

DISTRIBUTED SYSTEMS

Second Edition

About the Authors

Andrew S. Tanenbaum has an S.B. degree from M.LT. and a Ph.D. from the University
of California at Berkeley. He is currently a Professor of Computer Science at the Vrije
Universiteit in Amsterdam, The Netherlands, where he heads the Computer Systems
Group. Until stepping down in Jan. 2005, for 12 years he had been Dean of the Advanced
School for Computing and Imaging, an interuniversity graduate school doing research on
advanced parallel, distributed, and imaging systems.

In the past. he has done research on compilers, operating systems, networking, and
local-area distributed systems. His current research focuses primarily on computer secu-
rity, especially in operating systems, networks, and large wide-area distributed systems.
Together, all these research projects have led to over 125 refereed papers in journals and
conference proceedings and five books, which have been translated into 21 languages.

Prof. Tanenbaum has also produced a considerable volume of software. He was the
principal architect of the Amsterdam Compiler Kit, a toolkit for writing portable com-
pilers, as well as of MINIX, a small UNIX clone aimed at very high reliability. It is avail-
able for free at www.minix3.org.This system provided the inspiration and base on which
Linux was developed. He was also one of the chief designers of Amoeba and Globe.

His Ph.D. students have gone on to greater glory after getting their degrees. He is
very proud of them. In this respect he resembles a mother hen.

Prof. Tanenbaum is a Fellow of the ACM, a Fellow of the the IEEE, and a member of
the Royal Netherlands Academy of Arts and Sciences. He is also winner of the 1994
ACM Karl V. Karlstrom Outstanding Educator Award, winner of the 1997 ACM/SIGCSE
Award for Outstanding Contributions to Computer Science Education, and winner of the
2002 Texty award for excellence in textbooks. In 2004 he was named as one of the five
new Academy Professors by the Royal Academy. His home page is at www.cs.vu.nl/r-ast.

Maarten van Steen is a professor at the Vrije Universiteit, Amsterdam, where he teaches
operating systems, computer networks, and distributed systems. He has also given various
highly successful courses on computer systems related subjects to ICT professionals from
industry and governmental organizations.

Prof. van Steen studied Applied Mathematics at Twente University and received a
Ph.D. from Leiden University in Computer Science. After his graduate studies he went to
work for an industrial research laboratory where he eventually became head of the Com-
puter Systems Group, concentrating on programming support for parallel applications.

After five years of struggling simultaneously do research and management, he decided
to return to academia, first as an assistant professor in Computer Science at the Erasmus
University Rotterdam, and later as an assistant professor in Andrew Tanenbaum's group at
the Vrije Universiteit Amsterdam. Going back to university was the right decision; his
wife thinks so, too.

His current research concentrates on large-scale distributed systems. Part of his
research focuses on Web-based systems, in particular adaptive distribution and replication
in Globule, a content delivery network of which his colleague Guillaume Pierre is the chief
designer. Another subject of extensive research is fully decentralized (gossip-based) peer-
to-peer systems of which results have been included in Tribler, a BitTorrent application
developed in collaboration with colleagues from the Technical University of Delft.

http://www.minix3.org.This
http://www.cs.vu.nl/r-ast.

DISTRIBUTED SYSTEMS

Second Edition '

Andrew S.Tanenbaum
Maarten Van Steen

Upper Saddle River, NJ 07458

Library of Congress Ca.aloging-in.Public:ation Data

Tanenbaum. Andrew S.
Distributed systems: principles and paradigms I Andrew S. Tanenbaum, Maarten Van Steen.

p. em.
Includes bibliographical references and index.
ISBN 0-13-239227-5
1. Electronic data processing--Distributed processing. 2. Distributed operating systems (Computers) I. Steen,
Maarten van. II. Title.
QA 76.9.D5T36 2006
005.4'476--dc22

2006024063

Vice President and Editorial Director. ECS: Marcia J. Horton
Executive Editor: Tracy Dunkelberger
Editorial Assistant: Christianna Lee
Associtate Editor: Carole Stivder
Executive Managing Editor: 'Vince O'Brien
Managing Editor: Csmille Tremecoste
Production Editor: Craig Little
Director of Creative Services: Paul Belfanti
Creative Director: Juan Lopez
Art Director: Heather Scott
Cover Designer: Tamara Newnam
Art Editor: Xiaohong Zhu
Manufacturing Manager, ESM: Alexis Heydt-Long
Manufacturing Buyer: Lisa McDowell
Executive Marketing Manager: Robin O'Brien
Marketing Assistant: Mack Patterson

© 2007 Pearson Education. Inc.
Pearson Prentice Hall
Pearson Education, Inc.
Upper Saddle River, NJ 07458

All rights reserved. No part of this book may be reproduced in any form or by any means, without permission in
writing from the publisher.

Pearson Prentice Hall~ is a trademark of Pearson Education, Inc.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The author and
publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation
contained in this book. The author and publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN: 0-13-239227-5

Pearson Education Ltd., London
Pearson Education Australia Pty. Ltd., Sydney
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd., Hong Kong
Pearson Education Canada, Inc., Toronto
Pearson Educaci6n de Mexico, S.A. de C.V.
Pearson Education-Japan, Tokyo
Pearson Education Malaysia, Pte. Ltd.
Pearson Education, Inc., Upper Saddle River, New Jersey

To Suzanne, Barbara, Marvin, and the memory of Bram and Sweetie 1t

-AST

To Marielle, Max, and Elke
-MvS

CONTENTS

PREFACE xvii

1 INTRODUCTION 1

1.1 DEFINITION OF A DISTRIBUTED SYSTEM 2

1.2 GOALS 3
1.2.1 Making Resources Accessible 3
1.2.2 Distribution Transparency 4
1.2.3 Openness 7
1.2.4 Scalability 9
1.2.5 Pitfalls 16

1.3 TYPES OF DISTRIBUTED SYSTEMS 17
1.3.1 Distributed Computing Systems 17
1.3.2 Distributed Information Systems 20
1.3.3 Distributed Pervasive Systems 24

1.4 SUMMARY 30

2 ARCHITECTURES 33

2.1 ARCHITECTURAL STYLES 34

2.2 SYSTEM ARCHITECTURES 36
2.2.1 Centralized Architectures 36
2.2.2 Decentralized Architectures 43
2.2.3 Hybrid Architectures 52

2.3 ARCHITECTURES VERSUS MIDDLEWARE 54
2.3.1 Interceptors 55
2.3.2 General Approaches to Adaptive Software 57
2.3.3 Discussion 58

vii

viii CONTENTS

2.4 SELF-MANAGEMENT IN DISTRIBUTED SYSTEMS 59
2.4.1 The Feedback Control Model 60
2.4.2 Example: Systems Monitoring with Astrolabe 61
2.4.3 Example: Differentiating Replication Strategies in Globule 63
2.4.4 Example: Automatic Component Repair Management in Jade 65

2.5 SUMMARY 66

3 PROCESSES 69
3.1 THREADS 70

3.1.1 Introduction to Threads 70
3.1.2 Threads in Distributed Systems 75

3.2 VIRTUALIZATION 79
3.2.1 The Role of Virtualization in Distributed Systems 79
3.2.2 Architectures of Virtual Machines 80

3.3 CLIENTS 82
3.3.1 Networked User Interfaces 82
3.3.2 Client-Side Software for Distribution Transparency 87

3.4 SERVERS 88
3.4.1 General Design Issues 88
3.4.2 Server Clusters 92
3.4.3 Managing Server Clusters 98

3.5 CODE MIGRATION 103-
3.5.1 Approaches to Code Migration 103
3.5.2 Migration and Local Resources 107
3.5.3 Migration in Heterogeneous Systems 110

3.6 SUMMARY 112

-4 COMMUNICATION 115

4.1 FUNDAMENTALS 116
4.1.1 Layered Protocols 116
4.1.2 Types of Communication 124

4.2 REMOTE PROCEDURE CALL 125
4.2.1 Basic RPC Operation 126
4.2.2 Parameter Passing 130

CONTENTS ix

4.2.3 Asynchronous RPC 134
4.2.4 Example: DCE RPC 135

4.3 MESSAGE-ORIENTED COMMUNICATION 140
4.3.1 Message-Oriented Transient Communication 141
4.3.2 Message-Oriented Persistent Communication 145
4.3.3 Example: ffiM's WebSphere Message-Queuing System 152

4.4 STREAM-ORIENTED COMMUNICATION 157
,4.4.1 Support for Continuous Media 158
4.4.2 Streams and Quality of Service 160
4.4.3 Stream Synchronization 163

4.5 MULTICAST COMMUNICATION 166
4.5 .1 Application-Level Multicasting 166
4.5.2 Gossip-Based Data Dissemination 170

4.6 SUMMARY 175

5 NAMING 179

5.1 NAMES, IDENTIFIERS, AND ADDRESSES 180

5.2 FLAT NAMING 182
5.2.1 Simple Solutions 183
5.2.2 Home-Based Approaches 1?6
5.2.3 Distributed Hash Tables 188
5.2.4 Hierarchical Approaches 191

5.3 STRUCTURED NAMING 195
5.3.1 Name Spaces 195
5.3.2 Name Resolution 198
5.3.3 The Implementation of a Name Space 202
5.3.4 Example: The Domain Name System 209

5.4 ATTRIBUTE-BASED NAMING 217
5.4.1 Directory Services 217
5.4.2 Hierarchical Implementations: LDAP 218
5.4.3 Decentralized Implementations 222

5.5 SUMMARY

x CONTENTS

6 SYNCHRONIZATION 231

6.1 CLOCK SYNCHRONIZATION 232
6.1.1 Physical Clocks 233
6.1.2 Global Positioning System 236
6.1.3 Clock Synchronization Algorithms 238

6.2 LOGICAL CLOCKS 244
6.2.1 Lamport's Logical Clocks 244
6.2.2 Vector Clocks 248

6.3 MUTUAL EXCLUSION 252
6.3.1 Overview 252
6.3.2 A Centralized Algorithm 253
6.3.3 A Decentralized Algorithm 254
6.3.4 A Distributed Algorithm 255
6.3.5 A Token Ring Algorithm 258
6.3.6 A Comparison of the Four Algorithms 259

6.4 GLOBAL POSITIONING OF NODES 260

6.5 ELECTION ALGORITHMS 263
6.5.1 Traditional Election Algorithms 264
6.5.2 Elections in Wireless Environments 267
6.5.3 Elections in Large-Scale Systems 269

6.6 SUMMARY 270

7 CONSISTENCY AND REPLICATION 273 -

7.1 INTRODUCTION 274
7.1.1 Reasons for Replication 274
7.1.2 Replication as Scaling Technique 275

7.2 DATA-CENTRIC CONSISTENCY MODELS 276
7.2.1 Continuous Consistency 277
7.2.2 Consistent Ordering of Operations 281

7.3 CLIENT-CENTRIC CONSISTENCY MODELS 288
7.3.1 Eventual Consistency 289
7.3.2 Monotonic Reads 291
7.3.3 Monotonic Writes 292
7.3.4 Read Your Writes 294
7.3.5 Writes Follow Reads 295

CONTENTS

7A REPLICA MAi'iAGEMENT 296
704.1 Replica-Server Placement 296
704.2 Content Replication and Placement 298
704.3 Content Distribution 302

7.5 CONSISTENCY PROTOCOLS 306
7.5.1 Continuous Consistency 306
7.5.2 Primary-Based Protocols 308
7.5.3 Replicated-Write Protocols 311
7.5 A Cache-Coherence Protocols 313
7.5.5 Implementing Client-Centric Consistency 315

7.6 SUMMARY 317

8 FAULT TOLERANCE

8.1 INTRODUCTION TO FAULT TOLERANCE 322
8.1.1 Basic Concepts 322
8.1.2 Failure Models 324
8.1.3 Failure Masking by Redundancy 326

8.2 PROCESS RESILIENCE 328
8.2.1 Design Issues 328
8.2.2 Failure Masking and Replication 330
8.2.3 Agreement in Faulty Systems 331
8.204 Failure Detection 335

8.3 RELIABLE CLIENT-SERVER COMMUNICATION 336
8.3.1 Point-to-Point Communication 337
8.3.2 RPC Semantics in the Presence of Failures 337

804 RELIABLE GROUP COMMUNICATION 343
804.1 Basic Reliable-Multicasting Schemes 343
804.2 Scalability in Reliable Multicasting 345
804.3 Atomic Multicast 348

8.5 DlSTRIBUTED COMMIT 355
8.5.1 Two-Phase Commit 355
8.5.2 Three-Phase Commit 360

8.6 RECOVERY 363
8.6.1 Introduction 363
8.6.2 Checkpointing 366

xi

321

xii CONTENTS

8.6.3 Message Logging 369
8.6.4 Recovery-Oriented Computing 372

8.7 SUMMARY 373

9 SECURITY 377

9.1 INTRODUCTION TO SECURITY 378
9.1.1 Security Threats, Policies, and Mechanisms 378
9.1.2 Design Issues 384
9.1.3 Cryptography 389

9.2 SECURE CHANNELS 396
9.2.1 Authentication 397
9.2.2 Message Integrity and Confidentiality 405
9.2.3 Secure Group Communication 408
9.2.4 Example: Kerberos 411

9.3 ACCESS CONTROL 413
9.3.1 General Issues in Access Control 414
9.3.2 Firewalls 418
9.3.3 Secure Mobile Code 420
9.3.4 Denial of Service 427

9.4 SECURITY MANAGEMENT 428
9.4.1 Key Management 428
9.4.2 Secure Group Management 433
9.4.3 Authorization Management 434

9.5 SUMMARY 439

10 DISTRIBUTED OBJECT-BASED SYSTEMS 443

10.1 ARCHITECTURE 443
10.1.1 Distributed Objects 444
10.1.2 Example: Enterprise Java Beans 446
10.1.3 Example: Globe Distributed Shared Objects 448

10.2 PROCESSES 451
10.2.1 Object Servers 451
10.2.2 Example: The Ice Runtime System 454

CONTENTS xiii

10.3 COMMUNICATION 456
10.3.1 Binding a Client to an Object 456
10.3.2 Static versus Dynamic Remote Method Invocations 458
10.3.3 Parameter Passing 460
10.3.4 Example: Java RMI 461
10.3.5 Object-Based Messaging 464

10.4 NAMING 466
10.4.1 CORBA Object References 467
10.4.2 Globe Object References 469

10.5 SYNCHRONIZATION 470

10.6 CONSISTENCY AND REPLICATION 472
10.6.1 Entry Consistency 472
10.6.2 Replicated Invocations 475

10.7 FAULT TOLERANCE 477
10.7.1 Example: Fault-Tolerant CORBA 477
10.7.2 Example: Fault-Tolerant Java 480

10.8 SECURITY 481
10.8.1 Example: Globe 482
10.8.2 Security for Remote Objects 486

10.9 SUMMARY 487

11 DISTRIBUTED FILE SYSTEMS 491

11.1 ARCHITECTURE 491
11.1.1 Client-Server Architectures 491
11.1.2 Cluster-Based Distributed File Systems 496
11.1.3 Symmetric Architectures 499

11.2 PROCESSES 501

11.3 COMMUNICATION 502
11.3.1 RPCs in NFS 502
11.3.2 The RPC2 Subsystem 503
11.3.3 File-Oriented Communication in Plan 9 505

11.4 NAMING 506
11.4.1 Naming in NFS 506
11.4.2 Constructing a Global Name Space 512

xiv CONTENTS

11.5 SYNCHRONIZATION 513
]] .5.] Semantics of File Sharing 513
] 1.5.2 File Locking 5] 6
] 1.5.3 Sharing Files in Coda 518

] 1.6 CONSISTENCY AND REPLICATION 5] 9
11.6.1 Client-Side Caching 520
11.6.2 Server-Side Replication 524
11.6.3 Replication in Peer-to-Peer File Systems 526
11.6.4 File Replication in Grid Systems 528

11.7 FAULT TOLERANCE 529
11.7.1 Handling Byzantine Failures 529
11.7.2 High Availability in Peer-to-Peer Systems 531

11.8 SECURITY 532
11.8.] Security in NFS 533
11.8.2 Decentralized Authentication 536
1] .8.3 Secure Peer-to-Peer File-Sharing Systems 539

11.9 SUMMARY 541

12 DISTRIBUTED WEB-BASED SYSTEMS 545

12.1 ARCHITECTURE 546
12.1.1 Traditional Web-Based Systems 546
12.1.2 Web Services 551

12.2 PROCESSES 554
12.2.1 Clients 554
12.2.2 The Apache Web Server 556
12.2.3 Web Server Clusters 558

12.3 COMMUNICATION 560
12.3.1 Hypertext Transfer Protocol 560
12.3.2 Simple Object Access Protocol 566

12.4 NAMING 567

12.5 SYNCHRONIZATION 569

12.6 CONSISTENCY AND REPLICATION 570
12.6.1 Web Proxy Caching 571
12.6.2 Replication for Web Hosting Systems 573
12.6.3 Replication of Web Applications 579

CONTENTS xv

12.7 FAULT TOLERANCE 582

12.8 SECURITY 584

12.9 SUMMARY 585

13 DISTRIBUTED COORDINATION-BASED 589
SYSTEMS -
13.1 INTRODUCTION TO COORDINATION MODELS -589

13.2 ARCHITECTURES 591
13.2.1 Overall Approach 592
13.2.2 Traditional Architectures 593
13.2.3 Peer-to-Peer Architectures 596
13.2.4 Mobility and 'Coordination 599

13.3 PROCESSES 601

13.4 COMMUNICATION 601
13.4.1 Content-Based Routing 601
13.4.2 Supporting Composite Subscriptions 603

13.5 NAMING 604
13.5.1 Describing Composite Events 604
13.5.2 Matching Events and Subscriptions 606

13.6 SYNCHRONIZATION 607

13.7 CONSISTENCY AND REPLICATION 607
13.7.1 Static Approaches 608
13.7.2 Dynamic Replication 611

13.8 FAULT TOLERANCE 613
13.8.1 Reliable Publish-Subscribe Communication 613
13.8.2 Fault Tolerance in Shared Dataspaces 616

13.9 SECURITY 617
13.9.1 Confidentiality 618
13.9.2 Secure Shared Dataspaces 620

13.10 SUMMARY 621

xvi CONTENTS

14 SUGGESTIONS FOR FURTHER READING 623
AND BIBLIOGRAPHY
]4.1 SUGGESTIONS FOR FURTHER READING 623

14.1.1 Introduction and General Works 623
]4.1.2 Architectures 624
14.1.3 Processes 625
14.1.4 Communication 626
14.1.5 Naming 626
14.1.6 Synchronization 627
14.1.7 Consistency and Replication 628
14.1.8 Fault Tolerance 629
14.1.9 Security 630
14.1.10 Distributed Object-Based Systems 631
14.1.11 Distributed File Systems 632
14.1.12 Distributed Web-Based Systems 632
14.1.13 Distributed Coordination-Based Systems 633

14,2 ALPHABETICAL BIBLIOGRAPHY 634

INDEX 669

PREFACE

Distributed systems form a rapidly changing field of computer science. Since
the previous edition of this book, exciting new topics have emerged such as peer-
to-peer computing and sensor networks, while others have become much more
mature, like Web services and Web applications in general. Changes such as these
required that we revised our original text to bring it up-to-date.

This second edition reflects a major revision in comparison to the previous
one. We have added a separate chapter on architectures reflecting the progress
that has been made on organizing distributed systems. Another major difference is
that there is now much more material on decentralized systems, in particular
peer-to-peer computing. Not only do we discuss the basic techniques, we also pay
attention to their applications, such as file sharing, information dissemination,
content-delivery networks, and publish/subscribe systems.

Next to these two major subjects, new subjects are discussed throughout the
book. For example, we have added material on sensor networks, virtualization,
server clusters, and Grid computing. Special attention is paid to self-management
of distributed systems, an increasingly important topic as systems continue to
scale.

Of course, we have also modernized the material where appropriate. For
example, when discussing consistency and replication, we now focus on con-
sistency models that are more appropriate for modem distributed systems rather
than the original models, which were tailored to high-performance distributed
computing. Likewise, we have added material on modem distributed algorithms,
including GPS-based clock synchronization and localization algorithms.

xvii

xviii PREFACE

Although unusual. we have nevertheless been able to reduce the total number
of pages. This reduction is partly caused by discarding subjects such as distributed
garbage collection and electronic payment protocols, and also reorganizing the
last four chapters.

As in the previous edition, the book is divided into two parts. Principles of
distributed systems are discussed in chapters 2-9, whereas overall approaches to
how distributed applications should be developed (the paradigms) are discussed in
chapters 10-13. Unlike the previous edition, however, we have decided not to dis-
cuss complete case studies in the paradigm chapters. Instead, each principle is
now explained through a representative case. For example, object invocations are
now discussed as a communication principle in Chap. 10 on object-based distri-
buted systems. This approach allowed us to condense the material, but also to
make it more enjoyable to read and study.

Of course. we continue to draw extensively from practice to explain what dis-
tributed systems are all about. Various aspects of real-life systems such as Web-
Sphere MQ, DNS, GPS, Apache, CORBA, Ice, NFS, Akamai, TIBlRendezvous.
Jini, and many more are discussed throughout the book. These examples illustrate
the thin line between theory and practice, which makes distributed systems such
an exciting field.

A number of people have contributed to this book in various ways. We would
especially like to thank D. Robert Adams, Arno Bakker, Coskun Bayrak, Jacques
Chassin de Kergommeaux, Randy Chow, Michel Chaudron, Puneet Singh
Chawla, Fabio Costa, Cong Du, Dick Epema, Kevin Fenwick, Chandan a Gamage.
Ali Ghodsi, Giorgio Ingargiola, Mark Jelasity, Ahmed Kamel, Gregory Kapfham-
mer, Jeroen Ketema, Onno Kubbe, Patricia Lago, Steve MacDonald, Michael J.
McCarthy, M. Tamer Ozsu, Guillaume Pierre, Avi Shahar, Swaminathan Sivasu-
bramanian, Chintan Shah, Ruud Stegers, Paul Tymann, Craig E. Wills, Reuven
Yagel, and Dakai Zhu for reading parts of the manuscript, helping identifying
mistakes in the previous edition, and offering useful comments.

Finally, we would like to thank our families. Suzanne has been through this
process seventeen times now. That's a lot of times for me but also for her. Not
once has she said: "Enough is enough" although surely the thought has occurred
to her. Thank you. Barbara and Marvin now have a much better idea of what
professors do for a living and know the difference between a good textbook and a
bad one. They are now an inspiration to me to try to produce more good ones
than bad ones (AST).

Because I took a sabbatical leave to update the book, the whole business of
writing was also much more enjoyable for Marielle, She is beginning to get used
to it, but continues to remain supportive while alerting me when it is indeed time
to redirect attention to more important issues. lowe her many thanks. Max and
Elke by now have a much better idea of what writing a book means, but compared
to what they are reading themselves, find it difficult to understand what is so exci-
ting about these strange things called distributed systems. I can't blame them (MvS).

1
INTRODUCTION

, Computer systems are undergoing a revolution. From 1945, when the modem
c;omputerera began, until about 1985, computers were large and expensive. Even
minicomputers cost at least tens of thousands of dollars each. As a result, most
organizations had only a handful of computers, and for lack of a way to connect
them, these operated independently from one another.

Starting around the the mid-1980s, however, two advances in technology
began to change that situation. The first was the development of powerful micro-
processors. Initially, these were 8-bit machines, but soon 16-, 32-, and 64-bit
CPUs became common. Many of these had the computing power of a mainframe
(i.e., large) computer, but for a fraction of the price.

The amount of improvement that has occurred in computer technology in the
past half century is truly staggering and totally unprecedented in other industries.
From a machine that cost 10 million dollars and executed 1 instruction per second.
we have come to machines that cost 1000 dollars and are able to execute 1 billion
instructions per second, a price/performance gain of 1013.If cars had improved at
this rate in the same time period, a Rolls Royce would now cost 1 dollar and get a
billion miles per gallon. (Unfortunately, it would probably also have a 200-page
manual telling how to open the door.)

The second development was the invention of high-speed computer networks.
Local-area networks or LANs allow hundreds of machines within a building to
be connected in such a way that small amounts of information can be transferred
between machines in a few microseconds or so. Larger amounts of data can be

1

2 INTRODUCTION CHAP.]

moved between machines at rates of 100 million to 10billion bits/sec. Wide-area
networks or WANs allow miJIions of machines all over the earth to be connected
at speeds varying from 64 Kbps (kilobits per second) to gigabits per second.

The result of these technologies is that it is now not only feasible, but easy, to
put together computing systems composed of large numbers of computers con-
nected by a high-speed network. They are usually caned computer networks or
distributed systems, in contrast to the previous centralized systems (or single-
processor systems) consisting of a single computer, its peripherals, and perhaps
some remote terminals.

1.1 DEFINITION OF A DISTRIBUTED SYSTEM

Various definitions of distributed systems have been given in the literature,
none of them satisfactory, and none of them in agreement with any of the others.
For our purposes it is sufficient to give a loose characterization:

A distributed system is a collection of independent computers that
appears to its users as a single coherent system.

This definition has several important aspects. The first one is that a distributed
system consists of components (i.e., computers) that are autonomous. A second
aspect is that users (be they people or programs) think they are dealing with a sin-
gle system. This means that one way or the other the autonomous components
need to collaborate. How to establish this collaboration lies at the heart of devel-
oping distributed systems. Note that no assumptions are made concerning the type
of computers. In principle, even within a single system, they could range from
high-performance mainframe computers to small nodes in sensor networks. Like-
wise, no assumptions are made on the way that computers are interconnected. We
will return to these aspects later in this chapter.

Instead of going further with definitions, it is perhaps more useful to concen-
trate on important characteristics of distributed systems. One important charac-
teristic is that differences between the various computers and the ways in which
they communicate are mostly hidden from users. The same holds for the internal
organization of the distributed system. Another important characteristic is that
users and applications can interact with a distributed system in a consistent and
uniform way, regardless of where and when interaction takes place.

In principle, distributed systems should also be relatively easy to expand or
scale. This characteristic is a direct consequence of having independent com-
puters, but at the same time, hiding how these computers actually take part in the
system as a whole. A distributed system will normally be continuously available,
although perhaps some parts may be temporarily out of order. Users and applica-
tions should not notice that parts are being replaced or fixed, or that new parts are
added to serve more users or applications ..

SEC. 1.1 DEFINITION OF A DISTRIBUTED SYSTEM 3

In order to support heterogeneous computers and networks while offering a
single-system view, distributed systems are often organized by means of a layer of
software-that is, logically placed between a higher-level layer consisting of users
and applications, and a layer underneath consisting of operating systems and basic
communication facilities, as shown in Fig. 1-1 Accordingly, such a distributed
system is sometimes called middleware.

Figure I-I. A distributed system organized as middleware. The middleware
layer extends over multiple machines, and offers each application the same in-
terface.

Fig. 1-1 shows four networked computers and three applications, of which ap-
plication B is distributed across computers 2 and 3. Each application is offered the
same interface. The distributed system provides the means for components of a
single distributed application to communicate with each other, but also to let dif-
ferent applications communicate. At the same time, it hides, as best and reason-
able as possible, the differences in hardware and operating systems from each ap-
plication.

1.2 GOALS
Just because it is possible to build distributed systems does not necessarily

mean that it is a good idea. After all, with current technology it is also possible to
put four floppy disk drives on a personal computer. It is just that doing so would
be pointless. In this section we discuss four important goals that should be met to
make building a distributed system worth the effort. A distributed system should
make resources easily accessible; it should reasonably hide the fact that resources
are distributed across a network; it should be open; and it should be scalable.

1.2.1 Making Resources Accessible

The main goal of a distributed system is to make it easy for the users (and ap-
plications) to access remote resources, and to share them in a controlled and effi-
cient way. Resources can be just about anything, but typical examples include

4 INTRODUCTION CHAP. 1

things like printers, computers, storage facilities, data, files, Web pages, and net-
works, to name just a few. There are many reasons for wanting to share resources.
One obvious reason is that of economics. For example, it is cheaper to let a printer
be shared by several users in a smaJl office than having to buy and maintain a sep-
arate printer for each user. Likewise, it makes economic sense to share costly re-
sources such as supercomputers, high-performance storage systems, imagesetters,
and other expensive peripherals.

Connecting users and resources also makes it easier to collaborate and ex-
change information, as is clearly illustrated by the success of the Internet with its
simple protocols for exchanging files, mail. documents, audio, and video. The
connectivity of the Internet is now leading to numerous virtual organizations in
which geographicaJJy widely-dispersed groups of people work together by means
of groupware, that is, software for coJJaborative editing, teleconferencing, and so
on. Likewise, the Internet connectivity has enabled electronic commerce allowing
us to buy and sell all kinds of goods without actually having to go to a store or
even leave home.

However, as connectivity and sharing increase, security is becoming increas-
ingly important. In current practice, systems provide little protection against
eavesdropping or intrusion on communication. Passwords and other sensitive in-
formation are often sent as cJeartext (i.e., unencrypted) through the network, or
stored at servers that we can only hope are trustworthy. In this sense, there is
much room for improvement. For example, it is currently possible to order goods
by merely supplying a credit card number. Rarely is proof required that the custo-
mer owns the card. In the future, placing orders this way may be possible only if
you can actually prove that you physicaJJy possess the card by inserting it into a
card reader.

Another security problem is that of tracking communication to build up a
preference profile of a specific user (Wang et aI., 1998). Such tracking explicitly
violates privacy, especially if it is done without notifying the user. A related prob-
lem is that increased connectivity can also lead to unwanted communication, such
as electronic junk mail, often called spam. In such cases, what we may need is to
protect ourselves using special information filters that select incoming messages
based on their content.

1.2.2 Distribution Transparency

An important goal of a distributed system is to hide the fact that its processes
and resources are physically distributed across multiple computers. A distributed
system that is able to present itself to users and applications as if it were only a
single computer system is said to be transparent. Let us first take a look at what
kinds of transparency exist in distributed systems. After that we will address the
more general question whether transparency is always required.

SEC. 1.2 GOALS 5

Types of Transparency

The concept of transparency can be applied to several aspects of a distributed
system, the most important ones shown in Fig. 1-2.

Figure 1-2. Different forms of transparency in a distributed system (ISO, 1995).

Access transparency deals with hiding differences in data representation and
the way that resources can be accessed by users. At a basic level, we wish to hide
differences in machine architectures, but more important is that we reach agree-
ment on how data is to be represented by different machines and operating sys-
tems. For example, a distributed system may have computer systems that run dif-
ferent operating systems, each having their own file-naming conventions. Differ-
ences in naming conventions, as well as how files can be manipulated, should all
be hidden from users and applications.

An important group of transparency types has to do with the location of a re-
source. Location transparency refers to the fact that users cannot tell where a re-
source is physically located in the system. Naming plays an important role in
achieving location transparency. In particular, location transparency can be
achieved by assigning only logical names to resources, that is, names in which the
location of a resource is not secretly encoded. An example of a such a name is the
URL http://www.prenhall.com/index.html. which gives no clue about the location
of Prentice Hall's main Web server. The URL also gives no clue as to whether
index.html has always been at its current location or was recently moved there.
Distributed systems in which resources can be moved without affecting how those
resources can be accessed are said to provide migration transparency. Even
stronger is the situation in which resources can be relocated while they are being
accessed without the user or application noticing anything. In such cases, the sys-
tem is said to support relocation transparency. An example of relocation trans-
parency is when mobile users can continue to use their wireless laptops while
moving from place to place without ever being (temporarily) disconnected.

As we shall see, replication plays a very important role in distributed systems.
For example, resources may be replicated to increase availability or to improve

http://www.prenhall.com/index.html.

6 INTRODUCTION CHAP. 1

performance by placing a copy close to the place where it is accessed. Replica-
tion transparency deals with hiding the fact that several copies of a resource
exist. To hide replication from users, it is necessary that all replicas have the same
name. Consequently, a system that supports replication transparency should gen-
erally support location transparency as well, because it would otherwise be impos-
sible to refer to replicas at different locations.

We already mentioned that an important goal of distributed systems is to al-
low sharing of resources. In many cases, sharing resources is done in a coopera-
tive way, as in the case of communication. However. there are also many ex-
amples of competitive sharing of resources. For example, two independent users
may each have stored their files on the same file server or may be accessing the
same tables in a shared database. In such cases, it is important that each user does
not notice that the other is making use of the same resource. This phenomenon is
called concurrency transparency. An important issue is that concurrent access
to a shared resource leaves that resource in a consistent state. Consistency can be
achieved through locking mechanisms, by which users are, in turn, given ex-
clusive access to the desired resource. A more refined mechanism is to make use
of transactions, but as we shall see in later chapters, transactions are quite difficult
to implement in distributed systems.

A popular alternative definition of a distributed system, due to Leslie Lam-
port, is "You know you have one when the crash of a computer you've never
heard of stops you from getting any work done." This description puts the finger
on another important issue of distributed systems design: dealing with failures.
Making a distributed system failure transparent means that a user does not no-
tice that a resource (he has possibly never heard of) fails to work properly, and
that the system subsequently recovers from that failure. Masking failures is one of
the hardest issues in distributed systems and is even impossible when certain
apparently realistic assumptions are made, as we will discuss in Chap. 8. The
main difficulty in masking failures lies in the inability to distinguish between a
dead resource and a painfully slow resource. For example, when contacting a busy
Web server, a browser will eventually time out and report that the Web page is
unavailable..At that point, the user cannot conclude that the server is really down.

Degree of Transparency

Although distribution transparency is generally considered preferable for any
distributed system, there are situations in which attempting to completely hide all
distribution aspects from users is not a good idea. An example is requesting your
electronic newspaper to appear in your mailbox before 7 A.M. local time, as usual,
while you are currently at the other end of the world living in a different time
zone. Your morning paper will not be the morning paper you are used to.

Likewise, a wide-area distributed system that connects a process in San Fran-
cisco to a process in Amsterdam cannot be expected to hide the fact that Mother

SEC. 1.2 GOALS 7

Nature will not allow it to send a message from one process to the other in less
than about 35 milliseconds. In practice it takes several hundreds of milliseconds
using a computer network. Signal transmission is not only limited by the speed of
light. but also by limited processing capacities of the intermediate switches.

There is also a trade-off between a high degree of transparency and the per-
formance of a system. For example, many Internet applications repeatedly try to
contact a server before finally giving up. Consequently, attempting to mask a tran-
sient server failure before trying another one may slow down the system as a
whole. In such a case, it may have been better to give up earlier, or at least let the
user cancel the attempts to make contact

Another example is where we need to guarantee that several replicas, located
on different continents, need to be consistent all the time. In other words, if one
copy is changed, that change should be propagated to all copies before allowing
any other operation. It is clear that a single update operation may now even take
seconds to complete, something that cannot be hidden from users.

Finally, there are situations in which it is not at all obvious that hiding distri-
bution is a good idea. As distributed systems are expanding to devices that people
carry around, and where the very notion of location and context awareness is
becoming increasingly important, it may be best to actually expose distribution
rather than trying to hide it. This distribution exposure will become more evident
when we discuss embedded and ubiquitous distributed systems later in this chap-
ter. As a simple example, consider an office worker who wants to print a file from
her notebook computer. It is better to send the print job to a busy nearby printer,
rather than to an idle one at corporate headquarters in a different country.

There are also other arguments against distribution transparency. Recognizing
that full distribution transparency is simply impossible, we should ask ourselves
whether it is even wise to pretend that we can achieve it. It may be much better to
make distribution explicit so that the user and application developer are never
tricked into believing that there is such a thing as transparency. The result will be
that users will much better understand the (sometimes unexpected) behavior of a
distributed system, and are thus much better prepared to deal with this behavior.

The conclusion is that aiming for distribution transparency may be a nice goal
when designing and implementing distributed systems, but that it should be con-
sidered together with other issues such as performance and comprehensibility.
The price for not being able to achieve full transparency may be surprisingly high.

1.2.3 Openness

Another important goal of distributed systems is openness. An open distrib-
uted system is a system that offers services according to standard rules that
describe the syntax and semantics of those services. For example, in computer
networks, standard rules govern the format, contents, and meaning of messages
sent and received. Such rules are formalized in protocols. In distributed systems,

8 INTRODUCTION CHAP.]

services are generally specified through interfaces, which are often described in
an Interface Definition Language (IDL). Interface definitions written in an IDL
nearly always capture only the syntax of services. In other words, they specify
precisely the names of the functions that are available together with types of the
parameters, return values, possible exceptions that can be raised, and so on. The
hard part is specifying precisely what those services do, that is, the semantics of
interfaces. In practice, such specifications are always given in an informal way by
means of natural language.

If properly specified, an interface definition allows an arbitrary process that
needs a certain interface to talk to another process that provides that interface. It
also allows two independent parties to build completely different implementations
of those interfaces, leading to two separate distributed systems that operate in
exactly the same way. Proper specifications are complete and neutral. Complete
means that everything that is necessary to make an implementation has indeed
been specified. However, many interface definitions are not at all complete. so
that it is necessary for a developer to add implementation-specific details. Just as
important is the fact that specifications do not prescribe what an implementation
should look like: they should be neutral. Completeness and neutrality are impor-
tant for interoperability and portability (Blair and Stefani, 1998). Interoperabil-
ity characterizes the extent by which two implementations of systems or com-
ponents from different manufacturers can co-exist and work together by merely
relying on each other's services as specified by a common standard. Portability
characterizes to what extent an application developed for a distributed system A
can be executed. without modification, on a different distributed system B that
implements the same interfaces as A.

Another important goal for an open distributed system is that it should be easy
to configure the system out of different components (possibly from different de-
velopers). Also, it should be easy to add new components or replace existing ones
without affecting those components that stay in place. In other words, an open dis-
tributed system should also be extensible. For example, in an extensible system,
it should be relatively easy to add parts that run on a different operating system. or
even to replace an entire file system. As many of us know from daily practice,
attaining such flexibility is easier said than done.

Separating Policy from Mechanism

To achieve flexibility in open distributed systems, it is crucial that the system
is organized as a collection of relatively small and easily replaceable or adaptable
components. This implies that we should provide definitions not only for the
highest-level interfaces, that is, those seen"by users and applications, but also
definitions for interfaces to internal parts pJ the system and describe how those
parts interact. This approach is relatively new. Many older and even contemporary
systems are constructed using a monolithic approach in which components are

SEC. 1.2 GOALS 9

only logically separated but implemented as one. huge program. This approach
makes it hard to replace or adapt a component without affecting the entire system.
Monolithic systems thus tend to be closed instead of open.

The need for changing a distributed system is often caused by a component
that does not provide the optimal policy for a specific user or application. As an
example, consider caching in the WorId Wide Web. Browsers generally allow
users to adapt their caching policy by specifying the size of the cache, and wheth-
er a cached document should always be checked for consistency, or perhaps only
once per session. However, the user cannot influence other caching parameters,
such as how long a document may remain in the cache, or which document should
be removed when the cache fills up. Also, it is impossible to make caching deci-
sions based on the content of a document. For instance, a user may want to cache
railroad timetables, knowing that these hardly change, but never information on
current traffic conditions on the highways.

What we need is a separation between policy and mechanism. In the case of
Web caching, for example, a browser should ideally provide facilities for only
storing documents, and at the same time allow users to decide which documents
are stored and for how long. In practice, this can be implemented by offering a
rich set of parameters that the user can set (dynamically). Even better is that a
user can implement his own policy in the form of a component that can be
plugged into the browser. Of course, that component must have an interface that
the browser can understand so that it can call procedures of that interface.

1.2.4 Scalability

Worldwide connectivity through the Internet is rapidly becoming as common
as being able to send a postcard to anyone anywhere around the world. With this
in mind, scalability is one of the most important design goals for developers of
distributed systems.

Scalability of a system can be measured along at least three different dimen-
sions (Neuman, 1994). First, a system can be scalable with respect to its size,
meaning that we can easily add more users and resources to the system. Second, a
geographically scalable system is one in which the users and resources may lie far
apart. Third, a system can be administratively scalable,/~~aning that it can still be
easy to manage even if it spans many independent administrative organizations.
Unfortunately, a system that is scalable in one or more of these dimensions often
exhibits some loss of performance as the system scales up.

Scalability Problems

When a system needs to scale, very different types of problems need to be
solved. Let us first consider scaling with respect to size. If more users or resources
need to be supported, we are often confronted with the limitations of centralized

10 INTRODUCTION CHAP. 1

services, data, and algorithms (see Fig. 1-3). For example, many services are cen-
tralized in the sense that they are implemented by means of only a single server
running on a specific machine in the distributed system. The problem with this
scheme is obvious: the server can become a bottleneck as the number of users and
applications grows. Even if we have virtually unlimited processing and storage ca-
pacity, communication with that server will eventually prohibit further growth.

Unfortunately. using only a single server is sometimes unavoidable. Imagine
that we have a service for managing highly confidential information such as medi-
cal records, bank accounts. and so on. In such cases, it may be best to implement
that service by means of a single server in a highly secured separate room, and
protected from other parts of the distributed system through special network com-
ponents. Copying the server to several locations to enhance performance maybe
out of the question as it would make the service less secure.

Figure 1-3. Examples of scalability limitations.

Just as bad as centralized services are centralized data. How should we keep
track of the telephone numbers and addresses of 50 million people? Suppose that
each data record could be fit into 50 characters. A single 2.5-gigabyte disk parti-
tion would provide enough storage. But here again, having a single database
would undoubtedly saturate all the communication lines into and out of it. Like-
wise, imagine how the Internet would work if its Domain Name System (DNS)
was still implemented as a single table. DNS maintains information on millions of
computers worldwide and forms an essential service for locating Web servers. If
each request to resolve a URL had to be forwarded to that one and only DNS
server, it is dear that no one would be using the Web (which, by the way, would
solve the problem).

Finally, centralized algorithms are also a bad idea. In a large distributed sys-
tem, an enormous number of messages have tobe routed over many lines. From a
theoretical point of view, the optimal way to do this is collect complete informa-
tion about the load on all machines and lines, and then run an algorithm to com-
pute all the optimal routes. This information can then be spread around the system
to improve the routing.

. The trouble is that collecting and transporting all the input and output infor-
mation would again be a bad idea because these messages would overload part of
the network. In fact, any algorithm that operates by collecting information from
all the sites, sends it to a single machine for processing, and then distributes the

SEC. 1.2 GOALS 11

results should generally be avoided. Only decentralized algorithms should be
used. These algorithms generally have the following characteristics, which distin-
zuish them from centralized algorithms:e

1. No machine has complete information about the system state.

2. Machines make decisions based only on local information,

3. Failure of one machine does not ruin the algorithm.

4. There is no implicit assumption that a global clock exists.

The first three follow from what we have said so far. The last is perhaps less obvi-
ous but also important. Any algorithm that starts out with: "At precisely 12:00:00
all machines shall note the size of their output queue" will fail because it is
impossible to get all the clocks exactly synchronized. Algorithms should take into
account the lack of exact clock synchronization. The larger the system, the larger
the uncertainty. On a single LAN, with considerable effort it may be possible to
get all clocks synchronized down to a few microseconds, but doing this nationally
or internationally is tricky.

Geographical scalability has its own problems. One of the main reasons why
it is currently hard to scale existing distributed systems that were designed for
local-area networks is that they are based on synchronous communication. In
this form of communication, a party requesting service, generally referred to as a
client, blocks until a reply is sent back. This approach generally works fine in
LANs where communication between two machines is generally at worst a few
hundred microseconds. However, in a wide-area system, we need to take into ac-
count that interprocess communication may be hundreds of milliseconds, three
orders of magnitude slower. Building interactive applications using synchronous
communication in wide-area systems requires a great deal of care (and not a little
patience).

Another problem that hinders geographical scalability is that communication
in wide-area networks is inherently unreliable, and virtually always point-to-point.
In contrast, local-area networks generally provide highly reliable communication
facilities based on broadcasting, making it much easier to develop distributed sys-
tems. For example, consider the problem of locating a service. In a local-area sys-
tem, a process can simply broadcast a message to eve\)' machine, asking if it is
running the service it needs. Only those machines that Have that service respond,
each providing its network address in the reply message. Such a location scheme
is unthinkable in a wide-area system: just imagine what would happen if we tried
to locate a service this way in the Internet. Instead, special location services need
to be designed, which may need to scale worldwide and be capable of servicing a
billion users. We return to such services in Chap. 5.

Geographical scalability is strongly related to the problems of centralized
solutions that hinder size scalability. If we have a system with many centralized

12 INTRODUCTION CHAP. 1

components, it is clear that geographical scalability will be limited due to the per-
formance and reliability problems resulting from wide-area communication. In ad-
dition, centralized components now lead to a waste of network resources. Imagine
that a single mail server is used for an entire country. This would mean that send-
ing an e-mail to your neighbor would first have to go to the central mail server,
which may be hundreds of miles away. Clearly, this is not the way to go.

Finally, a difficult, and in many cases open question is how to scale a distrib-
uted system across multiple, independent administrative domains. A major prob-
lem that needs to be solved is that of conflicting policies with respect to resource
usage (and payment), management, and security.

For example, many components of a distributed system that reside within a
single domain can often be trusted by users that operate within that same domain.
In such cases, system administration may have tested and certified applications,
and may have taken special measures to ensure that such components cannot be
tampered with. In essence, the users trust their system administrators. However,
this trust does not expand naturally across domain boundaries.

If a distributed system expands into another domain, two types of security
measures need to be taken. First of all, the distributed system has to protect itself
against malicious attacks from the new domain. For example, users from the new
domain may have only read access to the file system in its original domain. Like-
wise, facilities such as expensive image setters or high-performance computers
may not be made available to foreign users. Second, the new domain has to pro-
tect itself against malicious attacks from the distributed system. A typical example
is that of downloading programs such as applets in Web browsers. Basically, the
new domain does not know behavior what to expect from such foreign code, and
may therefore decide to severely limit the access rights for such code. The prob-
lem, as we shall see in Chap. 9, is how to enforce those limitations.

Scaling Techniques

Having discussed some of the scalability problems brings us to the question of
how those problems can generally be solved. In most cases, scalability problems
in distributed systems appear as performance problems caused by limited capacity
of servers and network. There are now basically only three techniques for scaling:
hiding communication latencies, distribution, and replication [see also Neuman
(1994)]. ~___

Hiding communication latencies is important to achieve geographical scala-
bility. The basic idea is simple: try to avoid waiting for responses to remote (and
potentially distant) service requests as much as possible. For example, when a ser-
vice has been requested at a remote machine, an alternative to waiting for a reply
from the server is to do other useful work at the requester's side. Essentially, what
this means is constructing the requesting application in such a way that it uses
only asynchronous communication. When a reply comes in, the application is

SEC. 1.2 GOALS 13

interrupted and a special handler is called to complete the previously-issued re-
quest. Asynchronous communication can often be used in batch-processing sys-
tems and parallel applications, in which more or less independent tasks can be
scheduled for execution while another task is waiting for communication to com-
plete. Alternatively, a new thread of control can be started to perforrnthe request.
Although it blocks waiting for the reply, other threads in the process can continue.

However, there are many applications that cannot make effective use of asyn-
chronous communication. For example, in interactive applications when a user
sends a request he will generally have nothing better to do than to wait for the
answer. In such cases, a much better solution is to reduce the overall communica-
tion, for example, by moving part of the computation that is normally done at the
server to the client process requesting the service. A typical case where this ap-
proach works is accessing databases using forms. Filling in forms can be done by
sending a separate message for each field, and waiting for an acknowledgment
from the server, as shown in Fig. 1-4(a). For example, the server may check for
syntactic errors before accepting an entry. A much better solution is to ship the
code for filling in the form, and possibly checking the entries, to the client, and
have the client return a completed form, as shown in Fig. 1-4(b). This approach
of shipping code is now widely supported by the Web in the form of Java applets
and Javascript.

Figure 1-4. The difference between letting (a) a server or (b) a client check
forms as they are being filled.

Another important scaling technique is distribution. Distribution involves
taking a component, splitting it into smaller parts, and subsequently spreading

14 INTRODUCTION CHAP. 1

those parts across the system. An excellent example of distribution is the Internet
Domain Name System (DNS). The DNS name space is hierarchically organized
into a tree of domains, which are divided into nonoverlapping zones, as shown in
Fig. 1-5. The names in each zone are handled by a single name server. Without
going into too many details, one can think of each path name,being the name of a
host in the Internet, and thus associated with a network address of that host. Basi-
cally, resolving a name means returning the network address of the associated
host. Consider, for example, the name nl.vu.cs.flits. To resolve this name, it is
first passed to the server of zone 21 (see Fig. 1-5) which returns the address of the
server for zone 22, to which the rest of name, vu.cs.flits, can be handed. The
server for 22 will return the address of the server for zone 23, which is capable of
handling the last part of the name and will return the address of the associated
host.

Figure 1-5. An example of dividing the DNS name space into zones.

This example illustrates how the naming service, as provided by DNS, is dis-
tributed across several machines, thus avoiding that a single server has to deal
with all requests for name resolution.

As another example, consider the World Wide Web. To most users, the Web
appears to be an enormous document-based information system in which each
document has its own unique name in the form of a URL. Conceptually, it may
even appear as if there is only a single server. However, the Web is physically
distributed across a large number of servers, each handling a number of Web doc-
uments. The name of the server handling a document is encoded into that docu-
ment's URL. It is only because of this distribution of documents that the Web has
been capable of scaling to its current size.

Considering that scalability problems often appear in the form of performance
degradation, it is generally a good idea to actually replicate components across a

SEC. 1.2 GOALS 15

distributed system. Replication not only increases availability, but also helps to
balance the load between components leading to better performance. Also, in geo-
!!I1lphically widely-dispersed systems, having a copy nearby can hide much of the
~omrnunication latency problems mentioned before.

Caching is a special form of replication, although the distinction between the
two is often hard to make or even artificial. As in the case of replication, caching
results in making a copy of a resource, generally in the proximity of the client ac-
cessing that resource. However, in contrast to replication, caching is a decision
made by the client of a resource, and not by the owner of a resource. Also, cach-
ing happens on demand whereas replication is often planned in advance.

There is one serious drawback to caching and replication that may adversely
affect scalability. Because we now have multiple copies of a resource, modifying
one copy makes that copy different from the others. Consequently, caching and
replication leads to consistency problems.

To what extent inconsistencies can be tolerated depends highly on the usage
of a resource. For example, many Web users fmd it acceptable that their browser
returns a cached document of which the validity has not been checked for the last
few minutes. However, there are also many cases in which strong consistency
guarantees need to be met, such as in the case of electronic stock exchanges and
auctions. The problem with strong consistency is that an update must be immedi-
ately propagated to all other copies. Moreover, if two updates happen concur-
rently, it is often also required that each copy is updated in the same order. Situa-
tions such as these generally require some global synchronization mechanism.
Unfortunately, such mechanisms are extremely hard or even impossible to imple-
ment in a scalable way, as she insists that photons and electrical signals obey a
speed limit of 187 miles/msec (the speed of light). Consequently, scaling by repli-
cation may introduce other, inherently nonscalable solutions. We return to replica-
tion and consistency in Chap. 7.

When considering these scaling techniques, one could argue that size scalabil-
ity is the least problematic from a technical point of view. In many cases, simply
increasing the capacity of a machine will the save the day (at least temporarily
and perhaps at significant costs). Geographical scalability is a much tougher prob-
lem as Mother Nature is getting in our way. Nevertheless, practice shows that
combining distribution, replication, and caching techniques with different forms
of consistency will often prove sufficient in many cases. Finally, administrative
scalability seems to be the most difficult one, rartly also because we need to solve
nontechnical problems (e.g., politics of organizations and human collaboration).
Nevertheless, progress has been made in this area, by simply ignoring administra-
tive domains. The introduction and now widespread use of peer-to-peer technol-
ogy demonstrates what can be achieved if end users simply take over control
(Aberer and Hauswirth, 2005; Lua et al., 2005; and Oram, 2001). However, let it
be clear that peer-to-peer technology can at best be only a partial solution to solv-
ing administrative scalability. Eventually, it will have to be dealt with.

16 CHAP. 1

1.2.5 Pitfalls

It should be clear by now that developing distributed systems can be a formid-
able task. As we will see many times throughout this book, there are so many
issues to consider at the same time that it seems that only complexity can be the
result. Nevertheless, by following a number of design principles, distributed sys-
tems can be developed that strongly adhere to the goals we set out in this chapter.
Many principles follow the basic rules of decent software engineering and wiJI not
be repeated here.

However, distributed systems differ from traditional software because com-
ponents are dispersed across a network. Not taking this dispersion into account
during design time is what makes so many systems needlessly complex and re-
sults in mistakes that need to be patched later on. Peter Deutsch, then at Sun
Microsystems, formulated these mistakes as the following false assumptions that
everyone makes when developing a distributed application for the first time:

1. The network is reliable.

2. The network is secure.

3. The network is homogeneous.

4. The topology does not change.

5. Latency is zero.

6. Bandwidth is infinite.

7. Transport cost is zero.

8. There is one administrator.

Note how these assumptions relate to properties that are unique to distributed sys-
tems: reliability, security, heterogeneity, and topology of the network; latency and
bandwidth; transport costs; and finally administrative domains. When developing
nondistributed applications, many of these issues will most likely not show up.

Most of the principles we discuss in this book relate immediately to these
assumptions. In all cases, we will be discussing solutions to problems, that are
caused by the fact that one or more assumptions are false. For example, reliable
networks simply do not exist, leading to the impossibility of achieving failure
transparency. We devote an entire chapter to deal with the fact that networked
communication is inherently insecure. We have already argued that distributed
systems need to take heterogeneity into account. In a similar vein, when discuss-
ing replication for solving scalability problems, we are essentially tackling latency
and bandwidth problems. We will also touch upon management issues at various
points throughout this book, dealing with the false assumptions of zero-cost tran-
sportation and a single administrative domain.

;'\';";-L:':'~

INTRODUCTION

SEC. 1.3 TYPES OF DISTRIBUTED SYSTEMS 17
1.3 TYPES OF DISTRIBUTED SYSTEMS

Before starting to discuss the principles of distributed systems, let us first take
a closer look at the various types of distributed systems. In the following we make
a distinction between distributed computing systems, distributed information sys-
tems, and distributed embedded systems.

1.3.1 Distributed Computing Systems

An important class of distributed systems is the one used for high-perfor-
mance computing tasks. Roughly speaking, one can make a distinction between
two subgroups. In cluster computing the underlying hardware consists of a col-
lection of similar workstations or PCs, closely connected by means of a high-
speed local-area network. In addition, each node runs the same operating system.

The situation becomes quite different in the case of grid computing. This
subgroup consists of distributed systems that are often constructed as a federation
of computer systems, where each system may fall under a different administrative
domain, and may be very different when it comes to hardware, software, and
deployed network technology.

Cluster Computing Systems

Cluster computing systems became popular when the price/performance ratio
of personal computers and workstations improved. At a certain point, it became
financially and technically attractive to build a supercomputer using off-the-shelf
technology by simply hooking up a collection of relatively simple computers in a
high-speed network. In virtually all cases, cluster computing is used for parallel
programming in which a single (compute intensive) program is run in parallel on
multiple machines.

Figure 1-6. An example of a cluster computing system.

18 INTRODUCTION CHAP.]

One well-known example of a cluster computer is formed by Linux-based
Beowulf clusters, of which the general configuration is shown in Fig. 1-6. Each
cluster consists of a collection of compute nodes that are controlled and accessed
by means of a single master node. The master typically handles the allocation of
nodes to a particular parallel program, maintains a batch queue of submitted jobs,
and provides an interface for the users of the system. As such, the master actually
runs the middleware needed for the execution of programs and management of the
cluster, while the compute nodes often need nothing else but a standard operating
system.

An important part of this middleware is formed by the libraries for executing
parallel programs. As we will discuss in Chap. 4, many of these libraries effec-
tively provide only advanced message-based communication facilities, but are not
capable of handling faulty processes, security, etc.

As an alternative to this hierarchical organization, a symmetric approach is
followed in the MOSIX system (Amar et at, 2004). MOSIX attempts to provide
a single-system image of a cluster, meaning that to a process a cluster computer
offers the ultimate distribution transparency by appearing to be a single computer.
As we mentioned, providing such an image under all circumstances is impossible.
In the case of MOSIX, the high degree of transparency is provided by allowing
processes to dynamically and preemptively migrate between the nodes that make
up the cluster. Process migration allows a user to start an application on any node
(referred to as the home node), after which it can transparently move to other
nodes, for example, to make efficient use of resources. We will return to process
migration in Chap. 3.

Grid Computing Systems

A characteristic feature of cluster computing is its homogeneity. In most
cases, the computers in a cluster are largely the same, they all have the same oper-
ating system, and are all connected through the same network. In contrast, grid
computing systems have a high degree of heterogeneity: no assumptions are made
concerning hardware, operating systems, networks, administrative domains, secu-
rity policies, etc.

A key issue in a grid computing system is that resources from different organ-
izations are brought together to allow the collaboration of a group of people or
institutions. Such a collaboration is realized in the form of a virtual organization.
The people belonging to the same virtual organization have access rights to the re-
sources that are provided to that organization. Typically, resources consist of
compute servers (including supercomputers, possibly implemented as cluster com-
puters), storage facilities, and databases. In addition, special networked devices
such as telescopes, sensors, etc., can be provided as well.

Given its nature, much of the software for realizing grid computing evolves
around providing access to resources from different administrative domains, and

SEC. 1.3 TYPES OF DISTRIBUTED SYSTEMS 19

to only those users and applications that belong to a specific virtual organization.
For this reason, focus is often on architectural issues. An architecture proposed by
Foster et al. (2001). is shown in Fig. 1-7

Figure 1-7. A layered architecture for grid computing systems.

The architecture consists of four layers. The lowest fabric layer provides in-
terfaces to local resources at a specific site. Note that these interfaces are tailored
to allow sharing of resources within a virtual organization. Typically, they will
provide functions for querying the state and capabilities of a resource, along with
functions for actual resource management (e.g., locking resources).

The connectivity layer consists of communication protocols for supporting
grid transactions that span the usage of multiple resources. For example, protocols
are needed to transfer data between resources, or to simply access a resource from
a remote location. In addition, the connectivity layer will contain security proto-
cols to authenticate users and resources. Note that in many cases human users are
not authenticated; instead, programs acting on behalf of the users are authenti-
cated. In this sense, delegating rights from a user to programs is an important
function that needs to be supported in the connectivity layer. We return exten-
sively to delegation when discussing security in distributed systems.

The resource layer is responsible for managing a single resource. It uses the
functions provided by the connectivity layer and calls directly the interfaces made
available by the fabric layer. For example, this layer will offer functions for
obtaining configuration information on a specific resource, or, in general, to per-
form specific operations such as creating a process or reading data. The resource
layer is thus seen to be responsible for access control, and hence will rely on the
authentication performed as part of the connectivity layer.

The next layer in the hierarchy is the collective layer. It deals with handling
access to multiple resources and typically consists of services for resource
discovery, allocation and scheduling of tasks onto multiple resources, data repli-
cation, and so on. Unlike the connectivity and resource layer, which consist of a
relatively small, standard collection of protocols, the collective layer may consist
of many different protocols for many different purposes, reflecting the broad spec-
trum of services it may offer to a virtual organization.

20 INTRODUCTION CHAP.]

Finally, the application layer consists of the applications that operate within a
virtual organization and which make use of the grid computing environment.

Typically the collective, connectivity, and resource layer form the heart of
what could be called a grid middleware layer. These layers jointly provide access
to and management of resources that are potentially dispersed across multiple
sites. An important observation from a middleware perspective is that with grid
computing the notion of a site (or administrative unit) is common. This prevalence
is emphasized by the gradual shift toward a service-oriented architecture in
which sites offer access to the various layers through a collection of Vv'eb services
(Joseph et al.. 2004). This, by now, has led to the definition of an alternative ar-
chitecture known as the Open Grid Services Architecture (OGSA). This archi-
tecture consists of various layers and many components, making it rather com-
plex. Complexity seems to be the fate of any standardization process. Details on
OGSA can be found in Foster et al. (2005).

1.3.2 Distributed Information Systems

Another important class of distributed systems is found in organizations that
were confronted with a wealth of networked applications, but for which interoper-
ability turned out to be a painful experience. Many of the existing middleware
solutions are the result of working with an infrastructure in which it was easier to
integrate applications into an enterprise-wide information system (Bernstein,
1996; and Alonso et al., 2004).

We can distinguish several levels at which integration took place. In many
cases, a networked application simply consisted of a server running that applica-
tion (often including a database) and making it available to remote programs, call-
ed clients. Such clients could send a request to the server for executing a specific
operation, after which a response would be sent back. Integration at the lowest
level would allow clients to wrap a number of requests, possibly for different ser-
vers, into a single larger request and have it executed as a distributed transac-
tion. The key idea was that all, or none of the requests would be executed.

As applications became more sophisticated and were gradually separated into
independent components (notably distinguishing database components from proc-
essing components), it became clear that integration should also take place by let-
ting applications communicate directly with each other. This has now led to a
huge industry that concentrates on enterprise application integration (EAl). In
the following, we concentrate on these two forms of distributed systems.

Transaction Processing Systems

To clarify our discussion, let us concentrate on database applications. In prac-
tice, operations on a database are usually carried out in the form of transactions.
Programming using transactions requires special primitives that must either be

SEC. 1.3 TYPES OF DISTRIBUTED SYSTEMS 21
supplied by the underlying distributed system or by the language runtime system.
Typical examples of transaction primitives are shown in Fig. 1-8. The exact list
of primitives depends on what kinds of objects are being used in the transaction
(Gray and Reuter, 1993). In a mail system, there might be primitives to send,
receive, and forward mail. In an accounting system, they might be quite different.
READ and WRITE are typical examples, however. Ordinary statements, procedure
calls, and so on, are also allowed inside a transaction. In particular, we mention
that remote procedure calls (RPCs), that is, procedure calls to remote servers, are
often also encapsulated in a transaction, leading to what is known as a tran-
sactional RPC. We discuss RPCs extensively in Chap. 4.

Figure 1-8. Example primitives for transactions.

BEGIN_ TRANSACTION and END_TRANSACTION are used to delimit the
scope of a transaction. The operations between them form the body of the tran-
saction. The characteristic feature of a transaction is either all of these operations
are executed or none are executed. These may be system calls, library procedures,
or bracketing statements in a language, depending on the implementation.

This all-or-nothing property of transactions is one of the four characteristic
properties that transactions have. More specifically, transactions are:

1. Atomic: To the outside world, the transaction happens indivisibly.

2. Consistent: The transaction does not violate system invariants.

3. Isolated: Concurrent transactions do not interfere with each other.

4. Durable: Once a transaction commits, the changes are permanent.

These properties are often referred to by their initial letters: ACID.
The first key property exhibited by all transactions is that they are atomic.

This property ensures that each transaction either happens completely, or not at
all, and if it happens, it happens in a single indivisible, instantaneous action.
While a transaction is in progress, other processes (whether or not they are them-
selves involved in transactions) cannot see any of the intermediate states.

The second property says that they are consistent. What this means is that if
the system has certain invariants that must always hold, if they held before the
transaction, they will hold afterward too. For example. in a banking system, a key

22 INTRODUCTION CHAP. 1

invariant is the law of conservation of money. After every internal transfer, the
amount of money in the bank must be the same as it was before the transfer, but
for a brief moment during the transaction, this invariant may be violated. The vio-
lation is not visible outside the transaction, however.

The third property says that transactions are isolated or serializable. What it
means is that if two or more transactions are running at the same time, to each of
them and to other processes, the final result looks as though all transactions ian
sequentially in some (system dependent) order.

The fourth property says that transactions are durable. It refers to the fact
that once a transaction commits, no matter what happens, the transaction goes for-
ward and the results become permanent. No failure after the commit can undo the
results or cause them to be lost. (Durability is discussed extensively in Chap. 8.)

So far, transactions have been defined on a single database. A nested tran-
saction is constructed from a number of subtransactions, as shown in Fig. 1-9.
The top-level transaction may fork off children that run in parallel with one anoth-
er, on different machines, to gain performance or simplify programming. Each of
these children may also execute one or more subtransactions, or fork off its own
children.

Figure 1-9. A nested transaction.

Subtransactions give rise to a subtle, but important, problem. Imagine that a
transaction starts several subtransactions in parallel, and one of these commits.
making its results visible to the parent transaction. After further computation, the
parent aborts, restoring the entire system to the state it had before the top-level
transaction started. Consequently, the results of the subtransaction that committed
must nevertheless be undone. Thus the permanence referred to above applies only
to top-level transactions.

Since transactions can be nested arbitrarily deeply, considerable administra-
tion is needed to get everything right. The semantics are clear, however. When
any transaction or subtransaction starts, it is conceptually given a private copy of
all data in the entire system for it to manipulate as it wishes. If it aborts, its private
universe just vanishes, as if it had never existed. If it commits, its private universe
replaces the parent's universe. Thus if a subtransaction commits and then later a

SEC. 1.3 TYPES OF DISTRIBUTED SYSTEMS 23
new subtransaction is started, the second one sees the results produced by the first
one. Likewise, if an enclosing (higher-level) transaction aborts, all its underlying
subtransactions have to be aborted as well.

Nested transactions are important in distributed systems, for they provide a
natural way of distributing a transaction across multiple machines. They follow a
logical division of the work of the original transaction. For example, a transaction
for planning a trip by which three different flights need to be reserved can be logi-
cally split up into three subtransactions. Each of these subtransactions can be
managed separately and independent of the other two.

In the early days of enterprise middleware systems, the component that hand-
led distributed (or nested) transactions formed the core for integrating applications
at the server or database level. This component was called a transaction proc-
essing monitor or TP monitor for short. Its main task was to allow an application
to access multiple server/databases by offering it a transactional programming
model, as shown in Fig. 1-10.

Figure 1-10. The role of a TP monitor in distributed systems.

Enterprise Application Integration

As mentioned, the more applications became decoupled from the databases
they were built upon, the more evident it became that facilities were needed to
integrate applications independent from their databases. In particular, application
components should be able to communicate directly with each other and not mere-
ly by means of the request/reply behavior that was supported by transaction proc-
essing systems.

