
www.finebook.ir   

http://www.finebook.ir/../


www.finebook.ir   

http://www.finebook.ir/../


Early Praise for Seven Concurrency Models in Seven Weeks

For decades, professional programmers have dealt with concurrency and parallelism
using threads and locks. But this model is one of many, as Seven Concurrency Models
in Seven Weeks vividly demonstrates. If you want to get ahead in a world where main-
stream languages are scrambling to support actors, CSP, data parallelism, functional
programming, and Clojure’s unified succession model, read this book.

➤ Stuart Halloway
Cofounder, Cognitect

As our machines get more and more cores, understanding concurrency is more impor-
tant than ever before. You’ll learn why functional programming matters for concurrency,
how actors can be leveraged for writing distributed software, and how to explore par-
allel processing with GPUs and Big Data. This book will expand your toolbox for writing
software so you’re prepared for the years to come.

➤ José Valim
Cofounder, Plataformatec

An eye-opening survey of different concurrency/parallelism techniques, Seven Concur-
rency Models strikes an excellent balance between providing explanations and encour-
aging experimentation.

➤ Frederick Cheung
CTO, Dressipi

The world is changing, and every working programmer must learn to think about con-
current programming. Now when they say, “How shall I do that?” I will have a book that
I can suggest they read. I learned a lot and am happy to recommend it.

➤ Andrew Haley
Java lead engineer, Red Hat

www.finebook.ir   

http://www.finebook.ir/../


As Amdahl’s law starts to eclipse Moore’s law, a transition from object-oriented pro-
gramming to concurrency-oriented programming is taking place. As a result, the timing
of this book could not be more appropriate. Paul does a fantastic job describing the
most important concurrency models, giving you the necessary ammunition to decide
which one of them best suits your needs. A must-read if you are developing software
in the multicore era.

➤ Francesco Cesarini
Founder and technical director, Erlang Solutions

With this book, Paul has delivered an excellent introduction to the thorny topics of
concurrency and parallelism, covering the different approaches in a clear and engaging
way.

➤ Sean Ellis
GPU architect, ARM

A simple approach for a complex subject. I would love to have a university course
about this with Seven Concurrency Models in Seven Weeks as a guide.

➤ Carlos Sessa
Android developer, Groupon

Paul Butcher takes an issue that strikes fear into many developers and gives a clear
exposition of practical programming paradigms they can use to handle and exploit
concurrency in the software they create.

➤ Páidí Creed
Software engineer, SwiftKey

Having worked with Paul on a number of occasions, I can recommend him as a genuine
authority on programming-language design and structure. This book is a lucid exposi-
tion of an often-misunderstood but vital topic in modern software engineering.

➤ Ben Medlock
Cofounder and CTO, SwiftKey

www.finebook.ir   

http://www.finebook.ir/../


Seven Concurrency Models in Seven Weeks
When Threads Unravel

Paul Butcher

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

www.finebook.ir   

http://www.finebook.ir/../


Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Bruce A. Tate (series editor)
Jacquelyn Carter (editor)
Potomac Indexing, LLC (indexer)
Molly McBeath (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-65-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2014

www.finebook.ir   

http://pragprog.com
rights@pragprog.com
http://www.finebook.ir/../


Contents

Foreword . . . . . . . . . . . . . vii

Acknowledgments . . . . . . . . . . . ix

Preface . . . . . . . . . . . . . . xi

1. Introduction . . . . . . . . . . . . . 1
Concurrent or Parallel? 1
Parallel Architecture 3
Concurrency: Beyond Multiple Cores 4
The Seven Models 7

2. Threads and Locks . . . . . . . . . . . 9
The Simplest Thing That Could Possibly Work 9
Day 1: Mutual Exclusion and Memory Models 10
Day 2: Beyond Intrinsic Locks 21
Day 3: On the Shoulders of Giants 32
Wrap-Up 44

3. Functional Programming . . . . . . . . . 49
If It Hurts, Stop Doing It 49
Day 1: Programming Without Mutable State 50
Day 2: Functional Parallelism 61
Day 3: Functional Concurrency 71
Wrap-Up 82

4. The Clojure Way—Separating Identity from State . . . . 85
The Best of Both Worlds 85
Day 1: Atoms and Persistent Data Structures 85
Day 2: Agents and Software Transactional Memory 97
Day 3: In Depth 106
Wrap-Up 113

www.finebook.ir   

http://www.finebook.ir/../


5. Actors . . . . . . . . . . . . . . 115
More Object-Oriented than Objects 115
Day 1: Messages and Mailboxes 116
Day 2: Error Handling and Resilience 127
Day 3: Distribution 137
Wrap-Up 150

6. Communicating Sequential Processes . . . . . . 153
Communication Is Everything 153
Day 1: Channels and Go Blocks 154
Day 2: Multiple Channels and IO 166
Day 3: Client-Side CSP 177
Wrap-Up 185

7. Data Parallelism . . . . . . . . . . . 189
The Supercomputer Hidden in Your Laptop 189
Day 1: GPGPU Programming 190
Day 2: Multiple Dimensions and Work-Groups 201
Day 3: OpenCL and OpenGL—Keeping It on the GPU 212
Wrap-Up 220

8. The Lambda Architecture . . . . . . . . . 223
Parallelism Enables Big Data 223
Day 1: MapReduce 224
Day 2: The Batch Layer 237
Day 3: The Speed Layer 249
Wrap-Up 261

9. Wrapping Up . . . . . . . . . . . . 263
Where Are We Going? 263
Roads Not Taken 265
Over to You 267

Bibliography . . . . . . . . . . . . 269

Index . . . . . . . . . . . . . . 271

Contents • vi

www.finebook.ir   

http://www.finebook.ir/../


Foreword
This book tells a story.

That sentence may seem like a strange first thought for a book, but the idea
is important to me. You see, we turn away dozens of proposals for Seven in
Seven books from authors who think they can throw together seven disjointed
essays and call it a book. That’s not what we’re about.

The original Seven Languages in Seven Weeks: A Pragmatic Guide to Learning
Programming Languages [Tat10] story was that object-oriented programming
languages were good for their time, but as pressures built around software
complexity and concurrency driven by multicore architectures, functional
programming languages would begin to emerge and would shape the way we
program. Paul Butcher was one of the most effective reviewers of that book.
After a growing four-year relationship, I’ve come to understand why.

Paul has been right on the front lines of bringing highly scalable concurrency
to real business applications. In the Seven Languages book, he saw hints of
some of the language-level answers to an increasingly important and compli-
cated problem space. A couple of years later, Paul approached us to write a
book of his own. He argued that languages play an important part of the
overall story, but they just scratch the surface. He wanted to tell a much more
complete story to our readers and map out in layman’s terms the most critical
tools that modern applications use to solve big parallel problems in a scalable
way.

At first we were skeptical. These books are hard to write—they take much
longer than most other books and have a high failure rate—and Paul chose
a huge dragon to slay. As a team, we fought and worked, eventually coaxing
a good story out of the original table of contents. As the pages came together,
it became increasingly clear that Paul had not only the technical ability but
also the passion to attack this topic. We have come to understand that this
is a special book, one that arrives at the right time. As you dig in, you’ll see
what I mean.

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


You’ll cringe with us as we show threading and locking, the most widely used
concurrency solution today. You’ll see where that solution comes up short,
and then you’ll go to work. Paul will walk you through vastly different
approaches, from the Lambda Architecture used in some of busiest social
platforms to the actor-based model that powers many of the world’s largest
and most reliable telecoms. You will see the languages that the pros use, from
Java to Clojure to the exciting, emerging Erlang-based Elixir language. Every
step of the way, Paul will walk you through the complexities from an insider’s
perspective.

I am excited to present Seven Concurrency Models in Seven Weeks. I hope you
will treasure it as much as I do.

Bruce A. Tate

CTO, icanmakeitbetter.com
Series editor of the Seven in Seven books
Austin, Texas

Foreword • viii

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Acknowledgments
When I announced that I had signed the contract to write this book, a friend
asked, “Has it been long enough that you’ve forgotten what writing the first
one was like?” I guess I was naïve enough to imagine that writing a second
book would be easier. Perhaps if I’d chosen an easier format than a Seven in
Seven book, I would have been right.

It certainly wouldn’t have been possible without the amazing support I’ve
received from series editor Bruce Tate and development editor Jackie Carter.
Thanks to both of you for sticking with me during this book’s occasionally
difficult gestation, and thanks to Dave and Andy for the opportunity to make
another contribution to a great series.

Many people offered advice and feedback on early drafts, including (in no
particular order) Simon Hardy-Francis, Sam Halliday, Mike Smith, Neil Eccles,
Matthew Rudy Jacobs, Joe Osborne, Dave Strauss, Derek Law, Frederick
Cheung, Hugo Tyson, Paul Gregory, Stephen Spencer, Alex Nixon, Ben Coppin,
Kit Smithers, Andrew Eacott, Freeland Abbott, James Aley, Matthew Wilson,
Simon Dobson, Doug Orr, Jonas Bonér, Stu Halloway, Rich Morin, David
Whittaker, Bo Rydberg, Jake Goulding, Ari Gold, Juan Manuel Gimeno Illa,
Steve Bassett, Norberto Ortigoza, Luciano Ramalho, Siva Jayaraman, Shaun
Parry, and Joel VanderWerf.

I’m particularly grateful to the book’s technical reviewers (again in no partic-
ular order): Carlos Sessa, Danny Woods, Venkat Subramaniam, Simon Wood,
Páidí Creed, Ian Roughley, Andrew Thomson, Andrew Haley, Sean Ellis,
Geoffrey Clements, Loren Sands-Ramshaw, and Paul Hudson.

Finally, I owe both thanks and an apology to friends, colleagues, and family.
Thanks for your support and encouragement, and sorry for being so mono-
maniacal over the last eighteen months.

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Preface
In 1989 I started a PhD in languages for parallel and distributed computing—I
was convinced that concurrent programming was about to turn mainstream.
A belated two decades later, I’ve finally been proven correct—the world is
buzzing with talk of multiple cores and how to take advantage of them.

But there’s more to concurrency than achieving better performance by
exploiting multiple cores. Used correctly, concurrency is the key that unlocks
responsiveness, fault tolerance, efficiency, and simplicity.

About This Book
This book follows the structure of The Pragmatic Bookshelf’s existing Seven
in Seven books, Seven Languages in Seven Weeks [Tat10], Seven Databases
in Seven Weeks [RW12], and Seven Web Frameworks in Seven Weeks [MD14].
The seven approaches here have been chosen to give a broad overview of the
concurrency landscape. We’ll cover some approaches that are already main-
stream, some that are rapidly becoming mainstream, and others that are
unlikely to ever be mainstream but are fantastically powerful in their partic-
ular niches. It’s my hope that, after reading this book, you’ll know exactly
which tool(s) to reach for when faced with a concurrency problem.

Each chapter is designed to be read over a long weekend, split up into three
days. Each day ends with exercises that expand on that day’s subject matter,
and each chapter concludes with a wrap-up that summarizes the strengths
and weaknesses of the approach under consideration.

Although a little philosophical hand-waving occurs along the way, the focus
of the book is on practical working examples. I encourage you to work through
these examples as you’re reading—nothing is more convincing than real,
working code.

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


What This Book Is Not
This book is not a reference manual. I’m going to be using languages that
might be new to you, such as Elixir and Clojure. Because this is a book about
concurrency, not languages, there are going to be some aspects of these lan-
guages that I’ll use without explaining in detail. Hopefully everything will be
clear from context, but I’m relying on you to persevere if you need to explore
some language feature further to understand fully. You might want to read
along with a web browser handy so you can consult the language’s documen-
tation if you need to.

Nor is this an installation manual. To run the example code, you’re going to
need to install and run various tools—the README files included in the example
code contain hints, but broadly speaking you’re on your own here. I’ve used
mainstream toolchains for all the examples, so there’s plenty of help available
on the Internet if you find yourself stuck.

Finally, this book is not comprehensive—there isn’t space to cover every topic
in detail. I mention some aspects only in passing or don’t discuss them at all.
On occasion, I’ve deliberately used slightly nonidiomatic code because doing
so makes it easier for someone new to the language to follow along. If you
decide to explore one or more of the technologies used here in more depth,
check out one of the more definitive books referenced in the text.

Example Code
All the code discussed in the book can be downloaded from the book’s website.1

Each example includes not only source but also a build system. For each lan-
guage, I’ve chosen the most popular build system for that language (Maven for
Java, Leiningen for Clojure, Mix for Elixir, sbt for Scala, and GNU Make for C).

In most cases, these build systems will not only build the example but also
automatically download any additional dependencies. In the case of sbt and
Leiningen, they will even download the appropriate version of the Scala or
Clojure compiler, so all you need to do is successfully install the relevant
build tool, instructions for which are readily available on the Internet.

The primary exception to this is the C code used in Chapter 7, Data Paral-
lelism, on page 189, for which you will need to install the relevant OpenCL
toolkit for your particular operating system and graphics card (unless you’re
on a Mac, that is, for which Xcode comes with everything built in).

1. http://pragprog.com/book/pb7con/

Preface • xii

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/book/pb7con/
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


A Note to IDE Users
The build systems have all been tested from the command line. If you’re a
hardcore IDE user, you should be able to import the build system into your
IDE—most IDEs are Maven-aware already, and plugins for sbt and Leiningen
can create projects for most mainstream IDEs. But this isn’t something I’ve
tested, so you might find it easier to stick to using the command line.

A Note to Windows Users
All the examples have been tested on both OS X and Linux. They should all
run just fine on Windows, but they haven’t been tested there.

The exception is the C code used in Chapter 7, Data Parallelism, on page 189,
which uses GNU Make and GCC. It should be relatively easy to move the code
over to Visual C++, but again this isn’t something I’ve tested.

Online Resources
The apps and examples shown in this book can be found at the Pragmatic
Programmers website for this book.2 You’ll also find the community forum
and the errata-submission form, where you can report problems with the text
or make suggestions for future versions.

Paul Butcher
Ten Tenths Consulting

paul@tententhsconsulting.com
Cambridge, UK, June 2014

2. http://pragprog.com/book/pb7con

report erratum  •  discuss

Online Resources  • xiii

www.finebook.ir   

http://pragprog.com/book/pb7con
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


CHAPTER 1

Introduction
Concurrent programming is nothing new, but it’s recently become a hot topic.
Languages like Erlang, Haskell, Go, Scala, and Clojure are gaining mindshare,
in part thanks to their excellent support for concurrency.

The primary driver behind this resurgence of interest is what’s become known
as the “multicore crisis.” Moore’s law continues to deliver more transistors
per chip,1 but instead of those transistors being used to make a single CPU

faster, we’re seeing computers with more and more cores.

As Herb Sutter said, “The free lunch is over.”2 You can no longer make your
code run faster by simply waiting for faster hardware. These days if you need
more performance, you need to exploit multiple cores, and that means
exploiting parallelism.

Concurrent or Parallel?
This is a book about concurrency, so why are we talking about parallelism?
Although they’re often used interchangeably, concurrent and parallel refer to
related but different things.

Related but Different
A concurrent program has multiple logical threads of control. These threads
may or may not run in parallel.

A parallel program potentially runs more quickly than a sequential program
by executing different parts of the computation simultaneously (in parallel).
It may or may not have more than one logical thread of control.

1. http://en.wikipedia.org/wiki/Moore's_law
2. http://www.gotw.ca/publications/concurrency-ddj.htm

report erratum  •  discusswww.finebook.ir   

http://en.wikipedia.org/wiki/Moore's_law
http://www.gotw.ca/publications/concurrency-ddj.htm
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


An alternative way of thinking about this is that concurrency is an aspect of
the problem domain—your program needs to handle multiple simultaneous
(or near-simultaneous) events. Parallelism, by contrast, is an aspect of the
solution domain—you want to make your program faster by processing differ-
ent portions of the problem in parallel.

As Rob Pike puts it,3

Concurrency is about dealing with lots of things at once.

Parallelism is about doing lots of things at once.

So is this book about concurrency or parallelism?

Joe asks:

Concurrent or Parallel?
My wife is a teacher. Like most teachers, she’s a master of multitasking. At any one
instant, she’s only doing one thing, but she’s having to deal with many things concur-
rently. While listening to one child read, she might break off to calm down a rowdy
classroom or answer a question. This is concurrent, but it’s not parallel (there’s only
one of her).

If she’s joined by an assistant (one of them listening to an individual reader, the
other answering questions), we now have something that’s both concurrent and
parallel.

Imagine that the class has designed its own greeting cards and wants to mass-produce
them. One way to do so would be to give each child the task of making five cards.
This is parallel but not (viewed from a high enough level) concurrent—only one task
is underway.

Beyond Sequential Programming
What parallelism and concurrency have in common is that they both go
beyond the traditional sequential programming model in which things happen
one at a time, one after the other. We’re going to cover both concurrency and
parallelism in this book (if I were a pedant, the title would have been Seven
Concurrent and/or Parallel Programming Models in Seven Weeks, but that
wouldn’t have fit on the cover).

Concurrency and parallelism are often confused because traditional threads
and locks don’t provide any direct support for parallelism. If you want to

3. http://concur.rspace.googlecode.com/hg/talk/concur.html

Chapter 1. Introduction • 2

report erratum  •  discusswww.finebook.ir   

http://concur.rspace.googlecode.com/hg/talk/concur.html
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


exploit multiple cores with threads and locks, your only choice is to create a
concurrent program and then run it on parallel hardware.

This is unfortunate because concurrent programs are often nondeterministic
—they will give different results depending on the precise timing of events. If
you’re working on a genuinely concurrent problem, nondeterminism is natural
and to be expected. Parallelism, by contrast, doesn’t necessarily imply nonde-
terminism—doubling every number in an array doesn’t (or at least, shouldn’t)
become nondeterministic just because you double half the numbers on one
core and half on another. Languages with explicit support for parallelism allow
you to write parallel code without introducing the specter of nondeterminism.

Parallel Architecture
Although there’s a tendency to think that parallelism means multiple cores,
modern computers are parallel on many different levels. The reason why
individual cores have been able to get faster every year, until recently, is that
they’ve been using all those extra transistors predicted by Moore’s law in
parallel, both at the bit and at the instruction level.

Bit-Level Parallelism
Why is a 32-bit computer faster than an 8-bit one? Parallelism. If an 8-bit
computer wants to add two 32-bit numbers, it has to do it as a sequence of
8-bit operations. By contrast, a 32-bit computer can do it in one step, handling
each of the 4 bytes within the 32-bit numbers in parallel.

That’s why the history of computing has seen us move from 8- to 16-, 32-,
and now 64-bit architectures. The total amount of benefit we’ll see from this
kind of parallelism has its limits, though, which is why we’re unlikely to see
128-bit computers soon.

Instruction-Level Parallelism
Modern CPUs are highly parallel, using techniques like pipelining, out-of-order
execution, and speculative execution.

As programmers, we’ve mostly been able to ignore this because, despite the
fact that the processor has been doing things in parallel under our feet, it’s
carefully maintained the illusion that everything is happening sequentially.

This illusion is breaking down, however. Processor designers are no longer
able to find ways to increase the speed of an individual core. As we move into
a multicore world, we need to start worrying about the fact that instructions

report erratum  •  discuss

Parallel Architecture • 3

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


aren’t handled sequentially. We’ll talk about this more in Memory Visibility,
on page 15.

Data Parallelism
Data-parallel (sometimes called SIMD, for “single instruction, multiple data”)
architectures are capable of performing the same operations on a large
quantity of data in parallel. They’re not suitable for every type of problem,
but they can be extremely effective in the right circumstances.

One of the applications that’s most amenable to data parallelism is image
processing. To increase the brightness of an image, for example, we increase
the brightness of each pixel. For this reason, modern GPUs (graphics process-
ing units) have evolved into extremely powerful data-parallel processors.

Task-Level Parallelism
Finally, we reach what most people think of as parallelism—multiple proces-
sors. From a programmer’s point of view, the most important distinguishing
feature of a multiprocessor architecture is the memory model, specifically
whether it’s shared or distributed.

In a shared-memory multiprocessor, each processor can access any memory
location, and interprocessor communication is primarily through memory,
as you can see in Figure 1, Shared memory, on page 5.

Figure 2, Distributed memory, on page 5 shows a distributed-memory system,
where each processor has its own local memory and where interprocessor
communication is primarily via the network.

Because communicating via memory is typically faster and simpler than doing
so over the network, writing code for shared memory-multiprocessors is
generally easier. But beyond a certain number of processors, shared memory
becomes a bottleneck—to scale beyond that point, you’re going to have to
tackle distributed memory. Distributed memory is also unavoidable if you
want to write fault-tolerant systems that use multiple machines to cope with
hardware failures.

Concurrency: Beyond Multiple Cores
Concurrency is about a great deal more than just exploiting parallelism—used
correctly, it allows your software to be responsive, fault tolerant, efficient,
and simple.

Chapter 1. Introduction • 4

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Bus

Memory

Processor

Cache

Processor

Cache

Processor

Cache

Figure 1—Shared memory

Network

Memory

Processor

Memory

Processor

Memory

Processor

Figure 2—Distributed memory

Concurrent Software for a Concurrent World
The world is concurrent, and so should your software be if it wants to interact
effectively.

Your mobile phone can play music, talk to the network, and pay attention to
your finger poking its screen, all at the same time. Your IDE checks the syntax

report erratum  •  discuss

Concurrency: Beyond Multiple Cores • 5

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


of your code in the background while you continue to type. The flight system
in an airplane simultaneously monitors sensors, displays information to the
pilot, obeys commands, and moves control surfaces.

Concurrency is the key to responsive systems. By downloading files in the
background, you avoid frustrated users having to stare at an hourglass cursor.
By handling multiple connections concurrently, a web server ensures that a
single slow request doesn’t hold up others.

Distributed Software for a Distributed World
Sometimes geographical distribution is a key element of the problem you’re
solving. Whenever software is distributed on multiple computers that aren’t
running in lockstep, it’s intrinsically concurrent.

Among other things, distributing software helps it handle failure. You might
locate half your servers in a data center in Europe and the others in the
United States, so that a power outage at one site doesn’t result in global
downtime. This brings us to the subject of resilience.

Resilient Software for an Unpredictable World
Software contains bugs, and programs crash. Even if you could somehow
produce perfectly bug-free code, the hardware that it’s running on will
sometimes fail.

Concurrency enables resilient, or fault-tolerant, software through indepen-
dence and fault detection. Independence is important because a failure in one
task should not be able to bring down another. And fault detection is critical
so that when a task fails (because it crashes or becomes unresponsive, or
because the hardware it’s running on dies), a separate task is notified so that
it can take remedial action.

Sequential software can never be as resilient as concurrent software.

Simple Software in a Complex World
If you’ve spent hours wrestling with difficult-to-diagnose threading bugs, it
might be hard to believe, but a concurrent solution can be simpler and
clearer than its sequential equivalent when written in the right language with
the right tools.

This is particularly true whenever you’re dealing with an intrinsically concur-
rent real-world problem. The extra work required to translate from the
concurrent problem to its sequential solution clouds the issue. You can avoid
this extra work by creating a solution with the same structure as the problem:

Chapter 1. Introduction • 6

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


rather than a single complex thread that tries to handle multiple tasks when
they need it, create one simple thread for each.

The Seven Models
The seven models covered in this book have been chosen to provide a broad
view of the concurrency and parallelism landscape.

Threads and locks:  Threads-and-locks programming has many well-under-
stood problems, but it’s the technology that underlies many of the other
models we’ll be covering and it is still the default choice for much concur-
rent software.

Functional programming:  Functional programming is becoming increasingly
prominent for many reasons, not the least of which is its excellent support
for concurrency and parallelism. Because they eliminate mutable state,
functional programs are intrinsically thread-safe and easily parallelized.

The Clojure Way—separating identity and state:  The Clojure language has
popularized a particularly effective hybrid of imperative and functional
programming, allowing the strengths of both approaches to be leveraged
in concert.

Actors:  The actor model is a general-purpose concurrent programming model
with particularly wide applicability. It can target both shared- and dis-
tributed-memory architectures and facilitate geographical distribution,
and it provides particularly strong support for fault tolerance and
resilience.

Communicating Sequential Processes:  On the face of things, Communicating
Sequential Processes (CSP) has much in common with the actor model,
both being based on message passing. Its emphasis on the channels used
for communication, rather than the entities between which communication
takes place, leads to CSP-based programs having a very different flavor,
however.

Data parallelism:  You have a supercomputer hidden inside your laptop. The
GPU utilizes data parallelism to speed up graphics processing, but it can
be brought to bear on a much wider range of tasks. If you’re writing code
to perform finite element analysis, computational fluid dynamics, or
anything else that involves significant number-crunching, its performance
will eclipse almost anything else.

The Lambda Architecture:  Big Data would not be possible without paral-
lelism—only by bringing multiple computing resources to bear can we

report erratum  •  discuss

The Seven Models • 7

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


contemplate processing terabytes of data. The Lambda Architecture
combines the strengths of MapReduce and stream processing to create
an architecture that can tackle a wide variety of Big Data problems.

Each of these models has a different sweet spot. As you read through each
chapter, bear the following questions in mind:

• Is this model applicable to solving concurrent problems, parallel problems,
or both?

• Which parallel architecture or architectures can this model target?

• Does this model provide tools to help you write resilient or geographically
distributed code?

In the next chapter we’ll look at the first model, Threads and Locks.

Chapter 1. Introduction • 8

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


CHAPTER 2

Threads and Locks
Threads-and-locks programming is like a Ford Model T. It will get you from
point A to point B, but it is primitive, difficult to drive, and both unreliable
and dangerous compared to newer technology.

Despite their well-known problems, threads and locks are still the default
choice for writing much concurrent software, and they underpin many of the
other technologies we’ll be covering. Even if you don’t plan to use them
directly, you should understand how they work.

The Simplest Thing That Could Possibly Work
Threads and locks are little more than a formalization of what the underlying
hardware actually does. That’s both their great strength and their great
weakness.

Because they’re so simple, almost all languages support them in one form or
another, and they impose very few constraints on what can be achieved
through their use. But they also provide almost no help to the poor program-
mer, making programs very difficult to get right in the first place and even
more difficult to maintain.

We’ll cover threads-and-locks programming in Java, but the principles apply
to any language that supports threads. On day 1 we’ll cover the basics of
multithreaded code in Java, the primary pitfalls you’ll encounter, and some
rules that will help you avoid them. On day 2 we’ll go beyond these basics
and investigate the facilities provided by the java.util.concurrent package. Finally,
on day 3 we’ll look at some of the concurrent data structures provided by the
standard library and use them to solve a realistic real-world problem.

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


A Word About Best Practices

We’re going to start by looking at Java’s low-level thread and lock primitives. Well-
written modern code should rarely use these primitives directly, using the higher-level
services we’ll talk about in days 2 and 3 instead. Understanding these higher-level
services depends upon an appreciation of the underlying basics, so that’s what we’ll
cover first, but be aware that you probably shouldn’t be using the Thread class directly
within your production code.

Day 1: Mutual Exclusion and Memory Models
If you’ve done any concurrent programming at all, you’re probably already
familiar with the concept of mutual exclusion—using locks to ensure that only
one thread can access data at a time. And you’ll also be familiar with the
ways in which mutual exclusion can go wrong, including race conditions and
deadlocks (don’t worry if these terms mean nothing to you yet—we’ll cover
them all very soon).

These are real problems, and we’ll spend plenty of time talking about them,
but it turns out that there’s something even more basic you need to worry
about when dealing with shared memory—the Memory Model. And if you
think that race conditions and deadlocks can cause weird behavior, just wait
until you see how bizarre shared memory can be.

We’re getting ahead of ourselves, though—let’s start by seeing how to create
a thread.

Creating a Thread
The basic unit of concurrency in Java is the thread, which, as its name sug-
gests, encapsulates a single thread of control. Threads communicate with
each other via shared memory.

No programming book is complete without a “Hello, World!” example, so
without further ado here’s a multithreaded version:

ThreadsLocks/HelloWorld/src/main/java/com/paulbutcher/HelloWorld.java
public class HelloWorld {

public static void main(String[] args) throws InterruptedException {
Thread myThread = new Thread() {

public void run() {
System.out.println("Hello from new thread");

}
};

Chapter 2. Threads and Locks • 10

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/ThreadsLocks/HelloWorld/src/main/java/com/paulbutcher/HelloWorld.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


myThread.start();
Thread.yield();
System.out.println("Hello from main thread");
myThread.join();

}
}

This code creates an instance of Thread and then starts it. From this point on,
the thread’s run() method executes concurrently with the remainder of main().
Finally join() waits for the thread to terminate (which happens when run()
returns).

When you run this, you might get this output:

Hello from main thread
Hello from new thread

Or you might get this instead:

Hello from new thread
Hello from main thread

Which of these you see depends on which thread gets to its println() first (in
my tests, I saw each approximately 50% of the time). This kind of dependence
on timing is one of the things that makes multithreaded programming
tough—just because you see one behavior one time you run your code doesn’t
mean that you’ll see it consistently.

Joe asks:

Why the Thread.yield?
Our multithreaded “Hello, World!” includes the following line:

Thread.yield();

According to the Java documentation, yield() is:

a hint to the scheduler that the current thread is willing to yield its current use of a
processor.

Without this call, the startup overhead of the new thread would mean that the main
thread would almost certainly get to its println() first (although this isn’t guaranteed
to be the case—and as we’ll see, in concurrent programming if something can happen,
then sooner or later it will, probably at the most inconvenient moment).

Try commenting this method out and see what happens. What happens if you change
it to Thread.sleep(1)?

report erratum  •  discuss

Day 1: Mutual Exclusion and Memory Models • 11

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Our First Lock
When multiple threads access shared memory, they can end up stepping on
each others’ toes. We avoid this through mutual exclusion via locks, which
can be held by only a single thread at a time.

Let’s create a couple of threads that interact with each other:

ThreadsLocks/Counting/src/main/java/com/paulbutcher/Counting.java
public class Counting {

public static void main(String[] args) throws InterruptedException {
class Counter {

private int count = 0;
public void increment() { ++count; }
public int getCount() { return count; }

}
final Counter counter = new Counter();
class CountingThread extends Thread {

public void run() {
for(int x = 0; x < 10000; ++x)

counter.increment();
}

}

CountingThread t1 = new CountingThread();
CountingThread t2 = new CountingThread();
t1.start(); t2.start();
t1.join(); t2.join();
System.out.println(counter.getCount());

}
}

Here we have a very simple Counter class and two threads, each of which call
its increment() method 10,000 times. Very simple, and very broken.

Try running this code, and you’ll get a different answer each time. The last
three times I ran it, I got 13850, 11867, then 12616. The reason is a race condition
(behavior that depends on the relative timing of operations) in the two threads’
use of the count member of Counter.

If this surprises you, think about what the Java compiler generates for ++count.
Here are the bytecodes:

getfield #2
iconst_1
iadd
putfield #2

Even if you’re not familiar with JVM bytecodes, it’s clear what’s going on here:
getfield #2 retrieves the value of count, iconst_1 followed by iadd adds 1 to it, and

Chapter 2. Threads and Locks • 12

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/ThreadsLocks/Counting/src/main/java/com/paulbutcher/Counting.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


then putfield #2 writes the result back to count. This pattern is commonly known
as read-modify-write.

Imagine that both threads call increment() simultaneously. Thread 1 executes
getfield #2, retrieving the value 42. Before it gets a chance to do anything else,
thread 2 also executes getfield #2, also retrieving 42. Now we’re in trouble
because both of them will increment 42 by 1, and both of them will write the
result, 43, back to count. The effect is as though count had been incremented
once instead of twice.

The solution is to synchronize access to count. One way to do so is to use the
intrinsic lock that comes built into every Java object (you’ll sometimes hear
it referred to as a mutex, monitor, or critical section) by making increment()
synchronized:

ThreadsLocks/CountingFixed/src/main/java/com/paulbutcher/Counting.java
class Counter {

private int count = 0;
public synchronized void increment() { ++count; }➤

public int getCount() { return count; }
}

Now increment() claims the Counter object’s lock when it’s called and releases it
when it returns, so only one thread can execute its body at a time. Any other
thread that calls it will block until the lock becomes free (later in this chapter
we’ll see that, for simple cases like this where only one variable is involved,
the java.util.concurrent.atomic package provides good alternatives to using a lock).

Sure enough, when we execute this new version, we get the result 20000 every
time.

But all is not rosy—our new code still contains a subtle bug, the cause of
which we’ll cover next.

Mysterious Memory
Let’s spice things up with a puzzle. What will this code output?

ThreadsLocks/Puzzle/src/main/java/com/paulbutcher/Puzzle.java
public class Puzzle {Line 1

static boolean answerReady = false;-

static int answer = 0;-

static Thread t1 = new Thread() {-

public void run() {5

answer = 42;-

answerReady = true;-

}-

};-

report erratum  •  discuss

Day 1: Mutual Exclusion and Memory Models • 13

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/ThreadsLocks/CountingFixed/src/main/java/com/paulbutcher/Counting.java
http://media.pragprog.com/titles/pb7con/code/ThreadsLocks/Puzzle/src/main/java/com/paulbutcher/Puzzle.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


static Thread t2 = new Thread() {10

public void run() {-

if (answerReady)-

System.out.println("The meaning of life is: " + answer);-

else-

System.out.println("I don't know the answer");15

}-

};-

-

public static void main(String[] args) throws InterruptedException {-

t1.start(); t2.start();20

t1.join(); t2.join();-

}-

}-

If you’re thinking “race condition!” you’re absolutely right. We might see the
answer to the meaning of life or a disappointing admission that our computer
doesn’t know it, depending on the order in which the threads happen to run.
But that’s not all—there’s one other result we might see:

The meaning of life is: 0

What?! How can answer possibly be zero if answerReady is true? It’s almost as if
something switched lines 6 and 7 around underneath our feet.

Well, it turns out that it’s entirely possible for something to do exactly that.
Several somethings, in fact:

• The compiler is allowed to statically optimize your code by reordering
things.

• The JVM is allowed to dynamically optimize your code by reordering things.

• The hardware you’re running on is allowed to optimize performance by
reordering things.

It goes further than just reordering. Sometimes effects don’t become visible
to other threads at all. Imagine that we rewrote run() as follows:

public void run() {
while (!answerReady)

Thread.sleep(100);
System.out.println("The meaning of life is: " + answer);

}

Our program may never exit because answerReady may never appear to become
true.

If your first reaction to this is that the compiler, JVM, and hardware should
keep their sticky fingers out of your code, that’s understandable. Unfortunately,

Chapter 2. Threads and Locks • 14

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


it’s also unachievable—much of the increased performance we’ve seen over the
last few years has come from exactly these optimizations. Shared-memory
parallel computers, in particular, depend on them. So we’re stuck with having
to deal with the consequences.

Clearly, this can’t be a free-for-all—we need something to tell us what we can
and cannot rely on. That’s where the Java memory model comes in.

Memory Visibility
The Java memory model defines when changes to memory made by one thread
become visible to another thread.1 The bottom line is that there are no guar-
antees unless both the reading and the writing threads use synchronization.

We’ve already seen one example of synchronization—obtaining an object’s
intrinsic lock. Others include starting a thread, detecting that a thread is
stopped with join(), and using many of the classes in the java.util.concurrent package.

An important point that’s easily missed is that both threads need to use
synchronization. It’s not enough for just the thread making changes to do so.
This is the cause of a subtle bug still remaining in the code on page 13.
Making increment() synchronized isn’t enough—getCount() needs to be synchro-
nized as well. If it isn’t, a thread calling getCount() may see a stale value (as it
happens, the way that getCount() is used in the code on page 12 is thread-safe,
because it’s called after a call to join(), but it’s a ticking time bomb waiting for
anyone who uses Counter).

We’ve spoken about race conditions and memory visibility, two common ways
that multithreaded programs can go wrong. Now we’ll move on to the third:
deadlock.

Multiple Locks
You would be forgiven if, after reading the preceding text, you thought that
the only way to be safe in a multithreaded world was to make every method
synchronized. Unfortunately, it’s not that easy.

Firstly, this would be dreadfully inefficient. If every method were synchronized,
most threads would probably spend most of their time blocked, defeating the
point of making your code concurrent in the first place. But this is the least
of your worries—as soon as you have more than one lock (remember, in Java
every object has its own lock), you create the opportunity for threads to become
deadlocked.

1. http://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.4

report erratum  •  discuss

Day 1: Mutual Exclusion and Memory Models • 15

www.finebook.ir   

http://docs.oracle.com/javase/specs/jls/se7/html/jls-17.html#jls-17.4
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


We’ll demonstrate deadlock with a nice little example commonly used in
academic papers on concurrency—the “dining philosophers” problem. Imagine
that five philosophers are sitting around a table, with five (not ten) chopsticks
arranged like this:

A philosopher is either thinking or hungry. If he’s hungry, he picks up the
chopsticks on either side of him and eats for a while (yes, our philosophers
are male—women would behave more sensibly). When he’s done, he puts
them down.

Here’s how we might implement one of our philosophers:

ThreadsLocks/DiningPhilosophers/src/main/java/com/paulbutcher/Philosopher.java
class Philosopher extends Thread {Line 1

private Chopstick left, right;-

private Random random;-

-

public Philosopher(Chopstick left, Chopstick right) {5

this.left = left; this.right = right;-

random = new Random();-

}-

-

public void run() {10

try {-

while(true) {-

Thread.sleep(random.nextInt(1000)); // Think for a while-

synchronized(left) { // Grab left chopstick //-

synchronized(right) { // Grab right chopstick //15

Thread.sleep(random.nextInt(1000)); // Eat for a while-

}-

}-

}-

} catch(InterruptedException e) {}20

}-

}-

Chapter 2. Threads and Locks • 16

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/ThreadsLocks/DiningPhilosophers/src/main/java/com/paulbutcher/Philosopher.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Lines 14 and 15 demonstrate an alternative way of claiming an object’s
intrinsic lock: synchronized(object).

On my machine, if I set five of these going simultaneously, they typically run
very happily for hours on end (my record is over a week). Then, all of a sudden,
everything grinds to a halt.

After a little thought, it’s obvious what’s going on—if all the philosophers
decide to eat at the same time, they all grab their left chopstick and then find
themselves stuck—each has one chopstick, and each is blocked waiting for
the philosopher on his right. Deadlock.

Deadlock is a danger whenever a thread tries to hold more than one lock.
Happily, there is a simple rule that guarantees you will never deadlock—always
acquire locks in a fixed, global order.

Here’s one way we can achieve this:

ThreadsLocks/DiningPhilosophersFixed/src/main/java/com/paulbutcher/Philosopher.java
class Philosopher extends Thread {

private Chopstick first, second;➤

private Random random;

public Philosopher(Chopstick left, Chopstick right) {
if(left.getId() < right.getId()) {➤

first = left; second = right;➤

} else {➤

first = right; second = left;➤

}➤

random = new Random();
}

public void run() {
try {

while(true) {
Thread.sleep(random.nextInt(1000)); // Think for a while
synchronized(first) { // Grab first chopstick➤

synchronized(second) { // Grab second chopstick➤

Thread.sleep(random.nextInt(1000)); // Eat for a while
}

}
}

} catch(InterruptedException e) {}
}

}

Instead of holding on to left and right chopsticks, we now hold on to first and
second, using Chopstick’s id member to ensure that we always lock chopsticks
in increasing ID order (we don’t actually care what IDs chopsticks have—just

report erratum  •  discuss

Day 1: Mutual Exclusion and Memory Models • 17

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/ThreadsLocks/DiningPhilosophersFixed/src/main/java/com/paulbutcher/Philosopher.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Joe asks:

Can I Use an Object’s Hash to Order Locks?
One piece of advice you’ll often see is to use an object’s hash code to order lock
acquisition, such as shown here:

if(System.identityHashCode(left) < System.identityHashCode(right)) {
first = left; second = right;

} else {
first = right; second = left;

}

This technique has the advantage of working for any object, and it avoids having to
add a means of ordering your objects if they don’t already define one. But hash codes
aren’t guaranteed to be unique (two objects are very unlikely to have the same hash
code, but it does happen). So personally speaking, I wouldn’t use this approach unless
I really had no choice.

that they’re unique and ordered). And sure enough, now things will happily
run forever without locking up.

It’s easy to see how to stick to the global ordering rule when the code to acquire
locks is all in one place. It gets much harder in a large program, where a
global understanding of what all the code is doing is impractical.

The Perils of Alien Methods
Large programs often make use of listeners to decouple modules. Here, for
example, is a class that downloads from a URL and allows ProgressListeners to
be registered:

ThreadsLocks/HttpDownload/src/main/java/com/paulbutcher/Downloader.java
class Downloader extends Thread {

private InputStream in;
private OutputStream out;
private ArrayList<ProgressListener> listeners;

public Downloader(URL url, String outputFilename) throws IOException {
in = url.openConnection().getInputStream();
out = new FileOutputStream(outputFilename);
listeners = new ArrayList<ProgressListener>();

}
public synchronized void addListener(ProgressListener listener) {

listeners.add(listener);
}
public synchronized void removeListener(ProgressListener listener) {

listeners.remove(listener);
}

Chapter 2. Threads and Locks • 18

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/ThreadsLocks/HttpDownload/src/main/java/com/paulbutcher/Downloader.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


private synchronized void updateProgress(int n) {
for (ProgressListener listener: listeners)
listener.onProgress(n);➤

}

public void run() {
int n = 0, total = 0;
byte[] buffer = new byte[1024];

try {
while((n = in.read(buffer)) != -1) {

out.write(buffer, 0, n);
total += n;
updateProgress(total);

}
out.flush();

} catch (IOException e) { }
}

}

Because addListener(), removeListener(), and updateProgress() are all synchronized,
multiple threads can call them without stepping on one another’s toes. But
a trap lurks in this code that could lead to deadlock even though there’s only
a single lock in use.

The problem is that updateProgress() calls an alien method—a method it knows
nothing about. That method could do anything, including acquiring another
lock. If it does, then we’ve acquired two locks without knowing whether we’ve
done so in the right order. As we’ve just seen, that can lead to deadlock.

The only solution is to avoid calling alien methods while holding a lock. One
way to achieve this is to make a defensive copy of listeners before iterating
through it:

ThreadsLocks/HttpDownloadFixed/src/main/java/com/paulbutcher/Downloader.java
private void updateProgress(int n) {

ArrayList<ProgressListener> listenersCopy;
synchronized(this) {

listenersCopy = (ArrayList<ProgressListener>)listeners.clone();➤

}
for (ProgressListener listener: listenersCopy)

listener.onProgress(n);
}

This change kills several birds with one stone. Not only does it avoid calling
an alien method with a lock held, it also minimizes the period during which
we hold the lock. Holding locks for longer than necessary both hurts perfor-
mance (by restricting the degree of achievable concurrency) and increases

report erratum  •  discuss

Day 1: Mutual Exclusion and Memory Models • 19

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/ThreadsLocks/HttpDownloadFixed/src/main/java/com/paulbutcher/Downloader.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


the danger of deadlock. This change also fixes another bug that isn’t related
to concurrency—a listener can now call removeListener() within its onProgress()
method without modifying the copy of listeners that’s mid-iteration.

Day 1 Wrap-Up
This brings us to the end of day 1. We’ve covered the basics of multithreaded
code in Java, but as we’ll see in day 2, the standard library provides alterna-
tives that are often a better choice.

What We Learned in Day 1

We covered how to create threads and use the intrinsic locks built into every
Java object to enforce mutual exclusion between them. We also saw the three
primary perils of threads and locks—race conditions, deadlock, and memory
visibility, and we discussed some rules that help us avoid them:

• Synchronize all access to shared variables.
• Both the writing and the reading threads need to use synchronization.
• Acquire multiple locks in a fixed, global order.
• Don’t call alien methods while holding a lock.
• Hold locks for the shortest possible amount of time.

Day 1 Self-Study

Find

• Check out William Pugh’s “Java memory model” website.

• Acquaint yourself with the JSR 133 (Java memory model) FAQ.

• What guarantees does the Java memory model make regarding initializa-
tion safety? Is it always necessary to use locks to safely publish objects
between threads?

• What is the double-checked locking anti-pattern? Why is it an anti-pattern?

Do

• Experiment with the original, broken “dining philosophers” example. Try
modifying the length of time that philosophers think and eat and the
number of philosophers. What effect does this have on how long it takes
until deadlock? Imagine that you were trying to debug this and wanted
to increase the likelihood of reproducing the deadlock—what would you
do?

Chapter 2. Threads and Locks • 20

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


• (Hard) Create a program that demonstrates writes to memory appearing
to be reordered in the absence of synchronization. This is difficult because
although the Java memory model allows things to be reordered, most
simple examples won’t be optimized to the point of actually demonstrating
the problem.

Day 2: Beyond Intrinsic Locks
Day 1 covered Java’s Thread class and the intrinsic locks built into every Java
object. For a long time this was pretty much all the support that Java provided
for concurrent programming. Java 5 changed all that with the introduction
of java.util.concurrent.  Today we’ll look at the enhanced locking mechanisms it
provides.

Intrinsic locks are convenient but limited.

• There is no way to interrupt a thread that’s blocked as a result of trying
to acquire an intrinsic lock.

• There is no way to time out while trying to acquire an intrinsic lock.

• There’s exactly one way to acquire an intrinsic lock: a synchronized block.

synchronized(object) {
«use shared resources»

}

This means that lock acquisition and release have to take place in the
same method and have to be strictly nested. Note that declaring a method
as synchronized is just syntactic sugar for surrounding the method’s body
with the following:

synchronized(this) {
«method body»

}

ReentrantLock allows us to transcend these restrictions by providing explicit lock
and unlock methods instead of using synchronized.

Before we go into how it improves upon intrinsic locks, here’s how ReentrantLock
can be used as a straight replacement for synchronized:

Lock lock = new ReentrantLock();
lock.lock();
try {
«use shared resources»

} finally {
lock.unlock();

}

report erratum  •  discuss

Day 2: Beyond Intrinsic Locks • 21

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


The try … finally is good practice to ensure that the lock is always released, no
matter what happens in the code the lock is protecting.

Now let’s see how it lifts the restrictions of intrinsic locks.

Interruptible Locking
Because a thread that’s blocked on an intrinsic lock is not interruptible, we
have no way to recover from a deadlock. We can see this with a small example
that manufactures a deadlock and then tries to interrupt the threads:

ThreadsLocks/Uninterruptible/src/main/java/com/paulbutcher/Uninterruptible.java
public class Uninterruptible {

public static void main(String[] args) throws InterruptedException {

final Object o1 = new Object(); final Object o2 = new Object();

Thread t1 = new Thread() {
public void run() {

try {
synchronized(o1) {

Thread.sleep(1000);
synchronized(o2) {}

}
} catch (InterruptedException e) { System.out.println("t1 interrupted"); }

}
};

Thread t2 = new Thread() {
public void run() {

try {
synchronized(o2) {

Thread.sleep(1000);
synchronized(o1) {}

}
} catch (InterruptedException e) { System.out.println("t2 interrupted"); }

}
};

t1.start(); t2.start();
Thread.sleep(2000);
t1.interrupt(); t2.interrupt();
t1.join(); t2.join();

}
}

This program will deadlock forever—the only way to exit it is to kill the JVM

running it.

Chapter 2. Threads and Locks • 22

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/ThreadsLocks/Uninterruptible/src/main/java/com/paulbutcher/Uninterruptible.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Joe asks:

Is There Really No Way to Kill a Deadlocked
Thread?

You might think that there has to be some way to kill a deadlocked thread. Sadly,
you would be wrong. All the mechanisms that have been tried to achieve this have
been shown to be flawed and are now deprecated.a

The bottom line is that there is exactly one way to exit a thread in Java, and that’s
for the run() method to return (possibly as a result of an InterruptedException). So if your
thread is deadlocked on an intrinsic lock, you’re simply out of luck. You can’t interrupt
it, and the only way that thread is ever going to exit is if you kill the JVM it’s running
in.

a. http://docs.oracle.com/javase/1.5.0/docs/guide/misc/threadPrimitiveDeprecation.html

There is a solution, however. We can reimplement our threads using Reentrant-
Lock instead of intrinsic locks, and we can use its lockInterruptibly() method:

ThreadsLocks/Interruptible/src/main/java/com/paulbutcher/Interruptible.java
final ReentrantLock l1 = new ReentrantLock();
final ReentrantLock l2 = new ReentrantLock();

Thread t1 = new Thread() {
public void run() {

try {
l1.lockInterruptibly();➤

Thread.sleep(1000);
l2.lockInterruptibly();➤

} catch (InterruptedException e) { System.out.println("t1 interrupted"); }
}

};

This version exits cleanly when Thread.interrupt() is called. The slightly noisier
syntax of this version seems a small price to pay for the ability to interrupt
a deadlocked thread.

Timeouts
ReentrantLock lifts another limitation of intrinsic locks: it allows us to time out
while trying to acquire a lock. This provides us with an alternative way to
solve the “dining philosophers” problem from day 1.

Here’s a Philosopher that times out if it fails to get both chopsticks:

report erratum  •  discuss

Day 2: Beyond Intrinsic Locks • 23

www.finebook.ir   

http://docs.oracle.com/javase/1.5.0/docs/guide/misc/threadPrimitiveDeprecation.html
http://media.pragprog.com/titles/pb7con/code/ThreadsLocks/Interruptible/src/main/java/com/paulbutcher/Interruptible.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


ThreadsLocks/DiningPhilosophersTimeout/src/main/java/com/paulbutcher/Philosopher.java
class Philosopher extends Thread {

private ReentrantLock leftChopstick, rightChopstick;
private Random random;

public Philosopher(ReentrantLock leftChopstick, ReentrantLock rightChopstick) {
this.leftChopstick = leftChopstick; this.rightChopstick = rightChopstick;
random = new Random();

}

public void run() {
try {

while(true) {
Thread.sleep(random.nextInt(1000)); // Think for a while
leftChopstick.lock();
try {

if (rightChopstick.tryLock(1000, TimeUnit.MILLISECONDS)) {➤

// Got the right chopstick
try {

Thread.sleep(random.nextInt(1000)); // Eat for a while
} finally { rightChopstick.unlock(); }

} else {
// Didn't get the right chopstick - give up and go back to thinking➤

}
} finally { leftChopstick.unlock(); }

}
} catch(InterruptedException e) {}

}
}

Instead of using lock(), this code uses tryLock(), which times out if it fails to
acquire the lock. This means that, even though we don’t follow the “acquire
multiple locks in a fixed, global order” rule, this version will not deadlock (or
at least, will not deadlock forever).

Livelock

Although the tryLock() solution avoids infinite deadlock, that doesn’t mean it’s a good
solution. Firstly, it doesn’t avoid deadlock—it simply provides a way to recover when
it happens. Secondly, it’s susceptible to a phenomenon known as livelock—if all the
threads time out at the same time, it’s quite possible for them to immediately deadlock
again. Although the deadlock doesn’t last forever, no progress is made either.

This situation can be mitigated by having each thread use a different timeout value,
for example, to minimize the chances that they will all time out simultaneously. But
the bottom line is that timeouts are rarely a good solution—it’s far better to avoid
deadlock in the first place.

Chapter 2. Threads and Locks • 24

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/ThreadsLocks/DiningPhilosophersTimeout/src/main/java/com/paulbutcher/Philosopher.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Hand-over-Hand Locking
Imagine that we want to insert an entry into a linked list. One approach would
be to have a single lock protecting the whole list, but this would mean that
nobody else could access it while we held the lock. Hand-over-hand locking
is an alternative in which we lock only a small portion of the list, allowing
other threads unfettered access as long as they’re not looking at the particular
nodes we’ve got locked. Here’s a graphical representation:

1

1 2

2

3 4

2 3

3

Figure 3—Hand-over-hand locking

To insert a node, we need to lock the two nodes on either side of the point
we’re going to insert. We start by locking the first two nodes of the list. If this
isn’t the right place to insert the new node, we unlock the first node and lock
the third. If this still isn’t the right place, we unlock the second and lock the
fourth. This continues until we find the appropriate place, insert the new
node, and finally unlock the nodes on either side.

This sequence of locks and unlocks is impossible with intrinsic locks, but it
is possible with ReentrantLock because we can call lock() and unlock() whenever

report erratum  •  discuss

Day 2: Beyond Intrinsic Locks • 25

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


we like. Here is a class that implements a sorted linked list using this
approach:

ThreadsLocks/LinkedList/src/main/java/com/paulbutcher/ConcurrentSortedList.java
class ConcurrentSortedList {Line 1

-

private class Node {-

int value;-

Node prev;5

Node next;-

ReentrantLock lock = new ReentrantLock();-

-

Node() {}-

10

Node(int value, Node prev, Node next) {-

this.value = value; this.prev = prev; this.next = next;-

}-

}-

15

private final Node head;-

private final Node tail;-

-

public ConcurrentSortedList() {-

head = new Node(); tail = new Node();20

head.next = tail; tail.prev = head;-

}-

-

public void insert(int value) {-

Node current = head;25

current.lock.lock();-

Node next = current.next;-

try {-

while (true) {-

next.lock.lock();30

try {-

if (next == tail || next.value < value) {-

Node node = new Node(value, current, next);-

next.prev = node;-

current.next = node;35

return;-

}-

} finally { current.lock.unlock(); }-

current = next;-

next = current.next;40

}-

} finally { next.lock.unlock(); }-

}-

}-

Chapter 2. Threads and Locks • 26

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/ThreadsLocks/LinkedList/src/main/java/com/paulbutcher/ConcurrentSortedList.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


The insert() method ensures that the list is always sorted by searching until it
finds the first entry that’s less than the new one. When it does, it inserts the
new node just before.

Line 26 locks the head of the list, and line 30 locks the next node. We then
check to see if we’ve found the right place to insert our new node. If not, the
current node is unlocked on line 38 and we loop. If we have found the right
place, lines 33–36 create the new node, insert it into the list, and return. The
locks are released in the two finally blocks (lines 38 and 42).

Not only can several threads insert entries concurrently using this scheme,
but other operations can also safely take place on the list. Here, for example,
is a method that counts how many elements are in the list—and just for kicks
it iterates backward through the list:

ThreadsLocks/LinkedList/src/main/java/com/paulbutcher/ConcurrentSortedList.java
public int size() {

Node current = tail;
int count = 0;

while (current.prev != head) {
ReentrantLock lock = current.lock;
lock.lock();
try {
++count;
current = current.prev;

} finally { lock.unlock(); }
}

return count;
}

We’ll look at one further feature of ReentrantLock today—condition variables.

Joe asks:

Doesn’t This Break the “Global Ordering” Rule?
ConcurrentSortedList’s insert() method acquires locks starting at the head of the list and
moving toward the tail. The size() method above acquires them from the tail of the list,
moving toward the head. Doesn’t this violate the “Always acquire multiple locks in a
fixed, global order” rule?

It doesn’t, because the size() method never holds multiple locks—it never holds more
than a single lock at a time.

report erratum  •  discuss

Day 2: Beyond Intrinsic Locks • 27

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/ThreadsLocks/LinkedList/src/main/java/com/paulbutcher/ConcurrentSortedList.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Condition Variables
Concurrent programming often involves waiting for something to happen.
Perhaps we need to wait for a queue to become nonempty before removing
an element from it. Or we need to wait for space to be available in a buffer
before adding something to it. This type of situation is what condition variables
are designed to address.

To use a condition variable effectively, we need to follow a very specific pattern:

ReentrantLock lock = new ReentrantLock();
Condition condition = lock.newCondition();

lock.lock();
try {

while (!«condition is true»)
condition.await();

«use shared resources»
} finally { lock.unlock(); }

A condition variable is associated with a lock, and a thread must hold that
lock before being able to wait on the condition. Once it holds the lock, it
checks to see if the condition that it’s interested in is already true. If it is,
then it continues with whatever it wants to do and unlocks the lock.

If, however, the condition is not true, it calls await(), which atomically unlocks
the lock and blocks on the condition variable. An operation is atomic if, from
the point of view of another thread, it appears to be a single operation that
has either happened or not—it never appears to be halfway through.

When another thread calls signal() or signalAll() to indicate that the condition
might now be true, await() unblocks and automatically reacquires the lock. An
important point is that when await() returns, it only indicates that the condition
might be true. This is why await() is called within a loop—we need to go back,
recheck whether the condition is true, and potentially block on await() again
if necessary.

This gives us yet another solution to the “dining philosophers” problem:

ThreadsLocks/DiningPhilosophersCondition/src/main/java/com/paulbutcher/Philosopher.java
class Philosopher extends Thread {

private boolean eating;
private Philosopher left;
private Philosopher right;
private ReentrantLock table;
private Condition condition;
private Random random;

Chapter 2. Threads and Locks • 28

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/ThreadsLocks/DiningPhilosophersCondition/src/main/java/com/paulbutcher/Philosopher.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


public Philosopher(ReentrantLock table) {
eating = false;
this.table = table;
condition = table.newCondition();
random = new Random();

}

public void setLeft(Philosopher left) { this.left = left; }
public void setRight(Philosopher right) { this.right = right; }

public void run() {
try {

while (true) {
think();
eat();

}
} catch (InterruptedException e) {}

}

private void think() throws InterruptedException {
table.lock();
try {
eating = false;
left.condition.signal();
right.condition.signal();

} finally { table.unlock(); }
Thread.sleep(1000);

}

private void eat() throws InterruptedException {
table.lock();
try {

while (left.eating || right.eating)
condition.await();

eating = true;
} finally { table.unlock(); }
Thread.sleep(1000);

}
}

This solution differs from those we’ve already seen by using only a single lock
(table) and not having an explicit Chopstick class. Instead we make use of the
fact that a philosopher can eat if neither of his neighbors is currently eating.
In other words, a hungry philosopher is waiting for this condition:

!(left.eating || right.eating)

When a philosopher is hungry, he first locks the table so no other philosophers
can change state, and then he checks to see if his neighbors are currently

report erratum  •  discuss

Day 2: Beyond Intrinsic Locks • 29

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


eating. If they aren’t, he can start to eat and release the table. Otherwise, he
calls await() (which unlocks the table).

When a philosopher has finished eating and wants to start thinking, he first
locks the table and sets eating to false. Then he signals both of his neighbors
to let them know that they might be able to start eating and releases the table.
If those neighbors are currently waiting, they’ll be woken, reacquire the lock
on the table, and check again to see if they can eat.

Although this code is more complex than the other solutions we’ve seen, the
payoff is that it results in significantly better concurrency. With the previous
solutions, it’s often the case that only a single hungry philosopher can eat,
because the others all have a single chopstick and are waiting for the other
to become available. With this solution, whenever it’s theoretically possible
for a philosopher to eat (when neither of his neighbors are eating), he will be
able to do so.

That’s it for ReentrantLock, but there’s another alternative to intrinsic locks that
we’ll cover next—atomic variables.

