM. This
made the scope rules more regular and improved the facilities for localization of infor
mation. We could now write:

class String {

class Rep {

// . . .

};
Rep* p; // String is a handle to Rep

static int count;

// .. .
public:

char& operator[] (int i) ;

// . . .

};

to keep the Rep class local. Unfortunately, this led to an increase in the amount of
information placed in class declarations and consequently to an increase in compile
times and in the frequency of recompilations. Too much interesting and occasionally
changing information was put into nested classes. In many cases, such information
was not really of interest to the users of classes such as S t r i n g and should therefore
be put elsewhere along with other implementation details. Tony Hansen proposed to
allow forward declaration of a nested class in exact parallel to the way member func
tions and s t a t i c members are handled:

290 Class Concept Refinements Chapter 13

// file String.h (the interface):

class String {

class Rep;

Rep* p; // String is a handle to Rep

static int count;
// . . .

public:

char& operator[](int i) ;

// . . .

};

// file String.c (the implementation):

class String::Rep {

// . . .

};

static int String::count = 1;

char& String::operator[](int i)

{

// . . .

}

This extension was accepted as something that simply corrected an oversight. The
technique it supports shouldn't be underestimated, though. People still load up their
header files with all kinds of unnecessary stuff and suffer long compile times in con
sequence. Therefore, every technique and feature that helps reduce unnecessary cou
pling between users and implementers is important.

13.6 Inherited::
At one of the early standards meetings Dag Brack submitted a proposal for an exten
sion that several people had expressed interest in [Stroustrap, 1992b]:

"Many class hierarchies are built "incrementally," by augmenting the behavior
of the base class with added functionality of the derived class. Typically, the func
tion of the derived class calls the function of the base class, and then performs
some additional operations:

struct A { virtual void handle(int); };
struct D : A { void handle(int); };

Section 13.6 Inherited:: 291

The call to h a n d l e () must be qualified to avoid a recursive loop. The example
could with the proposed extension be written as follows:

void D::handle(int i)
{

inherited::handle(i);
// other stuff

}

Qualifying by the keyword i n h e r i t e d can be regarded as a generalization of
qualifying by the name of a class. It solves a number of potential problems of
qualifying by a class name, which is particularly important for maintaining class
libraries."

I had considered this early on in the design of C++, but had rejected it in favor of
qualification with the base class name because that solution could handle multiple
inheritance, and i n h e r i t e d : : clearly can't. However, Dag observed that the com
bination of the two schemes would deal with all problems without introducing loop
holes:

"Most class hierarchies are developed with single inheritance in mind. If we
change the inheritance tree so class D is derived from both A and B, we get:

struct A { virtual void handle(int); };
struct B { virtual void handle(int); };
struct D : A, B { void handle(int); };

void D::handle(int i)
{

A::handle(i); // unambiguous
inherited::handle(i); // ambiguous

}

In this case A : : h a n d l e () is legal C++ and possibly wrong. Using
i n h e r i t e d : : h a n d l e () is ambiguous here, and causes an error message at
compile time. I think this behavior is desirable, because it forces the person merg
ing two class hierarchies to resolve the ambiguity. On the other hand, this exam
ple shows that inherited may be of more limited use with multiple inheritance."

I was convinced by these arguments and by the meticulous paperwork that docu
mented its details. Here was a proposal that was clearly useful, easily understood, and
trivial to implement. It also had genuine experience behind it since a variant of it had
been implemented by Apple based on their experiences with Object Pascal. It is also
a variant of the Smalltalk supe r .

After the final discussion of this proposal in the committee Dag volunteered it for

void D::handle(int i)
{

A::handle(i);
// other stuff

}

292 Class Concept Refinements Chapter 13

use as a textbook example of a good idea that shouldn't be accepted
[Stroustrup, 1992b]:

' 'The proposal is well-argued and - as is the case with most proposals - there was
more expertise and experience available in the committee itself. In this case the
Apple representative had implemented the proposal. During the discussion we
soon agreed that the proposal was free of major flaws. In particular, in contrast to
earlier suggestions along this line (some as early as the discussions about multiple
inheritance in 1986) it correctly dealt with the ambiguities that can arise when
multiple inheritance is used. We also agreed that the proposal was trivial to
implement and would in fact be helpful to programmers.

Note that this is not sufficient for acceptance. We know of dozens of minor
improvements like this and at least a dozen major ones. If we accepted all the lan
guage would sink under its own weight (remember the Vasa!). We will never
know if this proposal would have passed, though, because at this point in the dis
cussion, Michael Tiemann walked in and muttered something like "but we don't
need that extension; we can write code like that already." When the murmur of
' 'but of course we can't!'' had died down Michael showed us how:

class foreman : public employee {

typedef employee inherited;

// . . .

void print();

};

class manager : public foreman {

typedef foreman inherited;

// .. .

void print();

};

void manager::print()

{

inherited::print();

// . . .

}

A further discussion of this example can be found in [2nd,pp205]. What we
hadn't noticed was that the reintroduction of nested classes into C++ had opened
the possibility of controlling the scope and resolution of type names exactly like
other names.

Given this technique, we decided that our efforts were better spent on some
other standards work. The benefits of i n h e r i t e d : : as a built-in facility didn't
sufficiently outweigh the benefits of what the programmer could do with existing
features. In consequence, we decided not to make i n h e r i t e d : : one of the
very few extensions we could afford to accept for C++."

Section 13.7 Relaxation of Overriding Rules 293

13.7 Relaxation of Overriding Rules
Consider writing a function that returns a copy of an object. Assuming a copy con
structor, this is trivially done like this:

class B {
public:

virtual B* clone() { return new B(*this); }
// .. .

};

Now any object of a class derived from B that overrides B: : c l o n e can be correctly
cloned. For example:

class D : public B {
public:

// old rule:
// clone() must return a B* to override B::clone():

B* cloneO { return new D(*this); }

void h();
// .. .

};

void f(B* pb, D* pd)
{

B* pbl = pb->clone();
B* pb2 = pd->clone(); // pb2 points to a D
// .. .

}

Unfortunately, the fact that pd points to a D (or something derived from D) is lost:

v o i d g(D* pd)
{

B* pbl = pd->clone(); //ok
D* pdl = pd->clone(); // error: clone() returns a B*
pd->clone()->h(); // error: clone() returns a B*

// ugly workarounds:

D* pd2 = (D*)pd->clone();
((D*)pd->clone())->h();

}

This proved a nuisance in real code, and several people observed that the rule that an
overriding function must have exactly the same type as the overridden could be
relaxed without opening the hole in the type system or imposing serious implementa
tion complexity. For example, this might be allowed:

294 Class Concept Refinements Chapter 13

class D : public B {
public:

// note, clone() returns a D*:
D* clone() { return new D(*this); }

void h();
// . . .

};

void gg(B* pb, D* pd)

{
B* pbl = pd->clone(); / / o k
D* pdl = pd->clone(); / / o k
pd->clone()->h(); / / o k

D* pd2 = pb->clone(); // error (as always)

pb->clone()->h(); // error (as always)

}

This extension was originally proposed by Alan Snyder and happens to be the first
extension ever to be officially proposed to the committee. It was accepted in 1992.

Two questions had to be asked before we could accept it:
[1] Were there any serious implementation problems (say, in the area of multiple

inheritance or pointers to members)?
[2] Out of all the conversions that could possible be handled for return types of

overriding functions which - if any - are worthwhile?
Personally, I didn't worry much about [1] because I thought I knew how to implement
the relaxation in general, but Martin O'Riordan did worry and produced papers for the
committee demonstrating implementability in detail.

My main problem was to try to determine whether this relaxation was worthwhile
and for exactly which set of conversions? How common is the need for virtual func
tions called for an object of a derived type and needing operations to be performed of
a return value of that derived type? Several people, notably John Bruns and Bill Gib
bons, argued strongly that the need was common and not restricted to a few computer
science examples such as c l o n e . The data that finally convinced me was the obser
vation by Ted Goldstein that almost two thirds of all casts in a multi-100,000-line sys
tem he was involved in at Sun were workarounds that would be eliminated by this
relaxation of the overriding rules. In other words, what I find most attractive is that
the relaxation allows people to do something important within the type system instead
of using casts. This brought the relaxation of return types for overriding functions
into the mainstream of my effort to make C++ programming safer, simpler, and more
declarative. Relaxing the overriding rule would not only eliminate many ordinary
casts, but also remove one temptation for misuse of the new dynamic casts that were
being discussed at the same time as this relaxation (§14.2.3).

After some consideration of the alternatives, we decided to allow overriding of a
B* by a D* and of a B& by a D& where B is an accessible base of D. In addition,

Section 13.7 Relaxation of Overriding Rules 295

c o n s t can be added or subtracted wherever that is safe. We decided not to relax the
rules to allow technically feasible conversions such as a D to an accessible base B, a D
to an X for which D has a conversion, i n t * to vo id* , d o u b l e to i n t , etc. We felt
that the benefits from allowing such conversions through overriding would not out
weigh the implementation cost and the potential for confusing users.

13.7.1 Relaxation of Argument Rules

One major reason that I had been suspicious about relaxing the overriding rules for
return types was that in my experience it invariably had been proposed together with
an unacceptable ' 'equivalent'' relaxation for argument types. For example:

class Fig {

public:

virtual int operator==(const Fig&) ;

// . . .

};

class ColFig: public Fig {

public:

// Assume that Coifig::operator==()

// overrides Fig::operator==()

// (not allowed in C++).

int operator==(const ColFig& x) ;

// . . .
private:

Color col;

};

int ColFig::operator==(const ColFig& x)

{

return col == x.col && Fig::operator==(x);

}

This looks very plausible and allows useful code to be written. For example:

void f(Fig& fig, ColFig& cfl, ColFig& cf2)

{

if (fig==cfl) { // compare Figs

// . . .

} else if (cfl==cf2) { // compare ColFigs

// . ..

}

}

Unfortunately, this also leads to an implicit violation of the type system:

296 Class Concept Refinements Chapter 13

void g(Fig& f ig , ColFig& cf)
{

if (cf==fig) {// compare what?
/ / . . .

}
}

If C o l F i g : : o p e r a t o r = = () overrides F i g : : o p e r a t o r = = () then c f = = f i g
will invoke C o l F i g : : o p e r a t o r = = () with a plain F i g argument. This would be
a disaster because C o l F i g : : o p e r a t o r = = () accesses the member c o l , and F i g
does not have such a member. Had C o l F i g : : o p e r a t o r = = () written to its argu
ment, memory corruption would have resulted. I had considered this scenario when I
first designed the rules for virtual functions and deemed it unacceptable.

Consequently, had this overriding been allowed, a run-time check would have
been needed for every argument to a virtual function. Optimizing these tests away
would not be easy. In the absence of global analysis, we never know if an object
might originate in some other file and thus possibly be of a type that did a dangerous
overriding. The overhead of this checking is unattractive. Also, if every virtual func
tion call became a potential source of exceptions, users would have to prepare for
those. That was considered unacceptable.

The alternative for the programmer is to explicitly test when a different kind of
processing is needed for an argument of a derived class. For example:

class Figure {

public:

virtual int operator==(const Figure&);

// . ..

};

class ColFig: public Figure {
public:

int operator==(const Figured x) ;

// . . .
private:

Color col;

};

int ColFig::operator==(const Figure& x)

{

if (Figure::operator==(x)) {

const ColFig* pc = dynamic_cast<const ColFig*>(&x);

if (pc) return col == pc->col;

}

return 0;

}

In this way, the run-time checked cast d y n a m i c _ c a s t (§14.2.2) is the complement
to the relaxed overriding rules. The relaxation safely and declaratively deals with

Section 13.7.1 Relaxation of Argument Rules 297

return types; the d y n a m i c _ c a s t operator explicitly and relatively safely deals with
argument types.

13.8 Multi-methods
I repeatedly considered a mechanism for a virtual function call based on more than
one object, often called multi-methods. I rejected multi-methods with regret because I
liked the idea, but couldn't find an acceptable form under which to accept it. Con
sider:

class Shape {

// .. .

};

class Rectangle : public Shape {

// . . .

};

class Circle : public Shape {

// . . .

};

How would I design an i n t e r s e c t () that is correctly called for both of its argu
ments? For example,

void f(Circle& c, Shape& s1, Rectangle& r, Shape& s2)
{

intersect(r,c);
intersect(c,r);
intersect(c,s2);
intersect(s1,r);
intersect(r,s2);
intersect(s1,c);
intersect(s1,s2);

}

If r and s refers to a C i r c l e and a Shape, respectively, we would like to imple
ment i n t e r s e c t by four functions:

bool intersect(const Circle&, const Circle&);
bool intersect(const Circle&, const Rectangle&);
bool intersect(const Rectangle&, const Circle&);
bool intersect(const Rectangle&, const Rectangle&);

Each call ought to call the right function in the same way a virtual function does.
However, the right function must be selected based on the run-time type of both argu
ments. The fundamental problems, as I saw them, were to find

[1] A calling mechanism that was as simple and efficient as the table lookup used
for virtual functions.

298 Class Concept Refinements Chapter 13

[2] A set of rules that allowed ambiguity resolution to be exclusively a compile-
time matter.

I don't consider the problem unsolvable, but I have never found this issue pressing
enough to reach the top of my stack of pending issues for long enough to work out the
details of a solution.

One worry I had was that a fast solution seemed to require a lot of memory for the
equivalent of a virtual function table, whereas anything that didn't "waste" a lot of
space by replicating table entries would be slow, have unpredictable performance
characteristics, or both. For example, any implementation of the Circle-and-
R e c t a n g l e example that doesn't involve a run-time search for the function to
invoke seems to require four pointers to functions. Add an extra class T r i a n g l e ,
and we seem to need nine pointers to functions. Derive a class Smi ley from
C i r c l e and we seem to need sixteen, though we should be able to save the last
seven entries by using entries involving C i r c l e for all Smileys.

Worse, the arrays of pointers to functions that would be equivalent to virtual func
tion tables could not be composed until the complete program was known, that is, by
the linker. The reason is that there is no one class to which all overriding functions
belong. There couldn't be such a class exactly because any interesting overriding
function will depend on two or more argument types. At the time, this problem was
unsolvable because I was unwilling to have a language feature that depended on non-
trivial linker support. Experience had taught me that such support would not be avail
able for years.

Another problem that bothered me, though it didn't seem unsolvable, was how to
handle ambiguities. The obvious answer is that calls of multi-methods must obey
exactly the same ambiguity rules as other calls. However, this answer was obscured
for me because I was looking for a special syntax and special rules for calling multi-
methods. For example:

(r@s)->intersect(); // rather than intersect(r,s)

This was a dead end.
Doug Lea suggested a much better solution [Lea, 1991]: Allow arguments to be

explicitly declared v i r t u a l . For example:

bool intersect(virtual const Shape&, virtual const Shape&);

A function that matches in name and in argument types using a relaxed matching rule
along the lines adopted for the return type overrides. For example:

bool intersect(const Circle&, const Rectangle&) // overrides
{

// . . .
}

Finally, multi-methods can be called with the usual call syntax exactly as shown
above.

Multi-methods is one of the interesting what-ifs of C++. Could I have designed

Section 13.8 Multi-methods 299

and implemented them well enough at the time? Would their applications have been
important enough to warrant the effort? What other work might have been left
undone to provide the time to design and implement multi-methods? Since about
1985,1 have always felt some twinge of regret for not providing multi-methods. To
wit: The only official talk I ever gave at an OOPSLA conference was part of a panel
making a statement against language bigotry and pointless "religious" language wars
[Stroustrup,1990]. I presented some bits of CLOS that I particularly liked and empha
sized multi-methods.

13.8.1 Workarounds for Multi-methods

So how do we write functions such as i n t e r s e c t () without multi-methods?
Until the introduction of run-time type identification (§ 14.2) the only support for

resolution based on type at run time was virtual functions. Since we wanted to
resolve based on two arguments we somehow needed two virtual function calls. For
the C i r c l e and R e c t a n g l e example above, there are three possible static argu
ment types for a call, so we can provide three different virtual functions:

class Shape {
// . . .
virtual bool intersect(const Shape&) const =0;
virtual bool intersect(const Rectangle&) const =0;
virtual bool intersect(const Circle&) const =0;

};

The derived classes override the virtual functions appropriately:

class Rectangle : public Shape {
// .. .
bool intersect(const Shape&) const;
bool intersect(const Rectangle&) const;
bool intersect(const Circle&) const;

};

Any call of i n t e r s e c t () will resolve to the appropriate R e c t a n g l e or C i r c l e
function. We then have to ensure that the functions taking a nonspecific Shape argu
ment use a second virtual function call to resolve that argument to a more specific
one:

bool Rectangle::intersect(const Shape& s) const
{

return s.intersect(*this); // *this is a Rectangle:
// resolve on s

}

300 Class Concept Refinements Chapter 13

bool Circle::intersect(const Shape& s) const
{

return s.intersect(*this); // *this is a Circle:

// resolve on s
}

The other i n t e r s e c t () functions simply do their job on two arguments of known
types. Note that only the first Shape : : i n t e r s e c t () function is necessary for
this technique. The other two Shape : : i n t e r s e c t () functions are an optimiza
tion that can be done where a derived class is known when the base class is designed.

This technique is called double dispatch and was first presented in [Ingalls,1986].
In the context of C++, double dispatch has the weakness that adding a class to a hier
archy requires changes to existing classes. A derived class such as R e c t a n g l e must
know about all of its sibling classes to include the right set of virtual functions. For
example, adding class T r i a n g l e requires changes to both R e c t a n g l e , C i r c l e ,
and - if the optimization used above is desired - also Shape:

class Rectangle : public Shape {
// . . .
bool intersect(const Shape&);
bool intersect(const Rectangle&);
bool intersect(const Circle&);
bool intersect(const Triangle&);

};

Basically, in C++ double dispatch is a reasonably efficient and reasonably elegant
technique for navigating hierarchies where one can modify class declarations to
accommodate new classes and where the set of derived classes doesn't change too
often.

Alternative techniques involve storing some kind of type identifier in objects and
selecting functions to be called based on those. Use of t y p e i d () for run-time type
identification (§14.2.5) is simply one example of this. One can maintain a data struc
ture containing pointers to functions and use the type identifier to access that struc
ture. This has the advantage that the base class doesn't have to have any knowledge
of which derived classes exist. For example, with suitable definitions

bool intersect(const Shape* s1, const Shape* s2)
{

int i = find_index(sl.type_id(),s2.type_id());
if (i < 0) error("bad_index");
extern Fct_table* tbl;
Fct f = tbl[i];
return f (s1,s2);

}

will call the right function for every possible type of the two arguments. Basically,
this manually implements the multi-method virtual function table hinted at above.

The relative ease with which each specific example of multi-methods can be

Section 13.8.1 Workarounds for Multi-methods 301

simulated is a major reason that multi-methods never stayed at the top of my to-do list
long enough to be worked out in detail. In a very real sense, this technique is the
same as the one used to simulate virtual functions in C. Such workarounds are
acceptable if they are needed only infrequently.

13.9 Protected Members
The simple private/public model of data hiding served C++ well where C++ was used
essentially as a data abstraction language and for a large class of problems where
inheritance was used for object-oriented programming. However, when derived
classes are used, there are two kinds of users of a class: derived classes and ' 'the gen
eral public." The members and friends that implement the operations on the class
operate on the class objects on behalf of these users. The private/public mechanism
allows the programmer to distinguish clearly between the implementers and the gen
eral public, but does not provide a way of catering specifically to derived classes.

Shortly after Release 1.0, Mark Linton stopped by my office and made an impas
sioned plea for a third level of access control to directly support the style used in the
Interviews library (§8.4.1) being developed at Stanford. We coined the word
p r o t e c t e d to refer to members of a class that were "like public" to members of a
class and its derived classes yet ' 'like private'' to anyone else.

Mark was the main architect of Interviews. He argued persuasively based on gen
uine experience and examples from real code that protected data was essential for the
design of an efficient and extensible X windows toolkit. The alternative to protected
data was claimed to be unacceptable inefficiency, unmanageable proliferation of
inline interface functions, or public data. Protected data, and in general, protected
members seemed the lesser evil. Also, languages claimed "pure" such as Smalltalk
supported this - rather weak - notion of protection over the - stronger - C++ notion
of p r i v a t e . I had written code where data was declared p u b l i c simply to be
usable from derived classes and had seen code where the f r i e n d notion had been
clumsily misused to grant access to explicitly named derived classes.

These were good arguments and essentially the ones that convinced me to allow
protected members. However, I regard ' 'good arguments'' with a high degree of sus
picion when discussing programming. There seem to be "good arguments" for every
possible language feature and every possible use of it. What we need is data. With
out data and properly evaluated experience, we are like the Greek philosophers who
argued brilliantly for several centuries, yet didn't quite manage to determine the four
(or maybe even five) fundamental substances from which they were sure everything
in the universe was composed.

Five years or so later, Mark banned the use of protected data members in Inter
views because they had become a source of bugs: "novice users poking where they
shouldn't in ways that they ought to have known better than." They also seriously
complicate maintenance: ' 'now it would be nice to change this, do you think someone
out there might have used it?" Barbara Liskov's OOPSLA keynote [Liskov,1987]

302 Class Concept Refinements Chapter 13

gives a detailed explanation of the theoretical and practical problems with access con
trol based on the p r o t e c t e d notion. In my experience, there have always been
alternatives to placing significant amounts of information in a common base class for
derived classes to use directly. In fact, one of my concerns about p r o t e c t e d is
exactly that it makes it too easy to use a common base the way one might sloppily
have used global data.

Fortunately, you don't have to use protected data in C++; p r i v a t e is the default
in classes and is usually the better choice. Note that none of these objections are sig
nificant for protected member functions. I still consider p r o t e c t e d a fine way of
specifying operations for use in derived classes.

Protected members were introduced into Release 1.2. Protected base classes were
first described in the ARM and provided in Release 2.1. In retrospect, I think that
p r o t e c t e d is a case where "good arguments" and fashion overcame my better
judgement and my rules of thumb for accepting new features.

13.10 Improved Code Generation
To some people, the most important "feature" of Release 2.0 wasn't a feature at all,
but a simple space optimization. From the beginning, the code generated by Cfront
tended to be pretty good. As late as 1992, Cfront generated the fastest running code
in a benchmark used to evaluate C++ compilers on a SPARC. Except for the imple
mentation of the return value optimization suggested in [ARM,§ 12.1c] in Release 3.0,
there have been no significant improvements in Cfront's code generation since
Release 1.0. However, Release 1.0 wasted space because each compilation unit gen
erated its own set of virtual function tables for all the classes used in that unit. This
could lead to megabytes of waste. At the time (about 1984), I considered the waste
necessary in the absence of linker support and asked for such support. By 1987, that
linker support hadn't materialized. Consequently, I rethought the problem and solved
it by the simple heuristic of laying down the virtual function table of a class right next
to the definition of its first non-pure virtual non-inline function. For example:

class X {

public:

virtual void fl() { /* ... */ }

void f2();

virtual void f3() = 0;

virtual void f4(); // first non-inline non-pure virtual

// . . .

};

// in some file:

void X::f4() { /* ... */ }

// Cfront will place X's virtual function table here

Section 13.10 Improved Code Generation 303

I chose that heuristic because it doesn't require cooperation from the linker. The
heuristic isn't perfect because space is still wasted for classes that don't have a non-
inline virtual function, but the space taken up by virtual function tables ceased to be a
practical problem. Andrew Koenig and Stan Lippman were involved in the discus
sion of the details of this optimization. Naturally, other C++ compilers can and do
choose their own solutions to this problem to suit their environments and engineering
tradeoffs.

As an alternative, we considered simply generating virtual function table defini
tions in every compilation unit and then having a pre-linker eliminate all but one.
This, however, was not easy to do portably. It was also plain inefficient. Why gener
ate all those tables just to waste time throwing most away later? Alternative strategies
are available to people who are willing to supply their own linker.

13.11 Pointers to Members
Originally, there was no way of expressing the concept of a pointer to a member func
tion in C++. This led to the need to ' 'cheat'' the type system in cases, such as error
handling, where pointers to functions are traditionally used. Given

s t r u c t S {
i n t mf(char*) ;

} ;

people wrote code like this:

typedef void (*PSmem)(S*,char*);

PSmem m = (PSmem)&S::mf;

void g(S* ps)
{

m(ps,"Hello");
}

This only worked with a liberal sprinkling of explicit casts that never ought to have
worked in the first place. It also relied on the assumption that a member function is
passed its object pointer ("the t h i s pointer") as the first argument in the way Cfront
implements it (§2.5.2).

I considered this unacceptable as early as 1983, but felt no urgency to fix it. I con
sidered it to be a purely technical issue that had to be answered to close a hole in the
C++ type system, but of little practical importance. After finishing Release 1.0, I
finally managed to find some time to plug this hole, and Release 1.2 implemented the
solution. As it happened, the advent of environments relying on callbacks as a pri
mary communication mechanism made the solution to this problem crucial.

The term pointer to member is a bit misleading because a pointer to member is
more like an offset, a value that identifies a member of an object. However, had I
called it "offset" people would have made the mistaken assumption that a pointer to

304 Class Concept Refinements Chapter 13

member was a simple index into an object and would also have assumed that some
forms of arithmetic could be applied. This would have caused even more confusion
than the term pointer to member, which was chosen because I designed the mecha
nism as a close syntactic parallel to C's pointer syntax.

Consider the C/C++ function syntax in all its glory:

int f(char* p) { / * . . . * / } // define function.
int (*pf)(char*) = &f; // declare and initialize

// pointer to function,
int i = (*pf)("hello"); // call through pointer.

Inserting S: : and p -> in the appropriate places, I constructed a direct parallel for
member functions:

c l a s s S {
/ / . . .
i n t mf(char*);

} ;

int S::mf(char*p) { /* ... */ } // define member function.
int (S::*pmf)(char*) = &S::f; // declare and

// initialize pointer to
// member function.

S* p;
int i = (p->*pf)("hello"); // call function through

// pointer and object.

Semantically and syntactically, this notion of pointer-to-member functions makes
sense. All I needed to do was to generalize it to include data members and find an
implementation strategy. The acknowledgment section of [Lippman,1988] has this to
say:

"The design of the pointer to member concept was a cooperative effort by Bjarne
Stroustrup and Jonathan Shopiro with many useful comments by Doug Mcllroy.
Steve Dewhurst contributed greatly to the redesign of the pointer to member
implementation to cope with multiple inheritance."

At the time I was fond of saying that we discovered pointers to members more than
we designed it. Most of 2.0 felt that way.

For a long time, I considered pointers to data members an artifact of generalization
rather than something genuinely useful. Again, I was proven wrong. In particular,
pointers to data members has proven a useful way of expressing the layout of a C++
class in an implementation-independent manner [Hubel,1992].

14
Casting

Reasonable men
do not change the world.

- G.B.Shaw

Major and minor extensions — the need for run-time type information
(RTTI) — d y n a m i c _ c a s t — syntax — which types support RTTI —
casting from a virtual base — uses and misuses of RTTI — t y p e i d () —
class t y p e _ i n f o — extended type information — a simple object I/O
system — rejected alternatives new casts — s t a t i c _ c a s t —
r e i n t e r p r e t _ c a s t — c o n s t _ c a s t —using new-style casts.

14.1 Major Extensions

Templates (§15), exceptions (§16), run-type type information (§14.2), and name
spaces (§17) are often referred to as major extensions. What makes them major -
whether seen as extensions or as integral features of C++ - is that they affect the way
programs can be organized. Since C++ was created primarily to allow new ways of
organizing programs rather than simply to provide more convenient ways of express
ing traditional designs, the major features are the ones that matter.

Minor features are therefore considered minor because they don't affect the over
all structure of a program. They don't affect design. They are not minor because they
involve only a few lines of manual text to define or require only a few lines of com
piler code to implement. In fact, some major features are easier to describe and
implement than some minor features.

Naturally, not every feature fits neatly into the simple minor and major categories.
For example, nested functions could be seen as either minor or major depending on
how important you consider their use in expressing iteration. However, my policy

306 Casting Chapter 14

over the years has been to work hard on a few major extensions while trying to mini
mize minor extension. Curiously enough, the volume of interest and public debate is
often inversely proportional to the importance of a feature. The reason is that it is
much easier to have a firm opinion on a minor feature than on a major one; minor fea
tures fit directly into the current state of affairs, whereas major ones - by definition -
do not.

Because support for building libraries and for composing software out of semi-
independent parts is a key aim of C++, the major extensions relate to that: templates,
exception handling, run-time type identification, and namespaces. Of these, templates
and exception handling were part of my view of what C++ should be even in the pre-
Release-1.0 days (§2.9.2 and §3.15). Run-time type identification was considered
even in the first draft of C++ (§3.5), but postponed in the hope that it would prove
unnecessary. Namespaces is the only major extension beyond the original conception
of C++, yet even it is a response to a problem that I unsuccessfully tried to solve in the
first version of C++ (§3.12).

14.2 Run-Time Type Information
In many ways, the discussion about mechanisms for run-time determination of the
type of an object resembled the discussions about multiple inheritance (§12.6). Multi
ple inheritance was perceived as the first major extension to the original C++ defini
tion. Run-Time Type Information, often called RTTI, was the first major extension
beyond the features mandated for the standardization process and presented in the
ARM.

Again, a new style of programming was being directly supported by C++. Again
some

- Declared the support unnecessary
- Declared the new style inherently evil (' 'against the spirit of C++")
- Deemed it too expensive
- Thought it too complicated and confusing
- Saw it as the beginning of an avalanche of new features

In addition, RTTI attracted criticism related to the C/C++ casting mechanism in gen
eral. For example, many dislike that (old-style) casts can be used to bypass the access
control for private base classes and can cast away c o n s t . These criticisms are well
founded and important; they are discussed in §14.3.

Again, I defended the new feature on the grounds that it was important to some,
harmless to people who didn't use it, that if we didn't support it directly people would
simply simulate it, and that it was easy to implement. To support the last claim, I pro
duced an experimental implementation in two mornings. This makes RTTI at least
two orders of magnitude simpler than exceptions and templates, and more than an
order of magnitude simpler than multiple inheritance.

The original impetus for adding facilities for determining the type of an object at
run time to C++ came from Dmitry Lenkov [Lenkov,1991]. Dmitry in turn built on

Section 14.2 Run-Time Type Information 307

experience from major C++ libraries such as Interviews [Linton, 1987], the NIH
library [Gorlen,1990], and ET++ [Weinand,1988]. The dossier mechanism [Inter-
rante,1990] was also available for examination.

The RTTI mechanisms provided by libraries are mutually incompatible, so they
become a barrier to the use of more than one library. Also, all require considerable
foresight from base class designers. Consequently, a language-supported mechanism
was needed.

I got involved in the detailed design for such mechanisms as the coauthor with
Dmitry of the original proposal to the ANSI/ISO committee and as the main person
responsible for the refinement of the proposal in the committee [Stroustrup,1992].
The proposal was first presented to the committee at the London meeting in July 1991
and accepted at the Portland, Oregon meeting in March 1993.

The run-time type information mechanism consists of three parts:
- An operator, d y n a m i c _ c a s t , for obtaining a pointer to an object of a

derived class given a pointer to a base class of that object. The operator
d y n a m i c _ c a s t delivers that pointer only if the object pointed to really is of
the specified derived class; otherwise it returns 0.

- An operator, t y p e id, for identifying the exact type of an object given a
pointer to a base class.

- A structure, t y p e _ i n f o, acting as a hook for further run-time information
associated with a type.

To conserve space, the RTTI discussion is almost completely restricted to pointers.

14.2.1 The Problem

Assume that a library supplies class d i a l o g _ b o x and that its interfaces are
expressed in terms of d ia log_boxes . I, however, use both d i a log_boxes and
my own dbox_w_st rs :

class dialog_box : public window { // library class

// ...
public:

virtual int ask();

// . . .

};

class dbox_w_str : public dialog_box { // my class

// .. .
public:

int ask();

virtual char* get_string();

// . . .

};

So, when the system/library hands me a pointer to a d i a l o g _ b o x , how can I know
whether it is one of my dbox_w_strs?

Note that I can't modify the library to know my dbox_w_s t r class. Even if I

308 Casting Chapter 14

could, I wouldn't, because then I would have to worry about dbox_w_st r s in new
versions of the library and about errors I might have introduced into the ' 'standard''
library.

14.2.2 The dynamic_cast Operator

A naive solution would be to find the type of the object pointed to and compare that to
my dbox_w_s t r class:

void my_fct(dialog_box* bp)
{

if (typeid(*bp) == typeid(dbox_w_str)) { // naive

dbox_w_str* dbp = (dbox_w_str*)bp;

// use dbp
}
else {

// treat *bp as a ' 'plain' ' dialog box
}

}

Given the name of a type as the operand, the t y p e i d () operator returns an object
that identifies it. Given an expression operand, t y p e i d () returns an object that
identifies the type of the object that the expression denotes. In particular,
t y p e i d (*bp) returns an object that allows the programmer to ask questions about
the type of the object pointed to by bp. In this case, we asked if that type was identi
cal to the type dbox_w_st r .

This is the simplest question to ask, but it is typically not the right question. The
reason to ask is to see if some detail of a derived class can be safely used. To use it,
we need to obtain a pointer to the derived class. In the example, we used a cast on the
line following the test. Further, we typically are not interested in the exact type of the
object pointed to, but only in whether we can safely perform that cast. This question
can be asked directly using the d y n a m i c _ c a s t operator:

void my_fct(dialog_box* bp)
{

if (dbox_w_str* dbp = dynamic_cast<dbox_w_str*>(bp)) {

// use dbp
}
else {

// treat *pb as a ''plain'' dialog box
}

}

The dynamic_cas t<T*> (p) operator converts its operand p to the desired type

Section 14.2.2 The dynamic_cast Operator 309

T* if *p really is a T or a class derived from T; otherwise, the value of
dynamic_cas t<T*>(p) is 0.

There are several advantages to merging the test and the cast into a single opera
tion:

- A dynamic cast makes it impossible to mismatch the test and the cast.
- By using the information available in the type-information objects, it is possi

ble to cast to types that are not fully defined in the scope of the cast.
- By using the information available in the type information objects, it is often

possible to cast from a virtual base class to a derived class (§14.2.2.3).
- A static cast can't give the correct result in all cases (§14.3.2.1).

The d y n a m i c _ c a s t operator serves the majority of needs I have encountered. I
consider d y n a m i c _ c a s t to be the most important part of the RTTI mechanism and
the construct users should focus on.

d y n a m i c _ c a s t operator can also be used to cast to a reference type. In case of
failure, a cast to a reference throws a b a d _ c a s t exception. For example:

void my_fct(dialog_box& b)
{

dbox_w_str& db = dynamic_cast<dbox_w_str&>(b);

// use db
}

I use a reference cast when I want an assumption about a reference type checked and
consider it a failure for my assumption to be wrong. If, instead, I want to select
among plausible alternatives, I use a pointer cast and test the result.

I don't recall exactly when I settled on a run-time-checked cast as my preferred
way of dealing with run-time type checking should direct language support become
necessary. The idea was first suggested to me by someone at Xerox PARC during a
visit there in 1984 or 1985. The suggestion was to have ordinary casts do checking.
As mentioned in §14.2.2.1, this variant has problems with overhead and compatibil
ity, but I saw that some form of casts would help minimize the misuses that a switch-
on-type mechanism, such as Simula's INSPECT, makes so tempting.

14.2.2.1 Syntax

The discussion of what the d y n a m i c _ c a s t operator should look like reflected both
pure syntactic concerns and concerns about the nature of conversions.

Casts are one of the most error-prone facilities in C++. They are also one of the
ugliest syntactically. Naturally, I considered if it would be possible to

[1] Eliminate casts.
[2] Make casts safe.
[3] Provide a cast syntax that makes it obvious that an unsafe operation is used.
[4] Provide alternatives to casting and discourage the use of casts.

Basically, d y n a m i c _ c a s t reflects the conclusion that a combination of [3] and [4]
seems feasible, whereas [1] and [2] are not.

310 Casting Chapter 14

Considering [1], we observed that no language supporting systems programming
has completely eliminated the possibility of casting and that even effective support for
numeric work requires some form of type conversion. Thus, the aim must be to mini
mize the use of casts and make them as well behaved as possible. Starting from that
premise, Dmitry and I devised a proposal that unified dynamic and static casts using
the old-style cast syntax. This seemed a good idea, but upon closer examination sev
eral problems were uncovered:

[1] Dynamic casts and ordinary unchecked casts are fundamentally different oper
ations. Dynamic casts look into objects to produce a result and may fail with a
run-time indication of that failure. Ordinary casts perform an operation that is
determined exclusively by the types involved and doesn't depend on the value
of the object involved (except for occasional checking for null pointers). An
ordinary cast doesn't fail; it simply produces a new value. Using the cast syn
tax for both dynamic and static casts led to confusion about what a given cast
expression really did.

[2] If dynamic casts are not syntactically distinguished, it is not possible to find
them easily (grep for them, to use Unix-speak).

[3] If dynamic casts are not syntactically distinguished, it is not possible for the
compiler to reject unsuitable uses of dynamic casts; it must simply perform
whatever kind of cast can be done for the types involved. If distinguished, it
can be an error to attempt a dynamic cast for objects that don't support run
time checking.

[4] The meaning of programs using ordinary casts would change if run-time
checking were applied wherever feasible. Examples are casts to undefined
classes and casts within multiple inheritance hierarchies (§14.3.2). We did not
manage to convince ourselves that this change would leave the meaning of all
reasonable programs unchanged.

[5] The cost of checking would be incurred even for old programs that already
carefully checked that casts were viable using other means.

[6] The suggested way of "turning off checking," casting to and from vo id* ,
wouldn't be perfectly reliable because the meaning would be changed in some
cases. These cases might be perverted, but because understanding of the code
would be required, the process of turning off checking would be manual and
error-prone. We are also against techniques that would add yet more uncheck-
able casts to programs.

[7] Making some casts "safe" would make casting more respectable; yet the
long-term aim is to decrease the use of all casts (including dynamic casts).

After much discussion, we found this formulation: "Would our ideal language have
more than one notation for type conversion?'' For a language that distinguishes fun
damentally different operations syntactically the answer is yes. Consequently, we
abandoned the attempt to ' 'hijack'' the old cast syntax.

We considered if it would be possible to deprecate the old cast syntax in favor of
something like:

Section 14.2.2.1 Syntax 311

Checked<T*>(p); // run-time checked conversion of p to a T*
Unchecked<T*>(p); // unchecked conversion of p to a T*

This would eventually make all conversions obvious, thus eliminating problems aris
ing from traditional casts being hard to spot in C and C++ programs. It would also
give all casts a common syntactic pattern based on the <T*> template notation for
types (§15). This line of thought led to the alternative cast syntax presented in § 14.3.

Not everyone likes the template syntax, though, and not everyone who likes the
template syntax likes its use for cast operators. Consequently, we discussed and
experimented with alternatives.

The (?T*) p notation was popular for some time because it mirrors the traditional
cast syntax (T*) p. Others disliked is for exactly that reason, and many considered
(?T*) p "far too cryptic." Worse, I discovered a critical flaw. The most common

mistake when using (?T*) p was to forget the ?. What was meant to be a relatively
safe and checked conversion becomes a completely different, unchecked, and unsafe
operation. For example:

if (dbox_w_string* p = (dbox_w_string*)q) // dynamic cast
{

// *q is a dbox_w_string
}

Oops! Forgetting the ? and thus turning the comment into a lie was found to be
uncomfortably common. Note that we cannot grep for occurrences of old-style casts
to protect against this kind of mistake, and those of us with a strong C background are
most prone to make the mistake and to miss it when reading the code.

Among the other alternatives considered, the notation

(v i r t u a l T*)p

was the most promising. It is relatively easy to spot for humans and for tools, the
word v i r t u a l indicates the logical connection to classes with virtual functions
(polymorphic types), and the general syntactic pattern is that of a traditional cast.
However, it too was considered "too cryptic" by many and attracted the hostility of
people who disliked the old cast syntax. Personally, I weakly agreed with that criti
cism, feeling that the d y n a m i c _ c a s t syntax simply fit better into C++ (as many
who had significant experience using templates did). I also considered it an advan
tage that d y n a m i c _ c a s t provided a cleaner syntactic pattern that might eventually
be used as an alternative to the old casts (§14.3).

14.2.2.2 When can we use Dynamic Casts?

The introduction of run-time type identification separates objects into two categories:
[1] Ones that have run-time type information associated so that their type can be

determined (almost) independently of context.
[2] Those that haven't.

Why? We cannot impose the burden of being able to identify an object's type at run-

312 Casting Chapter 14

time on built-in types such as i n t and d o u b l e without unacceptable costs in run
time, space, and layout-compatibility problems. A similar argument applies to simple
class objects and C-style structs. Consequently, from an implementation point of
view, the first acceptable dividing line is between objects of classes with virtual func
tions and classes without. The former can easily provide run-time type information,
the latter cannot.

Further, a class with virtual functions is often called a polymorphic class, and
polymorphic classes are the only ones that can be safely manipulated through a base
class. By "safely," I here mean that the language provides guarantees that objects
are used only according to their defined type. Naturally, individual programmers can
in specific cases demonstrate that manipulations of a non-polymorphic class don't
violate the type system.

From a programming point of view, it therefore seems natural to provide run-time
type identification for polymorphic types only: They are exactly the ones for which
C++ supports manipulation through a base class. Supporting RTTI for a non-
polymorphic type would simply provide support for switch-on-type-field program
ming. Naturally the language should not make that style impossible, but I saw no
need to complicate the language solely to accommodate it.

Experience shows that providing RTTI for polymorphic types (only) works
acceptably. However, people can get confused about which objects are polymorphic
and thus about whether a dynamic cast can be used or not. Fortunately, the compiler
will catch the errors when the programmer guesses wrong. I looked long and hard for
an acceptable way of explicitly saying ' 'this class supports RTTI (whether it has vir
tual functions or not)," but didn't find one that was worth the effort of introducing it.

14.2.2.3 Casting from Virtual Bases

The introduction of the d y n a m i c _ c a s t operator allowed us to provide a way to cir
cumvent an old problem. It is not possible to cast from a virtual base class to a
derived class using an ordinary cast. The reason for the restriction is that there is
insufficient information available in an object to implement a cast from a virtual base
to one of the classes derived from it; see §12.4.1.

However, the information needed to provide run-time type identification includes
the information needed to implement the dynamic cast from a polymorphic virtual
base. Therefore, the restriction against casting from a virtual base need not apply to
dynamic casts from polymorphic virtual base classes:

class B { /* ... */ virtual void f(); };

class V { /* ... */ virtual void g(); };

class X { /* no virtual functions */ };

class D: public B, public virtual V, public virtual X {

// . . .

};

Section 14.2.2.3 Casting from Virtual Bases 313

void g(D& d)
{

B* pb = &d;
D* pi = (D*)pb; //ok, unchecked
D* p2 = dynamic_cast<D*>(pb); // ok, run-time checked

V* pv = &d;
D* p3 = (D*)pv; // error: cannot cast from virtual base
D* p4 = dynamic_cast<D*>(pv); // ok, run-time checked

X* px = &d;
D* p5 = (D*)px; // error: cannot cast from virtual base
D* p6 = dynamic_cast<D*>(px); // error: can't cast from

// non-polymorphic type
}

Naturally, such a cast can only be performed when the derived class can be unambigu
ously determined.

14.2.3 Uses and Misuses of RTTI

One should use explicit run-time type information only when one has to. Static
(compile-time) checking is safer, implies less overhead, and - where applicable -
leads to better-structured programs. For example, RTTI can be used to write thinly
disguised switch statements:

// misuse of run-time type information:

void rotate(const Shape& r)

{

if (typeid(r) == typeid(Circle)) {

// do nothing

}

else if (typeid(r) == typeid(Triangle)) {

// rotate triangle

}

else if (typeid(r) == typeid(Square)) {

// rotate square

}

// . . .

}

I have heard this style described as providing ' 'the syntactic elegance of C combined
with the run-time efficiency of Smalltalk," but that is really too kind. The real prob
lem is that this code does not handle classes derived from the ones mentioned cor
rectly and needs to be modified whenever a new class is added to the program.

Such code is usually best avoided through the use of virtual functions. It was my
experience with Simula code written this way that caused facilities for run-time type
identification to be left out of C++ in the first place (§3.5).

314 Casting Chapter 14

For many people trained in languages such as C, Pascal, Modula-2, Ada, etc.,
there is an almost irresistible urge to organize software as a set of switch statements.
This urge should most often be resisted. Please note that even though the standards
committee approved a RTTI mechanism for C++, we did not support it with a type-
switch statement (such as Simula's INSPECT statement). I still don't consider a type
switch a model of software organization worth supporting directly. The examples
where it is appropriate are far fewer than most programmers believe at first - and by
the time a programmer has second thoughts, the reorganization needed most likely
will involve too much work to be done.

Many examples of proper use of RTTI arise where some service code is expressed
in terms of one class and a user wants to add functionality through derivation. The
d i a l o g _ b o x example from §14.2.1 is an example of this. If the user is willing and
able to modify the definitions of the library classes, say d i a l o g _ b o x , then the use
of RTTI can be avoided; if not, it is needed. Even if the user is willing to modify the
base classes, such modification may have its own problems. For example, it may be
necessary to introduce dummy implementations of virtual functions such as
g e t _ s t r i n g () in classes for which the virtual functions are not needed or not
meaningful. This problem is discussed in some detail in [2nd,§13.13.6] under the
heading of ' 'Fat Interfaces." A use of RTTI to implement a simple object I/O system
can be found in §14.2.7.

For people with a background in languages that rely heavily on dynamic type
checking, such as Smalltalk, it is tempting to use RTTI in conjunction with overly
general types. For example:

// misuse of run-time type information:

class Object { /* ... */ };

class Container : public Object {

public:

void put(Object*);

Object* get();

// . . .

};

class Ship : public Object { /* ... */ };

Ship* f(Ship* ps, Container* c)

{

C->put(ps);
// . ..
Object* p = c->get();
if (Ship* q = dynamic_cast<Ship*>(p)) // run-time check

return q;

// do something else (typically, error handling)

}

Section 14.2.3 Uses and Misuses of RTTI 315

Here, class Ob jec t is an unnecessary implementation artifact. It is overly general
because it does not correspond to an abstraction in the application domain and forces
the application programmer to operate at a lower level of abstraction. Problems of
this kind are often better solved by using container templates holding only a single
kind of pointer:

template<class T> class Container {

public:

void put(T*);

T* get();

// . . .