This need for interapplication communication led to many different communi-
cation models, which we will discuss in detail in this book (and for which reason
we shall keep it brief for now). The main idea was that existing applications could
directly exchange information, as shown in Fig. 1-11.

24 INTRODUCTION CHAP. 1

Figure 1-11. MiddJeware as a communication facilitator in enterprise applica-
tion integration.

Several types of communication middleware exist. With remote procedure
calls (RPC), an application component can effectively send a request to another
application component by doing a local procedure call, which results in the re-
quest being packaged as a message and sent to the callee. Likewise, the result will
be sent back and returned to the application as the result of the procedure call.

As the popularity of object technology increased, techniques were developed
to allow calls to remote objects, leading to what is known as remote method
invocations (RMI). An RMI is essentially the same as an RPC, except that it op-
erates on objects instead of applications.

RPC and RMI have the disadvantage that the caller and callee both need to be
up and running at the time of communication. In addition, they need to know ex-
actly how to refer to each other. This tight coupling is often experienced as a seri-
ous drawback, and has led to what is known as message-oriented middleware, or
simply MOM. In this case, applications simply send messages to logical contact
points, often described by means of a subject. Likewise, applications can indicate
their interest for a specific type of message, after which the communication mid-
dleware will take care that those messages are delivered to those applications.
These so-called publish/subscribe systems form an important and expanding
class of distributed systems. We will discuss them at length in Chap. 13.

1.3.3 Distributed Pervasive Systems

The distributed systems we have been discussing so far are largely charac-
terized by their stability: nodes are fixed and have a more or less permanent and
high-quality connection to a network. To a certain extent, this stability has been
realized through the various techniques that are discussed in this book and which
aim at achieving distribution transparency. For example, the wealth of techniques

SEC. 1.3 TYPES OF DISTRIBUTED SYSTEMS 25
for masking failures and recovery will give the impression that only occasionally
things may go wrong. Likewise, we have been able to hide aspects related to the
actual network location of a node, effectively allowing users and applications to
believe that nodes stay put.

However, matters have become very different with the introduction of mobile
and embedded computing devices. We are now confronted with distributed sys-
tems in which instability is the default behavior. The devices in these, what we
refer to as distributed pervasive systems, are often characterized by being small,
battery-powered, mobile, and having only a wireless connection, although not all
these characteristics apply to all devices. Moreover, these characteristics need not
necessarily be interpreted as restrictive, as is illustrated by the possibilities of
modem smart phones (Roussos et aI., 2005).

As its name suggests, a distributed pervasive system is part of our surround-
ings (and as such, is generally inherently distributed). An important feature is the
general lack of human administrative control. At best, devices can be configured
by their owners, but otherwise they need to automatically discover their environ-
ment and "nestle in" as best as possible. This nestling in has been made more pre-
cise by Grimm et al. (2004) by formulating the following three requirements for
pervasive applications:

1. Embrace contextual changes.

2. Encourage ad hoc composition.

3. Recognize sharing as the default.

Embracing contextual changes means that a device must be continuously be
aware of the fact that its environment may change all the time. One of the sim-
plest changes is discovering that a network is no longer available, for example,
because a user is moving between base stations. In such a case, the application
should react, possibly by automatically connecting to another network, or taking
other appropriate actions.

Encouraging ad hoc composition refers to the fact that many devices in per-
vasive systems will be used in very different ways by different users. As a result,
it should be easy to configure the suite of applications running on a device, either
by the user or through automated (but controlled) interposition.

One very important aspect of pervasive systems is that devices generally join
the system in order to access (and possibly provide) information. This calls for
means to easily read, store, manage, and share information. In light of the inter-
mittent and changing connectivity of devices, the space where accessible informa-
tion resides will most likely change all the time.

Mascolo et al. (2004) as well as Niemela and Latvakoski (2004) came to simi-
lar conclusions: in the presence of mobility, devices should support easy and ap-
plication-dependent adaptation to their local environment. They should be able to

26 INTRODUCTION CHAP. 1

efficiently discover services and react accordingly. It should be clear from these
requirements that distribution transparency is not really in place in pervasive sys-
tems. In fact, distribution of data, processes, and control is inherent to these sys-
tems, for which reason it may be better just to simply expose it rather than trying
to hide it. Let us now take a look at some concrete examples of pervasive systems.

Home Systems

An increasingly popular type of pervasive system, but which may perhaps be
the least constrained, are systems built around home networks. These systems
generally consist of one or more personal computers, but more importantly inte-
grate typical consumer electronics such as TVs, audio and video equipment. gam-
ing devices, (smart) phones, PDAs, and other personal wearables into a single sys-
tem. In addition, we can expect that all kinds of devices such as kitchen appli-
ances, surveillance cameras, clocks, controllers for lighting, and so on, will all be
hooked up into a single distributed system.

From a system's perspective there are several challenges that need to be ad-
dressed before pervasive home systems become reality. An important one is that
such a system should be completely self-configuring and self-managing. It cannot
be expected that end users are willing and able to keep a distributed home system
up and running if its components are prone to errors (as is the case with many of
today's devices.) Much has already been accomplished through the Universal
Plug and Play (UPnP) standards by which devices automatically obtain IP ad-
dresses, can discover each other, etc. (DPnP Forum, 2003). However, more is
needed. For example, it is unclear how software and firmware in devices can be
easily updated without manual intervention, or when updates do take place, that
compatibility with other devices is not violated.

Another pressing issue is managing what is known as a "personal space."
Recognizing that a home system consists of many shared as well as personal de-
vices, and that the data in a home system is also subject to sharing restrictions,
much attention is paid to realizing such personal spaces. For example, part of
Alice's personal space may consist of her agenda, family photo's, a diary. music
and videos that she bought, etc. These personal assets should be stored in such a
way that Alice .has access to them whenever appropriate. Moreover. parts of this
personal space should be (temporarily) accessible to others, for example. when
she needs to make a business appointment.

Fortunately, things may become simpler. It has long been thought that the per-
sonal spaces related to home systems were inherently distributed across the vari-
ous devices. Obviously, such a dispersion can easily lead to significant synchroni-
zation problems. However, problems may be alleviated due to the rapid increase
in the capacity of hard disks, along with a decrease in their size. Configuring a
multi-terabyte storage unit for a personal computer is not really a problem. At the
same time, portable hard disks having a capacity of hundreds of gigabytes are

SEC. 1.3 TYPES OF DISTRIBUTED SYSTEMS 27

being placed inside relatively small portable media players. With these continu-
ously increasing capacities, we may see pervasive home systems adopt an archi-
tecture in which a single machine acts as a master (and is hidden away somewhere
in the basement next to the central heating), and all other fixed devices simply
provide a convenient interface for humans. Personal devices will then be cram-
med with daily needed information, but will never run out of storage.

However, having enough storage does not solve the problem of managing per-
sonal spaces. Being able to store huge amounts of data shifts the problem to stor-
ing relevant data and being able to find it later. Increasingly we will see pervasive
systems, like home networks, equipped with what are called recommenders, pro-
grams that consult what other users have stored in order to identify. similar taste,
and from that subsequently derive which content to place in one's personal space.
An interesting observation is that the amount of information that recommender
programs need to do their work is often small enough to allow them to be run on
PDAs (Miller et al., 2004).

Electronic Health Care Systems

Another important and upcoming class of pervasive systems are those related
to (personal) electronic health care. With the increasing cost of medical treatment,
new devices are being developed to monitor the well-being of individuals and to
automatically contact physicians when needed. In many of these systems, a major
goal is to prevent people from being hospitalized.

Personal health care systems are often equipped with various sensors organ-
ized in a (preferably wireless) body-area network (BAN). An important issue is
that such a network should at worst only minimally hinder a person. To this end,
the network should be able to operate while a person is moving, with no strings
(i.e., wires) attached to immobile devices.

This requirement leads to two obvious organizations, as shown in Fig. 1-12.
In the first one, a central hub is part of the BAN and collects data as needed. From
time to time, this data is then offloaded to a larger storage device. The advantage
of this scheme is that the hub can also manage the BAN. In the second scenario,
the BAN is continuously hooked up to an external network, again through a wire-
less connection, to which it sends monitored data. Separate techniques will need
to be deployed for managing the BAN. Of course, further connections to a physi-
cian or other people may exist as well.

From a distributed system's perspective we are immediately confronted with
questions such as:

1. Where and how should monitored data be stored?

2. How can we prevent loss of crucial data?

3. What infrastructure is needed to generate and propagate alerts?

Figure 1-12. Monitoring a person in a pervasive electronic health care system,
using (a) a local hub or (b) a continuous wireless connection.

4. How can physicians provide online feedback?

5. How can extreme robustness of the monitoring system be realized?

6. What are the security issues and how can the proper policies be
enforced?

Unlike home systems, we cannot expect the architecture of pervasive health care
systems to move toward single-server systems and have the monitoring devices
operate with minimal functionality. On the contrary: for reasons of efficiency, de-
vices and body-area networks will be required to support in-network data proc-
essing, meaning that monitoring data will, for example, have to be aggregated be-
fore permanently storing it or sending it to a physician. Unlike the case for distrib-
uted information systems, there is yet no clear answer to these questions.

Sensor Networks

Our last example of pervasive systems is sensor networks. These networks in
many cases form part of the enabling technology for pervasiveness and we see
that many solutions for sensor networks return in pervasive applications. What
makes sensor networks interesting from a distributed system's perspective is that
in virtually all cases they are used for processing information. In this sense, they
do more than just provide communication services. which is what traditional com-
puter networks are all about. Akyildiz et al. (2002) provide an overview from a
networking perspective. A more systems-oriented introduction to sensor networks
is given by Zhao and Guibas (2004). Strongly related are mesh networks which
essentially form a collection of (fixed) nodes that communicate through wireless
links. These networks may form the basis for many medium-scale distributed sys-
tems. An overview is provided in Akyildiz et al. (2005).

CHAP. 1INTRODUCTION28

SEC. 1.3 TYPES OF DISTRIBUTED SYSTEMS 29

A sensor network typically consists of tens to hundreds or thousands of rela-
tively small nodes, each equipped with a sensing device. Most sensor networks
use wireless communication, and the nodes are often battery powered. Their lim-
ited resources, restricted communication capabilities, and constrained power con-
sumption demand that efficiency be high on the list of design criteria.

The relation with distributed systems can be made clear by considering sensor
networks as distributed databases. This view is quite common and easy to under-
stand when realizing that many sensor networks are deployed for measurement
and surveillance applications (Bonnet et aI., 2002). In these cases, an operator
would like to extract information from (a part of) the network by simply issuing
queries such as "What is the northbound traffic load on Highway I?" Such
queries resemble those of traditional databases. In this case, the answer will prob-
ably need to be provided through collaboration of many sensors located around
Highway 1, while leaving other sensors untouched.

To organize a sensor network as a distributed database, there are essentially
two extremes, as shown in Fig. 1-13. First, sensors do not cooperate but simply
send their data to a centralized database located at the operator's site. The other
extreme is to forward queries to relevant sensors and to let each compute an
answer, requiring the operator to sensibly aggregate the returned answers.

Neither of these solutions is very attractive. The first one requires that sensors
send all their measured data through the network, which may waste network re-
sources and energy. The second solution may also be wasteful as it discards the
aggregation capabilities of sensors which would allow much less data to be re-
turned to the operator. What is needed are facilities for in-network data proc-
essing, as we also encountered in pervasive health care systems.

In-network processing can be done in numerous ways. One obvious one is to
forward a query to all sensor nodes along a tree encompassing all nodes and to
subsequently aggregate the results as they are propagated back to the root, where
the initiator is located. Aggregation will take place where two or more branches of
the tree come to together. As simple as this scheme may sound, it introduces diffi-
cult questions:

1. How do we (dynamically) set up an efficient tree in a sensor network?

2. How does aggregation of results take place? Can it be controlled?

3. What happens when network links fail?

These questions have been partly addressed in TinyDB, which' implements a de-
clarative(database) interface to wireless sensor networks. In essence, TinyDB can
use any tree-based routing algorithm. An intermediate node will collect and ag-
gregate the results from its children, along with its own findings, and send that
toward the root. To make matters efficient, queries span a period of time allowing

30 INTRODUCTION CHAP. 1

Figure 1-13. Organizing a sensor network database, while storing and proc-
essing data (a) only at the operator's site or (b) only at the sensors.

for careful scheduling of operations so that network resources and energy are
optimally consumed. Details can be found in Madden et al. (2005).

However, when queries can be initiated from different points in the network,
using single-rooted trees such as in TinyDB may not be efficient enough. As an
alternative, sensor networks may be equipped with special nodes where results are
forwarded to, as well as the queries related to those results. To give a simple ex-
ample, queries and results related temperature readings are collected at a different
location than those related to humidity measurements. This approach corresponds
directly to the notion of publish/subscribe systems, which we will discuss exten-
sively in Chap. 13.

1.4 SUMMARY

Distributed systems consist of autonomous computers that work together to
give the appearance of a single coherent system. One important advantage is that
they make it easier to integrate different applications running on different com-
puters into a single system. Another advantage is that when properly designed,

SEC. 1.4 SUMMARY 31

distributed systems scale well with respect to the size of the underlying network.
These advantages often come at the cost of more complex software, degradation
of performance, and also often weaker security. Nevertheless, there is consid-
erable interest worldwide in building and installing distributed systems.

Distributed systems often aim at hiding many of the intricacies related to the
distribution of processes, data, and control. However, this distribution transpar-
ency not only comes at a performance price, but in practical situations it can never
be fully achieved. The fact that trade-offs need to be made between achieving var-
ious forms of distribution transparency is inherent to the design of distributed sys-
tems, and can easily complicate their understanding. -

Matters are further complicated by the fact that many developers initially
make assumptions about the underlying network that are fundamentally wrong.
Later, when assumptions are dropped, it may turn out to be difficult to mask
unwanted behavior. A typical example is assuming that network latency is not sig-
nificant. Later, when porting an existing system to a wide-area network, hiding
latencies may deeply affect the system's original design. Other pitfalls include
assuming that the network is reliable, static, secure, and homogeneous.

Different types of distributed systems exist which can be classified as being
oriented toward supporting computations, information processing, and pervasive-
ness. Distributed computing systems are typically deployed for high-performance
applications often originating from the field of parallel computing. A huge class
of distributed can be found in traditional office environments where we see data-
bases playing an important role. Typically, transaction processing systems are
deployed in these environments. Finally, an emerging class of distributed systems
is where components are small and the system is composed in an ad hoc fashion,
but most of all is no longer managed through a system administrator. This last
class is typically represented by ubiquitous computing environments.

PROBLEMS

1. An alternative definition for a distributed system is that of a collection of independent
computers providing the view of being a single system, that is, it is completely hidden
from users that there even multiple computers. Give an example where this view
would come in very handy.

2. What is the role of middleware in a distributed system?

3. Many networked systems are organized in terms of a back office and a front office.
How does organizations match with the coherent view we demand for a distributed
~~m? -

4. Explain what is meant by (distribution) transparency, and give examples of different
types of transparency.

32 INTRODUCTION CHAP. 1

5. Why is it sometimes so hard to hide the occurrence and recovery from failures in a
distributed system?

6. Why is it not always a good idea to aim at implementing the highest degree of trans-
parency possible?

7. What is an open distributed system and what benefits does openness provide?

8. Describe precisely what is meant by a scalable system.

9. Scalability can be achieved by applying different techniques. What are these tech-
niques?

10. Explain what is meant by a virtual organization and give a hint on how such organiza-
tions could be implemented.

11. When a transaction is aborted. we have said that the world is restored to its previous
state. as though the transaction had never happened. We lied. Give an example where
resetting the world is impossible.

12. Executing nested transactions requires some form of coordination. Explain what a
coordinator should actually do.

13. We argued that distribution transparency may not be in place for pervasive systems.
This statement is not true for all types of transparencies. Give an example.

14. We already gave some examples of distributed pervasive systems: home systems.
electronic health-care systems. and sensor networks. Extend this list with more ex-
amples.

15. (Lab assignment) Sketch a design for a home system consisting of a separate media
server that will allow for the attachment of a wireless client. The latter is connected to
(analog) audio/video equipment and transforms the digital media streams to analog
output. The server runs on a separate machine. possibly connected to the Internet. but
has no keyboard and/or monitor connected.

2
ARCHITECTURES

Distributed systems are often complex pieces of software of which the com-
ponents are by definition dispersed across multiple machines. To master their
complexity, it is crucial that these systems are properly organized. There are dif-
ferent ways on how to view the organization of a distributed system, but an obvi-
ous one is to make a distinction between the logical organization of the collection
of software components and on the other hand the actual physical realization.

The organization of distributed systems is mostly about the software com-
ponents that constitute the system. These software architectures tell us how the
various software components are to be organized and how they should interact. In
this chapter we will first pay attention to some commonly applied approaches
toward organizing (distributed) computer systems.

The actual realization of a distributed system requires that we instantiate and
place software components on real machines. There are many different choices
that can be made in doing so. The final instantiation of a software architecture is
also referred to as a system architecture. In this chapter we will look into tradi-
tional centralized architectures in which a single server implements most of the
software components (and thus functionality), while remote clients can access that
server using simple communication means. In addition, we consider decentralized
architectures in which machines more or less play equal roles, as well as hybrid
organizations.

As we explained in Chap. I, an important goal of distributed systems is to
separate applications from underlying platforms by providing a middleware layer.

33

34 ARCHITECTURES CHAP. 2

Adopting such a layer is an important architectural decision, and its main purpose
is to provide distribution transparency. However, trade-offs need to be made to
achieve transparency, which has led to various techniques to make middleware
adaptive. We discuss some of the more commonly applied ones in this chapter, as
they affect the organization of the middleware itself.

Adaptability in distributed systems can also be achieved by having the system
monitor its own behavior and taking appropriate measures when needed. This 'in-
sight has led to a class of what are now referred to as autonomic systems. These
distributed systems are frequently organized in the form of feedback control
loops. which form an important architectural element during a system's design. In
this chapter, we devote a section to autonomic distributed systems.

2.1 ARCHITECTURAL STYLES
We start our discussion on architectures by first considering the logical organ-

ization of distributed systems into software components, also referred to as soft-
ware architecture (Bass et al., 2003). Research on software architectures has
matured considerably and it is now commonly accepted that designing or adopting
an architecture is crucial for the successful development of large systems.

For our discussion, the notion of an architectural style is important. Such a
style is formulated in terms of components, the way that components are con-
nected to each other, the data exchanged between components. and finally how
these elements are jointly configured into a system. A component is a modular
unit with well-defined required and provided interfaces that is replaceable within
its environment (OMG, 2004b). As we shall discuss below, the important issue
about a component for distributed systems is that it can be replaced, provided we
respect its interfaces. A somewhat more difficult concept to grasp is that of a con-
nector, which is generally described as a mechanism that mediates communica-
tion, coordination, or cooperation among components (Mehta et al., 2000; and
Shaw and Clements, 1997). For example, a connector can be formed by the facili-
ties for (remote) procedure calls, message passing, or streaming data.

Using components and connectors, we can come to various configurations,
which, in tum have been classified into architectural styles. Several styles have by
now been identified, of which the most important ones for distributed systems are:

1. Layered architectures

2. Object-based architectures

3. Data-centered architectures

4. Event-based architectures

The basic idea for the layered style is simple: components are organized in a
layered fashion where a component at layer L; is allowed to call components at

SEC. 2.1 ARCHITECTURAL STYLES 35

the underlying layer Li:«, but not the other way around, as shown in Fig. 2-I(a).
This model has been widely adopted by the networking community; we briefly
review it in Chap. 4. An key observation is that control generally flows from layer
to layer: requests go down the hierarchy whereas the results flow upward.

A far looser organization is followed in object-based architectures, which
are illustrated in Fig. 2-1(b). In essence, each object corresponds to what we have
defined as a component, and these components are connected through a (remote)
procedure call mechanism. Not surprisingly, this software architecture matches
the client-server system architecture we described above. The layered and object-
based architectures still form the most important styles for large software systems
(Bass et aI., 2003).

Figure 2-1. The (a) layered and (b) object-based architectural style.

Data-centered architectures evolve around the idea that processes commun-
icate through a common (passive or active) repository. It can be argued that for
distributed systems these architectures are as important as the layered and object-
based architectures. For example, a wealth of networked applications have been
developed that rely on a shared distributed file system in which virtually all com-
munication takes place through files. Likewise, Web-based distributed systems,
which we discuss extensively in Chap. 12, are largely data-centric: processes
communicate through the use of shared Web-based data services.

In event-based architectures, processes essentially communicate through the
propagation of events, which optionally also carry data, as shown in Fig. 2-2(a).
For distributed systems, event propagation has generally been associated with
what are known as publish/subscribe systems (Eugster et aI., 2003). The basic
idea is that processes publish events after which the middleware ensures that only
those processes that subscribed to those events will receive them. The main
advantage of event-based systems is that processes are loosely coupled. In princi-
ple, they need not explicitly refer to each other. This is also referred to as being
decoupled in space, or referentially decoupled.

36 ARCHITECTURES CHAP. 2

Figure 2-2. The (a) event-based and (b) shared data-space architectural style.

Event-based architectures can be combined with data-centered architectures,
yielding what is also known as shared data spaces. The essence of shared data
spaces is that processes are now also decoupled in time: they need not both be ac-
tive when communication takes place. Furthermore, many shared data spaces use
a SQL-like interface to the shared repository in that sense that data can be ac-
cessed using a description rather than an explicit reference, as is the case with
files. We devote Chap. 13 to this architectural style.

What makes these software architectures important for distributed systems is
that they all aim at achieving (at a reasonable level) distribution transparency.
However, as we have argued, distribution transparency requires making trade-offs
between performance, fault tolerance, ease-of-programming, and so on. As there
is no single solution that will meet the requirements for all possible distributed ap-
plications, researchers have abandoned the idea that a single distributed system
can be used to cover 90% of all possible cases.

2.2 SYSTEM ARCHITECTURES

Now that we have briefly discussed some common architectural styles, let us
take a look at how many distributed systems are actually organized by considering
where software components are placed. Deciding on software components, their
interaction, and their placement leads 10 an instance of a software architecture,
also called a system architecture (Bass et aI., 2003). We will discuss centralized
and decentralized organizations, as wen as various hybrid forms.

2.2.1 Centralized Architectures

Despite the lack of consensus on many distributed systems issues, there is one
issue that many researchers and practitioners agree upon: thinking in terms of cli-
ents that request services from servers helps us understand and manage the com-
plexity of distributed systems and that is a good thing.

SEC. 2.2 SYSTEM ARCHITECTURES 37
In the basic client-server model, processes in a distributed system are divided

into two (possibly overlapping) groups. A server is a process implementing a spe-
cific service, for example, a file system service or a database service. A client is a
process that requests a service from a server by sending it a request and subse-
quently waiting for the server's reply. This client-server interaction, also known
as request-reply behavior is shown in Fig. 2-3

Figure 2-3. General interaction between a client and a server.

Communication between a client and a server can be implemented by means
of a simple connectionless protocol when the underlying network is fairly reliable
as in many local-area networks. In these cases, when a client requests a service, it
simply packages a message for the server, identifying the service it wants, along
with the necessary input data. The message is then sent to the server. The latter, in
turn, will always wait for an incoming request, subsequently process it, and pack-
age the results in a reply message that is then sent to the client.

Using a connectionless protocol has the obvious advantage of being efficient.
As long as messages do not get lost or corrupted, the request/reply protocol just
sketched works fine. Unfortunately, making the protocol resistant to occasional
transmission failures is not trivial. The only thing we can do is possibly let the cli-
ent resend the request when no reply message comes in. The problem, however, is
that the client cannot detect whether the original request message was lost, or that
transmission of the reply failed. If the reply was lost, then resending a request
may result in performing the operation twice. If the operation was something like
"transfer $10,000 from my bank account," then clearly, it would have been better
that we simply reported an error instead. On the other hand, if the operation was
"tell me how much money I have left," it would be perfectly acceptable to resend
the request. When an operation can be repeated multiple times without harm, it is
said to be idempotent. Since some requests are idempotent and others are not it
should be clear that there is no single solution for dealing with lost messages. We
defer a detailed discussion on handling transmission failures to Chap. 8.

As an alternative, many client-server systems use a reliable connection-
oriented protocol. Although this solution is not entirely appropriate in a local-area
network due to relatively low performance, it works perfectly tine in wide-area
systems in which communication is inherently unreliable. For example, virtually
all Internet application protocols are based on reliable TCPIIPconnections. In this

38 ARCHITECTURES CHAP. 2

case, whenever a client requests a service, it first sets up a connection to the
server before sending the request. The server generally uses that same connection
to send the reply message, after which the connection is torn down. The trouble is
that setting up and tearing down a connection is relatively costly, especially when
the request and reply messages are smaIl.

Application Layering

The client-server model has been subject to many debates and controversies
over the years. One of the main issues was how to draw a clear distinction be-
tween a client and a server. Not surprisingly, there is often no clear distinction.
For example, a server for a distributed database may continuously act as a client
because it is forwarding requests to different file servers responsible for imple-
menting the database tables. In such a case, the database server itself essentially
does no more than process queries.

However, considering that many client-server applications are targeted toward
supporting user access to databases, many people have advocated a distinction be-
tween the following three levels, essentially following the layered architectural
style we discussed previously:

1. The user-interface level

2. The processing level

3. The data level

The user-interface level contains all that is necessary to directly interface with the
user, such as display management. The processing level typically contains the ap-
plications. The data level manages the actual data that is being acted on.

Clients typically implement the user-interface level. This level consists of the
programs that allow end users to interact with applications. There is a consid-
erable difference in how sophisticated user-interface programs are.

The simplest user-interface program is nothing more than a character-based
screen. Such an interface has been typically used in mainframe environments. In
those cases where the mainframe controls all interaction, including the keyboard
and monitor, one can hardly speak of a client-server environment. However, in
many cases, the user's terminal does some local processing such as echoing typed
keystrokes, or supporting form-like interfaces in which a complete entry is to be
edited before sending it to the main computer.

Nowadays, even in mainframe environments, we see more advanced user in-
terfaces. Typically, the client machine offers at least a graphical display in which
pop-up or pull-down menus are used, and of which many of the screen controls
are handled through a mouse instead of the keyboard. Typical examples of such
interfaces include the X-Windows interfaces as used in many UNIX environments,
and earlier interfaces developed for MS-DOS PCs and Apple Macintoshes.

SEC. 2.2 SYSTEM ARCHITECTURES 39
Modern user interfaces offer considerably more functionality by allowing ap-

plications to share a single graphical window, and to use that window to exchange
data through user actions. For example, to delete a file, it is usually possible to
move the icon representing that file to an icon representing a trash can. Likewise,
many word processors allow a user to move text in a document to another position
by using only the mouse. We return to user interfaces in Chap. 3.

Many client-server applications can be constructed from roughly three dif-
ferent pieces: a part that handles interaction with a user, a part that operates on a
database or file system, and a middle part that generally contains the core func-
tionality of an application. This middle part is logically placed at the processing
level. In contrast to user interfaces and databases, there are not many aspects com-
mon to the processing level. Therefore, we shall give several examples to make
this level clearer.

As a first example, consider an Internet search engine. Ignoring all the
animated banners, images, and other fancy window dressing, the user interface of
a search engine is very simple: a user types in a string of keywords and is subse-
quently presented with a list of titles of Web pages. The back end is formed by a
huge database of Web pages that have been prefetched and indexed. The core of
the search engine is a program that transforms the user's string of keywords into
one or more database queries. It subsequently ranks the results into a list, and
transforms that list into a series of HTML pages. Within the client-server model,
this information retrieval part is typically placed at the processing level. Fig. 2-4
shows this organization.

Figure 2-4. The simplified organization of an Internet search engine into three different
layers.

As a second example, consider a decision support system for a stock broker-
age. Analogous to a search engine, such a system can be divided into a front end

40 ARCHITECTURES CHAP. 2

implementing the user interface, a back end for accessing a database with the
financial data, and the analysis programs between these two. Analysis of financial
data may require sophisticated methods and techniques from statistics and artifi-
cial intelligence. In some cases, the core of a financial decision support system
may even need to be executed on high-performance computers in order to achieve
the throughput and responsiveness that is expected from its users.

As a last example, consider a typical desktop package, consisting of a word
processor, a spreadsheet application, communication facilities, and so on. Such
"office" suites are generally integrated through a common user interface that sup-
ports compound documents, and operates on files from the user's home directory.
(In an office environment, this home directory is often placed on a remote file
server.) In this example, the processing level consists of a relatively large collec-
tion of programs, each having rather simple processing capabilities.

The data level in the client-server model contains the programs that maintain
the actual data on which the applications operate. An important property of this
level is that data are often persistent, that is, even if no application is running,
data will be stored somewhere for next use. In its simplest form, the data level
consists of a file system, but it is more common to use a full-fledged database. In
the client-server model, the data level is typically implemented at the server side.

Besides merely storing data, the data level is generally also responsible for
keeping data consistent across different applications. When databases are being
used, maintaining consistency means that metadata such as table descriptions,
entry constraints and application-specific metadata are also stored at this level.
For example, in the case of a bank, we may want to generate a notification when a
customer's credit card debt reaches a certain value. This type of information can
be maintained through a database trigger that activates a handler for that trigger at
the appropriate moment.

In most business-oriented environments, the data level is organized as a rela-
tional database. Data independence is crucial here.. The data are organized inde-
pendent of the applications in such a way that changes in that organization do not
affect applications, and neither do the applications affect the data organization.
Using relational databases in the client-server model helps separate the processing
level from the data level, as processing and data are considered independent.

However, relational databases are not always the ideal choice. A charac-
teristic feature of many applications is that they operate on complex data types
that are more easily modeled in terms of objects than in terms of relations. Exam-
ples of such data types range from simple polygons and circles to representations
of aircraft designs, as is the case with computer-aided design (CAD) systems.

In those cases where data operations are more easily expressed in terms of ob-
ject manipulations, it makes sense to implement the data level by means of an ob-
ject-oriented or object-relational database. Notably the latter type has gained
popularity as these databases build upon the widely dispersed relational data
model, while offering the advantages that object-orientation gives.

SEC. 2.2 SYSTEM ARCHITECTURES 41

lVlultitiered Architectures

The distinction into three logical levels as discussed so far, suggests a number
of possibilities for physically distributing a client-server application across several
machines. The simplest organization is to have only two types of machines:

1. A client machine containing only the programs implementing (part
of) the user-interface level

2. A server machine containing the rest, that is the programs imple-
menting the processing and data level

In this organization everything is handled by the server while the client is essen-
tially no more than a dumb terminal, possibly with a pretty graphical interface.
There are many other possibilities, of which we explore some of the more com-
mon ones in this section.

One approach for organizing the clients and servers is to distribute the pro-
grams in the application layers of the previous section across different machines,
as shown in Fig. 2-5 [see also Umar (1997); and Jing et al. (1999)]. As a first
step, we make a distinction between only two kinds of machines: client machines
and server machines, leading to what is also referred to as a (physically) two-
tiered architecture.

Figure 2-5. Alternative client-server organizations (a)-(e).

One possible organization is to have only the terminal-dependent part of the
user interface on the client machine, as shown in Fig. 2-5(a), and give the applica-
tions remote control over the presentation of their data. An alternative is to place
the entire user-interface software on the client side, as shown in Fig. 2-5(b). In
such cases, we essentially divide the application into a graphical front end, which
communicates with the rest of the application (residing at the server) through an

42 ARCHITECTURES CHAP. 2

application-specific protocol. In this model, the front end (the client software)
does no processing other than necessary for presenting the application's interface.

Continuing along this line of reasoning, we may also move part of the applica-
tion to the front end, as shown in Fig. 2-5(c). An example where this makes sense
is where the application makes use of a form that needs to be filled in entirely be-
fore it can be processed. The front end can then check the correctness and consis-
tency of the form, and where necessary interact with the user. Another example of
the organization of Fig. 2:.5(c),is that of a word processor in which the basic edit-
ing functions execute on the client side where they operate on locally cached, or
in-memory data. but where the advanced support tools such as checking the spel-
ling and grammar execute on the server side.

In many client-server environments, the organizations shown in Fig. 2-5(d)
and Fig. 2-5(e) are particularly popular. These organizations are used where the
client machine is a PC or workstation, connected through a network to a distrib-
uted file system or database. Essentially, most of the application is running on the
client machine, but all operations on files or database entries go to the server. For
example, many banking applications run on an end-user's machine where the user
prepares transactions and such. Once finished, the application contacts the data-
base on the bank's server and uploads the transactions for further processing.
Fig. 2-5(e) represents the situation where the client's local disk contains part of
the data. For example, when browsing the Web, a client can gradually build a
huge cache on local disk of most recent inspected Web pages.

We note that for a few years there has been a strong trend to move away from
the configurations shown in Fig. 2-5(d) and Fig. 2-5(e) in those case that client
software is placed at end-user machines. In these cases, most of the processing
and data storage is handled at the server side. The reason for this is simple: al-
though client machines do a lot, they are also more problematic to manage. Hav-
ing more functionality on the client machine makes client-side software more
prone to errors and more dependent on the client's underlying platform (i.e.,
operating system and resources). From a system's management perspective, hav-
ing what are called fat clients is not optimal. Instead the thin clients as repres-
ented by the organizations shown in Fig. 2-5(a)-(c) are much easier, perhaps at
the cost of less sophisticated user interfaces and client-perceived performance.

Note that this trend does not imply that we no longer need distributed systems.
On the contrary, what we are seeing is that server-side solutions are becoming
increasingly more distributed as a single server is being replaced by multiple ser-
vers running on different machines. In particular, when distinguishing only client
and server machines as we have done so far, we miss the point that a server may
sometimes need to act as a client, as shown in Fig. 2-6, leading to a (physically)
three-tiered architecture.

In this architecture, programs that form part of the processing level reside on a
separate server, but may additionally be partly distributed across the client and
server machines. A typical example of where a three-tiered architecture is used is

SEC. 2.2

Figure 2-6. An example of a server acting as client.

in transaction processing. As we discussed in Chap. 1, a separate process, called
the transaction processing monitor, coordinates all transactions across possibly
different data servers. /

Another, but very different example where we often see a three-tiered archi-
tecture is in the organization of Web sites. In this case, a Web server acts as an
entry point to a site, passing requests to an application server where the actual
processing takes place. This application server, in tum, interacts with a database
server. For example, an application server may be responsible for running the
code to inspect the available inventory of some goods as offered by an electronic
bookstore. To do so, it may need to interact with a database containing the raw
inventory data. We will come back to Web site organization in Chap. 12.

2.2.2 Decentralized Architectures

Multitiered client-server architectures are a direct consequence of dividing ap-
plications into a user-interface, processing components, and a data level. The dif-
ferent tiers correspond directly with the logical organization of applications. In
many business environments, distributed processing is equivalent to organizing a
client-server application as a multitiered architecture. We refer to this type of dis-
tribution as vertical distribution. The characteristic feature of vertical distribu-
tion is that it is achieved by placing logically different components on different
machines. The term is related to the concept of vertical fragmentation as used in
distributed relational databases, where it means that tables are split column-wise,
and subsequently distributed across multiple machines (Oszu and Valduriez,
1999).

Again, from a system management perspective, having a vertical distribution
can help: functions are logically and physically split across multiple machines,
where each machine is tailored to a specific group of functions. However, vertical
distribution is only one way of organizing client-server applications. In modem
architectures, it is often the distribution of the clients and the servers that counts,

43SYSTEM ARCHITECTURES

44 ARCHITECTURES CHAP. 2

which we refer to as horizontal distribution. In this type of distribution, a client
or server may be physically split up into logically equivalent parts, but each part is
operating on its own share of the complete data set, thus balancing the load. In
this section we will take a look at a class of modern system architectures that sup-
port horizontal distribution, known as peer-to-peer systems.

From a high-level perspective, the processes that constitute a peer-to-peer sys-
tem are all equal. This means that the functions that need to be carried out are
represented by every process that constitutes the distributed system. As a conse-
quence, much of the interaction between processes is symmetric: each process
will act as a client and a server at the same time (which is also referred to as act-
ing as a servent).

Given this symmetric behavior, peer-to-peer architectures evolve around the
question how to organize the processes in an overlay network, that is, a network
in which the nodes are formed by the processes and the links represent the pos-
sible communication channels (which are usually realized a§ TCP connections). In
general, a process cannot communicate directly with an arbitrary other process,
but is required to send messages through the available communication channels.
Two types of overlay networks exist: those that are structured and those that are
not. These two types are surveyed extensively in Lua et a1. (2005) along with
numerous examples. Aberer et a1. (2005) provide a reference architecture that
allows for a more formal comparison of the different types of peer-to-peer sys-
tems. A survey taken from the perspective of content distribution is provided by
Androutsellis- Theotokis and Spinellis (2004).

Structured Peer-to-Peer Architectures

In a structured peer-to-peer architecture, the overlay network is constructed
using a deterministic procedure. By far the most-used procedure is to organize the
processes through a distributed hash table (DHT). In a DHT -based system, data
items are assigned a random key from a large identifier space, such as a 128-bit or
160-bit identifier. Likewise, nodes in the system are also assigned a random num-
ber from the same identifier space. The crux of every DHT-based system is then
to implement an efficient and deterministic scheme that uniquely maps the key of
a data item to the identifier of a node based on some distance metric (Balakrish-
nan. 2003). Most importantly, when looking up a data item, the network address
of the node responsible for that data item is returned. Effectively, this is accom-
plished by routing a request for a data item to the responsible node.

For example, in the Chord system (Stoica et al., 2003) the nodes are logically
organized in a ring such that a data item with key k is mapped to the node with the
smallest identifier id ~ k. This node is referred to as the successor of key k and
denoted as succ(k), as shown in Fig. 2-7. To actually look up the data item, an ap-
plication running on an arbitrary node would then call the function LOOKUP(k)

SEC. 2.2 SYSTEM ARCHITECTURES 45

which would subsequently return the network address of succ(k). At that point,
the application can contact the node to obtain a copy of the data item.

Figure 2-7. The mapping of data items onto nodes in Chord.

We will not go into algorithms for looking up a key now, but defer that dis-
cussion until Chap. 5 where we describe details of various naming systems.
Instead, let us concentrate on how nodes organize themselves into an overlay net-
work, or, in other words, membership management. In the following, it is im-
portant to realize that looking up a key does not follow the logical organization of
nodes in the ring from Fig. 2-7. Rather, each node will maintain shortcuts to other
nodes in such a way that lookups can generally be done in O(log (N) number of
steps, where N is the number of nodes participating in the overlay.

Now consider Chord again. When a node wants to join the system, it starts
with generating a random identifier id. Note that if the identifier space is large
enough, then provided the random number generator is of good quality, the proba-
bility .of generating an identifier that is already assigned to an actual node is close
to zero. Then, the node can simply do a lookup on id, which will return the net-
work address of succiid). At that point, the joining node can simply contact
succiid) and its predecessor and insert itself in the ring. Of course, this scheme re-
quires that each node also stores information on its predecessor. Insertion also
yields that each data item whose key is now associated with node id, is transferred
from succiid).

Leaving is just as simple: node id informs its departure to its predecessor and
successor, and transfers its data items to succ(id).

Similar approaches are followed in other DHT-based systems. As an example,
consider the Content Addressable Network (CAN), described in Ratnasamy et
a1. (2001). CAN deploys a d-dimensional Cartesian coordinate space, which is
completely partitioned among all all the nodes that participate in the system. For

ARCHITECTURES

purpose of illustration. let us consider only the 2-dimensional case, of which an
example is shown in Fig. 2-8.

Figure 2-8. (a) The mapping of data items onto nodes in CAN. (b) Splitting a
region when a node joins.

Fig.2-8(a) shows how the two-dimensional space [0, l]x[O, 1] is divided
among six nodes. Each node has an associated region. Every data item in CAN
will be assigned a unique point in this space, after which it is also clear which
node is responsible for that data (ignoring data items that fall on the border of
multiple regions, for which a deterministic assignment rule is used).

When a node P wants to join a CAN system, it picks an arbitrary point from
the coordinate space and subsequently looks up the node Q in whose region that
point falls. This lookup is accomplished through positioned-based routing. of
which the details are deferred until later chapters. Node Q then splits its region
into two halves, as shown in Fig. 2-8(b). and one half is assigned to the node P.
Nodes keep track of their neighbors, that is, nodes responsible for adjacent region.
When splitting a region, the joining node P can easily come to know who its new
neighbors are by asking node P. As in Chord, the data items for which node P is
now responsible are transferred from node Q.

Leaving is a bit more problematic in CAN. Assume that in Fig. 2-8. the node
with coordinate (0.6, 0.7) leaves. Its region will be assigned to one of its neigh-
bors, say the node at (0.9,0.9), but it is clear that simply merging it and obtaining
a rectangle cannot be done. In this case, the node at (0.9,0.9) will simply take care
of that region and inform the old neighbors of this fact. Obviously. this may lead
to less symmetric partitioning of the coordinate space, for which reason a back-
ground process is periodically started to repartition the entire space.

CHAP. 246

SEC. 2.2 SYSTEM ARCHITECTURES 47
Unstructured Peer-to- Peer Architectures

Unstructured peer-to-peer systems largely rely on randomized algorithms for
constructing an overlay network. The main idea is that each node maintains a list
of neighbors, but that this list is constructed in a more or less random way. Like-
wise, data items are assumed to be randomly placed on nodes. As a consequence,
when a node needs to locate a specific data item, the only thing it can effectively
do is flood the network with a search query (Risson and Moors, 2006). We will
return to searching in unstructured overlay networks in Chap. 5, and for now con-
centrate on membership management.

One of the goals of many unstructured peer-to-peer systems is to construct an
overlay network that resembles a random graph. The basic model is that each
node maintains a list of c neighbors, where, ideally, each of these neighbors rep-
resents a randomly chosen live node from the current set of nodes. The list of
neighbors is also referred to as a partial view. There are many ways to construct
such a partial view. Jelasity et al. (2004, 2005a) have developed a framework that
captures many different algorithms for overlay construction to allow for evalua-
tions and comparison. In this framework, it is assumed that nodes regularly
exchange entries from their partial view. Each entry identifies another node in the
network, and has an associated age that indicates how old the reference to that
node is. Two threads are used, as shown in Fig. 2-9.

The active thread takes the initiative to communicate with another node. It
selects that node from its current partial view. Assuming that entries need to be
pushed to the selected peer, it continues by constructing a buffer containing c/2+ I
entries, including an entry identifying itself. The other entries are taken from the
current partial view.

W \ne noce l~ a\~Oin puU mode it ~l\\ ~a\.\1m Q 'ieSp~il~e\"'i~ID fue ~e\e'\:..~\\
peer. That peer, in the meantime, will also have constructed a buffer by means the
passive thread shown in Fig. 2-9(b), whose activities strongly resemble that of the
active thread.

The crucial point is the construction of a new partial view. This view, for ini-
tiating as well as for the contacted peer, will contain exactly, c entries, part of
which will come from received buffer. In essence, there are two ways to construct
the new view. First, the two nodes may decide to discard the entries that they had
sent to each other. Effectively, this means that they will swap part of their original
views. The second approach is to discard as many old entries as possible. In gen-
eral, it turns out that the two approaches are complementary [see Jelasity et al.
(2005a) for the details]. It turns out that many membership management protocols
for unstructured overlays fit this framework. There are a number of interesting
observations to make.

First, let us assume that when a node wants to join it contacts an arbitrary
other node, possibly from a list of well-known access points. This access point is
just a regular member of the overlay, except that we can assume it to be highly

48 ARCHITECTURES CHAP. 2

Actions by active thread (periodically repeated):

select a peer P from the current partial view;
if PUSH_MODE {

mybuffer = [(MyAddress, 0)];
permute partial view;
move H oldest entries to the end;
append first c/2 entries to mybuffer;
send mybuffer to P;

} else {
send trigger to P;

}
if PULL_MODE {

receive P's buffer;
}
construct a new partial view from the current one and P's buffer;
increment the age of every entry in the new partial view;

(a)

Actions by passive thread:

receive buffer from any process Q;
if PULL_MODE {

mybuffer = [(MyAddress, 0)];
permute partial view;
move H oldest entries to the end;
append first c/2 entries to mybuffer;
send mybuffer to P;

}
construct a new partial view from the current one and P's buffer;
increment the age of every entry in the new partial view;

(b)

Figure 2-9. (a) The steps taken by the active thread. (b) The steps take by the
passive thread.

available. In this case, it turns out that protocols that use only push mode or only
pull mode can fairly easily lead to disconnected overlays. In other words, groups
of nodes will become isolated and will never be able to reach every other node in
the network. Clearly, this is an undesirable feature, for which reason it makes
more sense to let nodes actually exchange entries.

Second, leaving the network turns out to be a very simple operation provided
the nodes exchange partial views on a regular basis. In this case, a node can sim-
ply depart without informing any other node. What will happen is that when a
node P selects one of its apparent neighbors, say node Q, and discovers that Q no
longer responds, it simply removes the entry from its partial view to select another
peer. It turns out that when constructing a new partial view, a node follows the

SEC. 2.2 SYSTEM ARCHITECTURES 49

policy to discard as many old entries as possible, departed nodes will rapidly be
forgotten. In other words, entries referring to departed nodes will automatically be
quickly removed from partial views.

However, there is a price to pay when this strategy is followed. To explain,
consider for a node P the set of nodes that have an entry in their partial view that
refers to P. Technically, this is known as the indegree of a node. The higher node
P's indegree is, the higher the probability that some other node will decide to con-
tact P. In other words, there is a danger that P will become a popular node, which
could easily bring it into an imbalanced position regarding workload. Systemati-
cally discarding old entries turns out to promote nodes to ones having a high inde-
gree. There are other trade-offs in addition, for which we refer to Jelasity et al.
(2005a).

Topology Management of Overlay Networks

Although it would seem that structured and unstructured peer-to-peer systems
form strict independent classes, this 'need actually not be case [see also Castro et
al. (2005)]. One key observation is that by carefully exchanging and selecting en-
tries from partial views, it is possible to construct and maintain specific topologies
of overlay networks. This topology management is achieved by adopting a two-
layered approach, as shown in Fig. 2-10.

Figure 2·10. A two-layered approach for constructing and maintaining specific
overlay topologies using techniques from unstructured peer-to-peer systems.

The lowest layer constitutes an unstructured peer-to-peer system in which
nodes periodically exchange entries of their partial views with the aim to maintain
an accurate random graph. Accuracy in this case refers to the fact that the partial
view should be filled with entries referring to randomly selected live nodes.

The lowest layer passes its partial view to the higher layer, where an addi-
tional selection of entries takes place. This then leads to a second list of neighbors
corresponding to the desired topology. Jelasity and Babaoglu (2005) propose to
use a ranking function by which nodes are ordered according to some criterion
relative to a given node. A simple ranking function is to order a set of nodes by
increasing distance from a given node P. In that case, node P will gradually build

50 ARCHITECTURES CHAP. 2

up a list of its nearest neighbors, provided the lowest layer continues to pass ran-
domly selected nodes.

As an illustration, consider a logical grid of size N x N with a node placed on
each point of the grid. Every node is required to maintain a list of c nearest neigh-
bors, where the distance between a node at (a J. a 2) and (b 1,b 2) is defined as
d

l
+d

2
, with d;=min(N-1ai-bil, lai-bil). If the lowest layer periodically exe-

cutes the protocol as outlined in Fig. 2-9, the topology that will evolve is a torus,
shown in Fig. 2-11.•..

Figure 2-11. Generating a specific overlay network using a two-layered
unstructured peer-to-peer system [adapted with permission from Jelasity and Ba-
baoglu (2005)].

Of course, completely different ranking functions can be used. Notably those
that are related to capturing the semantic proximity of the data items as stored at
a peer node are interesting. This proximity allows for the construction of seman-
tic overlay networks that allow for highly efficient search algorithms in unstruc-
tured peer-to-peer systems. We will return to these systems in Chap. 5 when we
discuss attribute-based naming.

Superpeers

Notably in unstructured peer-to-peer systems, locating relevant data items can
become problematic as the network grows. The reason for this scalability problem
is simple: as there is no deterministic way of routing a lookup request to a specific
data item, essentially the only technique a node can resort to is flooding the re-
quest. There are various ways in which flooding can be dammed, as we will dis-
cuss in Chap. 5, but as an alternative many peer-to-peer systems have proposed to
make use of special nodes that maintain an index of data items.

There are other situations in which abandoning the symmetric nature of peer-
to-peer systems is sensible. Consider a collaboration of nodes that offer resources

SEC. 2.2 SYSTEM ARCHITECTURES 51
to each other. For example, in a collaborative content delivery network (CDN),
nodes may offer storage for hosting copies of Web pages allowing Web clients to
access pages nearby, and thus to access them quickly. In this case a node P may
need to seek for resources in a specific part of the network. In that case, making
use of a broker that collects resource usage for a number of nodes that are in each
other's proximity will allow to quickly select a node with sufficient resources.

Nodes such as those maintaining an index or acting as a broker are generally
referred to as superpeers. As their name suggests, superpeers are often also org-
anizedin a peer-to-peer network, leading to a hierarchical organization as ex-
plained in Yang and Garcia-Molina (2003). A simple example of such an organi-
zation is shown in Fig. 2-12. In this organization, every regular peeris connected
as a client to a superpeer. All communication from and to a regular peer proceeds
through that peer's associated superpeer.

Figure 2-12. A hierarchical organization of nodes into a superpeer network.

In many cases, the client-superpeer relation is fixed: whenever a regular peer
joins the network, it attaches to one of the superpeers and remains attached until it
leaves the network. Obviously, it is expected that superpeers are long-lived proc-
esses with a high availability. To compensate for potential unstable behavior of a
superpeer, backup schemes can be deployed, such as pairing every superpeer with
another one and requiring clients to attach to both.

Having a fixed association with a superpeer may not always be the best solu-
tion. For example, in the case of file-sharing networks, it may be better for a client
to attach to a superpeer that maintains an index of files that the client is generally
interested in. In that case, chances are bigger that when a client is looking for a
specific file, its superpeer will know where to find it. Garbacki et al. (2005) des-
cribe a relatively simple scheme in which the client-superpeer relation can change
as clients discover better superpeers to associate with. In particular, a superpeer
returning the result of a lookup operation is given preference over other super-
peers.,

As we have seen, peer-to-peer networks offer a flexible means for nodes to
join and leave the network. However, with superpeer networks a new problem is
introduced, namely how to select the nodes that are eligible to become superpeer.

52 ARCHITECTURES CHAP. 2

This problem is closely related to the leader-election problem, which we discuss
in Chap. 6, when we return to electing superpeers in a peer-to-peer network.

2.2.3 Hybrid Architectures

So far, we have focused on client-server architectures and a number of peer-
to-peer architectures. Many distributed systems combine architectural features, as
we already came across in superpeer networks. In this section we take a look at
some specific classes of distributed systems in which client-server solutions are
combined with decentralized architectures.

Edge-Server Systems

An important class of distributed systems that is organized according to a
hybrid architecture is formed by edge-server systems. These systems are deploy-
ed on the Internet where servers are placed "at the edge" of the network. This
edge is formed by the boundary between enterprise networks and the actual Inter-
net, for example, as provided by an Internet Service Provider (ISP). Likewise,
where end users at home connect to the Internet through their ISP, the ISP can be
considered as residing at the edge of the Internet. This leads to a general organiza-
tion as shown in Fig. 2-13.

Figure 2-13. Viewing the Internet as consisting of a collection of edge servers.

End users, or clients in general, connect to the Internet by means of an edge
server. The edge server's main purpose is to serve content, possibly after applying
filtering and transcoding functions. More interesting is the fact that a collection of
edge servers can be used to optimize content and application distribution. The
basic model is that for a specific organization, one edge server acts as an origin
server from which all content originates. That server can use other edge servers
for replicating Web pages and such (Leff et aI., 2004: Nayate et aI., 2004; and
Rabinovich and Spatscheck, 2002). We will return to edge-server systems in
Chap. 12 when we discuss Web-based solutions.

SEC. 2.2 SYSTEM ARCHITECTURES 53

Collaborative Distributed Systems

Hybrid structures are notably deployed in collaborative distributed systems.
The main issue in many of these systems to first get started, for which often a
traditional client-server scheme is deployed. Once a node has joined the system, it
can use a fully decentralized scheme for collaboration.

To make matters concrete, let us first consider the BitTorrent file-sharing sys-
tem (Cohen, 2003). BitTorrent is a peer-to-peer file downloading system. Its prin-
cipal working is shown in Fig. 2-14 The basic idea is that when an end user is
looking for a file, he downloads chunks of the file from other users until the
downloaded chunks can be assembled together yielding the complete file. An im-
portant design goal was to ensure collaboration. In most file-sharing systems, a
significant fraction of participants merely download files but otherwise contribute
close to nothing (Adar and Huberman, 2000; Saroiu et al., 2003; and Yang et al.,
2005). To this end, a file can be downloaded only when the downloading client is
providing content to someone else. We will return to this "tit-for-tat" behavior
shortly.

Figure 2-14. The principal working of BitTorrent [adapted with permission
from Pouwelse et al. (2004)].

To download a me, a user needs to access a global directory, which is just one
of a few well-known Web sites. Such a directory contains references to what are
called .torrent files. A .torrent file contains the information that is needed to
download a specific file. In particular, it refers to what is known as a tracker,
which is a server that is keeping an accurate account of active nodes that have
(chunks) of the requested file. An active node is one that is currently downloading
another file. Obviously, there will be many different trackers, although (therewill
generally be only a single tracker per file (or collection of files).

Once the nodes have been identified from where chunks can be downloaded,
the downloading node effectively becomes active. At that point, it will be forced
to help others, for example by providing chunks of the file it is downloading that
others do not yet have. This enforcement comes from a very simple rule: if node P
notices that node Q is downloading more than it is uploading, P can decide to

54 ARCHITECTURES CHAP. 2

decrease the rate at which it sends data toQ. This scheme works well provided P
has something to download from Q. For this reason, nodes are often supplied with
references to many other nodes putting them in a better position to trade data.

Clearly, BitTorrent combines centralized with decentralized solutions. As it
turns out, the bottleneck of the system is, not surprisingly, formed by the trackers.

As another example, consider the Globule collaborative content distribution
network (Pierre and van Steen, 2006). Globule strongly resembles the edge-
server architecture mentioned above. In this case, instead of edge servers, end
users (but also organizations) voluntarily provide enhanced Web servers that are
capable of collaborating in the replication of Web pages. In its simplest form,
each such server has the following components:

1. A component that can redirect client requests to other servers.

2. A component for analyzing access patterns.

3. A component for managing the replication of Web pages.

The server provided by Alice is the Web server that normally handles the traffic
for Alice's Web site and is called the origin server for that site. It collaborates
with other servers, for example, the one provided by Bob, to host the pages from
Bob's site. In this sense, Globule is a decentralized distributed system. Requests
for Alice's Web site are initially forwarded to her server, at which point they may
be redirected to one of the other servers. Distributed redirection is also supported.

However, Globule also has a centralized component in the form of its broker.
The broker is responsible for registering servers, and making these servers known
to others. Servers communicate with the broker completely analogous to what one
would expect in a client-server system. For reasons of availability, the broker can
be replicated, but as we shall later in this book, this type of replication is widely
applied in order to achieve reliable client-server computing.

2.3 ARCHITECTURES VERSUS MIDDLEW ARE

When considering the architectural issues we have discussed so far, a question
that comes to mind is where middleware fits in. As we discussed in Chap. 1,
middleware forms a layer between applications and distributed platforms. as
shown in Fig. 1-1. An important purpose is to provide a degree of distribution
transparency, that is, to a certain extent hiding the distribution of-data, processing,
and control from applications.

What is comonly seen in practice is that middleware systems actually follow a
specific architectural sytle. For example, many middleware solutions have ad-
opted an object-based architectural style, such as CORBA (OMG. 2004a). Oth-
ers, like TIB/Rendezvous (TIBCO, 2005) provide middleware that follows the

SEC. 2.3 ARCHITECTURES VERSUS MIDDLEWARE 55
event-based architectural style. In later chapters, we will come across more ex-
amples of architectural styles.

Having middleware molded according to a specific architectural style has the
benefit that designing applications may become simpler. However, an obvious
drawback is that the middleware may no longer be optimal for what an application
developer had in mind. For example, COREA initially offered only objects that
could be invoked by remote clients. Later, it was felt that having only this form of
interaction was too restrictive, so that other interaction patterns such as messaging
were added. Obviously, adding new features can easily lead to bloated middle-
ware solutions.

In addition, although middleware is meant to provide distribution trans-
parency, it is generally felt that specific solutions should be adaptable to applica-
tion requirements. One solution to this problem is to make several versions of a
middleware system, where each version is tailored to a specific class of applica-
tions. An approach that is generally considered better is to make middleware sys-
tems such that they are easy to configure, adapt, and customize as needed by an
application. As a result, systems are now being developed in which a stricter
separation between policies and mechanisms is being made. This has led to sever-
al mechanisms by which the behavior of middleware can be modified (Sadjadi
and McKinley, 2003). Let us take a look at some of the commonly followed ap-
proaches.

2.3.1 Interceptors

Conceptually, an interceptor is nothing but a software construct that will
break the usual flow of control and allow other (application specific) code to be
executed. To make interceptors generic may require a substantial implementation
effort, as illustrated in Schmidt et al. (2000), and it is unclear whether in such
cases generality should be preferred over restricted applicability and simplicity.
Also, in many cases having only limited interception facilities will improve
management of the software and the distributed system as a whole.

To make matters concrete, consider interception as supported in many object-
based distributed systems. The basic idea is simple: an object A can call a method
that belongs to an object B, while the latter resides on a different machine than A.
As we explain in detail later in the book, such a remote-object invocation is car-
ried as a three-step approach:

1. Object A is offered a local interface that is exactly the same as the in-
terface offered by object B. A simply calls the method available in'
that interface.

2. The call by A is transformed into a generic object invocation, made
possible through a general object-invocation interface offered by the
middleware at the machine where A resides.

56 ARCHITECTURES CHAP. 2

3. Finally, the generic object invocation is transformed into a message
that is sent through the transport-level network interface as offered
by A's local operating system.

This scheme is shown in Fig. 2-15.

Figure 2-15. Using interceptors to handle remote-object invocations.

After the first step, the call B.do_something(value) is transformed into a gen-
eric call such as invoke(B, &do_something, value) with a reference to B's method
and the parameters that go along with the call. Now imagine that object B is repli-
cated. In that case, each replica should actually be invoked. This is a clear point
where interception can help. What the request-level interceptor will do is simply
call invoke(B, &do_something, value) for each of the replicas. The beauty of this
an is that the object A need not be aware of the replication of B, but also the ob-
ject middleware need not have special components that deal with this replicated
call. Only the request-level interceptor, which may be added to the middleware
needs to know about B's replication.

In the end, a call to a remote object will have to be sent over the network. In
practice, this means that the messaging interface as offered by the local operating
system will need to be invoked. At that level, a message-level interceptor may
assist in transferring the invocation to the target object. For example, imagine that
the parameter value actually corresponds to a huge array of data. In that case, it
may be wise to fragment the data into smaller parts to have it assembled again at

SEC. 2.3 ARCHITECTURES VERSUS MIDDLEWARE 57

the destination. Such a fragmentation may improve performance or reliability.
Again, the middleware need not be aware of this fragmentation; the lower-level
interceptor will transparently handle the rest of the communication with the local
operating system.

2.3.2 General Approaches to Adaptive Software

What interceptors actually offer is a means to adapt the middleware. The need
for adaptation comes from the fact that the environment in which distributed ap-
plications are executed changes continuously. Changes include those resulting
from mobility, a strong variance in the quality-of-service of networks, failing
hardware, and battery drainage, amongst others. Rather than making applications
responsible for reacting to changes, this task is placed in the middleware.

These strong influences from the environment have brought many designers
of middleware to consider the construction of adaptive software. However, adap-
tive software has not been as successful as anticipated. As many researchers and
developers consider it to be an important aspect of modern distributed systems, let
us briefly pay some attention to it. McKinley et al. (2004) distinguish three basic
techniques to come to software adaptation:

1. Separation of concerns

2. Computational reflection

3. Component-based design

Separating concerns relates to the traditional way of modularizing systems:
separate the parts that implement functionality from those that take care of other
things (known as extra functionalities) such as reliability, performance, security,
etc. One can argue that developing middleware for distributed applications is
largely about handling extra functionalities independent from applications. The
main problem is that we cannot easily separate these extra functionalities by
means of modularization. For example, simply putting security into a separate
module is not going to work. Likewise, it is hard to imagine how fault tolerance
can be isolated into a separate box and sold as an independent service. Separating
and subsequently weaving these cross-cutting concerns into a (distributed) system
is the major theme addressed by aspect-oriented software development (Filman
et al., 2005). However, aspect orientation has not yet been successfully applied to
developing large-scale distributed systems, and it can be expected that there is
still a long way to go before it reaches that stage.

Computational reflection refers to the ability of a program to inspect itself
and, if necessary, adapt its behavior (Kon et al., 2002). Reflection has been built
into programming languages, including Java, and offers a powerful facility for
runtime modifications. In addition, some middleware systems provide the means

58 ARCHITECTURES CHAP. 2

to apply reflective techniques. However, just as in the case of aspect orientation,
reflective middleware has yet to prove itself as a powerful tool to manage the
complexity of large-scale distributed systems. As mentioned by Blair et al. (2004),
applying reflection to a broad domain of applications is yet to be done.

Finally, component-based design supports adaptation through composition. A
system may either be configured statically at design time, or dynamically at run-
time. The latter requires support for late binding, a technique that has been suc-
cessfully applied in programming language environments, but also for operating
systems where modules can be loaded and unloaded at will. Research is now well
underway to allow automatically selection of the best implementation of a com-
ponent during runtime (Yellin, 2003), but again, the process remains complex for
distributed systems, especially when considering that replacement of one compon-
ent requires knowning what the effect of that replacement on other components
will be. In many cases, components are less independent as one may think.

2.3.3 Discussion

Software architectures for distributed systems, notably found as middleware,
are bulky and complex. In large part, this bulkiness and complexity arises from
the need to be general in the sense that distribution transparency needs to be pro-
vided. At the same time applications have specific extra-functional requirements
that conflict with aiming at fully achieving this transparency. These conflicting
requirements for generality and specialization have resulted in middleware solu-
tions that are highly flexible. The price to pay, however, is complexity. For ex-
ample, Zhang and Jacobsen (2004) report a 50% increase in the size of a particu-
lar software product in just four years since its introduction, whereas the total
number of files for that product had tripled during the same period. Obviously,
this is not an encouraging direction to pursue.

Considering that virtually all large software systems are nowadays required to
execute in a networked environment, we can ask ourselves whether the complex-
ity of distributed systems is simply an inherent feature of attempting to make dis-
tribution transparent. Of course, issues such as openness are equally important,
but the need for flexibility has never been so prevalent as in the case of
middleware.

Coyler et al. (2003) argue that what is needed is a stronger focus on (external)
simplicity, a simpler way to construct middleware by components, and application
independence. Whether any of the techniques mentioned above forms the solution
is subject to debate. In particular, none of the proposed techniques so far have
found massive adoption, nor have they been successfully applied tQ large-scale
systems.

The underlying assumption is that we need adaptive software in the sense that
the software should be allowed to change as the environment changes. However,
one should question whether adapting to a changing environment is a good reason

SEC. 2.3 ARCHITECTURES VERSUS MIDDLEW ARE 59

to adopt changing the software. Faulty hardware, security attacks, energy drain-
age, and so on, all seem to be environmental influences that can (and should) be
anticipated by software.

The strongest, and certainly most valid, argument for supporting adaptive
software is that many distributed systems cannot be shut down. This constraint
calls for solutions to replace and upgrade components on the fly, but is not clear
whether any of the solutions proposed above are the best ones to tackle this
maintenance problem.

What then remains is that distributed systems should be able to react to
changes in their environment by, for example, switching policies for allocating re-
sources. All the software components to enable such an adaptation will already be
in place. It is the algorithms contained in these components and which dictate the
behavior that change their settings. The challenge is to let such reactive behavior
take place without human intervention. This approach is seen to work better when
discussing the physical organization of distributed systems when decisions are
taken about where components are placed, for example. We discuss such system
architectural issues next.

2.4 SELF -MANAGEMENT IN DISTRIBUTED SYSTEMS

Distributed systems-and notably their associated middleware-need to pro-
vide general solutions toward shielding undesirable features inherent to network-
ing so that they can support as many applications as possible. On the other hand,
full distribution transparency is not what most applications actually want, re-
sulting in application-specific solutions that need to be supported as well. We
have argued that, for this reason, distributed systems should be adaptive, but not-
ably when it comes to adapting their execution behavior and not the software
components they comprise.

When adaptation needs to be done automatically, we see a strong interplay
between system architectures and software architectures. On the one hand, we
need to organize the components of a distributed system such that monitoring and
adjustments can be done, while on the other hand we need to decide where the
processes are to be executed that handle the adaptation.

In this section we pay explicit attention to organizing distributed systems as
high-level feedback-control systems allowing automatic adaptations to changes.
This phenomenon is also known as autonomic computing (Kephart, 2003) or
self..star systems (Babaoglu et al., 2005). The latter name indicates the variety by
which automatic adaptations are being captured: self-managing, self-healing,
self-configuring, self-optimizing, and so on. We resort simply to using the name
self-managing systems as coverage of its many variants.

60 ARCHITECTURES CHAP. 2

2.4.1 The Feedback Control Model

There are many different views on self-managing systems, but what most
have in common (either explicitly or implicitly) is the assumption that adaptations
take place by means of one or more feedback control loops. Accordingly, sys-
tems that are organized by means of such loops are referred to as feedback COl)-

trol systems. Feedback control has since long been applied in various engineer-
ing fields, and its mathematical foundations are gradually also finding their way in
computing systems (Hellerstein et al., 2004; and Diao et al., 2005). For self-
managing systems, the architectural issues are initially the most interesting. The
basic idea behind this organization is quite simple, as shown in Fig. 2-16.