Atomic Variables
On day 1, we fixed our multithreaded counter by making the increment() method
synchronized (see the code on page 13). It turns out that java.util.concurrent.atomic
provides a better option:

ThreadsLocks/CountingBetter/src/main/java/com/paulbutcher/Counting.java
public class Counting {

public static void main(String[] args) throws InterruptedException {

final AtomicInteger counter = new AtomicInteger();➤

class CountingThread extends Thread {
public void run() {

for(int x = 0; x < 10000; ++x)
counter.incrementAndGet();➤

}
}

CountingThread t1 = new CountingThread();
CountingThread t2 = new CountingThread();

t1.start(); t2.start();
t1.join(); t2.join();

System.out.println(counter.get());
}

}

Chapter 2. Threads and Locks • 30

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/ThreadsLocks/CountingBetter/src/main/java/com/paulbutcher/Counting.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


AtomicInteger’s incrementAndGet() method is functionally equivalent to ++count (it
also supports getAndIncrement, which is equivalent to count++). Unlike ++count,
however, it’s atomic.

Using an atomic variable instead of locks has a number of benefits. First, it’s
not possible to forget to acquire the lock when necessary. For example, the
memory-visibility problem in Counter, which arose because getCount() wasn’t
synchronized, cannot occur with this code. Second, because no locks are
involved, it’s impossible for an operation on an atomic variable to deadlock.

Finally, atomic variables are the foundation of non-blocking, lock-free algo-
rithms, which achieve synchronization without locks or blocking. If you think
that programming with locks is tricky, then just wait until you try writing
lock-free code. Happily, the classes in java.util.concurrent make use of lock-free
code where possible, so you can take advantage painlessly. We’ll cover these
classes in day 3, but for now this brings us to the end of day 2.

Joe asks:

What About Volatile?
Java allows us to mark a variable as volatile. Doing so guarantees that reads and
writes to that variable will not be reordered. We could fix Puzzle (see the code on page
13) by making answerReady volatile.

Volatile is a very weak form of synchronization. It would not help us fix Counter, for
example, because making count volatile would not ensure that count++ is atomic.

These days, with highly optimized JVMs that have very low-overhead locks, valid use
cases for volatile variables are rare. If you find yourself considering volatile, you should
probably use one of the java.util.concurrent.atomic classes instead.

Day 2 Wrap-Up
We’ve built upon the basics introduced in day 1 to cover the more sophisticated
and flexible mechanisms provided by java.util.concurrent.locks and java.util.concur-
rent.atomic. Although it’s important to understand these mechanisms, you’ll
rarely use locks directly in practice, as we’ll see in day 3.

What We Learned in Day 2

We saw how ReentrantLock and java.util.concurrent.atomic can overcome the limitations
of intrinsic locks so that our threads can do the following:

report erratum  •  discuss

Day 2: Beyond Intrinsic Locks • 31

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


• Be interrupted while trying to acquire a lock
• Time out while acquiring a lock
• Acquire and release locks in any order
• Use condition variables to wait for arbitrary conditions to become true
• Avoid locks entirely by using atomic variables

Day 2 Self-Study

Find

• ReentrantLock supports a fairness parameter. What does it mean for a lock
to be “fair”? Why might you choose to use a fair lock? Why might you not?

• What is ReentrantReadWriteLock? How does it differ from ReentrantLock? When
might you use it?

• What is a “spurious wakeup”? When can one happen and why doesn’t a
well-written program care if one does?

• What is AtomicIntegerFieldUpdater? How does it differ from AtomicInteger? When
might you use it?

Do

• What would happen if the loop within the “dining philosophers” implemen-
tation that uses condition variables was replaced with a simple if statement?
What failure modes might you see? What would happen if the call to signal()
was replaced by signalAll()? What problems (if any) would this cause?

• Just as intrinsic locks are more limited than ReentrantLock, they also support
a more limited type of condition variable. Rewrite the dining philosophers
to use an intrinsic lock plus the wait() and notify() or notifyAll() methods. Why
is it less efficient than using ReentrantLock?

• Write a version of ConcurrentSortedList that uses a single lock instead of
hand-over-hand locking. Benchmark it against the other version. Does
hand-over-hand locking provide any performance advantage? When might
it be a good choice? When might it not?

Day 3: On the Shoulders of Giants
As well as the enhanced locks we covered in day 2, java.util.concurrent contains
a collection of general-purpose, high-performance, and thoroughly debugged
concurrent data structures and utilities. Today we’ll see that more often than
not, these prove to be a better choice than rolling our own solution.

Chapter 2. Threads and Locks • 32

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Thread-Creation Redux
In day 1 we saw how to start threads, but it turns out that it rarely makes
sense to create threads directly. Here, for example, is a very simple server
that echoes whatever it’s sent:

ThreadsLocks/EchoServer/src/main/java/com/paulbutcher/EchoServer.java
public class EchoServer {

public static void main(String[] args) throws IOException {

class ConnectionHandler implements Runnable {
InputStream in; OutputStream out;
ConnectionHandler(Socket socket) throws IOException {

in = socket.getInputStream();
out = socket.getOutputStream();

}

public void run() {
try {

int n;
byte[] buffer = new byte[1024];
while((n = in.read(buffer)) != -1) {
out.write(buffer, 0, n);
out.flush();

}
} catch (IOException e) {}

}
}

ServerSocket server = new ServerSocket(4567);
while (true) {

Socket socket = server.accept();➤

Thread handler = new Thread(new ConnectionHandler(socket));➤

handler.start();➤

}
}

}

The highlighted lines follow the common pattern of accepting an incoming
connection and then immediately creating a new thread to handle it. This
works fine, but it suffers from a couple of issues. First, although thread cre-
ation is cheap, it’s not free, and this design will pay that price for each
connection. Second, it creates as many threads as connections—if connections
are coming in faster than they can be handled, then the number of threads
will increase and the server will grind to a halt and possibly even crash. This
is a perfect opening for anyone who wants to subject your server to a denial-
of-service attack.

report erratum  •  discuss

Day 3: On the Shoulders of Giants • 33

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/ThreadsLocks/EchoServer/src/main/java/com/paulbutcher/EchoServer.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


We can avoid these problems by using a thread pool:

ThreadsLocks/EchoServerBetter/src/main/java/com/paulbutcher/EchoServer.java
int threadPoolSize = Runtime.getRuntime().availableProcessors() * 2;
ExecutorService executor = Executors.newFixedThreadPool(threadPoolSize);
while (true) {

Socket socket = server.accept();
executor.execute(new ConnectionHandler(socket));

}

This code creates a thread pool with twice as many threads as there are
available processors. If more than this number of execute() requests are active
at a time, they will be queued until a thread becomes free. Not only does this
mean that we don’t incur the overhead of thread creation for each connection,
but it also ensures that our server will continue to make progress in the face
of high load (not that it will service the incoming requests quickly enough to
keep up, but at least some of them will be serviced).

Copy on Write
On day 1 we looked at how to call listeners safely in a concurrent program.
If you recall, we modified updateProgress() to make a defensive copy (see the code
on page 19). It turns out that the Java standard library provides a more ele-
gant, ready-made solution in CopyOnWriteArrayList:

ThreadsLocks/HttpDownloadBetter/src/main/java/com/paulbutcher/Downloader.java
private CopyOnWriteArrayList<ProgressListener> listeners;

public void addListener(ProgressListener listener) {
listeners.add(listener);

}
public void removeListener(ProgressListener listener) {

listeners.remove(listener);
}
private void updateProgress(int n) {

for (ProgressListener listener: listeners)
listener.onProgress(n);

}

As its name suggests, CopyOnWriteArrayList turns our previous defensive copy
strategy on its head. Instead of making a copy before iterating through the
list, it makes a copy whenever it’s changed. Any existing iterators will continue
to refer to the previous copy. This isn’t an approach that would be appropriate
for many use cases, but it’s perfect for this one.

First, as you can see, it results in very clear and concise code. In fact, apart
from the definition of listeners, it’s identical to the naïve, non-thread-safe version
we first came up with in the code on page 18. Second, it’s more efficient

Chapter 2. Threads and Locks • 34

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/ThreadsLocks/EchoServerBetter/src/main/java/com/paulbutcher/EchoServer.java
http://media.pragprog.com/titles/pb7con/code/ThreadsLocks/HttpDownloadBetter/src/main/java/com/paulbutcher/Downloader.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Joe asks:

How Large Should My Thread Pool Be?
The optimum number of threads will vary according to the hardware you’re running
on, whether your threads are IO or CPU bound, what else the machine is doing at the
same time, and a host of other factors.

Having said that, a good rule of thumb is that for computation-intensive tasks, you
probably want to have approximately the same number of threads as available cores.
Larger numbers are appropriate for IO-intensive tasks.

Beyond this rule of thumb, your best bet is to create a realistic load test and break
out the stopwatch.

because we don’t have to make a copy each time updateProgress() is called, but
only when listeners is modified (which is likely to happen much less often).

A Complete Program
Up until now, we’ve looked at individual tools in isolation. For the remainder
of today, we’ll look at solving a small but realistic problem: What’s the most
commonly used word on Wikipedia?

It should be easy enough to find out—just download an XML dump and write
a program to parse it and count the words.2 Given that the dump weighs in
at around 40 GiB, it’s going to take a while; perhaps we can speed it up by
parallelizing things?

Let’s start by getting a baseline—how long does a simple sequential program
take to count the words in the first 100,000 pages?

ThreadsLocks/WordCount/src/main/java/com/paulbutcher/WordCount.java
public class WordCount {

private static final HashMap<String, Integer> counts =
new HashMap<String, Integer>();

public static void main(String[] args) throws Exception {
Iterable<Page> pages = new Pages(100000, "enwiki.xml");
for(Page page: pages) {

Iterable<String> words = new Words(page.getText());
for (String word: words)

countWord(word);
}

}

2. http://dumps.wikimedia.org/enwiki/

report erratum  •  discuss

Day 3: On the Shoulders of Giants • 35

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/ThreadsLocks/WordCount/src/main/java/com/paulbutcher/WordCount.java
http://dumps.wikimedia.org/enwiki/
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


private static void countWord(String word) {
Integer currentCount = counts.get(word);
if (currentCount == null)
counts.put(word, 1);

else
counts.put(word, currentCount + 1);

}
}

On my MacBook Pro, this runs in just under 105 seconds.

So where do we start with a parallel version? Each iteration of the main loop
performs two tasks—first it parses enough of the XML to produce a Page, and
then it consumes that page by counting the words in its text.

There is a classic pattern that can be applied to this kind of problem—the
producer-consumer pattern. Instead of a single thread that alternates between
producing values and then consuming them, we create two threads, a producer
and a consumer.

Here’s a Parser implemented as a producer:

ThreadsLocks/WordCountProducerConsumer/src/main/java/com/paulbutcher/Parser.java
class Parser implements Runnable {

private BlockingQueue<Page> queue;

public Parser(BlockingQueue<Page> queue) {
this.queue = queue;

}

public void run() {
try {

Iterable<Page> pages = new Pages(100000, "enwiki.xml");➤

for (Page page: pages)➤

queue.put(page);➤

} catch (Exception e) { e.printStackTrace(); }
}

}

The run() method contains the outer loop of our sequential solution, but instead
of counting the words in the newly parsed page, it adds it to the tail of a
queue.

Here’s the corresponding consumer:

ThreadsLocks/WordCountProducerConsumer/src/main/java/com/paulbutcher/Counter.java
class Counter implements Runnable {

private BlockingQueue<Page> queue;
private Map<String, Integer> counts;

Chapter 2. Threads and Locks • 36

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/ThreadsLocks/WordCountProducerConsumer/src/main/java/com/paulbutcher/Parser.java
http://media.pragprog.com/titles/pb7con/code/ThreadsLocks/WordCountProducerConsumer/src/main/java/com/paulbutcher/Counter.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


public Counter(BlockingQueue<Page> queue,
Map<String, Integer> counts) {

this.queue = queue;
this.counts = counts;

}

public void run() {
try {

while(true) {
Page page = queue.take();➤

if (page.isPoisonPill())
break;

Iterable<String> words = new Words(page.getText());➤

for (String word: words)➤

countWord(word);➤

}
} catch (Exception e) { e.printStackTrace(); }

}
}

As you might expect, it contains the inner loop of our sequential solution,
taking its input from the queue.

Finally, here’s a modified version of our main loop that creates these two
threads:

ThreadsLocks/WordCountProducerConsumer/src/main/java/com/paulbutcher/WordCount.java
ArrayBlockingQueue<Page> queue = new ArrayBlockingQueue<Page>(100);
HashMap<String, Integer> counts = new HashMap<String, Integer>();

Thread counter = new Thread(new Counter(queue, counts));
Thread parser = new Thread(new Parser(queue));

counter.start();
parser.start();
parser.join();
queue.put(new PoisonPill());
counter.join();

ArrayBlockingQueue from java.util.concurrent is a concurrent queue that’s ideal for
implementing the producer-consumer pattern. Not only does it provide efficient
concurrent put() and take() methods, but these methods will block when neces-
sary. Trying to take() from an empty queue will block until the queue is
nonempty, and trying to put() into a full queue will block until the queue has
space available.

report erratum  •  discuss

Day 3: On the Shoulders of Giants • 37

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/ThreadsLocks/WordCountProducerConsumer/src/main/java/com/paulbutcher/WordCount.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Joe asks:

Why a Blocking Queue?
As well as blocking queues, java.util.concurrent provides ConcurrentLinkedQueue, an
unbounded, wait-free, and nonblocking queue. That sounds like a very desirable set
of attributes, so why isn’t it a good choice for this problem?

The issue is that the producer and consumer may not (almost certainly will not) run
at the same speed. In particular, if the producer runs faster than the consumer, the
queue will get larger and larger. Given that the Wikipedia dump we’re parsing is
around 40 GiB, that could easily result in the queue becoming too large to fit in
memory.

Using a blocking queue, by contrast, will allow the producer to get ahead of the con-
sumer, but not too far.

One other interesting aspect of this solution is how the consumer knows when
to exit:

ThreadsLocks/WordCountProducerConsumer/src/main/java/com/paulbutcher/Counter.java
if (page.isPoisonPill())

break;

As its name suggests, a poison pill is a special token that indicates that the
end of the available data has been reached and that the consumer should
therefore exit. It’s very similar to the way that C/C++ uses a null character
to indicate the end of a string.

The good news is that this has sped things up—instead of running in 105
seconds, this version runs in 95.

That’s great, but we can do better. The beauty of the producer-consumer
pattern is that it allows us not only to produce and consume values in parallel,
but also to have multiple producers and/or multiple consumers.

But should we concentrate on speeding up the producer or the consumer?
Where is the code spending its time? If I temporarily modify the code so that
only the producer runs and I get my stopwatch out, I find that I can parse
the first 100,000 pages in around 10 seconds.

This isn’t surprising if you think about it for a moment. The original,
sequential version of the code ran in 105 seconds, and the producer-consumer
version ran in 95. Clearly parsing takes 10 seconds, and counting the words
takes 95. By parsing and counting in parallel, we can reduce the total to
whichever is the longest of these—in this case, 95 seconds.

Chapter 2. Threads and Locks • 38

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/ThreadsLocks/WordCountProducerConsumer/src/main/java/com/paulbutcher/Counter.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


So to improve performance further, we need to parallelize the counting process
and have multiple consumers. The following figure shows where we’re heading:

XML 
Dump Parser

Queue
Counter

Counter

Counter

Aardvark  3
Abacus  5

Acrobat  12
Advert  6

...

Counts

If we’re going to have multiple threads counting words simultaneously, we’re
going to have to find a way to synchronize access to the counts map.

The first thing we might consider is using a synchronized map, returned by
the synchronizedMap() method in Collections. Unfortunately, synchronized collections
don’t provide atomic read-modify-write methods, so this isn’t going to help
us. If we want to use a HashMap, we’re going to have to synchronize access to
it ourselves.

Here’s a modified countWord() method that does exactly this:

ThreadsLocks/WordCountSynchronizedHashMap/src/main/java/com/paulbutcher/Counter.java
private void countWord(String word) {

lock.lock();➤

try {
Integer currentCount = counts.get(word);
if (currentCount == null)
counts.put(word, 1);

else
counts.put(word, currentCount + 1);

} finally { lock.unlock(); }➤

}

And here’s a modified main loop that runs multiple consumers:

ThreadsLocks/WordCountSynchronizedHashMap/src/main/java/com/paulbutcher/WordCount.java
ArrayBlockingQueue<Page> queue = new ArrayBlockingQueue<Page>(100);
HashMap<String, Integer> counts = new HashMap<String, Integer>();
ExecutorService executor = Executors.newCachedThreadPool();
for (int i = 0; i < NUM_COUNTERS; ++i)

executor.execute(new Counter(queue, counts));
Thread parser = new Thread(new Parser(queue));
parser.start();

report erratum  •  discuss

Day 3: On the Shoulders of Giants • 39

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/ThreadsLocks/WordCountSynchronizedHashMap/src/main/java/com/paulbutcher/Counter.java
http://media.pragprog.com/titles/pb7con/code/ThreadsLocks/WordCountSynchronizedHashMap/src/main/java/com/paulbutcher/WordCount.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


parser.join();
for (int i = 0; i < NUM_COUNTERS; ++i)

queue.put(new PoisonPill());
executor.shutdown();
executor.awaitTermination(10L, TimeUnit.MINUTES);

This is very similar to what we had before, except we’ve switched to using a
thread pool, which is more convenient than managing multiple threads our-
selves. And we need to make sure that we add the right number of poison
pills to the queue to shut down cleanly.

This all looks great, but our hopes are about to be dashed. Here’s how long
it takes to run with one and two consumers (speedup is relative to the
sequential version):

SpeedupTime (s)Consumers

1.041011

0.492122

Why does adding another consumer make things slower? And not just
slightly slower, but more than twice as slow?

The answer is excessive contention—too many threads are trying to access a
single shared resource simultaneously. In our case, the consumers are
spending so much of their time with the counts map locked that they spend
more time waiting for the other to unlock it than they spend actually doing
useful work, which leads to horrid performance.

Happily, we’re not beaten yet. ConcurrentHashMap in java.util.concurrent looks like
exactly what we need. Not only does it provide atomic read-modify-write
methods, but it’s been designed to support high levels of concurrent access
(via a technique called lock striping).

Here’s a modified countWord() that uses ConcurrentHashMap:

ThreadsLocks/WordCountConcurrentHashMap/src/main/java/com/paulbutcher/Counter.java
private void countWord(String word) {

while (true) {
Integer currentCount = counts.get(word);
if (currentCount == null) {

if (counts.putIfAbsent(word, 1) == null)
break;

} else if (counts.replace(word, currentCount, currentCount + 1)) {
break;

}
}

}

Chapter 2. Threads and Locks • 40

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/ThreadsLocks/WordCountConcurrentHashMap/src/main/java/com/paulbutcher/Counter.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


It’s worth spending a little time understanding exactly how this works. Instead
of put(), we’re now using a combination of putIfAbsent() and replace(). Here’s the
documentation for putIfAbsent():

If the specified key is not already associated with a value, associate it with the
given value. This is equivalent to

if (!map.containsKey(key))
return map.put(key, value);

else
return map.get(key);

except that the action is performed atomically.

And for replace():

Replaces the entry for a key only if currently mapped to a given value. This is
equivalent to

if (map.containsKey(key) && map.get(key).equals(oldValue)) {
map.put(key, newValue);
return true;

} else return false;

except that the action is performed atomically.

So whenever we call either of these functions, we need to check their return
value to work out whether they have successfully made the change we
expected. If not, we need to loop around and try again.

With this version, the stopwatch is much kinder to us:

SpeedupTime (s)Consumers

0.871201

1.26832

1.61653

1.67634

1.50705

1.33796

Success! This time, adding more consumers makes us go faster, at least until
we have more than four consumers, after which things get slower again.

Having said that, although 63 seconds is certainly faster than the 105 seconds
taken by the sequential version of the code, it’s not even twice as fast. My
MacBook has four cores—surely we should be able to get closer to a 4x
speedup?

report erratum  •  discuss

Day 3: On the Shoulders of Giants • 41

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


With a little thought, it’s clear that our solution is creating far more contention
for the counts map than it has to. Instead of each consumer updating a shared
set of counts concurrently, each should maintain its own local set of counts.
All we need to do is merge these local counts before we exit:

ThreadsLocks/WordCountBatchConcurrentHashMap/src/main/java/com/paulbutcher/Counter.java
private void mergeCounts() {

for (Map.Entry<String, Integer> e: localCounts.entrySet()) {
String word = e.getKey();
Integer count = e.getValue();
while (true) {

Integer currentCount = counts.get(word);
if (currentCount == null) {

if (counts.putIfAbsent(word, count) == null)
break;

} else if (counts.replace(word, currentCount, currentCount + count)) {
break;

}
}

}
}

This gets us much closer to our ideal 4x speedup:

SpeedupTime (s)Consumers

1.10951

1.83572

2.62403

2.69394

2.96355

3.14336

2.55417

Not only does this version increase in performance more quickly as we add
consumers, but it even continues to improve in performance beyond four
consumers. This is possible because each of the cores in my MacBook supports
two “hyperthreads”—availableProcessors() actually returns eight, even though
there are only four physical cores.

Figure 4, Word Count Performance by Number of Consumers, on page 43 shows
a graph that shows the performance of the three different versions.

You’ll see this curve again and again when working with parallel programs.
The performance initially increases linearly and is then followed by a period

Chapter 2. Threads and Locks • 42

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/ThreadsLocks/WordCountBatchConcurrentHashMap/src/main/java/com/paulbutcher/Counter.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


      1 2 3 4 5 6 7

   

0

1

2

3

Number of Consumers

S
pe

ed
up

Synchronized HashMap

ConcurrentHashMap

Batch ConcurrentHashMap

Figure 4—Word Count Performance by Number of Consumers

where performance continues to increase, but more slowly. Eventually perfor-
mance will peak, and adding more threads will only make things slower.

It’s worth taking a moment to reflect on what we’ve just done. We’ve created a
relatively sophisticated producer-consumer program, with multiple consumers
coordinating with one another via a concurrent queue and a concurrent map.
And we did all of this without any explicit locking because we built on top of
the facilities provided in the standard library.

Day 3 Wrap-Up
This brings us to the end of day 3 and the end of our discussion of program-
ming with threads and locks.

What We Learned in Day 3

We saw how the facilities provided by java.util.concurrent not only make it easier
to create concurrent programs, but also make those programs safer and more
efficient by doing the following:

report erratum  •  discuss

Day 3: On the Shoulders of Giants • 43

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


• Using thread pools instead of creating threads directly

• Creating simpler and more efficient listener-management code with
CopyOnWriteArrayList

• Allowing producers and consumers to communicate efficiently with
ArrayBlockingQueue

• Supporting highly concurrent access to a map with ConcurrentHashMap

Day 3 Self-Study

Find

• The documentation for ForkJoinPool—how does a fork/join pool differ from
a thread pool? When might you prefer one, and when the other?

• What is work-stealing and when might it be useful? How would you
implement work-stealing with the facilities provided by java.util.concurrent?

• What is the difference between a CountDownLatch and a CyclicBarrier? When
might you use one, and when the other?

• What is Amdahl’s law? What does it say about the maximum theoretical
speedup we might be able to get for our word-counting algorithm?

Do

• Rewrite the producer-consumer code to use a separate “end of data” flag
instead of a poison pill. Make sure that your solution correctly handles
the cases where the producer runs faster than the consumer and vice
versa. What will happen if the consumer has already tried to remove
something from the queue when the “end of data” flag is set? Why do you
think that the poison-pill approach is so commonly used?

• Run the different versions of the word-count program on your computer,
as well as any others you can get access to. How do the performance
graphs differ from one computer to another? If you could run it on a
computer with 32 cores, do you think you would see anything close to a
32x speedup?

Wrap-Up
Threads-and-locks programming probably divides opinion more than any of
the other techniques we’ll cover. It has a reputation for being fiendishly difficult
to get right, and plenty of programmers shrink from it, avoiding multithreaded
programming at all costs. Others don’t understand the fuss—a few simple

Chapter 2. Threads and Locks • 44

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


rules need to be followed, and if you follow them it’s no harder than any other
form of programming.

Let’s look at its strengths and weaknesses.

Strengths
The primary strength of threads and locks is the model’s broad applicability.
As you might expect, given that they’re the basis upon which many of the
approaches we’ll cover later are built, they can be applied to a very wide range
of problems. Because they are “close to the metal”—little more than a formal-
ization of what the underlying hardware does anyway—they can be very
efficient when used correctly. This means that they can be used to tackle
problems of a wide range of granularities, from fine to coarse.

In addition, they can easily be integrated into most programming languages.
Language designers can add threads and locks to an existing imperative or
object-oriented language with little effort.

Weaknesses
Threads and locks provide no direct support for parallelism (recall that
concurrency and parallelism are related but different things—see Concurrent
or Parallel?, on page 1. As we’ve seen with the word-counting example, they
can be used to parallelize a sequential algorithm, but this has to be constructed
out of concurrent primitives, which introduces the specter of nondeterminism.

Outside of a few experimental distributed shared-memory research systems,
threads and locks support only shared-memory architectures. If you need to
support distributed memory (and, by extension, either geographical distribu-
tion or resilience), you will need to look elsewhere. This also means that
threads and locks cannot be used to solve problems that are too large to fit
on a single system.

The greatest weakness of the approach, however, is that threads-and-locks
programming is hard. It may be easy for a language designer to add them to
a language, but they provide us, the poor programmers, with very little help.

The Elephant in the Room

To my mind, what makes multithreaded programming difficult is not that
writing it is hard, but that testing it is hard. It’s not the pitfalls that you can
fall into; it’s the fact that you don’t necessarily know whether you’ve fallen
into one of them.

report erratum  •  discuss

Wrap-Up • 45

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Let’s take the memory model as an example. As we saw in Memory Visibility,
on page 15, all sorts of odd things can happen if two threads access a memory
location without synchronization. But how do you know if you’ve got it wrong?
How would you write a test to prove that you never access memory without
appropriate synchronization?

Sadly, there isn’t any way to do so. You can certainly write something to
stress-test your code, but passing those tests doesn’t mean that it’s correct.
We know, for example, that the solution to the “dining philosophers” problem
in the code on page 16 is wrong and might deadlock, but I’ve seen it run for
more than a week without doing so.

The fact that threading bugs tend to happen infrequently is a large part of
the problem—more than once, I’ve been woken in the small hours of the
morning to be told that a server has locked up after running without problem
for months on end. If it happened every ten minutes, I’m sure we’d quickly
find the problem, but if you need to run the server for months before the
problem recurs, it’s virtually impossible to debug.

Worse than this, it’s quite possible to write programs that contain threading
bugs that will never fail no matter how thoroughly or for how long we test
them. Just because they access memory in a way that might result in
accesses being reordered doesn’t mean that they actually will be. So we’ll be
completely unaware of the problem until we upgrade the JVM or move to dif-
ferent hardware, when we’ll suddenly be faced with a mysterious failure that
no one understands.

Maintenance

All these problems are bad enough when you’re creating code, but code rarely
stands still. It’s one thing to make sure that everything’s synchronized cor-
rectly, locks are acquired in the right order, and no foreign functions are
called with locks held. It’s quite another to guarantee that it will remain that
way after twelve months of maintenance by ten different programmers. In the
last decade, we’ve learned how to use automated testing to help us refactor
with confidence, but if you can’t reliably test for threading problems, you
can’t reliably refactor multithreaded code.

The upshot is that our only recourse is to think very carefully about our
multithreaded code. And then when we’ve done that, think about it very
carefully some more. Needless to say, this is neither easy nor scalable.

Chapter 2. Threads and Locks • 46

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Picking Through the Wreckage

Diagnosing a threading problem can be similar to how I imagine Formula 1 engineers
must feel when trying to diagnose an engine failure. The engine runs flawlessly for
hours and then suddenly, with little or no warning, fails spectacularly, showering
following cars with oil and lumps of crankcase.

When the car is dragged back to the workshop, the poor engineers are faced with a
pile of wreckage and somehow need to figure out what caused the failure. The problem
was probably something tiny—a failed oil-pump bearing or broken valve, but how
can they tell what it was from the mess on the bench?

What tends to happen is that they put as much data logging in place as possible and
send the driver back out with a new engine. Hopefully the data will contain something
informative the next time a failure happens.

Other Languages
If you want to go deeper into threads-and-locks programming on the JVM, an
excellent starting point is Java Concurrency in Practice [Goe06], which was written
by the authors of the java.util.concurrent package. The details of multithreaded pro-
gramming vary between languages, but the general principles we covered in this
chapter are broadly applicable. The rules about using synchronization to access
shared variables; acquiring locks in a fixed, global order; and avoiding alien
method calls while holding a lock are applicable to any language with threads
and locks.

In particular, although we spoke about only the Java memory model, reordered
memory accesses in concurrent code are not unique to Java. The difference is
that most languages don’t have a well-defined memory model that constrains how
and when such reorderings are allowed. Java was the pioneer, the first major
language to have a well-defined memory model. C and C++ only recently caught
up when a memory model was added to the C11 and C++ 11 standards.

Final Thoughts
For all its challenges, multithreaded programming is going to be with us for the
foreseeable future. But we’ll cover other options that you should have in your
toolbox in the rest of this book.

In the next chapter we’ll look at functional programming, which avoids many of
the problems with threads and locks by avoiding mutable state. Even if you never
write any functional code, understanding the principles behind functional pro-
gramming is valuable—as you’ll see, they underlie many of the other concurrency
models we’ll cover.

report erratum  •  discuss

Wrap-Up • 47

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


CHAPTER 3

Functional Programming
Functional Programming is like a car powered by hydrogen fuel cells—
advanced, futuristic, and not yet widely used, but it’s what we’ll all rely on
in twenty years.

In contrast to an imperative program, which consists of a series of statements
that change global state when executed, a functional program models compu-
tation as the evaluation of expressions. Those expressions are built from pure
mathematical functions that are both first-class (can be manipulated like any
other value) and side effect–free. It’s particularly useful when dealing with
concurrency because the lack of side effects makes reasoning about thread
safety much easier. It is also the first model we’ll look at that allows parallelism
to be represented directly.

If It Hurts, Stop Doing It
The rules about locking that we discussed in Chapter 2, Threads and Locks,
on page 9, apply only to data that is both shared between threads and might
change—in other words shared mutable state. Data that doesn’t change (is
immutable) can be accessed by multiple threads without any kind of locking.

This is what makes functional programming so compelling when it comes to
concurrency and parallelism—functional programs have no mutable state,
so they cannot suffer from any of the problems associated with shared
mutable state.

In this chapter we’re going to look at functional programming in Clojure,1 a
dialect of Lisp that runs on the JVM. Clojure is dynamically typed; and if
you’re a Ruby or Python programmer, you’ll feel right at home once you get
used to the unfamiliar syntax. Clojure is not a pure functional language, but

1. http://clojure.org

report erratum  •  discusswww.finebook.ir   

http://clojure.org
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


in this chapter we’ll be concentrating on its purely functional subset. I’ll
introduce the bits of Clojure that we’ll be using along the way, but if you want
to learn more about the language I recommend Stuart Halloway and Aaron
Bedra’s Programming Clojure [HB12].

In day 1 we’ll look at the basics of functional programming and see how it’s
trivial to parallelize a functional algorithm. In day 2 we’ll dig deeper into Clo-
jure’s reducers framework and see how this parallelization works under the
hood. Finally, in day 3, we’ll switch our focus from parallelism to concurrency
and create a concurrent functional web service with futures and promises.

Day 1: Programming Without Mutable State
When programmers first encounter functional programming, their reaction
is often one of disbelief—that it can’t be possible to write nontrivial programs
without modifying variables. We’ll see that it is not only possible but very
often simpler and easier than creating normal imperative code.

The Perils of Mutable State
Today we’re going to concentrate on parallelism. We’ll construct a simple
functional program and then show how, because it’s functional, it’s almost
trivially easy to parallelize.

But first let’s look at a couple of examples in Java that show why it’s so
helpful to avoid mutable state.

Hidden Mutable State

Here’s a class that doesn’t have any mutable state and should therefore be
perfectly thread-safe:

FunctionalProgramming/DateFormatBug/src/main/java/com/paulbutcher/DateParser.java
class DateParser {

private final DateFormat format = new SimpleDateFormat("yyyy-MM-dd");

public Date parse(String s) throws ParseException {
return format.parse(s);

}
}

When I run a small example program that uses this class from multiple
threads (you can see the source in the code that accompanies the book), I get
the following:

Caught: java.lang.NumberFormatException: For input string: ".12012E4.12012E4"
Expected: Sun Jan 01 00:00:00 GMT 2012, got: Wed Apr 15 00:00:00 BST 2015

Chapter 3. Functional Programming • 50

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/FunctionalProgramming/DateFormatBug/src/main/java/com/paulbutcher/DateParser.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


The next time I run it, I get this:

Caught: java.lang.ArrayIndexOutOfBoundsException: -1

And the next time, I get this:

Caught: java.lang.NumberFormatException: multiple points
Caught: java.lang.NumberFormatException: multiple points

Clearly the code isn’t thread-safe at all, but why? It only has a single member
variable, and that’s immutable because it’s final.

The reason is that SimpleDateFormat has mutable state buried deep within. You
can argue that this is a bug,2 but for our purposes it doesn’t matter. The
problem is that languages like Java make it both easy to write code with
hidden mutable state like this and virtually impossible to tell when it hap-
pens—there’s no way to tell from its API that SimpleDateFormat isn’t thread-safe.

Hidden mutable state isn’t the only thing you need to be careful about, as
we’ll see next.

Escapologist Mutable State

Imagine that you’re creating a web service that manages a tournament. Among
other things, it’s going to need to manage a list of players, which you might
be tempted to implement along these lines:

public class Tournament {
private List<Player> players = new LinkedList<Player>();

public synchronized void addPlayer(Player p) {
players.add(p);

}

public synchronized Iterator<Player> getPlayerIterator() {
return players.iterator();

}
}

At first glance, this looks like it should be thread-safe—players is private and
accessed only via the addPlayer() and getPlayerIterator() methods, both of which
are synchronized. Unfortunately, it is not thread-safe because the iterator
returned by getPlayerIterator() still references the mutable state contained within
players—if another thread calls addPlayer() while the iterator is in use, we’ll see
a ConcurrentModificationException or worse. The state has escaped from the protec-
tion provided by Tournament.

2. http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4228335

report erratum  •  discuss

Day 1: Programming Without Mutable State • 51

www.finebook.ir   

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4228335
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Hidden and escaped state are just two of the dangers of mutable state in
concurrent programs—there are plenty of others. These dangers would disap-
pear if we could find a way to avoid mutable state entirely, which is exactly
what functional programming enables us to do.

A Whirlwind Tour of Clojure
It takes only a few minutes to get the hang of Clojure’s Lisp syntax.

The easiest way to experiment with Clojure is through its REPL (read-evaluate-
print loop), which you can start with lein repl (lein is the standard Clojure build
tool). This allows you to type code and have it evaluated immediately without
having to create source files and compile them, which can be amazingly
helpful when experimenting with unfamiliar code. When the REPL starts, you
should see the following prompt:

user=>

Any Clojure code you type at this prompt will be evaluated immediately.

Clojure code is almost entirely constructed from parenthesized lists called
s-expressions. A function call that in most languages would be written max(3,
5) is written like this:

user=> (max 3 5)
5

The same is true of mathematical operators. Here’s 1 + 2 * 3, for example:

user=> (+ 1 (* 2 3))
7

Defining a constant is achieved with def:

user=> (def meaning-of-life 42)
#'user/meaning-of-life
user=> meaning-of-life
42

Even control structures are s-expressions:

user=> (if (< meaning-of-life 0) "negative" "non-negative")
"non-negative"

Although almost everything in Clojure is an s-expression, there are a few
exceptions. Vector (array) literals are surrounded by square brackets:

user=> (def droids ["Huey" "Dewey" "Louie"])
#'user/droids
user=> (count droids)
3

Chapter 3. Functional Programming • 52

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


user=> (droids 0)
"Huey"
user=> (droids 2)
"Louie"

And map literals are surrounded by curly brackets:

user=> (def me {:name "Paul" :age 45 :sex :male})
#'user/me
user=> (:age me)
45

Keys in maps are often keywords, which start with a colon and are very
similar to symbols in Ruby or interned strings in Java.

Finally, a function is defined with defn, with arguments specified as a vector:

user=> (defn percentage [x p] (* x (/ p 100.0)))
#'user/percentage
user=> (percentage 200 10)
20.0

That concludes our whirlwind tour of Clojure. I’ll introduce other aspects of
the language as we go.

Our First Functional Program
I’ve said that the most interesting thing about functional programming is that
it avoids mutable state, but we haven’t actually seen an example yet. Let’s
rectify that now.

Imagine that you want to find the sum of a sequence of numbers. In an
imperative language like Java, you would probably write something like this:

public int sum(int[] numbers) {
int accumulator = 0;
for (int n: numbers)

accumulator += n;
return accumulator;

}

That isn’t functional because accumulator is mutable: it changes after each
iteration of the for loop. By contrast, this Clojure solution has no mutable
variables:

FunctionalProgramming/Sum/src/sum/core.clj
(defn recursive-sum [numbers]

(if (empty? numbers)
0
(+ (first numbers) (recursive-sum (rest numbers)))))

report erratum  •  discuss

Day 1: Programming Without Mutable State • 53

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/FunctionalProgramming/Sum/src/sum/core.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


This is a recursive solution—recursive-sum calls itself (recurses). If numbers is
empty, it simply returns zero. Otherwise, it returns the result of adding the
first (head) element of numbers to the sum of the rest (tail) of the sequence.

Although our recursive solution works, we can do better. Here is a solution
that’s both simpler and more efficient:

FunctionalProgramming/Sum/src/sum/core.clj
(defn reduce-sum [numbers]

(reduce (fn [acc x] (+ acc x)) 0 numbers))

This uses Clojure’s reduce function, which takes three arguments—a function,
an initial value, and a collection.

In this instance, we’re passing it an anonymous function defined with fn that
takes two arguments and returns their sum. It’s called once by reduce for each
element in the collection—the first time, it’s passed the initial value (0 in this
case) together with the first item in the collection; the second time, it’s passed
the result of the first invocation together with the second item in the collection;
and so on.

We’re not quite done yet—we can make this code better still by noticing that
+ is already a function that, when given two arguments, returns their sum.
We can pass it directly to reduce without creating an anonymous function:

FunctionalProgramming/Sum/src/sum/core.clj
(defn sum [numbers]

(reduce + numbers))

So we’ve arrived at a solution that is both simpler and more concise than the
imperative one. You’ll find that this is a common experience when converting
imperative code to functional.

Effortless Parallelism
So we’ve seen some functional code, but what about parallelism? What would
we need to do to convert our sum function to operate in parallel? Very little,
it turns out:

FunctionalProgramming/Sum/src/sum/core.clj
(ns sum.core

(:require [clojure.core.reducers :as r]))

(defn parallel-sum [numbers]
(r/fold + numbers))

Chapter 3. Functional Programming • 54

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/FunctionalProgramming/Sum/src/sum/core.clj
http://media.pragprog.com/titles/pb7con/code/FunctionalProgramming/Sum/src/sum/core.clj
http://media.pragprog.com/titles/pb7con/code/FunctionalProgramming/Sum/src/sum/core.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Joe asks:

What If We Pass an Empty Collection to reduce?
Our final version of sum doesn’t pass an initial value to reduce:

(reduce + numbers)

This might make you wonder what happens if we give it an empty collection. The
answer is that it does the right thing and returns zero:

sum.core=> (sum [])
0

But how does reduce know that zero (and not, say, 1 or nil) is the right thing to return?
This relies on an interesting feature of many of Clojure’s operators—they know what
their identity values are. The + function, for example, can take any number of argu-
ments, including zero:

user=> (+ 1 2)
3
user=> (+ 1 2 3 4)
10
user=> (+ 42)
42
user=> (+)
0

When called with no arguments, it returns the additive identity, 0.

Similarly, * knows that the multiplicative identity is 1:

user=> (*)
1

If we don’t pass an initial value to reduce, it uses the result of calling the function it’s
given with no arguments.

Incidentally, because + can take any number of arguments, this also means that we
can implement sum with apply, which takes a function together with an vector and
calls the function with the vector as arguments:

FunctionalProgramming/Sum/src/sum/core.clj
(defn apply-sum [numbers]

(apply + numbers))

But unlike the version that uses reduce, this can’t easily be parallelized.

The only difference is that we’re now using the fold function from the
clojure.core.reducers package (which we alias to r to save typing) instead of using
reduce.

Here’s a REPL session that shows what this buys us in terms of performance:

report erratum  •  discuss

Day 1: Programming Without Mutable State • 55

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/FunctionalProgramming/Sum/src/sum/core.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


sum.core=> (def numbers (into [] (range 0 10000000)))
#'sum.core/numbers
sum.core=> (time (sum numbers))
"Elapsed time: 1099.154 msecs"
49999995000000
sum.core=> (time (sum numbers))
"Elapsed time: 125.349 msecs"
49999995000000
sum.core=> (time (parallel-sum numbers))
"Elapsed time: 236.609 msecs"
49999995000000
sum.core=> (time (parallel-sum numbers))
"Elapsed time: 49.835 msecs"
49999995000000

We start by creating a vector that contains all the integers between zero and
ten million by inserting the result of (range 0 10000000) into an empty vector
with into. Then we use the time macro, which prints the time taken by whatever
code it’s given. As is often the case with code running on the JVM, we have
to run more than once to give the just-in-time optimizer a chance to kick in
and get a representative time.

So, on my four-core Mac, fold takes us from 125 ms to 50 ms, a 2.5x speedup.
We’ll see how fold achieves this tomorrow, but before then let’s look at a
functional version of our Wikipedia word-count example.

Counting Words Functionally
Today we’ll create a sequential implementation of word count—we’ll parallelize
it tomorrow. We’re going to need to have three things:

• A function that, given a Wikipedia XML dump, returns a sequence of the
pages contained within that dump

• A function that, given a page, returns a sequence of the words on that
page

• A function that, given a sequence of words, returns a map containing the
frequencies of those words

We’re not going to cover the first two of these in any detail—this is a book
about concurrency, not string processing or XML (see the accompanying code
if you’re interested in the details). We will look at how to count words, however,
as that’s what we’ll be parallelizing.

Chapter 3. Functional Programming • 56

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Functional Maps

Because we want to return a map of word frequencies, we’ll need to understand
a couple of Clojure’s map functions—get and assoc:

user=> (def counts {"apple" 2 "orange" 1})
#'user/counts
user=> (get counts "apple" 0)
2
user=> (get counts "banana" 0)
0
user=> (assoc counts "banana" 1)
{"banana" 1, "orange" 1, "apple" 2}
user=> (assoc counts "apple" 3)
{"orange" 1, "apple" 3}

So get simply looks up a key in the map and either returns its value or returns
a default if the key isn’t in the map. And assoc takes a map together with a
key and value and returns a new map with the key mapped to the value.

Frequencies

We now know enough to write a function that takes a sequence of words and
returns a map in which each word is associated with the number of times it
appears:

FunctionalProgramming/WordCount/src/wordcount/word_frequencies.clj
(defn word-frequencies [words]

(reduce
(fn [counts word] (assoc counts word (inc (get counts word 0))))
{} words))

This time we’re passing an empty map {} as the initial value to reduce. And
then for each word in words, we add one more than the current count for that
word. Here’s an example of it in use:

user=> (word-frequencies ["one" "potato" "two" "potato" "three" "potato" "four"])
{"four" 1, "three" 1, "two" 1, "potato" 3, "one" 1}

It turns out that the Clojure standard library has beaten us to it—there’s a
standard function called frequencies that takes any collection and returns a
map of the frequencies of its members:

user=> (frequencies ["one" "potato" "two" "potato" "three" "potato" "four"])
{"one" 1, "potato" 3, "two" 1, "three" 1, "four" 1}

Now that we can count words, all that remains is to wire things up with the
XML processing.

report erratum  •  discuss

Day 1: Programming Without Mutable State • 57

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/FunctionalProgramming/WordCount/src/wordcount/word_frequencies.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


More Sequence Functions

To see how to do that, we need to introduce a little more machinery. First,
here’s the map function:

user=> (map inc [0 1 2 3 4 5])
(1 2 3 4 5 6)
user=> (map (fn [x] (* 2 x)) [0 1 2 3 4 5])
(0 2 4 6 8 10)

Given a function and a sequence, map returns a new sequence that contains
the result of applying the function to each element of the sequence in turn.

We can simplify the second version slightly by using partial, which takes a
function together with one or more arguments and returns a partially applied
function:

user=> (def multiply-by-2 (partial * 2))
#'user/multiply-by-2
user=> (multiply-by-2 3)
6
user=> (map (partial * 2) [0 1 2 3 4 5])
(0 2 4 6 8 10)

Finally, imagine that you have a function that returns a sequence, such as
using a regular expression to break a string into a sequence of words:

user=> (defn get-words [text] (re-seq #"\w+" text))
#'user/get-words
user=> (get-words "one two three four")
("one" "two" "three" "four")

As you would expect, mapping this function over a sequence of strings will
give you a sequence of sequences:

user=> (map get-words ["one two three" "four five six" "seven eight nine"])
(("one" "two" "three") ("four" "five" "six") ("seven" "eight" "nine"))

If you want a single sequence that consists of all the subsequences concate-
nated, you can use mapcat:

user=> (mapcat get-words ["one two three" "four five six" "seven eight nine"])
("one" "two" "three" "four" "five" "six" "seven" "eight" "nine")

We now have all the tools we need to create our word-counting function.

Putting It All Together

Here’s count-words-sequential. Given a sequence of pages, it returns a map of the
frequencies of the words on those pages:

Chapter 3. Functional Programming • 58

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


FunctionalProgramming/WordCount/src/wordcount/core.clj
(defn count-words-sequential [pages]

(frequencies (mapcat get-words pages)))

It starts by converting the sequence of pages into a sequence of words with
(mapcat get-words pages). This sequence of words is then passed to frequencies.

It’s worth comparing this to the imperative version in the code on page 35.
Again, the functional solution turns out to be significantly simpler, clearer,
and more concise than its imperative equivalent.

It’s Good to Be Lazy
Something might be bothering you—a Wikipedia dump runs to around 40
GiB. If count-words starts by collating every word into a single huge sequence,
surely we’re going to end up running out of memory.

We don’t, and the reason for that is that sequences in Clojure are lazy—ele-
ments of a lazy sequence are generated only when they’re needed. Let’s see
what this means in practice.

Clojure’s range function produces a sequence of numbers:

user=> (range 0 10)
(0 1 2 3 4 5 6 7 8 9)

In the preceding code, the REPL realizes (fully evaluates) the sequence and
then prints it.

There’s nothing to stop you from realizing really big ranges, but doing so can
turn your computer into an expensive room heater. Try the following, for
example, and you’ll have to wait a long time before seeing a result (assuming
that you don’t run out of memory first):

user=> (range 0 100000000)

Try this, on the other hand, and you’ll get the answer immediately:

user=> (take 10 (range 0 100000000))
(0 1 2 3 4 5 6 7 8 9)

Because take is only interested in the first ten elements of its sequence argu-
ment, range only needs to generate the first ten elements. This works across
any level of function-call nesting:

user=> (take 10 (map (partial * 2) (range 0 100000000)))
(0 2 4 6 8 10 12 14 16 18)

report erratum  •  discuss

Day 1: Programming Without Mutable State • 59

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/FunctionalProgramming/WordCount/src/wordcount/core.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


We can even program with infinite sequences. Clojure’s iterate function, for
example, generates an infinite sequence by repeatedly applying a function to
an initial value, then the returned value, and so on:

user=> (take 10 (iterate inc 0))
(0 1 2 3 4 5 6 7 8 9)
user=> (take 10 (iterate (partial + 2) 0))
(0 2 4 6 8 10 12 14 16 18)

One final aspect of lazy sequences is that not only do we not need to generate
the elements at the end of a sequence until we need them (which might be
never), but we can discard the elements at the front if we’ve finished with
them (if we don’t “hold on to our head”). The following, for example, might
take a while to complete, but you won’t run out of memory:

user=> (take-last 5 (range 0 100000000))
(99999995 99999996 99999997 99999998 99999999)

Because the sequence of pages returned by get-pages is lazy, count-words can
handle a 40 GiB Wikipedia dump without problem. And the bonus is that it’s
very easy to parallelize, as we’ll see tomorrow.

Day 1 Wrap-Up
That brings us to the end of day 1. In day 2 we’ll parallelize our word count
and look into fold in more detail.

What We Learned in Day 1

Concurrent programming in imperative languages is difficult because of the
prevalence of shared mutable state. Functional programming makes concur-
rency easier and safer by eliminating shared mutable state. We saw how to
do the following:

• Apply a function to every element of a sequence with map or mapcat
• Use laziness to handle large, or even infinite, sequences
• Reduce a sequence to a single (possibly complex) value with reduce
• Parallelize a reduce operation with fold

Day 1 Self-Study

Find

• The Clojure “cheat sheet,” which contains a quick reference to the most
commonly used functions

• The documentation for lazy-seq, which enables you to create your own
lazy sequences

Chapter 3. Functional Programming • 60

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Do

• Unlike many functional languages, Clojure does not provide tail-call
elimination, so idiomatic Clojure makes very little use of recursion. Rewrite
the recursive-sum function (see the code on page 53) to use Clojure’s loop and
recur special forms instead.

• Rewrite reduce-sum (see the code on page 54) to use the #() reader macro
instead of (fn ...).

Day 2: Functional Parallelism
Today we’ll continue our discussion of how functional programming helps
with parallelism by looking at fold in more detail. But before we do that, we’ll
look at parallelizing our Wikipedia word count.

One Page at a Time
In day 1 we saw that the map function creates a sequence by applying a
function to each element of an input sequence in turn. But there’s no reason
this has to happen serially—Clojure’s pmap function operates just like map,
except that the function is applied in parallel. It’s semi-lazy, in that the par-
allel computation stays ahead of the consumption, but it won’t realize the
entire result unless required.

We could, for example, convert our sequence of Wikipedia pages to a sequence
of maps of word counts within those pages in parallel with this:

(pmap #(frequencies (get-words %)) pages)

In this case, we’re defining the function passed to pmap using the #(…) reader
macro, which is a shorthand way to write an anonymous function. Arguments
are specified with %1, %2, and so on, which can be further shortened to a
single % if it takes only a single argument:

#(frequencies (get-words %))

The preceding code is equivalent to this:

(fn [page] (frequencies (get-words page)))

Here it is in action:

wordcount.core=> (def pages ["one potato two potato three potato four"
#_=> "five potato six potato seven potato more"])

#'wordcount.core/pages
wordcount.core=> (pmap #(frequencies (get-words %)) pages)
({"one" 1, "potato" 3, "two" 1, "three" 1, "four" 1}
{"five" 1, "potato" 3, "six" 1, "seven" 1, "more" 1})

report erratum  •  discuss

Day 2: Functional Parallelism • 61

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


We can then get the total word counts we’re looking for by reducing this
sequence to a single map. Our reducing function will need to take two maps
and merge them so that

• the keys in the resulting map are the union of the keys in the two input
maps, and;

• if the key exists in only one of the two input maps, that value is associated
with the key in the result map, or;

• if the key exists in both of the input maps, the value associated with that
key is the sum of the values from the two input maps.

The following diagram shows what we’re aiming for:

potatoone two potato three potato four

one: 1
two: 1

potato: 2

three: 1
four: 1

potato: 1

one: 1
two: 1

three: 1
four: 1

potato: 3

frequencies

merge

We could write this reducing function ourselves, but (as is so often the case)
a function in the standard library does what we need. Here’s the documentation:

(merge-with f & maps)

Returns a map that consists of the rest of the maps conj-ed onto the first—if a key
occurs in more than one map, the mapping(s) from the latter (left-to-right) will be
combined with the mapping in the result by calling (f val-in-result val-in-latter).

Recall that partial returns a partially applied function, so (partial merge-with +) will
give us a function that takes two maps and merges them using + to combine
values if the same key appears in both:

user=> (def merge-counts (partial merge-with +))
#'user/merge-counts
user=> (merge-counts {:x 1 :y 2} {:y 1 :z 1})
{:z 1, :y 3, :x 1}

Putting this all together, here’s a parallel word count:

Chapter 3. Functional Programming • 62

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


FunctionalProgramming/WordCount/src/wordcount/core.clj
(defn count-words-parallel [pages]

(reduce (partial merge-with +)
(pmap #(frequencies (get-words %)) pages)))

Now that we’ve got a parallel word count, let’s see how well it performs.

Batching for Performance
On my MacBook Pro, the sequential version takes 140 seconds to count the
words in the first 100,000 pages of Wikipedia. The parallel version takes 94 s,
a 1.5x speedup. So we’re getting some performance benefit from parallelism,
but not as much as we might like.

The reason is exactly the same as we saw last week in our threads and
locks–based solution (see the code on page 40). We’re counting and merging
on a page-by-page basis, which results in a large number of merges. We can
reduce those merges by counting batches of pages instead of a single page
at a time:

batch 3 batch 4

freq3 freq4

...batch 5

freq5

count2 count3

batch 6

freq6

batch 1 batch 2 batch 3 batch 4

freq1 freq2 freq3 freq4

...

count1{}

batch 3 batch 4

freq2 freq3 freq4

...

count1

batch 5

freq5

count2

batch 2

frequencies

merge

time

Figure 5—Batched word count

report erratum  •  discuss

Day 2: Functional Parallelism • 63

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/FunctionalProgramming/WordCount/src/wordcount/core.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Here, for example, is an implementation of word-count that processes batches
of 100 pages at a time:

FunctionalProgramming/WordCount/src/wordcount/core.clj
(defn count-words [pages]

(reduce (partial merge-with +)
(pmap count-words-sequential (partition-all 100 pages))))

This uses partition-all, which batches (partitions) a sequence into multiple
sequences:

user=> (partition-all 4 [1 2 3 4 5 6 7 8 9 10])
((1 2 3 4) (5 6 7 8) (9 10))

We then count the words within each batch with word-count-sequential and merge
them as before. And sure enough, this version counts the words in the first
100,000 pages of Wikipedia in forty-four seconds, a 3.2x speedup.

Reducers
In day 1 we saw that switching from reduce to fold could deliver dramatic per-
formance improvements. To understand how fold achieves this, we need to
understand Clojure’s reducers library.

A reducer is a recipe that describes how to reduce a collection. The normal
version of map takes a function and a (possibly lazy) sequence and returns
another (possibly lazy) sequence:

user=> (map (partial * 2) [1 2 3 4])
(2 4 6 8)

Given the same arguments, the version from clojure.core.reducers, in contrast,
returns a reducible:

user=> (require '[clojure.core.reducers :as r])
nil
user=> (r/map (partial * 2) [1 2 3 4])
#<reducers$folder$reify__1599 clojure.core.reducers$folder$reify__1599@151964cd>

A reducible isn’t a directly usable value—it’s just something that can subse-
quently be passed to reduce:

user=> (reduce conj [] (r/map (partial * 2) [1 2 3 4]))
[2 4 6 8]

The anonymous function we’re passing to reduce in the preceding code takes
a collection as its first argument (initially an empty vector, []) and uses conj
to add its second argument to it. The result, therefore, is a collection repre-
senting the result of the mapping.

Chapter 3. Functional Programming • 64

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/FunctionalProgramming/WordCount/src/wordcount/core.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


The following is equivalent to the preceding code because into uses reduce
internally:

user=> (into [] (r/map (partial * 2) [1 2 3 4]))
[2 4 6 8]

As well as map and mapcat, which we’ve already seen, there are reducer versions
of most of the sequence-handling functions in clojure.core. And just like their
clojure.core equivalents, they can be chained:

user=> (into [] (r/map (partial + 1) (r/filter even? [1 2 3 4])))
[3 5]

A reducer, instead of returning a result, returns a recipe for creating a
result—a recipe that isn’t executed until it’s passed to either reduce or fold.
This has two primary benefits:

• It’s more efficient than a chain of functions returning lazy sequences,
because no intermediate sequences need to be created.

• It allows fold to parallelize the entire chain of operations on the underlying
collection.

Reducers’ Internals
To understand how reducers work, we’re going to create our own slightly
simplified, but still very effective, version of clojure.core.reducers. To do so, we
first need to know about Clojure’s protocols. A protocol is very similar to an
interface in Java—it’s a collection of methods that together define an
abstraction. Clojure’s collections support reduce via the CollReduce protocol:

(defprotocol CollReduce
(coll-reduce [coll f] [coll f init]))

CollReduce defines a single function called coll-reduce with multiple arities—it can
take either two arguments (coll and f) or three (coll, f, and init). The first argument
performs the same role as Java’s this reference, allowing polymorphic dispatch.
Look at this Clojure code:

(coll-reduce coll f)

This Clojure code is equivalent to this Java:

coll.collReduce(f);

The reduce function simply calls through to coll-reduce, delegating the task of
reducing to the collection itself. We can see this by implementing our own
version of reduce:

report erratum  •  discuss

Day 2: Functional Parallelism • 65

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


FunctionalProgramming/Reducers/src/reducers/core.clj
(defn my-reduce

([f coll] (coll-reduce coll f))
([f init coll] (coll-reduce coll f init)))

This shows a feature of defn we’ve not seen before—it can be used to define
functions that take varying numbers of arguments (in this case either two or
three). In both cases, it simply forwards its arguments to coll-reduce. Let’s prove
that it works:

reducers.core=> (my-reduce + [1 2 3 4])
10
reducers.core=> (my-reduce + 10 [1 2 3 4])
20

Next, let’s see how to implement our own version of map:

FunctionalProgramming/Reducers/src/reducers/core.clj
(defn make-reducer [reducible transformf]

(reify
CollReduce
(coll-reduce [_ f1]
(coll-reduce reducible (transformf f1) (f1)))

(coll-reduce [_ f1 init]
(coll-reduce reducible (transformf f1) init))))

(defn my-map [mapf reducible]
(make-reducer reducible

(fn [reducef]
(fn [acc v]

(reducef acc (mapf v))))))

We’re using a function called make-reducer that takes a reducible and a transform
function and returns a reification of the CollReduce protocol. Reifying a protocol
is similar to using new in Java to create an anonymous instance of an interface.

This instance of CollReduce calls the coll-reduce method on the reducible, using
the transform function to transform its f1 argument.

Joe asks:

What Does an Underscore Mean?
It’s common Clojure style to use an underscore (“_”) as the name of an unused function
parameter. We could have written this:

(coll-reduce [this f1]
(coll-reduce reducible (transformf f1) (f1)))

But using the underscore makes it clear that this is unused.

Chapter 3. Functional Programming • 66

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/FunctionalProgramming/Reducers/src/reducers/core.clj
http://media.pragprog.com/titles/pb7con/code/FunctionalProgramming/Reducers/src/reducers/core.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


The transform function that’s passed to make-reducer is a function that takes
a function as an argument and returns a transformed version of that function.
Here’s my-map’s transformation function:

(fn [reducef]
(fn [acc v]

(reducef acc (mapf v))))

Recall that the reducing function is called once for each element of the collec-
tion, with an accumulator (acc) as its first argument and the value from the
collection (v) as its second. So, given a reducing function reducef, we’re
returning a function that calls reducef with its second argument modified by
mapf (the function passed to my-map). Let’s prove that this works as expected:

reducers.core=> (into [] (my-map (partial * 2) [1 2 3 4]))
[2 4 6 8]
reducers.core=> (into [] (my-map (partial + 1) [1 2 3 4]))
[2 3 4 5]

As you would hope, we can also chain multiple mappings:

reducers.core=> (into [] (my-map (partial * 2) (my-map (partial + 1) [1 2 3 4])))
[4 6 8 10]

If you work through what this is doing, you’ll see that it performs a single
reduce, using a single reducing function created by composing (partial * 2) with
(partial + 1).