};

Ship* f(Ship* ps, Container<Ship>* c)

{
c->put(ps);

// .. .

return c->get();

}

Combined with the use of virtual functions, this technique handles most cases.

14.2.4 Why Provide a "Dangerous Feature?"

So, if I confidently predict misuses of RTTI, why did I design the mechanism and
work for its adoption?

Good programs are achieved through good education, good design, adequate test
ing, etc., not by providing language features that supposedly can be used only in "the
right way." Every useful feature can be misused, so the question is not whether a fea
ture can be misused (it can), or whether it will be misused (it will). The questions are
whether the good uses are sufficiently critical to warrant the effort of providing a fea
ture, whether the effort of simulating a feature using other language features is man
ageable, and whether the misuses can be kept to a reasonable level by proper educa
tion.

Having considered RTTI for some time, I became convinced that we faced a clas
sical standardization problem:

- Most major libraries provide a RTTI feature.
- Most provide it in a form that requires significant and error-prone user cooper

ation for it to work correctly.
- All provide it in incompatible ways.
- Most provide it in a non-general way.
- Most present it as a ' 'neat feature'' that users ought to try rather than a danger

ous mechanism to be used as a last resort.
- In every major library there seem to be (only) a few cases where RTTI is criti

cal in the sense that without it there would be a facility that the library couldn't
offer or could only offer by imposing a significant burden on users and imple-
menters.

316 Casting Chapter 14

By providing standard RTTI, we can overcome one barrier to the use of libraries from
different sources (see §8.2.2). We can provide a coherent view of the use of RTTI
and try to make it as safe as possible and provide warnings against misuse.

Finally, it has been a guideline in the design of C++ that when all is said and done
the programmer must be trusted. What good can be done is more important than what
mistakes might be made. C++ programmers are supposed to be adults and need only
minimal "nannyism."

Not everyone is convinced, though. Some, notably Jim Waldo, argue strongly that
RTTI is needed so infrequently and the misconceptions that are the roots of misuses
of RTTI are so widespread that the net effect of RTTI must be detrimental to C++.
Only time will tell for sure. The greatest danger from misuse comes from program
mers who consider themselves so expert that they see no need to consult a C++ text
book before starting to use C++ (§7.2).

14.2.5 The t y p e i d () Operator
I had hoped that the d y n a m i c _ c a s t operator would serve all common needs so that
no further RTTI features needed to be presented to users. However, most other peo
ple I discussed the issue with disagreed and pointed to two further needs:

[1] A need to find the exact type of an object; that is, being told that an object is of
class X, rather than just that it is of class X or some class derived from class X
the way d y n a m i c _ c a s t does.

[2] Using the exact type of an object as a gateway to information describing prop
erties of that type.

Finding the exact type of an object is sometimes referred to as type identity, so I
named the operator yielding it t y p e i d .

The reason people want to know the exact type of an object is usually that they
want to perform some standard service on the whole object. Ideally, such services are
presented as a virtual function so that the exact type needn't be known, but when - for
some reason - no such function is available, finding the exact type and then perform
ing the operation is necessary. People have designed object I/O and database systems
working this way. In those cases, no common interface can be assumed for every
object manipulated so the detour through the exact type becomes necessary. Another,
much simpler, use has been to obtain the name of a class for diagnostic output:

c o u t << t y p e i d (* p) . n a m e () ;
The t y p e i d () operator is used explicitly to gain access to information about

types at run time; t y p e i d () is a built-in operator. Had it been a function, its decla
ration would have looked something like this:

c l a s s t y p e _ i n f o ;
c o n s t t ype_ in fo& t y p e i d (type-name) ; / / p s eudo d e c l a r a t i o n
c o n s t t ype_ in fo& t y p e i d (expression) ; / / p s eudo d e c l a r a t i o n

That is, t y p e i d () returns a reference to an unknown type called t y p e _ i n f o f .

t The standards committee is still discussing naming conventions for standard library classes. I have picked
the names I consider the most likely outcome of these discussions.

Section 14.2.5 ThetypeidO Operator 317

Given a type-name as its operand, t y p e i d () returns a reference to a t y p e _ i n f o
that represents the type-name. Given an expression as its operand, t y p e i d ()
returns a reference to a t y p e _ i n f o that represents the type of the object denoted by
the expression.

The reason t y p e i d () returns a reference to t y p e _ i n f o rather than a pointer is
that we wanted to disable the usual pointer operators such as == and ++ on the result
of t y p e i d () . For example, it is not clear that every implementation will be able to
guarantee uniqueness of type identification objects. This implies that comparing
t y p e i d () s can't simply be defined as comparing pointers to t y p e _ i n f o objects.
With t y p e i d () returning a t y p e _ i n f o&, there is no problem defining == to cope
with possible duplication of t y p e _ i n f o objects for a single type.

14.2.5.1 Class type info

Class t y p e _ i n f o is defined in the standard header file < t y p e _ i n f o . h > ,
which needs to be included for the result of t y p e i d () to be used. The exact defini
tion of class t y p e _ i n f o is implementation dependent, but it is a polymorphic type
that supplies comparisons and an operation that returns the name of the type repre
sented:

class type_info {
// implementation-dependent representation

private:
type_info(const type_info&); // users can't
type_info& operator=(const type_info&); // copy type_info

public:
virtual ~type_info(); // is polymorphic

int operator==(const type_info&) const; // can be compared
int operator!=(const type_info&) const;
int before(const type_info&) const; // ordering

const char* name() const; // name of type
};

More detailed information can be supplied and accessed as described below. How
ever, because of the great diversity of the "more detailed information" desired by dif
ferent people and because of the desire for minimal space overhead by others, the ser
vices offered by t y p e _ i n f o are deliberately minimal.

The b e f o r e () function is intended to allow t y p e _ i n f o s to be sorted so that
they can be accessed through hash tables, etc. There is no relation between the rela
tionships defined by b e f o r e and inheritance relationships (see §14.2.8.3). Further,
there is no guarantee that b e f o r e () yields the same results in different programs or
different runs of the same programs. In this, b e f o r e () resembles the address-of
operator.

318 Casting Chapter 14

14.2.5.2 Extended Type Information

Sometimes knowing the exact type of an object is simply the first step to acquiring
and using more detailed information about that type.

Consider how an implementation or a tool could make information about types
available to users at run time. Say we have a tool that generates a table of
My_type_ info objects. The preferred way of presenting this to the user is to pro
vide an associative array (map, dictionary) of typenames and such tables. To get such
a member table for a type, a user would write:

#include <type_info.h>

extern Map<My_type_info,const char*> my_type_table;

void f(B* p)
{

My_type_info& mi = my_type_table[typeid(*p).name()];
// use mi

}

Someone else might prefer to index tables directly with t y p e ids rather than requir
ing the user to use the name () string:

extern Map<Your_type_info,type_info*> your_type_table;

void g(B* p)
{

Your_type_info& yi = your_type_table[&typeid(*p)];
// use yi

}

This way of associating t y p e i d s with information allows several people or tools to
associate different information to types without interfering with each other:

Section 14.2.5.2 Extended Type Information 319

This is most important because the likelihood that someone can come up with a set of
information that satisfies all users is zero. In particular, any set of information that
would satisfy most users would be so large that it would be unacceptable overhead for
users who need only minimal run-time type information.

An implementation may choose to provide additional implementation-specific
type information. Such system-provided extended type information could be accessed
through an associative array exactly as user-provided extended type information is.
Alternatively, the extended type information could be presented as a class
E x t e n d e d _ t y p e _ i n f o derived from class t y p e _ i n f o :

A d y n a m i c _ c a s t can then be used to determine if a particular kind of extended
type information is available:

#include <type_info.h>

typedef Extended_type_info Eti;

void f(Sometype* p)
{

if (Eti* p = dynamic_cast<Eti*>(&typeid(*p))) {
// . . .

}
}

What "extended" information might a tool or an implementation make available to a
user? Basically any information that a compiler can provide and that some program
might want to take advantage of at run time. For example:

- Object layouts for object I/O and/or debugging.
- Pointers to functions creating and copying objects.
- Tables of functions together with their symbolic names for calls from inter

preter code.
- Lists of all objects of a given type.
- References to source code for the member function.
- Online documentation for the class.

t y p e _ i n f o :

320 Casting Chapter 14

The reason such things are supported through libraries, possibly standard libraries, is
that there are too many needs, too many potentially implementation-specific details,
and too much information to support every use in the language itself. Also, some of
these uses subvert the static checking provided by the language. Others impose costs
in run time and space that I do not feel appropriate for a language feature.

14.2.6 Object Layout Model

Here is a plausible memory layout for an object with a virtual function table and type
information object:

my_T:

The dashed arrow represents an offset that allows the start of the complete object to be
found given only a pointer to a polymorphic sub-object. It is equivalent to the offset
(delta) used in the implementation of virtual functions (§12.4).

For each type with virtual functions, an object of type t y p e _ i n f o is generated.
These objects need not be unique. However, a good implementation will generate
unique t y p e _ i n f o objects wherever possible and only generate t y p e _ i n f o
objects for types where some form of run-time type information is actually used. An
easy implementation simply places the t y p e _ i n f o object for a class right next to its
v t b l .

Cfront-based implementations and implementations that borrowed Cfront's virtual
table layout can be updated to support RTTI without even requiring recompilation of
old code. The reason is that I considered providing RTTI at the time I implemented
Release 2.0 and left two empty words at the start of each v t b l to allow such an
extension. At the time, I didn't add RTTI because I wasn't certain that it was needed
or - assuming that it was needed - exactly how the facility should be presented to
users. As an experiment, I implemented a simple version in which every object of a
class with virtual functions could be made to print out its name. Having done that, I
was satisfied that I knew how to add RTTI should it ever become necessary - and
removed the feature.

14.2.7 An Example: Simple Object I/O

Let me present a sketch of how a user might use RTTI together with a simple object
I/O system and outline how such an object I/O system might be implemented. Users
want to read objects from a stream, determine that they are of the expected types, and
then use them. For example:

Section 14.2.7 An Example: Simple Object I/O 321

void user()

{

// open file assumed to hold shapes, and

// attach ss as an istream for that file

// . . .

io_obj* p = get_obj(ss); // read object from stream

if (Shape* sp = dynamic_cast<Shape*>(p)) {

sp->draw(); // use the Shape

// . . .

}

else {

// oops: non-shape in Shape file

}

}

The function u s e r () deals with shapes exclusively through the abstract class
Shape and can therefore use every kind of shape. The use of d y n a m i c _ c a s t is
essential because the object I/O system can deal with many other kinds of objects and
the user may accidentally have opened a file containing perfectly good objects of
classes that this user has never heard of.

This object I/O system assumes that every object read or written is of a class
derived from i o _ o b j. Class i o _ o b j must be a polymorphic type to allow us to use
d y n a m i c _ c a s t . For example:

class io_obj { // polymorphic
virtual io_obj* clone();

};

The critical function in the object I/O system is g e t _ o b j () that reads data from an
i s t r e a m and creates class objects based on that data. Let me assume that the data
representing an object on an input stream is prefixed by a string identifying the
object's class. The job of g e t _ o b j () is to read that string prefix and call a function
capable of creating and initializing an object of the right class. For example:

typedef io_obj* (*PF)(istream&);

Map<String,PF> io_map; // maps strings to creation functions

io_obj* get_obj(istream& s)
{

String str;
if (get_word(s,str) ==0) // read initial word into str

throw no_class;

PF f = io_map[str]; // lookup 'str' to get function
if (f == 0) throw unknown_class; // no match for 'str'

322 Casting Chapter 14

io_obj* p = f(s); // construct object from stream
if (debug) cout « typeid(*p).name() << '\n';

}

The Map called io_map is an associative array that holds pairs of name strings and
functions that can construct objects of the class with that name. The Map type is one
of the most useful and efficient data structures in any language. One of the first
widely used implementations of the idea in C++ was written by Andrew Koenig
[Koenig,1988]; see also [2nd,§8.8].

Note the use of t y p e i d () for debugging purposes. In this particular design, that
is the only use of RTTI in the implementation.

We could, of course, define class Shape the usual way except deriving it from
i o _ o b j as required by u s e r () :

class Shape : public io_obj {

// . . .

};

However, it would be more interesting (and in many cases more realistic) to use some
previously defined Shape class hierarchy unchanged:

class iocircle : public Circle, public io_obj {
public:

iocircle* clone() // override io_obj::clone()
{ return new iocircle(*this); }

iocircle(istream&); // initialize from input stream

static iocircle* new_circle(istream& s)

{

return new iocircle(s);

}

// . . .

};

The i o c i r c l e (i s t ream&) constructor initializes an object with data from its
i s t r e a m argument. The n e w _ c i r c l e function is the one put into the io_map to
make the class known to the object I/O system. For example:

io_map["iocircle"]=&iocircle::new_circle;

Other shapes are constructed in the same way:

class iotriangle : public Triangle, public io_obj {

// . . .

};

If the provision of the object I/O scaffolding becomes tedious, a template might be
used:

Section 14.2.7 An Example: Simple Object I/O 323

template-cclass T>

class io : public T, public io_obj {
public:

io* clone() // override io_obj::clone()
{ return new io(*this); }

io(istream&); // initialize from input stream

static io* new_io(istream& s)

{

return new io(s);

}

// . . .

};

Given this, we could define i o c i r c l e like this:

typedef io<Circle> iocircle;

We would still have to define i o < C i r c l e > : : io (i s t ream&) explicitly, though,
because it needs to know about the details of C i r c l e .

This simple object I/O system may not do everything anyone ever wanted, but it
almost fits on a single page, and the key mechanisms have many uses. In general,
these techniques can be used to invoke a function based on a string supplied by a user.

14.2.8 Alternatives Considered

The RTTI mechanism provided is an "onion design." As you peel off the layers of
the mechanism you find more powerful facilities - which if badly used might make
you cry.

The basic notion of the RTTI mechanisms described here is that for maximal ease
of programming and to minimize implementation dependencies, we should minimize
the use of RTTI:

[1] Preferably, we should use no run-time type information at all and rely exclu
sively on static (compile-time) checking.

[2] If that is not possible, we should use only dynamic casts. In that case, we
don't even have to know the exact name of the object's type and don't need to
include any header files related to RTTI.

[3] If we must, we can compare t y p e id () s, but to do that, we need to know the
exact name of at least some of the types involved. It is assumed that "ordinary
users'' will never need to examine run-time type information further.

[4] Finally, if we absolutely do need more information about a type - say, because
we are trying to implement a debugger, a database system, or some other form
of object I/O system - we can use operations on t y p e i d s to obtain more
detailed information.

This approach of providing a series of facilities of increasing involvement with run
time properties of classes contrasts to the approach of providing a class giving a single

324 Casting Chapter 14

standard view of the run-time type properties of classes - a meta-class. The C++
approach encourages greater reliance on the (safer and more efficient) static type sys
tem, has a smaller minimal cost (in time and comprehensibility) to users, and is also
more general because of the possibility of providing multiple views of a class by pro
viding more detailed type information.

Several alternatives to this ' 'onion approach'' were considered.

14.2.8.1 Meta-Objects

The onion approach differs from the approaches taken by Smalltalk and CLOS. Such
systems have also repeatedly been proposed for C++. In such systems, t y p e _ i n f o
is replaced by a ' 'meta-object'' capable of accepting - at run time - requests to per
form any operation that can be requested of an object in the language. In essence,
having a meta-object mechanism embeds an interpreter for the complete language in
the run-time environment. I saw that as a danger to the basic efficiency of the lan
guage, a potential way of subverting the protection mechanisms, and at odds with the
basic notions of design and documentation relating to static type checking.

These objections to basing C++ on a notion of meta-objects doesn't mean that
meta-objects can't be useful. They most certainly can be, and the notion of extended
type information opens the door for people who really need those techniques to sup
ply them through libraries. I did, however, reject the idea of burdening every C++
user with those mechanisms, and I cannot recommend those design and implementa
tion techniques for general C++ programming; see [2nd,§12] for details.

14.2.8.2 The Type-inquiry Operator

To many people, an operator that answers the question "is *pb of class D or a class
derived from D?" seems more natural than d y n a m i c _ c a s t that performs a cast if
and only if the answer to that question is affirmative. That is, they want to write code
like this:

void my_fct(dialog_box* bbp)
{

if (dbp->isKindOf(dbox_w_str)) {

dbox_w_str* dbsp = (dbox_w_str*)dbp;

// use dbsp
}
else {

// treat *dbp as a ''plain'' dialog box
}

}

There are several problems with this. The most serious is that the cast will, in some
cases, not give the desired result (see §14.3.2.1). This is an example of how difficult

Section 14.2.8.2 The Type-inquiry Operator 325

it can be to import notions from a different language. Smalltalk provides isKindOf
for type inquiry, but Smalltalk doesn't need the subsequent cast and therefore cannot
suffer any problems relating to it. However, importing the isKindOf idea into C++
would cause both technical and stylistic problems.

In fact, stylistic arguments had settled the issue for me in favor of some form of
conditional cast before I discovered those technical ' 'killer'' arguments against type-
inquiry operators along the line of isKindOf. Separating the test and the type con
version causes verbosity and makes it possible to mismatch the test and the cast.

14.2.8.3 Type Relations

Several people suggested defining <, <=, etc., on t y p e _ i n f o objects to express
relationships in a class hierarchy. That is easy, but too cute. It also suffers from prob
lems with an explicit type comparison operation as described in §14.2.8.2. We need a
cast in any event so we can just as well use a dynamic cast.

14.2.8.4 Multi-methods

A more promising use of RTTI would be to support "multi-methods," that is, the
ability to select a virtual function based on more than one object. Such a language
facility would be a boon to writers of code that deals with binary operations on
diverse objects; see §13.8. It appears that the t y p e _ i n f o objects could easily hold
the information necessary to accomplish this. This makes multi-methods more of a
possible further extension than an alternative to the approach we adopted.

I made no such proposal, however, because I could not clearly grasp the implica
tions of such a change and did not want to propose a major new extension without
experience in the context of C++.

14.2.8.5 Unconstrained Methods

Given RTTI, one can support "unconstrained methods;" that is, one could hold
enough information in the t y p e _ i n f o object for a class to check at run time
whether a given function was supported or not. Thus, one could support Smalltalk-
style run-time-checked function calls. However, I felt no need for that and considered
that extension as contrary to my effort to encourage efficient and type-safe program
ming. The dynamic cast enables a check-and-call strategy:

if (D* pd = dynamic_cast<D*>(pb)) { // is *pb a D?

pd->dfct(); // call D function

// . . .

}

rather than the call-and-have-the-call-check strategy of Smalltalk:

pb->dfct(); // hope pb points to something that
// has a dfct; handle failed calls
// somewhere (else)

326 Casting Chapter 14

The check-and-call strategy provides more static checking (we know at compile time
that df ct is defined for class D), doesn't impose an overhead on the vast majority of
calls that don't need the check, and provides a visible clue that something beyond the
ordinary is going on.

14.2.8.6 Checked Initialization

We also considered checking assignments and/or initialization in a way similar to
what is done in languages such as Beta and Eiffel. For example:

void f(B* pb)
{

D* pdl = pb; // error: type mismatch
D* pd2 ?= pb; // ok, check if is *pb a D at run time

pdl = pb; // error: type mismatch
pd2 ?= pb; // ok, check if is *pb a D at run time

}

However, I thought the ? was too hard to spot in real code and too error-prone
because it wouldn't be combined with a test. Also, it sometimes requires the intro
duction of an otherwise unnecessary named variable. The alternative, allowing ? =
only in conditions seemed very attractive:

void f(B* pb)
{

D* pdl ?= pb; // error: unchecked
// conditional initialization

if (D* pd2 ?= pb) { // ok: checked
// conditional initialization

// . . .
}

}

However, you would have to distinguish between cases where exceptions are thrown
in the case of failure and cases where 0 is returned. Also, a ? = operator would lack
the odium attached to ugly casts and would therefore encourage misuse.

By allowing declarations in conditions (§3.11.5.2), I made it possible to use
d y n a m i c _ c a s t in the style suggested by this alternative:

void f(B* pb)
{

if (D* pd2 = dynamic_cast<D*>(pb)) { // ok: checked
// . . .

}
}

Section 14.3 A New Cast Notation 327

14.3 A New Cast Notation
Syntactically and semantically, casts are one of the ugliest features of C and C++.
This has led to a continuous search for alternatives to casts: Function declarations
enabling implicit conversion of arguments (§2.6), templates (§14.2.3), and the relax
ation of the overriding rules for virtual functions (§13.7) each remove the need for
some casts. The d y n a m i c _ c a s t operator (§14.2.2), on the other hand, provides a
safer alternative to old-style casts for a specific usage. This led to a complementary
approach to try to factor out the logically separate uses of casting and support them
with operators similar to d y n a m i c _ c a s t :

static_cast<T>(e) // reasonably well-behaved casts.
reinterpret_cast<T>(e) // casts yielding values that must

// be cast back to be used safely.
const_cast<T>(e) // casting away const.

This section can be read as an analysis of the problems with old-style casts or as a
synthesis of a new feature. It is both. The definition of these operators owes much to
the efforts of the extensions working group where strong opinions both for and
against have been heard. Dag Brück, Jerry Schwarz, and Andrew Koenig have made
particularly constructive contributions. These new cast operators were accepted at the
San Jose meeting in November of 1993.

To conserve space the discussion is almost completely restricted to the most diffi
cult case: pointers. The treatment of arithmetic types, pointers to members, refer
ences, etc., is left as an exercise for the reader.

14.3.1 The Problem

The C and C++ cast is a sledgehammer: (T) exp r will - with very few exceptions -
yield a value of type T based in some way on the value of expr . Maybe a simple
reinterpretation of the bits of exp r is involved, maybe an arithmetic narrowing or
widening is involved, maybe some address arithmetic is done to navigate a class hier
archy, maybe the result is implementation dependent, maybe a c o n s t or v o l a t i l e
attribute is removed, etc. It is not possible for a reader to determine what the writer
intended from an isolated cast expression. For example:

const X* pc = new X;
// . . .
pv = (Y*)pc;

Did the programmer intend to obtain a pointer to a type unrelated to X? Cast away the
c o n s t attribute? Both? Was the intent to gain access to a base class Y of X? The
possibilities for confusion are endless.

Further, an apparently innocent change to a declaration can quietly change the
meaning of an expression dramatically. For example:

328 Casting Chapter 14

class X : public A, public B { / * . . . * / } ,-

void f(x* px)
{

((B*)px)->g(); // call B's g
px->B::g(); // a more explicit, better, way

}

Change the definition of X so that B no longer is a base class and the meaning of
(B *) px changes completely without giving the compiler any chance to diagnose a

problem.
Apart from the semantic problems with old-style casts, the notation is unfortunate.

The notation is close to minimal and uses only parentheses - the most overused syn
tactic construct in C. Consequently, casts are hard for humans to spot in a program
and also hard to search for using simple tools such as g r e p . The cast syntax is also a
major source of C++ parser complexity.

To sum up, old-style casts:
[1] Are a problem for understanding: they provide a single notation for several

weakly related operations.
[2] Are error-prone: almost every type combination has some legal interpretation.
[3] Are hard to spot in code and hard to search for with simple tools.
[4] Complicate the C and C++ grammar.

The new cast operators represent a classification of the old cast's functionality. To
have a chance of wide acceptance in the user population, they have to be able to per
form any operation that the old casts can do. Otherwise, a reason for future use of
old-style casts would have been provided. I have found only one exception: an old-
style cast can cast from a derived class to its private base class. There is no reason for
this operation; it is dangerous and useless. There is no mechanism for granting one
self access to the complete private representation of an object - and none is needed.
The fact that an old-style cast can be used to gain access to the part of a representation
that is a private base is an unfortunate historical accident. For example:

class D : public A, private B {

private:

int m;

// . . .

};

void f(D* pd) // f() is not a member or a friend of D

{

B* pbl = (B*)pd; // gain access to D's

// -private base B.

// Yuck!

B* pb2 = static_cast<B*>(pd); // error: can't access

// private. Fine!

}

Section 14.3.1 The Problem 329

Except by manipulating pel as a pointer to raw memory, there is no way for f () to
get to D: : m. Thus, the new cast operators close a loophole in the access rules and
provide a greater degree of consistency.

The long names and the template-like syntax of the new casts put off some people.
That may be all for the better because one of the purposes of the new casts is to
remind people that casting is a hazardous business and to emphasize that there are dif
ferent kinds of danger involved in the use of the different operators. In my experi
ence, the strongest dislike is expressed by people who use C++ mostly as a dialect of
C and think they need to cast frequently. Also, people who haven't yet made serious
use of templates find the notation odd. The dislike for the template-like notation
wears off as people gain experience with templates.

14.3.2 The s t a t i c _ c a s t Operator

The s t a t i c _ c a s t < T > (e) notation is meant to replace (T) e for conversions such
as Base* to Der ived* . Such conversions are not always safe but frequent and
well-defined even in the absence of a run-time check. For example:

class B {/*...*/} ;

class D : public B { /* ... */ } ;

void f(B* pb, D* pd)
{

D* pd2 = static_cast<D*>(pb); // what we used
// to call (D*)pb.

B* pb2 = static_cast<B*>(pd); // safe conversion
// . . .

}

One way of thinking of s t a t i c _ c a s t is as the explicit inverse operation to the
implicit conversions. Except that s t a t i c _ c a s t respects constness, it can do S->T
provided T->S can be done implicitly. This implies that in most cases the result of
s t a t i c _ c a s t can be used without further casting. In this, it differs from
r e i n t e r p r e t _ c a s t (§14.3.3).

In addition, conversions that may be performed implicitly such as standard con
versions and user-defined conversions are invoked by s t a t i c _ c a s t .

In contrast to d y n a m i c _ c a s t , no run-time check is required for the
s t a t i c _ c a s t conversion of pb. The object pointed to by pb might not point to a
D in which case uses of *pd2 are undefined and probably disastrous.

In contrast to the old-style cast, pointer and reference types must be complete; that
is, trying to use s t a t i c _ c a s t to convert to or from a pointer to a type for which
the declaration hasn't been seen is an error. For example:

330 Casting Chapter 14

class X; // X is an incomplete type
class Y; // Y is an incomplete type

void f(X* px)
{

Y* p = (Y*)px; // allowed, dangerous
p = static_cast<Y*>(px); // error:

// X and Y undefined
}

This eliminates yet another source of errors. If you need to cast incomplete types, use
r e i n t e r p r e t _ c a s t (§14.3.3) to make it clear that you are not trying to do hierar
chy navigation, or use d y n a m i c _ c a s t (§14.2.2).

14.3.2.1 Static Casts and Dynamic Casts

The effect of both d y n a m i c _ c a s t and s t a t i c _ c a s t on pointers to classes is
navigation in a class hierarchy. However, s t a t i c _ c a s t relies exclusively on static
information (and can therefore be fooled). Consider:

c l a s s B { / * . . . * / } ;

class D : public B { / * . . . * / };

void f(B* pb)
{

D* pdl = dynamic_cast<D*>(pb);
D* pd2 = static_cast<D*>(pb);

}

If pb really points to a D, then p d l and pd2 get the same value. So do they if
pb= = 0. However, if pb points to a B (only) then d y n a m i c _ c a s t will know
enough to return 0, whereas s t a t i c _ c a s t must rely on the programmer's assertion
that pb points to a D and returns a pointer to the supposed D object. Worse, consider:

class Dl : public D { /* ... */ };
class D2 : public B { / * . . . * / };
class X : public Dl, public D2 { /* ... */ };

void g()
{

D2* pd2 = new X;
f(pd2);

}

Here, g () will call f () with a B that is not a sub-object of a D. Consequently,
d y n a m i c _ c a s t will correctly find the sibling sub-object of type D, whereas
s t a t i c _ c a s t will return a pointer to some inappropriate sub-object of the X. I
think it was Martin O'Riordan who first brought this phenomenon to my attention.

Section 14.3.3 The reinterpret_cast Operator 331

14.3.3 The r e i n t e r p r e t _ c a s t Operator

The r e i n t e r p r e t _ c a s t < T > (e) notation is meant to replace (T) e for conver
sions, such as c h a r * to i n t * and Some_c la s s* to U n r e l a t e d _ c l a s s * , that
are inherently unsafe and often implementation dependent. Basically,
r e i n t e r p r e t _ c a s t returns a value that is a crude reinterpretation of its argument.
For example:

c l a s s S;
c l a s s T;

void f(int* pi, char* pc, S* ps, T* pt, int i)
{

S* ps2 = reinterpret_cast<S*>(pi);
S* ps3 = reinterpret_cast<S*>(pt);
char* pc2 = reinterpret_cast<char*>(pt);
int* pi2 = reinterpret_cast<int*>(pc);
int i2 = reinterpret_cast<int>(pc);
int* pi3 = reinterpret_cast<int*>(i);

}

The r e i n t e r p r e t _ c a s t operator allows any pointer to be converted into any
other pointer type and also any integral type to be converted into any pointer type and
vice versa. Essentially, all of these conversions are unsafe, implementation depen
dent, or both. Unless the desired conversion is inherently low-level and unsafe, the
programmer should use one of the other casts.

Unlike s t a t i c _ c a s t , the result of a r e i n t e r p r e t _ c a s t can't safely be
used for anything except being cast back to its original type. Other uses are at best
non-portable. This is why pointer-to-function and pointer-to-member conversions are
r e i n t e r p r e t _ c a s t s rather than s t a t i c _ c a s t s . For example:

void thump(char* p) { *p = 'x'; }

typedef void (*PF)(const char*);
PF pf;

void g(const char* pc)
{

thump(pc); // error: bad argument type

pf = &thump; // error

pf = static_cast<PF>(&thump); // error!

pf = reinterpret_cast<PF>(&thump); // ok: on your
// head be it

pf(pc); // not guaranteed to work!
}

Clearly, getting pf to point to thump is dangerous because doing so fools the type

332 Casting Chapter 14

system and allows the address of a c o n s t to be passed to something that tries to
modify it. That is why we must use a cast and in particular why the "nasty"
r e i n t e r p r e t _ c a s t must be used. It comes as a surprise to many, though, that a
call through pf to thump is still not guaranteed to work (in C++ exactly as in C).
The reason is that an implementation is allowed to use different calling sequences for
different function types. In particular, there are good reasons why an implementation
would use different calling sequences for c o n s t and non-const arguments.

Note that r e i n t e r p r e t _ c a s t does not do class hierarchy navigation. For
example:

class A { /* ... */ };
class B { / * . . . * / } ;
class D : public A, public B { /* ... */ } ;

void f(B* pb)
{

D* pdl = reinterpret_cast<D*>(pb);
D* pd2 = static_cast<D*>(pb);

}

Here, p d l and pd2 will typically get different values. In a call

f (new D) ;

p d l will point to the start of the D object passed, whereas pd2 will point to the start
of D's B sub-object.

R e i n t e r p r e t _ c a s t < T > (a rg) is almost as bad as (T)a rg . However,
r e i n t e r p r e t _ c a s t is more visible, never performs class hierarchy navigation,
does not cast away c o n s t , and the other casts provide alternatives;
r e i n t e r p r e t _ c a s t is an operation for performing low-level and usually
implementation-dependent conversions - only.

14.3.4 The c o n s t _ c a s t Operator

The thorniest issue in finding a replacement for old-style casts was finding an accept
able treatment of c o n s t . The ideal is to ensure that "constness" is never quietly
removed. For this reason r e i n t e r p r e t _ c a s t , d y n a m i c _ c a s t , and
s t a t i c _ c a s t were conceived as respecting constness; that is, they can't be used to
"cast away c o n s t . "

The c o n s t _ c a s t < T > (e) notation is meant to replace (T) e for conversions
used to gain access to data specified c o n s t or v o l a t i l e . For example:

extern "C" char* strchr (char*, char);

inline const char* strchr(const char* p, char c)
{

return strchr(const_cast<char*>(p), char c);
}

Section 14.3.4 The const_cast Operator 333

In c o n s t _ c a s t < T > (e) , the type argument T must be identical to the type of the
argument e except for c o n s t and v o l a t i l e modifiers. The result is identical to e
except that its type is T.

Note that the result of casting away c o n s t from an object originally defined
c o n s t is undefined (§13.3).

14.3.4.1 Problems with c o n s t Protection

There are, unfortunately, subtleties in the type system that open loopholes in the pro
tection against implicit violation of "constness." Consider:

const char** pec = &ch;
void* pv = pec; //no cast needed:

// pec isn't a const, it only points to one
char** pc = (char**)pv;

void f()
{

**pc = 'x'; // Zap!
}

However, having v o i d * unsafe can be considered acceptable because everybody
knows - or at least ought to know - that casts from v o i d * are inherently tricky.

Such examples become interesting when you start building classes that can con
tain a variety of pointer types (for example, to minimize generated code, see §15.5).

Unions and the use of the ellipsis to suppress type checking of function arguments
provide other loopholes in the protection against implicit violation of "constness."
However, I prefer a system that leaves a few loopholes to one that provides no protec
tion at all. As with vo id* , programmers should know that unions and unchecked
function arguments are inherently dangerous, should be avoided wherever possible,
and should be handled with special care when actually needed.

14.3.5 Impact of the New-style Casts

The new-style casts are part of a continuing effort to eliminate holes in the C++ type
system. The aim is to minimize and localize unsafe and error-prone programming
practices. Here, I discuss how to cope with related problem areas (old-style casts,
implicit narrowing conversions, and function style conversions) and how to convert
existing code to use the new cast operators.

14.3.5.1 Old-style Casts

I intended the new-style casts as a complete replacement for the (T) e notation. I
proposed to deprecate (T) e; that is, for the committee to give users warning that the
(T) e notation would most likely not be part of a future revision of the C++ standard.

I saw a direct parallel between this and the introduction of C++-style function proto
types in the ANSI/ISO C standard together with the deprecation of unchecked calls.

334 Casting Chapter 14

However, that idea didn't gain a majority, so that cleanup of C++ will probably never
happen.

What is more important, though, is that the new cast operators provide individual
programmers and organizations with an opportunity to avoid the insecurities of old-
style casts when type safety is more important than backward compatibility with C.
The new casts can further be supported by compiler warnings for the use of old-style
casts.

The new cast operators provide an evolution path to a safer, yet no less efficient,
style of programming. This is likely to increase in importance over the years as the
general quality of code improves and tools assuming type safety come into
widespread use - in C++ and in other languages.

14.3.5.2 Implicit Narrowing Conversions

The idea of minimizing violations of the static type system and making such viola
tions as obvious as possible is fundamental to the work on new casts. Naturally, I
also reconsidered the possibility of eliminating implicit narrowing conversions such
as l o n g to i n t and d o u b l e to c h a r (§2.6.1). Unfortunately, a general ban is not
just infeasible, it would also be counterproductive. The main problem is that arith
metic can overflow:

void f(char c, short s, int i)
{

C++; // result might not fit in a char
s++; // result might not fit in a short

i++; // might overflow
}

If we prohibited implicit narrowing, C + + and s + + would become illegal because
cha r s and s h o r t s are promoted to i n t s before arithmetic operations are per
formed. Requiring explicit casts for narrowing conversions would require a rewrite:

void f(char c, short s, int i)
{

c = static_cast<char>(c+1) ;
s = static_cast<short>(s+1);
i++;

}

I don't see any hope for imposing such a notational burden without a corresponding
major benefit. And where is the benefit? Littering the code with explicit casts will
not improve code clarity and won't even reduce the number of errors because people
would add the casts thoughtlessly. The i + + isn't safe, either, because of the possibil
ity of overflow. Adding the casts might even be counterproductive because an imple
mentation might by default catch overflow at run time, and the explicit use of a cast
would suppress such a check. A better way would be to define d y n a m i c _ c a s t to
perform a run-time check on the value of a numeric operand. That way users who
consider checking important could then use d y n a m i c _ c a s t where their experience

Section 14.3.5.2 Implicit Narrowing Conversions 335

tells them that the check is actually worthwhile. Alternatively, people can just write a
function that checks and use that. For example (§15.6.2):

template<class V, class U> V narrow(U u)
{

V v = u;
if (v!=u) throw bad_narrowing;
return v;

}

Even though a ban on narrowing conversions is infeasible and would require a thor
ough overhaul of the rules governing arithmetic operations, there are still quite a few
conversions that an implementation could warn against with a good degree of confi
dence: floating type to integral type, l ong to s h o r t , l o n g to i n t , and l ong to
cha r . Cfront always did that. In my experience, other potentially narrowing conver
sions such as i n t to f l o a t and i n t to c h a r are harmless too often for warnings to
be accepted by users.

14.3.5.3 The Constructor Call Notation

C++ supports the constructor notation T (v) as a synonym for the old-style cast nota
tion (T)v. A better solution would be to redefine T(v) as a synonym for valid
object construction as in initializations such as

T v a l (v) ;

(that we don't have a good name for). This would require a transition because - like
the suggested deprecation of (T) v - this breaks existing code. Like the deprecation
of the (T) e notation, this failed to gain acceptance in the committee. Fortunately,
people who want to use an explicit form of otherwise implicit conversions, say for
disambiguation, can write a class template to do so (§15.6.2).

14.3.5.4 Using the New Casts

Can the new casts be used without understanding the subtleties presented here? Can
code using old-style casts be converted to use the new-style casts without program
mers getting bogged down in language law? For the new casts to become widely pre
ferred over old-style casts, the answer to both questions must be yes.

A simple conversion strategy is to use s t a t i c _ c a s t in all cases and see what
the compiler says. If the compiler doesn't like s t a t i c _ c a s t in some case, then
that case is worth examining. If the problem is a c o n s t violation, look to see if the
result of the cast does lead to an actual violation; if not, c o n s t _ c a s t should be
used. If the problem is incomplete types, pointer to functions, or casting between
unrelated pointer types, try to determine that the resulting pointer is actually cast back
again before use. If the problem is something like a pointer to i n t conversion one
ought to to think harder about what should be going on. If such a cast can't be elimi
nated, r e i n t e r p r e t _ c a s t will do exactly what an old-style cast would do in such
cases.

336 Casting Chapter 14

In most cases this analysis and its resulting elimination of old-style casts can be
done by a not-too-complicated program. In all cases, it would be better if the cast -
new or old - could be eliminated.

Templates

There is nothing more difficult to carry out,
nor more doubtful of success, nor more dangerous

to handle, than to initiate a new order of things.
- Niccolo Macchiavelli

Support for parameterized types — class templates — constraints on tem
plate arguments — avoiding storage overhead — function templates —
deducing function template arguments — explicit specification of function
template arguments — conditionals in templates — syntax — composition
techniques — relationships among template classes — member templates
— template instantiation — name binding in templates — specialization —
explicit instantiation — a model for templates in files — importance of
templates.

15.1 Introduction

Templates and exceptions were explicitly mentioned in the "whatis" paper
[Stroustrup, 1986b] (§3.15) as desirable for C++, the designs for the two features were
presented in papers [Stroustrup, 1988b] [Koenig, 1989b] [Koenig,1990], in the ARM,
and their inclusion into the language was mandated in the proposal for standardization
of C++. Thus, even though the implementation and availability of templates and
exception handling in C++ post-dates the start of the standardization effort, their
design and the desire for them goes much further back in C++'s history.

The roots of templates lie in the wish to express parameterization of container
classes. Exceptions come from a desire to provide a standard way to handle run-time
errors. In both cases, the mechanisms inherited from C were in actual use found to be
too primitive. The C features didn't allow programmers to directly express their aims

15

and didn't interact well with key features of the C++ language. We had used macros
to parameterize containers since the earliest days of C with Classes (§2.9.2), but C
macros fail to obey scope and type rules and don't interact well with tools. The
mechanisms used for error handling in early C++ such as s e t j m p / l o n g j m p and
error indicators (for example, e r r n o) don't interact well with constructors and
destructors.

The lack of these features led to warped designs, to unnecessarily low-level coding
styles, and eventually to problems with combining libraries from more than one pro
vider. In other words, the absence of these features made it unnecessarily difficult for
people to maintain a consistent (high) level of abstraction.

To my mind, templates and exceptions are two sides of the same coin: templates
allow a reduction in the number of run-time errors by extending the range of problems
handled by static type checking; exceptions provide a mechanism for dealing with the
remaining run-time errors. Templates make exception handling manageable by reduc
ing the need for run-time error handling to the essential cases. Exceptions make gen
eral template-based libraries manageable by providing a way for such libraries to
report errors.

15.2 Templates
In the original design of C++, parameterized types were considered but postponed
because there wasn't time to do a thorough job of exploring the design and implemen
tation issues and because of fear of the complexity they might add to an implementa
tion. In particular, I worried that a poor design would cause slow compilation and
linking. I also assumed that a well-supported parameterized type mechanism would
significantly increase porting times. Unfortunately, my fears proved well founded.

Templates were considered essential for the design of proper container classes. I
first presented the design for templates at the 1988 USENIX C++ conference in Den
ver [Stroustrup,1988b]. I summarized the issues like this:

' 'In the context of C++, the problems are
[1] Can type parameterization be easy to use?
[2] Can objects of a parameterized type be used as efficiently as objects of a

' 'hand-coded'' type?
[3] Can a general form of parameterized types be integrated into C++?
[4] Can parameterized types be implemented so that the compilation and linking

speed is similar to that achieved by a compilation system that does not support
type parameterization?

[5] Can such a compilation system be simple and portable?''
These were my design criteria for templates. Naturally, my answer to all these ques
tions was yes. I stated the fundamental design alternatives like this:

"For many people, the largest single problem using C++ is the lack of an exten
sive standard library. A major problem in producing such a library is that C++
does not provide a sufficiently general facility for defining "container classes"

Section 15.2 Templates 339

such as lists, vectors, and associative arrays. There are two approaches for provid
ing such classes/types:

[1] The Smalltalk approach: rely on dynamic typing and inheritance.
[2] The Clu approach: rely on static typing and a facility for arguments of type

type.
The former is very flexible, but carries a high run-time cost, and more importantly
defies attempts to use static type checking to catch interface errors. The latter
approach has traditionally given rise to fairly complicated language facilities and
also to slow and elaborate compile/link time environments. This approach also
suffered from inflexibility because languages where it was used, notably Ada, had
no inheritance mechanism.

Ideally, we would like a mechanism for C++ that is as structured as the Clu
approach with ideal run-time and space requirements, and with low compile-time
overheads. It also ought to be as flexible as Smalltalk's mechanisms. The former
is possible; the latter can be approximated for many important cases."

Thus, the key issues were seen to be notational convenience, run-time efficiency, and
type safety. The main constraints were portability and reasonably efficient compila
tion and linkage - including the instantiation of template classes and functions
directly or indirectly used in a program.

The key activity in determining what we needed from a parameterized type facility
was to write programs using macros to fake parameterized types. In addition to me,
Andrew Koenig, Jonathan Shopiro, and Alex Stepanov wrote many template-style
macros to help determine what language features were needed to support this style of
programming. Ada didn't feature in my thinking about templates except as the source
of my dislike for template instantiation operators (§15.10.1). Alex Stepanov knew
Ada well, though, and some Ada styles may have entered our thinking through his
examples.

The earliest implementation of templates that was integrated into a compiler was a
version of Cfront that supported class templates (only) written by Sam Haradhvala at
Object Design Inc. in 1989. This version was later expanded into a full implementa
tion by Stan Lippman and supported by a template instantiation mechanism designed
by Glen McClusky with input from Tony Hansen, Andrew Koenig, Rob Murray, and
me [McClusky, 1992]. Mary Fontana and Martin Neath from Texas Instruments wrote
a public-domain preprocessor that implemented a variant of templates [Fon-
tana,1991].

These and other implementations gave us significant experience. However, I and
others were still nervous about putting something not completely well-understood into
a standard, so the template mechanism defined in the ARM was deliberately minimal.
It was understood at the time that it was probably too minimal, but it is much harder
to remove unfortunate features than to add features shown to be needed.

The template mechanisms presented in the ARM were accepted by the ANSI C++
committee in July 1990. An important argument for the acceptance of templates into
the draft standard was the observation that the committee members discussing the
issue in a working group found that among ourselves, we had more than half a million

340 Templates Chapter 15

lines of C++ using templates and ' 'fake templates'' in real use.
In retrospect, templates fell into a crack between two strategies for refining the

design of a new C++ language feature. Before templates, I refined all features through
a process of implementation, use, discussion, and reimplementation. After templates,
features were extensively discussed in the standards committee and usually imple
mented concurrently with that discussion. The discussion about templates wasn't as
extensive or wide-ranging as it ought to have been, and I lacked the crucial implemen
tation experience. This has led to a revision of many aspects of templates based on
implementation and usage experience. For post-exception-handling extensions, I
have resurrected the practice of acquiring personal implementation experience as a
key design activity.

Despite their rough corners and need for revision, templates did what they were
supposed to do. In particular, templates allowed efficient, compact, and type-safe
C++ container classes to be designed and conveniently used. Without templates,
design choices were being pushed towards weakly typed or dynamically typed alter
natives to the detriment of both program structure and efficiency.

I do, however, think that I was too cautious and conservative when it came to
specifying template features. I could have included features such as explicit specifica
tion of function template arguments (§15.6.2), deduction of non-type function tem
plate arguments (§15.6.1), and nested templates (§15.9.3). These features would not
have added greatly to the burden of the implementers, and users would have been
helped. On the other hand, I failed to give enough guidance and support to imple
menters in the area of template instantiation (§15.10). What I cannot know is whether
I would have done more harm than good had I proceeded with the design of templates
without the benefit of experience that implementation and use of the initial design
have given me.

The presentation here reflects the state of affairs after much experience has been
gained and resolutions reflecting this experience passed by the ANSI/ISO standards
committee. The name binding rules, the explicit instantiation mechanism, the restric
tions on specialization, and the explicit qualification of template function calls were
voted into C++ at the San Jose meeting in November 1993 as part of a general cleanup
of the definition of templates.

The discussion of templates is organized like this:
§15.3
§15.4
§15.5
§15.6
§15.7
§15.8
§15.9
§15.10
§15.11

Class Templates.
Constraints on Template Arguments.
Avoiding Code Replication.
Function Templates.
Syntax.
Composition Techniques.
Template Class Relationships.
Template Instantiation.
Implications of Templates.