Figure 2-16. The logical organization of a feedback control system.

The core of a feedback control system is formed by the components that need
to be managed. These components are assumed to be driven through controllable
input parameters, but their behavior may be influenced by all kinds of uncontrol-
lable input, also known as disturbance or noise input. Although disturbance will
often come from the environment in which a distributed system is executing, it
may well be the case that unanticipated component interaction causes unexpected
behavior.

There are essentially three elements that form the feedback control loop. First,
the system itself needs to be monitored, which requires that various aspects of the
system need to be measured. In many cases, measuring behavior is easier said
than done. For example, round-trip delays in the Internet may vary wildly, and
also depend on what exactly is being measured. In such cases, accurately estimat-
ing a delay may be difficult indeed. Matters are further complicated when a node
A needs to estimate the latency between two other completely different nodes B
and C, without being able to intrude on either two nodes. For reasons as this, a
feedback control loop generally contains a logical metric estimation component.

SEC. 2.4 SELF-MANAGEMENT IN DISTRIBUTED SYSTEMS 61
Another part of the feedback control loop analyzes the measurements and

compares these to reference values. This feedback analysis component forms the
heart of the control loop, as it will contain the algorithms that decide on possible
adaptations.

The last group of components consist of various mechanisms to directly influ-
ence the behavior of the system. There can be many different mechanisms: plac-
ing replicas, changing scheduling priorities, switching services, moving data for
reasons"of availability, redirecting requests to different servers, etc. The analysis
component will need to be aware of these mechanisms and their (expected) effect
on system behavior. Therefore, it will trigger one or several mechanisms, to sub-
sequently later observe the effect.

An interesting observation is that the feedback control loop also fits the man-
ual management of systems. The main difference is that the analysis component is
replaced by human administrators. However, in order to properly manage any dis-
tributed system, these administrators will need decent monitoring equipment as
well as decent mechanisms to control the behavior of the system. It should be
clear that properly analyzing measured data and triggering the correct actions
makes the development of self-managing systems so difficult.

It should be stressed that Fig. 2-16 shows the logical organization of a self-
managing system, and as such corresponds to what we have seen when discussing
software architectures. However, the physical organization may be very different.
For example, the analysis component may be fully distributed across the system.
Likewise, taking performance measurements are usually done at each machine
that is part of the distributed system. Let us now take a look at a few concrete ex-
amples on how to monitor, analyze, and correct distributed systems in an auto-
matic fashion. These examples will also illustrate this distinction between logical
and physical organization.

2.4.2 Example: Systems Monitoring with Astrolabe

As our first example, we consider Astrolabe (Van Renesse et aI., 2003), which
is a system that can support general monitoring of very large distributed systems.
In the context of self-managing systems, Astrolabe is to be positioned as a general
tool for observing systems behavior. Its output can be used to feed into an analysis
component for deciding on corrective actions.

Astrolabe organizes a large collection of hosts into a hierarchy of zones. The
lowest-level zones consist of just a single host, which are subsequently grouped
into zones of increasing size. The top-level zone covers all hosts. Every host runs
an Astrolabe process, called an agent, that collects information on the zones in
which that host is contained. The agent also communicates with other agents with
the aim to spread zone information across the entire system.

Each host maintains a set of attributes for collecting local information. For
example, a host may keep track of specific files it stores, its resource usage, and

62 ARCHITECTURES CHAP. 2

so on. Only the attributes as maintained directly by hosts, that is, at the lowest
level of the hierarchy are writable. Each zone can also have a collection of attri-
butes, but the values of these attributes are computed from the values of lower
level zones.

Consider the following simple example shown in Fig. 2-17 with three hosts,
A, B, and C grouped into a zone. Each machine keeps track of its IP address, CPU
load, available free memory. and the number of active processes. Each of these
attributes can be directly written using local information from each host. At the
zone level, only aggregated information can be collected, such as the average
CPU load, or the average number of active processes.

Figure 2-17. Data collection and information aggregation in Astrolabe.

Fig. 2-17 shows how the information as gathered by each machine can be
viewed as a record in a database, and that these records jointly form a relation
(table). This representation is done on purpose: it is the way that Astrolabe views
all the collected data. However, per zone information can only be computed from
the basic records as maintained by hosts.

Aggregated information is obtained by programmable aggregation functions,
which are very similar to functions available in the relational database language
SQL. For example, assuming that the host information from Fig. 2-17 is main-
tained in a local table called hostinfo, we could collect the average number of
processes for the zone containing machines A, B, and C, through the simple SQL
query

SELECT AVG(procs) AS aV9_procs FROM hostinfo

Combined with a few enhancements to SQL, it is not hard to imagine that more
informative queries can be formulated.

Queries such as these are continuously evaluated by each agent running on
each host. Obviously, this is possible only if zone information is propagated to all

SEC. 2.4 SELF-MANAGEMENT IN DISTRffiUTED SYSTEMS 63
nodes that comprise Astrolabe. To this end, an agent running on a host is responsi-
ble for computing parts of the tables of its associated zones. Records for which it
holds no computational responsibility are occasionally sent to it through a simple,
yet effective exchange procedure known as gossiping. Gossiping protocols will
be discussed in detail in Chap. 4. Likewise, an agent will pass computed results to
other agents as well.

The result of this information exchange is that eventually, all agents that
needed to assist in obtaining some aggregated information will see the same result
(provided that no changes occur in the meantime).

2.4.3 Example: Differentiating Replication Strategies in Globule

Let us now take a look at Globule, a collaborative content distribution net-
work (Pierre and van Steen, 2006). Globule relies on end-user servers being
placed in the Internet, and that these servers collaborate to optimize performance
through replication of Web pages. To this end, each origin server (i.e., the server
responsible for handling updates of a specific Web site), keeps track of access pat-
terns on a per-page basis. Access patterns are expressed as read and write opera-
tions for a page, each operation being timestamped and logged by the origin
server for that page.

In its simplest form, Globule assumes that the Internet can be viewed as an
edge-server system as we explained before. In particular, it assumes that requests
can always be passed through an appropriate edge server, as shown in Fig. 2-18.
This simple model allows an origin server to see what would have happened if it
had placed a replica on a specific edge server. On the one hand, placing a replica
closer to clients would improve client-perceived latency, but this will induce
traffic between the origin server and that edge server in order to keep a replica
consistent with the original page.

Figure 2-18. The edge-server model assumed by Globule.

When an origin server receives a request for a page, it records the IP address
from where the request originated, and looks up the ISP or enterprise network

64 ARCHITECTURES CHAP. 2

associated with that request using the WHOIS Internet service (Deutsch et aI.,
1995). The origin server then looks for the nearest existing replica server that
could act as edge server for that client, and subsequently computes the latency to
that server along with the maximal bandwidth. In its simplest configuration, Glo-
bule assumes that the latency between the replica server and the requesting user
machine is negligible, and likewise that bandwidth between the two is plentiful.

Once enough requests for a page have been collected, the origin server per-
forms a simple "what-if analysis." Such an analysis boils down to evaluating sev-
eral replication policies, where a policy describes where a specific page is repli-
cated to, and how that page is kept consistent. Each replication policy incurs a
cost that can be expressed as a simple linear function:

cost=(W1 xm1)+(w2xm2)+ ... +(wnxmn)

where mk denotes a performance metric and Wk is the weight indicating how im-
portant that metric is. Typical performance metrics are the aggregated delays be-
tween a client and a replica server when returning copies of Web pages, the total
consumed bandwidth between the origin server and a replica server for keeping a
replica consistent, and the number of stale copies that are (allowed to be) returned
to a client (Pierre et aI., 2002).

For example, assume that the typical delay between the time a client C issues
a request and when that page is returned from the best replica server is de ms.
Note that what the best replica server is, is determined by a replication policy. Let
m 1 denote the aggregated delay over a given time period, that is, m 1 = L de. If
the origin server wants to optimize client-perceived latency, it will choose a rela-
tively high value for W i- As a consequence, only those policies that actually
minimize m 1 will show to have relatively low costs.

In Globule, an origin server regularly evaluates a few tens of replication pol-
ices using a trace-driven simulation, for each Web page separately. From these
simulations, a best policy is selected and subsequently enforced. This may imply
that new replicas are installed at different edge servers, or that a different way of
keeping replicas consistent is chosen. The collecting of traces, the evaluation of
replication policies, and the enforcement of a selected policy is all done automati-
cally.

There are a number of subtle issues that need to be dealt with. For one thing,
it is unclear how many requests need to be collected before an evaluation of the
current policy can take place. To explain, suppose that at time T; the origin server
selects policy p for the next period until'Ii+I' This selection takes place based on
a series of past requests that were issued between 'Ii-1 and 'Ii. Of course, in hind-
sight at time '1i+I, the server may come to the conclusion that it should have
selected policy p* given the actual requests that were issued between 'Ii and 'Ii+I.
If p* is different from p, then the selection of p at 'Ii was wrong.

As it turns out, the percentage of wrong predictions is dependent on the length
of the series of requests (called the trace length) that are used to predict and select

SEC. 2.4 SELF-MANAGEMENT IN DISTRIBUTED SYSTEMS 65

Figure 2-19. The dependency between prediction accuracy and trace length.

a next policy. This dependency is sketched in Fig. 2-19. What is seen is that the
error in predicting the best policy goes up if the trace is not long enough. This is
easily explained by the fact that we need enough requests to do a proper evalua-
tion. However, the error also increases if we use too many requests. The reason
for this is that a very long trace length captures so many changes in access pat-
terns that predicting the best policy to follow becomes difficult, if not impossible.
This phenomenon is well known and is analogous to trying to predict the weather
for tomorrow by looking at what happened during the immediately preceding 100
years. A much better prediction can be made by just looking only at the recent
past.

Finding the optimal trace length can be done automatically as well. We leave
it as an exercise to sketch a solution to this problem.

2.404 Example: Automatic Component Repair Management in Jade

When maintaining clusters of computers, each running sophisticated servers,
it becomes important to alleviate management problems. One approach that can
be applied to servers that are built using a component-based approach, is to detect
component failures and have them automatically replaced. The Jade system fol-
lows this approach (Bouchenak et al., 2005). We describe it briefly in this sec-
tion.

Jade is built on the Fractal component model, a Java implementation of a
framework that allows components to be added and removed at runtime (Bruneton
et al., 2004). A component in Fractal can have two types of interfaces. A server
interface is used to call methods that are implemented by that component. A cli-
ent interface is used by a component to call other components. Components are
connected to each other by binding interfaces. For example, a client interface of
component C 1 can be bound to the server interface of component C2' A primitive
binding means that a call to a client interface directly leads to calling the bounded

66 ARCHITECTURES CHAP. 2

server interface. In the case of composite binding, the call may proceed through
one or more other components, for example, because the client and server inter-
face did not match and some kind of conversion is needed. Another reason may be
that the connected components lie on different machines.

Jade uses the notion of a repair management domain. Such a domain con-
sists of a number of nodes, where each node represents a server along with the
components that are executed by that server. There is a separate node manager
which is responsible for adding and removing nodes from the domain. The node
manager may be replicated for assuring high availability.

Each node is equipped with failure detectors, which monitor the health of a
node or one of its components and report any failures to the node manager. Typi-
cally, these detectors consider exceptional changes in the state of component, the
usage of resources, and the actual failure of a component. Note that the latter may
actually mean that a machine has crashed.

When a failure has been detected, a repair procedure is started. Such a proce-
dure is driven by a repair policy, partly executed by the node manager. Policies
are stated explicitly and are carried out depending on the detected failure. For ex-
ample, suppose a node failure has been detected. In that case, the repair policy
may prescribe that the following steps are to be carried out:

1. Terminate every binding between a component on a nonfaulty node,
and a component on the node that just failed.

2. Request the node manager to start and add a new node to the domain.

3. Configure the new node with exactly the same components as those
on the crashed node.

4. Re-establish all the bindings that were previously terminated.

In this example, the repair policy is simple and will only work when no cru-
cial data has been lost (the crashed components are said to be stateless).

The approach followed by Jade is an example of self-management: upon the
detection of a failure, a repair policy is automatically executed to bring the system
as a whole into a state in which it was before the crash. Being a component-based
system, this automatic repair requires specific support to allow components to be
added and removed at runtime. In general, turning legacy applications into self-
managing systems is not possible.

2.5 SUMMARY

Distributed systems can be organized in many different ways. We can make a
distinction between software architecture and system architecture. The latter con-
siders where the components that constitute a distributed system are placed across

SEC. 2.5 SUMMARY 67

the various machines. The former is more concerned about the logical organiza-
tion of the software: how do components interact, it what ways can they be struc-
tured, how can they be made independent, and so on.

A key idea when talking about architectures is architectural style. A style
reflects the basic principle that is followed in organizing the interaction between
the software components comprising a distributed system. Important styles
include layering, object orientation, event orientation, and data-space orientation.

There are many different organizations of distributed systems. An important
class is where machines are divided into clients and servers. A client sends a re-
quest to a server, who will then produce a result that is returned to the client. The
client-server architecture reflects the traditional way of modularizing software in
which a module calls the functions available in another module. By placing dif-
ferent components on different machines, we obtain a natural physical distribution
of functions across a collection of machines.

Client-server architectures are often highly centralized. In decentralized archi-
tectures we often see an equal role played by the processes that constitute a dis-
tributed system, also known as peer-to-peer systems. In peer-to-peer systems, the
processes are organized into an overlay network, which is a logical network in
which every process has a local list of other peers that it can communicate with.
The overlay network can be structured, in which case deterministic schemes can
be deployed for routing messages between processes. In unstructured networks,
the list of peers is more or less random, implying that search algorithms need to be
deployed for locating data or other processes.

As an alternative, self-managing distributed systems have been developed.
These systems, to an extent, merge ideas from system and software architectures.
Self-managing systems can be generally organized as feedback-control loops.
Such loops contain a monitoring component by the behavior of the distributed sys-
tem is measured, an analysis component to see whether anything needs to be
adjusted, and a collection of various instruments for changing the behavior.
Feedback -control loops can be integrated into distributed systems at numerous
places. Much research is still needed before a common understanding how such
loops such be developed and deployedis reached.

PROBLEMS

1. If a client and a server are placed far apart, we may see network latency dominating
overall performance. How can we tackle this problem?

2. What is a three-tiered client-server architecture?
3. What is the difference between a vertical distribution and a horizontal distribution?

68 ARCHITECTURES CHAP. 2

4. Consider a chain of processes Ph P 2, ..., Pn implementing a multitiered client-server
architecture. Process Pi is client of process Pi+J, and Pi will return a reply to Pi-I only
after receiving a reply from Pi+1• What are the main problems with this organization
when taking a look at the request-reply performance at process PI?

5. In a structured overlay network, messages are routed according to the topology of the
overlay. What is an important disadvantage of this approach?

6. Consider the CAN network from Fig. 2-8. How would you route a message from the
node with coordinates (0.2,0.3) to the one with coordinates (0.9,0.6)?

7. Considering that a node in CAN knows the coordinates of its immediate neighbors, a
reasonable routing policy would be to forward a message to the closest node toward
the destination. How good is this policy?

8. Consider an unstructured overlay network in which each node randomly chooses c
neighbors. If P and Q are both neighbors of R, what is the probability that they are
also neighbors of each other?

9. Consider again an unstructured overlay network in which every node randomly
chooses c neighbors. To search for a file, a node floods a request to its neighbors and
requests those to flood the request once more. How many nodes will be reached?

10. Not every node in a peer-to-peer network should become superpeer. What are reason-
able requirements that a superpeer should meet?

11. Consider a BitTorrent system in which each node has an outgoing link with a
bandwidth capacity Bout and an incoming link with bandwidth capacity Bin' Some of
these nodes (called seeds) voluntarily offer files to be downloaded by others. What is
the maximum download capacity of a BitTorrent client if we assume that it can con-
tact at most one seed at a time?

12. Give a compelling (technical) argument why the tit-for-tat policy as used in BitTorrent
is far from optimal for file sharing in the Internet.

13. We gave two examples of using interceptors in adaptive middleware. What other ex-
amples come to mind?

14. To what extent are interceptors dependent on the middle ware where they are
deployed?

15. Modem cars are stuffed with electronic devices. Give some examples of feedback
control systems in cars.

16. Give an example of a self-managing system in which the analysis component is com-
pletely distributed or even hidden.

17. Sketch a solution to automatically determine the best trace length for predicting repli-
cation policies in Globule.

18. (Lab assignment) Using existing software, design and implement a BitTorrent-based
system for distributing files to many clients from a single, powerful server. Matters are
simplified by using a standard Web server that can operate as tracker.

3
PROCESSES

In this chapter, we take a closer look at how the different types of processes
playa crucial role in distributed systems. The concept of a process originates from
the field of operating systems where it is generally defined as a program in execu-
tion. From an operating-system perspective, the management and scheduling of
processes are perhaps the most important issues to deal with. However, when it
comes to distributed systems, other issues tum out to be equally or more impor-
tant.

For example, to efficiently organize client-server systems, it is often con-
venient to make use of multithreading techniques. As we discuss in the first sec-
tion, a main contribution of threads in distributed systems is that they allow clients
and servers to be constructed such that communication and local processing can
overlap, resulting in a high level of performance.

In recent years, the concept of virtualization has gained popularity. Virtualiza-
tion allows an application, and possibly also its complete environment including
the operating system, to run concurrently with other applications, but highly in-
dependent of the underlying hardware and platforms, leading to a high degree of
portability. Moreover, virtualization helps in isolating failures caused by errors or
security problems. It is an important concept for distributed systems, and we pay
attention to it in a separate section.

As we argued in Chap. 2, client-server organizations are important in distrib-
uted systems. In this chapter, we take a closer look at typical organizations of both
clients and servers. We also pay attention to general design issues for servers.

69

70 PROCESSES CHAP. 3

An important issue, especially in wide-area distributed systems, is moving
processes between different machines. Process migration or more specifically,
code migration, can help in achieving scalability, but can also help to dynamically
configure clients and servers. What is actually meant by code migration and what
its implications are is also discussed in this chapter.

3.1 THREADS

Although processes form a building block in distributed systems, practice
indicates that the granularity of processes as provided by the operating systems on
which distributed systems are built is not sufficient. Instead, it turns out that hav-
ing a finer granularity in the form of multiple threads of control per process makes
it much easier to build distributed applications and to attain better performance. In
this section, we take a closer look at the role of threads in distributed systems and
explain why they are so important. More on threads and how they can be used to
build applications can be found in Lewis and Berg (998) and Stevens (1999).

3.1.1 Introduction to Threads

To understand the role of threads in distributed systems, it is important to
understand what a process is, and how processes and threads relate. To execute a
program, an operating system creates a number of virtual processors, each one for
running a different program. To keep track of these virtual processors, the operat-
ing system has a process table, containing entries to store CPU register values,
memory maps, open files, accounting information. privileges, etc. A process is
often defined as a program in execution, that is, a program that is currently being
executed on one of the operating system's virtual processors. An important issue
is that the operating system takes great care to ensure that independent processes
cannot maliciously or inadvertently affect the correctness of each other's behav-
ior. In other words, the fact that multiple processes may be concurrently sharing
the same CPU and other hardware resources is made transparent. Usually, the op-
erating system requires hardware support to enforce this separation.

This concurrency transparency comes at a relatively high price. For example,
each time a process is created, the operating system must create a complete
independent address space. Allocation can mean initializing memory segments by,
for example, zeroing a data segment, copying the associated program into a text
segment, and setting up a stack for temporary data. Likewise, switching the CPU
between two processes may be relatively expensive as well. Apart from saving the
CPU context (which consists of register values, program counter, stack pointer,
etc.), the operating system will also have to modify registers of the memory
management unit (MMU) and invalidate address translation caches such as in the
translation lookaside buffer (TLB). In addition, if the operating system supports

SEC. 3.1 THREADS 71

more processes than it can simultaneously hold in main memory, it may have to
swap processes between main memory and disk before the actual switch can take
place.

Like a process, a thread executes its own piece of code, independently from
other threads. However, in contrast to processes, no attempt is made to achieve a
high degree of concurrency transparency if this would result in performance de-
gradation. Therefore, a thread system generally maintains only the minimum in-
formation to allow a CPU to be shared by several threads. In particular, a thread
context often consists of nothing more than the CPU context, along with some
other information for thread management. For example, a thread system may keep
track of the fact that a thread is currently blocked on a mutex variable, so as not to
select it for execution. Information that is not strictly necessary to manage multi-
ple threads is generally ignored. For this reason, protecting data against inap-
propriate access by threads within a single process is left entirely to application
developers.

There are two important implications of this approach. First of all, the perfor-
mance of a multithreaded application need hardly ever be worse than that of its
single-threaded counterpart. In fact, in many cases, multithreading leads to a per-
formance gain. Second, because threads are not automatically protected against
each other the way processes are, development of multithreaded applications re-
quires additional intellectual effort. Proper design and keeping things simple, as
usual, help a lot. Unfortunately, current practice does not demonstrate that this
principle is equally well understood.

Thread Usage in Nondistributed Systems

Before discussing the role of threads in distributed systems, let us first consid-
er their usage in traditional, nondistributed systems. There are several benefits to
multithreaded processes that have increased the popularity of using thread sys-
tems.

i'ne most1:m-poron\ \)e'i\'tl\\ \.~'m.'t~\'i.\)\\\ ~ \~\ \\\.~\ \.~ ~ ~\.~¥,t~-t.N~d ~t()C-

ess. ~l1.~~~'l:~~a. l:1lQ.c.kiu.~&'!&temcall is executed. tile Qrocess as a wriore is
MocKea'. 10 Illustrate, corrsrirer Jff <1flfllic«ti<Jt7 s~k cZS cZ s~e.2dshc>e!prOgE.wlJ, a,mj

asscattc tkat« «sercootioUOllS)Y.:md lZ;!cEacJ)ve)y w..avts JD !'.b.ange values, An im-
portant property of a spreadsheet program is that It maintains the runcnonai
dependencies between different cells, often from different spreadsheets. There-
fore, whenever a cell is modified, all dependent cells are automatically updated.
When a user changes the value in a single cell, such a modification can trigger a
large series of computations. If there is only a single thread of control, computa-
tion cannot proceed while the program is waiting for input. Likewise, it is not easy
to provide input while dependencies are being calculated. The easy solution is to
have at least two threads of control: one for handling interaction with the user and

PROCESSES

one for updating the spreadsheet. In the mean time, a third thread could be used
for backing up the spreadsheet to disk while the other two are doing their work.

Another advantage of multithreading is that it becomes possible to exploit
parallelism when executing the program on a multiprocessor system. In that case,
each thread is assigned to a different CPU while shared data are stored in shared
main memory. When properly designed, such parallelism can be transparent: the
process will run equally well on a uniprocessor system, albeit slower. Multi-
threading for parallelism is becoming increasingly important with the availability
of relatively cheap multiprocessor workstations. Such computer systems are typi-
cally used for running servers in client-server applications.

Multithreading is also useful in the context of large applications. Such appli-
cations are often developed as a collection of cooperating programs, each to be
executed by a separate process. This approach is typical for a UNIX environment.
Cooperation between programs is implemented by means of interprocess commu-
nication (IPC) mechanisms. For UNIX systems, these mechanisms typically in-
clude (named) pipes, message queues, and shared memory segments [see also
Stevens and Rago (2005)]. The major drawback of all IPC mechanisms is that
communication often requires extensive context switching, shown at three dif-
ferent points in Fig. 3-1.

Figure 3-1. Context switching as the result of IPC.

Because IPC requires kernel intervention, a process will generally first have
to switch from user mode to kernel mode, shown as S 1 in Fig. 3-1. This requires
changing the memory map in the MMU, as well as flushing the TLB. Within the
kernel, a process context switch takes place (52 in the figure), after which the
other party can be activated by switching from kernel mode to user mode again
(53 in Fig. 3-1). The latter switch again requires changing the MMU map and
flushing the TLB.

Instead of using processes, an application can also be constructed such that dif-
ferent parts are executed by separate threads. Communication between those parts

CHAP. 372

SEC. 3.1 THREADS 73

is entirely dealt with by using shared data. Thread switching can sometimes be
done entirely in user space, although in other implementations, the kernel is aware
of threads and schedules them. The effect can be a dramatic improvement in per-
formance.

Finally, there is also a pure software engineering reason to use threads: many
applications are simply easier to structure as a collection of cooperating threads.
Think of applications that need to perform several (more or less independent)
tasks. For example, in the case of a word processor, separate threads can be used
for handling user input, spelling and grammar checking, document layout, index
generation, etc.

Thread Implementation

Threads are often provided in the form of a thread package. Such a package
contains operations to create and destroy threads as well as operations on syn-
chronization variables such as mutexes and condition variables. There are basi-
cally two approaches to implement a thread package. The first approach is to con-
struct a thread library that is executed entirely in user mode. The second approach
is to have the kernel be aware of threads and schedule them.

A user-level thread library has a number of advantages. First, it is cheap to
create and destroy threads. Because all thread administration is kept in the user's
address space, the price of creating a thread is primarily determined by the cost
for allocating memory to set up a thread stack. Analogously, destroying a thread
mainly involves freeing memory for the stack, which is no longer used. Both oper-
ations are cheap.

A second advantage of user-level threads is that switching thread context can
often be done in just a few instructions. Basically, only the values of the CPU reg-
isters need to be stored and subsequently reloaded with the previously stored
values of the thread to which it is being switched. There is no need to change
memory maps, flush the TLB, do CPU accounting, and so on. Switching thread
context is done when two threads need to synchronize, for example, when enter-
ing a section of shared data.

However, a major drawback of user-level threads is that invocation of a
blocking system call will immediately block the entire process to which the thread
belongs, and thus also all the other threads in that process. As we explained,
threads are particularly useful to structure large applications into parts that could
be logically executed at the same time. In that case, blocking on I/O should not
prevent other parts to be executed in the meantime. For such applications, user-
level threads are of no help.

These problems can be mostly circumvented by implementing threads in the
operating system's kernel. Unfortunately, there is a high price to pay: every thread
operation (creation, deletion, synchronization, etc.), will have to be carried out by

74 PROCESSES CHAP. 3

the kernel. requiring a system call. Switching thread contexts may now become as
expensive as switching process contexts. As a result, most of the performance
benefits of using threads instead of processes then disappears.

A solution lies in a hybrid form of user-level and kernel-level threads, gener-
ally referred to as lightweight processes (LWP). An LWP runs in the context of
a single (heavy-weight) process, and there can be several LWPs per process. In
addition to having LWPs, a system also offers a user-level thread package. offer-
ing applications the usual operations for creating and destroying threads. In addi-
tion. the package provides facilities for thread synchronization. such as mutexes
and condition variables. The important issue is that the thread package is imple-
mented entirely in user space. In other words. all operations on threads are carried
out without intervention of the kernel.

Figure 3-2. Combining kernel-level lightweight processes and user-level threads.

The thread package can be shared by multiple LWPs, as shown in Fig. 3-2.
This means that each LWP can be running its own (user-level) thread. Multi-
threaded applications are constructed by creating threads, and subsequently as-
signing each thread to an LWP. Assigning a thread to an LWP is normally impli-
cit and hidden from the programmer.

The combination of (user-level) threads and L\VPs works as follows. The
thread package has a single routine to schedule the next thread. When creating an
LWP (which is done by means of a system call), the LWP is given its own stack,
and is instructed to execute the scheduling routine in search of a thread to execute.
If there are several LWPs, then each of them executes the scheduler. The thread
table, which is used to keep track of the current set of threads, is thus shared by
the LWPs. Protecting this table to guarantee mutually exclusive access is done by
means of mutexes that are implemented entirely in user space. In other words,
synchronization between LWPs does not require any kernel support.

When an LWP finds a runnable thread, it switches context to that thread.
Meanwhile, other LWPs may be looking for other runnable threads as well. If a

SEC. 3.1 THREADS 75

thread needs to block on a mutex or condition variable, it does the necessary
administration and eventually calls the scheduling routine. 'When another runnable
thread has been found, a context switch is made to that thread. The beauty of all
this is that the LWP executing the thread need not be informed: the context switch
is implemented completely in user space and appears to the LWP as normal pro-
gram code.

Now let us see what happens when a thread does a blocking system call. In
that case, execution changes from user mode to kernel mode. but still continues in
the context of the current LWP. At the point where the current LWP can no longer
continue, the operating system may decide to switch context to another LWP,
which also implies that a context switch is made back to user mode. The selected
LWP will simply continue where it had previously left off.

There are several advantages to using LWPs in combination with a user-level
thread package. First, creating, destroying, and synchronizing threads is relatively
cheap and involves no kernel intervention at all. Second, provided that a process
has enough LWPs, a blocking system call will not suspend the entire process.
Third, there is no need for an application to know about the LWPs. All it sees are
user-level threads. Fourth, LWPs can be easily used in multiprocessing environ-
ments, by executing different LWPs on different CPUs. This multiprocessing can
be hidden entirely from the application. The only drawback of lightweight proc-
esses in combination with user-level threads is that we still need to create and des-
troy LWPs, which is just as expensive as with kernel-level threads. However,
creating and destroying LWPs needs to be done only occasionally, and is often
fully controlled by the operating system.

An alternative, but similar approach to lightweight processes, is to make use
of scheduler activations (Anderson et al., 1991). The most essential difference
between scheduler activations and LWPs is that when a thread blocks on a system
call, the kernel does an upcall to the thread package, effectively calling the
scheduler routine to select the next runnable thread. The same procedure is re-
peated when a thread is unblocked. The advantage of this approach is that it saves
management of LWPs by the kernel. However, the use of upcalls is considered
less elegant, as it violates the structure of layered systems, in which calls only to
the next lower-level layer are permitted.

3.1.2 Threads in Distributed Systems

An important property of threads is that they can provide a convenient means
of allowing blocking system calls without blocking the entire process in which the
thread is running. This property makes threads particularly attractive to use in dis-
tributed systems as it makes it much easier to express communication in the form
of maintaining multiple logical connections at the same time. We illustrate this
point by taking a closer look at multithreaded clients and servers, respectively.

76 PROCESSES CHAP. 3

Multithreaded Clients

To establish a high degree of distribution transparency, distributed systems
that operate in wide-area networks may need to conceal long interprocess mes-
sage propagation times. The round-trip delay in a wide-area network can easily be
in the order of hundreds of milliseconds. or sometimes even seconds.

The usual way to hide communication latencies is to initiate communication
and immediately proceed with something else. A typical example where this hap-
pens is in Web browsers. In many cases, a Web document consists of an HTML
file containing plain text along with a collection of images, icons, etc. To fetch
each element of a Web document, the browser has to set up a TCPIIP connection,
read the incoming data, and pass it to a display component. Setting up a connec-
tion as well as reading incoming data are inherently blocking operations. When
dealing with long-haul communication, we also have the disadvantage that the
time for each operation to complete may be relatively long.

A Web browser often starts with fetching the HTML page and subsequently
displays it. To hide communication latencies as much as possible, some browsers
start displaying data while it is still coming in. While the text is made available to
the user, including the facilities for scrolling and such, the browser continues with
fetching other files that make up the page, such as the images. The latter are dis-
played as they are brought in. The user need thus not wait until all the components
of the entire page are fetched before the page is made available.

In effect, it is seen that the Web browser is doing a number of tasks simul-
taneously. As it turns out, developing the browser as a multithreaded client simpli-
fies matters considerably. As soon as the main HTML file has been fetched, sepa-
rate threads can be activated to take care of fetching the other parts. Each thread
sets up a separate connection to the server and pulls in the data. Setting up a con-
nection and reading data from the server can be programmed using the standard
(blocking) system calls, assuming that a blocking call does not suspend the entire
process. As is also illustrated in Stevens (1998), the code for each thread is the
same and, above all, simple. Meanwhile, the user notices only delays in the dis-
play of images and such, but can otherwise browse through the document.

There is another important benefit to using multithreaded Web browsers in
which several connections can be opened simultaneously. In the previous ex-
ample, several connections were set up to the same server. If that server is heavily
loaded, or just plain slow, no real performance improvements will be noticed
compared to pulling in the files that make up the page strictly one after the other.

However, in many cases, Web servers have been replicated across multiple
machines, where each server provides exactly the same set of Web documents.
The replicated servers are located at the same site, and are known under the same
name. When a request for a Web page comes in, the request is forwarded to one
of the servers, often using a round-robin strategy or some other load-balancing
technique (Katz et al., 1994). When using a multithreaded client, connections may

SEC. 3.1 THREADS 77

be set up to different replicas, allowing data to be transferred in parallel, effec-
tively establishing that the entire Web document is fully displayed in a much
shorter time than with a nonreplicated server. This approach is possible only if the
client can handle truly parallel streams of incoming data. Threads are ideal for this
purpose.

~ultithreaded Servers
Although there are important benefits to multithreaded clients, as we have

seen, the main use of multithreading in distributed systems is found at the server
side. Practice shows that multithreading not only simplifies server code consid-
erably, but also makes it much easier to develop servers that exploit parallelism to
attain high performance, even on uniprocessor systems. However, now that multi-
processor computers are widely available as general-purpose workstations, multi-
threading for parallelism is even more useful.

To understand the benefits of threads for writing server code, consider the
organization of a file server that occasionally has to block waiting for the disk.
The file server normally waits for an incoming request for a file operation, subse-
quently carries out the request, and then sends back the reply. One possible, and
particularly popular organization is shown in Fig. 3-3. Here one thread, the
dispatcher, reads incoming requests for a file operation. The requests are sent by
clients to a well-known end point for this server. After examining the request, the
server chooses an idle (i.e., blocked) worker thread and hands it the request.

Figure 3-3. A multithreaded server organized in a dispatcher/worker model.

The worker proceeds by performing a blocking read on the local file system,
which may cause the thread to be suspended until the data are fetched from disk.
If the thread is suspended, another thread is selected to be executed. For example,
the dispatcher may be selected to acquire more work. Alternatively, another
worker thread can be selected that is now ready to run.

78 CHAP. 3PROCESSES

Now consider how the file server might have been written in the absence of
threads. One possibility is to have it operate as a single thread. The main loop of
the file server gets a request, examines it, and carries it out to completion before
getting the next one. While waiting for the disk, the server is idle and does not
process any other requests. Consequently, requests from other clients cannot be
handled. In addition, if the file server is running on a dedicated machine, as is
commonly the case, the CPU is simply idle while the file server is waiting for the
disk. The net result is that many fewer requests/sec can be processed. Thus
threads gain considerable performance, but each thread is programmed sequen-
tially, in the usual way.

So far we have seen two possible designs: a multithreaded file server and a
single-threaded file server. Suppose that threads are not available but the system
designers find the performance loss due to single threading unacceptable. A third
possibility is to run the server as a big finite-state machine. When a request comes
in, the one and only thread examines it. If it can be satisfied from the cache, fine,
but if not, a message must be sent to the disk.

However, instead of blocking, it records the state of the current request in a
table and then goes and gets the next message. The next message may either be a
request for new work or a reply from the disk about a previous operation. If it is
new work, that work is started. If it is a reply from the disk, the relevant informa-
tion is fetched from the table and the reply processed and subsequently sent to the
client. In this scheme, the server will have to make use of nonblocking calls to
send and receive.

In this design, the "sequential process" model that we had in the first two
cases is lost. The state of the computation must be explicitly saved and restored in
the table for every message sent and received. In effect, we are simulating threads
and their stacks the hard way. The process is being operated as a finite-state ma-
chine that gets an event and then reacts to it, depending on what is in it.

Figure 3-4. Three ways to construct a server.

It should now be clear what threads have to offer. They make it possible to
retain the idea of sequential processes that make blocking system calls (e.g., an
RPC to talk to the disk) and still achieve parallelism. Blocking system calls make
programming easier and parallelism improves performance. The single-threaded
server retains the ease and simplicity of blocking system calls, but gives up some

SEC. 3.1 THREADS 79
amount of performance. The finite-state machine approach achieves high perfor-
mance through parallelism, but uses nonblocking calls, thus is hard to program.
These models are summarized in Fig. 3-4.

3.2 VIRTUALIZATION

Threads and processes can be seen as a way to do more things at the same
time. In effect, they allow us build (pieces of) programs that appear to be executed
simultaneously. On a single-processor computer, this simultaneous execution is,
of course, an illusion. As there is only a single CPU, only an instruction from a
single thread or process will be executed at a time. By rapidly switching between
threads and processes, the illusion of parallelism is created.

This separation between having a single CPU and being able to pretend there
are more can be extended to other resources as well, leading to what is known as
resource virtualization. This virtualization has been applied for many decades,
but has received renewed interest as (distributed) computer systems have become
more commonplace and complex, leading to the situation that application soft-
ware is mostly always outliving its underlying systems software and hardware. In
this section, we pay some attention to the role of virtualization and discuss how it
can be realized.

3.2.1 The Role of Virtualization in Distributed Systems

In practice, every (distributed) computer system offers a programming inter-
face to higher level software, as shown in Fig. 3-5(a). There are many different
types of interfaces, ranging from the basic instruction set as offered by a CPU to
the vast collection of application programming interfaces that are shipped with
many current middleware systems. In its essence, virtualization deals with extend-
ing or replacing an existing interface so as to mimic the behavior of another sys-
tem, as shown in Fig.3-5(b). We will come to discuss technical details on vir-
tualization shortly, but let us first concentrate on why virtualization is important
for distributed systems.

One of the most important reasons for introducing virtualization in the 1970s,
was to allow legacy software to run on expensive mainframe hardware. The soft-
ware not only included various applications, but in fact also the operating systems
they were developed for. This approach toward supporting legacy software has
been successfully applied on the IBM 370 mainframes (and their successors) that
offered a virtual machine to which different operating systems had been ported.

As hardware became cheaper, computers became more powerful, and the
number of different operating system flavors was reducing, virtualization became
less of an issue. However, matters have changed again since the late 1990s for
several reasons, which we will now discuss.

80 PROCESSES CHAP. 3

Figure 3-5. (a) General organization between a program, interface, and system.
(b) General organization of virtualizing system A on top of system B.

First, while hardware and low-level systems software change reasonably fast,
software at higher levels of abstraction (e.g., middleware and applications), are
much more stable. In other words, we are facing the situation that legacy software
cannot be maintained in the same pace as the platforms it relies on. Virtualization
can help here by porting the legacy interfaces to the new platforms and thus im-
mediately opening up the latter for large classes of existing programs.

Equally important is the fact that networking has become completely per-
vasive. It is hard to imagine that a modern computer is not connected to a net-
work. In practice, this connectivity requires that system administrators maintain a
large and heterogeneous collection of server computers, each one running very
different applications, which can be accessed by clients. At the same time the var-
ious resources should be easily accessible to these applications. Virtualization can
help a lot: the diversity of platforms and machines can be reduced by essentially
letting each application run on its own virtual machine, possibly including the
related libraries and operating system, which, in turn, run on a common platform.

This last type of virtualization provides a high degree of portability and flexi-
bility. For example, in order to realize content delivery networks that can easily
support replication of dynamic content, Awadallah and Rosenblum (2002) argue
that management becomes much easier if edge servers would support virtuali-
zation, allowing a complete site, including its environment to be dynamically
copied. As we will discuss later, it is primarily such portability arguments that
make virtualization an important mechanism for distributed systems.

3.2.2 Architectures of Virtual Machines

There are many different ways in which virtualization can be realized in prac-
tice. An overview of these various approaches is described by Smith and Nair
(2005). To understand the differences in virtualization, it is important to realize

SEC. 3.2 VIRTUALIZATION 81

that computer systems generally offer four different types of interfaces, at four
different levels:

1. An interface between the hardware and software, consisting of ma-
chine instructions that can be invoked by any program.

2. An interface between the hardware and software, consisting of ma-
chine instructions that can be invoked only by privileged programs,
such as an operating system.

3. An interface consisting of system calls as offered by an operating
system.

4. An interface consisting of library calls, generally forming what is
known as an application programming interface (API). In many
cases, the aforementioned system calls are hidden by an API.

These different types are shown in Fig. 3-6. The essence of virtualization is to
mimic the behavior of these interfaces.

Figure 3-6. Various interfaces offered by computer systems.

Virtualization can take place in two different ways. First, we can build a run-
time system that essentially provides an abstract instruction set that is to be used
for executing applications. Instructions can be interpreted (as is the case for the
Java runtime environment), but could also be emulated as is done for running
Windows applications on UNIX platforms. Note that in the latter case, the emula-
tor will also have to mimic the behavior of system calls, which has proven to be
generally far from trivial. This type of virtualization leads to what Smith and Nair
(2005) call a process virtual machine, stressing that virtualization is done essen-
tially only for a single process.

An alternative approach toward virtualization is to provide a system that is
essentially implemented as a layer completely shielding the original hardware, but
offering the complete instruction set of that same (or other hardware) as an inter-
face. Crucial is the fact that this interface can be offered simultaneously to dif-
ferent programs. As a result, it is now possible to have multiple, and different

82 PROCESSES CHAP. 3

operating systems run independently and concurrently on the same platform. The
layer is generally referred to as a virtual machine monitor (VMM). Typical ex-
amples of this approach are VMware (Sugerman et al., 200 I) and Xen (Barham et
at, 2003). These two different approaches are shown in Fig. 3-7.

Figure 3-7. (a) A process virtual machine, with multiple instances of (applica-
tion, runtime) combinations. (b) A virtual machine monitor. with multiple in-
stances of (applications, operating system) combinations.

As argued by Rosenblum and Garfinkel (2005), VMMs will become increas-
ingly important in the context of reliability and security for (distributed) systems.
As they allow for the isolation of a complete application and its environment, a
failure caused by an error or security attack need no longer affect a complete ma-
chine. In addition, as we also mentioned before, portability is greatly improved as
VMMs provide a further decoupling between hardware and software, allowing a
complete environment to be moved from one machine to another.

3.3 CLIENTS

In the previous chapters we discussed the client-server modeL the roles of cli-
ents and servers, and the ways they interact. Let us now take a closer look at the
anatomy of clients and servers, respectively. We start in this section with a discus-
sion of clients. Servers are discussed in the next section.

3.3.1 Networked User Interfaces

A major task of client machines is to provide the means for users to interact
with remote servers. There are roughly two ways in which this interaction can be
supported. First, for each remote service the client machine will have a separate
counterpart that can contact the service over the network. A typical example is an
agenda running on a user's PDA that needs to synchronize with a remote, possibly

SEC. 3.3 CLIENTS 83

shared agenda. In this case, an application-level protocol will handle the syn-
chronization, as shown in Fig. 3-8(a).

Figure 3-8. (a) A networked application with its own protocol. (b) A general
solution to allow access to remote applications.

A second solution is to provide direct access to remote services by only offer-
ing a convenient user interface. Effectively, this means that the client machine is
used only as a terminal with no need for local storage, leading to an application-
neutral solution as shown in Fig. 3-8(b). In the case of networked user interfaces,
everything is processed and stored at the server. This thin-client approach is
receiving more attention as Internet connectivity increases, and hand-held devices
are becoming more sophisticated. As we argued in the previous chapter, thin-cli-
ent solutions are also popular as they ease the task of system management. Let us
take a look at how networked user interfaces can be supported.

Example: The X Window System

Perhaps one of the oldest and still widely-used networked user interfaces is
the X Window system. The X Window System, generally referred to simply as
X, is used to control bit-mapped terminals, which include a monitor, keyboard,
and a pointing device such as a mouse. In a sense, X can be viewed as that part of
an operating system that controls the terminal. The heart of the system is formed
by what we shall call the X kernel. It contains all the terminal-specific device
drivers, and as such, is generally highly hardware dependent.

The X kernel offers a relatively low-level interface for controlling the screen,
but also for capturing events from the keyboard and mouse. This interface is made
available to applications as a library called Xlib. This general organization is
shown in Fig. 3-9.

The interesting aspect of X is that the X kernel and the X applications need
not necessarily reside on the same machine. In particular, X provides the X proto-
col, which is an application-level communication protocol by which an instance of
Xlib can exchange data and events with the X kernel. For example, Xlib can send

84 PROCESSES CHAP. 3

Figure 3-9. The basic organization of the X Window System.

requests to the X kernel for creating or killing a window, setting colors, and defin-
ing the type of cursor to display, among many other requests. In turn, the X kernel
will react to local events such as keyboard and mouse input by sending event
packets back to Xlib.

Several applications can communicate at the same time with the X kernel.
There is one specific application that is given special rights, known as the win-
dow manager. This application can dictate the "look and feel" of the display as
it appears to the user. For example, the window manager can prescribe how each
window is decorated with extra buttons, how windows are to be placed on the dis-
play, and so. Other applications will have to adhere to these rules.

It is interesting to note how the X window system actually fits into client-
server computing. From what we have described so far, it should be clear that the
X kernel receives requests to manipulate the display. It gets these requests from
(possibly remote) applications. In this sense, the X kernel acts as a server, while
the applications play the role of clients. This terminology has been adopted by X,
and although strictly speaking is correct, it can easily lead to confusion.

Thin-Client Network Computing

Obviously, applications manipulate a display using the specific display com-
mands as offered by X. These commands are generally sent over the network
where they are subsequently executed by the X kernel. By its nature, applications
written for X should preferably separate application logic from user-interface
commands. Unfortunately, this is often not the case. As reported by Lai and Nieh
(2002), it turns out that much of the application logic and user interaction are
tightly coupled, meaning that an application will send many requests to the X ker-
nel for which it will expect a response before being able to make a next step. This

SEC. 3.3 CLIENTS

synchronous behavior may adversely affect performance when operating over a
wide-area network with long latencies.

There are several solutions to this problem. One is to re-engineer the imple-
mentation of the X protocol, as is done with NX (Pinzari, 2003). An important
part of this work concentrates on bandwidth reduction by compressing X mes-
sages. First, messages are considered to consist of a fixed part, which is treated as
an identifier, and a variable part. In many cases, multiple messages will have the
same identifier in which case they will often contain similar data. This property
can be used to send only the differences between messages having the same iden-
tifier.

Both the sending and receiving side maintain a local cache of which the en-
tries can be looked up using the identifier of a message. When a message is sent,
it is first looked up in the local cache. If found, this means that a previous mes-
sage with the same identifier but possibly different data had been sent. In that
case, differential encoding is used to send only the differences between the two.
At the receiving side, the message is also looked up in the local cache, after which
decoding through the differences can take place. In the cache miss, standard
compression techniques are used, which generally already leads to factor four
improvement in bandwidth. Overall, this technique has reported bandwidth reduc-
tions up to a factor 1000, which allows X to also run through low-bandwidth links
of only 9600 kbps.

An important side effect of caching messages is that the sender and receiver
have shared information on what the current status of the display is. For example,
the application can request geometric information on various objects by simply re-
questing lookups in the local cache. Having this shared information alone already
reduces the number of messages required to keep the application and the display
synchronized.

Despite these improvements, X still requires having a display server running.
This may be asking a lot, especially if the display is something as simple as a cell
phone. One solution to keeping the software at the display very simple is to let all
the processing take place at the application side. Effectively, this means that the
entire display is controlled up to the pixel level at the application side. Changes in
the bitmap are then sent over the network to the display, where they are im-
mediately transferred to the local frame buffer.

This approach requires sophisticated compression techniques in order to
prevent bandwidth availability to become a problem. For example, consider dis-
playing a video stream at a rate of 30 frames per second on a 320 x 240 screen.
Such a screen size is common for many PDAs. If each pixel is encoded by 24 bits,
then without compression we would need a bandwidth of approximately 53 Mbps.
Compression is clearly needed in such a case, and many techniques are currently
being deployed. Note, however, that compression requires decompression at the
receiver, which, in turn, may be computationally expensive without hardware sup-
port. Hardware support can be provided, but this raises the devices cost.

86 PROCESSES CHAP. 3

The drawback of sending raw pixel data in comparison to higher-level proto-
cols such as X is that it is impossible to make any use of application semantics, as
these are effectively lost at that level. Baratto et a1. (2005) propose a different
technique. In their solution, referred to as THINC, they provide a few high-level
display commands that operate at the level ofthe video device drivers. These com-
mands are thus device dependent, more powerful than raw pixel operations, but
less powerful compared to what a protocol such as X offers. The result is that dis-
play servers can be much simpler, which is good for CPU usage, while at the
same time application-dependent optimizations can be used to reduce bandwidth
and synchronization.

In THINC, display requests from the application are intercepted and transla-
ted into the lower level commands. By intercepting application requests, THINe
can make use of application semantics to decide what combination of lower level
commands can be used best. Translated commands are not immediately sent out
to the display, but are instead queued. By batching several commands it is pos-
sible to aggregate display commands into a single one, leading to fewer messages.
For example, when a new command for drawing in a particular region of the
screen effectively overwrites what a previous (and still queued) command would
have established, the latter need not be sent out to the display. Finally, instead of
letting the display ask for refreshments, THINC always pushes updates as they
come available. This push approach saves latency as there is no need for an
update request to be sent out by the display.

As it turns out, the approach followed by THINC provides better overall per-
formance, although very much in line with that shown by NX. Details on perfor-
mance comparison can be found in Baratto et a1.(2005).

Compound Documents

Modem user interfaces do a lot more than systems such as X or its simple ap-
plications. In particular, many user interfaces allow applications to share a single
graphical window, and to use that window to exchange data through user actions.
Additional actions that can be performed by the user include what are generally
called drag-and-drop operations, and in-place editing, respectively.

A typical example of drag-and-drop functionality is moving an icon repres-
enting a file A to an icon representing a trash can, resulting in the file being
deleted. In this case, the user interface will need to do more than just arrange
icons on the display: it will have to pass the name of the file A to the application
associated with the trash can as soon as A's icon has been moved above that of the
trash can application. Other examples easily come to mind.

In-place editing can best be illustrated by means of a document containing
text and graphics. Imagine that the document is being displayed within a standard
word processor. As soon as the user places the mouse above an image, the user in-
terface passes that information to a drawing program to allow the user to modify

SEC. 3.3 CLIENTS 87
the image. For example, the user may have rotated the image, which may effect
the placement of the image in the document. The user interface therefore finds out
what the new height and width of the image are, and passes this information to the
word processor. The latter, in tum, can then automatically update the page layout
of the document.

The key idea behind these user interfaces is the notion of a compound docu-
ment, which can be defined as a collection of documents, possibly of very dif-
ferent kinds (like text, images, spreadsheets, etc.), which are seamlessly integrated
at the user-interface level. A user interface that can handle compound documents
hides the fact that different applications operate on different parts of the docu-
ment. To the user, all parts are integrated in a seamless way. When changing one
part affects other parts, the user interface can take appropriate measures, for ex-
ample, by notifying the relevant applications.

Analogous to the situation described for the X Window System, the applica-
tions associated with a compound document do not have to execute on the client's
machine. However, it should be clear that user interfaces that support compound
documents may have to do a lot more processing than those that do not.

3.3.2 Client-Side Software for Distribution Transparency

Client software comprises more than just user interfaces. In many cases, parts
of the processing and data level in a client-server application are executed on the
client side as well. A special class is formed by embedded client software, such as
for automatic teller machines (ATMs), cash registers, barcode readers, TV set-top
boxes, etc. In these cases, the user interface is a relatively small part of the client
software, in contrast to the local processing and communication facilities.

Besides the user interface and other application-related software, client soft-
ware comprises components for achieving distribution transparency. Ideally, a cli-
ent should not be aware that it is communicating with remote processes. In con-
trast, distribution is often less transparent to servers for reasons of performance
and correctness. For example, in Chap. 6 we will show that replicated servers
sometimes need to communicate in order to establish that operations are per-
formed in a specific order at each replica.

Access transparency is generally handled through the generation of a client
stub from an interface definition of what the server has to offer. The stub provides
the same interface as available at the server, but hides the possible differences in
machine architectures, as well as the actual communication.

There are different ways to handle location, migration, and relocation tran-
sparency. Using a convenient naming system is crucial, as we shall also see in the
next chapter. In many cases, cooperation with client-side software is also impor-
tant. For example, when a client is already bound to a server, the client can be
directly informed when the server changes location. In this case, the client's mid-
dleware can hide the server's current geographical location from the user, and

88 PROCESSES CHAP. 3

also transparently rebind to the server if necessary. At worst, the client's applica-
tion may notice a temporary loss of performance.

In a similar way, many distributed systems implement replication transpar-
ency by means of client-side solutions. For example, imagine a distributed system
with replicated servers, Such replication can be achieved by forwarding a request
to each replica, as shown in Fig. 3-10. Client-side software can transparently col-
lect all responses and pass a single response to the client application.

Figure 3-10. Transparent replication of a server using a client-side solution.

Finally, consider failure transparency. Masking communication failures with a
server is typically done through client middleware. For example, client middle-
ware can be configured to repeatedly attempt to connect to a server, or perhaps try
another server after several attempts. There are even situations in which the client
middleware returns data it had cached during a previous session, as is sometimes
done by Web browsers that fail to connect to a server.

Concurrency transparency can be handled through special intermediate ser-
vers, notably transaction monitors, and requires less support from client software.
Likewise, persistence transparency is often completely handled at the server.

3.4 SERVERS
Let us now take a closer look at the organization of servers. In the following

pages, we first concentrate on a number of general design issues for servers, to be
followed by a discussion of server clusters.

3.4.1 General Design Issues

A server is a process implementing a specific service on behalf of a collection
of clients. In essence, each server is organized in the same way: it waits for an
incoming request from a client and subsequently ensures that the request is taken
care of, after which it waits for the next incoming request.

SEC. 3.4 SERVERS 89

There are several ways to organize servers. In the case of an iterative server,
the server itself handles the request and, if necessary, returns a response to the re-
questing client. A concurrent server does not handle the request itself, but passes
it to a separate thread or another process, after which it immediately waits for the
next incoming request. A multithreaded server is an example of a concurrent
server. An alternative implementation of a concurrent server is to fork a new proc-
ess for each new incoming request. This approach is followed in many UNIXsys-
tems. The thread or process that handles the request is responsible for returning a
response to the requesting client.

Another issue is where clients contact a server. In all cases, clients send re-
quests to an end point, also called a port, at the machine where the server is run-
ning. Each server listens to a specific end point. How do clients know the end
point of a service? One approach is to globally assign end points for well-known
services. For example, servers that handle Internet FTP requests always listen to
TCP port 21. Likewise, an HTTP server for the World Wide Web will always
listen to TCP port 80. These end points have been assigned by the Internet
Assigned Numbers Authority (lANA), and are documented in Reynolds and Pos-
tel (1994). With assigned end points, the client only needs to find the network ad-
dress of the machine where the server is running. As we explain in the next
chapter, name services can be used for that purpose.

There are many services that do not require a preassigned end point. For ex-
ample, a time-of-day server may use an end point that is dynamically assigned to
it 9Y its local operating system. In that case, a client will first have to look up the
end point. One solution is to have a special daemon running on each machine that
runs servers. The daemon keeps track of the current end point of each service im-
plemented by a co-located server. The daemon itself listens to a well-known end
point. A client will first contact the daemon, request the end point, and then c~m-
tact the specific server, as shown in Fig. 3-11(a).

It is common to associate an end point with a specific service. However, actu-
ally implementing each service by means of a separate server may be a waste of
resources. For example, in a typical UNIX system, it is common to have lots of
servers running simultaneously, with most of them passively waiting until a client
request comes in. Instead of having to keep track of so many passive processes, it
is often more efficient to have a single superserver listening to each end point as-
sociated with a specific service, as shown in Fig. 3-1l(b). This is the approach
taken, for example, with the inetd daemon in UNIX. Inetd listens to a number of
well-known ports for Internet services. When a request comes in, the daemon
forks a process to take further care of the request. That process will exit after it is
finished.

Another issue that needs to be taken into account when designing a server is
whether and how a server can be interrupted. For example, consider a user who
has just decided to upload a huge file to an FTP server. Then, suddenly realizing
that it is the wrong file, he wants to interrupt the server to cancel further data

90 PROCESSES CHAP. 3

Figure 3-11. (a) Client-to-server binding using a daemon. (b) Client-to-server
binding using a superserver.

transmission. There are several ways to do this. One approach that works only too
well in the current Internet (and is sometimes the only alternative) is for the user
to abruptly exit the client application (which will automatically break the connec-
tion to the server), immediately restart it, and pretend nothing happened. The ser-
ver will eventually tear down the old connection, thinking the client has probably
crashed.

A much better approach for handling communication interrupts is to develop
the client and server such that it is possible to send out-of-band data, which is
data that is· to be processed by the server before any other data from that client.
One solution is to let the server listen to a separate control end point to which the
client sends out-of-band data, while at the same time listening (with a lower prior-
ity) to the end point through which the normal data passes. Another solution is to
send out-of-band data across the same connection through which the client is
sending the original request. In TCP, for example, it is possible to transmit urgent
data. When urgent data are received at the server, the latter is interrupted (e.g .•
through a signal in UNIX systems), after which it can inspect the data and handle
them accordingly.

A final, important design issue, is whether or not the server is stateless. A
stateless server does not keep information on the state of its clients, and can
change its own state without having to inform any client (Birman, 2005). A Web

SEC. 3.4 SERVERS 91

server, for example, is stateless. It merely responds to incoming HTTP requests,
which can be either for uploading a file to the server or (most often) for fetching a
file. When the request has been processed, the Web server forgets the client com-
pletely. Likewise, the collection of files that a Web server manages (possibly in
cooperation with a file server), can be changed without clients having to be in-
formed. .

Note that in many stateless designs, the server actually does maintain infor-
mation on its clients, but crucial is the fact that if this information is lost, it will
not lead to a disruption of the service offered by the server. For example, a Web
server generally logs all client requests. This information is useful, for example, to
decide whether certain documents should be replicated, and where they should be
replicated to. Clearly, there is no penalty other than perhaps in the form of subop-
timal performance if the log is lost.

A particular form of a stateless design is where the server maintains what is
known as soft state. In this case, the server promises to maintain state on behalf
of the client, but only for a limited time. After that time has expired, the server
falls back to default behavior, thereby discarding any information it kept on
account of the associated client. An example of this type of state is a server
promising to keep a client informed about updates, but only for a limited time.
After that, the client is required to poll the server for updates. Soft-state ap-
proaches originate from protocol design in computer networks, but can be equally
applied to server design (Clark, 1989; and Lui et al., 2004).

In contrast, a stateful server generally maintains persistent information on its
clients. This means that the information needs to be explicitly deleted by the
server. A typical example is a file server that allows a client to keep a local copy
of a file, even for performing update operations. Such a server would maintain a
table containing (client, file) entries. Such a table allows the server to keep track
of which client currently has the update permissions on which file, and thus possi-
bly also the most recent version of that file.

This approach can improve the performance of read and write operations as
perceived by the client. Performance improvement over stateless servers is often
an important benefit of stateful designs. However, the example also illustrates the
major drawback of stateful servers. If the server crashes, it has to recover its table
of (client, file) entries, or otherwise it cannot guarantee that it has processed the
most recent updates on a file. In general, a stateful server needs to recover its en-
tire state as it was just before the crash. As we discuss in Chap. 8, enabling
recovery can introduce considerable complexity. In a stateless design, no special
measures need to be taken at all for a crashed server to recover. It simply starts
running again, and waits for client requests to come in.

Ling et al. (2004) argue that one should actually make a distinction between
(temporary) session state and permanent state. The example above is typical for
session state: it is associated with a series of operations by a single user and
should be maintained for a some time, but not indefinitely. As it turns out, session

92 PROCESSES CHAP. 3

state is often maintained in three-tiered client-server architectures, where the ap-
plication server actually needs to access a database server through a series of
queries before being able to respond to the requesting client. The issue here is that
no real harm is done if session state is lost, provided that the client can simply re-
issue the original request. This observation allows for simpler and less reliable
storage of state.

What remains for permanent state is typically information maintained in data-
bases, such as customer information, keys associated with purchased software,
etc. However, for most distributed systems, maintaining session state already im-
plies a stateful design requiring special measures when failures do happen and
making explicit assumptions about the durability of state stored at the server. We
will return to these matters extensively when discussing fault tolerance.

When designing a server, the choice for a stateless or stateful design should
not affect the services provided by the server. For example, if files have to be
opened before they can be read from, or written to, then a stateless server should
one way or the other mimic this behavior. A common solution, which we discuss
in more detail in Chap. 11. is that the server responds to a read or write request by
first opening the referred file, then does the actual read or write operation, and im-
mediately closes the file again.

In other cases, a server may want to keep a record on a client's behavior so
that it can more effectively respond to its requests. For example, Web servers
sometimes offer the possibility to immediately direct a client to his favorite pages.
This approach is possible only if the server has history information on that client.
When the server cannot maintain state, a common solution is then to let the client
send along additional information on its previous accesses. In the case of the Web,
this information is often transparently stored by the client's browser in what is
called a cookie, which is a small piece of data containing client-specific informa-
tion that is of interest to the server. Cookies are never executed by a browser; they
are merely stored.

The first time a client accesses a server, the latter sends a cookie along with
the requested Web pages back to the browser, after which the browser safely
tucks the cookie away. Each subsequent time the client accesses the server, its
cookie for that server is sent along with the request. Although in principle, this ap-
proach works fine, the fact that cookies are sent back for safekeeping by the
browser is often hidden entirely from users. So much for privacy. Unlike most of
grandma's cookies, these cookies should stay where they are baked.

3.4.2 Server Clusters

In Chap. 1 we briefly discussed cluster computing as one of the many appear-
ances of distributed systems. We now take a closer look at the organization of
server clusters, along with the salient design issues.

SEC. 3.4 SERVERS

General Organization

93

Simply put, a server cluster is nothing else but a collection of machines con-
nected through a network, where each machine runs one or more servers. The
server clusters that we consider here, are the ones in which the machines are con-
nected through a local-area network, often offering high bandwidth and low
latency.

In most cases, a server cluster is logically organized into three tiers, as shown
in Fig. 3-12. The first tier consists of a (logical) switch through which client re-
quests are routed. Such a switch can vary widely. For example, transport-layer
switches accept incoming TCP connection requests and pass requests on to one of
servers in the cluster, as we discuss below. A completely different example is a
Web server that accepts incoming HTTP requests, but that partly passes requests
to application servers for further processing only to later collect results and return
an HTTP response.

Figure 3-12. The general organization of a three-tiered server cluster.

As in any multitiered client-server architecture, many server clusters also con-
tain servers dedicated to application processing. In cluster computing, these are
typically servers running on high-performance hardware dedicated to delivering
compute power. However, in the case of enterprise server clusters, it may be the
case that applications need only run on relatively low-end machines, as the re-
quired compute power is not the bottleneck, but access to storage is.

This brings us the third tier, which consists of data-processing servers, notably
file and database servers. Again, depending on the usage of the server cluster,
these servers may be running an specialized machines, configured for high-speed
disk access and having large server-side data caches.

Of course, not all server clusters will follow this strict separation. It is fre-
quently the case that each machine is equipped with its own local storage, often

94 PROCESSES CHAP. 3

integrating application and data processing in a single server leading to a two-
tiered architecture. For example, when dealing with streaming media by means of
a server cluster, it is common to deploy a two-tiered system architecture, where
each machine acts as a dedicated media server (Steinmetz and Nahrstedt, 2004).

When a server cluster offers multiple services, it may happen that different
machines run different application servers. As a consequence, the switch will
have to be able to distinguish services or otherwise it cannot forward requests to
the proper machines. As it turns out, many second-tier machines run only a single
application. This limitation comes from dependencies on available software and
hardware, but also that different applications are often managed by different ad-
ministrators. The latter do not like to interfere with each other's machines.

As a consequence, we may find that certain machines are temporarily idle,
while others are receiving an overload of requests. What would be useful is to
temporarily migrate services to idle machines. A solution proposed in Awadallah
and Rosenblum (2004), is to use virtual machines allowing a relative easy migra-
tion of code to real machines. We will return to code migration later in this
chapter.

Let us take a closer look at the first tier, consisting of the switch. An impor-
tant design goal for server clusters is to hide the fact that there are multiple ser-
vers. In other words, client applications running on remote machines should have
no need to know anything about the internal organization of the cluster. This ac-
cess transparency is invariably offered by means of a single access point, in turn
implemented through some kind of hardware switch such as a dedicated machine.

The switch forms the entry point for the server cluster, offering a single net-
work address. For scalability and availability, a server cluster may have multiple
access points, where each access point is then realized by a separate dedicated
machine. We consider only the case of a single access point.

A standard way of accessing a server cluster is to set up a TCP connection
over which application-level requests are then sent as part of a session. A session
ends by tearing down the connection. In the case of transport-layer switches, the
switch accepts incoming TCP connection requests, and hands off such connec-
tions to one of the servers (Hunt et al, 1997; and Pai et al., 1998). The principle
working of what is commonly known as TCP handoff is shown in Fig. 3-13.

When the switch receives a TCP connection request, it subsequently identifies
the best server for handling that request, and forwards the request packet to that
server. The server, in turn, will send an acknowledgment back to the requesting
client. but inserting the switch's IP address as the source field of the header of the
IP packet carrying the TCP segment. Note that this spoofing is necessary for the
client to continue executing the TCP protocol: it is expecting an answer back from
the switch, not from some arbitrary server it is has never heard of before. Clearly,
a TCP-handoff implementation requires operating-system level modifications.

It can already be seen that the switch can play an important role in distributing
the load among the various servers. By deciding where to forward a request to, the

SEC. 3.4 SERVERS 95

Figure 3-13. The principle ofTCP handoff.

switch also decides which server is to handle further processing of the request.
The simplest load-balancing policy that the switch can follow is round robin: each
time it picks the next server from its list to forward a request to.

More advanced server selection criteria can be deployed as well. For example,
assume multiple services are offered by the server cluster. If the switch can distin-
guish those services when a request comes in, it can then take informed decisions
on where to forward the request to. This server selection can still take place at the
transport level, provided services are distinguished by means of a port number.
One step further is to have the switch actually inspect the payload of the incoming
request. This method can be applied only if it is known what that payload can look
like. For example, in the case of Web servers, the switch can eventually expect an
HTTP request, based on which it can then decide who is to process it. We will re-
turn to such content-aware request distribution when we discuss Web-based
systems in Chap. 12.