We’ve seen how reducers support reduce. Next, we’ll look at how fold parallelizes
reductions.

Divide and Conquer
Instead of reducing a collection serially, fold uses a binary chop. It starts by
dividing the collection into two halves, then halving those halves, and so on
until the collection has been divided into groups that are smaller than some
limit (by default, 512). It then runs a set of sequential reduce operations over
each group and combines the results pairwise until only a single result is left.
This results in a binary tree like Figure 6, A fold Tree, on page 68.

The reduce and combine operations run in parallel because fold creates a
matching tree of parallel tasks (using Java 7’s Fork/Join framework). The
tasks at the leaves of the tree run the reduce operations. The tasks at the
next level wait for the results of those reduce operations to be ready and,
when they are, it combines them and the process continues until only a single
result is left at the root of the tree.

report erratum  •  discuss

Day 2: Functional Parallelism • 67

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Reduce

Combine

Figure 6—A fold Tree

If fold is given a single function (+ in our example), that function is used for
both the reduce and combine operations. As we’ll soon see, however, it
sometimes makes sense to use one function for the reductions and another
for the combinations.

Supporting Fold
In addition to CollReduce, collections that can be folded also support CollFold:

(defprotocol CollFold
(coll-fold [coll n combinef reducef]))

Just as reduce delegates to coll-reduce, fold delegates to coll-fold:

FunctionalProgramming/Reducers/src/reducers/core.clj
(defn my-fold

([reducef coll]
(my-fold reducef reducef coll))

([combinef reducef coll]
(my-fold 512 combinef reducef coll))

([n combinef reducef coll]
(coll-fold coll n combinef reducef)))

The two- and three-argument versions just call my-fold recursively, providing
defaults for combinef and n if they’re not provided. The four-argument version
calls the collection’s coll-fold implementation.

The only modification we need to make to our code to support parallel fold
operations is to have make-reducer reify CollFold in addition to CollReduce:

Chapter 3. Functional Programming • 68

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/FunctionalProgramming/Reducers/src/reducers/core.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


FunctionalProgramming/Reducers/src/reducers/core.clj
(defn make-reducer [reducible transformf]

(reify
CollFold➤

(coll-fold [_ n combinef reducef]➤

(coll-fold reducible n combinef (transformf reducef)))➤

CollReduce
(coll-reduce [_ f1]
(coll-reduce reducible (transformf f1) (f1)))

(coll-reduce [_ f1 init]
(coll-reduce reducible (transformf f1) init))))

The implementation is very similar to CollReduce—we transform the reducing
function and pass the rest of the arguments through to coll-fold. Let’s prove
that it works as expected:

reducers.core=> (def v (into [] (range 10000)))
#'reducers.core/v
reducers.core=> (my-fold + v)
49995000
reducers.core=> (my-fold + (my-map (partial * 2) v))
99990000

Next, we’ll see an example of passing a different reduce and combine function
to fold.

Frequencies with Fold
Our old friend, the frequencies function, is an excellent example of requiring
different reduce and combine functions when implemented with fold:

FunctionalProgramming/Reducers/src/reducers/parallel_frequencies.clj
(defn parallel-frequencies [coll]

(r/fold
(partial merge-with +)
(fn [counts x] (assoc counts x (inc (get counts x 0))))
coll))

This should remind you strongly of the batched parallel implementation of
word-count we saw earlier today (see the code on page 64)—each batch is reduced
to a map that is then merged with (partial merge-with +).

We can’t try this out on our Wikipedia page count, because fold doesn’t work
on a lazy sequence (there’s no way to perform a binary chop on a lazy sequence).
But we can check that it works on, say, a large vector of random integers.

report erratum  •  discuss

Day 2: Functional Parallelism • 69

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/FunctionalProgramming/Reducers/src/reducers/core.clj
http://media.pragprog.com/titles/pb7con/code/FunctionalProgramming/Reducers/src/reducers/parallel_frequencies.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


The repeatedly function creates an infinite lazy sequence by repeatedly calling
the function it’s given as an argument. In this case, we’re using it to call rand-int,
which returns a different random integer each time it’s called:

user=> (take 10 (repeatedly #(rand-int 10)))
(2 6 2 8 8 5 9 2 5 5)

We can use this to create a large vector of random integers as follows:

reducers.core=> (def numbers (into [] (take 10000000 (repeatedly #(rand-int 10)))))
#'reducers.core/numbers

And then we can count the occurrences of each number in that vector with
frequencies and parallel-frequencies:

reducers.core=> (require ['reducers.parallel-frequencies :refer :all])
nil
reducers.core=> (time (frequencies numbers))
"Elapsed time: 1500.306 msecs"
{0 1000983, 1 999528, 2 1000515, 3 1000283, 4 997717, 5 1000101, 6 999993, …
reducers.core=> (time (parallel-frequencies numbers))
"Elapsed time: 436.691 msecs"
{0 1000983, 1 999528, 2 1000515, 3 1000283, 4 997717, 5 1000101, 6 999993, …

So the sequential version of frequencies takes around 1500 ms, and the parallel
version a little over 400 ms, a 3.5x speedup.

Day 2 Wrap-Up
That brings us to the end of day 2 and our discussion of parallelism in Clojure.
Tomorrow we’ll move on to concurrency with futures and promises, and we’ll
see how they enable the dataflow style of programming.

What We Learned in Day 2

Clojure allows operations on sequences to be easily and naturally parallelized.

• A map operation can be parallelized with pmap, yielding a semi-lazy parallel
map.

• Such a parallel map can be batched for efficiency with partition-all.

• Alternatively, fold parallelizes reduce operations with an eager divide-and-
conquer strategy.

• Instead of returning an intermediate sequence, the clojure.core.reducers
versions of functions like map, mapcat, and filter return reducibles, which
can be thought of as recipes for how to reduce a sequence.

Chapter 3. Functional Programming • 70

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Day 2 Self-Study

Find

• The video of Rich Hickey presenting reducers at QCon 2012

• The documentation for pcalls and pvalues—how do they differ from pmap? Is
it possible to implement them in terms of pmap?

Do

• Create my-flatten and my-mapcat along the lines of my-map (see the code on
page 66). Note that these will both be more complex than my-map because
they will need to expand a single input sequence element into one or more
elements of the resulting sequence. If you get stuck, see the implementa-
tion in the code that accompanies this book.

• Create my-filter. Again, this will be more complex than my-map because it
will need to reduce the number of elements in the input sequence.

Day 3: Functional Concurrency
Over the previous two days, we’ve concentrated on parallelism. Today we’re
going to change focus and look at concurrency. But before we do so, we’ll
look deeper into why functional programming allows us to parallelize code so
easily.

Same Structure, Different Evaluation Order
A common theme runs through everything we’ve seen over the last couple of
days—functional programming allows us to play games with the order in
which things are evaluated. If two calculations are independent, we can run
them in any order we like, including in parallel.

The following code snippets all perform the same calculation, return the same
result, and have almost identical structure, but they execute their component
operations in very different orders:

(reduce + (map (partial * 2) (range 10000)))
Reduces a lazy sequence built on top of a lazy sequence—elements in
each lazy sequence are generated on an as-needed basis.

(reduce + (doall (map (partial * 2) (range 10000))))
First generates the entirety of the mapped sequence (doall forces a lazy
sequence to be fully realized) and then reduces it.

report erratum  •  discuss

Day 3: Functional Concurrency • 71

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


(reduce + (pmap (partial * 2) (range 10000)))
Reduces a semi-lazy sequence, which is generated in parallel.

(reduce + (r/map (partial * 2) (range 10000)))
Reduces a single lazy sequence with a single reducing function constructed
by combining + with (partial * 2).

(r/fold + (r/map (partial * 2) (into [] (range 10000))))
Generates the entirety of the range first and then reduces that in parallel
by creating a tree of reduce and combine operations.

In an imperative language like Java, the order in which things happen is
tightly bound to the order in which statements appear in the source code.
The compiler and runtime can move things around somewhat (something we
have to be careful of when using threads and locks, as we saw in Mysterious
Memory, on page 13), but broadly speaking things happen in the same order
as we write them down.

Functional languages have a much more declarative feel. Instead of writing
a set of instructions for how to perform an operation, a functional program
is more a statement of what the result should be. How the various calculations
are ordered to achieve that result is much more fluid—this freedom to reorder
calculations is what allows functional code to be parallelized so easily.

In the next section we’ll see why functional languages can play these kinds
of games with evaluation order and why imperative languages cannot.

Referential Transparency
Pure functions are referentially transparent—anywhere an invocation of the
function appears, we can replace it with its result without changing the
behavior of the program. Look at this example:

(+ 1 (+ 2 3))

This is exactly equivalent to the following:

(+ 1 5)

Indeed, one way to think about what executing functional code means is to think
of it as repeatedly replacing function invocations with their results until you reach
the final result. For example, we could evaluate (+ (+ 1 2) (+ 3 4)) like this:

(+ (+ 1 2) (+ 3 4)) → (+ (+ 1 2) 7) → (+ 3 7) → 10

Or like this:

(+ (+ 1 2) (+ 3 4)) → (+ 3 (+ 3 4)) → (+ 3 7) → 10

Chapter 3. Functional Programming • 72

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Of course, the same is true for the + operator in Java, but in a functional
program every function is referentially transparent. It is this fact that enables
us to safely make the radical changes to evaluation order we’ve seen so far.

Joe asks:

But Isn’t Clojure Impure?
As we’ll see in the next chapter, Clojure is an impure functional language—it is pos-
sible to write functions with side effects in Clojure, and any such functions will not
be referentially transparent.

This turns out to make little difference in practice because side effects are both very
rare in idiomatic Clojure code and obvious when they do exist. There are a few simple
rules about where side effects can safely appear, and as long as you follow those rules
you’re unlikely to hit problems with evaluation order.

Dataflow
It’s interesting to think about how data flows between functions. Here is a
graph of the data flows within (+ (+ 1 2) (+ 3 4)):

1

2

3

4

+

+

3

7

+ 10

There are no dependencies between (+ 1 2) and (+ 3 4), so these two evaluations
could theoretically happen in any order, including concurrently with each
other. The final addition, however, can’t take place until the results of both
the subcalculations are available.

Theoretically, the language runtime could start at the left side of this graph
and “push” data toward the right side. Whenever the data associated with a
function’s inputs becomes available, that function is executed. And each
function could (theoretically, at least) execute concurrently. This style of
execution is called dataflow programming. Clojure allows us to use this exe-
cution strategy through futures and promises.

report erratum  •  discuss

Day 3: Functional Concurrency • 73

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Futures
A future takes a body of code and executes it in another thread. Its return
value is a future object:

user=> (def sum (future (+ 1 2 3 4 5)))
#'user/sum
user=> sum
#<core$future_call$reify__6110@5d4ee7d0: 15>

We can retrieve the value of a future by dereferencing it with either deref or
the shorthand @:

user=> (deref sum)
15
user=> @sum
15

Dereferencing a future will block until the value is available (or realized). We
can use this to create exactly the dataflow graph we saw before:

user=> (let [a (future (+ 1 2))
#_=> b (future (+ 3 4))]
#_=> (+ @a @b))

10

In that code, we’re using let to bind a to (future (+ 1 2)) and b to (future (+ 3 4)). The
evaluation of (+ 1 2) takes place in one thread and (+ 3 4) in another. Finally,
the outer addition blocks until both the inner additions have completed.

Of course, it makes no sense to use futures for such tiny operations as adding
two numbers—we’ll see a more realistic example soon. Before then, we’ll look
at Clojure’s promises.

Promises
A promise is very similar to a future in that it’s a value that’s realized asyn-
chronously and accessed with deref or @, which will block until it’s realized.
The difference is that creating a promise does not cause any code to
run—instead its value is set with deliver. Here’s a REPL session that illustrates
this:

user=> (def meaning-of-life (promise))
#'user/meaning-of-life
user=> (future (println "The meaning of life is:" @meaning-of-life))
#<core$future_call$reify__6110@224e59d9: :pending>
user=> (deliver meaning-of-life 42)
#<core$promise$reify__6153@52c9f3c7: 42>
The meaning of life is: 42

Chapter 3. Functional Programming • 74

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


We start by creating a promise called meaning-of-life and then use future to create
a thread that prints its value (using future to create a thread like this is a
common Clojure idiom). Finally we use deliver to set the value of our promise,
which unblocks the thread we created earlier.

Now that we’ve seen how futures and promises work, let’s see them in a real
application.

A Functional Web Service
We’re going to create a web service that accepts real-time transcript data (for
example, the transcript of a television program) and translates it. The tran-
script is divided into “snippets,” where each snippet has a sequence number.
Here, for example, is how the first stanza of Lewis Carroll’s poem Jabberwocky
(from Through the Looking-Glass) might be divided into snippets:

Twas brillig, and the slithy toves0

Did gyre and gimble in the wabe:1

All mimsy were the borogoves,2

And the mome raths outgrabe.3

To deliver snippet 0 to our web service, we make a PUT request to /snippet/0
with the body, “Twas brillig, and the slithy toves.” Snippet 1 is delivered to
/snippet/1, and so on.

This is a very simple API, but it’s not as simple to implement as it might at
first appearance. First, because it’s going to run within a concurrent web
server, our code will need to be thread-safe. Second, networks being what
they are, it will have to handle snippets being lost and retried, delivered more
than once, and arriving out of order.

If we want to process snippets sequentially (independent of the order they
arrive in), we’re going to have to keep track of which snippets we’ve already
received and which we’ve processed. And, whenever we receive a new snippet,
we’ll need to check to see which (if any) are now available to be handled.
Implementing this sequentially isn’t easy—we’re going to show how concur-
rency can be used to create a simple solution.

Figure 7, The Structure of the Transcript Handler, on page 76 shows the
structure of the solution we’re heading for.

On the left are the threads created by our web server to handle incoming
requests. On the right is a thread that processes incoming snippets sequen-
tially, waiting until the next snippet is available. In the next section we’ll talk

report erratum  •  discuss

Day 3: Functional Concurrency • 75

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


1

2

3

4

5

6

7

Snippets

Deliver snippet 3

Webserver Threads

Deliver snippet 5

PUT /snippet/3

PUT /snippet/5

Handle snippet 1
Handle snippet 2
Handle snippet 3

Handle snippet 4 (waiting)
...

Snippet Processing Thread

Figure 7—The Structure of the Transcript Handler

about snippets, the data structure that mediates the communication between
these threads.

Accepting Snippets

Here’s how we’re going to keep track of the snippets we’ve received:

FunctionalProgramming/TranscriptHandler/src/server/core.clj
(def snippets (repeatedly promise))

So snippets is an infinite lazy sequence of promises (insert your own software-
engineer-versus-sales, infinite-sequence-of-undelivered-promises-related joke
here). These promises are realized by accept-snippet when snippets become
available:

FunctionalProgramming/TranscriptHandler/src/server/core.clj
(defn accept-snippet [n text]

(deliver (nth snippets n) text))

To handle snippets sequentially, we simply need to create a thread that
dereferences each promise in turn. As an illustration, here’s one that simply
prints out the value of each snippet as it becomes available:

FunctionalProgramming/TranscriptHandler/src/server/core.clj
(future

(doseq [snippet (map deref snippets)]
(println snippet)))

This uses doseq, which processes a sequence sequentially. In this case, the
sequence it’s processing is a lazy sequence of dereferenced promises, each
one of which is bound to snippet.

Chapter 3. Functional Programming • 76

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/FunctionalProgramming/TranscriptHandler/src/server/core.clj
http://media.pragprog.com/titles/pb7con/code/FunctionalProgramming/TranscriptHandler/src/server/core.clj
http://media.pragprog.com/titles/pb7con/code/FunctionalProgramming/TranscriptHandler/src/server/core.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


All that remains is to wire this all up into a web service. Here’s code that uses
the Compojure library to do so:3

FunctionalProgramming/TranscriptHandler/src/server/core.clj
(defroutes app-routes

(PUT "/snippet/:n" [n :as {:keys [body]}]
(accept-snippet (edn/read-string n) (slurp body))
(response "OK")))

(defn -main [& args]
(run-jetty (site app-routes) {:port 3000}))

This defines a single PUT route that calls our accept-snippet function. We’re using
an embedded Jetty web server4—like most web servers, Jetty is multithreaded,
so our code needs to be thread-safe.

If we start the server (with lein run), we can use curl to prove to ourselves that
this all works as we expect. Send snippet 0, for example:

$ curl -X put -d "Twas brillig, and the slithy toves" \
-H "Content-Type: text/plain" localhost:3000/snippet/0
OK

And it’s immediately printed:

Twas brillig, and the slithy toves

But nothing will be printed if we send snippet 2 before snippet 1 has been
sent:

$ curl -X put -d "All mimsy were the borogoves," \
-H "Content-Type: text/plain" localhost:3000/snippet/2
OK

Send snippet 1, however:

$ curl -X put -d "Did gyre and gimble in the wabe:" \
-H "Content-Type: text/plain" localhost:3000/snippet/1
OK

And both it and snippet 2 are printed:

Did gyre and gimble in the wabe:
All mimsy were the borogoves,

Delivering a snippet more than once causes no problems, because deliver is a
no-op if called on a promise that’s already been realized. So the following
results in no error and nothing being printed:

3. https://github.com/weavejester/compojure
4. http://www.eclipse.org/jetty/

report erratum  •  discuss

Day 3: Functional Concurrency • 77

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/FunctionalProgramming/TranscriptHandler/src/server/core.clj
https://github.com/weavejester/compojure
http://www.eclipse.org/jetty/
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


$ curl -X put -d "Did gyre and gimble in the wabe:" \
-H "Content-Type: text/plain" localhost:3000/snippet/1
OK

Now that we’ve demonstrated that we can handle snippets, let’s do something
more interesting with them. Imagine that we have another web service that
translates any sentences it’s given. We’re going to modify our transcript
handler to use this web service to translate whatever it’s given.

Sentences

Before we look at how to call our translation service, we first need to implement
code to turn our sequence of snippets into a sequence of sentences. Sentence
boundaries might appear anywhere within a snippet, so we might need to
either split or join snippets to obtain sentences.

Let’s start by looking at how to split on sentence boundaries:

FunctionalProgramming/TranscriptHandler2/src/server/sentences.clj
(defn sentence-split [text]

(map trim (re-seq #"[^\.!\?:;]+[\.!\?:;]*" text)))

This passes a regular expression that matches sentences to re-seq, which
returns a sequence of matches and uses trim to get rid of any extraneous
spaces:

server.core=> (sentence-split "This is a sentence. Is this?! A fragment")
("This is a sentence." "Is this?!" "A fragment")

Next, a little more regular-expression magic gives us a function that allows
us to tell whether a string is a sentence:

FunctionalProgramming/TranscriptHandler2/src/server/sentences.clj
(defn is-sentence? [text]

(re-matches #"^.*[\.!\?:;]$" text))

server.core=> (is-sentence? "This is a sentence.")
"This is a sentence."
server.core=> (is-sentence? "A sentence doesn't end with a comma,")
nil

Finally, we can wire this all up to create strings->sentences, a function that takes
a sequence of strings and returns a sequence of sentences:

FunctionalProgramming/TranscriptHandler2/src/server/sentences.clj
(defn sentence-join [x y]

(if (is-sentence? x) y (str x " " y)))

(defn strings->sentences [strings]
(filter is-sentence?

(reductions sentence-join

Chapter 3. Functional Programming • 78

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/FunctionalProgramming/TranscriptHandler2/src/server/sentences.clj
http://media.pragprog.com/titles/pb7con/code/FunctionalProgramming/TranscriptHandler2/src/server/sentences.clj
http://media.pragprog.com/titles/pb7con/code/FunctionalProgramming/TranscriptHandler2/src/server/sentences.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


(mapcat sentence-split strings))))

This makes use of reductions. As its name suggests, this behaves like reduce;
but instead of returning a single value, it returns a sequence of each of the
intermediate values:

server.core=> (reduce + [1 2 3 4])
10
server.core=> (reductions + [1 2 3 4])
(1 3 6 10)

In our case, we’re using sentence-join as the reducing function. If its first argu-
ment is a sentence, this just returns its second argument. But if its first
argument is not, it returns the two concatenated (with an intervening space):

server.core=> (sentence-join "A complete sentence." "Start of another")
"Start of another"
server.core=> (sentence-join "This is" "a sentence.")
"This is a sentence."

So with reductions, this gives us the following:

server.core=> (def fragments ["A" "sentence." "And another." "Last" "sentence."])
#'server.core/fragments
server.core=> (reductions sentence-join fragments)
("A" "A sentence." "And another." "Last" "Last sentence.")

Finally, we filter the result with is-sentence?:

server.core=> (filter is-sentence? (reductions sentence-join fragments))
("A sentence." "And another." "Last sentence.")

Now that we’ve got a sequence of sentences, we can pass them to our trans-
lation server.

Translating Sentences

A classic use case for futures is talking to another web service. A future allows
computation, such as network access, to take place on another thread while
the main thread continues. Here’s translate, a function that returns a future
that will, when realized, contain the translation of its argument:

FunctionalProgramming/TranscriptHandler2/src/server/core.clj
(def translator "http://localhost:3001/translate")

(defn translate [text]
(future

(:body (client/post translator {:body text}))))

report erratum  •  discuss

Day 3: Functional Concurrency • 79

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/FunctionalProgramming/TranscriptHandler2/src/server/core.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


This uses client/post from the clj-http library to make a POST request and retrieve
the response.5 We can use this to transform the result of the strings->sentences
function we created earlier into a set of translations:

FunctionalProgramming/TranscriptHandler2/src/server/core.clj
(def translations

(delay
(map translate (strings->sentences (map deref snippets)))))

This introduces the delay function, which creates a lazy value that isn’t realized
until it’s dereferenced.

Putting It All Together

Here’s the complete source of our web service:

FunctionalProgramming/TranscriptHandler2/src/server/core.clj
(def snippets (repeatedly promise))Line 1

-

(def translator "http://localhost:3001/translate")-

-

(defn translate [text]5

(future-

(:body (client/post translator {:body text}))))-

-

(def translations-

(delay10

(map translate (strings->sentences (map deref snippets)))))-

-

(defn accept-snippet [n text]-

(deliver (nth snippets n) text))-

15

(defn get-translation [n]-

@(nth @translations n))-

-

(defroutes app-routes-

(PUT "/snippet/:n" [n :as {:keys [body]}]20

(accept-snippet (edn/read-string n) (slurp body))-

(response "OK"))-

(GET "/translation/:n" [n]-

(response (get-translation (edn/read-string n)))))-

25

(defn -main [& args]-

(run-jetty (wrap-charset (api app-routes)) {:port 3000}))-

As well as the code to translate sentences, we’ve added a new GET endpoint
to allow translations to be retrieved (line 23). This makes use of get-translation
(line 16), which accesses the translations sequence we created earlier.

5. https://github.com/dakrone/clj-http

Chapter 3. Functional Programming • 80

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/FunctionalProgramming/TranscriptHandler2/src/server/core.clj
http://media.pragprog.com/titles/pb7con/code/FunctionalProgramming/TranscriptHandler2/src/server/core.clj
https://github.com/dakrone/clj-http
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


If you want to see this all in action, start the server, together with the trans-
lator server that’s included in the accompanying code. Then run the
TranscriptTest application (also in the accompanying code) and you should
see a sentence-by-sentence French translation of Jabberwocky:

$ lein run
Il brilgue, les tôves lubricilleux Se gyrent en vrillant dans le guave:
Enmîmés sont les gougebosqueux Et le mômerade horsgrave.
Garde-toi du Jaseroque, mon fils!
La gueule qui mord; la griffe qui prend!
Garde-toi de l'oiseau Jube, évite Le frumieux Band-à-prend!
«...»
So there we have it—a complete concurrent web service that uses a combina-
tion of laziness, futures, and promises. It has no mutable state and no locks,
and it’s considerably simpler and easier to read than an equivalent service
implemented in an imperative language is likely to be.

Joe asks:

Aren’t We Holding Onto Our Head?
Our web service makes use of two lazy sequences, snippets and translations. In both
cases, we hold on to the head of these sequences (see It's Good to Be Lazy, on page
59), meaning that they will grow forever. Over time, they will consume more and more
memory.

In the next chapter we’ll see how to use Clojure’s reference types to fix this problem
and enhance this web service to handle more than one transcript.

Day 3 Wrap-Up
This brings us to the end of day 3 and our discussion of how functional pro-
gramming facilitates concurrency and parallelism.

What We Learned in Day 3

Functions in a functional program are referentially transparent. This allows
us to safely modify the order in which those functions are called without
affecting the behavior of the program. In particular, this facilitates the dataflow
style of programming (supported in Clojure with futures and promises), in
which code executes when the data it depends on becomes available. We saw
an example of how concurrent dataflow programming can simplify the
implementation of a web service.

report erratum  •  discuss

Day 3: Functional Concurrency • 81

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Day 3 Self-Study

Find

• What is the difference between future and future-call? How would you
implement one in terms of the other?

• How do you tell if a future has been realized without blocking? How do
you cancel a future?

Do

• Modify the transcript server so that a GET request to /translation/:n
doesn’t block if the translation isn’t yet available, but returns an HTTP

409 status code instead.

• Implement the transcript server in an imperative language. Is your solution
as simple as the functional Clojure implementation? How confident are
you that it contains no race conditions?

Wrap-Up
There’s a common misconception about parallelism—many people believe
that parallel programming necessarily raises the specter of nondeterminism.
If things aren’t proceeding sequentially, the reasoning goes, and we can no
longer rely on effects happening in a specific order, we’re always going to have
to worry about race conditions.

Certainly, there are some concurrent programs that will always be nondeter-
ministic. And this is unavoidable—some problems require solutions that are
intrinsically dependent on the details of timing. But it’s not the case that all
parallel programs are necessarily nondeterministic. The value of the sum of
the numbers between 0 and 10,000 won’t change just because we add those
numbers together in parallel instead of sequentially. The frequencies of the
words in a particular Wikipedia dump is and always will be the same, no
matter how many threads we use to count them.

Most of the potential race conditions in traditional threads and locks–based
parallel programs are accidental, arising from the details of the solution rather
than any intrinsic nondeterminism in the problem.

Because functional code is referentially transparent, we can modify the order
in which it’s executed, safe in the knowledge that we will not change the final
result by doing so. This includes evaluating mutually independent functions
in parallel—as we’ve seen, this allows us to parallelize functional code almost
trivially easily.

Chapter 3. Functional Programming • 82

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Joe asks:

Where Are the Monads and the Monoids?
Introductions to functional programming tend to involve descriptions of mathematical
concepts like monads, monoids, and category theory. We’ve just had a whole chapter
on functional programming, with no mention of any of these. What gives?

One of the biggest influences on the flavor of any programming language is its type
system. Writing code in a statically typed language like Java or Scala feels very differ-
ent from writing code in a dynamically typed language like Ruby or Python.

Static type systems place an up-front burden on the programmer to get the types
right. The payoff is that doing so enables the compiler to make guarantees that certain
types of errors will not occur at runtime and to improve efficiency by making optimiza-
tions guided by the type system.

A programmer using a dynamically typed language avoids this up-front burden but
accepts the risks that some errors will happen at runtime and that compiled code
may be less efficient.

The same distinction is present in the world of functional programming. A statically
typed functional language like Haskell uses concepts like monads and monoids to
allow its type system to accurately encode restrictions on where particular functions
and values can be used and to keep track of side effects while remaining functional.

Although an understanding of these mathematical concepts is undoubtedly helpful
when writing Clojure code, no static type system needs to be told about them. The
downside is that this places an additional burden on the programmer to make sure
that functions and values are used in appropriate contexts—the compiler won’t warn
you if you fail to do so.

Strengths
The primary benefit of functional programming is confidence, confidence that
your program does what you think it does. Once you’ve got into thinking
functionally (which can take a while, especially if you have years of experience
with imperative programming), functional programs tend to be simpler, easier
to reason about, and easier to test than their imperative equivalents.

Once you have a working functional solution, referential transparency allows
you to parallelize it, or operate in a concurrent environment, with very little
effort. Because functional code eliminates mutable state, the majority of the
concurrency bugs that can show up in traditional threads and locks–based
programs are impossible.

report erratum  •  discuss

Wrap-Up • 83

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Weaknesses
Many people expect that functional code will be less efficient than its impera-
tive equivalent. Although there are performance implications for some types
of problem, the penalty is likely to be less than you fear. And any small per-
formance hit is likely to be more than worth it for the payoff of increased
robustness and scalability.

Other Languages
Java 8 has recently added a number of features that make it easier to write
code in a functional style, most notably lambda expressions and streams.6,7

Streams support aggregate operations that can process streams in parallel
in a manner very similar to Clojure’s reducers.

No description of functional programming would be complete without men-
tioning Haskell.8 Haskell provides equivalents of everything we’ve seen in this
chapter and more. For an excellent introduction to parallel and concurrent
programming in Haskell, see Simon Marlow’s tutorial.9

Final Thoughts
There’s a great deal more to functional programming than we’ve seen in this
chapter—above and beyond its excellent support for concurrency and paral-
lelism. It seems inevitable that functional programming will play an increasingly
important role in the future.

Having said that, mutable state is going to be with us for the foreseeable
future. In the next chapter we’ll see how Clojure supports side effects without
compromising its support for concurrency.

6. http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
7. http://docs.oracle.com/javase/tutorial/collections/streams/index.html
8. http://haskell.org/
9. http://community.haskell.org/~simonmar/par-tutorial.pdf

Chapter 3. Functional Programming • 84

report erratum  •  discusswww.finebook.ir   

http://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://docs.oracle.com/javase/tutorial/collections/streams/index.html
http://haskell.org/
http://community.haskell.org/~simonmar/par-tutorial.pdf
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


CHAPTER 4

The Clojure Way—
Separating Identity from State

A modern hybrid passenger car combines the strengths of an internal combus-
tion engine with those of an electric motor. Depending on context, it sometimes
runs on electric power only, sometimes on gasoline only, and sometimes both
simultaneously. Clojure provides a similar hybrid of functional programming
and mutable state—the “Clojure Way” leverages the strengths of both to provide
a particularly powerful approach to concurrent programming.

The Best of Both Worlds
While functional programming works incredibly well for some problems, some
have modifying state as a fundamental element of the solution. Although it
may be possible to create a functional solution to such problems, they are
easier to think of in a more traditional manner. In this chapter we’ll stray
beyond the pure functional subset of Clojure we looked at previously and see
how it helps us create concurrent solutions to such problems.

In day 1 we’ll discuss atoms, the simplest of Clojure’s concurrency-aware
mutable datatypes, and show how, in concert with persistent data structures,
they allow us to separate identity from state. In day 2 we’ll explore Clojure’s
other mutable data structures: agents and software transactional memory.
Finally, in day 3 we’ll implement an algorithm using both atoms and STM and
discuss the trade-offs between the two solutions.

Day 1: Atoms and Persistent Data Structures
A pure functional language provides no support for mutable data whatsoever.
Clojure, by contrast, is impure—it provides a number of different types of

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


concurrency-aware mutable variables, each of which is suitable for different
use cases. These, in concert with Clojure’s persistent data structures (we’ll
cover what persistent means in this context later) allow us to avoid many of
the problems that traditionally afflict concurrent programs with shared
mutable state.

The difference between an impure functional language and an imperative
language is one of emphasis. In an imperative language, variables are mutable
by default and idiomatic code modifies them frequently. In an impure func-
tional language, variables are immutable by default and idiomatic code
modifies those that aren’t only when absolutely necessary. As we’ll see,
Clojure’s mutable variables allow us to handle real-world side effects while
remaining safe and consistent.

Today we’ll see how Clojure’s mutable variables work in concert with persistent
data structures to separate identity from state. This allows multiple threads
to access mutable variables concurrently without locks (and the associated
danger of deadlock) and without any of the problems of escaped or hidden
mutable state that we saw in The Perils of Mutable State, on page 50. We’ll
start by looking at what is arguably the simplest of Clojure’s mutable variable
types, the atom.

Atoms
An atom is an atomic variable, very similar to those we saw in Atomic Variables,
on page 30 (in fact, Clojure’s atoms are built on top of java.util.concurrent.atomic).
Here’s an example of creating and retrieving the value of an atom:

user=> (def my-atom (atom 42))
#'user/my-atom
user=> (deref my-atom)
42
user=> @my-atom
42

An atom is created with atom, which takes an initial value. We can find the
current value of an atom with deref or @.

If you want to update an atom to a new value, use swap!:

user=> (swap! my-atom inc)
43
user=> @my-atom
43

Chapter 4. The Clojure Way—Separating Identity from State • 86

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


This takes a function and passes it the current value of the atom. The new
value of the atom becomes the return value from the function. We can also
pass additional arguments to the function, as in this example:

user=> (swap! my-atom + 2)
45

The first argument passed to the function will be the current value of the
atom, and then any additional arguments given to swap!. So in this case, the
new value becomes the result of (+ 43 2).

Rarely, you might want to set an atom to a value that doesn’t depend on its
current value, in which case you can use reset!:

user=> (reset! my-atom 0)
0
user=> @my-atom
0

Atoms can be any type—many web applications use an atomic map to store
session data, as in this example:

user=> (def session (atom {}))
#'user/session
user=> (swap! session assoc :username "paul")
{:username "paul"}
user=> (swap! session assoc :session-id 1234)
{:session-id 1234, :username "paul"}

Now that we’ve played with them in the REPL, let’s see an example of an atom
in an application.

A Multithreaded Web Service with Mutable State
In Escapologist Mutable State, on page 51, we discussed a hypothetical web
service that managed a list of players in a tournament. In this section we’ll
look at the complete Clojure code for such a web service and show how
Clojure’s persistent data structures mean that mutable state cannot escape
as it can in Java.

Clojure/TournamentServer/src/server/core.clj
(def players (atom ()))Line 1

-

(defn list-players []-

(response (json/encode @players)))-

5

(defn create-player [player-name]-

(swap! players conj player-name)-

(status (response "") 201))-

-

report erratum  •  discuss

Day 1: Atoms and Persistent Data Structures • 87

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Clojure/TournamentServer/src/server/core.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


(defroutes app-routes10

(GET "/players" [] (list-players))-

(PUT "/players/:player-name" [player-name] (create-player player-name)))-

(defn -main [& args]-

(run-jetty (site app-routes) {:port 3000}))-

This defines a couple of routes—a GET request to /players will retrieve a list
of the current players (in JSON format), and a PUT request to /players/name
will add a player to that list. As with the web service we saw in the last
chapter, the embedded Jetty server is multithreaded, so our code will need
to be thread-safe.

We’ll talk about how the code works in a moment, but let’s see it in action
first. We can exercise it from the command line with curl:

$ curl localhost:3000/players
[]

$ curl -X put localhost:3000/players/john
$ curl localhost:3000/players
["john"]

$ curl -X put localhost:3000/players/paul
$ curl -X put localhost:3000/players/george
$ curl -X put localhost:3000/players/ringo
$ curl localhost:3000/players
["ringo","george","paul","john"]

Now let’s see how this code works. The players atom (line 1) is initialized to the
empty list (). A new player is added to the list with conj (line 7), and an empty
response is returned with an HTTP 201 (created) status. The list of players is
returned by JSON-encoding the result of fetching the value of players with @
(line 4).

This all seems very simple (and it is), but something might be worrying you
about it. Both the list-players and create-player functions access players—why
doesn’t this code suffer from the same problem as the Java code on page 51?
What happens if one thread adds an entry to the players list while another is
iterating over it, converting it to JSON?

This code is thread-safe because Clojure’s data structures are persistent.

Persistent Data Structures
Persistence in this case doesn’t have anything to do with persistence on disk
or within a database. Instead it refers to a data structure that always preserves
its previous version when it’s modified, which allows code to have a consistent
view of the data in the face of modifications. We can see this easily in the REPL:

Chapter 4. The Clojure Way—Separating Identity from State • 88

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


user=> (def mapv1 {:name "paul" :age 45})
#'user/mapv1
user=> (def mapv2 (assoc mapv1 :sex :male))
#'user/mapv2
user=> mapv1
{:age 45, :name "paul"}
user=> mapv2
{:age 45, :name "paul", :sex :male}

Persistent data structures behave as though a complete copy is made each
time they’re modified. If that were how they were actually implemented, they
would be very inefficient and therefore of limited use (like CopyOnWriteArrayList,
which we saw in Copy on Write, on page 34). Happily, the implementation is
much more clever than that and makes use of structure sharing.

The easiest persistent data structure to understand is the list. Here’s a simple
list:

user=> (def listv1 (list 1 2 3))
#'user/listv1
user=> listv1
(1 2 3)

And here’s a diagram of what it looks like in memory:

1 2 3

listv1

Now let’s create a modified version with cons, which returns a copy of the list
with an item added to the front:

user=> (def listv2 (cons 4 listv1))
#'user/listv2
user=> listv2
(4 1 2 3)

The new list can share all of the previous list—no copying necessary:

1 2 3

listv1

4

listv2

Finally, let’s create another modified version:

report erratum  •  discuss

Day 1: Atoms and Persistent Data Structures • 89

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


user=> (def listv3 (cons 5 (rest listv1)))
#'user/listv3
user=> listv3
(5 2 3)

1 2 3

listv1

4

listv2

5

listv3

In this instance, the new list only makes use of part of the original, but
copying is still not necessary.

We can’t always avoid copying. Lists handle only common tails well—if we
want to have two lists with different tails, we have no choice but to copy.
Here’s an example:

user=> (def listv1 (list 1 2 3 4))
#'user/listv1
user=> (def listv2 (take 2 listv1))
#'user/listv2
user=> listv2
(1 2)

This leads to the following in memory:

1 2 3

listv1

4

1 2

listv2

All of Clojure’s collections are persistent. Persistent vectors, maps, and sets
are more complex to implement than lists, but for our purposes all we need
to know is that they share structure and that they provide similar performance
bounds to their nonpersistent equivalents in languages like Ruby and Java.

Chapter 4. The Clojure Way—Separating Identity from State • 90

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Joe asks:

Can Non-functional Data Structures Be Persistent?
It is possible to create a persistent data structure in a non-functional language. We’ve
already seen one in Java (CopyOnWriteArrayList), and Clojure’s core data structures are
mostly written in Java because Clojure didn’t exist when they were written, so it can
certainly be done.

Having said that, implementing a persistent data structure in a non-functional lan-
guage is difficult—difficult to get right and difficult to do efficiently—because the
language gives you no help: it’s entirely up to you to enforce the persistence contract.

Functional data structures, by contrast, are automatically persistent.

Identity or State?
Persistent data structures are invaluable for concurrent programming because
once a thread has a reference to a data structure, it will see no changes made
by any other thread. Persistent data structures separate identity from state.

What is the fuel level in your car? Right now, it might be half-full. Sometime
later it’ll be close to empty, and a few minutes after that (after you stop to fill
up) it’ll be full. The identity “fuel level in your car” is one thing, the state of
which is constantly changing. “Fuel level in your car” is really a sequence of
different values—at 2012-02-23 12:03 it was 0.53; at 2012-02-23 14:30 it
was 0.12; and at 2012-02-23 14:31 it was 1.00.

A variable in an imperative language complects (interweaves, interconnects)
identity and state—a single identity can only ever have a single value, making
it easy to lose sight of the fact that the state is really a sequence of values
over time. Persistent data structures separate identity from state—if we retrieve
the current state associated with an identity, that state is immutable and
unchanging, no matter what happens to the identity from which we retrieved
it in the future.

Heraclitus put it this way:

You could not step twice into the same river; for other waters are ever flowing
onto you.

Most languages cling to the fallacy that the river is a single consistent entity;
Clojure recognizes that it’s constantly changing.

report erratum  •  discuss

Day 1: Atoms and Persistent Data Structures • 91

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Retries
Because Clojure is functional, atoms can be lockless—internally they make
use of the compareAndSet() method in java.util.concurrent.AtomicReference. That means
that they’re very fast and don’t block (so there’s no danger of deadlock). But
it also means that swap! needs to handle the case where the value of the atom
has been changed by another thread in between it calling the function to
generate a new value and it trying to change that value.

If that happens, swap! will retry. It will discard the value returned by the
function and call it again with the atom’s new value. We saw something very
similar to this already when using ConcurrentHashMap in the code on page 40.
This means that it’s essential that the function passed to swap! has no side
effects—if it did, then those side effects might happen more than once.

Happily, this is where Clojure’s functional nature pays off—functional code
is naturally side effect–free.

Validators
Imagine that we want to have an atom that never has a negative value. We can
guarantee that by providing a validator function when we create the atom:

user=> (def non-negative (atom 0 :validator #(>= % 0)))
#'user/non-negative
user=> (reset! non-negative 42)
42
user=> (reset! non-negative -1)
IllegalStateException Invalid reference state

A validator is a function that’s called whenever an attempt is made to change the
value of the atom. If it returns true the attempt can succeed, but if it returns false
the attempt will be abandoned.

The validator is called before the value of the atom has been changed and, just
like the function that’s passed to swap!, it might be called more than once if swap!
retries. Therefore, validators also must not have any side effects.

Watchers
Atoms can also have watchers associated with them:

user=> (def a (atom 0))
#'user/a
user=> (add-watch a :print #(println "Changed from " %3 " to " %4))
#<Atom@542ab4b1: 0>
user=> (swap! a + 2)
Changed from 0 to 2
2

Chapter 4. The Clojure Way—Separating Identity from State • 92

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


A watcher is added by providing both a key and a watch function. The key is used
to identify the watcher (so, for example, if there are multiple watchers, we can
remove a specific one by providing the relevant key). The watch function is called
whenever the value of the atom changes. It is given four arguments—the key that
was given to add-watch, a reference to the atom, the previous value, and the new
value.

In the preceding code, we’re using the #(…) reader macro again to define an
anonymous function that prints out the old (%3) and new (%4) values of the atom.

Unlike validators, watch functions are called after the value has changed and will
only be called once, no matter how often swap! retries. A watch function can,
therefore, have side effects. Note, however, that by the time the watch function
is called, the value of the atom may already have changed again, so watch func-
tions should always use the values passed as arguments and never dereference
the atom.

A Hybrid Web Service
In A Functional Web Service, on page 75, we created a purely functional web service
in Clojure. Although it worked fine, it had a couple of significant limitations—it
could only handle a single transcript, and its memory consumption would grow
forever. In this section we’ll see how to address both of these issues while preserv-
ing the functional flavor of the original.

Session Management

We’re going to allow our web service to handle multiple transcripts by intro-
ducing the concept of a session. Each session has a unique numerical identi-
fier, which is generated as follows:

Clojure/TranscriptHandler/src/server/session.clj
(def last-session-id (atom 0))
(defn next-session-id []

(swap! last-session-id inc))

This uses an atom, last-session-id, that is incremented each time we want a new
session ID. As a result, each time next-session-id is called, it returns a number
that is one higher than the last:

server.core=> (in-ns 'server.session)
#<Namespace server.session>
server.session=> (next-session-id)
1
server.session=> (next-session-id)
2
server.session=> (next-session-id)
3

report erratum  •  discuss

Day 1: Atoms and Persistent Data Structures • 93

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Clojure/TranscriptHandler/src/server/session.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


We’re going to keep track of active sessions with another atom called sessions
that contains a map from session IDs to session values:

(def sessions (atom {}))

(defn new-session [initial]
(let [session-id (next-session-id)]

(swap! sessions assoc session-id initial)
session-id))

(defn get-session [id]
(@sessions id))

We create a new session by passing an initial value to new-session, which gets
a new session ID and adds it to sessions by calling swap!. Retrieving a session
in get-session is a simple matter of looking it up by its ID.

Session Expiration

If we’re not going to continually increase the amount of memory we use, we’re
going to need some way to delete sessions when they’re no longer in use. We
could do this explicitly (with a delete-session function, perhaps), but given that
we’re writing a web service where we can’t necessarily rely on clients cleaning
up after themselves properly, we’re going to implement session expiration
(expiry) instead. This requires a small change to the preceding code:

Clojure/TranscriptHandler/src/server/session.clj
(def sessions (atom {}))

(defn now []➤

(System/currentTimeMillis))➤

(defn new-session [initial]
(let [session-id (next-session-id)

session (assoc initial :last-referenced (atom (now)))]➤

(swap! sessions assoc session-id session)
session-id))

(defn get-session [id]
(let [session (@sessions id)]

(reset! (:last-referenced session) (now))➤

session))

We’ve added a utility function called now that returns the current time. When
new-session creates a session, it adds a :last-referenced entry to the session,
another atom containing the current time. This is updated with reset! whenever
get-session accesses the session.

Chapter 4. The Clojure Way—Separating Identity from State • 94

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Clojure/TranscriptHandler/src/server/session.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Now that every session has a :last-referenced entry, we can expire sessions by
periodically checking to see whether any haven’t been referenced for more
than a certain amount of time:

Clojure/TranscriptHandler/src/server/session.clj
(defn session-expiry-time []

(- (now) (* 10 60 1000)))
(defn expired? [session]

(< @(:last-referenced session) (session-expiry-time)))

(defn sweep-sessions []
(swap! sessions #(remove-vals % expired?)))

(def session-sweeper
(schedule {:min (range 0 60 5)} sweep-sessions))

This uses the Schejulure library to create session-sweeper, which schedules
sweep-sessions to run once every five minutes.1 Whenever it runs, it removes
(using the remove-vals function provided by the Useful library2) any sessions
for which expired? returns true, meaning that they were last accessed before
session-expiry-time (ten minutes ago).

Putting It All Together

We can now modify our web service to use sessions. First, we need a function
that will create a new session:

Clojure/TranscriptHandler/src/server/core.clj
(defn create-session []

(let [snippets (repeatedly promise)
translations (delay (map translate

(strings->sentences (map deref snippets))))]
(new-session {:snippets snippets :translations translations})))

We’re still using an infinite lazy sequence of promises to represent incoming
snippets and a map over that sequence to represent translations, but these
are now both stored in a session.

Next, we need to modify accept-snippet and get-translation to look up :snippets or
:translations within a session:

Clojure/TranscriptHandler/src/server/core.clj
(defn accept-snippet [session n text]

(deliver (nth (:snippets session) n) text))

(defn get-translation [session n]
@(nth @(:translations session) n))

1. https://github.com/AdamClements/schejulure
2. https://github.com/flatland/useful

report erratum  •  discuss

Day 1: Atoms and Persistent Data Structures • 95

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Clojure/TranscriptHandler/src/server/session.clj
http://media.pragprog.com/titles/pb7con/code/Clojure/TranscriptHandler/src/server/core.clj
http://media.pragprog.com/titles/pb7con/code/Clojure/TranscriptHandler/src/server/core.clj
https://github.com/AdamClements/schejulure
https://github.com/flatland/useful
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Finally, we define the routes that tie these functions to URIs:

Clojure/TranscriptHandler/src/server/core.clj
(defroutes app-routes

(POST "/session/create" []
(response (str (create-session))))

(context "/session/:session-id" [session-id]
(let [session (get-session (edn/read-string session-id))]
(routes

(PUT "/snippet/:n" [n :as {:keys [body]}]
(accept-snippet session (edn/read-string n) (slurp body))
(response "OK"))

(GET "/translation/:n" [n]
(response (get-translation session (edn/read-string n))))))))

This gives us a web service that makes judicious use of mutable data but still
feels primarily functional.

Day 1 Wrap-Up
That brings us to the end of day 1. In day 2 we’ll look at agents and refs,
Clojure’s other types of mutable variables.

What We Learned in Day 1

Clojure is an impure functional language, providing a number of types of
mutable variables. Today we looked at the simplest of these, the atom.

• The difference between an imperative language and an impure functional
language is one of emphasis.

– In an imperative language, variables are mutable by default, and
idiomatic code writes to variables frequently.

– In a functional language, variables are immutable by default, and
idiomatic code writes to them only when absolutely necessary.

• Because functional data structures are persistent, changes made by one
thread will not affect a second thread that already has a reference to that
data structure.

• This allows us to separate identity from state, recognizing the fact that
the state associated with an identity is really a sequence of values over
time.

Chapter 4. The Clojure Way—Separating Identity from State • 96

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Clojure/TranscriptHandler/src/server/core.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Day 1 Self-Study

Find

• Karl Krukow’s blog post “Understanding Clojure’s PersistentVector Implemen-
tation” for an explanation of how a more complex persistent data structure
than a linked list is implemented

• The follow-up to that blog post that describes the implementation of Persistent-
HashMap using a “Hash Array Mapped Trie”

Do

• Extend the TournamentServer example from A Multithreaded Web Service
with Mutable State, on page 87, to allow players to be removed from as well
as added to the list.

• Extend the TranscriptServer example from A Hybrid Web Service, on page 93,
to recover if a snippet doesn’t arrive after more than ten seconds.

Day 2: Agents and Software Transactional Memory
Yesterday we looked at atoms. Today we’ll look at the other types of mutable
variables provided by Clojure: agents and refs. Like atoms, agents and refs are
both concurrency aware and work in concert with persistent data structures to
maintain the separation of identity and state. When talking about refs, we’ll see
how Clojure supports software transactional memory, allowing variables to be
modified concurrently without locks and yet still retaining consistency.

Agents
An agent is similar to an atom in that it encapsulates a reference to a single
value, which can be retrieved with deref or @:

user=> (def my-agent (agent 0))
#'user/my-agent
user=> @my-agent
0

The value of an agent is modified by calling send:

user=> (send my-agent inc)
#<Agent@2cadd45e: 1>
user=> @my-agent
1
user=> (send my-agent + 2)
#<Agent@2cadd45e: 1>
user=> @my-agent
3

report erratum  •  discuss

Day 2: Agents and Software Transactional Memory • 97

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Like swap!, send takes a function together with some optional arguments and
calls that function with the current value of the agent. The new value of the
agent becomes the return value of the function.

The difference is that send returns immediately (before the value of the agent
has been changed)—the function passed to send is called sometime afterward.
If multiple threads call send concurrently, execution of the functions passed
to send is serialized: only one will execute at a time. This means that they will
not be retried and can therefore contain side effects.

Joe asks:

Is an Agent an Actor?
There are some surface similarities between Clojure’s agents and actors (which we’ll
look at in Chapter 5, Actors, on page 115). They’re different enough that the analogy
is likely to be more misleading than helpful, however:

• An agent has a value that can be retrieved directly with deref. An actor encapsu-
lates state but provides no direct means to access it.

• An actor encapsulates behavior; an agent does not—the function that implements
an action is provided by the sender.

• Actors provide sophisticated support for error detection and recovery. Agents’
error reporting is much more primitive.

• Actors can be remote; agents provide no support for distribution.

• Composing actors can deadlock; composing agents cannot.

Waiting for Agent Actions to Complete

If you look at the preceding REPL session, you can see that the return value
of send is a reference to the agent. And when the REPL displays that reference,
it also includes the value of the agent—in this case, 1:

user=> (send my-agent inc)
#<Agent@2cadd45e: 1>

The next time, however, instead of displaying 3, it displays 1 again:

user=> (send my-agent + 2)
#<Agent@2cadd45e: 1>

This is because the function passed to send is run asynchronously, and it may
or may not finish before the REPL queries the agent for its value. With a quick-
running task like this, by the time the REPL retrieves the value, there’s a good

Chapter 4. The Clojure Way—Separating Identity from State • 98

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


chance that it will have already finished; but if we provide a long-running
task with Thread/sleep, you can see that this isn’t normally true:

user=> (def my-agent (agent 0))
#'user/my-agent
user=> (send my-agent #((Thread/sleep 2000) (inc %)))
#<Agent@224e59d9: 0>
user=> @my-agent
0
user=> @my-agent
1

Clojure provides the await function, which blocks until all actions dispatched
from the current thread to the given agent(s) have completed (there’s also
await-for, which allows you to specify a timeout):

user=> (def my-agent (agent 0))
#'user/my-agent
user=> (send my-agent #((Thread/sleep 2000) (inc %)))
#<Agent@7f5ff9d0: 0>
user=> (await my-agent)
nil
user=> @my-agent
1

Joe asks:

What About Send-Off and Send-Via?
As well as send, agents also support send-off and send-via. The only difference is that send
executes the function it’s given in a common thread pool, whereas send-off creates a
new thread and send-via takes an executor as an argument.

You should use send-off or send-via if the function you pass might block (and therefore
tie up the thread that it’s executing on) or take a long time to execute. Other than
that, the three functions are identical.

Asynchronous updates have obvious benefits over synchronous ones,
especially for long-running or blocking operations. They also have added
complexity, including dealing with errors. We’ll see the tools that Clojure
provides to help with this next.

Error Handling

Like atoms, agents also support both validators and watchers. For example,
here’s an agent that has a validator that ensures that the agent’s value never
goes negative:

report erratum  •  discuss

Day 2: Agents and Software Transactional Memory • 99

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


user=> (def non-negative (agent 1 :validator (fn [new-val] (>= new-val 0))))
#'user/non-negative

Here’s what happens if we try to decrement the agent’s value until it goes
negative:

user=> (send non-negative dec)
#<Agent@6257d812: 0>
user=> @non-negative
0
user=> (send non-negative dec)
#<Agent@6257d812: 0>
user=> @non-negative
0

As we hoped, the value won’t go negative. But what happens if we try to use
an agent after it’s experienced an error?

user=> (send non-negative inc)
IllegalStateException Invalid reference state clojure.lang.ARef.validate…

user=> @non-negative
0

Once an agent experiences an error, it enters a failed state by default, and
attempts to dispatch new actions fail. We can find out if an agent is failed
(and if it is, why) with agent-error, and we can restart it with restart-agent:

user=> (agent-error non-negative)
#<IllegalStateException java.lang.IllegalStateException: Invalid reference state>
user=> (restart-agent non-negative 0)
0
user=> (agent-error non-negative)
nil
user=> (send non-negative inc)
#<Agent@6257d812: 1>
user=> @non-negative
1

By default, agents are created with the :fail error mode. Alternatively, you can
set the error mode to :continue, in which case you don’t need to call restart-agent
to allow an agent to process new actions after an error. The :continue error
mode is the default if you set an error handler—a function that’s automatically
called whenever the agent experiences an error.

Next, we’ll see a more realistic example of using an agent.

Chapter 4. The Clojure Way—Separating Identity from State • 100

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


An In-Memory Log
Something I’ve often found helpful when working with concurrent programs
is an in-memory log—traditional logging can be too heavyweight to be helpful
when debugging concurrency issues, involving as it does several context-
switches and IO operations for each log operation. Implementing such an
in-memory log with threads and locks can be tricky, but an agent-based
implementation is almost trivial:

Clojure/Logger/src/logger/core.clj
(def log-entries (agent []))

(defn log [entry]
(send log-entries conj [(now) entry]))

Our log is an agent called log-entries initialized to an empty array. The log
function uses conj to append a new entry to this array, which consists of a
two-element array—the first element is a timestamp (which will be the time
that send is called, not the time that conj is called by the agent—potentially
sometime later), and the second element is the log message.

Here’s a REPL session that shows it in action:

logger.core=> (log "Something happened")
#<Agent@bd99597: [[1366822537794 "Something happened"]]>
logger.core=> (log "Something else happened")
#<Agent@bd99597: [[1366822538932 "Something happened"]]>
logger.core=> @log-entries
[[1366822537794 "Something happened"] [1366822538932 "Something else happened"]]

In the next section we’ll look at the remaining type of shared mutable variable
supported by Clojure, the ref.

Software Transactional Memory
Refs are more sophisticated than atoms and agents, providing software
transactional memory (STM). Unlike atoms and agents, which only support
modifications of a single variable at a time, STM allows us to make concurrent,
coordinated changes to multiple variables, much like a database transaction
allows concurrent, coordinated changes to multiple records.

Like both atoms and agents, a ref encapsulates a reference to single value,
which can be retrieved with deref or @:

user=> (def my-ref (ref 0))
#'user/my-ref
user=> @my-ref
0

report erratum  •  discuss

Day 2: Agents and Software Transactional Memory • 101

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Clojure/Logger/src/logger/core.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


The value of a ref can be set with ref-set, and the equivalent of swap! or send is
alter. However, using them isn’t as simple as just calling them:

user=> (ref-set my-ref 42)
IllegalStateException No transaction running

user=> (alter my-ref inc)
IllegalStateException No transaction running

Modifying the value of a ref is possible only inside a transaction.

Transactions

STM transactions are atomic, consistent, and isolated:

Atomic:
From the point of view of code running in another transaction, either all
of the side effects of a transaction take place, or none of them do.

Consistent:
Transactions guarantee preservation of invariants specified through val-
idators (like those we’ve already seen for atoms and agents). If any of the
changes attempted by a transaction fail to validate, none of the changes
will be made.

Isolated:
Although multiple transactions can execute concurrently, the effect of
concurrent transactions will be indistinguishable from those transactions
running sequentially.

You may recognize these as the first three of the ACID properties supported
by many databases. The missing property is durability—STM data will not
survive power loss or crashes. If you need durability, you need to use a
database.

A transaction is created with dosync:

user=> (dosync (ref-set my-ref 42))
42
user=> @my-ref
42
user=> (dosync (alter my-ref inc))
43
user=> @my-ref
43

Everything within the body of dosync constitutes a single transaction.

Chapter 4. The Clojure Way—Separating Identity from State • 102

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Joe asks:

Are Transactions Really Isolated?
Completely isolated transactions are the right choice for most situations, but isolation
can be an excessively strong constraint for some use cases. Clojure does allow you
to relax it when appropriate by using commute instead of alter.

Although commute can be a useful optimization, understanding when it’s appropriate
can be subtle, and we won’t cover it further in this book.

Multiple Refs

Most interesting transactions involve more than one ref (otherwise, we might
just as well use an atom or agent). The classic example of a transaction is
transferring money between accounts—we never want to see an occasion
where money has been debited from one account and not credited to the
other. Here’s a function where both the debit and credit will occur, or neither
will:

Clojure/Transfer/src/transfer/core.clj
(defn transfer [from to amount]

(dosync
(alter from - amount)
(alter to + amount)))

Here’s an example of it in use:

user=> (def checking (ref 1000))
#'user/checking
user=> (def savings (ref 2000))
#'user/savings
user=> (transfer savings checking 100)
1100
user=> @checking
1100
user=> @savings
1900

If the STM runtime detects that concurrent transactions are trying to make
conflicting changes, one or more of the transactions will be retried. This means
that, as when modifying an atom, transactions should not have side effects.

Retrying Transactions

In the spirit of “show, don’t tell,” let’s see if we can catch a transaction being
retried by stress-testing our transfer function. We’re going to start by instru-
menting it as follows:

report erratum  •  discuss

Day 2: Agents and Software Transactional Memory • 103

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Clojure/Transfer/src/transfer/core.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Clojure/Transfer/src/transfer/core.clj
(def attempts (atom 0))
(def transfers (agent 0))

(defn transfer [from to amount]
(dosync

(swap! attempts inc) // Side-effect in transaction - DON'T DO THIS➤

(send transfers inc)➤

(alter from - amount)
(alter to + amount)))

We’re deliberately breaking the "no side effects" rule by modifying an atom
within a transaction. In this case, it’s OK because we’re doing it to illustrate
that transactions are being retried, but please don’t write code like this in
production.