\

Section 15.3 Class Templates 341

15.3 Class Templates
The key constructs were explained like this [Stroustrup, 1988b]:

' 'A C++ parameterized type will be referred to as a class template. A class tem
plate specifies how individual classes can be constructed much like the way a
class specifies how individual objects can be constructed. A vector class template
might be declared like this:

template<class T> class vector {
T* v;
int sz;

public:
vector(int);
T& operator[](int);
T& elem(int i) { return v[i]; }
// . . .

};

The t e m p l a t e < c l a s s T> prefix specifies that a template is being declared and
that an argument T of type type will be used in the declaration. After its introduc
tion, T is used exactly like other type names within the scope of the template dec
laration. Vectors can then be used like this:

vector<int> vl(20);
vector<complex> v2 (30) ;

typedef vector<complex> cvec; // make cvec a synonym
// for vector<complex>.

cvec v3(40); // v2 and v3 are of the same type.

void f()
{

vl[3] = 7;
v2[3] = v3.elem(4) = complex(7,8);

}

Clearly class templates are no harder to use than classes. The complete names of
instances of a class template, such as v e c t o r < i n t > and vec to r<complex> ,
are quite readable. They might even be considered more readable than the nota
tion for the built-in array type: i n t [] and complex []. When the full name is
considered too long, abbreviations can be introduced using typedef .

It is only trivially more complicated to declare a class template than it is to
declare a class. The keyword c l a s s is used to indicate arguments of type type
partly because it appears to be an appropriate word, partly because it saves intro
ducing a new keyword. In this context, c l a s s means "any type" and not just
''some user-defined type."

The <. . . > brackets are used in preference to the parentheses (. . .) to
emphasize the different nature of template arguments (they will be evaluated at
compile time) and because parentheses are already hopelessly overused in C++.

342 Templates Chapter 15

The keyword t e m p l a t e is introduced to make template declarations easy to
find, for humans and for tools, and to provide a common syntax for class tem
plates and function templates."

Templates provide a mechanism for generating types. They are not themselves types
and have no run-time representation. Therefore, they have no effect on the object lay
out model.

One reason for the emphasis on run-time efficiency comparable to macros was
that I wanted templates to be efficient enough in time and space to be used for low-
level types such as arrays and lists. For that, I considered inlining essential. In partic
ular, I saw standard array and vector templates as the only realistic way to allow C's
low-level array concept to be confined to the guts of implementations where it serves
well. Higher-level alternatives - say, a range-checked array with a s i z e () opera
tion, a multidimensional array, a vector type with proper numeric vector operations
and copy semantics, etc. - would be accepted by users only if their run-time, space,
and notational convenience approached those of built-in arrays.

In other words, the language mechanism supplying parameterized types should be
such that a concerned user should be able to afford to eliminate the use of arrays in
favor of a standard library class (§8.5). Naturally, built-in arrays would still be there
for people who wanted them and for the millions of lines of old code that use them.
However, I intended to provide an efficient alternative to people who value conve
nience and type safety over compatibility.

Secondarily, C++ supports virtual functions and through them a variant of every
concept for which the obvious implementation technique is a jump table. For exam
ple, a "truly abstract" set of T would be implemented as a template that was an
abstract class with its virtual functions operating on T objects (§13.2.2). For this rea
son, I felt I could concentrate on source-text-based, compile-time intensive solutions
that provided near optimal run-time and space performance.

15.3.1 Non-type Template Arguments

In addition to type arguments, C++ allows non-type template arguments. These were
primarily seen as necessary for supplying sizes and limits to container classes. For
example:

template<class T, int i> class Buffer {

T v [i] ;

int sz;

public:

Buffer() :sz(i) {}

// . . .

};

Such templates are important when competing head on with C arrays and structs
where run-time efficiency and compactness are important. Passing a size allows the
implementer of a container to avoid free store use.

Had non-type arguments not been available, users would have encoded sizes in

Section 15.3.1 Non-type Template Arguments 343

array types. For example:

template<class T, class A> class Buf {

A v;

int sz;

public:

Buf() :sz(sizeof(A)/sizeof(T)) {}

// . . .

};

Buf<int,int[700]> b;

This seemed indirect, error-prone, and doesn't extend cleanly to types other than inte
gers. In particular, I wanted pointer to function template arguments for flexibility.

Currently, namespaces and templates cannot be template arguments. This restric
tion is another case of simple caution. I now see no reason not to allow such argu
ments and they would obviously be useful.

15.4 Constraints on Template Arguments
Template arguments are not constrained in any way. Instead, all type checking is
postponed to template instantiation time [Stroustrup,1988b]:

" "Should a user be required to specify the set of operations that may be used for
a template argument of type typeT' For example:

// The operations =, ==, <, and <=

// must be defined for an argument type T

template <
class T {

T& operator=(const T&);
int operator==(const T&, const T&);
int operator<=(const T&, const T&);
int operator<(const T&, const T&);

};
>

class vector {

// . . .

};

No. Requiring the user to provide such information decreases the flexibility of the
parameterization facility without easing the implementation or increasing the
safety of the facility. ... It has been argued that it is easier to read and understand
parameterized types when the full set of operations on a type parameter is speci
fied. I see two problems with this: such lists would often be long enough to be
unreadable and a higher number of templates would be needed for many applica
tions."

In retrospect, I underestimated the importance of constraints in readability and early

344 Templates Chapter 15

error detection, but I also discovered further problems with expressing constraints: a
function type is too specific to be an effective constraint. If taken literally, a function
type seriously overconstrains the solution. In the v e c t o r example, one would imag
ine that any < accepting two arguments of type T should be acceptable. However, in
addition to the built-in operator < we have several plausible alternatives:

int X: : operator< (X) ;
int Y::operator<(const Y&);
int operator<(Z,Z);
int operator<(const ZZ&,const ZZ&) ;

If taken literally, only ZZ would be an acceptable argument for the v e c t o r class
template.

The idea of constraining templates repeatedly surfaced:
- Some people thought that better code could be generated if template arguments

were constrained -1 don't believe that.
- Some people thought static type checking was compromised by the absence of

constraints - it isn't, but some parts of static type checking are postponed until
link time and that is indeed a practical problem.

- Some people thought that template declarations would be easier to understand
given constraints - often, that is indeed the case.

The following sections present two alternative ways of expressing constraints. Gener
ating member functions only if actually needed (§15.5) and specialization (§15.10.3)
are alternatives to constraints in some cases.

15.4.1 Constraints through Derivation

Doug Lea, Andrew Koenig, Philippe Gautron, I, and many others independently dis
covered the trick of using the inheritance syntax to express constraints. For example:

template <class T> class Comparable {
T& operator=(const T&);
int operator==(const T&, const T&);
int operator<=(const T&, const T&);
int operator<(const T&, const T&);

};

template <class T : Comparable>
class vector {

// .. .
};

This makes sense. The various proposals differ in details, but they would all have the
desired effect of pushing error detection and reporting forward to the compilation of
an individual compilation unit. Proposals along this line are still under discussion in
the C++ standards groups.

I do, however, have a fundamental objection to expressing constraints through
derivation. It would encourage programmers to organize their programs so that

Section 15.4.1 Constraints through Derivation 345

anything that is a reasonable constraint is a class and thus encourage the use of inheri
tance to express every constraint. For example, instead of saying ' 'T must have a
less-than function," one must say "T must be derived from Comparable ." This is
an indirect and somewhat inflexible way of expressing constraints and can easily lead
to an overuse of inheritance.

Because there are no inheritance relationships among built-in types, such as i n t
and doub le , derivation cannot be used to constrain such types. Similarly, derivation
cannot be used to express constaints that apply to both a user-defined and a built-in
type. For example, the reasons that an i n t and a complex are often acceptable
alternatives as template arguments cannot be expressed through derivation.

Further, a template writer can't foresee every possible use of a template. This
leads to programmers initially overconstraining template arguments, and then later -
out of experience - underconstraining them. The logical outcome of constraints-
through-derivation is the introduction of a universal base class to express "no con
straints." However, such a base class would become the cause of much sloppy coding
both within the context of templates and elsewhere (see §14.2.3).

Using derivation to constrain template arguments also fails to address what has
been discovered to be a nuisance: Derivation constraints do not allow a programmer
to write two templates with the same name so that one is used for pointer types and
the other for non-pointer types. This problem was first brought to my attention by
Keith Gorlen. It can be addressed through template function overloading (§15.6.3.1).

A more fundamental criticism of this approach is mat it uses inheritance for some
thing that isn't primarily sub-typing. I see constraints expressed in terms of inheri
tance as an example of inheritance being used just because it is fashionable rather than
for any fundamental reason. Inheritance relationships are not the only useful relation
ships, and not all relationships between types and statements about types should be
shoehorned into an inheritance framework.

15.4.2 Constraints through Use

When I first gained access to a template implementation, I solved the constraint prob
lem by expressing constraints as use in an inline function. For example:

template<class T> class X {
// . . .
void constraints(T* tp)
{ // T must have:

B* bp = tp; // an accessible base B
tp->f(); // a member function f
T a(l); // a constructor from int
a = *tp; // assignment
// . . .

}
};

Unfortunately, this takes advantage of a local implementation detail: Cfront does a
complete syntax and semantic check of all inline functions when a template

346 Templates Chapter 15

declaration is instantiated. However, a version of a function shouldn't be generated
for a particular set of template arguments unless it is called (§15.5).

The approach allows the template writer to specify a constraint function and a
template user can check the constraint by calling the function when such a check is
convenient for the user.

If the template writer does not want to bother the user, the template writer can call
c o n s t r a i n t s () from every constructor. However, this can be tedious when there
are many constructors and when those constructors wouldn't ordinarily be inline.

If necessary, the notion could be formalized as a language feature:

template<class T>
constraints {

T* tp; // T must have:

B* bp = tp; // an accessible base B

tp->f(); // a member function f

T a(l); // a constructor from int

a = *tp; // assignment

// . . .

}

class X {

// . . .

};

This would allow constraints on template arguments for function templates, but I
doubt this extension is worthwhile. It is, however, the only constraint system I have
seen that comes close to satisfying my desire not to overconstrain template argument
while remaining fully general, reasonably terse, comprehensible, and trivial to imple
ment.

See §15.9.1 and §15.9.2 for examples of essential constraints expressed through
use in template functions.

15.5 Avoiding Code Replication
Avoiding unnecessary space overheads caused by too many instantiations was consid
ered a first order - that is, design- and language-level - problem rather than an imple
mentation detail. The rules requiring "late" instantiation of template functions
(§15.10, §15.10.4) ensure that code is not replicated when a template is used with the
same template arguments in different translation units. I considered it unlikely that
early (or even late) template implementations would be able to look at instantiations
of a class for different template arguments and figure out when all or part of the
instantiated code could be shared. Yet I also considered it essential that gross code
replication - as experienced with macro expansion and in languages with primitive
instantiation mechanisms - could be avoided [Stroustrup,1988b]:

' 'Among other things, derivation (inheritance) ensures code sharing among differ
ent types (the code for a non-virtual base class function is shared among its
derived classes). Different instances of a template do not share code unless some

Section 15.5 Avoiding Code Replication 347

clever compilation strategy has been employed. I see no hope for having such
cleverness available soon. So, can derivation be used to reduce the problem of
code replicated because templates are used? This would involve deriving a tem
plate from an ordinary class. For example [Stroustrup,1988b]:

template<class T> class vector { // general vector type
T* v;
int sz;

public:
vector(int);
T& elem(int i) { return v[i]; }
T& operator[](int i);
// .. .

};

template<class T> class pvector : vector<void*> {
// build all vector of pointers
// based on vector<void*>

public:
pvector(int i) : vector<void*>(i) {}
T*& elem(int i)

{ return (T*&) vector<void*>::elem(i); }
T*& operator!](int i)

{ return (T*&) vector<void*>::operator[](i); }
// .. .

};

pvector<int*> pivec(lOO);
pvector<complex*> icmpvec(200);
pvector<char*> pcvec(300);

The implementations of the three vector of pointer classes will be completely
shared. They are all implemented exclusively through derivation and inline
expansion relying on the implementation of v e c t o r < v o i d * > . The
v e c t o r < v o i d * > implementation is a good candidate for a standard library."

This technique proved successful in curbing code bloat in real use. People who do not
use a technique like this (in C++ or in other languages with similar facilities for type
parameterization) have found that replicated code can cost megabytes of code space
even in moderate size programs.

Addressing the same concern, I considered it essential to allow an implementation
to instantiate only the template functions actually used. For example, given a tem
plate T with member functions f and g, an implementation should be allowed to
instantiate only f if g isn't used for a given template argument.

I also felt that generating versions of a template function for a given set of tem
plate arguments only if that function was called added an important degree of flexibil
ity [Stroustrup,1988b]:

"Consider vec to r<T>. To provide a sort operation one must require that type T
has some order relation. This is not the case for all types. If the set of operations

348 Templates Chapter 15

on T must be specified in the declaration of v e c t o r one would have to have two
vector types: one for objects of types with an ordering relation and another for
types without one. If the set of operations on T need not be specified in the decla
ration of v e c t o r one can have a single vector type. Naturally, one still cannot
sort a vector of objects of a type g l o b that does not have an order relation. If that
is tried, the generated sort function v e c t o r < g l o b > : : s o r t () would be
rejected by the compiler."

15.6 Function Templates
In addition to class templates, C++ offers function templates. Function templates
were introduced partly because we clearly needed member functions for class tem
plates and partly because the template concept seemed incomplete without them. Nat
urally, there were also quite a few textbook examples, such as s o r t () functions.
Andrew Koenig and Alex Stepanov were the main contributors of examples requiring
function templates. Sorting an array was considered the most basic example:

// declaration of a template function:
template<class T> void sort(vector<T>&);

void f(vector<int>& vi, vector<String>& vs)
{

sort(vi); // sort(vector<int>& v);

sort(vs); // sort(vector<String>& v);
}

// definition of a template function:
template<class T> void sort(vector<T>& v)
/*

Sort the elements into increasing order

Algorithm: bubble sort (inefficient and obvious)
*/
{

unsigned int n = v.size();

f o r (i n t i = 0 ; i < n - l ; i++)
f o r (i n t j = n - l ; i < j ; j - -)

i f (v [j] < v [j - l]) { / / swap v [j] and v [j - l]
T temp = v [j] ;
v [j] = v [j - l] ;
v [j - l] = temp;

}
}

As expected, function templates proved extremely useful in their own right, and they
also proved essential for supporting class templates when non-member functions are

Section 15.6 Function Templates 349

preferred over member functions for providing services (for example, friends; §3.6.1).
The following subsections examine technical details related to template functions.

15.6.1 Deducing Function Template Arguments

For function templates, one doesn't need to explicitly specify the template arguments.
As shown above, the compiler can deduce them from the actual arguments of a call.
Naturally, every template argument that is not explicitly specified (§15.6.2) must be
uniquely determined by a function argument. That was about all the original manual
said. During the standardization process, it became clear that it is necessary to specify
how smart a compiler is required to be when deducing template argument types from
actual function arguments. For example, is this legal?:

template<class T, int i>
T lookup<Buffer<T,i>& b, const char* p);

int f(Buffer<int,128>& buf, const char* p)
{

return lookup(buf,p); // use the lookup() where
// T is int and i is 128

}

The answer used to be no because non-type arguments couldn't be deduced. This was
a real problem because it meant that one couldn't define non-inlined non-member
functions operating on a template class that took a non-type template argument. For
example:

template<class T, int i> class Buffer {

friend T lookup(Buffer&, const char*);

// . . .

};

requires a previously illegal template function definition.
The revised list of acceptable constructs in a template function argument list is:

T
const T
volatile T
T*
T&
T[n]
some_type[I]
CT<T>
CT<I>
T (*)(args)
some_type (*) (args_containing_T)
some_type (*) (args_containing_I)
T C: :*
C T : : *

350 Templates Chapter 15

Here, T is a template type argument, I is a template non-type argument, C is a class
name, CT is the name of a previously declared class template, and
a r g s _ c o n t a i n i n g _ T is an argument list from which T can be determined by
application of these rules. This makes the lookup () example legal. Fortunately,
users need not memorize this list because it simply formalizes the obvious deductions.

Another example is:

template<class T, class U> void f(const T*, U(*)(U));

int g(int);

void h(const char* p)
{

f(p,g); // T is char, U is int

f(p,h); // error: can't deduce U
}

Looking at the arguments of the first call of f () , we easily deduce the template argu
ments. Looking at the second call of f () , we see that h () doesn't match the pattern
U (*) (U) because h () 's argument and return type differ.

John Spicer helped clarify this and many other similar issues.

15.6.2 Specifying Function Template Arguments

At the time of the original template design, I considered allowing explicit specifica
tion of template arguments for template functions in the same way template argu
ments are explicitly specified for template classes. For example:

vector<int> v(10); // class, template argument 'int'
sort<int>(v); // function, template argument 'int'

However, I rejected the idea because explicit specification of template arguments
wasn't needed for most examples. I also feared "obscurity" and parsing problems.
For example, how would we parse this example?:

v o i d g ()
{

f < l > (0) ; / / (f) < (l > (0)) o r (f < l >) (0) ?

}

I now don't consider this a problem. If f is a template name, f < is the beginning of a
qualified template name and the subsequent tokens must be interpreted based on that;
if not, < means less-than.

One reason explicit specification is useful is that we can't deduce a return type
from a call of a template function:

template<class T, class U> T convert(U u) { return u; }

Section 15.6.2 Specifying Function Template Arguments 351

void g(int i)
{

convert(i); // error: can't deduce T.
convert<double>(i); // T is double, U is int.
convert<char,double>(i); // T is char, U is double.
convert<char*,double>(i); // T is char*, U is double

// error: cannot convert
//a double to a char*.

}

As for default function arguments, only trailing arguments can be left out of a list of
explicit template arguments.

Explicit specification of template arguments allows the definition of families of
conversion functions and object creation functions. An explicit conversion that per
forms what can be done by implicit conversion only, such as c o n v e r t () is fre
quently requested and a good candidate for a library. Another variant would apply a
check to ensure that narrowing conversions would cause a run-time error (§14.3.5.2).

The syntax for the new cast operators (§14.3) and for explicitly qualified template
function calls were chosen to match. The new casts express operations that cannot be
specified using other language features. Similar operations, such as c o n v e r t () can
be expressed as template functions, so they need not be built-in operators.

Another use of explicitly specified function template arguments is to control the
algorithm used by specifying the type or value of a local variable. For example:

template<class TT, class AT> void f(AT a)
{

TT temp = a; // use TT to control
// precision of computation

// .. .
}

void g(Array<float>& a)
{

f<float>(a);
f<double> (a) ;
f<Quad>(a);

}

Explicit specification of function template arguments was voted into C++ at the
November 1993 San Jose meeting.

15.6.3 Function Template Overloading

Once function templates existed, the issue of how to handle overloading had to be
resolved. To avoid language definition trouble, I chose to allow exact match for tem
plate functions only and to bias overload resolution in favor of ordinary functions of
the same name:

"Overloading resolution for template functions and other functions of the same

352 Templates Chapter 15

name is done in three steps [ARM]:
[1] Look for an exact match [ARM,§13.2] on functions; if found, call it.
[2] Look for a function template from which a function that can be called with

an exact match can be generated; if found, call it.
[3] Try ordinary overloading resolution [ARM,§13.2] for the functions; if a

function is found, call it.
If no match is found, the call is an error. In each case, if there is more than one
alternative in the first step that finds a match, the call is ambiguous and is an
error."

In retrospect, this seems too restrictive and too special purpose. Though it works, it
opens the door for many minor surprises and annoyances.

Even at the time, it was clear that the best solution was somehow to unify the rules
for ordinary and template functions; I just didn't know how. Here is an outline of an
alternative approach in a formulation suggested by Andrew Koenig:

' 'For a call, find the set of functions that could possibly be called; this will in gen
eral include functions generated from different templates. Apply the usual over
load resolution rules to this set of functions."

This would allow for conversions to be applied to template function arguments and
provide a common framework for all function overloading. For example:

template<class T> class B { /* ... */ } ;
template<class T> class D : public B<T> { /* ... */ };

template<class T> void f(B<T>*);

void g(B<int>* pb, D<int>* pd)
{

f(pb); // f<int>(pb)
f(pd); // f<int>((B<int>*)d); standard conversion used

}

This is necessary to make template functions interact properly with inheritance. Also:

template<class T> T max(T,T);

const int s = 7;

void k()
{

max(s,7); // max(int(s),7); trivial conversion used
}

The need to relax the rule against all conversions for template function arguments was
anticipated in the ARM and many implementations currently allow the examples
above. This issue remains to be formally resolved, though.

Section 15.6.3.1 Conditionals in Templates 353

15.6.3.1 Conditionals in Templates

When writing a template function, it is sometimes tempting to have the definition
depend on properties of the template argument. For example, paraphrasing
[Stroustrup, 1988b]:

"Consider providing a print function for a vector type that sorts the elements
before printing if and only if sorting is possible. A facility for inquiring if a cer
tain operation, such as <, can be performed on objects of a given type can be pro
vided. For example:

template<class T> void vector<T>::print()
{

// if T has a < operation sort before printing

if (?T::operator<) sort();
for (int i=0; i<sz; i++) { /* ... */ }

}

Printing a vector of elements that can be compared will involve a s o r t ()
whereas printing a vector of elements that cannot be compared will not."

I decided against providing this kind of type inquiry facility because I was - as I still
am - convinced that it would lead to ill-structured code. In some ways, this technique
combines the worst aspects of macro hackery and overreliance of type inquiries
(§14.2.3).

Instead, specialization can be used to provide separate versions for specific tem
plate argument types (§15.10.3). Alternatively, operations that cannot be guaranteed
for every template argument type can be isolated in separate member functions called
only for types that actually have those operations (§15.5). Finally, template function
overloading can be used to provide different implementations for different types. For
example, let me show a r e v e r s e () template function that can reverse the order of
elements in a container given iterators identifying the first and last element to be con
sidered. User code should look like this:

void f(ListIter<int> 11, ListIter<int> 12, int* p1, int* p2)
{

reverse(p1,p2);
reverse(11,12);

}

where a L i s t I t e r a t o r can be used to access elements from some user-defined
container and an i n t * can be used to access an ordinary array of integers. To do
that, different implementations of r e v e r s e () must somehow be selected for the
two calls.

The r e v e r s e () template function simply chooses an implementation based on
its argument type:

354 Templates Chapter 15

template <class Iter>
inline void reverse(Iter first, Iter last)
{

rev(first,last,IterType(first));
}

Overload resolution is used to select I t e r T y p e s :

class RandomAccess { };

template <class T> inline RandomAccess IterType(T*)
{

return RandomAccess();
}

class Forward { };

template <class T> inline Forward IterType(ListIterator<T>)
{

return Forward();
}

Here, the i n t * will chose the RandomAccess and L i s t l t e r will chose the
Forward. In turn, these iterator types will determine the version of r e v () used:

template <class Iter>

inline void rev(Iter first, Iter last, Forward)

{

// .. .

}

template <class Iter>

inline void rev(Iter first, Iter last, RandomAccess)

{

// . . .

}

Note, that the third argument isn't actually used in r e v () ; is simply an aid to the
overloading mechanism.

The fundamental observation is that every property of a type or an algorithm can
be represented by a type (possibly defined specifically to do exactly that). That done,
such a type can be used to guide the overload resolution to select a function that
depends on the desired property. Unless the type used to select represents a funda
mental property, this technique is a bit indirect, but very general and effective.

Please note that thanks to Mining this resolution is done at compile time, so the
appropriate r e v () function will be called directly without any run-time overhead.
Note also that this mechanism is extensible in that new implementations of r e v ()
can be added without touching old code. This example is based on ideas from Alex
Stepanov [Stepanov,1993].

Section 15.6.3.1 Conditionals in Templates 355

If all other alternatives fail, run-time type identification can sometimes help
(§14.2.5).

15.7 Syntax

As ever, syntax was a problem. Initially, I had aimed for a syntax in which a template
argument was placed immediately after the template name:

class vector<class T> {

// . . .

};

However, this didn't cleanly extend to function templates [Stroustrup, 1988b]:
' 'The function syntax at first glance also looks nicer without the extra keyword:

T& index<class T>(vector<T>& v, int i) { / * . . . * / }

There is typically no parallel (to class templates) in the usage, though, since func
tion template arguments are not usually specified explicitly:

int i = index(vi,10);
char* p = index(vpc,29);

However, there appear to be nagging problems with this "simpler" syntax. It is
too clever. It is relatively hard to spot a template declaration in a program because
the template arguments are deeply embedded in the syntax of functions and
classes and the parsing of some function templates is a minor nightmare. It is pos
sible to write a C++ parser that handles function template declarations where a
template argument is used before it is defined, as in i n d e x () above. I know,
because I wrote one, but it is not easy nor does the problem appear amenable to
traditional parsing techniques. In retrospect, I think that not using a keyword and
not requiring a template argument to be declared before it is used would result in a
set of problems similar to those arising from the clever and convoluted C and C++
declarator syntax."

Using the final template syntax the declaration of i n d e x () becomes:

template<class T> T& index(vector<T>& v, int i) { /* ... */ }

At the time, I seriously discussed the possibility of providing a syntax that allowed
the return value of a function to be placed after the arguments. For example

index<class T>(vector<T>& v, int i) return T& { /* ... */ }

index<class T>(vector<T>& v, int i) : T& { / * . . . * / }

This would solve the parsing problem, but most people like having a keyword to help
recognize templates, so that line of reasoning became redundant.

The <. . . > brackets were chosen in preference to parentheses because users

356 Templates Chapter 15

found them easier to read and because parentheses are overused in the C and C++
grammar. As it happens, Tom Pennnello proved that parentheses would have been
easier to parse, but that doesn't change the key observation that (human) readers pre
fer < . . . >.

One problem is a consistent nuisance:

List<List<int>> a;

appears to declare a list of a list of integers. In fact, it is a syntax error because the
token >> (right shift or output) isn't the same as the two tokens > >. Naturally, a sim
ple lexical trick could solve this problem, but I decided to keep both the grammar and
the lexical analyzer clean. I have now seen this mistake so often and heard so many
complaints about

List<List<int>> a;

that I am sorely tempted to apply some glorious hack to make the problem go away. I
find it more painful to listen to complaints from users than to listen to complaints
from language lawyers.

15.8 Composition Techniques

Templates support several safe and powerful composition techniques. For example,
templates can be applied recursively:

template<class T> class List { /* ... */ } ;

List<int> li;
List< List<int> > H i ;
List< List< List<int> > > llli;

If specific "composed types" are needed, they can be specifically defined using
derivation:

template<class T> class List2 : public List< List<T> > { };
template<class T> class List3 : public List2< List<T> > { };

List2<int> Hi2;
List3<int> Hli3;

This is a somewhat unusual use of derivation because no members are added. No
overhead in time or space is implied by this use of derivation; it is simply a composi
tion technique. Had derivation not been available for composition, templates would
have had to be augmented with specific composition mechanisms, or the language
would have been much poorer. The smooth interaction between derivation and tem
plates has been a continuous source of pleasant surprises to me.

Variables of such composed types can be used like their explicitly defined types,
but not vice versa:

Section 15.8 Composition Techniques 357

void f()
{

lli = l l i2; // ok
lli2 = lli; // error

}

The reason is that public derivation defines a subtype relationship.
Allowing assignment in both directions would require a language extension to

allow the introduction of genuine parameterized synonyms. For example:

template<class T> typedef List< List<T> > List4;

void (List< List<T> >& lstl, List4& lst2)
{

lstl = lst2;
lst2 = lstl;

}

The extension is technically trivial, but I'm not sure how wise it would be to intro
duce yet another renaming feature.

Derivation also allows for partial specification of template arguments in the defi
nition of a new type:

template<class U, class V> class X { /* ... */ };
template<class U> class XX : public X<U,int> { };

In general, deriving from a template class gives you the opportunity to tailor the base
with information to suit the derived class. This allows for extremely powerful pat
terns of composition. For example:

template<class T> class Base { /* ... */ };

class Derived : public Base<Derived> { /* ... */ };

Such techniques make it possible for information about a derived class to flow into
the definition of its base class. See also §14.2.7.

15.8.1 Representing Implementation Policies

Another use of derivation and templates for composition is the technique of passing in
objects representing implementation policies. For example, the meaning of compari
son for sorting or the means of allocating and deallocating storage for a container
class can be supplied through template arguments [2nd]:

' 'One way is to use a template to compose a new class out of the interface to the
desired container and an allocator class using the placement technique described in
[2nd,§6.7.2]:

358 Templates Chapter 15

template<class T, class A> class Controlled_container
: public Container<T>, private A {

// . . .

void some_function()

{

// . . .

T* p = new(A::operator new(sizeof(T))) T;

// . . .

}

// . . .

};

Here, it is necessary to use a template because we are designing a container.
Derivation from C o n t a i n e r is needed to allow a C o n t r o l l e d _ c o n t a i n e r
to be used as a container. The use of the template argument A is necessary to
allow a variety of allocators to be used. For example:

class Shared : public Arena { /* ... */ };
class Fast_allocator { /* ...*/ };
class Persistent : public Arena { /* ... */ };

Controlled_container<Process_descriptor,Shared> ptbl;

Controlled_container<Node,Fast_allocator> tree;

Controlled_container<Personnel_record,Persistent> payroll;

This is a general strategy for providing nontrivial implementation information for
a derived class. It has the advantage of being systematic and allowing inlining to
be used. It does tend to lead to extraordinarily long names, though. As usual,
t y p e d e f can be used to introduce synonyms for type names of undesirable
length."

The Booch components [Booch,1993] uses such composition techniques extensively.

15.8.2 Representing Ordering Relationships

Consider a sorting problem: We have a container template. We have an element type.
We have a function sorting the container based on element values.

We can't hardwire the sorting criteria into the container because the container
can't (in general) impose its needs on the element types. We can't hardwire the sort
ing criteria into the element type because there are many different ways of sorting ele
ments.

Consequently, the sorting criteria are neither built into the container nor into the
element type. Instead, the criteria are supplied when a specific operation needs to be
performed. For example, given strings of characters representing names of Swedes,
what collating criteria would I like to use for a comparison? Two different collating
sequences are in common use for sorting Swedish names. Naturally, neither a general

Section 15.8.2 Representing Ordering Relationships 359

string type nor a general sorting algorithm should have to know about the conventions
for sorting names in Sweden.

Consequently, any general solution involves the sorting algorithm expressed in
general terms that can be defined not just for a specific type but for a specific use of a
specific type. For example, let us generalize the standard library function s t r c m p ()
for strings of any type T.

First, I define a class template giving the default meaning of comparison of objects
of a type T:

template<class T> class CMP {
public:

static int eq(T a, T b) { return a==b; }
static int lt(T a, T b) { return a<b; }

};

The template function compare () uses this form of comparison by default to com
pare b a s i c _ s t r i n g s :

template<class T> class basic_string {
// .. .

};

template<class T, class C = CMP<T> >
int compare(const basic_string<T>& strl,

const basic_string<T>& str2)
{

for(int i=0, i<strl.length() && i< str2.length(), i++)
if (!C::eq(strl[i],str2[i]))

return C::It(strl[i],str2[i]);
}

typedef basic_string<char> string;

If we had member templates (§15.9.3), compare () could be a member of
b a s i c _ s t r i n g .

If someone wants a C<T> to ignore case, to reflect locale, to return the largest of
the Unicode values of the two elements that compared ! C<T> : : eq () , etc., that can
be done by defining suitable C<T>: : eq () and C<T>: : It () in terms of operators
"native" to T. This allows any (comparison, sorting, etc.) algorithm that can be
described in terms of the operations supplied by CMP and the container to be
expressed. For example:

class LITERATE {
static int eq(char a, char b) { return a==b; }
static int lt(); // use literary convention

};

360 Templates Chapter 15

void f(string swedel, string swede2)
{

compare(swedel,swede2); // ordinary/telephone order
compare(swedel,swede2,LITERATE); // literary order

}

I pass the comparison criteria as a template parameter because that's a way of passing
several operations without imposing a run-time cost. In particular, the comparison
operators eq () and It () are trivial to inlined. I use a default argument to avoid
imposing a notational cost on everyone. Other variants of this technique can be found
in [2nd,§8.4].

A less esoteric example (for non-swedes) is comparing with and without taking
case into account:

void f(string s1, string s2)
{

compare(s1,s2); // case sensitive
compare(s1,s2,NOCASE); // not sensitive to case

}

Note that the CMP template class is never used to define objects; its members are
all s t a t i c and p u b l i c . It therefore ought to be a namespace (§17):

template<class T> namespace CMP {
int eq(T a, T b) { return a==b; }
int lt(T a, T b) { return a<b; }

}

Unfortunately, namespace templates are not (yet) part of C++.

15.9 Template Class Relationships
A template is usefully understood as a specification of how particular types are to be
created. In other words, the template implementation is a mechanism that generates
types when needed based on the user's specification.

As far as the C++ language rules are concerned, there is no relationship between
two classes generated from a single class template. For example:

template<class T> class Set { /* ... */ } ;

class Shape { /* ... */ } ;
class Circle : public Shape { /* ... */ };

Given these declarations, people sometimes want to treat a S e t < C i r c l e > as a
Set<Shape> or to treat a S e t < C i r c l e * > to be a Set<Shape*>. For example:

Section 15.9 Template Class Relationships 361

void f(Set<Shape>&);

void g(Set<Circle>& s)

{

f (S) ;

}

This won't compile because there is no built-in conversion from Se t<Ci rc l e>& to
Set<Shape>&. Nor should there be; thinking of S e t < C i r c l e > as a
Set<Shape> is a fundamental - and not uncommon - conceptual error. In particu
lar, S e t < C i r c l e > guarantees that its members are C i r c l e s , so that users can
safely and efficiently apply Circle-specific operations, such as determining the
radius, on its members. If we allowed a S e t < C i r c l e > to be treated as a
Set<Shape>, we could no longer maintain that guarantee because it is presumably
acceptable to put arbitrary Shapes such as T r i a n g l e s into a Set<Shape>.

15.9.1 Inheritance Relationships

Therefore, there cannot be any default relationship between classes generated from
the same templates. However, sometimes we would like such a relationship to exist.
I considered whether a special operation was needed to express such relationships, but
decided against it because many useful conversions could be expressed as inheritance
relationships or by ordinary conversion operators. However, this leaves us without a
way of expressing some of the most interesting such relationships. For example,
given:

template<class T> class Ptr { // pointer to T

// .. .

};

we would often like to provide the inheritance relationships we are accustomed to for
built-in pointers for these user-defined P t r s . For example:

void f(Ptr<Circle> pc)
{

Ptr<Shape> ps = pc; // can this be made to work?
}

We would like to allow this if and only if Shape really is a direct or indirect public
base class of C i r c l e . In particular, David Jordan asked the standards committee for
that property for smart pointers on behalf of a consortium of Object-Oriented database
suppliers.

Member templates - which are not currently part of C++ - provide a solution:

template<class Tl> class Ptr { // pointer to Tl

// . . .

template<class T2> operator Ptr<T2> ();

};

362 Templates Chapter 15

We need to define the conversion operator so that the P t r < T l > to Ptr<T2> conver
sion is accepted if and only if a T l * can be assigned to a T2 *. This can be done by
providing P t r with an extra constructor:

template<class T> class Ptr { // pointer to T
T* p;

public:
Ptr(T*);
template<class T2> operator Ptr<T2> () {

return Ptr<T2>(p); // works iff p can be
// converted to a T2*

}
// . . .

};

This solution has the nice property that it doesn't use any casts. The return statement
will compile if and only if p can be an argument to Ptr<T2>'s constructor. Now, p
is a Tl * and the constructor expects a T2 * argument. This is a subtle application of
the constraints through use technique (§15.4.2). If you prefer to keep the extra con
structor private, you can use a technique suggested by Jonathan Shopiro:

template<class T> class Ptr { // pointer to T

T* tp;

Ptr(T*);

friend template<class T2> class Ptr<T2>;

public:

template<class T2> operator Ptr<T2> ();

// . . .

};

Unfortunately, member templates are not (yet) part of C++ (§15.9.3).

15.9.2 Conversions

A closely related problem is that there is no general way of defining conversions
between different classes generated from a class template. For example, consider a
complex template that defines complex numbers for a range of scalar types:

template<class scalar> class complex {

scalar re, im;

public:

// . . .

};

Given that we can use complex<f l o a t > , complex<double>, etc. However,
when doing that, we would like to convert from a complex with lower precision to
one with higher precision. For example:

Section 15.9.2 Conversions 363

complex<double> sqrt(complex<double>);

complex<float> cl(1.2f,6.7f);

complex<double> c2 = sqrt(cl); // error, type mismatch:

// complex<double> expected

We would like a way of making the call of s q r t legal. This leads programmers to
abandon the template approach to complex in favor of replicated class definitions:

class float_complex {

float re, im;

public:

// . ..

};

class double_complex {

double re, im;

public:

double_complex(float_complex c) :re(c.re), im(c.im) {}

// . ..

};

The purpose of the replication is to define the constructor that defines the conversion.
Again, all solutions I can think of require the combination of nested templates and

some form of constraints. Again, the actual constraint can be implicit:

template<class scalar> class complex {
scalar re, im;

public:
template<class T2> complex(const complex<T2>& c)

: re (ere), im(c.im) { }
// . . .

};

In other words, you can construct a complex<Tl> from a complex<T2> if and
only if you can initialize a Tl by a T2. That seems reasonable. Interestingly enough,
this definition subsumes the usual copy constructor.

This definition makes the s q r t () example above legal. Unfortunately, this defi
nition also allows narrowing conversions of complex numbers simply because C++
allows narrowing conversions for scalars. Naturally, given this definition of
complex, an implementation that warns against narrowing conversions of scalars
will automatically also warn against narrowing conversions of complex values.

We can get the "traditional" names back by using typede f :

typedef complex<float> float_complex;
typedef complex<double> double_complex;

typedef complex<long double> long_double_complex;

Personally, I find the un-typedefd versions more readable.

364 Templates Chapter 15

15.9.3 Member Templates

The only reason templates aren't allowed as class members in C++ as defined in the
ARM is that I couldn't prove to my own satisfaction that such nesting wouldn't be a
serious implementation problem. Member templates were part of the original tem
plate design, I am in principle for nested forms of all scope constructs (§3.12,
§17.4.5.4), I didn't doubt that member templates would be useful, and I didn't have
any solid reason for suspecting implementation problems. It was fortunate that I hesi
tated, though. Had I simply admitted member templates into C++ without constraints,
I would inadvertently have broken the C++ object layout model and would then have
had to retract part of the feature. Consider this promising-looking idea for a more ele
gant variant of double dispatch (§13.8.1):

class Shape {
// . . .
template<class T>

virtual Bool intersect(const T&) const =0;
};

class Rectangle : public Shape {
// . . .
template<class T>

virtual Bool intersect(const T& s) const;
};

template<class T>
virtual Bool Rectangle::intersect(const T& s) const
{

return s.intersect(*this); // *this is a Rectangle:
// resolve on s

}

This must be illegal, otherwise we would have to add another entry to the virtual table
for class Shape each time someone called Shape : : i n t e r s e c t () with a new
argument type. This would imply that only the linker could make virtual function
tables and assign table positions to functions. Consequently, a member template can
not be v i r t u a l .

I found this problem only after the publication of the ARM and was thus saved by
the restriction that templates must be defined in the global scope. On the other hand,
the conversion problems mentioned in §15.9 have no solution because of the absence
of member templates. I hope to see member templates in C++.

Please note that explicit specification of template arguments for function templates
is an alternative to nested template classes in many cases (§15.6.2).

Section 15.10 Template Instantiation 365

15.10 Template Instantiation
Originally [Stroustrup, 1988b] [ARM], C++ had no operator for "instantiating" a tem
plate; that is, there was no operation for explicitly generating a class declaration and
function definitions for a particular set of template arguments. The reason was that
only when the program is complete can it be known which templates need to be
instantiated. Many templates will be defined in libraries, and many instantiations will
be directly and indirectly caused by users who don't even know of the existence of
those templates. It therefore seemed unreasonable to require the user to request
instantiations (say, by using something like Ada's "new" operator). Worse, if a tem
plate instantiation operator existed, it would have to correctly handle the case where
two otherwise unrelated parts of a program both request the same template function
instantiated for the same set of template arguments. This would have to be done with
out code replication and without making dynamic linking infeasible.

The ARM comments on this problem without giving a definite answer:
' 'These rules imply that the decision of what functions to generate from function
template definitions cannot be made until a program is complete, that is, not until
it is known what function definitions are available.

As stated, error detection has been postponed to the last possible moment: the
point after initial linking where definitions are generated for template functions.
This is too late for many people's tastes.

As stated, the rules also place the maximum reliance on the programming
environment. It will be up to the system to find the definitions of the class tem
plates, function templates, and classes needed for generating those template func
tion definitions. This will be unacceptably complicated for some environments.

Both problems can be alleviated by the introduction of mechanisms allowing a
programmer to say "generate these template functions here for these template
arguments." This can be made simple enough for any environment and will
ensure that errors relating to a specific template function definition are detected on
request.

It is not clear, however, whether such mechanisms should be considered part
of the language or part of the programming environment. It was felt that more
experience was needed and, for that reason, such mechanisms belonged in the
environment - at least temporarily.

The simplest mechanism for ensuring proper generation of template function
definitions is to leave the problem to the programmer. The linker will tell which
definitions are needed, and a file containing non-inline template function defini
tions can be compiled together with an indication of which template arguments are
to be used. More sophisticated systems can be built based on this fully manual
base."

Now, a variety of implementations are available. Experience shows that the problem
was at least as hard as suspected and that something better than the existing imple
mentations was needed.

The Cfront implementation [McClusky,1992] automates template instantiation

366 Templates Chapter 15

completely as suggested by the original template design [Stroustrup,1988b] and the
ARM. Basically, the linker is run, and if some template function instantiations are
missing, the compiler is invoked to produce the missing object code from the template
source. This process is repeated until all templates used have been instantiated. Tem
plate and argument-type definitions are (when needed) found based on a file naming
convention. Where needed, this convention is supplemented by a user-supplied direc
tory file that maps template and class names to the files that contain their definitions.
The compiler has a special mode for processing template instantiations. This strategy
often works very well, but in some contexts three very annoying problems were dis
covered:

[1] Poor compile- and link-time performance: Once a linker has determined that
the instantiation is needed, the compiler has to be invoked to generate the
needed functions. That done, the linker needs to be invoked again to link the
new functions. In a system where the compiler and linker are not permanently
running, this can be surprisingly costly. A good library mechanism can signif
icantly reduce the number of times the compiler has to be run.

[2] Poor interaction with some source control systems: Some source control sys
tems have very definite ideas about what source code is and how object code is
produced from it. Such systems don't interact well with a compilation system
where the linker, the compiler, and a library interact to produce a complete
program (in the way outlined in [1]). This is not a fault of the language, but
that is no consolation to programmers who have to live with such a source-
control system.

[3] Poor hiding of implementation details: If I use templates in the implementation
of a library, then the source of those templates must be included with my
library for a user to link my library. The reason is that the need to generate
template instantiations will only be noticed at the final link time. This prob
lem can only be bypassed by (somehow) producing object code that contains
every version of the templates I use in my implementation. This can lead to
object-code bloat as the implementer tries to cover every possible use - any
one application will use only a subset of the possible template instantiations.
Note also, that if the instantiation of implementation templates depends
directly on which templates a user instantiates, late instantiation is necessary.

15.10.1 Explicit Instantiation

The most promising approach for mitigating these problems seems to be optional
explicit instantiation. Such a mechanism could be either an extralinguistic tool, an
implementation-dependent #pragma, or a directive in the language proper. All of
these approaches have been tried with some success. Of these approaches, I like the
#pragma the least. If we need an explicit instantiation mechanism in the language,
we need one that is generally available and has well-defined semantics.

What would be the benefit of an optional instantiation operator?
[1] Users would be able to specify the environment for instantiation.

Section 15.10.1 Explicit Instantiation 367

[2] Users would be able to pre-create libraries of common instantiations in a rela
tively implementation-independent manner.

[3] These pre-created libraries would be independent of changes in the environ
ment of the program that used them (depending only on the context of instanti
ation).

The instantiation request mechanism described here was adopted at the San Jose
meeting; it has its roots in a proposal by Erwin Unruh. The syntax was chosen to
match the way template arguments are explicitly specified in uses of class templates
(§15.3), template function calls (§15.6.2), the new cast operators (§14.2.2, §14.3), and
template specializations (§15.10.3). An instantiation request looks like this:

template class vector<int>; // class
template int& vector<int>::operator[](int); // member
template int convert<int,double>(double); // function

The keyword t e m p l a t e was recycled for this use in preference to introducing a new
keyword i n s t a n t i a t e . A template declaration is distinguished from an instantia
tion request by the template argument list: t e m p l a t e < begins a template definition,
whereas plain t e m p l a t e begins an instantiation request. The fully specified form of
the functions was chosen over possible abbreviated forms such as

// not C++:

template vector<int>::operator[]; // member
template convert<int,double>; // function

to avoid ambiguities for overloaded template functions, to provide the compiler with
redundancy needed for consistency checks, and because instantiation requests are
infrequent enough to cast doubt on the value of a terse notation. However, as in tem
plate function calls, the template arguments that can be deduced from the function
arguments can be omitted (§15.6.1). For example:

template int convert<int>(double); // function

When a class template is explicitly instantiated, every member function presented
to the compiler (§15.10.4) is also instantiated. This implies that an explicit instantia
tion can be used as a constraints check (§15.4.2).

The link-time and recompilation efficiency impact of instantiation requests can be
significant. I have seen examples in which bundling all template instantiations into a
single compilation unit cut the compile time from a number of hours to the equivalent
number of minutes. For this magnitude of speedup, I am willing to accept a mecha
nism for manual optimization.

What should happen if a template is explicitly instantiated twice for the same set
of template arguments? This question was (rightly, I think) considered critical. If that
is an unconditional error, explicit instantiation becomes a serious obstacle to composi
tion of programs out of separately developed parts. This was the original reason for
not introducing an explicit instantiation operator. On the other hand, suppressing
redundant explicit instantiations could in general be very difficult.

368 Templates Chapter 15

The committee decided to dodge the issue slightly by leaving some freedom to the
implementers: Multiple instantiations is a nonrequired diagnostic. This allows a
smart implementation to ignore redundant instantiations and thereby avoid the prob
lems related to composition of programs from libraries using explicit instantiation
mentioned above. However, the rule does not require implementations to be smart.
Users of "less smart" implementations must avoid multiple instantiations, but the
worst that will happen if they don't is that their program won't load; there will be no
silent changes of meaning.