Distributed Servers

The server clusters discussed so far are generally rather statically configured.
In these clusters, there is often an separate administration machine that keeps
track of available servers, and passes this information to other machines as
appropriate, such as the switch.

As we mentioned, most server clusters offer a single access point. When that
point fails, the cluster becomes unavailable. To eliminate this potential problem,
several access points can be provided, of which the addresses are made publicly
available. For example, the Domain Name System (DNS) can return several ad-
dresses, all belonging to the same host name. This approach still requires clients
to make several attempts if one of the addresses fails. Moreover, this does not
solve the problem of requiring static access points.

96 PROCESSES CHAP. 3

Having stability, like a long-living access point, is a desirable feature from a
client's and a server's perspective. On the other hand, it also desirable to have a
high degree of flexibility in configuring a server cluster, including the switch.
This observation has lead to a design of a distributed server which effectively is
nothing but a possibly dynamically changing set of machines, with also possibly
varying access points, but which nevertheless- appears to the outside world as a
single. powerful machine. The design of such a distributed server is given in Szy-
maniak et al. (2005). We describe it briefly here.

The basic idea behind a distributed server is that clients benefit from a robust,
high-performing, stable server. These properties can often be provided by high-
end mainframes, of which some have an acclaimed mean time between failure of
more than 40 years. However, by grouping simpler machines transparently into a
cluster, and not relying on the availability of a single machine, it may be possible
to achieve a better degree of stability than by each component individually. For
example, such a cluster could be dynamically configured from end-user machines,
as in the case of a collaborative distributed system.

Let us concentrate on how a stable access point can be achieved in such a sys-
tem. The main idea is to make use of available networking services, notably
mobility support for IP version 6 (MIPv6). In MIPv6, a mobile node is assumed to
have a home network where it normally resides and for which it has an associ-
ated stable address, known as its home address (HoA). This home network has a
special router attached, known as the home agent, which will take care of traffic
to the mobile node when it is away. To this end, when a mobile node attaches to a
foreign network, it will receive a temporary care-of address (CoA) where it can
be reached. This care-of address is reported to the node's home agent who will
then see to it that all traffic is forwarded to the mobile node. Note that applica-
tions communicating with the mobile node will only see the address associated
with the node's home network. They will never see the care-of address.

This principle can be used to offer a stable address of a distributed server. In
this case, a single unique contact address is initially assigned to the server clus-
ter. The contact address will be the server's life-time address to be used in all
communication with the outside world. At any time, one node in the distributed
server will operate as an access point using that contact address, but this role can
easily be taken over by another node. What happens is that the access point
records its own address as the care-of address at the home agent associated with
the distributed server. At that point, all traffic will be directed to the access point,
who will then take care in distributing requests among the currently participating
nodes. If the access point fails, a simple fail-over mechanism comes into place by
which another access point reports a new care-of address.

This simple configuration would make the home agent as well as the access
point a potential bottleneck as all traffic would flow through these two machines.
This situation can be avoided by using an MIPv6 feature known as route optimize-
tion. Route optimization works as follows. Whenever a mobile node with home

SEC. 3.4 SERVERS 97
address HA reports its current care-of address, say CA, the horne agent can for-
ward CA to a client. The latter will then locally store the pair (HA, CAY· From
that moment on, communication will be directly forwarded to CA. Although the
application at the client side can still use the horne address, the underlying support
software for MIPv6 will translate that address to CA and use that instead.

Figure 3-14. Route optimization in a distributed server.

Route optimization can be used to make different clients believe they are
communicating with a single server, where, in fact, each client is communicating
with a different member node of the distributed server, as shown in Fig. 3-14. To
this end, when an access point of a distributed server forwards a request from cli-
ent C 1 to, say node S 1 (with address CA 1)' it passes enough information to S 1 to
let it initiate the route optimization procedure by which eventually the client is
made to believe that the care-of address is CA r- This will allow C 1 to store the
pair (HA, CA 1)' During this procedure, the access point (as well as the horne.
agent) tunnel most of the traffic between C 1 and S r- This will prevent the horne
agent from believing that the care-of address has changed, so that it will continue
to communicate with the access point.

Of course, while this route optimization procedure is taking place, requests
from other clients may still corne in. These remain in a pending state at the access
point until they can be forwarded. The request from another client C2 may then be
forwarded to member node S2 (with address CA 2), allowing the latter to let client

98 PROCESSES CHAP. 3

Cz store the pair (HA, CA2). As a result, different clients will be directly com-
municating with different members of the distributed server, where each client ap-
plication still has the illusion that this server has address HA. The home agent
continues to communicate with the access point talking to the contact address.

3.4.3 Managing Server Clusters

A server cluster should appear to the outside world as a single computer, as is
indeed often the case. However, when it comes to managing a cluster, the situa-
tion changes dramatically. Several attempts have been made to ease the manage-
ment of server clusters as we discuss next.

Common Approaches

By far the most common approach to managing a server cluster is to extend
the traditional managing functions of a single computer to that of a cluster. In its
most primitive form, this means that an administrator can log into a node from a
remote client and execute local managing commands to monitor, install, and
change components.

Somewhat more advanced is to hide the fact that you need to login into a node
and instead provide an interface at an administration machine that allows to col-
lect information from one or more servers, upgrade components, add and remove
nodes, etc. The main advantage of the latter approach is that collective operations,
which operate on a group of servers, can be more easily provided. This type of
managing server clusters is widely applied in practice, exemplified by manage-
ment software such as Cluster Systems Management from IBM (Hochstetler and
Beringer, 2004).

However, as soon as clusters grow beyond several tens of nodes, this type of
management is not the way to go. Many data centers need to manage thousands of
servers, organized into many clusters but all operating collaboratively. Doing this
by means of centralized administration servers is simply out of the question.
Moreover, it can be easily seen that very large clusters need continuous repair
management (including upgrades). To simplify matters, if p is the probability that
a server is currently faulty, and we assume that faults are independent, then for a
cluster of N servers to operate without a single server being faulty is (l_p)N. With
p=O.OOl and N=1000, there is only a 36 percent chance that all the servers are
correctly functioning.

As it turns out, support for very large server clusters is almost always ad hoc.
There are various rules of thumb that should be considered (Brewer, 2001), but
there is no systematic approach to dealing with massive systems management.
Cluster management is still very much in its infancy, although it can be expected
that the self-managing solutions as discussed in the previous chapter will eventu-
ally find their way in this area, after more experience with them has been gained.

SEC. 3.4 SERVERS 99

Example: PlanetLab

Let us now take a closer look at a somewhat unusual cluster server. PlanetLab
is a collaborative distributed system in which different organizations each donate
one or more computers, adding up to a total of hundreds of nodes. Together, these
computers form a l-tier server cluster, where access, processing, and storage can
all take place on each node individually. Management of PlanetLab is by neces-
sity almost entirely distributed. Before we explain its basic principles, let us first
describe the main architectural features (Peterson et al., 2005).

In PlanetLab, an organization donates one or more nodes, where each node is
easiest thought of as just a single computer, although it could also be itself a clus-
ter of machines. Each node is organized as shown in Fig. 3-15. There are two im-
portant components (Bavier et al., 2004). The first one is the virtual machine
monitor (VMM), which is an enhanced Linux operating system. The enhance-
ments mainly comprise adjustments for supporting the second component, namely
vservers. A (Linux) vserver can best be thought of as a separate environment in
which a group of processes run. Processes from different vservers are completely
independent. They cannot directly share any resources such as files, main memo-
ry, and network connections as is normally the case with processes running on top
of an operating systems. Instead, a vserver provides an environment consisting of
its own collection of software packages, programs, and networking facilities. For
example, a vserver may provide an environment in which a process will notice
that it can make use of Python 1.5.2 in combination with an older Apache Web
server, say httpd 1.3.1. In contrast, another vserver may support the latest ver-
sions of Python and httpd. In this sense, calling a vserver a "server" is a bit of a
misnomer as it really only isolates groups of processes from each other. We return
to vservers briefly below.

Figure 3-15. The basic organization of a PlanetLab node.

The Linux VMM ensures that vservers are separated: processes in different
vservers are executed concurrently and independently, each making use only of

100 PROCESSES CHAP. 3

the software packages and programs available in their own environment. The iso-
lation between processes in different vservers is strict. For example, two proc-
esses in different vservers may have the same user ill, but this does not imply that
they stem from the same user. This separation considerably eases supporting users
from different organizations that want to use PlanetLab as, for example, a testbed
to experiment with completely different distributed systems and applications.

To support such experimentations, PlanetLab introduces the notion of a slice,
which is a set of vservers, each vserver running on a different node. A slice can
thus be thought of as a virtual server cluster, implemented by means of a collec-
tion of virtual machines. The virtual machines in PlanetLab run on top of the
Linux operating system, which has been extended with a number of kernel mod-
ules

There are several issues that make management of PlanetLab a special prob-
lem. Three salient ones are:

1. Nodes belong to different organizations. Each organization should be
allowed to specify who is allowed to run applications on their nodes,
and restrict resource usage appropriately.

2. There are various monitoring tools available, but they all assume a
very specific combination of hardware and software. Moreover, they
are all tailored to be used within a single organization.

3. Programs from different slices but running on the same node should
not interfere with each other. This problem is similar to process
independence in operating systems.

Let us take a look at each of these issues in more detail.
Central to managing PlanetLab resources is the node manager. Each node

has such a manager, implemented by means of a separate vserver, whose only task
is to create other vservers on the node it manages and to control resource alloca-
tion. The node manager does not make any policy decisions; it is merely a mech-
anism to provide the essential ingredients to get a program running on a given
node.

Keeping track of resources is done by means of a resource specification, or
rspee for short. An rspee specifies a time interval during which certain resources
have been allocated. Resources include disk space, file descriptors, inbound and
outbound network bandwidth, transport-level end points, main memory, and CPU
usage. An rspee is identified through a globally unique 128-bit identifier known as
a resource capability (reap). Given an reap, the node manager can look up the as-
sociated rspee in a local table.

Resources are bound to slices. In other words, in order to make use of re-
sources, it is necessary to create a slice. Each slice is associated with a service
provider, which can best be seen as an entity having an account on PlanetLab.

SEC. 3.4 SERVERS 101

Every slice can then be identified by a iprincipal.sid, slice.uag) pair, where the
principal.iid identifies the provider and slice.stag is an identifier chosen by the
provider.

To create a new slice, each node will run a slice creation service (SCS),
which, in tum, can contact the node manager requesting it to create a vserver and
to allocate resources. The node manager itself cannot be contacted directly over a
network, allowing it to concentrate only on local resource management. In tum,
the SCS will not accept slice-creation requests from just anybody. Only specific
slice authorities are eligible for requesting the creation of a slice. Each slice
authority will have access rights to a collection of nodes. The simplest model is
that there is only a single slice authority that is allowed to request .slice creation
on all nodes.

To complete the picture, a service provider will contact a slice authority and
request it to create a slice across a collection of nodes. The service provider will
be known to the slice authority, for example, because it has been previously
authenticated and subsequently registered as a PlanetLab user. In practice, Planet-
Lab users contact a slice authority by means of a Web-based service. Further
details can be found in Chun and Spalink (2003).

What this procedure reveals is that managing PlanetLab is done through inter-
mediaries. One important class of such intermediaries is formed by slice authori-
ties. Such authorities have obtained credentials at nodes to create slides. Obtain-
ing these credentials has been achieved out-of-band, essentially by contacting sys-
tefn administrators at various sites. Obviously, this is a time-consuming process
which not be carried out by end users (or, in PlanetLab terminology; service pro-
viders).

Besides slice authorities, there are also management authorities. Where a slice
authority concentrates only on managing slices, a management authority is re-
sponsible for keeping an eye on nodes. In particular, it ensures that the nodes
under its regime run the basic PlanetLab software and abide to the rules set out by
PlanetLab. Service providers trust that a management authority provides nodes
thatwill behave properly.

Figure 3-16. The management relationships between various PlanetLab entities.

102 PROCESSES CHAP. 3

This organization leads to the management structure shown in Fig. 3-16.
described in terms of trust relationships in Peterson et at (2005). The relations
are as follows:

1. A node owner puts its node under the regime of a management
authority, possibly restricting usage where appropriate.

2. A management authority provides the necessary software to add a
node to PlanetLab.

3. A service provider registers itself with a management authority.
trusting it to provide well-behaving nodes.

4. A service provider contacts a slice authority to create a slice on a
collection of nodes.

5. The slice authority needs to authenticate the service provider.

6. A node owner provides a slice creation service for a slice authority to
create slices. It essentially delegates resource management to the
slice authority.

7. A management authority delegates the creation of slices to a slice
authority.

These relationships cover the problem of delegating nodes in a controlled way
such that a node owner can rely on a decent and secure management. The second
issue that needs to be handled is monitoring. What is needed is a unified approach
to allow users to see how well their programs are behaving within a specific slice.

PlanetLab follows a simple approach. Every node is equipped with a collec-
tion of sensors, each sensor being capable of reporting information such as CPU
usage, disk activity, and so on. Sensors can be arbitrarily complex, but the impor-
tant issue is that,they always report information on a per-node basis. This informa-
tion is made available by means of a Web server: every sensor is accessible
through simple HTTP requests (Bavier et at, 2004).

Admittedly, this approach to monitoring is still rather primitive, but it should
be seen as a basis for advanced 'monitoring schemes. For example, there is, in
principle, no reason why Astrolabe, which we discussed in Chap. 2, cannot be
used for aggregated sensor readings across multiple nodes.

Finally, to come to our third management issue, namely the protection of pro-
grams against each other, PlanetLab uses Linux virtual servers (called vservers) to
isolate slices. As mentioned, the main idea of a vserver is to run applications in
there own environment, which includes all files that are normally shared across a
single machine. Such a separation can be achieved relatively easy by means of the
UNIX chroot command, which effectively changes the root of the file system from
where applications will look for files. Only the superuser can execute chroot.

SEC. 3.4 SERVERS 103
Of course, more is needed. Linux virtual servers not only separate the file sys-

tem, but also normally shared information on processes, network addresses, mem-
ory usage, and so 011. As a consequence, a physical machine is actually partitioned
into multiple units, each unit corresponding to a full-fledged Linux environment,
isolated from the other parts. An overview of Linux virtual servers can be found
in Potzl et al. (2005).

3.5 CODE MIGRATION

So far, we have been mainly concerned with distributed systems in which
communication is limited to passing data. However, there are situations in which
passing programs, sometimes even while they are being executed, simplifies the
design of a distributed system. In this section, we take a detailed look at what
code migration actually is. We start by considering different approaches to code
migration, followed by a discussion on how to deal with the local resources that a
migrating program uses. A particularly hard problem is migrating code in hetero-
geneous systems, which is also discussed.

3.5.1 Approaches to Code Migration

Before taking a look at the different forms of code migration, let us first con-
sider why it may be useful to migrate code.

Reasons for Migrating Code

Traditionally, code migration in distributed systems took place in the form of
process migration in which an entire process was moved from one machine to
another (Milojicic et al., 2000). Moving a running process to a different machine
is a costly and intricate task, and there had better be a good reason for doing so.
That reason has always been performance. The basic idea is that overall system
performance can be improved if processes are moved from heavily-loaded to
lightly-loaded machines. Load is often expressed in terms of the CPU queue
length or CPU utilization, but other performance indicators are used as well.

Load distribution algorithms by which decisions are made concerning the al-
location and redistribution of tasks with respect to a set of processors, play an im-
portant role in compute-intensive systems. However, in many modem distributed
systems, optimizing computing capacity is less an issue than, for example, trying
to minimize communication. Moreover, due to the heterogeneity of the underlying
platforms and computer networks, performance improvement through code migra-
tion is often based on qualitative reasoning instead of mathematical models.

Consider, as an example, a client-server system in which the server manages a
huge database. If a client application needs to perform many database operations

104 PROCESSES CHAP. 3

involving large quantities of data, it may be better to ship part of the client appli-
cation to the server and send only the results across the network. Otherwise, the
network may be swamped with the transfer of data from the server to the client. In
this case, code migration is based on the assumption that it generally makes sense
to process data close to where those data reside.

This same reason can be used for migrating parts of the server to the client.
For example, in many interactive database applications, clients need to fill in forms
that are subsequently translated into a series of database operations. Processing
the form at the client side, and sending only the completed form to the server, can
sometimes avoid that a relatively large number of small messages need to cross
the network. The result is that the client perceives better performance, while at the
same time the server spends less time on form processing and communication.

Support for code migration can also help improve performance by exploiting
parallelism, but without the usual intricacies related to parallel programming. A
typical example is searching for information in the Web. It is relatively simple to
implement a search query in the form of a small mobile program, called a mobile
agent, that moves from site to site. By making several copies of such a program,
and sending each off to different sites, we may be able to achieve a linear speed-
up compared to using just a single program instance.

Besides improving performance, there are other reasons for supporting code
migration as well. The most important one is that of flexibility. The traditional ap-
proach to building distributed applications is to partition the application into dif-
ferent parts, and decide in advance where each part should be executed. This ap-
proach, for example, has led to the different multitiered client-server applications
discussed in Chap. 2.

However, if code can move between different machines, it becomes possible
to dynamically configure distributed systems. For example, suppose a server
implements a standardized interface to a file system. To allow remote clients to
access the file system, the server makes use of a proprietary protocol. Normally,
the client-side implementation of the file system interface, which is based on that
protocol, would need to be linked with the client application. This approach re-
quires that the software be readily available to the client at the time the client ap-
plication is being developed.

An alternative is to let the server provide the client's implementation no
sooner than is strictly necessary, that is, when the client binds to the server. At
that point, the client dynamically downloads the implementation, goes through the
necessary initialization steps, and subsequently invokes the server. This principle
is shown in Fig. 3-17. This model of dynamically moving code from a remote site
does require that the protocol for downloading and initializing code is stan-
dardized. Also, it is necessary that the downloaded code can be executed on the
client's machine. Different solutions are discussed below and in later chapters.

The important advantage of this model of dynamically downloading client-
side software is that clients need not have all the software preinstalled to talk to

SEC. 3.5 CODE MIGRA nON 105

Figure 3-17. The principle of dynamically configuring a client to communicate
to a server. The client first fetches the necessary software, and then invokes the
server.

servers. Instead, the software can be moved in as necessary, and likewise, dis-
carded when no longer needed. Another advantage is that as long as interfaces are
standardized, we can change the client-server protocol and its implementation as
often as we like. Changes will not affect existing client applications that rely on
the server. There are, of course, also disadvantages. The most serious one, which
we discuss in Chap. 9, has to do with security. Blindly trusting that the down-
loaded code implements only the advertised interface while accessing your unpro-
tected hard disk and does not send the juiciest parts to heaven-knows-who may
not always be such a good idea.

Models for Code Migration

Although code migration suggests that we move only code between machines,
the term actually covers a much richer area. Traditionally, communication in dis-
tributed systems is concerned with exchanging data between processes. Code
migration in the broadest sense deals with moving programs between machines,
with the intention to have those programs be executed at the target. In some cases,
as in process migration, the execution status of a program, pending signals, and
other parts of the environment must be moved as well.

To get a better understanding of the different models for code migration, we
use a framework described in Fuggetta et al. (1998). In this framework, a process
consists of three segments. The code segment is the part that contains the set of in-
structions that make up the program that is being executed. The resource segment
contains references to external resources needed. by the process, such as files,
printers, devices, other processes, and so on. Finally, an execution segment is used
to store the current execution state of a process, consisting of private data, the
stack, and, of course, the program counter.

106 PROCESSES CHAP. 3

The bare minimum for code migration is to provide only weak mobility. In
this model, it is possible to transfer only the code segment, along with perhaps
some initialization data. A characteristic feature of weak mobility is that a trans-
ferred program is always started from one of several predefined starting positions.
This is what happens, for example, with Java applets, which always start execu-
tion from the beginning. The benefit of this approach is its simplicity. Weak
mobility requires only that the target machine can execute that code, which essen":
tially boils down to making the code portable. We return to these matters when
discussing migration in heterogeneous systems.

In contrast to weak mobility, in systems that support strong mobility the ex-
ecution segment can be transferred as well. The characteristic feature of strong
mobility is that a running process can be stopped, subsequently moved to another
machine, and then resume execution where it left off. Clearly, strong mobility is
much more general than weak mobility, but also much harder to implement.

Irrespective of whether mobility is weak or strong, a further distinction can be
made between sender-initiated and receiver-initiated migration. In sender-
initiated migration, migration is initiated at the machine where the code currently
resides or is being executed. Typically, sender-initiated migration is done when
uploading programs to a compute server. Another example is sending a search
program across the Internet to a Web database server to perform the queries at
that server. In receiver-initiated migration, the initiative for code migration is
taken by the target machine. Java applets are an example of this approach.

Receiver-initiated migration is simpler than sender-initiated migration. In
many cases, code migration occurs between a client and a server, where the client
takes the initiative for migration. Securely uploading code to a server, as is done
in sender-initiated migration, often requires that the client has previously been
registered and authenticated at that server. In other words, the server is required to
know all its clients, the reason being is that the client will presumably want access
to the server's resources such as its disk. Protecting such resources is essential. In
contrast, downloading code as in the receiver-initiated case, can often be done
anonymously. Moreover, the server is generally not interested in the client's re-
sources. Instead, code migration to the client is done only for improving client-
side performance. To that end, only a limited number of resources need to be pro-
tected, such as memory and network connections. We return to secure code
migration extensively in Chap. 9.

In the case of weak mobility, it also makes a difference if the migrated code is
executed by the target process, or whether a separate process is started. For ex-
ample, Java applets are simply downloaded by a Web browser and are executed in
the browser's address space. The benefit of this approach is that there is no need
to start a separate process, thereby avoiding communication at the target machine.
The main drawback is that the target process needs to be protected against mali-
cious or inadvertent code executions. A simple solution is to let the operating sys-
tem take care of that by creating a separate process to execute the migrated code.

SEC. 3.5 CODE MIGRATION 107
Note that this solution does not solve the resource-access problems mentioned
above. They still have to be dealt with.

Instead of moving a running process, also referred to as process migration,
strong mobility can also be supported by remote cloning. In contrast to process
migration, cloning yields an exact copy of the original process, but now running
on a different machine. The cloned process is executed in parallel to the original
process. In UNIX systems, remote cloning takes place by forking off a child proc-
ess and letting that child continue on a remote machine. The benefit of cloning is
that the model closely resembles the one that is already used in many applications.
The only difference is that the cloned process is executed on a different machine.
In this sense, migration by cloning is a simple way to improve distribution tran-
sparency.

The various alternatives for code migration are summarized in Fig. 3-18.

Figure 3-18. Alternatives for code migration.

3.5.2 Migration and Local Resources

So far, only the migration of the code and execution segment has been taken
into account. The resource segment requires some special attention. What often
makes code migration so difficult is that the resource segment cannot always be
simply transferred along with the other segments without being changed. For ex-
ample, suppose a process holds a reference to a specific TCP port through which
it was communicating with other (remote) processes. Such a reference is held in
its resource segment. When the process moves to another location, it will have to
give up the port and request a new one at the destination. In other cases, trans-
ferring a reference need not be a problem. For example, a reference to a file by

108 PROCESSES CHAP. 3

means of an absolute URL will remain valid irrespective of the machine where
the process that holds the URL resides.

To understand the implications that code migration has on the resource seg-
ment, Fuggetta et al. (1998) distinguish three types of process-to-resource bind-
ings. The strongest binding is when a process refers to a resource by its identifier.
In that case, the process requires precisely the referenced resource, and nothing
else. An example of such a binding by identifier is when a process uses a VRL
to refer to a specific Web site or when it refers to an FrP server by means of that
server's Internet address. In the same line of reasoning, references to local com-
munication end points also lead to a binding by identifier.

A weaker form of process-to-resource binding is when only the value of a re-
source is needed. In that case, the execution of the process would not be affected
if another resource would provide that same value. A typical example of binding
by value is when a program relies on standard libraries, such as those for pro-
gramming in C or Java. Such libraries should always be locally available, but their
exact location in the local file system may differ between sites. Not the specific
files, but their content is important for the proper execution of the process.

Finally, the weakest form of binding is when a process indicates it needs only
a resource of a specific type. This binding by type is exemplified by references to
local devices, such as monitors, printers, and so on.

When migrating code, we often need to change the references to resources,
but cannot affect the kind of process-to-resource binding. If, and exactly how a
reference should be changed, depends on whether that resource can be moved
along with the code to the target machine. More specifically, we need to consider
the resource-to-machine bindings, and distinguish the following cases. Unat-
tached resources can be easily moved between different machines, and are typi-
cally (data) files associated only with the program that is to be migrated. In con-
trast, moving or copying a fastened resource may be possible, but only at rela-
tively high costs. Typical examples of fastened resources are local databases and
complete Web sites. Although such resources are, in theory, not dependent on
their current machine, it is often infeasible to move them to another environment.
Finally, fixed resources are intimately bound to a specific machine or environ-
ment and cannot be moved. Fixed resources are often local devices. Another ex-
ample of a fixed resource is a local communication end point.

Combining three types of process-to-resource bindings, and three types of re-
source-to-machine bindings, leads to nine combinations that we need to consider
when migrating code. These nine combinations are shown in Fig. 3-19.

Let us first consider the possibilities when a process is bound to a resource by
identifier. When the resource is unattached, it is generally best to move it along
with the migrating code. However, when the resource is shared by other proc-
esses, an alternative is to establish a global reference, that is, a reference that can
cross machine boundaries. An example of such a reference is a URL. When the
resource is fastened or fixed, the best solution is also to create a global reference.

SEC. 3.5 CODE MIGRATION 109

Figure 3-19. Actions to be taken with respect to the references to lo-
cal resources when migrating code to another machine.

It is important to realize that establishing a global reference may be more than
just making use of URLs, and that the use of such a reference is sometimes prohi-
bitively expensive. Consider, for example, a program that generates high-quality
images for a dedicated multimedia workstation. Fabricating high-quality images
in real time is a compute-intensive task, for which reason the program may be
moved to a high-performance compute server. Establishing a global reference to
the multimedia workstation means setting up a communication path between the
compute server and the workstation. In addition, there is significant processing
involved at both the server and the workstation to meet the bandwidth require-
ments of transferring the images. The net result may be that moving the program
to the compute server is not such a good idea, only because the cost of the global
reference is too high.

Another example of where establishing a global reference is not always that
easy is when migrating a process that is making use of a local communication end
point. In that case, we are dealing with a fixed resource to which the process is
bound by the identifier. There are basically two solutions. One solution is to let
the process set up a connection to the source machine after it has migrated and
install a separate process at the source machine that simply forwards all incoming
messages. The main drawback of this approach is that whenever the source ma-
chine malfunctions, communication with the migrated process may fail. The alter-
native solution is to have all processes that communicated with the migrating
process, change their global reference, and send messages to the new communica-
tion end point at the target machine.

The situation is different when dealing with bindings by value. Consider first
a fixed resource. The combination of a fixed resource and binding by value
occurs, for example, when a process assumes that memory can be shared between
processes. Establishing a global reference in this case would mean that we need to
implement a distributed form of shared memory. In many cases, this is not really a
viable or efficient solution.

110 PROCESSES CHAP. 3

Fastened resources that are referred to by their value, are typically runtime
libraries. Normally, copies of such resources are readily available on the target
machine, or should otherwise be copied before code migration takes place. Estab-
lishing a global reference is a better alternative when huge amounts of data are to
be copied, as may be the case with dictionaries and thesauruses in text processing
systems.

The easiest case is when dealing with unattached resources. The best solution
is to copy (or move) the resource to the new destination, unless it is shared by a
number of processes. In the latter case, establishing a global reference is the only
option.

The last case deals with bindings by type. Irrespective of the resource-to-ma-
chine binding. the obvious solution is to rebind the process to a locally available
resource of the same type. Only when such a resource is not available, will we
need to copy or move the original one to the new destination, or establish a global
reference.

3.5.3 Migration in Heterogeneous Systems

So far, we have tacitly assumed that the migrated code can be easily executed
at the target machine. This assumption is in order when dealing with homogene-
ous systems. In general, however, distributed systems are constructed on a hetero-
geneous collection of platforms, each having their own operating system and ma-
chine architecture. Migration in such systems requires that each platform is sup-
ported, that is, that the code segment can be executed on each platform. Also, we
need to ensure that the execution segment can be properly represented at each
platform. .

The problems coming from heterogeneity are in many respects the same as
those of portability. Not surprisingly, solutions are also very similar. For example,
at the end of the 1970s, a simple solution to alleviate many of the problems of
porting Pascal to different machines was to generate machine-independent inter-
mediate code for an abstract virtual machine (Barron, 1981). That machine, of
course, would need to be implemented on many platforms, but it would then allow
Pascal programs to be run anywhere. Although this simple idea was widely used
for some years, it never really caught on as the general solution to portability
problems for other languages, notably C.

About 25 years later, code migration in heterogeneous systems is being
attacked by scripting languages and highly portable languages such as Java. In
essence, these solutions adopt the same approach as was done for porting Pascal.
All such solutions have in common that they rely on a (process) virtual machine
that either directly interprets source code (as in the case of scripting languages), or
otherwise interprets intermediate code generated by a compiler (as in Java). Being
in the right place at the right time is also important for language developers.

SEC. 3.5 CODE MIGRATION 111

Recent developments have started to weaken the dependency on programming
languages. In particular, solutions have been proposed not only to migrate proc-
esses, but to migrate entire computing environments. The basic idea is to compart-
mentalize the overall environment and to provide processes in the same part their
own view on their computing environment.

If the compartmentalization is done properly, it becomes possible to decouple
a part from the underlying system and actually migrate it to another machine. In
this way, migration would actually provide a form of strong mobility for proc-
esses, as they can then be moved at any point during their execution, and continue
where they left off when migration completes. Moreover, many of the intricacies
related to migrating processes while they have bindings to local resources may be
solved, as these bindings are in many cases simply preserved. The local resources,
namely, are often part of the environment that is being migrated.

There are several reasons for wanting to migrate entire environments, but
perhaps the most important one is that it allows continuation of operation while a
machine needs to be shutdown. For example, in a server cluster, the systems
administrator may decide to shut down or replace a machine, but will not have to
stop all its running processes. Instead, it can temporarily freeze an environment,
move it to another machine (where it sits next to other, existing environments),
and simply unfreeze it again. Clearly, this is an extremely powerful way to man-
age long-running compute environments and their processes.

Let us consider one specific example of migrating virtual machines, as dis-
cussed in Clark et al. (2005). In this case, the authors concentrated on real-time
migration of a virtualized operating system, typically something that would be
convenient in a cluster of servers where a tight coupling is achieved through a sin-
gle, shared local-area network. Under these circumstances, migration involves
two major problems: migrating the entire memory image and migrating bindings
to local resources.

As to the first problem, there are, in principle, three ways to handle migration
(which can be combined):

1. Pushing memory pages to the new machine and resending the ones
that are later modified during the migration process.

2. Stopping the current virtual machine; migrate memory, and start the
new virtual machine.

3. Letting the new virtual machine pull in new pages as needed, that is,
let processes start on the new virtual machine immediately and copy
memory pages on demand.

The second option may lead to unacceptable downtime if the migrating virtual
machine is running a live service, that is, one that offers continuous service. On
the other hand, a pure on-demand approach as represented by the third option may

112 PROCESSES CHAP. 3

extensively prolong the migration period, but may also lead to poor performance
because it takes a long time before the working set of the migrated processes has
been moved to the new machine.

As an alternative, Clark et al. (2005) propose to use a pre-copy approach
which combines the first option, along with a brief stop-and-copy phase as repres-
ented by the second option. As it turns out, this combination can lead to service
downtimes of 200 ms or less.

Concerning local resources, matters are simplified when dealing only with a
cluster server. First, because there is a single network, the only thing that needs to
be done is to announce the new network-to-MAC address binding, so that clients
can contact the migrated processes at the correct network interface. Finally, if it
can be assumed that storage is provided as a separate tier (like we showed in
Fig. 3-12), then migrating binding to files is similarly simple.

The overall effect is that, instead of migrating processes, we now actually see
that an entire operating system can be moved between machines.

3.6 SUMMARY

Processes play a fundamental role in distributed systems as they form a basis
for communication between different machines. An important issue is how proc-
esses are internally organized and, in particular, whether or not they support mul-
tiple threads of control. Threads in distributed systems are particularly useful to
continue using the CPU when a blocking I/O operation is performed. In this way,
it becomes possible to build highly-efficient servers that run multiple threads in
parallel, of which several may be blocking to wait until disk I/O or network com-
munication completes.

Organizing a distributed application in terms of clients and servers has proven
to be useful. Client processes generally implement user interfaces, which may
range from very simple displays to advanced interfaces that can handle compound
documents. Client software is furthermore aimed at achieving distribution tran-
sparency by hiding details concerning the communication with servers, where
those servers are currently located, and whether or not servers are replicated. In
addition, client software is partly responsible for hiding failures and recovery
from failures.

Servers are often more intricate than clients, but are nevertheless subject to
only a relatively few design issues. For example, servers can either be iterative or
concurrent, implement one or more services, and can be stateless or stateful.
Other design issues deal with addressing services and mechanisms to interrupt a
server after a service request has been issued and is possibly already being proc-
essed.

Special attention needs to be paid when organizing servers into a cluster. A
common objective is hide the internals of a cluster from the outside world. This

SEC. 3.6 SUMMARY 113

means that the organization of the cluster should be shielded from applications.
To this end, most clusters use a single entry point that can hand off messages to
servers in the cluster. A challenging problem is to transparently replace this single
entry point by a fully distributed solution.

An important topic for distributed systems is the migration of code between
different machines. Two important reasons to support code migration are increas-
ing performance and flexibility. When communication is expensive, we can some-
times reduce communication by shipping computations from the server to the cli-
ent, and let the client do as much local processing as possible. Flexibility is
increased if a client can dynamically download software needed to communicate
with a specific server. The downloaded software can be specifically targeted to
that server, without forcing the client to have it preinstalled.

Code migration brings along problems related to usage of local resources for
which it is required that either resources are migrated as well, new bindings to
local resources at the target machine are established, or for which systemwide net-
work references are used. Another problem is that code migration requires that we
take heterogeneity into account. Current practice indicates that the best solution to
handle heterogeneity is to use virtual machines. These can take either the form of
process virtual machines as in the case of, for example, Java, or through using vir-
tual machine monitors that effectively allow the migration of a collection of proc-
esses along with their underlying operating system.

PROBLEMS

1. In this problem you are to compare reading a file using a single-threaded file server
and a multithreaded server. It takes 15 msec to get a request for work, dispatch it, and
do the rest of the necessary processing, assuming that the data needed are in a cache in
main memory. If a disk operation is needed, as is the case one-third of the time, an ad-
ditional 75 msec is required, during which time the thread sleeps. How many re-
quests/sec can the server handle if it is single threaded? If it is multithreaded?

2. Would it make sense to limit the number of threads in a server process?

3. In the text, we described a multithreaded tile server, showing why it is better than a
single-threaded server and a finite-state machine server. Are there any circumstances
in which a single-threaded server might be better? Give an example.

4. Statically associating only a single thread with a lightweight process is not such a
good idea. Why not?

5. Having only a single lightweight process per process is also not such a good idea.
Why not?

6. Describe a simple scheme in which there are as many lightweight processes as there
are runnable threads.

114 PROCESSES CHAP. 3

7. X designates a user's terminal as hosting the server, while the application is referred
to as the client. Does this make sense?

8. The X protocol suffers from scalability problems. How can these problems be tackled?

9. Proxies can support replication transparency by invoking each replica, as explained in
the text. Can (the server side of) an application be subject to a replicated calls?

10. Constructing a concurrent server by spawning a process has some advantages and
disadvantages compared to multithreaded servers. Mention a few.

11. Sketch the design of a multithreaded server that supports multiple protocols using
sockets as its transport-level interface to the underlying operating system.

12. How can we prevent an application from circumventing a window manager, and thus
being able to completely mess up a screen?

13. Is a server that maintains a TCP/IP connection to a client stateful or stateless?

14. Imagine a Web server that maintains a table in which client IP addresses are mapped
to the most recently accessed Web pages. When a client connects to the server, the
server looks up the client in its table, and if found, returns the registered page. Is this
server stateful or stateless?

15. Strong mobility in UNIX systems could be supported by allowing a process to fork a
child on a remote machine. Explain how this would work.

16. In Fig. 3-18 it is suggested that strong mobility cannot be combined with executing
migrated code in a target process. Give a counterexample.

17. Consider a process P that requires access to file F which is locally available on the
machine where P is currently running. When P moves to another machine, it still re-
quires access to F. If the file-to-machine binding is fixed, how could the systemwide
reference to F be implemented?

18. Describe in detail how TCl' packets flow in the case of TCP handoff, along with the
information on source and destination addresses in the various headers.

4
COMMUNICATION

Interprocess communication is at the heart of all distributed systems. It makes
no sense to study distributed systems without carefully examining the ways that
processes on different machines can exchange information. Communication in
distributed systems is always based on low-level message passing as offered by
the underlying network. Expressing communication through message passing is
harder than using primitives based on shared memory, as available for nondistrib-
uted platforms. Modem distributed systems often consist of thousands or even
millions of processes scattered across a network with unreliable communication
such as the Internet. Unless the primitive communication facilities of computer
networks are replaced by something else, development of large-scale distributed
applications is extremely difficult.

In this chapter, we start by discussing the rules that communicating processes
must adhere to, known as protocols, and concentrate on structuring those proto-
cols in the form of layers. We then look at three widely-used models for commu-
nication: Remote Procedure Call (RPC), Message-Oriented Middleware (MOM),
and data streaming. We also discuss the general problem of sending data to multi-
ple receivers, called multicasting.

Our first model for communication in distributed systems is the remote proce-
dure call (RPC). An RPC aims at hiding most of the intricacies of message pass-
ing, and is ideal for client-server applications.

In many distributed applications, communication does not follow the rather
strict pattern of client-server interaction. In those cases, it turns out that thinking

115

116 COMMUNICATION CHAP. 4

in terms of messages is more appropriate. However, the low-level communication
facilities of computer networks are in many ways not suitable due to their lack of
distribution transparency. An alternative is to use a high-level message-queuing
model, in which communication proceeds much the same as in electronic maiI
systems. Message-oriented middleware (MOM) is a subject important enough to
warrant a section of its own.

With the advent of multimedia distributed systems, it became apparent that
many systems were lacking support for communication of continuous media, such
as audio and video. What is needed is the notion of a stream that can support the
continuous flow of messages, subject to various timing constraints. Streams are
discussed in a separate section.

Finally, since our understanding of setting up multicast facilities has im-
proved, novel and elegant solutions for data dissemination have emerged. We pay
separate attention to this subject in the last section of this chapter.

4.1 FUNDAMENTALS

Before we start our discussion on communication in distributed systems, we
first recapitulate some of the fundamental issues related to communication. In the
next section we briefly discuss network communication protocols, as these form
the basis for any distributed system. After that, we take a different approach by
classifying the different types of communication that occurs in distributed sys-
tems.

4.1.1 Layered Protocols

Due to the absence of shared memory, all communication in distributed sys-
tems is based on sending and receiving (low level) messages. When process A
wants to communicate with process B, it first builds a message in its own address
space. Then.it executes a system call that causes the operating system to send the
message over the network to B. Although this basic idea sounds simple enough,
in order to prevent chaos, A and B have to agree on the meaning of the bits being
sent. If A sends a brilliant new novel written in French and encoded in IBM's
EBCDIC character code, and B expects the inventory of a supermarket written in
English and encoded in ASCII, communication will be less than optimal.

Many different agreements are needed. How many volts should be used to
signal a O-bit, and how many volts for a I-bit? How does the receiver know which
is the last bit of the message? How can it detect if a message has been damaged or
lost, and what should it do if it finds out? How long are numbers, strings, and
other data items, and how are they represented? In short, agreements are needed at
a variety of levels, varying from the low-level details of bit transmission to the
high-level details of how information is to be expressed.

SEC. 4.1 FUNDAMENTALS 117

To make it easier to deal with the numerous levels and issues involved in
communication, the International Standards Organization (ISO) developed a refer-
ence model that clearly identifies the various levels involved, gives them standard
names, and points out which level should do which job. This model is called the
Open Systems Interconnection Reference Model (Day and Zimmerman, 1983),
usually abbreviated as ISO OSI or sometimes just the OSI model. It should be
emphasized that the protocols that were developed as part of the OSI model were
never widely used and are essentially dead now. However, the underlying model
itself has proved to be quite useful for understanding computer networks. Al-
though we do not intend to give a full description of this model and all of its im-
plications here, a short introduction will be helpful. For more details, see Tanen-
baum (2003).

The OSI model is designed to allow open systems to communicate. An open
system is one that is prepared to communicate with any other open system by us-
ing standard rules that govern the format, contents, and meaning of the messages
sent and received. These rules are formalized in what are called protocols. To
allow a group of computers to communicate over a network, they must all agree
on the protocols to be used. A distinction is made between two general types of
protocols. With connection oriented protocols, before exchanging data the sender
and receiver first explicitly establish a connection, and possibly negotiate the pro-
tocol they will use. When they are done, they must release (terminate) the con-
nection. The telephone is a connection-oriented communication system. With
connectionless protocols, no setup in advance is needed. The sender just transmits
the first message when it is ready. Dropping a letter in a mailbox is an example of
connectionless communication. With computers, both connection-oriented and
connectionless communication are common.

In the OSI model, communication is divided up into seven levels or layers, as
shown in Fig. 4-1. Each layer deals with one specific aspect of the communica-
tion. In this way, the problem can be divided up into manageable pieces, each of
which can be solved independent of the others. Each layer provides an interface to
the one above it. The interface consists of a set of operations that together define
the service the layer is prepared to offer its users.

When process A on machine 1 wants to communicate with process B on ma-
chine 2, it builds a message and passes the message to the application layer on its
machine. This layer might be a library procedure, for example, but it could also be
implemented in some other way (e.g., inside the operating system, on an external
network processor, etc.). The application layer software then adds a header to the
front of the message and passes the resulting message across the layer 6/7 inter-
face to the presentation layer. The presentation layer in tum adds its own header
and passes the result down to the session layer, and so on. Some layers add not
only a header to the front, but also a trailer to the end. When it hits the bottom,
the physical layer actually transmits the message (which by now might look as
shown in Fig. 4-2) by putting it onto the physical transmission medium.

118 COMMUNICATION

Figure 4-2. A typical message as it appears on the network.

CHAP. 4

When the message arrives at machine 2, it is passed upward, with each layer
stripping off and examining its own header. Finally, the message arrives at the re-
ceiver, process B, which may reply to it using the reverse path. The information in
the layer n header is used for the layer n protocol.

As an example of why layered protocols are important, consider communica-
tion between two companies, Zippy Airlines and its caterer, Mushy Meals, Inc.
Every month, the head of passenger service at Zippy asks her secretary to contact
the sales manager's secretary at Mushy to order 100,000 boxes of rubber chicken.
Traditionally, the orders went via the post office. However, as the postal service
deteriorated, at some point the two secretaries decided to abandon it and commun-
icate bye-mail. They could do this without bothering their bosses, since their pro-
tocol deals with the physical transmission of the orders, not their contents.

SEC. 4.1 FUNDAMENTALS 119

Similarly, the head of passenger service can decide to drop the rubber chicken
and go for Mushy's new special, prime rib of goat, without that decision affecting
the secretaries. The thing to notice is that we have two layers here, the bosses and
the secretaries. Each layer has its own protocol (subjects of discussion and tech-
nology) that can be changed independently of the other one. It is precisely this
independence that makes layered protocols attractive. Each one can be changed as
technology improves, without the other ones being affected.

In the OSI model, there are not two layers, but seven, as we saw in Fig. 4-1.
The collection of protocols used in a particular system is called a protocol suite
or protocol stack. It is important to distinguish a reference model from its actual
protocols. As we mentioned, the OSI protocols were never popular. In contrast,
protocols developed for the Internet, such as TCP and IP, are mostly used. In the
following sections, we will briefly examine each of the OSI layers in turn, starting
at the bottom. However, instead of giving examples of OSI protocols, where
appropriate, we will point out some of the Internet protocols used in each layer.

Lower-Level Protocols

We start with discussing the three lowest layers of the OSI protocol suite.
Together, these layers implement the basic functions that encompass a computer
network.

The physical layer is concerned with transmitting the Os and Is. How many
volts to use for 0 and 1, how many bits per second can be sent, and whether
transmission can take place in both directions simultaneously are key issues in the
physical layer. In addition, the size and shape of the network connector (plug), as
well as the number of pins and meaning of each are of concern here.

The physical layer protocol deals with standardizing the electrical, mechani-
cal, and signaling interfaces so that when one machine sends a 0 bit it is actually
received as a 0 bit and not a 1 bit. Many physical layer standards have been devel-
oped (for different media), for example, the RS-232-C standard for serial commu-
nication lines.

The physical layer just sends bits. As long as no errors occur, all is well.
However, real communication networks are subject to errors, so some mechanism
is needed to detect and correct them. This mechanism is the main task of the data
link layer. What it does is to group the bits into units, sometimes called frames,
and see that each frame is correctly received.

The data link layer does its work by putting a special bit pattern on the start
and end of each frame to mark them, as well as computing a checksum by adding
up all the bytes in the frame in a certain way. The data link layer appends the
checksum to the frame. When the frame arrives, the receiver recomputes the
checksum from the data and compares the result to the checksum following the
frame. If the two agree, the frame is considered correct and is accepted. It they

120 COMMUNlCATION CHAP. 4

disagree. the receiver asks the sender to retransmit it. Frames are assigned se-
quence numbers (in the header), so everyone can tell which is which.

On a LAN, there is usually no need for the sender to locate the receiver. It just
puts the message out on the network and the receiver takes it off. A wide-area net-
work, however, consists of a large number of machines, each with some number
of lines to other machines, rather like a large-scale map showing major cities and
roads connecting them. For a message to get from the sender to the receiver it
may have to make a number of hops, at each one choosing an outgoing line to use.
The question of how to choose the best path is called routing, and is essentially
the primary task of the network layer.

The problem is complicated by the fact that the shortest route is not always
the best route. What really matters is the amount of delay on a given route, which,
in tum, is related to the amount of traffic and the number of messages queued up
for transmission over the various lines. The delay can thus change over the course
of time. Some routing algorithms try to adapt to changing loads, whereas others
are content to make decisions based on long-term averages.

At present, the most widely used network protocol is the connectionless IP
(Internet Protocol), which is part of the Internet protocol suite. An IP packet
(the technical term for a message in the network layer) can be sent without any
setup. Each IP packet is routed to its destination independent of all others. No
internal path is selected and remembered.

Transport Protocols

The transport layer forms the last part of what could be called a basic network
protocol stack, in the sense that it implements all those services that are not pro-
vided at the interface of the network layer, but which are reasonably needed to
build network applications. In other words, the transport layer turns the underlying
network into something that an application developer can use.

Packets can be lost on the way from the sender to the receiver. Although some
applications can handle their own error recovery, others prefer a reliable connec-
tion. The job of the transport layer is to provide this service. The idea is that the
application layer should be able to deliver a message to the transport layer with
the expectation that it will be delivered without loss.

Upon receiving a message from the application layer, the transport layer
breaks it into pieces small enough for transmission, assigns each one a sequence
number, and then sends them all. The discussion in the transport layer header con-
cerns which packets have been sent, which have been received, how many more
the receiver has room to accept, which should be retransmitted, and similar topics.

Reliable transport connections (which by definition are connection oriented)
can be built on top of connection-oriented or connectionless network services. In
the former case all the packets will arrive in the correct sequence (if they arrive at
all), but in the latter case it is possible for one packet to take a different route and

SEC. 4.1 FUNDAMENTALS 121
arrive earlier than the packet sent before it. It is up to the transport layer software
to put everything back in order to maintain the illusion that a transport connection
is like a big tube-you put messages into it and they come out undamaged and in
the same order in which they went in. Providing this end-to-end communication
behavior is an important aspect of the transport layer.

The Internet transport protocol is called TCP (Transmission Control Proto-
col) and is described in detail in Comer (2006). The combination TCPIIP is now
used as a de facto standard for network communication. The Internet protocol
suite also supports a connectionless transport protocol called UDP (Universal
Datagram Protocol), which is essentially just IP with some minor additions. User
programs that do not need a connection-oriented protocol normally use UDP.

Additional transport protocols are regularly proposed. For example, to support
real-time data transfer, the Real-time Transport Protocol (RTP) has been de-
fined. RTP is a framework protocol in the sense that it specifies packet formats
for real-time data without providing the actual mechanisms for guaranteeing data
delivery. In addition, it specifies a protocol for monitoring and controlling data
transfer of RTP packets (Schulzrinne et al., 2003).

Higher- Level Protocols

Above the transport layer, OSI distinguished three additional layers. In prac-
tice, only the application layer is ever used. In fact, in the Internet protocol suite,
everything above the transport layer is grouped together. In the face of middle-
ware systems, we shall see in this section that neither the OSI nor the Internet ap-
proach is really appropriate.

The session layer is essentially an enhanced version of the transport layer. It
provides dialog control, to keep track of which party is currently talking, and it
provides synchronization facilities. The latter are useful to allow users to insert
checkpoints into long transfers, so that in the event of a crash, it is necessary to go
back only to the last checkpoint, rather than all the way back to the beginning. In
practice, few applications are interested in the session layer and it is rarely sup-
ported. It is not even present in the Internet protocol suite. However, in the con-
text of developing middleware solutions, the concept of a session and its related
protocols has turned out to be quite relevant, notably when defining higher-level
communication protocols.

Unlike the lower layers, which are concerned with getting the bits from the
sender to the receiver reliably and efficiently, the presentation layer is concerned
with the meaning of the bits. Most messages do not consist of random bit strings,
but more structured information such as people's names, addresses, amounts of
money, and so on. In the presentation layer it is possible to define records contain-
ing fields like these and then have the sender notify the receiver that a message
contains a particular record in a certain format. This makes it easier for machines
with different internal representations to communicate with each other.

122 COMMUNICATION CHAP. 4

The OSI application layer was originally intended to contain a collection of
standard network applications such as those for electronic mail, file transfer, and
terminal emulation. By now, it has become the container for all applications and
protocols that in one way or the other do not fit into one of the underlying layers.
From the perspective of the OSI reference model, virtually all distributed systems
are just applications.

What is missing in this model is a clear distinction between applications, ap-
plication-specific protocols, and general-purpose protocols. For example, the
Internet File Transfer Protocol (FTP) (Postel and Reynolds, 1985; and Horowitz
and Lunt, 1997) defines a protocol for transferring files between a client and ser-
ver machine. The protocol should not be confused with the ftp program, which is
an end-user application for transferring files and which also (not entirely by coin-
cidence) happens to implement the Internet FrP.

Another example of a typical application-specific protocol is the HyperText
Transfer Protocol (HTTP) (Fielding et aI., 1999), which is designed to remotely
manage and handle the transfer of Web pages. The protocol is implemented by
applications such as Web browsers and Web servers. However, HTTP is now also
used by systems that are not intrinsically tied to the Web. For example, Java's ob-
ject-invocation mechanism uses HTTP to request the invocation of remote objects
that are protected by a firewall (Sun Microsystems, 2004b).

There are also many general-purpose protocols that are useful to many appli-
cations, but which cannot be qualified as transport protocols. In many cases, such
protocols fall into the category of middleware protocols, which we discuss next.

Middleware Protocols

Middleware is an application that logically lives (mostly) in the application
layer, but which contains many general-purpose protocols that warrant their own
layers, independent of other, more specific applications. A distinction can be
made between high-level communication protocols and protocols for establishing
various middleware services.

There are numerous protocols to support a variety of middleware services. For
example, as we discuss in Chap. 9, there are various ways to establish authentica-
tion, that is, provide proof of a claimed identity. Authentication protocols are not
closely tied to any specific application, but instead, can be integrated into a mid-
dleware system as a general service. Likewise, authorization protocols by which
authenticated users and processes are granted access only to those resources for
which they have authorization. tend to have a general, application-independent
nature.

As another example, we shall consider a number of distributed commit proto-
cols in Chap. 8. Commit protocols establish that in a group of processes either all
processes carry out a particular operation, or that the operation is not carried out
at all. This phenomenon is also referred to as atomicity and is widely applied in

SEC. 4.1 FUNDAMENTALS 123

transactions. As we shall see, besides transactions, other applications, like fault-
tolerant ones, can also take advantage of distributed commit protocols.

As a last example, consider a distributed locking protocol by which a resource
can be protected against simultaneous access by a collection of processes that are
distributed across multiple machines. We shall come across a number of such pro-
tocols in Chap. 6. Again, this is an example of a protocol that can be used to
implement a general middleware service, but which, at the same time, is highly
independent of any specific application.

Middleware communication protocols support high-level communication ser-
vices. For example, in the next two sections we shall discuss protocols that allow
a process to call a procedure or invoke an object on a remote machine in a highly
transparent way. Likewise, there are high-level communication services for set-
ting and synchronizing streams for transferring real-time data, such as needed for
multimedia applications. As a last example, some middleware systems offer reli-
able multicast services that scale to thousands of receivers spread across a wide-
area network.

Some of the middleware communication protocols could equally well belong
in the transport layer, but there may be specific reasons to keep them at a higher
level. For example, reliable multicasting services that guarantee scalability can be
implemented only if application requirements are taken into account. Conse-
quently, a middleware system may offer different (tunable) protocols, each in tum
iraplernented using different transport protocols, but offering a single interface.

Figure 4-3. An adapted reference model for networked communication.

Taking this approach to layering leads to a slightly adapted reference model
for communication, as shown in Fig. 4-3. Compared to the OSI model, the ses-
sion and presentation layer have been replaced by a single middleware layer that
contains application-independent protocols. These protocols do not belong in the
lower layers we just discussed. The original transport services may also be offered

124 COMMUNICATION CHAP. 4

as a middleware service, without being modified. This approach is somewhat an-
alogous to offering UDP at the transport level. Likewise, middleware communica-
tion services may include message-passing services comparable to those offered
by the transport layer.

In the remainder of this chapter, we concentrate on four high-level middle-
ware communication services: remote procedure calls, message queuing services,
support for communication of continuous media through streams, and multicast-
ing. Before doing so, there are other general criteria for distinguishing (middle-
ware) communication which we discuss next.

4.1.2 Types of Communication

To understand the various alternatives in communication that middleware can
offer to applications, we view the middleware as an additional service in client-
server computing, as shown in Fig. 4-4. Consider, for example an electronic mail
system. In principle, the core of the mail delivery system can be seen as a
middleware communication service. Each host runs a user agent allowing users to
compose, send, and receive e-mail. A sending user agent passes such mail to the
mail delivery system, expecting it, in tum, to eventually deliver the mail to the
intended recipient. Likewise, the user agent at the receiver's side connects to the
mail delivery system to see whether any mail has come in. If so, the messages are
transferred to the user agent so that they can be displayed and read by the user.

Figure 4-4. Viewing middleware as an intermediate (distributed) service in ap-
plication-level communication.

An electronic mail system is a typical example in which communication is
persistent. With persistent communication, a message that has been submitted
for transmission is stored by the communication middleware as long as it takes to
deliver it to the receiver. In this case, the middleware will store the message at
one or several of the storage facilities shown in Fig. 4-4. As a consequence, it is

SEC. 4.1 FUNDAMENTALS 125
not necessary for the sending application to continue execution after submitting
the message. Likewise, the receiving application need not be executing when the
message is submitted.

In contrast, with transient communication, a message is stored by the com-
munication system only as long as the sending and receiving application are exe-
cuting. More precisely, in terms of Fig. 4-4, the middleware cannot deliver a mes-
sage due to a transmission interrupt, or because the recipient is currently not
active, it will simply be discarded. Typically, all transport-level communication
services offer only transient communication. In this case, the communication sys-
tem consists traditional store-and-forward routers. If a router cannot deliver a
message to the next one or the destination host, it will simply drop the message.

Besides being persistent or transient, communication can also be asynchro-
nous or synchronous. The characteristic feature of asynchronous communication
is that a sender continues immediately after it has submitted its message for
transmission. This means that the message is (temporarily) stored immediately by
the middleware upon submission. With synchronous communication, the sender
is blocked until its request is known to be accepted. There are essentially three
points where synchronization can take place. First, the sender may be blocked
until the middleware notifies that it will take over transmission of the request.
Second, the sender may synchronize until its request has been delivered to the
intended recipient. Third, synchronization may take place by letting the sender
wait until its request has been fully processed, that is, up the time that the reci-
pient returns a response.

Various combinations of persistence and synchronization occur in practice.
Popular ones are persistence in combination with synchronization at request sub-
mission, which is a common scheme for many message-queuing systems, which
we discuss later in this chapter. Likewise, transient communication with syn-
chronization after the request has been fully processed is also widely used. This
scheme corresponds with remote procedure calls, which we also discuss below.

Besides persistence and synchronization, we should also make a distinction
between discrete and streaming communication. The examples so far all fall in the
category of discrete communication: the parties communicate by messages, each
message forming a complete unit of information. In contrast, streaming involves
sending multiple messages, one after the other, where the messages are related to
each other by the order they are sent, or because there is a temporal relationship.
We return to streaming communication extensively below.

4.2 REMOTE PROCEDURE CALL

Many distributed systems have been based on explicit message exchange be-
tween processes. However, the procedures send and receive do not conceal com-
munication at all, which is important to achieve access transparency in distributed

126 COMMUNICA nON CHAP. 4

systems. This problem has long been known, but little was done about it until a
paper by Birrell and Nelson (1984) introduced a completely different way of han-
dling communication. Although the idea is refreshingly simple (once someone has
thought of it). the implications are often subtle. In this section we will examine
the concept, its implementation, its strengths, and its weaknesses.

In a nutshell, what Birrell and Nelson suggested was allowing programs to
call procedures located on other machines. When a process on machine A calls' a
procedure on machine B, the calling process on A is suspended, and execution of
the called procedure takes place on B. Information can be transported from the
caller to the callee in the parameters and can come back in the procedure result.
No message passing at all is visible to the programmer. This method is known as
Remote Procedure Call, or often just RPC.

While the basic idea sounds simple and elegant, subtle problems exist. To
start with, because the calling and called procedures run on different machines,
they execute in different address spaces, which causes complications. Parameters
and results also have to be passed, which can be complicated, especially if the ma-
chines are not identical. Finally, either or both machines can crash and each of the
possible failures causes different problems. Still, most of these can be dealt with,
and RPC is a widely-used technique that underlies many distributed systems.

4.2.1 Basic RPC Operation

We first start with discussing conventional procedure calls, and then explain
how the call itself can be split into a client and server part that are each executed
on different machines.

Conventional Procedure Call

To understand how RPC works, it is important first to fully understand how a
conventional (i.e., single machine) procedure call works. Consider a call in C like

count =tead(td, but, nbytes);

where fd is an .integer indicating a file, buf is an array of characters into which
data are read, and nbytes is another integer telling how many bytes to read. If the
call is made from the main program, the stack will be as shown in Fig. 4-5(a) be-
fore the call. To make the call, the caller pushes the parameters onto the stack in
order, last one first, as shown in Fig. 4-5(b). (The reason that C compilers push
the parameters in reverse order has to do with printj--by doing so, print! can al-
ways locate its first parameter, the format string.) After the read procedure has
finished running, it puts the return value in a register, removes the return address,
and transfers control back to the caller. The caller then removes the parameters
from the stack, returning the stack to the original state it had before the call.

SEC. 4.2 REMOTE PROCEDURE CALL 127

Figure 4-5. (a) Parameter passing in a local procedure call: the stack before the
call to read. (b) The stack while the called procedure is active.

Several things are worth noting. For one, in C, parameters can be call-by-
value or call-by-reference. A value parameter, such as fd or nbytes, is simply
copied to the stack as shown in Fig. 4-5(b). To the called procedure, a value pa-
rameter is just an initialized local variable. The called procedure may modify it,
but such changes do not affect the original value at the calling side.

A reference parameter in C is a pointer to a variable (i.e., the address of the
variable), rather than the value of the variable. In the call to read. the second pa-
rameter is a reference parameter because arrays are always passed by reference in
C. What is actually pushed onto the stack is the address of the character array. If
the called procedure uses this parameter to store something into the character
array, it does modify the array in the calling procedure. The difference between
call-by-value and call-by-reference is quite important for RPC, as we shall see.

One other parameter passing mechanism also exists, although it is not used in
C. It is called call-by-copy/restore. It consists of having the variable copied to
the stack by the caller, as in call-by-value, and then copied back after the call,
overwriting the caller's original value. Under most conditions, this achieves
exactly the same effect as call-by-reference, but in some situations. such as the
same parameter being present multiple times in the parameter list. the semantics
are different. The call-by-copy/restore mechanism is not used in many languages.

The decision of which parameter passing mechanism to use is normally made
by the language designers and is a fixed property of the language. Sometimes it
depends on the data type being passed. In C, for example, integers and other
scalar types are always passed by value, whereas arrays are always passed by ref-
erence, as we have seen. Some Ada compilers use copy/restore for in out parame-
ters, but others use call-by-reference. The language definition permits either
choice, which makes the semantics a bit fuzzy.

128 COMMUN1CATION CHAP. 4

Client and Server Stubs

The idea behind RPC is to make a remote procedure call look as much as pos-
sible like a local one. In other words, we want RPC to be transparent-the calling
procedure should not be aware that the called procedure is executing on a dif-
ferent machine or vice versa. Suppose that a program needs to read some data
from a file. The programmer puts a call to read in the code to get the data. In a
traditional (single-processor) system, the read routine is extracted from the library
by the linker and inserted into the object program. It is a short procedure, which is
generally implemented by calling an equivalent read system call. In other words,
the read procedure is a kind of interface between the user code and the local
operating system.

Even though read does a system call, it is called in the usual way, by pushing
the parameters onto the stack, as shown in Fig. 4-5(b). Thus the programmer does
not know that read is actually doing something fishy.

RPC achieves its transparency in an analogous way. When read is actually a
remote procedure (e.g., one that will run on the file server's machine), a different
version of read, called a client stub, is put into the library. Like the original one,
it, too, is called using the calling sequence of Fig. 4-5(b). Also like the original
one, it too, does a call to the local operating system. Only unlike the original one,
it does not ask the operating system to give it data. Instead, it packs the parame-
ters into a message and requests that message to be sent to the server as illustrated
in Fig. 4-6. Following the call to send, the client stub calls receive, blocking it-
self until the reply comes back.

Figure 4-6. Principle of RPC between a client and server program.

When the message arrives at the server, the server's operating system passes
it up to a server stub. A server stub is the server-side equivalent of a client stub:
it is a piece of code that transforms requests coming in over the network into local
procedure calls. Typically the server stub will have called receive and be blocked
waiting for incoming messages. The server stub unpacks the parameters from the
message and then calls the server procedure in the usual way (i.e., as in Fig. 4-5).
From the server's point of view, it is as though it is being called directly by the

SEC. 4.2 REMOTE PROCEDURE CALL 129

client-the parameters and return address are all on the stack where they belong
and nothing seems unusual. The server performs its work and then returns the re-
sult to the caller in the usual way. For example, in the case of read, the server will
fill the buffer, pointed to by the second parameter, with the data. This buffer will
be internal to the server stub.

When the server stub gets control back after the call has completed, it packs
the result (the buffer) in a message and calls send to return it to the client. After
that, the server stub usually does a call to receive again, to wait for the next
incoming request.

When the message gets back to the client machine, the client's operating sys-
tem sees that it is addressed to the client process (or actually the client stub, but
the operating system cannot see the difference). The message is copied to the
waiting buffer and the client process unblocked. The client stub inspects the mes-
sage, unpacks the result, copies it to its caller, and returns in the usual way. When
the caller gets control following the call to read, all it knows is that its data are
available. It has no idea that the work was done remotely instead of by the local
operating system.

This blissful ignorance on the part of the client is the beauty of the whole
scheme. As far as it is concerned, remote services are accessed by making ordi-
nary (i.e., local) procedure calls, not by calling send and receive. All the details
of the message passing are hidden away in the two library procedures, just as the
details of actually making system calls are hidden away in traditional libraries.

To summarize, a remote procedure call occurs in the following steps:

1. The client procedure calls the client stub in the normal way.

2. The client stub builds a message and calls the local operating system.

3. The client's as sends the message to the remote as.
4. The remote as gives the message to the server stub.

5. The server stub unpacks the parameters and calls the server.

6. The server does the work and returns the result to the stub.

7. The server stub packs it in a message and calls its local as.
8. The server's as sends the message to the client's as.
9. The client's as gives the message to the client stub.

10. The stub unpacks the result and returns to the client.

The net effect of all these steps is to convert the local call by the client procedure
to the client stub, to a local call to the server procedure without either client or
server being aware of the intermediate steps or the existence of the network.

130 COMMUNICATION CHAP. 4

4.2.2 Parameter Passing

The function of the client stub is to take its parameters, pack them into a mes-
sage, and send them to the server stub. While this sounds straightforward, it is not
quite as simple as it at first appears. In this section we will look at some of the
issues concerned with parameter passing in RPC systems.

Passing Value Parameters

Packing parameters into a message is called parameter marshaling. As a
very simple example, consider a remote procedure, add(i, j), that takes two integer
parameters i and j and returns their arithmetic sum as a result. (As a practical
matter, one would not normally make such a simple procedure remote due to the
overhead, but as an example it will do.) The call to add, is shown in the left-hand
portion (in the client process) in Fig. 4-7. The client stub takes its two parameters
and puts them in a message as indicated, It also puts the name or number of the
procedure to be called in the message because the server might support several
different calls, and it has to be told which one is required.

Figure 4-7. The steps involved in a doing a remote computation through RPC.

When the message arrives at the server, the stub examines the message to see
which procedure is needed and then makes the appropriate call. If the server also
supports other remote procedures, the server stub might have a switch statement
in it to select the procedure to be called, depending on the first field of the mes-
sage. The actual call from the stub to the server looks like the original client call,
except that the parameters are variables initialized from the incoming message.