As well as keeping a count in an atom, we’re keeping a count in an agent.
We’ll see why very shortly.

Here’s a main method that stress-tests this instrumented transfer function:

Clojure/Transfer/src/transfer/core.clj
(def checking (ref 10000))
(def savings (ref 20000))

(defn stress-thread [from to iterations amount]
(Thread. #(dotimes [_ iterations] (transfer from to amount))))

(defn -main [& args]
(println "Before: Checking =" @checking " Savings =" @savings)
(let [t1 (stress-thread checking savings 100 100)

t2 (stress-thread savings checking 200 100)]
(.start t1)
(.start t2)
(.join t1)
(.join t2))

(await transfers)
(println "Attempts: " @attempts)
(println "Transfers: " @transfers)
(println "After: Checking =" @checking " Savings =" @savings))

It creates two threads. One thread transfers $100 from the checking account
to the savings account 100 times, and the other transfers $100 from the
savings account to the checking account 200 times. Here’s what I see when
I run this:

Before: Checking = 10000 Savings = 20000
Attempts: 638
Transfers: 300
After: Checking = 20000 Savings = 10000

Chapter 4. The Clojure Way—Separating Identity from State • 104

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Clojure/Transfer/src/transfer/core.clj
http://media.pragprog.com/titles/pb7con/code/Clojure/Transfer/src/transfer/core.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


This is excellent news—the final result is exactly what we would expect, so
the STM runtime has successfully ensured that our concurrent transactions
have given us the right result. The cost is that it had to perform a number of
retries (338 on this occasion) to do so, but the payoff is no locking and no
danger of deadlock.

Of course, this isn’t a realistic example—two threads both accessing the same
refs in a tight loop are guaranteed to conflict with each other. In practice,
retries will be much rarer than this in a well-designed system.

Safe Side Effects in Transactions

You may have noticed that although the count maintained by our atom was
much larger, the count maintained by our agent was exactly equal to the
number of transactions. There is a good reason for this—agents are transaction
aware.

If you use send to modify an agent within a transaction, that send will take place
only if the transaction succeeds. Therefore, if you want to achieve some side
effect when a transaction succeeds, using send is an excellent way to do so.

Joe asks:

What’s with the Exclamation Marks?
You may have noticed that some functions have names ending in an exclamation
mark—what does this naming convention convey?

Clojure uses an exclamation mark to indicate that functions like swap! and reset! are not
transaction-safe. By contrast, we know that we can safely update an agent within a
transaction because the function that updates an agent’s value is send instead of send!.

Shared Mutable State in Clojure
We’ve now seen all three of the mechanisms that Clojure provides to support
shared mutable state. Each has its own use cases.

An atom allows you to make synchronous changes to a single value—syn-
chronous because when swap! returns, the update has taken place. Updates
to one atom are not coordinated with other updates.

An agent allows you to make asynchronous changes to a single value—asyn-
chronous because the update takes place after send returns. Updates to one
agent are not coordinated with other updates.

Refs allow you to make synchronous, coordinated changes to multiple values.

report erratum  •  discuss

Day 2: Agents and Software Transactional Memory • 105

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Day 2 Wrap-Up
That brings us to the end of day 2. In day 3 we’ll see some more extended
examples of using mutable variables in Clojure together with some guidance
on when to use the different types.

What We Learned in Day 2

In addition to atoms, Clojure also provides agents and refs:

• Atoms enable independent, synchronous changes to single values.
• Agents enable independent, asynchronous changes to single values.
• Refs enable coordinated, synchronous changes to multiple values.

Day 2 Self-Study

Find

• Rich Hickey’s presentation “Persistent Data Structures and Managed
References: Clojure’s Approach to Identity and State”

• Rich Hickey’s presentation “Simple Made Easy”

Do

• Extend the TournamentServer from A Multithreaded Web Service with
Mutable State, on page 87, by using refs and transactions to implement
a server that runs a tic-tac-toe tournament.

• Implement a persistent binary search tree using lists to represent nodes.
What’s the worst-case amount of copying you need to perform? What
about the average case?

• Look up finger trees and implement your binary search tree using a finger
tree. What effect does that have on the average performance and worst-
case performance?

Day 3: In Depth
We’ve now seen all of the ingredients of the “Clojure Way.” Today we’ll look
at some more involved examples of those ingredients in use and gain some
insights into how to choose between atoms and STM when faced with a par-
ticular concurrency problem.

Chapter 4. The Clojure Way—Separating Identity from State • 106

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Dining Philosophers with STM

To start off, we’ll revisit the “dining philosophers” problem we examined in
Chapter 2, Threads and Locks, on page 9, and construct a solution using
Clojure’s software transactional memory. Our solution will be very similar to
(but, as you’ll soon see, much simpler than) the condition-variable-based
solution from Condition Variables, on page 28.

We’re going to represent a philosopher as a ref, the value of which contains
the philosopher’s current state (either :thinking or :eating). Those refs are stored
in a vector called philosophers:

Clojure/DiningPhilosphersSTM/src/philosophers/core.clj
(def philosophers (into [] (repeatedly 5 #(ref :thinking))))

Each philosopher has an associated thread:

Clojure/DiningPhilosphersSTM/src/philosophers/core.clj
(defn think []Line 1

(Thread/sleep (rand 1000)))-

-

(defn eat []-

(Thread/sleep (rand 1000)))5

-

(defn philosopher-thread [n]-

(Thread.-

#(let [philosopher (philosophers n)-

left (philosophers (mod (- n 1) 5))10

right (philosophers (mod (+ n 1) 5))]-

(while true-

(think)-

(when (claim-chopsticks philosopher left right)-

(eat)15

(release-chopsticks philosopher))))))-

-

(defn -main [& args]-

(let [threads (map philosopher-thread (range 5))]-

(doseq [thread threads] (.start thread))20

(doseq [thread threads] (.join thread))))-

As with the Java solution, each thread loops forever (line 12), alternating
between thinking and attempting to eat. If claim-chopsticks succeeds (line 14),
the when control structure first calls eat and then calls release-chopsticks.

The implementation of release-chopsticks is straightforward:

Clojure/DiningPhilosphersSTM/src/philosophers/core.clj
(defn release-chopsticks [philosopher]

(dosync (ref-set philosopher :thinking)))

report erratum  •  discuss

Day 3: In Depth • 107

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Clojure/DiningPhilosphersSTM/src/philosophers/core.clj
http://media.pragprog.com/titles/pb7con/code/Clojure/DiningPhilosphersSTM/src/philosophers/core.clj
http://media.pragprog.com/titles/pb7con/code/Clojure/DiningPhilosphersSTM/src/philosophers/core.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


We simply create a transaction with dosync and set our state to :thinking with
ref-set.

A First Attempt

The interesting function is claim-chopsticks—here’s a first attempt at an
implementation:

(defn claim-chopsticks [philosopher left right]
(dosync

(when (and (= @left :thinking) (= @right :thinking))
(ref-set philosopher :eating))))

As with release-chopsticks, we start by creating a transaction. Within that
transaction we check the state of the philosophers to our left and right—if
they’re both :thinking, we set our status to :eating with ref-set. Because when returns
nil if the condition it’s given is false, claim-chopsticks will also return nil if we’re
unable to claim both chopsticks and start eating.

If you try running with this implementation, at first glance it will appear to
work. Occasionally, however, you’ll see adjacent philosophers eating, which
should be impossible, as they share a chopstick. So what’s going on?

The problem is that we’re accessing the values of left and right with @. Clojure’s
STM guarantees that no two transactions will make inconsistent modifications
to the same ref, but we’re not modifying left or right, just examining their values.
Some other transaction could modify them, invalidating the condition that
adjacent philosophers can’t eat simultaneously.

Ensuring That a Value Does Not Change

The solution is to examine left and right with ensure instead of @:

Clojure/DiningPhilosphersSTM/src/philosophers/core.clj
(defn claim-chopsticks [philosopher left right]

(dosync
(when (and (= (ensure left) :thinking) (= (ensure right) :thinking))
(ref-set philosopher :eating))))

As its name suggests, ensure ensures that the value of the ref it returns won’t
be changed by another transaction. It’s worth comparing this solution to our
earlier lock-based solutions. Not only is it significantly simpler, but because
it’s lockless, it’s impossible for it to deadlock.

In the next section we’ll look at an alternative implementation that uses a
single atom instead of multiple refs and transactions.

Chapter 4. The Clojure Way—Separating Identity from State • 108

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Clojure/DiningPhilosphersSTM/src/philosophers/core.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Dining Philosophers Without STM

An STM-based approach isn’t the only possible solution to dining philosophers
in Clojure. Instead of representing each philosopher as a ref and using
transactions to ensure that updates to those refs are coordinated, we can use
a single atom to represent the state of all the philosophers:

Clojure/DiningPhilosphersAtom/src/philosophers/core.clj
(def philosophers (atom (into [] (repeat 5 :thinking))))

Its value is a vector of states. If philosophers 0 and 3 are eating, for example,
it would be this:

[:eating :thinking :thinking :eating :thinking]

We need to make a small change to philosopher-thread, as we’ll now be referring
to a particular philosopher by its index in the array:

Clojure/DiningPhilosphersAtom/src/philosophers/core.clj
(defn philosopher-thread [philosopher]

(Thread.
#(let [left (mod (- philosopher 1) 5)➤

right (mod (+ philosopher 1) 5)]➤

(while true
(think)
(when (claim-chopsticks! philosopher left right)

(eat)
(release-chopsticks! philosopher))))))

Implementing release-chopsticks! is just a question of using swap! to set the relevant
position in the vector to :thinking:

Clojure/DiningPhilosphersAtom/src/philosophers/core.clj
(defn release-chopsticks! [philosopher]

(swap! philosophers assoc philosopher :thinking))

This code makes use of assoc, which we’ve previously seen used only with a
map, but it behaves exactly as you might imagine:

user=> (assoc [:a :a :a :a] 2 :b)
[:a :a :b :a]

Finally, as before, the most interesting function to implement is claim-chopsticks!:

Clojure/DiningPhilosphersAtom/src/philosophers/core.clj
(defn claim-chopsticks! [philosopher left right]

(swap! philosophers
(fn [ps]
(if (and (= (ps left) :thinking) (= (ps right) :thinking))

(assoc ps philosopher :eating)
ps)))

(= (@philosophers philosopher) :eating))

report erratum  •  discuss

Day 3: In Depth • 109

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Clojure/DiningPhilosphersAtom/src/philosophers/core.clj
http://media.pragprog.com/titles/pb7con/code/Clojure/DiningPhilosphersAtom/src/philosophers/core.clj
http://media.pragprog.com/titles/pb7con/code/Clojure/DiningPhilosphersAtom/src/philosophers/core.clj
http://media.pragprog.com/titles/pb7con/code/Clojure/DiningPhilosphersAtom/src/philosophers/core.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


The anonymous function passed to swap! takes the current value of the
philosophers vector and checks the state of the adjacent philosophers. If they’re
both thinking, it uses assoc to modify the state of the current philosopher to
:eating; otherwise it returns the current value of the vector unmodified.

The last line of claim-chopsticks! checks the new value of philosophers to see whether
the swap! successfully modified the state of the current philosopher to :eating.

So we’ve now seen two “dining philosophers” implementations, one that uses
STM and one that doesn’t. Is there any reason to prefer one over the other?

Atoms or STM?
As we saw in Shared Mutable State in Clojure, on page 105, atoms enable
independent changes to single values, whereas refs enable coordinated changes
to multiple values. These are quite different sets of capabilities, but as we’ve
seen in this section, it’s relatively easy to take an STM-based solution that
uses multiple refs and turn it into a solution that uses a single atom instead.

It turns out that this isn’t unusual—whenever we need to coordinate modifi-
cations of multiple values we can either use multiple refs and coordinate
access to them with transactions or collect those values together into a com-
pound data structure stored in a single atom.

So how do you choose?

In many ways it’s a question of style and personal preference—both
approaches work, so go with whichever seems clearest to you. There will also
be differences in relative performance that will depend on the details of your
problem and its access patterns, so you should also let the stopwatch
(together with your load-test suite) be your guide.

Having said that, although STM gets the headlines, experienced Clojure pro-
grammers tend to find that atoms suffice for most problems, as the language’s
functional nature leads to minimal use of mutable data. As always, the sim-
plest approach that will work is your friend.

Custom Concurrency
Our atom-based “dining philosophers” code works, but the implementation
of claim-chopsticks! (see the code on page 109) isn’t particularly elegant. Surely it
should be possible to avoid the check after calling swap! to see if we were able
to claim the chopsticks? Ideally, we’d like a version of swap! that takes a
predicate and only swaps the value if the predicate is true. That would enable
us to rewrite claim-chopsticks! like this:

Chapter 4. The Clojure Way—Separating Identity from State • 110

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Clojure/DiningPhilosphersAtom2/src/philosophers/core.clj
(defn claim-chopsticks! [philosopher left right]

(swap-when! philosophers
#(and (= (%1 left) :thinking) (= (%1 right) :thinking))
assoc philosopher :eating))

Although Clojure provides no such function, there’s no reason we shouldn’t
write one ourselves:

Clojure/DiningPhilosphersAtom2/src/philosophers/util.clj
(defn swap-when!Line 1

"If (pred current-value-of-atom) is true, atomically swaps the value-

of the atom to become (apply f current-value-of-atom args). Note that-

both pred and f may be called multiple times and thus should be free-

of side effects. Returns the value that was swapped in if the5

predicate was true, nil otherwise."-

[a pred f & args]-

(loop []-

(let [old @a]-

(if (pred old)10

(let [new (apply f old args)]-

(if (compare-and-set! a old new)-

new-

(recur)))-

nil))))15

This introduces quite a bit of new stuff. Firstly, the function has a doc-string—a
string in between the defn and the parameter list—that describes its behavior.
This is good practice for any function, but particularly so for utility functions
like this that are designed for reuse. As well as forming documentation within
the code, doc-strings can be accessed from within the REPL:

philosophers.core=> (require '[philosophers.util :refer :all])
nil
philosophers.core=> (clojure.repl/doc swap-when!)
-------------------------
philosophers.util/swap-when!
([atom pred f & args])

If (pred current-value-of-atom) is true, atomically swaps the value
of the atom to become (apply f current-value-of-atom args). Note that
both pred and f may be called multiple times and thus should be free
of side effects. Returns the value that was swapped in if the
predicate was true, nil otherwise.

The ampersand (&) in the argument list says that swap-when! can take a variable
number of arguments (similar to an ellipsis in Java or asterisk in Ruby). Any
additional arguments will be captured as an array and bound to args. We use
apply, which unpacks its last argument, to pass these additional arguments
to f (line 11)—for example, the following are equivalent ways to invoke +:

report erratum  •  discuss

Day 3: In Depth • 111

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Clojure/DiningPhilosphersAtom2/src/philosophers/core.clj
http://media.pragprog.com/titles/pb7con/code/Clojure/DiningPhilosphersAtom2/src/philosophers/util.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


user=> (apply + 1 2 [3 4 5])
15
user=> (+ 1 2 3 4 5)
15

Instead of using swap!, the implementation makes use of the low-level compare-
and-set! function (line 12). This takes an atom together with old and new values
—it atomically sets the value of the atom to the new value if and only if its
current value is equal to the old one.

If compare-and-set! succeeds, we return the new value. If it doesn’t, we use recur
(line 14) to loop back to line 8.

Joe asks:

What Is Loop/Recur?
Unlike many functional languages, Clojure does not provide tail-call elimination, so
idiomatic Clojure makes very little use of recursion. Instead, Clojure provides loop/recur.

The loop macro defines a target that recur can jump to (reminiscent of setjmp() and
longjmp() in C/C++). For more detail on how this works, see the Clojure documentation.

Day 3 Wrap-Up
This brings us to the end of day 3 and our discussion of how Clojure combines
functional programming with concurrency-aware mutable variables.

What We Learned in Day 3

Clojure’s functional nature leads to code with few mutable variables. Typically
this means that simple atom-based concurrency is sufficient:

• STM-based code in which multiple refs are coordinated through transac-
tions can be transformed into an agent-based solution with those refs
consolidated into a single compound data structure accessed via an agent.

• The choice between an STM and an agent-based solution is largely one of
style and performance characteristics.

• Custom concurrency constructs can make code simpler and clearer.

Chapter 4. The Clojure Way—Separating Identity from State • 112

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Day 3 Self-Study

Find

• Rich Hickey’s presentation “The Database as a Value”—note how
Datomic effectively treats the entire database as a single value.3

Do

• Modify the extended TournamentServer from the exercises at the end of
day 2 to use atoms instead of refs and transactions. Which solution is
simpler? Which is easier to read? Which provides better performance?

Wrap-Up
Clojure takes a pragmatic approach to concurrency (very appropriate for this
Pragmatic Bookshelf title). Recognizing that most of the difficulties with con-
current programming arise from shared mutable state, Clojure is a functional
language that facilitates referentially transparent code that is free from side
effects. But recognizing that most interesting problems necessarily involve
the maintenance of some mutable state, it supports a number of concurrency-
safe types of mutable variables.

Strengths
For obvious reasons, the strengths of the “Clojure Way” build upon those for
functional programming that we saw in the previous chapter. Clojure allows
you to solve problems functionally when that’s the natural approach, but
step outside of pure functional programming when appropriate.

By contrast with variables in traditional imperative languages, which complect
identity and state, Clojure’s persistent data structures allow its mutable
variables to keep identity and state separate. This eliminates a wide range of
common problems with lock-based programs. Experienced Clojure program-
mers find that the idiomatic solution to a concurrent problem often “just
works.”

Weaknesses
The primary weakness of the “Clojure Way” is that it provides no support for
distributed (geographically or otherwise) programming. Related to this, it has
no direct support for fault tolerance.

3. http://www.datomic.com

report erratum  •  discuss

Wrap-Up • 113

www.finebook.ir   

http://www.datomic.com
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Of course, because it runs on the JVM, there are various third-party libraries
available that can be used from Clojure to provide such support (one of these
is Akka,4 which, among other things, supports the actor model that we’ll be
looking at in the next chapter), but use of such libraries steps outside of
idiomatic Clojure.

Other Languages
Although its pure functional nature means that it has a somewhat different
“feel,” concurrent Haskell provides very similar functionality to what we’ve
seen in this chapter. In particular, it provides a full STM implementation, an
excellent introduction to which can be found in Simon Peyton Jones’s Beau-
tiful Concurrency.5

In addition, there are STM implementations available for most mainstream
languages, not the least of which is GCC.6 Having said that, there is evidence
that STM provides a less compelling solution when coupled with an imperative
language.7

Final Thoughts
Clojure has found a good balance between functional programming and
mutable state, allowing programmers with experience in imperative languages
to get started more easily than they might in a pure functional language. And
yet it does so while retaining most of functional programming’s benefits, in
particular its excellent support for concurrency.

In large part, Clojure accomplishes this by retaining shared mutable state, but
with carefully thought-out concurrency-aware semantics. In the next section
we’ll look at actors, which do away with shared mutable state altogether.

4. http://blog.darevay.com/2011/06/clojure-and-akka-a-match-made-in/
5. http://research.microsoft.com/pubs/74063/beautiful.pdf
6. http://gcc.gnu.org/wiki/TransactionalMemory
7. http://www.infoq.com/news/2010/05/STM-Dropped

Chapter 4. The Clojure Way—Separating Identity from State • 114

report erratum  •  discusswww.finebook.ir   

http://blog.darevay.com/2011/06/clojure-and-akka-a-match-made-in/
http://research.microsoft.com/pubs/74063/beautiful.pdf
http://gcc.gnu.org/wiki/TransactionalMemory
http://www.infoq.com/news/2010/05/STM-Dropped
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


CHAPTER 5

Actors
An actor is like a rental car—quick and easy to get a hold of when you want
one, and if it breaks down you don’t bother trying to fix it; you just call the
rental company and another one is delivered to you.

The actor model is a general-purpose concurrent programming model with
particularly wide applicability. It targets both shared- and distributed-memory
architectures, facilitates geographical distribution, and provides especially
strong support for fault tolerance and resilience.

More Object-Oriented than Objects
Functional programming avoids the problems associated with shared mutable
state by avoiding mutable state. Actor programming, by contrast, retains
mutable state but avoids sharing it.

An actor is like an object in an object-oriented (OO) program—it encapsulates
state and communicates with other actors by exchanging messages. The dif-
ference is that actors run concurrently with each other and, unlike OO-style
message passing (which is really just calling a method), actors really commu-
nicate by sending messages to each other.

Although the actor model is a general approach to concurrency that can be
used with almost any language, it’s most commonly associated with Erlang.1

We’re going to cover actors in Elixir,2 a relatively new language that runs on
the Erlang virtual machine (BEAM).

Like Clojure (and Erlang), Elixir is an impure, dynamically typed functional
language. If you’re familiar with Java or Ruby, you should find it easy enough

1. http://www.erlang.org/
2. http://elixir-lang.org/

report erratum  •  discusswww.finebook.ir   

http://www.erlang.org/
http://elixir-lang.org/
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


to read. This isn’t going to be an Elixir tutorial (this is a book about concur-
rency, after all, not programming languages), but I’ll introduce the important
language features we’re using as we go along. There may be things you just
have to take on faith if you’re not already familiar with the language—I recom-
mend Programming Elixir [Tho14] if you want to go deeper.

In day 1 we’ll see the basics of the actor model—creating actors and sending
and receiving messages. In day 2 we’ll see how failure detection, coupled with
the “let it crash” philosophy, allows actor programs to be fault-tolerant.
Finally, in day 3 we’ll see how actors’ support for distributed programming
allows us to both scale beyond a single machine and recover from failure of
one or more of those machines.

Day 1: Messages and Mailboxes
Today we’ll see how to create and stop processes, send and receive messages,
and detect when a process has terminated.

Joe asks:

Actor or Process?
In Erlang, and therefore Elixir, an actor is called a process. In most environments a
process is a heavyweight entity that consumes lots of resources and is expensive to
create. An Elixir process, by contrast, is very lightweight—lighter weight even than
most systems’ threads, both in terms of resource consumption and startup cost.
Elixir programs typically create thousands of processes without problems and don’t
normally need to resort to the equivalent of thread pools (see Thread-Creation Redux,
on page 33).

Our First Actor
Let’s dive straight in with an example of creating a simple actor and sending
it some messages. We’re going to construct a “talker” actor that knows how
to say a few simple phrases in response to messages.

The messages we’ll be sending are tuples—sequences of values. In Elixir, a
tuple is written using curly brackets, like this:

{:foo, "this", 42}

This is a 3-tuple (or triple), where the first element is a keyword (Elixir’s key-
words are very similar to Clojure’s, even down to the initial colon syntax), the
second a string, and the third an integer.

Chapter 5. Actors • 116

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Here’s the code for our actor:

Actors/hello_actors/hello_actors.exs
defmodule Talker do

def loop do
receive do
{:greet, name} -> IO.puts("Hello #{name}")
{:praise, name} -> IO.puts("#{name}, you're amazing")
{:celebrate, name, age} -> IO.puts("Here's to another #{age} years, #{name}")

end
loop

end
end

We’ll pick through this code in more detail soon, but we’re defining an actor
that knows how to receive three different kinds of messages and prints an
appropriate string when it receives each of them.

Here’s code that creates an instance of our actor and sends it a few messages:

Actors/hello_actors/hello_actors.exs
pid = spawn(&Talker.loop/0)
send(pid, {:greet, "Huey"})
send(pid, {:praise, "Dewey"})
send(pid, {:celebrate, "Louie", 16})
sleep(1000)

First, we spawn an instance of our actor, receiving a process identifier that
we bind to the variable pid. A process simply executes a function, in this case
the loop() function within the Talker module, which takes zero arguments.

Next, we send three messages to our newly created actor and finally sleep for
a while to give it time to process those messages (using sleep() isn’t the best
approach—we’ll see how to do this better soon).

Here’s what you should see when you run it:

Hello Huey
Dewey, you're amazing
Here's to another 16 years, Louie

Now that we’ve seen how to create an actor and send messages to it, let’s see
what’s going on under the hood.

Mailboxes Are Queues
One of the most important features of actor programming is that messages
are sent asynchronously. Instead of being sent directly to an actor, they are
placed in a mailbox:

report erratum  •  discuss

Day 1: Messages and Mailboxes • 117

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Actors/hello_actors/hello_actors.exs
http://media.pragprog.com/titles/pb7con/code/Actors/hello_actors/hello_actors.exs
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


HelloActors

Celebrate:
Louie, 16

Praise: 
Dewey
Greet:
Huey

Mailbox

Talker

This means that actors are decoupled—actors run at their own speed and
don’t block when sending messages.

An actor runs concurrently with other actors but handles messages sequen-
tially, in the order they were added to the mailbox, moving on to the next
message only when it’s finished processing the current message. We only
have to worry about concurrency when sending messages.

Receiving Messages
An actor typically sits in an infinite loop, waiting for a message to arrive with
receive and then processing it. Here’s Talker’s loop again:

Actors/hello_actors/hello_actors.exs
def loop do

receive do
{:greet, name} -> IO.puts("Hello #{name}")
{:praise, name} -> IO.puts("#{name}, you're amazing")
{:celebrate, name, age} -> IO.puts("Here's to another #{age} years, #{name}")

end
loop

end

This function implements an infinite loop by calling itself recursively. The
receive block waits for a message and then uses pattern matching to work out
how to handle it. Incoming messages are compared against each pattern in
turn—if a message matches, the variables in the pattern (name and age) are
bound to the values in the message and the code to the right of the arrow (->)
is executed. That code prints a message constructed using string interpola-
tion—the code within each #{…} is evaluated and the resulting value inserted
into the string.

The code on page 117 sleeps for a second to allow messages to be processed
before exiting. This is an unsatisfactory solution—we can do better.

Chapter 5. Actors • 118

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Actors/hello_actors/hello_actors.exs
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Joe asks:

Won’t Infinite Recursion Blow Up the Stack?
You might be worried that a function like Talker’s loop(), which recurses infinitely, would
result in the stack growing forever. Happily, there’s no need to worry—in common
with many functional languages (Clojure being a prominent exception—see What Is
Loop/Recur?, on page 112), Elixir implements tail-call elimination. Tail-call elimination,
as its name suggests, replaces a recursive call with a simple jump if the last thing
the function does is call itself.

Linking Processes
We need two things to be able to shut down cleanly. First we need a way to
tell our actor to stop when it’s finished processing all the messages in its
queue. And second, we need some way to know that it has done so.

We can achieve the first of these by having our actor handle an explicit
shutdown message (similar to the poison pill we saw in the code on page 38):

Actors/hello_actors/hello_actors2.exs
defmodule Talker do

def loop do
receive do
{:greet, name} -> IO.puts("Hello #{name}")
{:praise, name} -> IO.puts("#{name}, you're amazing")
{:celebrate, name, age} -> IO.puts("Here's to another #{age} years, #{name}")
{:shutdown} -> exit(:normal)➤

end
loop

end
end

And second, we need a way to tell that it has exited, which we can do by setting
:trap_exit to true and linking to it by using spawn_link() instead of spawn():

Actors/hello_actors/hello_actors2.exs
Process.flag(:trap_exit, true)
pid = spawn_link(&Talker.loop/0)

This means that we’ll be notified (with a system-generated message) when
the spawned process terminates. The message that’s sent is a triple of this
form:

{:EXIT, pid, reason}

All that remains is to send the shutdown message and listen for the exit
message:

report erratum  •  discuss

Day 1: Messages and Mailboxes • 119

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Actors/hello_actors/hello_actors2.exs
http://media.pragprog.com/titles/pb7con/code/Actors/hello_actors/hello_actors2.exs
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Actors/hello_actors/hello_actors2.exs
send(pid, {:greet, "Huey"})
send(pid, {:praise, "Dewey"})
send(pid, {:celebrate, "Louie", 16})
send(pid, {:shutdown})➤

receive do➤

{:EXIT, ^pid, reason} -> IO.puts("Talker has exited (#{reason})")➤

end➤

The ̂  (caret) in the receive pattern indicates that instead of binding the second
element of the tuple to pid, we want to match a message where the second
element has the value that’s already bound to pid.

Here’s what you should see if you run this new version:

Hello Huey
Dewey, you're amazing
Here's to another 16 years, Louie
Talker has exited (normal)

We’ll talk about linking in much more detail tomorrow.

Stateful Actors
Our Talker actor is stateless. It’s tempting to think that you would need
mutable variables to create a stateful actor, but in fact all we need is recursion.
Here, for example, is an actor that maintains a count that increments each
time it receives a message:

Actors/counter/counter.ex
defmodule Counter do

def loop(count) do
receive do
{:next} ->

IO.puts("Current count: #{count}")
loop(count + 1)

end
end

end

Let’s see this in action in Interactive Elixir, iex (the Elixir REPL):

iex(1)> counter = spawn(Counter, :loop, [1])
#PID<0.47.0>
iex(2)> send(counter, {:next})
Current count: 1
{:next}
iex(3)> send(counter, {:next})
{:next}
Current count: 2

Chapter 5. Actors • 120

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Actors/hello_actors/hello_actors2.exs
http://media.pragprog.com/titles/pb7con/code/Actors/counter/counter.ex
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


iex(4)> send(counter, {:next})
{:next}
Current count: 3

We start by using the three-argument form of spawn(), which takes a module
name, the name of a function within that module, and a list of arguments, so
that we can pass an initial count to Counter.loop(). Then, as we expect, it prints a
different number each time we send it a {:next} message—a stateful actor with
not a mutable variable in sight. And furthermore, this is an actor that can
safely access that state without any concurrency bugs, because messages are
handled sequentially.

Hiding Messages Behind an API
Our Counter actor works, but it’s not very convenient to use. We need to remember
which arguments to pass to spawn() and exactly which message(s) it understands
(is it {:next}, :next, or {:increment}?). With that in mind, instead of calling spawn() and
sending messages directly to an actor, it’s common practice to provide a set of
API functions:

Actors/counter/counter.ex
defmodule Counter do

def start(count) do➤

spawn(__MODULE__, :loop, [count])➤

end➤

def next(counter) do➤

send(counter, {:next})➤

end➤

def loop(count) do
receive do
{:next} ->

IO.puts("Current count: #{count}")
loop(count + 1)

end
end

end

The implementation of start() makes use of the pseudo-variable __MODULE__, which
evaluates to the name of the current module. These make using our actor much
neater and less error prone:

iex(1)> counter = Counter.start(42)
#PID<0.44.0>
iex(2)> Counter.next(counter)
Current count: 42
{:next}
iex(3)> Counter.next(counter)
{:next}
Current count: 43

report erratum  •  discuss

Day 1: Messages and Mailboxes • 121

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Actors/counter/counter.ex
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


An actor that simply prints its state isn’t very useful. Next we’ll see how to
implement bidirectional communication so that one actor can query another.

Bidirectional Communication
As we’ve already seen, messages between actors are sent asynchronously—the
sender doesn’t block. But what happens if we want to receive a reply? What
if, for example, we want our Counter actor to return the next number rather
than just printing it?

The actor model doesn’t provide direct support for replies, but it’s something
we can build for ourselves very easily by including the identifier of the sending
process in the message, which allows the recipient to send a reply:

Actors/counter/counter2.ex
defmodule Counter do

def start(count) do
spawn(__MODULE__, :loop, [count])

end
def next(counter) do

ref = make_ref()➤

send(counter, {:next, self(), ref})➤

receive do➤

{:ok, ^ref, count} -> count➤

end➤

end
def loop(count) do

receive do
{:next, sender, ref} ->

send(sender, {:ok, ref, count})➤

loop(count + 1)
end

end
end

Instead of printing the count, this version sends it back to the sender of the
original message as a triple of the following form:

{:ok, ref, count}

Here ref is a unique reference generated by the sender with make_ref().

Let’s prove that it works:

iex(1)> counter = Counter.start(42)
#PID<0.47.0>
iex(2)> Counter.next(counter)
42
iex(3)> Counter.next(counter)
43

Chapter 5. Actors • 122

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Actors/counter/counter2.ex
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Joe asks:

Why Reply with a Tuple?
Our new version of Counter could have simply replied with the count instead of a tuple:

{:next, sender} ->
send(sender, count)

Although this would certainly work, idiomatic Elixir typically uses tuples as messages,
where the first element indicates success or failure. In this instance, we also include
a unique reference generated by the client, which ensures that the reply will be cor-
rectly identified in the event that there are multiple messages waiting in the client’s
mailbox.

We’ll make one further improvement to Counter before we move on—giving it
a name to make it discoverable.

Naming Processes
A message is sent to a process, which means that you need to know its
identifier. If it’s a process that you created, this is easy, but how do you send
a message to a process that you didn’t create?

There are various ways to address this, but one of the most convenient is to
register a name for the process:

iex(1)> pid = Counter.start(42)
#PID<0.47.0>
iex(2)> Process.register(pid, :counter)
true
iex(3)> counter = Process.whereis(:counter)
#PID<0.47.0>
iex(4)> Counter.next(counter)
42

We associate a process identifier with a name with Process.register() and retrieve
it with Process.whereis(). We can see all registered processes with Process.registered():

iex(5)> Process.registered
[:kernel_sup, :init, :code_server, :user, :standard_error_sup,
:global_name_server, :application_controller, :file_server_2, :user_drv,
:kernel_safe_sup, :standard_error, :global_group, :error_logger,
:elixir_counter, :counter, :elixir_code_server, :erl_prim_loader, :elixir_sup,
:rex, :inet_db]

As you can see, the virtual machine automatically registers a number of
standard processes at startup. Finally, as a convenience, send() can take a
process name instead of a process identifier directly:

report erratum  •  discuss

Day 1: Messages and Mailboxes • 123

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


iex(6)> send(:counter, {:next, self(), make_ref()})
{:next, #PID<0.45.0>, #Reference<0.0.0.107>}
iex(7)> receive do msg -> msg end
{:ok, #Reference<0.0.0.107>, 43}

We can use this to modify Counter’s API so that it doesn’t require a process
identifier each time we call it:

Actors/counter/counter3.ex
def start(count) do

pid = spawn(__MODULE__, :loop, [count])
Process.register(pid, :counter)➤

pid
end
def next do

ref = make_ref()
send(:counter, {:next, self(), ref})➤

receive do
{:ok, ^ref, count} -> count

end
end

Here it is in use:

iex(1)> Counter.start(42)
#PID<0.47.0>
iex(2)> Counter.next
42
iex(3)> Counter.next
43

The last thing we’ll do today is use what we’ve seen to create a parallel map
function similar to Clojure’s pmap. But first a brief interlude.

Interlude—First-Class Functions
Like all functional languages, functions in Elixir are first class—we can bind
them to variables, pass them as arguments, and generally treat them as data.
Here, for example, is an iex session that shows how we can pass an anonymous
function to Enum.map to double every element in an array:

iex(1)> Enum.map([1, 2, 3, 4], fn(x) -> x * 2 end)
[2, 4, 6, 8]

Elixir also provides a shorthand &(…) syntax for defining anonymous functions
that’s similar to Clojure’s #(…) reader macro:

iex(2)> Enum.map([1, 2, 3, 4], &(&1 * 2))
[2, 4, 6, 8]
iex(3)> Enum.reduce([1, 2, 3, 4], 0, &(&1 + &2))
10

Chapter 5. Actors • 124

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Actors/counter/counter3.ex
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Given a variable that’s been bound to a function, we can call that function
with the . (apply) operator:

iex(4)> double = &(&1 * 2)
#Function<erl_eval.6.80484245>
iex(5)> double.(3)
6

And finally, we can create functions that return functions:

iex(6)> twice = fn(fun) -> fn(x) -> fun.(fun.(x)) end end
#Function<erl_eval.6.80484245>
iex(7)> twice.(double).(3)
12

We now have all the tools we need to construct our parallel map().

Parallel Map
As we saw earlier, Elixir provides a map() function that can be used to map a
function over a collection, but it does so sequentially. Here’s an alternative
that maps each element of the collection in parallel:

Actors/parallel/parallel.ex
defmodule Parallel do

def map(collection, fun) do
parent = self()

processes = Enum.map(collection, fn(e) ->
spawn_link(fn() ->

send(parent, {self(), fun.(e)})
end)

end)

Enum.map(processes, fn(pid) ->
receive do

{^pid, result} -> result
end

end)
end

end

This executes in two phases. In the first, it creates one process for each ele-
ment of the collection (if the collection has 1,000 elements, it will create 1,000
processes). Each of these applies fun to the relevant element and sends the
result back to the parent process. In the second phase, the parent waits for
each result.

Let’s prove that it works:

report erratum  •  discuss

Day 1: Messages and Mailboxes • 125

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Actors/parallel/parallel.ex
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


iex(1)> slow_double = fn(x) -> :timer.sleep(1000); x * 2 end
#Function<6.80484245 in :erl_eval.expr/5>
iex(2)> :timer.tc(fn() -> Enum.map([1, 2, 3, 4], slow_double) end)
{4003414, [2, 4, 6, 8]}
iex(3)> :timer.tc(fn() -> Parallel.map([1, 2, 3, 4], slow_double) end)
{1001131, [2, 4, 6, 8]}

This uses :timer.tc(), which times the execution of a function and returns a pair
containing the time taken together with the return value. You can see that
the sequential version takes a little over four seconds, and the parallel version
one second.

Day 1 Wrap-Up
This brings us to the end of day 1. In day 2 we’ll see how the actor model
helps with error handling and resilience.

What We Learned in Day 1

Actors (processes) run concurrently, do not share state, and communicate
by asynchronously sending messages to mailboxes. We covered how to do
the following:

• Create a new process with spawn()

• Send a message to a process with send()

• Use pattern matching to handle messages

• Create a link between two processes and receive notification when one
terminates

• Implement bidirectional, synchronous messaging on top of the standard
asynchronous messaging

• Register a name for a process

Day 1 Self-Study

Find

• The Elixir library documentation

• The video of Erik Meijer and Clemens Szyperski talking to Carl Hewitt
about the actor model at Lang.NEXT 2012

Chapter 5. Actors • 126

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Do

• Measure the cost of creating a process on the Erlang virtual machine.
How does it compare with the cost of creating a thread on the Java virtual
machine?

• Measure the cost of the parallel map function we created compared to a
sequential map. When would it make sense to use a parallel map, and
when a sequential map?

• Write a parallel reduce function along the lines of the parallel map function
we just created.

Day 2: Error Handling and Resilience
As we saw in Resilient Software for an Unpredictable World, on page 6, one
of the key benefits of concurrency is that it enables us to write fault-tolerant
code. Today we’ll look at the tools that actors provide that enable us to do so.

First, though, let’s use the lessons from yesterday to create a slightly more
complicated and realistic example, which we’ll use as the basis for today’s
discussion.

A Caching Actor
We’re going to create a simple cache for webpages. A client can add a page
to the cache by providing a URL together with the text of the page, query the
cache for the page associated with a URL, and query the cache to see how
many bytes it contains.

We’re going to use a dictionary to store the mapping from URL to page. Like
a Clojure map, an Elixir dictionary is a persistent, associative data structure:

iex(1)> d = HashDict.new
#HashDict<[]>
iex(2)> d1 = Dict.put(d, :a, "A value for a")
#HashDict<[a: "A value for a"]>
iex(3)> d2 = Dict.put(d1, :b, "A value for b")
#HashDict<[a: "A value for a", b: "A value for b"]>
iex(4)> d2[:a]
"A value for a"

We create a new dictionary with HashDict.new, add entries to it with Dict.put(dict,
key, value), and look up entries with dict[key].

Here’s an implementation of our cache that makes use of the preceding:

report erratum  •  discuss

Day 2: Error Handling and Resilience • 127

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Actors/cache/cache.ex
defmodule Cache doLine 1

def loop(pages, size) do-

receive do-

{:put, url, page} ->-

new_pages = Dict.put(pages, url, page)5

new_size = size + byte_size(page)-

loop(new_pages, new_size)-

{:get, sender, ref, url} ->-

send(sender, {:ok, ref, pages[url]})-

loop(pages, size)10

{:size, sender, ref} ->-

send(sender, {:ok, ref, size})-

loop(pages, size)-

{:terminate} -> # Terminate request - don't recurse-

end15

end-

end-

It maintains two items of state, pages and size. The first is a dictionary that
maps URLs to pages; the second is an integer count of the number of bytes
currently stored in the cache (updated with the byte_size() function on line 6).

As before, rather than expecting clients to remember the details of how to
start and send messages to this actor, we provide an API they can use. First
up is start_link():

Actors/cache/cache.ex
def start_link do

pid = spawn_link(__MODULE__, :loop, [HashDict.new, 0])
Process.register(pid, :cache)
pid

end

This passes an empty dictionary and zero size to loop() as its initial state, and
it registers the resulting process with the name :cache. Finally we have put(),
get(), size(), and terminate() functions:

Actors/cache/cache.ex
def put(url, page) do

send(:cache, {:put, url, page})
end

def get(url) do
ref = make_ref()
send(:cache, {:get, self(), ref, url})
receive do

{:ok, ^ref, page} -> page
end

end

Chapter 5. Actors • 128

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Actors/cache/cache.ex
http://media.pragprog.com/titles/pb7con/code/Actors/cache/cache.ex
http://media.pragprog.com/titles/pb7con/code/Actors/cache/cache.ex
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


def size do
ref = make_ref()
send(:cache, {:size, self(), ref})
receive do

{:ok, ^ref, s} -> s
end

end

def terminate do
send(:cache, {:terminate})

end

The put() and terminate() functions simply take their arguments, package them
up as a tuple, and send them as a message. The get() and size() methods are
slightly more complicated, since they both have to wait for a reply. In this
case, they are sending a unique reference using the pattern we saw yesterday.

Here’s our actor in use:

iex(1)> Cache.start_link
#PID<0.47.0>
iex(2)> Cache.put("google.com", "Welcome to Google ...")
{:put, "google.com", "Welcome to Google ..."}
iex(3)> Cache.get("google.com")
"Welcome to Google ..."
iex(4)> Cache.size()
21

So far, so good—we can put an entry into our cache, get it back again, and
see how large the cache is.

What happens if we call our actor with invalid parameters by trying to add a
nil page, for example?

iex(5)> Cache.put("paulbutcher.com", nil)
{:put, "paulbutcher.com", nil}
iex(6)>
=ERROR REPORT==== 22-Aug-2013::16:18:41 ===
Error in process <0.47.0> with exit value: {badarg,[{erlang,byte_size,[nil],[]} …

** (EXIT from #PID<0.47.0>) {:badarg, [{:erlang, :byte_size, [nil], []}, …

Unsurprisingly, given that we didn’t write any code to check the arguments,
this fails. In most languages, the only way to address this would be to add
code that anticipates what kinds of bad arguments might be sent and to
report an error when they are. Elixir gives us another option—separating
error handling out into a separate supervisor process. This apparently simple
step is transformative, allowing profound improvements in code clarity,
maintainability, and reliability.

report erratum  •  discuss

Day 2: Error Handling and Resilience • 129

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


To see how to write such a supervisor, we need to understand links between
processes in more detail.

Fault Detection
In Linking Processes, on page 119, we used spawn_link() to create a link between
two processes so that we could detect when one of them terminated. Links
are one of the most important concepts in Elixir programming—let’s investigate
them in more depth.

Links Propagate Abnormal Termination

We can establish a link between two processes at any time with Process.link().
Here’s a small actor that we can use to investigate how links behave:

Actors/links/links.ex
defmodule LinkTest do

def loop do
receive do
{:exit_because, reason} -> exit(reason)
{:link_to, pid} -> Process.link(pid)
{:EXIT, pid, reason} -> IO.puts("#{inspect(pid)} exited because #{reason}")

end
loop

end
end

Let’s create a couple of instances of this actor, link them, and see what hap-
pens when one of them fails:

iex(1)> pid1 = spawn(&LinkTest.loop/0)
#PID<0.47.0>
iex(2)> pid2 = spawn(&LinkTest.loop/0)
#PID<0.49.0>
iex(3)> send(pid1, {:link_to, pid2})
{:link_to, #PID<0.49.0>}
iex(4)> send(pid2, {:exit_because, :bad_thing_happened})
{:exit_because, :bad_thing_happened}

We start by creating two instances of our actor and bind their process identi-
fiers to pid1 and pid2. Then we create a link from pid1 to pid2. Finally, we tell
pid2 to exit abnormally.

Immediately, we notice that there’s no message printed by pid1 describing why
pid2 exited. This is because we haven’t set :trap_exit. Linking the processes has
still had an effect, however, as we can see if we use Process.info() to query the
status of our two processes:

Chapter 5. Actors • 130

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Actors/links/links.ex
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


iex(5)> Process.info(pid2, :status)
nil
iex(6)> Process.info(pid1, :status)
nil

So both our processes have terminated, not just pid2. We’ll see how to fix this
soon, but first let’s do another experiment.

Links Are Bidirectional

If we try the same experiment again but this time ask pid1 to exit, we see the
same behavior—both our processes terminate:

iex(1)> pid1 = spawn(&LinkTest.loop/0)
#PID<0.47.0>
iex(2)> pid2 = spawn(&LinkTest.loop/0)
#PID<0.49.0>
iex(3)> send(pid1, {:link_to, pid2})
{:link_to, #PID<0.49.0>}
iex(4)> send(pid1, {:exit_because, :another_bad_thing_happened})
{:exit_because, :another_bad_thing_happened}
iex(5)> Process.info(pid1, :status)
nil
iex(6)> Process.info(pid2, :status)
nil

This is because links are bidirectional. Creating a link from pid1 to pid2 also
creates a link in the other direction—if one of them fails, both of them do.

Normal Termination

Finally, let’s see what happens when one of our linked processes terminates
normally (indicated by the special reason :normal):

iex(1)> pid1 = spawn(&LinkTest.loop/0)
#PID<0.47.0>
iex(2)> pid2 = spawn(&LinkTest.loop/0)
#PID<0.49.0>
iex(3)> send(pid1, {:link_to, pid2})
{:link_to, #PID<0.49.0>}
iex(4)> send(pid2, {:exit_because, :normal})
{:exit_because, :normal}
iex(5)> Process.info(pid2, :status)
nil
iex(6)> Process.info(pid1, :status)
{:status, :waiting}

So normal termination does not result in linked processes terminating.

report erratum  •  discuss

Day 2: Error Handling and Resilience • 131

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


System Processes

We can allow a process to trap another’s exit by setting its :trap_exit flag. This
is known in the jargon as making it into a system process:

Actors/links/links.ex
def loop_system do

Process.flag(:trap_exit, true)
loop

end

Here it is in action:

iex(1)> pid1 = spawn(&LinkTest.loop_system/0)
#PID<0.47.0>
iex(2)> pid2 = spawn(&LinkTest.loop/0)
#PID<0.49.0>
iex(3)> send(pid1, {:link_to, pid2})
{:link_to, #PID<0.49.0>}
iex(4)> send(pid2, {:exit_because, :yet_another_bad_thing_happened})
{:exit_because, :yet_another_bad_thing_happened}
#PID<0.49.0> exited because yet_another_bad_thing_happened
iex(5)> Process.info(pid2, :status)
nil
iex(6)> Process.info(pid1, :status)
{:status, :waiting}

This time, we use loop_system() to start pid1. Not only does this mean that it’s
notified when pid2 has exited (and prints a message to that effect), but it also
continues to execute.

Supervising a Process
We now have enough tools at our fingertips to implement a supervisor, a
system process that monitors one or more worker processes and takes
appropriate action if they fail.

Here’s a supervisor for the cache actor we created earlier that simply restarts
its supervisee, the cache actor, if (when) it fails:

Actors/cache/cache.ex
defmodule CacheSupervisor do

def start do
spawn(__MODULE__, :loop_system, [])

end
def loop do

pid = Cache.start_link
receive do
{:EXIT, ^pid, :normal} ->

IO.puts("Cache exited normally")
:ok

Chapter 5. Actors • 132

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Actors/links/links.ex
http://media.pragprog.com/titles/pb7con/code/Actors/cache/cache.ex
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


{:EXIT, ^pid, reason} ->
IO.puts("Cache failed with reason #{inspect reason} - restarting it")
loop

end
end
def loop_system do

Process.flag(:trap_exit, true)
loop

end
end

This actor starts by marking itself as a system process and then enters loop(),
which spawns Cache.loop() and then blocks until that process exits. If it exits
normally, then so does the supervisor (by returning :ok), but if it exits for any
other reason, loop() recurses and respawns the cache.

Instead of starting an instance of Cache ourselves, we now start CacheSupervisor
instead, which creates an instance of Cache on our behalf:

iex(1)> CacheSupervisor.start
#PID<0.47.0>
iex(2)> Cache.put("google.com", "Welcome to Google ...")
{:put, "google.com", "Welcome to Google ..."}
iex(3)> Cache.size
21

If Cache crashes, it’s automatically restarted:

iex(4)> Cache.put("paulbutcher.com", nil)
{:put, "paulbutcher.com", nil}
Cache failed with reason {:badarg, [{:erlang, :byte_size, [nil], []}, …
iex(5)>
=ERROR REPORT==== 22-Aug-2013::17:49:24 ===
Error in process <0.48.0> with exit value: {badarg,[{erlang,byte_size,[nil],[]}, …

iex(5)> Cache.size
0
iex(6)> Cache.put("google.com", "Welcome to Google ...")
{:put, "google.com", "Welcome to Google ..."}
iex(7)> Cache.get("google.com")
"Welcome to Google ..."

We lose whatever was in the cache when it crashed, of course, but at least
there’s still a cache for us to use subsequently.

Timeouts
Automatically restarting the cache is great, but it’s not a panacea. If two
processes both send messages to the cache at around the same time, for
example, we might see the following sequence:

report erratum  •  discuss

Day 2: Error Handling and Resilience • 133

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


1. Process 1 sends a :put message to the cache.
2. Process 2 sends a :get message to the cache.
3. The cache crashes while processing process 1’s message.
4. The supervisor restarts the cache, but process 2’s message is lost.
5. Process 2 is now deadlocked in a receive, waiting for a reply that will never

arrive.

We can handle this by ensuring that our receive times out after a while by
adding an after clause. Here’s a modified version of get() (we’ll need to make
the same change to size() as well):

Actors/cache/cache2.ex
def get(url) do

ref = make_ref()
send(:cache, {:get, self(), ref, url})
receive do

{:ok, ^ref, page} -> page
after 1000 -> nil➤

end
end

Joe asks:

Is Message Delivery Guaranteed?
The problem we just looked at, of a client’s message being lost when our cache is
restarted, is just one example of a more general problem—what guarantees about
message delivery does Elixir provide?

There are two basic guarantees:

• Message delivery is guaranteed if nothing breaks.
• If something does break, you’ll know about it (assuming you’ve linked to, or

monitored, the process in question).

It’s this second guarantee that forms the bedrock of Elixir’s support for writing fault-
tolerant code.

The Error-Kernel Pattern
Tony Hoare famously said the following:3

There are two ways of constructing a software design: One way is to make it so
simple that there are obviously no deficiencies and the other way is to make it so
complicated that there are no obvious deficiencies.

3. http://zoo.cs.yale.edu/classes/cs422/2011/bib/hoare81emperor.pdf

Chapter 5. Actors • 134

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Actors/cache/cache2.ex
http://zoo.cs.yale.edu/classes/cs422/2011/bib/hoare81emperor.pdf
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Actor programming naturally supports an approach to writing fault-tolerant
code that leverages this observation: the error-kernel pattern.

A software system’s error kernel is the part that must be correct if the system
is to function correctly. Well-written programs make this error kernel as small
and as simple as possible—so small and simple that there are obviously no
deficiencies.

An actor program’s error kernel is its top-level supervisors. These supervise
their children—starting, stopping, and restarting them as necessary.

Each module of a program has its own error kernel in turn—the part of the
module that must be correct for it to function correctly. Submodules also
have error kernels, and so on. This leads to a hierarchy of error kernels in
which risky operations are pushed down toward the lower-level actors, as
shown in Figure 8, A hierarchy of error kernels.

Increasing
Risk

Supervisor

Worker

Figure 8—A hierarchy of error kernels

Closely related to the error-kernel pattern is the thorny subject of defensive
programming.

Let It Crash!
Defensive programming is an approach to achieving fault tolerance by trying
to anticipate possible bugs. Imagine, for example, that we’re writing a method

report erratum  •  discuss

Day 2: Error Handling and Resilience • 135

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


that takes a string and returns true if it’s all uppercase and false otherwise.
Here’s one possible implementation:

def all_upper?(s) do
String.upcase(s) == s

end

This is a perfectly reasonable method, but if for some reason we pass nil to it,
it will crash. With that in mind, some developers would change it to read like
this:

defmodule Upper do
def all_upper?(s) do

cond do
nil?(s) -> false
true -> String.upcase(s) == s

end
end

end

So now the code won’t crash if it’s given nil, but what if we pass something
else that doesn’t make sense (a keyword, for example)? And in any case, what
does it mean to call this function with nil? There’s an excellent chance that
any code that does so contains a bug—a bug that we’ve now masked, meaning
that we’re likely to remain unaware of it until it bites us at some time in the
future.

Actor programs tend to avoid defensive programming and subscribe to the
“let it crash” philosophy, allowing an actor’s supervisor to address the problem
instead. This has multiple benefits, including these:

• Our code is simpler and easier to understand, with a clear separation
between “happy path” and fault-tolerant code.

• Actors are separate from one another and don’t share state, so there’s
little danger that a failure in one actor will adversely affect another. In
particular, a failed actor’s supervisor cannot crash because the actor it’s
supervising crashes.

• As well as fixing the error, a supervisor can log it so that instead of
sweeping problems under the carpet, we become aware of them and can
take remedial action.

Although it can seem alien at first acquaintance, the “let it crash” philosophy
has, together with the error-kernel pattern, repeatedly been proven in produc-
tion. Some systems have reported availability as high as 99.9999999% (that’s
nine nines—see Programming Erlang: Software for a Concurrent World [Arm13]).

Chapter 5. Actors • 136

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Day 2 Wrap-Up
Day 1 introduced the basics of the actor model, and in day 2, we saw how it
facilitates fault tolerance. In day 3 we’ll see how the actor model helps with
distributed programming.

What We Learned in Day 2

Elixir provides fault detection by allowing processes to be linked, which can
be used to create supervisors:

• Links are bidirectional—if process a is linked to process b, then b is also
linked to a.

• Links propagate errors—if two processes are linked and one of them ter-
minates abnormally, so will the other.

• If a process is marked as a system process, instead of exiting when a
linked process terminates abnormally, it’s notified with an :EXIT message.

Day 2 Self-Study

Find

• The documentation for Process.monitor()—how does monitoring a process
differ from linking? When might you use monitors and when links?

• How do exceptions work in Elixir? When might you choose to use exception
handling instead of supervision and the “let it crash” pattern?

Do

• Messages that don’t match a pattern in a receive block remain in a process’s
mailbox. Use this fact, together with timeouts, to implement a priority
mailbox, in which high-priority messages are handled ahead of any low-
priority messages that might have been sent earlier.

• Create a version of the cache we created in A Caching Actor, on page 127,
that distributes cache entries across multiple actors according to a hash
function. Create a supervisor that starts multiple cache actors and routes
incoming messages to the appropriate cache worker. What action should
this supervisor take if one of the cache workers fails?

Day 3: Distribution
Everything we’ve done so far has been on a single computer, but one of the
actor model’s primary benefits compared to the models we’ve seen so far is

report erratum  •  discuss

Day 3: Distribution • 137

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


that it supports distribution—sending a message to an actor on another
machine is just as easy as sending it to one running locally.

Before talking about distribution, however, we’ll take a quick look at one of
the most powerful reasons for using Elixir—the OTP library.

OTP

Over the previous two days, we built everything by hand in “raw” Elixir. This
is a great way to understand what’s going on under the hood, but it would
be both tedious and error prone if we had to write every worker and every
supervisor from scratch every time. You won’t be surprised to hear that a
library can automate much of this for us—that library is called OTP.

Joe asks:

What Does OTP Stand For?
Acronyms often take on a life of their own. IBM might theoretically stand for “Interna-
tional Business Machines,” but to most people IBM is just IBM: the acronym has
become the name. Similarly BBC no longer really stands for “British Broadcasting
Corporation,” and OTP no longer really stands for “Open Telecom Platform.”

Erlang (and therefore Elixir) originally started out in telecommunications, and many
proven Erlang best practices have been codified in OTP. But very little of it is telecom-
specific, so OTP is just OTP.

Before we see an example of OTP, we’ll take a brief interlude to examine how
functions and pattern matching interact in Elixir.

Functions and Pattern Matching

So far we’ve only talked about pattern matching within receive, but it’s used
throughout Elixir. In particular, every time you call a function, you’re perform-
ing a pattern match. Here’s a simple function that demonstrates this:

Actors/patterns/patterns.ex
defmodule Patterns do

def foo({x, y}) do
IO.puts("Got a pair, first element #{x}, second #{y}")

end
end

We’re defining a function that takes a single argument and matches that
argument against the pattern {x, y}. If we call it with a matching pair, the first
element is bound to x and the second to y:

Chapter 5. Actors • 138

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Actors/patterns/patterns.ex
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


iex(1)> Patterns.foo({:a, 42})
Got a pair, first element a, second 42
:ok

If we call it with an argument that doesn’t match, we get an error:

iex(2)> Patterns.foo("something else")
** (FunctionClauseError) no function clause matching in Patterns.foo/1

patterns.ex:3: Patterns.foo("something else")
erl_eval.erl:569: :erl_eval.do_apply/6
src/elixir.erl:147: :elixir.eval_forms/3

We can add as many different definitions (or clauses) for a function as we
need:

Actors/patterns/patterns.ex
def foo({x, y, z}) do

IO.puts("Got a triple: #{x}, #{y}, #{z}")
end

When the function is called, the matching clause is executed:

iex(2)> Patterns.foo({:a, 42, "yahoo"})
Got a triple: a, 42, yahoo
:ok
iex(3)> Patterns.foo({:x, :y})
Got a pair, first element x, second y
:ok

Now let’s see how this is used when implementing a server in OTP.

Reimplementing Cache with GenServer
The first aspect of OTP we’ll look at is GenServer, a behaviour that allows us to
automate the details of creating a stateful actor. We’ll use it to reimplement
the cache we created yesterday.

If the spelling of behaviour looks slightly odd to you, that’s because behaviours
are inherited from Erlang, and Erlang uses the British spelling. Because that’s
how Elixir spells it, that’s how we’ll spell it here too.

A behaviour is very similar to an interface in Java—it defines a set of functions.
A module specifies that it implements a behaviour with use:

Actors/cache/cache3.ex
defmodule Cache do

use GenServer.Behaviour➤

def handle_cast({:put, url, page}, {pages, size}) do
new_pages = Dict.put(pages, url, page)
new_size = size + byte_size(page)
{:noreply, {new_pages, new_size}}

end

report erratum  •  discuss

Day 3: Distribution • 139

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Actors/patterns/patterns.ex
http://media.pragprog.com/titles/pb7con/code/Actors/cache/cache3.ex
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


def handle_call({:get, url}, _from, {pages, size}) do
{:reply, pages[url], {pages, size}}

end

def handle_call({:size}, _from, {pages, size}) do
{:reply, size, {pages, size}}

end
end

This version of Cache specifies that it implements GenServer.Behaviour and provides
custom implementations of two functions, handle_cast() and handle_call().