As ever, no explicit instantiation is required by the language. Explicit instantia
tion is a mechanism for manual optimization of the compile-and-link process.

15.10.2 Point of Instantiation

The most difficult aspect of the definition of templates is to pin down exactly which
declarations the names used in a template definition refer to. This problem is often
referred as "the name binding problem."

The revised name binding rules described in this section are the result of work by
many people over the last few years, notably members of the extensions working
group, Andrew Koenig, Martin O'Riordan, Jonathan Shopiro, and me. By the time
they were accepted (November 1993, San Jose) they had also benefited from signifi
cant implementation experience.

Consider this example:

#include<iostream.h>

void db(double);
// #1

template<class T> T sum(vector<T>& v)
{

T t = 0;
for (int i = 0; i<v.size(); i++) t = t + v[i];
if (DEBUG) {

cout << "sum is " << t << '\n';
db(t);
db(i);

}
return t;

}

// . . .

#include<complex.h>
// #2

void f(vector<complex>& v)
{

complex c = s u m (v) ;
}

The original definition says that names used in the template are all bound at the point

Section 15.10.2 Point of Instantiation 369

of instantiation and that the point of instantiation is just before the global declaration
in which a template is first used (#2 above). This has at least three undesirable prop
erties:

[1] No error checking can be performed at the point of the template definition.
For example, if DEBUG is undefined at that point, no error message can be pro
duced.

[2] Names defined after the the template definition can be found and used. This is
often (but not always) a surprise to the reader of the template definition. For
example, one might expect the call db (i) to be resolved to the
d b (d o u b l e) declared above, but if the . . . contains a declaration of
db (i n t) then db (i n t) would be preferred over db (doub le) under the
usual overload resolution rules. On the other hand, if a db (complex) is
defined in complex . h, we need db (t) to resolve to db (complex) rather
than being an error by not being a valid call of the db (doub le) visible from
the template definition.

[3] The set of names available at the point of instantiation will differ when sum is
used in two different compilations. If sum(vector<complex>&) thereby
gets two different definitions the resulting program is illegal under the one-
definition rule (§2.5). However, the checking of the one-definition rule in
such cases is beyond a traditional C++ implementation.

In addition, this original rule doesn't explicitly cover the case where the definition of
the template function isn't included in this particular compilation unit. For example:

template<class T> T sum(vector<T>& v);

// . . .

#include<complex.h>
// #2

void f(vector<complex>& v)
{

complex c = sum(v);
}

No guidance was given to implementers or users about how the definition of the
sum () function templates was supposed to be found. In consequence, different
implementers used different heuristics.

The general problem is that three contexts are involved in a template instantiation
and they cannot be cleanly separated:

[1] The context of the template definition.
[2] The context of the argument type declaration.
[3] The context of the use of the template.

The overall aim of the template design is to assure that enough context is available for
the template definition to make sense in terms of its actual arguments without picking
up ' 'accidental'' stuff from the environment at the call point.

The original design relied exclusively on the one-definition rule (§2.5) to maintain

370 Templates Chapter 15

sanity. The assumption was that if accidental stuff affected the definition of the gen
erated function, it was most unlikely to happen consistently over all uses of a template
function. This is a good assumption, but - for good reasons - implementations usu
ally don't check for inconsistencies. The net effect is that reasonable programs work.
However, people who wish that templates were really macros can get away with writ
ing programs that take advantage of the calling environment in undesirable (according
to me) ways. Also, implementers have a major headache when they want to synthe
size a context for a template definition to speed up instantiation.

Refining the definition of point of definition in such a way that it is both better
than the original and doesn't break reasonable programs was difficult, but necessary.

A first attempt would be to require every name used in the template to be defined
at the point of the template definition. This would make the definition readable, guar
antee that nothing undesirable was picked up accidentally, and allow perfect early
error detection. Unfortunately, that wouldn't allow the template to apply operations
on objects of its template class. In the example above, +, f () , and the constructor for
T are undefined at the point of the template definition. We can't declare them in the
template either because we can't specify their types. For example, + may be a built-in
operator, a member function, or a global function. If it is a function, it may take argu
ments of type T, c o n s t T&, etc. This is exactly the problem of specifying template
argument constraints (§15.4).

Given that neither the point of the template definition nor the point of template use
provides a good enough context for template instantiation, we must look for a solution
that combines aspects of both.

The solution is to separate names used in a template definition into two categories:
- The ones that depend on a template argument.
- The ones that don't.

The latter can be bound in the context of the template definition, the former in the
context of an instantiation. This concept is clean to the extent that the definition of
' 'depends on a template argument'' can be made clean.

15.10.2.1 Defining "Depend on T"

The first candidate for a definition of "depends on a template argument T" is "mem
ber of T." Built-in operators would be considered "members" where T was a built-
in type. Unfortunately, this doesn't quite suffice. Consider:

class complex {
// . . .
friend complex operator+(complex,complex);
complex(double);

};

For this to work, the definition "depends on a template argument T" must at least be
extended to include T's friends. However, even that isn't enough because crucial
nonmember functions don't always need friendship:

Section 15.10.2.1 Defining "Depend on T

class complex {
// . . .
complex operator+=(complex);
complex(double) ;

};

complex operator+(complex a ,complex b)
{

complex r = a;
return r+=b;

}

It would also be unreasonable and constraining to require the designer of a class to
provide all the functions that a writer of a template might possibly need in the future;
20/20 foresight is rare.

Consequently, "depends on a template argument T" must rely on the context of
the point of instantiation to at least the extent of finding the global functions used for
Ts. This will inevitably open the possibility of some unexpected function being used.
However, that problem is minimized. We define ' 'depends on a template argument
T" in the most general way; that is, a function call depends on a template argument if
the call would have a different resolution or no resolution if the actual template type
were missing from the program. This condition is reasonably straightforward for a
compiler to check. Examples of calls that depend on an argument type T are:

[1] The function called has a formal parameter that depends on T according to the
type deduction rules (§15.6.1). For example: f (T), f (v e c t o r < T >) , and
f (c o n s t T*).

[2] The type of the actual argument depends on T according to the type deduction
rules (§15.6.1). For example: f (T (l)) , f (t) , f (g (t)) , and f (&t)
assuming that t is a T.

[3] A call is resolved by the use of a conversion to T without either an actual argu
ment or a formal argument of the called function being of a type that depended
on T as specified in [1] and [2].

The last example was found in real code, and the code that relied on it seemed quite
reasonable. A call f (1) didn't look dependent on T, and neither did the function
f (B) that it invoked. However, the template argument type T had a constructor from
i n t and was derived from B, so the resolution of f (1) was f (B (T (1))).

These three kinds of dependencies exhaust the examples I have seen.

15.10.2.2 Ambiguities

What should be done when different functions are found by lookup #1 (at the point of
the template definition, point #1 in the example in §15.10.2) and lookup #2 (at the
point of use, point #2 in the example in §15.10.2)? Basically we could:

[1] Prefer lookup #1.
[2] Prefer lookup #2.
[3] Make it an error.

372 Templates Chapter 15

Note that lookup #1 can only be done for nonfunctions and for functions where the
types of all arguments are known at the point of use in the template definition; the
lookup of other names must be postponed to point #2.

Essentially, the original rule says "prefer lookup #2," and this implies that the
usual ambiguity resolution rules are applied because only if a better match was found
by lookup #2 could it have found a different function from lookup #1. Unfortunately,
this makes it very hard to trust what you see when you read the text of a template defi
nition. For example:

double s q r t (d o u b l e) ;

template<class T> void f(T t)

{

double sq2 = sqrt(2);

// . . .

}

It seems obvious that s q r t (2) will call s q r t (d o u b l e) . However, there just
might be a s q r t (i n t) found in lookup #2. In most cases, that wouldn't matter
because the "must depend on a template argument" rule would ensure that the "obvi
ous" resolution to s q r t (double) would be used. However, if T was i n t then the
call s q r t (2) would depend on the template argument, so the call would resolve to
s q r t (i n t) . This is an inescapable consequence of taking lookup #2 into account,
but I considered it most confusing and would like to avoid it.

On the other hand, I thought it necessary to give preference to lookup #2 because
only that could resolve uses of base class members as an ordinary class would have.
For example:

void g () ;

template<class T> class X : public T {

void f() { g(); }

// . . .

};

If T has a g () then that g () ought to be called to match the way nontemplate classes
behave:

void g () ;

class T { public: void g(); }

class Y : public T {

void f() { g(); } // calls T::g

// . . .

};

On the other hand, in the usual "non-perverted" cases sticking with what was found
in lookup #1 seems right. This is how lookup of global names is done in C++, this is

Section 15.10.2.2 Ambiguities 373

what allows the largest amount of early error-detection, this is what allows the largest
amount of pre-compilation of templates, and this is what provides the most protection
against "accidental" hijacking of names by context unknown to the template writer.
Over the years I have come to appreciate the importance of these matters and several
implementers, notably Bill Gibbons, argued persuasively for preferring lookup #1.

For a while, I favored making it an error for different functions to be found in the
two lookups, but that complicates matters for the implementers without giving signifi
cant benefits to the users. Also, this would allow names in the context of a use of a
template to "break" otherwise good template code written by a programmer who
intended names in scope at the point of the template definition to be used. Finally,
after hours of work in the extensions working group, I changed my mind. The argu
ment that clinched the case for preferring lookup #1 was that the really tricky exam
ples can trivially be resolved by the template writer. For example:

double s q r t (d o u b l e) ;

template<class T> void f(T t)

{

// ...

sqrt(2); // resolve in lookup #1

sqrt(T(2)); // clearly depends on T

// bind in lookup #2

// . . .

}

and:

int g () ;

template<class T> class X : public T {

void f()

{

g() ; // resolve in lookup #1

T::g(); // clearly depends on T

// bind in lookup #2

}

// ...

};

Essentially, this requires the template writer to be more explicit when the intent is to
use some function that isn't actually visible from the template definition. That seems
to put the burden in the right place and have the right default behavior.

15.10.3 Specialization

A template specifies how a function or a class is defined for any template argument.
For example,

374 Templates Chapter 15

template<class T> class Comparable {
// . . .
int operator==(const T& a, const T& b) { return a==b; }

};

specifies that for every T, you compare elements with the == operator. Unfortunately,
that is quite restrictive. In particular, C strings represented by char*s are usually
better compared using s t r c m p () .

During the initial design, we found that such examples abounded and that the
"special cases" were often essential for generality or critical for performance reasons.
C-style strings are a good example of this.

I therefore concluded that we needed a mechanism for "specializing" templates.
This could be done either by accepting general overloading or by some more specific
mechanism. I chose a specific mechanism because I thought I was primarily address
ing irregularities caused by irregularities in C and because suggestions of overloading
invariably creates a howl of protests. I was trying to be cautious and conservative; I
now consider that a mistake. Specialization as originally defined was a restricted and
anomalous form of overloading that fitted poorly with the rest of the language.

A class or function template can be "specialized." For example, given a template

template<class T> class vector {
// . . .
T& operator!](int i) ;

};

one can provide specializations, that is separate declarations, for, say
v e c t o r < c h a r > a n d v e c t o r < c o m p l e x > : : o p e r a t o r [] (i n t) :

c l a s s vector<char> {
/ / . . .
char& operator[] (int i) ;

};

complex& vector<complex>::operator[](int i) { /* ... */ }

This enables a programmer to provide specialized implementations for classes that are
either particularly important from a performance point of view or have semantics that
differ from the default. This mechanism is crude and very effective.

My original idea was that such specializations would be put into libraries and
automatically used where necessary without programmer intervention. This proved a
costly and questionable service. Specialization caused comprehension and implemen
tation problems because there was no way of knowing what a template meant for a
particular set of template arguments - even if we were looking at the template defini
tion - because the template may have been specialized in some other compilation unit.
For example:

Section 15.10.3 Specialization 375

template<class T> class X {
T v;

public:
T read() const { return v; }
void write (int w) : v(w) { }

};

void f(X<int> r)
{

r.write(2);
int i = r.read();

}

It would seem reasonable to assume that f () uses the member functions defined
above. However, that was not guaranteed. Some other compilation unit may have
defined x < i n t > : : w r i t e () to do something completely different.

Specialization can also be considered as opening a protection loophole in C++
because a specialized member function can access a template class' private data in a
way that is not discernible from reading the template definition. There were even
more technical problems.

I concluded that specialization as originally defined was a botch and also provided
essential functionality. How might we provide the functionality while remedying the
botch? After many complicated arguments, I proposed a trivially simple solution that
was accepted at the San Jose meeting: A specialization must be declared before it is
used. This simply brings specialization into line with the rules for ordinary overload
ing. If no specialization is in scope at a point of use, the general template definition
will be used. For example:

template<class T> void sort(vector<T>& v)

void sort<char*>(vector<char*>& v); // specialization

void f(vector<char*>& vl, vector<String>& v2)
{

sort(vl); // use specialization
// sort(vector<char*>&)

sort(v2); // use general template

// sort(vector<T>&), T is String
}

void sort<String>(vector<String>& v); // error: specialize
// after use

void sorto(vector<double>& v); // fine: sort<double>
// hasn't yet been used

376 Templates Chapter 15

We considered an explicit keyword for requesting a specialization. For example:

specialise void sort(vector<String>&);

but the mood of the committee at the San Jose meeting was strongly against new key
words and I would never have managed to get agreement on the spelling of specialize
vs. specialise in that thoroughly international gathering.

15.10.4 Finding Template Definitions

Traditionally, C++ programs, like C programs, have consisted of sets of files that were
composed into compilation units, compiled and linked into programs by a host of pro
grams relying on conventions. For example, . c files are source code and include . h
files to gain information about other parts of the program. From . c files, the com
piler can produce object code files, often called . o files. The executable version of
the program is obtained by simply linking the . o files together. Archives and dynam
ically linked libraries complicate matters without changing the overall picture.

Templates doesn't fit neatly into this picture. That is the root of many of the prob
lems with template implementations. A template isn't just source code (what is
instantiated from a template is more like traditional source code), so template defini
tions don't quite belong in . c files. On the other hand, templates are not just types
and interface information, so they don't quite belong in . h files either.

The ARM didn't offer sufficient guidance to implementers (§15.10), and this has
led to a proliferation of schemes that are becoming a barrier to portability. Some
implementations have required templates to be placed in .h files. This can lead to
performance problems because too much information is supplied for each compilation
and because each compilation unit appears to depend on all the templates in its . h
files. Basically, template function definitions don't belong in header files. Other
implementations have required template function definitions to be placed in . c files.
This leads to problems with finding a template function definition when an instantia
tion is needed, and it also complicates the composition of a context for an instantia
tion.

I suspect that any solution to these problems must be based on the recognition that
a C++ program is more than a set of unrelated separately compiled units. This is true
even during compilation. Somehow, the concept of a central point where information
related to templates and other issues that affect multiple compilation units must be
recognized. Here I will call that point the repository because its role is to keep infor
mation that the compiler needs between compilations of the separate parts of a pro
gram.

Think of the repository as a persistent symbol table with one entry per template
that the compiler uses to keep track of declarations, definitions, specializations, uses,
etc. Given that concept, I can outline a model of instantiation that supports all lan
guage facilities, accommodates the current uses of .h and . c files, doesn't require
the user to know about the repository, and provides the alternatives for error checking,
optimization, and compiler/linker efficiencies that implementers have asked for. Note

Section 15.10.4 Finding Template Definitions 377

that this is a model for an instantiation system, rather than a language rule or a spe
cific implementation. Several alternative implementations are possible, but I suspect
a user could ignore the details (most of the time) and think of the system this way.

Let me outline what might happen in a number of cases from the point of view of
a compiler. As usual, . c files are fed to the compiler, and they contain # i n c l u d e
directives for . h files. The compiler knows only about code that has been presented
to it. That is, it never looks around in the file system to try to find a template defini
tion that it hasn't already been presented with. However, the compiler uses the repos
itory to "remember" which templates it has seen and where they came from. This
scheme can easily be extended to include the usual notions of archives. Here is a brief
description of what a compiler does at critical points:

- A template declaration is seen: The template can now be used. Enter the tem
plate into the repository.

- A function template definition is seen in a . c file: The template is processed
as far as necessary to enter it into the repository. If it is already entered, we
give a double-definition error unless it is a new version of same template.

- A function template definition is seen in a . h file: The template is processed
as far as necessary to enter it into the repository. If it is already entered, we
check that the already-entered template did in fact originate in the same
header. If not, we give a double-definition error. We check that the one-
definition rule hasn't been violated by checking that this definition is in fact
identical to the previous one. If not, we give a double-definition error unless it
is a new version of same template.

- A function template specialization declaration is seen: If necessary, give a
used-before-specialized error. The specialization can now be used. Enter the
declaration into the repository.

- A function template specialization definition is seen: If necessary, give a
used-before-specialized error. The specialization can now be used. Enter the
definition into the repository.

- A use is encountered: Enter the fact that the template has been used with this
set of template arguments into the repository. Look into the repository to see
if a general template or a specialization has been defined. If so, error checking
and/or optimizations may be performed. If the template has not previously
been used for this set of template arguments, code may be generated. Alterna
tively, code generation can be postponed until link time.

- An explicit instantiation request is encountered: Check if the template has been
defined. If not, give a template-not-defined error. Check if a specialization
has been defined. If so, give an instantiated-and-specialized error. Check if
the template has already been instantiated for this set of template arguments.
If so, a double-instantiation error may be given, or the instantiation request
may be ignored. If not, code may be generated. Alternatively, code generation
can be postponed until link time. In either case, code is generated for every
template class member function presented to the compiler.

- The program is linked: Generate code for every template use for which code

378 Templates Chapter 15

hasn't already been generated. Repeat this process until all instantiations have
been done. Give a use-but-not-defined error for any missing template func
tions.

Code generation for a template and a set of template arguments involves lookup #2
mentioned in §15.10.2. Naturally, checking against illegal uses, unacceptable over-
loadings, etc., must also be performed.

An implementation can be more or less thorough in checking for violations of the
one-definition rule and the rule against multiple instantiations. These are nonrequired
diagnostics, so the exact behavior of the implementation is a quality-of-
implementation issue.

15.11 Implications of Templates

The absence of templates in early C++ had important negative implications on the
way C++ is used. Now that templates are widely available, what can we do better?

In the absence of templates, there was no way in C++ to implement container
classes without extensive use of casting and the manipulation of objects through
pointers to common base classes or vo id* . In principle, this can all be eliminated.
However, I suspect that misuses of inheritance stemming from misguided application
of Smalltalk techniques in C++ (for example, see §14.2.3) and overuse of weakly
typed techniques stemming from C will be very hard to root out.

On the other hand, I expect that it will be possible to slowly get rid of many of the
unsafe practices involving arrays. The ANSI/ISO standard library has the
d y n a r r a y template class (§8.5) so that people can use it or some "home brew"
array template to minimize the unchecked uses of arrays. People often criticize C and
C++ for not checking array bounds. Much of that criticism is misguided because peo
ple forget that just because you can make a range error on a C array, you don't have
to. Array templates allow us to relegate the low-level C arrays to the bowels of an
implementation where they belong. Once the frequency of C-style array usage goes
down and their use becomes more stylized within class and template implementations,
the number of errors that can be attributed to C arrays will be drastically reduced.
This has been slowly happening for years and templates, especially templates in
libraries, accelerate this trend.

The third important aspect of templates is that they open completely new possibil
ities for library design when used for composition in combination with derivation
(§15.8). In the long run, that might be the most important aspect.

Even though implementations supporting templates are no longer uncommon, they
they are not yet universally available, either. Furthermore, most such implementa
tions are at the time of writing immature. This currently limits the impact of tem
plates on people's thinking about C++ and the design of programs. The ANSI/ISO
resolutions of the various dark corners ought to solve both problems so that we will
see templates take the central place in the C++ programmer's tool box that they were
designed for.

Section 15.11.1 Separation of Implementation and Interface 379

15.11.1 Separation of Implementation and Interface

The template mechanism is completely a compile-time and link-time mechanism. No
part of the template mechanism needs run-time support. This is of course deliberate,
but leaves the problem of how to get the classes and functions generated (instantiated)
from templates to depend on information known only at run time. The answer is, as
ever in C++: use virtual functions.

Many people expressed concern that templates relied too heavily on the availabil
ity of source code. This was seen as having two bad side-effects:

[1] You can't keep your implementation a trade secret.
[2] If a template implementation changes, user code must be recompiled.

This is certainly the case for the most obvious implementation, but the trick of deriv
ing template classes from classes that provide a clean interface limits the impact of
these problems. Often, a template simply provides interface code to something that
can be "secret" and can be changed without affecting users. The p v e c t o r example
from §15.5 is a simple example of that. A template version of the s e t example from
§13.2.2 would be another. My view was that people who were concerned with these
matters had an alternative in the virtual function concept and I needn't provide
another variant of the jump table.

It is also possible to devise a partially compiled form of templates that will keep
the implementer's secrets as safe - or maybe as unsafe - as ordinary object code.

To some, the problem is to ensure that no new versions of templates meant to be
secret are instantiated - directly or indirectly - by the user. This can be ensured sim
ply by not supplying their source. That approach is feasible if the supplier can pre-
instantiate (§15.10.1) all versions needed. Those versions (and only those) can then
be shipped as object code libraries.

15.11.2 Flexibility and Efficiency

Because templates have to compete directly with macros the demands on their flexi
bility and efficiency are severe. In retrospect, the result has been a mechanism of
unsurpassed flexibility and efficiency without compromising the static type checking.
When it comes to expressing algorithms, I occasionally wish for higher-order func
tions, but rarely for run-time type checking. I suspect that most suggestions for
"improvements" to templates through constraints and restrictions would seriously
limit the utility of templates without providing added safety, simplicity, or efficiency
to compensate. To quote Alex Stepanov summarizing the experience of writing and
using a major library of data structures and algorithms:

' 'C++ is a powerful enough language - the first such language in our experience -
to allow the construction of generic programming components that combine math
ematical precision, beauty, and abstractness with the efficiency of non-generic
hand-crafted code.''

We have yet to discover the full power of the combination of templates, abstract
classes, exception handling, etc. I don't consider the factor-ten difference in the size
of the Booch Ada and C++ components [Booch,1993b] a freak example (§8.4.1).

380 Templates Chapter 15

15.11.3 Impact on the Rest of C++

A template argument can be either a built-in type or a user-defined type. This has cre
ated constant pressure for user-defined and built-in types to look and behave as simi
larly as possible. Unfortunately, user-defined and built-in types cannot be made to
behave in a completely uniform manner. The reason is that the irregularity of the
built-in types cannot be removed without causing serious incompatibilities with C. In
many small ways, however, the built-in types have benefited from the progress made
with templates.

When I first considered templates and also when I used them later, I found several
cases in which built-in types were treated slightly differently than classes. This
became an obstacle to writing templates that could be used with both classes and
built-in type arguments. I therefore set out to ensure that minor syntactic and seman
tic details applied uniformly to all types. This effort continues to this day.

Consider:

vector v(10); // vector of 10 elements

This initializer syntax used to be illegal for built-in types. To allow it, I introduced
the notion that built-in types have constructors and destructors. For example:

int a(l); // pre-2.1 error, now initializes a to 1

I considered extending this notion to allow derivation from built-in classes and
explicit declaration of built-in operators for built-in types. However, I restrained
myself.

Allowing derivation from an i n t doesn't actually give a C++ programmer any
thing significantly new compared to having an i n t member. This is primarily
because i n t doesn't have any virtual functions for the derived class to override.
More seriously though, the C conversion rules are so chaotic that pretending that i n t ,
s h o r t , etc., are well-behaved ordinary classes is not going to work. They are either
C compatible or they obey the relatively well-behaved C++ rules for classes, but not
both.

Allowing the definition of built-in operators such as o p e r a t o r + (i n t , i n t)
would also have made the language mutable. However, allowing such functions to be
synthesized so that one could pass pointers to them and in other ways refer directly to
them seems attractive.

Conceptually, built-in types do have constructors and destructors, though. For
example:

template<class T> class X {
T a;
int i ;
complex c;

Section 15.11.3 Impact on the Rest of C++ 381

p u b l i c :
X() : a (T ()) , i (i n t ()) , c (c o m p l e x ()) { }
/ / . . .

} ;

The constructor for X initializes each of its members by calling the member's default
constructor. The default constructor for any type T is defined to yield the same value
as a global variable of type T that hasn't been explicitly initialized. This is an
improvement over the ARM where X () is defined to yield an undefined value unless
a default constructor is defined for X.

16
Exception Handling

Don't Panic!
- The Hitchhiker's Guide to the Galaxy

Aims for exception handling — assumptions about exception handling —
syntax — grouping of exceptions — resource management — errors in
constructors — resumption vs. termination semantics — asynchronous
events — multi-level exception propagation — static checking — imple
mentation issues — invariants.

16.1 Introduction

In the original design of C++, exceptions were considered, but postponed because
there wasn't time to do a thorough job of exploring the design and implementation
issues and because of fear of the complexity they might add to an implementation
(§3.15). In particular, it was understood that a poor design could cause run-time over
head and a significant increase in porting times. Exceptions were considered impor
tant for error handling in programs composed out of separately designed libraries.

The actual design of the C++ exception mechanism stretched over years (1984 to
1989) and was the first part of C++ to be designed in the full glare of public interest.
In addition to the innumerable blackboard iterations that every C++ feature went
through, several designs were worked out on paper and widely discussed. Andrew
Koenig was closely involved in the later iterations and is the coauthor (with me) on
the published papers [Koenig, 1989a] [Koenig, 1990]. Andy and I worked out signifi
cant parts of the final scheme en route to the Santa Fe USENIX C++ conference in
November 1987. I also had meetings at Apple, DEC (Spring Brook), Microsoft, IBM
(Almaden), Sun, and other places where I presented draft versions of the design and
received valuable input. In particular, I searched out people with real experience with

384 Exception Handling Chapter 16

systems that provide exception handling to compensate for my personal inexperience
in that area. The first serious discussion of exception handling for C++ that I recall
was in Oxford in the summer of 1983. The focus of that discussion with Tony Willi
ams from the Rutherford Lab was the design of fault-tolerant systems and the value of
static checking in exception-handling mechanisms.

At the time when the debate about exception handling started in the ANSI C++
committee, experience with exception handling in C++ was limited to library-based
implementations by Apple, Mike Miller [Miller,1988], and others, and to a single
compiler-based implementation by Mike Tiemann [Tiemann,1990]. This was worry
ing, though there was fairly wide agreement that exception handling in some suitable
form was a good idea for C++. In particular, Dmitry Lenkov expressed a strong wish
for exception handling based on experiences at Hewlett-Packard. A notable exception
to this agreement was Doug Mcllroy, who stated that the availability of exception
handling would make systems less reliable because library writers and other program
mers will throw exceptions rather than try to understand and handle problems. Only
time will tell to what extent Doug's prediction will be true. Naturally, no language
feature can prevent programmers from writing bad code.

The first implementations of exception handling as defined in the ARM started
appearing in the spring of 1992.

16.2 Aims and Assumptions
The following assumptions were made for the design:

- Exceptions are used primarily for error handling.
- Exception handlers are rare compared to function definitions.
- Exceptions occur infrequently compared to function calls.
- Exceptions are a language-level concept - not just implementation, and not an

error-handling policy.
This formulation, like the list of ideals below, is taken from slides I used for presenta
tions of the evolving design from about 1988.

What is meant is that exception handling
- Isn't intended as simply an alternative return mechanism (as was suggested by

some, notably David Cheriton), but specifically as a mechanism for supporting
the construction of fault-tolerant systems.

- Isn't intended to turn every function into a fault-tolerant entity, but rather as a
mechanism by which a subsystem can be given a large measure of fault toler
ance even if its individual functions are written without regard for overall
error-handling strategies.

- Isn't meant to constrain designers to a single "correct" notion of error hand
ling, but to make the language more expressive.

Throughout the design effort, there was an increasing influence of systems designers
of all sorts and a decrease of input from the language design community. In retro
spect, the greatest influence on the C++ exception handling design was the work on

Section 16.2 Aims and Assumptions 385

fault-tolerant systems started at the University of Newcastle in England by Brian Ran-
dell and his colleagues in the seventies and continued in many places since.

The following ideals evolved for C++ exception handling:
[1] Type-safe transmission of arbitrary amounts of information from a throw-point

to a handler.
[2] No added cost (in time or space) to code that does not throw an exception.
[3] A guarantee that every exception raised is caught by an appropriate handler.
[4] A way of grouping exceptions so that handlers can be written to catch groups

of exceptions as well as individual ones.
[5] A mechanism that by default will work correctly in a multi-threaded program.
[6] A mechanism that allows cooperation with other languages, especially with C.
[7] Easy to use.
[8] Easy to implement.

Most of these ideals were achieved, others ([3], [8]) were considered too expensive or
too constraining and were only approximated. I consider it given that error handling
is a difficult task for which the programmer needs all the help that can be provided.
An over-zealous language designer might provide features and/or constraints that
would actually complicate the task of designing and implementing a fault-tolerant
system.

My view that fault-tolerant systems must be multi-level helped me resist the
clamor for "advanced" features. No single unit of a system can recover from every
error that might happen in it, and every bit of violence that might be done to it from
"the outside." In extreme cases, power will fail or a memory location will change its
value for no apparent reason.

At some point, the unit must give up and leave further cleanup to a ' 'higher'' unit.
For example, a function may report a catastrophic failure to a caller, a process may
have to terminate abnormally and leave recovery to some other process, a processor
may ask for help from another, and a complete computer may have to request help
from a human operator. Given this view, it makes sense to emphasize that the error
handling at each level should be designed so that relatively simple code using rela
tively simple exception handling features will have a chance of actually working.

Trying to provide facilities that allow a single program to recover from all errors is
misguided and leads to error-handling strategies so complex that they themselves
become a source of errors.

16.3 Syntax
As ever, syntax attracted more attention than its importance warranted. In the end, I
settled on a rather verbose syntax using three keywords and lots of brackets:

386 Exception Handling Chapter 16

i n t f()
{

try { // start of try block

return g () ;

}
catch (xxii) { // start of exception handler

// we get here only if 'xxii' occurs

error("g() goofed: xxii");

return 22;

}

}

int g()

{

// . . .

if (something_wrong) throw xxii(); // throw exception

// . . .

}

The t r y keyword is completely redundant and so are the { } brackets except where
multiple statements are actually used in a try-block or a handler. For example, it
would have been trivial to allow:

i n t f()
{

return g() catch (xxii) { // not C++
error("g() goofed: xxii");
return 22;

};
}

However, I found this so difficult to explain that the redundancy was introduced to
save support staff from confused users. Because of the C community's traditional
aversion to keywords, I tried hard to avoid having three new keywords for exception
handling, but every scheme I cooked up with fewer keywords seemed overly clever
and/or confusing. For example, I tried to use c a t c h for both throwing an exception
and for catching it. This can be made logical and consistent, but I despaired over
explaining that scheme.

The word th row was chosen partly because the more obvious words r a i s e and
s i g n a l had already been taken by standard C library functions.

16.4 Grouping

Having talked to dozens of users of more than a dozen different systems supporting
some form of exception handling, I concluded that the ability to define groups of
exceptions is essential. For example, a user must be able to catch "any I/O library

Section 16.4 Grouping 387

exception" without knowing exactly which exceptions that includes. There are work
arounds when a grouping mechanism isn't available. For example, one might encode
what would otherwise have been different exceptions as data carried by a single
exception, or simply list all exceptions of what we consider a group everywhere a
catch of the group is intended. However, every such workaround was experienced -
by most if not everybody - to be a maintenance problem.

Andrew Koenig and I first tried a grouping scheme based on groups dynamically
constructed by constructors for exception objects. However, this seemed somewhat
out of style with the rest of C++ and many people, including Ted Goldstein and Peter
Deutsch, noted that most such groups were equivalent to class hierarchies. We there
fore adopted a scheme inspired by ML where you throw an object and catch it by a
handler declared to accepts objects of that type. The usual C++ initialization rules
then allow a handler for a type B to catch objects of any class D derived from B. For
example:

class Matherr { };
class Overflow: public Matherr { };
class Underflow: public Matherr { };
class Zerodivide: public Matherr { };
// . . .

void g()
{

try {
f () ;

}
catch (Overflow) {

// handle Overflow or anything derived from Overflow
}
catch (Matherr) {

// handle any Matherr that is not Overflow
}

}

It was later discovered that multiple inheritance (§12) provided an elegant solution
to otherwise difficult classification problems. For example, one can declare a network
file error like this:

class network_file_err
: public network_err , public file_system_err { };

An exception of type ne twork_f i l e _ e r r can be handled both by software
expecting network errors and software expecting file system errors. I believe that
Daniel Weinreb was the first one to spot this usage.

388 Exception Handling Chapter 16

16.5 Resource Management

The central point in the exception handling design was the management of resources.
In particular, if a function grabs a resource, how can the language help the user to
ensure that the resource is correctly released upon exit even if an exception occurs?
Consider this simple example borrowed from [2nd]:

void use_file(const char* fn)
{

FILE* f = fopen(fn,"w"); // open file fn

// use f

fclose(f); // close file fn
}

This looks plausible. However, if something goes wrong after the call of f open ()
and before the call of f c l o s e () , an exception may cause u se_ f i l e () to be
exited without calling f c l o s e () . Please note that exactly the same problem can
occur in languages that do not support exception handling. For example, a call of the
standard C library function longjmp () would have the same bad effects. If we
want to write a fault-tolerant system, we must solve this problem. A primitive solu
tion looks like this:

void use_file(const char* fn)
{

FILE* f = fopen(fn,"r"); // open file fn
try {

// use f
}
catch (...) { // catch all

fclose(f); // close file fn
throw; // re-throw

}
fclose(f); // close file fn

}

All the code using the file is enclosed in a t r y block that catches every exception,
closes the file, and re-throws the exception.

The problem with this solution is that it is verbose, tedious, and potentially expen
sive. Furthermore, any verbose and tedious solution is error-prone because program
mers get bored. We can make this solution ever so slightly less tedious by providing
a specific finalization mechanism to avoid the duplication of the code releasing the
resource (in this case f c l o s e (f)) , but that does nothing to address the fundamental
problem: writing resilient code requires special and more complicated code than tradi
tional code.

Fortunately, there is a more elegant solution. The general form of the problem
looks like this:

Section 16.5 Resource Management 389

void use()
{

// acquire resource 1
// . . .
// acquire resource n

// use resources

// release resource n
// . . .
// release resource 1

}

It is typically important that resources are released in the reverse order of their acqui
sition. This strongly resembles the behavior of local objects created by constructors
and destroyed by destructors. Thus we can handle such resource acquisition and
release problems by a suitable use of objects of classes with constructors and
destructors. For example, we can define a class F i l e P t r that acts like a FILE*:

class FilePtr {
FILE* p;

public:
FilePtr(const char* n, const char* a) { p = fopen(n,a); }
FilePtr(FILE* pp) { p = pp; }
"FilePtr() { fclose(p); }

operator FILE*() { return p; }
}

We can construct a F i l e P t r given either a FILE* or the arguments required for
f open () . In either case, a F i l e P t r will be destroyed at the end of its scope and
its destructor closes the file. Our program now shrinks to this minimum

void use_file(const char* fn)
{

FilePtr f(fn,"r"); // close file fn
// use f

} // file fn implicitly closed

and the destructor will be called independently of whether the function is exited nor
mally or because an exception is thrown.

I called this technique "resource acquisition is initialization." It extends to par
tially constructed objects and thus addresses the otherwise difficult issue of what to do
when an error is encountered in a constructor; see [Koenig,1990] or [2nd].

16.5.1 Errors in Constructors

To some, the most important aspect of exceptions is that they provide a general mech
anism for reporting errors detected in a constructor. Consider the constructor for

390 Exception Handling Chapter 16

F i l e P t r ; it didn't test whether the file was opened correctly. A more careful coding
would be:

FilePtr::FilePtr(const char* n, const char* a)
{

if ((p = fopen(n,a)) == 0) {
// oops! open failed - what now?

}
}

Without exceptions, there is no direct way of reporting the failure because a construc
tor doesn't have a return value. This have led people to use workarounds such as put
ting the constructed objects into an error state, leaving return value indicators in
agreed upon variables, etc. Surprisingly enough, this was rarely a significant practical
problem. However, exceptions provide a general solution:

FilePtr::FilePtr(const char* n, const char* a)
{

if ((p = fopen(n,a)) == 0) {
// oops! open failed
throw Open_failed(n,a);

}
}

Importantly, the C++ exception handling mechanism guarantees that partly con
structed objects are correctly destroyed, that is, completely constructed sub-objects
are destroyed and yet-to-be-constructed sub-objects are not. The allows the writer of
a constructor to concentrate on the error handling for the object in which the failure is
detected. For details see [2nd,§9.4.1].

16.6 Resumption vs. Termination

During the design of the exception handling mechanism, the most contentious issue
turned out to be whether it should support termination semantics or resumption
semantics; that is, whether it should be possible for an exception handler to require
execution to resume from the point where the exception was thrown. For example,
wouldn't it be a good idea to have the routine invoked because of memory exhaustion,
find some extra memory, and then return? To have the routine invoked because of a
divide-by-zero return with a user-defined value? To have the routine invoked because
a read routine found the floppy drive empty, request the user to insert a disk, and then
return?

My personal starting point was: "Why not? That seems a useful feature. I can see
quite a few situations where I could use resumption." Over the next four years, I
learned otherwise, and thus the C++ exception handling mechanism embodies the
opposite view, often called the termination model.

The main resumption vs. termination debate took place in the ANSI C++ commit
tee where the issue was discussed in the committee as a whole, in the extensions

Section 16.6 Resumption vs. Termination 391

working group, at evening technical sessions, and on the committee's electronic mail
ing lists. That debate lasted from December 1989 when the ANSI committee was
formed to November 1990. Naturally, the issues were also the topic of much interest
in the C++ community at large. In the committee, the resumption point of view was
ably presented and defended primarily by Martin O'Riordan and Mike Miller.
Andrew Koenig, Mike Vilot, Ted Goldstein, Dag Briick, Dmitry Lenkov, and I were
usually the most vocal proponents of termination semantics. I conducted most of the
discussions in my role as chairman of the extensions working group. The outcome
was a 22 to 1 vote for termination semantics in the extensions working group after a
long meeting where experience data was presented by representatives of DEC, Sun,
TI, and IBM. This was followed by the acceptance of the exception handling pro
posal as presented in the ARM (that is, with termination semantics) by a 30 to 4 vote
by the full committee.

After a long debate at the Seattle meeting in July 1990, I summarized the argu
ments for resumption like this:

- More general (powerful, includes termination).
- Unifies similar concepts/implementations.
- Essential for very complex, very dynamic systems (that is, OS/2).
- Not significantly more complex/expensive to implement.
- If you don't have it, you must fake it.
- Provides simple solutions for resource exhaustion problems.

The arguments for termination was similarly summarized:
- Simpler, cleaner, cheaper.
- Leads to more manageable systems.
- Powerful enough for everything.
- Avoids horrendous coding tricks.
- Significant negative experience with resumption.

These lists trivialize the debate, which was very technical and thorough. It also got
quite heated at times with less restrained proponents expressing the view that termina
tion proponents were somehow trying to impose an arbitrary and restrictive view of
programming on them. Clearly, the termination/resumption issue touches deep issues
of how software ought to be designed. The debate was never between two equal-sized
groups. The proponents of termination semantics always seemed to be in a 4-to-l or
larger majority in every forum.

The most repeated and most persuasive arguments for resumption were that
[1] because resumption is a more general mechanism than termination, it should

be accepted even if there was doubt about the usefulness;
[2] there are important cases where a routine finds itself blocked because of the

lack of a resource (for example, memory exhaustion or an empty floppy disk
drive). In that case, resumption will allow the routine to throw an exception,
have the exception handler provide the missing resource, and then resume the
execution as if the resource had never been missing.

The most repeated and convincing arguments (to me) for termination were that
[1] Termination is significantly simpler than resumption. In fact, resumption

392 Exception Handling Chapter 16

requires the key mechanisms for continuations and nested functions without
providing the benefits of those mechanisms.

[2] The method of dealing with resource exhaustion proposed in argument [2] for
resumption is fundamentally bad. It leads to error-prone and hard-to-
comprehend tight bindings between library code and users.

[3] Really major systems in many application areas have been written using termi
nation semantics so resumption cannot be necessary.

The last point is also backed up by a theoretical argument by Flaviu Cristian that
given termination, resumption isn't needed [Cristian, 1989].

After a couple of years of discussion, I was left with the impression that one could
concoct a convincing logical argument for either position. Even the original paper on
exception handling [Goodenough,1975] had done so. We were in the position of the
ancient Greek philosophers debating the nature of the universe with such intensity and
subtlety that they forgot to study it. Consequently, I kept asking anyone with genuine
experience with large systems to come forward with data. On the side of resumption,
Martin O'Riordan reported that "Microsoft had several years of positive experience
with resumable exception handling," but the absence of specific examples and doubts
about the value of OS/2 Release 1 as a proof of technical soundness weakened his
case. Experiences with PL/I's ON-conditions were mentioned as arguments both for
and against resumption.

Then, at the Palo Alto meeting in November 1991, we heard a brilliant summary
of the arguments for termination semantics backed with both personal experience and
data from Jim Mitchell (from Sun, formerly from Xerox PARC). Jim had used excep
tion handling in half a dozen languages over a period of 20 years and was an early
proponent of resumption semantics as one of the main designers and implementers of
Xerox's Cedar/Mesa system. His message was

"termination is preferred over resumption; this is not a matter of opinion but a
matter of years of experience. Resumption is seductive, but not valid."

He backed this statement with experience from several operating systems. The key
example was Cedar/Mesa: It was written by people who liked and used resumption,
but after ten years of use, there was only one use of resumption left in the half million
line system - and that was a context inquiry. Because resumption wasn't actually
necessary for such a context inquiry, they removed it and found a significant speed
increase in that part of the system. In each and every case where resumption had been
used it had - over the ten years - become a problem and a more appropriate design
had replaced it. Basically, every use of resumption had represented a failure to keep
separate levels of abstraction disjoint.

Mary Fontana presented similar data from the TI Explorer system where resump
tion was found to be used for debugging only, Aron Insinga presented evidence of the
very limited and nonessential use of resumption in DEC'S VMS, and Kim Knuttilla
related exactly the same story as Jim Mitchell for two large and long-lived projects
inside IBM. To this we added a strong opinion in favor of termination based on expe
rience at L.M.Ericsson relayed to us by Dag Brack.

Thus, the C++ committee endorsed termination semantics.

Section 16.6.1 Workarounds for Resumption 393

16.6.1 Workarounds for Resumption

It appears that most of the benefits of resumption can be obtained by combining a
function call and a (terminating) exception. Consider a function that a user calls to
acquire some resource X:

X* grab_X() // acquire resource X
{

for (;;) {
if (can_acquire_an_X) {

// . . .
return some_X;

}

// oops! can't acquire an X, try to recover:

grab_X_failed();
}

}

It is the job of g r a b _ X _ f a i l e d () to make it possible to make an X available for
acquisition. If it can't, it can throw an exception:

void grab_X_failed()
{

if (can_make_X_available) { // recovery
// make X available
return;

}

throw Cannot_get_X; // give up
}

This technique is a generalization of the new_hand le r approach to memory
exhaustion (§10.6). There are, of course, many variants of this technique. My
favorites use a pointer to function somewhere to allow a user to ' 'tailor'' the recovery
action. This technique doesn't burden the system with the complexity of a resump
tion implementation. Often, it doesn't imply the negative impact on system organiza
tion that general resumption does.

16.7 Asynchronous Events

The C++ exception handling mechanism is explicitly not for handling asynchronous
events directly:

"Can exceptions be used to handle things like signals? Almost certainly not in
most C environments. The trouble is that C uses functions like m a l l o c that are
not re-entrant. If an interrupt occurs in the middle of m a l l o c and causes an
exception, there is no way to prevent the exception handler from executing

394 Exception Handling Chapter 16

m a l l o c again.
A C++ implementation where calling sequences and the entire run-time library

are designed around the requirement for re-entrancy would make it possible for
signals to throw exceptions. Until such implementations are commonplace, if
ever, we must recommend that exceptions and signals be kept strictly separate
from a language point of view. In many cases, it will be reasonable to have sig
nals and exceptions interact by having signals store away information that is regu
larly examined (polled) by some function that in turn may throw appropriate
exceptions in response to the information stored by the signals [Koenig,1990]."

My view, which appears to reflect a large majority view in the part of the C/C++ com
munity concerned with exception handling, is that to produce reliable systems you
need to map asynchronous events into some form of process model as quickly as pos
sible. Having exceptions happen at random points in the execution and having to stop
the processing of one exception to deal with an unrelated exception is a prescription
for chaos. A low-level interrupt system should be separated from general programs as
far as possible.

This view precludes the direct use of exceptions to represent something like hit
ting a DEL key and replacing UNIX signals with exceptions. In such cases, a low-
level interrupt routine must somehow do its minimal job and possibly map into some
thing that could trigger an exception at a well-defined point in a program's execution.
Note that signals, as defined in the C standard, are not allowed to call functions
because during signal handling the machine state isn't guaranteed to be consistent
enough to handle a function call and return.

Similarly, low-level events, such as arithmetic overflows and divide by zero, are
assumed to be handled by a dedicated lower-level mechanism rather than by excep
tions. This enables C++ to match the behavior of other languages when it comes to
arithmetic. It also avoids the problems that occur on heavily pipelined architectures
where events such as divide by zero are asynchronous. Making divide by zero, etc.,
synchronous is not possible on all machines. Where it is possible, flushing the pipe
lines to ensure that such events are caught before unrelated computation has happened
slows the machine down (often by an order of magnitude).

16.8 Multi-level Propagation

There are several good reasons to allow an exception to be implicitly propagated from
a function to its immediate caller only. However, this was not an option for C++:

[1] There are millions of C++ functions that couldn't reasonably be expected to be
modified to propagate or handle exceptions.

[2] It is not a good idea to try to make every function a fire-wall. The best error-
handling strategies are those in which only designated major interfaces are
concerned with non-local error handling issues.

[3] In a mixed-language environment, it is not possible to require a specific action
of a function because that function may be written in another language. In

Section 16.8 Multi-level Propagation 395

particular, a C++ function throwing an exception may be called by a C function
that was called by a C++ function willing to catch the exception.