When the server has finished, the server stub gains control again. It takes the
result sent back by the server and packs it into a message. This message is sent

SEC. 4.2 REMOTE PROCEDURE CALL 131
back back to the client stub. which unpacks it to extract the result and returns the
value to the waiting client procedure.

As long as the client and server machines are identical and all the parameters
and results are scalar types. such as integers, characters, and Booleans, this model
works fine. However, in a large distributed system, it is common that multiple ma-
chine types are present. Each machine often has its own representation for num-
bers, characters, and other data items. For example, IRM mainframes use the
EBCDIC character code, whereas IBM personal computers use ASCII. As a con-
sequence, it is not possible to pass a character parameter from an IBM PC client
to an IBM mainframe server using the simple scheme of Fig. 4-7: the server will
interpret the character incorrectly.

Similar problems can occur with the representation of integers (one's comple-
ment versus two's complement) and floating-point numbers. In addition, an even
more annoying problem exists because some machines, such as the Intel Pentium,
number their bytes from right to left, whereas others, such as the Sun SPARC,
number them the other way. The Intel format is called little endian and the
SPARC format is called big endian, after the politicians in Gulliver's Travels
who went to war over which end of an egg to break (Cohen, 1981). As an ex-
ample, consider a procedure with two parameters, an integer and a four-character
string. Each parameter requires one 32-bit word. Fig.4-8(a) shows what the pa-
rameter portion of a message built by a client stub on an Intel Pentium might look
like, The first word contains the integer parameter, 5 in this case, and the second
contains the string "JILL."

Figure 4-8. (a) The original message on the Pentium. (b) The message after re-
ceipt on the SPARe. (c) The message after being inverted. The little numbers in
boxes indicate the address of each byte.

Since messages are transferred byte for byte (actually, bit for bit) over the net-
work, the first byte sent is the first byte to arrive. In Fig. 4-8(b) we show what the
message of Fig. 4-8(a) would look like if received by a SPARC, which numbers
its bytes with byte 0 at the left (high-order byte) instead of at the right (low-order
byte) as do all the Intel chips. When the server stub reads the parameters at ad-
dresses 0 and 4, respectively, it will find an integer equal to 83,886,080 (5 x 2

24
)

and a string "JILL".
One obvious, but unfortunately incorrect, approach is to simply invert the

bytes of each word after they are received, leading to Fig. 4-8(c). Now the integer

132 COMMUNICATION CHAP. 4

is 5 and the string is "LLIJ". The problem here is that integers are reversed by the
different byte ordering, but strings are not. Without additional information about
what is a string and what is aninteger, there is no way to repair the damage.

Passing Reference Parameters

We now come to a difficult problem: How are pointers, or in general, refer-
ences passed? The answer is: only with the greatest of difficulty, if at all.
Remember that a pointer is meaningful only within the address space of the proc-
ess in which it is being used. Getting back to our read example discussed earlier,
if the second parameter (the address of the buffer) happens to be 1000 on the cli-
ent, one cannot just pass the number 1000 to the server and expect it to work.
Address 1000 on the server might be in the middle of the program text.

One solution is just to forbid pointers and reference parameters in general.
However, these are so important that this solution is highly undesirable. In fact, it
is not necessary either. In the read example, the client stub knows that the second
parameter points to an array of characters. Suppose, for the moment, that it also
knows how big the array is. One strategy then becomes apparent: copy the array
into the message and send it to the server. The server stub can then call the server
with a pointer to this array, even though this pointer has a different numerical val-
ue than the second parameter of read has. Changes the server makes using the
pointer (e.g., storing data into it) directly affect the message buffer inside the
server stub. When the server finishes, the original message can be sent back to the
client stub, which then copies it back to the client. In effect, call-by-reference has
been replaced by copy/restore. Although this is not always identical, it frequently
is good enough.

One optimization makes this mechanism twice as efficient. If the stubs know
whether the buffer is an input parameter or an output parameter to the server, one
of the copies can be eliminated. If the array is input to the server (e.g., in a call to
write) it need not be copied back. If it is output, it need not be sent over in the first
place.

As a final comment, it is worth noting that although we can now handle point-
ers to simple arrays and structures, we still cannot handle the most general case of
a pointer to an arbitrary data structure such as a complex graph. Some systems
attempt to deal with this case by actually passing the pointer to the server stub and
generating special code in the server procedure for using pointers. For example, a
request may be sent back to the client to provide the referenced data.

Parameter Specification and Stub Generation

From what we have explained so far, it is clear that hiding a remote procedure
call requires that the caller and the callee agree on the format of the messages
they exchange, and that they follow the same steps when it comes to, for example,

SEC. 4.2 REMOTE PROCEDURE CALL 133

passing complex data structures. In other words, both sides in an RPC should fol-
low the same protocol or the RPC will not work correctly.

As a simple example, consider the procedure of Fig. 4-9(a). It has three pa-
rameters, a character, a floating-point number, and an array of five integers.
Assuming a word is four bytes, the RPC protocol might prescribe that we should
transmit a character in the rightmost byte of a word (leaving the next 3 bytes
empty), a float as a whole word, and an array asa group of words equal to the
array length, preceded by a word giving the length, as shown in Fig. 4-9(b). Thus
given these rules, the client stub for foobar knows that it must use the format of
Fig. 4-9(b), and the server stub knows that incoming messages for foobar will
have the format of Fig. 4-9(b).

Figure 4-9. (a) A procedure. (b) The corresponding message.

Defining the message format is one aspect of an RPC protocol, but it is not
sufficient. What we also need is the client and the server to agree on the repres-
entation of simple data structures, such as integers, characters, Booleans, etc. For
example, the protocol could prescribe that integers are represented in two's com-
plement, characters in 16-bit Unicode, and floats in the IEEE standard #754 for-
mat, with everything stored in little endian. With this additional information, mes-
sages can be unambiguously interpreted.

With the encoding rules now pinned down to the last bit, the only thing that
remains to be done is that the caller and callee agree on the actual exchange of
messages. For example, it may be decided to use a connection-oriented transport
service such as TCPIIP. An alternative is to use an unreliable datagram service
and let the client and server implement an error control scheme as part of the RPC
protocol. In practice, several variants exist.

Once the RPC protocol has been fully defined, the client and server stubs
need to be implemented. Fortunately, stubs for the same protocol but different
procedures normally differ only in their interface to the applications. An interface
consists of a collection of procedures that can be called by a client, and which are
implemented by a server. An interface is usually available in the same programing

134 COMMUNICA nON CHAP. 4

language as the one in which the client or server is written (although this is strictly
speaking, not necessary). To simplify matters, interfaces are often specified by
means of an Interface Definition Language (IDL). An interface specified in
such an IDL is then subsequently compiled into a client stub and a server stub,
along with the appropriate compile-time or run-time interfaces.

Practice shows that using an interface definition language considerably sim-
plifies client-server applications based on RPCs. Because it is easy to fully gen-
erate client and server stubs, all RPC-based middleware systems offer an IDL to
support application development. In some cases, using the IDL is even mandatory,
as we shall see in later chapters.

4.2.3 Asynchronous RPC

As in conventional procedure calls, when a client calls a remote procedure,
the client will block until a reply is returned. This strict request-reply behavior is
unnecessary when there is no result to return, and only leads to blocking the client
while it could have proceeded and have done useful work just after requesting the
remote procedure to be called. Examples of where there is often no need to wait
for a reply include: transferring money from one account to another, adding en-
tries into a database, starting remote services, batch processing, and so on.

To support such situations, RPC systems may provide facilities for what are
called asynchronous RPCs, by which a client immediately continues after issu-
ing the RPC request. With asynchronous RPCs, the server immediately sends a
reply back to the client the moment the RPC request is received, after which it
calls the requested procedure. The reply acts as an acknowledgment to the client
that the server is going to process the RPC. The client will continue without
further blocking as soon as it has received the server's acknowledgment. Fig. 4-
1O(b) shows how client and server interact in the case of asynchronous RPCs. For
comparison, Fig. 4-10(a) shows the normal request-reply behavior.

Asynchronous RPCs can also be useful when a reply will be returned but the
client is not prepared to wait for it and do nothing in the meantime. For example,
a client may want to prefetch the network addresses of a set of hosts that it
expects to contact soon. While a naming service is collecting those addresses, the
client may want to do other things. In such cases, it makes sense to organize the
communication between the client and server through two asynchronous RPCs, as
shown in Fig. 4-11. The client first calls the server to hand over a list of host
names that should be looked up, and continues when the server has acknowledged
the receipt of that list. The second call is done by the server, who calls the client
to hand over the addresses it found. Combining two asynchronous RPCs is some-
times also referred to as a deferred synchronous RPC.

It should be noted that variants of asynchronous RPCs exist in which the cli-
ent continues executing immediately after sending the request to the server. In

SEC. 4.2 REMOTE PROCEDURE CALL 135

Figure 4-10. (a) The interaction between client and server in a traditional RPc.
(b) The interaction using asynchronous RPc.

Figure 4-11. A client and server interacting through two asynchronous RPCs.

other words, the client does not wait for an acknowledgment of the server's ac-
ceptance of the request. We refer to such RPCs as one-way RPCs. The problem
with this approach is that when reliability is not guaranteed, the client cannot
know for sure whether or not its request will be processed. We return to these
matters in Chap. 8. Likewise, in the case of deferred synchronous RPC, the client
may poll the server to see whether the results are available yet instead of letting
the server calling back the client.

4.2.4 Example: DCE RPC

Remote procedure calls have been widely adopted as the basis of middleware
and distributed systems in general. In this section, we take a closer look at one
specific RPC system: the Distributed Computing Environment (DeE), which
was developed by the Open Software Foundation (OSF), now called The Open
Group. DCE RPC is not as popular as some other RPC systems, notably Sun RPC.
However, DCE RPC is nevertheless representative of other RPC systems, and its

136 COMMUNICATION CHAP. 4

specifications have been adopted in Microsoft's base system for distributed com-
puting, DCOM (Eddon and Eddon,]998). We start with a brief introduction to
DCE, after which we consider the principal workings of DCE RPC. Detailed tech-
nical information on how to develop RPC-based applications can be found in
Stevens (l999).

Introduction to DCE

DCE is a true middleware system in that it is designed to execute as a layer of
abstraction between existing (network) operating systems and distributed applica-
tions. Initially designed for UNIX, it has now been ported to all major operating
systems including VMS and Windows variants, as well as desktop operating sys-
tems. The idea is that the customer can take a collection of existing machines, add
the DCE software, and then be able to run distributed applications, all without dis-
turbing existing (nondistributed) applications. Although most of the DCE package
runs in user space, in some configurations a piece (part of the distributed file sys-
tem) must be added to the kernel. The Open Group itself only sells source code,
which vendors integrate into their systems.

The programming model underlying all of DCE is the client-server model,
which was extensively discussed in the previous chapter. User processes act as
clients to access remote services provided by server processes. Some of these ser-
vices are part of DCE itself, but others belong to the applications and are written
by the applications programmers. All communication between clients and servers
takes place by means of RPCs.

There are a number of services that form part of DCE itself. The distributed
file service is a worldwide file system that provides a transparent. way of ac-
cessing any file in the system in the same way. It can either be built on top of the
hosts' native file systems or used instead of them. The directory service is used
to keep track of the location of all resources in the system. These resources in-
clude machines, printers, servers, data, and much more, and they may be distrib-
uted geographically over the entire world. The directory service allows a process
to ask for a resource and not have to be concerned about where it is, unless the
process cares. The security service allows resources of all kinds to be protected,
so access can be restricted to authorized persons. Finally, the distributed time
service is a service that attempts to keep clocks on the different machines globally
synchronized. As we shall see in later chapters, having some notion of global time
makes it much easier to ensure consistency in a distributed system.

Goals of DCE RPC

The goals of the DCE RPC system are relatively traditional. First and
foremost, the RPC system makes it possible for a client to access a remote service
by simply calling a local procedure. This interface makes it possible for client

SEC. 4.2 REMOTE PROCEDURE CALL 137
(i.e., application) programs to be written in a simple way, familiar to most pro-
grammers. It also makes it easy to have large volumes of existing code run in a
distributed environment with few, if any, changes.

It is up to the RPC system to hide all the details from the clients, and, to some
extent, from the servers as well. To start with, the RPC system can automatically
locate the correct server, and subsequently set up the communication between cli-
ent and server software (generally called binding). It can also handle the mes-
sage transport in both directions, fragmenting and reassembling them as needed
(e.g., if one of the parameters is a large array). Finally, the RPC system can auto-
matically handle data type conversions between the client and the server, even if
they run on different architectures and have a different byte ordering;

As a consequence of the RPC system's ability to hide the details, clients and
servers are highly independent of one another. A client can be written in Java and
a server in C, or vice versa. A client and server can run on different hardware plat-
forms and use different operating systems. A yariety of network protocols and
data representations are also supported, all without any intervention from the cli-
ent or server.

Writing a Client and a Server

The DCE RPC system consists of a number of components, including lan-
guages, libraries, daemons, and utility programs, among others. Together these
make it possible to write clients and servers. In this section we will describe the
pieces and how they fit together. The entire process of writing and using an RPC
client and server is summarized in Fig. 4-12.

In a client-server system, the glue that holds everything together is the inter-
face definition, as specified in the Interface Definition Language, or IDL. It
permits procedure declarations in a form closely resembling function prototypes
in ANSI C. IDL files can also contain type definitions, constant declarations, and
other information needed to correctly marshal parameters and unmarshal results.
Ideally, the interface definition should also contain a formal definition of what the
procedures do, but such a definition is beyond the current state of the art, so the
interface definition just defines the syntax of the calls, not their semantics. At best
the writer can add a few comments describing what the procedures do.

A crucial element in every IDL file is a globally unique identifier for the
specified interface. The client sends this identifier in the first RPC message and
the server verifies that it is correct. In this way, if a client inadvertently tries to
bind to the wrong server, or even to an older version of the right server, the server
will detect the error and the binding will not take place.

Interface definitions and unique identifiers are closely related in DCE. As
illustrated in Fig. 4-12, the first step in writing a client/server application is usual-
ly calling the uuidgen program, asking it to generate a prototype IDL file contain-
ing an interface identifier guaranteed never to be used again in any interface

138 COMMUNlCATION CHAP. 4

Figure 4-12. The steps in writing a client and a server in DeE RPC.

generated anywhere by uuidgen. Uniqueness is ensured by encoding in it the lo-
cation and time of creation. It consists of a 128-bit binary number represented in
the IDL file as an ASCII string in hexadecimal.

The next step is editing the IDL file, filling in the names of the remote proce-
dures and their parameters. It is worth noting that RPC is not totally transpar-
ent-for example, the client and server cannot share global variables-but the
IDL rules make it impossible to express constructs that are not supported.

When the IDL file is complete, the IDL compiler is called to process it. The
output of the IDL compiler consists of three files:

1. A header file (e.g., interface.h, in C terms).

2. The client stub.

3. The server stub.

The header file contains the unique identifier, type definitions, constant defini-
tions, and function prototypes. It should be included (using #include) in both the
client and server code. The client stub contains the actual procedures that the cli-
ent program will call. These procedures are the ones responsible for collecting and

SEC. 4.2 REMOTE PROCEDURE CALL 139
packing the parameters into the outgoing message and then calling the runtime
system to send it. The client stub also handles unpacking the reply and returning
values to the client. The server stub contains the procedures called by the runtime
system on the server machine when an incoming message arrives. These, in tum,
call the actual server procedures that do the work.

The next step is for the application writer to write the client and server code.
Both of these are then compiled, as are the two stub procedures. The resulting cli-
ent code and client stub object files are then linked with the runtime library to pro-
duce the executable binary for the client. Similarly, the server code and server
stub are compiled and linked to produce the server's binary. At runtime, the client
and server are started so that the application is actually executed as well.

Binding a Client to a Server

To allow a client to call a server, it is necessary that the server be registered
and prepared to accept incoming calls. Registration of a server makes it possible
for a client to locate the server and bind to it. Server location is done in two steps:

1. Locate the server's machine.

2. Locate the server (i.e., the correct process) on that machine.

The second step is somewhat subtle. Basically, what it comes down to is that to
communicate with a server, the client needs to know an end point, on the server's
machine to which it can send messages. An end point (also commonly known as a
port) is used by the server's operating system to distinguish incoming messages
for different processes. In DCE, a table of (server, end point)pairs is maintained
on each server machine by a process called the DCE daemon. Before it becomes
available for incoming requests, the server must ask the operating system for an
end point. It then registers this end point with the DCE daemon. The DCE daemon
records this information (including which protocols the server speaks) in the end
point table for future use.

The server also registers with the directory service by providing it the network
address of the server's machine and a name under which the server can be looked
up. Binding a client to a server then proceeds as shown in Fig. 4-13.

Let us assume that the client wants to bind to a video server that is locally
known under the name /local/multimedia/video/movies .. It passes this name to the
directory server, which returns the network address of the machine running the
video server. The client then goes to the DCE daemon on that machine (which has
a well-known end point), and asks it to look up the end point of the video server in
its end point table. Armed with this information, the RPC can now take place. On
subsequent RPCs this lookup is not needed. DCE also gives clients the ability to
do more sophisticated searches for a suitable server when that is needed. Secure
RPC is also an option where confidentiality or data integrity is crucial.

140 COMMUNICA nON CHAP. 4

Performing an RPC

The actual RPC is carried out transparently and in the usual way. The client
stub marshals the parameters to the runtime library for transmission using the pro-
tocol chosen at binding time. When a message arrives at the server side, it is
routed to the correct server based on the end point contained in the incoming mes-
sage. The runtime library passes the message to the server stub, which unmarshals
the parameters and calls the server. The reply goes back by the reverse route.

DCE provides several semantic options. The default is at-most-once opera-
tion, in which case no call is ever carried out more than once, even in the face of
system crashes. In practice, what this means is that if a server crashes during, an
RPC and then recovers quickly, the client does not repeat the operation, for fear
that it might already have been carried out once.

Alternatively, it is possible to mark a remote procedure as idempotent (in the
IDL file), in which case it can be repeated multiple times without harm. For ex-
ample, reading a specified block from a file can be tried over and over until it
succeeds. When an idempotent RPC fails due to a server crash. the client can wait
until the server reboots and then try again. Other semantics are also available (but
rarely used), including broadcasting the RPC to all the machines on the local net-
work. We return to RPC semantics in Chap. 8, when discussing RPC in the pres-
ence of failures.

4.3 MESSAGE-ORIENTED COMMUNICATION
Remote procedure calls and remote object invocations contribute to hiding

communication in distributed systems, that is, they enhance access transparency.
Unfortunately, neither mechanism is always appropriate. In particular, when it
cannot be assumed that the receiving side is executing at the time a request is

Figure 4-13. Client-to-server binding in DCE.

SEC. 4.3 MESSAGE-ORIENTED COMMUNICATION 141

issued, alternative communication services are needed. Likewise, the inherent
synchronous nature of RPCs, by which a client is blocked until its request has
been processed, sometimes needs to be replaced by something else.

That something else is messaging. In this section we concentrate on message-
oriented communication in distributed systems by first taking a closer look at
what exactly synchronous behavior is and what its implications are. Then, we dis-
cuss messaging systems that assume that parties are executing at the time of com-
munication. Finally, we will examine message-queuing systems that allow proc-
esses to exchange information, even if the other party is not executing at the time
communication is initiated.

4.3.1 Message-Oriented Transient Communication

Many distributed systems and applications are built directly on top of the sim-
ple message-oriented model offered by the transport layer. To better understand
and appreciate the message-oriented systems as part of middleware solutions, we
first discuss messaging through transport-level sockets.

Berkeley Sockets

Special attention has been paid to standardizing the interface of the transport
layer to allow programmers to make use of its entire suite of (messaging) proto-
cols through a simple set of primitives. Also, standard interfaces make it easier to
port an application to a different machine.

As an example, we briefly discuss the sockets interface as introduced in the
1970s in Berkeley UNIX. Another important interface is XTI, which stands for
the X10pen Transport Interface, formerly called the Transport Layer Interface
(TLI), and developed by AT&T. Sockets and XTI are very similar in their model
of network programming, but differ in their set of primitives.

Conceptually, a socket is a communication end point to which an application
can write data that are to be sent out over the underlying network, and from which
incoming data can be read. A socket forms an abstraction over the actual commu-
nication end point that is used by the local operating system for a specific tran-
sport protocol. In the following text, we concentrate on the socket primitives for
TCP, which are shown in Fig. 4-14.

Servers generally execute the first four primitives, normally in the order
given. When calling the socket primitive, the caller creates a new communication
end point for a specific transport protocol. Internally, creating a communication
end point means that the local operating system reserves resources to accommo-
date sending and receiving messages for the specified protocol.

The bind primitive associates a local address with the newly-created socket.
For example, a server should bind the IP address of its machine together with a
(possibly well-known) port number to a socket. Binding tells the operating system
that the server wants to receive messages only on the specified address and port.

142 COMMUNICATION CHAP. 4

Figure 4-14. The socket primitives for TCPIIP.

The listen primitive is called only in the case of connection-oriented commu-
nication. It is a nonblocking call that allows the local operating system to reserve
enough buffers for a specified maximum number of connections that the caller is
willing to accept.

A call to accept blocks the caller until a connection request arrives. When a
request arrives, the local operating system creates a new socket with the same pro-
perties as the original one, and returns it to the caller. This approach will allow the
server to, for example, fork off a process that will subsequently handle the actual
communication through the new connection. The server, in the meantime, can go
back and wait for another connection request on the original socket.

Let us now take a look at the client side. Here, too, a socket must first be
created using the socket primitive, but explicitly binding the socket to a local ad-
dress is not necessary, since the operating system can dynamically allocate a port
when the connection is set up. The connect primitive requires that the caller speci-
fies the transport-level address to which a connection request is to be sent. The
client is blocked until a connection has been set up successfully, after which both
sides can start exchanging information through the send and receive primitives.
Finally, closing a connection is symmetric when using sockets, and is established
by having both the client and server call the close primitive. The general pattern
followed by a client and server for connection-oriented communication using
sockets is shown in Fig. 4-15. Details about network programming using sockets
and other interfaces in a UNIX environment can be found in Stevens (1998).

The Message-Passing Interface (MPI)

With the advent of high-performance multicomputers, developers have been
looking for message-oriented primitives that would allow them to easily write
highly efficient applications. This means that the primitives should be at a con-
venient level of abstraction (to ease application development), and that their

SEC. 4.3 MESSAGE-ORIENTED COMMUNICATION 143

Figure 4-15. Connection-oriented communication pattern using sockets.

implementation incurs only minimal overhead. Sockets were deemed insufficient
for two reasons. First, they were at the wrong level of abstraction by supporting
only simple send and receive primitives. Second, sockets had been designed to
communicate across networks using general-purpose protocol stacks such as
TCPIIP. They were not considered suitable for the proprietary protocols devel-
oped for high-speed interconnection networks, such as those used in high-perfor-
mance server clusters. Those protocols required an 'interface that could handle
more advanced features, such as different forms of buffering and synchronization.

The result was that most interconnection networks and high-performance
multicomputers were shipped with proprietary communication libraries. These
libraries offered a wealth of high-level and generally efficient communication
primitives. Of course, all libraries were mutually incompatible, so that application
developers now had a portability problem.

The need to be hardware and platform independent eventually led to the
definition of a standard for message passing, simply called the Message-Passing
Interface or MPI. MPI is designed for parallel applications and as such is
tailored to transient communication. It makes direct use of the underlying net-
work..Also, it assumes that serious failures such as process crashes or network
partitions are fatal and do not require automatic recovery.

MPI assumes communication takes place within a knowngroup of processes.
Each group is assigned an identifier. Each process within a group is also assigned
a (local) identifier. A (group/D, process/D) pair therefore uniquely identifies the
source or destination of a message, and is used instead of a transport-level ad-
dress. There may be several, possibly overlapping groups of processes involved in
a computation and that are all executing at the same time.

At the core of MPI are messaging primitives to support transient communica-
tion, of which the most intuitive ones are summarized in Fig. 4-16.

Transient asynchronous communication is supported by means of the
MPI_bsend primitive. The sender submits a message for transmission, which is
generally first copied to a local buffer in the MPI runtime system. When the mes-
sage has been copied. the sender continues. The local MPI runtime system will
remove the message from its local buffer and take care of transmission as soon as
a receiver has called a receive primitive.

144 COMMUNICA nON CHAP. 4

Figure 4-16. Some of the most intuitive message-passing primitives of MPI.

There is also a blocking send operation, called MPLsend, of which the sem-
antics are implementation dependent. The primitive MPLsend may either block
the caller until the specified message has been copied to the MPI runtime system
at the sender's side, or until the receiver has initiated a receive operation. Syn-
chronous communication by which the sender blocks until its request is accepted
for further processing is available through the MPI~ssend primitive. Finally, the
strongest form of synchronous communication is also supported: when a sender
calls MPLsendrecv, it sends a request to the receiver and blocks until the latter
returns a reply. Basically, this primitive corresponds to a normal RPC.

Both MPLsend and MPLssend have variants that avoid copying messages
from user buffers to buffers internal to the local MPI runtime system. These vari-
ants correspond to a form of asynchronous communication. With MPI_isend, a
sender passes a pointer to the message after which the MPI runtime system takes
care of communication. The sender immediately continues. To prevent overwrit-
ing the message before communication completes, MPI offers primitives to check
for completion, or even to block if required. As with MPLsend, whether the mes-
sage has actually been transferred to the receiver or that it has merely been copied
by the local MPI runtime system to an internal buffer is left unspecified.

Likewise, with MPLissend, a sender also passes only a pointer to the :MPI
runtime system. When the runtime system indicates it has processed the message,
the sender is then guaranteed that the receiver has accepted the message and is
now working on it.

The operation MPLrecv is called to receive a message; it blocks the caller
until a message arrives. There is also an asynchronous variant, called MPLirecv,
by which a receiver indicates that is prepared to accept a message. The receiver
can check whether or not a message has indeed arrived, or block until one does.

The semantics of MPI communication primitives are not always straightfor-
ward, and different primitives can sometimes be interchanged without affecting

SEC. 4.3 MESSAGE-ORIENTED COMMUNICA nON 145
the correctness of a program. The official reason why so many different forms of
communication are supported is that it gives implementers of MPI systems
enough possibilities for optimizing performance. Cynics might say the committee
could not make up its collective mind, so it threw in everything. MPI has been
designed for high-performance parallel applications, which makes it easier to
understand its diversity in different communication primitives.

More on MPI can be found in Gropp et aI. (l998b) The complete reference in
which the over 100 functions in MPI are explained in detail, can be found in Snir
et al. (1998) and Gropp et al. (l998a)

4.3.2 Message-Oriented Persistent Communication

We now come to an important class of message-oriented middle ware services,
generally known as message-queuing systems, or just Message-Oriented Mid-
dleware (MOM). Message-queuing systems provide extensive support for per-
sistent asynchronous communication. The essence of these systems is that they
offer intermediate-term storage capacity for messages, without requiring either the
sender or receiver to be active during message transmission. An important differ-
ence with Berkeley sockets and MPI is that message-queuing systems are typi-
cally targeted to support message transfers that are allowed to take minutes in-
stead of seconds or milliseconds. We first explain a general approach to message-
queuing systems, and conclude this section by comparing them to more traditional
systems, notably the Internet e-mail systems.

Message-Queuing Model

The basic idea behind a message-queuing system is that applications com-
municate by inserting messages in specific queues. These messages are forwarded
over a series of communication servers and are eventually delivered to the desti-
nation, even if it was down when the message was sent. In practice, most commu-
nication servers are directly connected to each other. In other words, a message is
generally transferred directly to a destination server. In principle, each application
has its own private queue to which other applications can send messages. A queue
can be read only by its associated application, but it is also possible for multiple
applications to share a single queue.

An important aspect of message-queuing systems is that a sender is generally
given only the guarantees that its message will eventually be inserted in the re-
cipient's queue. No guarantees are given about when, or even if the message will
actually be read, which is completely determined by the behavior of the recipient.

These semantics permit communication loosely-coupled in time. There is thus
no need for the receiver to be executing when a message is being sent to its queue.
Likewise, there is no need for the sender to be executing at the moment its mes-
sage is picked up by the receiver. The sender and receiver can execute completely

146 COMMUNICATION CHAP. 4

independently of each other. In fact, once a message has been deposited in a
queue, it will remain there until it is removed, irrespective of whether its sender or
receiver is executing. This gives us four combinations with respect to the execu-
tion mode of the sender and receiver, as shown in Fig. 4-17.

In Fig.4-17(a), both the sender and receiver execute during the entire
transmission of a message. In.Fig. 4-17(b), only the sender is executing, while the
receiver is passive, that is, in a state in which message delivery is not possible.
Nevertheless, the sender can still send messages. The combination of a passive
sender and an executing receiver is shown in Fig. 4-17(c). In this case, the re-
ceiver can read messages that were sent to it, but it is not necessary 'that their re-
spective senders are executing as well. Finally, in Fig. 4-17(d), we see the situa-
tion that the system is storing (and possibly transmitting) messages even while
sender and receiver are passive.

Messages can, in principle, contain any data. The only important aspect from
the perspective of middleware is that messages are properly addressed. In prac-
tice, addressing is done by providing a systemwide unique name of the destination
queue. In some cases, message size may be limited, although it is also possible
that the underlying system takes care of fragmenting and assembling large mes-
sages in a way that is completely transparent to applications. An effect of this ap-
proach is that the basic interface offered to applications can be extremely simple,
as shown in Fig. 4-18.

The put primitive is called by a sender to pass a message to the underlying
system that is to be appended to the specified queue. As we explained. this is a

Figure 4-17. Four combinations for loosely-coupled communications using
queues.

SEC. 4.3 MESSAGE-ORIENTED COMMUNICATION 147

Figure 4-18. Basic interface to a queue in a message-queuing system.

nonblocking call. The get primitive is a blocking call by which an authorized pro-
cess can remove the longest pending message in the specified queue. The process
is blocked only if the queue is empty. Variations on this call allow searching for a
specific message in the queue, for example, using a priority, or a matching pat-
tern. The nonblocking variant is given by the pollprimitive. If the queue is empty,
or if a specific message could not be found, the calling process simply continues.

Finally, most queuing systems also allow a process to install a handler as a
callback function, which is automatically invoked whenever a message is put into
the queue. Callbacks can also be used to automatically start a process that will
fetch messages from the queue if no process is currently executing. This approach
is often implemented by means of a daemon on the receiver's side that continu-
ously monitors the queue for incoming messages and handles accordingly.

General Architecture of a Message-Queuing System

Let us now take a closer look at what a general message-queuing system looks
like. One of the first restrictions that we make is that messages can be put only'
into queues that are local to the sender, that is, queues on the same machine, or no
worse than on a machine nearby such as on the same LAN that can be efficiently
reached through an RPC. Such a queue is called the source queue. Likewise,
messages can be read only from local queues. However, a message put into a
queue will contain the specification of a destination queue to which it should be
transferred. It is the responsibility of a message-queuing system to provide queues
to senders and receivers and take care that messages are transferred from their
source to their destination queue.

It is important to realize that the collection of queues is distributed across
multiple machines. Consequently, for a message-queuing system to transfer mes-
sages, it should maintain a mapping of queues to network locations. In practice,
this means that it should maintain a (possibly distributed) database of queue
names to network locations, as shown in Fig. 4-19. Note that such a mapping is
completely analogous to the use of the Domain Name System (DNS) for e-mail in
the Internet. For example, when sending a message to the logical mail address
steen@cs.vu.nl, the mailing system will query DNS to find the network (i.e., IP)
address of the recipient's mail server to use for the actual message transfer.

mailto:steen@cs.vu.nl,

148 COMMUNICATION CHAP. 4

Figure 4-19. The relationship between queue-level addressing and network-
level addressing.

Queues are managed by queue managers. Normally, a queue manager inter-
acts directly with the application that is sending or receiving a message. However,
there are also special queue managers that operate as routers, or relays: they for-
ward incoming messages to other queue managers. In this way, a message-
queuing system may gradually grow into a complete, application-level, overlay
network, on top of an existing computer network. This approach is similar to the
construction of the early MBone over the Internet, in which ordinary user proc-
esses were configured as multicast routers. As it turns out, multicasting through
overlay networks is still important as we will discuss later in this chapter.

Relays can be convenient for a number of reasons. For example, in many mes-
sage-queuing systems, there is no general naming service available that can dy-
namically maintain qneue-to-Iocation mappings. Instead, the topology of the
queuing network is static, and each queue manager needs a copy of the queue-to-
location mapping. It is needless to say that in large-scale queuing systems. this ap-
proach can easily lead to network-management problems.

One solution is to use a few routers that know about the network topology.
When a sender A puts a message for destination B in its local queue, that message
is first transferred to the nearest router, say Rl, as shown in Fig. 4-20. At that
point, the router knows what to do with the message and forwards it in the direc-
tion of B. For example, Rl may derive from B's name that the message should be
forwarded to router R2. In this way, only the routers need to be updated when
queues are added or removed. while every other queue manager has to know only
where the nearest router is.

Relays can thus generally help build scalable message-queuing systems. How-
ever, as queuing networks grow, it is clear that the manual configuration of net-
works will rapidly become completely unmanageable. The only solution is to
adopt dynamic routing schemes as is done for computer networks. In that respect,
it is somewhat surprising that such solutions are not yet integrated into some of
the popular message-queuing systems.

SEC. 4.3 MESSAGE-ORIENTED COMMUNICATION 149

Figure 4·20. The general organization of a message-queuing system with routers.

Another reason why relays are used is that they allow for secondary proc-
essing of messages. For example, messages may need to be logged for reasons of
security or fault tolerance. A special form of relay that we discuss in the next sec-
tion is one that acts as a gateway, transforming messages into a format that can be
understood by the receiver.

Finally, relays can be used for multicasting purposes. In that case, an incom-
ing message is simply put into each send queue.

Message Brokers

An important application area of message-queuing systems is integrating
existing and new applications into a single, coherent distributed information sys-
tem. Integration requires that applications can understand the messages they re-
ceive. In practice, this requires the sender to have its outgoing messages in the
same format as that of the receiver.

The problem with this approach is that each time an application is added to
the system that requires a separate message format, each potential receiver will
have to be adjusted in order to produce that format.

An alternative is to agree on a common message format, as is done with tradi-
tional network protocols. Unfortunately, this approach will generally not work for
message-queuing systems. The problem is the level of abstraction at which these

150 COMMUNICATION CHAP. 4

Figure 4-21. The general organization of a message broker in a message-
queuing system.

A message broker can be as simple as a reformatter for messages. For ex-
ample, assume an incoming message contains a table from a database, in which
records are separated by a special end-oj-record delimiter and fields within a rec-
ord have a known, fixed length. If the destination application expects a different
delimiter between records, and also expects that fields have variable lengths, a
message broker can be used to convert messages to the format expected by the
destination.

In a more advanced setting, a message broker may act as an application-level
gateway, such as one that handles the conversion between two different database
applications. In such cases, frequently it cannot be guaranteed that all information

systems operate. A common message format makes sense only if the collection of
processes that make use of that format indeed have enough in common. If the col-
lection of applications that make up a distributed information system is highly di-
verse (which it often is), then the best common format may well be no more than
a sequence of bytes.

Although a few common message formats for specific application domains
have been defined, the general approach is to learn to live with different formats,
and try to provide the means to make conversions as simple as possible. In mes-
sage-queuing systems, conversions are handled by special nodes in a queuing net-
work, known as message brokers. A message broker acts as an application-level
gateway in a message-queuing system. Its main purpose is to convert incoming
messages so that they can be understood by the destination application. Note that
to a message-queuing system, a message broker is just another application. as
shown in Fig. 4-21. In other words, a message broker is generally not considered
to be an integral part of the queuing system.

SEC. 4.3 MESSAGE-ORIENTED COMMUNICATION 151
contained in the incoming message can actually be transformed into something
appropriate for the outgoing message.

However, more common is the use of a message broker for advanced enter-
prise application integration (EAI) as we discussed in Chap. 1. In this case,
rather than (only) converting messages, a broker is responsible for matching appli-
cations based on the messages that are being exchanged. In such a model, called
publish/subscribe, applications send messages in the form of publishing. In par-
ticular, they may publish a message on topic X, which is then sent to the broker.
Applications that have stated their interest in messages on topic X, that is, who
have subscribed to those messages, will then receive these messages from the
broker. More advanced forms of mediation are also possible, but we will defer
further discussion until Chap. 13.

At the heart of a message broker lies a repository of rules and programs that
can transform a message of type TI to one of type T2. The problem is defining
the rules and developing the programs. Most message broker products come with
sophisticated development tools, but the bottom line is still that the repository
needs to be filled by experts. Here we see a perfect example where commercial -
products are often misleadingly said to provide "intelligence," where, in fact, the
only intelligence is to be found in the heads of those experts.

A Note on Message-Queuing Systems

Considering what we have said about message-queuing systems, it would_
appear that they have long existed in the form of implementations for e-mail ser-
vices. E-mail systems are generally implemented through a collection of mail ser-
vers that store and forward messages on behalf of the users on hosts directly con-
nected to the server. Routing is generally left out, as e-mail systems can make
direct use of the underlying transport services. For example, in the mail protocol
for the Internet, SMTP (Postel, 1982), a message is transferred by setting up a
direct TCP connection to the destination mail server.

What makes e-mail systems special compared to message-queuing systems is
that they are primarily aimed at providing direct support for end users. This
explains, for example, why a number of groupware applications are based directly
on an e-mail system (Khoshafian and Buckiewicz 1995). In addition, e-mail sys-
tems may have very specific requirements such as automatic message filtering,
support for advanced messaging databases (e.g., to easily retrieve previously
stored messages), and so on.

General message-queuing systems are not aimed at supporting only end users.
An important issue is that they are set up to enable persistent communication be-
tween processes, regardless of whether a process is running a user application.
handling access to a database, performing computations, and so on. This approach
leads to a different set of requirements for message-queuing systems than pure e-
mail systems. For example, e-mail systems generally need not provide guaranteed

152 COMMUNICA nON CHAP. 4

message delivery, message priorities, logging facilities, efficient multicasting,
load balancing, fault tolerance, and so on for general usage.

General-purpose message-queuing systems, therefore, have a wide range of
applications, including e-mail, workflow, groupware, and batch processing. How-
ever, as we have stated before, the most important application area is the integra-
tion of a (possibly widely-dispersed) collection of databases and applications into
a federated information system (Hohpe and Woolf, 2004). For example, a query
expanding several databases may need to be split into subqueries that are for-
warded to individual databases. Message-queuing systems assist by providing the
basic means to package each subquery into a message and routing it to the ap-
propriate database. Other communication facilities we have discussed in this
chapter are far less appropriate.

4.3.3 Example: IBM's WebSphere Message-Queuing System

To help understand how message-queuing systems work in practice, let us
take a look at one specific system, namely the message-queuing system that is
part of IBM's WebSphere product. Formerly known as MQSeries, it is now
referred to as WebSphere MQ. There is a wealth of documentation on Web-
Sphere MQ, and in the following we can only resort to the basic principles. Many
architectural details concerning message-queuing networks can be found in IBM
(2005b, 2005d). Programming message-queuing networks is not something that
can be learned on a Sunday afternoon, and MQ's programming guide (IBM,
2005a) is a good example showing that going from principles to practice may
require substantial effort.

Overview

The basic architecture of an MQ queuing network is quite straightforward,
and is shown in Fig. 4-22. All queues are managed by queue managers. A
queue manager is responsible for removing messages from its send queues, and
forwarding those to other queue managers. Likewise, a queue manager is respon-
sible for handling incoming messages by picking them up from the underlying
network and subsequently storing each message in the appropriate input queue. To
give an impression of what messaging can mean: a message has a maximum de-
fault size of 4 MB, but this can be increased up to 100 MB. A queue is normally
restricted to 2 GB of data, but depending on the underlying operating system, this
maximum can be easily set higher.

Queue managers are pairwise connected through message channels, which
are an abstraction of transport-level connections. A message channel is a unidirec-
tional, reliable connection between a sending and a receiving queue manager,
through which queued messages are transported. For example, an Internet-based
message channel is implemented as a TCP connection. Each of the two ends of a

SEC. 4.3 MESSAGE-ORIENTED COMMUNICATION 153
message channel is managed by a message channel agent (MCA). A sending
:MCA is basically doing nothing else than checking send queues for a message,
wrapping it into a transport-level packet, and sending it along the connection to its
associated receiving MCA. Likewise, the basic task of a receiving MCA is listen-
ing for an incoming packet, unwrapping it, and subsequently storing the unwrap-
ped message into the appropriate queue.

Figure 4-22. General organization of IBM's message-queuing system.

Queue managers can be linked into the same process as the application for
which it manages the queues. In that case, the queues are hidden from the applica-
tion behind a standard interface, but effectively can be directly manipulated by the
application. An alternative organization is one in which queue managers and ap-
plications run on separate machines. In that case, the application is offered the
same interface as when the queue manager is colocated on the same machine.
However, the interface is implemented as a proxy that communicates with the
queue manager using traditional RPC-based synchronous communication. In this
way, MQ basically retains the model that only queues local to an application can
be accessed.

Channels

An important component of MQ is formed by the message channels. Each
message channel has exactly one associated send queue from which it fetches the
messages it should transfer to the other end. Transfer along the channel can take
place only if both its sending and receiving MCA are up and running. Apart from
starting both MCAs manually, there are several alternative ways to start a chan-
nel, some of which we discuss next.

154 COMMUNICATION CHAP. 4

One alternative is to have an application directly start its end of a channel by
activating the sending or receiving MCA. However, from a transparency point of
view, this is not a very attractive alternative. A better approach to start a sending
MeA is to configure the channel's send queue to set off a trigger when a message
is first put into the queue. That trigger is associated with a handler to start the
sending MCA so that it can remove messages from the send queue.

Another alternative is to start an MCA over the network. In particular, if one
side of a channel is already active, it can send a control message requesting that
the other MCA to be started. Such a control message is sent to a daemon listening
to a well-known address on the same machine as where the other MCA is to be
started.

Channels are stopped automatically after a specified time has expired during
which no more messages were dropped into the send queue.

Each MCA has a set of associated attributes that determine the overall be-
havior of a channel. Some of the attributes are listed in Fig. 4-23. Attribute values
of the sending and receiving MCA should be compatible and perhaps negotiated
first before a channel can be set up. For example, both MCAs should obviously
support the same transport protocol. An example of a nonnegotiable attribute is
whether or not messages are to be delivered in the same order as they are put into
the send queue. If one MCA wants FIFO delivery, the other must comply. An ex-
ample of a negotiable attribute value is the maximum message length, which will
simply be chosen as the minimum value specified by either MCA.

Figure 4-23. Some attributes associated with message channel agents.

Message Transfer

To transfer a message from one queue manager to another (possibly remote)
queue manager, it is necessary that each message carries its destination address,
for which a transmission header is used. An address in MQ consists of two parts.
The first part consists of the name of the queue manager to which the message is
to be delivered. The second part is the name of the destination queue resorting
under that manager to which the message is to be appended.

Besides the destination address, it is also necessary to specify the route that a
message should follow. Route specification is done by providing the name of the

SEC. 4.3 MESSAGE-ORIENTED COMMUNICATION 155
local send queue to which a message is to be appended. Thus it is not necessary to
provide the full route in a message. Recall that each message channel has exactly
one send queue. By telling to which send queue a message is to be appended, we
efectively specify to which queue manager a message is to be forwarded.

In most cases, routes are explicitly stored inside a queue manager in a routing
table. An entry in a routing table is a pair (destQM, sendQ), where destQM is the
name of the destination queue manager, and sendQ is the name of the local send
queue to which a message for that queue manager should be appended. (A routing
table entry is called an alias in MQ.)

It is possible that a message needs to be transferred across multiple queue
managers before reaching its destination. Whenever such an intermediate queue
manager receives the message, it simply extracts the name of the destination
queue manager from the message header, and does a routing-table look -up to find
the local send queue to which the message should be appended.

It is important to realize that each queue manager has a systemwide unique
name that is effectively used as an identifier for that queue manager. The problem
with using these names is that replacing a queue manager, or changing its name,
will affect all applications that send messages to it. Problems can be alleviated by
using a local alias for queue manager names. An alias defined within a queue
manager Ml is another name for a queue manager M2, but which is available only
to applications interfacing to Ml. An alias allows the use of the same (logical)
name for a queue, even if the queue manager of that queue changes. Changing the
name of a queue manager requires that we change its alias in all queue managers.
However, applications can be left unaffected.

Figure 4-24. The general organization of an MQ queuing network using routing
tables and aliases.

156 COMMUNICATION CHAP. 4

The principle of using routing tables and aliases is shown in Fig. 4-24. For
example, an application linked to queue manager QMA can refer to a remote
queue manager using the local alias LAJ. The queue manager will first look up
the actual destination in the alias table to find it is queue manager QMC. The
route to QMC is found in the routing table, which states that messages for QMC
should be appended to the outgoing queue SQl, which is used to transfer mes-
sages to queue manager QMB. The latter will use its routing table to forward the
message to QMC.

Following this approach of routing and aliasing leads to a programming inter-
face that, fundamentally, is relatively simple, called the Message Queue Inter-
face (MQI). The most important primitives of MQI are summarized in Fig. 4-25.

Figure 4-25. Primitives available in the message-queuing interface.

To put messages into a queue, an application calls the MQopen primitive,
specifying a destination queue in a specific queue manager. The queue manager
can be named using the locally-available alias. Whether the destination queue is
actually remote or not is completely transparent to the application. MQopen
should also be called if the application wants to get messages from its local queue.
Only local queues can be opened for reading incoming messages. When an appli-
cation is finished with accessing a queue, it should close it by calling MQclose.

Messages can be written to, or read from, a queue using MQput and MQget,
respectively. In principle, messages are removed from a queue on a priority basis.
Messages with the same priority are removed on a first-in, first-out basis, that is,
the longest pending message is removed first. It is also possible to request for spe-
cific messages. Finally, MQ provides facilities to signal applications when mes-
sages have arrived, thus avoiding that an application will continuously have to
poll a message queue for incoming messages.

Managing Overlay Networks

From the description so far, it should be clear that an important part of manag-
ing MQ systems is connecting the various queue managers into a consistent over-
lay network. Moreover, this network needs to be maintained over time. For small
networks, this maintenance will not require much more than average administra-
tive work, but matters become complicated when message queuing is used to
integrate and disintegrate large existing systems.

SEC. 4.3 MESSAGE-ORIENTED COMMUNICATION 157

A major issue with MQ is that overlay networks need to be manually adminis-
trated. This administration not only involves creating channels between queue
managers, but also filling in the routing tables. Obviously, this can grow into a
nightmare. Unfortunately, management support for MQ systems is advanced only
in the sense that an administrator can set virtually every possible attribute, and
tweak any thinkable configuration. However, the bottom line is that channels and
routing tables need to be manually maintained.

At the heart of overlay management is the channel control function com-
ponent, which logically sits between message channel agents. This component
allows an operator to monitor exactly what is going on at two end points of a
channel. In addition, it is used to create channels and routing tables, but also to
manage the queue managers that host the message channel agents. In a way, this
approach to overlay management strongly resembles the management of cluster
servers where a single administration server is used. In the latter case, the server
essentially offers only a remote shell to each machine in the cluster, along with a
few collective operations to handle groups of machines. The good news about dis-
tributed-systems management is that it offers lots of opportunities if you are look-
ing for an area to explore new solutions to serious problems.

4.4 STREAM-ORIENTED COMMUNICATION

Communication as discussed so far has concentrated on exchanging more-or-
less independent and complete units of information. Examples include a request
for invoking a procedure, the reply to such a request, and messages exchanged be-
tween applications as in message-queuing systems. The characteristic feature of
this type of communication is that it does not matter at what particular point in
time communication takes place. Although a system may perform too slow or too
fast, timing has no effect on correctness.

There are also forms of communication in which timing plays a crucial role.
Consider, for example, an audio stream built up as a sequence of 16-bit samples,
each representing the amplitude of the sound wave as is done through Pulse Code
Modulation (PCM). Also assume that the audio stream represents CD quality,
meaning that the original sound wave has been sampled at a frequency of 44, 100
Hz. To reproduce the original sound, it is essential that the samples in the audio
stream are played out in the order they appear in the stream, but also at intervals
of exactly 1/44,100 sec. Playing out at a different rate will produce an incorrect
version of the original sound.

The question that we address in this section is which facilities a distributed
system should offer to exchange time-dependent information such as audio and
video streams. Various network protocols that deal with stream-oriented commu-
nication are discussed in Halsall (2001). Steinmetz and Nahrstedt (2004) provide

158 COMMUNICATION CHAP. 4

an overall introduction to multimedia issues, part of which forms stream-oriented
communication. Query processing on data streams is discussed in Babcock et al.
(2002).

4.4.1 Support for Continuous Media

Support for the exchange of time-dependent information is often formulated
as support for continuous media. A medium refers to the means by which infor-
mation is conveyed. These means include storage and transmission media, pres-
entation media such as a monitor, and so on. An important type of medium is the
way that information is represented. In other words, how is information encoded
in a computer system? Different representations are used for different types of in-
formation. For example, text is generally encoded as ASCII or Unicode. Images
can be represented in different formats such as GIF or lPEG. Audio streams can
be encoded in a computer system by, for example, taking 16-bit samples using
PCM.

In continuous (representation) media, the temporal relationships between
different data items are fundamental to correctly interpreting what the data actual-
ly means. We already gave an example of reproducing a sound wave by playing
out an audio stream. As another example, consider motion. Motion can be repres-
ented by a series of images in which successive images must be displayed at a
uniform spacing T in time, typically 30-40 msec per image. Correct reproduction
requires not only showing the stills in the correct order, but also at a constant fre-
quency of liT images per second.

In contrast to continuous media, discrete (representation) media, is charac-
terized by the fact that temporal relationships between data items are not funda-
mental to correctly interpreting the data. Typical examples of discrete media
include representations of text and still images, but also object code or executable
files.

Data Stream

To capture the exchange of time-dependent information, distributed systems
generally provide support for data streams. A data stream is nothing but a se-
quence of data units. Data streams can be applied to discrete as well as continuous
media. For example, UNIX pipes or TCPIIP connections are typical examples of
(byte-oriented) discrete data streams. Playing an audio file typically requires set-
ting up a continuous data stream between the file and the audio device.

Timing is crucial to continuous data streams. To capture timing aspects, a dis-
tinction is often made between different transmission modes. In asynchronous
transmission mode the data items in a stream are transmitted one after the other,
but there are no further timing constraints on when transmission of items should
take place. This is typically the case for discrete data streams. For example, a file

SEC. 4.4 STREAM-ORIENTED COMMUNICATION 159

can be transferred as a data stream, but it is mostly irrelevant exactly when the
transfer of each item completes.

In synchronous transmission mode, there is a maximum end-to-end delay
defined for each unit in a data stream. Whether a data unit is transferred much fas-
ter than the maximum tolerated delay is not important. For example, a sensor may
sample temperature at a certain rate and pass it through a network to an operator.
In that case, it may be important that the end-to-end propagation time through the
network is guaranteed to be lower than the time interval between taking samples,
but it cannot do any harm if samples are propagated much faster than necessary.

Finally, in isochronous transmission mode, it is necessary that data units are
transferred on time. This means that data transfer is subject to a maximum and
minimum end-to-enddelay, also referred to as bounded (delay) jitter. Isochronous
transmission mode is particularly interesting for distributed multimedia systems,
as it plays a crucial role in representing audio and video. In this chapter, we con-
sider only continuous data streams using isochronous transmission, which we will
refer to simply as streams.

Streams can be simple or complex. A simple stream consists of only a single
sequence of data, whereas a complex stream consists of several related simple
streams, called substreams. The relation between the substreams in a complex
stream is often also time dependent. For example, stereo audio can be transmitted
by means of a complex stream consisting of two substreams, each used for a sin-
gle audio channel. It is important, however, that those two substreams are continu-
ously synchronized. In other words, data units from each stream are to be com-
municated pairwise to ensure the effect of stereo. Another example of a complex
stream is one for transmitting a movie. Such a stream could consist of a single
video stream, along with two streams for transmitting the sound of the movie in
stereo. A fourth stream might contain subtitles for the deaf, or a translation into a
different language than the audio. Again, synchronization of the substreams is im-
portant. If synchronization fails, reproduction of the movie fails. We return to
stream synchronization below.

From a distributed systems perspective, we can distinguish several elements
that are needed for supporting streams. For simplicity, we concentrate on stream-
ing stored data, as opposed to streaming live data. In the latter case. data is cap-
tured in real time and sent over the network to recipients. The main difference be-
tween the two is that streaming live data leaves less opportunities for tuning a
stream. Following Wu et al. (2001), we can then sketch a general client-server ar-
chitecture for supporting continuous multimedia streams as shown in Fig. 4-26.

This general architecture reveals a number of important issues that need to be
dealt with. In the first place, the multimedia data, notably video and to a lesser
extent audio, will need to be compressed substantially in order to reduce the re-
quired storage and especially the network capacity. More important from the per-
spective of communication are controlling the quality of the transmission and syn-
chronization issues. We discuss these issues next.

160 COMMUNICA nON CHAP. 4

Figure 4-26. A general architecture for streaming stored multimedia data over a
network.

4.4.2 Streams and Quality of Service

Timing (and other nonfunctional) requirements are generally expressed as
Quality of Service (QoS) requirements. These requirements describe what is
needed from the underlying distributed system and network to ensure that, for ex-
ample, the temporal relationships in a stream can be preserved. QoS for continu-
ous data streams mainly concerns timeliness, volume, and reliability. In this sec-
tion we take a closer look at QoS and its relation to setting up a stream.

Much has been said about how to specify required QoS (see, e.g., Jin and
Nahrstedt, 2004). From an application's perspective, in many cases it boils down
to specifying a few important properties (Halsall, 2001):

1. The required bit rate at which data should be transported.

2. The maximum delay until a session has been set up (i.e., when an ap-
plication can start sending data).

3. The maximum end-to-end delay (i.e., how long it will take until a
data unit makes it to a recipient).

4. The maximum delay variance, or jitter.

5. The maximum round-trip delay.

It should be noted that many refinements can be made to these specifications, as
explained, for example, by Steinmetz and Nahrstadt (2004). However, when deal-
ing with stream-oriented communication that is based on the Internet protocol
stack, we simply have to live with the fact that the basis of communication is
formed by an extremely simple, best-effort datagram service: IP. When the going
gets tough, as may easily be the case in the Internet, the specification of IP allows
a protocol implementation to drop packets whenever it sees fit. Many, if not all

SEC. 4.4 STREAM-ORIENTED COMMUNICATION 161

distributed systems that support stream-oriented communication, are currently
built on top of the Internet protocol stack. So much for QoS specifications. (Actu-
ally, IP does provide some QoS support, but it is rarely implemented.)

Enforcing QoS

Given that the underlying system offers only a best-effort delivery service, a
distributed system can try to conceal as much as possible of the lack of quality of
service. Fortunately, there are several mechanisms that it can deploy.

First, the situation is not really so bad as sketched so far. For example, the
Internet provides a means for differentiating classes of data by means of its dif-
ferentiated services. A sending host can essentially mark outgoing packets as
belonging to one of several classes, including an expedited forwarding class that
essentially specifies that a packet should be forwarded by the current router with
absolute priority (Davie et al., 2002). In addition, there is also an assured for-
warding class, by which traffic is divided into four subclasses, along with three
ways to drop packets if the network gets congested. Assured forwarding therefore
effectively defines a range of priorities that can be assigned to packets, and as
such allows applications to differentiate time-sensitive packets from noncritical
ones.

Besides these network-level solutions, a distributed system can also help in
getting data across to receivers. Although there are generally not many tools avail-
able, one that is particularly useful is to use buffers to reduce jitter. The principle
is simple, as shown in Fig. 4-27. Assuming that packets are delayed with a cer-
tain variance when transmitted over the network, the receiver simply stores them
in a buffer for a maximum amount of time. This will allow the receiver to pass
packets to the application at a regular rate, knowing that there will always be
enough packets entering the buffer to be played back at that rate.

Figure 4-27. Using a buffer to reduce jitter.

Of course, things may go wrong, as is illustrated by packet #8 in Fig. 4-27.
The size of the receiver's buffer corresponds to 9 seconds of packets to pass to the
application. Unfortunately, packet #8 took 11 seconds to reach the receiver, at

162 COMMUNICATION CHAP. 4

Figure 4-28. The effect of packet loss in (a) noninterleaved transmission and
(b) interleaved transmission.

which time the buffer will have been completely emptied. The result is a gap in
the playback at the application. The only solution is to increase the buffer size.
The obvious drawback is that the delay at which the receiving application can
start playing back the data contained in the packets increases as well.

Other techniques can be used as well. Realizing that we are dealing with an
underlying best-effort service also means that packets may be lost. To compensate
for this loss in quality of service. we need to apply error correction techniqu.es
(Perkins et al., 1998; and Wah et al., 2000). Requesting the sender to retransmit a
missing packet is generally out of the question, so that forward error correction
(FEe) needs to be applied. A well-known technique is to encode the outgoing
packets in such a way that any k out of n received packets is enough to reconstruct
k correct packets.

One problem that may occur is that a single packet contains multiple audio
and video frames. As a consequence, when a packet is lost, the receiver may actu-
ally perceive a large gap when playing out frames. This effect can be somewhat
circumvented by interleaving frames, as shown in Fig. 4-28. In this way, when a
packet is lost, the resulting gap in successive frames is distributed over time.
Note, however, that this approach does require a larger receive buffer in com-
parison to noninterleaving, and thus imposes a higher start delay for the receiving
application. For example, when considering Fig.4-28(b), to play the first four
frames, the receiver will need to have four packets delivered, instead of only one
packet in comparison to noninterleaved transmission.

SEC. 4.4 STREAM-ORIENTED COMMUNICATION 163

4.4.3 Stream Synchronization

An important issue in multimedia systems is that different streams, possibly in
the form of a complex stream, are mutually synchronized. Synchronization of
streams deals with maintaining temporal relations between streams. Two types of
synchronization occur.

The simplest form of synchronization is that between a discrete data stream
and a continuous data stream. Consider, for example, a slide show on the Web
that has been enhanced with audio. Each slide is transferred from the server to the
client in the form of a discrete data stream. At the same time, the client should
play out a specific (part of an) audio stream that matches the current slide that is
also fetched from the server. In this case, the audio stream is to be 'synchronized
with the presentation of slides.

A more demanding type of synchronization is that between continuous data
streams. A daily example is playing a movie in which the video stream needs to
be synchronized with the audio, commonly referred to as lip synchronization.
Another example of synchronization is playing a stereo audio stream consisting of
two substreams, one for each channel. Proper play out requires that the two sub-
streams are tightly synchronized: a difference of more than 20 usee can distort the
stereo effect.

Synchronization takes place at the level of the data units of which a stream is
made up. In other words, we can synchronize two streams only between data
units. The choice of what exactly a data unit is depends very much on the level of
abstraction at which a data stream is viewed. To make things concrete, consider
again a CD-quality (single-channel) audio stream. At the finest granularity, such a
stream appears as a sequence of 16-bit samples. With a sampling frequency of
44,100 Hz, synchronization with other audio streams could, in theory, take place
approximately every 23 usee. For high-quality stereo effects, it turns out that syn-
chronization at this level is indeed necessary.

However, when we consider synchronization between an audio stream and a
video stream for lip synchronization, a much coarser granularity can be taken. As
we explained, video frames need to be displayed at a rate of 25 Hz or more. Tak-
ing the widely-used NTSC standard of 29.97 Hz, we could group audio samples
into logical units that last as long as a video frame is displayed (33 msec). With an
audio sampling frequency of 44,100 Hz, an audio data unit can thus be as large as
1470 samples, or 1l,760 bytes (assuming each sample is 16 bits). In practice,
larger units lasting 40 or even 80 msec can be tolerated (Steinmetz, 1996).

Synchronization Mechanisms

Let us now see how synchronization is actually done. Two issues need to be
distinguished: (1) the basic mechanisms for synchronizing two streams, and (2)
the distribution of those mechanisms in a networked environment.

164 COMMUNICATION CHAP. 4

Synchronization mechanisms can be viewed at several different levels of
abstraction. At the lowest level, synchronization is done explicitly by operating on
the data units of simple streams. This principle is shown in Fig. 4-29. In essence,
there is a process that simply executes read and write operations on several simple
streams, ensuring that those operations adhere to specific timing and synchroniza-
tion constraints.

Figure 4-29. The principle of explicit synchronization on the level data units.

For example, consider a movie that is presented as two input streams. The
video stream contains uncompressed low-quality images of 320x240 pixels, each
encoded by a single byte, leading to video data units of 76,800 bytes each.
Assume that images are to be displayed at 30 Hz, or one image every 33 msec.
The audio stream is assumed to contain audio samples grouped into units of 11760
bytes, each corresponding to 33 ms of audio, as explained above. If the input proc-
ess can handle 2.5 MB/sec, we can achieve lip synchronization by simply alternat-
ing between reading an image and reading a block of audio samples every 33 ms.

The drawback of this approach is that the application is made completely
responsible for implementing synchronization while it has only low-level facilities
available. A better approach is to offer an application an interface that allows it to
more easily control streams and devices. Returning to our example, assume that
the video display has a control interface that allows it to specify the rate at which
images should be displayed. In addition, the interface offers the facility to register
a user-defined handler that is called each time k new images have arrived. An
analogous interface is offered by the audio device. With these control interfaces,
an application developer can write a simple monitor program consisting of two
handlers, one for each stream, that jointly check if the video and audio stream are
sufficiently synchronized, and if necessary, adjust the rate at which video or audio
units are presented.

This last example is illustrated in Fig. 4-30, and is typical for many mul-
timedia middleware systems. In effect, multimedia middleware offers a collection
of interfaces for controlling audio and video streams, including interfaces for con-
trolling devices such as monitors, cameras, microphones, etc. Each device and

SEC. 4.4 STREAM-ORIENTED COMMUNICATION 165

stream has its own high-level interfaces, including interfaces for notifying an ap-
plication when some event occurred. The latter are subsequently used to write
handlers for synchronizing streams. Examples of such interfaces are given in Blair
and Stefani (1998).

Figure 4·30. The principle of synchronization as supported by high-level interfaces.

The distribution of synchronization mechanisms is another issue that needs to
be looked at. First, the receiving side of a complex stream consisting of sub-
streams that require synchronization, needs to know exactly what to do. In other
words, it must have a complete synchronization specification locally available.
Common practice is to provide this information implicitly by multiplexing the dif-
ferent streams into a single stream containing all data units, including those for
synchronization.

This latter approach to synchronization is followed for MPEG streams. The
MPEG (Motion Picture Experts Group) standards form a collection of algo-
rithms for compressing video and audio. Several MPEG standards exist. MPEG-2,
for example, was originally designed for compressing broadcast quality video into
4 to 6 Mbps. In MPEG-2, an unlimited number of continuous and discrete streams
can be merged into a single stream. Each input stream is first turned into a stream
of packets that carry a timestamp based on a 90-kHz system clock. These streams
are subsequently multiplexed into a program stream then consisting of variable-
length packets, but which have in common that they all have the same time base.
The receiving side demultiplexes the stream, again using the timestamps of each
packet as the basic mechanism for interstream synchronization.

Another important issue is whether synchronization should take place at the
sending or the receiving side. If the sender handles synchronization, it may be
possible to merge streams into a single stream with a different type of data unit.
Consider again a stereo audio stream consisting of two substreams, one for each
channel. One possibility is to transfer each stream independently to the receiver
and let the latter synchronize the samples pairwise. Obviously, as each substream
may be subject to different delays, synchronization can be extremely difficult, A

166 COMMUNICATION CHAP. 4

better approach is to merge the two substreams at the sender. The resulting stream
consists of data units consisting of pairs of samples, one for each channel. The re-
ceiver now merely has to read in a data unit, and split it into a left and right sam-
ple. Delays for both channels are now identical.

4.5 MULTICAST COMMUNICATION

An important topic in communication in distributed systems is the support for
sending data to multiple receivers, also known as multicast communication. For
many years, this topic has belonged to the domain of network protocols, where
numerous proposals for network-level and transport-level solutions have been im-
plemented and evaluated (Janie, 2005; and Obraczka, 1998). A major issue in all
solutions was setting up the communication paths for information dissemination.
In practice, this involved a huge management effort, in many cases requiring
human intervention. In addition, as long as there is no convergence of proposals,
ISPs have shown to be reluctant to support multicasting (Diot et aI., 2000).

With the advent of peer-to-peer technology, and notably structured overlay
management, it became easier to set up communication paths. As peer-to-peer
solutions are typically deployed at the application layer, various application-level
multicasting techniques have been introduced. In this section, we will take a brief
look at these techniques.

Multicast communication can also be accomplished in other ways than setting
up explicit communication paths. As we also explore in this section. gossip-based
information dissemination provides simple (yet often less efficient) ways for mul-
ticasting.

4.5.1 Application-Level Multicasting

The basic idea in application-level multicasting is that nodes organize into an
overlay network, which is then used to disseminate information to its members.
An important observation is that network routers are not involved in group
membership. As a consequence, the connections between nodes in the overlay
network may cross several physical links, and as such, routing messages within
the overlay may not be optimal in comparison to what could have been achieved
by network-level routing.

A crucial design issue is the construction of the overlay network. In essence,
there are two approaches (El-Sayed, 2003). First, nodes may organize themselves
directly into a tree, meaning that there is a unique (overlay) path between every
pair of nodes. An alternative approach is that nodes organize into a mesh network
in which every node will have multiple neighbors and, in general, there exist mul-
tiple paths between every pair of nodes. The main difference between the two is
that the latter generally provides higher robustness: if a connection breaks (e.g.,

SEC. 4.5 MULTICAST COMMUNICATION 167

because a node fails), there will still be an opportunity to disseminate information
without having to immediately reorganize the entire overlay network.