The first of these, handle_cast(), handles messages that do not require a reply.
It takes two arguments: the first is the message and the second is the current
actor state. The return value is a pair of the form {:noreply, new_state}. In our
case, we provide one handle_cast() clause that handles :put messages.

The second, handle_call(), handles messages that require a reply. It takes three
arguments, the message, the sender, and the current state. The return value
is a triple of the form {:reply, reply_value, new_state}. In our case, we provide two
handle_call() clauses, one that handles :get messages and one that handles :size
messages. Note that like Clojure, Elixir uses variable names that start with
an underscore (“_”) to indicate that they’re unused—hence _from.

As with our previous implementation, we provide an API that clients can use
without having to remember the details of how to initialize and send messages:

Actors/cache/cache3.ex
def start_link do

:gen_server.start_link({:local, :cache}, __MODULE__, {HashDict.new, 0}, [])
end

def put(url, page) do
:gen_server.cast(:cache, {:put, url, page})

end

def get(url) do
:gen_server.call(:cache, {:get, url})

end

def size do
:gen_server.call(:cache, {:size})

end

Instead of using spawn_link(), we use :gen_server.start_link(). We send messages that
don’t require a reply with :gen_server.cast() and those that do with :gen_server.call().

We’ll see this in action soon, but first we’ll see how to create a supervisor with
OTP.

Chapter 5. Actors • 140

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Actors/cache/cache3.ex
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


An OTP Supervisor

Here’s a cache supervisor implemented with OTP’s supervisor behaviour:

Actors/cache/cache3.ex
defmodule CacheSupervisor do

def init(_args) do
workers = [worker(Cache, [])]
supervise(workers, strategy: :one_for_one)

end
end

As its name suggests, the init() function is called during startup. It takes a
single argument (unused in this case) and simply creates a number of workers
and sets them up to be supervised. In our case, we’re creating a single Cache
worker and supervising it using a one-for-one restart strategy.

Joe asks:

What Is a Restart Strategy?
The OTP supervisor behaviour supports a number of different restart strategies, the
two most common being one-for-one and one-for-all.

These strategies govern how a supervisor with multiple workers restarts failed workers.
If a single worker fails, a supervisor using the one-for-all strategy will stop and restart
all its workers (even those that didn’t fail). A supervisor using a one-for-one strategy,
by contrast, will only restart the failed worker.

Other restart strategies are possible, but one of these two will suffice in the majority
of cases.

As usual, we also provide an API for clients:

Actors/cache/cache3.ex
def start_link do

:supervisor.start_link(__MODULE__, [])
end

Take a moment to prove to yourself that this works in a very similar way to
the cache and supervisor we implemented from scratch yesterday (I won’t
show the transcript here, since it’s very similar to what we’ve already seen).

Nodes
Whenever we create an instance of the Erlang virtual machine, we create a
node. So far, we’ve only created a single node. Now we’ll see how to create
and connect multiple nodes.

report erratum  •  discuss

Day 3: Distribution • 141

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Actors/cache/cache3.ex
http://media.pragprog.com/titles/pb7con/code/Actors/cache/cache3.ex
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Joe asks:

What Else Does OTP Do?
As we can see from the preceding code, OTP saves us from writing some boilerplate
code, but there’s much more to it than just that. It’s not obvious from what we’ve
already seen, but servers and supervisors implemented with OTP provide much more
functionality than the simple versions we created before. Among other things, they
provide the following:

Better restart logic:  The simple supervisor we wrote for ourselves has a very dumb
approach to restarting its worker—if it terminates abnormally, it’s restarted. If
the worker process crashed immediately on startup, this supervisor would simply
restart it over and over again forever. An OTP supervisor, by contrast, has a
maximum restart frequency which, if exceeded, results in the supervisor itself
terminating abnormally.

Debugging and logging:  An OTP server can be started with various options to enable
logging and debugging, which can be very helpful during development.

Hot code swapping:  An OTP server can be upgraded dynamically without taking the
whole system down.

Lots, lots more:  Release management, failover, automated scaling …

We won’t talk further about these features here, but they’re powerful reasons to prefer
OTP over handwritten code in most circumstances.

Connecting Nodes

For one node to connect to another, they both need to be named. We name
a node by starting the Erlang virtual machine with the --name or --sname options.
My MacBook Pro happens to have the IP address 10.99.1.50. If I run iex --sname
node1@10.99.1.50 --cookie yumyum (the --cookie argument is explained in How Do I
Manage My Cluster?, on page 144) on my MacBook Pro, for example, I see the
name reflected in the prompt:

iex(node1@10.99.1.50)1> Node.self
:"node1@10.99.1.50"
iex(node1@10.99.1.50)2> Node.list
[]

A node can query its name with Node.self() and list the other nodes it knows
about with Node.list(). Right now that list is empty—let’s see how to populate
it. If I start another Erlang virtual machine on another machine that has the
IP address 10.99.1.92 with iex --sname node2@10.99.1.92 --cookie yumyum, I can connect
to it from my MacBook Pro with Node.connect():

Chapter 5. Actors • 142

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


iex(node1@10.99.1.50)3> Node.connect(:"node2@10.99.1.92")
true
iex(node1@10.99.1.50)4> Node.list
[:"node2@10.99.1.92"]

Connections are bidirectional—my other machine now also knows about my
MacBook Pro:

iex(node2@10.99.1.92)1> Node.list
[:"node1@10.99.1.50"]

Joe asks:

What If I Only Have One Computer?
If you only have one computer at hand and still want to experiment with clustering,
you have a few options:

• Use virtual machines.
• Fire up Amazon EC2 or similar cloud instances.
• Run multiple nodes on a single computer. Although clearly this isn’t the most

realistic situation, it is by far the easiest, and it allows you to sidestep firewall
and network configuration issues if you’re having problems getting multiple
nodes to work across machines.

Remote Execution

Now that we have two connected nodes, one can execute code on the other:

iex(node1@10.99.1.50)5> whoami = fn() -> IO.puts(Node.self) end
#Function<20.80484245 in :erl_eval.expr/5>
iex(node1@10.99.1.50)6> Node.spawn(:"node2@10.99.1.92", whoami)
#PID<8242.50.0>
node2@10.99.1.92

These deceptively simple lines of code demonstrate something amazingly
powerful—not only has one node executed code on another, but the output
appeared on the first node. This is because a process inherits its group leader
from the process that spawned it, and (among other things) that specifies
where output from IO.puts() appears. That’s an awful lot going on under the
hood!

Remote Messaging

As you would expect, an actor running on one node can send messages to
an actor running on another. To demonstrate, let’s spawn an instance of the
Counter actor we created earlier (see the code on page 120) on one node:

report erratum  •  discuss

Day 3: Distribution • 143

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Joe asks:

How Do I Manage My Cluster?
A system that allows one machine to execute arbitrary code on another is extremely
powerful. Like any powerful tool, it can also be dangerous. In particular, you need to
pay careful attention to security when thinking about cluster management. That’s
where the --cookie argument we gave to iex comes in—an Erlang node will accept con-
nection requests only from nodes that have the same cookie. There are other
approaches to securing an Erlang cluster, such as tunneling internode connections
over SSL.

Security is not the only question you need to think about. In the preceding example,
I chose to specify the IP address in the node name because that’s guaranteed to work
on most network configurations (and I don’t know how your network is configured).
But it may not (probably will not) be the best choice for production use.

Cluster design trade-offs are subtle and beyond the scope of this book. Please make
sure that you read the documentation about these questions before rolling out a
production cluster.

iex(node2@10.99.1.92)1> pid = spawn(Counter, :loop, [42])
#PID<0.51.0>
iex(node2@10.99.1.92)2> :global.register_name(:counter, pid)
:yes

After spawning it, we register it using :global.register_name(), which is similar to
Process.register(), except that the name is cluster-global.

We can then use :global.whereis_name() on another node to retrieve the process
identifier and send it messages:

iex(node1@10.99.1.50)1> Node.connect(:"node2@10.99.1.92")
true
iex(node1@10.99.1.50)2> pid = :global.whereis_name(:counter)
#PID<7856.51.0>
iex(node1@10.99.1.50)3> send(pid, {:next})
{:next}
iex(node1@10.99.1.50)4> send(pid, {:next})
{:next}

Sure enough, we see this on the first node:

Current count: 42
Current count: 43

Note that again the output appears on the node upon which the actor gener-
ating it was spawned.

Chapter 5. Actors • 144

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Distributed Word Count
We’re going to finish off our discussion of actors and Elixir by creating a dis-
tributed version of the Wikipedia word-count example we’ve seen in previous
chapters. Like the solutions we’ve already seen, this will be able to leverage
multiple cores. Unlike those we’ve already seen, it will also be able to scale
beyond a single machine and recover from failures.

Here’s a diagram of the architecture we’re aiming for:

Counter
Counter

Parser

Accumulator

Counter

request_page

page

counts

processed

Our solution is divided into three types of actors: one Parser, multiple Counters,
and one Accumulator. The Parser is responsible for parsing a Wikipedia dump
into pages, Counters count words within pages, and the Accumulator keeps track
of total word counts across pages.

Processing is kicked off by a Counter requesting a page from the Parser. When
the Counter receives the page, it counts the words contained within and sends
them to the Accumulator. Finally, the Accumulator lets the Parser know that the
page has been processed.

We’ll discuss why we chose this particular arrangement soon, but first let’s
see how it’s implemented, starting with Counter.

Counting Words

Our Counter module implements a simple stateless actor that receives pages
from the Parser and delivers the resulting word counts to the Accumulator. Here
it is in full:

Actors/word_count/lib/counter.ex
defmodule Counter doLine 1

use GenServer.Behaviour-

def start_link do-

:gen_server.start_link(__MODULE__, nil, [])-

end5

report erratum  •  discuss

Day 3: Distribution • 145

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Actors/word_count/lib/counter.ex
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


def deliver_page(pid, ref, page) do-

:gen_server.cast(pid, {:deliver_page, ref, page})-

end-

-

def init(_args) do10

Parser.request_page(self())-

{:ok, nil}-

end-

-

def handle_cast({:deliver_page, ref, page}, state) do15

Parser.request_page(self())-

-

words = String.split(page)-

counts = Enum.reduce(words, HashDict.new, fn(word, counts) ->-

Dict.update(counts, word, 1, &(&1 + 1))20

end)-

Accumulator.deliver_counts(ref, counts)-

{:noreply, state}-

end-

end25

This follows the normal pattern for an OTP server—a public API (in this case
start_link() and deliver_page()) followed by initialization (init()) and message handlers
(handle_cast()).

Each Counter kicks things off by calling Parser.request_page() during initialization
(line 11).

Each time it receives a page, a Counter starts by requesting another page (line
16—we do this first to minimize latency). It then counts the words contained
within the page, building a dictionary called counts (lines 18-21). Finally, those
counts are sent to the Accumulator along with the reference (ref) that was sent
with the page.

Next, CounterSupervisor allows us to create and supervise multiple Counters:

Actors/word_count/lib/counter.ex
defmodule CounterSupervisor do

use Supervisor.Behaviour
def start_link(num_counters) do

:supervisor.start_link(__MODULE__, num_counters)
end
def init(num_counters) do

workers = Enum.map(1..num_counters, fn(n) ->
worker(Counter, [], id: "counter#{n}")

end)
supervise(workers, strategy: :one_for_one)

end
end

Chapter 5. Actors • 146

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Actors/word_count/lib/counter.ex
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


CounterSupervisor.init() takes the number of counters we want to create, which
we use to create a workers list of that length. Note that each worker needs to
have a distinct id, which we achieve by mapping over the range 1..num_counters.

Keeping Track of Totals

The Accumulator actor maintains two elements of state: totals, a dictionary con-
taining accumulated counts, and processed_pages, a set containing the references
of all the pages that it’s processed.

Actors/word_count/lib/accumulator.ex
defmodule Accumulator doLine 1

use GenServer.Behaviour-

-

def start_link do-

:gen_server.start_link({:global, :wc_accumulator}, __MODULE__,5

{HashDict.new, HashSet.new}, [])-

end-

-

def deliver_counts(ref, counts) do-

:gen_server.cast({:global, :wc_accumulator}, {:deliver_counts, ref, counts})10

end-

-

def handle_cast({:deliver_counts, ref, counts}, {totals, processed_pages}) do-

if Set.member?(processed_pages, ref) do-

{:noreply, {totals, processed_pages}}15

else-

new_totals = Dict.merge(totals, counts, fn(_k, v1, v2) -> v1 + v2 end)-

new_processed_pages = Set.put(processed_pages, ref)-

Parser.processed(ref)-

{:noreply, {new_totals, new_processed_pages}}20

end-

end-

end-

We create a global name for our accumulator by passing {:global, wc_accumulator}
to :gen_server.start_link() (line 5). We can use this directly when sending messages
with :gen_server.cast() (line 10).

When a set of counts is delivered to the accumulator, it first checks to see if
it’s already processed counts for this page (we’ll soon see why this is important
and why it might receive counts twice). If it hasn’t, it merges the counts into
totals with Dict.merge(), the page reference into processed_pages with Set.put(), and
notifies the parser that the page has been processed.

Parsing and Fault Tolerance

Parser is the most complex of our three types of actor, so we’ll break it down
into chunks. First, here’s its public API:

report erratum  •  discuss

Day 3: Distribution • 147

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Actors/word_count/lib/accumulator.ex
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Actors/word_count/lib/parser.ex
defmodule Parser do

use GenServer.Behaviour

def start_link(filename) do
:gen_server.start_link({:global, :wc_parser}, __MODULE__, filename, [])

end

def request_page(pid) do
:gen_server.cast({:global, :wc_parser}, {:request_page, pid})

end

def processed(ref) do
:gen_server.cast({:global, :wc_parser}, {:processed, ref})

end
end

As with Accumulator, Parser registers itself with a global name during startup. It
supports two operations—request_page(), which is called by a Counter to request
a page, and processed(), which is called by the Accumulator to indicate that a page
has been successfully processed.

Here’s the implementation of the message handlers for these two operations:

Actors/word_count/lib/parser.ex
def init(filename) do

xml_parser = Pages.start_link(filename)
{:ok, {ListDict.new, xml_parser}}

end

def handle_cast({:request_page, pid}, {pending, xml_parser}) do
new_pending = deliver_page(pid, pending, Pages.next(xml_parser))
{:noreply, {new_pending, xml_parser}}

end

def handle_cast({:processed, ref}, {pending, xml_parser}) do
new_pending = Dict.delete(pending, ref)
{:noreply, {new_pending, xml_parser}}

end

Parser maintains two items of state: pending, which is a ListDict of references for
pages that have been sent to a Counter but not yet processed, and xml_parser,
which is an actor that uses the Erlang xmerl library to parse a Wikipedia
dump (we won’t show its implementation here—see the code that accompanies
this book if you’re interested).4

4. http://www.erlang.org/doc/apps/xmerl/

Chapter 5. Actors • 148

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Actors/word_count/lib/parser.ex
http://media.pragprog.com/titles/pb7con/code/Actors/word_count/lib/parser.ex
http://www.erlang.org/doc/apps/xmerl/
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Handling a :processed message simply requires deleting the processed page
from pending. Handling a :request_page message involves retrieving the next
available page from the XML parser and passing it to deliver_page():

Actors/word_count/lib/parser.ex
defp deliver_page(pid, pending, page) when nil?(page) do

if Enum.empty?(pending) do
pending # Nothing to do

else
{ref, prev_page} = List.last(pending)
Counter.deliver_page(pid, ref, prev_page)
Dict.put(Dict.delete(pending, ref), ref, prev_page)

end
end

defp deliver_page(pid, pending, page) do
ref = make_ref()
Counter.deliver_page(pid, ref, page)
Dict.put(pending, ref, page)

end

The implementation of deliver_page() uses an Elixir feature we’ve not seen
before—a guard clause specified by the when in the first deliver_page() clause. A
guard clause is a Boolean expression—the function clause matches only if
the guard is true.

Let’s consider the case when page is non-nil first. In this case, we create a new
unique reference with make_ref(), deliver the page to the counter that requested
it, and add the page to our pending dictionary.

If page is nil, that indicates that the XML parser has finished parsing the
Wikipedia dump. In that case, we remove the oldest entry from pending and
send it, and remove and re-add it to pending so that it’s now the youngest entry.

Why this second case? Surely every pending batch will eventually be processed.
What do we gain by sending it to another Counter?

The Big Win

What we gain is fault tolerance. If a Counter exits or the network goes down or
the machine it’s running on dies, we’ll just end up sending the page it was
processing to another Counter. Because each page has a reference associated
with it, we know which pages have been processed and won’t double-count.

To convince yourself, try starting a cluster. On one machine, start a Parser and
an Accumulator. On one or more other machines, start a number of Counters. If
you pull the network cable out the back of a machine running counters, or

report erratum  •  discuss

Day 3: Distribution • 149

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/Actors/word_count/lib/parser.ex
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


kill the virtual machine they’re running in, the remaining counters will con-
tinue to process pages, including those that were in progress on that machine.

This is a great example of the benefits of concurrent, distributed development.
This program will hardly miss a beat when faced with a hardware failure that
would kill a normal sequential or multithreaded program.

Day 3 Wrap-Up
That brings us to the end of day 3 and our discussion of actors.

What We Learned in Day 3

Elixir allows us to create clusters of nodes. An actor on one node can send
messages to an actor running on another in exactly the same way as it can
to one running locally. As well as allowing us to create systems that leverage
multiple distributed computers, it allows us to recover from the failure of one
of those computers.

Day 3 Self-Study

Find

• Joe Armstrong’s Lambda Jam presentation, “Systems That Run Forever
Self-Heal and Scale.”

• What is an OTP application? Why might one be more accurately described
as a component?

• So far, the state of every actor we’ve created has been lost if that actor
dies. What support does Elixir provide for persistent state?

Do

• The fault-tolerant word-count program we developed can handle failure
of a counter or the machine that it’s running on, but not the parser or
accumulator. Create a version that can handle failure of any actor or
node.

Wrap-Up
Alan Kay, the designer of Smalltalk and father of object-oriented programming,
had this to say on the essence of object orientation:5

I’m sorry that I long ago coined the term “objects” for this topic because it gets
many people to focus on the lesser idea.

5. http://c2.com/cgi/wiki?AlanKayOnMessaging

Chapter 5. Actors • 150

report erratum  •  discusswww.finebook.ir   

http://c2.com/cgi/wiki?AlanKayOnMessaging
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


The big idea is “messaging” … The Japanese have a small word—ma—for “that
which is in-between”—perhaps the nearest English equivalent is “interstitial.” The
key in making great and growable systems is much more to design how its modules
communicate rather than what their internal properties and behaviors should be.

This captures the essence of actor programming very well—we can think of
actors as the logical extension of object-oriented programming to the concur-
rent world. Indeed, you can think of actors as more object-oriented than
objects, with stricter message passing and encapsulation.

Strengths
Actors have a number of features that make them ideal for solving a wide
range of concurrent problems.

Messaging and Encapsulation

Actors do not share state and, although they run concurrently with each other,
within a single actor everything is sequential. This means that we need only
worry about concurrency when considering message flows between actors.

This is a huge boon to the developer. An actor can be tested in isolation and,
as long as our tests accurately represent the types of messages that might
be delivered and in what order, we can have high confidence that it behaves
as it should. And if we do find ourselves faced with a concurrency-related
bug, we know where to look—the message flows between actors.

Fault Tolerance

Fault tolerance is built into actor programs from the outset. This enables not
only more resilient programs but also simpler and clearer code (through the
“let it crash” philosophy).

Distributed Programming

Actors’ support for both shared and distributed-memory architectures brings
a number of significant advantages:

Firstly, it allows an actor program to scale to solve problems of almost any
size. We are not limited to problems that fit on a single system.

Secondly, it allows us to address problems where geographical distribution
is an intrinsic consideration. Actors are an excellent choice for programs
where different elements of the software need to reside in different geograph-
ical locations.

Finally, distribution is a key enabler for resilient and fault-tolerant systems.

report erratum  •  discuss

Wrap-Up • 151

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Weaknesses
Although a program constructed with actors is easier to debug than one
constructed with threads and locks, actors are still susceptible to problems
like deadlock plus a few failure modes unique to actors (such as overflowing
an actor’s mailbox).

As with threads and locks, actors provide no direct support for parallelism.
Parallel solutions need to be built from concurrent building blocks, raising
the specter of nondeterminism. And because actors do not share state and
can only communicate through message passing, they are not a suitable
choice if you need fine-grained parallelism.

Other Languages
As with most good ideas, the actor model is not new—it was first described
in the 1970s, most notably by Carl Hewitt. The language that has done most
to popularize actor programming, however, is unquestionably Erlang. For
example, Erlang’s creator, Joe Armstrong, is the originator of the “let it crash”
philosophy.

Most popular programming languages now have an actor library available;
in particular the Akka toolkit can be used to add actor support to Java or
any other JVM-based language.6 If you’re interested in learning more about
Akka, see the online bonus chapter,7 which describes actor programming in
Scala.

Final Thoughts
Actor programming is one of the most widely applicable programming models
out there—not only does it provide support for concurrency, but it also pro-
vides distribution, error detection, and fault tolerance. As such, it’s a good
fit for the kinds of programming problems we find ourselves faced with in
today’s increasingly distributed world.

In the next chapter we’ll look at communicating sequential processes. Although
CSP has surface similarities with actors, its emphasis on the channels used
for communication, rather than the entities between which communication
takes place, leads to it having a very different flavor.

6. http://akka.io
7. http://media.pragprog.com/titles/pb7con/Bonus_Chapter.pdf

Chapter 5. Actors • 152

report erratum  •  discusswww.finebook.ir   

http://akka.io
http://media.pragprog.com/titles/pb7con/Bonus_Chapter.pdf
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


CHAPTER 6

Communicating Sequential Processes
If you’re a car nut like me, it’s easy to focus on the vehicle and forget about
the roads it travels on. It’s fascinating to debate the relative merits of turbo-
charging versus natural aspiration or a mid- versus a front-engine layout,
forgetting that the most important aspect of a car has nothing to do with any
of these things. Where you can go and how fast you can get there is primarily
defined by the road network, not the car.

Similarly, the features and capabilities of a message-passing system are not
primarily defined by the code between which messages are exchanged or their
content, but by the transport over which they travel.

In this chapter we’ll look at a model that has surface similarities with actors
but a very different feel—thanks to a difference in focus.

Communication Is Everything
As we saw in the last chapter, an actor program consists of independent,
concurrently executing entities (called actors, or processes in Elixir) that
communicate by sending each other messages. Each actor has a mailbox that
stores messages until they’re handled.

A program using the communicating sequential processes model similarly
consists of independent, concurrently executing entities that communicate
by sending each other messages. The difference is one of emphasis—instead
of focusing on the entities sending the messages, CSP focuses on the channels
over which they are sent. Channels are first class—instead of each process
being tightly coupled to a single mailbox, channels can be independently
created, written to, read from, and passed between processes.

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Like functional programming and actors, CSP is an old idea that’s experiencing
a renaissance. CSP’s recent popularity is largely due to the Go language.1

We’re going to cover CSP by examining the core.async library,2 which brings
Go’s concurrency model to Clojure.

In day 1 we’ll introduce the twin pillars upon which core.async is built: channels
and go blocks. In day 2 we’ll construct a realistic example program with them.
Finally, in day 3 we’ll see how core.async can be used within ClojureScript to
make client-side programming easier.

Day 1: Channels and Go Blocks
The core.async library provides two primary facilities—channels and go blocks.
Go blocks allow multiple concurrent tasks to be efficiently multiplexed across
a limited pool of threads. But first, let’s look at channels.

Using core.async

The core.async library is a relatively recent addition to Clojure and is still in prerelease
(so be aware that things may change). To use it, you need to make the library a
dependency of your project and then import it. This is slightly complicated by the
fact that it defines a few functions with names that clash with core Clojure library
functions. To make it easier to experiment with, you can use the channels project in
the book’s sample code, which imports core.async like this:

CSP/channels/src/channels/core.clj
(ns channels.core

(:require [clojure.core.async :as async :refer :all
:exclude [map into reduce merge partition partition-by take]]))

The :refer :all allows most core.async functions to be used directly, but a few (those with
names that clash with core library functions) have to be given the async/ prefix.

You can start a REPL with these definitions loaded by changing the directory to the
channels project and typing lein repl.

Channels
A channel is a thread-safe queue—any task with a reference to a channel can
add messages to one end, and any task with a reference to it can remove
messages from the other. Unlike actors, where messages are sent to and from
specific actors, senders don’t have to know about receivers, or vice versa.

1. http://golang.org
2. http://clojure.com/blog/2013/06/28/clojure-core-async-channels.html

Chapter 6. Communicating Sequential Processes • 154

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/CSP/channels/src/channels/core.clj
http://golang.org
http://clojure.com/blog/2013/06/28/clojure-core-async-channels.html
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


A new channel is created with chan:

channels.core=> (def c (chan))
#'channels.core/c

We can write to a channel with >!! and read from it with <!!:

channels.core=> (thread (println "Read:" (<!! c) "from c"))
#<ManyToManyChannel clojure.core.async.impl.channels.ManyToManyChannel@78fcc563>
channels.core=> (>!! c "Hello thread")
Read: Hello thread from c
nil

We’re using the handy thread utility macro provided by core.async, which, as its
name suggests, runs its code on a separate thread. That thread prints a
message containing whatever it reads from the channel. This blocks until we
write to the channel with >!!, at which point we see the message.

Buffering

By default, channels are synchronous (or unbuffered)—writing to a channel
blocks until something reads from it:

channels.core=> (thread (>!! c "Hello") (println "Write completed"))
#<ManyToManyChannel clojure.core.async.impl.channels.ManyToManyChannel@78fcc563>
channels.core=> (<!! c)
Write completed
"Hello"

We can create a buffered channel by passing a buffer size to chan:

channels.core=> (def bc (chan 5))
#'channels.core/bc
channels.core=> (>!! bc 0)
nil
channels.core=> (>!! bc 1)
nil
channels.core=> (close! bc)
nil
channels.core=> (<!! bc)
0
channels.core=> (<!! bc)
1
channels.core=> (<!! bc)
nil

This creates a channel with a buffer large enough to contain five messages.
As long as there’s space available, writing to a buffered channel completes
immediately.

report erratum  •  discuss

Day 1: Channels and Go Blocks • 155

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Closing Channels

The previous example demonstrated another feature of channels—they can
be closed with close!. Reading from an empty closed channel returns nil, and
writing to a closed channel silently discards the message. As you might expect,
writing nil to a channel is an error:

channels.core=> (>!! (chan) nil)
IllegalArgumentException Can't put nil on channel «...»
Here’s a function that uses what we’ve seen so far to read from a channel
until it’s closed and to return everything read as a vector:

CSP/channels/src/channels/core.clj
(defn readall!! [ch]

(loop [coll []]
(if-let [x (<!! ch)]
(recur (conj coll x))
coll)))

This loops with coll initially bound to the empty vector []. Each iteration reads
a value from ch and, if the value is not nil, it’s added to coll. If the value is nil
(the channel has been closed), coll is returned.

And here’s writeall!!, which takes a channel and a sequence and writes the entirety
of the sequence to the channel, closing it when the sequence is exhausted:

CSP/channels/src/channels/core.clj
(defn writeall!! [ch coll]

(doseq [x coll]
(>!! ch x))

(close! ch))

Let’s see these functions in action:

channels.core=> (def ch (chan 10))
#'channels.core/ch
channels.core=> (writeall!! ch (range 0 10))
nil
channels.core=> (readall!! ch)
[0 1 2 3 4 5 6 7 8 9]

You won’t be surprised to hear that core.async provides utilities that perform
similar tasks, saving us the trouble of writing our own:

channels.core=> (def ch (chan 10))
#'channels.core/ch
channels.core=> (onto-chan ch (range 0 10))
#<ManyToManyChannel clojure.core.async.impl.channels.ManyToManyChannel@6b16d3cf>
channels.core=> (<!! (async/into [] ch))
[0 1 2 3 4 5 6 7 8 9]

Chapter 6. Communicating Sequential Processes • 156

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/CSP/channels/src/channels/core.clj
http://media.pragprog.com/titles/pb7con/code/CSP/channels/src/channels/core.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


The onto-chan function writes the entire contents of a collection onto a channel,
closing it when the collection’s exhausted. And async/into takes an initial collec-
tion (the empty vector in the preceding example) and a channel and returns
a channel. That channel will have a single collection written to it—the result
of conjoining everything read from the channel with the initial collection.

Next we’ll use these utilities to investigate buffered channels in more depth.

Full Buffer Strategies

By default, writing to a full channel blocks, but we can choose an alternative
strategy by passing a buffer to chan:

channels.core=> (def dc (chan (dropping-buffer 5)))
#'channels.core/dc
channels.core=> (onto-chan dc (range 0 10))
#<ManyToManyChannel clojure.core.async.impl.channels.ManyToManyChannel@147c0def>
channels.core=> (<!! (async/into [] dc))
[0 1 2 3 4]

Here we create a channel with a dropping buffer large enough to hold five
messages, and then we write the numbers 0 to 9 to it. This doesn’t block,
even though the channel cannot hold so many messages. When we read its
contents, we find that only the first five messages are returned—all subsequent
messages have been dropped.

Clojure also provides sliding-buffer:

channels.core=> (def sc (chan (sliding-buffer 5)))
#'channels.core/sc
channels.core=> (onto-chan sc (range 0 10))
#<ManyToManyChannel clojure.core.async.impl.channels.ManyToManyChannel@3071908b>
channels.core=> (<!! (async/into [] sc))
[5 6 7 8 9]

As before, we create a channel large enough to hold five messages, but this
time with a sliding buffer. When we read its contents, we find that the five
most recent messages are returned—writing to a full channel with a sliding
buffer drops the oldest message. We’ll look into channels in much more detail
later, but before then let’s look at core.async’s other headline feature—go blocks.

Go Blocks
Threads have both an overhead and a startup cost, which is why most modern
programs avoid creating threads directly and use a thread pool instead (see
Thread-Creation Redux, on page 33). Indeed, the thread macro we used earlier
today uses a CachedThreadPool under the hood.

report erratum  •  discuss

Day 1: Channels and Go Blocks • 157

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Joe asks:

What—No Automatically Growing Buffer?
We’ve now seen all three types of buffer provided by core.async as standard—blocking,
dropping, and sliding. It would be quite possible to create one that simply grows as
it needs to accommodate more messages. So why isn’t this provided as standard?

The reason is the age-old lesson that, whenever you have an “inexhaustible” resource,
sooner or later you will exhaust it. This might be because over time your program is
asked to work on larger problems, or it might be a bug that results in messages piling
up because whatever should be handling them doesn’t do so.

If you avoid thinking about what to do when it happens, eventually this will lead to
a damaging, obscure, and difficult-to-diagnose bug sometime in the future. Indeed,
flooding a process’s mailbox is one of the few ways to comprehensively crash an
Erlang system.a Better to think about how you want to handle a full buffer today and
nip the problem in the bud.

a. http://prog21.dadgum.com/43.html

Thread pools aren’t always very convenient to use, though. In particular, they
are problematic if the code we want to run might block.

The Problem with Blocking

Thread pools are a great way to handle CPU-intensive tasks—those that tie a
thread up for a brief period and then return it to the pool to be reused. But
what if we want to do something that involves communication? Blocking a
thread ties it up indefinitely, eliminating much of the value of using a thread
pool.

There are ways around this, but they typically involve restructuring code to
make it event-driven, a style of programming that will be familiar to anyone
who’s done UI programming or worked with any of the recent breed of evented
servers.

Although this works, it breaks up the natural flow of control and can make
code difficult to read and reason about. Worse, it can lead to an excess of
global state, with event handlers saving data for use by later handlers. And
as we’ve seen, state and concurrency really don’t mix.

Go blocks provide an alternative that gives us the best of both worlds—the
efficiency of event-driven code without having to compromise its structure or
readability. They achieve this by transparently rewriting sequential code into
event-driven code under the hood.

Chapter 6. Communicating Sequential Processes • 158

report erratum  •  discusswww.finebook.ir   

http://prog21.dadgum.com/43.html
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Inversion of Control

In common with other Lisps, Clojure provides a powerful macro system. If
you’re used to macros in other languages (C/C++ pre-processor macros, for
example), Lisp macros can seem like magic, enabling dramatic code transfor-
mations. The go macro is particularly magical.

Code within a go block is transformed into a state machine. Instead of blocking
when it reads from or writes to a channel, the state machine parks, relinquishing
control of the thread it’s executing on. When it’s next able to run, it performs
a state transition and continues execution, potentially on another thread.

This represents an inversion of control, allowing the core.async runtime to effi-
ciently multiplex many go blocks over a limited thread pool. Just how efficiently
we’ll soon see, but first let’s see an example.

Parking

Here’s a simple example of go in action:

channels.core=> (def ch (chan))
#'channels.core/ch
channels.core=> (go

#_=> (let [x (<! ch)
#_=> y (<! ch)]
#_=> (println "Sum:" (+ x y))))

#<ManyToManyChannel clojure.core.async.impl.channels.ManyToManyChannel@13ac7b98>
channels.core=> (>!! ch 3)
nil
channels.core=> (>!! ch 4)
nil
Sum: 7

We start by creating a channel ch, followed by a go block that reads two values
from it, then prints their sum. Although it looks like the go block should block
when it reads from the channel, something far more interesting is going on.

Instead of using <!! to read from the channel, our go block is using <!. The single
exclamation mark indicates that this is the parking version of a channel read,
not the blocking version. As you might expect, >! is the parking version of the
blocking >!!.

The go macro converts this sequential code into a state machine with three states:

<! ch <! ch output 
results

report erratum  •  discuss

Day 1: Channels and Go Blocks • 159

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


1. The initial state immediately parks, waiting for something to be available for
reading from ch. When it is, the state machine transitions to state 2.

2. Next the state machine binds the value read from ch to x and then parks,
waiting for another value to be available, after which it transitions to state 3.

3. Finally, the state machine binds the value read from ch to y, prints a message,
and terminates.

Joe asks:

What Happens If I Block in a Go Block?
If you call a blocking function, such as <!!, in a go block, you will simply block the
thread it happens to be running on. Your code will probably execute OK (although if
you block enough threads, you might deadlock because no more are available), but
doing so defeats the purpose of using go blocks. Nothing will warn you if you make
this mistake, however, so it’s up to you to be on your guard.

Happily, if you make the opposite mistake, you will be warned:

channels.core=> (<! ch)
AssertionError Assert failed: <! used not in (go ...) block
nil clojure.core.async/<! (async.clj:83)

Go Blocks Are Cheap

The point of all the go macro’s cleverness is efficiency. Because (unlike threads)
go blocks are cheap, we can create many of them without running out of
resources. This may seem like a small benefit, but the ability to freely create
concurrent tasks without worry is transformative.

You may have noticed that go (and thread, for that matter) returns a channel.
This channel will have the result of the go block written to it when it’s complete:

channels.core=> (<!! (go (+ 3 4)))
7

We can use this fact to create a small function that creates a very large
number of go blocks, allowing us to see just how inexpensive go blocks are:

CSP/channels/src/channels/core.clj
(defn go-add [x y]

(<!! (nth (iterate #(go (inc (<! %))) (go x)) y)))

This contender for the title “world’s most inefficient addition function” adds
x to y by creating a pipeline of y go blocks, each one of which increments its
argument by one.

Chapter 6. Communicating Sequential Processes • 160

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/CSP/channels/src/channels/core.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


To see how this works, let’s build it up in stages:

1. The anonymous function #(go (inc (<! %))) creates a go block that takes a
single channel argument, reads a single value from it, and returns a
channel containing that value incremented by one.

2. This function is passed to iterate with an initial value of (go x) (a channel
that simply has the value x written to it). Recall that iterate returns a lazy
sequence of the form (x (f x) (f (f x)) (f (f (f x))) …).

3. We read the y-th element of this sequence with nth, the value of which will
be a channel containing the result of incrementing x y times.

4. Finally, we read the value of that channel with <!!.

Let’s see it in action:

channels.core=> (time (go-add 10 10))
"Elapsed time: 1.935 msecs"
20
channels.core=> (time (go-add 10 1000))
"Elapsed time: 5.311 msecs"
1010
channels.core=> (time (go-add 10 100000))
"Elapsed time: 734.91 msecs"
100010

So that’s 100,000 go blocks created and executed in around three-quarters
of a second. That means that a go block compares very favorably to an Elixir
process—a very impressive result given that Clojure runs on the JVM,
whereas Elixir runs on the Erlang virtual machine, which was built with
efficient concurrency in mind.

Now that we’ve seen both channels and go blocks in action, let’s look at how
they can be combined to build more complex operations over channels.

Operations over Channels
If you’re thinking that channels have more than a little in common with
sequences, you’re not wrong. Like sequences, channels represent ordered
sets of values. Like sequences, we should be able to implement higher-level
functions that operate over all of a channel’s contents—functions like map,
filter, and so on. And like sequences, we should be able to chain those functions
to create composite operations.

Mapping over a Channel

Here’s a channel-oriented version of map:

report erratum  •  discuss

Day 1: Channels and Go Blocks • 161

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


CSP/channels/src/channels/core.clj
(defn map-chan [f from]

(let [to (chan)]
(go-loop []
(when-let [x (<! from)]

(>! to (f x))
(recur))

(close! to))
to))

This takes a function (f) and a source channel (from). It starts by creating a
destination channel (to), which is returned at the end of the function. Before
then, however, it creates a go block with go-loop, a utility function that’s
equivalent to (go (loop …)). The body of the loop uses when-let to read from from
and bind the value read to x. If x isn’t null, the body of the when-let is executed,
(f x) is written to to, and the loop executed again. If x is null, to is closed.

Here it is in action:

channels.core=> (def ch (chan 10))
#'channels.core/ch
channels.core=> (def mapped (map-chan (partial * 2) ch))
#'channels.core/mapped
channels.core=> (onto-chan ch (range 0 10))
#<ManyToManyChannel clojure.core.async.impl.channels.ManyToManyChannel@9f3d43e>
channels.core=> (<!! (async/into [] mapped))
[0 2 4 6 8 10 12 14 16 18]

As you might expect, core.async provides its own version of map-chan, called map<.
There’s also a channel-oriented version of filter called filter<, mapcat called
mapcat<, and so on. As you would expect, these can be combined to create
chains of channels:

channels.core=> (def ch (to-chan (range 0 10)))
#'channels.core/ch
channels.core=> (<!! (async/into [] (map< (partial * 2) (filter< even? ch))))
[0 4 8 12 16]

The preceding code uses to-chan, another core.async utility function, which creates
and returns a channel containing the contents of a sequence, closing it when
the sequence is exhausted.

We’re almost at the end of day 1, but before we’re done, let’s have a bit of fun.

A Concurrent Sieve of Eratosthenes

Just because we can, here’s a concurrent version of the sieve of Eratosthenes.
The get-primes function returns a channel to which all the prime numbers up
to limit will subsequently be written:

Chapter 6. Communicating Sequential Processes • 162

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/CSP/channels/src/channels/core.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


CSP/Sieve/src/sieve/core.clj
(defn factor? [x y]

(zero? (mod y x)))

(defn get-primes [limit]
(let [primes (chan)

numbers (to-chan (range 2 limit))]
(go-loop [ch numbers]
(when-let [prime (<! ch)]

(>! primes prime)
(recur (remove< (partial factor? prime) ch)))

(close! primes))
primes))

We’ll go through how this works in a minute (although I encourage you to
work through it yourself first—you should have everything you need to do
so). But first, let’s prove that it works as advertised. The following main function
calls get-primes and then prints out what’s written to the channel it returns:

CSP/Sieve/src/sieve/core.clj
(defn -main [limit]

(let [primes (get-primes (edn/read-string limit))]
(loop []
(when-let [prime (<!! primes)]

(println prime)
(recur)))))

And here’s what we get when we run it:

$ lein run 100000
2
3
5
7
11
⋮
99971
99989
99991

Let’s see how get-primes works. It starts by creating a channel called primes,
which is returned at the end of the function. It then enters a loop, with ch
initially bound to numbers, a channel that will have all the numbers from 2 to
limit written to it courtesy of to-chan.

The loop reads the first entry from ch, which we know is a prime number (we’ll
see why this is true soon), so it’s written to primes. We then loop back around,
except this time ch is bound to the result of (remove< (partial factor? prime) ch).

report erratum  •  discuss

Day 1: Channels and Go Blocks • 163

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/CSP/Sieve/src/sieve/core.clj
http://media.pragprog.com/titles/pb7con/code/CSP/Sieve/src/sieve/core.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


The remove< function is similar to filter<, except that it returns a channel to
which only values for which the predicate returns false are written. In our
case, it will be a channel with all values removed for which the prime we’ve
just identified is a factor.

So, get-primes creates a pipeline of channels; the first contains all numbers
from 2 to limit, the second has all numbers that are a multiple of 2 removed,
the next has all multiples of 3 removed, and so on, as shown in the following
diagram:

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

2 4 6 8 10 12 14 16 18 20 22 24 25

3 9 15 21

5 25

3 5 7 9 11 13 15 17 19 21 23

5 7 11 13 17 19 23 25

7 11 13 17 19 23

(remove< (factor? 2 ...) ...)

(remove< (factor? 3 ...) ...)

(remove< (factor? 5 ...) ...)

2

Figure 9—A concurrent sieve of Eratosthenes

I don’t want to give you impression that this is an efficient way to implement
a parallel prime number sieve—it’s too profligate with channels for that to be
true. But it’s a nice demonstration of how channels can be freely combined
to create arbitrary communication patterns.

Day 1 Wrap-Up
This brings us to the end of day 1. In day 2 we’ll see how to read from more
than one channel and how to construct an IO-intensive program with channels
and go blocks.

Chapter 6. Communicating Sequential Processes • 164

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


What We Learned in Day 1

The twin pillars of core.async are channels and go blocks:

• By default, channels are synchronous (unbuffered)—writing to a channel
blocks until something reads from it.

• Alternatively, channels can be buffered. Different buffering strategies
allow us to decide how to handle a full buffer—we can block, discard the
oldest value (sliding buffer), or discard the most recently written value
(dropping buffer).

• Go blocks utilize inversion of control to rewrite sequential code as a state
machine. Instead of blocking, go blocks are parked, allowing the thread
that they’re running on to be used by another go block.

• The blocking versions of channel operations end with two exclamation
marks (!!), whereas the parking versions end with a single exclamation
mark (!).

Day 1 Self-Study

Find

• The core.async documentation

• Either Timothy Baldridge’s “Core Async Go Macro Internals” screencasts
or Huey Petersen’s “The State Machines of core.async” blog post, both of
which describe how the go macro implements inversion of control.

Do

• Our implementation of map-chan created and returned a synchronous
(unbuffered) channel. What would happen if it used a buffered channel
instead? Which is preferable? Under what circumstances (if any) would
a buffered channel be an appropriate choice?

• As well as map<, core.async provides map>. How do they differ? Create your
own version of map>. When might you use one, and when the other?

• Create a channel-based version of a parallel map (similar to Clojure’s
existing pmap or the parallel map function we created in Elixir in the previ-
ous chapter).

report erratum  •  discuss

Day 1: Channels and Go Blocks • 165

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Day 2: Multiple Channels and IO
Today we’ll see how core.async makes asynchronous IO both simpler and easier
to understand. But before then, we’ll look at a feature we’ve not yet seen—
handling multiple channels at a time.

Handling Multiple Channels
So far we’ve dealt only with a single channel at a time, but there’s no reason
we have to restrict ourselves to doing so. The alt! function allows us to write
code that can deal with more than one channel:

channels.core=> (def ch1 (chan))
#'channels.core/ch1
channels.core=> (def ch2 (chan))
#'channels.core/ch2
channels.core=> (go-loop []

#_=> (alt!
#_=> ch1 ([x] (println "Read" x "from channel 1"))
#_=> ch2 ([x] (println "Twice" x "is" (* x 2))))
#_=> (recur))

#<ManyToManyChannel clojure.core.async.impl.channels.ManyToManyChannel@d8fd215>
channels.core=> (>!! ch1 "foo")
Read foo from channel 1
nil
channels.core=> (>!! ch2 21)
Twice 21 is 42
nil

Here we create two channels, ch1 and ch2, and then we create a go block that
loops forever, using alt! to read from both. If there’s something available to
read from ch1, it’s printed. If there’s something available to read from ch2, it’s
doubled and printed.

It should be pretty clear from context what’s going on here—the alt! macro
takes pairs of arguments, the first of which is a channel and the second of
which is code that’s executed if there’s anything to read from that channel.
In our case that code looks similar to an anonymous function—the value read
from the channel is bound to x and the subsequent println executed. But it’s
not an anonymous function—it doesn’t start with fn.

This is another example of Clojure’s macro system working its magic, allowing
alt! to be both more concise and more efficient than it would if it used anony-
mous functions.

Chapter 6. Communicating Sequential Processes • 166

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Joe asks:

What About Writing to Multiple Channels?
We’ve only scratched the surface of the alt! macro—as well as reading from multiple
channels, it can also be used to write to multiple channels, or even a mix of reads
and writes. We’re not going to use any of this functionality in this book, but it’s worth
consulting the documentation if you’re interested in exploring alt! further.

Timeouts

The timeout function returns a channel that closes after a certain number of
milliseconds:

channels.core=> (time (<!! (timeout 10000)))
"Elapsed time: 10001.662 msecs"
nil

This can be used in conjunction with alt! to allow other channel operations
to time out, as in this example:

channels.core=> (def ch (chan))
#'channels.core/ch
channels.core=> (let [t (timeout 10000)]

#_=> (go (alt!
#_=> ch ([x] (println "Read" x "from channel"))
#_=> t (println "Timed out"))))

#<ManyToManyChannel clojure.core.async.impl.channels.ManyToManyChannel@28134be9>
channels.core=>
Timed out

Timeouts are nothing new, of course, but this approach in which timeouts
are reified (represented by a concrete entity) is surprisingly powerful, as we’ll
see next.

Reified Timeouts

Most systems support timeouts on a per-request basis. Java’s URLConnection
class, for example, provides the setReadTimeout() method—if the server doesn’t
respond within the relevant number of milliseconds, read() will throw an
IOException.

This is fine if you’re making a single request. But what if you want to limit
the total time taken by a series of connections? Per-connection timeouts are
little help here, but a reified timeout gives you exactly what you need—simply
create a single timeout and use it for each connection in the sequence.

report erratum  •  discuss

Day 2: Multiple Channels and IO • 167

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


To illustrate this in action, let’s modify the sieve example we created yesterday
so that, instead of taking a numeric limit, it simply generates as many prime
numbers as it can in a given number of seconds.

We’ll start by modifying get-primes so that it generates primes forever:

CSP/SieveTimeout/src/sieve/core.clj
(defn get-primes []

(let [primes (chan)
numbers (to-chan (iterate inc 2))]➤

(go-loop [ch numbers]
(when-let [prime (<! ch)]

(>! primes prime)
(recur (remove< (partial factor? prime) ch)))

(close! primes))
primes))

Instead of our initial channel being generated by (range 2 limit), we use the
infinite sequence (iterate inc 2).

Here’s how we call it:

CSP/SieveTimeout/src/sieve/core.clj
(defn -main [seconds]

(let [primes (get-primes)
limit (timeout (* (edn/read-string seconds) 1000))]➤

(loop []
(alt!! :priority true➤

limit nil➤

primes ([prime] (println prime) (recur))))))➤

We’re using alt!!, which is, as you would expect, the blocking version of alt!.
This blocks until either a new prime is available or limit times out, in which
case it simply returns nil. The :priority true option ensures that the clauses passed
to alt!! are evaluated in order (by default, if two clauses could execute, one is
chosen nondeterministically). This avoids the (admittedly unlikely) event of
primes being generated so quickly that there’s always one available and the
timeout clause never gets evaluated. This is a very natural way to express
the problem we’re trying to solve—much more natural than anything we could
create with per-request timeouts.

In the next section we’ll use timeouts, together with Clojure’s macro system,
to build a convenient utility that addresses a common use case—polling.

Asynchronous Polling
Later today we’re going to build an RSS reader. Among other things, it will
need to poll the news-feeds it’s monitoring to detect new articles. In this section

Chapter 6. Communicating Sequential Processes • 168

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/CSP/SieveTimeout/src/sieve/core.clj
http://media.pragprog.com/titles/pb7con/code/CSP/SieveTimeout/src/sieve/core.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


we’ll use timeouts, together with Clojure’s macro support, to build a utility
that makes efficient, asynchronous polling almost trivially easy.

A Polling Function

The timeout function we saw earlier today is exactly what we need to implement
polling. Here’s a function that takes an interval in seconds, together with a
function, and calls that function once every interval:

CSP/Polling/src/polling/core.clj
(defn poll-fn [interval action]

(let [seconds (* interval 1000)]
(go (while true

(action)
(<! (timeout seconds))))))

It’s simple enough, and it works exactly as you might expect:

polling.core=> (poll-fn 10 #(println "Polling at:" (System/currentTimeMillis)))
#<ManyToManyChannel clojure.core.async.impl.channels.ManyToManyChannel@6e624159>
polling.core=>
Polling at: 1388827086165
Polling at: 1388827096166
Polling at: 1388827106168
⋮

But there’s a problem—you might think that because poll-fn calls the function
it’s given within a go block, that function should be able to call parking
functions. But let’s see what happens if we try:

polling.core=> (def ch (to-chan (iterate inc 0)))
#'polling.core/ch
polling.core=> (poll-fn 10 #(println "Read:" (<! ch)))
Exception in thread "async-dispatch-1" java.lang.AssertionError:

Assert failed: <! used not in (go ...) block
nil

The problem is that parking calls need to be made directly within a go
block—Clojure’s macro system is unable to perform its magic otherwise.

A Polling Macro

The solution is to write our polling utility as a macro instead of as a function:

CSP/Polling/src/polling/core.clj
(defmacro poll [interval & body]

`(let [seconds# (* ~interval 1000)]
(go (while true

(do ~@body)
(<! (timeout seconds#))))))

report erratum  •  discuss

Day 2: Multiple Channels and IO • 169

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/CSP/Polling/src/polling/core.clj
http://media.pragprog.com/titles/pb7con/code/CSP/Polling/src/polling/core.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


We can’t discuss Clojure macros in detail here, so you’ll have to take quite a
bit of this on trust. We’ll look at poll’s expansion soon, but in the meantime
here are a few pointers that should help you understand how it works:

• Instead of being directly compiled, a macro returns code that is then
compiled in turn.

• The backtick (`) is the syntax quote operator. It takes source code and,
instead of executing it, returns a representation of it that can be subse-
quently compiled.

• Within that code, we can use the ~ (unquote) and ~@ (unquote splice)
operators to refer to arguments passed to the macro.

• The # (auto-gensym) suffix indicates that Clojure should automatically
generate a unique name (which guarantees that it won’t clash with any
names used by code passed to the macro).

Let’s see it in action:

polling.core=> (poll 10
#_=> (println "Polling at:" (System/currentTimeMillis))
#_=> (println (<! ch)))

#<ManyToManyChannel clojure.core.async.impl.channels.ManyToManyChannel@1bec079e>
polling.core=>
Polling at: 1388829368011
0
Polling at: 1388829378018
1
⋮

Because macros are expanded at compile time, the code passed to poll is
inlined and therefore directly contained within poll’s go block, meaning that
we can pass code that contains parking calls. But that’s not the only advantage
of using a macro—because we’re passing a chunk of code rather than a
function, the syntax is much more natural—no need to create an anonymous
function. In fact, we’ve created our own control structure.

We can examine the code generated by poll by looking at its macro expansion:

polling.core=> (macroexpand-1
#_=> '(poll 10
#_=> (println "Polling at:" (System/currentTimeMillis))
#_=> (println (<! ch))))

(clojure.core/let [seconds__2691__auto__ (clojure.core/* 10 1000)]
(clojure.core.async/go

(clojure.core/while true
(do

(println "Polling at:" (System/currentTimeMillis))
(println (<! ch)))

(clojure.core.async/<! (clojure.core.async/timeout seconds__2691__auto__)))))

Chapter 6. Communicating Sequential Processes • 170

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


I’ve reformatted the output of macroexpand-1 slightly to make it easier to read.
You can see how the code that was passed to poll has been pasted (spliced)
into the code within the macro itself and how seconds# has been turned into
a unique name (to see why this is important, imagine that the code that we
passed to poll used seconds to mean something else).

We’ll see a practical use of our poll macro in the next section.

Asynchronous IO
IO is one area where asynchronous code comes into its own—instead of the
traditional approach of having a thread per connection, asynchronous IO

allows us to start a number of operations and receive a notification whenever
one of them has data available. Although this is a powerful approach, it can
be challenging, with code tending to turn into a mess of callbacks calling
callbacks. In this section we’ll see how core.async can make it much easier.

In keeping with the word-counting examples from earlier chapters, we’re going
to build an RSS reader that monitors a set of news feeds and, whenever it
sees a new article, counts how many words it contains. We’re going to con-
struct this as a pipeline of concurrent go blocks connected by channels:

1. The lowest-level go block monitors a single news feed, polling it once every
sixty seconds. After parsing the returned XML, it extracts links to news
articles and passes them along the pipeline.

2. The next go block maintains a list of all the articles that have already
been retrieved from a particular news feed. Whenever it sees a new article,
it passes its URL along the pipeline.

3. The next go block retrieves news articles in turn, counts the words con-
tained within, and passes the resulting counts along the pipeline.

4. The counts from multiple news feeds are merged into a single channel.

5. The highest-level go block monitors this merged channel and prints new
counts as they’re received.

This structure is shown in Figure 10, The Structure of the RSS Reader, on
page 172.

Let’s start by seeing how to integrate an existing asynchronous IO library into
core.async.

report erratum  •  discuss

Day 2: Multiple Channels and IO • 171

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Article
Article

Poll
Feed

New 
Links

Count 
Words

News 
Feed Article

Merge Display 
Results

Poll
Feed

New 
Links

Count 
Words

Poll
Feed

New 
Links

Count 
Words

Figure 10—The Structure of the RSS Reader

From Callbacks to Channels

We’re going to use the http-kit library.3 In common with many asynchronous
IO libraries, http-kit indicates that an operation has completed by calling a
callback function:

wordcount.core=> (require '[org.httpkit.client :as http])
nil
wordcount.core=> (defn handle-response [response]

#_=> (let [url (get-in response [:opts :url])
#_=> status (:status response)]
#_=> (println "Fetched:" url "with status:" status)))

#'wordcount.core/handle-response
wordcount.core=> (http/get "http://paulbutcher.com/" handle-response)
#<core$promise$reify__6310@3a9280d0: :pending>
wordcount.core=>
Fetched: http://paulbutcher.com/ with status: 200

Our first task is to get http-kit to integrate with core.async by wrapping http/get.
We’re going to use a function we’ve not seen before—put! doesn’t have to be
called within a go block and implements a “fire and forget” write to a channel
(and will neither block nor park the task it’s called from):

3. http://http-kit.org

Chapter 6. Communicating Sequential Processes • 172

report erratum  •  discusswww.finebook.ir   

http://http-kit.org
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


CSP/WordCount/src/wordcount/http.clj
(defn http-get [url]

(let [ch (chan)]
(http/get url (fn [response]

(if (= 200 (:status response))
(put! ch response)
(do (report-error response) (close! ch)))))

ch))

We start by creating a channel, which is returned at the end of the function
(a pattern that should be becoming familiar to you by now), and then we call
http/get, which returns immediately. At some point in the future, when the
GET operation completes, our callback is called. If the status is 200 (success),
the callback simply writes the response to the channel, and if the status is
anything else, it reports an error and closes the channel.

Next, we’ll create a function that polls an RSS feed.

Polling a Feed

As you would hope, now that we’ve got http-get and poll, polling an RSS feed is
simplicity itself:

CSP/WordCount/src/wordcount/feed.clj
(def poll-interval 60)

; Simple-minded feed-polling function
; WARNING: Don't use in production (use conditional get instead)

(defn poll-feed [url]
(let [ch (chan)]

(poll poll-interval
(when-let [response (<! (http-get url))]

(let [feed (parse-feed (:body response))]
(onto-chan ch (get-links feed) false))))

ch))

The parse-feed and get-links functions use the Rome library to parse the XML

returned by the news feed.4 We won’t look at them here, but you can examine
the source code if you’re interested in the details.

The list of links returned by get-links is written to ch with onto-chan. By default,
onto-chan closes the channel when the sequence it’s given is exhausted; we
disable this behaviour by passing false as the final argument.

Here it is in action:

4. http://rometools.github.io/rome/

report erratum  •  discuss

Day 2: Multiple Channels and IO • 173

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/CSP/WordCount/src/wordcount/http.clj
http://media.pragprog.com/titles/pb7con/code/CSP/WordCount/src/wordcount/feed.clj
http://rometools.github.io/rome/
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


wordcount.core=> (ns wordcount.feed)
nil
wordcount.feed=> (def feed (poll-feed "http://www.cbsnews.com/feeds/rss/main.rss"))
#'wordcount.feed/feed
wordcount.feed=> (loop []

#_=> (when-let [url (<!! feed)]
#_=> (println url)
#_=> (recur)))

http://www.cbsnews.com/news/three-year-old-dies-after-visit-to-dentist-in-hawaii/
http://www.cbsnews.com/news/obama-unemployment-benefits-expiration-just-plain-cruel/
http://www.cbsnews.com/news/rand-paul-says-hes-suing-over-nsa-surveillance-programs/
⋮

Next we’ll see how to filter the links returned by poll-feed to remove duplicates.

Don’t Try This at Home

Although this simple polling strategy is OK for an example in a book, please don’t
use it in production. Fetching the entire feed each time you poll places an unneces-
sarily high load on both your network bandwidth and the server you’re polling, a load
that can be reduced by using HTTP’s conditional get.a

a. http://fishbowl.pastiche.org/2002/10/21/http_conditional_get_for_rss_hackers/

Unique Links

Our poll-feed function simply returns every link it finds every time it polls the
news feed, which results in many duplicates. What we really want is a channel
that contains just the new links that have appeared on the feed. This is
exactly what the following function gives us:

CSP/WordCount/src/wordcount/feed.clj
(defn new-links [url]

(let [in (poll-feed url)
out (chan)]

(go-loop [links #{}]
(let [link (<! in)]

(if (contains? links link)
(recur links)
(do
(>! out link)
(recur (conj links link))))))

out))

We start by creating two channels, in and out. The first is the channel returned
by poll-feed; the second is where we’ll write new links. We then start a loop
within a go block that maintains links, a set of all the links we’ve seen to date,

Chapter 6. Communicating Sequential Processes • 174

report erratum  •  discusswww.finebook.ir   

http://fishbowl.pastiche.org/2002/10/21/http_conditional_get_for_rss_hackers/
http://media.pragprog.com/titles/pb7con/code/CSP/WordCount/src/wordcount/feed.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


which is initially bound to the empty set #{}. Whenever we read a link from
in, we check to see whether it’s already in links. If it is, we do nothing; otherwise
we write the new link to out and add it to links.

Run this from the REPL, and instead of a new tranche of links being generated
every sixty seconds, you should only see new links being returned.