The first reason is pragmatic, the other two are fundamental: [2] is a statement about
systems design strategies, and [3] is a statement about what kind of environments C++
code is assumed to be able to work in.

16.9 Static Checking
By allowing multi-level propagation of exceptions, C++ loses one aspect of static
checking. One cannot simply look at a function to determine which exceptions it may
throw. In fact, it may in principle throw any exception even if there isn't a single
th row statement in the body of that function. Functions called by it may do the
throwing.

Several people, notably Mike Powell, bemoaned this and tried to figure out how
stronger guarantees could be provided for C++ exceptions. Ideally, we would like to
guarantee that every exception thrown is caught by a suitable user-provided handler.
Often, we would like to guarantee that only exceptions from an explicitly specified
list can escape from a function. The C++ mechanism for specifying a list of excep
tions that a function may throw was essentially designed by Mike Powell, Mike Tie-
mann, and me on a blackboard at Sun sometime in 1989.

"In effect, writing this:

void f() throw (el, e2)
{

// stuff
}

is equivalent to writing this:

void f()
{

t r y {
// stuff

}
catch (el) {

throw; // re-throw
}
catch (e2) {

throw; // re-throw
}
catch (...) {

unexpected ();
}

}

The advantage of the explicit declaration of exceptions that a function can
throw over the equivalent checking in the code is not just that it saves typing. The
most important advantage is that the function declaration belongs to an interface

396 Exception Handling Chapter 16

that is visible to its callers. Function definitions, on the other hand, are not univer
sally available and even if we do have access to the source code of all our libraries
we strongly prefer not to have to look at it very often.

"Another advantage is that it may still be practical to detect many uncaught
exceptions during compilation [Koenig,1990]."

Ideally, exception specifications would be checked at compile time, but that would
require that every function cooperate in the scheme, and that isn't feasible. Further,
such static checking could easily become a source of much recompilation. Worse,
such recompilation would only be feasible for users who had all the source code to
recompile:

' 'For example, a function must potentially be changed and recompiled if a func
tion it calls (directly or indirectly) changes the set of exceptions it catches or
throws. This could lead to major delays in the production of software produced
(partly) by composition of libraries from different sources. Such libraries would
de facto have to agree on a set of exceptions to be used. For example, if subsys
tem X handles exceptions from subsystem Y and the supplier of Y introduces a
new kind of exception, then X's code will have to be modified to cope. A user of
X and Y will not be able to upgrade to a new version of Y until X has been modi
fied. Where many subsystems are used this can cause cascading delays. Even
where the 'multiple supplier problem' does not exist this can lead to cascading
modifications of code and to large amounts of recompilation.

Such problems would cause people to avoid using the exception specification
mechanism or else subvert it [Koenig,1990]."

Thus we decided to support run-time checking only and leave static checking to sepa
rate tools.

"An equivalent problem occurs when dynamic checking is used. In that case,
however, the problem can be handled using the exception grouping mechanism
presented in §16.4. A naive use of the exception handling mechanism would
leave a new exception added to subsystem Y uncaught or converted into a call to
u n e x p e c t e d !) by some explicitly-called interface. However, a well-defined
subsystem Y would have all its exceptions derived from a class Y e x c e p t i o n .
For example

class newYexception : public Yexception { /* ... */ } ;

This implies that a function declared

void f() throw (Xexception, Yexception, IOexception);

would handle a newYexcept ion by passing it to callers of f () ".
For a further discussion see [2nd,§9].

16.9.1 Implementation Issues

As ever, efficiency was a major concern. It was obvious that one could design an
exception handling mechanism that could only be implemented with significant direct

Section 16.9.1 Implementation Issues 397

overhead in the function-calling sequences or indirectly through optimizations that
were prevented by the possibility of exceptions. It appears that these concerns were
successfully addressed so that in theory at least, the C++ exception handling mecha
nism can be implemented without any time overhead to a program that doesn't throw
an exception. An implementation can arrange that all run-time cost is incurred when
an exception is thrown [Koenig,1990]. It is also possible to limit space overhead, but
it is hard to simultaneously avoid run-time overhead and an increase in code size.
Several implementations now support exceptions so the tradeoffs will become clear;
see for example [Cameron, 1992].

Curiously, exception handling doesn't affect the object layout model to any real
extent. It is necessary to represent a type at run time to communicate between a throw
point and a handler. However, it appears that can be done by a special-purpose mech
anism that doesn't affect objects in general. Alternatively, the data structures support
ing run-time type identification (§ 14.2.6) can be used. A much more critical point is
that keeping track of the exact lifetimes of every automatic object becomes essential.
Straightforward implementations of that can lead to some code bloat even where the
number of added instructions actually executed is low.

My ideal implementation technique derives from work done with Clu and
Modula-2+ [Rovner,1986] implementations. The fundamental idea is to lay down a
table of code address ranges that corresponds to the state of the computation as relates
to exception handling. For each range, the destructors that need to be called and the
handlers that can be invoked are recorded. When an exception is thrown the excep
tion handling mechanism compares the program counter to the addresses in the range
table. If the program counter is in a range found in the range table, the appropriate
actions are taken; otherwise the stack is unwound and the program counter from the
calling function is looked up in the range table.

16.10 Invariants
Being a relatively new, evolving, yet heavily used language, C++ attracts more than
its share of suggested improvements and extensions. In particular, every feature of
every language that is fashionable somewhere will eventually be proposed for C++.
Bertrand Meyer popularized the old idea of preconditions and postconditions and pro
vided direct language support for it in Eiffel [Meyer,1988]. Naturally, direct language
support was suggested for C++.

Segments of the C community have always relied heavily on the a s s e r t ()
macro, but there has been no good way of reporting a violation of some assertion at
run time. Exceptions provided such a way, and templates provided a way of avoiding
reliance on macros. For example, one can write an A s s e r t () template that mimics
the C a s s e r t () macro:

398 Exception Handling Chapter 16

template<class T, class X> inline void Assert(T expr,X x)
{

if (!NDEBUG)
if (!expr) throw x;

}

will throw exception x if exp r is false and we have not turned off checking by set
ting NDEBUG. For example:

c l a s s Bad_f_arg { };

void f(String& s, int i)

{
Assert(0<=i && i<s.size(),Bad_f_arg());

// . . .

}

This is the least-structured variant of such techniques. I personally prefer defining
invariants for classes as member functions rather than using assertions directly. For
example:

void String::check()
{

Assert(p
&& 0<=sz
&& SZ<TOO_LARGE
&& p[sz-l]==0 , Invariant);

}

The ease with which assertions and invariants can be defined and used within the
existing C++ language has minimized the clamor for extensions that specifically sup
port program verification features. Consequently, most of the effort related to such
techniques has gone into suggestions for standardizing techniques [Gautron,1992],
much more ambitious verification systems [Lea, 1990], or simple use within the exist
ing framework.

17
Namespaces

Always design a thing by considering
it in its next larger context.

- Eliel Saarinen

Global scope problems — ideals for a solution — namespaces, using-
declarations, and using-directives — how to use namespaces — name
spaces and classes — C compatibility.

17.1 Introduction

C provides a single global namespace for all names that don't conveniently fit into a
single function, a single s t r u c t , or a single translation unit. This causes problems
with name clashes. I first grappled with this problem in the original design of C++ by
defaulting all names to be local to a translation unit and requiring an explicit e x t e r n
declaration to make them visible to other translation units. As described in §3.12, this
idea was neither sufficient to solve the problem nor sufficiently compatible to be
acceptable, so it failed.

When I devised the type-safe linkage mechanism (§11.3), I reconsidered the prob
lem. I observed that a slight change to the

e x t e r n "C" { /* . . . */ }

syntax, semantics, and implementation technique would allow us to have

e x t e r n XXX { /* . . . */ }

mean that names declared in XXX were in a separate scope XXX and accessible from
other scopes only when qualified by XXX: : in exactly the same way static class
members are accessed from outside their class.

400 Namespaces Chapter 17

For various reasons, mostly related to lack of time, this idea lay dormant until it
resurfaced in the ANSI/ISO committee discussions early in 1991. First, Keith Rowe
from Microsoft presented a proposal that suggested the notation

bundle XXX { /* . . . */ } ;

as a mechanism for defining a named scope and an operator u s e for bringing all
names from a b u n d l e into another scope. This led to a - not very vigorous - discus
sion among a few members of the extensions group including Steve Dovich, Dag
Briick, Martin O'Riordan, and me. Eventually, Volker Bauche, Roland Hartinger,
and Erwin Unruh from Siemens refined the ideas discussed into a proposal that didn't
use new keywords:

: : XXX : : { / * . . . * / } ;

This led to a serious discussion in the extensions group. In particular, Martin
O'Riordan demonstrated that this : : notation led to ambiguities with : : used for
class members and for global names.

By early 1993, I had - with the help of multi-megabyte email exchanges and dis
cussions at the standards meetings - synthesized a coherent proposal. I recall techni
cal contributions on namespaces from Dag Briick, John Brans, Steve Dovich, Bill
Gibbons, Philippe Gautron, Tony Hansen, Peter Juhl, Andrew Koenig, Eric Krohn,
Doug McIlroy, Richard Minner, Martin O'Riordan, John Skaller, Jerry Schwarz,
Mark Terribile, and Mike Vilot. In addition, Mike Vilot argued for immediate devel
opment of the ideas into a definite proposal so that the facilities would be available
for addressing the inevitable naming problems in the ISO C++ library. Namespaces
were voted into C++ at the Munich meeting in July 1993. At the San Jose meeting in
November 1993, it was decided to use namespaces to control names in the standard C
and C++ libraries.

17.2 The Problem

Having only a single global scope makes it unnecessarily difficult to write program
fragments that can be linked together without fear of name clashes. For example:

/ / my.h:
char f (c h a r) ;
i n t f (i n t) ;
class String { /* ... */ } ;

// your.h:
char f(char);
double f(double);
class String { /* ... */ };

Given these definitions, a third party cannot easily use both my.h and y o u r . h .
Note that some of these names will appear in object code, and that some programs

Section 17.2 The Problem 401

will be shipped without source. This implies that macro-like schemes that change the
appearance of programs without actually changing the names presented to a linker are
insufficient.

17.2.1 Workarounds

There are several workarounds. For example:

/ / my . h :

char my_f(char) ;

int my_f(int) ;
class my_String { /* ... */ } ;

// your.h:
char yo_f(char);

double yo_f(double);

class yo_String { /* ... */ } ;

This approach is not uncommon, but it is quite ugly and - unless the prefix strings are
short - unpleasant for the user. Another problem is that there are only a few hundred
two-letter prefixes and already hundreds of C++ libraries. This is one of the oldest
problems in the book. Old-time C programmers will be reminded of the time when
s t r u c t member names were given one or two letter suffixes to avoid clashes with
members of other s t r u c t s .

Macro hackery can make this approach even nastier (or even nicer, if you happen
to like macros):

// my.h:
#define my(X) myprefix_##X

char my(f)(char);
int my(f)(int);
class my(String) { /* ... */ } ;

// your.h:
ttdefine yo(X) your_##X

char yo(f)(char);
double yo(f)(double);
class yo(String) { /* ... */ } ;

The idea is to allow longer prefixes in the name used for linkage while leaving the
names used in the program short. As with all macro schemes, this creates a problem
for tools: Either the tool keeps track of the mapping (complicating the tool) or the user
will have to do so (complicating programming and maintenance).

An alternative approach - often preferred by people who dislike macros - is to
wrap related information into a class:

402 Namespaces Chapter 17

// my.h:
class My {
public:

static char f(char);
static int f(int);
class String { /* ... */ };

};

// your.h:
class Your {
public:

static char f(char);
static double f(double);
class String { /* ... */ } ,-

};

Unfortunately, this approach suffers from many little inconveniences. Not all global
declarations can be simply transferred into a class and some change their meaning if
you do so. For example, global functions and variables must be specified as s t a t i c
members to avoid semantic changes and the function bodies, and initializers must in
general be separated from their declarations.

17.3 Ideals for a Solution
Many mechanisms can be used to provide solutions to namespace problems. Indeed,
most languages can claim to have at least the rudiments of one. For example, C has
its static functions, Pascal its nested scopes, C++ its classes, but we need to go to lan
guages such as PL/I, Ada, Modula-2, Modula-3 [Nelson, 1991], ML [Wikström,1987],
and CLOS [Kiczales,1992] for more complete solutions.

So what would a good namespace mechanism give us in C++? A lengthy and
voluminous discussion on the ANSI/ISO committee's extensions working group mail
ing list provided a list:

[1] The ability to link two libraries without name clashes.
[2] The ability to introduce names without fear of clashing with someone else's

names (for example, names used in a library I haven't heard of, or names I
haven't heard of in a library I thought I knew).

[3] The ability to add a name to the implementation of a library without affecting
its users.

[4] The ability to select names from two different libraries even if those two
libraries use the same names.

[5] The ability to resolve name clashes without modifying functions (that is,
through declarations manipulating the namespace resolution).

[6] The ability to add a name to a namespace without fear of causing a quiet
change to code using other namespaces (we cannot provide such a guarantee
for code using the namespace being added to).

Section 17.3 Ideals for a Solution 403

[7] The ability to avoid clashes among namespace names (in particular, the abil
ity to have the "real" or linkage name longer than the name used in user
code).

[8] The ability to use the namespace mechanism to deal with the standard
libraries.

[9] C and C++ compatibility.
[10] No added cost in link time or run time for the users of namespaces.
[11] No added verbosity for the users of namespaces compared to users of global

names.
[12] The ability to indicate explicitly where a name is supposed to come from in

code using the name.
In addition, a good solution must be simple. I defined simple as:

[1] A mechanism that can be explained to the degree needed for serious use in
less than ten minutes. Explaining any mechanism to the satisfaction of lan
guage lawyers takes much longer.

[2] Something a C++ compiler writer can implement in less than two weeks.
Naturally, simplicity in this sense cannot be proven rigorously. For example, the time
needed to understand something will vary greatly between people with different back
grounds and different levels of abilities.

There were also some properties that were asked for that we deliberately excluded
from the criteria for the namespace mechanism:

[1] The ability to take binaries with clashing link names and link them together.
This can be done by tools in every system, but I don't see a language mecha
nism that could easily be implemented without significant effort or overhead
on all systems. There are too many linkers and too many object code formats
around to make it feasible to change them. For a solution to be useful for
C++ it must require only facilities provided by almost all current linkers.

[2] The ability to provide arbitrary synonyms for names used in libraries. Exist
ing mechanisms, such as typedef , references, and macros provide mecha
nisms for providing synonyms only in specific cases, and I distrust general
renaming facilities; see §12.8.

This implies that disambiguation must be compiled into the object code by providers
of program fragments. In particular, library providers will have to use a technique
that allows users to disambiguate. Fortunately, the library providers will be some of
the main beneficiaries from a systematic use of namespaces because they (partly
through their users) are the main sufferers in the current situation.

Naturally, it is possible to add criteria to these lists, and no two people will agree
to the exact importance of the criteria. Nevertheless, these lists give an idea of the
complexity of the problem and the demands that a solution must meet.

After first presenting these criteria, I had the opportunity to test the namespace
design for simplicity according to these criteria. Peter Juhl completed a pilot imple
mentation in five days, and I explained the basics of namespaces to several people in
less than ten minutes using just a couple of foils. Their follow-up questions showed
understanding and the ability to deduce some of the uses of namespaces that I hadn't

404 Namespaces Chapter 17

explained. That satisfied me that the namespace facilities were simple enough. Fur
ther implementation experience, discussion of the namespace concept, and some use
have increased my confidence in that conclusion.

17.4 The Solution: Namespaces
The adopted solution is fundamentally simple. It provides four new mechanisms:

[1] A mechanism for defining a scope that holds what have traditionally been
global declarations in C and C++: a namespace. Such scopes can be named
and a namespace's members can be referred to using the traditional notation
for class members: namespace_name: :member_name. In fact, a class
scope can be seen as a special case of a namespace scope.

[2] A mechanism for defining a local synonym for a namespace name.
[3] A mechanism allowing a member of a namespace to be accessed without the

explicit namespace_name : : qualification: a using-declaration.
[4] A mechanism allowing all members of a namespace to be accessed without

the explicit namespace_name: : qualification: a using-directive.
This meets the criteria from §17.3. In addition, it solves a long-standing problem with
access to base class members from a derived class scope (see §17.5.1, §17.5.2) and
renders s t a t i c redundant as used for global names (see §17.5.3).

Consider:

namespace A {

void f(int);

void f(char);

class String { /* ... */ };

// . . .

}

The names declared within the namespace braces are in namespace A and do not col
lide with global names or names in any other namespace. Namespace declarations
(including definitions) have exactly the same semantics as global declarations, except
that the scope of their names is restricted to the namespace.

Programmers can use such names by explicitly qualifying uses:

A::String s1 = "Annemarie";

void g1()

{

A::f (1) ;

}

Alternatively, we can explicitly make an individual name from a specific library
available for use without qualification by a using-declaration:

using A::String;
String s2 = "Nicholas"; // meaning A::String

Section 17.4 The Solution: Namespaces 405

void g2()
{

using A::f; // introduce local synonym for A's f
f(2); // meaning A::f

}

A using-declaration introduces a synonym for the name it mentions into the local
scope.

Alternatively, we can explicitly make all names from a specific library available
for use without qualification by a using-directive:

using namespace A; // make all names from A accessible
String s3 = "Marian"; // meaning A::String

void g3()
{

f(3); // meaning A::f
}

A using-directive doesn't introduce names into the local scope; it simply makes the
names from the namespace accessible.

My original design used a simpler and less verbose syntax for using-directives:

using A; // meaning ''using namespace A;''

This created total confusion between using-directives and using-declaration^. Most
of this confusion disappeared when I introduced the more explicit syntax. The more
explicit form also simplified the parser.

I anticipated a need to avoid repetition of long namespace names. Therefore, the
original design allowed for several member names to be mentioned in a single using-
declaration:

u s i n g X : : (f , g , h) ;

This is syntactically ugly, and so were all the alternatives we considered. More pre
cisely: every alternative we considered was considered unbearably ugly by several
people. Having used namespaces a bit, I found far less need for such lists than I had
expected. I also tended to overlook such lists when reading code because they resem
ble function declarations too much, so I fell into the habit of using repeated using-
declarations instead:

using X:
using X:
using X:

Consequently, there is no special form of a using-declaration that specifies a list of
member names.

Namespaces provide an example of a feature that became noticeably simpler
through experimentation. Namespaces are also easy to implement because they fit
exactly with C++'s view of scope and class.

406 Namespaces Chapter 17

17.4.1 Views on Namespace Use

The three ways of accessing names from a namespace are the result of long discus
sions trying to address apparently irreconcilable views on what is important for nam
ing in a large program. Some people insist that reliable and maintainable programs
can be obtained only if every use of a non-local name is explicitly qualified. Natu
rally, these people insist on the use of explicit qualification and express serious doubts
about the value of using-declarations and even more about using-directives.

Other people denounce explicit qualification as unacceptably verbose, making
code too hard to change, limiting flexibility, and making a transition to the use of
namespaces infeasible. Naturally, these people argue for using-directives and other
mechanisms for mapping ordinary short names into namespaces.

I am sympathetic to the less radical variants of both views. Consequently, name
spaces allow each style to be used and enforce neither. Local style guidelines can - as
usual - be used to enforce restrictions that would be unwise to impose on all users
through a language rule.

Many people - quite reasonably - worry about ordinary unqualified names being
"hijacked;" that is, being bound to an object or a function different from the one
intended by the programmer. Every C programmer has suffered from this phe
nomenon at some time or other. Explicit qualification greatly alleviates such prob
lems. A similar, yet distinct, worry is that it can be hard to find the declaration of a
name and hard to guess the meaning of an expression containing it. Explicit qualifi
cation gives such a strong clue that it often isn't necessary to look for the declaration:
The name of a library plus the name of a function often makes the meaning of an
expression obvious. For these reasons, explicit qualification should be preferred for
unusual or infrequently used non-local names. The increase of code clarity can be
significant.

On the other hand, explicit qualification of names that everybody knows (or at
least ought to know) and of frequently used names can become a real nuisance. For
example, writing s t d i o : : p r i n t f , m a t h : : s q r t , and i o s t r e a m : : c o u t is not
going to help anyone acquainted with C++. The added visual clutter easily becomes a
source of errors. This argues strongly for a mechanism like using-declarations or
using-directives. Of these, a using-declaration is the more discriminating and by far
the less dangerous. A using-directive:

using namespace X;

makes an unknown set of names available. In particular, this directive may make one
set of names available today, but if changes are made to X, a different set of names
may be made available tomorrow. People who find this worrying will prefer to list
the names they want to use from X explicitly in using-declarations:

using X::f;
using X::g;
using X::h;

However, the ability to gain access to every name from a namespace without having

Section 17.4.1 Views on Namespace Use 407

to name them and to have that set of available names change with the definition of X
without having to modify user code is occasionally exactly what is desired.

17.4.2 Getting Namespaces into Use

Given the millions of lines of C++ code relying on global names and existing libraries,
I considered the most important question about namespaces to be: How can we get
namespaces into use? It doesn't matter how elegant namespace-based code can be if
there is no simple transition path that users and library providers can follow to intro
duce namespaces. Requiring major rewrites didn't seem a viable option.

Consider the canonical first C program:

#include <stdio.h>

int main()
{

printf("Hello, world\n");
}

Breaking this program wouldn't be a good idea. I didn't consider making standard
libraries special cases a good idea either. I considered it important to ensure that the
namespace mechanism was good enough to serve the standard libraries. In this way,
the standards committee can't demand privileges for their libraries that they are not
willing to extend to purveyors of other libraries. In other words, don't impose rules
on others unless you are willing to live by those rules yourself.

The using-directive is the key to achieving this. For example, s t d i o . h is
wrapped in a namespace like this:

// stdio.h:

namespace std {

// .. .
int printf(const char* ...);
// . . .

}
using namespace std;

This achieves backwards compatibility, and a new header file s t d i o is defined for
people who don't want the names implicitly available:

// stdio:

namespace std {

// . . .

int printf(const char* ...);

// . . .

}

People who worry about replication of declarations will of course define s t d i o . h
by including s t d i o :

408 Namespaces Chapter 17

// stdio.h:

#include<stdio>
using namespace std;

Personally, I consider using-directives primarily as a transition tool. Most programs
can be expressed more clearly using explicit qualification and using-declarations
when referring to names from other namespaces.

Naturally, names from an enclosing namespace require no qualification:

namespace A {
void f();
void g()
{

f(); // call A::f; no qualifier necessary
// ...

}
}

void A::f()
{

g(); // call A::g; no qualifier necessary
// . . .

}

In this respect, namespaces behave exactly like classes.

17.4.3 Namespace Aliases

If users give their namespaces short names, the names of different namespaces will
clash:

namespace A { // short namespace name:
// will clash (eventually)

// . . .
};

A::String s1 = "asdf";
A::String s2 = "lkjh";

However, long namespace names can be tedious:

namespace American_Telephone_and_Telegraph

// . . .

American_Telephone_and_Telegraph::String s3 = "asdf";
American_Telephone_and_Telegraph::String s4 = "lkjh";

{ // too long
// to use in
// real code

}

Section 17.4.3 Namespace Aliases 409

This dilemma can be resolved by providing a short alias for a longer namespace
name:

// use namespace alias to shorten names:

namespace ATT = American_Telephone_and_Telegraph;

ATT::String s3 = "asdf";

ATT::String s4 = "lkjh";

This feature also allows a user to refer to "the library" without having to say exactly
which library is actually used each time. In fact, namespaces can be used to compose
interfaces out of names from more than one namespace:

namespace My_interface {

using namespace American_Telephone_and_Telegraph;

using My_own::String;

using namespace OI;

// resolve clash of definitions of 'Flags'

// from 0I and American_Telephone_and_Telegraph:

typedef int Flags;

// . . .

}

17.4.4 Using Namespaces to Manage Releases

As an example of namespaces, I'll show how a library supplier might use namespaces
to manage incompatible changes between releases. This technique was first pointed
out to me by Tanj Bennett. Here is my r e l e a s e l :

namespace releasel {

// ...

class X {

Impl::Xrep* p;

public:

virtual void f1() = 0;

virtual void f2() = 0;

// . . .

};

// . . .

}

Impl is some namespace where I keep my implementation details.
A user will write code like this:

410 Namespaces Chapter 17

class XX : public releasel::X {

int xxl;
// . . .

public:

void f1();

void f2 () ;
virtual void ff1();

virtual void ff2 ();

//
};

This implies that I, as a library provider, cannot change the size of r e l e a s e l : :X
objects (for example, by adding data members), add or rearrange virtual functions,
etc., because that would imply that the user's code would have to be recompiled to
readjust the object layout to accommodate my changes. There are implementations of
C++ that insulate users from such changes, but they are not common, so as a library
provider I cannot rely on them without tying myself to a single compiler supplier. I
might encourage users not to derive from my library classes in this way, but they'll do
it anyway and complain about having to recompile even when they have been warned.

I need a better solution. Using namespaces to distinguish different versions, my
r e l e a s e 2 might look like this:

Old code uses r e l e a s e l , and new code uses r e l e a s e 2 . New and old code not

namespace releasel { // releasel supplied for compatibility

// .. .

class X {

Impl::Xrep* p; // Impl::Xrep has changed

// to accommodate release2

public:

virtual void f1() = 0;

virtual void f2() = 0;

// . . .

};

// . . .

}

namespace release2 {

// .. .

class X {

Impl::Xrep* p;

public:

virtual void f2() = 0 ; // new ordering

virtual void f3() = 0 ; // more functions

virtual void fl() = 0;

// . . .

};

// . . .

}

Section 17.4.4 Using Namespaces to Manage Releases 411

only work, but coexist. The headers for r e l e a s e l and r e l e a s e 2 are distinct so
that the user need only # i n c l u d e the necessary minimum. To ease upgrades, a user
can use a namespace alias to localize the effect of a version change. A single file

// lib.h:

namespace lib = releasel;

// . . .

can include all the version-dependent stuff and be used everywhere like this:

#include " l i b . h "

class XX : public lib::X {

// . . .

};

which is upgraded to use a new release by a single change:

/ / l i b . h :
namespace lib = release2;

// . . .

This update is done only when there is a reason to use r e l e a s e 2 , time to recompile,
and time to deal with possible source code incompatibilities between the releases.

17.4.5 Details

This section presents technical details relating to scope resolution, the global scope,
overloading, nested namespaces, and composition of namespaces from separate parts.

17.4.5.1 Convenience vs. Safety

A using-declaration adds to a local scope. A using-directive does not; it simply ren
ders names accessible. For example:

namespace X {
int i, j, k;

}

int k;

void fl()
{

int i = 0;
using namespace X; // make names from X accessible
i++; // local i
j++; // X::j
k++; // error: X::k or global k ?
::k++; // the global k
X::k++; // X's k

}

412 Namespaces Chapter 17

void f2()
{

int i = 0;
using X::i; // error: i declared twice in f 2 ()
using X:: j ;
using X::k; // hides global k

i++;
j++; // X::j
k++; // X::k

}

This preserves the important property that a locally declared name (declared either by
an ordinary declaration or by a using-declaration) hides non-local declarations of the
same name, and any illegal overloadings of the name are detected at the point of dec
laration.

As shown, giving no preference to the global scope over namespaces made acces
sible in the global scope provides some protection against accidental name clashes.

Non-local names, on the other hand, are found in the context in which they were
declared and treated just like other non-local names. In particular, errors relating to a
using-directive are detected only at the point of use. This saves the programmer from
having a program fail because of potential errors. For example:

namespace A {
int x;

}

namespace B {
int x;

}

void f()
{

using namespace A;
using namespace B; //ok: no error here

A::x++; //ok
B::x++; //ok
x++; // error: A::x or B::x ?

}

17.4.5.2 The Global Scope

With the introduction of namespaces, the global scope becomes just another name
space. The global namespace is odd only in that you don't have to mention its name
in an explicit qualification: : : f means "the f declared in the global namespace,"
whereas X : : f means "the f declared in namespace X." Consider:

Section 17.4.5.2 The Global Scope 413

int a;

void f()
{

int a = 0 ;
a++; // local a
::a + +; // global a

}

If we wrap a namespace around this and add yet another variable called a, we get:

i n t a;

namespace X {
int a;

void f()
{

int a = 0;
a++; // local a
X::a++; // X::a
::a++; // X::a or global a ? -- the global a

}

}

In other words, qualification by unary : : means ' 'global'' rather than ' 'in the nearest
enclosing namespace." The latter would ensure that wrapping arbitrary code in a
namespace implied no change of meaning. However, then the global scope would not
have a name, and that would be in variance with the view that the global namespace is
just an ordinary namespace with an odd name. Consequently, we chose the former
meaning so that : : a refers to the a declared in the global scope.

I expect to see a radical decrease in the use of global names. The rules for name
spaces were specifically crafted to give no advantages to a "lazy" user of global
names over someone who takes care not to pollute the global scope.

Note that a using-directive does not declare names in the scope in which it occurs:

namespace X {

int a;

int b;

// . . .

}

using namespace X; // make all names from X accessible

using X::b; // declare local synonym for X::b

int il = ::a; // error: no ''a'' declared in global scope

int i2 = ::b; // ok: find the local synonym for X::b

This implies that old code using explicit : : to access global library functions will
break when the library is put into a namespace. The solution is either to modify the

414 Namespaces Chapter 17

code to explicitly mention the new library namespace name or to introduce suitable
global using-declarations.

17.4.5.3 Overloading

The most controversial aspect of the namespace proposal was the decision to allow
overloading across namespaces according to the usual overloading rules. Consider:

namespace A {
void f(int);
// . . .

}
using namespace A;

namespace B {
void f(char);
// . . .

}
using namespace B;

void g()
{

f('a'); // calls B::f(char)
}

A user who hasn't looked carefully at namespace B might expect A: : f (i n t) to be
called. Worse, a user who looked carefully at the program last year and didn't notice
that a declaration of f (cha r) was added to B in a later release might get surprised.

However, this problem occurs only when you maintain programs that explicitly
use u s i n g namespace twice for the same scope - a non-recommended practice for
newly written software. A call of a function that has two legal resolutions from dif
ferent namespaces is also an obvious candidate for an optional compiler warning even
if the ordinary overload resolution rules prefer the one resolution over the other. I see
using-directives as primarily a transition aid and writers of new code can avoid many
theoretical and a few real problems by sticking to explicit qualification and using-
declarations wherever possible.

My reason for allowing overloading across namespaces is that this is the simplest
rule ("the usual overloading rules apply"), and it is the only rule I can think of that
allows us to migrate existing libraries to use namespaces with minimal source code
changes. For example:

// old code:

void f(int); // from A.h
// . . .

void f(char); // from B.h
// . . .

Section 17.4.5.3 Overloading 415

void g()
{

f('a'); // calls the f from B.h
}

can be upgraded to the version using namespaces shown above without changing any
thing but the header files.

17.4.5.4 Nesting of Namespaces

One obvious use of namespaces is to wrap a complete set of declarations and defini
tions in a separate namespace:

namespace X {
// all my declarations

}

The list of declarations will in general contain namespaces. Thus, for practical rea
sons - as well as for the simple reason that constructs ought to nest unless there is a
strong reason for them not to - nested namespaces are allowed. For example:

void h();

namespace X {

void g();

// . . .

namespace Y {

void f();

void ff();

// . . .

}

// . . .

}

The usual scope and qualification rules apply:

void X::Y::ff()
{

f(); g () ; h () ;
}

void X::g()
{

f(); // error: no f() in X
Y : : f () ;

}

416 Namespaces Chapter 17

v o i d h ()
{

f(); // error: no global f(

f(); // error: no global Y

f(); // error: no f() in X
Y:

X:

X: Y::f();

17.4.5.5 Namespaces are Open

A namespace is open; that is, you can add names to it from several namespace decla
rations. For example:

namespace A {
int f(); // now A has member f()

};

namespace A {

int g(); // now A has two members f() and g()

}

The aim was to support large program fragments within a single namespace the way a
current library or application lives within the single global namespace. To do this, it
is necessary to distribute the namespace definition over several header and source
code files. This openness was also seen as a transition aid. For example:

/ / my h e a d e r :
extern void f(); // my function

// . . .

#include<stdio.h>

extern int g(); // my function

// . . .

can be rewritten without reordering of the declarations:

/ / m y h e a d e r :

namespace Mine {

void f(); / / m y function

// . . .

}

#include<stdio.h>

namespace Mine {

int g(); // my function

// . . .

}

Current taste (including mine) favors the use of many smaller namespaces over

Section 17.4.5.5 Namespaces are Open 417

putting really major pieces of code into a single namespace. That style could be
enforced by requiring all members to be declared in a single namespace declaration in
the same way all members of a class must be declared in a single class declaration.
However, I saw no point in foregoing the many small conveniences I find with open
namespaces in favor of a more restrictive system just to conform to some current
taste.

17.5 Implications for Classes

It has been suggested that a namespace should be a kind of class. I don't think that is
a good idea because many class facilities exist exclusively to support the notion of a
class being a user-defined type. For example, facilities for defining the creation and
manipulation of objects of that type has little to do with scope issues.

The opposite, that a class is a kind of namespace, seems almost obviously true. A
class is a namespace in the sense that all operations supported for namespaces can be
applied with the same meaning to a class unless the operation is explicitly prohibited
for classes. This implies simplicity and generality, while minimizing implementation
effort. I consider this view vindicated by the smooth way namespaces fit into C++
and because solutions to apparently unrelated long-standing problems naturally follow
from the basic namespace mechanisms.

17.5.1 Derived Classes

Consider the old problem of a class member hiding a member of the same name in a
base class:

class B {
public:

f(char);
};

class D : public B {
public:

f(int); // hides f(char)
};

void f(D& d)
{

d.f ('c') ; // calls D::f(int)
}

Naturally, the introduction of namespaces doesn't change the meaning of such exam
ples. A new explanation is possible, though: Because D is a class, the scope it pro
vides is a namespace. The namespace D is nested in the namespace B, so
D: : f (i n t) hides B: : f (c h a r) . Consequently, D: : f (i n t) is called. If this res
olution isn't what is wanted, we can use a using-declaration to bring B's f () into

418 Namespaces Chapter 17

scope:

class B {
public:

f(char);
};

class D : public B {
public:

f(int) ;
using B::f; // bring B::f into D to enable overloading

};

void f(D& d)
{

d.f('c'); // calls D::f(char) !
}

We suddenly have a choice!
As ever, names from different sibling base classes can cause ambiguities (indepen

dently of what they name):

struct A { void f(int); };
struct B { void f(double); };

struct C : A, B {
void g() {

f(l); // error: A::f(int) or B::f(double)
f(1.0); // error: A::f(int) or B::f(double)

}
};

However, if we want to resolve these ambiguities, we can now do so by adding a cou
ple of using-declarations to bring A: : f and B: : f into the scope of C:

Struct C : A, B {
using A::f;
using B::f;

void g() {
f(1) ; // A::f(1)
f(1.0); // B::f(1.0)

}
} ;

An explicit mechanism along these lines has been suggested repeatedly over the
years. I remember discussing the possibility with Jonathan Shopiro while working on
release 2.0, but rejecting it as being "too specialized and unique" to include. The
using-declaration, on the other hand, is a general mechanism that just happens to pro
vide a solution to this problem.

Section 17.5.2 Using Base Classes 419

17.5.2 Using Base Classes

To avoid confusion, a using-declaration that is a class member must name a member
of a (direct or indirect) base class. To avoid problems with the dominance rule
(§12.3.1) using-directives are not allowed as class members.

struct D : public A {
using namespace A; // error: using-directive as member
using ::f; // error: ::f not a member of a base class

};

A using-declaration naming a base class member has an important role to play in
adjusting access:

class B {
public:

f(char);
};

class D : private B {
public:

using B:: f ;
};

This achieves in a general and more obvious way what access-declarations (§2.10)
were introduced to do:

class D : private B {
public:

B::f; // old way: access declaration
};

Thus, using-declarations make the specialized access-declarations redundant. Conse
quently, access-declarations are deprecated. That is, access-declarations are slated to
be removed sometime in the distant future after users have had ample time to upgrade.

17.5.3 Eliminating Global s t a t i c

It is often useful to wrap a set of declarations in a namespace simply to avoid interfer
ence from declarations in header files or to avoid having the names used interfere with
global declarations in other compilation units. For example:

#include <header.h>
namespace Mine {

int a;
void f() { /* ... */ }
int g() { / * . . . * / }

}

In many cases, we aren't really interested in the name of the namespace as long as it
doesn't clash with other namespace names. To serve that need more elegantly, we

420 Namespaces Chapter 17

allow a namespace to be unnamed:

#include <header.h>
namespace {

int a ;
void f() { /* ... */ }
int g() { / * . . . * / }

}

Except for overloading by names in the header, this is equivalent to

#include <header.h>

static int a;
static void f() { /* ... */ }
static int g() { /* ... */ }

Such overloading is usually undesirable, but easy to achieve when desired:

namespace {
#include <header.h>

int a;
void f() { /* ... */ }
int g() { / * . . . * / }

}

Thus, the namespace concept allows us to deprecate the use of s t a t i c for control of
visibility of global names. That leaves s t a t i c with a single meaning in C++: stati
cally allocated, don't replicate.

The unnamed namespace is just like any other namespace except that we don't
need to utter its name. Basically,

namespace { /* . . . */ }

is semantically equivalent to

namespace unique_name { /* ... */ }
using namespace unique_name;

Every unnamed namespace in a single scope share the same unique name. In particu
lar, all global unnamed namespaces in a single translation unit are part of the same
namespace and differ from the global unnamed namespace of other translation units.

17.6 C Compatibility

A function with C linkage can be placed in a namespace:

namespace X {
extern "C" void f(int);
void g(int)

}

Section 17.6 C Compatibility 421

This allows functions with C linkage to be used like other members of a namespace.
For example:

void h()
{

X : : f () ;
X : : g () ;

}

However, in a single program one cannot have two different functions with C linkage
and the same name in different namespaces; both would resolve to the same C func
tion. The unsafe rules of C linkage make such errors hard to find.

One alternative to this design would be to disallow functions with C linkage in
namespaces. That would lead to disuse of namespaces by forcing people who need to
interface to C to pollute the global namespace. This non-solution was deemed unac
ceptable.

Another alternative would be to ensure that two functions of the same name in dif
ferent namespaces were really different functions even if they had C linkage. For
example:

namespace X {
extern "C" void f(int);

}

namespace Y {

extern "C" void f(int);
}

The problem is then how to call such a function from a C program. Since the C lan
guage doesn't have a mechanism for disambiguating based on namespaces, we would
have to rely on an (almost certainly implementation-dependent) naming convention.
For example, the C program might have to refer to __X f and __Y f. This solu
tion was deemed unacceptable, so we stuck with the unsafe C rules. C pollutes the
linker's namespace, but not the global namespace of a C++ translation unit.

Note that this is a C problem (a compatibility hack) and not a problem with C++
namespaces. Linking to a language that has a mechanism analogous to C++'s name
spaces should be obvious and safe. For example, I'd expect this

namespace X {

extern "Ada" void f(int);
}

namespace Y {
extern "Ada" void f(int);

}

to be the way for a C++ program to map to functions in different Ada packages.

18
The C Preprocessor

Furthermore, I am of the opinion
that Cpp must be destroyed.

- Cato the Elder (Marcus Porcius Cato)

Problems with the C preprocessor, Cpp — alternatives to Cpp constructs
— banning Cpp.

18.1 Cpp

Among the facilities, techniques, and ideas C++ inherited from C was the C prepro
cessor, Cpp. I didn't like Cpp at all, and I still don't like it. The character and file
orientation of the preprocessor is fundamentally at odds with a programming language
designed around the notions of scopes, types, and interfaces. For example, consider
this innocent-looking code fragment:

#include<stdio.h>
extern double sqrt(double);

main()
{

printf("The square root of 2 is %g\n",sqrt(2));
fflush(stdout);
return(0) ;

}

What does it do? Print

The square root of 2 is 1.41421

maybe? That seems plausible, but actually I compiled it with

424 The C Preprocessor Chapter 18

cc -Dsqrt=rand -Dreturn=abort

so it printed

The square root of 2 is 7.82997e+28
abort - core dumped

and left a core image behind.
This example may be extreme, and you might consider the use of compiler options

to define Cpp macros not quite sportsmanlike, but the example is not unrealistic.
Macro definitions can lurk in environments, compiler directives, and header files.
Macro substitution cuts across all scope barriers, can indeed change the scope struc
ture of a program by inserting braces, quotes, etc., and allows a programmer to change
what the compiler proper sees without even touching the source code. Occasionally,
even the most extreme uses of Cpp are useful, but its facilities are so unstructured and
intrusive that they are a constant problem to programmers, maintainers, people port
ing code, and tool builders.

In retrospect, maybe the worst aspect of Cpp is that it has stifled the development
of programming environments for C. The anarchic and character-level operation of
Cpp makes nontrivial tools for C and C++ larger, slower, less elegant, and less effec
tive than one would have thought possible.

Cpp isn't even a very good macroprocessor. Consequently, I set out to make Cpp
redundant. That task turned out to be far harder than expected. Cpp may be ugly, but
it is hard to find better-structured and efficient alternatives for all of its varied uses.

The C preprocessor has four fundamental directives"!":
[1] # i n c l u d e to copy source text from another file.
[2] #def i n e to define a macro (with or without arguments).
[3] # i f d e f to include lines of code dependent on a condition.
[4] #pragma to affect the compilation in an implementation-dependent manner.

These directives are used to express a variety of basic programming tasks:
i n c l u d e

- Make interface definitions available.
- Compose source text.

d e f i n e
- Define symbolic constants.
- Define open subroutines.
- Define generic subroutines.
- Define generic "types."
- Renaming.
- String concatenation.
- Define special purpose syntax.
- General macro processing.

The #if , # l i n e , and #undef directives can be important, but they do not impinge on this discussion.

Section 18.1 Cpp 425

i f d e f
- Version control.
- Commenting out code.

#pragma
- Control of layout.
- Informing the compiler about unusual control flow.

Cpp does all of these tasks pretty badly, mostly by indirect means, but cheaply and
often adequately. Most important, Cpp is available everywhere C is, and it is well
known. This has often made it more useful than far better, but less widely available
and less widely known, macroprocessors. This aspect is so important that the C pre
processor is frequently used for tasks that have very little to do with the C language,
but that is not a C++ problem.

C++ provides alternatives for the main uses of #def i n e :
- c o n s t for constants (§3.8).
- i n l i n e for open subroutines (§2.4.1).
- t e m p l a t e for functions parameterized by types (§15.6).
- t e m p l a t e for parameterized types (§15.3).
- namespace for more general naming (§17).

C++ provides no alternative for # i n c l u d e , though namespaces provide a scope
mechanism that supports composition in a way that can be used to make # i n c l u d e
better behaved.

I have suggested that an i n c l u d e directive might be added to C++ proper as an
alternative to Cpp's # i n c l u d e . A C++ i n c l u d e directive would differ from Cpp's
i n c l u d e in three ways:

[1] If a file is i n c l u d e d twice, the second i n c l u d e is ignored. This solves a
practical problem that is currently solved inefficiently and awkwardly by
#def ines and # i f d e f s .

[2] Macros defined outside i n c l u d e d text don't get expanded within the
i n c l u d e d text. This provides a mechanism for insulating information from
interference from macros.

[3] Macros defined inside i n c l u d e d text don't get expanded in text processed
after the i n c l u d e d text. This ensures that macros in i n c l u d e d text don't
impose order dependencies on the including compilation unit and generally
protects against surprises caused by macros.

This mechanism would be a boon to systems that precompile header files and, in gen
eral, for people who compose software out of independent parts. Please note, how
ever, that this is only an idea, not an accepted language feature.

This leaves # i f d e f and #pragma. I could live without #pragma because I
have never seen a pragma that I liked. Too often, #pragma seems to be used to
sneak variations of language semantics into a compiler and to provide extensions with
very specialized semantics and awkward syntax. We don't yet have a good alterna
tive for # i f d e f . In particular, using if-statements and constant expressions is not a
complete alternative. For example:

426 The C Preprocessor Chapter 18

c o n s t C = 1;

/ / . . .

i f (C) {
/ / . . .

}

This technique cannot be used to control declarations and the text of an if-statement
must be syntactically correct even if it is part of a branch that an execution will never
take.

I'd like to see Cpp abolished. However, the only realistic and responsible way of
doing that is first to make it redundant, then encourage people to use the better alter
natives, and then - years later - banish Cpp into the program development environ
ment with the other extra-linguistic tools where it belongs.