To make matters concrete, let us consider a relatively simple scheme for con-
structing a multicast tree in Chord, which we described in Chap. 2. This scheme
was originally proposed for Scribe (Castro et al., 2002) which is an application-
level multicasting scheme built on top of Pastry (Rowstron and Druschel, 2001).
The latter is also a DHT -based peer-to-peer system.

Assume a node wants to start a multicast session. To this end, it simply gen-
erates a multicast identifier, say mid which is just a randomly-chosen 160-bit key.
It then looks up succ(mid), which is the node responsible for that key, and pro-
motes it to become the root of the multicast tree that will be used to sending data
to interested nodes. In order to join the tree, a node P simply executes the opera-
tion LOOKUP(mid) having the effect that a lookup message with the request to
join the multicast group mid will be routed from P to succimid). As we men-
tioned before, the routing algorithm itself will be explained in detail in Chap. 5.

On its way toward the root, the join request will pass several nodes. Assume it
first reaches node Q. If Q had never seen a join request for mid before, it will
become a forwarder for that group. At that point, P will become a child of Q
whereas the latter will continue to forward the join request to the root. If the next
node on the root, say R is also not yet a forwarder, it will become one and record
Q.as its child and continue to send the join request.

On the other hand, if Q (or R) is already a forwarder for mid, it will also
record the previous sender as its child (i.e., P or Q, respectively), but there will
not be a need to send the join request to the root anymore, as Q (or R) will already
be a member of the multicast tree.

Nodes such as P that have explicitly requested to join the multicast tree are,
by definition, also forwarders. The result of this scheme is that we construct a
multicast tree across the overlay network with two types of nodes: pure forward-
ers that act as helpers, and nodes that are also forwarders, but have explicitly re-
quested to join the tree. Multicasting is now simple: a node merely sends a multi-
cast message toward the root of the tree by again executing the LOOKUP(mid) op-
eration, after which that message can be sent along the tree.

We note that this high-level description of multicasting in Scribe does not do
justice to its original design. The interested reader is therefore encouraged to take
a look at the details, which can be found in Castro et al. (2002).

Overlay Construction

From the high-level description given above, it should be clear that although
building a tree by itself is not that difficult once we have organized the nodes into
an overlay, building an efficient tree may be a different story. Note that in our
description so far, the selection of nodes that participate in the tree does not take

168 COMMUNICATION CHAP. 4

into account any performance metrics: it is purely based on the (logical) routing of
messages through the overlay.

Figure 4-31. The relation between links in an overlay and actual network-level routes.

To understand the problem at hand, take a look at Fig. 4-31 which shows a
small set of four nodes that are organized in a simple overlay network, with node
A forming the root of a multicast tree. The costs for traversing a physical link are
also shown. Now, whenever A multicasts a message to the other nodes, it is seen
that this message will traverse each of the links <.B,Rb», <Ra, Rb>, «Rc, Rd»,
and <D, Rd» twice. The overlay network would have been more efficient if we
had not constructed an overlay link from B to D, but instead from A to C. Such a
configuration would have saved the double traversal across links «Ra, Rb> and
<Rc, Rd>.

The quality of an application-level multicast tree is generally measured by
three different metrics: link stress, stretch, and tree cost. Link stress is defined
per link and counts how often a packet crosses the same link (Chu et aI., 2002). A
link stress greater than 1 comes from the fact that although at a logical level a
packet may be forwarded along two different connections, part of those connec-
tions may actually correspond to the same physical link, as we showed in Fig. 4-
31.

The stretch or Relative Delay Penalty (RDP) measures the ratio in the delay
between two nodes in the overlay, and the delay that those two nodes would
experience in the underlying network. For example, in the overlay network, mes-
sages from B to C follow the route B ~ Rb ~ Ra ~ Rc ~ C, having a total cost
of 59 units. However, messages would have been routed in the underlying net-
work along the path B ~ Rb ~ Rd ~ Rc ~ C, with a total cost of -+7 units, lead-
ing to a stretch of 1.255. Obviously, when constructing an overlay network, the
goal is to minimize the aggregated stretch, or similarly, the average RDP meas-
ured over all node pairs.

Finally, the tree cost is a global metric, generally related to minimizing the
aggregated link costs. For example, if the cost of a link is taken to be the delay be-
tween its two end nodes, then optimizing the tree cost boils down to finding a

SEC. 4.5 MULTICAST COMMUNICATION 169
minimal spanning tree in which the total time for disseminating information to all
nodes is minimal.

To simplify matters somewhat, assume that a multicast group has an associ-
ated and well-known node that keeps track of the nodes that have joined the tree.
When a new node issues a join request, it contacts this rendezvous node to obtain
a (potentially partial) list of members. The goal is to select the best member that
can operate as the new node's parent in the tree. Who should it select? There are
many alternatives and different proposals often follow very different solutions.

Consider, for example, a multicast group with only a single source. In this
case, the selection of the best node is obvious: it should be the source (because in
that case we can be assured that the stretch will be equal to 1). However, in doing
so, we would introduce a star topology with the source in the middle. Although
simple, it is not difficult to imagine the source may easily become overloaded. In
other words, selection of a node will generally be constrained in such a way that
only those nodes may be chosen who have k or less neighbors, with k being a
design parameter. This constraint severely complicates the tree-establishment al-
gorithm, as a good solution may require that part of the existing tree is reconfig-
ured.

Tan et al. (2003) provide an extensive overview and evaluation of various
solutions to this problem. As an illustration, let us take a closer look at one specif-
ic family, known as switch-trees (Helder and Jamin, 2002). The basic idea is
simple. Assume we already have a multicast tree with a single source as root. In
this tree, a node P can switch parents by dropping the link to its current parent in
favor of a link to another node. The only constraints imposed on switching links is
that the new parent can never be a member of the subtree rooted at P (as this
would partition the tree and create a loop), and that the new parent will not have
too many immediate children. The latter is needed to limit the load of forwarding
messages by any single node.

There are different criteria for deciding to switch parents. A simple one is to
optimize the route to the source, effectively minimizing the delay when a message
is to be multicast. To this end, each node regularly receives information on other
nodes (we will explain one specific way of doing this below). At that point, the
node can evaluate whether another node would be a better parent in terms of delay
along the route to the source, and if so, initiates a switch.

Another criteria could be whether the delay to the potential other parent is
lower than to the current parent. If every node takes this as a criterion, then the
aggregated delays of the resulting tree should ideally be minimal. In other words,
this is an example of optimizing the cost of the tree as we explained above. How-
ever, more information would be needed to construct such a tree, but as it turns
out, this simple scheme is a reasonable heuristic leading to a good approximation
of a minimal spanning tree.

As an example, consider the case where a node P receives information on the
neighbors of its parent. Note that the neighbors consist of P's grandparent, along

170 COMMUNICA nON CHAP. 4

with the other siblings of P's parent. Node P can then evaluate the delays to each
of these nodes and subsequently choose the one with the lowest delay, say Q, as
its new parent. To that end, it sends a switch request to Q. To prevent loops from
being formed due to concurrent switching requests. a node that has an outstanding
switch request will simply refuse to process any incoming requests. In effect, this
leads to a situation where only completely independent switches can be carried
out simultaneously. Furthermore, P will provide Q with enough information to
allow the latter to conclude that both nodes have the same parent, or that Q is the
grandparent.

An important problem that we have not yet addressed is node failure. In the
case of switch-trees, a simple solution is proposed: whenever a node notices that
its parent has failed, it simply attaches itself to the root. At that point, the optimi-
zation protocol can proceed as usual and will eventually place the node at a good
point in the multicast tree. Experiments described in Helder and Jamin (2002)
show that the resulting tree is indeed close to a minimal spanning one.

4.5.2 Gossip-Based Data Dissemination

An increasingly important technique for disseminating information is to rely
on epidemic behavior. Observing how diseases spread among people, researchers
have since long investigated whether simple techniques could be developed for
spreading information in very large-scale distributed systems. The main goal of
these epidemic protocols is to rapidly propagate information among a large col-
lection of nodes using only local information. In other words, there is no central
component by which information dissemination is coordinated.

To explain the general principles of these algorithms, we assume that all ·up-
dates for a specific data item are initiated at a single node. In this way, we simply
avoid write-write conflicts. The following presentation is based on the classical
paper by Demers et al. (1987) on epidemic algorithms. A recent overview of epi-
demic information dissemination can be found in Eugster at el. (2004).

Information Dissemination Models

As the name suggests, epidemic algorithms are based on the theory of epi-
demics, which studies the spreading of infectious diseases. In the case of large-
scale distributed systems, instead of spreading diseases, they spread information.
Research on epidemics for distributed systems also aims at a completely different
goal: whereas health organizations will do their utmost best to prevent infectious
diseases from spreading across large groups of people, designers of epidemic al-
gorithms for distributed systems will try to "infect" all nodes with new informa-
tion as fast as possible.

Using the terminology from epidemics, a node that is part of a distributed sys-
tem is called infected if it holds data that it is willing to spread to other nodes. A

SEC. 4.5 MULTICAST COMMUNICA nON 171

node that has not yet seen this data is called susceptible. Finally, an updated
node that is not willing or able to spread its data is said to be removed. Note that
we assume we can distinguish old from new data, for example, because it has
been timestamped or versioned. In this light, nodes are also said to spread updates.

A popular propagation model is that of anti-entropy. In this model, a node P
picks another node Q at random, and subsequently exchanges updates with Q.
There are three approaches to exchanging updates:

1. P only pushes its own updates to Q

2. P only pulls in new updates from Q

3. P and Q send updates to each other (i.e., a push-pull approach)

When it comes to rapidly spreading updates, only pushing updates turns out to
be a bad choice. Intuitively, this can be understood as follows. First, note that in a
pure push-based approach, updates can be propagated only by infected nodes.
However, if many nodes are infected, the probability of each one selecting a sus-
ceptible node is relatively small. Consequently, chances are that a particular node
remains susceptible for a long period simply because it is not selected by an
infected node.

In contrast, the pull-based approach works much better when many nodes are
infected. In that case, spreading updates is essentially triggered by susceptible
nodes. Chances are large that such a node will contact an infected one to subse-
quently pull in the updates and become infected as well.

It can be shown that if only a single node is infected, updates will rapidly
spread across all nodes using either form of anti-entropy, although push-pull
remains the best strategy (Jelasity et al., 2005a). Define a round as spanning a
period in which every node will at least once have taken the initiative to exchange
updates with a randomly chosen other node. It can then be shown that the number
of rounds to propagate a single update to all nodes takes O(log (N)) rounds, where
N is the number of nodes in the system. This indicates indeed that propagating
updates is fast, but above all scalable.

One specific variant of this approach is called rumor spreading, or simply
gossiping. It works as follows. If node P has just been updated for data item x, it
contacts an arbitrary other node Q and tries to push the update to Q. However, it is
possible that Q was already updated by another node. In that case, P may lose
interest in spreading the update any further, say with probability 11k. In other
words, it then becomes removed.

Gossiping is completely analogous to real life. When Bob has some hot news
to spread around, he may phone his friend Alice telling her all about it. Alice, like
Bob, will be really excited to spread the gossip to her friends as well. However,
she will become disappointed when phoning a friend, say Chuck, only to hear that

172 COMMUNICATION CHAP. 4

the news has already reached him. Chances are that she will stop phoning other
friends, for what good is it if they already know?

Gossiping turns out to be an excellent way of rapidly spreading news. How-
ever, it cannot guarantee that all nodes will actually be updated (Demers et aI.,
1987). It can be shown that when there is a large number of nodes that participate
in the epidemics, the fraction s of nodes that will remain ignorant of an update,
that is, remain susceptible, satisfies the equation: '

s = e-(k + \)(1-.1')

Fig. 4-32 shows in (s) as a function of k. For example, if k = 4, In (51)=-4.97,
so that s is less than 0.007, meaning that less than 0.7% of the nodes remain sus-
ceptible. Nevertheless, special measures are needed to guarantee that those nodes
will also be updated. Combining anti-entropy with gossiping will do the trick.

Figure 4-32. The relation between the fraction s of update-ignorant nodes and
the parameter k in pure gossiping. The graph displays lnis) as a function of k.

One of the main advantages of epidemic algorithms is their scalability, due to
the fact that the number of synchronizations between processes is relatively small
compared to other propagation methods. For wide-area systems, Lin and Marzullo
(1999) show that it makes sense to take the actual network topology into account
to achieve better results. In their approach, nodes that are connected to only a few
other nodes are contacted with a relatively high probability. The underlying
assumption is that such nodes form a bridge to other remote parts of the network;
therefore, they should be contacted as soon as possible. This approach is referred
to as directional gossiping and comes in different variants.

This problem touches upon an important assumption that most epidemic solu-
tions make, namely that a node can randomly select any other node to gossip with.
This implies that, in principle, the complete set of nodes should be known to each
member. In a large system, this assumption can never hold.

SEC. 4.5 MULTICAST COMMUNICATION 173
Fortunately, there is no need to have such a list. As we explained in Chap. 2,

maintaining a partial view that is more or less continuously updated will organize
the collection of nodes into a random graph. By regularly updating the partial
view of each node, random selection is no longer a problem.

Removing Data

Epidemic algorithms are extremely good for spreading updates. However,
they have a rather strange side-effect: spreading the deletion of a data item is
hard. The essence of the problem lies in the fact that deletion of a data item des-
troys all information on that item. Consequently, when a data item is simply re-
moved from a node, that node will eventually receive old copies of the data item
and interpret those as updates on something it did not have before.

The trick is to record the deletion of a data item as just another update, and
keep a record of that deletion. In this way, old copies will not be interpreted as
something new, but merely treated as versions that have been updated by a delete
operation. The recording of a deletion is done by spreading death certificates.

Of course, the problem with death certificates is that they should eventually
be cleaned up, or otherwise each node will gradually build a huge local database
of historical information on deleted data items that is otherwise not used. Demers
et al. (1987) propose to use what they call dormant death certificates. Each death
certificate is timestamped when it is created. If it can be assumed that updates
propagate to all nodes within a known finite time, then death certificates can be
removed after this maximum propagation time has elapsed.

However, to provide hard guarantees that deletions are indeed spread to all
nodes, only a very few nodes maintain dormant death certificates that are never
thrown away. Assume node P has such a certificate for data item x. If by any
chance an obsolete update for x reaches P, P will react by simply spreading the
death certificate for x again.

Applications

To finalize this presentation, let us take a look at some interesting applications
of epidemic protocols. We already mentioned spreading updates, which is perhaps
the most widely-deployed application. Also, in Chap. 2 we discussed how provid-
ing positioning information about nodes can assist in constructing specific topolo-
gies. In the same light, gossiping can be used to discover nodes that have a few
outgoing wide-area links, to subsequently apply directional gossiping as we men-
tioned above. .

Another interesting application area is simply collecting, or actually aggregat-
ing information (Jelasity et al., 2005b). Consider the following information

174 COMMUNICA nON CHAP. 4

If there N nodes, then eventually each node will compute the average, which is
liN. As a consequence, every node i can estimate the size of the system as being
Ilxi' This information alone can be used to dynamically adjust various system pa-
rameters. For example, the size of the partial view (i.e., the number of neighbors
that each nodes keeps track of) should be dependent on the total number of parti-
cipating nodes. Knowing this number will allow a node to dynamically adjust the
size of its partial view. Indeed, this can be viewed as a property of self-manage-
ment.

Computing the average may prove to be difficult when nodes regularly join
and leave the system. One practical solution to this problem is to introduce
epochs. Assuming that node I is stable, it simply starts a new epoch now and then.
When node i sees a new epoch for the first time, it resets its own variable Xi to
zero and starts computing the average again.

Of course, other results can also be computed. For example, instead of having
a fixed node (x 1) start the computation of the average, we can easily pick a ran-
dom node as follows. Every node i initially sets Xi to a random number from the
same interval, say [0, I], and also stores it permanently as m.. Upon an exchange
between nodes i and j, each change their value to:

exchange. Every node i initially chooses an arbitrary number, say Xi- When node i
contacts node j, they each update their value as:

Obviously. after this exchange, both i and j will have the same value. In fact. it is
not difficult to see that eventually all nodes will have the same value, namely, the
average of all initial values. Propagation speed is again exponential.

What use does computing the average have? Consider the situation that all
nodes i have set Xi to zero, except for x I,which has set it to I:

Each node i for which m, < Xi will lose the competition for being the initiator in
starting the computation of the average. In the end, there will be a single winner.
Of course, although it is easy to conclude that a node has lost, it is much more dif-
ficult to decide that it has won, as it remains uncertain whether all results have
come in. The solution to this problem is to be optimistic: a node always assumes it
is the winner until proven otherwise. At that point, it simply resets the variable it
is using for computing the average to zero. Note that by now, several different
computations (in our example computing a maximum and computing an average)
may be executing concurrently.

SEC. 4.6 SUMMARY 175

4.6 SU~IMARY

Having powerful and flexible facilities for communication between processes
is essential for any distributed system. In traditional network applications, com-
munication is often based on the low-level message-passing primitives offered by
the transport layer. An important issue in middleware systems is to offer a higher
level of abstraction that will make it easier to express communication between
processes than the support offered by the interface to the transport layer.

One of the most widely used abstractions is the Remote Procedure Call
(RPC). The essence of an RPC is that a service is implemented by means of a pro-
cedure, of which the body is executed at a server. The client is offered only the
signature of the procedure, that is, the procedure's name along with its parame-
ters. When the client calls the procedure, the client-side implementation, called a
stub, takes care of wrapping the parameter values into a message and sending that
to the server. The latter calls the actual procedure and returns the results, again in
a message. The client's stub extracts the result values from the return message and
passes it back to the calling client application.

RPCs offer synchronous communication facilities, by which a client is
blocked until the server has sent a reply. Although variations of either mechanism
exist by which this strict synchronous model is relaxed, it turns out that general-
purpose, high-level message-oriented models are often more convenient.

In message-oriented models, the issues are whether or not communication is
persistent, and whether or not communication is synchronous. The essence of per-
sistent communication is that a message that is submitted for transmission, is
stored by the communication system as long as it takes to deliver it. In other
words, neither the sender nor the receiver needs to be up and running for message
transmission to take place. In transient communication, no storage facilities are
offered, so that the receiver must be prepared to accept the message when it is
sent.

In asynchronous communication, the sender is allowed to continue im-
mediately after the message has been submitted for transmission, possibly before
it has even been sent. In synchronous communication, the sender is blocked at
least until a message has been received. Alternatively, the sender may be blocked
until message delivery has taken place or even until the receiver has responded as
with RPCs.

Message-oriented middleware models generally offer persistent asynchronous
communication, and are used where RPCs are not appropriate. They are often
used to assist the integration of (widely-dispersed) collections of databases into
large-scale information systems. Other applications include e-mail and workflow.

A very different form of communication is that of streaming, in which the
issue is whether or not two successive messages have a temporal relationship. In
continuous data streams, a maximum end-to-end delay is specified for each mes-
sage. In addition, it is also required that messages are sent subject to a minimum

176 COMMUNICATION CHAP. 4

end-to-end delay. Typical examples of such continuous data streams are video and
audio streams. Exactly what the temporal relations are, or what is expected from
the underlying communication subsystem in terms of quality of service is often
difficult to specify and to implement. A complicating factor is the role of jitter.
Even if the average performance is acceptable, substantial variations in delivery
time may lead to unacceptable performance.

Finally, an important class of communication protocols in distributed systems
is multicasting. The basic idea is to disseminate information from one sender to
multiple receivers. We have discussed two different approaches. First, multicast-
ing can be achieved by setting up a tree from the sender to the receivers. Consid-
ering that it is now well understood how nodes can self-organize into peer-to-peer
system, solutions have also appeared to dynamically set up trees in a decentral-
ized fashion.

Another important class of dissemination solutions deploys epidemic proto-
cols. These protocols have proven to be very simple, yet extremely robust. Apart
from merely spreading messages, epidemic protocols can also be efficiently
deployed for aggregating information across a large distributed system.

PROBLEMS

1. In many layered protocols, each layer has its own header. Surely it would be more
efficient to have a single header at the front of each message with all the control in it
than all these separate headers. Why is this not done?

2. Why are transport-level communication services often inappropriate for building dis-
tributed applications?

3. A reliable multicast service allows a sender to reliably pass messages to a collection of
receivers. Does such a service belong to a middleware layer, or should it be part of a
lower-level layer?

4. Consider a procedure incr with two integer parameters. The procedure adds one to
each parameter. Now suppose that it is called with the same variable twice, for ex-
ample. as incr(i, i). If i is initially O. what. value will it have afterward if call-by-refer-
ence is used? How about if copy/restore is used?

5. C has a construction called a union, in which a field of a record (called a struct in C)
can hold anyone of several alternatives. At run time, there is no sure-fire way to tell
which one is in there. Does this feature of C have any implications for remote proce-
dure call? Explain your answer.

6. One way to handle parameter conversion in RPC systems is to have each machine
send parameters in its native representation, with the other one doing the translation, if
need be. The native system could be indicated by a code in the first byte. However,
since locating the first byte in the first word is precisely the problem, can this work?

CHAP. 4 PROBLEMS 177

7. Assume a client calls an asynchronous RPC to a server, and subsequently waits until
the server returns a result using another asynchronous RPC. Is this approach the same
as letting the client execute a normal RPC? What if we replace the asynchronous
RPCs with asynchronous RPCs?

8. Instead of letting a server register itself with a daemon as in DCE, we could also
choose to always assign it the same end point. That end point can then be used in ref-
erences to objects in the server's address space. What is the main drawback of this
scheme?

9. Would it be useful also to make a distinction between static and dynamic RPCs?

10. Describe how connectionless communication between a client and a server proceeds
when using sockets.

11. Explain the difference between the primitives MPLbsend and MPLisend in MPI.

12. Suppose that you could make use of only transient asynchronous communication
primitives, including only an asynchronous receive primitive. How would you imple-
ment primitives for transient synchronous communication?

13. Suppose that you could make use of only transient synchronous communication primi-
tives. How would you implement primitives for transient asynchronous communica-
tion?

14. Does it make sense to implement persistent asynchronous communication by means of
RPCs?

15. In the text we stated that in order to automatically start a process to fetch messages
from an input queue, a daemon is often used that monitors the input queue. Give an
alternative implementation that does not make use of a daemon.

16. Routing tables in IBM WebSphere, and in many other message-queuing systems, are
configured manually. Describe a simple way to do this automatically.

17. With persistent communication, a receiver generally has its own local buffer where
messages can be stored when the receiver is not executing. To create such a buffer, we
may need to specify its size. Give an argument why this is preferable, as well as one
against specification of the size.

18. Explain why transient synchronous communication has inherent scalability problems,
and how these could be solved.

19. Give an example where multicasting is also useful for discrete data streams.

20. Suppose that in a sensor network measured temperatures are not timestarnped by the
sensor, but are immediately sent to the operator. Would it be enough to guarantee only
a maximum end-to-end delay?

21. How could you guarantee a maximum end-to-end delay when a collection of com-
puters is organized in a (logical or physical) ring?

22. How could you guarantee a minimum end-to-end delay when a collection of com-
puters is organized in a (logical or physical) ring?

178 COMMUNICATION CHAP. 4

23. Despite that multicasting is technically feasible, there is very little support to deploy it
in the Internet. The answer to this problem is to be sought in down-to-earth business
models: no one really knows how to make money out of multicasting. What scheme
can you invent?

24. Normally, application-level multicast trees are optimized with respect stretch, which is
measured in terms of delay or hop counts. Give an example where this metric could
lead to very poor trees.

25. When searching for files in an unstructured peer-to-peer system, it may help to restrict
the search to nodes that have files similar to yours. Explain how gossiping can help to
find those nodes.

5
NAMING

Names playa very important role in all computer systems. They are used to
share resources, to uniquely identify entities, to refer to locations, and more. An
important issue with naming is that a name can be resolved to the entity it refers
to. Name resolution thus allows a process to access the named entity. To resolve
names, it is necessary to implement a naming system. The difference between na-
ming in distributed systems and nondistributed systems lies in the way naming
systems are implemented.

In a distributed system, the implementation of a naming system is itself often
distributed across multiple machines. How this distribution is done plays a key
role in the efficiency and scalability of the naming system. In this chapter, we
concentrate on three different, important ways that names are used in distributed
systems.

First, after discussing some general issues with respect to naming, we take a
closer look at the organization and implementation of human-friendly names.
Typical examples of such names include those for file systems and the World
Wide Web. Building worldwide, scalable naming systems is a primary concern
for these types of names.

Second, names are used to locate entities in a way that is independent of their
current location. As it turns out, naming systems for human-friendly names are
not particularly suited for supporting this type of tracking down entities. Most
names do not even hint at the entity's location. Alternative organizations are

179

180 NAMING CHAP. 5

needed, such as those being used for mobile telephony where names are location-
independent identifiers, and those for distributed hash tables.

Finally, humans often prefer to describe entities by means of various charac-
teristics, leading to a situation in which we need to resolve a description by means
of attributes to an entity adhering to that description. This type of name resolution
is notoriously difficult and we will pay separate attention to it.

5.1 NAMES, IDENTIFIERS, AND ADDRESSES
Let us start by taking a closer look at what a name actually is. A name in a

distributed system is a string of bits or characters that is used to refer to an entity.
An entity in a distributed system can be practically anything. Typical examples
include resources such as hosts, printers, disks, and files. Other well-known ex-
amples of entities that are often explicitly named are processes, users, mailboxes,
newsgroups, Web pages, graphical windows, messages, network connections, and
so on.

Entities can be operated on. For example, a resource such as a printer offers
an interface containing operations for printing a document, requesting the status of
a print job, and the like. Furthermore, an entity such as a network connection may
provide operations for sending and receiving data, setting quality-of-service pa-
rameters, requesting the status, and so forth.

To operate on an entity, it is necessary to access it, for which we need an ac-
cess point. An access point is yet another, but special, kind of entity in a distrib-
uted system. The name of an access point is called an address. The address of an
access point of an entity is also simply called an address of that entity.

An entity can offer more than one access point. As a comparison, a telephone
can be viewed as an access point of a person, whereas the telephone number cor-
responds to an address. Indeed, many people nowadays have several telephone
numbers, each number corresponding to a point where they can be reached. In a
distributed system, a typical example of an access point is a host running a specif-
ic server, with its address formed by the combination of, for example, an IF ad-
dress and port number (i.e., the server's transport-level address).

An entity may change its access points in the course of time. For example.
when a mobile computer moves to another location, it is often assigned a different
IP address than the one it had before. Likewise, when a person moves to another
city or country, it is often necessary to change telephone numbers as well. In a
similar fashion, changing jobs or Internet Service Providers, means changing your
e-mail address.

An address is thus just a special kind of name: it refers to an access point of
an entity. Because an access point is tightly associated with an entity, it would
seem convenient to use the address of an access point as a regular name for the as-
sociated entity. Nevertheless, this is hardly ever done as such naming is generally
very inflexible and often human unfriendly.

SEC. 5.1 NAMES. IDENTIFIERS, AND ADDRESSES 181

For example, it is not uncommon to regularly reorganize a distributed system,
so that a specific server is now running on a different host than previously. The
old machine on which the server used to be running may be reassigned to a com-
pletely different server. In other words, an entity may easily change an access
point, or an access point may be reassigned to a different entity. If an address is
used to refer to an entity, we will have an invalid reference the instant the access
point changes or is reassigned to another entity. Therefore, it is much better to let
a service be known by a separate name independent of the address of the associ-
ated server.

Likewise, if an entity offers more than one access point, it is not clear which
address to use as a reference. For instance, many organizations distribute their
Web service across several servers. If we would use the addresses of those servers
as a reference for the Web service, it is not obvious which address should be
chosen as the best one. Again, a much better solution is to have a single name for
the Web service independent from the addresses of the different Web servers.

These examples illustrate that a name for an entity that is independent from its
addresses is often much easier and more flexible to use. Such a name is called lo-
cation independent.

In addition to addresses, there are other types of names that deserve special
treatment, such as names that are used to uniquely identify an entity. A true iden-
tifier is a name that has the following properties (Wieringa and de Jonge, 1995):

1. An identifier refers to at most one entity.

2. Each entity is referred to by at most one identifier.

3. An identifier always refers to the same entity (i.e., it is never reused).

By using identifiers, it becomes much easier to unambiguously refer to an entity.
For example, assume two processes each refer to an entity by means of an identi-
fier.To check if the processes are referring to the same entity, it is sufficient to
test if the two identifiers are equal. Such a test would not be sufficient if the two
processes were using regular, nonunique, nonidentifying names. For example, the
name "John Smith" cannot be taken as a unique reference to just a single person.

Likewise, if an address can be reassigned to a different entity, we cannot use
an address as an identifier. Consider the use of telephone numbers, which are rea-
sonably stable in the sense that a telephone number for some time refers to the
same person or organization. However, using a telephone number as an identifier
will not work, as it can be reassigned in the course of time. Consequently, Bob's
new bakery may be receiving phone calls for Alice's old antique store for a long
time. In this case, it would have been better to use a true identifier for Alice in-
stead of her phone number.

Addresses and identifiers are two important types of names that are each used
for very different purposes. In many computer systems, addresses and identifiers

182 NAMING CHAP. 5

are represented in machine-readable form only, that is, in the form of bit strings.
For example, an Ethernet address is essentially a random string of 48 bits. Like-
wise, memory addresses are typically represented as 32-bit or 64-bit strings.

Another important type of name is that which is tailored to be used by
humans, also referred to as human-friendly names. In contrast to addresses and
identifiers, a human-friendly name is generally represented as a character string.
These names appear in many different forms. For example, files in UNIX systems
have character-string names that can be as long as 255 characters, and which are
defined entirely by the user. Similarly, DNS names are represented as relatively
simple case-insensitive character strings.

Having names, identifiers, and addresses brings us to the central theme of this
chapter: how do we resolve names and identifiers to addresses? Before we go into
various solutions, it is important to realize that there is often a close relationship
between name resolution in distributed systems and message routing. In principle,
a naming system maintains a name-to-address binding which in its simplest
form is just a table of (name, address) pairs. However, in distributed systems that
span large networks and for which many resources need to be named, a central-
ized table is not going to work.

Instead, what often happens is that a name is decomposed into several parts
such as Jtp.cs. vu.nl and that name resolution takes place through a recursive look-
up of those parts. For example, a client needing to know the address of the FTP
server named by jtp.cs.vu.nl would first resolve nl to find the server N'Stnl) re-
sponsible for names that end with nl, after which the rest of the name is passed to
server NS(nl). This server may then resolve the name vu to the server NStvu.ni)
responsible for names that end with vu.nl who can further handle the remaining
name jtp.cs. Eventually, this leads to routing the name resolution request as:

NS(.) ~ NS(nl) ~ NS(vu.nl) ~ address ofjtp.cs.vu.nl

where NS(.) denotes the server that can return the address of NS(nl), also known
as the root server. NS(vu.nl) will return the actual address of the FTP server. It is
interesting to note that the boundaries between name resolution and message rout-
ing are starting to blur.

In the following sections we will consider three different classes of naming
systems. First, we will take a look at how identifiers can be resolved to addresses.
In this case, we will also see an example where name resolution is actually indis-
tinguishable from message routing. After that, we consider human-friendly names
and descriptive names (i.e., entities that are described by a collection of names).

5.2 FLAT NAMING
Above, we explained that identifiers are convenient to uniquely represent enti-

ties. In many cases, identifiers are simply random bit strings. which we con-
veniently refer to as unstructured, or flat names. An important property of such a

SEC. 5.2 FLAT NAMING 183

name is that it does not contain any information whatsoever on how to locate the
access point of its associated entity. In the following, we will take a look at how
flat names can be resolved, or, equivalently, how we can locate an entity when
given only its identifier.

5.2.1 Simple Solutions

We first consider two simple solutions for locating an entity. Both solutions
are applicable only to local-area networks. Nevertheless, in that environment, they
often do the job well, making their simplicity particularly attractive.

Broadcasting and Multicasting

Consider a distributed system built on a computer network:that offers efficient
broadcasting facilities. Typically, such facilities are offered by local-area net-
works in which all machines are connected to a single cable or the logical equiv-
alent thereof. Also, local-area wireless networks fall into this category.

Locating an entity in such an environment is simple: a message containing the
identifier of the entity is broadcast to each machine and each machine is requested
to check whether it has that entity. Only the machines that can offer an access
point for the entity send a reply message containing the address of that access
point.

This principle is used in the Internet Address Resolution Protocol (ARP) to
find the data-link address of a machine when given only an IP address (Plummer,
1982). In essence, a machine broadcasts a packet on the local network asking
who is the owner of a given IP address. When the message arrives at a machine,
the receiver checks whether it should listen to the requested IP address. If so, it
sends a reply packet containing, for example, its Ethernet address.

Broadcasting becomes inefficient when the network grows. Not only is net-
work bandwidth wasted by request messages, but, more seriously, too many hosts
maybe interrupted by requests they cannot answer. One possible solution is to
switch to multicasting, by which only a restricted group of hosts receives the re-
quest. For example, Ethernet networks support data-link level multicasting
directly in hardware.

Multicasting can also be used to locate entities in point-to-point networks. For
example, the Internet supports network-level multicasting by allowing hosts to
join a specific multicast group. Such groups are identified by a multicast address.
When a host sends a message to a multicast address, the network layer provides a
best-effort service to deliver that message to all group members. Efficient imple-
mentations for multicasting in the Internet are discussed in Deering and Cheriton
(1990) and Deering et al. (1996).

A multicast address can be used as a general location service for multiple
entities. For example, consider an organization where each employee has his or

184 NAMING CHAP. 5

her own mobile computer. When such a computer connects to the locally avail-
able network. it is dynamically assigned an IP address. In addition, it joins a spe-
cific multicast group. When a process wants to locate computer A, it sends a
"where is A?" request to the multicast group. If A is connected, it responds with
its current IP address.

Another way to use a multicast address is to associate it with a replicated enti-
ty, and to use multicasting to locate the nearest replica. When sending a request to
the multicast address, each replica responds with its current (normal) IP address.
A crude way to select the nearest replica is to choose the one whose reply comes
in first. We will discuss other ones in later chapters. As it turns out. selecting a
nearest replica is generally not that easy.

Forwarding Pointers

Another popular approach to locating mobile entities is to make use of for-
warding pointers (Fowler, 1985). The principle is simple: when an entity moves
from A to B, it leaves behind in A a reference to its new location at B. The main
advantage of this approach is its simplicity: as soon as an entity has been located,
for example by using a traditional naming service, a client can look up the current
address by following the chain of forwarding pointers.

There are also a number of important drawbacks. First, if no special measures
are taken, a chain for a highly mobile entity can become so long that locating that
entity is prohibitively expensive. Second, all intermediate locations in a chain will
have to maintain their part of the chain of forwarding pointers as long as needed.
A third (and related) drawback is the vulnerability to broken links. As soon as any
forwarding pointer is lost (for whatever reason) the entity can no longer be reach-
ed. An important issue is, therefore, to keep chains relatively short, and to ensure
that forwarding pointers are robust.

To better understand how forwarding pointers work, consider their use with
respect to remote objects: objects that can be accessed by means of a remote pro-
cedure call. Following the approach in SSP chains (Shapiro et aI., 1992), each
forwarding pointer is implemented as a (client stub, server stub) pair as shown in
Fig. 5-1. (We note that in Shapiro's original terminology, a server stub was called
a scion, leading to (stub.scion} pairs, which explains its name.) A server stub con-
tains either a local reference to the actual object or a local reference to a remote
client stub for that object.

Whenever an object moves from address space A to B, it leaves behind a cli-
ent stub in its place in A and installs a server stub that refers to it in B. An interest-
ing aspect of this approach is that migration is completely transparent to a client.
The only thing the client sees of an object is a client stub. How, and to which lo-
cation that client stub forwards its invocations, are hidden from the client. Also
note that this use of forwarding pointers is not like looking up an address. Instead.
a client's request is forwarded along the chain to the actual object.

SEC. 5.2 FLAT NAMING 185

Figure 5-1. The principle of forwarding pointers using (client stub, server stub)
pairs.

To short-cut a chain of (client stub, server stub) pairs, an object invocation
carries the identification of the client stub from where that invocation was ini-
tiated. A client-stub identification consists of the client's transport-level address,
combined with a locally generated number to identify that stub. When the invoca-
tion reaches the object at its current location, a response is sent back to the client
stub where the invocation was initiated (often without going back up the chain).
The current location is piggybacked with this response, and the client stub adjusts
its companion server stub to the one in the object's current location. This principle
is shown in Fig. 5-2.

Figure 5-2. Redirecting a forwarding pointer by storing a shortcut in a client stub.

There is a trade-off between sending the response directly to the initiating cli-
ent stub, or along the reverse path of forwarding pointers. In the former case,
communication is faster because fewer processes may need to be passed. On the

186 NAMING CHAP. 5

other hand, only the initiating client stub can be adjusted, whereas sending the res-
ponse along the reverse path allows adjustment of all intermediate stubs.

When a server stub is no longer referred to by any client, it can be removed.
This by itself is strongly related to distributed garbage collection, a generally far
from trivial problem that we will not further discuss here. The interested reader is
referred to Abdullahi and Ringwood (1998), Plainfosse and Shapiro (1995), and
Veiga and Ferreira (2005).

Now suppose that process PJ in Fig. 5-1 passes its reference to object 0 to
process P2• Reference passing is done by installing a copy p' of client stub p in
the address space of process P2. Client stub p' refers to the same server stub as p,
so that the forwarding invocation mechanism works the same as before.

Problems arise when a process in a chain of (client stub, server stub) pairs
crashes or becomes otherwise unreachable. Several solutions are possible. One
possibility, as followed in Emerald (Jul et aI., 1988) and in the LII system (Black
and Artsy, 1990), is to let the machine where an object was created (called the ob-
ject's home location), always keep a reference to its current location. That refer-
ence is stored and maintained in a fault-tolerant way. When a chain is broken, the
object's home location is asked where the object is now. To allow an object's
home location to change, a traditional naming service can be used to record the
current horne location. Such home-based approaches are discussed next.

5.2.2 Home-Based Approaches

The use of broadcasting and forwarding pointers imposes scalability prob-
lems. Broadcasting or multicasting is difficult to implement efficiently in large-
scale networks whereas long chains of forwarding pointers introduce performance
problems and are susceptible to broken links.

A popular approach to supporting mobile entities in large-scale networks is to
introduce a home location, which keeps track of the current location of an entity.
Special techniques may be applied to safeguard against network or process fail-
ures. In practice, the home location is often chosen to be the place where an entity
was created.

The home-based approach is used as a fall-back mechanism for location ser-
vices based on forwarding pointers, as discussed above. Another example where
the home-based approach is followed is in Mobile IP (Johnson et aI., 2004), which
we briefly explained in Chap. 3. Each mobile host uses a fixed IP address. All
communication to that IP address is initially directed to the mobile host's home
agent. This home agent is located on the local-area network corresponding to the
network address contained in the mobile host's IP address. In the case of IPy6, it
is realized as a network-layer component. Whenever the mobile host moves to an-
other network, it requests a temporary address that it can use for communication.
This care-of address is registered at the home agent.

SEC. 5.2 FLAT NAMING 187

When the home agent receives a packet for the mobile host, it looks up the
host's current location. If the host is on the current local network, the packet is
simply forwarded. Otherwise, it is tunneled to the host's current location, that is,
wrapped as data in an IP packet and sent to the care-of address. At the same time,
the sender of the packet is informed of the host's current location. This principle
is shown in Fig. 5-3. Note that the IP address is effectively used as an identifier
for the mobile host.

Figure 5-3. The principle of Mobile IP.

Fig. 5-3 also illustrates another drawback of home-based approaches in large-
scale networks. To communicate with a mobile entity, a client first has to contact
the home, which may be at a completely different location than the entity itself.
The result is an increase in communication latency.

A drawback of the home-based approach is the use of a fixed home location.
For one thing, it must be ensured that the home location always exists. Otherwise,
contacting the entity will become impossible. Problems are aggravated when a
long-lived entity decides to move permanently to a completely different part of
the network than where its home is located. In that case, it would have been better
if the home could have moved along with the host.

A solution to this problem is to register the home at a traditional naming ser-
vice and to let a client first look up the location of the home. Because the home
location can be assumed to be relatively stable, that location can be effectively
cached after it has been looked up.

188 NAMING CHAP. 5

5.2.3 Distributed Hash Tables

Let us now take a closer look at recent developments on how to resolve an i-
dentifier to the address of the associated entity. We have already mentioned dis-
tributed hash tables a number of times, but have deferred discussion on how they
actually work. In this section we correct this situation by first considering the
Chord system as an easy-to-explain DHT-based system. In its simplest form,
DHT-based systems do not consider network proximity at all, This negligence
may easily lead to performance problems. We also discuss solutions for network-
aware systems.

General Mechanism

Various DHT-based systems exist, of which a brief overview is given in
Balakrishnan et al. (2003). The Chord system (Stoica et aI., 2003) is repres-
entative for many of them, although there are subtle important differences that
influence their complexity in maintenance and lookup protocols. As we explained
briefly in Chap. 2, Chord uses an m-bit identifier space to assign randomly-chosen
identifiers to nodes as well as keys to specific entities. The latter can be virtually
anything: files, processes, etc. The number m of bits is usually 128 or 160,
depending on which hash function is used. An entity with key k falls under the
jurisdiction of the node with the smallest identifier id ~ k. This node is referred to
as the successor of k and denoted as succ(k).

The main issue in DHT-based systems is to efficiently resolve a key k to the
address of succ(k). An obvious nonscalable approach is let each node p keep
track of the successor succ(p+ 1) as well as its predecessor pred(p). In that case,
whenever a node p receives a request to resolve key k, it will simply forward the
request to one of its two neighbors-whichever one is appropriate-unless
pred (p) < k -:;'pin which case node p should return its own address to the process
that initiated the resolution of key k.

Instead of this linear approach toward key lookup, each Chord node maintains
a finger table of at most m entries. If FTp denotes the finger table of node p, then

Put in other words, the i-th entry points to the first node succeeding p by at least
i-I. Note that these references are actually short-cuts to existing nodes in the i-
dentifier space, where the, short-cutted distance from node p increases exponen-
tially as the index in the finger table increases. To look up a key k, node p will
then immediately forward the request to node q with index j in p's finger table
where:

(For clarity, we ignore modulo arithmetic.)

SEC. 5.2 FLAT NAMING 189

To illustrate this lookup, consider resolving k = 26 from node 1 as shown
Fig. 5-4. First, node 1 will look up k = 26 in its fmger table to discover that this
value is larger than FT I[5], meaning that the request will be forwarded to node
18= FTd5]. Node 18, in tum, will select node 20, as FTl8 [2] < k ~ FTl8 [3].
Finally, the request is forwarded from node 20 to node 21 and from there to node
28, which is responsible for k = 26. At that point, the address of node 28 is re-
turned to node 1 and the key has been resolved. For similar reasons, when node 28
is requested to resolve the key k = 12, a request will be routed as shown by the
dashed line in Fig. 5-4. It can be shown that a lookup will generally require
O(log (N)) steps, with N being the number of nodes in the system.

1 4 Finger table2 4
3 9 ·..i"
4 9 x~
5 18 \9

Actual node i ":>~&
~2: 1 9....,....

~3': 2 91 1 3 9
2 1 4 14
3 1 _ _--- 5 20
4 4 ." - - - - - I •••••~7" ---------- :5:
5 14 ..i"': Resolve k = 12 ,/\ ...

:26: from node 28 I (6 .:
...' ~ ..\.1 .'".:25': \ (7:'.. ' \ "1

,J. \ :"8":(24: ,: 1 11
..r '...' 2 11
)'" 3 14(E.~: - 4 18

\ 5 28:~) j~
1 28 v., ' .. '

2 28 _ - 1 14
3 28 ". - 2 14
4 1 £12: 3 18
5 9/.... 4 20

:13: 5 281
2
3 1 18
4 2 18
5 1 20 3 18

2 ~ 4 ~
3 ~ 5 1
4 28
5 4

Figure 5-4. Resolving key 26 from node 1 and key 12 from node 28 in a Chord system.

In large distributed systems the collection of participating nodes can be
expected to change all the time. Not only will nodes join and leave voluntarily, we
also need to consider the case of nodes failing (and thus effectively leaving the
system), to later recover again (at which point they join again).

190 NAMING CHAP. 5

Joining a DHT-based system such as Chord is relatively simple. Suppose node
p wants to join. It simply contacts an arbitrary node in the existing system and re-
quests a lookup for succip-r 1). Once this node has been identified, p can insert it-
self into the ring. Likewise, leaving can be just as simple. Note that nodes also
keep track of their predecessor.

Obviously, the complexity comes from keeping the finger tables up-to-date.
Most important is that for every node q, FTq [1] is correct as this entry refers to,the
next node in the ring, that is, the successor of q +1. In order to achieve this goal,
each node q regularly runs a simple procedure that contacts succ(q+ 1) and re-
quests to return pred(succ(q+ 1)). If q :;::pred (succ (q +I)) then q knows its infor-
mation is consistent with that of its successor. Otherwise, if q's successor has
updated its predecessor, then apparently a new node p had entered the system,
with q <P::; succ(q+l), so that q will adjust FTq [1] to p. At that point, it will
also check whether p has recorded q as its predecessor. If not, another adjustment
of FTq [1] is needed.

In a similar way, to update a finger table, node q simply needs to find the suc-
cessor for k :;::q + i-I for each entry i. Again, this can be done by issuing a re-
quest to resolve succ(k). In Chord, such requests are issued regularly by means of
a background process.

Likewise, each node q will regularly check whether its predecessor is alive. If
the predecessor has failed, the only thing that q can do is record the fact by setting
pred(q) to "unknown". On the other hand, when node q is updating its link to the
next known node in the ring, and finds that the predecessor of succi q+ 1) has been
set to "unknown," it will simply notify succ(q+ 1) that it suspects it to be the
predecessor. By and large, these simple procedures ensure that a Chord system is
generally consistent, only perhaps with exception of a few nodes. The details can
be found in Stoica et al. (2003).

Exploiting Network Proximity

One of the potential problems with systems such as Chord is that requests
may be routed erratically across the Internet. For example, assume that node 1 in
Fig. 5-4 is placed in Amsterdam, The Netherlands; node 18 in San Diego, Califor-
nia; node 20 in Amsterdam again; and node 21 in San Diego. The result of resolv-
ing key 26 will then incur three wide-area message transfers which arguably could
have been reduced to at most one. To minimize these pathological cases, design-
ing a DHT-based system requires taking the underlying network into account.

Castro et al. (2002b) distinguish three different ways for making a DHT-based
system aware of the underlying network. In the case of topology-based assign-
ment of node identifiers the idea is to assign identifiers such that two nearby
nodes will have identifiers that are also close to each other. It is not difficult to
imagine that this approach may impose severe problems in the case of relatively
simple systems such as Chord. In the case where node identifiers are sampled

SEC. 5.2 FLAT NAMING 191
from a one-dimensional space, mapping a logical ring to the Internet is far from
trivial. Moreover, such a mapping can easily expose correlated failures: nodes on
the same enterprise network will have identifiers from a relatively small interval.
When that network becomes unreachable, we suddenly have a gap in the other-
wise uniform distribution of identifiers.

With proximity routing, nodes maintain a list of alternatives to forward a re-
quest to. For example, instead of having only a single successor, each node in
Chord could equally well keep track of r successors. In fact, this redundancy can
be applied for every e~try in 3: finger table. For node p, FTp [i] points to the first
node in the range fp+21

-
1,p+21_1]. There is no reason why p cannot keep track of

r nodes in that range: if needed, each one of them can be used to route a lookup
request for a key k > p+2i-1. In that case, when choosing to forward a lookup re-
quest, a node can pick one of the r successors that is closest to itself, but also
satisfies the constraint that the identifier of the chosen node should be smaller
than that of the requested key. An additional advantage of having multiple succes-
sors for every table entry is that node failures need not immediately lead to
failures of lookups, as multiple routes can be explored.

Finally, in proximity neighbor selection the idea is to optimize routing tables
such that the nearest node is selected as neighbor. This selection works only when
there are more nodes to choose from. In Chord, this is normally not the case.
However, in other protocols such as Pastry (Rowstron and Druschel, 2001), when
a node joins it receives information about the current overlay from multiple other
nodes. This information is used by the new node to construct a routing table.
Obviously, when there are alternative nodes to choose from, proximity neighbor
selection will allow the joining node to choose the best one.

Note that it may not be that easy to draw a line between proximity routing and
proximity neighbor selection. In fact, when Chord is modified to include r succes-
sors for each finger table entry, proximity neighbor selection resorts to identifying
the closest r neighbors, which comes very close to proximity routing as we just
explained (Dabek at al., 2004b).

Finally, we also note that a distinction can be made between iterative and
recursive lookups. In the former case, a node that is requested to look up a key
will return the network address of the next node found to the requesting process.
The process will then request that next node to take another step in resolving the
key. An alternative, and essentially the way that we have explained it so far, is to
let a node forward a lookup request to the next node. Both approaches have their
advantages and disadvantages, which we explore later in this chapter.

5.2.4 Hierarchical Approaches

In this section, we first discuss a general approach to a hierarchical location
scheme, after which a number of optimizations are presented. The approach we
present is based on the Globe location service, described in detail in Ballintijn

192 NAMING CHAP. 5
(2003). An overview can be found in van Steen et al. (l998b). This is a general-
purpose location service that is representative of many hierarchical location ser-
vices proposed for what are called Personal Communication Systems, of which a
general overview can be found in Pitoura and Samaras (2001).

In a hierarchical scheme, a network is divided into a collection of domains.
There is a single top-level domain that spans the entire network. Each domain can
be subdivided into multiple, smaUer subdomains. A lowest-level domain, called a
leaf domain, typically corresponds to a local-area network in a computer network
or a cell in a mobile telephone network.

Each domain D has an associated directory node dirt D) that keeps track of the
entities in that domain. This leads to a tree of directory nodes. The directory node
of the top-level domain, caUed the root (directory) node, knows about all enti-
ties. This general organization of a network into domains and directory nodes is
illustrated in Fig. 5-5.

Figure 5-5. Hierarchical organization of a location service into domains, each
having an associated directory node.

To keep track of the whereabouts of an entity, each entity currently located in
a domain D is represented by a location record in the directory node dir(D). A
location record for entity E in the directory node N for a leaf domain D contains
the entity's current address in that domain. In contrast, the directory node N' for
the next higher-level domain D' that contains D, will have a location record for E
containing only a pointer to N. Likewise. the parent node of N' will store a loca-
tion record for E containing only a pointer to N'. Consequently, the root node will
have a location record for each entity, where each location record stores a pointer
to the directory node of the next lower-level subdomain where that record's asso-
ciated entity is currently located.

An entity may have multiple addresses, for example if it is replicated. If an
entity has an address in leaf domain D 1 and D2 respectively, then the directory
node of the smallest domain containing both D 1 and D 2, will have two pointers,

The root directory Top-level
node dir(T) domain T-----------"'~

",,- '", Directory node
,//' <. dir(5) of domain 5

.c> , A subdomain 5
/;/ \ \....- of top-Ieve~ do~ain T

// - -', ';'\ (5 is contained In T)/ /1" ,\ \' " ,\ ,
' " I \ ,

" ,': : " I, ,': :" :" /' ,"",') " ' ~,' "--_/,','I , ' , ',,~ '__ ~ '/-'__ , ~"": =::--::::::::: -::::::::::::.: ~--- - --·7-:::::---.::.-::.-:.,~
A leaf domain, contained in 5

SEC. 5.2 FLAT NAMING 193

Figure 5-6. An example of storing information of an entity having two ad-
dresses in different leaf domains.

Let us now consider how a lookup operation proceeds in such a hierarchical
location service. As is shown in Fig. 5-7, a client wishing to locate an entity E,
issues a lookup request to the directory node of the leaf domain D in which the
client resides. If the directory node does not store a location record for the entity,
then the entity is currently not located in D. Consequently, the node forwards the
request to its parent. Note that the parent node represents a larger domain than its
child. If the parent also has no location record for E, the lookup request is for-
warded to a next level higher, and so on.

Figure 5-7. Looking up a location in a hierarchically organized location service.

As soon as the request reaches a directory node M that stores a location record
for entity E, we know that E is somewhere in the domain dom(M) represented by

one for each subdomain containing an address. This leads to the general organiza-
tion of the tree as shown in Fig. 5-6.

194 NAMING CHAP. 5

node M. In Fig. 5-7, M is shown to store a location record containing a pointer to
one of its subdomains. The lookup request is then forwarded to the directory node
of that subdomain, which in tum forwards it further down the tree, until the re-
quest finally reaches a leaf node. The location record stored in the leaf node will
contain the address of E in that leaf domain. This address can then be returned to
the client that initially requested the lookup to take place.

An important observation with respect to hierarchical location services is that
the lookup operation exploits locality. In principle, the entity is searched in a gra-
dually increasing ring centered around the requesting client. The search area is
expanded each time the lookup request is forwarded to a next higher-level direc-
tory node. In the worst case, the search continues until the request reaches the root
node. Because the root node has a location record for each entity, the request can
then simply be forwarded along a downward path of pointers to one of the leaf
nodes.

Update operations exploit locality in a similar fashion, as shown in Fig. 5-8.
Consider an entity E that has created a replica in leaf domain D for which it needs
to insert its address. The insertion is initiated at the leaf node dir(D) of D which
immediately forwards the insert request to its parent. The parent will forward the
insert request as well, until it reaches a directory node M that already stores a lo-
cation record for E.

Node M will then store a pointer in the location record for E, referring to the
child node from where the insert request was forwarded. At that point, the child
node creates a location record for E, containing a pointer to the next lower-level
node from where the request came. This process continues until we reach the leaf
node from which the insert was initiated. The leaf node, finally, creates a record
with the entity's address in the associated leaf domain.

Figure 5-8. (a) An insert request is forwarded to the first node that knows about
entity E. (b) A chain of forwarding pointers to the leaf node is created.

SEC. 5.2 FLAT NAMING 195

Inserting an address as just described leads to installing the chain of pointers
in a top-down fashion starting at the lowest-level directory node that has a loca-
tion record for entity E. An alternative is to create a location record before passing
the insert request to the parent node. In other words, the chain of pointers is con-
structed from the bottom up. The advantage of the latter is that an address
becomes available for lookups as soon as possible. Consequently, if a parent node
is temporarily unreachable, the address can still be looked up within the domain
represented by the current node.

A delete operation is analogous to an insert operation. When an address for
entity E in leaf domain D needs to be removed, directory node dir(D) is requested
to remove that address from its location record for E. If that location record
becomes empty, that is, it contains no other addresses for E in D, the record can
be removed. In that case, the parent node of direD) wants to remove its pointer to
dir(D). If the location record for E at the parent now also becomes empty, that
record should be removed as well and the next higher-level directory node should
be informed. Again, this process continues until a pointer is removed from a loca-
tion record that remains nonempty afterward or until the root is reached.

5.3 STRUCTURED NAMING

Flat names are good for machines, but are generally not very convenient for
humans to use. As an alternative, naming systems generally support structured
names that are composed from simple, human-readable names. Not only file na-
ming, but also host naming on the Internet follow this approach. In this section,
we concentrate on structured names and the way that these names are resolved to
addresses.

5.3.1 Name Spaces

Names are commonly organized into what is called a name space. Name
spaces for structured names can be represented as a labeled, directed graph with
two types of nodes. A leaf node represents a named entity and has the property
that it has no outgoing edges. A leaf node generally stores information on the enti-
ty it is representing-for example, its address-so that a client can access it.
Alternatively, it can store the state of that entity, such as in the case of file sys-
tems 'in which a leaf node actually contains the complete file it is representing.
We return to the contents of nodes below.

In contrast to a leaf node, a directory node has a number of outgoing edges,
each labeled with a name, as shown in Fig. 5-9. Each node in a naming graph is
considered as yet another entity in a distributed system, and, in particular, has an

196 NAMING CHAP. 5
associated identifier. A directory node stores a table in which an outgoing edge is
represented as a pair (edge label, node identifier). Such a table is called a direc-
tory table.

Figure 5-9. A general naming graph with a single root node.

The naming graph shown in Fig. 5-9 has one node, namely no, which has only
outgoing and no incoming edges. Such a node is called the root (node) of the na-
ming graph. Although it is possible for a naming graph to have several root nodes,
for simplicity, many naming systems have only one. Each path in a naming graph
can be referred to by the sequence of labels corresponding to the edges in that
path, such as

Nt-clabel-I, label-2, ..., label-n>

where N refers to the first node in the path. Such a sequence is called a path
name. If the first node in a path name is the root of the naming graph, it is called
an"absolute path name. Otherwise, it is called a relative path name.

It is important to realize that names are always organized in a name space. As
a consequence, a name is always defined relative only to a directory node. In this
sense, the term "absolute name" is somewhat misleading. Likewise, the differ-
ence between global and local names can often be confusing. A global name is a
name that denotes the same entity, no matter where that name is used in a system.
In other words, a global name is always interpreted with respect to the same direc-
tory node. In contrast, a local name is a name whose interpretation depends on
where that name is being used. Put differently, a local name is essentially a rela-
tive name whose directory in which it is contained is (implicitly) known. We re-
turn to these issues later when we discuss name resolution.

This description of a naming graph comes close to what is implemented in
many file systems. However, instead of writing the sequence of edge labels to rep-
represent a path name, path names in file systems are generally represented as a
single string in which the labels are separated by a special separator character,
such as a slash ("1"). This character is also used to indicate whether a path name
is absolute. For example, in Fig. 5-9, instead of using no:<home, steen, mbox>,

SEC. 5.3 STRUCTURED NAMING 197

that is, the actual path name, it is common practice to use its string representation
Ihome/steen/mbox. Note also that when there are several paths that lead to the
same node, that node can be represented by different path names. For example,
node n 5 in Fig. 5-9 can be referred to by Ihome/steenlkeys as well as /keys. The
string representation of path names can be equally well applied to naming graphs
other than those used for only file systems. In Plan 9 (Pike et al., 1995), all re-
sources, such as processes, hosts, I/O devices, and network interfaces, are named
in the same fashion as traditional files. This approach is analogous to implement-
ing a single naming graph for all resources in a distributed system.

There are many different ways to organize a name space. As we mentioned,
most name spaces have only a single root node. In many cases, a name space is
also strictly hierarchical in the sense that the naming graph is organized as a tree.
This means that each node except the root has exactly one incoming edge; the root
has no incoming edges. As a consequence, each node also has exactly one associ-
ated (absolute) path name.

The naming graph shown in Fig. 5-9 is an example of directed acyclic graph.
In such an organization, a node can have more than one incoming edge, but the
graph is not permitted to have a cycle. There are also name spaces that do not
have this restriction.

To make matters more concrete, consider the way that files in a traditional
UNIX file system are named. In a naming graph for UNIX, a directory node repres-
ents a file directory, whereas a leaf node represents a file. There is a single root
directory, represented in the naming graph by the root node. The implementation
of the naming graph is an integral part of the complete implementation of the file
system. That implementation consists of a contiguous series of blocks from a logi-
cal disk, generally divided into a boot block, a superblock, a series of index nodes
(called inodes), and file data blocks. See also Crowley (1997), Silberschatz et al.
(2005), and Tanenbaum and Woodhull (2006). This organization is shown in
Fig. 5-10.

Figure 5·10. The general organization of the UNIX file system implementation
on a logical disk of contiguous disk blocks.

The boot block is a special block of data and instructions that are automati-
cally loaded into main memory when the system is booted. The boot block is used
to load the operating system into main memory.

198 NAMING CHAP. 5

The superblock contains information on the entire file system. such as its size,
which blocks on disk are not yet allocated, which inodes are not yet used, and so
on. Inodes are referred to by an index number, starting at number zero, which is
reserved for the inode representing the root directory.

Each inode contains information on where the data of its associated file can
be found on disk. In addition, an inode contains information on its owner, time of
creation and last modification, protection, and the like. Consequently, when given
the index number of an inode, it is possible to access its associated file. Each di-
rectory is implemented as a file as well. This is also the case for the root direc-
tory, which contains a mapping between file names and index numbers of inodes.
It is thus seen that the index number of an inode corresponds to a node identifier
in the naming graph.

5.3.2 Name Resolution

Name spaces offer a convenient mechanism for storing and retrieving infor-
mation about entities by means of names. More generally, given a path name, it
should be possible to look up any information stored in the node referred to by
that name. The process of looking up a name is called name resolution.

To explain how name resolution works, let us consider a path name such as
Ni<label v.label g,label;». Resolution of this name starts at node N of the na-
ming graph, where the name label} is looked up in the directory table, and which
returns the identifier of the node to which label} refers. Resolution then continues
at the identified node by looking up the name label-. in its directory table, and so
on. Assuming that the named path actually exists, resolution stops at the last node
referred to by label.; by returning the content of that node.

A name lookup returns the identifier of a node from where the name resolu-
tion process continues. In particular, it is necessary to access the directory table of
the identified node. Consider again a naming graph for a UNIX file system. As
mentioned, a node identifier is implemented as the index number of an inode.
Accessing a directory table means that first the inode has to be read to find out
where the actual data are stored on disk, and then subsequently to read the data
blocks containing the directory table.

Closure Mechanism

Name resolution can take place only if we know how and where to start. In
our example, the starting node was given, and we assumed we had access to its di-
rectory table. Knowing how and where to start name resolution is generally
referred to as a closure mechanism. Essentially, a closure mechanism deals with
selecting the initial node in a name space from which name resolution is to start
(Radia, 1989). What makes closure mechanisms sometimes hard to understand is

SEC. 5.3 STRUCTURED NAMING 199

that they are necessarily partly implicit and may be very different when compar-
ing them to each other.

For example. name resolution in the naming graph for a UNIX file system
makes use of the fact that the inode of the root directory is the first inode in the
logical disk representing the file system. Its actual byte offset is calculated from
the values in other fields of the superblock, together with hard-coded information
in the operating system itself on the internal organization of the superblock.

To make this point clear, consider the string representation of a file name such
as Ihomelsteenlmbox. To resolve this name, it is necessary to already have access
to the directory table of the root node of the appropriate naming graph. Being a
root node, the node itself cannot have been looked up unless it is implemented as
a different node in a another naming graph, say G. But in that case, it would have
been necessary to already have access to the root node of G. Consequently, re-
solving a file name requires that some mechanism has already been implemented
by which the resolution process can start.

A completely different example is the use of the string "0031204430784".
Many people will not know what to do with these numbers, unless they are told
that the sequence is a telephone number. That information is enough to start the
resolution process, in particular, by dialing the number. The telephone system
subsequently does the rest.

As a last example, consider the use of global and local names in distributed
systems. A typical example of a local name is an environment variable. For ex-
ample, in UNIX systems, the variable named HOME is used to refer to the home
directory of a user. Each user has its own copy of this variable, which is initialized
to the global, systemwide name corresponding to the user's home directory. The
closure mechanism associated with environment variables ensures that the name
of the variable is properly resolved by looking it up in a user-specific table.

Linking and Mounting

Strongly related to name resolution is the use of aliases. An alias is another
name for the same entity. An environment variable is an example of an alias. In
terms of naming graphs, there are basically two different ways to implement an
alias. The first approach is to simply allow multiple absolute paths names to refer
to the same node in a naming graph. This approach is illustrated in Fig. 5-9, in
which node n s can be referred to by two different path names. In UNIXterminol-
ogy, both path names /keys and /homelsteen/keys in Fig. 5-9 are called hard links
to node ns.

The second approach is to represent an entity by a leaf node, say N, but in-
stead of storing the address or state of that entity, the node stores an absolute path
name. When first resolving an absolute path name that leads to N, name resolution
will return the path name stored in N, at which point it can continue with resolving
that new path name. This principle corresponds to the use of symbolic links in

200 NAMING CHAP. 5

UNIX file systems, and is illustrated in Fig. 5-11. In this example, the path name
/home/steen/keys, which refers to a node containing the absolute path name /keys,
is a symbolic link to node n 5 .

Figure 5-11. The concept of a symbolic link explained in a naming graph.

Name resolution as described so far takes place completely within a single
name space. However, name resolution can also be used to merge different name
spaces in a transparent way. Let us first consider a mounted file system. In terms
of our naming model, a mounted file system corresponds to letting a directory
node store the identifier of a directory node from a different name space, which
we refer to as a foreign name space. The directory node storing the node identifier
is called a mount point. Accordingly, the directory node in the foreign name
space is called a mounting point. Normally, the mounting point is the root of a
name space. During name resolution, the mounting point is ,looked up and resolu-
tion proceeds by accessing its directory table.

The principle of mounting can be generalized to other name spaces as well. In
particular, what is needed is a directory node that acts as a mount point and stores
all the necessary information for identifying and accessing the mounting point in
the foreign name space. This approach is followed in many distributed file sys-
tems.

Consider a collection of name spaces that is distributed across different ma-
chines. In particular, each name space is implemented by a different server, each
possibly running on a separate machine. Consequently. if we want to mount a
foreign name space NS 2 into a name space NS 1, it may be necessary to communi-
cate over a network with the server of NS 2, as that server may be running on a
different machine than the server for NS i- To mount a foreign name space in a
distributed system requires at least the following information:

1. The name of an access protocol.

2. The name of the server.

3. The name of the mounting point in the foreign name space.

SEC. 5.3 STRUCTURED NAMING 201

Note that each of these names needs to be resolved. The name of an access proto-
col needs to be resolved to the implementation of a protocol by which communi-
cation with the server of the foreign name space can take place. The name of the
server needs to be resolved to an address where that server can be reached. As the
last part in name resolution, the name of the mounting point needs to be resolved
to a node identifier in the foreign name space.

In nondistributed systems, none of the three points may actually be needed.
For example, in UNIX, there is no access protocol and no server. Also, the name
of the mounting point is not necessary, as it is simply the root directory of the
foreign name space.

The name of the mounting point is to be resolved by the server of the foreign
name space. However, we also need name spaces and implementations for the ac-
cess protocol and the server name. One possibility is to represent the three names
listed above as a URL.