Now that we have a feed of links to new articles, the next step is to fetch each
of them in turn and count how many words they contain.

Counting Words

With what we’ve seen so far, the get-counts function almost writes itself:

CSP/WordCount/src/wordcount/core.clj
(defn get-counts [urls]

(let [counts (chan)]
(go (while true

(let [url (<! urls)]
(when-let [response (<! (http-get url))]

(let [c (count (get-words (:body response)))]
(>! counts [url c]))))))

counts))

It takes a channel urls and, for each URL read from it, fetches the article with
http-get, counts the words contained within, and writes a two-element array,
where the first item is the article’s URL and the second is the word count to
its output channel.

We’re almost done—now we just need to wire everything together.

Putting It All Together

Here’s a main function that implements our complete RSS word counter:

CSP/WordCount/src/wordcount/core.clj
(defn -main [feeds-file]Line 1

(with-open [rdr (io/reader feeds-file)]2

(let [feed-urls (line-seq rdr)3

article-urls (doall (map new-links feed-urls))4

article-counts (doall (map get-counts article-urls))5

counts (async/merge article-counts)]6

(while true7

(println (<!! counts))))))8

This creates a program that takes a file containing a list of news-feed URLs,
one on each line. We create a reader for the file on line 2 (Clojure’s with-open
function ensures that the file is closed when the reader goes out of scope).
And then we convert it into a sequence of URLs with line-seq (line 3). Mapping
new-links over this (line 4) turns it into a sequence of channels, each of which

report erratum  •  discuss

Day 2: Multiple Channels and IO • 175

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/CSP/WordCount/src/wordcount/core.clj
http://media.pragprog.com/titles/pb7con/code/CSP/WordCount/src/wordcount/core.clj
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


will have links to new articles written to it when they’re published. And
mapping get-counts over that sequence (line 5) gives us a sequence of channels
that will have counts written to them whenever an article is published.

Finally, we use async/merge (line 6) to merge this sequence of channels into a
single channel that contains anything written to any of its source channels.
The code then loops forever, printing anything that’s written to that merged
channel (line 7). Here it is in action:

$ lein run feeds.txt
[http://www.bbc.co.uk/sport/0/football/25611509 10671]
[http://www.wired.co.uk/news/archive/2014-01/04/time-travel 11188]
[http://news.sky.com/story/1190148 3488]
⋮

Keep an eye on your CPU usage while running it. Not only is this code very
straightforward and easy to read, but it’s very efficient, capable of monitoring
hundreds of feeds concurrently while barely consuming any CPU resources.

Joe asks:

Why No Buffered Channels?
Take a look at the channels we created today—all of them are unbuffered (syn-
chronous). Newcomers to CSP tend to assume that buffered channels will be used
much more frequently than unbuffered, but in fact the opposite is true. Buffered
channels do have valid use cases, but think carefully before using one. Make sure
that a buffer is necessary.

Day 2 Wrap-Up
That brings us to the end of day 2. In day 3 we’ll see how to use core.async
client-side via ClojureScript.

What We Learned in Day 2

Channels and go blocks allow us to create efficient asynchronous code that
reads naturally, without the complexity that normally results from using
callback functions.

• Existing callback-based APIs can be brought into the asynchronous world
by providing a minimal callback function that simply writes to a channel.

• The alt! macro allows a task to read from, or write to, multiple channels.

• The timeout function returns a channel that closes after an interval—allow-
ing timeouts to be treated as first-class entities (reified).

Chapter 6. Communicating Sequential Processes • 176

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


• Parking calls need to be directly contained within a go block. Clojure’s
macros can be used to inline code, allowing larger go blocks to be broken
up without falling foul of this limitation.

Day 2 Self-Study

Find

• As well as alt!, core.async also provides alts!. How do they differ? When might
you use one and when the other?

• In addition to async/merge, core.async provides a number of ways to combine
multiple channels. Find the documentation for pub, sub, mult, tap, mix, and
admix. When might they be useful?

Do

• Spend some time working through the order in which things take place
in the RSS reader. Notice that because we’re using unbuffered channels
throughout, the result is very similar to a dataflow program, with earlier
go blocks in the pipeline executing as a result of later ones being available
to consume data.

What would happen if you used buffered channels instead? Are there any
benefits to doing so? What problems are caused by using buffered channels?

• Implement your own version of async/merge. Remember to handle the case
where one or more of the source channels are closed. (Hint: You might
find this easier to implement with alts! than with alt!).

• Use Clojure’s macro expansion facility to examine the macro expansion of alt!:

channels.core=> (macroexpand-1 '(alt! ch1 ([x] (println x)) ch2 ([y] (println y))))

You will probably find it easier to understand if you format the code first
to get the indentation right and if you remove the clojure.core prefixes. Can
you see how alt! achieves the effect of calling an anonymous function
without actually doing so?

Day 3: Client-Side CSP
ClojureScript is a version of Clojure that, instead of compiling to Java byte-
codes, cross-compiles to JavaScript (see http://clojurescript.com). This means that
it’s possible to create a web app in which both the server- and client-side code
are written in Clojure.

report erratum  •  discuss

Day 3: Client-Side CSP • 177

www.finebook.ir   

http://clojurescript.com
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


One of the most compelling reasons to do so is that ClojureScript supports
core.async, which brings a number of benefits that we’ll explore today, not the
least of which is a remedy to the bane of the JavaScript developer’s
life—callback hell.

Concurrency Is a State of Mind
If you’ve done any significant client-side JavaScript programming, you’re
probably wondering if I’ve gone mad—browser-based JavaScript engines are
single threaded, so what relevance can core.async possibly have? Don’t you
need multiple threads for concurrent programming to be useful?

The go macro’s inversion of control magic means that ClojureScript can bring
the appearance of multiple threads to client-side programming even in the
absence of true multithreading. This is a form of cooperative multitasking—one
task won’t preemptively interrupt another. As we’ll see, this enables dramatic
improvements in code structure and clarity.

Joe asks:

What About Web Workers?
Recent browsers support a limited form of truly multithreaded JavaScript via web
workers.a Web workers are intended for background tasks only, however, and don’t
have access to the DOM.

Web workers can be used in ClojureScript via, for example, the Servant library.b

a. http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html
b. https://github.com/MarcoPolo/servant

Hello, ClojureScript
ClojureScript is very similar to Clojure, but there are a few differences—we’ll
mention those that will affect us as we run into them.

A typical ClojureScript application has a two-stage compilation process. First,
the client-side ClojureScript is compiled to create a JavaScript file, and then
the server-side code is compiled and run to create a server that serves pages
with that JavaScript included within a <script> tag. Today’s examples all make
use of the lein-cljsbuild Leiningen plugin to automate this build process.5 The
server-side code resides in src-clj, and the client-side code in src-cljs.

5. https://github.com/emezeske/lein-cljsbuild

Chapter 6. Communicating Sequential Processes • 178

report erratum  •  discusswww.finebook.ir   

http://www.whatwg.org/specs/web-apps/current-work/multipage/workers.html
https://github.com/MarcoPolo/servant
https://github.com/emezeske/lein-cljsbuild
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Let’s look at a simple example project, comprising a single page with a single
script. Here’s the page:

CSP/HelloClojureScript/resources/public/index.html
<html>Line 1

<head>2

<title>Hello ClojureScript</title>3

<script src="/js/main.js" type="text/javascript"></script>4

</head>5

<body>6

<div id="content">7

</div>8

</body>9

</html>10

The generated JavaScript is included on line 4. That script will populate the
empty <div> on line 7. Here’s its source:

CSP/HelloClojureScript/src-cljs/hello_clojurescript/core.cljs
(ns hello-clojurescript.coreLine 1

(:require-macros [cljs.core.async.macros :refer [go]])-

(:require [goog.dom :as dom]-

[cljs.core.async :refer [<! timeout]]))-

5

(defn output [elem message]-

(dom/append elem message (dom/createDom "br")))-

(defn start []-

(let [content (dom/getElement "content")]-

(go10

(while true-

(<! (timeout 1000))-

(output content "Hello from task 1")))-

(go-

(while true15

(<! (timeout 1500))-

(output content "Hello from task 2")))))-

-

(set! (.-onload js/window) start)-

One difference between Clojure and ClojureScript is that any macros used
by a script need to be referenced separately with :require-macros (line 2). The
output function on line 6 uses the Google Closure library (that’s closure with
an s, not a j) to append a message to a DOM element.6

This function is used on lines 13 and 17, each of which is within independently
running go blocks. The first prints a message once every second, the other
once every second and a half.

6. https://developers.google.com/closure/library/

report erratum  •  discuss

Day 3: Client-Side CSP • 179

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/CSP/HelloClojureScript/resources/public/index.html
http://media.pragprog.com/titles/pb7con/code/CSP/HelloClojureScript/src-cljs/hello_clojurescript/core.cljs
https://developers.google.com/closure/library/
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Finally, on line 19, our start function is set to run by associating it with the
JavaScript window object’s onload attribute. This uses ClojureScript’s dot
special form, which provides JavaScript interoperability, which takes this:

(set! (.-onload js/window) start)

and translates it into this:

window.onload = hello_clojurescript.core.start;

We won’t look at the code for the server here, since it’s very simple (see the
accompanying code if you’re interested in the details).

Compile the script with lein cljsbuild once, run the server with lein run, and point
your browser at http://localhost:3000. You should see something like this:

Hello from task 1
Hello from task 2
Hello from task 1
Hello from task 1
Hello from task 2
⋮

Who says you need threads to have concurrency?

Independently running concurrent tasks are great as far as they go, but most
user interfaces need to interact with the user, which means handling events,
the next thing we’ll look at.

Handling Events
We’ll see how event handling works in ClojureScript by creating a simple
animation that reacts to mouse clicks. We’re going to create a web page that
displays circles that shrink to a point and eventually disappear wherever the
user clicks, as shown in Figure 11, Shrinking circles, on page 181.

The code for the page is very simple, comprising a single <div> that fills the
entire window:

CSP/Animation/resources/public/index.html
<html>

<head>
<title>Animation</title>
<script src="/js/main.js" type="text/javascript"></script>

</head>
<body>

<div id="canvas" width="100%" height="100%"></div>
</body>

</html>

Chapter 6. Communicating Sequential Processes • 180

report erratum  •  discusswww.finebook.ir   

http://localhost:3000
http://media.pragprog.com/titles/pb7con/code/CSP/Animation/resources/public/index.html
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Figure 11—Shrinking circles

To draw on this page, we’re going to make use of Google Closure’s graphics
support, which abstracts away from the details of drawing within different
browsers. The create-graphics function takes a DOM element and returns an
object that allows us to use it as a graphics surface:

CSP/Animation/src-cljs/animation/core.cljs
(defn create-graphics [elem]

(doto (graphics/createGraphics "100%" "100%")
(.render elem)))

And here’s shrinking-circle, which takes such a graphics surface and a position
and creates a go block that animates a circle centered on the position:

CSP/Animation/src-cljs/animation/core.cljs
(def stroke (graphics/Stroke. 1 "#ff0000"))Line 1

-

(defn shrinking-circle [graphics x y]-

(go-

(let [circle (.drawCircle graphics x y 100 stroke nil)]5

(loop [r 100]-

(<! (timeout 25))-

(.setRadius circle r r)-

(when (> r 0)-

(recur (dec r))))10

(.dispose circle))))-

We start by creating a circle with Google Closure’s drawCircle function (line 5)
and then enter a loop that uses a 25 ms timeout (line 7) to call setRadius forty
times a second. Finally, when the radius has decreased to zero, we delete the
circle with dispose (line 11).

Now we need a way to tell when the user clicks the mouse on the page. Google
Closure provides the listen function, which allows us to register event listeners.

report erratum  •  discuss

Day 3: Client-Side CSP • 181

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/CSP/Animation/src-cljs/animation/core.cljs
http://media.pragprog.com/titles/pb7con/code/CSP/Animation/src-cljs/animation/core.cljs
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Like the http/get function we saw yesterday, this takes a callback function
that’s called whenever an event is available. So as we did yesterday, we’re
going to translate this into the core.async world by passing a callback that
writes events to a channel:

CSP/Animation/src-cljs/animation/core.cljs
(defn get-events [elem event-type]

(let [ch (chan)]
(events/listen elem event-type
#(put! ch %))

ch))

We now have all we need to construct our script:

CSP/Animation/src-cljs/animation/core.cljs
(defn start []

(let [canvas (dom/getElement "canvas")
graphics (create-graphics canvas)
clicks (get-events canvas "click")]

(go (while true
(let [click (<! clicks)

x (.-offsetX click)
y (.-offsetY click)]

(shrinking-circle graphics x y))))))

(set! (.-onload js/window) start)

We start by looking up the <div> that we’ll be using as our canvas, constructing
a graphics object that allows us to draw on it, and getting hold of a channel
of mouse-click events. Then we enter a loop that waits for a mouse click,
extracts its coordinates with offsetX and offsetY, and creates an animated circle
at that position.

This all seems very simple (and it is), but by moving from JavaScript’s callback-
oriented world to core.async’s channel-oriented world, we’ve achieved something
profound—a solution to callback hell.

Taming Callbacks
Callback hell is a term coined to describe the spaghetti code that results from
JavaScript’s callback-heavy approach—callbacks calling callbacks calling
callbacks, with various elements of state stashed away so that one callback
can communicate with the next.

Moving to an asynchronous programming model provides us with a way out,
as we’ll see next.

Chapter 6. Communicating Sequential Processes • 182

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/CSP/Animation/src-cljs/animation/core.cljs
http://media.pragprog.com/titles/pb7con/code/CSP/Animation/src-cljs/animation/core.cljs
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


We’re Off to See the Wizard
A wizard is a common UI pattern in which the user is taken through a
sequence of steps to achieve a goal. The last thing we’ll do today is use what
we’ve learned to create a callback-less wizard:

Our wizard comprises a form with a number of fieldsets:

CSP/Wizard/resources/public/index.html
<form id="wizard" action="/wizard" method="post">

<fieldset class="step" id="step1">
<legend>Step 1</legend>
<label>First Name:</label><input type="text" name="firstname" />
<label>Last Name:</label><input type="text" name="lastname" />

</fieldset>

<fieldset class="step" id="step2">
<legend>Step 2</legend>
<label>Date of Birth:</label><input type="date" name="dob" />
<label>Homepage:</label><input type="url" name="url" />

</fieldset>

<fieldset class="step" id="step3">
<legend>Step 3</legend>
<label>Password:</label><input type="password" name="pass1" />
<label>Confirm Password:</label><input type="password" name="pass2" />

</fieldset>
<input type="button" id="next" value="Next" />

</form>

Each <fieldset> represents a single step. We start with all of them hidden:

CSP/Wizard/resources/public/styles.css
label { display:block; width:8em; clear:left; float:left;

text-align:right; margin-right: 3pt; }
input { display:block; }
.step { display:none; }➤

Our script uses the following utility functions to show and hide the relevant
fieldset as necessary:

report erratum  •  discuss

Day 3: Client-Side CSP • 183

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/CSP/Wizard/resources/public/index.html
http://media.pragprog.com/titles/pb7con/code/CSP/Wizard/resources/public/styles.css
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


CSP/Wizard/src-cljs/wizard/core.cljs
(defn show [elem]

(set! (.. elem -style -display) "block"))

(defn hide [elem]
(set! (.. elem -style -display) "none"))

(defn set-value [elem value]
(set! (.-value elem) value))

These use a variant of the dot special form that allows attribute accesses to
be chained, which takes this:

(set! (.. elem -style -display) "block")

and translates it into this:

elem.style.display = "block";

Here’s the code that implements the wizard control flow:

CSP/Wizard/src-cljs/wizard/core.cljs
(defn start []Line 1

(go-

(let [wizard (dom/getElement "wizard")-

step1 (dom/getElement "step1")-

step2 (dom/getElement "step2")5

step3 (dom/getElement "step3")-

next-button (dom/getElement "next")-

next-clicks (get-events next-button "click")]-

(show step1)-

(<! next-clicks)10

(hide step1)-

(show step2)-

(<! next-clicks)-

(set-value next-button "Finish")-

(hide step2)15

(show step3)-

(<! next-clicks)-

(.submit wizard))))-

-

(set! (.-onload js/window) start)20

We start by getting references to each of the form elements we’ll be dealing
with and use the get-events function we wrote earlier to get a channel of “Next”
button clicks (line 8). Then it’s a simple case of showing the first step and
waiting for the user to click Next (line 10). When the user clicks, we hide step
1, show step 2, and wait for another click on Next. This continues until every
step has been completed, at which point we submit the form (line 18).

Chapter 6. Communicating Sequential Processes • 184

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/CSP/Wizard/src-cljs/wizard/core.cljs
http://media.pragprog.com/titles/pb7con/code/CSP/Wizard/src-cljs/wizard/core.cljs
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


What stands out about this code is how unremarkable it is—a wizard is a
simple linear sequence of steps, and this code reads like a simple linear
sequence of steps. Of course, thanks to the magic of the go macro, we know
that it’s no such thing—what we’ve actually created is a state machine that
runs when it can and parks when it’s waiting for the stimulus that allows it
to perform a state transition. But almost all of the time, we can ignore that
fact and treat it like the linear code it appears to be.

Day 3 Wrap-Up
This brings us to the end of day 3 and our discussion of core.async’s version of
communicating sequential processes.

What We Learned in Day 3

ClojureScript is a Clojure variant that cross-compiles to JavaScript, allowing
the power of core.async to be brought to bear on client-side development. Not
only does this bring a form of cooperative multitasking to single-threaded
JavaScript environments, but it also provides a respite from callback hell.

Day 3 Self-Study

Find

• The ClojureScript implementation of core.async supports parking operations
like <! and >!, but not their blocking equivalents <!! or >!!. Why not?

• The documentation for take!—how would you use this to convert a channel-
based API into a callback-based API? When might this be useful? (Hint:
This may be related to the previous question).

Do

• Use core.async to create a simple browser-based game like Snake, Pong, or
Breakout.

• Create a native JavaScript version of the wizard we implemented earlier
today. How does it compare to the ClojureScript version?

Wrap-Up
On the surface, actor and CSP programs are very similar—both are constructed
from independent, concurrently executing tasks that communicate by sending
each other messages. But as we’ve seen in this chapter, their different
emphases result in very different flavors.

report erratum  •  discuss

Wrap-Up • 185

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Strengths
The primary strength of CSP compared to actors is flexibility. In an actor
program, the medium of communication is tightly coupled to the unit of exe-
cution—each actor has precisely one mailbox. In a CSP program, by contrast,
channels are first class and can be independently created, written to, read
from, and passed between tasks.

Rich Hickey, creator of the Clojure language, explained his reasons for
choosing CSP over actors like this:7

I remain unenthusiastic about actors. They still couple the producer with the
consumer. Yes, one can emulate or implement certain kinds of queues with actors
(and, notably, people often do), but since any actor mechanism already incorporates
a queue, it seems evident that queues are more primitive.

From a more pragmatic point of view, modern implementations of CSP like
core.async that use inversion of control to provide asynchronous tasks bring
both efficiency and a dramatically improved programming model to application
areas that have traditionally been based on callbacks. We’ve seen two of
these—asynchronous IO and UI programming—but there are many others.

Weaknesses
If you compare this chapter with the previous one on actors, two topics are
conspicuous by their absence—distribution and fault tolerance. Although
there’s nothing whatsoever to stop CSP-based languages from supporting
both, historically neither has had the same level of focus and support as
either has had within actor-based languages—there’s no CSP equivalent of
OTP.

As with both threads and locks and actors, CSP programs are susceptible to
deadlock and have no direct support for parallelism. Parallel solutions need
to be built from concurrent building blocks, raising the specter of nondeter-
minism.

Other Languages
Like actors, CSP has been around since the 1970s, when it was introduced
by Tony Hoare. The two models have largely coevolved, each learning from
the other over the years.

7. http://clojure.com/blog/2013/06/28/clojure-core-async-channels.html

Chapter 6. Communicating Sequential Processes • 186

report erratum  •  discusswww.finebook.ir   

http://clojure.com/blog/2013/06/28/clojure-core-async-channels.html
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


In the 1980s, CSP formed the basis for the language occam (upon which this
author cut his parallel-programming teeth),8 but without question the language
that’s done most to popularize the model recently is Go.

The inversion of control–based approach to asynchronous tasks provided by
both core.async and Go is becoming widely adopted, with support available in,
among others, F#,9 C#,10 Nemerle,11 and Scala.12

Final Thoughts
Most of the differences between actors and CSP result from the differing focus
of the communities that have developed around them. The actor community
has concentrated on fault tolerance and distribution, and the CSP community
on efficiency and expressiveness. Choosing between them, therefore, is
largely a question of deciding which of these aspects is most important to
you.

CSP is the last general-purpose programming model we’ll be looking at. In the
next chapter we’re going to look at our first special-purpose model.

8. http://en.wikipedia.org/wiki/Occam_programming_language
9. http://blogs.msdn.com/b/dsyme/archive/2007/10/11/introducing-f-asynchronous-workflows.aspx
10. http://msdn.microsoft.com/en-us/library/hh191443.aspx
11. https://github.com/rsdn/nemerle/wiki/Computation-Expression-macro#async
12. http://docs.scala-lang.org/sips/pending/async.html

report erratum  •  discuss

Wrap-Up • 187

www.finebook.ir   

http://en.wikipedia.org/wiki/Occam_programming_language
http://blogs.msdn.com/b/dsyme/archive/2007/10/11/introducing-f-asynchronous-workflows.aspx
http://msdn.microsoft.com/en-us/library/hh191443.aspx
https://github.com/rsdn/nemerle/wiki/Computation-Expression-macro#async
http://docs.scala-lang.org/sips/pending/async.html
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


CHAPTER 7

Data Parallelism
Data parallelism is like an eight-lane highway. Even though each vehicle is
traveling at a relatively modest speed, the number of cars that pass a partic-
ular point is huge because many vehicles can travel side-by-side.

All the approaches we’ve discussed so far have been applicable to a wide variety
of programming problems. Data-parallel programming, by contrast, is relevant
only to a much narrower range. As its name suggests, it’s a parallel-program-
ming technique, not a concurrency technique (recall that concurrency and
parallelism are related but different—see Concurrent or Parallel?, on page 1).

The Supercomputer Hidden in Your Laptop
In this chapter we’re going to see how to leverage the supercomputer hidden
in your laptop—the graphics processing unit or GPU. A modern GPU is a
powerful data-parallel processor, capable of eclipsing the CPU when used for
number-crunching, a practice that is commonly referred to as general-purpose
computing on the GPU or GPGPU programming.

Over the years, a number of technologies have emerged to abstract away from
the details of GPU implementation. We’ll be using the Open Computing Lan-
guage, or OpenCL, to write GPGPU code.1

In day 1 we’ll see the basics of constructing an OpenCL kernel, together with
the host program that compiles and executes it. In day 2 we’ll look at how a
kernel is mapped onto hardware in more depth. Finally, in day 3 we’ll see
how OpenCL can interoperate with graphics code written with the Open
Graphics Library, or OpenGL.2

1. http://www.khronos.org/opencl/
2. http://www.opengl.org

report erratum  •  discusswww.finebook.ir   

http://www.khronos.org/opencl/
http://www.opengl.org
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Day 1: GPGPU Programming
Today we’ll see how to create a simple GPGPU program that multiplies two
arrays in parallel, and then we’ll benchmark it to see just how much faster
the GPU is than the CPU. First, though, we’ll spend a little time examining
what makes a GPU so powerful when it comes to number-crunching.

Graphics Processing and Data Parallelism
Computer graphics is all about manipulating data—huge amounts of data.
And doing it quickly. A scene in a 3D game is constructed from a myriad of
tiny triangles, each of which needs to have its position on the screen calculated
in perspective relative to the viewpoint, clipped, lit, and textured twenty-five
or more times a second.

The great thing about this is that although the amount of data that needs to
be processed is huge, the actual operations on that data are relatively simple
vector or matrix operations. This makes them very amenable to data paral-
lelization, in which multiple computing units perform the same operations
on different items of data in parallel.

Modern GPUs are exceptionally sophisticated, powerful parallel processors
capable of rendering billions of triangles a second. The good news is that
although they were originally designed with graphics alone in mind, their
capabilities have evolved to the point that they’re useful for a much wider
range of applications.

Data parallelism can be implemented in many different ways. We’ll look briefly
at a couple of them: pipelining and multiple ALUs.

Pipelining

Although we tend to think of multiplying two numbers as a single atomic
operation, down at the level of the gates on a chip, it actually takes several
steps. These steps are typically arranged as a pipeline:

Operand 1

Operand 2

Result

For the five-element pipeline shown here, if it takes a single clock cycle for
each step to complete, multiplying a pair of numbers will take five clock cycles.
But if we have lots of numbers to multiply, things get much better because
(assuming our memory subsystem can supply the data fast enough) we can
keep the pipeline full:

Chapter 7. Data Parallelism • 190

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


a7*b7 a6*b6 a5*b5 a4*b4 a3*b3

a1*b1 a2*b2b8b7b6 b9

a8a7a6 a9

So multiplying a thousand pairs of numbers takes a whisker over a thousand
clock cycles, not the five thousand we might expect from the fact that multi-
plying a single pair takes five clock cycles.

Multiple ALUs

The component within a CPU that performs operations such as multiplication
is commonly known as the arithmetic logic unit, or ALU:

Operand 1 Operand 2

Result

Couple multiple ALUs with a wide memory bus that allows multiple operands
to be fetched simultaneously, and operations on large amounts of data can
again be parallelized, as shown in Figure 12, Large Amounts of Data Paral-
lelized with Multiple ALUs, on page 192.

GPUs typically have a 256-bit or wider memory bus, allowing (for example)
eight or more 32-bit floating-point numbers to be fetched at a time.

A Confused Picture

To achieve their performance, real-world GPUs combine pipelining and multiple
ALUs with a wide range of other techniques that we’ll not cover here. By itself,
this would make understanding the details of a single GPU complex. Unfortu-
nately, there’s little commonality between different GPUs (even those produced
by a single manufacturer). If we had to write code that directly targeted a
particular architecture, GPGPU programming would be a nonstarter.

OpenCL targets multiple architectures by defining a C-like language that
allows us to express a parallel algorithm abstractly. Each different GPU

report erratum  •  discuss

Day 1: GPGPU Programming • 191

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


a1 a2 a3 a4
a5 a6 a7 a8
a9 a10 a11 a12
a13 a14 a15 a16

b1 b2 b3 b4
b5 b6 b7 b8
b9 b10 b11 b12
b13 b14 b15 b16

a9

a10

a11

a12

b9

b10

b11

b12

c1 c2 c3 c4
c5 c6 c7 c8
c9 c10 c11 c12
c13 c14 c15 c16

c9

c10

c11

c12

Figure 12—Large Amounts of Data Parallelized with Multiple ALUs

manufacturer then provides its own compilers and drivers that allow that
program to be compiled and run on its hardware.

Our First OpenCL Program
To parallelize our array multiplication task with OpenCL, we need to divide
it up into work-items that will then be executed in parallel.

Work-Items

If you’re used to writing parallel code, you will be used to worrying about the
granularity of each parallel task. Typically, if each task performs too little
work, your code performs badly because thread creation and communication
overheads dominate.

OpenCL work-items, by contrast, are typically very small. To multiply two
1,024-element arrays pairwise, for example, we could create 1,024 work-items
(see Figure 13, Work Items for Pairwise Multiplication, on page 193).

Your task as a programmer is to divide your problem into the smallest work-
items you can. The OpenCL compiler and runtime then worry about how best
to schedule those work-items on the available hardware so that that hardware
is utilized as efficiently as possible.

Chapter 7. Data Parallelism • 192

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


inputA inputB output

work-item 0
work-item 1
work-item 2

work-item 1023

Figure 13—Work Items for Pairwise Multiplication

Optimizing OpenCL

You won’t be surprised to hear that the real-world picture isn’t quite this simple.
Optimizing an OpenCL application often involves thinking carefully about the available
resources and providing hints to the compiler and runtime to help them schedule
your work-items. Sometimes this includes restricting the available parallelism for
efficiency purposes.

As always, however, premature optimization is the root of all programming evil. In
the majority of cases, you should aim for maximum parallelism and the smallest
possible work-items and worry about optimization only afterward.

Kernels

We specify how each work-item should be processed by writing an OpenCL
kernel. Here’s a kernel that we could use to implement the preceding:

DataParallelism/MultiplyArrays/multiply_arrays.cl
__kernel void multiply_arrays(__global const float* inputA,

__global const float* inputB,
__global float* output) {

int i = get_global_id(0);
output[i] = inputA[i] * inputB[i];

}

This kernel takes pointers to two input arrays, inputA and inputB, and an output
array, output. It calls get_global_id() to determine which work-item it’s handling
and then simply writes the result of multiplying the corresponding elements
of inputA and inputB to the appropriate element of output.

To create a complete program, we need to embed our kernel in a host program
that performs the following steps:

report erratum  •  discuss

Day 1: GPGPU Programming • 193

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/DataParallelism/MultiplyArrays/multiply_arrays.cl
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


1. Create a context within which the kernel will run together with a command
queue.

2. Compile the kernel.
3. Create buffers for input and output data.
4. Enqueue a command that executes the kernel once for each work-item.
5. Retrieve the results.

The OpenCL standard defines both C and C++ bindings. However, unofficial
bindings are available for most major languages, so you can write your host
program in almost any language you like. We’re going to stick to C to start
with because that’s the language the OpenCL standard uses and because it
gives the best picture of what’s going on under the hood. In day 3 we’ll see a
host program written in Java.

In the next few sections, we’ll put together a complete OpenCL host program.
To make the underlying structure as clear as possible, I’m going to play a bit
fast and loose and not include any error handling—don’t worry, we’ll come
back to this later. You’ll also notice that there are a lot of NULL arguments to
functions—again, don’t worry about these too much right now; we’ll revisit
the API in more detail after we’ve got a better feeling for the big picture.

Create a Context

An OpenCL context represents an environment within which OpenCL kernels
can execute. To create a context, we first need to identify the platform that
we want to use and which devices within that platform we want to execute
our kernel (we’ll talk about platforms and devices in more detail later):

DataParallelism/MultiplyArrays/multiply_arrays.c
cl_platform_id platform;
clGetPlatformIDs(1, &platform, NULL);

cl_device_id device;
clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device, NULL);

cl_context context = clCreateContext(NULL, 1, &device, NULL, NULL, NULL);

We want a simple context that only contains a single GPU, so after identifying
a platform with clGetPlatformIDs(), we pass CL_DEVICE_TYPE_GPU to clGetDeviceIDs() to
get the ID of a GPU. Finally, we create a context by passing that device ID to
clCreateContext().

Create a Command Queue

Now that we have a context, we can use it to create a command queue:

Chapter 7. Data Parallelism • 194

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/DataParallelism/MultiplyArrays/multiply_arrays.c
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


DataParallelism/MultiplyArrays/multiply_arrays.c
cl_command_queue queue = clCreateCommandQueue(context, device, 0, NULL);

The clCreateCommandQueue() method takes a context and a device and returns a
queue that enables commands to be sent to that device.

Compile the Kernel

Next we need to compile our kernel into code that will run on the device:

DataParallelism/MultiplyArrays/multiply_arrays.c
char* source = read_source("multiply_arrays.cl");
cl_program program = clCreateProgramWithSource(context, 1,

(const char**)&source, NULL, NULL);
free(source);
clBuildProgram(program, 0, NULL, NULL, NULL, NULL);
cl_kernel kernel = clCreateKernel(program, "multiply_arrays", NULL);

We start by reading the source code for the kernel from multiply_arrays.cl into a
string (you can see the source of read_source() in the code that accompanies the
book) that is then passed to clCreateProgramWithSource(). That’s then built with
clBuildProgram() and turned into a kernel with clCreateKernel().

Create Buffers

Kernels work on data stored within buffers:

DataParallelism/MultiplyArrays/multiply_arrays.c
#define NUM_ELEMENTS 1024

cl_float a[NUM_ELEMENTS], b[NUM_ELEMENTS];
random_fill(a, NUM_ELEMENTS);
random_fill(b, NUM_ELEMENTS);
cl_mem inputA = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

sizeof(cl_float) * NUM_ELEMENTS, a, NULL);
cl_mem inputB = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,

sizeof(cl_float) * NUM_ELEMENTS, b, NULL);
cl_mem output = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

sizeof(cl_float) * NUM_ELEMENTS, NULL, NULL);

We start by creating two arrays, a and b, both of which we fill with random
values with random_fill():

DataParallelism/MultiplyArrays/multiply_arrays.c
void random_fill(cl_float array[], size_t size) {

for (int i = 0; i < size; ++i)
array[i] = (cl_float)rand() / RAND_MAX;

}

Our two input buffers, inputA and inputB, are both read-only from the point of
view of the kernel (CL_MEM_READ_ONLY) and initialized by copying from their

report erratum  •  discuss

Day 1: GPGPU Programming • 195

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/DataParallelism/MultiplyArrays/multiply_arrays.c
http://media.pragprog.com/titles/pb7con/code/DataParallelism/MultiplyArrays/multiply_arrays.c
http://media.pragprog.com/titles/pb7con/code/DataParallelism/MultiplyArrays/multiply_arrays.c
http://media.pragprog.com/titles/pb7con/code/DataParallelism/MultiplyArrays/multiply_arrays.c
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


respective source arrays (CL_MEM_COPY_HOST_PTR). The output buffer output is
write-only (CL_MEM_WRITE_ONLY).

Execute the Work Items

We’re now finally in a position to execute the work-items that will perform
the array multiplication task:

DataParallelism/MultiplyArrays/multiply_arrays.c
clSetKernelArg(kernel, 0, sizeof(cl_mem), &inputA);
clSetKernelArg(kernel, 1, sizeof(cl_mem), &inputB);
clSetKernelArg(kernel, 2, sizeof(cl_mem), &output);

size_t work_units = NUM_ELEMENTS;
clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &work_units, NULL, 0, NULL, NULL);

We start by setting the kernel’s arguments with clSetKernelArg() and then call
clEnqueueNDRangeKernel(), which queues an N-dimensional range (NDRange) of
work-items. In our case, N is 1 (the third argument to clEnqueueNDRangeKernel()
—we’ll see an example with N>1 later), and the number of work-items is 1,024.

Retrieve Results

Once our kernel has finished executing, we need to retrieve the results:

DataParallelism/MultiplyArrays/multiply_arrays.c
cl_float results[NUM_ELEMENTS];
clEnqueueReadBuffer(queue, output, CL_TRUE, 0, sizeof(cl_float) * NUM_ELEMENTS,

results, 0, NULL, NULL);

We create the results array and copy from the output buffer with the clEnqueueRead-
Buffer() function.

Clean-Up

The final task for our host program is to clean up after itself:

DataParallelism/MultiplyArrays/multiply_arrays.c
clReleaseMemObject(inputA);
clReleaseMemObject(inputB);
clReleaseMemObject(output);
clReleaseKernel(kernel);
clReleaseProgram(program);
clReleaseCommandQueue(queue);
clReleaseContext(context);

Profiling
Now that we have a working kernel, let’s see what kind of performance it’s
giving us. We can use OpenCL’s profiling API to answer that question:

Chapter 7. Data Parallelism • 196

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/DataParallelism/MultiplyArrays/multiply_arrays.c
http://media.pragprog.com/titles/pb7con/code/DataParallelism/MultiplyArrays/multiply_arrays.c
http://media.pragprog.com/titles/pb7con/code/DataParallelism/MultiplyArrays/multiply_arrays.c
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


DataParallelism/MultiplyArraysProfiled/multiply_arrays.c
cl_event timing_event;Line 1

size_t work_units = NUM_ELEMENTS;-

clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &work_units,-

NULL, 0, NULL, &timing_event);-

5

cl_float results[NUM_ELEMENTS];-

clEnqueueReadBuffer(queue, output, CL_TRUE, 0, sizeof(cl_float) * NUM_ELEMENTS,-

results, 0, NULL, NULL);-

cl_ulong starttime;-

clGetEventProfilingInfo(timing_event, CL_PROFILING_COMMAND_START,10

sizeof(cl_ulong), &starttime, NULL);-

cl_ulong endtime;-

clGetEventProfilingInfo(timing_event, CL_PROFILING_COMMAND_END,-

sizeof(cl_ulong), &endtime, NULL);-

printf("Elapsed (GPU): %lu ns\n\n", (unsigned long)(endtime - starttime));15

clReleaseEvent(timing_event);-

We start by passing an event, timing_event, to clEnqueueNDRangeKernel() on line 3.
Once that command has completed, we can query the event for timing infor-
mation with clGetEventProfilingInfo() (lines 10 and 13).

If I redefine NUM_ELEMENTS to be 100,000, the GPU in my MacBook Pro runs
this in approximately 43,000 nanoseconds. For comparison, let’s try the same
with a simple loop running on the CPU:

DataParallelism/MultiplyArraysProfiled/multiply_arrays.c
for (int i = 0; i < NUM_ELEMENTS; ++i)

results[i] = a[i] * b[i];

This multiplies the same 100,000 elements in around 400,000 nanoseconds,
so for this task the GPU is more than nine times faster than a single CPU core.

A Word of Warning

Profiling the command that multiplies the two arrays is slightly misleading. Before
we executed it, we copied our input data into the inputA and inputB buffers. And after
it ran, we retrieved the results by copying from the output buffer.

These copies are relatively expensive—for a simple task like pairwise multiplication,
they are probably too expensive to justify using the GPU in practice. A real-world
OpenCL application would either perform more involved operations on its operands
or work on data that was already resident on the GPU.

In the interests of clarity, my array multiplication example wasn’t very careful
with a few aspects of the OpenCL API. Let’s rectify that now.

report erratum  •  discuss

Day 1: GPGPU Programming • 197

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/DataParallelism/MultiplyArraysProfiled/multiply_arrays.c
http://media.pragprog.com/titles/pb7con/code/DataParallelism/MultiplyArraysProfiled/multiply_arrays.c
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Multiple Return Values
Many OpenCL functions can return multiple return values. For example, a
platform might support multiple devices, and clGetDeviceIDs() might therefore
return more than one device. Here’s its prototype:

cl_int clGetDeviceIDs(cl_platform_id platform,
cl_device_type device_type,
cl_uint num_entries,
cl_device_id* devices,
cl_uint* num_devices);

The devices parameter is a pointer to an array of length num_entries, and
num_devices is a pointer to a single integer. One way to call clGetDeviceIDs() would
be with a fixed-length array:

cl_device_id devices[8];
cl_uint num_devices;
clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 8, devices, &num_devices);

After clGetDeviceIDs() returns, num_devices will have been set to the number of
available devices, and the first num_devices entries of the devices array will have
been filled in.

This works fine, but what if there are more than eight available devices? We
could just pass a “large” array, but experience demonstrates that whenever
we create code with a fixed limit, sooner or later that limit will be exceeded.
Happily, all OpenCL functions that return an array provide us with a way to
find out how large that array should be by calling them twice:

cl_uint num_devices;
clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 0, NULL, &num_devices);

cl_device_id* devices = (cl_device_id*)malloc(sizeof(cl_device_id) * num_devices);
clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, num_devices, devices, NULL);

The first time we call clGetDeviceIDs() we pass NULL for its devices argument. After
it returns, num_devices is set to the number of available devices. We can then
dynamically allocate an array of the right size and then call getDeviceIDs() a
second time.

Error Handling
OpenCL functions report errors with error codes. CL_SUCCESS indicates that
the function succeeded; any other value indicates that it failed. So calling
clGetDeviceIDs() with error handling looks something like this:

Chapter 7. Data Parallelism • 198

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


cl_int status;

cl_uint num_devices;
status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 0, NULL, &num_devices);
if (status != CL_SUCCESS) {

fprintf(stderr, "Error: unable to determine num_devices (%d)\n", status);
exit(1);

}

cl_device_id* devices = (cl_device_id*)malloc(sizeof(cl_device_id) * num_devices);
status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, num_devices, devices, NULL);
if (status != CL_SUCCESS) {

fprintf(stderr, "Error: unable to retrieve devices (%d)\n", status);
exit(1);

}

Unsurprisingly, most OpenCL programs use some kind of utility function or
macro to remove this boilerplate, such as seen here:

DataParallelism/MultiplyArraysWithErrorHandling/multiply_arrays.c
#define CHECK_STATUS(s) do { \

cl_int ss = (s); \
if (ss != CL_SUCCESS) { \
fprintf(stderr, "Error %d at line %d\n", ss, __LINE__); \
exit(1); \

} \
} while (0)

This allows us to write the following:

DataParallelism/MultiplyArraysWithErrorHandling/multiply_arrays.c
CHECK_STATUS(clSetKernelArg(kernel, 0, sizeof(cl_mem), &inputA));

Instead of returning an error code, some OpenCL functions take an error_ret
parameter. For example, clCreateContext() has the following prototype:

cl_context clCreateContext(const cl_context_properties* properties,
cl_uint num_devices,
const cl_device_id* devices,
void (CL_CALLBACK* pfn_notify)(const char* errinfo,

const void* private_info,
size_t cb,
void* user_data),

void* user_data,
cl_int* errcode_ret);

Here’s how we can call it with error handling:

DataParallelism/MultiplyArraysWithErrorHandling/multiply_arrays.c
cl_int status;
cl_context context = clCreateContext(NULL, 1, &device, NULL, NULL, &status);
CHECK_STATUS(status);

report erratum  •  discuss

Day 1: GPGPU Programming • 199

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/DataParallelism/MultiplyArraysWithErrorHandling/multiply_arrays.c
http://media.pragprog.com/titles/pb7con/code/DataParallelism/MultiplyArraysWithErrorHandling/multiply_arrays.c
http://media.pragprog.com/titles/pb7con/code/DataParallelism/MultiplyArraysWithErrorHandling/multiply_arrays.c
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Various other error-handling styles are common in OpenCL code—you should
pick one that works well with your preferred style.

Day 1 Wrap-Up
That brings us to the end of day 1. In day 2 we’ll look at the OpenCL platform,
execution, and memory models in more detail.

What We Learned in Day 1

OpenCL allows us to leverage the data-parallel capabilities of GPUs for general-
purpose programming, realizing dramatic performance gains in the process.

• OpenCL parallelizes a task by dividing it up into work-items.
• We specify how each work-item should be processed by writing a kernel.
• To execute a kernel, a host program does the following:

1. Creates a context within which the kernel will run, together with a
command queue

2. Compiles the kernel
3. Creates buffers for input and output data
4. Enqueues a command that executes the kernel once for each work-item

5. Retrieves the results

Day 1 Self-Study

Find

• The OpenCL specification
• The OpenCL API reference card
• The language used to define an OpenCL kernel is C-like. How does it differ

from C?

Do

• Modify our array multiplication kernel to deal with arrays of different types,
and profile the resulting performance. How does it vary with data type? Does
the size (in bytes) of the data type have any bearing on performance, both in
absolute terms and in comparison to CPU performance?

• We created and initialized our buffers by passing CL_MEM_COPY_HOST_PTR to
clCreateBuffer(). Rewrite the host to use CL_MEM_USE_HOST_PTR or CL_MEM_-
ALLOC_HOST_PTR (you will need to do more than just change the flag for the code
to remain functional), and benchmark the resulting performance. What are
the trade-offs between different buffer-allocation strategies?

Chapter 7. Data Parallelism • 200

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


• Rewrite the host to use clEnqueueMapBuffer() instead of clCreateBuffer() and profile
the result. When might this be an appropriate choice? When might it not?

• The OpenCL language provides a number of data types over and above those
provided by standard C—in particular, it includes vector types such as float4
or ulong3. Rewrite our kernel to multiply two buffers of vectors. How are these
vector types represented on the host?

Day 2: Multiple Dimensions and Work-Groups
Yesterday we saw how to use clEnqueueNDRangeKernel() to execute a set of work-
items that processed a unidimensional array. Today we’ll see how to extend
that to multidimensional arrays and take advantage of OpenCL’s work-groups
to increase the size of the problems we can tackle.

Multidimensional Work-Item Ranges
When a host calls clEnqueueNDRangeKernel() to execute a kernel, it defines an
index space. Each point in this index space is identified by a unique global
ID that represents one work-item.

A kernel can find the global ID of the work-item it’s executing by calling
get_global_id(). In the example we saw yesterday the index space was unidimen-
sional, and therefore the kernel only needed to call get_global_id() once. Today
we’ll create a kernel that multiplies two-dimensional matrices and therefore
calls get_global_id() twice.

Matrix Multiplication

First let’s take a quick detour to revisit the linear algebra we learned at school
and remind ourselves how matrix multiplication works.

A matrix is a two-dimensional array of numbers. We can multiply a w×n
matrix by an m×w matrix (note that the width of the first matrix must equal
the height of the second) to get an m×n matrix. For example, multiplying a
2×4 matrix by a 3×2 matrix will give us a 3×4 result.

To calculate the value at (i , j ) in the output matrix, we take the sum of multi-
plying every number in the jth row of the first matrix by the corresponding
number in the ith column of the second matrix.

(a b
c d) w x

y z
= aw + by ax + bz

cw + dy cx + dz( ) ( )

report erratum  •  discuss

Day 2: Multiple Dimensions and Work-Groups • 201

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Here’s code that implements this sequentially:

#define WIDTH_OUTPUT WIDTH_B
#define HEIGHT_OUTPUT HEIGHT_A

float a[HEIGHT_A][WIDTH_A] = «initialize a»;
float b[HEIGHT_B][WIDTH_B] = «initialize b»;
float r[HEIGHT_OUTPUT][WIDTH_OUTPUT];

for (int j = 0; j < HEIGHT_OUTPUT; ++j) {
for (int i = 0; i < WIDTH_OUTPUT; ++i) {

float sum = 0.0;
for (int k = 0; k < WIDTH_A; ++k) {
sum += a[j][k] * b[k][i];

}
r[j][i] = sum;

}
}

As you can see, as the number of elements in our array increases, the work
required to multiply them increases dramatically, making large-matrix multi-
plication a very CPU-intensive task indeed.

Parallel Matrix Multiplication

Here’s a kernel that can be used to multiply two-dimensional matrices:

DataParallelism/MatrixMultiplication/matrix_multiplication.cl
__kernel void matrix_multiplication(uint widthA,Line 1

__global const float* inputA,-

__global const float* inputB,-

__global float* output) {-

5

int i = get_global_id(0);-

int j = get_global_id(1);-

-

int outputWidth = get_global_size(0);-

int outputHeight = get_global_size(1);10

int widthB = outputWidth;-

-

float total = 0.0;-

for (int k = 0; k < widthA; ++k) {-

total += inputA[j * widthA + k] * inputB[k * widthB + i];15

}-

output[j * outputWidth + i] = total;-

}-

This kernel executes within a two-dimensional index space, each point of
which identifies a location in the output array. It retrieves this point by calling
get_global_id() twice (lines 6 and 7).

Chapter 7. Data Parallelism • 202

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/DataParallelism/MatrixMultiplication/matrix_multiplication.cl
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


It can find out the range of the index space by calling get_global_size(), which
this kernel uses to find the dimensions of the output matrix (lines 9 and 10).
This also gives us widthB, which is equal to outputWidth, but we have to pass
widthA as a parameter.

The loop on line 14 is just the inner loop from the sequential version we saw
earlier—the only difference being that because OpenCL buffers are unidimen-
sional, we can’t write the following:

output[j][i] = total;

Instead, we have to use a little arithmetic to determine the correct offset:

output[j * outputWidth + i] = total;

The host program required to execute this kernel is very similar to the one
we saw yesterday, the only significant difference being the arguments passed
to clEnqueueNDRangeKernel():

DataParallelism/MatrixMultiplication/matrix_multiplication.c
size_t work_units[] = {WIDTH_OUTPUT, HEIGHT_OUTPUT};
CHECK_STATUS(clEnqueueNDRangeKernel(queue, kernel, 2, NULL, work_units,

NULL, 0, NULL, NULL));

This creates a two-dimensional index space by setting work_dim to 2 (the third
argument) and specifies the extent of each dimension by setting global_work_size
to a two-element array (the fifth argument).

This kernel shows an even more dramatic performance benefit than the one
we saw yesterday. On my MacBook Pro, multiplying a 200×400 matrix by a
300×200 matrix takes approximately 3 ms, compared to 66 ms on the CPU,
a speedup of more than 20x.

Because this kernel is performing much more work per data element, we
continue to see a significant speedup even if we take the overhead of copying
data between the CPU and GPU into account. On my MacBook Pro, those
copies take around 2 ms, for a total time of 5 ms, which still gives us a 13x
speedup.

All the code we’ve run so far simply assumes that there’s an OpenCL-compat-
ible GPU available. Clearly this may not always be true, so next let’s see how
we can find out which OpenCL platforms and devices are available to a par-
ticular host.

report erratum  •  discuss

Day 2: Multiple Dimensions and Work-Groups • 203

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/DataParallelism/MatrixMultiplication/matrix_multiplication.c
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Querying Device Info
OpenCL provides a number of functions that allow us to query the parameters
of platforms, devices, and most other API objects. Here, for example, is a
function that uses clGetDeviceInfo() to query and print a device parameter with
a value of type string:

DataParallelism/FindDevices/find_devices.c
void print_device_param_string(cl_device_id device,

cl_device_info param_id,
const char* param_name) {

char value[1024];
CHECK_STATUS(clGetDeviceInfo(device, param_id, sizeof(value), value, NULL));
printf("%s: %s\n", param_name, value);

}

Different parameters have values of different types (string, integer, array of
size_t, and so on). Given a range of functions like the preceding, we can query
the parameters of a particular device as follows:

DataParallelism/FindDevices/find_devices.c
void print_device_info(cl_device_id device) {

print_device_param_string(device, CL_DEVICE_NAME, "Name");
print_device_param_string(device, CL_DEVICE_VENDOR, "Vendor");
print_device_param_uint(device, CL_DEVICE_MAX_COMPUTE_UNITS, "Compute Units");
print_device_param_ulong(device, CL_DEVICE_GLOBAL_MEM_SIZE, "Global Memory");
print_device_param_ulong(device, CL_DEVICE_LOCAL_MEM_SIZE, "Local Memory");
print_device_param_sizet(device, CL_DEVICE_MAX_WORK_GROUP_SIZE, "Workgroup size");

}

The code that accompanies this book includes a program called find_devices
that uses this kind of code to query both the platforms and devices available.
If I run it on my MacBook Pro, here’s what it prints:

Found 1 OpenCL platform(s)

Platform 0
Name: Apple
Vendor: Apple

Found 2 device(s)

Device 0
Name: Intel(R) Core(TM) i7-3720QM CPU @ 2.60GHz
Vendor: Intel
Compute Units: 8
Global Memory: 17179869184
Local Memory: 32768
Workgroup size: 1024

Chapter 7. Data Parallelism • 204

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/DataParallelism/FindDevices/find_devices.c
http://media.pragprog.com/titles/pb7con/code/DataParallelism/FindDevices/find_devices.c
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Device 1
Name: GeForce GT 650M
Vendor: NVIDIA
Compute Units: 2
Global Memory: 1073741824
Local Memory: 49152
Workgroup size: 1024

So there is a single platform available, the default Apple OpenCL implemen-
tation. Within that platform are two devices, the CPU and GPU.

There are a few interesting things we can see from this:

• OpenCL can target more than just GPUs (in addition to CPUs, it can also
target dedicated OpenCL accelerators).

• The GPU in my MacBook Pro provides two compute units (we’ll see what
a compute unit is soon).

• The GPU has 1 GiB of global memory.

• Each compute unit has 48 KiB of local memory and supports a maximum
work-group size of 1024.

In the next sections, we’ll look at OpenCL’s platform and memory models and
the implications they have for our code.

Joe asks:

Why Does OpenCL Target CPUs?
It comes as a surprise to many, but modern CPUs have long supported data-parallel
instructions. Intel processors, for example, support the streaming SIMD extensions
(SSE) and more recently the advanced vector extensions (AVX). OpenCL can provide
an excellent way to exploit these instruction sets as well as the multiple cores that
most CPUs now provide.

Platform Model
An OpenCL platform consists of a host that’s connected to one or more devices.
Each device has one or more compute units, each of which provides a number
of processing elements, as shown in Figure 14, The OpenCL Platform Model,
on page 206.

Work-items execute on processing elements. A collection of work-items
executing on a single compute unit is a work-group. The work-items in a work-
group share local memory, which brings us to OpenCL’s memory model.

report erratum  •  discuss

Day 2: Multiple Dimensions and Work-Groups • 205

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Host

Devices Compute Unit

Processing Element

Figure 14—The OpenCL Platform Model

Memory Model
A work-item executing a kernel has access to four different memory regions:

Global memory:  Memory available to all work-items executing on a device

Constant memory: A region of global memory that remains constant during
execution of a kernel

Local memory: Memory local to a work-group; can be used for communication
between work-items executing in that work-group (We’ll see an example
of this soon.)

Private memory: Memory private to a single work-item

As we’ve seen in previous chapters, a reduce operation over a collection can
be a very effective approach to solving a wide range of problems. In the next
section we’ll see how to implement a data-parallel reduce.

Data-Parallel Reduce
In this section we’ll create a kernel that finds the minimum element of a col-
lection in parallel by reducing over that collection with the min() operator.

Chapter 7. Data Parallelism • 206

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Joe asks:

Is This How OpenCL Devices Actually Work?
The OpenCL platform and memory models don’t prescribe how the underlying hard-
ware has to work. Instead they are abstractions of that hardware—different OpenCL
devices have a range of different physical architectures.

For example, one OpenCL device might have local memory that really is local to a
compute unit, whereas another might have local memory that in reality is mapped
onto a region of global memory. Or one device might have its own distinct global
memory, and another might have direct access to the host’s memory.

These architectural differences can have significant implications when it comes to
optimizing OpenCL code, a subject that’s beyond the scope of this chapter.

Implementing this sequentially is straightforward:

DataParallelism/FindMinimumOneWorkGroup/find_minimum.c
cl_float acc = FLT_MAX;
for (int i = 0; i < NUM_VALUES; ++i)

acc = fmin(acc, values[i]);

We’ll see how to parallelize this in two steps—first with a single work-group
and then with multiple work-groups.

A Single Work-Group Reduce

To make things simpler (we’ll see why this helps soon), I’m going to assume
that the number of elements in the array we want to reduce is a power of two
and small enough to be processed by a single work-group. Given that, here’s
a kernel that will perform our reduce operation:

DataParallelism/FindMinimumOneWorkGroup/find_minimum.cl
__kernel void find_minimum(__global const float* values,Line 1

__global float* result,-

__local float* scratch) {-

int i = get_global_id(0);-

int n = get_global_size(0);5

scratch[i] = values[i];-

barrier(CLK_LOCAL_MEM_FENCE);-

for (int j = n / 2; j > 0; j /= 2) {-

if (i < j)-

scratch[i] = min(scratch[i], scratch[i + j]);10

barrier(CLK_LOCAL_MEM_FENCE);-

}-

if (i == 0)-

*result = scratch[0];-

}15

report erratum  •  discuss

Day 2: Multiple Dimensions and Work-Groups • 207

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/DataParallelism/FindMinimumOneWorkGroup/find_minimum.c
http://media.pragprog.com/titles/pb7con/code/DataParallelism/FindMinimumOneWorkGroup/find_minimum.cl
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


The algorithm has three distinct phases:

1. It copies the array from global to local (scratch) memory (line 6).
2. It performs the reduce (lines 8–12).
3. It copies the result to global memory (line 14).

The reduce operation proceeds by creating a reduce tree very similar to the
one we saw when looking at Clojure’s reducers (see Divide and Conquer, on
page 67):

After each loop iteration, half the work-items become inactive—only work-
items for which i < j is true perform any work (this is why we’re assuming that
the number of elements in the array is a power of two—so we can repeatedly
halve the array). The loop exits when only a single work-item is left active.
Each active work-item performs a min() between its value and the corresponding
value in the remaining half of the array. By the time the loop exits, the first
item in the scratch array will be the final value of the reduce operation, and
the first work-item in the work-group copies this value to result.

The other interesting thing about this kernel is its use of barriers (lines 7 and
11) to synchronize access to local memory.

Barriers

A barrier is a synchronization mechanism that allows work-items to coordinate
their use of local memory. If one work-item in a work-group executes barrier(),
then all work-items in that work-group must execute the same barrier() before
any of them can proceed beyond that point (a type of synchronization
commonly known as a rendezvous). In our reduction kernel, this serves two
purposes:

Chapter 7. Data Parallelism • 208

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


• It ensures that one work-item doesn’t start reducing until all work-items
have copied their value from global to local memory and that one work-
item doesn’t move on to loop iteration n + 1  until all work-items have
finished loop iteration n .

• OpenCL only provides relaxed memory consistency. This is very similar
to the Java Memory Model we saw in Memory Visibility, on page
15—changes made to local memory by one work-item are not guaranteed
visible to other work-items except at specific synchronization points, such
as barriers. So executing a barrier at the end of each loop iteration guar-
antees that the results of iteration n are visible to the work-items executing
iteration n + 1 .

Executing the Kernel

Executing this kernel is very similar to what we’ve already seen—the only
substantive new thing we need to worry about is how to create a local buffer:

DataParallelism/FindMinimumOneWorkGroup/find_minimum.c
CHECK_STATUS(clSetKernelArg(kernel, 2, sizeof(cl_float) * NUM_VALUES, NULL));

We allocate a local buffer by calling clSetKernelArg() with arg_size set to the size
of the buffer we want to create and arg_value set to NULL.

A reduce that runs within a single work-group is great, but as we’ve seen,
work-groups are restricted in size (no more than 1,024 elements on the GPU

in my MacBook Pro, for example). Next, we’ll see how to parallelize over mul-
tiple work-groups.

A Multiple-Work-Group Reduce

Extending our reduce across multiple work-groups is a simple matter of
dividing the input array into work-groups and reducing each independently,
as shown in Figure 15, Extending the Reduce across Multiple Work-Groups,
on page 210.

If, for example, each work-group operates on 64 values at a time, this will
reduce an array of N  items to N/64  items. This smaller array can then be
reduced in turn, and so on, until only a single result remains.

Achieving this requires a few small changes to our kernel to allow it to operate
on a work-group that represents a section of a larger problem. To this end,
OpenCL provides work-items with a local ID, which is an ID just for within
that work-group, as shown in Figure 16, The Local ID with a Work-Group, on
page 210.

report erratum  •  discuss

Day 2: Multiple Dimensions and Work-Groups • 209

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/DataParallelism/FindMinimumOneWorkGroup/find_minimum.c
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Figure 15—Extending the Reduce across Multiple Work-Groups

group id 0 group id 1 group id 2 group id n

local id 0

global id 0

local size

global size

Figure 16—The Local ID with a Work-Group

Here’s a kernel that makes use of local IDs:

DataParallelism/FindMinimumMultipleWorkGroups/find_minimum.cl
__kernel void find_minimum(__global const float* values,

__global float* results,
__local float* scratch) {

int i = get_local_id(0);➤

int n = get_local_size(0);➤

scratch[i] = values[get_global_id(0)];➤

barrier(CLK_LOCAL_MEM_FENCE);
for (int j = n / 2; j > 0; j /= 2) {

if (i < j)
scratch[i] = min(scratch[i], scratch[i + j]);

barrier(CLK_LOCAL_MEM_FENCE);
}
if (i == 0)

results[get_group_id(0)] = scratch[0];➤

}

In place of get_global_id() and get_global_size(), we’re now calling get_local_id() and
get_local_size(), which return the ID relative to the start of the work-group and

Chapter 7. Data Parallelism • 210

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/DataParallelism/FindMinimumMultipleWorkGroups/find_minimum.cl
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


size of the work-group, respectively. We still have to call get_global_id() to copy
the right value from global memory to local, and results is now an array indexed
by the get_group_id().