I
Index

= 0 279
?= 326
100% C compatibility 101
2.0, Release 187
7-bit character 158
8-bit character set 161
:, comp.lang.c++ 168
,, operator 247
%: digraph 160
%: %: digraph 160
%> digraph 160
*, ** and 248
**
and * 248
exponentiation operator 247

* ^, exponentiation operator 249
++
increment operator 245
prefix and postfix 245

decrement operator 245
prefix and postfix 245

->
delegation and 242
operator 241

->*, operator 247

: : vs. 95
operator 242

. *, operator 247

. . ., ellipsis 333
//
BCPL comments 44,93
and C compatibility 93

explicit qualification 412
vs. . 95

: > digraph 160

<% digraph 160
<. . . > syntax 341,355
<: digraph 160
<<
operator 186
output operator 186

Release 2.0 82
operator 239

>> problem with t e m p l a t e syntax 356
0
NULL 230
f a l s e 254
null pointer 229

= 0 syntax 281
1, t r u e 254

A
abolish Cpp 426
abomination f (void) 41
absence of t e m p l a t e 378
abstract

c l a s s 35,261,277
c l a s s and library 183
c l a s s , t e m p l a t e and 379
type 279

abstraction, C++ and data 197
academic pursuit of learning 70
acceptance
criteria, feature 61
process, feature 61

accepted
extensions 151
features 151
proposals 151

accepting a proposal 147

428 — A — Index

control 31,301
control and s t a t i c member 288
control for constructor 94
control of names 54
granting 53-54
to base c l a s s 301
using-declaration adjusting 419
vs. visibility 54

access-declaration 54
and using-declaration 419
deprecated 419

accessible, C++ 197
accident, protection against 116
Ada 6,44, 67,105,107-108,175,339

C++and 192
I /O 185
complexity 199
extensions 147
new 365

Ada9X 6,177,202
Adcock,Jim 243
address, special 214
adjusting access, using-declaration 419
advantages and disadvantages, C 44
advertising, AT&T C++ 177
affordability of C with Classes 33
affordable features 115
: a f t e r , r e t u r n () and 57, 268
Agrawal, Sudhir 61
Aho, Al 68,105
aims
AT&T 178
C with Classes 28
for exception handling 384
for standardization 130
of C++ 1,65,109,196
of early libraries 184
of namespace design 402
of standardization 135

Algol60 265
Algol68 6,22,40,84-85,100,105,108

a rose 37
declaration 99
operators 250
references 86
references overloading 44

alias 403
namespace 404,408
problem with 275

allocation 357
and constructor, new 56
and initialization 212-213
and real-time, dynamic 211
arena 214
array 213
new and 212

prohibit a u t o 237
prohibit free store 238
prohibit global 237
prohibit s t a t i c 237

allocator, per-class 91,211
alternative
RTTI design 323
points of destruction of temporary 145
t e m p l a t e syntax 355
t o # i f d e f , i f 425
to # i n c l u d e , i n c l u d e 425
to Cpp 425
to cast 309

ambiguity 227
control 226
in t e m p l a t e 371
multiple inheritance and 258

American national standard 136
analysis, one-pass 140
and keyword 160
and_eq keyword 160
Annemarie 404
ANSI

C C85 64
C grammar 69
C local static arrays 128
C v o l a t i l e 128
C++standard 128
X3J16 136
and ISO 136
standard library 194

ANSI3.4-1968, ISO-646-1983 ASCII 158
ANSI/ISO name lookup 141
Apple

MacMPW 167
Macintosh 165

application
environment, standard 135
programming, general 204

archetypical problems 62
architecture-specific extension 158
arena
allocation 214
memory 215

argument
check, run-time 296
constraint on t e m p l a t e 343
deducing t e m p l a t e 349
default 59
depend on t e m p l a t e 370
explicit t e m p l a t e 350
function t e m p l a t e 350
keyword 153
matching rules 228
named 153
names 155

— A — Index 429

namespace as t e m p l a t e 343
non-type t e m p l a t e 342
over-constrained 343
rules, relaxation of 295
t e m p l a t e as t e m p l a t e 343
workaround, keyword 156

arguments
average number of 156
for resumption 391
for termination 391
value of 301

arithmetic, mixed-mode 80,223
ARM 124,172
Cpp in 127
features 128
learning C++ from 127
name lookup 139
purpose of 127
reference manual 126

array
allocation 213
associative 322
deallocating 217
standard associative 194
t e m p l a t e 342

arrays, ANSI C local static 128
ASCII ANSI3.4-1968, ISO-646-1983 158
assembler
C++and 120,201
learning 168

A s s e r t () 397
a s s e r t () 397
assignment 239
initialization and 22
overloading of 58
to t h i s 91,212
v o i d * 230

associative
array 322
array, standard 194

assumptions for exception handling 384
asynchronous events 393
AT&T 100,128-129

C++ advertising 177
C++ marketing 177
C++ use within 65
aims 178
compiler 166
library 184

Austern, Matt 248
a u t o allocation, prohibit 237
automatic
garbage collection 219
storage 32
t e m p l a t e instantiation 365

autoprototyping 40

availability, commercial 70
available, C is 43
average number of arguments 156

B
Babcisky, Karel 32,106
backlog of proposals 150
b a d _ c a s t 194
Ball, Mike 166
base

and derived 74
and derived, overload 417
cast from v i r t u a l 267,312
cast to p r i v a t e 328
c l a s s 49
c l a s s , access to 301
c l a s s , ordinary 258
c l a s s , v i r t u a l 260
derived hiding 417
first construction 282
initializer 275
layout, v i r t u a l 266

basic language support 194
b a s i c _ s t r i n g 359
Bauche, Volker 400
BCPL 21-22,64
comments / / 44,93
speed 21

beauty and efficiency, C++ 379
: b e f o r e , c a l l () and 57,268
b e f o r e () 317
behavior, implementation-dependent

133-134
Bell

Labs 27,174,177
Labs CSRC 60
Labs C++ developers 101
Labs library 184

Bennett, Tanj 409
Beta 6,326
better

C, C++ not just a 204
C subset of C++ 171
match 228

bigotry, language wars and 299
binding

of reference 86
rule, name 368

b i t a n d keyword 160
b i t o r keyword 160
b i t s<N> 194
b i t s t r i n g 194
bitwise copy 239
BIX c.plus.plus 166
blackboards, design on 61

430 — B — Index

BLAS 158
Booch, Grady 192,271
Booch

components 358,379
components library 192

book for users 4
books, journals and 165
b o o l , Boolean type 254
Boolean type boo l 254
bored programmer 388
Borland 164

compiler 166
bridge 200
Bright, Walter 40, 84,166
Brown, Phil 125
Brunsjohn 294,400
Briick, Dag 145, 248, 254-255, 287, 290, 327,

391-392,400
Budge, Ken 192
B u f f e r 342,349
bugs, multiple inheritance 270
built-in

type, constructor for 380
type, destructor for 380
types, definition of 380
types, t e m p l a t e and 380
types, user-defined and 32,117

c
++C 64
C 22,64

C++ and 100,176,201
C++ not just a better 204
C++ separate from 65
I /O 96
I /O p r i n t f 185
a weed 37
advantages and disadvantages 44
and C++ compatibility 120,129
and C++ c o n s t 90
and C++, learning 169
and C++linkage 233
and C++ reference manual 170
and C++ textbooks 169
and Simula 1
code generated 39
compatibility 130,225, 227, 229, 240
compatibility, / / and 93
compatibility, 100% 101
compatibility, C with Classes 38
compatibility, conversion and 227
compatibility, namespaces and 420
compiler, PCC 69
declaration syntax 45
dialects 101

enum 253
error handling 338
exceptions and 385
extensions 147
features, dangerous 29
features, ugly 29
fixing 45
generated 67
in C++, writing 170
is available 43
is efficient 43
is flexible 43
is portable 43
learning 168
linkage 232
numerical 157
preprocessor 68
preprocessor Cpp 119,423
problem with 374
semantics 103
techniques, undesirable 378
variables 198
why 43
with Classes 27
with Classes C compatibility 38
with Classes a weed 37
with Classes, affordability of 33
with Classes aims 28
with Classes dilemma 63
with Classes documentation 29
with Classes efficiency 28
with Classes features 29
with Classes implementation 29
with Classes layout compatibility 28
with Classes low-level features 29
with Classes object layout 38
with Classes preprocessor, Cpre 27
with Classes run-time support 49
with Classes static type checking 40
with Classes strong type checking 40
with Classes, success of 64
with Classes support 29
with Classes, supporting 63
with Classes without v i r t u a l function 53
withdrawal symptoms 93

C++++ 147,271
. c file and t e m p l a t e 376
C84 64
C85,ANSIC 64
call
in constructor, v i r t u a l 282
notation, constructor 335
of undeclared function 40
optimization of v i r t u a l 116

c a l l () and : b e f o r e 57,268
callbacks 303

— c — Index 431

call-by-reference 86
call-by-value 86
calling
Fortran 86
conventions 236
sequences, standard 135

Cambridge 19,64
Computing Laboratory 22

CAP computer, capability-based 19
capabilities 22
capability-based CAP computer 19
Cargill, Tom 47,105,125,269
Carolan, John 164
Carroll, Martin 269
cast
RTTI and 309
alternative to 309
and c o n s t 331
and incomplete type 329
and interface 183
and pointer to function 331
away c o n s t 285, 332
eliminate 309
from v i r t u a l base 267,312
from v o i d * 333
implicit 350
new-style 327
notation, new 327
notation, old-style 333
overuse of 170
problems with 327
safe 309
syntax 309
to p r i v a t e base 328
transition to new 335
using new 335

catastrophic failure, crashes and 93
c a t c h 385
CBEMA 136
Cedar Mesa 392
Centerline ObjectCenter 166
c e r r 186
Cfront 124

code quality 302
compile-time overhead 67
compiler front-end 66
first shipment 70
implementation of new 57
memory use 66
resource requirements 65
size of 66
structure of 66
symbol tables 66
t e m p l a t e 339
t e m p l a t e implementation 365
to PC, port of 66

virtual table layout 320
warning 43

C++
Journal, The 165
Release 1.0 deficiencies 107
Release 1.0 features 71
Report, The 165
Simula and 106
Smalltalk and 107
accessible 197
advertising, AT&T 177
aims of 1, 65,109,196
and Ada 192
a n d C 100,176,201
and Fortran 176
and Smalltalk, learning 170
and assembler 120,201
and data abstraction 197
and generic programming 379
and object-oriented programming 197
and other languages 197
as a target language 204
as an implementation language 204
beauty and efficiency 379
better C subset of 171
committee charter 129
community, diversity of 130
compatibility, C and 120,129
compilers sold, number of 164
compositional 188
concurrent 188
c o n s t , C and 90
design of 60
design using 171
developers, Bell Labs 101
development plan 124
exception handling, ideals for 385
features 131

from ARM, learning 127
general-purpose programming language

105
goals of 196
gradual approach to 171
is coherent 197
language definition 5
learning 168,172
learning C and 169
libraries 65
linkage, C and 233
manual, size of initial 79
marketing, AT&T 177
micro 188
model of protection 22
multiple inheritance 271
name 64
not just a better C 204

432 — C — Index

operating system influence on 22
parsing 68
people who contributed to 2
prehistory of 19
programming environment 166
programming environment, future 167
programming environment, ideals for 167
projects, major 174
purpose of 105,163
reference manual 60
reference manual, C and 170
separate from C 65
serving current users 110
standard, ANSI 128
standardization, ISO 129
standardization, start of 128
static type checking 197
stream I /O 185
strength 208
syntax type-system 208
teaching 168
textbooks, C and 169
time needed to learn 172
timeline 4
tools 65
type checking 92
use within AT&T 65
users, counting 164
users, number of 163
versions of 71
writing C in 170
writing Fortran in 170
writing Smalltalk in 170

C++ Programming Language, the 105
C++'s contribution 196
change

gradual 24
impact of 281
motivation for 110
rate of 24

c h a r
constant, type of 225
i n t and 224
literal, type of 225
overloading and 224

character
7-bit 158
set 158
set, 8-bit 161
set, Unicode 161
sets, I /O of extended 161
sets, extended 161
sets, national 158

character-oriented tools 207
characters, limit on number of 69
c h a r _ r e f 88

chart, language 5
charter, C++ committee 129
check
list, extension 149
run-time 42
run-time argument 296

checked interfaces, statically 107
checking

and error 378
of exceptions, dynamic 396
of exceptions, static 395
of multiple inheritance, static 263
of t e m p l a t e , error 369

checks, run-time 29
Cheriton, David 384
choice 113
Choices 165
choosing a programming language 175
c i n , initialization of 96
CLAM 165
Clamage, Steve 166
clarifications 138
clarity of definition 103
class
helper 87
hierarchy, exceptions and 387
layout, derived 52
member, forward reference of 140
s t r i n g 66

c l a s s
Simula 6,44
Simula style 21
abstract 35,261,277
access to base 301
and library, abstract 183
and macro, container 337
and t e m p l a t e , container 337
as namespace 401
base 49
concept 30
derived 49,301
forward declaration of nested 289
hierarchies, merging of 273
hierarchy 20
hierarchy, overloading and 226
is user-defined type 30
locality nested 118
member 289
member order dependencies 138
namespace and 417
nested 102,128,289
ordinary base 258
prefix, Simula 49
root 261
sibling 261
s t r u c t and 76

— c — Index

t e m p l a t e 341
t e m p l a t e and 360
t e m p l a t e and abstract 379
unit of protection 54
universal root 184
v i r t u a l base 260

cleanup
deallocation and 212
of t e m p l a t e design 340

c l o n e 0 293
CLOS 268,272,299
complexity 199
learning 168

Clu 6,44,105,107-108,397
Clu-style container 339
CMP 359
Cobol extensions 147
code
bloat, curbing 347
exceptions and old 394
generation 302
quality, Cfront 302
replication 346
verbose error-prone 388

coding, low-level 338
coexistence 112
coherence, maintaining 153
coherent

C++is 197
view 148

collating sequence 358
combination, method 268
Comeau, Greg 166
comments / /, BCPL 44,93
commercial

availability 70
competition 175

committee
charter, C++ 129
dangers of design by 148
design by 60,147
disband 148
for a new language, design 148
members 137
standards 128

communication between siblings 261
community, diversity of C++ 130
company language 178
comparing programming languages 5
comparison, language 270
compatibility
C 130,225,227,229,240
C and C++ 120,129
C with Classes C 38
C with Classes layout 28
concern for 153

hack, structure tag 48
link 120
vs. safety 334
wars 102

competition, commercial 175
compilation
model, t e m p l a t e 376
one-pass 139
separate 21,34

compiler
AT&T 166
Borland 166
DEC 166
GNU 166
IBM 166
Microsoft 166
Oregon Software 166
PCC C 69
TauMetric 166
Zortech 166
complexity 111
front-end, Cfront 66
has partial information 37
Mining linker 33
warning 42,334

compilers 166
sold, number of C++ 164

compile-time 281
and t e m p l a t e 366
overhead 233
overhead, Cfront 67
protection 54
type checking 31
type inquiry 353

compl keyword 160
comp.lang.c++ 231

: 168
usenet 166

complex 79,194,370
library 66
t e m p l a t e 362

complexity
Ada 199
CLOS 199
Eiffel 199
RTTI implementation 306
Smalltalk 199
compiler 111
environment 199
language 199
library 199
multiple inheritance 270
of use 111
simplicity and 112

components industry, software 191
composite operator 251

434 — C — Index

composition 116
interface 409
techniques, t e m p l a t e 356

compositional C++ 188
computer, high-performance 176
Computing Laboratory, Cambridge 22
computing
engineering 176
numeric 203
numerical 158
scientific 158,176,203

concepts
and language constructs 19
focus on 168

concern for compatibility 153
concurrency 20,27

and exceptions 385
support 188
support extensions 188
support libraries 188

concurrent C++ 188
condition, declaration in 99
conditionals in template 353
conferences 164
conservative garbage collection 217
consistency 37
c o n s t 22
C and C++ 90
Cpp and 425
as symbolic constant 90
cast and 331
cast away 285,332
constants 89
enforcement of 284
for specifying interface 90
ideal 286
initialization of 286
member function 284
overloading and 225
references 86
s t a t i c _ c a s t and 329

~ c o n s t 287
constant

c o n s t as symbolic 90
type of c h a r 225

constants c o n s t 89
c o n s t _ c a s t 332
constraint
and error detection 343
and readability 343
on t e m p l a t e argument 343
through derivation 344
through inheritance 344
through use 345

c o n s t r a i n t s 346
construction, base first 282

constructor 94
access control for 94
and library 183
call notation 335
copy 240
default 59,381
exception and 388
for built-in type 380
new allocation and 56
new and 213
new() 56
notation 94
t e m p l a t e and 379
v i r t u a l call in 282

contain using macro 50
container
Clu-style 339
Smalltalk-style 339
c l a s s and macro 337
c l a s s and t e m p l a t e 337
without t e m p l a t e 50

C o n t a i n e r template 315
context

of t e m p l a t e definition 369
of t e m p l a t e instantiation 369

contract
between implementer and programmer 133
standard as a 133

contributed to C++, people who 2
contribution, C++'s 196
control
access 31,301
manual 121
of copy 237
of memory exhaustion 218
of memory management, fine-grain 211

C o n t r o l l e d _ c o n t a i n e r 357
controversy, multiple inheritance 269
convenience vs. safety 411
conventions, calling 236
conversion

and C compatibility 227
and t e m p l a t e 362
floating to integral 42
function 83
graph 228
implicit 80,223
implicit narrowing 334
lattice 228
narrowing 41,227
natural 227
overloading and 223
safe 227
standard 228
s t a t i c _ c a s t and implicit 329
to v o i d * 226

— c — Index 435

c o n v e r t () 350
Coplien, Jim 66,105,125
copy
bitwise 239
constructor 240
control of 237
deep 240
memberwise 239
of object 293
of pointer 240
prohibit 237
shallow 240
v i r t u a l 241

copy() 77
Coral 22
CORBA 206
Corfield, Sean 255
cost of exceptions 385
counting C++ users 164
coupling 281
c o u t 186
initialization of 96

CPL 64
c.plus.plus, BIX 166
Cpp

C preprocessor 119,423
abolish 426
alternative to 425
and c o n s t 425
and error 424
and i n l i n e 425
and namespace 425
and programming environment 424
and scope 424
and t e m p l a t e s 425
and tools 424
in ARM 127
macro 118,424

Cpre
C with Classes preprocessor 27
first shipment 70

crashes and catastrophic failure 93
Cray 157
Cristian, Flaviu 392
criteria

extension 149
feature acceptance 61
for templates, design 338
tools 21

Crockett, Beth 274
crossing protection barrier 32
CSRC, Bell Labs 60
cult
language 229
of orthogonality 104

curbing code bloat 347

current users, C++ serving 110

D
DAG, dominance 263
Dahl, Ole-Johan 258
dangerous
C features 29
feature 315

dangers of design by committee 148
data
abstraction, C++and 197
member, pointer to 304
v i r t u a l 266

databases, object-oriented 192
deallocating array 217
deallocation
and cleanup 212
d e l e t e and 212
problems 216

debugger, standard 135
debugging support 42
DEC 128
VMS 392
compiler 166

declaration
Algol68 99
implementation 35
in condition 99
in far-statement 99
of nested c l a s s , forward 289
o v e r l o a d 231
specialization 375
syntax, C 45

declarators, linear notation for 46
decrement opera tor - - 245
deducing t e m p l a t e argument 349
deep copy 240
default

argument 59
arguments, overloading and 59
constructor 59,381
local 101
nested 101
operator 237
private 101
type checked 101

deficiencies, C++ Release 1.0 107
d e f i n e 424
definition
C++ language 5
clarity of 103
context of t e m p l a t e 369
error, double 377
finding t e m p l a t e 376
formal 103

436 — D — Index

function 31
of built-in types 380
of simple 403

delay causes dialects 129
delegation 242
a n d - > 242
experiment 272
multiple inheritance 270

d e l e t e
and deallocation 212
and destructor 213
f r e e () 57
operator 32,212,216

d e l e t e () , destructor 56
d e l e t e [] 217
operator 214

depend on t e m p l a t e argument 370
dependencies
implementation 138
on library 134

deprecate implicit i n t 45
deprecated
access-declaration 419
global s t a t i c 419

derivation
constraint through 344
from i n t 380
prohibit 238

derived
base and 74
c l a s s 49,301
class layout 52
hiding base 417
overload base and 417

design
aims of namespace 402
alternative RTTI 323
and problems 105
and teaching 119
and type checking 107
by committee 60,147
by committee, dangers of 148
cleanup of t e m p l a t e 340
committee for a new language 148
criteria for templates 338
from first principles 44
hybrid 201
ideals for namespace 402
language 114
library 182
non-aims of namespace 403
object-oriented 114,172
of C++ 60
of fault-tolerant system 385
on blackboards 61
onion 323

paper 60
principles, language 109
rules, language 109
static type checking and 107
styles of 24
support rules 114
teaching and 168
t e m p l a t e and library 378
too cautious, t e m p l a t e 340
tools for language 103
tradeoffs, library 182
using C++ 171
warped 338

designer and implementer 60
destruction of temporary, alternative points

of 145
destructor 94

and garbage collection 222
d e l e t e and 213
d e l e t e d 56
exception and 388
explicit call of 217
for built-in type 380

destructors, v i r t u a l 216
details, language-technical 3
detectable, extensions are 134
Deutsch, Peter 387
development

environment, ideal program 207
management 124
plan, C++ 124

Dewhurst, Steve 71,125,166,304
dialects
C 101
delay causes 129

d i a l o g _ b o x 307
digraph

%: 160
%:%: 160
%> 160
:> 160
<% 160
<: 160

dilemma, C with Classes 63
direct expression 115
directive, t e m p l a t e instantiation 367
disadvantages, C advantages and 44
disband committee 148
dispatch
double 300
t e m p l a t e , double 364

d i s p l a y e d 258-259
disruption of standards process 137
distributed
fat 121,199
system simulator 19

— D — Index 437

diversity of C++ community 130
documentation, C with Classes 29
dominance 263

DAG 263
double

definition error 377
dispatch 300
dispatch t e m p l a t e 364

d o u b l e , f l o a t and 224
Dovich, Steve 400
dynamic
allocation and real-time 211
checking of exceptions 396
initialization 98,286
linking 206
storage 32
store 56
type checking, static and 107

d y n a m i c _ c a s t 308
s t a t i c _ c a s t and 330
syntax of 309
use of 296,320

d y n a r r a y 194

E
early
libraries, aims of 184
users 174

Eaves, Laura 71,125
EBCDIC, IBM 160
Eckel, Bruce 154,191
education and technique 205
efficiency

C with Classes 28
C++ beauty and 379
Fortran 157
and overloading 84
exceptions and 396
flexibility and 379
organization, flexibility 1
overloading and 78
run-time 32,179, 324
v i r t u a l function 49,75

efficient
C is 43
I /O 185
M a t r i x 252
S t r i n g , simple and 185

Eick, Stephen 193
Eiffel 6,67,176-177,202,326,397

complexity 199
learning 168

elegance, simplicity and 229
elegant language 179
eliminate cast 309

elimination of temporaries 252
ellipsis . . . 333
Ellis, Margaret 127,247
email internet, newsgroups 164
embedded system 203
employee 292
encapsulation and f r i e n d 53
encoding, type 234
Energize, Lucid 167
enforcement 24

of c o n s t 284
engineering

computing 176
language design and 104

English as a common language 161
enum
C 253
overload based on 254
type 253

enumeration 253
overload based on 254

environment
C++ programming 166
Cpp and programming 424
complexity 199
execution 221
future C++ programming 167
ideal program development 207
ideals for C++ programming 167
separation between language and 197
standard application 135
tool poor 65,166

environments, many 167
EOS 145
equivalence
name 35
operator 242
structural 35

Eratosthenes's sieve 188
error
Cpp and 424
checking and 378
checking of t e m p l a t e 369
detection, constraint and 343
double definition 377
handling 218
handling, C 338
handling, multi-level 385
potential 113

error-prone code, verbose 388
Estes Park workshop 165
ET++ 167
evaluating a programming language 175
events

Release 2.0 124
asynchronous 393

438 — E — Index

sequence of 123
evidence and skeptics 24
evolution, interface 206
example
member t e m p l a t e 361-362
of RTTI 320
of object I /O 320
task 188

examples, pathological 141
exception

and constructor 388
and destructor 388
and library 183
handling 108,383
handling, aims for 384
handling and reliability 384
handling, assumptions for 384
handling, ideals for C++ 385
handling, multiple inheritance and 387
handling syntax 385
specification 396

exceptions 22
and C 385
and class hierarchy 387
and efficiency 396
and layout 396
and levels of abstraction 392
and old code 394
and other languages 394
and recompilation 396
and resource management 388
concurrency and 385
cost of 385
dynamic checking of 396
experience with 392
grouping of 385-386,396
guaranteed catching of 385
large system and 392
memory exhaustion and 390
multi-level propagation of 394
overflow and 394
static checking of 395
t e m p l a t e and 379
type safety and 385

execution environment 221
experience 126

idealists and 23
rules and 109
t e m p l a t e implementation 339,368
t e m p l a t e use 339
value of 301
with exceptions 392
with type-safe linkage 234

experiment 104
delegation 272

explicit

call of destructor 217
qualification 406
qualification : : 412
t e m p l a t e argument 350
t e m p l a t e instantiation 366
type field 50

exponentiation
operator * * 247
operator *^ 249

expression, direct 115
extended

character sets 161
character sets, I /O of 161
type information 318

extending vs. mutating 85
extensible I /O 185
extension

architecture-specific 158
checklist 149
criteria 149
major and minor 305
stability and 125

extensions 269
Ada 147
C 147
Cobol 147
Fortran 147
Modula-2 147
Pascal 147
accepted 151
and standard 134
are detectable 134
concurrency support 188
need for 129
problems with good 152
proposals, management of 147
suggested 151

extern C 234
extreme portability 65

f () , f (vo id) and 41
facts 1
respect for 179
reviewed 2
vs. philosophy 3

f a l s e 0 254
fancy S t r i n g 185
fat, distributed 121,199
fatalism status quo 24
fault-tolerant system, design of 385
fear of overloading 231
feature
acceptance criteria 61
acceptance process 61

— F — Index 439

dangerous 315
library vs. language 181
major and minor 305

features
ARM 128
C with Classes 29
C++ 131
C++Release 1.0 71
Release 2.0 126
accepted 151
affordable 115
and techniques, language 170
language design and 104
necessary 149
new 269
removing 269

featurism 60
feedback, perfection and 111
Feldman, Stu 22, 39, 78,105
F i g 295
file

and t e m p l a t e , . c 376
and t e m p l a t e , . h 376
and t e m p l a t e , source 376
header 34

F i l e P t r 389
files, header 235
finalization 388
finding t e m p l a t e definition 376
fine-grain
control of memory management 211
overload resolution 224

fire walls 394
first
principles, design from 44
shipment, Cfront 70
shipment, Cpre 70

first-time switch 97
fixing C 45
flame war 231
flexibility

and efficiency 379
efficiency organization 1
vs. simplicity 224

flexible, C is 43
f l o a t
and d o u b l e 224
overloading and 224

floating
point, single precision 224
to integral conversion 42

focus on concepts 168
Fontana, Mary 339, 392
fooling s t a t l c _ c a s t 330
f o p e n O 388
force 113

for instability, standardization as 148
forcing people 23,171
foreign language interface 236
foreman 292
formal

definition 103
methods 103

for-statement, declaration in 99
Fortran 34,120, 203
C++and 176
a weed 37
calling 86
efficiency 157
extensions 147
in C++, writing 170
linkage 236

forward
declaration of n e s t e d c l a s s 289
reference of class member 140

forwarding function 244
foundation
libraries 191
library, horizontal 191
library, vertical 191

fragmentation 211
Fraser, Sandy 61,105
fraud, protection against 116
free
implementations 70
storage 32
store 56
store allocation, prohibit 238

f r e e () , d e l e t e 57
f r i e n d
and member 80
encapsulation and 53
misuse of 301

front-end, Cfront compiler 66
function
C with Classes without v i r t u a l 53
and multiple inheritance, virtual 265
call of undeclared 40
cast and pointer to 331
c o n s t member 284
conversion 83
definition 31
eff ic iency,vir tual 49,75
forwarding 244
implementation of member 39
implementation, v i r t u a l 75
i n l i n e 32
i n l i n e member 139
layout and v i r t u a l 74
member 30
new() 31
only, instantiate used 347

440 — F — Index

operator 83
optimization, v i r t u a l 239
pointer to 74
pointer, v i r t u a l 74
polymorphism without v i r t u a l 49
pure v i r t u a l 279
recompilation, v i r t u a l 75
s t a t i c member 288
table, v i r t u a l 74
t e m p l a t e 348
t e m p l a t e and v i r t u a l 342
t e m p l a t e argument 350
t e m p l a t e overloading 351
v i r t u a l 72,74

future C++ programming environment 167
f (v o i d)
abomination 41
and f () 41

G
garbage

collection 143,203
collection, automatic 219
collection, conservative 217
collection, destructor and 222
collection, multiple inheritance 271
collection, optional 198,220
collection, plug-in 217
collection, reasons against 220
collection, reasons for 220
collection, standard 221

Gautron, Philippe 344,400
GDB_root 184
general

application programming 204
rules 110

general-purpose 125
language 28,201
programming language C++ 105

generated
C 67
C code 39

generic
programming, C++ and 379
types, macros for 51

Gibbons, Bill 139,155,294,373,400
global

allocation, prohibit 237
name 288
namespace 399,412
optimization 116
scope 412
scope name clashes 400
s t a t i c deprecated 419
variable 32

Glockenspiel 164
library 191

GNU
compiler 166
library 191

goals of C++ 196
Goldstein, Ted 294,387,391
good

extensions, problems with 152
languages vs good software 149

Gorlen, Keith 125,165,191,276,345
grab_X() 393
gradual

adoption 168
approach to C++ 171
change 24

gradually, learning 113,169
grammar, ANSI C 69
granting access 53-54
graph, conversion 228
Green Hills 164
grouping of exceptions 385-386,396
guaranteed catching of exceptions 385
guarantees, run-time 56
gummy bear 261

H
. h file and t e m p l a t e 376

hack
macro 401
structure tag compatibility 48

hand optimization 211
handle 243
handler, new 219
Hansen, Tony 289,339,400
Hanson, David 253
Haradhvala, Sam 71,339
hard

to implement, multiple inheritance 270
to use, multiple inheritance 270

hardware, special 134
Hartinger, Roland 153,400
Hchar 161
header

file 34
files 235

heap storage 32
helper class 87
Hewlett-Packard 71,128-129
Softbench 167

hiding
base, derived 417
of representation 279
of t e m p l a t e implementation 366
overriding and 76

— H — Index 441

hierarchy
c l a s s 20
exceptions and class 387
single-rooted 170,184

higher-level programming 202
high-performance computer 176
hijack names 406
hijacking of names in t e m p l a t e 373
hindsight, retrospective 196
h i s t o g r a m 62
history

and philosophy 23
revisionist 1

Holly, Mike 157
honesty, intellectual 179
Hopkins, Bill 272
HOPL-2 paper 2
horizontal foundation library 191
H s t r i n g 161
hybrid

design 201
styles 112

hype, marketing 63

I
IBM 128,392
EBCDIC 160
compiler 166

ideal
c o n s t 286
program development environment 207

idealism 24
idealists and experience 23
ideals

for C++ exception handling 385
for C++ programming environment 167
for namespace design 402

identity, type 316
if alternative to # i f d e f 425
i f d e f 424

i f alternative to 425
ignoring

standards 135
warning 42

impact of change 281
implementation
C with Classes 29
Cfront t e m p l a t e 365
and interface 281
and interface, t e m p l a t e 379
complexity, RTTI 306
declaration 35
dependencies 138
experience, t e m p l a t e 339, 368
hiding of t e m p l a t e 366

inheritance p r i v a t e 53
language, C++ as an 204
multiple inheritance 270
of Simula 20
of member function 39
of namespace 403
of new, Cfront 57
portable 21
problems, t e m p l a t e 338
simple-minded 36
simplicity 111
supplier lock-in 138
system and language 206
v i r t u a l function 75

implementation-dependent behavior
133-134

implementations
free 70
language and 127

implementer
and programmer, contract between 133
designer and 60

implicit
cast 350
conversion 80,223
conversion, s t a t i c _ c a s t and 329
instantiation 365
i n t , deprecate 45
narrowing conversion 334
use in t e m p l a t e 370

importance
multiple inheritance 271
of placement 215
of syntax 48
of time order 123

impression of instability 153
i n c l u d e 407,424

i n c l u d e alternative to 425
i n c l u d e alternative to # i n c l u d e 425
incomplete type, cast and 329
increment operator ++ 245
incremental linking 206
independent multiple inheritance 260
indirection 242
individual, respect for 23
individuals, learning and 169
industry
software components 191
standards 206

influence
on C++, operating system 22
operating system 55

informal standardization 126
information, compiler has partial 37
inheritance

and t e m p l a t e 361

442 — I — Index

constraint through 344
multiple 108,257
of o p e r a t o r d e l e t e () 213
of o p e r a t o r new () 213
overloading and 225
overuse of 53,170
p r i v a t e , implementation 53
public , interface 53
timing of multiple 257

i n h e r i t e d 290
initial C++ manual, size of 79
initialization 37
Simula 56
allocation and 212-213
and assignment 22
and paging 98
and virtual memory 98
dynamic 98,286
library 96
of c i n 96
of c o n s t 286
of c o u t 96
of s t d i n 96
of s t d o u t 96
order of 96
order of member 275
problems with run-time 96
resource acquisition 389
run-time 96,286
run-time checked 326
static 96,286

initialize-only style 84, 99
initializer 96
base 275
member 275
syntax 380

i n l i n e
Cpp and 425
function 32
keyword 33
member function 139
t e m p l a t e and 342

Mining linker compiler 33
inquiry, compile-time type 353
Insinga, Aron 392
INSPECT, Simula 74,309
instability

impression of 153
standardization as force for 148

instantiate used function only 347
i n s t a n t i a t e keyword 367
instantiation

#pragma, t e m p l a t e 366
automatic t e m p l a t e 365
context of t e m p l a t e 369
directive, t e m p l a t e 367

explicit t e m p l a t e 366
implicit 365
late 346,365
manual optimization of 368
multiple 367
point of 368

instruction set, standard 135
i n t
and c h a r 224
deprecate implicit 45
derivation from 380

integral
conversion, floating to 42
promotions 228

integrated system 112
intellectual honesty 179
interface 31
cast and 183
composition 409
c o n s t for specifying 90
evolution 206
foreign language 236
implementation and 281
inheritance p u b l i c 53
separate 35
t e m p l a t e implementation and 379

interfaces 118
statically checked 107

inter-language linkage 236
international standard 136
internet, newsgroups email 164
interrupts 393
intersect rule 229
i n t e r s e c t Shape 297
Interviews 301
library 165,191

inventing terminology 31
I /O
Ada 185
C 96
C++ stream 185
Stream 93,96
efficient 185
example of object 320
extensible 185
library, stream 185
object 276
of extended character sets 161
p r i n t f , C 185
terse 185
type-safe 185

i o 322
i o c i r c l e 322
i o _ c o u n t e r 97
i o _ o b j 321
i o s t r e a m 260

— I — Index 443

isKindOf, Smalltalk 325
ISO
ANSI and 136
C++ standardization 129
WG-21 136
standard library 194

ISO-646-1983 ASCII ANSI3.4-1968 158
issues, system-related 206

J
J c h a r 161
Johnson, Steve 22,35,62,68,70,101,105,124
jokes, puns and 24
JOOP 166
Jordan, David 361
Journal, The, C++ 165
journals and books 165
J s t r i n g 161
Juhl, Peter 400,403

K
Kallman,Dave 70
Keffer, Thomas 191
Kelley,Bob 125
Kernighan, Brian 4, 22, 70,91,105,125,127,

245,253
keyword

and 160
and_eq 160
argument 153
argument workaround 156
b i t a n d 160
b i t o r 160
compl 160
i n l i n e 33
i n s t a n t i a t e 367
no t 160
n o t _ e q 160
o r 160
o r_eq 160
p o s t f i x 246
p r e f i x 246
s p e c i a l i s e 376
s p e c i a l i z e 376
t e m p l a t e 341
xo r 160
xo r_eq 160

keywords, new 152
kinds of rules 110
Knuttilla, Kim 392
Koenig, Andrew 4,46,71,81,101,125,127,

131,134,139,145,165-166,187,227,229,
239-240,251,253,255,263,303,322,327,
339,344,348,352,368,383,387,391,400

Krogdahl, Stein 258
Krohn,Eric 400

L
Lachner, Archie 4,125,212
lack of t e m p l a t e 184
LALR(l) parser, YACC 68
language
C++ as a target 204
C++ as an implementation 204
C++, general-purpose programming 105
English as a common 161
and environment, separation between 197
and implementations 127
and system 37
chart 5
choosing a programming 175
company 178
comparison 270
complexity 199
constructs, concepts and 19
cult 229
definition, C++ 5
design 114
design and engineering 104
design and features 104
design and mathematics 104
design and philosophy 104
design and sociology 104
design committee for a new 148
design, motivation for 105
design principles 109
design rules 109
design, tools for 103
elegant 179
evaluating a programming 175
feature, library vs. 181
features and techniques 170
general-purpose 28,201
implementation, system and 206
interface, foreign 236
lawyers 5
programming 112,114
purposes of programming 44
specialized 201,204
support, basic 194
support for library 183
wars 179
wars and bigotry 299
what is a programming 7

languages
C++ and other 197
comparing programming 5
exceptions and other 394
vs good software, good 149

444 — L — Index

language-technical
details 3
rules 117

large
program, naming in a 406
system 116
system and exceptions 392

late instantiation 346,365
later users 174
lattice, conversion 228
lawyers

language 5
users vs. 137

layout
C with Classes object 38
Cfront virtual table 320
RTTI 320
and v i r t u a l function 74
compatibility, C with Classes 28
derived class 52
exceptions and 396
multiple inheritance 264
object 304
standard v i r t u a l table 135
t e m p l a t e and 342
v i r t u a l base 266

Lea, Doug 191,298,344
learn C++, time needed to 172
learning

C 168
C and C++ 169
CLOS 168
C++ 168,172
C++and Smalltalk 170
C++from ARM 127
Eiffel 168
ML 168
OODMBS 168
OOP 170
Smalltalk 168
academic pursuit of 70
and individuals 169
assembler 168
gradually 113,169
object-oriented programming 170
on the job 168
verification 168

legal
program 133
source text 133

Lenkov, Dmitry 129,306,384,391
levels of abstraction, exceptions and 392
libraries
C++ 65
aims of early 184
and static type checking 183

and type system 183
concurrency support 188
foundation 191
many 167
numeric 192
persistence 192
specialized 193
support for 108
use of multiple 183

library
ANSI standard 194
AT&T 184
Bell Labs 184
Booch components 192
GNU 191
Glockenspiel 191
ISO standard 194
Interviews 165,191
NIH 165,191
RHALE++ 192
RTTI and 183
Rogue Wave 191
Smalltalk-inspired 184
Standard Components 184
USL 184,191
abstract c l a s s and 183
complex 66
complexity 199
constructor and 183
dependencies on 134
design 182
design, t e m p l a t e and 378
design tradeoffs 182
exception and 183
horizontal foundation 191
initialization 96
language support for 183
missing, standard 124
multiple inheritance and 184,258
namespace and 183
namespaces in standard 400
naming in standard 316
providers and namespaces 403
run-time type information and 183
standard 407
standard numeric 194
stream I /O 185
support 306
task 27,184,188
vertical foundation 191
vs. language feature 181

lifetime of temporaries 143
limit on number of characters 69
limits
to perfection 108
translation 136

— L — Index 445

Lindsey, Charles 100
linear notation for declarators 46
link compatibility 120
l i n k 50,62,259
linkage

C 232
C and C++ 233
Fortran 236
PL/I 236
Pascal 236
TSL see type-safe
and overloading 233
experience with type-safe 234
inter-language 236
model 34
name 233
overloading and 232
pointer to function 236
problem, type-safe 236
problems 69
syntax, type-safe 399
to other languages 34
type-safe 34,232

linkage-specifier 234
linker 120,232

compiler, Mining 33
names 403
problem 98
problems with 303

linking
dynamic 206
incremental 206

link-time
and t e m p l a t e 366
overhead 233

Linton, Mark 191,301
lip service to minimalism 147
Lippman, Stan 71,125,303,339
Liskov, Barbara 53,301
Lisp 37, 67,175
model 197

l i s t 62
lists, standard 194
literal, type of c h a r 225
literature 23

on programming languages 105
L.M.Ericsson 392
lobbying for long names 70
local

default 101
static arrays, ANSI C 128
variable 32
variables, true 198

locality 117
nested c l a s s 118

Locanthi, Bart 105

lock-in, implementation supplier 138
locking 190

in users 167
logic, theory and 23
Logothetis, George 71
long
names, lobbying for 70
namespace name 408

lookup
ANSI/ISO name 141
ARM name 139
name 138
t e m p l a t e name 371

L o t t e r y S i m u l a t i o n 273
low-level

coding 338
features, C with Classes 29
programming 202
programming rules 120

Lucid Energize 167
lvalue vs. rvalue 87

M
Macintosh, Apple 165
macro

Cpp 118,424
contain using 50
container c l a s s and 337
hack 401
t e m p l a t e style 339

macros for generic types 51
maintainable program 406
maintaining coherence 153
major

C++ projects 174
and minor extension 305
and minor feature 305

m a l l o c () , new and 56, 91
management 277

development 124
of extensions proposals 147

manual
ARM reference 126
C and C++ reference 170
C++ reference 60
control 121
optimization of instantiation 368
size of initial C++ 79

many
environments 167
libraries 167

map, standard 194
Map 322
Marian 405
marketing

446 — M —

AT&T C++ 177
hype 63

marketing, lack of 164
Mary 22
Mascitti, Rick 64
match, better 228
matching

overload 228
rules, argument 228

mathematics
as tool for problem solving 23
language design and 104

M a t h e r r 387
M a t r i x , efficient 252
maturity
personal 137
technical 137

Mayka, Larry 125
Mcllroy, Doug 4,41,46,62, 78,85,91,102,

105,125,127,141,186,227,229,253,274,
304,384,400

member
access control and s t a t i c 288
c l a s s 289
forward reference of class 140
f r i e n d and 80
function 30
function, c o n s t 284
function, implementation of 39
function, i n l i n e 139
function, method see
function, s t a t i c 288
initialization, order of 275
initializer 275
order dependencies, c l a s s 138
pointer to 303
pointer to data 304
p r o t e c t e d 301
t e m p l a t e 364
t e m p l a t e example 361-362
t e m p l a t e , v i r t u a l 364

members, committee 137
memberwise copy 239
memory

arena 215
exhaustion and exceptions 390
exhaustion, control of 218
initialization and virtual 98
management 91,203,211
management, Release 2.0 and 212
management, fine-grain control of 211
management, tuning of 211
raw 213
read-only 286
special 211
use, Cfront 66

Index

Memphis 115
Mentor Graphics 212,241
merging of c l a s s hierarchies 273
Mesa 44
Cedar 392

meta-object 324
method

combination 268
see member function
unconstrained 325

methods, formal 103
micro C++ 188
Microsoft 129

compiler 166
migration path 201
Miller, William (Mike) 165,384,391
minimal run-time support 21
minimalism, lip service to 147
minimize surprises 227
Minner, Richard 400
missing, standard library 124
mistake, worst 200
misuse

of RTTI 313
of f r i e n d 301
of t y p e id 308
use and 115

Mitchell, Jim 392
mixed system 204
mixed-mode arithmetic 80, 223
mixin 261
ML 103,105,107,387
learning 168

model
Lisp 197
Simula 197
Smalltalk 197
linkage 34
of protection, C++ 22
protection 53
t e m p l a t e compilation 376

Modula-2 35,44,103,175,204
extensions 147

Modula-2+ 397
Modula-3 6, 67,176-177,202
variables 198

modularity 102
module structure 27
m o n i t o r 56
Moo, Barbara 71,125,277
motivation
for change 110
for language design 105

MPW, Apple Mac 167
multi-argument overloading 228
multi-level

— M —

error handling 385
propagation of exceptions 394

multi-method 325
workaround for 299

multi-methods 297
multi-paradigm 106
multiple
inheritance 108,257
inheritance C++ 271
inheritance and Simula 258
inheritance and Smalltalk 270
inheritance and ambiguity 258
inheritance and exception handling 387
inheritance and library 184, 258
inheritance bugs 270
inheritance complexity 270
inheritance controversy 269
inheritance delegation 270
inheritance garbage collection 271
inheritance hard to implement 270
inheritance hard to use 270
inheritance implementation 270
inheritance importance 271
inheritance, independent 260
inheritance layout 264
inheritance, name clash and 273
inheritance overhead 270
inheritance, single and 258
inheritance, static checking of 263
inheritance, timing of 257
inheritance tools 271
inheritance, use of 271,322
inheritance, virtual function and 265
instantiation 367
libraries, use of 183

multi-processor system 188
multi-threading 188
Murray Hill 27
Murray, Rob 165,339
m u t a b l e 287
mutating, extending vs. 85

N
name

C++ 64
binding rule 368
clash and multiple inheritance 273
clashes, global scope 400
encoding, namespaces and 420
encoding, standard 135
equivalence 35
global 288
linkage 233
long namespace 408
lookup 138

Index 447

lookup, ANSI/ISO 141
lookup, ARM 139
lookup, t e m p l a t e 371
mangeling, namespaces and 420
mangling 234
prefixes 401
short namespace 408
space pollution 288

name () 317
named argument 153
names

access control of 54
argument 155
hijack 406
in t e m p l a t e , hijacking of 373
linker 403
lobbying for long 70
source code 403

namespace
as t e m p l a t e argument 343
problem 400

namespace 289, 404
Cpp and 425
alias 404,408
and c l a s s 417
and library 183
c l a s s as 401
design, aims of 402
design, ideals for 402
design, non-aims of 403
global 399,412
implementation of 403
name, long 408
name, short 408
syntax 405
t e m p l a t e 360
unnamed 419
u s i n g 407

namespaces
and C compatibility 420
and name encoding 420
and name mangeling 420
and releases 409
and versioning 409
in standard library 400
library providers and 403
nested 415
open 416
overloading and 414
transition to 407

naming
in a large program 406
in standard library 316

na r row () 335
narrowing

conversion 41, 227

448 — N — Index

conversion, implicit 334
national character sets 158
natural conversion 227
nature of programming 111
NCEG 157
NDEBUG 397
Neath, Martin 339
necessary features 149
need for extensions 129
needed for standard, time 129
Needham, Roger 22
nested

c l a s s 102,128,289
c l a s s , forward declaration of 289
c l a s s , locality 118
default 101
namespaces 415
t e m p l a t e 364

n e t w o r k _ f i l e _ e r r 387
networking 188
new

cast notation 327
cast, transition to 335
cast, using 335
features 269
keywords 152
language, design committee for a 148

new
Ada 365
Cfront implementation of 57
allocation and constructor 56
and allocation 212
and constructor 213
and m a l l o c () 56,91
handler 219
operator 32,212
performance 91

new()
constructor 56
function 31

new [], operator 214
Newcastle 22
new_hand le r 91
newsgroups email internet 164
new-style cast 327
Ngo, Thomas 287
Nicholas 404
NIH library 165,191
n o a l i a s 157
N o _ f r e e _ s t o r e 238
non-aims of namespace design 403
non-pointers, pointers and 31
non-type t e m p l a t e argument 342
no t keyword 160
notation

constructor 94

constructor call 335
for declarators, linear 46
new cast 327
old-style cast 333

notational
convenience 241
convenience, operators and 223

n o t _ e q keyword 160
null pointer 0 229
NULL 0 230
Num 243
number

of C++ compilers sold 164
of C++ users 163
of arguments, average 156
of characters, limit on 69

numeric
computing 203
libraries 192
library, standard 194

numerical
C 157
computing 158

Nygaard, Kristen 4,19

o
Oasys 164
Object Pascal 291
object
I /O 276
I /O, example of 320
copy of 293
layout 304
layout, C with Classes 38
partially constructed 389
representation of 31,279
stack 92
static 92