To make matters concrete, consider a situation in which a user with a laptop
computer wants to access files that are stored on a remote file server. The client
machine and the file server are both configured with Sun's Network File System
(NFS), which we will discuss in detail in Chap. 11. NFS is a distributed file sys-
tem that comes with a protocol that describes precisely how a client can access a
file stored on a (remote) NFS file server. In particular, to allow NFS to work a-
cross the Internet, a client can specify exactly which file it wants to access by
means of an NFS URL, for example, nfs:l/flits.cs. vu.nl//homelsteen. This URL
names a file (which happens to be a directory) called /home/steen on an NFS file
server flits.cs. vu.nl, which can be accessed by a client by means of the NFS proto-
col (Shepler et aI., 2003).

The name nfs is a well-known name in the sense that worldwide agreement
exists on how to interpret that name. Given that we are dealing with a URL, the
name nfs will be resolved to an implementation of the NFS protocol. The server
name is resolved to its address using DNS, which is discussed in a later section.
As we said, /home/steen is resolved by the server of the foreign name space.

The organization of a file system on the client machine is partly shown in
Fig. 5-12. The root directory has a number of user-defined entries, including a
subdirectory called Iremote. This subdirectory is intended to include mount points
for foreign name spaces such as the user's home directory at the Vrije Universi-
teit. To this end, a directory node named Iremote/vu is used to store the URL
nfs:l/flits.cs. vu.nll/homelsteen.

Now consider the name /remotelvulmbox. This name is resolved by starting
in the root directory on the client's machine and continues until the node Ire-
mote/vu is reached. The process of name resolution then continues by returning
the URL nfs:l/flits.cs. vu.nl//homelsteen, in turn leading the client machine to con-
tact the file server flits.cs. vu.nl by means of the NFS protocol, and to subsequently
access directory /home/steen. Name resolution can then be continued by reading
the file named mbox in that directory, after which the resolution process stops.

202 NAMING CHAP. 5

Figure 5-12. Mounting remote name spaces through a specific access protocol.

Distributed systems that allow mounting a remote file system as just described
allow a client machine to, for example, execute the following commands:

cd /remote/vu
Is -I

which subsequently lists the files in the directory /home/steen on the remote file
server. The beauty of all this is that the user is spared the details of the actual ac-
cess to the remote server. Ideally, only some loss in performance is noticed com-
pared to accessing locally-available files. In effect, to the client it appears that the
name space rooted on the local machine, and the one rooted at /home/steen on the
remote machine, form a single name space.

5.3.3 The Implementation of a Name Space

A name space forms the heart of a naming service, that is, a service that
allows users and processes to add, remove, and look up names. A naming service
is implemented by name servers. If a distributed system is restricted to a local-
area network, it is often feasible to implement a naming service by means of only
a single name server. However, in large-scale distributed systems with many enti-
ties, possibly spread across a large geographical area, it is necessary to distribute
the implementation of a name space over multiple name servers.

SEC. 5.3 STRUCTURED NAMING 203
Name Space Distribution

Name spaces for a large-scale, possibly worldwide distributed system, are
usually organized hierarchically. As before, assume such a name space has only a
single root node. To effectively implement such a name space, it is convenient to
partition it into logical layers. Cheriton and Mann (1989) distinguish the following
three layers.

The global layer is formed by highest-level nodes, that is, the root node and
other directory nodes logically close to the root, namely its children. Nodes in the
global layer are often characterized by their stability, in the sense that directory
tables are rarely changed. Such nodes may represent organizations.. or groups of
organizations, for which names are stored in the name space.

The administrational layer is formed by directory nodes that together are
managed within a single organization. A characteristic feature of the directory
nodes in the administrational layer is that they represent groups of entities that
belong to the same organization or administrational unit. For example, there may
be a directory node for each' department in an organization, or a directory node
from which all hosts can be found. Another directory node may be used as the
starting point for naming all users, and so forth. The nodes in the administrational
layer are relatively stable, although changes generally occur more frequently than
to nodes in the global layer.

Finally, the managerial layer consists of nodes that may typically change
regularly. For example, nodes representing hosts in the local network belong to
this layer. For the same reason, the layer includes nodes representing shared files
such as those for libraries or binaries. Another important class of nodes includes
those that represent user-defined directories and files. In contrast to the global and
administrational layer, the nodes in the managerial layer are maintained not only
by system administrators, but also by individual end users of a distributed system.

To make matters more concrete, Fig. 5-13 shows an example of the parti-
tioning of part of the DNS name space, including the names of files within an
organization that can be accessed through the Internet, for example, Web pages
and transferable files. The name space is divided into nonoverlapping parts, called
zones in DNS (Mockapetris, 1987). A zone is a part of the name space that is im-
plemented by a separate name server. Some of these zones are illustrated in
Fig. 5-13.

If we take a look at availability and performance, name servers in each layer
have to meet different requirements. High availability is especially critical for
name servers in the global layer. If a name server fails, a large part of the name
space will be unreachable because name resolution cannot proceed beyond the
failing server.

Performance is somewhat subtle. Due to the low rate of change of nodes in
the global layer, the results of lookup operations generally remain valid for a long
time. Consequently, those results can be effectively cached (i.e., stored locally) by

204 NAMING CHAP. 5

Figure 5-13. An example partitioning of the DNS name space, including
Internet-accessible files, into three layers.

the clients. The next time the same lookup operation is performed, the results can
be retrieved from the client's cache instead of letting the name server return the
results. As a result, name servers in the global layer do not have to respond
quickly to a single lookup request. On the other hand, throughput may be impor-
tant, especially in large-scale systems with millions of users.

The availability and performance requirements for name servers in the global
layer can be met by replicating servers, in combination with client-side caching.
As we discuss in Chap. 7, updates in this layer generally do not have to come into
effect immediately, making it much easier to keep replicas consistent.

Availability for a name server in the administrational layer is primarily impor-
tant for clients in the same organization as the name server. If the name server
fails, many resources within the organization become unreachable because they
cannot be looked up. On the other hand, it may be less important that resources in
an organization are temporarily unreachable for users outside that organization.

With respect to performance, name servers in the administrational layer have
similar characteristics as those in the global layer. Because changes to nodes do
not occur all that often, caching lookup results can be highly effective, making
performance less critical. However, in contrast to the global layer, the administra-
tionallayer should take care that lookup results are returned within a few millisec-

SEC. 5.3 STRUCTURED NAMING 205

onds, either directly from the server or from the client's local cache. Likewise,
updates should generally be processed quicker than those of the global layer. For
example, it is unacceptable that an account for a new user takes hours to become
effective.

These requirements can often be met by using high-performance machines to
run name servers. In addition, client-side caching should be applied, combined
with replication for increased overall availability.

Availability requirements for name servers at the managerial level are gener-
ally less demanding. In particular, it often suffices to use a single (dedicated) ma-
chine to run name servers at the risk of temporary unavailability. However, per-
formance is crucial. Users expect operations to take place immediately. Because
updates occur regularly, client-side caching is often less effective, unless special
measures are taken, which we discuss in Chap. 7.

Figure 5-14. A comparison between name servers for implementing nodes from
a large-scale name space partitioned into a global layer, an administrational
layer, and a managerial layer.

A comparison between name servers at different layers is shown in Fig. 5-14.
In distributed systems, name servers in the global and administrational layer are
the most difficult to implement. Difficulties are caused by replication and cach-
ing, which are needed for availability and performance, but which also introduce
consistency problems. Some of the problems are aggravated by the fact that
caches and replicas are spread across a wide-area network, which introduces long
communication delays thereby making synchronization even harder. Replication
and caching are discussed extensively in Chap. 7.

Implementation of Name Resolution

The distribution of a name space across multiple name servers affects the
implementation of name resolution. To explain the implementation of name reso-
lution in large-scale name services, we assume for the moment that name servers
are not replicated and that no client-side caches are used. Each client has access to

206 NAMING CHAP. 5

a local name resolver, which is responsible for ensuring that the name resolution
process is carried out. Referring to Fig. 5-13, assume the (absolute) path name

root: «nl, VU, CS, ftp, pub, globe, index.html>

is to be resolved. Using a URL notation, this path name would correspond to
ftp://ftp.cs. vu.nl/pub/globe/index.html. There are now two ways to implement
name resolution.

In iterative name resolution, a name resolver hands over the complete name
to the root name server. It is assumed that the address where the root server can be
contacted is well known. The root server will resolve the path name as far as it
can, and return the result to the client. In our example, the root server can resolve
only the label nl, for which it will return the address of the associated name ser-
ver.

At that point. the client passes the remaining path name (i.e., nl: <VU, cs, jtp,
pub, globe, index.html> to that name server. This server can resolve only the
label VU, and returns the address of the associated name server, along with the
remaining path name vu:<cs, ftp, pub, globe, index.html>.

The client's name resolver will then contact this next name server, which
responds by resolving the label cs, and subsequently also ftp, returning the address
of the FTP server along with the path name ftp:<pub, globe, index.html>. The
client then contacts the FTP server, requesting it to resolve the last part of the ori-
ginal path name. The FTP server will subsequently resolve the labels pub. globe,
and index.html, and transfer the requested file (in this case using FTP). This proc-
ess of iterative name resolution is shown in Fig. 5-15. (The notation #<cs> is
used to indicate the address of the server responsible for handling the node
referred to by <cs>.)

Figure 5-15. The principle of iterative name resolution.

SEC. 5.3 STRUCTURED NAMING 207

In practice, the last step, namely contacting the FTP server and requesting it
to transfer the file with path name ftp i-cpub, globe, index.himl», is carried out
separately by the client process. In other words, the client would normally hand
only the path name root: «nl, VU, CS, ftp> to the name resolver, from which it
would expect the address where it can contact the FTP server, as is also shown in
Fig. 5-15.

An alternative to iterative name resolution is to use recursion during name
resolution. Instead of returning each intermediate result back to the client's name
resolver, with recursive name resolution, a name server passes the result to the
next name server it finds. So, for example, when the root name server finds the
address of the name server implementing the node named nl, it requests that name
server to resolve the path name nl:<vu, CS, ftp, pub, globe, index.html>. Using
recursive name resolution as well, this next server will resolve the complete path
and eventually return the file index.html to the root server, which, in tum, will
pass that file to the client's name resolver.

Recursive name resolution is shown in Fig. 5-16. As in iterative name resolu-
tion, the last resolution step (contacting the FTP server and asking it to transfer
the indicated file) is generally carried out as a separate process by the client.

Figure 5-16. The principle of recursive name resolution.

The main drawback of recursive name resolution is that it puts a higher per-
formance demand on each name server. Basically, a name server is required to
handle the complete resolution of a path name, although it may do so in coopera-
tion with other name servers. This additional burden is generally so high that
name servers in the global layer of a name space support only iterative name reso-
lution.

There are two important advantages to recursive name resolution. The first
advantage is that caching results is more effective compared to iterative name
resolution. The second advantage is that communication costs may be reduced. To

208 NAMING CHAP. 5

explain these advantages, assume that a client's name resolver will accept path
names referring only to nodes in the global or administrational layer of the name
space. To resolve that part ofa path name that corresponds to nodes in the manag-
erial layer, a client will separately contact the name server returned by its name
resolver, as we discussed above.

Recursive name resolution allows each name server to gradually learn the ad-
dress of each name server responsible for implementing lower-level nodes. As a
result, caching can be effectively used to enhance performance. For example,
when the root server is requested to resolve the path name root:<nl, vu, cs, ftp>,
it will eventually get the address of the name server implementing the node
referred to by that path name. To come to that point, the name server for the nl
node has to look up the address of the name server for the vu node, whereas the
latter has to look up the address of the name server handling the cs node.

Because changes to nodes in the global and administrational layer do not
occur often, the root name server can effectively cache the returned address.
Moreover, because the address is also returned, by recursion, to the name server
responsible for implementing the vu node and to the one implementing the nl
node, it might as well be cached at those servers too.

Likewise, the results of intermediate name lookups can also be returned and
cached. For example, the server for the nl node will have to look up the address of
the vu node server. That address can be returned to the root server when the nl
server returns the result of the original name lookup. A complete overview of the
resolution process, and the results that can be cached by each name server is
shown in Fig. 5-17.

Figure 5-17. Recursive name resolution of «nl, l'U, CS. jtp>. Name servers
cache intermediate results for subsequent lookups.

The main benefit of this approach is that, eventually. lookup operations can be
handled quite efficiently. For example, suppose that another client later requests

SEC. 5.3 STRUCTURED NAMING 209

resolution of the path name root:<nl, Vii, cs, flits>. This name is passed to the
root, which can immediately forward it to the name server for the cs node, and re-
quest it to resolve the remaining path name cs:<jlits>.

With iterative name resolution, caching is necessarily restricted to the client's
name resolver. Consequently, if a client A requests the resolution of a name, and
another client B later requests that same name to be resolved, name resolution will
have to pass through the same name servers as was done for client A. As a com-
promise, many organizations use a local, intermediate name server that is shared
by all clients. This local name server handles all naming requests and caches re-
sults. Such an intermediate server is also convenient from a management point of
view. For example, only that server needs to know where the root name server is
located; other machines do not require this information.

The second advantage of recursive name resolution is that it is often cheaper
with respect to communication. Again, consider the resolution of the path name
root:<nl, vu, cs, ftp> and assume the client is located in San Francisco. Assuming
that the client knows the address of the server for the nl node, with recursive name
resolution, communication follows the route from the client's host in San Fran-
cisco to the nl server in The Netherlands, shown as R 1 in Fig. 5-18. From there
on, communication is subsequently needed between the nl server and the name
server of the Vrije Universiteit on the university campus in Amsterdam, The
Netherlands. This communication is shown as R 2. Finally, communication is
needed between the vu server and the name server in the Computer Science
Department, shown as R 3. The route for the reply is the same, but in the opposite
direction. Clearly, communication costs are dictated by the message exchange be-
tween the client's host and the nl server.

In contrast, with iterative name resolution, the client's host has to communi-
cate separately with the nl server, the vu server, and the cs server, of which the
total costs may be roughly three times that of recursive name resolution. The
arrows in Fig. 5-18 labeled /1, /2, and /3 show the communication path for itera-
tive name resolution.

5.3.4 Example: The Domain Name System

One of the largest distributed naming services in use today is the Internet
Domain Name System (DNS). DNS is primarily used for looking up IP addresses
of hosts and mail servers. In the following pages, we concentrate on the organiza-
tion of the DNS name space, and the information stored in its nodes. Also, we
take a closer look at the actual implementation of DNS. More information can be
found in Mockapetris (1987) and Albitz and Liu (2001). A recent assessment of
DNS, notably concerning whether it still fits the needs of the current Internet, can
be found in Levien (2005). From this report, one can draw the somewhat surpris-
ing conclusion that even after more than 30 years, DNS gives no indication that it

210 NAMING CHAP. 5

Figure 5-18. The comparison between recursive and iterative name resolution
with respect to communication costs.

needs to be replaced. We would argue that the main cause lies in the designer's
deep understanding of how to keep matters simple. Practice in other fields of dis-
tributed systems indicates that not many are gifted with such an understanding.

The DNS Name Space

The DNS name space is hierarchically organized as a rooted tree. A label is a
case-insensitive string made up of alphanumeric characters. A label has a max-
imum length of 63 characters; the length of a complete path name is restricted to
255 characters. The string representation of a path name consists of listing its la-
bels, starting with the rightmost one, and separating the labels by a dot (H. "). The
root is represented by a dot. So, for example, the path name root: <nl, VU, cs,
flits>, is represented by the string flits.cs. vu.nl., which includes the rightmost dot
to indicate the root node. We generally omit this dot for readability.

Because each node in the DNS name space has exactly one incoming edge
(with the exception of the root node, which has no incoming edges), the label at-
tached toa node's incoming edge is also used as the name for that node. A subtree
is called a domain; a path name to its root node is called a domain name. Note
that, just like a path name, a domain name can be either absolute or relative.

The contents of a node is formed by a collection of resource records. There
are different types of resource records. The major ones are shown in Fig. 5-19.

A node in the DNS name space often will represent several entities at the
same time. For example, a domain name such as vu.nl is used to represent a do-
main and a zone. In this case, the domain is implemented by means of several
(nonoverlapping) zones.

An SOA (start of authority) resource record contains information such as an
e-mail address of the system administrator responsible for the represented zone.
the name of the host where data on the zone can be fetched, and so on.

SEC. 5.3 STRUCTURED NAMING 211

Figure 5-19. The most important types of resource records forming the contents
of nodes in the DNS name space.

An A (address) record, represents a particular host in the Internet. The A
record contains an IP address for that host to allow communication. If a host has
several IP addresses, as is the case with multi-homed machines, the node will con-
tain an A record for each address.

Another type of record is the MX (mail exchange) record, which is like a sym-
bolic link to a node representing a mail server. For example, the node representing
the domain cs.vu.nl has an MX record containing the name zephyr.cs.vu.nl, which
refers to a mail server. That server will handle all incoming mail addressed to
users in the cs. vu.nl domain. There may be several MX records stored in a node.

Related to MX records are SRV records, which contain the name of a server
for a specific service. SRV records are defined in Gulbrandsen (2000). The ser-
vice itself is identified by means of a name along with the name of a protocol. For
example, the Web server in the cs. vu.nl domain could be named by means of an
SRV record such as .Jutp.ctcp.cs.vu.nl, This record would then refer to the actual
name of the server (which is soling.cs. vu.nl). An important advantage of SRV
records is that clients need no longer know the DNS name of the host providing a
specific service. Instead, only service names need to be standardized, after which
the providing host can be looked up.

Nodes that represent a zone, contain one or more NS (name server) records.
Like MX records, an NS record contains the name of a name server that imple-
ments the zone represented by the node. In principle, each node in the name space
can store an NS record referring to the name server that implements it. However,
as we discuss below, the implementation of the DNS name space is such that only
nodes representing zones need to store NS records.

DNS distinguishes aliases from what are called canonical names. Each host
is assumed to have a canonical, or primary name. An alias is implemented by

212 NAMING CHAP. 5

means of node storing a CNAME record containing the canonical name of a host.
The name of the node storing such a record is thus the same as a symbolic link, as
was shown in Fig. 5- J J.

DNS maintains an inverse mapping of IP addresses to host names by means of
PTR (pointer) records. To accommodate the lookups of host names when given
only an IP address, DNS maintains a domain named in-addr.arpa, which contains
nodes that represent Internet hosts and which are named by the IP address of the
represented host. For example, host tVww.cs.\'u.nl has IP address 130.37.20.20.
DNS creates a node named 20.20.37.130.in-addr.mpa, which is used to store the
canonical name of that host (which happens to be soling.cs. vu.nl i in a PTR record.

The last two record types are HINFO records and TXT records. An HINFO
(host info) record is used to store additional information on a host such as its ma-
chine type and operating system. In a similar fashion, TXT records are used for
any other kind of data that a user finds useful to store about the entity represented
by the node.

DNS Implementation

In essence, the DNS name space can be divided into a global layer and an
administrational layer as shown in Fig. 5-13. The managerial layer, which is gen-
erally formed by local file systems, is formally not part of DNS and is therefore
also not managed by it.

Each zone is implemented by a name server, which is virtually always repli-
cated for availability. Updates for a zone are normally handled by the primary
name server. Updates take place by modifying the DNS database local to the pri-
mary server. Secondary name servers do not access the database directly, but, in-
stead, request the primary server to transfer its content. The latter is called a zone
transfer in DNS terminology.

A DNS database is implemented as a (small) collection of files, of which the
most important one contains all the resource records for all the nodes in a particu-
lar zone. This approach allows nodes to be simply identified by means of their do-
main name, by which the notion of a node identifier reduces to an (implicit) index
into a file.

To better understand these implementation issues, Fig. 5-20 shows a small
part of the file that contains most of the information for the cs.vu.nl domain (the
file has been edited for simplicity). The file shows the contents of several nodes
that are part of the cs. vu.nl domain, where each node is identified by means of its
domain name.

The node cs.vu.nl represents the domain as well as the zone. Its SOA resource
record contains specific information on the validity of this file. which will not
concern us further. There are four name servers for this zone, referred to by their
canonical host names in the NS records. The TXT record is used to give some

SEC. 5.3 STRUCTURED NAMING 213

additional information on this zone, but cannot be automatically processed by any
name server. Furthermore, there is a single mail server that can handle incoming
mail addressed to users in this domain. The number preceding the name of a mail
server specifies a selection priority. A sending mail server should always first at-
tempt to contact the mail server with the lowest number.

Figure 5-20. An excerpt from the DNS database for the zone cs. vU.1l1.

The host star.cs. vu.nl operates as a name server for this zone. Name servers
are critical to any naming service. What can be seen about this name server is that
additional robustness has been created by giving two separate network interfaces,

214 NAMING CHAP. 5

each represented by a separate A resource record. In this way, the effects of a bro-
ken network link can be somewhat alleviated as the server will remain accessible.

The next four lines (for zephyr.cs. vu.nl) give the necessary information about
one of the department's mail servers. Note that this mail server is also backed up
by another mail server, whose path is tornado.cs. vu.nl,

The next six lines show a typical configuration in which the department's
Web server, as well as the department's FTP server are implemented by a single
machine, called soling. cs. vu. nl. By executing both servers on the same machine
(and essentially using that machine only for Internet services and not anything
else), system management becomes easier. For example, both servers will have
the same view of the file system, and for efficiency, part of the file system may be
implemented on soling.cs.vu.nl, This approach is often applied in the case of
WWW and FTP services.

The following two lines show information on one of the department's older
server clusters. In this case, it tells us that the address 130.37.198.0 is associated
with the host name vucs-dasl.cs.vu.nl,

The next four lines show information on two major printers connected to the
local network. Note that addresses in the range 192.168.0.0 to 192.168.255.255
are private: they can be accessed only from inside the local network and are not
accessible from an arbitrary Internet host.

Figure 5-21. Part of the description for the vu.nl domain which contains the
cs. vu.nl domain.

Because the cs.vu.nl domain is implemented as a single zone. Fig. 5-20 does
not include references to other zones. The way to refer to nodes in a subdomain
that are implemented in a different zone is shown in Fig. 5-21. What needs to be
done is to specify a name server for the subdomain by simply giving its domain
name and IP address. When resolving a name for a node that lies in the cs.vu.nl
domain, name resolution will continue at a certain point by reading the DNS data-
base stored by the name server for the cs. vu.nl domain.

SEC. 5.3 STRUCTURED NAMING 215
Decentralized DNS Implementations

The implementation of DNS we described so far is the standard one. It fol-
lows a hierarchy of servers with 13 well-known root servers and ending in mil-
lions of servers at the leaves. An important observation is that higher-level nodes
receive many more requests than lower-level nodes. Only by caching the name-
to-address bindings of these higher levels is it possible to avoid sending requests
to them and thus swamping them.

These scalability problems can be avoided alt-ogetherwith fully decentralized
solutions. In particular, we can compute the hash of a DNS name, and subse-
quently take that hash as a key value to be looked up in a distributed-hash table or
a hierarchical location service with a fully partitioned root node. The obvious
drawback of this approach is that we lose the structure of the original name. This
loss may prevent efficient implementations of, for example, finding all children in
a specific domain.

On the other hand, there are many advantages to mapping DNS to a DHT-
based implementation, notably its scalability. As argued by Walfish et al. (2004),
when there is a need for many names, using identifiers as a semantic-free way of
accessing data will allow different systems to make use of a single naming sys-
tem. The reason is simple: by now it is well understood how a huge collection of
(flat) names can be efficiently supported. What needs to be done is to maintain the
mapping of identifier-to-name information, where in this case a name may come
from the DNS space, be a URL, and so on. Using identifiers can be made easier
by letting users or organizations use a strict local name space. The latter is com-
pletely analogous to maintaining a private setting of environment variables on a
computer.

Mapping DNS onto DHT-based peer-to-peer systems has been explored in
CoDoNS (Ramasubramanian and Sirer, 2004a). They used a DHT-based system
in which the prefixes of keys are used to route to a node. To explain, consider the
case that each digit from an identifier is taken from the set { 0, ..., b-l },where b
is the base number. For example, in Chord, b = 2. If we assume that b = 4, then
consider a node whose identifier is 3210. In their system, this node is assumed to
keep a routing table of nodes having the following identifiers:

no: a node whose identifier has prefix 0
n 1 : a node whose identifier has prefix 1
n 2: a node whose identifier has prefix 2
n 30: a node whose identifier has prefix 30
n 31 : a node whose identifier has prefix 31
n 33: a node whose identifier has prefix 33
n 320: a node whose identifier has prefix320
n 322: a node whose identifier has prefix 322
n 323: a node whose identifier has prefix 323

216 NAMING CHAP. 5

where N is the number of nodes in the network and a is the parameter in the Zipf
distribution.

This formula allows to take informed decisions on which DNS records should
be replicated. To make matters concrete, consider the case that b = 32 and
a = 0.9. Then, in a network with 10,000 nodes and 1,000,000 DNS records, and
trying to achieve an average of C=1 hop only when doing a lookup, we will have
that Xo = 0.0000701674, meaning that only the 70 most popular DNS records

Node 3210 is responsible for handling keys that have prefix 321. If it receives a
lookup request for key 3123, it will forward it to node 113b which, in turn, will see
whether it needs to forward it to a node whose identifier has prefix 312. (We
should note that each node maintains two other lists that it can use for routing if it
misses an entry in its routing table.) Details of this approach can be found for Pas-
try (Rowstron and Druschel, 2001) and Tapestry (Zhao et al., 2004).

Returning to CoDoNS, a node responsible for key k stores the DNS resource
records associated with domain name that hashes to k. The interesting part, how-
ever, is that CoDoNS attempts to minimize the number of hops in routing a re-
quest by replicating resource records. The principle strategy is simple: node 3210
will replicate its content to nodes having prefix 321. Such a replication will re-
duce each routing path ending in node 3210 by one hop. Of course, this replica-
tion can be applied again to all nodes having prefix 32, and so on.

When a DNS record gets replicated to all nodes with i matching prefixes, it is
said to be replicated at level i. Note that a record replicated at level i (generally)
requires i lookup steps to be found. However, there is a trade-off between the
level of replication and the use of network and node resources. What CoDoNS
does is replicate to the extent that the resulting aggregate lookup latency is less
than a given constant C.

More specifically, think for a moment about the frequency distribution of the
queries. Imagine ranking the lookup queries by how often a specific key is re-
quested putting the most requested key in first position. The distribution of the
lookups is said to be Zipf-like if the frequency of the n-th ranked item is propor-
tional to l/n a, with a close to 1. George Zipf was a Harvard linguist who
discovered this distribution while studying word-use frequencies in a natural lan-
guage. However, as it turns out, it also applies among many other things, to the
population of cities, size of earthquakes, top-income distributions, revenues of
corporations, and, perhaps no longer surprisingly, DNS queries (Jung et al., 2002).

Now, if Xi is the fraction of most popular records that are to be replicated at
level i, then Ramasubramanian and Sirer (2004b) show that Xi can be expressed
by the following formula (for our purposes, only the fact that this formula exists is
actually important; we will see how to use it shortly):

SEC. 5.3 STRUCTURED NAMING 217
should be replicated everywhere. Likewise, with x I = 0.00330605, the 3306 next
most popular records should be replicated at level 1. Of course, it is required that
Xi < 1. In this example, Xl = 0.155769 and X3 > 1, so that only the next most
popular 155,769 records get replicated and all the others or not. Nevertheless, on
average, a single hop is enough to find a requested DNS record.

S.4 ATTRIBUTE-BASED NAMING

Flat and structured names generally provide a unique and location-indepen-
dent way of referring to entities. Moreover, structured names have been partly
designed to provide a human-friendly way to name entities so that they can be
conveniently accessed. In most cases, it is assumed that the name refers to only a
single entity. However, location independence and human friendliness are not the
only criterion for naming entities. In particular, as more information is being made
available it becomes important to effectively search for entities. This approach re-
quires that a user can provide merely a description of what he is looking for.

There are many ways in which descriptions can be provided, but a popular
one in distributed systems is to describe an entity in terms of (attribute, value)
pairs, generally referred to as attribute-based naming. In this approach, an enti-
ty is assumed to have an associated collection of attributes. Each attribute says
something about that entity. By specifying which values a specific attribute should
have, a user essentially constrains the set of entities that he is interested in. It is up
to the naming system to return one or more entities that meet the user's descrip-
tion. In this section we take a closer look at attribute-based naming systems.

5.4.1 Directory Services

Attribute-based naming systems are also known as directory services, where-
as systems that support structured naming are generally called naming systems.
With directory services, entities have a set of associated attributes that can be
used for searching. In some cases, the choice of attributes can be relatively sim-
ple. For example, in an e-mail system, messages can be tagged with attributes for
the sender, recipient, subject, and so on. However, even in the case of e-mail,
matters become difficult when other types of descriptors are needed, as is illus-
trated by the difficulty of developing filters that will allow only certain messages
(based on their descriptors) to be passed through.

What it all boils down to is that designing an appropriate set of attributes is
not trivial. In most cases, attribute design has to be done manually. Even if there
is consensus on the set of attributes to use, practice shows that setting the values
consistently by a diverse group of people is a problem by itself, as many will have
experienced when accessing music and video databases on the Internet.

218 NAMING CHAP. 5

To alleviate some of these problems, research has been conducted on unifying
the ways that resources can be described. In the context of distributed systems,
one particularly relevant development is the resource description framework
(RDF). Fundamental to the RDF model is that resources are described as triplets
consisting of a subject, a predicate, and an object. For example, (Person, name,
Alice) describes a resource Person whose name is Alice. In RDF, each subject,
predicate, or object can be a resource itself. This means that Alice may be imple-
mented as reference to a file that can be subsequently retrieved. In the case of a
predicate, such a resource could contain a textual description of that predicate. Of
course, resources associated with subjects and objects could be anything. Refer-
ences in RDF are essentially URLs.

If resource descriptions are stored, it becomes possible to query that storage in
a way that is common for many attributed-based naming systems. For example, an
application could ask for the information associated with a person named Alice.
Such a query would return a reference to the person resource associated with
Alice. This resource can then subsequently be fetched by the application. More in-
formation on RDF can be found in Manola and Miller (2004).

In this example, the resource descriptions are stored at a central location.
There is no reason why the resources should reside at the same location as well.
However, not having the descriptions in the same place may incur a serious per-
formance problem. Unlike structured naming systems, looking up values in an at-
tribute-based naming system essentially requires an exhaustive search through all
descriptors. When considering performance, such a search is less of problem with-
in a single data store, but separate techniques need to be applied when the data is
distributed across multiple, potentially dispersed computers. In the following, we
will take a look at different approaches to solving this problem in distributed sys-
tems.

5.4.2 Hierarchical Implementations: LDAP

A common approach to tackling distributed directory services is to combine
structured naming with attribute-based naming. This approach has been widely
adopted, for example, in Microsoft's Active Directory service and other systems.
Many of these systems use, or rely on the lightweight directory access protocol
commonly referred simply as LDAP. The LDAP directory service has been
derived from OS1's X.500 directory service. As with many OSI services, the qual-
ity of their associated implementations hindered widespread use, and simplifica-
tions were needed to make it useful. Detailed information on LDAP can be found
in Arkills (2003).

Conceptually, an LDAP directory service consists of a number of records,
usually referred to as directory entries. A directory entry is comparable to a re-
source record in DNS. Each record is made up of a collection of (attribute. value)
pairs, where each attribute has an associated type. A distinction is made between

SEC. 5.4 ATIRIBUTE-BASED NAMING 219

single-valued attributes and multiple-valued attributes. The latter typically repres-
ent arrays and lists. As an example, a simple directory entry identifying the net-
work addresses of some general servers from Fig. 5-20 is shown in Fig. 5-22.

Figure 5-22. A simple example of an LDAP directory entry using LDAP na-
ming conventions.

In our example, we have used a naming convention described in the LDAP
standards, which applies to the first five attributes. The attributes Organization
and Organization Unit describe, respectively, the organization and the department
associated with the data that are stored in the record. Likewise, the attributes
Locality and Country provide additional information on where the entry is stored.
The CommonName attribute is often used as an (ambiguous) name to identify an
entry within a limited part of the directory. For example, the name "Main server"
may be enough to find our example entry given the specific values for the other
four attributes Country, Locality, Organization, and Organizational Unit. In our
example, only attribute Mail..Servers has multiple values associated with it. All
other attributes have only a single value.

The collection of all directory entries in an LDAP directory service is called a
directory information base (DIB). An important aspect of a DIB is that each
record is uniquely named so that it can be looked up. Such a globally unique name
appears as a sequence of naming attributes in each record. Each naming attribute
is called a relative distinguished name, or RDN for short. In our example in
Fig: 5-22, the first five attributes are all naming attributes. Using the conventional
abbreviations for representing naming attributes in LDAP, as shown in Fig. 5-22,
the attributes Country, Organization, and Organizational Unit could be used to
form the globally unique name

analogous to the DNS name nl. vu.cs,
As in DNS, the use of globally unique names by listing RDNs in sequence,

leads to a hierarchy of the collection of directory entries, which is referred to as a

220 NAMING CHAP. 5

directory information tree (DIT). A DIT essentially forms the naming graph of
an LDAP directory service in which each node represents a directory entry. In ad-
dition. a node may also act as a directory in the traditional sense, in that there may
be several children for which the node acts as parent. To explain, consider the na-
ming graph as partly shown in Fig. 5-23(a). (Recall that labels are associated with
edges.)

Figure 5-23. (a) Part of a directory information tree. (b) Two directory entries
having Host.Name as RDN.

Node N corresponds to the directory entry shown,in Fig. 5-22. At the same
time, this node acts as a parent to a number of other directory entries that have an
additional naming attribute Host....Name that is used as an RDN. For example, such
entries may be used to represent hosts as shown in Fig. 5-23(b).

A node in an LDAP naming graph can thus simultaneously represent a direc-
tory in the traditional sense as we discussed previously, as well as an LDAP rec-
ord. This distinction is supported by two different lookup operations. The read op-
eration is used to read a single record given its path name in the DIT. In contrast,
the list operation is used to list the names of all outgoing edges of a given node in
the DIT. Each name corresponds to a child node of the given node. Note that the

SEC. 5.4 ATTRIBUTE-BASED NAMING 221

list operation does not return any records; it merely returns names. In other words,
calling read with as input the name

/C=NUO= Vrije UniversiteitlOU=Comp. Sc.lCN=Main server

will return the record shown in Fig. 5-22, whereas calling list will return the
names star and zephyr from the entries shown in Fig. 5-23(b) as well as the names
of other hosts that have been registered in a similar way.

Implementing an LDAP directory service proceeds in much the same way as
implementing a naming service such as DNS, except that LDAP supports more
lookup operations as we will discuss shortly. When dealing with a large-scale di-
rectory, the DIT is usually partitioned and distributed across several servers,
known as directory service agents (DSA). Each part of a partitioned DIT thus
corresponds to a zone in DNS. Likewise, each DSA behaves very much the same
as a normal name server, except that it implements a number of typical directory
services, such as advanced search operations.

Clients are represented by what are called directory user agents, or simply
DUAs. A DUA is similar to a name resolver in structured-naming services. A
DUA exchanges information with a DSA according to a standardized access pro-
tocol.

What makes an LDAP implementation different from a DNS implementation
are the facilities for searching through a DIB. In particular, facilities are provided
to search for a directory entry given a set of criteria that attributes of the searched
entries should meet. For example, suppose that we want a list of all main servers
at the Vrije Universiteit. Using the notation defined in Howes (1997), such a list
can be returned using a search operation such as

answer = search("&(C=NL)(O=Vrije Universiteit)(OU=*)(CN=Main server)")

In this example, we have specified that the place to look for main servers is the
organization named Vrije Universiteit in country NL, but that we are not
interested in a particular organizational unit. However, each returned result should
have the CN attribute equal to Main server.

As we already mentioned, searching in a directory service is generally an
expensive operation. For example, to find all main servers at the Vrije Universiteit
requires searching all entries at each department and combining the results in a
single answer. In other words, we will generally need to access several leaf nodes
of a DIT in order to get an answer. In practice, this also means that several DSAs
need to be accessed. In contrast, naming services can often be implemented in
such a way that a lookup operation requires accessing only a single leaf node.

This whole setup of LDAP can be taken one step further by allowing several
trees to co-exist, while also being linked to each other. This approach is followed
in Microsoft's Active Directory leading to a forest of LDAP domains (Allen and
Lowe-Norris, 2003). Obviously, searching in such an organization can be
overwhelmingly complex. To circumvent some of the scalability problems, Active

222 NAMING CHAP. 5

Directory usually assumes there is a global index server (called a global catalog)
that can be searched first. The index will indicate which LDAP domains need to
be searched further.

Although LDAP by itself already exploits hierarchy for scalability, it is com-
mon to combine LDAP with DNS. For example, every tree in LDAP needs to be
accessible at the root (known in Active Directory as a domain controller). The
root is often known under a DNS name, which, in tum, can be found through an
appropriate SRV record as we explained above.

LDAP typically represents a standard way of supporting attribute-based na-
ming. Other recent directory services following this more traditional approach
have been developed as well, notably in the context of grid computing and Web
services. One specific example is the universal directory and discovery integra-
tion or simply UDDI.

These services assume an implementation in which one, or otherwise only a
few nodes cooperate to maintain a simple distributed database. From a technologi-
cal point of view, there is no real novelty here. Likewise, there is also nothing
really new to report when it comes to introducing terminology, as can be readily
observed when going through the hundreds of pages of the UDDI specifications
(Clement et al., 2004). The fundamental scheme is always the same: scalability is
achieved by making several of these databases accessible to applications, which
are then responsible for querying each database separately and aggregating the re-
sults. So much for middleware support.

5.4.3 Decentralized Implementations

With the advent of peer-to-peer systems, researchers have also been looking
for solutions for decentralized attribute-based naming systems. The key issue here
is that (attribute, value) pairs need to be efficiently mapped so that searching can
be done efficiently, that is, by avoiding an exhaustive search through the entire
attribute space. In the following we will take a look at several ways how to estab-
lish such a mapping.

Mapping to Distributed Hash Tables

Let us first consider the case where (attribute, value) pairs need to be sup-
ported by a DHT-based system. First, assume that queries consist of a conjunction
of pairs as with LDAP, that is. a user specifies a list of attributes, along with the
unique value he wants to see for every respective attribute. The main advantage of
this type of query is that no ranges need to be supported. Range queries may signi-
ficantly increase the complexity of mapping pairs to a DHT.

Single-valued queries are supported in the INSrrwine system (Balazinska et
aI., 2002). Each entity (referred to as a resource) is assumed to be described by
means of possibly hierarchically organized attributes such as shown in Fig. 5-24.

SEC. 5.4 ATTRIBUTE-BASED NAMING 223

Each such description is translated into an attribute-value tree (AVTree) which
is then used as the basis for an encoding that maps well onto a DHT -based system.

Figure 5-24. (a) A general description of a resource. (b) Its representation as an
AVTree.

The main issue is to transform the AVTrees into a collection of keys that can
be looked up in a DHT system. In this case, every path originating in the root is
assigned a unique hash value, where a path description starts with a link (repres-
enting an attribute), and ends either in a node (value), or another link. Taking
Fig. 5-24(b) as our example, the following hashes of all such paths are considered:

hI: hash(type-book)
h 2: hash(type-book-author)
h 3: hashttype-book-author- Tolkien)
h4: hash(type-book-title)
h 5: hash(type-book-title-LOTR)
h 6: hash(genre-fantasy)

A node responsible for hash value hi will keep (a reference to) the actual resource.
In our example, this may lead to six nodes storing information on Tolkien's Lord
of the Rings. However, the benefit of this redundancy is that it will allow sup-
porting partial queries. For example, consider a query such as "Return books writ-
ten by Tolkien." This query is translated into the AVTree shown in Fig. 5-25
leading to computing the following three hashes:

hi: hash(type-book)
h 2 : hash(type-book -author)
h 3: hashttype-book-author- Tolkien)

These values will be sent to nodes that store information on Tolkien' s books, and
will at least return Lord of the Rings. Note that a hash such as h 1 is rather general
and will be generated often. These type of hashes can be filtered out of the sys-
tem. Moreover, it is not difficult to see that only the most specific hashes need to
be evaluated. Further details can be found in Balzinska et al. (2002).

Now let's take a look at another type of query, namely those that can contain
range specifications for attribute values. For example, someone looking for a

224 NAMING CHAP. 5

Figure 5-25. (a) The resource description of a query. (b) Its representation as an
AVTree.

house will generally want to specify that the price must fall within a specific
range. Again. several solutions have been proposed and we will come across some
of them when discussing publish/subscribe systems in Chap. 13. Here, we discuss
a solution adopted in the SWORD resource discovery system (Oppenheimer et al.,
2005).

In SWORD, (attribute, value) pairs as provided by a resource description are
first transformed into a key for a DHT. Note that these pairs always contain a sin-
gle value; only queries may contain value ranges for attributes. When computing
the hash, the name of the attribute and its value are kept separate. In other words,
specific bits in the resulting key will identify the attribute name, while others
identify its value. In addition, the key will contain a number of random bits to
guarantee uniqueness among all keys that need to be generated.

In this way, the space of attributes is conveniently partitioned: if 11 bits are re-
served to code attribute names, 2n different server groups can be used, one group
for each attribute name. Likewise, by using m bits to encode values, a further par-
titioning per server group can be applied to store specific (attribute, value) pairs.
DHTs are used only for distributing attribute names.

For each attribute name, the possible range of its value is panitioned into
subranges and a single server is assigned to each subrange. To explain, consider a
resource description with two attributes: a 1 taking values in the range [1..10] and
a2 taking values in the range [101...200]. Assume there are two servers for a 1:
Sll takes care of recording values of a1 in [1..5], and S12 for values in [6..10].
Likewise, server S21 records values for a2 in range [101..150] and server S22 for
values in [151..200]. Then, when the resource gets values (a 1 = 7,a2 = 175),
server S 12 and server S 22 will have to be informed.

The advantage of this scheme is that range queries can be easily supported.
When a query is issued to return resources that have a 2 lying between 165 and
189, the query can be forwarded to server S22 who can then return the resources
that match the query range. The drawback, however, is that updates need to be
sent to multiple servers. Moreover, it is not immediately clear how well the load is

SEC. 5.4 ATTRIBUTE-BASED NAMING 225
balanced between the various servers. In particular, if certain range queries tum
out to be very popular, specific servers will receive a high fraction of all queries.
How this load-balancing problem can be tackled for DHT-based systems is dis-
cussed in Bharambe atal. (2004).

Semantic Overlay Networks

The decentralized implementations of attribute-based naming already show an
increasing degree of autonomy of the various nodes. The system is less sensitive
to nodes joining and leaving in comparison to, for example, distributed LDAP-
based systems. This degree of autonomy is further increased when nodes have
descriptions of resources that are there to be discovered by others. In other words,
there is no a priori deterministic scheme by which (attribute, value) pairs are
spread across a collection of nodes.

Not having such a scheme forces nodes to discover where requested resources
are. Such a discovery is typical for unstructured overlay networks, which we
already discussed in Chap. 2. In order to make searching efficient, it is important
that a node has references to others that can most likely answer its queries. If we
make the assumption that queries originating from node P are strongly related to
the resources that P has, then we are seeking to provide P with a collection of
links to semantically proximal neighbors. Recall that such a list is also known as a
partial view. Semantical proximity can be defined in different ways, but it boils
down to keeping track of nodes with similar resources. The nodes and these links
will then form what is known as a semantic overlay network.

A common approach to semantic overlay networks is to assume that there is
commonality in the meta information maintained at each node. In other words, the
resources stored at each node are described using the same collection of attributes,
or, more precisely, the same data schema (Crespo and Garcia-Molina, 2003).
Having such a schema will allow defining specific similarity functions between
nodes. Each node will then keep only links to the K most similar neighbors and
query those nodes first when looking for specific data. Note that this approach
makes sense only if we can generally assume that a query initiated at a node
relates to the content stored at that node.

Unfortunately, assuming commonality in data schemas is generally wrong. In
practice, the meta information on resources is highly inconsistent across different
nodes and reaching consensus and what and how to describe resources is close to
impossible. For this reason, semantic overlay networks will generally need to find
different ways to define similarity.

One approach is to forget about attributes altogether and consider only very
simple descriptors such as file names. Passively constructing an overlay can be
done by keeping track of which nodes respond positively to file searches. For ex-
ample, Sripanidkulchai et al. (2003) first send a query to a node's semantic neigh-
bors, but if the requested file is not there a (limited) broadcast is then done. Of

226 NAMING CHAP. 5

course, such a broadcast may lead to an update of the semantic-neighbors list. As
a note, it is interesting to see that if a node requests its semantic neighbors to for-
ward a query to their semantic neighbors, that the effect is minimal (Handrukande
et aI., 2004). This phenomenon can be explained by what is known as the small-
world effect which essentially states that the friends of Alice are also each other's
friends (Watts. 1999).

A more proactive approach toward constructing a semantic-neighbor list 'is
proposed by Voulgaris and van Steen (2005) who use a simple semantic proxim-
ity function defined on the file lists FLp and FLQ of two nodes P and Q, respec-
tively. This function simply counts the number of common files in FLp and FLQ.

The goal is then to optimize the proximity function by letting a node keep a list of
only those neighbors that have the most files in common with it.

Figure 5-26. Maintaining a semantic overlay through gossiping.

To this end, a two-layered gossiping scheme is deployed as shown in Fig. 5-
26. The bottom layer consists of an epidemic protocol that aims at maintaining a
partial view of uniform randomly-selected nodes. There are different ways to
achieve this as we explained in Chap. 2 [see also Jelasity et al. (2005a)]. The top
layer maintains a list of semantically proximal neighbors through gossiping. To
initiate an exchange, an node P can randomly select a neighbor Q from its current
list, but the trick is to let P send only those entries that are semantically closest to
Q. In tum, when P receives entries from Q, it will eventually keep a partial view
consisting only of the semantically closest nodes. As it turns out, the partial views
as maintained by the top layer will rapidly converge to an optimum.

As will have become clear by now, semantic overlay networks are closely
related to decentralized searching. An extensive overview of searching in all kinds
of peer-to-peer systems is discussed in Risson and Moors (2006).

5.5 SUMMARY

Names are used to refer to entities. Essentially, there are three types of names.
An address is the name of an access point associated with an entity, also simply
called the address of an entity. An identifier is another type of name. It has three

SEC. 5.5 SUMMARY 227

properties: each entity is referred to by exactly one identifier, an identifier refers
to only one entity, and is never assigned to another entity. Finally, human-friendly
names are targeted to be used by humans and as such are represented as character
strings. Given these types, we make a distinction between flat naming, structured
naming, and attribute-based naming.

Systems for flat naming essentially need to resolve an identifier to the address
of its associated entity. This locating of an entity can be done in different ways.
The first approach is to use broadcasting or multicasting. The identifier of the en-
tity is broadcast to every process in the distributed system. The process offering
an access point for the entity responds by providing an address for that access
point. Obviously, this approach has limited scalability.

A second approach is to use forwarding pointers. Each time an entity moves
to a next location, it leaves behind a pointer telling where it will be next. Locating
the entity requires traversing the path of forwarding pointers. To avoid large
chains of pointers, it is important to reduce chains periodically

A third approach is to allocate a home to an entity. Each time an entity moves
to another location, it informs its home where it is. Locating an entity proceeds by
first asking its home for the current location.

A fourth approach is to organize all nodes into a structured peer-to-peer sys-
tem, and systematically assign nodes to entities taking their respective identifiers
into account. By subsequently devising a routing algorithm by which lookup re-
quests are moved toward the node responsible for a given entity, efficient and
robust name resolution is possible.

A fifth approach is to build a hierarchical search tree. The network is divided
into nonoverlapping domains. Domains can be grouped into higher-level (nono-
verlapping) domains, and so on. There is a single top-level domain that covers the
entire network. Each domain at every level has an associated directory node. If an
entity is located in a domain D, the directory node of the next higher-level domain
will have a pointer to D. A lowest-level directory node stores the address of the
entity. The top-level directory node knows about all entities.

Structured names are easily organized in a name space. A name space can be
represented by a naming graph in which a node represents a named entity and the
label on an edge represents the name under which that entity is known. A node
having multiple outgoing edges represents a collection of entities and is also
known as a context node or directory. Large-scale naming graphs are often organ-
ized as rooted acyclic directed graphs.

Naming graphs are convenient to organize human-friendly names in a struc-
tured way. An entity can be referred to by a path name. Name resolution is the
process of traversing the naming graph by looking up the components of a path
name, one at a time. A large-scale naming graph is implemented by distributing
its nodes across multiple name servers. When resolving a path name by traversing
the naming graph, name resolution continues at the next name server as soon as a
node is reached implemented by that server.

228 NAMING CHAP. 5

More problematic are attribute-based naming schemes in which entities are
described by a collection of (attribute, value) pairs. Queries are also formulated as
such pairs, essentially requiring an exhaustive search through all descriptors. Such
a search is only feasible when the descriptors are stored in a single database.
However, alternative solutions have been devised by which the pairs are mapped
onto DHT-based systems, essentially leading to a distribution of the collection of
entity descriptors.

Related to attribute-based naming is to gradually replace name resolution by
distributed search techniques. This approach is followed in semantic overlay net-
works, in which nodes maintain a local Est of other nodes that have semantically
similar content. These semantic lists allow for efficient search to take place by
which first the immediate neighbors are queried, and only after that has had no
success will a (limited) broadcast be deployed.

PROBLEMS

1. Give an example of where an address of an entity E needs to be further resolved into
another address to actually access E.

2. Would you consider a URL such as http://www.acme.org/index.html to be location
independent? What about http://www.acme.nllindex.html?

3. Give some examples of true identifiers.

4. Is an identifier allowed to contain information on the entity it refers to?

5. Outline an efficient implementation of globally unique identifiers.

6. Consider the Chord system as shown in Fig. 5-4 and assume that node 7 has just
joined the network. What would its finger table be and would there be any changes to
other finger tables?

7. Consider a Chord DHT-based system for which k bits of an m-bit identifier space have
been reserved for assigning to superpeers. If identifiers are randomly assigned, how
many superpeers can one expect to have in an N-node system?

8. If we insert a node into a Chord system, do we need to instantly update all the finger
tables?

9. What is a major drawback of recursive lookups when resolving a key in a DHT-based
system?

10. A special form of locating an entity is called anycasting, by which a service is identi-
fied by means of an IF address (see. for example, RFC 1546). Sending a request to an
anycast address, returns a response from a server implementing the service identified

http://www.acme.org/index.html
http://www.acme.nllindex.html?

CHAP. 5 PROBLEMS 229

by that anycast address. Outline the implementation of an anycast service based on the
hierarchical location service described in Sec. 5.2.4.

11. Considering that a two-tiered home-based approach is a specialization of a hierarchi-
cal location service, where is the root?

12. Suppose that it is known that a specific mobile entity will almost never move outside
domain D, and if it does. it can be expected to return soon. How can this information
be used to speed up the lookup operation in a hierarchical location service?

13. In a hierarchical location service with a depth of k, how many location records need to
be updated at most when a mobile entity changes its location?

14. Consider an entity moving from location A to B. while passing several intermediate lo-
cations where it will reside for only a relatively short time. When arriving at B, it set-
tles down for a while. Changing an address in a hierarchical location service may still
take a relatively long time to complete, and should therefore be avoided when visiting
an intermediate location. How can the entity be located at an intermediate location?

15. The root node in hierarchical location services may become a potential bottleneck.
How can this problem be effectively circumvented?

16. Give an example of how the closure mechanism for a URL could work.

17. Explain the difference between a hard link and a soft link in UNIX systems. Are there
things that can be done with a hard link that cannot be done with a soft link or vice
versa?

18. High-level name servers in DNS, that is, name servers implementing nodes in the
DNS name space that are close to the root, generally do not support recursive name
resolution. Can we expect much performance improvement if they did?

19. Explain how DNS can be used to implement a home-based approach to locating
mobile hosts.

20. How is a mounting point looked up in most UNIX systems?

21. Consider a distributed file system that uses per-user name spaces. In other words, each
user has his own, private name space. Can names from such name spaces be used to
share resources between two different users?

22. Consider DNS. To refer to a node N in a subdomain implemented as a different zone
than the current domain, a name server for that zone needs to be specified. Is it always
necessary to include a resource record for that server's address, or is it sometimes suf-
ficient to provide only its domain name?

23. Counting common files is a rather naive way of defining semantic proximity. Assume
you were to build semantic overlay networks based on text documents, what other
semantic proximity function can you think of?

24. (Lab assignment) Set up your own DNS server. Install BIND on either a Windows or
UNIX machine and configure it for a few simple names. Test your configuration using
tools such as the Domain Information Groper (DIG). Make sure your DNS database
includes records for name servers, mail servers, and standard servers. Note that if you

230 NAMING CHAP. 5

are running BIND on a machine with host name HOSTNAME, you should be able to
resolve names of the form RESOURCE-NAME.HOSTNAME.

6
SYNCHRONIZATION

In the previous chapters, we have looked at processes and communication be-
tween processes. While communication is important, it is not the entire story.
Closely related is how processes cooperate and synchronize with one another.
Cooperation is partly supported by means of naming, which allows processes to at
least share resources, or entities in general.

In this chapter, we mainly concentrate on how processes can synchronize. For
example, it is important that multiple processes do not simultaneously access a
shared resource, such as printer, but instead cooperate in granting each other tem-
porary exclusive access. Another example is that multiple processes may some-
times need to agree on the ordering of events, such as whether message ml from
process P was sent before or after message m2 from process Q.

As it turns out, synchronization in distributed systems is often much more dif-
ficult compared to synchronization in uniprocessor or multiprocessor systems.
The problems and solutions that are discussed in this chapter are, by their nature,
rather general, and occur in many different situations in distributed systems.

We start with a discussion of the issue of synchronization based on actual
time, followed by synchronization in which only relative ordering matters rather
than ordering in absolute time.

In many cases, it is important that a group of processes can appoint one proc-
ess as a coordinator, which can be done by means of election algorithms. We dis-
cuss various election algorithms in a separate section.

231

232 SYNCHRONIZATION CHAP. 6

Distributed algorithms come in all sorts and flavors and have been developed
for very different types of distributed systems. Many examples (and further refer-
ences) can be found in Andrews (2000) and Guerraoui and Rodrigues (2006).
More formal approaches to a wealth of algorithms can be found in text books
from Attiya and Welch (2004), Lynch (1996), and (Tel, 2000).

6.1 CLOCK SYNCHRONIZATION

In a centralized system, time is unambiguous. When a process wants to know
the time, it makes a system call and the kernel tells it. If process A asks for the
time. and then a little later process B asks for the time, the value that B gets will
be higher than (or possibly equal to) the value A got. It will certainly not be lower.
In a distributed system, achieving agreement on time is not trivial.

Just think, for a moment, about the implications of the lack of global time on
the UNIX make program, as a single example. Normally, in UNIX, large programs
are split up into multiple source files, so that a change to one source file only re-
quires one file to be recompiled, not all the files. If a program consists of 100
files, not having to recompile everything because one file has been changed
greatly increases the speed at which programmers can work.

The way make normally works is simple. When the programmer has finished
changing all the source files, he runs make, which examines the times at which all
the source and object files were last modified. If the source file input. c has time
2151 and the corresponding object file input.o has time 2150, make knows that
input.c has been changed since input.o was created, and thus input.c must be re-
compiled. On the other hand, if output.c has time 2144 and output.o has time 2145,
no compilation is needed. Thus make goes through all the source files to find out
which ones need to be recompiled and calls the compiler to recompile them.

Now imagine what could happen in a distributed system in which there were
no global agreement on time. Suppose that output.o has time 2144 as above, and
shortly thereafter output.c is modified but is assigned time 2143 because the clock
on its machine is slightly behind, as shown in Fig. 6-1. Make will not call the
compiler. The resulting executable binary program will then contain a mixture of
object files from the old sources and the new sources. It will probably crash and
the programmer will go crazy trying to understand what is wrong with the code.

There are many more examples where an accurate account of time is needed.
The example above can easily be reformulated to file timestamps in general. In
addition, think of application domains such as financial brokerage, security audit-
ing, and collaborative sensing, and it will become clear that accurate timing is im-
portant. Since time is so basic to the way people think and the effect of not having
all the clocks synchronized can be so dramatic, it is fitting that we begin our study
of synchronization with the simple question: Is it possible to synchronize all the
clocks in a distributed system? The answer is surprisingly complicated.

Figure 6-1. When each machine has its own clock, an event that occurred after
another event may nevertheless be assigned an earlier time.

6.1.1 Physical Clocks

Nearly all computers have a circuit for keeping track of time. Despite the
widespread use of the word "clock" to refer to these devices, they are not actually
clocks in the usual sense. Timer is perhaps a better word. A computer timer is
usually a precisely machined quartz crystal. When kept under tension, quartz crys-
tals oscillate at a well-defined frequency that depends on the kind of crystal, how
it is cut, and the amount of tension. Associated with each crystal are two registers,
a counter and a holding register. Each oscillation of the crystal decrements the
counter by one. When the counter gets to zero, an interrupt is generated and the
counter is reloaded from the holding register. In this way, it is possible to program
a timer to generate an interrupt 60 times a second, or at any other desired fre-
quency. Each interrupt is called one clock tick.

When the system is booted, it usually asks the user to enter the date and time,
which is then converted to the number of ticks after some known starting date and
stored in memory. Most computers have a special battery-backed up CMOS RAM
so that the date and time need not be entered on subsequent boots. At every clock
tick, the interrupt service procedure adds one to the time stored in memory. In this
way, the (software) clock is kept up to date.

With a single computer and a single clock, it does not matter much if this
clock is off by a small amount. Since all processes on the machine use the same.
clock, they will still be internally consistent. For example, if the file input.c has
time 2151 and file input.o has time 2150, make will recompile the source file,
even if the clock is off by 2 and the true times are 2153 and 2152, respectively.
All that really matters are the relative times.

As soon as multiple CPUs are introduced, each with its own clock, the situa-
tion changes radically. Although the frequency at which a crystal oscillator runs is
usually fairly stable, it is impossible to guarantee that the crystals in different
computers all run at exactly the same frequency. In practice, when a system has n
computers, alln crystals will run at slightly different rates, causing the (software)
clocks gradually to get out of synch and give different values when read out. This
difference in time values is called clock skew. As a consequence of this clock

233CLOCK SYNCHRONIZATIONSEC. 6.1

234 SYNCHRONIZATION CHAP. 6

skew, programs that expect the time associated with a file, object, process, or
message to be correct and independent of the machine on which it was generated
(i.e., which clock it used) can fail, as we saw in the make example above.

In some systems (e.g., real-time systems), the actual clock time is important.
Under these circumstances, external physical clocks are needed. For reasons of ef-
ficiency and redundancy, multiple physical clocks are generally considered desir-
able, which yields two problems: (1) How do we synchronize them with real-
world clocks. and (2) How do we synchronize the clocks with each other?

Before answering these questions, let us digress slightly to see how time is ac-
tually measured. It is not nearly as easy as one might think, especially when high
accuracy is required. Since the invention of mechanical clocks in the 17th century,
time has been measured astronomically. Every day, the sun appears to rise on the
eastern horizon, then climbs to a maximum height in the sky, and finally sinks in
the west. The event of the sun's reaching its highest apparent point in the sky is
called the transit of the sun. This event occurs at about noon each day. The in-
terval between two consecutive transits of the sun is called the solar day. Since
there are 24 hours in a day, each containing 3600 seconds, the solar second is de-
fined as exactly 1I86400th of a solar day. The geometry of the mean solar day cal-
culation is shown in Fig. 6-2.

Figure 6-2. Computation of the mean solar day.

In the 1940s, it was established that the period of the earth's rotation is not
constant. The earth is slowing down due to tidal friction and atmospheric drag.
Based on studies of growth patterns in ancient coral, geologists now believe that
300 million years ago there were about 400 days per year. The length of the year
(the time for one trip around the sun) is not thought to have changed; the day has
simply become longer. In addition to this long-term trend, short-term variations in

SEC.6.1 CLOCKSYNCHROMZATION 235
the length of the day also occur, probably caused by turbulence deep in the earth's
core of molten iron. These revelations led astronomers to compute the length of
the day by measuring a large number of days and taking the average before divid-
ing by 86,400. The resulting quantity was called the mean solar second.

With the invention of the atomic clock in 1948, it became possible to measure
time much more accurately, and independent of the wiggling and wobbling of the
earth, by counting transitions of the cesium 133 atom. The physicists took over the
job of timekeeping from the astronomers and defined the second to be the time it
takes the cesium 133 atom to make exactly 9,192,631,770 transitions. The choice
of 9,192,631,770 was made to make the atomic second equal to the mean solar
second in the year of its introduction. Currently, several laboratories around the
world have cesium 133 clocks. Periodically, each laboratory tells the Bureau
International de l'Heure (BIR) in Paris how many times its clock has ticked. The
BIR averages these to produce International Atomic Time, which is abbreviated
TAl. Thus TAI is just the mean number of ticks of the cesium 133 clocks since
midnight on Jan. 1,1958 (the beginning of time) divided by 9,192,631,770.

Although TAl is highly stable and available to anyone who wants to go to the
trouble of buying a cesium clock, there is a serious problem with it; 86,400 TAl
seconds is now about 3 msec less than a mean solar day (because the mean solar
day is getting longer all the time). Using TAl for keeping time would mean that
over the course of the years, noon would get earlier and earlier, until it would
eventually occur in the wee hours of the morning. People might notice this and we
could have the same kind of situation as occurred in 1582 when Pope Gregory
XIII decreed that 10 days be omitted from the calendar. This event caused riots in
the streets because landlords demanded a full month's rent and bankers a full
month's interest, while employers refused to pay workers for the 10 days they did
not work, to mention only a few of the conflicts. The Protestant countries, as a
matter of principle, refused to have anything to do with papal decrees and did not
accept the Gregorian calendar for 170years.

Figure 6-3. TAl seconds are of constant length, unlike solar seconds. Leap
seconds are introduced when necessary to keep in phase with the sun.

BIR solves the problem by introducing leap seconds whenever the dis-
crepancy between TAI and solar time grows to 800 msec. The use of leap seconds

236 SYNCHRONIZATION CHAP. 6

is iJlustrated in Fig. 6-3. This correction gives rise to a time system based on con-
stant TAl seconds but which stays in phase with the apparent motion of the sun. It
is caned Universal Coordinated Time, but is abbreviated as UTC. UTC is the
basis of all modern civil timekeeping. It has essentially replaced the old standard,
Greenwich Mean Time. which is astronomical time.

Most electric power companies synchronize the timing of their 60-Hz or 50-
Hz clocks to UTC, so when BIH announces a leap second, the power companies
raise their frequency to 61 Hz or 51 Hz for 60 or 50 sec. to advance all the clocks
in their distribution area. Since I sec is a noticeable interval for a computer, an
operating system that needs to keep accurate time over a period of years must
have special software to account for leap seconds as they are announced (unless
they use the power line for time, which is usually too crude). The total number of
leap seconds introduced into UTC so far is about 30.

To provide UTC to people who need precise time, the National Institute of
Standard Time (NIST) operates a shortwave radio station with call letters WWV
from Fort Collins, Colorado. WWV broadcasts a short pulse at the start of each
UTC second. The accuracy of WWV itself is about ±l msec, but due to random
atmospheric fluctuations that can affect the length of the signal path, in practice
the accuracy is no better than ±10 msec. In England, the station MSF, operating
from Rugby, Warwickshire, provides a similar service, as do stations in several
other countries.

Several earth satellites also offer a UTC service. The Geostationary Environ-
ment Operational Satellite can provide UTC accurately to 0.5 msec, and some
other satellites do even better.

Using either shortwave radio or satellite services requires an accurate know-
ledge of the relative position of the sender and receiver, in order to compensate
for the signal propagation delay. Radio receivers for WWV, GEOS, and the other
UTC sources are commercially available.

6.1.2 Global Positioning System

As a step toward actual clock synchronization problems, we first consider a
related problem, namely determining one's geographical position anywhere on
Earth. This positioning problem is by itself solved through a highly specific. dedi-
cated distributed system, namely GPS, which is an acronym for global posi-
tioning system. GPS is a satellite-based distributed system that was launched in
1978. Although it has been used mainly for military applications, in recent years it
has found its way to many civilian applications, notably for traffic navigation.
However, many more application domains exist. For example, GPS phones now
allow to let callers track each other's position, a feature which may show to be
extremely handy when you are lost or in trouble. This principle can easily be
applied to tracking other things as well, including pets, children, cars, boats, and
so on. An excellent overview of GPS is provided by Zogg (2002).

SEC. 6.1 CLOCK SYNCHRONIZATION 237

GPS uses 29 satellites each circulating in an orbit at a height of approximately
20,000 km. Each satellite has up to four atomic clocks, which are regularly cali-
brated from special stations on Earth. A satellite continuously broadcasts its posi-
tion, and time stamps each message with its local time. This broadcasting allows
every receiver on Earth to accurately compute its own position using, in principle,
only three satellites. To explain, let us first assume that all clocks, including the
receiver's, are synchronized.

- In order to compute a position, consider first the two-dimensional case, as
shown in Fig. 6-4, in which two satellites are drawn, along with the circles repres-
enting points at the same distance from each respective satellite. The y-axis
represents the height, while the x-axis represents a straight line along the Earth's
surface at sea level. Ignoring the highest point, we see that the intersection of the
two circles is a unique point (in this case, perhaps somewhere up a mountain).

Figure 6-4. Computing a position in a two-dimensional space.

This principle of intersecting circles can be expanded to three dimensions,
meaning that we need three satellites to determine the longitude, latitude, and alti-
tude of a receiver on Earth. This positioning is all fairly straightforward, but mat-
ters become complicated when we can no longer assume that all clocks are per-
fectly synchronized.