The final piece of this puzzle is to change the host program to create work-
groups of the appropriate size:

DataParallelism/FindMinimumMultipleWorkGroups/find_minimum.c
size_t work_units[] = {NUM_VALUES};
size_t workgroup_size[] = {WORKGROUP_SIZE};
CHECK_STATUS(clEnqueueNDRangeKernel(queue, kernel, 1, NULL, work_units,

workgroup_size, 0, NULL, NULL));

If we set local_work_size to NULL, as we have been doing up to now, the OpenCL
platform is free to create work-groups of whatever size it sees fit. By explicitly
setting local_work_size, we guarantee that work-groups are the size required by
our kernel (up to the maximum size supported by the device, of course—see
Querying Device Info, on page 204, to determine how to find this).

Day 2 Wrap-Up
This brings us to the end of day 2. In day 3 we’ll see an example of an appli-
cation that implements a physics simulation with OpenCL and integrates
with OpenGL to display the results.

What We Learned in Day 2

OpenCL defines platform, execution, and memory models that abstract the
details of the underlying hardware.

• Work-items execute on processing elements.
• Processing elements are grouped into compute units.
• A group of work-items executing on a single compute unit is a work-group.
• Work-items in a work-group communicate through local memory using

barriers to synchronize and ensure consistency.

Day 2 Self-Study

Find

• By default, a command queue processes commands in order. How do you
enable out-of-order execution?

• What is an event wait list? How might you use event wait lists to impose
constraints on when commands sent to an unordered command queue
are executed?

report erratum  •  discuss

Day 2: Multiple Dimensions and Work-Groups • 211

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/DataParallelism/FindMinimumMultipleWorkGroups/find_minimum.c
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


• What does clEnqueueBarrier() do? When might you use barriers and when
might you use wait lists?

Do

• Extend the reduce example to handle any number of elements, not just
powers of two.

• Modify the reduce example to target multiple devices. If you have only a
single OpenCL-compatible device, you can target the CPU as well, or you
can partition your GPU with clCreateSubDevices(). You will need to create a
command queue for each device, partition the problem so that some work-
items are executed on one device and some on the other, and synchronize
between the command queues.

• The reduce algorithm we looked at today is very simple. An Internet search
will uncover many approaches to creating a more efficient reduce. How
fast can you get it on your particular device? Do the optimizations that
work best on your GPU also work effectively on the CPU?

Day 3: OpenCL and OpenGL—Keeping It on the GPU
Today we’ll put together a complete OpenCL application that both runs and
visualizes a simple physics simulation. In the process, we’ll see not only how
to create a kernel that executes the simulation in parallel but also how to
integrate OpenCL with OpenGL and avoid the overhead of buffer copies by
keeping everything on the GPU.

Water Ripples
The simulation we’re going to create is of water ripples. It’s not going to be a
hyperaccurate physical simulation, but it will be good enough to look convinc-
ing as a graphical effect in a game—to simulate, for example, the surface of
a pond during a rain shower.

LWJGL

We’re going to move away from C for this example and instead use Java
together with the Lightweight Java Graphics Library (LWJGL),3 because that
makes creating a cross-platform GUI easier.

LWJGL provides Java wrappers for both OpenCL and OpenGL, allowing a Java
program to access OpenGL and OpenCL’s C APIs. As OpenGL’s name suggests,

3. http://www.lwjgl.org

Chapter 7. Data Parallelism • 212

report erratum  •  discusswww.finebook.ir   

http://www.lwjgl.org
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


it has close ties with OpenCL. In particular, as we’ll see later, it’s possible for
an OpenCL kernel executing on the GPU to directly operate on OpenGL buffers.

OpenCL code in LWJGL looks very similar to what we’ve already seen in C.
Here, for example, is code to initialize an OpenCL context, queue, and kernel:

DataParallelism/Zoom/src/main/java/com/paulbutcher/Zoom.java
CL.create();
CLPlatform platform = CLPlatform.getPlatforms().get(0);
List<CLDevice> devices = platform.getDevices(CL_DEVICE_TYPE_GPU);
CLContext context = CLContext.create(platform, devices, null, drawable, null);
CLCommandQueue queue = clCreateCommandQueue(context, devices.get(0), 0, null);

CLProgram program =
clCreateProgramWithSource(context, loadSource("zoom.cl"), null);

Util.checkCLError(clBuildProgram(program, devices.get(0), "", null));
CLKernel kernel = clCreateKernel(program, "zoom", null);

As you can see, both the method names and arguments are almost identical
to the equivalent C code. The few small changes are necessary to handle dif-
ferences between the languages, such as the absence of pointers in Java, but
broadly speaking it’s possible to transliterate an OpenGL host program written
in C to Java with LWJGL.

Displaying a Mesh in OpenGL
We’re not going to spend much time talking about the OpenGL element of
this example. But we do need to spend a little time understanding how our
example displays the mesh that represents the water surface so that we know
the task that faces our OpenCL code.

An OpenGL 3D scene is constructed from triangles. In our case, we’re creating
a mesh out of triangles arranged like this:

0 1 2

3 4 5

6 7 8

(0, 0, 0) (1, 0, 0) (2, 0, 0)

(0, 1, 0) (1, 1, 0) (2, 1, 0)

(0, 2, 0) (1, 2, 0) (2, 2, 0)

We specify the position of each triangle with two steps—a vertex buffer that
defines a set of vertices (points in 3D space) and an index buffer that defines
which of those vertices are used to draw each triangle.

report erratum  •  discuss

Day 3: OpenCL and OpenGL—Keeping It on the GPU • 213

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/DataParallelism/Zoom/src/main/java/com/paulbutcher/Zoom.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


So in the preceding example, vertex 0 is at (0, 0, 0), vertex 1 is at (1, 0, 0),
vertex 2 is at (2, 0, 0), and so on. The vertex buffer will therefore contain [0,
0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 1, 1, 0, …].

As for the index buffer, the first triangle will use vertices 0, 1, and 3; the
second 1, 3, and 4; the third 1, 2, and 4; and so on. The index buffer we create
defines a triangle strip in which, after specifying the first triangle with three
vertices, we only need a single additional vertex to define the next triangle:

0 1 2

3 4 5

So our index buffer will contain [0, 3, 1, 4, 2, 5, …].

The code that accompanies this book includes a Mesh class that generates
initial values for the vertex and index buffers. Our sample uses this to create
a 64×64 mesh with x- and y-coordinates ranging from -1.0 to 1.0:

DataParallelism/Zoom/src/main/java/com/paulbutcher/Zoom.java
Mesh mesh = new Mesh(2.0f, 2.0f, 64, 64);

The z-coordinates are all initialized to zero—we’ll modify them during anima-
tion to simulate ripples.

This data is then copied to OpenGL buffers as follows:

DataParallelism/Zoom/src/main/java/com/paulbutcher/Zoom.java
int vertexBuffer = glGenBuffers();
glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer);
glBufferData(GL_ARRAY_BUFFER, mesh.vertices, GL_DYNAMIC_DRAW);

int indexBuffer = glGenBuffers();
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, indexBuffer);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, mesh.indices, GL_STATIC_DRAW);

Each buffer has an ID allocated by glGenBuffers(), is bound to a target with
glBindBuffer(), and has its initial values set with glBufferData(). The index buffer
has the GL_STATIC_DRAW usage hint, indicating that it won’t change (is static).
The vertex buffer, by contrast, has the GL_DYNAMIC_DRAW hint because it will
change between animation frames.

Before we implement the ripple code, we’ll start with something easier—a
simple kernel that increases the size of the mesh over time.

Chapter 7. Data Parallelism • 214

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/DataParallelism/Zoom/src/main/java/com/paulbutcher/Zoom.java
http://media.pragprog.com/titles/pb7con/code/DataParallelism/Zoom/src/main/java/com/paulbutcher/Zoom.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Accessing an OpenGL Buffer from an OpenCL Kernel
Here’s the kernel that implements our zoom animation:

DataParallelism/Zoom/src/main/resources/zoom.cl
__kernel void zoom(__global float* vertices) {

unsigned int id = get_global_id(0);
vertices[id] *= 1.01;

}

It takes the vertex buffer as an argument and multiplies every entry in that
buffer by 1.01, increasing the size of the mesh by 1% every time it’s called.

Before we can pass the vertex buffer to our kernel, we first need to create an
OpenCL buffer that references it:

DataParallelism/Zoom/src/main/java/com/paulbutcher/Zoom.java
CLMem vertexBufferCL =

clCreateFromGLBuffer(context, CL_MEM_READ_WRITE, vertexBuffer, null);

This buffer object can then be used in our main rendering loop as follows:

DataParallelism/Zoom/src/main/java/com/paulbutcher/Zoom.java
while (!Display.isCloseRequested()) {

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glLoadIdentity();
glTranslatef(0.0f, 0.0f, planeDistance);
glDrawElements(GL_TRIANGLE_STRIP, mesh.indexCount, GL_UNSIGNED_SHORT, 0);

Display.update();

Util.checkCLError(clEnqueueAcquireGLObjects(queue, vertexBufferCL, null, null));➤

kernel.setArg(0, vertexBufferCL);➤

clEnqueueNDRangeKernel(queue, kernel, 1, null, workSize, null, null, null);➤

Util.checkCLError(clEnqueueReleaseGLObjects(queue, vertexBufferCL, null, null));➤

clFinish(queue);➤

}

Before an OpenCL kernel can use an OpenGL buffer, we need to acquire it
with clEnqueueAcquireGLObjects(). We can then set it as an argument to our kernel
and call clEnqueueNDRangeKernel() as normal. Finally, we release the buffer with
clEnqueueReleaseGLObjects() and wait for the commands we’ve dispatched to finish
with clFinish().

Run this code, and you should see the mesh start out small and quickly grow
to the point that a single triangle fills the screen.

Now that we’ve got a simple animation working that integrates OpenGL with
OpenCL, we’ll look at the more sophisticated kernel that implements our
water ripples.

report erratum  •  discuss

Day 3: OpenCL and OpenGL—Keeping It on the GPU • 215

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/DataParallelism/Zoom/src/main/resources/zoom.cl
http://media.pragprog.com/titles/pb7con/code/DataParallelism/Zoom/src/main/java/com/paulbutcher/Zoom.java
http://media.pragprog.com/titles/pb7con/code/DataParallelism/Zoom/src/main/java/com/paulbutcher/Zoom.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Simulating Ripples
We’re going to simulate expanding rings of ripples. Each expanding ring is
defined by a 2D point on the mesh (the center of the expanding ring) together
with a time (the time at which the ring started expanding). As well as taking
a pointer to the OpenGL vertex buffer, our kernel takes an array of ripple
centers together with a corresponding array of times (where time is measured
in milliseconds):

DataParallelism/Ripple/src/main/resources/ripple.cl
#define AMPLITUDE 0.1Line 1

#define FREQUENCY 10.0-

#define SPEED 0.5-

#define WAVE_PACKET 50.0-

#define DECAY_RATE 2.05

__kernel void ripple(__global float* vertices,-

__global float* centers,-

__global long* times,-

int num_centers,-

long now) {10

unsigned int id = get_global_id(0);-

unsigned int offset = id * 3;-

float x = vertices[offset];-

float y = vertices[offset + 1];-

float z = 0.0;15

-

for (int i = 0; i < num_centers; ++i) {-

if (times[i] != 0) {-

float dx = x - centers[i * 2];-

float dy = y - centers[i * 2 + 1];20

float d = sqrt(dx * dx + dy * dy);-

float elapsed = (now - times[i]) / 1000.0;-

float r = elapsed * SPEED;-

float delta = r - d;-

z += AMPLITUDE *25

exp(-DECAY_RATE * r * r) *-

exp(-WAVE_PACKET * delta * delta) *-

cos(FREQUENCY * M_PI_F * delta);-

}-

}30

vertices[offset + 2] = z;-

}-

We start by determining the x- and y-coordinates of the vertex that’s being
processed by the current work-item (lines 13 and 14). In the loop (lines 17–30)
we calculate a new z-coordinate that we write back to the vertex buffer on
line 31.

Chapter 7. Data Parallelism • 216

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/DataParallelism/Ripple/src/main/resources/ripple.cl
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Within the loop, we examine each ripple center with a nonzero start time in
turn. For each, we start by determining the distance d  between the point
we’re calculating and the ripple center (line 21). Next, we calculate the radius
r  of the expanding ripple ring (line 23) and δ , the distance between our point
and this ripple ring (line 24):

r
d

ripple center

vertex

Finally, we can combine δ  and r  to get z :

z = Ae−Dr
2
e−Wδ

2
cos(Fπδ)

Here, A , D , W , and F  are constants representing the amplitude of the wave
packet, the rate at which it decays as it expands, the width of the wave
packet, and the frequency, respectively.

The final piece of the puzzle is to extend our host application to create our
ripple centers:

DataParallelism/Ripple/src/main/java/com/paulbutcher/Ripple.java
int numCenters = 16;
int currentCenter = 0;
FloatBuffer centers = BufferUtils.createFloatBuffer(numCenters * 2);
centers.put(new float[numCenters * 2]);
centers.flip();
LongBuffer times = BufferUtils.createLongBuffer(numCenters);
times.put(new long[numCenters]);
times.flip();

CLMem centersBuffer =
clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,centers, null);

CLMem timesBuffer =
clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, times, null);

And start a new ripple whenever the mouse is clicked:

report erratum  •  discuss

Day 3: OpenCL and OpenGL—Keeping It on the GPU • 217

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/DataParallelism/Ripple/src/main/java/com/paulbutcher/Ripple.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


DataParallelism/Ripple/src/main/java/com/paulbutcher/Ripple.java
while (Mouse.next()) {

if (Mouse.getEventButtonState()) {
float x = ((float)Mouse.getEventX() / Display.getWidth()) * 2 - 1;
float y = ((float)Mouse.getEventY() / Display.getHeight()) * 2 - 1;

FloatBuffer center = BufferUtils.createFloatBuffer(2);
center.put(new float[] {x, y});
center.flip();
clEnqueueWriteBuffer(queue, centersBuffer, 0,
currentCenter * 2 * FLOAT_SIZE, center, null, null);

LongBuffer time = BufferUtils.createLongBuffer(1);
time.put(System.currentTimeMillis());
time.flip();

clEnqueueWriteBuffer(queue, timesBuffer, 0,
currentCenter * LONG_SIZE, time, null, null);

currentCenter = (currentCenter + 1) % numCenters;
}

}

Compile and run this code, click on the mesh a few times, and you should
see something like Figure 17, Ripples, on page 219.

So there we have it—we’ve created a physical simulation in which both the
calculations to perform the simulation and the 3D visualization of the results
are carried out on the GPU in parallel. All the data necessary to perform both
the calculation and the visualization resides permanently on the GPU, no
copying required.

Day 3 Wrap-Up
That brings us to the end of day 3 and our discussion of data parallelism on
the GPU via OpenCL.

What We Learned in Day 3

An OpenCL kernel running on a GPU can directly access buffers used by an
OpenGL application running on the same GPU. We covered how to do the
following:

• Create an OpenCL view of an OpenGL buffer with clCreateFromGLBuffer()

• Acquire an OpenGL buffer before passing it to a kernel with
clEnqueueAcquireGLObjects()

• Release the buffer after the kernel has finished with clEnqueueReleaseGLObjects()

Chapter 7. Data Parallelism • 218

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/DataParallelism/Ripple/src/main/java/com/paulbutcher/Ripple.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Figure 17—Ripples

Day 3 Self-Study

Find

• What is an image object? How does it differ from an ordinary OpenCL
buffer? Do image objects have use cases in kernels that don’t interoperate
with OpenGL?

• What is a sampler object? What problems can it help solve?

• What are atomic functions? When might you use atomic functions instead
of barriers?

report erratum  •  discuss

Day 3: OpenCL and OpenGL—Keeping It on the GPU • 219

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Do

• Without using atomic functions, create a kernel that takes a buffer of
integers with values between 0 and 32 and implements a histogram by
counting how many instances of each value there are in the buffer. Can
you extend your solution to do the same for a buffer that contains values
between 0 and 1024?

• Write a kernel to perform the same task as above but using atomic func-
tions this time. How do the two solutions compare?

Wrap-Up
For some reason, data parallelism seems to be ignored in many mainstream
discussions of parallelism. As you can see, however, it’s an extremely powerful
way to dramatically improve your code’s performance and one that all pro-
grammers should have in their repertoire.

Strengths
Data parallelism is ideal whenever you’re faced with a problem where large
amounts of numerical data needs to be processed. It’s particularly appropriate
for scientific and engineering computing and for simulation. Examples include
fluid dynamics, finite element analysis, n-body simulation, simulated
annealing, ant-colony optimization, neural networks, and so on.

GPUs are not only powerful data-parallel processors; they are also extremely
efficient in their power consumption, typically returning much better
GFLOPS/watt results than a traditional CPU. This is one of the primary rea-
sons why many of the fastest supercomputers in the world make extensive
use of either GPUs or dedicated data-parallel coprocessors.4

Weaknesses
Within its niche, data-parallel programming in general, and GPGPU program-
ming specifically, is hard to beat. But it’s not an approach that lends itself
to all problems. In particular, although it is possible to use these techniques
to create solutions to nonnumerical problems (natural language processing,
for example), doing so is not straightforward—the current toolset is very much
focused on number-crunching.

Optimizing an OpenCL kernel can be tricky, and effective optimization often
depends on understanding underlying architectural details. This can be a

4. http://www.top500.org/lists/2013/06/

Chapter 7. Data Parallelism • 220

report erratum  •  discusswww.finebook.ir   

http://www.top500.org/lists/2013/06/
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


particular issue if you need to write high-performance cross-platform code.
For some problems, the need to copy data from the host to the device can
dominate execution time, negating or reducing the benefit to be gained from
parallelizing the computation.

Other Languages
Other GPGPU frameworks include CUDA,5 DirectCompute,6 and RenderScript
Computation.7

Final Thoughts
GPGPU programming is an example of data parallelism in the small—on a
single machine. In the next chapter we’ll look at the Lambda Architecture,
which allows us to exploit data parallelism in the large—across multiple
machines.

5. http://www.nvidia.com/object/cuda_home_new.html
6. http://msdn.com/directx
7. http://developer.android.com/guide/topics/renderscript/compute.html

report erratum  •  discuss

Wrap-Up • 221

www.finebook.ir   

http://www.nvidia.com/object/cuda_home_new.html
http://msdn.com/directx
http://developer.android.com/guide/topics/renderscript/compute.html
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


CHAPTER 8

The Lambda Architecture
If you need to ship freight in bulk from one side of the country to the other,
nothing can beat a fleet of 18-wheeler trucks. But they’re not the right choice
for delivering a single package, so an integrated shipping company also maintains
a fleet of smaller cargo vans that perform local collections and deliveries.

The Lambda Architecture similarly combines the large-scale batch-processing
strengths of MapReduce with the real-time responsiveness of stream process-
ing to allow us to create scalable, responsive, and fault-tolerant solutions to
Big Data problems.

Parallelism Enables Big Data
The advent of Big Data has brought about a sea change in data processing
over recent years. Big Data differs from traditional data processing through
its use of parallelism—only by bringing multiple computing resources to bear
can we contemplate processing terabytes of data. The Lambda Architecture
is a particular approach to Big Data popularized by Nathan Marz, derived
from his time at BackType and subsequently Twitter.

Like last week’s topic, GPGPU programming, the Lambda Architecture leverages
data parallelism. The difference is that it does so on a huge scale, distributing
both data and computation over clusters of tens or hundreds of machines.
Not only does this provide enough horsepower to make previously intractable
problems tractable, but it also allows us to create systems that are fault tol-
erant against both hardware failure and human error.

The Lambda Architecture has many facets. In this chapter we’re going to concen-
trate on its parallel and distributed aspects only (for a more complete discussion,
see Nathan’s book, Big Data [MW14]). In particular, we’re going to concentrate on
its two primary building blocks, the batch layer and the speed layer, as shown
in Figure 18, The batch and speed layers, on page 224.

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Raw Data

Batch 
Layer

Speed 
Layer

Results

Batch 
Views

Realtime 
Views

Figure 18—The batch and speed layers

The batch layer uses batch-oriented technologies like MapReduce to precom-
pute batch views from historical data. This is effective, but latency is high,
so we add a speed layer that uses low-latency techniques like stream process-
ing to create real-time views from new data as it arrives. The two types of
views are then combined to create query results.

The Lambda Architecture is by far the most complicated subject we’re going
to cover in this book. It builds upon several underlying technologies, the most
important of which is MapReduce. In day 1, therefore, we’ll concentrate
solely upon MapReduce without worrying about how it fits into the wider
picture. In day 2 we’ll look at the problems of traditional data systems and
how MapReduce can solve them when used within the batch layer of the
Lambda Architecture. Finally, in day 3 we’ll complete our picture of the
Lambda Architecture by introducing stream processing and show how it can
be used to construct the speed layer.

Day 1: MapReduce
MapReduce is a broad term. Sometimes it’s used to describe the common
pattern of breaking an algorithm down into two steps: a map over a data
structure, followed by a reduce operation. Our functional word count (see the
code on page 59) is an example of exactly this (remember that frequencies is
implemented using reduce). As we saw in Day 2: Functional Parallelism, on
page 61, one of the benefits of breaking an algorithm down in this way is that
it lends itself to parallelization.

But MapReduce can also be used to mean something more specific—a system
that takes an algorithm encoded as a map followed by a reduce and efficiently
distributes it across a cluster of computers. Not only does such a system

Chapter 8. The Lambda Architecture • 224

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Joe asks:

Why the Name?
There’s been a lot of speculation about where the name comes from. I can do no
better than quote the father of the Lambda Architecture, Nathan Marz:a

The name is due to the deep similarities between the architecture and functional program-
ming. At the most fundamental level, the Lambda Architecture is a general way to compute
functions on all your data at once.

a. http://www.manning-sandbox.com/message.jspa?messageID=126599

automatically partition both the data and its processing between the machines
within the cluster, but it also continues to operate if one or more of those
machines fails.

MapReduce in this more specific sense was pioneered by Google.1 Outside of
Google, the most popular MapReduce framework is Hadoop.2

Today we’ll use Hadoop to create a parallel MapReduce version of the Wikipedia
word-count example we’ve seen in previous chapters. Hadoop supports a wide
variety of languages—we’re going to use Java.

Practicalities
Running Hadoop locally is very straightforward and is the normal starting
point for developing and debugging a MapReduce job. Going beyond that to
running on a cluster used to be difficult—not all of us have a pile of spare
machines lying around, waiting to be turned into a cluster. And even if we
did, installing, configuring, and maintaining a Hadoop cluster is notoriously
time-consuming and involved.

Happily, cloud computing has dramatically improved matters by providing
access to virtual servers on demand and by the hour. Even better, many
providers now offer managed Hadoop clusters, dramatically simplifying con-
figuration and maintenance.

In this chapter we’ll be using Amazon Elastic MapReduce, or EMR,3 to run
the examples. The means by which we start and stop clusters, and copy data
to and from them, are specific to EMR, but the general principles apply to any
Hadoop cluster.

1. http://research.google.com/archive/mapreduce.html
2. http://hadoop.apache.org
3. http://aws.amazon.com/elasticmapreduce/

report erratum  •  discuss

Day 1: MapReduce • 225

www.finebook.ir   

http://www.manning-sandbox.com/message.jspa?messageID=126599
http://research.google.com/archive/mapreduce.html
http://hadoop.apache.org
http://aws.amazon.com/elasticmapreduce/
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


To run the examples, you will need to have an Amazon AWS account with the
AWS and EMR command-line tools installed.4,5

Joe asks:

What’s the Deal with Hadoop Releases?
Hadoop has a perversely confusing version-numbering scheme, with the 0.20.x, 1.x,
0.22.x, 0.23.x, 2.0.x, 2.1.x, and 2.2.x releases all in active use as I’m writing this.
These releases support two different APIs, commonly known as the “old” (in the
org.apache.hadoop.mapred package) and the “new” (in org.apache.hadoop.mapreduce), to varying
degrees.

On top of this, various Hadoop distributions bundle a particular Hadoop release with
a selection of third-party components.a,b,c

The examples in this chapter all use the new API and have been tested against Ama-
zon’s 3.0.2 AMI, which uses Hadoop 2.2.0.d

a. http://hortonworks.com
b. http://www.cloudera.com
c. http://www.mapr.com
d. http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-hadoop-version.html

Hadoop Basics
Hadoop is all about processing large amounts of data. Unless your data is
measured in gigabytes or more, it’s unlikely to be the right tool for the job.
Its power comes from the fact that that it splits data into sections, each of
which is then processed independently by separate machines.

As you might expect, a MapReduce task is constructed from two primary
types of components, mappers and reducers. Mappers take some input format
(by default, lines of plain text) and map it to a number of key/value pairs.
Reducers then convert these key/value pairs to the ultimate output format
(normally also a set of key/value pairs). Mappers and reducers are distributed
across many different physical machines (there’s no requirement for there to
be the same number of mappers as reducers), as shown in Figure 19, Hadoop
high-level data flow, on page 227.

The input typically comprises one or more large text files. Hadoop splits these
files (the size of each split depends on exactly how its configured, but a typical

4. http://aws.amazon.com/cli/
5. http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-cli-reference.html

Chapter 8. The Lambda Architecture • 226

report erratum  •  discusswww.finebook.ir   

http://hortonworks.com
http://www.cloudera.com
http://www.mapr.com
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-hadoop-version.html
http://aws.amazon.com/cli/
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-cli-reference.html
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


output

Mapper

Mapper

Mapper

Mapper

input

Reducer

Reducer

Reducer

Figure 19—Hadoop high-level data flow

size would be 64 MB) and sends each split to a single mapper. The mapper
outputs a number of key/value pairs, which Hadoop then sends to the reducers.

The key/value pairs from a single mapper are sent to multiple reducers. Which
reducer receives a particular key/value pair is determined by the key—Hadoop
guarantees that all pairs with the same key will be processed by the same
reducer, no matter which mapper generated them. For obvious reasons, this
is commonly called the shuffle phase.

Hadoop calls the reducer once for each key, with a list of all the values asso-
ciated with it. The reducer combines these values and generates the final
output (which is typically, but not necessarily, also key/value pairs).

So much for the theory—let’s see it in action by creating a Hadoop version of
the Wikipedia word-count example we’ve already seen in previous chapters.

Counting Words with Hadoop
We’re going to start with a slightly simplified problem—counting the number
of words in a collection of plain-text files (we’ll see how to extend this to
counting the words in a Wikipedia XML dump soon).

report erratum  •  discuss

Day 1: MapReduce • 227

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Our mapper will process text a line at a time, break each line into words and
output a single key/value pair for each word. The key will be the word itself,
and the value will be the constant integer 1. Our reducer will take all the
key/value pairs for a given word and sum the values, generating a single
key/value pair for each word, where the value is a count of the number of
times that word occurred in the input:

one potato 
two potato 

three potato 
four

six potato 
seven potato 

more

("one", 1)
("potato", 1)

("two", 1)
("potato", 1)

...

("potato", 1)
("six", 1)

("potato", 1)
...

("one", 1)
("potato", 6)

("two", 1)
("three", 1)

...

Map

Reduce

Figure 20—Counting words with Hadoop

The Mapper

Our mapper, Map, extends Hadoop’s Mapper class, which takes four type
parameters—the input key type, the input value type, the output key type,
and the output value type:

LambdaArchitecture/WordCount/src/main/java/com/paulbutcher/WordCount.java
public static class Map extends Mapper<Object, Text, Text, IntWritable> {Line 1

private final static IntWritable one = new IntWritable(1);-

-

public void map(Object key, Text value, Context context)-

throws IOException, InterruptedException {5

-

String line = value.toString();-

Iterable<String> words = new Words(line);-

for (String word: words)-

context.write(new Text(word), one);10

}-

}-

Chapter 8. The Lambda Architecture • 228

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/LambdaArchitecture/WordCount/src/main/java/com/paulbutcher/WordCount.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Hadoop uses its own types to represent input and output data (we can’t use
plain Strings and Integers). Our mapper handles plain text data, not key/value
pairs, so the input key type is unused (we pass Object) and the input value
type is Text. The output key type is also Text, with a value type of IntWritable.

The map() method will be called once for each line of the input split. It starts
by converting the line to a plain Java String (line 7) and then splits the String
into words (line 8). Finally it iterates over those words, generating a single
key/value pair for each of them, where the key is the word and the value the
constant integer 1 (line 10).

The Reducer

Our reducer, Reduce, extends Hadoop’s Reducer class. Like Mapper, this also takes
type parameters indicating the input and output key and value types (in our
case, Text for both key types and IntWritable for both value types):

LambdaArchitecture/WordCount/src/main/java/com/paulbutcher/WordCount.java
public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable> {

public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val: values)
sum += val.get();

context.write(key, new IntWritable(sum));
}

}

The reduce() method will be called once for each key, with values containing a
collection of all the values associated with that key. Our mapper simply sums
the values and generates a single key/value pair associating the word with
its total occurrences.

Now that we’ve got both our mapper and our reducer, our final task is to
create a driver, which tells Hadoop how to run them.

The Driver

Our driver is a Hadoop Tool, which implements a run() method:

LambdaArchitecture/WordCount/src/main/java/com/paulbutcher/WordCount.java
public class WordCount extends Configured implements Tool {Line 1

-

public int run(String[] args) throws Exception {-

Configuration conf = getConf();-

Job job = Job.getInstance(conf, "wordcount");5

job.setJarByClass(WordCount.class);-

job.setMapperClass(Map.class);-

job.setReducerClass(Reduce.class);-

report erratum  •  discuss

Day 1: MapReduce • 229

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/LambdaArchitecture/WordCount/src/main/java/com/paulbutcher/WordCount.java
http://media.pragprog.com/titles/pb7con/code/LambdaArchitecture/WordCount/src/main/java/com/paulbutcher/WordCount.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


job.setOutputKeyClass(Text.class);-

job.setOutputValueClass(IntWritable.class);10

FileInputFormat.addInputPath(job, new Path(args[0]));-

FileOutputFormat.setOutputPath(job, new Path(args[1]));-

boolean success = job.waitForCompletion(true);-

return success ? 0 : 1;-

}15

-

public static void main(String[] args) throws Exception {-

int res = ToolRunner.run(new Configuration(), new WordCount(), args);-

System.exit(res);-

}20

}-

This is mostly boilerplate, simply informing Hadoop of what we’re doing. We
set the mapper and reducer classes on lines 7 and 8, and the output key and
value types on lines 9 and 10. We don’t need to set the input key and value
type, because Hadoop assumes by default that we’re processing text files.
And we don’t need to independently set the mapper output or reducer input
key/value types, because Hadoop assumes by default that they’re the same
as the output key/value types.

Next we tell Hadoop where to find the input data and where to write the output
data on lines 11 and 12, and finally, we start the job and wait for it to complete
on line 13.

Now that we’ve got a complete Hadoop job, all that remains is to run it on
some data.

Running Locally

We’ll start by running locally. This won’t give us any of the benefits of paral-
lelism or fault tolerance, but it does give us a way to check that everything’s
working before the additional effort and expense of running on a full cluster.

First we’ll need some text to process. The input directory contains two text files
comprising the literary masterpiece we’ll be analyzing:

LambdaArchitecture/WordCount/input/file1.txt
one potato two potato three potato four

LambdaArchitecture/WordCount/input/file2.txt
five potato six potato seven potato more

Not exactly gigabytes of data, to be sure, but there’s enough there to verify
that the code works. We can count the text in these files by building with mvn
package and then running a local instance of Hadoop with this:

$ hadoop jar target/wordcount-1.0-jar-with-dependencies.jar input output

Chapter 8. The Lambda Architecture • 230

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/LambdaArchitecture/WordCount/input/file1.txt
http://media.pragprog.com/titles/pb7con/code/LambdaArchitecture/WordCount/input/file2.txt
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


After Hadoop’s finished running, you should find that you have a new direc-
tory called output, which contains two files—_SUCCESS and part-r-00000. The first
is an empty file that simply indicates that the job ran successfully. The second
should contain the following:

five 1
four 1
more 1
one 1
potato 6
seven 1
six 1
three 1
two 1

Now that we’ve demonstrated that we can successfully run our job on a small
file locally, we’re in a position to run it on a cluster and process much more
data.

Joe asks:

Are Results Always Sorted?
You might have noticed that the results are sorted in (alphabetical) key order. Hadoop
guarantees that keys will be sorted before being passed to a reducer, a fact that is
very helpful for some tasks.

Be careful, however. Although the keys are sorted before they’re passed to each
reducer, as we’ll see, by default there’s no ordering between reducers. This is some-
thing that can be controlled by setting a partitioner, but this isn’t something we’ll
cover further here.

Running on Amazon EMR
Running a Hadoop job on Amazon Elastic MapReduce requires a number of
steps. We won’t go into EMR in depth. But I do want to cover the steps in
enough detail for you to be able to follow along.

Input and Output

By default, EMR takes its input from and writes its output to Amazon S3.6 S3
is also the location of the JAR file containing the code to execute and where
log files are written.

6. http://aws.amazon.com/s3/

report erratum  •  discuss

Day 1: MapReduce • 231

www.finebook.ir   

http://aws.amazon.com/s3/
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


So to start, we’ll need an S3 bucket containing some plain-text files. A
Wikipedia dump won’t do, because it’s XML, not plain text. The sample code
for this chapter includes a project called ExtractWikiText that extracts the
text from a Wikipedia dump, after which you can upload it to your S3 bucket.
You’ll then need to upload the JAR file you built to another S3 bucket.

Uploading Large Files to S3

If, like me, your “broad”-band connection starts to wheeze when asked to upload
large files, you might want to consider creating a short-lived Amazon EC2 instance
with which to download the Wikipedia dump, extract the text from it, and upload it
to S3. Unsurprisingly, Amazon provides excellent bandwidth between EC2 and S3,
which can save your broadband’s blushes.

Creating a Cluster

You can create an EMR cluster in many different ways—we’re going to use
the elastic-mapreduce command-line tool:

$ elastic-mapreduce --create --name wordcount --num-instances 11 \
--master-instance-type m1.large --slave-instance-type m1.large \
--ami-version 3.0.2 --jar s3://pb7con-lambda/wordcount.jar \
--arg s3://pb7con-wikipedia/text --arg s3://pb7con-wikipedia/counts
Created job flow j-2LSRGPBSR79ZV

This creates a cluster called “wordcount” with 11 instances, 1 master and 10
slaves, each of type m1.large running the 3.0.2 machine image (AMI).7 The final
arguments tell EMR where to find the JAR we uploaded to S3, where to find the
input data, and where to put the results.

Monitoring Progress

We can use the job flow identifier returned when we created the cluster to establish
an SSH connection to the master node:

$ elastic-mapreduce --jobflow j-2LSRGPBSR79ZV --ssh

Now that we’ve got a command line on the master, we can monitor the progress
of the job by looking at the log files:

$ tail -f /mnt/var/log/hadoop/steps/1/syslog
INFO org.apache.hadoop.mapreduce.Job (main): map 0% reduce 0%
INFO org.apache.hadoop.mapreduce.Job (main): map 1% reduce 0%
INFO org.apache.hadoop.mapreduce.Job (main): map 2% reduce 0%
INFO org.apache.hadoop.mapreduce.Job (main): map 3% reduce 0%
INFO org.apache.hadoop.mapreduce.Job (main): map 4% reduce 0%

7. http://aws.amazon.com/ec2/instance-types/

Chapter 8. The Lambda Architecture • 232

report erratum  •  discusswww.finebook.ir   

http://aws.amazon.com/ec2/instance-types/
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Examining the Results

In my tests, this configuration takes a little over an hour to count all the
words in Wikipedia. Once it’s finished, you should find a number of files in
the S3 bucket you specified:

part-r-00000
part-r-00001
part-r-00002
⋮
part-r-00028

These files, taken in aggregate, contain the full set of results. Results are
sorted within each result partition, but not across partitions (see Are Results
Always Sorted?, on page 231).

So we can now count words in plain-text files, but ideally we’d like to process
a Wikipedia dump directly. We’ll look at how to do so next.

Processing XML
An XML file is, after all, just a text file with a little added structure, so you
would be forgiven for thinking that we could process it in much the same way
as we saw earlier. Doing so won’t work, however, because Hadoop’s default
splitter divides files at line boundaries, meaning that it’s likely to split files
in the middle of XML tags.

Although Hadoop doesn’t come with an XML-aware splitter as standard, it
turns out that another Apache project, Mahout,8 does provide one—XmlInput-
Format.9 To use it, we need to make a few small changes to our driver:

LambdaArchitecture/WordCountXml/src/main/java/com/paulbutcher/WordCount.java
public int run(String[] args) throws Exception {Line 1

Configuration conf = getConf();-

conf.set("xmlinput.start", "<text");-

conf.set("xmlinput.end", "</text>");-

5

Job job = Job.getInstance(conf, "wordcount");-

job.setJarByClass(WordCount.class);-

job.setInputFormatClass(XmlInputFormat.class);-

job.setMapperClass(Map.class);-

job.setCombinerClass(Reduce.class);10

job.setReducerClass(Reduce.class);-

job.setOutputKeyClass(Text.class);-

job.setOutputValueClass(IntWritable.class);-

8. http://mahout.apache.org
9. https://github.com/apache/mahout/blob/trunk/integration/src/main/java/org/apache/mahout/text/wikipedia/

XmlInputFormat.java

report erratum  •  discuss

Day 1: MapReduce • 233

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/LambdaArchitecture/WordCountXml/src/main/java/com/paulbutcher/WordCount.java
http://mahout.apache.org
https://github.com/apache/mahout/blob/trunk/integration/src/main/java/org/apache/mahout/text/wikipedia/XmlInputFormat.java
https://github.com/apache/mahout/blob/trunk/integration/src/main/java/org/apache/mahout/text/wikipedia/XmlInputFormat.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


FileInputFormat.addInputPath(job, new Path(args[0]));-

FileOutputFormat.setOutputPath(job, new Path(args[1]));15

-

boolean success = job.waitForCompletion(true);-

return success ? 0 : 1;-

}-

We’re using setInputFormatClass() (line 8) to tell Hadoop to use XmlInputFormat instead
of the default splitter and setting the xmlinput.start and xmlinput.end (lines 3 and
4) within the configuration to let the splitter know which tags we’re interested
in.

If you look closely at the value we’re using for xmlinput.start, something might
strike you as slightly odd—we’re setting it to <text, which isn’t a well-formed
XML tag. XmlInputFormat doesn’t perform a full XML parse; instead it simply looks
for start and end patterns. Because the <text> tag takes attributes, we just
search for <text instead of <text>.

We also need to tweak our mapper slightly:

LambdaArchitecture/WordCountXml/src/main/java/com/paulbutcher/WordCount.java
private final static Pattern textPattern =

Pattern.compile("^<text.*>(.*)</text>$", Pattern.DOTALL);

public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {

String text = value.toString();
Matcher matcher = textPattern.matcher(text);
if (matcher.find()) {

Iterable<String> words = new Words(matcher.group(1));
for (String word: words)
context.write(new Text(word), one);

}
}

Each split consists of the text between the xmlinput.start and xmlinput.end patterns,
including the matching patterns. So we use a little regular-expression magic
to strip the <text></text> tags before counting words (to avoid overcounting
the word text).

You may have noticed one other thing about our driver—we’re setting a com-
biner with setCombinerClass() (line 10). A combiner is an optimization that allows
key/value pairs to be combined before they’re sent to a reducer (see Figure
21, Using a combiner, on page 235. In my tests, this decreases runtime from
a little over an hour to around forty-five minutes.

Chapter 8. The Lambda Architecture • 234

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/LambdaArchitecture/WordCountXml/src/main/java/com/paulbutcher/WordCount.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


one potato 
two potato 

three potato 
four

six potato 
seven potato 

more

("one", 1)
("potato", 1)

("two", 1)
("potato", 1)

...

("potato", 1)
("six", 1)

("potato", 1)
...

("one", 1)
("potato", 6)

("two", 1)
("three", 1)

...

Map

Reduce

("one", 1)
("potato", 3)

("two", 1)
("three", 1)

...

("potato", 3)
("six", 1)

("seven", 1)
...

Combine

Figure 21—Using a combiner

In our case, our reducer works just as well as a combiner, but some algorithms
will require a separate combiner. Hadoop does not guarantee use of a combiner
if one is provided, so we need to make sure that our algorithm doesn’t depend
on whether, or how often, it is used.

Day 1 Wrap-Up
That’s it for day 1. In day 2 we’ll see how to use Hadoop to construct the batch
layer of the Lambda Architecture.

What We Learned in Day 1

Breaking a problem into a map over a data structure followed by a reduce
operation makes it easy to parallelize. MapReduce, in the sense we’re using
the term in this chapter, specifically means a system that efficiently and fault-
tolerantly distributes jobs constructed from maps and reduces over multiple
machines. Hadoop is a MapReduce system that does the following:

• It splits input between a number of mappers, each of which generates
key/value pairs.

• These are then sent to reducers, which generate the final output (typically
also a set of key/value pairs).

• Keys are partitioned between reducers such that all pairs with the same
key are handled by the same reducer.

report erratum  •  discuss

Day 1: MapReduce • 235

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Joe asks:

Is It All About Speed?
It’s tempting to think that all Hadoop gives us is speed—allowing us to process large
bodies of data more quickly than we could on a single machine, and certainly that’s
a very important benefit. But there’s more to it than that:

• When we start talking about clusters of hundreds of machines, failure stops
being a risk and becomes a likelihood. Any system that failed when one machine
in the cluster failed would rapidly become unworkable. For that reason, Hadoop
has been constructed from the ground up to be able to handle and recover from
failure.

• Related to the preceding, we need to consider not only how to retry tasks that
were in progress on a failed node, but also how to avoid loss of data if one or
more discs fails. By default, Hadoop uses the Hadoop distributed file system
(HDFS), a fault-tolerant distributed file system that replicates data across multiple
nodes.

• Once we start talking about gigabytes or more of data, it becomes unreasonable
to expect that we’ll be able to fit intermediate data or results in memory. Hadoop
stores key/value pairs within HDFS during processing, allowing us to create jobs
that process much larger datasets than will fit in memory.

Taken together, these aspects are transformative. It’s no coincidence that this chapter
is the only one in which we’ve executed our Wikipedia word-count example on an
entire Wikipedia dump—MapReduce is the only technology we’re going to cover that
realistically allows that quantity of data to be processed.

Day 1 Self-Study

Find

• The documentation for Hadoop’s streaming API, which allows MapReduce
jobs to be created in languages like Ruby, Python, or Perl

• The documentation for Hadoop’s pipes API, which allows MapReduce jobs
to be created in C++

• A large number of libraries build on top of the Hadoop Java API to make
it easier to construct more complex MapReduce jobs. For example, you
might want to take a look at Cascading, Cascalog, or Scalding.

Do

• While a word-count job is running, kill one of the machines in the cluster
(not the master—Hadoop is unable to recover if the master fails). Examine
the logs while you do so to see how Hadoop retries the work that was

Chapter 8. The Lambda Architecture • 236

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


assigned to that machine. Verify that the results are the same as for a
job that doesn’t experience a failure.

• Our word-count program does what it claims, but it’s not very helpful if
we want to answer the question “What are the top 100 most commonly
used words on Wikipedia?” Implement a secondary sort (the Internet has
many articles about how to do so) to generate fully sorted output from
our word-count job.

• The “top-ten pattern” is an alternative way to solve the “most common
words on Wikipedia” problem. Create a version of our word-count program
that uses this pattern.

• Not all problems can be solved by a single MapReduce job—often it’s
necessary to chain multiple jobs, with the output of one forming the input
for the next. One example is the PageRank algorithm. Create a Hadoop
program that calculates the page rank of each Wikipedia page. How many
iterations does it take before the results stabilize?

Day 2: The Batch Layer
Yesterday we saw how we could use Hadoop to parallelize across a cluster of
machines. MapReduce can be used to solve a huge range of problems, but
today we’re going to concentrate on how it fits into the Lambda Architecture.

Before we look at that, however, let’s consider the problem that the Lambda
Architecture exists to solve—what’s wrong with traditional data systems?

Problems with Traditional Data Systems
Data systems are nothing new—we’ve been using databases to answer ques-
tions about the data stored within them for almost as long as computers have
existed. Traditional databases work well up to a point, but the volume of data
we’re trying to handle these days is pushing them beyond the point where
they can cope.

Scaling

Some techniques enable a traditional database to scale beyond a single
machine (replication, sharding, and so on), but these become harder and
harder to apply as the number of machines and the query volume grows.
Beyond a certain point, adding machines simply doesn’t help.

report erratum  •  discuss

Day 2: The Batch Layer • 237

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Maintenance Overhead

Maintaining a database spread over a number of machines is hard. Doing so
without downtime is even more so—if you need to reshard your database, for
example. Then there’s fault tolerance, backup, and ensuring data integrity,
all of which become exponentially more difficult as the volume of data and
queries increases.

Complexity

Replication and sharding typically require support at the application lay-
er—your application needs to know which replicas to query and which shards
to update (which will typically vary from query to query in nonobvious ways).
Often many of the facilities that programmers have grown used to, such as
transaction support, disappear when a database is sharded, meaning that
programmers have to handle failures and retries explicitly. All of this
increases the chances of mistakes being made.

Human Error

An often-forgotten aspect of fault tolerance is coping with human error. Most
data corruptions don’t result from a disk going bad, but rather from a mistake
on the part of either an administrator or a developer. If you’re lucky, this will
be something that you spot quickly and can recover from by restoring from
a backup, but not all errors are this obvious. What if you have an error that
results in widespread corruption that goes undetected for a couple of weeks?
How are you going to repair your database?

Sometimes you can undo the damage by understanding the effects of the bug
and then creating a one-off script to fix up the database. Sometimes you can
undo it by replaying from log files (assuming your log files capture all the
information you need). And sometimes you’re simply out of luck. Relying on
luck is not a good long-term strategy.

Reporting and Analysis

Traditional databases excel at operational support—the day-to-day running
of the business. They’re much less effective when it comes to reporting and
analysis, both of which require access to historical information.

A typical solution is to have a separate data warehouse that maintains histor-
ical data in an alternative structure. Data moves from the operational database
to the data warehouse through a process known as extract, transform, load
(ETL). Not only is this complicated, but it depends upon accurately predicting
which information you’ll need ahead of time—it’s not at all uncommon to find

Chapter 8. The Lambda Architecture • 238

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


that some report or analysis you would like to perform is impossible because
the information you would need to run it has been lost or captured in the
wrong structure.

In the next section we’ll see how the Lambda Architecture addresses all these
issues. Not only does it allow us to handle the vast quantities of data modern
applications are faced with, but it also does so simply, recovering from both
technical failure and human error and maintaining the complete historical
record that will enable us to perform any reporting or analysis we might dream
up in the future.

Eternal Truths
We can divide information into two categories—raw data and derived informa-
tion.

Consider a page on Wikipedia—pages are constantly being updated and
improved, so if I view a particular page today, I may well see something differ-
ent from what I saw yesterday. But pages aren’t the raw data from which
Wikipedia is constructed—a single page is the result of combining many edits
by many different contributors. These edits are the raw data from which pages
are derived.

Furthermore, although pages change from day to day, edits don’t. Once a
contributor has made an edit, that edit never changes. Some subsequent edit
might modify or undo its effect, and therefore the derived page, but edits
themselves are immutable.

You can make the same distinction in any data system. The balance of your
bank account is derived from a sequence of raw debits and credits. Facebook’s
friend graph is derived from a sequence of raw friend and unfriend events.
And like Wikipedia edits, both debits and credits and friend and unfriend
events are immutable.

This insight, that raw data is eternally true, is the fundamental basis of the
Lambda Architecture. In the next section we’ll see how it leverages that insight
to address the problems of traditional data systems.

Data Is Better Raw
At this point, your ears should be pricking up. As we’ve seen in previous
chapters, immutability and parallelism are a marriage made in heaven.

report erratum  •  discuss

Day 2: The Batch Layer • 239

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Joe asks:

Is All Raw Data Really Immutable?
At first it can be difficult to see how some kinds of raw data could be eternally true.
What about a user’s home address, for example? What happens if that person moves
to a different house?

This is still immutable—we just need to add a timestamp. Instead of recording
“Charlotte lives at 22 Acacia Avenue,” we record that “On March 1, 1982, Charlotte
lived at 22 Acacia Avenue.” That will remain true, whatever happens in the future.

An Appealing Fantasy

Let’s allow ourselves to fantasize briefly. Imagine that you had an infinitely
fast computer that could process terabytes of data in an instant. You would
only ever hold on to raw data—there would be no point keeping track of any
of the information derived from it, because we could derive it as and when
we needed it.

At a stroke, in this fantasy land we’ve eliminated most of the complexity
associated with a traditional database, because when data is immutable,
storing it becomes trivial. All our storage medium needs to do is allow us to
append new data as and when it becomes available—we don’t need elaborate
locking mechanisms or transactions, because once it’s been stored it will
never change.

It gets better. When data is immutable, multiple threads can access it in
parallel without any concern of interfering with each other. We can take copies
of it and operate on those copies, without worrying about them becoming out-
of-date, so distributing the data across a cluster immediately becomes much
easier.

Of course, we don’t live in this fantasy land, but you might be surprised how
close we can get by leveraging the power of MapReduce.

Fantasy (Almost) Becomes Reality

If we know ahead of time which queries we want to run against our raw data,
we can precompute a batch view, which either directly contains the derived
data that will be returned by those queries or contains data that can easily
be combined to create it. Computing these batch views is the job of the
Lambda Architecture’s batch layer.

Chapter 8. The Lambda Architecture • 240

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Joe asks:

What About Deleting Data?
Occasionally we have good reasons to delete raw data. This might be because it’s
outlived its usefulness, or it might be for regulatory or security reasons (data-protection
laws may forbid retention of some data beyond a certain period, for example).

This doesn’t invalidate anything we’ve said so far. Data we choose to delete is still
eternally true, even if we choose to forget it.

As an example of the first type of batch view, consider building Wikipedia
pages from a sequence of edits—the batch view will simply comprise the text
of each page, built by combining all the edits of that page.

The second type of batch view is slightly more complex, so that’s what we’ll
concentrate on for the remainder of today. We’re going to use Hadoop to build
batch views that will allow us to query how many edits a Wikipedia contributor
has made over a period of days.

Wikipedia Contributors
The kind of query that we’d ideally like to make is, “How many contributions
did Fred Bloggs make between 3:15 p.m. on Tuesday, June 5, 2012, and
10:45 a.m. on Thursday, June 7, 2012?” To do so, however, we’d need to
maintain and index a record of the exact time of every contribution. If we
really need to make this kind of query, then we’ll need to pay the price, but
in reality we’re unlikely to need to make queries at this fine a granularity—a
day-by-day basis is likely to be more than enough.

So our batch view could consist of simple daily totals:

2012-02-26 15:04:16
2012-02-26 16:23:43
2012-02-26 18:59:03
2012-02-27 12:56:32
2012-02-28 17:09:12
2012-02-28 18:54:28
2012-03-02 12:00:36
2012-03-05 10:34:19

2012-02-26: 3
2012-02-27: 1
2012-02-28: 2
2012-03-02: 1
2012-03-05: 1 

Fred's Contributions Fred's Counts

This would work well enough if we were always interested in periods of a few
days, but queries for periods of several months would still require combining

report erratum  •  discuss

Day 2: The Batch Layer • 241

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


many values (potentially, for example, 365 to determine how many contribu-
tions a user had made in a year). We can decrease the amount of work required
to answer this kind of query by keeping track of periods of both months and
days:

2012-02-26 15:04:16
2012-02-26 16:23:43
2012-02-26 18:59:03
2012-02-27 12:56:32
2012-02-28 17:09:12
2012-02-28 18:54:28
2012-03-02 12:00:36
2012-03-05 10:34:19

2012-02-26: 3
2012-02-27: 1
2012-02-28: 2

2012-02: 6
2012-03-02: 1
2012-03-05: 1

2012-03: 2 

Fred's Contributions Fred's Counts

This would allow us to decrease the amount of work required to count a user’s
contributions within a year from summing 365 values to 12. And we can
handle periods that neither start nor finish at the beginning of a month by
summing monthly values and either adding or subtracting daily values:

Months

Query Range

Subtract Add

Days

Contributor Logging

Sadly, we don’t have access to a live feed of Wikipedia contributors. But if we
did, it might look something like this:

2012-09-01T14:18:13Z 123456789 1234 Fred Bloggs
2012-09-01T14:18:15Z 123456790 54321 John Doe
2012-09-01T14:18:16Z 123456791 6789 Paul Butcher
⋮

The first column is a timestamp, the second is an identifier representing the
contribution, the third is an identifier representing the user who made the
contribution, and the remainder of the line is the username.

Although Wikipedia doesn’t publish such a feed, it does provide periodic XML

dumps containing a full history (you’re looking for enwiki-latest-stub-meta-history).10

10. http://dumps.wikimedia.org/enwiki

Chapter 8. The Lambda Architecture • 242

report erratum  •  discusswww.finebook.ir   

http://dumps.wikimedia.org/enwiki
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


The sample code for this chapter includes an ExtractWikiContributors project
that will take one of these dumps and create a file of the preceding form.

In the next section we’ll construct a Hadoop job that takes these log files and
generates the data required for our batch view.

Counting Contributions

As always, our Hadoop job consists of a mapper and a reducer. The mapper
is very straightforward, simply parsing a line of the contributor log and gen-
erating a key/value pair in which the key is the contributor ID and the value
is the timestamp of the contribution:

LambdaArchitecture/WikiContributorsBatch/src/main/java/com/paulbutcher/WikipediaContributors.java
public static class Map extends Mapper<Object, Text, IntWritable, LongWritable> {

public void map(Object key, Text value, Context context)
throws IOException, InterruptedException {

Contribution contribution = new Contribution(value.toString());
context.write(new IntWritable(contribution.contributorId),

new LongWritable(contribution.timestamp));
}

}

Most of the work is done by the Contribution class:

LambdaArchitecture/WikiContributorsBatch/src/main/java/com/paulbutcher/Contribution.java
class Contribution {Line 1

static final Pattern pattern = Pattern.compile("^([^\\s]*) (\\d*) (\\d*) (.*)$");-

static final DateTimeFormatter isoFormat = ISODateTimeFormat.dateTimeNoMillis();-

-

public long timestamp;5

public int id;-

public int contributorId;-

public String username;-

-

public Contribution(String line) {10

Matcher matcher = pattern.matcher(line);-

if(matcher.find()) {-

timestamp = isoFormat.parseDateTime(matcher.group(1)).getMillis();-

id = Integer.parseInt(matcher.group(2));-

contributorId = Integer.parseInt(matcher.group(3));15

username = matcher.group(4);-

}-

}-

}-

We could parse a log file line in various ways—in this case, we’re using a
regular expression (line 2). If it matches, we use the ISODateTimeFormat class

report erratum  •  discuss

Day 2: The Batch Layer • 243

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/LambdaArchitecture/WikiContributorsBatch/src/main/java/com/paulbutcher/WikipediaContributors.java
http://media.pragprog.com/titles/pb7con/code/LambdaArchitecture/WikiContributorsBatch/src/main/java/com/paulbutcher/Contribution.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


from the Joda-Time library to parse the timestamp and convert it to a long
value representing the number of milliseconds since January 1, 1970 (line
13).11 The contribution and contributor IDs are then just simple integers, and
the contributor’s username is the remainder of the line.

Our reducer is more involved:

LambdaArchitecture/WikiContributorsBatch/src/main/java/com/paulbutcher/WikipediaContributors.java
public static class ReduceLine 1

extends Reducer<IntWritable, LongWritable, IntWritable, Text> {-

static DateTimeFormatter dayFormat = ISODateTimeFormat.yearMonthDay();-

static DateTimeFormatter monthFormat = ISODateTimeFormat.yearMonth();-

5

public void reduce(IntWritable key, Iterable<LongWritable> values,-

Context context) throws IOException, InterruptedException {-

HashMap<DateTime, Integer> days = new HashMap<DateTime, Integer>();-

HashMap<DateTime, Integer> months = new HashMap<DateTime, Integer>();-

for (LongWritable value: values) {10

DateTime timestamp = new DateTime(value.get());-

DateTime day = timestamp.withTimeAtStartOfDay();-

DateTime month = day.withDayOfMonth(1);-

incrementCount(days, day);-

incrementCount(months, month);15

}-

for (Entry<DateTime, Integer> entry: days.entrySet())-

context.write(key, formatEntry(entry, dayFormat));-

for (Entry<DateTime, Integer> entry: months.entrySet())-

context.write(key, formatEntry(entry, monthFormat));20

}-

}-

For each contributor, we build two HashMaps, days (line 8) and months (line 9).
We populate these by iterating over timestamps (remember that values will be
a list of timestamps) using the Joda-Time utility methods withTimeAtStartOfDay()
and withDayOfMonth() to convert that timestamp to midnight on the day of the
contribution and midnight on the first day of the month (lines 12 and 13,
respectively). We then increment the relevant count in days and months using
a simple utility method:

LambdaArchitecture/WikiContributorsBatch/src/main/java/com/paulbutcher/WikipediaContributors.java
private void incrementCount(HashMap<DateTime, Integer> counts, DateTime key) {

Integer currentCount = counts.get(key);
if (currentCount == null)

counts.put(key, 1);
else

counts.put(key, currentCount + 1);
}

11. http://www.joda.org/joda-time/

Chapter 8. The Lambda Architecture • 244

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/LambdaArchitecture/WikiContributorsBatch/src/main/java/com/paulbutcher/WikipediaContributors.java
http://media.pragprog.com/titles/pb7con/code/LambdaArchitecture/WikiContributorsBatch/src/main/java/com/paulbutcher/WikipediaContributors.java
http://www.joda.org/joda-time/
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Finally, once we’ve finished building our maps, we iterate over each map and
generate an output for each day and month in which there was at least one
contribution (lines 17 to 20).

This is slightly involved because, as we’ve seen, the output from a Hadoop
job is always a set of key/value pairs, but what we want to output are three
values—the contributor ID, a date (either a month or a day), and a count. We
could do this by defining a composite value. This way, our key is the contrib-
utor ID and the value is a composite value containing the date and the count.
But our case is simple enough that we can instead just use a string as the
value type and format it appropriately with formatEntry():

LambdaArchitecture/WikiContributorsBatch/src/main/java/com/paulbutcher/WikipediaContributors.java
private Text formatEntry(Entry<DateTime, Integer> entry,

DateTimeFormatter formatter) {
return new Text(formatter.print(entry.getKey()) + "\t" + entry.getValue())

}

Here’s a section of this job’s output:

463 2001-11-24 1
463 2002-02-14 1
463 2001-11-26 6
463 2001-10-01 1
463 2002-02 1
463 2001-10 1
463 2001-11 7

This contains exactly the data that we need, but a collection of text files isn’t
particularly convenient. In the next section we’ll talk about the serving layer,
which indexes and combines the output of the batch layer.