O b j e c t 314
ObjectCenter, Centerline 166
Objective C 175,257
object-oriented
databases 192
design 114,172
programming 73,172
programming, C++ and 197
programming, learning 170

ObjectWorks, ParcPlace 166
old code, exceptions and 394
old-style cast notation 333
OLE2 206
ON-conditions, PL/I 392
one-definition
rule 36
rule and t e m p l a t e 369

— O — Index 449

one-pass
analysis 140
compilation 139

O n f r e e s t o r e 237
onion design 323
OOD 114,172
OODBMS 361
OODMBS, learning 168
OOP 73,172
learning 170

OOPSLA 299
open namespaces 416
operating
system influence 55
system influence on C++ 22
system, standard 135

operations, unsafe 222
operator

, 247
**, exponentiation 247
* ^, exponentiation 249
++, increment 245
- - , decrement 245
-> 241
->* 247
. 242
.* 247
« 186
<< output 186
= 239
composite 251
default 237
d e l e t e 32,212,216
d e l e t e !] 214
equivalence 242
function 83
new 32, 212
new[] 214
overloading 78
precedence of user-defined 251
p r i v a t e 237
prohibit 237
type inquiry 324
type relation 325
user-defined 250

o p e r a t o r
d e l e t e () 194
d e l e t e () , inheritance of 213
new() 194
new () , inheritance of 213
new () r e t u r n value 218

operators
Algol68 250
Simula 86
and notational convenience 223

optimization

global 116
hand 211
of instantiation, manual 368
of v i r t u a l call 116
r e t u r n value 302
return value 84
v i r t u a l function 239
virtual table 302

optional garbage collection 198, 220
or keyword 160
order
dependence 118
dependencies, c l a s s member 138
dependencies, workarounds for 97
dependency 232
dependency and overloading 226
of initialization 96
of member initialization 275

ordinary base c l a s s 258
Oregon
Software 164
Software compiler 166

o r _ e q keyword 160
organization

flexibility efficiency 1
program 28,115

original standards schedule 129
O'Riordan, Martin 254, 274,288, 294, 330,

368,391-392,400
orthogonality 113

cult of 104
OS/2 165,392
other

languages, exceptions and 394
languages, linkage to 34

output o p e r a t o r , « 186
over-constrained argument 343
overflow and exceptions 394
overhead
Cfront compile-time 67
compile-time 233
link-time 233
multiple inheritance 270
rule, zero 121
run-time 233

overload
base and derived 417
based on enum 254
based on enumeration 254
matching 228
resolution 224
resolution, fine-grain 224

o v e r l o a d declaration 231
overloading 78,224
Algol68 references 44
Release 2.0 and 224

450 — O — Index

and c h a r 224
and c l a s s hierarchy 226
and c o n s t 225
and conversion 223
and default arguments 59
and efficiency 78
and f l o a t 224
and inheritance 225
and linkage 232
and namespaces 414
and transition 414
efficiency and 84
fear of 231
function t e m p l a t e 351
linkage and 233
multi-argument 228
of assignment 58
operator 78
order dependency and 226
reasons against 78
reasons for 78

overriding
and hiding 76
relaxation of 293

overstated weaknesses 153
overuse
of cast 170
of inheritance 53,170

paging, initialization and 98
paper

HOPL-2 2
design 60

parameterized
type 107,341
type t e m p l a t e 338

ParcPlace ObjectWorks 166
parser

YACC LALR(l) 68
recursive descent 68

parsing C++ 68
partial information, compiler has 37
partially constructed object 389
Pascal 135,204

and Simula 20
extensions 147
linkage 236
toy 44
variables 198

pass-by-reference 86
pass-by-value 85
paternalism 106
path, migration 201
pathological examples 141

PC, port of Cfront to 66
PCC C compiler 69
PCs personal computers 65
Pennello, Tom 69,139,145
people

forcing 23,171
who contributed to C++ 2

per-class allocator 91,211
perfection

and feedback 111
limits to 108

performance 211
Simula run-time 32
new 91
of Simula, run-time 20
startup 98

persistence libraries 192
persistent symbol table 376
personal

computers, PCs 65
maturity 137

personal, preferences 106
Philip, Pat 125
philosophers 301,392
philosophy

facts vs. 3
history and 23
language design and 104

PL360 22
placement 211,214

importance of 215
plan, C++ development 124
PL/I 227

ON-conditions 392
linkage 236

plug-in garbage collection 217
Plum,
Thomas 131
Tom 103

point of instantiation 368
pointer

0,null 229
copy of 240
replace ordinary 245
semantics 198
smart 241,361
syntax 304
t h i s 39
to data member 304
to function 74
to function, cast and 331
to function linkage 236
to member 303

pointers
and non-pointers 31
and references 86

— p — Index 451

restricted 157
points of destruction of temporary,

alternative 145
pollution, name space 288
polymorphic type 312
polymorphism without v i r t u a l function

49
population, user 61
port of Cfront to PC 66
portability 125
extreme 65

portable
C is 43
implementation 21

porting problems 235
positive rules 122
postfix

++, prefix and 245
- - , prefix and 245

p o s t f i x keyword 246
potential error 113
Powell, Mike 395
#pragma 424
t e m p l a t e instantiation 366

pragmatic approach 60
precedence of user-defined operator 251
prefix

Simula c l a s s 49
and postfix ++ 245
and postfix - - 245

p r e f i x keyword 246
prefixes, name 401
prehistory of C++ 19
preprocessor

C 68
Cpp,C 119,423
Cpre C with Classes 27

Presotto, Dave 185
principles

design from first 44
language design 109

p r i n t f , C I / 0 185
private, default 101
p r i v a t e 301
base, cast to 328
implementation inheritance 53
operator 237
p u b l i c 53

privileges 407
problem

RTTI 307
linker 98
namespace 400
solving, mathematics as tool for 23
type-safe linkage 236
with C 374

with alias 275
with synonym 275
with t e m p l a t e syntax, » 356

problems
archetypical 62
deallocation 216
design and 105
linkage 69
porting 235
real 110
with cast 327
with good extensions 152
with linker 303
with run-time initialization 96

process, feature acceptance 61
productive, staying 172
program

development environment, ideal 207
legal 133
maintainable 406
naming in a large 406
organization 28,115
reliable 406
startup 98

programmer
bored 388
contract between implementer and 133
trust the 116,316

programmers 113
training of 111

programming
C++ and generic 379
C++ and object-oriented 197
environment, C++ 166
environment, Cpp and 424
environment, future C++ 167
environment, ideals for C++ 167
general application 204
higher-level 202
language 112,114
language, choosing a 175
language, evaluating a 175
language, purposes of 44
language, what is a 7
languages, comparing 5
languages, literature on 105
languages, systems 22
learning object-oriented 170
low-level 202
nature of 111
object-oriented 73,172
rules, low-level 120

prohibit
a u t o allocation 237
copy 237
derivation 238

452 — P — Index

free store allocation 238
global allocation 237
operator 237
s t a t i c allocation 237

prohibition 122
projects, major C++ 174
promises 62
promotions, integral 228
propagation of exceptions, multi-level 394
proposal

accepting a 147
rejecting a 147

proposals
accepted 151
backlog of 150
rejected 151

Prosser,
Dave 125
David 253

p r o t e c t e d 301
member 301

protection
C++ model of 22
Smalltalk 301
against accident 116
against fraud 116
barrier, crossing 32
c l a s s unit of 54
compile-time 54
model 53

providers and namespaces, library 403
Ptr 361
P t r 242,361
p u b l i c 301
interface inheritance 53
p r i v a t e 53

p u b l i c : 31
puns and jokes 24
pure v i r t u a l function 279
purpose

of ARM 127
of C++ 105,163

purposes of programming language 44
pursuit of learning, academic 70
p v e c t o r 347

Q
qualification 95

: :, explicit 412
explicit 406

queue 62
Quinn, Peggy 125

R
r a i s e 386
Randell, Brian 22
rate of change 24
raw memory 213
readability, constraint and 343
read-only memory 286
r e a d o n l y 89
real problems 110
reality, votes and 90
real-time, dynamic allocation and 211
reasons
against garbage collection 220
against overloading 78
for garbage collection 220
for overloading 78

recompilation 31, 281
exceptions and 396
v i r t u a l function 75

reconsideration rule 142
recursive descent parser 68
redefinition rule 139
redundancy in syntax 386
reference 85
binding of 86
manual, ARM 126
manual, C and C++ 170
manual, C++ 60
r e t u r n type 87
semantics 198
t h i s 39

references
Algol68 86
c o n s t 86
overloading, Algol68 44
pointers and 86
smart 242

RefNum 243
r e i n t e r p r e t _ c a s t 331
and s t a t i c _ c a s t 331

rejected proposals 151
rejecting a proposal 147
relation operator, type 325
relationships between templates 360
relaxation

of argument rules 295
of overriding 293

Release
1.0 71
1.0 deficiencies, C++ 107
1.0 features, C++ 71
1.1 71
1.2 71,302-303
1.3 124
2.0 187
2.0 71,124, 257, 288, 320

— R — Index 453

2.0= 82
2.0 and memory management 212
2.0 and overloading 224
2.0 events 124
2.0 features 126
2.0 timing 124
2.1 71,128,302
3.0 71
E 70

r e l e a s e l 409
r e l e a s e 2 410
releases
namespaces and 409
to universities 70

reliability, exception handling and 384
reliable program 406
religious conversions 24
removal of restrictions 125
removing features 269
renaming 273,403
reordering rule 142
replace ordinary pointer 245
replicated virtual function table 302
replication, code 346
repository, t e m p l a t e 376
representation
hiding of 279
of object 31,279

resolution, overload 224
resource

acquisition initialization 389
management 215
management, exceptions and 388
requirements, Cfront 65

respect
for facts 179
for individual 23

r e s t r i c t 157
restricted pointers 157
restriction, specialization 375
restrictions, removal of 125
resumption
arguments for 391
semantics 390
termination vs. 390
workaround for 393

retrospective hindsight 196
return value optimization 84
r e t u r n
type 293
type, reference 87
value, o p e r a t o r new () 218
value optimization 302

r e t u r n () and : a f t e r 57, 268
reviewed facts 2
revisionist history 1

revolutions 24
rewrite rule 139
RHALE++ library 192
Richards, Martin 64
Ritchie, Dennis 4,22,35,41,62,64,89-90,

105,157,163,253
Rogue Wave library 191
ROM 286
root

c l a s s 261
c l a s s , universal 184

Rose, Leonie 66
rose
Algol68 a 37
Simula a 37

Rosier, Larry 64,90,103,105,128
Rowe, Keith 400
RTTI 74,306
and cast 309
and library 183
and standardization 315
design, alternative 323
example of 320
implementation complexity 306
layout 320
misuse of 313
problem 307
use of 311,313

rule
intersect 229
name binding 368
one-definition 36
reconsideration 142
redefinition 139
reordering 142
rewrite 139
specialization 375
two week 274
zero overhead 121

rules
and experience 109
argument matching 228
design support 114
general 110
kinds of 110
language design 109
language-technical 117
low-level programming 120
positive 122
sociological 110
voting 136

run-time
argument check 296
check 42
checked initialization 326
checks 29

454 — R — Index

efficiency 32,179,324
guarantees 56
initialization 96, 286
initialization, problems with 96
overhead 233
performance, Simula 32
performance of Simula 20
support, C with Classes 49
support, minimal 21
type information 266, 306
type information and library 183
type inquiry 74

rvalue, lvalue vs. 87

s
safe

cast 309
conversion 227

safety 126
and exceptions, type 385
and type safety 93
compatibility vs. 334
convenience vs. 411

Sakkinen, Markku 269
Santa Fe USENIX workshop 165
schedule, original standards 129
Schwarz, Jerry 97,105,125,187, 286-287,

327,400
scientific computing 158,176, 203
scope
Cpp and 424
global 412
name clashes, global 400

scopes, semi-transparent 54
Scott, Roger 125
Season 254
s e l f , Smalltalk 39
self-assignment 59
self-sufficiency, user 37
semantics
C 103
pointer 198
reference 198
resumption 390
termination 390
value 198

semantics-oriented tools 207
semi-transparent scopes 54
separate
compilation 21, 34
from C, C++ 65
interface 35

separation between language and
environment 197

sequence of events 123

serving current users, C++ 110
Se t of Shape* 360
s e t 279
Sethi, Ravi 46,103, 240
s e t _ n e w _ h a n d l e r 219
s e t _ n e w _ h a n d l e r () 194
shallow copy 240
Shape, i n t e r s e c t 297
shape 72,278,320
Shape*, Set of 360
Shopiro, Jonathan 4,46,61,66,78,83,87,

105,125,129,134,184, 206, 227, 229, 251,
288,304,339,362,368

short namespace name 408
sibling c l a s s 261
siblings, communication between 261
s i g n a l 386
signals 393
SIMLIB 193
simple

and efficient S t r i n g 185
definition of 403

simple-minded implementation 36
simplicity
and complexity 112
and elegance 229
flexibility vs. 224
implementation 111

Simula 19,31,40,62,105
C and 1
INSPECT 74,309
Pascal and 20
THIS 39
Users' group, ASU 106
a rose 37
and C++ 106
c l a s s 6,44
c l a s s prefix 49
implementation of 20
initialization 56
model 197
multiple inheritance and 258
operators 86
run-time performance 32
run-time performance of 20
style c l a s s 21
variables 198
v i r t u a l 73

simulator, distributed system 19
Sing, Livleen 165
single
and multiple inheritance 258
precision floating point 224

single-rooted hierarchy 170,184
size

of Cfront 66

— s — Index 455

of initial C++ manual 79
s i z e t 213
Skallerjohn 400
skeptics, evidence and 24
slicing 240
s l i s t _ s e t 280
Smalltalk 37,44, 67,175,325

and C++ 107
complexity 199
in C++, writing 170
isKindOf 325
learning 168
learning C++ and 170
model 197
multiple inheritance and 270
protection 301
s e l f 39
style 170,314
subclass 49
s u p e r 291
techniques, undesirable 378
variables 198

Smalltalk-inspired library 184
Smalltalk-style container 339
smart
pointer 241, 361
references 242

Snyder, Alan 53, 294
sociological rules 110
sociology, language design and 104
Softbench, Hewlett-Packard 167
software
components industry 191
good languages vs good 149

SOM 206
s o r t () 348
sorting 358
source
code names 403
control and t e m p l a t e 366
file and t e m p l a t e 376
text, legal 133

special
address 214
hardware 134
memory 211

s p e c i a l i s e keyword 376
specialization

declaration 375
of t e m p l a t e 373
restriction 375
rule 375

s p e c i a l i z e keyword 376
specialized

language 201,204
libraries 193

tools 204
specification, exception 396
Spicer, John 350
stability

and extension 125
and standards 205

stack
object 92
storage 32

s t a c k 30
Standard Components library 184
standard

ANSI C++ 128
American national 136
application environment 135
as a contract 133
associative array 194
calling sequences 135
conversion 228
debugger 135
extensions and 134
garbage collection 221
instruction set 135
international 136
library 407
library, ANSI 194
library, ISO 194
library missing 124
library, namespaces in 400
library, naming in 316
lists 194
map 194
name encoding 135
numeric library 194
operating system 135
time needed for 129
timeliness of 135
v i r t u a l table layout 135
what is a 133

standardization 124
ISO C++ 129
RTTI and 315
aims for 130
aims of 135
as force for instability 148
informal 126
start of C++ 128
status of 150

standards
committee 128
ignoring 135
industry 206
process, disruption of 137
schedule, original 129
stability and 205

Stark, Kathy 125

456 — S — Index

start of C++ standardization 128
startup
performance 98
program 98

static
and dynamic type checking 107
checking of exceptions 395
checking of multiple inheritance 263
initialization 96,286
object 92
storage 32
store 56
type checking 31,106,324
type checking, C with Classes 40
type checking, C++ 197
type checking and design 107
type checking, libraries and 183
type system 117

s t a t i c
allocation, prohibit 237
deprecated, global 419
member, access control and 288
member function 288

statically checked interfaces 107
s t a t i c _ c a s t 329
and c o n s t 329
and d y n a m i c _ c a s t 330
and implicit conversion 329
fooling 330
r e i n t e r p r e t _ c a s t and 331

status
of standardization 150
quo, fatalism 24

staying productive 172
s t d i n , initialization of 96
s t d i o . h 407
s t d o u t , initialization of 96
Stepanov, Alex 339,348,354,379
storage

automatic 32
class 32
dynamic 32
free 32
heap 32
stack 32
static 32

store
dynamic 56
free 56
static 56

Stratchey, Christopher 64
Stream I / O 93,96
stream
I /O , C++ 185
I /O library 185

strength, C++ 208

S t r i n g 81,83,87
fancy 185
simple and efficient 185

s t r i n g 194
class 66

strong type checking, C with Classes 40
s t r t o k O 225
s t r u c t and c l a s s 76
structural equivalence 35
structure
of Cfront 66
tag 47
tag compatibility hack 48

style, initialize-only 84,99
styles
hybrid 112
of design 24

subclass
Smalltalk 49
superclass and 74

subset of C++, better C 171
success of C with Classes 64
suggested extensions 151
sum () 368
supe r , Smalltalk 291
superclass and subclass 74
support
C with Classes 29
concurrency 188
debugging 42
for libraries 108
for library, language 183
library 306
rules, design 114

supporting C with Classes 63
surprises, minimize 227
switch

on type 313
on type field 72

symbol
table, persistent 376
tables, Cfront 66

synonym 403
problem with 275

syntax 119
<. . . > 341,355
= 0 281
>> problem with t emp1ate 356
C declaration 45
alternative t e m p l a t e 355
cast 309
exception handling 385
importance of 48
initializer 380
namespace 405
of d y n a m i c _ c a s t 309

— s —

pointer 304
redundancy in 386
t e m p l a t e 350
type-safe linkage 399
type-system, C++ 208

syntax-oriented tools 207
system

and exceptions, large 392
and language implementation 206
design of fault-tolerant 385
embedded 203
integrated 112
language and 37
large 116
libraries and type 183
mixed 204
multi-processor 188

system-related issues 206
systems programming languages 22

T
tag, structure 47
target language, C++ as a 204
task
example 188
library 27,184,188

t a s k 62,258-259,288
TauMetric compiler 166
teaching

C++ 168
and design 168
design and 119

technical maturity 137
technique, education and 205
techniques
language features and 170
t e m p l a t e composition 356
undesirable C 378
undesirable Smalltalk 378

template
C o n t a i n e r 315
conditionals in 353
use of 322

t e m p l a t e
. c file and 376
. h file and 376
Cfront 339
absence of 378
ambiguity in 371
and abstract c 1 a s s 379
and built-in types 380
and c l a s s 360
and constructor 379
and exceptions 379
and i n l i n e 342

and layout 342
and library design 378
and v i r t u a l function 342
argument, constraint on 343
argument, deducing 349
argument, depend on 370
argument, explicit 350
argument, function 350
argument, namespace as 343
argument, non-type 342
argument, t e m p l a t e as 343
array 342
as t e m p l a t e argument 343
c l a s s 341
compilation model 376
compile-time and 366
complex 362
composition techniques 356
container c l a s s and 337
container without 50
conversion and 362
definition, context of 369
definition, finding 376
design, cleanup of 340
design too cautious 340
double dispatch 364
error checking of 369
example, member 361-362
function 348
hijacking of names in 373
implementation, Cfront 365
implementation and interface 379
implementation experience 339, 368
implementation, hiding of 366
implementation problems 338
implicit use in 370
inheritance and 361
instantiation #pragma 366
instantiation, automatic 365
instantiation, context of 369
instantiation directive 367
instantiation, explicit 366
keyword 341
lack of 184
link-time and 366
member 364
name lookup 371
namespace 360
nested 364
one-definition rule and 369
overloading, function 351
parameterized type 338
repository 376
source control and 366
source file and 376
specialization of 373

458 — T — Index

style macro 339
syntax 350
syntax, » problem with 356
syntax, alternative 355
t y p e d e f 357
use experience 339
vector 342
v i r t u a l member 364

templates
design criteria for 338
relationships between 360
timing of 257

t e m p l a t e s , Cpp and 425
temporaries
elimination of 252
lifetime of 143

temporary, alternative points of destruction
of 145

t e r m i n a t e () 194
termination

arguments for 391
semantics 390
vs. resumption 390

terminology 133
inventing 31

Terribile, Mark 400
terse I /O 185
textbooks, C and C++ 169
theory 103,110
and logic 23

THIS, Simula 39
t h i s
andthunk 265
assignment to 91, 212
pointer 39
reference 39

Thompson, Ken 64,161
th row 385
thunk, t h i s and 265
TI Explorer 392
Tiemann, Mike 58,166,225,292,384,395
time, lack of 168
time
needed for standard 129
needed to learn C++ 172
order, importance of 123

timeline, C++ 4
timeliness of standard 135
timing
Release 2.0 124
of multiple inheritance 257
of templates 257

tolerance 23
tool
for problem solving, mathematics as 23
poor environment 65,166

tools
C++ 65
Cpp and 424
character-oriented 207
criteria 21
for language design 103
multiple inheritance 271
semantics-oriented 207
specialized 204
syntax-oriented 207

toy, Pascal 44
tradeoffs
for user 183
library design 182

training of programmers 111
transition 112-113,276,334

and using-directive 407
overloading and 414
path 153
to namespaces 407
to new cast 335

translation
limits 136
unit of 57

translations 165
trigraphs 159
true local variables 198
t r u e 1 254
trust the programmer 116,316
t r y 385
TSL see type-safe linkage
tuning of memory management 211
Turner, Scott 139,141,145
two week rule 274
type
abstract 279
b o o l , Boolean 254
cast and incomplete 329
checked, default 101
checking, C with Classes static 40
checking, C with Classes strong 40
checking, C++ 92
checking, C++ static 197
checking and design, static 107
checking, compile-time 31
checking, design and 107
checking, libraries and static 183
checking, static 31,106,324
checking, static and dynamic 107
c l a s s is user-defined 30
constructor for built-in 380
destructor for built-in 380
encoding 234
enum 253
field, explicit 50
field, switch on 72

— T —

identity 316
information and library, run-time 183
information, extended 318
information, run-time 266,306
inquiry, compile-time 353
inquiry operator 324
inquiry, run-time 74
of c h a r constant 225
of c h a r literal 225
parameterized 107,341
polymorphic 312
reference r e t u r n 87
relation operator 325
r e t u r n 293
safety and exceptions 385
safety, safety and 93
switch on 313
system 20
system, libraries and 183
system, static 117
t e m p l a t e , parameterized 338
violation 117

t y p e d e f 47
t e m p l a t e 357

t y p e i d 316
misuse of 308
use of 322

t y p e _ i n f o 194,316
types
definition of built-in 380
macros for generic 51
t e m p l a t e and built-in 380
user-defined and built-in 32,117

type-safe
I /O 185
linkage 34,232
linkage, TSL see
linkage, experience with 234
linkage problem 236
linkage syntax 399

type-system, C++ syntax 208

u
ugly C features 29
unconstrained method 325
undeclared function, call of 40
undesirable
C techniques 378
Smalltalk techniques 378

u n e x p e c t e d)) 194,395-396
Unicode character set 161
uninitialized variables 99
u n i o n 333
uniqueness 37
unit

of protection, c l a s s 54
of translation 57

universal root c l a s s 184
universities, releases to 70
unnamed namespace 419
Unruh, Erwin 367,400
unsafe operations 222
U s a b l e 239
U s a b l e _ l o c k 239
use

and misuse 115
complexity of 111
constraint through 345
experience, t e m p l a t e 339
of RTTI 311,313
of d y n a m i c _ c a s t 296,320
of multiple inheritance 271,322
of multiple libraries 183
of template 322
of t y p e i d 322
within AT&T, C++ 65

used function only, instantiate 347
Usenet comp.lang.c++ 166
USENIX 164
workshop, Santa Fe 165

user
population 61
self-sufficiency 37
tradeoffs for 183

user-defined
and built-in types 32,117
operator 250
operator, precedence of 251
type, c l a s s is 30

users
C++ serving current 110
book for 4
counting C++ 164
early 174
later 174
locking in 167
number of C++ 163
vs. lawyers 137

Users' group, ASU, Simula 106
using new cast 335
u s i n g 404
namespace 407
namespace 404
namespace, u s i n g vs. 411
vs. u s i n g namespace 411

using-declaration 404
access-declaration and 419
adjusting access 419
vs. using-directive 411

using-directive 404
transition and 407

460 — U — Index

using-declaration vs. 411
USL 127
library 184,191

V
value

of arguments 301
of experience 301
semantics 198

variable
global 32
local 32

variables
C 198
Modula-3 198
Pascal 198
Simula 198
Smalltalk 198
true local 198
uninitialized 99

Vasa 147
vec 49,276
vector t e m p l a t e 342
v e c t o r 49,276
verbose error-prone code 388
verification, learning 168
versioning, namespaces and 409
versions of C++ 71
vertical foundation library 191
Vilot, Mike 192,271,391,400
violation, type 117
virtual

function and multiple inheritance 265
function table, replicated 302
memory, initialization and 98
table layout, Cfront 320
table optimization 302

v i r t u a l
Simula 73
base, cast from 267,312
base c l a s s 260
base layout 266
call in constructor 282
call, optimization of 116
copy 241
data 266
destructors 216
function 72, 74
function, C with Classes without 53
function efficiency 49, 75
function implementation 75
function, layout and 74
function optimization 239
function pointer 74
function, polymorphism without 49

function, pure 279
function recompilation 75
function table 74
function, t e m p l a t e and 342
member t e m p l a t e 364
table layout, standard 135

visibility, access vs. 54
VMS, DEC 392
v o i d * 213

assignment 230
cast from 333
conversion to 226

v o l a t i l e , ANSI C 128
votes and reality 90
voting rules 136
v p t r 74
v t b l 74

w
Waldo, Jim 269,316
Ward, Judy 71
warning 240

Cfront 43
compiler 42, 334
ignoring 42

warped design 338
wars

compatibility 102
language 179

wcha r_ t 161
weaknesses, overstated 153
weed

C a 37
C with Classes a 37
Fortran a 37

Weinreb, Daniel 387
WG-21,ISO 136
what

is a programming language 7
is a standard 133

whatis paper 106
Wheeler, David 22
why C 43
Wilkes, Maurice 22
Wilkinson, Nancy 71
Williams, Tony 384
window 154, 260
withdrawal symptoms, C 93
w o r d l i n k 50
workaround

for multi-method 299
for resumption 393
keyword argument 156

workarounds for order dependencies 97
working groups 137

— w — Index 461

workshop, Estes Park 165
world view 23
worst mistake 200
wrappers 58
w r i t e o n l y 89
writing

C in C++ 170
Fortran in C++ 170
Smalltalk in C++ 170

w s t r i n g 194

X
x () 94
~X() 94
X3J16,ANSI 136
Xerox PARC 309
xo r keyword 160
xo r_eq keyword 160

Y
YACC 103
LALR(l) parser 68

Yaker, Laura 214
Yost, David 164

z
zero overhead rule 121
Zortech 84,164

compiler 166

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

C++ in 2005

“Living languages must change,
must adapt,

must grow.”
– Edward Finegan

This extended foreword presents a perspective on “The Design and Evolution of C++”
and on C++ itself. In particular, it reflects on the use of C++ over the last decade and
presents plausible directions for the next revision of the ISO C++ standard, C++0x.

The central parts tell the success story of the STL (“Standard Template Library”), of the
near disaster of the separate compilation of templates (“export”) discussion, and of the
definition of “exception safety”. The technical reports on performance and libraries are
also presented. The section on the future focuses on the likely language extensions to
better support generic programming: concepts for better template argument checking and
separate compilation of templates and a generalization of initializer lists primarily in
support for more elegant use of containers.

The general organization of this “extended foreword” is

1. “The Design and Evolution of C++”
2. Where we are – 2005
3. Where we were – 1995-2004
4. Where we might be going – 2005-2014

Obviously, the 2005-2014 section contains mostly conjecture.

1 “The Design and Evolution of C++”
“The Design and Evolution of C++”, often called D&E, is the personal favorite among
my books. Writing it, I was free of the usual rigid constraints of textbook and academic
paper styles. There was essentially no precedent for writing a book retrospectively about
the design of a language, so I could simply tell the story about how C++ came about, why
it looks the way it does, and why alternative decisions were not taken. I could thank my
friends and colleagues for their contributions and even state where I thought I had made
mistakes. It was fun to write and re-reading it, I think that pleasure of writing shines
through to make it a more pleasant read than much conventional technical prose.

 - 1 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

The book has aged beautifully. From a programming language point of view, hardly
anything has happened to C++ over the last decade. What we have gained is an immense
amount of experience with its use, so that I can now speak with far greater confidence
than was possible in 1994. Amazingly, “The Design and Evolution” is still the most
complete and up-to-date treatment of its topic. That’s partly because history and design
decisions don’t change and partly because the vast C++ literature is focused on the use of
C++ rather than the reasons behind its design.

Some have dismissively called D&E “just a history book”. That’s inaccurate.
Understanding why C++ is the way it is helps a programmer use it well. A deep
understanding of a tool is essential for an expert craftsman. That’s why D&E received
Software Development’s “Productivity Award”. History books do not get awards for
increasing productivity. D&E has even been used as an introduction to C++ for people
who appreciate concepts, wants to know about language implementation models, and
learn from examples. It is most definitely not a book aimed at teaching programming
techniques.

D&E was completed just before the feature set for the ISO C++ standard was “frozen”
and a minor revision for the 3rd printing in 1995 (which is the source of this translation)
corrected a handful of small errors relative to the standard. I am most happy to report that
the majority of these corrections were of the form of a change from “I hope that X” to
“The standard says X”.

Some readers have found D&E lacking in idealism. That surprised me, but I guess it
shouldn’t have. Some want to see a programming language as nothing but a beautiful
piece of logic sprung complete from the head(s) of its genius designer(s). You certainly
won’t find that here. I tell the story of C++, warts and all. The aims of C++ are noble:
enable programmers to write real-world programs that are simultaneously elegant and
efficient, to raise the level of abstraction in real-world code, and thereby improve the
working lives of hundreds of thousands of serious programmers. The snag is the
adjectives “real-world” and “serious”. I really don’t worry too much about toy problems
isolated from code written to deliver some service to its users. Once you place real-world
constraints on code, absolute beauty becomes hard to apply as a principle and engineering
tradeoffs become necessary. People who don’t accept that can’t help having a problem
with the design and evolution of C++.

2 Where we are – 2005
As ever, it is hard to estimate the number of C++ programmers, but in 2003, the IDC
reported well over three million full-time C++ programmers (compared to my estimate of
400,000 in 1991; §D&E7.1), and that’s not an implausible number. I’m not in a position
to accurately count, but all the indicators I have, show a steady increase in the use of C++
over the last decade (1995-2004) after the explosive growth of C++’s first decade (1985-
1994). I never experienced a year without growth.

 - 2 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

My guess is that one of the main reasons for this steady growth – in the face of vigorous
promotion and occasionally unscrupulous marketing of alternatives – is exactly the
stability of the C++ language over that time period. The implementations of the language
have improved immensely over the years, the libraries have grown in number, quality,
and sophistication, and our understanding of how to use C++ is far deeper today.
However, the language described in D&E in 1995 is the language we use today. Standard
C++ has enough features to accommodate the growth in programming techniques and
applications over the decade and the stability has allowed the implementers to catch up.

So what do all of those C++ programmers actually do? What kind of applications do they
write and what kind of programming styles do they employ? I don’t know; nobody
knows. In the same way as there are too many C++ programmers to count, there are too
many different application areas and too many programming styles for any one person to
grasp. It is common to hear generalizations along the line “C++ is used like this”. Such
statements are typically wishful thinking based on very limited experience. We are
playing “blind men and the elephant” with a very large creature. There are people who
have read more than a million lines of C++ code, written hundred of thousands of lines of
C++, read all the articles in C-vu, C/C++ Users Journal, etc., read all the good C++ books
and dozens of the bad ones, read all the academic papers relating to C++, and “lived” on
the C++ newsgroups for years. There are not many such people, and even they have only
scratched the surface. Such people are usually the last to utter simple generalizations. In
fact, I hear the most succinct and confident generalizations (both positive and negative)
about C++ from people who have hardly any experience with C++. Ignorance is bliss.

When I try to think about how C++ is used, I first consider two dimensions:

• Application area
• Maturity of programmers (designers, software producing organizations, etc.)

Programmers writing hard-real time (embedded) systems really do have different
concerns from programmers of database-limited business programs, and both live in a
completely different world from the programmers of high-energy physics applications. I
always find it instructive to listen to programmers from a new application area and to
learn from them.

It is very hard to say something that makes sense across all application areas. However, it
is possible to say something about maturity. From a high-level perspective, the ideals of a
programming language can be expressed as

1. express concepts directly in code
2. express relations among concepts directly in code
3. express independent concepts in independent code
4. compose code representing concepts freely wherever the composition makes

sense

 - 3 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

Here “concept” corresponds roughly to “idea” and refers to anything we name, appears
on our blackboard when we design, are described in our textbooks, etc.

I “measure” maturity primarily based on how close people get to those ideals in
production code (i.e., in code suffering real-world constraints). People who use C++
primarily as “a better C” fail on the first count – they fail to use classes, class hierarchies,
and parameterization (templates) to express ideas and relations among ideas directly.
People who insist seeing C++ as just an object-oriented language fail on the third and
fourth – they construct massive hierarchies that bind unrelated concepts together through
unsuitable bases and exclude built-in types and simple classes.

This means that there is a vast scope for improvement without further language changes.
Most people can improve their programming productivity, decrease their error rate, and
improve run-time performance simply by using the tools already on their machine as part
of ISO Standard C++. If you haven’t tried the STL, that would be a good place to start
(see §3.1). It may not be exactly what you need, but it’s standard and demonstrates many
of the key techniques of “modern C++” that you can apply to your own problems. The
education problem that I point out in §D&E9.4.2 is even worse today: To an astonishing
degree, the teaching of programming has failed to keep up with the changes in the way
software is produced. Since I originally wrote D&E, I have become a professor, partially
to help reverse that trend.

Again, so what do all of those C++ programmers actually do? Just about anything you
can think of: “ordinary PC business applications”, embedded systems, e-commerce,
games, scientific computation, network software, operating systems, device drivers, cell
phones, etc. Instead of going on forever, I suggest you have a look at a little list I have
been maintaining: http://www.research.att.com/~bs/applications.html. Personally, I take
special pleasure in “adventurous and unusual” applications with extreme performance
and/or reliability requirements such as the JPL Mars Rover autonomous driving system,
the MAN B&W control system for huge marine diesel engines, and the ICE infrastructure
for highly distributed systems (such as multi-player games).

At this point, I suggest you proceed with the original foreword and the first chapters only
to return here when you have completed Part I. The next section here continues the C++
story where Chapter 9 leaves off.

3 Where we were – 1995-2004
In 1994, my primary concern was to get the ISO C++ standard as good as possible – both
in terms of features included and the quality of the specification – and to gain a consensus
for it. It does not matter how good a specification is if people don’t accept it. There is no
enforcement of an ISO standard, so if someone decides that it is not worth their while to
conform only community pressure can convince them otherwise. For an implementer,
conforming is significant extra work, so conforming takes a conscious decision and
allocation of resources potentially spent elsewhere. There are obscure language features
that can be hard to implement in some compilers. There are libraries to implement or buy,
and there are opportunities to lock in users with fancy proprietary features that a

 - 4 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

responsible implementer must forego. Thus, I considered it essential that the members of
the committee and the organizations they represented actually believed the standards
document to be the very best they could hope for.

After much work the committee succeeded. The final vote among the technical members
at the Morristown (New Jersey, USA) meeting in October 1997 was 43-0. We celebrated
suitably after that! In 1998, the ISO member nations ratified the standard with an
unprecedented 22-0 vote. Achieving that consensus took a lot of technical work and some
diplomacy: At the time, I was fond of saying “political problems cannot be solved; we
must find the technical problem that is the real cause of the problem and solve that”. I
can’t think of a single major problem that was “solved” by simply voting down the
minority, and only one issue where “political horse trading” compromised our best
technical judgment – and that problem (separate compilation of templates) still festers,
looking for a better technical solution.

In the years before the final votes, three things dominated the committee’s work:

1. Details, details, and more details
2. The STL
3. Separate compilation of templates

The first is obvious: An international standard must pay a great deal of attention to
details; after all, conformance of implementations to the written standard is the key aim
of a standard and the basis for portability of applications and tools between
implementations. The standard is a 712 page (plus index, etc.) document [ISO, 1998]
written in a highly technical and formal style, so there are a lot of details to get right. As
before, I followed up the new language specification with a new edition of “The C++
Programming Language” [Stroustrup, 1998] to provide a more tutorial and user-oriented
description of the language.

3.1 The emergence of the STL
The second issue, the STL (the “Standard Template Library”; that is, the containers and
algorithm framework of the ISO C++ standard library), turned out to be the major
innovation to become part of the standard and the starting point for much of the new
thinking about programming techniques that have occurred since. Basically, the STL was
a revolutionary departure from the way we had been thinking about containers and their
use. From the earliest days of Simula, containers (such as lists) had been intrusive: An
object could be put into a container if and only if its class had been (explicitly or
implicitly) derived from a specific “Link” or “Object” class containing the link
information needed by the compiler. Basically, such a container is a container of
references to Links. This implies that fundamental types, such as ints and doubles, can’t
be put directly into containers and that the array type, which directly supports
fundamental types, must be different from other containers. Furthermore, objects of really
simple classes, such as complex and Point, can’t remain optimal in time and space if we
want to put them into a container. It also implies that such containers are not statically

 - 5 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

type safe. For example, a Circle may be added to a list, but when it is extracted we know
only that it is an Object and need to apply a cast (explicit type conversion) to regain the
static type.

Simula containers and arrays had this irregular treatment of built-in and user-defined
types (only some of the latter could be in containers) and of containers and arrays (only
arrays could hold fundamental types; arrays couldn’t hold user-defined types, only
references to user-defined types). Smalltalk has the same approach and the same
problems, as have later languages such as Java and C#. Many C++ libraries also followed
this model because it does have significant utility and many designers are by now
familiar with it. However, I had found this irregularity and the inefficiency (in time and
space) that goes with it unacceptable for a truly general-purpose library (you can find a
summary of my analysis in §16.2 of [Stroustrup,2000]). This was the fundamental reason
behind my mistake of not providing a suitable standard library from C++ in 1985 (see
§D&E9.2.3).

When I wrote D&E, I had become aware of a new approach to containers and their use,
which had been developed by Alex Stepanov. Alex then worked at HP Labs but he had
earlier worked for a couple of years at Bell Labs, where he had been close to Andrew
Koenig and where I had discussed library design and template mechanisms with him. He
had inspired me to work harder on generality and efficiency of some of the template
mechanisms, but fortunately he failed to convince me to make templates more like Ada
generics. Had he succeeded, he wouldn’t have been able to design and implement the
STL!

In late 1993, Alex showed the latest development in his decades long research into
generic programming techniques aiming for “the most general and most efficient”
programming techniques based on a rigorous mathematical foundation. It was a
framework of containers and algorithms. He first contacted Andrew, who after playing
with it for a couple of days showed it to me. My first reaction was puzzlement. I found
the STL style of containers and container use very odd, even somewhat ugly. Like many
programmers acquainted with object-oriented programming, I thought I knew how
containers had to look and STL code looked very different. However, over the years I had
developed a checklist of properties that I considered important for containers and to my
amazement the STL met all but one of the criteria on that list! The missing criterion was
the use of the common base class to provide services (such as persistence) for all derived
classes (e.g., all objects or all containers). However, I didn’t (and don’t) consider such
services intrinsic to the notion of a container.

It took me some time – weeks – to get comfortable with the STL. After that, I worried
that it was too late to introduce a completely new style of library into the C++
community. Looking at the odds to get the standards committee to accept something new
and revolutionary at such a late stage of the standards process, I decided (correctly) that
those odds were very low. Even at best, the standard would be delayed by a year – and
the C++ community badly needed that standard. Also, the committee is fundamentally a
conservative body and the STL was revolutionary.

 - 6 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

So, the odds were poor, but I plodded on hoping. After all, I really did feel very bad about
C++ not having a sufficiently large and sufficiently good standard library (§D&E9.2.3).
Andrew Koenig did his best to build up my courage and Alex Stepanov lobbied Andy
and me as best he knew. Fortunately, Alex didn’t quite understand the difficulties of
getting something major though the committee, so he was less daunted and worked on the
technical aspects and on teaching Andrew and me. I began to explain the ideas behind the
STL to others; for example, the examples in §D&E15.6.3.1 came from the STL and the
quote by Alex Stepanov in §D&E15.11.2 is about the STL.

We invited Alex to give an evening presentation at the October 1993 standard committee
meeting in San Jose, California: “It was entitled The Science of C++ Programming and
dealt mostly with axioms of regular types – connecting constructions, assignment and
equality. I did also described axioms of what is now called Forward Iterators. I did not at
all mention any containers and only one algorithm: find.” [Stepanov,2004]. That talk was
an audacious piece of rabble rousing that to my amazement and great pleasure basically
swung the committee away from the attitude of “its impossible to do something major at
this stage” to “well, let’s have a look”.

That was the break we needed! Over the next four month we experimented, argued,
lobbied, taught, programmed, and redesigned so that Alex was able to present a complete
description of the STL to the committee at the March 1994 meeting in San Diego,
California. At a meeting, that Alex arranged for C++ library implementers at HP later in
1994, we agreed on many details, but the size of the STL emerged as the major obstacle.
Finally, at Alex’s urging, I took a pen and literally crossed out something like two thirds
of all the text. For each facility, I challenged Alex and the other library experts to explain
– very briefly – why it couldn’t be cut and why it would benefit most C++ programmers.
It was a horrendous exercise. Alex later claimed that it broke his heart. However, what
emerged from that slashing is what is now known as the STL [Stepanov, 1994] and it
made it into the ISO C++ standard at the October 1994 meeting in Waterloo, Canada –
something that the original and complete STL would never had done. Even the necessary
revisions of the “reduced STL” delayed the standard by more than a year. In retrospect, I
think that I did less damage than we had any right to hope for.

Among all the discussions about the possible adoption of the STL one memory stands
out: Beman Dawes calmly stating that he had thought the STL too complex for ordinary
programmers, but as an exercise he had implemented about 10% of it himself so he no
longer considered it beyond the standard. Beman was one of the all too rare application
builders in the committee. Unfortunately, the committee tends to be dominated by
compiler, library, and tools builders.

I credit Alex Stepanov with the STL. He worked with the fundamental ideals and
techniques for well over a decade before the STL, unsuccessfully using languages such as
Scheme and Ada. However, Alex would be the first to insist that others took part in that
quest. David Musser has been working with Alex on generic programming for almost two
decades and Meng Lee worked closely with him at HP helping to program the original

 - 7 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

STL. Email discussions between Alex and Andrew Koenig also helped. Apart from the
slashing exercise, my contributions were minor. I suggested that various information
related to memory be collected into a single object – what became the allocators. I also
drew up the initial requirements tables on Alex’s blackboard, thus creating the form in
which the requirements of the STL algorithms and classes on their template arguments
are documented. These requirements tables are actually an indicator that the language is
insufficiently expressive – such requirements should be part of the code; see §4.1.

3.1.1 STL ideals and concepts
So what is the STL? It has now been part of Standard C++ for almost a decade, so you
really should know, but if you are new to modern C++ here is a brief explanation with a
bias towards ideals and language usage.

Consider the problem of storing objects in containers and writing algorithms to
manipulate such objects. Consider this problem in the light of the ideals of direct,
independent, and composable representation of concepts listed in §2. Naturally, we want
to be able to store objects of a variety of types (e.g. ints, Points, pointers to Shapes) in a
variety of containers (e.g. lists, vectors, maps) and to apply a variety of algorithms (e.g.
sort, find, accumulate) to the objects in the containers. Furthermore, we want the use of
these objects, containers, and algorithms to be statically type safe, as fast as possible, as
compact as possible, not verbose, and readable. Achieving all of this simultaneously isn’t
easy. In fact, I spent about 10 years unsuccessfully looking for a solution to this puzzle.

The STL solution is based on parameterizing containers with their element types and on
completely separating the algorithms from the containers. Each type of container
provides an iterator type and all access to the elements of the container can be done using
only those iterators. That way, an algorithm can be written to use iterators without having
to know about the container that supplied them. Each type of iterator is completely
independent of all others except for supplying the same semantics to required operations,
such as * and ++. We can illustrate this graphically:

 - 8 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

Let’s consider a fairly well-known example based on finding elements of various types in
various containers. First, here are a couple of containers

vector<int> vi; // vector of ints
list<double> vd; // list of doubles

These are the standard library versions of the notions of vector and list implemented as
templates (§D&E15.3). Assume that they have been suitably initialized with values of
their respective element types. It then makes sense to try to find the first element with the
value 7 in vi and the first element with the value 3.14 in vd:

vector<int>::iterator p = find(vi.begin(),vi.end(),7);
list<double>::iterator q = find(vd.begin(),vd.end(),3.14);

The basic idea is that you can consider the elements of any container as a sequence of
elements. A container “knows” where its first element is and where its last element is.
We call an object that points to an element “an iterator”. We can then represent the
elements of a container by a pair of iterators, begin() and end(), where begin() points to
the first element and end() to one-beyond-the-last element:

The end() iterator points to one-past-the-last element rather than to the last element to
allow the empty sequence not to be a special case:

…

begin: end:

find() sort() accumulate()

Iterators
*, ++, ==, !=

vector list

Algorithms:

use:

implement:

containers:
array

 - 9 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

begin: end:

What can you do with an iterator? You can get the value of the element pointed to (using
* just like for a pointer), make the iterator point to the next element (using ++ just like for
a pointer) and compare two iterators to see if they point to the same element (using == or
!= of course). Surprisingly, this is sufficient for implementing find():

template<class Iter, class T> Iter find(Iter first, Iter last, const T& val)
{
 while (first!=last && *first!=val) ++first;
 return first;
}

This is a simple – very simple really – template function as described in §D&E15.6.
People familiar with C and C++ pointers should find the code easy the read: first!=last
checks whether we have reached the end and *first!=val checks whether we have found
the value val that we were looking for. If not, we increment the iterator first to make it
point to the next element and try again. Thus, when find() returns its value will point to
either the first element with the value val or one-past-the-last element (end()). So we can
write:

vector<int>::iterator p = find(vi.begin(),vi.end(),7);

if (p != vi.end()) { // we found 7
 // …
}
else { // no 7 in vi
 // …
}

This is very, very simple. It is simple like the first couple of pages in a Math book and
simple enough to be really fast. However, I know that I’m not the only person to take
significant time figuring out what really is going on here and longer to figure out why this
is actually a good idea. Like simple Math, the first STL rules and principles generalize
beyond belief.