Joe asks:

Can We Generate Batch Views Incrementally?
The batch layer we’ve described so far recomputes entire batch views from scratch
each time it’s run. This will certainly work, but it’s probably performing more work
than necessary—why not update batch views incrementally with the new data that’s
arrived since the last time the batch view was generated?

The simple answer is that there’s nothing to stop you from doing so, and this can be
a useful optimization. But you can’t rely exclusively on incremental updates—much
of the power of the Lambda Architecture derives from the fact that we can always
rebuild from scratch if we need to. So feel free to implement an incremental algorithm
if the optimization is worth the additional effort, but recognize that this can never be
a replacement for recomputation.

report erratum  •  discuss

Day 2: The Batch Layer • 245

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/LambdaArchitecture/WikiContributorsBatch/src/main/java/com/paulbutcher/WikipediaContributors.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Completing the Picture
The batch layer isn’t enough on its own to create a complete end-to-end
application. That requires the next element of the Lambda Architecture—the
serving layer.

The Serving Layer

The batch view we’ve just generated needs to be indexed so that we can make
queries against it, and we need somewhere to put the application logic that
decides how to combine elements of the batch view to satisfy a particular
query. This is the duty of the serving layer:

Database

Batch 
View

Batch 
View

Batch 
View

Web 
Server

Query

Results

We’re going to leave the serving layer as an exercise for the reader, as it has
little relevance to the subject matter of this book, but it’s worth mentioning
one particular aspect of it—the database.

Although you could build the serving layer on top of a traditional database, its
access patterns are rather different from a traditional application. In particular,
there’s no requirement for random writes—the only time the database is
updated is when the batch views are updated, which requires a batch update.

Therefore a category emerges of serving-layer databases optimized for this usage
pattern, the most well-known of which are ElephantDB and Voldemort.12,13

12. https://github.com/nathanmarz/elephantdb
13. http://www.project-voldemort.com/voldemort/

Chapter 8. The Lambda Architecture • 246

report erratum  •  discusswww.finebook.ir   

https://github.com/nathanmarz/elephantdb
http://www.project-voldemort.com/voldemort/
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Almost Nirvana

Taken together, the batch and serving layers give us a data system that
addresses all the problems we identified at the beginning of the day:

Serving 
Layer

Batch 
View

Batch 
View

Batch 
View

Raw 
Data

Batch
Layer

The batch layer runs in an infinite loop, regenerating batch views from our
raw data. Each time a batch run completes, the serving layer updates its
database.

Because it only ever operates on immutable raw data, the batch layer can
easily exploit parallelism. Raw data can be distributed across a cluster of
machines, enabling batch views to be recomputed in an acceptable period of
time even when dealing with terabytes of input.

The immutability of raw data also means that the system is intrinsically
hardened against both technical failure and human error. Not only is it much
easier to back up raw data, but if there’s a bug, the worst that can happen
is that batch views are temporarily incorrect—we can always correct them by
fixing the bug and recomputing them.

Finally, because we retain all raw data, we can always generate any report
or analysis that might occur to us in the future.

There’s an obvious problem, though—latency. If the batch layer takes an hour
to run, then our batch views will always be at least an hour out-of-date. This
is where tomorrow’s subject, the speed layer, comes into play.

report erratum  •  discuss

Day 2: The Batch Layer • 247

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Day 2 Wrap-Up
This brings us to the end of day 2. In day 3 we’ll complete our picture of the
Lambda Architecture by looking at the speed layer.

What We Learned in Day 2

Information can be divided into raw data and derived information. Raw data
is eternally true and therefore immutable. The batch layer of the Lambda
Architecture leverages this to allow us to create systems that are

• highly parallel, enabling terabytes of data to be processed;

• simple, making them both easier to create and less error prone;

• tolerant of both technical failure and human error; and

• capable of supporting both day-to-day operations and historical reporting
and analysis.

The primary drawback of the batch layer is latency, which the Lambda
Architecture addresses by running the speed layer alongside.

Day 2 Self-Study

Find

• The approaches we’ve discussed here are not the only way to tackle
building a data system that leverages Hadoop—other options include
HBase, Pig, and Hive. All three of these have more in common with a
traditional data system than what we’ve seen today. Pick one and compare
it to the Lambda Architecture’s batch layer. When might you choose one,
and when the other?

Do

• Finish the system we built today by creating a serving layer that takes
the output of the batch layer, puts it in a database, and allows queries
about the number of edits made by a particular user over a range of days.
You can build it either on top of a traditional database or on top of
ElephantDB.

• Extend the preceding to build batch views incrementally—to do this, you
will need to provide the Hadoop cluster with access to the serving layer’s
database. How much more efficient is it? Is it worth the additional effort?
For which types of application would incremental batch view construction
make sense? For which would it not?

Chapter 8. The Lambda Architecture • 248

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Day 3: The Speed Layer
As we saw yesterday, the batch layer of the Lambda Architecture solves all
the problems we identified with traditional data systems, but it does so at
the expense of latency. The speed layer exists to solve that problem. The fol-
lowing figure shows how the batch and speed layers work together:

Batch 
View

Batch 
View

Raw 
Data

Batch
Layer

New 
Data

Append

Realtime 
View

Realtime 
View

Speed
Layer

Merge

Figure 22—The Lambda Architecture

As new data arrives, we both append it to the raw data that the batch layer
works on and send it to the speed layer. The speed layer generates real-time
views, which are combined with batch views to create fully up-to-date answers
to queries.

Real-time views contain only information derived from the data that arrived
since the batch views were last generated and are discarded when the data
they were built from is processed by the batch layer.

Today we’ll see how to use Storm to create the speed layer.14

14. http://storm.incubator.apache.org

report erratum  •  discuss

Day 3: The Speed Layer • 249

www.finebook.ir   

http://storm.incubator.apache.org
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Designing the Speed Layer
Different applications have different interpretations of real time—some require
new data to be available in seconds, some in milliseconds. But whatever your
particular application’s performance requirements are, it’s unlikely that they
can be met with a pure batch-oriented approach.

Building the speed layer is therefore intrinsically more difficult than building
the batch layer because it’s forced to take an incremental approach. This in
turn means that it can’t restrict itself to only processing raw data and can’t
rely on the nice properties of raw data we identified yesterday. So we’re back
to traditional databases that support random writes and all the complexity
(locking, transactions, and so forth) that comes with them.

On the plus side, the speed layer only needs to handle that portion of our
data that hasn’t already been handled by the batch layer (typically a few
hours’ worth). Once the batch layer catches up, older data can be expired
from the speed layer.

Synchronous or Asynchronous?

One obvious way to build the speed layer would be to do so as a traditional
synchronous database application. Indeed, you can think of a traditional
database application as a degenerate case of the Lambda Architecture in
which the batch layer never runs:

Database
Client

Client

Client

In this approach, clients communicate directly with the database and block
while it’s processing each update. This is a perfectly reasonable approach,
and for some applications it may be the only one that meets their operational
requirements. But in many cases, an asynchronous architecture will be better:

Chapter 8. The Lambda Architecture • 250

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


DatabaseQueue Stream 
Processor

Client

Client

Client

In this approach, clients add updates to a queue (implemented with, for
example, Kafka or Kestrel15,16) as they arrive and without blocking. A stream
processor then handles these updates in turn and performs the database
update.

Using a queue decouples clients from database updates, making it more
complex to coordinate updates with other actions. For applications in which
this is acceptable, the benefits are significant:

• Because clients don’t block, fewer clients can handle higher volumes of
data, leading to greater throughput.

• Spikes in demand might lead to a synchronous system timing out or
dropping updates as clients or the database becoming overloaded. An
asynchronous system, by contrast, will simply fall behind, storing
unhandled updates in the queue and catching up when demand returns
to normal levels.

• As we’ll see during the remainder of today, the stream processor can
exploit parallelism, distributing processing over multiple computing
resources in order to provide both fault tolerance and improved
performance.

For these reasons, and because synchronous speed-layer implementations
are largely uninteresting as far as parallelism and concurrency are concerned,
we’re not going to consider them further in this book. Before we look at an
asynchronous implementation, however, we should touch on one other
subject—expiring data.

15. http://kafka.apache.org
16. http://robey.github.io/kestrel/

report erratum  •  discuss

Day 3: The Speed Layer • 251

www.finebook.ir   

http://kafka.apache.org
http://robey.github.io/kestrel/
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Expiring Data

If your batch layer takes (say) two hours to run, you would be forgiven for
thinking that your speed layer will need to handle two hours’ worth of data.
In fact, it will need to handle up to twice that amount, as shown in the figure:

Batch run
N-1

Batch run
N now

time

Speed Layer

Batch run
N+1

Batch run
N now

Speed LayerExpired

P Processed

Processing

Unprocessed

Figure 23—Expiring data in the speed layer

Imagine that batch run N-1 has just completed and batch run N is just about
to start. If each takes two hours to run, that means that our batch views will
be two hours out-of-date. The speed layer therefore needs to serve requests
for those two hours’ worth of data plus any data that arrives before batch run
N completes, for a total of four hours’ worth.

When batch run N does complete, we then need to expire the data that repre-
sents the oldest two hours but still retain the most recent two hours’ worth.
It is certainly possible to come up with schemes that allow you to do this, but
the easiest solution can be to run two copies of the speed layer in parallel
and ping-pong between them, as shown in Figure 24, Ping-pong speed layers,
on page 253.

Whenever a batch run completes and new data becomes available in the batch
views, we switch from the speed layer that’s currently serving queries to its
counterpart with more recent data. The now-idle speed layer then clears its
database and starts building a new set of views from scratch, starting at the
point where the new batch run started.

Not only does this approach save us from having to identify which data to
delete from the speed layer’s database, but it also improves performance and

Chapter 8. The Lambda Architecture • 252

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


time

Speed Layer A (in use):

Speed Layer B:

Speed Layer B (in use):

Speed Layer A:

now

now

Figure 24—Ping-pong speed layers

reliability by ensuring that each iteration of the speed layer starts from a
clean database. The cost, of course, is that we have to maintain two copies
of the speed layer’s data and twice the computing resources, but this cost is
unlikely to be significant in relative terms, given that the speed layer is only
handling a very small fraction of the total data.

Storm
We’re going to spend the rest of today looking at the outline of an asyn-
chronous speed layer implementation in Storm. Storm is a big subject, so
we’ll cover it in only enough detail to give a taste—refer to the Storm docu-
mentation for more depth.17

Storm aims to do for real-time processing what Hadoop has for batch process-
ing—to make it easy to distribute computation across multiple machines in
order to improve both performance and fault tolerance.

Spouts, Bolts, and Topologies

A Storm system processes streams of tuples. Storm’s tuples are similar to
those we saw in Chapter 5, Actors, on page 115, the primary difference being
that unlike Elixir’s tuples, the elements of a Storm tuple are named.

Tuples are created by spouts and processed by bolts, which can create tuples
in turn. Spouts and bolts are connected by streams to form a topology. Here’s

17. http://storm.incubator.apache.org/documentation/Home.html

report erratum  •  discuss

Day 3: The Speed Layer • 253

www.finebook.ir   

http://storm.incubator.apache.org/documentation/Home.html
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


a simple topology in which a single spout creates tuples that are processed
by a pipeline of bolts:

Spout Bolt Bolt Bolt

Figure 25—A simple topology

Topologies can be much more complex than this—bolts can consume multiple
streams, and a single stream can be consumed by multiple bolts to create a
directed acyclic graph, or DAG:

Figure 26—A complex topology

Even our simple pipeline topology is more complex than it appears, however,
because spouts and bolts are both parallel and distributed.

Workers

Not only do spouts and bolts run in parallel with each other, but they are
also internally parallel—each is implemented as a set of workers. Figure 27,
Spout and bolt workers, on page 255 shows what our simple pipeline topology
might look like if each spout and bolt had three workers.

As our diagram shows, the workers of each node of the pipeline can send
tuples to any of the workers in their downstream node. We’ll see how to control
exactly which worker receives a tuple when we discuss stream grouping later.

Finally, workers are distributed—if we’re running on a four-node cluster, for
example, then our spout’s workers might be on nodes 1, 2, and 3; the first
bolt’s workers might be on nodes 2 and 4 (two on node 2, one on node 4); and
so on.

Chapter 8. The Lambda Architecture • 254

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Figure 27—Spout and bolt workers

The beauty of Storm is that we don’t need to explicitly worry about this distribu-
tion—all we need to do is specify our topology, and the Storm runtime allocates
workers to nodes and makes sure that tuples are routed appropriately.

Fault Tolerance

A large part of the reason for distributing a single spout or bolt’s workers
across multiple machines is fault tolerance. If one of the machines in our
cluster fails, our topology can continue to operate by routing tuples to the
machines that are still operating.

Storm keeps track of the dependencies between tuples—if a particular tuple’s
processing isn’t completed, Storm fails and retries the spout tuple(s) upon
which it depends. This means that, by default, Storm provides an “at least
once” processing guarantee. Applications need to be aware of the fact that
tuples might be retried and continue to function correctly if they are.

Enough theory—let’s see how we can use Storm to create an outline imple-
mentation of a speed layer for our Wikipedia contributor application.

Joe asks:

What If My Application Can’t Handle Retries?
Storm’s default “at least once” semantics are adequate for most applications, but
some need a stronger “exactly once” processing guarantee.

Storm supports “exactly once” semantics via the Trident API.a Trident is not covered
in this book.

a. http://storm.incubator.apache.org/documentation/Trident-tutorial.html

report erratum  •  discuss

Day 3: The Speed Layer • 255

www.finebook.ir   

http://storm.incubator.apache.org/documentation/Trident-tutorial.html
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Counting Contributions with Storm
Here’s a possible topology for our speed layer:

Read Logs Parse 
Logs

Update 
Database

We start with a spout that imports contributor logs and converts them to a
stream of tuples. This is consumed by a bolt that parses log entries and out-
puts a stream of parsed log entries. Finally, this stream is in turn consumed
by a bolt that updates a database containing our real-time view.

We’re going to build a slightly different topology from this, however, for a
couple of reasons. First, we don’t have access to a log of Wikipedia contribu-
tors; second, the details of updating a database are uninteresting from our
point of view (with our focus on parallelism and concurrency). The following
figure shows what we’re going to build instead.

Simulate 
Logs Parse Logs Record 

Contributions

We’re going to create a spout that simulates a Wikipedia contributor feed and
then a parser, and finally we’ll record the real-time views in memory. This
wouldn’t be a good production approach, but it will serve our purpose of
exploring Storm.

Simulating the Contribution Log

Here’s the code for our spout, which simulates a contributor feed by generating
random log entries:

LambdaArchitecture/WikiContributorsSpeed/src/main/java/com/paulbutcher/RandomContributorSpout.java
public class RandomContributorSpout extends BaseRichSpout {Line 1

-

private static final Random rand = new Random();-

private static final DateTimeFormatter isoFormat =-

ISODateTimeFormat.dateTimeNoMillis();5

-

private SpoutOutputCollector collector;-

private int contributionId = 10000;-

-

Chapter 8. The Lambda Architecture • 256

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/LambdaArchitecture/WikiContributorsSpeed/src/main/java/com/paulbutcher/RandomContributorSpout.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


public void open(Map conf, TopologyContext context,10

SpoutOutputCollector collector) {-

-

this.collector = collector;-

}-

15

public void declareOutputFields(OutputFieldsDeclarer declarer) {-

declarer.declare(new Fields("line"));-

}-

-

public void nextTuple() {20

Utils.sleep(rand.nextInt(100));-

++contributionId;-

String line = isoFormat.print(DateTime.now()) + " " + contributionId + " " +-

rand.nextInt(10000) + " " + "dummyusername";-

collector.emit(new Values(line));25

}-

}-

We indicate that we’re creating a spout by deriving from BaseRichSpout (line 1).
Storm calls our open() method (line 10) during initialization—we simply keep
a record of the SpoutOutputCollector, which is where we’ll send our output. Storm
also calls our declareOutputFields() method (line 16) during initialization to find
out how the tuples generated by this spout are structured—in this case, the
tuples have a single field called line.

The method that does most of the work is nextTuple() (line 20). We start by
sleeping for a random interval of up to 100 ms, and then we create a string
of the same format we saw in Contributor Logging, on page 242, which we output
by calling collector.emit().

These lines will be passed to the parser bolt, which we’ll see next.

Parsing Log Entries

Our parser bolt takes tuples containing log lines, parses them, and outputs
tuples with four fields, one for each component of the log line:

LambdaArchitecture/WikiContributorsSpeed/src/main/java/com/paulbutcher/ContributionParser.java
class ContributionParser extends BaseBasicBolt {Line 1

public void declareOutputFields(OutputFieldsDeclarer declarer) {2

declarer.declare(new Fields("timestamp", "id", "contributorId", "username"));3

}4

public void execute(Tuple tuple, BasicOutputCollector collector) {5

Contribution contribution = new Contribution(tuple.getString(0));6

collector.emit(new Values(contribution.timestamp, contribution.id,7

contribution.contributorId, contribution.username));8

}9

}10

report erratum  •  discuss

Day 3: The Speed Layer • 257

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/LambdaArchitecture/WikiContributorsSpeed/src/main/java/com/paulbutcher/ContributionParser.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


We indicate that we’re creating a bolt by deriving from BaseBasicBolt (line 1). As
with our spout, we implement declareOutputFields() (line 2) to let Storm know how
our output tuples are structured—in this case they have four fields, called
timestamp, id, contributorId, and username.

The method that does most of the work is execute() (line 5). In this case, it uses
the same Contributor as the batch layer to parse the log line into its components
and then calls contributor.emit() to output the tuple.

These parsed tuples will be passed to a bolt that keeps a record of each con-
tributor’s contributions, which we’ll see next.

Recording Contributions

Our final bolt maintains a simple in-memory database (a map from contributor
IDs to a set of contribution timestamps) of each contributor’s contributions:

LambdaArchitecture/WikiContributorsSpeed/src/main/java/com/paulbutcher/ContributionRecord.java
class ContributionRecord extends BaseBasicBolt {Line 1

private static final HashMap<Integer, HashSet<Long>> timestamps =-

new HashMap<Integer, HashSet<Long>>();-

-

public void declareOutputFields(OutputFieldsDeclarer declarer) {5

}-

public void execute(Tuple tuple, BasicOutputCollector collector) {-

addTimestamp(tuple.getInteger(2), tuple.getLong(0));-

}-

10

private void addTimestamp(int contributorId, long timestamp) {-

HashSet<Long> contributorTimestamps = timestamps.get(contributorId);-

if (contributorTimestamps == null) {-

contributorTimestamps = new HashSet<Long>();-

timestamps.put(contributorId, contributorTimestamps);15

}-

contributorTimestamps.add(timestamp);-

}-

}-

In this case we’re not generating any output, so declareOutputFields() is empty
(line 5). Our execute() method (line 7) simply extracts the relevant fields from
its input tuple and passes them to addTimestamp(), which simply adds the
timestamp to the set associated with the contributor.

Finally, let’s see how to build a topology that uses our spout and bolts.

Building the Topology

Something might be worrying you about ContributionRecord—given that bolts
have multiple workers, how do we ensure that we maintain only a single set

Chapter 8. The Lambda Architecture • 258

report erratum  •  discusswww.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/LambdaArchitecture/WikiContributorsSpeed/src/main/java/com/paulbutcher/ContributionRecord.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Joe asks:

Why Record a Set of Timestamps?
The batch views we saw in Day 2: The Batch Layer, on page 237, just recorded per-day
and per-month counts for each contributor. So why do our real-time views record
full timestamps?

Firstly, as we discussed earlier, our real-time views only need to record a few hours’
worth of data, so the cost of storing and querying a full set of timestamps is relatively
low. But there’s a more important reason—adding an item to a set is idempotent.

Recall that Storm supports “at least once” semantics (see Fault Tolerance, on page
255), so tuples might be retried. An idempotent operation gives the same result no
matter how many times it’s performed, which is exactly what we need to be able to
cope with tuples being retried.

of timestamps for each contributor? We’ll see how when we construct our
topology.

LambdaArchitecture/WikiContributorsSpeed/src/main/java/com/paulbutcher/WikiContributorsTopology.java
public class WikiContributorsTopology {Line 1

-

public static void main(String[] args) throws Exception {-

-

TopologyBuilder builder = new TopologyBuilder();5

-

builder.setSpout("contribution_spout", new RandomContributorSpout(), 4);-

-

builder.setBolt("contribution_parser", new ContributionParser(), 4).-

shuffleGrouping("contribution_spout");10

-

builder.setBolt("contribution_recorder", new ContributionRecord(), 4).-

fieldsGrouping("contribution_parser", new Fields("contributorId"));-

-

LocalCluster cluster = new LocalCluster();15

Config conf = new Config();-

cluster.submitTopology("wiki-contributors", conf, builder.createTopology());-

-

Thread.sleep(10000);-

20

cluster.shutdown();-

}-

}-

We start by creating a TopologyBuilder (line 5) and we add an instance of our
spout with setSpout() (line 7), the second argument to which is a parallelism
hint. As its name suggests, this is a hint, not an instruction, but for our
purposes, we can think of it as instructing Storm to create four workers for

report erratum  •  discuss

Day 3: The Speed Layer • 259

www.finebook.ir   

http://media.pragprog.com/titles/pb7con/code/LambdaArchitecture/WikiContributorsSpeed/src/main/java/com/paulbutcher/WikiContributorsTopology.java
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


our spout. For a full description of how to control parallelism in Storm, see
“What Makes a Running Topology: Worker Processes, Executors and Tasks.”18

Next, we add an instance of our ContributionParser bolt with setBolt() (line 9). We
tell Storm that this bolt should take its input from our spout by calling shuffle-
Grouping(), passing it the name we gave to the spout, which brings us to the
subject of stream grouping.

Stream Grouping

Storm’s stream grouping answers the question about which workers receive
which tuples. The shuffle grouping we’re using for our parser bolt is the sim-
plest—it simply sends tuples to a random worker.

Our contribution recorder bolt uses a fields grouping (line 12), which guaran-
tees that all tuples with the same values for a set of fields (in our case, the
contributorId field) are always sent to the same worker. This is how we guarantee
that we maintain only a single set of timestamps for each contributor,
answering the question we posed at the start of this section.

A Local Cluster

Setting up a Storm cluster isn’t a huge job, but it’s beyond the scope of this
book. And sadly, as it’s a relatively young technology, nobody’s currently
providing managed Storm clusters that we can leverage. So we’ll run our
topology locally by creating a LocalCluster (line 17).

Our sample then allows this topology to run for ten seconds and then shuts
it down with cluster.shutdown(). In production, of course, we would need to provide
a means to shut our topology down when the real-time views it’s handling
are no longer necessary because the batch layer has caught up.

Day 3 Wrap-Up
That brings us to the end of day 3 and the end of our discussion of the
Lambda Architecture’s speed layer.

What We Learned in Day 3

The speed layer completes the Lambda Architecture by providing real-time
views of data that’s arrived since the most recent batch views were built. The
speed layer can be synchronous or asynchronous—Storm is one means by
which we can build an asynchronous speed layer:

18. http://storm.incubator.apache.org/documentation/Understanding-the-parallelism-of-a-Storm-topology.html

Chapter 8. The Lambda Architecture • 260

report erratum  •  discusswww.finebook.ir   

http://storm.incubator.apache.org/documentation/Understanding-the-parallelism-of-a-Storm-topology.html
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


• Storm processes streams of tuples in real time. Tuples are created by
spouts and processed by bolts, arranged in a topology.

• Spouts and bolts each have multiple workers that run in parallel and are
distributed across the nodes of a cluster.

• By default, Storm provides “at least once” semantics—bolts need to handle
tuples being retried.

Day 3 Self-Study

Find

• Trident is a high-level API built on top of Storm that, among other things,
provides “exactly once” semantics as well as Storm’s “at least once” default
semantics. When does it make sense to use Trident and when the low-
level Storm API?

• Which other stream groupings does Storm support in addition to shuffle
and fields groupings?

Do

• Create a Storm cluster and submit today’s example so that it runs dis-
tributed instead of locally.

• Create a bolt that keeps track of the total number of contributions that
have been made each minute and a topology in which both it and Contribu-
tionRecord consume the output of ContributionParser.

• Today’s example made use of BaseBasicBolt, which automatically acknowl-
edges tuples. Modify it to use BaseRichBolt—you will need to acknowledge
tuples explicitly. How could you create a bolt that processes multiple
tuples before acknowledging them?

Wrap-Up
The Lambda Architecture brings together many concepts we’ve covered else-
where:

• The insight that raw data is eternally true should remind you of Clojure’s
separation of identity and state.

• Hadoop’s approach of parallelizing a problem by splitting it into a map
over a data structure followed by a reduce should remind you of much of
what we saw when we looked at parallel functional programming.

report erratum  •  discuss

Wrap-Up • 261

www.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


• Like actors, the Lambda Architecture distributes processing over a cluster
to both improve performance and provide fault tolerance in the face of
hardware failure.

• Storm’s streams of tuples have much in common with the message
passing we saw in both actors and CSP.

Strengths
The Lambda Architecture is all about handling huge quantities of data—
problems where traditional data-processing architectures are struggling to
cope. It’s particularly well suited to reporting and analytics—the kinds of
problems that might have been addressed with a data warehouse in the past.

Weaknesses
The Lambda Architecture’s great strength—its focus on huge quantities of
data—is also its weakness. Unless your data is measured in tens of gigabytes
or more, its overhead (both computational and intellectual) is unlikely to be
worth the benefit.

Alternatives
The Lambda Architecture isn’t tied to MapReduce—the batch layer could be
implemented with any distributed batch-processing system.

With that in mind, Apache Spark is particularly interesting.19 Spark is a
cluster computing framework that implements a DAG execution engine,
allowing a number of algorithms (most notably graph algorithms) to be
expressed more naturally than they can be with MapReduce. It also has an
associated streaming API, meaning that both the batch and speed layers could
be implemented within Spark.20

Final Thoughts
The Lambda Architecture is a fitting end to this book, leveraging as it does
many of the techniques we’ve seen in earlier chapters. It’s a powerful
demonstration of how parallelism and concurrency allow us to tackle problems
that would otherwise be intractable.

In the last chapter, we’ll review what we’ve seen over the last seven weeks
and examine the broad themes that have emerged.

19. http://spark.apache.org
20. http://spark.apache.org/streaming/

Chapter 8. The Lambda Architecture • 262

report erratum  •  discusswww.finebook.ir   

http://spark.apache.org
http://spark.apache.org/streaming/
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


CHAPTER 9

Wrapping Up
Congratulations on making it through all seven weeks!

We’ve covered a great deal of ground, from the fine-grained parallelism sup-
ported by a data-parallel GPU to the massive scale of a MapReduce cluster.
Along the way, we’ve seen not only how concurrency and parallelism allow
us to exploit the power of modern multicore CPUs, but also many other benefits
of moving beyond conventional, sequential code:

• We saw how Elixir, Hadoop, and Storm all distribute computation across
a cluster of independent machines, allowing us to create solutions that
can recover when hardware fails.

• When looking at core.async, we saw how concurrency could rescue us from
the “callback hell” commonly associated with event handling.

• In the chapter on functional programming, we saw how a concurrent
solution could be both simpler and easier to understand than its
sequential equivalent.

Let’s take a look at what this means for the future.

Where Are We Going?
More than two decades ago, I predicted that parallel and distributed program-
ming were about to go mainstream, so I don’t have a fantastic track record
as a pundit. Nevertheless, I believe that the increasing importance of concur-
rency and parallelism have clear implications for the future of programming.

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


The Future Is Immutable
To my mind, one lesson shines through all others—immutability is going to
play a much larger part in the code we write in the future than it has in the
past.

Immutability is most obviously relevant to functional programming—avoiding
mutable state is what makes parallelism and concurrency so easy in functional
code. But we don’t have to write functional programs for immutability to be
beneficial. Let’s look at the evidence from the last few weeks:

• Although Clojure isn’t a pure functional language, its core data structures
are immutable and therefore persistent (as we saw in Persistent Data
Structures, on page 88). And persistent data structures allow Clojure to
support mutable references that separate identity from state, avoiding
the problems normally associated with mutable state.

• Although it’s not typically constructed using functional code at the lowest
level, immutability lies at the heart of the Lambda Architecture—by
restricting the batch layer to eternally true (immutable) raw data, we can
safely distribute that data across a cluster, process it in parallel and
recover from both technical and human faults.

• Although Elixir is not a pure functional language, its lack of mutable
variables is a key enabler for the impressive efficiency and reliability of
the Erlang virtual machine upon which it runs.

• The messages sent by both actor and CSP applications are immutable.

• Immutability is even helpful when writing threads and locks–based pro-
grams—the more data that’s immutable, the fewer locks we need and the
less we need to worry about memory visibility.

It seems clear that, even if you’re not using a functional language, the
frameworks you use and the code you write are going to be increasingly
influenced by functional principles. This is great news—not only will it make
it easier for us to exploit parallelism and concurrency, but it will make our
code simpler, easier to understand, and more reliable.

The Future Is Distributed
The primary reason for the current resurgence of interest in parallelism and
concurrency is the multicore crisis. Instead of individual cores becoming
faster, we’re seeing CPUs with more and more cores. The good news is that

Chapter 9. Wrapping Up • 264

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


we can exploit those cores by using the techniques we’ve seen over the last
few weeks.

But there’s another crisis coming our way—memory bandwidth. Current-
generation machines with two, four, or eight cores can communicate effectively
via shared memory. But what about when we have sixteen, thirty-two, or
sixty-four cores?

If the number of cores continues to increase at the current rate, shared
memory is going to become the bottleneck, which means that we’re going to
have to worry about distributed memory. The computer of the future may be
contained within a single box, but from the programmer’s point of view it’s
likely to look more like a cluster of independent computers.

This makes it inevitable, I think, that techniques based on message passing,
like actors and CSP, will become more important over time.

You won’t be surprised to hear that the last seven weeks haven’t been a
completely exhaustive exploration of your options when it comes to concurrent
and parallel development. So what didn’t we cover?

Roads Not Taken
One of the hardest decisions we had to make when creating this book was
what to leave out. Here’s a quick summary of the roads we didn’t take, as
well as some pointers if you want to investigate them yourself.

Fork/Join and Work-Stealing
Fork/Join is an approach to parallelism popularized by the Cilk language,1

a parallel variant of C/C++, but implementations are now available for many
environments, including Java.2 Fork/Join is particularly suited to divide-and-
conquer algorithms, such as those we saw in Divide and Conquer, on page
67 (indeed, Clojure’s reducers make use of Java’s Fork/Join framework under
the hood).

Fork/Join implementations typically make use of work-stealing to share tasks
across a thread pool, an approach very similar to Clojure’s go blocks (see Go
Blocks, on page 157).

1. http://www.cilkplus.org
2. http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html

report erratum  •  discuss

Roads Not Taken • 265

www.finebook.ir   

http://www.cilkplus.org
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Dataflow
We briefly touched on dataflow in Dataflow, on page 73, but the subject
really deserves more discussion. The primary reason why we didn’t cover it
further is that none of the attempts to create a general-purpose dataflow
language have been particularly compelling. The best example is probably
the multiparadigm programming language Oz (part of the Mozart Programming
System).3

This doesn’t mean dataflow isn’t important, though—quite the opposite.
Dataflow-based parallelism is extremely heavily used in hardware design—both
VHDL and Verilog are dataflow languages.4,5

Reactive Programming
Closely related to dataflow is reactive programming, in which programs
automatically react to the propagation of changes. Interest in reactive
programming has increased recently thanks to Microsoft’s Rx (Reactive
Extensions) library and others.6,7

In this form, reactive programming has significant parallels with several of
the technologies we’ve covered, including Storm’s topologies and those based
on message passing, such as actors and CSP.

Functional Reactive Programming
Functional reactive programming is a type of reactive programming that
extends functional programming by explicitly modeling time. Elm runs in the
browser and implements a concurrent version of FRP.8 Like core.async, it pro-
vides a means to avoid the callback hell associated with handling events. Elm
is one of the languages covered in the next book in this series, Seven More
Languages in Seven Weeks [TDMD14].

Grid Computing
Grid computing is a very loosely coupled approach to building a distributed
cluster. Elements of a grid are typically very heterogeneous and geographically
distributed, potentially even joining and leaving the grid on an ad hoc basis.

3. http://mozart.github.io
4. http://en.wikipedia.org/wiki/VHDL
5. http://en.wikipedia.org/wiki/Verilog
6. https://rx.codeplex.com
7. https://github.com/Netflix/RxJava
8. http://elm-lang.org

Chapter 9. Wrapping Up • 266

report erratum  •  discusswww.finebook.ir   

http://mozart.github.io
http://en.wikipedia.org/wiki/VHDL
http://en.wikipedia.org/wiki/Verilog
https://rx.codeplex.com
https://github.com/Netflix/RxJava
http://elm-lang.org
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


The best known example of grid computing is probably the SETI@Home
project, which allows anyone to donate computing power to a number of
projects.9

Tuple Spaces
A tuple space is a form of distributed associative memory that can be used
to implement interprocess communication. Tuple spaces were first introduced
in the Linda coordination language (which, incidentally, was the subject of
my PhD thesis back in the early 1990s), and there are several tuple space-
based systems under active development.10,11,12

Over to You
I’m a car nut, so the metaphors I’ve used at the start of each chapter have
all been automotive. Like vehicles, programming problems come in a huge
range of shapes and sizes. Whether you work on the computing equivalent
of a lightweight bespoke racer, a mass-produced family sedan, or a heavy
truck, the one thing I can say with confidence is that parallelism and concur-
rency will be increasingly important.

It’s my sincere hope that, whether or not you use any of them directly, the dif-
ferent approaches and technologies we’ve seen over the last seven weeks will
inspire you to tackle your future projects with confidence. Drive (thread-)safely!

9. http://setiathome.ssl.berkeley.edu
10. http://en.wikipedia.org/wiki/Linda_(coordination_language)
11. http://river.apache.org/
12. https://github.com/vjoel/tupelo

report erratum  •  discuss

Over to You • 267

www.finebook.ir   

http://setiathome.ssl.berkeley.edu
http://en.wikipedia.org/wiki/Linda_(coordination_language)
http://river.apache.org/
https://github.com/vjoel/tupelo
http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Bibliography
[Arm13] Joe Armstrong. Programming Erlang: Software for a Concurrent World. The

Pragmatic Bookshelf, Raleigh, NC and Dallas, TX, Second, 2013.

[Goe06] Brian Goetz. Java Concurrency in Practice. Addison-Wesley, Reading, MA,
2006.

[HB12] Stuart Halloway and Aaron Bedra. Programming Clojure. The Pragmatic
Bookshelf, Raleigh, NC and Dallas, TX, Second, 2012.

[MD14] Jack Moffitt and Fred Daoud. Seven Web Frameworks in Seven Weeks:
Adventures in Better Web Apps. The Pragmatic Bookshelf, Raleigh, NC and
Dallas, TX, 2014.

[MW14] Nathan Marz and James Warren. Big Data: Principles and best practices
of scalable realtime data systems. Manning Publications Co., Greenwich,
CT, 2014.

[RW12] Eric Redmond and Jim R. Wilson. Seven Databases in Seven Weeks: A
Guide to Modern Databases and the NoSQL Movement. The Pragmatic
Bookshelf, Raleigh, NC and Dallas, TX, 2012.

[Tat10] Bruce A. Tate. Seven Languages in Seven Weeks: A Pragmatic Guide to
Learning Programming Languages. The Pragmatic Bookshelf, Raleigh, NC
and Dallas, TX, 2010.

[TDMD14] Bruce A. Tate, Fred Daoud, Jack Moffitt, and Ian Dees. Seven More Lan-
guages in Seven Weeks. The Pragmatic Bookshelf, Raleigh, NC and Dallas,
TX, 2014.

[Tho14] David Thomas. Programming Elixir: Functional |> Concurrent |> Pragmatic
|> Fun. The Pragmatic Bookshelf, Raleigh, NC and Dallas, TX, 2014.

report erratum  •  discusswww.finebook.ir   

http://pragprog.com/titles/pb7con/errata/add
http://forums.pragprog.com/forums/pb7con
http://www.finebook.ir/../


Index
SYMBOLS
!, 105, 165

!!, 165

#(…), 61, 93

#{…}, 118

& (Clojure), 111

&(…), 124

-> (Elixir), 118

. (ClojureScript), 180, 184

. (Elixir), 125

>! and <!, 159

>!! and <!!, 155

@
with agents, 97
with atoms, 86
with futures, 74
with refs, 101

[…], 52

^, 120

{...}
in Clojure, 53
in Elixir, 116

A
ACID properties, 102

actor model, 115, 151–152,
see also processors (Elixir)

vs. CSP model, 185

add-watch, 93

agent-error, 100

agents, 97–101
vs. actors, 98
and error handling, 99–

100

Akka library, 114, 152

alien methods, 18–20

alt! macro, 166–167

alt!! macro, 168

alter, 102

Amazon EMR, 225, 231–233

anonymous functions
in Clojure, 61
in Elixir, 124

Apache Spark, 262

apply, 55, 111

arithmetic logic units, 191–
192

array literals (Clojure), 52

ArrayBlockingQueue class, 37

assoc, 57, 109

async-into, 157

async/merge, 176

asynchronous IO, 171–174

atom, 86–87

atomic read-modify-write, 41

atomic variables
in Clojure, 86–88, 92–93
in Java, 30–31

AtomicInteger class, 31

await (Clojure), 99

await (Java), 28

B
barriers (OpenCL), 208

batch layer, 224, 240–245, 
247

batch views, 240–245

behaviours, 139

Big Data, 223
and Lambda Architec-

ture, 239–240
and database problems,

237–239

bit-level parallelism, 3

bolts, 254–255, 257–258

buffers
in OpenCL, 195–196
in OpenGL, 213–214

C
C#, 187

chan, 155

channels
buffered, 155, 157, 176
closing, 156
creating, 154–155
multiple, 166
operations over, 161–164
polling, 168–171
reading/writing, 155, 

159–160
unbuffered, 155

Cilk, 265

clBuildProgram, 195

clCreateCommandQueue, 195

clCreateContext, 194, 199

clCreateKernel, 195

clGetDeviceIDs, 194, 198

clGetDeviceInfo(), 204

clGetPlatformIDs(), 194

clSetKernelArg, 196

clSetKernelArg(), 209

clj-http library, 80

Clojure
and tail-call elimination,

112

www.finebook.ir   

http://www.finebook.ir/../


atomic variables, 86–88, 
92–93

ClojureScript, 177–180
dynamic typing, 83
identity values, 55
macros, 159, 168–171
mutable data in, 88–90, 

93–96
persistent data struc-

tures, 88–91
syntax overview, 52–53

ClojureScript, 177–180

close!, 156

clusters
with Amazon EMR, 231–

233
with Apache Spark, 262
local, 141–144, 260

collections
in Clojure, 54, 57, 64–

65, 90
in Elixir, 125–126

combiners, 234

commute, 103

compare-and-set!, 112

compiler optimization, 14

Compojure library, 77

concurrent maps, 40–41

concurrent programs
and concurrent problems,

6
and immutable data, 49, 

91
and nondeterminism, 3
and optimization, 13–15
distribution, 6, 141–144, 

151
languages, 1, 47
vs. parallel programs, 1–

3
resilience, 6, 149–150
responsiveness, 6
transactions, 101–105

concurrent queues, 37

ConcurrentHashMap class, 40–41

ConcurrentLinkedQueue class, 38

constants (Clojure), 52

contexts, (OpenCL), 194

control structures (Clojure),
52

CopyOnWriteArrayList, 34–35

core.async library, 154, 187

CSP model, 153, see al-
so channels

vs. actor model, 185
client-side, 177–180

CUDA, 221

D
data

immutable, 240, 247, 
264

raw vs. derived, 239–240

data parallelism, 4, 189–192, 
206–211

database drawbacks, 237–
239

dataflow programming, 73–
75, 266

deadlock
and interruptible locks,

23
and livelock, 24
in Java, 15–20, 23

defensive copy, 19

defensive programming, 135–
136

defn, 53, 66

delay, 80

deliver, 74, 77

deref
with agents, 97
with atoms, 86
with futures, 74
with refs, 101

Dict.put(), 127

dining philosophers
in Clojure (atomic), 109–

110
in Clojure (STM), 107–

108
in Java, 16–18, 23–24, 

28–30

DirectCompute, 221

distributed memory, 4

distributed programs, 6, 141–
144, 151, 264–266

doc-strings (Clojure), 111

doseq, 76

dosync, 102

dot special form (Clojure-
Script), 180, 184

drivers (Hadoop), 229

dropping buffers, 157

E
elastic-mapreduce, 232

ElephantDB, 246

Elixir, 115
actors vs. processes, 116
creating APIs, 121–122
dictionaries, 127
distributed programs,

141–144
fault detection, 130–136
functions, 124, 138–139
messages, 117–118, 122–

123, 134, 143
parallelism, 125–126
pattern matching, 138–

139
processes, 117, 119–120
recursion, 118–119

ensure, 108

Erlang language, 115, 139, 
152

Erlang nodes, 141–144

error handling
in Clojure agents, 99–100
in Elixir processes, 130–

136
in OpenCL, 198

Error Kernel pattern, 134–
135

evaluation order
and concurrent pro-

grams, 13–15
and functional programs,

71–73

event handling
and global state, 158
in ClojureScript, 180–

182, 184–185

F
F#, 187

fault tolerance
and Hadoop clusters, 236
and human error, 238
in Elixir processes, 130–

136
in Storm, 255

filter< function, 162

fold, 55
and parallelism, 67–70

Fork/Join, 265

frequencies, 57
and parallelism, 69

Index • 272

www.finebook.ir   

http://www.finebook.ir/../


functional programs
and parallelism, 71–73, 

82–83
defined, 49
languages, 84
sum of numbers, 53–54
Wikipedia word counting,

56–59

functional reactive program-
ming, 266

functions
in Clojure, 53
in Elixir, 117
first-class, 124
transaction-safe, 105
unused parameters, 66, 

140

futures, 74–75

G
GenServer, 139–140

get (Clojure), 57

get_global_id(), 201–202

get_global_size(), 203

get_local_id(), 210

get_local_size(), 210

glBindBuffer(), 214

glBufferData(), 214

glGenBuffers(), 214

go blocks, 157–161

Go language, 154

go macro, 159

Google Closure library, 179, 
181

GPGPU programming, 189–
196

graphics processing, 190, 213

grid computing, 266–267

guard clauses (Elixir), 149

H
Hadoop

and XML files, 233
combiners, 234
distributed file system,

236
drivers, 229
mappers, 227–229, 243
on Amazon EMR, 231–

233
overview, 226–227
reducers, 227, 229, 244–

245
running locally, 230

sorting results, 231
version numbering, 226

hardware optimization, 14

HashDict.new, 127

Haskell, 83–84, 114

http-kit library, 172

I
immutability, 240, 264

in Clojure, 49, 91
in Elixir, 264
in Lambda Architecture,

247, 264

imperative languages, 86
identity vs. state, 91

index buffers, 214

instruction-level parallelism,
3

intrinsic locks, 13, 17, 21–22

is-sentence?, 79

iterate, 60

J
Java 8, 84

java.util.concurrent
atomicity, 30–31
enhanced locking, 21–30

JavaScript
callbacks, 182–185
vs. ClojureScript, 178–

180

Jetty web server, 77

Joda-Time library, 243–244

JVM optimization, 14

K
kernels (OpenCL), 193–196, 

201

keywords
in Clojure, 53
in Elixir, 116

L
Lambda Architecture, 223, 

264
batch layer, 224, 240–

245
serving layer, 246–247
speed layer, 224, 249–

253

lazy sequences, 59–60, 71

Lightweight Java Graphics
Library (LWJGL), 212–213

Linda language, 267

listen function, 181

listeners, 18–20, 34

livelock, 24

lock striping, 40

lockInterruptibly(), 23

locks
vs. atomic variables, 31
with conditional vari-

ables, 28–30
hand-over-hand locking,

25–27
interruptible, 23
intrinsic, in Java, 13–15, 

17, 21–22
multiple, 15–18
ordering, 17–18
with timeouts, 23–24

loop macro, 112

loop_system(), 132

M
Mahout, 233

mailboxes (Elixir), 117

make-reducer (Clojure), 67

make-ref() (Elixir), 149

map (Clojure), 58

map literals (Clojure), 53

map() (Elixir), 125

map< (Clojure), 162

mapcat (Clojure), 58

mapcat< (Clojure), 162

mappers (Hadoop), 227–229, 
243

MapReduce, 224
and immutable data, 240
Hadoop implementation,

226–235

mathematical operators (Clo-
jure), 52

matrix multiplication, 201–
203

memory models, 4
C and C++, 47
OpenCL, 206

memory visibility
in Java, 15
in OpenCL, 209

merge-with, 62

messages
in CSP, 154–157
in Elixir, 117–118, 122–

123, 134, 143

multicore crisis, 1

Index • 273

www.finebook.ir   

http://www.finebook.ir/../


multiple locks, 15–18

multithreaded code,
see threads

mutable state, 49, see also im-
mutability

in actor model, 115
in Clojure, 85–88
escaped, in Java, 51–52
hidden, in Java, 50–51

mutual exclusion, 9, 12, see
also locks

N
Nemerle, 187

nodes (Erlang), 141–144

nondeterminism
and concurrent pro-

grams, 3
and parallel programs, 82

O
occam language, 187

onto-chan, 157

OpenCL, 189
accessing OpenGL

buffers, 215
barrier, 208
buffers, 195–196
contexts, 194
CPU support, 205
error handling, 198
kernels, 193–196, 201
language bindings, 194
memory model, 206, 209
multiple return values,

198
platform model, 205
profiling, 196–197
querying device info,

204–205
work-groups, 205, 209–

211
work-items, 192, 201, 

205

OpenGL, 213–214

optimization
and OpenCL, 193, 220
and concurrent pro-

grams, 13–15

OTP library, 138–142

Oz language, 266

P
parallel architectures

bit-level parallelism, 3
data parallelism, 4

distributed memory vs.
shared, 4

instruction-level paral-
lelism, 3

multiple ALUs, 191–192
pipelining, 190–191
task-level parallelism, 4

parallel programs
and nondeterminism, 82
and threaded code, 42, 

45
in Clojure, 55, 61–64, 67–

70
vs. concurrent programs,

1–3
in Elixir, 125–126
granularity, 192
with Hadoop, 227–235, 

243–245
in Java, 36–43
in OpenCL, 192–200, 

206–211, 216–218
performance curves, 43

parallelism, see also data
parallelism

and Big Data, 223
and CSP model, 186
and actor model, 152
and functional programs,

71–73
dataflow programming,

73–75, 266
Fork/Join, 265
reactive programming,

266
in Storm, 259

parking, 159

partial, 58

partition-all, 64

persistent data structures
in Clojure, 88–91
identity vs. state, 91
in nonfunctional lan-

guages, 91

pipelining, 190–191

pmap, 61

poison-pill tokens, 38

polling (CSP), 168–171, 173

polymorphic dispatch, 65

process identifiers (Elixir),
117

Process.register(), 123

processes (Elixir), 123–124
fault detection, 130–136
linking, 119–120, 130–

134

maintaining state, 120–
121

spawning, 117
supervisors, 132–134, 

141
workers, 141, 147

producer-consumer pattern,
36–40

multiple consumers, 39–
43

promises, 74, 76

protocols (Clojure), 65–67

pseudo-variables, 121

put! (Clojure), 172

putIfAbsent(), 41

R
race conditions, 12, 14

range, 59

re-seq, 78

reactive programming, 266

receive, 118, 134

recipes (Clojure), 65

recur macro, 112

recursion
in Clojure, 54
in Elixir, 118–120

reduce (Clojure), 54

reducers
in Clojure, 64–67
in Hadoop, 227, 229, 

244–245
OpenCL implementation,

206–211

reducibles (Clojure), 64

reductions (Clojure), 79

ReentrantLock class
conditional variables, 28–

30
hand-over-hand locking,

25–27
interruptible locks, 23
vs. synchronized, 21

ref-set, 102

referential transparency, 72

refs (Clojure), 101–105

reification
of protocols, 66
of timeouts, 167–168

remove< function, 164

RenderScript Computation,
221

replace(), 41

Index • 274

www.finebook.ir   

http://www.finebook.ir/../


:require-macros (ClojureScript),
179

reset!, 87

restart strategies, 141

restart-agent, 100

Rome library, 173

RSS word counter, 171–176

S
s-expressions, 52

Scala, 187

Schejulure library, 95

send (Clojure), 97, 105

send() (Elixir), 117, 123

send-off (Clojure), 99

send-via (Clojure), 99

sentence-join, 79

serving layer, 246–247

shared memory, 4
mutual exclusion via

locks, 10–15

shuffle phase, 227

sieve of Eratosthenes, 162–
164

simulations, 220

sliding buffers, 157

software transactional memo-
ry (STM)

vs. atoms, 110
in Clojure, 101–105
languages, 114

spawn(), 117, 121

spawn-link(), 119

speed layer
ping-pong, 252
synchronous vs. asyn-

chronous, 250–251

spouts, 253, 256–257

Storm
bolts, 254–255, 257–258
fault tolerance, 255
overview, 253–255
spouts, 253, 256–257

stream grouping, 260

string interpolation (Elixir),
118

structure sharing, 89–90

supervisors, 132–134
with OTP, 141
restart strategies, 141

swap!, 86, 110
retrying, 92

synchronization
with barriers, 208
with Java intrinsic locks,

13, 15, 17, 21
with java.util.concurrent, 21–

31, 39
lock-free, 31

synchronizedMap(), 39

system processes (Elixir),
132–134

T
tail-call elimination

and Clojure, 112
in Elixir, 119

task-level parallelism, 4

thread pools, 34, 40

threads
and CSP channels, 155, 

159
and ClojureScript, 178–

180
and distributed memory,

45
and multiple cores, 40–42
and parallelism, 45
in Clojure, 74–75, 98–99, 

104, 107–110
efficiency , 45
in Java, 10–15, 33–34, 

36–38, 50–52
in the JVM, 47
maintaining threaded

code, 46
managing contention,

40, 42
testing threaded code, 45

timeouts
in Elixir, 133
on agent actions, 99
on channels, 167–168
on locks (Java), 23–24

to-chan, 162

topologies (Storm), 254, 258

transactions (Clojure), 101–
105

:trap_exit, 119, 130, 132

tryLock(), 24

tuple spaces, 267

tuples
in Elixir, 116
in Storm, 253

U
Useful library, 95

V
validators (Clojure), 92, 99

vector literals (Clojure), 52

vertex buffers, 213

volatile, 31

Voldemort, 246

W
watchers, 92, 99

water-ripples simulation,
212–218

web services, 75–81, 93–96

Wikipedia contributor counts,
241–247, 256–260

Wikipedia word counting, 35–
43

distributed, in Elixir,
145–150

functional program, 56–
59

parallelized, in Clojure,
61–64

parallelized, with Hadoop,
227–235

Wizard pattern, 183–185

work-groups, 205
using multiple, 209–211

work-items, 192, 201, 205

workers
in Elixir, 141
in Storm, 254

X
xmerl library, 148

Y
yield(), 11

Index • 275

www.finebook.ir   

http://www.finebook.ir/../


More Seven in Seven
See what the rest of the world is doing with this introductions to seven different programming
language approaches.

Seven Languages in Seven Weeks
You should learn a programming language every year,
as recommended by The Pragmatic Programmer. But
if one per year is good, how about Seven Languages in
Seven Weeks? In this book you’ll get a hands-on tour
of Clojure, Haskell, Io, Prolog, Scala, Erlang, and Ruby.
Whether or not your favorite language is on that list,
you’ll broaden your perspective of programming by
examining these languages side-by-side. You’ll learn
something new from each, and best of all, you’ll learn
how to learn a language quickly.

Bruce A. Tate
(330 pages) ISBN: 9781934356593. $34.95
http://pragprog.com/book/btlang

Seven More Languages in Seven Weeks
Great programmers aren’t born—they’re made. The
industry is moving from object-oriented languages to
functional languages, and you need to commit to radi-
cal improvement. New programming languages arm
you with the tools and idioms you need to refine your
craft. While other language primers take you through
basic installation and “Hello, World,” we aim higher.
Each language in Seven More Languages in Seven
Weeks will take you on a step-by-step journey through
the most important paradigms of our time. You’ll learn
seven exciting languages: Lua, Factor, Elixir, Elm,
Julia, MiniKanren, and Idris.

Bruce Tate, Fred Daoud, Jack Moffitt, Ian Dees
(350 pages) ISBN: 9781941222157. $38
http://pragprog.com/book/7lang

www.finebook.ir   

http://pragprog.com/book/btlang
http://pragprog.com/book/7lang
http://www.finebook.ir/../


Even More Seven in Seven
There’s so much new to learn with the latest crop of NoSQL databases and web frameworks.
Start here.

Seven Databases in Seven Weeks
Data is getting bigger and more complex by the day,
and so are your choices in handling it. From traditional
RDBMS to newer NoSQL approaches, Seven Databases
in Seven Weeks takes you on a tour of some of the
hottest open source databases today. In the tradition
of Bruce A. Tate’s Seven Languages in Seven Weeks,
this book goes beyond your basic tutorial to explore
the essential concepts at the core of each technology.

Eric Redmond and Jim R. Wilson
(354 pages) ISBN: 9781934356920. $35
http://pragprog.com/book/rwdata

Seven Web Frameworks in Seven Weeks
Whether you need a new tool or just inspiration, Seven
Web Frameworks in Seven Weeks explores modern
options, giving you a taste of each with ideas that will
help you create better apps. You’ll see frameworks that
leverage modern programming languages, employ
unique architectures, live client-side instead of server-
side, or embrace type systems. You’ll see everything
from familiar Ruby and JavaScript to the more exotic
Erlang, Haskell, and Clojure.

Jack Moffitt, Fred Daoud
(302 pages) ISBN: 9781937785635. $38
http://pragprog.com/book/7web

www.finebook.ir   

http://pragprog.com/book/rwdata
http://pragprog.com/book/7web
http://www.finebook.ir/../


Clojure and Functional Patterns
Get up to speed on all that Clojure has to offer, and fine-tune your object thinking into a
more functional style.

Programming Clojure (2nd edition)
If you want to keep up with the significant changes in
this important language, you need the second edition
of Programming Clojure. Stu and Aaron describe the
modifications to the numerics system in Clojure 1.3,
explain new Clojure concepts such as Protocols and
Datatypes, and teach you how to think in Clojure.

Stuart Halloway and Aaron Bedra
(296 pages) ISBN: 9781934356869. $35
http://pragprog.com/book/shcloj2

Functional Programming Patterns in Scala and Clojure
Solve real-life programming problems with a fraction
of the code that pure object-oriented programming re-
quires. Use Scala and Clojure to solve in-depth prob-
lems and see how familiar object-oriented patterns can
become more concise with functional programming
and patterns. Your code will be more declarative, with
fewer bugs and lower maintenance costs.

Michael Bevilacqua-Linn
(250 pages) ISBN: 9781937785475. $36
http://pragprog.com/book/mbfpp

www.finebook.ir   

http://pragprog.com/book/shcloj2
http://pragprog.com/book/mbfpp
http://www.finebook.ir/../


The Joy of Math and Healthy Programming
Rediscover the joy and fascinating weirdness of pure mathematics, and learn how to take
a healthier approach to programming.

Good Math
Mathematics is beautiful—and it can be fun and excit-
ing as well as practical. Good Math is your guide to
some of the most intriguing topics from two thousand
years of mathematics: from Egyptian fractions to Tur-
ing machines; from the real meaning of numbers to
proof trees, group symmetry, and mechanical compu-
tation. If you’ve ever wondered what lay beyond the
proofs you struggled to complete in high school geom-
etry, or what limits the capabilities of the computer on
your desk, this is the book for you.

Mark C. Chu-Carroll
(282 pages) ISBN: 9781937785338. $34
http://pragprog.com/book/mcmath

The Healthy Programmer
To keep doing what you love, you need to maintain
your own systems, not just the ones you write code
for. Regular exercise and proper nutrition help you
learn, remember, concentrate, and be creative—skills
critical to doing your job well. Learn how to change
your work habits, master exercises that make working
at a computer more comfortable, and develop a plan
to keep fit, healthy, and sharp for years to come.

This book is intended only as an informative guide for
those wishing to know more about health issues. In no
way is this book intended to replace, countermand, or
conflict with the advice given to you by your own
healthcare provider including Physician, Nurse Practi-
tioner, Physician Assistant, Registered Dietician, and
other licensed professionals.

Joe Kutner
(254 pages) ISBN: 9781937785314. $36
http://pragprog.com/book/jkthp

www.finebook.ir   

http://pragprog.com/book/mcmath
http://pragprog.com/book/jkthp
http://www.finebook.ir/../


The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
http://pragprog.com/book/pb7con
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: http://pragprog.com/book/pb7con

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://pragprog.com/write-for-usWrite for Us:

+1 800-699-7764Or Call:

www.finebook.ir   

http://pragprog.com/book/pb7con
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/book/pb7con
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us
http://www.finebook.ir/../

	Cover
	Table of Contents
	Foreword
	Acknowledgments
	Preface
	About This Book
	What This Book Is Not
	Example Code
	Online Resources

	1. Introduction
	Concurrent or Parallel?
	Parallel Architecture
	Concurrency: Beyond Multiple Cores
	The Seven Models

	2. Threads and Locks
	The Simplest Thing That Could Possibly Work
	Day 1: Mutual Exclusion and Memory Models
	Day 2: Beyond Intrinsic Locks
	Day 3: On the Shoulders of Giants
	Wrap-Up

	3. Functional Programming
	If It Hurts, Stop Doing It
	Day 1: Programming Without Mutable State
	Day 2: Functional Parallelism
	Day 3: Functional Concurrency
	Wrap-Up

	4. The Clojure Way—Separating Identity from State
	The Best of Both Worlds
	Day 1: Atoms and Persistent Data Structures
	Day 2: Agents and Software Transactional Memory
	Day 3: In Depth
	Wrap-Up

	5. Actors
	More Object-Oriented than Objects
	Day 1: Messages and Mailboxes
	Day 2: Error Handling and Resilience
	Day 3: Distribution
	Wrap-Up

	6. Communicating Sequential Processes
	Communication Is Everything
	Day 1: Channels and Go Blocks
	Day 2: Multiple Channels and IO
	Day 3: Client-Side CSP
	Wrap-Up

	7. Data Parallelism
	The Supercomputer Hidden in Your Laptop
	Day 1: GPGPU Programming
	Day 2: Multiple Dimensions and Work-Groups
	Day 3: OpenCL and OpenGL—Keeping It on the GPU
	Wrap-Up

	8. The Lambda Architecture
	Parallelism Enables Big Data
	Day 1: MapReduce
	Day 2: The Batch Layer
	Day 3: The Speed Layer
	Wrap-Up

	9. Wrapping Up
	Where Are We Going?
	Roads Not Taken
	Over to You

	Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Y –