Consider first the implementation: In the call find(vi.begin(),vi.end(),7), the iterators
vi.begin() and vi.end() that become first and last, respectively, inside find() are
something that points to an int. The obvious implementation of vector<int>::iterator is
therefore a pointer to int, an int*. With that implementation, * becomes pointer
dereference ++ becomes pointer increment, and != becomes pointer comparison. That is,
the implementation of find() is obvious and optimal. In particular, we do not use function

 - 10 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

calls to access the operations (such as * and !=) that are effectively arguments to the
algorithm because they depend on a template argument. In this, templates differ radically
from most mechanisms for “generics”, relying on indirect function calls (like virtual
functions), in current programming languages. Given a good optimizer,
vector<int>::iterator can without overhead be a class with * and ++ provided as inline
functions. Such optimizers are now not uncommon and using a class improves type
checking by catching unwarranted assumption, such as

int* p = find(vi.begin(),vi.end(),7); // oops: the iterator type need not be int*

So why didn’t we just dispense with all that “iterator stuff” and use pointers? One reason
is that vector<int>::iterator could have been a class providing range checked access.
For a less subtle explanation, have a look at the other call of find():

list<double>::iterator q= find(vd.begin(),vd.end(),3.14);

if (q != vd.end()) { // we found 3.14
 // …
}
else { // no 3.14 in vi
 // …
}

Here, list<double>::iterator isn’t going to be a double*. In fact, assuming the most
common implementation of a linked list, list<double>::iterator is going to be a Link*
where Link is a link node type, such as:

template<class T> struct Link {
 T value;
 Link* suc;
 Link* pre;
};

That means that * means p->value (“return the value field”), ++ means p->suc (“return a
pointer to the next link”), and != pointer comparison (comparing Link*s). Again the
implementation is obvious and optimal. However, it is completely different from what we
saw for vector<int>::iterator.

We have used a combination of templates and overload resolution to pick radically
different, yet optimal, code for a single source code definition find() and for the uses of
find(). Note that there is no run-time dispatch, no virtual function calls. In fact, there are
only calls of trivially inlined functions and fundamental operations such as * and ++ for a
pointer. In terms of speed and code size, we have hit rock bottom!

Why not use “sequence” or “container” as the fundamental notion rather than “pair of
iterators”? Part of the reason is that “pair of iterators” is simply a more general concept

 - 11 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

than “container”. For example, given iterators, we can sort the first half of a container
only: sort(vi.begin(), vi.begin()+vi.size()/2). Another reason is that the STL follows the
C++ design rules that we must provide transition paths and support-built in and user-
defined types uniformly. What if someone kept data in an ordinary array? We can still
use the STL algorithms. For example:

char buf[max];
// … fill buf …
int* p = find(buf,buf+max,7);

if (p != buf+max) { // we found 7
 // …
}
else { // no 7 in buf
 // …
}

Here, the *, ++, and != in find() really are pointer operations! Like C++ itself, the STL is
compatible with older notions such as C arrays. As always, we provide a transition path
(§D&E4.2). This also serves the ideal of providing uniform treatment to user-defined
types (such as vector) and built-in types (in this case, array) (§D&E4.4).

The STL, as adopted as the containers and algorithms framework of the ISO C++
standard library, consists of a dozen containers (such as vector, list, and map) and data
structures (such as arrays) that can be used as sequences. In addition, there are about 60
algorithms (such as find, sort, accumulate, and merge). It would not be reasonable to
present all of those here. For details, see [Austern, 1998], [Stroustrup, 2000].

The key to both the elegance and the performance of the STL is that it – like C++ itself
(§D&E2.5.2, §D&E2.9.3, §D&E3.5.1, §D&E12.4) – is based directly on the hardware
model of memory and computation. The STL notion of a sequence is basically that of the
hardware’s view of memory as a set of sequences of objects. The basic semantics of the
STL maps directly into hardware instructions allowing algorithms to be implemented
optimally. The compile-time resolution of templates and the perfect inlining they support
is then key to the efficient mapping of high level expression of the STL to the hardware
level.

3.1.2 Function objects
I’d like to present one more of the essential techniques used by the STL to show how it
builds on general C++ mechanisms to provide unprecedented flexibility and performance.
The STL framework, as described so far, is somewhat rigid. Each algorithm does exactly
one thing in exactly the way the standard specifies it. For example, we find an element
that is equal to the value we specify as an argument. It is actually more common to look
for an element that has some desired property, such as being less than a given value or

 - 12 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

matching a value given a criterion different from simple equality (e.g., matching strings
without case sensitivities or matching double values allowing for very slight differences).

As an example, instead of finding a value 7, let’s look for a value that meets some
predicate, say, being less than 7:

vector<int>::iterator p = find_if(v.begin(),v.end(),Less_than<int>(7));

if (p != vi.end()) { // we found an element with a value < 7
 // …
}
else { // no element with a value < 7 in vi
 // …
}

What is Less_than<int>(7)? It is a function object, that is an object of a class that has the
application operator, (), defined to perform a function:

template<class T> struct Less_than {
 T value;
 Less_than(const T& v) :value(v) { }
 bool operator()(const T& v) const { return v<value; }
};

For example:

Less_than<double> f(3.14); // Less_than object holding the double 3.14
bool b1 = f(3); // b1 becomes true (3<3.14 is true)
bool b2 = f(4); // b2 becomes false (4<3.14 is false)

From the vantage point of 2004, it seems odd that function objects are not mentioned in
D&E. They deserve a whole section. Even the use of a user-defined application operator,
(), isn’t mentioned even though it has had long and distinguished career. For example, it
was among the initial set of operators (after =; see §D&E3.6) that I allowed to be
overloaded and was among many other things used to mimic Fortran subscript notation.

We can write a version of find() that uses a function object, rather than plain != to
determine whether an element is to be found or not. It is called find_if():

template<class In, class Pred>
In find_if(In first, In last, Pred pred)
{
 while (first!=last && !pred(*first)) ++first;
 return first;
}

 - 13 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

We simply replaced *first!=val with !pred(*first). The function template find_if() will
accept any object that can be called given an element value as its argument. In particular,
we could call find_if() with an ordinary function as its third argument:

bool less_than_7(int a)
{
 return 7<a;
}

vector<int>::iterator p = find_if(v.begin(),v.end(),less_than_7);

However, this example shows why we often prefer a function object over a function: The
function object can be initialized with one (or more) argument and carry that information
along for later use. A function object can carry a state. That makes for more general and
more elegant code. If needed, we can also examine that state later. For example:

template<class T> struct Accumulator { // keep the sum of n values
 T value;
 int count;
 Accumulator() :value(), count(0) { }
 Accumulator(const T& v) :value(v), count(0) { }
 void operator()(const T& v) { ++count; value+=v; }
};

An Accumulator object can be passed to an algorithm that calls it repeatedly. The partial
result is carried along in the object. For example:

 int main()

{
 vector<double> v;
 double d;
 while (cin>>d) v.push_back(d);

Accumulator<double> ad;
ad = for_each(v.begin(),v.end(), ad);

 cout << “sum==” << ad.value
 << “, mean==” << ad.value/ad.count << ‘\n’;

 }

The standard library algorithm for_each simply applies its third argument to each
element of its sequence and returns that argument as its return value. The alternative to
using a function object would be a messy use of global variables to hold value and count.

Interestingly, simple function objects tend to perform better than their function
equivalents. The reason is that they tend to be passed by value so that they are easier to
inline. This can be very significant when we pass an object or function that performs a

 - 14 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

really simple operation, such as the comparison criteria for a sort. In particular, inlining
of function objects is the reason that the STL (C++ standard library) sort() to
outperforms the conventional qsort() by several factors when sorting arrays of types with
simple comparison operators (such as int and double) [Stroustrup,1999].

Function objects are the C++ mechanism for higher-order constructs. It is not the most
elegant expression of high-order ideas, but it is surprising expressive and inherently
efficient in the context of a general purpose language. As an example of expressiveness,
Jaakko Järvi showed how to provide and use a lambda class that made this legal with its
obvious meaning:

Lambda x;
List<int>::iterator p = find_if(lst.begin(),lst.end(),x<=7);

If you want just <= to work, rather than a building a general library, you can add
definitions for Lambda and <= in less than a dozen lines of code. Using Less_than from
the example above, we can simply write:

class Lambda {};

template<class T> Less_than<T> operator<=(Lambda,const T& v)
{

return Less_than<T>(v);
}

So, the argument x<=7 in the call of find_if becomes a call of
operator<=(Lambda,const int&) which generates a Less_than<int> object just as we
used in the first example in this section. The difference here is simply that we have
achieved a much simpler and more intuitive syntax. This is a good example of the
expressive power of C++ and of how the interface to a library can be simpler than its
implementation. Naturally, there is no run-time overhead compared to a laboriously
written loop to look for an element with a value less than 7.

3.1.3 The impact of the STL
The impact of the STL on the thinking of C++ has been immense. Before the STL, I
consistently list three fundamental programming styles (“paradigms”) as being supported
by C++ (§D&E4.1):

– Procedural programming
– Data abstraction
– Object-oriented programming

I considered templates as support for data abstraction. After playing with the STL for a
while, I factored out a fourth style

 - 15 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

– Generic programming

The techniques based on the use of templates and largely inspired by techniques from
functional programming are qualitatively different from traditional data abstraction.
People simply think differently about types, objects, and resources. New C++ libraries
are written – using templates – to be statically type safe and efficient. Templates are the
key to embedded systems programming and high-performance numeric programming
where resources management and correctness are key. The STL itself is not always ideal
in those areas. For example, it doesn’t provide direct support for linear algebra and it can
be tricky to use in hard-real time systems where free store use is typically banned.
However, the STL demonstrates what can be done with templates and gives examples of
effective techniques. For example, the use of iterators (and allocators) to separate logical
memory access from actual memory access is key to many high-performance numeric
techniques and the use of small, easily inlined, objects are key to examples of optimal use
of hardware in embedded systems programming. Some of these techniques are
documented in the standard committee’s technical report on performance [ISO, 2004].
This is to a large extent a reaction to – and a constructive alternative to – a trend towards
overuse of “object oriented” techniques relying excessively on class hierarchies and
virtual functions.

Obviously, the STL isn’t perfect. There is no one “thing” to be perfect relative to.
However, it broke new ground and has had impact even beyond the huge C++
community. Using C++, people talk about “template meta-programming” when they try
to push the techniques pioneered by the STL beyond the STL. Some of us also think
about the limits of STL iterators (where would it be preferable to use generators and
ranges?) and about how C++ could better support these uses (concepts, initializers, see
§4).

3.2 The export controversy
The other major story of the later years of the standards effort is less uplifting. In fact, it
almost ended in tragedy and left many members of the committee (me included) unhappy
for years. From the earliest designs, templates were intended to allow a template to be
used after specifying just a declaration and not a definition in a translation unit. It is then
the job of the implementation to find and use the definition of the template appropriately
(§D&E15.10.4). That’s the way it is for other language constructs, such as functions, but
for templates that’s easily said but extremely hard to do.

In 1996, a vigorous debate erupted in the committee over whether we should not just
accept the “include everything” model for template definitions, but actually outlaw the
original model of separation of template declarations and definitions into separate
translation units. The arguments of the two sides were basically

• Separate translation of templates is too hard (if not impossible) and such a burden
should not be imposed on implementers

 - 16 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

• Separate translation of templates is necessary for proper code organization
(according to data hiding principles)

Many subsidiary arguments supported both sides. I was on the side that insisted on
separate compilation of templates. As ever in really nasty discussions, both sides were
mostly correct on key points. In the end, people from SGI – notably John Wilkinson –
proposed a new model that was accepted as a compromise. The compromise was named
after the keyword used to indicate that a template could be separately translated: export.

The issues fester to this day: as late as 2003, Herb Sutter and Tom Plum proposed a
change to the standard declaring an implementation that didn’t implement separate
compilation of templates conforming. The reason given was again implementation
complexity plus the fact that even five years after the standard was ratified only one
implementation existed. That motion was defeated by a 80/20 vote, partly because an
implementation of export now exists.

The real heroes of this sad tale are the implementers of the EDG compiler: Steve
Adamczyk, John Spicer, and David Vandevoorde. They strongly opposed separate
compilation of templates, finally voted for the standard as the best compromise
attainable, and then proceeded to spend more than a year implementing what they had
opposed. That’s professionalism! The implementation was every bit as difficult as its
opponents had predicted but it worked and actually provided some (but not all) of the
benefits that its proponents had promised. Unfortunately, some of the restrictions on
separately compiled templates that proved essential for a compromise ended up not
providing their expected benefits and complicated the implementation. As ever, political
compromises on technical issues led to “warts”.

3.3 Exception Safety
During the effort to specify the STL we encountered a curious phenomenon: We didn’t
quite know how to talk about the interaction between templates and exceptions. Quite a
few people were placing blame for this problem on templates and others began to
consider exceptions fundamentally flawed [Carghill, 1994] or at least fundamentally
flawed in the absence of automatic garbage collection. However, when a group of
“library people” (notably Matt Austern, Greg Colvin, and Dave Abrahams) looked into
this problem, they found that we basically had a language feature – exceptions – that we
didn’t know how to use well. The problem was in the interaction between resources and
exceptions. I had of course considered this when I designed the exception handling
mechanisms and come up with the rules for exceptions thrown from constructors
(correctly handling partially constructed composite objects) and the “resource acquisition
is initialization” technique (§D&E16.5). However that was only a good start and an
essential foundation. What we needed was a conceptual framework – a more systematic
way of thinking about resource management.

Dave Abrahams condensed the result of work over a couple of years in three concepts:

 - 17 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

• The basic guarantee: that the invariants of the component are preserved, and no
resources are leaked.

• The strong guarantee: that the operation has either completed successfully or
thrown an exception, leaving the program state exactly as it was before the
operation started.

• The no-throw guarantee: that the operation will not throw an exception.

Using these fundamental concepts, the library working group described the standard
library and implementers produced efficient and robust implementations. The standard
library guarantees the basic guarantee for all operations with the caveat that no destructor
may exit through an exception throw. In addition, the library provides the strong
guarantee and the no-throw guarantee for key operations. I found this result important
enough to add a chapter to [Stroustrup, 1998] yielding [Stroustrup, 2000]. For details of
the standard library exception guarantees and programming techniques for using
exceptions, see Appendix E of [Stroustrup, 2000].

I think the key lesson here is that it is not sufficient just to know how a language feature
behaves. To write good software, we must have a clearly articulated design strategy for
problems that require the use of the feature.

3.4 Maintaining the standard
After a standard is passed, the ISO process goes into a “maintenance mode” for at least
five years. During that time the committee primarily responds to reports of defects. Most
defects are resolved by clarifying the text or resolving contradictions. Only very rarely
will new rules be introduced and real innovation is avoided. Stability is the aim. In 2003,
all these minor correction were published under the name “Technical Corrigenda 1”. At
the same time, members of the British national committee took the opportunity to remedy
a long-standing problem: they got Wiley to publish a printed version of the (revised)
standard [ISO, 2003b]. The initiative and much of the hard work came from Francis
Glassborow and Lois Goldthwaite with technical support from the committee’s project
editor, Andrew Koenig, who produced the actual text.

Until the publication of the revised standard in 2003, the only copies of the standard
available to the public were a very expensive (about $200) paper copy from ISO or ANSI
or a cheap ($18) pdf version from ANSI. The pdf version was a complete novelty at the
time. Standards bodies are partially financed through the sales of standards, so they are
most reluctant to make standards available for free or cheaply. In addition, they don’t
have retail sales channels, so you can’t find a national or international standard in your
local book store – except the C++ standard, of course. Following the C++ initiative, the C
standard is now also available.

Maintenance wasn’t all that the committee did from 1997 to 2003. There was a modest
amount of planning for the future (thinking about C++0x), but the main activities was the
writing a technical report on performance issues [ISO, 2004] and one on libraries [ISO,
2005].

 - 18 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

3.4.1 The Performance TR
The Performance TR was prompted by a suggestion to standardize a subset of C++ for
embedded systems programming. The proposal, called Embedded C++ [EC++, 1999] or
simply EC++, originated from a consortium of Japanese embedded systems tool
developers and had two main concerns: removal of language features that potentially hurt
performance and removal of language features perceived to be too complicated for
programmers (and thus seen as potential productivity or correctness hazards). A largely
unstated aim was to define something that was easier to implement than full standard
C++.

The features banned in this (almost) subset included: multiple inheritance, templates,
exceptions, run-time type information, new-style casts, and name spaces. From the
standard library, the STL and locales were banned and an alternative version of
iostreams provided. I considered the proposal misguided and backwards looking. In
particular, the performance costs were largely imaginary, or worse (i.e., a feature absent
from EC++ was essential for performance in some domain). For example, the use of
templates has repeatedly been shown to be key to both performance (time and space) and
correctness of embedded systems. However, there wasn’t much hard data in this area in
1996 when EC++ was first proposed. Ironically, it appears that most of the few people,
who use EC++ today, use it in the form of Extended EC++, which is EC++ plus
templates. Similarly, namespaces and new style casts are primarily features that are
primarily there to clarify code and can be used to ease maintenance and verification of
correctness.

After serious consideration and discussion, the ISO committee decided to stick to the
long-standing tradition of not endorsing dialects – even dialects which are (almost)
subsets. Every dialect leads to a split in the user community, and so does even a formally
defined subset when its users start to develop a separate culture of techniques, libraries,
and tools. Inevitably, myths about failings of the full language relative to the “subset”
will start to emerge. Thus, I recommend against the use of EC++ in favor of using what is
appropriate from (full) ISO Standard C++.

Obviously, the EC++ proposers were right in wanting an efficient, well-implemented,
and relatively easy-to-use language. It was up to the committee to demonstrate that
Standard C++ was that language. In particular, it seemed a proper task for the committee
to document the utility of the features rejected by EC++ in the context of performance
critical, resource constrained, or safety critical tasks. It was therefore decided to write a
technical report on “performance” [ISO, 2004]. Its “executive summary reads:

“The aim of this report is:

• to give the reader a model of time and space overheads implied by use of
various C++ language and library features,

• to debunk widespread myths about performance problems,

 - 19 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

• to present techniques for use of C++ in applications where performance
matters, and

• to present techniques for implementing C++ Standard language and library
facilities to yield efficient code.

As far as run-time and space performance is concerned, if you can afford to use C
for an application, you can afford to use C++ in a style that uses C++’s facilities
appropriately for that application.”

I strongly recommend this report to people who care about performance, embedded
systems, etc. You can download it from http://www.research.att.com/~bs/C++.html.

Not every feature of C++ is efficient and predictable in the sense that we need it for some
high performance and embedded applications. In the context of embedded systems, we
must consider if we can use

• free store (new and delete)
• run-time type identification (dynamic_cast and typeid)
• exceptions (throw and catch)

Implementations aimed at embedded or high performance applications have compiler
options for disabling run-time type identification and exceptions. Free store usage is
easily avoided. All other C++ language features are predictable and can be implemented
optimally (according to the Zero-overhead principle; see §D&E4.5). Even exceptions
tend to be far more efficient than they are reputed to be in some places and should be
considered for all but the most stringent hard-real time systems. The TR discusses these
issues and defines an interface to the lowest accessible levels of hardware (such as
registers).

The performance TR was written by a working group primarily consisting people who
cared about embedded systems, including members of the EC++ technical committee. I
was active in the performance working group and drafted significant portions of the TR,
but the chairman and editor was first Martin O’Riordan and later Lois Goldthwaite. The
acknowledgements list 28 people. In 2004, that TR was approved by unanimous vote.

3.4.2 The Library TR
When we finished the standard in 1997, we were fully aware that the set of standard
libraries was simply the set that we had considered the most urgently needed and also
ready to ship. Several much-wanted libraries, such as hash tables, regular expression
matching, directory manipulation, and threads, were missing. Work on such libraries
started immediately in the Libraries Working Group chaired by Matt Austern (originally
working at SGI with Alex Stepanov, then at AT&T Labs with me, and currently at
Apple). In 2001, work on a technical report on libraries, providing what people

 - 20 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

considered the most urgently needed and best specified libraries, was initiated and in
2004 that TR [ISO, 2005] was approved by unanimous vote.

Despite the immense importance of the standard library and its extensions, I will only
briefly list the new libraries here:

• Polymorphic Function Object Wrapper
• Tuple Types
• Mathematical Special Functions
• Type Traits
• Regular Expressions
• Enhanced Member Pointer Adaptor
• General Purpose Smart Pointers
• Extensible Random Number Facility
• Reference Wrapper
• Uniform Method for Computing Function Object Return Types
• Enhanced Binder
• Hash Tables

Many of these new library facilities – which can be expected to ship with every new C++
implementation in the future – are obviously “technical”; that is, they exists primarily to
support library builders. In particular, they exist to support builders of standard library
facilities in the tradition of the STL. The Library TR is not yet officially published so it
may take a bit of looking around on the committee’s official website (http://www.open-
std.org/jtc1/sc22/wg21/) to find the (extensive) details. Here, I will just emphasize three
libraries that are of direct interest to large numbers of application builders:

• Regular Expressions
• General Purpose Smart Pointers
• Hash Tables

Regular expression matching is one of the backbones of scripting languages and of much
text processing. Finally, C++ has a standard library for that. The central class is regex (or
rather basic_regex matching basic_string) providing regular expression matching of
patterns compatible with ECMAscript and (with suitable options set) compatible with
other popular notations.

The main “Smart pointer” is a reference counted pointer, shared_ptr, intended for code
where shared ownership is needed. When the last shared_ptr to an object is destroyed,
the object pointed to is deleted. Smart pointers are popular, but should be approached
with care. They are not the panacea that they are sometimes presented to be. In particular,
they are far more expensive to use than ordinary pointers, destructors for objects “owned”
by a set of shared_ptrs will run at unpredictable times, and if a lot of objects are deleted
at once because the last shared_ptr to them is deleted you can incur “garbage collection
delays” exactly as if you were running a general collector. The costs primarily relate to
free store allocation of use count objects and especially to locking during access to the

 - 21 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

use counts in threaded systems. Do not simply replace all your ordinary pointers with
smart_ptrs if you are concerned with performance or predictability. These concerns kept
smart_ptrs “ancestor”, counted_ptr, out of the 1998 standard. If it is garbage collection
you want, you might be better off simply using one of the available garbage collectors
(http://www.research.att.com/~bs/C++.html).

No such worries affected hash tables; they would have been in the 1998 standard had we
had the time to do a proper detailed design and specification job. There were no doubt
that a “hash_map” was needed as an optimization to the STL map where the key was a
character string and we could design a good hash function. The committee didn’t have
the time, though, and as consequently the Library TR’s unordered_map (and
unordered_set) are the result of about 8 years of experiment and industrial use. The
name unordered_map was chosen because now there are half a dozen incompatible
hash_maps in use. The unordered_map is the result of a consensus among the
hash_map implementers and their key users in the committee.

The most common reaction to these extensions among developers is “that was about
time; why did it take you so long?” and “I want much more right now”. That’s
understandable (I too want much more right now – I just know that I can’t get it), but
such statements reflects a lack of understanding what an ISO committee is and can do.
The committee is run by volunteers and requires both a consensus and an unusual degree
of precision of our specifications (see §D&E6.2). The committee doesn’t have the
millions of dollars that commercial vendors can spend on “free”, “standard” libraries for
their customers.

3.5 What else was going on?
Obviously, most of what goes on in the C++ community happens outside the ISO
standards committee. The standards committee is just the focus where changes to the
language and the standard library happen. The committee reflects – as it must – trends in
the whole software development community. Unfortunately, I cannot survey the trends
and events that influenced C++ during the 1995-2004 decade; that would require a whole
book. Instead, I’ll very briefly mention a handful of key issues.

Java burst onto the programming scene with an unprecedented amount of hype and also
an unprecedented amount of marketing aimed at non-programmers. According to some
key Sun people (such as Bill Joy), Java was an improved and simplified C++. “What
Bjarne would have designed if he hadn’t had to be compatible with C” was – and
amazingly still is – a frequently heard statement. Java is not that; for example, see
§D&E9.2.2. In the light of Java, that section seems more relevant today than when I
wrote it.

Unfortunately, the Java proponents and their marketing machines did not limit
themselves to hyping the virtues of Java, but stooped to bogus comparisons (e.g.,
[Gosling,1996]) and name calling of languages seen as competitors (most notably C++). I
see Java as a Sun weapon aimed at Microsoft that missed and hit an innocent bystander:

 - 22 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

The C++ community. It hurt many smaller language communities even more; consider
Smalltalk, Lisp, Eiffel, etc.

Despite many promises, Java didn’t replace C++ (“Java will completely kill C++ within
two years” was a graphic expression I repeatedly heard in 1996). In fact, the C++
community has trebled in size since the first appearance of Java. Java did, however, do
harm to the C++ community by diverting energy and funding away from much needed
tools, library and techniques work. Another problem was that Java encouraged a limited
“pure object-oriented” view of programming with a heavy emphasis on run-time
resolution. This led many C++ programmers to write unnecessarily inelegant and poorly
performing code in imitation.

As I predicted, Java has been accreting new features over the years so as to negate its
“original virtue” of simplicity, but without catching up on performance. New languages
are always claimed to be “simple” and to survive they increase in size and complexity to
become useful in real-world applications. Neither Java nor C++ was immune to that
effect; the main difference is that I never claimed perfection (or near perfection) for C++.
Obviously Java has made great strides in performance – given its initial slowness it
couldn’t fail to – but so have C++ – and the Java object model inhibits performance
where abstraction is seriously used. Basically, C++ and Java are far more different in
aims, language structure, and implementation model than most people seem to think.

During the 1995-2004, C also evolved. Unfortunately, C99 [ISO,1999] is in significant
ways less compatible with C++ than C89 [ISO,1989] and harder to coexist with. For
example, see [Stroustrup, 2002] for a detailed discussion of the C/C++ relationship.

Most C++ libraries are not part of the standard. In fact, there are thousands of C++
libraries “out there” and the lack of coordination within the C++ community is hurting
users because these libraries can be hard to find and are rarely built to interoperate.
Beman Dawes started an organization called “Boost” (http://www.boost.org) to address
part of that problem. Boost is now an active on-line community and a large collection of
open-source libraries aimed at augmenting the C++ standard library. Many of the ideas
for additions to the standard library are being “field tested” through Boost.

Obviously, I could write thick books about what was and is going on in the C++
community. However, documenting the use of C++ is not the aim of this book. My aim is
to present what had direct influence on the language definition. I even interpret “language
definition” narrowly to exclude the standard library, except where (as in the case of
string, complex, iostream, and the STL) the needs of library design have been a driving
force for language design.

In addition to being influenced by events in the software development community, C++
was (and remains) a major influence on the design on new languages, libraries, and tool
aimed at practical work. It would be nice if someone would document these influences,
but it won’t be me.

 - 23 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

4 Where we might be going – 2005-2014
After year of deliberate inactivity to allow compiler, tools, and library implementers to
catch up and for users to absorb the programming techniques supported by Standard C++,
the committee is now again considering language extensions. The “extensions working
group” has been reconstituted as the “evolution working group”. The name change
(suggested by Tom Plum) reflects a greater emphasis on the integration of language
features and standard library facilities. As ever, I’m the chairman of that working group.
We hope that will help ensure a continuity of vision for C++ and a coherence of the final
result. Similarly, the committee membership shows a continuous participation of large
number of people and organizations. Fortunately, there are also many new faces bringing
new interests and new expertise to the committee.

We aim to be cautious and conservative about changes to the language itself, and strongly
emphasize compatibility. The aim is to channel the major effort into an expansion of the
standard library. In the standard library, we aim to be aggressive and opportunistic.

For the standard library, I hope to build on the momentum from the library TR (§3.3.2) to
make it a much broader platform for systems programming. For example, I expect to see
libraries for areas such as directory/folder manipulation, threads, and sockets. I also hope
that the committee will take pity on the many new C++ programmers and provide library
facilities to support novices from a variety of backgrounds (not just beginning
programmers and refugees from C). For example, I’d like to see a standard way to use a
range checking STL. I have low expectations for the most frequently requested addition
to the standard library: a standard GUI (Graphical User Interface). However, miracles
sometimes do happen – remember the STL.

For the language itself, I expect to see an emphasis on features that support generic
programming because generic programming is the area where our use of the language has
progressed the furthest relative to the support offered by the language. Here, I will
examine two key areas:

• Concepts: a type system for template arguments
• Initializer lists: a generalization of initialization facilities

As ever, there are far more proposals than the committee could handle or the language
could absorb, see for example http://www.research.att.com/~bs/evol-issues.html. Please
remember that even accepting just all the good proposals is infeasible.

The overall aim of the language extensions supporting generic programming is to provide
greater uniformity of facilities so as to enable the expression of a larger class of problems
directly in a generic form.

My other priority (together with better support for generic programming) is better support
for beginners. There is a remarkable tendency for proposals to favor the expert users that

 - 24 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

propose and evaluate them. Something simple that helps only novices for a few months
until they become experts is often ignored. I think that’s a potentially fatal design bias.
Unless novices are sufficiently supported, only few will become experts. Further, many
don’t want to become experts; they are and want to remain “occasional C++ users”. For
example, a physicist using C++ for physics calculations or the control of experimental
equipment is usually quite happy being a physicist and has only limited time to spend
learning programming techniques. As computer scientists we might wish for people to
spend more time on programming techniques, but rather than just hoping, we should
work on removing unnecessary barriers to adoption of good techniques.

A very simple example is

vector<vector<double>> v;

In C++98, this is a syntax error because >> is a single lexical token, rather than two >s
each closing a template argument list. A correct declaration of v would be:

vector< vector<double> > v;

I consider this an embarrassment. There are perfectly good reasons for the current rule
and the evolution working group twice rejected my suggestions that this was a problem
that was worth solving. However, those reasons are language technical and of no interest
to novices (of all backgrounds – including experts in other languages). Not accepting the
first (and most) obvious declaration of v wastes time for users and teachers. I expect the
>> problem, and many similar “embarrassments” to be absent from C++0x. In fact,
together with Francis Glassborow and others, I am trying to systematically eliminate the
most frequently occurring such “embarrassments”.

Another “embarrassment” is that it is legal to copy an object of a class with a user-
defined destructor using a default copy operation (constructor or assignment). Requiring
user-defined copy operations in that case would eliminate a lot of nasty errors related to
resource management. For example, consider an oversimplified sting class:

class String {
public:
 String(char* pp) :sz(strlen(pp)), p(new char[sz+1]) { strcpy(p,pp); }
 ~String() { delete[] p; }
 char& operator[](int i) { return p[i]; }
private:
 int sz;
 char* p;
};

void f(char* x)
{

String s1(x);

 - 25 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

String s2 = s1;
}

After the construction of s2, s1.p and s2.p points to the same memory, this will be deleted
twice, probably with disastrous results. This problem is obvious to the experienced C++
programmer, who will provide proper copy operations or prohibit copying. However, the
problem can seriously baffle a novice and undermine trust in the language.

 It would be even nicer to ban default copy of objects of a class with pointer members,
but that would bring up nasty compatibility problems. Remedying long-standing
problems is harder than it looks, especially if C compatibility enters into the picture.

4.1 Concepts
The D&E discussion of templates contains three whole pages (§15.4) on constraints on
template arguments. Clearly, I felt the need for a better solution. The error messages that
come from slight errors in the use of a template, such as a standard library algorithm, can
be spectacularly long and unhelpful. The problem is that the template code’s expectations
of its template arguments are implicit. Consider again find_if():

template<class In, class Pred>
In find_if(In first, In last, Pred pred)
{
 while (first!=last && !pred(*first)) ++first;
 return first;
}

Here, we are making a lot of assumptions about the In and Predicate types. From the
code, we can see that In must somehow support !=, *, and ++ with suitable semantics and
that we must be able to copy In objects as arguments and return values. Similarly, we can
see that we can call a Pred with and argument of whichever type * returns from an In
and apply ! to the result to get something that can be treated as a Boolean. However,
that’s all implicit in the code. The standard library carefully documents these
requirements for forward iterators (our In) and predicates (our Pred), but compilers don’t
read manuals. Try this error and see what your compiler says:

find_if(1,5,3.14); // errors

Partial, but quite effective, solutions based on my old idea of letting a constructor check
assumptions about template arguments (§D&E15.4.2) are now finding widespread use.
For example:

template<class T> struct Forward_iterator {
 static void constraints(T a) {

++a; a++; // can increment
T b = a; b = a; // can copy

 - 26 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

*b = *a; // can dereference and copy the result
}

 Forward_iterator() { void (*p)(T) = constraints; }
};

This defines a class that will compile only if T is a forward iterator. However, a
Forward_iterator object doesn’t really do anything so that compiler can (and does)
trivially optimize away such objects. We can use Forward_iterator in a definition like
this:

template<class In, class Pred>
In find_if(In first, In last, Pred pred)
{
 Forward_iterator<In>(); // check template argument type
 while (first!=last && !pred(*first)) ++first;
 return first;
}

Alex Stepanov and Jeremy Siek did a lot to develop and popularize such techniques. One
place where they are used prominently is in the Boost library, but these days you find
constraints classes in most standard library implementation. The difference in the quality
of error messages is spectacular.

However, constraints classes are at best a partial solution. For example, the testing is
done in the definition – it would be much better if the checking could be done given only
a declaration. That way, we would obey the usual rules for interfaces and could start
considering the possibility of genuine separate compilation of templates.

So, let’s tell the compiler what we expect from a template argument:

template<Forward_iterator In, Predicate Pred>
In find_if(In first, In last, Pred pred);

Assuming that we can express what a Forward_iterator and a Predicate is, the compiler
can now check a call of find_if() in isolation from its definition. What we are doing here
is to build a type system for template arguments. In the context of modern C++, such
“types of types” are called “concepts”. There are various ways of specifying such
concepts; for now, think of them as a kind of constraints classes with direct language
support and a nicer syntax. A concept says what facilities a type must provide, but
nothing about how it does provide those facilities. The ideal concept (e.g.
<Forward_iterator In>) is very close to a mathematical abstraction (“for all types In
such that an In can be incremented, dereferenced, and copied”) just as the original <class
T> is the mathematical “for all types T”.

Given that only that declaration (and not the definition) of find_if(), we can write

 - 27 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

int x = find_if(1,2,Less_than<int>(7));

This call will fail because int doesn’t support *. In other words, the call will fail to
compile because int isn’t a Forward_iterator. Importantly, that makes it easy for a
compiler to report the error in the language of the user and at the point in the compilation
where the call is first seen.

Unfortunately, knowing that the iterator arguments are Forward_iterators and that the
predicate argument is a Predicate isn’t enough to guarantee successful compilation of a
call of find_if(). The two argument types interact. In particular, the predicate takes an
argument that is an iterator dereferenced by * (pred(*first)). Our aim is complete
checking of a template in isolation from the calls and complete checking of each call
without looking at the template definition, so the concept must be made sufficiently
expressive to deal with such interactions among template arguments. One way is to
parameterize the concepts in parallel to the way the templates themselves are
parameterized. For example:

template<Value_type T,
Forward_iterator<T> In, // iterates over a sequence of Ts
Predicate<bool,T> Pred> // takes a T and returns a bool

In find_if(In first, In last, Pred pred);

Here, we require that the Forward_iterator must point to elements of a type T, which is
the same type as the Predicate’s argument type.

Expressing required relations among template arguments through common parameters
(here, the parameter T), is unfortunately not completely expressive, leads to added
template parameters, and expresses requirements indirectly. For example, the example
above doesn’t say that it must be possible to pass the result of *first as the argument to
pred. Instead, it says that Forward_iterator and Predicate shares a template argument
type. To cope with such concerns, we are exploring the possibility of expressing relations
among template arguments directly. For example:

template<Forward_iterator In, Predicate Pred>
where (assignable<In::value_type, Pred::argument_type>)

In find_if(In first, In last, Pred pred);

This approach has its own problems, such as a tendency of the requirements (the where
clause) to approximate the template definition itself in complexity and that popular
iterators (such as int*) don’t have member types (such as value_type).

One possible expression of the idea of a concept is direct support for the kind of
expression we are used to with constraints classes. For example, we could define
Forward_iterator as used in the examples above like this:

template <class T> concept Forward_iterator { // parameterized concept

 - 28 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

 Forward_iterator a;
++a; a++; // can increment
Forward_iterator b = a; b = a; // can copy
*b = *a; // can dereference and copy the result
T x = *a; *a = x; // the result can be treated as a T

};

Or

concept Forward_iterator { // concept not using parameterization
 Forward_iterator a;

++a; a++; // can increment
Forward_iterator b = a; b = a; // can copy
*b = *a; // can dereference and copy the result

};

The parameterized concept definition would be used with the first declaration of find_if
and the one without a parameter with the second. They represent alternative language
designs. We still have to make design choices in this area. However, consider:

int x = find_if(1,2,Less_than<int>(7));

This would be rejected because 1 and 2 are ints and int doesn’t support *. If we used the
parameterized concept design, it would also be rejected because int isn’t a parameterized
type matching Forward_iterator<T>. On the other hand, consider:

 void f(vector<int>& v, int* p, int n)
 {

vector<int>::iterator q = find_if(v.begin(),v.end(),Less_than<int>(7));
int* q2 = find_if(p,p+n,Less_than<int>(7));

 // …
 }

This would compile because both vector<int>::iterator and int* provide all the
operations required by the concepts. However, if we used the parameterized concept
design, we would need a language rule to allow the compiler to consider int* as a
Forward_iterator<T> with int as the argument.

Clearly, I’m reporting work in progress here, but the likelihood is that a form of concepts
will be the cornerstone of C++0x. Templates have become essential for the most effective
(and efficient) C++ programming styles, but suffer from spectacularly poor error
messages, lack of facilities for overloading templates based on template arguments, and
poor separate compilation. Concepts directly address all of those concerns without the
main weakness of abstract-base class based approaches – the overhead of run-time
resolution through virtual function calls (§D&E3.5). Importantly, concepts do not rely on
explicitly declared subtype hierarchies, thus not requiring logically redundant hierarchical
relationships and allowing built-in types to be considered on equal footing with classes.

 - 29 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

There is now an extensive literature on the subject of concepts and their possible
relationship to similar constructs in other languages [Stroustrup, 2003a] [Stroustrup,
2003b] [Garcia, 2003]. Matt Austern, Jaako Järvi, Mich Marcus, Gabriel Dos Reis,
Jeremy Siek, Alex Stepanov, and I are among the people active with this design problem.

4.2 General initializers
One of the fundamental ideas of C++ is to “provide as good support for user-defined
types as for built-in types” (§D&E4.4). But consider:

double vd[] = { 1.2, 2.3, 3.4, 4.5, 5.6 };
vector<double> v(vd, vd+5);

We can directly initialize the array with the initializer list, whereas the least bad we can
do for a vector is to create an array and initialize the vector from that array. If there are
only few initializer values, I might even prefer to use push_back() to avoid explicitly
stating the number of initializer values (5 in the example above):

vector<double> v;
v.push_back(1.2);
v.push_back(2.3);
v.push_back(3.4);
v.push_back(4.5);
v.push_back(5.6);

I don’t think anyone would call either solution pretty. To get the most maintainable code
and not favor the built-in (and inherently dangerous) arrays over the recommended user-
defined type vector, we need to be able to write:

vector<double> v = { 1.2, 2.3, 3.4, 4.5, 5.6 };

or

vector<double> v ({ 1.2, 2.3, 3.4, 4.5, 5.6 });

Since argument passing is defined in terms of initialization, this would of course also
work for functions taking vectors:

void f(const vector<double>& r);
// …
f({ 1.2, 2.3, 3.4, 4.5, 5.6 });

I believe that this generalization of the use of initializers will be part of C++0x. This
would be part of a general overhaul of constructors because people have discovered a
number of weaknesses that seems to be amenable to solution through a generalization of

 - 30 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

constructors, such as forwarding constructors, guaranteed compile-time constructors, and
inherited constructors.

5 Acknowledgements
Most of my thanks go to the members of the C++ standards committee who made this
“extended foreword” necessary. Also thanks to Takanori Adachi, Matt Austern, Andrew
Koenig, Gabriel Dos Reis, and Alex Stepanov for constructive comments on an earlier
draft of this chapter.

6 References
[Austern, 1998] M. Austern: “Generic Programming and the STL: Using and Extending
the C++ Standard Template Library”. Addison. 1998). ISBN: 0201309564.
[Cargill, 1994] T. Cargill: “Exeption handling: A False Sense of Security”. The C++
Report, Volume 6, Number 9, November-December 1994.
[EC++ 1999] the Embedded C++ Technical Committee: “The Language Specification &
Libraries Version”. WP-AM-003. Oct 1999 (http://www.caravan.net/ec2plus/).
[Garcia, 2003] R. Garcia, et al: “A comparative study of language support for generic
programming”. ACM OOPSLA 2003.
[Gosling, 1996] Gosling & McGilton: “The Java(tm) Language Environment: A White
Paper”. http://java.sun.com/docs/white/langenv/
[ISO, 1990] “Standard for the C Programming Language”. ISO/IEC 9899. (“C89”).
[ISO, 1998] “Standard for the C++ Programming Language”. ISO/IEC 14882.
[ISO, 1999] “Standard for the C Programming Language”. ISO/IEC 9899:1999. (“C99”).
[ISO, 2003a] “The C Standard” (ISO/IEC 9899:2002). Wiley 2003. ISBN 0-470-84573-
2.
[ISO, 2003b] “The C++ Standard” (ISO/IEC 14882:2002). Wiley 2003. ISBN 0-470-
84674-7.
[ISO, 2004] “Technical Report on C++ Performance” ISO.IEC PDTR 18015
[ISO, 2005] “Technical Report on C++ Standard Library Extensions” ISO/IEC PDTR
19768.
[Stepanov, 1994] A. Stepanov and M. Lee: “The Standard Template Library” HP Labs
TR HPL-94-34. August 1994.
[Stepanov, 2004] Alex Stepanov: personal communications.
[Stroustrup,1998] B. Stroustrup: “The C++ Programming Language (3rd Edition)”.
Addison-Wesley Longman. Reading Mass. USA. 1997. ISBN 0-201-88954-4.
[Stroustrup, 1999] B. Stroustrup: “Learning Standard C++ as a New Language”. C/C++
Users Journal. May 1999.
[Stroustrup, 2000] B. Stroustrup: “The C++ Programming Language (Special Edition)”.
Addison Wesley. Reading Mass. USA. February 2000. ISBN 0-201-70073-5.
[Stroustrup, 2002] B. Stroustrup: “C and C++: Siblings”, “C and C++: A Case for
Compatibility”, “C and C++: Case Studies in Compatibility”. The C/C++ Users Journal.
July, August, and September 2002.
[Stroustrup,2003a] B. Stroustrup: “Concept checking - A more abstract complement to
type checking”. C++ standard committee. Paper N1510.

 - 31 -

© Bjarne Stroustrup 2005 Added to Japanese translation of D&E

[Stroustrup,2003b] B. Stroustrup, G. Dos Reis: “Concepts - Design choices for template
argument checking” C++ standard committee. Paper N1522.

 - 32 -

Programming Languages/C++

The Design and Evolution of

BJARNE STROUSTRUP
AT&T Bell Laboratories

Written by Bjarne Stroustrup, the designer of C++, this book presents the definitive insider's
guide to the design and development of the C++ programming language. Without omitting
critical details or getting bogged down in technicalities, Stroustrup presents his unique insights
into the decisions that shaped C++. Every C++ programmer will benefit from Stroustrup's
explanations of the 'why's' behind the language.

The Design and Evolution of C++ is written in a well-organized, easy-to-read style which is often
instructive and occasionally entertaining. Key insights offer the beginner logical 'hooks' on
which to hang understanding of the details of the language. This book also provides information
and detailed discussions of key design decisions that will add to the expert's understanding.

Features:

• Provides insights into the aims, principles, and real-world constraints which shaped C++
• Describes design decisions for individual language features
• Shows the relationships between C++ language features and the design and programming

techniques supported by C++
• Discusses the design of the latest language features: templates, exceptions, run-time type

information, and namespaces.

In this book, Stroustrup dissects the decisions made in the development of the language to
present a case study in 'real object-oriented language development' for the working
programmer. In doing so, he presents his views on programming and design in a concrete and
useful way that makes this book a must-read for every C++ programmer.

ABOUT THE AUTHOR

Bjarne Stroustrup is the designer and original implementor of C++. He is a distinguished
member of the Computer Science Research Center at AT&T Bell Laboratories in Murray Hill,
New Jersey. Dr. Stroustrup received ACM's 1993 Grace Murray Hopper Award for his early
work laying the foundations for the C++ programming language. His research interests include
distributed systems, operating systems, simulation, programming, and design. Dr. Stroustrup
is the author of The C++ Programming Language (first and second edition), and is an active
member of the ANSI and ISO C++ standards committees.

Addison-Wesley Publishing Company

C++

	Cover
	Front Matters
	Preface

	Contents
	The Design and Evolution of C++
	Ch00. Notes to the Reader
	Part I
	Ch01. The Prehistory of C++
	Ch02. C with Classes
	Ch03. The Birth of C++
	Ch04. C++ Language Design Rules
	Ch05. Chronology 1985-1993
	Ch06. Standardization
	Ch07. Interest and Use
	Ch08. Libraries
	Ch09. Looking Ahead

	Part II
	Ch10. Memory Management
	Ch11. Overloading
	Ch12. Multiple Inheritance
	Ch13. Class Concept Refinements
	Ch14. Casting
	Ch15. Templates
	Ch16. Exception Handling
	Ch17. Namespaces
	Ch18. The C Preprocessor

	Index
	C++ in 2005 - Preface To Japanese translation
	About The Author
	Fan01@ePubCN