There are two important real-world facts that we need to take into account:

1. It takes a while before data on a satellite's position reaches the re-
cerver,

2. The receiver's clock is generally not in synch with that of a satellite.

Assume that the timestamp from a satellite is completely accurate. Let Ar denote
the deviation of the receiver's clock from the actual time. When a message is

238 SYNCHRONlZA nON CHAP. 6

where Xi,)'i. and Zi denote the coordinates of satellite i. What we see now is that if
we have four satellites, we get four equations in four unknowns, allowing us to
solve the coordinates Xp)'p and z, for the receiver, but also b.r. In other words, a
GPS measurement will also give an account of the actual time. Later in this
chapter we will return to determining positions following a similar approach.

So far, we have assumed that measurements are perfectly accurate. Of course,
they are not. For one thing, GPS does not take leap seconds into account. In other
words, there is a systematic deviation from UTe, which by January 1, 2006 is 14
seconds. Such an error can be easily compensated for in software. However, there
are many other sources of errors, starting with the fact that the atomic clocks in
the satellites are not always in perfect synch, the position of a satellite is not
known precisely, the receiver's clock has a finite accuracy, the signal propagation
speed is not constant (as signals slow down when entering, e.g., the ionosphere),
and so on. Moreover, we all know that the earth is not a perfect sphere, leading to
further corrections.

By and large, computing an accurate position is far from a trivial undertaking
and requires going down into many gory details. Nevertheless, even with rela-
tively cheap GPS receivers, positioning can be precise within a range of 1-5
meters. Moreover, professional receivers (which can easily be hooked up in a
computer network) have a claimed error of less than 20-35 nanoseconds. Again,
we refer to the excellent overview by Zogg (2002) as a first step toward getting
acquainted with the details.

6.1.3 Clock Synchronization Algorithms

If one machine has a WWV receiver, the goal becomes keeping all the other
machines synchronized to it. If no machines have WWV receivers, each machine
keeps track of its own time, and the goal is to keep all the machines together as
well as possible. Many algorithms have been proposed for doing this synchroniza-
tion. A survey is given in Ramanathan et a1.(1990).

received from satellite i with timestamp Ti, then the measured delay b.i by the re-
ceiver consists of two components: the actual delay, along with its own deviation:

As signals travel with the speed of light, c, the measured distance of the satellite is
clearly c b.i' With

being the real distance between the receiver and the satellite, the measured dis-
tance can be rewritten to d, + C b.r. The real distance is simply computed as:

SEC.6.1 CLOCKSYNCHRON~ATION 239

the timer can be said to be working within its specification. The constant p is
specified by the manufacturer and is known as the maximum drift rate. Note
that the maximum drift rate specifies to what extent a clock's skew is allowed to
fluctuate. Slow, perfect, and fast clocks are shown in Fig. 6-5.

All the algorithms have the same underlying model of the system. Each ma-
chine is assumed to have a timer that causes an interrupt H times a second. When
this timer goes off, the interrupt handler adds 1 to a software clock that keeps
track of the number of ticks (interrupts) since some agreed-upon time in the past.
Let us call the value of this clock C. More specifically, when the UTC time is t,
the value of the clock on machine p is CpU). In a perfect world, we would have
CpU)= t for all p and all t. In other words, C;U)=dCldt ideally should be 1. C;(t)
is called the frequency of p'» clock at time t. The skew of the clock is defined as
C;(t) - 1 and denotes the extent to which the frequency differs from that of a per-
fect clock. The offset relative to a specific time t is CpU) - t.

Real timers do not interrupt exactly H times a second. Theoretically, a timer
with H = 60 should generate 216,000 ticks per hour. In practice, the relative error
obtainable with modem timer chips is about 10-5, meaning that a particular ma-
chine can get a value in the range 215,998 to 216,002 ticks per hour. More pre-
cisely, if there exists some constant p such that

Figure 6-5. The relation between clock time and UTe when clocks tick at dif-
ferent rates.

If two clocks are drifting from UTC in the opposite direction, at a time dt
after they were synchronized, they may be as much as 2p & apart. If the operating
system designers want to guarantee that no two clocks ever differ by more than 0,
clocks must be resynchronized (in software) at least every 0/2p seconds. The var-
ious algorithms differ in precisely how this resynchronization is done.

240 SYNCHRONIZA nON CHAP. 6

Network Time Protocol

A common approach in many protocols and originally proposed by Cristian
(1989) is to let clients contact a time server. The latter can accurately provide the
current time, for example, because it is equipped with a WWV receiver or an
accurate clock. The problem, of course, is that when contacting the server, mes-
sage delays will have outdated the reported time. The trick is to find a good esti-
mation for these delays. Consider the situation sketched in Fig. 6-6.

Figure 6-6. Getting the current time from a time server.

Of course, time is not allowed to run backward. If A's clock is fast, e < 0, mean-
ing that A should. in principle, set its clock backward. This is not allowed as it
could cause serious problems such as an object file compiled just after the clock
change having a time earlier than the source which was modified just before the
clock change.

Such a change must be introduced gradually. One way is as follows. Suppose
that the timer is set to generate 100 interrupts per second. Normally, each interrupt
would add 10 msec to the time. When slowing down, the interrupt routine adds
only 9 msec each time until the correction has been made. Similarly, the clock can
be advanced gradually by adding 11 msec at each interrupt instead of jumping it
forward all at once.

In the case of the network time protocol (NTP), this protocol is set up pair- .
wise between servers. In other words, B will also probe A for its current time. The
offset e is computed as given above, along with the estimation 8 for the delay:

In this case, A will send a request to B, timestamped with value T i- B, in turn,
will record the time of receipt T2 (taken from its own local clock), and returns a
response timestamped with value T 3, and piggybacking the previously recorded
value T2. Finally, A records the time of the response's arrival, T4. Let us assume
that the propagation delays from A to B is roughly the same as B to A, meaning
that T2-T1 ::::T4-T3- In that case, A can estimate its offset relative to Bas

SEC. 6.1 CLOCK SYNCHRONIZATION 241

Eight pairs of (8,8) values are buffered, finally taking the minimal value found for
8 as the best estimation for the delay between the two servers, and subsequently
the associated value e as the most reliable estimation of the offset.

Applying NTP symmetrically should, in principle, also let B adjust its clock to
that of A. However, if B's clock is known to be more accurate, then such an
adjustment would be foolish. To solve this problem, NTP divides servers into
strata. A server with a reference clock such as a WWV receiver or an atomic
clock, is known to be a stratum-I server (the clock itself is said to operate at
stratum 0). When A contacts B, it will only adjust its time if its own stratum level
is higher than that of B .. Moreover, after the synchronization, A's stratum level
will become one higher than that of B. In other words, if B is a stratum-k server,
then A will become a stratum-(k+l) server if its original stratum level was already
larger than k. Due to the symmetry of NTP, if A's stratum level was lower than
that of B, B will adjust itself to A.

There are many important features about NTP, of which many relate to identi-
fying and masking errors, but also security attacks. NTP is described in Mills
(1992) and is known to achieve (worldwide) accuracy in the range of 1-50 msec.
The newest version (NTPv4) was initially documented only by means of its
implementation, but a detailed description can now be found in Mills (2006).

The Berkeley Algorithm

In many algorithms such as NTP, the time server is passive. Other machines
periodically ask it for the time. All it does is respond to their queries. In Berkeley
UNIX, exactly the opposite approach is taken (Gusella and Zatti, 1989). Here the
time server (actually, a time daemon) is active, polling every machine from time
to time to ask what time it is there. Based on the answers, it computes an average
time and tells all the other machines to advance their clocks to the new time or
slow their clocks down until some specified reduction has been achieved. This
method is suitable for a system in which no machine has a WWV receiver. The
time daemon's time must be set manually by the operator periodically. The meth-
od is illustrated in Fig. 6-7.

In Fig. 6-7(a), at 3:00, the time daemon tells the other machines its time and
asks for theirs. In Fig. 6-7(b), they respond with how far ahead or behind the time
daemon they are. Armed with these numbers, the time daemon computes the aver-
age and tells each machine how to adjust its clock [see Fig. 6-7(c)].

Note that for many purposes, it is sufficient that all machines agree on the
same time. It is not essential that this time also agrees with the real time as
announced on the radio every hour. If in our example of Fig. 6-7 the time
daemon's clock would never be manually calibrated, no harm is done provided

242 SYNCHRONIZA TION

An important advantage of more traditional distributed systems is that we can
easily and efficiently deploy time servers. Moreover, most machines can contact
each other, allowing for a relatively simple dissemination of information. These
assumptions are no longer valid in many wireless networks, notably sensor net-
works. Nodes are resource constrained, and multihop routing is expensive. In ad-
dition, it is often important to optimize algorithms for energy consumption. These
and other observations have led to the design of very different clock synchroniza-
tion algorithms for wireless networks. In the following, we consider one specific
solution. Sivrikaya and Yener (2004) provide a brief overview of other solutions.
An extensive survey can be found in Sundararaman et al. (2005).

Reference broadcast synchronization (RBS) is a clock synchronization pro-
tocol that is quite different from other proposals (Elson et al., 2002). First, the
protocol does not assume that there is a single node with an accurate account of
the actual time available. Instead of aiming to provide all nodes UTe time, it aims
at merely internally synchronizing the clocks, just as the Berkeley algorithm does.
Second, the solutions we have discussed so far are designed to bring the sender
and receiver into synch, essentially following a two-way protocol. RBS deviates
from this pattern by letting only the receivers synchronize, keeping the sender out
of the loop.

In RBS, a sender broadcasts a reference message that will allow its receivers
to adjust their clocks. A key observation is that in a sensor network the time to

CHAP. 6

Figure 6-7. (a) The time daemon asks all the other machines for their clock
values. (b) The machines answer. (c) The time daemon tells everyone how to
adjust their clock.

none of the other nodes communicates with external computers. Everyone will
just happily agree on a current time, without that value having any relation with
reality.

Clock Synchronization in Wireless Networks

243

propagate a signal to other nodes is roughly constant, provided no multi-hop rout-
ing is assumed. Propagation time in this case is measured from the moment that a
message leaves the network interface of the sender. As a consequence, two impor-
tant sources for variation in message transfer no longer play a role in estimating
delays: the time spent to construct a message, and the time spent to access the net-
work. This principle is shown in Fig. 6-8.

Figure 6-8. (a) The usual critical path in determining network delays. (b) The
critical path in the case of RBS.

Note that in protocols such as NTP, a timestamp is added to the message before it
is passed on the network interface. Furthermore, as wireless networks are based
on a contention protocol, there is generally no saying how long it will take before
a message can actually be transmitted. These factors of nondeterminism are elim-
inated in RBS. What remains is the delivery time at the receiver, but this time
varies considerably less than the network-access time.

The idea underlying RBS is simple: when a node broadcasts a reference mes-
sage m, each node p simply records the time Tp,m that it received m. Note that Tp.m
is read from p' s local clock. Ignoring clock skew, two nodes p and q can exchange
each other's delivery times in order to estimate their mutual, relative offset:

where M is the total number of reference messages sent. This information is im-
portant: node p will know the value of q's clock relative to its own value. More-
over, if it simply stores these offsets, there is no need to adjust its own clock,
which saves energy.

Unfortunately, clocks can drift apart. The effect is that simply computing the
average offset as done above will not work: the last values sent are simply less

CLOCKSYNCHRON~ATIONSEC. 6.1

244 SYNCHRONIZA TJON CHAP. 6

accurate than the first ones. Moreover, as time goes by, the offset will presumably
increase. Elson et al. use a very simple algorithm to compensate for this: instead
of computing an average they apply standard linear regression to compute the
offset as a function:

6.2 LOGICAL CLOCKS
So far, we have assumed that clock synchronization is naturally related to real

time. However, we have also seen that it may be sufficient that every node agrees
on a current time, without that time necessarily being the same as the real time.
We can go one step further. For running make, for example, it is adequate that two
nodes agree that input.o is outdated by a new version of input.c. In this case,
keeping track of each other's events (such as a producing a new version of
input.c) is what matters. For these algorithms, it is conventional to speak of the
clocks as logical clocks.

In a classic paper, Lamport (1978) showed that although clock synchroniza-
tion is possible, it need not be absolute. If two processes do not interact, it is not
necessary that their clocks be synchronized because the lack of synchronization
would not be observable and thus could not cause problems. Furthermore, he
pointed out that what usually matters is not that all processes agree on exactly
what time it is, but rather that they agree on the order in which events occur. In
the make example, what counts is whether input.c is older or newer than input.o,
not their absolute creation times.

In this section we will discuss Lamport's algorithm, which synchronizes logi-
cal clocks. Also, we discuss an extension to Lamport's approach, called vector
timestamps.

6.2.1 Lamport's Logical Clocks

To synchronize logical clocks, Lamport defined a relation called happens-be-
fore. The expression a ~ b is read "a happens before b" and means that all
processes agree that first event a occurs, then afterward, event b occurs. The
happens-before relation can be observed directly in two situations:

1. If a and b are events in the same process, and a occurs before b, then
a ~ b is true.

2. If a is the event of a message being sent by one process, and b is the
event of the message being received by another process, then a ~ b

The constants a and P are computed from the pairs (Tp,k,Tq,k). This new form 'will
allow a much more accurate computation of q's current clock value by node p,
and vice versa.

SEC. 6.2 LOGICAL CLOCKS 245

is also true. A message cannot be received before it is sent, or even at
the same time it is sent, since it takes a finite, nonzero amount of
time to arrive.

Happens-before is a transitive relation, so if a ~ band b ~ c, then a ~ c. If
two events, x and y, happen in different processes that do not exchange messages
(not even indirectly via third parties), then x ~ y is not true, but neither is y ~ x.
These events are said to be concurrent, which simply means that nothing can be
said (or need be said) about when the events happened or which event happened
first.

What we need is a way of measuring a notion of time such that for every
event, a, we can assign it a time value C (a) on which all processes agree. These
time values must have the property that if a ~ b, then C(a) < C(b). To rephrase
the conditions we stated earlier, if a and b are two events within the same process
and a occurs before b, then C(a) < C(b). Similarly, if a is the sending of a mes-
sage by one process and b is the reception of that message by another process,
then C (a) and C (b) must be assigned in such a way that everyone agrees on the
values of C (a) and C (b) with C (a) < C (b). In addition, the clock time, C, must
always go forward (increasing), never backward (decreasing). Corrections to time
can be made by adding a positive value, never by subtracting one.

Now let us look at the algorithm Lamport proposed for assigning times to
events. Consider the three processes depicted in Fig. 6-9(a). The processes run on
different machines, each with its own clock, running at its own speed. As can be
seen from the figure, when the clock has ticked 6 times in process PI, it has ticked
8 times in process Pz and 10 times in process P3' Each clock runs at a constant
rate, but the rates are different due to differences in the crystals.

Figure 6-9. (a) Three processes, each with its own clock. The clocks run at dif-
ferent rates. (b) Lamport's algorithm corrects the clocks.

246 SYNCHRONIZA TlON CHAP. 6

At time 6, process P, sends message 111 I to process P2• How long this mes-
sage takes to arrive depends on whose clock you believe. In any event, the clock
in process P2 reads 16 when it arrives. If the message carries the starting time, 6,
in it, process P2 will conclude that it took 10 ticks to make the journey. This value
is certainly possible. According to this reasoning, message m 2 from P2 to R takes
16 ticks, again a plausible value.

Now consider message m 3- It leaves process P3 at 60 and arrives at P2 at '56.
Similarly, message m4 from P2 to PI leaves at 64 and arrives at 54. These values
are clearly impossible. It is this situation that must be prevented.

Lamport's solution follows directly from the happens-before relation. Since
m 3 left at 60, it must arrive at 61 or later. Therefore, each message carries the
sending time according to the sender's clock. When a message arrives and the re-
ceiver's clock shows a value prior to the time the message was sent, the receiver
fast forwards its clock to be one more than the sending time. In Fig. 6-9(b) we see
that 1113 now arrives at 61. Similarly, m4 arrives at 70.

To prepare for our discussion on vector clocks, let us formulate this procedure
more precisely. At this point, it is important to distinguish three different layers of
software as we already encountered in Chap. 1: the network, a middleware layer,
and an application layer, as shown in Fig. 6-10. What follows is typically part of
the middleware layer.

Figure 6-10. The positioning of Lamport's logical clocks in distributed systems.

To implement Lamport's logical clocks, each process Pi maintains a local counter
G. These counters are updated as follows steps (Raynal and Singhal, 1996):

1. Before executing an event (i.e., sending a message over the network,
delivering a message to an application, or some other internal event),
Pi executes G f- G + 1.

2. When process Pi sends a message m to Pj' it sets 11l'S timestamp
ts (m) equal to G after having executed the previous step.

SEC. 6.2 LOGICAL CLOCKS 247
3. Upon the receipt of a message m, process lj adjusts its own local

counter as 0 f- max{0, ts (m) }, after which it then executes the
first step and delivers the message to the application.

In some situations, an additional requirement is desirable: no two events ever
occur at exactly the same time. To achieve this goal, we can attach the number of
the process in which the event occurs to the low-order end of the time, separated
by a decimal point. For example, an event at time 40 at process Pi will be time-
stamped with 40.i.

Note that by assigning the event time C(a) f- q(a) if a happened at process
Pi at time q(a), we have a distributed implementation of the global time value we
were initially seeking for.

Example: Totally Ordered Multicasting

As an application of Lamport's logical clocks, consider the situation in which
a database has been replicated across several sites. For' example, to improve query
performance, a bank may place copies of an account database in two different
cities, say New York and San Francisco. A query is always forwarded to the
nearest copy. The price for a fast response to a query is partly paid in higher
update costs, because each update operation must be carried out at each replica.

In fact, there is a more stringent requirement with respect to updates. Assume
a customer in San Francisco wants to add $100 to his account, which currently
contains $1,000. At the same time, a bank employee in New York initiates an
update by which the customer's account is to be increased with 1 percent interest.
Both updates should be carried out at both copies of the database. However, due
to communication delays in the underlying network, the updates may arrive in the
order as shown in Fig. 6-11.

Figure 6-11. Updating a replicated database and leaving it in an inconsistent
state.

The customer's update operation is performed in San Francisco before the
interest update. In contrast, the copy of the account in the New York replica is

248 SYNCHRONIZA nON CHAP. 6

first updated with the 1 percent interest, and after that with the $100 deposit. Con-
sequently, the San Francisco database will record a total amount of $1,] 11,
whereas the New York database records $1,110.

The problem that we are faced with is that the two update operations should
have been performed in the same order at each copy. Although it makes a differ-
ence whether the deposit is processed before the interest update or the other, way
around, which order is followed is not important from a consistency point of view.
The important issue is that both copies should be exactly the same. In general,
situations such as these require a totally-ordered multicast, that is, a multicast
operation by which all messages are delivered in the same order to each recei ver.
Lamport's logical clocks can be used to implement totally-ordered multi casts in a
completely distributed fashion.

Consider a group of processes multicasting messages to each other. Each mes-
sage is always timestamped with the current (logical) time of its sender. When a
message is multicast, it is conceptually also sent to the sender. In addition, we
assume that messages from the same sender are received in the order they were
sent, and that no messages are lost.

When a process receives a message, it is put into a local queue, ordered ac-
cording to its timestamp. The receiver multicasts an acknowledgment to the other
processes. Note that if we follow Lamport's algorithm for adjusting local clocks,
the timestamp of the received message is lower than the timestamp of the ack-
nowledgment. The interesting aspect of this approach is that all processes will
eventually have the same copy of the local queue (provided no messages are re-
moved).

A process can deliver a queued message to the application it is running only
when that message is at the head of the queue and has been acknowledged by each
other process. At that point, the message is removed from the queue and handed
over to the application; the associated acknowledgments can simply be removed.
Because each process has the same copy of the queue, all messages are delivered
in the same order everywhere. In other words, we have established totally-ordered
multicasting.

As we shall see in later chapters. totally-ordered multicasting is an important
vehicle for replicated services where the replicas are kept consistent by letting
them execute the same operations in the same order everywhere. As the replicas
essentially follow the same transitions in the same finite state machine, it is also
known as state machine replication (Schneider, 1990).

6.2.2 Vector Clocks

Lamport's logical clocks lead to a situation where all events in a distributed
system are totally ordered with the property that if event a happened before event
b, then a will also be positioned in that ordering before b, that is, C (a) < C (b).

SEC. 6.2 LOGICAL CLOCKS 249
However, with Lamport clocks, nothing can be said about the relationship be-

tween two events a and b by merely comparing their time values C(a) and C(b),
respectively. In other words, if C(a) < C(b), then this does not necessarily imply
that a indeed happened before b. Something more is needed for that.

To explain, consider the messages as sent by the three processes shown in
Fig. 6-12. Denote by I'snd(mi) the logical time at which message m, was sent, and
likewise, by T,.cv (mi) the time of its receipt. By construction, we know that for
each message I'snd(mi) < T,.cy(mi). But what can we conclude in general from
T,.cv(mi) < I'snd(mj)?

Figure 6-12. Concurrent message transmission using logical clocks.

In the case for which mi=m 1 and mj=m 3, we know that these values
correspond to events that took place at process Pz, meaning that m-; was indeed
sent after the receipt of message mi. This may indicate that the sending of mes-
sage m-; depended on what was received through message mi. However, we also
know that T,.CY(m 1) <I'snd (m z). However, the sending of m z has nothing to do
with the receipt of mi.

The problem is that Lamport clocks do not capture causality. Causality can
be captured by means of vector clocks. A vector clock VC (a) assigned to an
event a has the property that if VC (a) < VC (b) for some event b, then event a is
known to causally precede event b. Vector clocks are constructed by letting each
process P, maintain a vector VCi with the following two properties:

1. VCj [i] is the number of events that have occurred so far at Pi. In
other words, VCj [i] is the local logical clock at process Pi.

2. If VCj U] = k then Pi knows that k events have occurred at Pj. It is
thus Pi'S knowledge of the local time at Pj.

The first property is maintained by incrementing VCj [i] at the occurrence of each
new event that happens at process Pi. The second property is maintained by

250 SYNCHRONIZATION CHAP. 6
piggybacking vectors along with messages that are sent. In particular, the follow-
ing steps are performed:

1. Before executing an event (i.e., sending a message over the network,
delivering a message to an application, or some other internal event),
Pi executes VCj [I] ~ VCj [i] + 1.

2. When process Pi sends a message m to lj, it sets m's (vector) time-
stamp ts (m) equal to VCj after having executed the previous step.

3. Upon the receipt of a message m, process lj adjusts its own vector by
setting VCj [k] ~ max {VCj [k], ts (m)[k]} for each k, after which it
executes the first step and delivers the message to the application.

Note that if an event a has timestamp ts (a), then ts (a)[I]-1 denotes the number
of events processed at P; that causally precede a. As a consequence, when lj
receives a message from Pi with timestamp ts (m), it knows about the number of
events that have occurred at Pi that causally preceded the sending of m. More im-
portant, however, is that lj is also told how many events at other processes have
taken place before Pi sent message m. In other words, timestamp ts (m) tells the
receiver how many events in other processes have preceded the sending of m, and
on which m may causally depend.

Enforcing Causal Communication

Using vector clocks, it is now possible to ensure that a message is delivered
only if all messages that causally precede it have also been received as well. To
enable such a scheme, we will assume that messages are multicast within a group
of processes. Note that this causally-ordered multicasting is weaker than the
totally-ordered multicasting we discussed earlier. Specifically, if two messages
are not in any way related to each other, we do not care in which order they are
delivered to applications. They may even be delivered in different order at differ-
ent locations.

Furthermore, we assume that clocks are only adjusted when sending and
receiving messages. In particular, upon sending a message, process P; will only
increment VCj [i] by 1. When it receives a message m with timestamp ts (m), it
only adjusts VCj [k] to max {VCj [k], ts (111)[k]} for each k.

Now suppose that lj receives a message m from Pi with (vector) timestamp
ts (m). The delivery of the message to the application layer will then be delayed
until the following two conditions are met:

SEC. 6.2 LOGICAL CLOCKS 251

The first condition states that m is the next message that lj was expecting from
process Pi' The second condition states that lj has seen all the messages that have
been seen by Pi when it sent message m. Note that there is no need for process Pj
to delay the delivery of its own messages.

As an example, consider three processes Po, Pb and P2 as shown in Fig. 6-
13. At local time (1,0,0), PI sends message m to the other two processes. After
its receipt by PI, the latter decides to send m», which arrives at P2 sooner than m.
At that point, the delivery of m» is delayed by P2 until m has been received and
delivered to P2's application layer.

Figure 6-13. Enforcing causal communication.

A Note on Ordered Message Delivery

Some middleware systems, notably ISIS and its successor Horus (Birman and
van Renesse, 1994), provide support for totally-ordered and causally-ordered (reli-
able) multicasting. There has been some controversy whether such support should
be provided as part of the message-communication layer, or whether applications
should handle ordering (see, e.g., Cheriton and Skeen, 1993; and Birman, 1994).
Matters have not been settled, but more important is that the arguments still hold
today.

There are two main problems with letting the middle ware deal with message
ordering. First, because the middle ware cannot tell what a message actually con-
tains, only potential causality is captured. For example, two messages from the
same sender that are completely independent will always be marked as causally
related by the middleware layer. This approach is overly restrictive and may lead
to efficiency problems.

A second problem is that not all causality may be captured. Consider an elec-
tronic bulletin board. Suppose Alice posts an article. If she then phones Bob tel-
ling about what she just wrote, Bob may post another article as a reaction without
having seen Alice's posting on the board. In other words, there is a causality be-
tween Bob's posting and that of Alice due to external communication. This
causality is not captured by the bulletin board system.

252 SYNCHRONIZA nON CHAP. 6

In essence, ordering issues, like many other application-specific communica-
tion issues, can be adequately solved by looking at the application for which com-
munication is taking place. This is also known as the end-to-end argument in
systems design (Saltzer et aI., 1984). A drawback of having only application-
level solutions is that a developer is forced to concentrate on issues that do not im-
mediately relate to the core functionality of the application. For example, ordering
may not be the most important problem when developing a messaging system
such as an electronic bulletin board. In that case, having an underlying communi-
cation layer handle ordering may tum out to be convenient. We will come across
the end-to-end argument a number of times, notably when dealing with security in
distributed systems.

6.3 MUTUAL EXCLUSION

Fundamental to distributed systems is the concurrency and collaboration
among multiple processes. In many cases, this also means that processes will need
to simultaneously access the same resources. To prevent that such concurrent ac-
cesses corrupt the resource, or make it inconsistent, solutions are needed to grant
mutual exclusive access by processes. In this section, we take a look at some of
the more important distributed algorithms that have been proposed. A recent sur-
vey of distributed algorithms for mutual exclusion is provided by Saxena and Rai
(2003). Older, but still relevant is Velazquez (1993).

6.3.1 Overview

Distributed mutual exclusion algorithms can be classified into two different
categories. In token-based solutions mutual exclusion is achieved by passing a
special message between the processes, known as a token. There is only one
token available and who ever has that token is allowed to access the shared re-
source. When finished, the token is passed on to a next process. If a process hav-
ing the token is not interested in accessing the resource, it simply passes it on.

Token-based solutions have a few important properties. First, depending on
the how the processes are organized, they can fairly easily ensure that every proc-
ess will get a chance at accessing the resource. In other words, they avoid starva-
tion. Second, deadlocks by which several processes are waiting for each other to
proceed, can easily be avoided, contributing to their simplicity. Unfortunately, the
main drawback of token-based solutions is a rather serious one: when the token is
lost (e.g., because the process holding it crashed), an intricate distributed proce-
dure needs to be started to ensure that a new token is created, but above all, that it
is also the only token.

As an alternative, many distributed mutual exclusion algorithms follow a
permission-based approach. In this case. a process wanting to access the re-

SEC. 6.3 MUTUAL EXCLUSION 253
source first requires the permission of other processes. There are many different
ways toward granting such a permission and in the sections that follow we will
consider a few of them.

6.3.2 A Centralized Algorithm

The most straightforward way to achieve mutual. exclusion in a distributed
system is to simulate how it is done in a one-processor system. One process is
elected as the coordinator. Whenever a process wants to access a shared resource,
it sends a request message to the coordinator stating which resource it wants to ac-
cess and asking for permission. If no other process is currently accessing that re-
source, the coordinator sends back a reply granting permission, as shown in
Fig.6-14(a). When the reply arrives, the requesting process can go ahead.

Figure 6-14. (a) Process 1 asks the coordinator for permission to access a
shared resource. Permission is granted. (b) Process 2 then asks permission to ac-
cess the same resource. The coordinator does not reply. (c) When process 1
releases the resource, it tells the coordinator, which then replies to 2.

Now suppose that another process, 2 in Fig. 6-14(b), asks for permission to
access the resource. The coordinator knows that a different process is already at
the resource, so it cannot grant permission. The exact method used to deny per-
mission is system dependent. In Fig. 6-14(b), the coordinator just refrains from
replying, thus blocking process 2, which is waiting for a reply. Alternatively, it
could send a reply saying "permission denied." Either way, it queues the request
from 2 for the time being and waits for more messages.

When process 1 is finished with the resource, it sends a message to the coordi-
nator releasing its exclusive access, as shown in Fig.6-14(c). The coordinator
takes the first item off the queue of deferred requests and sends that process a
grant message. If the process was still blocked (i.e., this is the first message to it),
it unblocks and accesses the resource. If an explicit message has already been sent
denying permission, the process will have to poll for incoming traffic or block
later. Either way, when it sees the grant, it can go ahead as well.

It is easy to see that the algorithm guarantees mutual exclusion: the coordina-
tor only lets one process at a time to the resource. It is also fair, since requests are

254 CHAP. 6SYNCHRONIZATION

granted in the order in which they are received. No process ever waits forever (no
starvation). The scheme is easy to implement, too, and requires only three mes-
sages per use of resource (request, grant, release). It's simplicity makes an attrac-
tive solution for many practical situations.

The centralized approach also has shortcomings. The coordinator is a single
point of failure, so if it crashes, the entire system may go down. If processes nor-
mally block after making a request, they cannot distinguish a dead coordinator
from "permission denied" since in both cases no message comes back. In addi-
tion, in a large system, a single coordinator can become a performance bottleneck.
Nevertheless, the benefits coming from its simplicity outweigh in many cases the
potential drawbacks. Moreover, distributed solutions are not necessarily better, as
our next example illustrates.

6.3.3 A Decentralized Algorithm

Having a single coordinator is often a poor approach. Let us take a look at
fully decentralized solution. Lin et al. (2004) propose to use a voting algorithm
that can be executed using a DHT-based system. In essence, their solution extends
the central coordinator in the following way. Each resource is assumed to be repli-
cated n times. Every replica has its own coordinator for controlling the access by
concurrent processes.

However, whenever a process wants to access the resource, it will simply
need to get a majority vote from 111 > nl2 coordinators. Unlike in the centralized
scheme discussed before, we assume that when a coordinator does not give per-
mission to access a resource (which it will do when it had granted permission to
another process), it will tell the requester.

This scheme essentially makes the original centralized solution less vulner-
able to failures of a single coordinator. The assumption is that when a coordinator
crashes, it recovers quickly but will have forgotten any vote it gave before it
crashed. Another way of viewing this is that a coordinator resets itself at arbitrary
moments. The risk that we are taking is that a reset will make the coordinator for-
get that it had previously granted permission to some process to access the re-
source. As a consequence, it may incorrectly grant this permission again to anoth-
er process after its recovery.

Let p be the probability that a coordinator resets during a time interval !:J.t. The
probability P [k] that k out of m coordinators reset during the same interval is then

Given that at least 2m - n coordinators need to reset in order to violate the
correctness of the voting mechanism, the probability that such a violation occurs
is then "'II P [k]. To give an impression of what this could mean, assume

k.Jk=2m-1I

SEC. 6.3 MUTUAL EXCLUSION 255
that we are dealing with a DHT-based system in which each node participates for
about 3 hours in a row. Let M be 10 seconds, which is considered to be a conser-
vative value for a single process to want to access a shared resource. (Different
mechanisms are needed for very long allocations.) With n = 32 and m = 0.75n, the
probability of violating correctness is less than 10-40. This probability is surely
smaller than the availability of any resource.

To implement this scheme, Lin et al. (2004) use a DHT-based system in
which a resource is replicated n times. Assume that the resource is known under
its unique name mame. We can then assume that the i-th replica is named
rname-i which is then used to compute a unique key using a known hash function.
As a consequence, every process can generate the n keys given a resource's name,
and subsequently lookup each node responsible for a replica (and controlling ac-
cess to that replica).

If permission to access the resource is denied (i.e., a process gets less than m
votes), it is assumed that it will back off for a randomly-chosen time, and make a
next attempt later. The problem with this scheme is that if many nodes want to ac-
cess the same resource, it turns out that the utilization rapidly drops. In other
words, there are so many nodes competing to get access that eventually no one is
able to get enough votes leaving the resource unused. A solution to solve this
problem can be found in Lin et al. (2004).

6.3.4 A Distributed Algorithm

To many, having a probabilistic ally correct algorithm is just not good enough.
So researchers have looked for deterministic distributed mutual exclusion algo-
rithms. Lamport's 1978 paper on clock synchronization presented the first one.
Ricart and Agrawala (1981) made it more efficient. In this section we will
describe their method.

Ricart and Agrawala's algorithm requires that there be a total ordering of all
events in the system. That is, for any pair of events, such as messages, it must be
unambiguous which one actually happened first. Lamport's algorithm presented in
Sec. 6.2.1 is one way to achieve this ordering and can be used to provide time-
stamps for distributed mutual exclusion.

The algorithm works as follows. When a process wants to access a shared re-
source, it builds a message containing the name of the resource, its process num-
ber, and the current (logical) time. It then sends the message to all other proc-
esses, conceptually including itself. The sending of messages is assumed to be
reliable; that is, no message is lost.

When a process receives a request message from another process, the action it
takes depends on its own state with respect to the resource named in the message.
Three different cases have to be clearly distinguished:

256 SYNCHRONIZATION CHAP. 6

1. If the receiver is not accessing the resource and does not want to ac-
cess it, it sends back an OK message to the sender.

2. If the receiver already has access to the resource, it simply does not
reply. Instead, it queues the request.

3. If the receiver wants to access the resource as well but has not yet
done so, it compares the timestamp of the incoming message with me.
one contained in the message that it has sent everyone. The lowest
one wins. If the incoming message has a lower timestamp, the re-
ceiver sends back an OK message. If its own message has a lower
timestamp, the receiver queues the incoming request and sends noth-
ing.

After sending out requests asking permission, a process sits back and waits
until everyone else has given permission. As soon as all the permissions are in, it
may go ahead. When it is finished, it sends OK messages to all processes on its
queue and deletes them all from the queue.

Let us try to understand why the algorithm works. If there is no conflict, it
clearly works. However, suppose that two processes try to simultaneously access
the resource, as shown in Fig. 6-15(a).

Figure 6-15. (a) Two processes want to access a shared resource at the same
moment. (b) Process 0 has the lowest timestamp. so it wins. (c) When process 0
is done, it sends an OK also, so 2 can now go ahead.

Process 0 sends everyone a request with timestamp 8, while at the same time,
process 2 sends everyone a request with timestamp 12. Process 1 is not interested
in the resource, so it sends OK to both senders. Processes 0 and 2 both see the
conflict and compare timestamps. Process 2 sees that it has lost, so it grants per-
mission to 0 by sending OK. Process 0 now queues the request from 2 for later
processing and access the resource, as shown in Fig. 6-15(b). When it is finished,
it removes the request from 2 from its queue and sends an OK message to process
2, allowing the latter to go ahead, as shown in Fig. 6-15(c). The algorithm works

SEC. 6.3 MUTUAL EXCLUSION 257
because in the case of a conflict, the lowest timestamp wins and everyone agrees
on the ordering of the timestamps.

Note that the situation in Fig. 6-15 would have been essentially different if
process 2 had sent its message earlier in time so that process 0 had gotten it and
granted permission before making its own request. In this case, 2 would have
noticed that it itself had already access to the resource at the time of the request,
and queued it instead of sending a reply.

As with the centralized algorithm discussed above, mutual exclusion is
guaranteed without deadlock or starvation. The number of messages required per
entry is now 2(n - 1), where the total number of processes in the system is n. Best
of all, no single point of failure exists.

Unfortunately, the single point of failure has been replaced by n points of
failure. If any process crashes, it will fail to respond to requests. This silence will
be interpreted (incorrectly) as denial of permission, thus blocking all subsequent
attempts by all processes to enter all critical regions. Since the probability of one
of the n processes failing is at least n times as large as a single coordinator failing,
we have managed to replace a poor algorithm with one that is more than n times
worse and requires much more network traffic as well.

The algorithm can be patched up by the same trick that we proposed earlier.
When a request comes in, the receiver always sends a reply, either granting or
denying permission. Whenever either a request or a reply is lost, the sender times
out and keeps trying until either a reply comes back or the sender concludes that
the destination is dead. After a request is denied, the sender should block waiting
for a subsequent OK message.

Another problem with this algorithm is that either a multicast communication
primitive must be used. or each process must maintain the group membership list
itself, including processes entering the group, leaving the group, and crashing.
The method works best with small groups of processes that never change their
group memberships.

Finally, recall that one of the problems with the centralized algorithm is that
making it handle all requests can lead to a bottleneck. In the distributed algorithm,
all processes are involved in all decisions concerning accessing the shared re-
source. If one process is unable to handle the load, it is unlikely that forcing
everyone to do exactly the same thing in parallel is going to help much.

Various minor improvements are possible to this algorithm. For example, get-
ting permission from everyone is really overkill. All that is needed is a method to
prevent two processes from accessing the resource at the same time. The algo-
rithm can be modified to grant permission when it has collected permission from a
simple majority of the other processes, rather than from all of them. Of course, in
this variation, after a process has granted permission to one process, it cannot
grant the same permission to another process until the first one has finished.

Nevertheless, this algorithm is slower, more complicated, more expensive,
and less robust that the original centralized one. Why bother studying it under

258 SYNCHRONIZATION CHAP. 6

these conditions? For one thing, it shows that a distributed algorithm is at least
possible, something that was not obvious when we started. Also, by pointing out
the shortcomings, we may stimulate future theoreticians to try to produce algo-
rithms that are actually useful. Finally, like eating spinach and learning Latin in
high school, some things are said to be good for you in some abstract way. It may
take some time to discover exactly what.

6.3.5 A Token Ring Algorithm

A completely different approach to deterministically achieving mutual exclu-
sion in a distributed system is illustrated in Fig. 6-16. Here we have a bus net-
work, as shown in Fig. 6-16(a), (e.g., Ethernet), with no inherent ordering of the
processes. In software, a logical ring is constructed in which each process is
assigned a position in the ring, as shown in Fig. 6-16(b). The ring positions may
be allocated in numerical order of network addresses or some other means. It does
not matter what the ordering is. All that matters is that each process knows who is
next in line after itself.

Figure 6-16. (a) An unordered group of processes on a network. (b) A logical
ring constructed in software.

When the ring is initialized, process 0 is given a token. The token circulates
around the ring. It is passed from process k to process k +1 (modulo the ring size)
in point-to-point messages. When a process acquires the token from its neighbor,
it checks to see if it needs to access the shared resource. If so, the process goes
ahead, does all the work it needs to, and releases the resources. After it has fin-
ished, it passes the token along the ring. It is not permitted to immediately enter
the resource again using the same token.

If a process is handed the token by its neighbor and is not interested in the re-
source, it just passes the token along. As a consequence, when no processes need
the resource, the token just circulates at high speed around the ring.

The correctness of this algorithm is easy to see. Only one process has the
token at any instant, so only one process can actually get to the resource. Since

SEC. 6.3 MUTUAL EXCLUSION 259
the token circulates among the processes in a well-defined order, starvation can-
not occur. Once a process decides it wants to have access to the resource, at worst
it will have to wait for every other process to use the resource.

As usual, this algorithm has problems too. If the token is ever lost, it must be
regenerated. In fact, detecting that it is lost is difficult, since the amount of time
between successive appearances of the token on the network is unbounded. The
fact that the token has not been spotted for an hour does not mean that it has been
lost; somebody may still be using it.

The algorithm also runs into trouble if a process crashes, but recovery is
easier than in the other cases. If we require a process receiving the token to ac-
knowledge receipt, a dead process will be detected when its neighbor tries to give
it the token and fails. At that point the dead process can be removed from the
group, and the token holder can throw the token over the head of the dead process
to the next member down the line, or the one after that, if necessary. Of course,
doing so requires that everyone maintain the current ring configuration.

6.3.6 A Comparison of the Four Algorithms

A brief comparison of the four mutual exclusion algorithms we have looked at
is instructive. In Fig. 6-17 we have listed the algorithms and three key properties:
the number of messages required for a process to access and release a shared re-
source, the delay before access can occur (assuming messages are passed sequen-
tially over a network), and some problems associated with each algorithm.

Figure 6-17. A comparison of three mutual exclusion algorithms.

The centralized algorithm is simplest and also most efficient. It requires only
three messages to enter and leave a critical region: a request, a grant to enter, and
a release to exit. In the decentralized case, we see that these messages need to be
carried out for each of the m coordinators, but now it is possible that several
attempts need to be made (for which we introduce the variable k). The distributed
algorithm requires n - 1 request messages, one to each of the other processes, and
an additional n - 1 grant messages, for a total of 2(n- 1). (We assume that only
point-to-point communication channels are used.) With the token ring algorithm,
the number is variable. If every process constantly wants to enter a critical region.

260 SYNCHRONIZATION CHAP. 6

then each token pass will result in one entry and exit, for an average of one mes-
sage per critical region entered. At the other extreme, the token may sometimes
circulate for hours without anyone being interested in it. In this case, the number
of messages per entry into a critical region is unbounded.

The delay from the moment a process needs to enter a critical region until its
actual entry also varies for the three algorithms. When the time using a resource is
short, the dominant factor in the delay is the actual mechanism for accessing a re-
source. When resources are used for a long time period, the dominant factor is
waiting for everyone else to take their tum. In Fig. 6-17 we show the former case.
It takes only two message times to enter a critical region in the centralized case,
but 3mk times for the decentralized case, where k is the number of attempts that
need to be made. Assuming that messages are sent one after the other, 2(n - 1)
message times are needed in the distributed case. For the token ring, the time
varies from 0 (token just arrived) to n - 1 (token just departed).

Finally, all algorithms except the decentralized one suffer badly in the event
of crashes. Special measures and additional complexity must be introduced to
avoid having a crash bring down the entire system. It is ironic that the distributed
algorithms are even more sensitive to crashes than the centralized one. In a system
that is designed to be fault tolerant, none of these would be suitable, but if crashes
are very infrequent, they might do. The decentralized algorithm is less sensitive to
crashes, but processes may suffer from starvation and special measures are needed
to guarantee efficiency.

6.4 GLOBAL POSITIONING OF NODES

When the number of nodes in a distributed system grows, it becomes increas-
ingly difficult for any node to keep track of the others. Such knowledge may be
important for executing distributed algorithms such as routing, multicasting, data
placement, searching, and so on. We have already seen different examples in
which large collections of nodes are organized into specific topologies that facili-
tate the efficient execution of such algorithms. In this section, we take a look at
another organization that is related to timing issues.

In geometric overlay networks each node is given a position in an 111-

dimensional geometric space, such that the distance between two nodes in that
space reflects a real-world performance metric. The simplest, and most applied
example, is where distance corresponds to internode latency. In other words.
given two nodes P and Q, then the distance d(P,Q) reflects how long it would
take for a message to travel from P to Q and vice versa.

There are many applications of geometric overlay networks. Consider the
situation where a Web site at server 0 has been replicated to multiple servers
S }.""Sk on the Internet. When a client C requests a page from 0, the latter may
decide to redirect that request to the server closest to C, that is, the one that will

SEC. 6.4 GLOBAL POSITIONING OF NODES 261

give the best response time. If the geometric location of C is known, as well as
those of each replica server, 0 can then simply pick that server S, for which
d(C,SJ is minimal. Note that such a selection requires only local processing at O.
In other words, there is, for example, no need to sample all the latencies between
C and each of the replica servers.

Another example, which we will work out in detail in the following chapter, is
optimal replica placement. Consider again a Web site that has gathered the posi-
tions of its clients. If the site were to replicate its content to K servers, it can com-
pute the K best positions where to place replicas such that the average client-to-
replica response time is minimal. Performing such computations is almost trivially
feasible if clients and servers have geometric positions that reflect internode laten-
cies.

As a last example, consider position-based routing (Araujo and Rodrigues,
2005; and Stojmenovic, 2002). In such schemes, a message is forwarded to its
destination using only positioning information. For example, a naive routing al-
gorithm to let each node forward a message to the neighbor closest to the destina-
tion. Although it can be easily shown that this specific algorithm need not con-
verge, it illustrates that only local information is used to take a decision. There is
no need to propagate link information or such to all nodes in the network, as is the
case with conventional routing algorithms.

Figure 6-18. Computing a node's position in a two-dimensional space.

Theoretically, positioning a node in an m-dimensional geometric space re-
quires m +1 distance measures to nodes with known positions. This can be easily
seen by considering the case m = 2, as shown in Fig. 6-18. Assuming that node P
wants to compute its own position, it contacts three other nodes with known posi-
tions and measures its distance to each of them. Contacting only one node would

262 SYNCHRONIZAnON CHAP. 6

As said, d, generally corresponds to measuring the latency between P and the
node at (Xj,yJ. This latency can be estimated as being half the round-trip delay,
but it should be clear that its value will be different over time. The effect is a dif-
ferent positioning whenever P would want to recompute its position. Moreover, if
other nodes would use P's current position to compute their own coordinates, then
it should be clear that the error in positioning P will affect the accuracy of the
positioning of other nodes.

Moreover, it should also be clear that measured distances by different nodes
will generally not even be consistent. For example, assume we are computing dis-
tances in a one-dimensional space as shown in Fig. 6-19. In this example, we see
that although R measures its distance to Q as 2.0, and d (P, Q) has been measured
to be 1.0, when R measures d (P,R) it finds 3.2, which is clearly inconsistent with
the other two measurements.

Figure 6-19. Inconsistent distance measurements in a one-dimensional space.

tell P about the circle it is located on; contacting only two nodes would tell it
about the position of the intersection of two circles (which generally consists of
two points); a third node would subsequently allow P to compute is actual loca-
tion.

Just as in GPS, node P can compute is own coordinates (xp,yp) by solving the
three equations with the two unknowns Xp and yp:

Fig. 6-19 also suggests how this situation can be improved. In our simple ex-
ample, we could solve the inconsistencies by merely computing positions in a
two-dimensional space. This by itself, however, is not a general solution when
dealing with many measurements. In fact, considering that Internet latency meas-
urements may violate the triangle inequality, it is generally impossible to resolve
inconsistencies completely. The triangle inequality states that in a geometric
snace. for any arbitrary three nodes P, Q, and R it must always be true that
d(P,K) S a~r,~) + a~~,J().

There are various ways to approach these issues. One approach, proposed by
Ng and Zhang (2002) is to use L special nodes b I' ... ,bL, known as landmarks.
Landmarks measure their pairwise latencies d(bj,bj) and subsequently let a

SEC. 6.4 GLOBAL POSITIONING OF NODES 263

As it turns out, with well-chosen landmarks, m can be as small as 6 or 7, with
"d(P,Q) being no more than a factor 2 different from the actual latency d(P,Q) for
arbitrary nodes P and Q (Szyamniak et aI., 2004).

Another way to tackle this problem is to view the collection of nodes as a
huge system in which nodes are attached to each other through springs. In this
case, I d(P,Q) - d(P,Q) I indicates to what extent nodes P and Q are displaced
relative to the situation in which the system of springs would be at rest. By letting
each node (slightly) change its position, it can be shown that the system will even-
tually converge to an optimal organization in which the aggregated error is mini-
mal. This approach is followed in Vivaldi, of which the details can be found in
Dabek et al. (2004a).

6.5 ELECTION ALGORITHMS

Many distributed algorithms require one process to act as coordinator, initia-
tor, or otherwise perform some special role. In general, it does not matter which
process takes on this special responsibility, but one of them has to do it. In this
section we will look at algorithms for electing a coordinator (using this as a gen-
eric name for the special process).

If all processes are exactly the same, with no distinguishing characteristics,
there is no way to select one of them to be special -.Consequently, we will assume
that each process has a unique number, for example, its network address (for sim-
plicity, we will assume one process per machine). In general, election algorithms
attempt to locate the process with the highest process number and designate it as
coordinator. The algorithms differ in the way they do the location.

central node compute the coordinates for each landmark. To this end, the central
node seeks to minimize the following aggregated error function:

"where d(bi,bj) corresponds to the geometric distance, that is, the distance after
nodes b, and b, have been positioned.

The hidden parameter in minimizing the aggregated error function is the
dimension m. Obviously, we have that L > m, but nothing prevents us from choos-
ing a value for m that is much smaller than L. In that case. a node P measures its
distance to each of the L landmarks and computes its coordinates by minimizing

264 SYNCHRONlZA TION CHAP. 6

Furthermore, we also assume that every process knows the process number of
every other process. What the processes do not know is which ones are. currently
up and which ones are currently down. The goal of an election algorithm is to en-
sure that when an election starts, it concludes with all processes agreeing on who
the new coordinator is to be. There are many algorithms and variations, of which
several important ones are discussed in the text books by Lynch (l996) and Tel
(2000), respectively.

6.5.1 Traditional Election Algorithms

We start with taking a look at two traditional election algorithms to give an
impression what whole groups of researchers have been doing in the past decades.
In subsequent sections, we pay attention to new applications of the election prob-
lem.

The Bully Algorithm

As a first example, consider the bully algorithm devised by Garcia-Molina
(1982). When any process notices that the coordinator is no longer responding to
requests, it initiates an election. A process, P, holds an election as follows:

1. P sends an ELECTION message to all processes with higher numbers.

2. If no one responds, P wins the election and becomes coordinator.

3. If one of the higher-ups answers, it takes over. P's job is done.

At any moment, a process can get an ELECTION message from one of its
lower-numbered colleagues. When such a message arrives, the receiver sends an
OK message back to the sender to indicate that he is alive and will take over. The
receiver then holds an election, unless it is already holding one. Eventually, all
processes give up but one, and that one is the new coordinator. It announces its
victory by sending all processes a message telling them that starting immediately
it is the new coordinator.

If a process that was previously down comes back up, it holds an election. If it
happens to be the highest-numbered process currently running, it will win the
election and take over the coordinator's job. Thus the biggest guy in town always
wins, hence the name "bully algorithm."

In Fig. 6-20 we see an example of how the bully algorithm works. The group
consists of eight processes, numbered from 0 to 7. Previously process 7 was the
coordinator, but it has just crashed. Process 4 is the first one to notice this, so it
sends ELECTION messages to all the processes higher than it, namely 5, 6, and 7.
as shown in Fig. 6-20(a). Processes 5 and 6 both respond with OK, as shown in

SEC. 6.5 ELECTION ALGORITHMS 265

Fig. 6-20(b). Upon getting the first of these responses, 4 knows that its job is
over. It knows that one of these bigwigs will take over and become coordinator. It
just sits back and waits to see who the winner will be (although at this point it can
make a pretty good guess).

Figure 6·20. The bully election algorithm. (a) Process 4 holds an election. (b)
Processes 5 and 6 respond. telling 4 to stop. (c) Now 5 and 6 each hold an elec-
tion. (d) Process 6 tells 5 to stop. (e) Process 6 wins and tells everyone.

In Fig. 6-20(c), both 5 and 6 hold elections, each one only sending messages
to those processes higher than itself. In Fig. 6-20(d) process 6 tells 5 that it will
take over. At this point 6 knows that 7 is dead and that it (6) is the winner. If there
is state information to be collected from disk or elsewhere to pick up where the
old coordinator left off, 6 must now do what is needed. When it is ready to take
over, 6 announces this by sending a COORDINATOR message to all running proc-
esses. When 4 gets this message, it can now continue with the operation it was
trying to do when it discovered that 7 was dead, but using 6 as the coordinator this
time. In this way the failure of 7 is handled and the work can continue.

If process 7 is ever restarted, it will just send an the others a COORDINATOR
message and bully them into submission.

266 SYNCHRONIZA nON CHAP. 6

A Ring Algorithm

Another election algorithm is based on the use of a ring. Unlike some ring al-
gorithms, this one does not use a token. We assume that the processes are physi-
cally or logically ordered, so that each process knows who its successor is. When
any process notices that the coordinator is not functioning, it builds an ELEC-
TION message containing its own process number and sends the message to' its
successor. If the successor is down, the sender skips over the successor and goes
to the next member along the ring. or the one after that, until a running process is
located. At each step along the way, the sender adds its own process number to
the list in the message effectively making itself a candidate to be elected as coor-
dinator.

Eventually, the message gets back to the process that started it all. That proc-
ess recognizes this event when it receives an incoming message containing its
own process number. At that point, the message type is changed to COORDINA-
TOR and circulated once again, this time to inform everyone else who the coordi-
nator is (the list member with the highest number) and who the members of the
new ring are. When this message has circulated once, it is removed and everyone
goes back to work.

Figure 6-21. Election algorithm using a ring.

In Fig. 6-21 we see what happens if two processes, 2 and 5, discover simul-
taneously that the previous coordinator, process 7, has crashed. Each of these
builds an ELECTION message and and each of them starts circulating its mes-
sage, independent of the other one. Eventually, both messages will go all the way
around, and both 2 and 5 will convert them into COORDINATOR messages, with
exactly the same members and in the same order. When both have gone around
again, both will be removed. It does no harm to have extra messages circulating;
at worst it consumes a little bandwidth, but this not considered wasteful.

SEC. 6.5 ELECTION ALGORITHMS 267
6.5.2 Elections in Wireless Environments

Traditional election algorithms are generally based on assumptions that are
not realistic in wireless environments. For example, they assume that message
passing is reliable and that the topology of the network does not change. These
assumptions are false in most wireless environments, especially those for mobile
ad hoc networks.

Only few protocols for elections have been developed that work in ad hoc net-
works. Vasudevan et al. (2004) propose a solution that can handle failing nodes
and partitioning networks. An important property of their solution is that the best
leader can be elected rather than just a random as was more or less the case in the
previously discussed solutions. Their protocol works as follows. To· simplify our
discussion, we concentrate only on ad hoc networks and ignore that nodes can
move.

Consider a wireless ad hoc network. To elect a leader, any node in the net-
work, called the source, can initiate an election by sending an ELECTION mes-
sage to its immediate neighbors (i.e., the nodes in its range). When a node
receives an ELECTION for the first time, it designates the sender as its parent,
and subsequently sends out an ELECTION message to all its immediate neigh-
bors, except for the parent. When a node receives an ELECTION message from a
node other than its parent, it merely acknowledges the receipt.

When node R has designated node Q as its parent, it forwards the ELECTION
message to its immediate neighbors (excluding Q) and waits for acknowledgments
to come in before acknowledging the ELECTION message from Q. This waiting
has an important consequence. First, note that neighbors that have already
selected a parent will immediately respond to R. More specifically, if all neigh-
bors already have a parent, R is a leaf node and will be able to report back to Q
quickly. In doing so, it will also report information such as its battery lifetime and
other resource capacities.

This information will later allow Q to compare R's capacities to that of other
downstream nodes, and select the best eligible node for leadership. Of course, Q
had sent an ELECTION message only because its own parent P had done so as
well. In tum, when Q eventually acknowledges the ELECTION message previ-
ously sent by P, it will pass the most eligible node to P as well. In this way, the
source will eventually get to know which node is best to be selected as leader,
after which it will broadcast this information to all other nodes.

This process is illustrated in Fig. 6-22. Nodes have been labeled a to j, along
with their capacity. Node a initiates an election by broadcasting an ELECTION
message to nodes band j, as shown in Fig. 6-22(b). After that step, ELECTION
messages are propagated to all nodes, ending with the situation shown in Fig. 6-
22(e), where we have omitted the last broadcast by nodes f and i: From there on,
each node reports to its parent the node with the best capacity, as shown in
Fig.6-22(f). For example, when node g receives the acknowledgments from its

268 SYNCHRONIZATION CHAP. 6

Figure 6-22. Election algorithm in a wireless network, with node a as the source.
(a) Initial network. (b)-(e) The build-tree phase (last broadcast step by nodes f
and i not shown). (f) Reporting of best node to source.

children e and h, it will notice that h is the best node, propagating [h, 8] to its own
parent, node b. In the end, the source will note that h is the best leader and will
broadcast this information to all other nodes.

SEC. 6.5 ELECTION ALGORITHMS 269
When multiple elections are initiated, each node will decide to join only one

election. To this end, each source tags its ELECTION message with a unique i-
dentifier. Nodes will participate only in the election with the highest identifier,
stopping any running participation in other elections.

With some minor adjustments, the protocol can be shown to operate also
when the network partitions, and when nodes join and leave. The details can be
found in Vasudevan et al. (2004).

6.5.3 Elections in Large-Scale Systems

The algorithms we have been discussing so far generally apply· to relatively
small distributed systems. Moreover, the algorithms concentrate on the selection
of only a single node. There are situations when several nodes should actually be
selected, such as in the case of superpeers in peer-to-peer networks, which we
discussed in Chap. 2. In this section, we concentrate specifically on the problem
of selecting superpeers.

Lo et al. (2005) identified the following requirements that need to be met for
superpeer selection:

1. Normal nodes should have low-latency access to superpeers.

2. Superpeers should be evenly distributed across the overlay network.

3. There should be a predefined portion of superpeers relative to the
total number of nodes in the overlay network.

4. Each superpeer should not need to serve more than a fixed number of
normal nodes.

Fortunately, these requirements are relatively easy to meet in most peer-to-peer
systems, given the fact that the overlay network is either structured (as in DHT-
based systems), or randomly unstructured (as, for example, can be realized with
gossip-based solutions). Let us take a look at solutions proposed by Lo et al.
(2005).

In the case of DHT-based systems, the basic idea is to reserve a fraction of the
identifier space for superpeers. Recall that in DHT-based systems each node
receives a random and uniformly assigned m-bit identifier. Now suppose we
reserve the first (i.e., leftmost) k bits to identify superpeers. For example, if we
need N superpeers, then the first rlog2 (N)l bits of any key can be used to identify
these nodes.

To explain, assume we have a (small) Chord system with m = 8 and k = 3.
When looking up the node responsible for a specific key p, we can first decide to
route the lookup request to the node responsible for the pattern

p AND 11100000

270 SYNCHRONIZATION CHAP. 6

to see if this request is routed to itself. Provided node identifiers are uniformly
assigned to nodes. it can be seen that with a total of N nodes the number of
superpeers is, on average. equal 2k-m N. .

A completely different approach is based on positioning nodes in an m-
dimensional geometric space as we discussed above. In this case, assume we need
to place N superpeers evenly throughout the overlay. The basic idea is simple: a
total of N tokens are spread across N randomly-chosen nodes. No node can hold
more than one token. Each token represents a repelling force by which another
token is inclined to move away. The net effect is that if all tokens exert the same
repulsion force, they will move away from each other and spread themselves
evenly in the geometric space.

This approach requires that nodes holding a token learn about other tokens.
To this end, La et al. propose to use a gossiping protocol by which a token's force
is disseminated throughout the network. If a node discovers that the total forces
that are acting on it exceed a threshold, it will move the token in the direction of
the combined forces, as shown in Fig. 6-23.

Figure 6-23. Moving tokens in a two-dimensional space using repulsion forces.

When a token is held by a node for a given amount of time, that node will pro-
mote itself to superpeer.

6.6 SUMMARY

Strongly related to communication between processes is the issue of how
processes in distributed systems synchronize. Synchronization is all about doing
the right thing at the right time. A problem in distributed systems, and computer
networks in general, is that there is no notion of a globally shared clock. In other
words, processes on different machines have their own idea of what time it is.

which is then treated as the superpeer. Note that each node id can check whether
it is a suoemeer bv looking up

SEC. 6.6 SUMMARY 271

There are various way to synchronize clocks in a distributed system, but all
methods are essentially based on exchanging clock values, while taking into
account the time it takes to send and receive messages. Variations in communica-
tion delays and the way those variations are dealt with, largely determine the
accuracy of clock synchronization algorithms.

Related to these synchronization problems is positioning nodes in a geometric
overlay. The basic idea is to assign each node coordinates from an rn-dimensional
space such that the geometric distance can be used as an accurate measure for the
latency between two nodes. The method of assigning coordinates strongly resem-
bles the one applied in determining the location and time in GPS.

In many cases, knowing the absolute time is not necessary. What counts is
that related events at different processes happen in the correct order. Lamport
showed that by introducing a notion of logical clocks, it is possible for a collec-
tion of processes to reach global agreement on the correct ordering of events. In
essence, each event e, such as sending or receiving a message, is assigned a glo-
bally unique logical timestamp C (e) such that when event a happened before b,
C (a) < C (b). Lamport timestamps can be extended to vector timestamps: if
C (a) < C (b), we even know that event a causally preceded b.

An important class of synchronization algorithms is that of distributed mutual
exclusion. These algorithms ensure that in a distributed collection of processes, at
most one process at a time has access to a shared resource. Distributed mutual
exclusion can easily be achieved if we make use of a coordinator that keeps track
of whose turn it is. Fully distributed algorithms also exist, but have the drawback
that they are generally more susceptible to communication and process failures.

Synchronization between processes often requires that one process acts as a
coordinator. In those cases where the coordinator is not fixed, it is necessary that
processes in a distributed computation decide on who is going to be that coordina-
tor. Such a decision is taken by means of election algorithms. Election algorithms
are primarily used in cases where the coordinator can crash. However, they can
also be applied for the selection of superpeers in peer-to-peer systems.

PROBLEMS

1. Name at least three sources of delay that can be introduced between WWV broadcast-
ing the time and the processors in a distributed system setting their internal clocks.

2. Consider the behavior of two machines in a distributed system. Both have clocks that
are supposed to tick 1000 times per millisecond. One of them actually does, but the
other ticks only 990 times per millisecond. If UTC updates come in once a minute,
what is the maximum clock skew that will occur?

3. One of the modem devices that have (silently) crept into distributed systems are GPS
receivers. Give examples of distributed applications that can use GPS information.

272 SYNCHRONIZATION CHAP. 6

4. When a node synchronizes its clock to that of another node, it is generally a good idea
to take previous measurements into account as well. Why? Also, give an example of
how such past readings could be taken into account.

5. Add a new message to Fig. 6-9 that is concurrent with message A, that is, it neither
happens before A nor happens after A.

6. To achieve totally-ordered multicasting with Lamport timestamps, is it strictly neces-
sary that each message is acknowledged? .

7. Consider a communication layer in which messages are delivered only in the order
that they were sent. Give an example in which even this ordering is unnecessarily re-
strictive.

8. Many distributed algorithms require the use of a coordinating process. To what extent
can such algorithms actually be considered distributed? Discuss.

9. In the centralized approach to mutual exclusion (Fig. 6-14), upon receiving a message
from a process releasing its exclusive access to the resources it was using, the coordi-
nator normally grants permission to the first process on the queue. Give another pos-
sible algorithm for the coordinator.

10. Consider Fig. 6-14 again. Suppose that the coordinator crashes. Does this always bring
the system down? If not, under what circumstances does this happen? Is there any way
to avoid the problem and make the system able to tolerate coordinator crashes?

11. Ricart and Agrawala's algorithm has the problem that if a process has crashed and
does not reply to a request from another process to access a resources, the lack of
response will be interpreted as denial of permission. We suggested that all requests be
answered immediately to make it easy to detect crashed processes. Are there any cir-
cumstances where even this method is insufficient? Discuss.

12. How do the entries in Fig. 6-17 change if we assume that the algorithms can be imple-
mented on a LAN that supports hardware broadcasts?

13. A distributed system may have multiple, independent resources. Imagine that process
o wants to access resource A and process 1 wants to access resource B. Can Ricart and
Agrawala's algorithm lead to deadlocks? Explain your answer.

14. Suppose that two processes detect the demise of the coordinator simultaneously and
both decide to hold an election using the bully algorithm. What happens?

15. In Fig. 6-21 we have two ELECTION messages circulating simultaneously. While it
does no harm to have two of them, it would be more elezant if one could be killed off."-
Devise an algorithm for doing this without affecting the operation of the basic election
algorithm.

16. (Lab assignment) UNIX systems provide many facilities to keep computers in synch,
notably the combination of the crontab tool (which allows to automatically schedule
operations) and various synchronization commands are powerful. Configure a UNIX
system that keeps the local time accurate with in the range of a single second. Like-
wise, configure an automatic backup facility by which a number of crucial files are .
automatically transferred to a remote machine once every 5 minutes. Your solution
should be efficient when it comes to bandwidth usage.

7
CONSISTENCY AND REPLICATION

:i.:Animportant issue in distributed systems is the replication of data. Data are
generally replicated to enhance reliability or improve performance. One of the
major problems is keeping replicas consistent. Informally, this means that when
one copy is updated we need to ensure that the other copies are updated as well;
otherwise the replicas will no longer be the same. In this chapter, we take a de-
tailed look at what consistency of replicated data .actually means and the various
ways that consistency can be achieved.

We start with a general introduction discussing why replication is useful and
how it relates to scalability. We then continue by focusing on what consistency
actually means. An important class of what are known as consistency models as-
sumes that multiple processes simultaneously access shared data. Consistency for
these situations can be formulated with respect to what processes can expect when
reading and updating the shared data, knowing that others are accessing that data
as well.

Consistency models for shared data are often hard to implement efficiently in
large-scale distributed systems. Moreover, in many cases simpler models can be
used, which are also often easier to implement. One specific class is formed by
client-centric consistency models, which concentrate, on consistency from the per-
spective of a single (possibly mobile) client. Client-centric consistency models are
discussed in a separate section.

Consistency is only half of the story. We also need to consider how consisten-
cy is actually implemented. There are essentially two, more or less independent,

273

274 CONSISTENCY AND REPLICATION CHAP. 7

issues we need to consider. First of all, we start with concentrating on managing
replicas, which takes into account not only the placement of replica servers, but
also how content is distributed to these servers.

The second issue is how replicas are kept consistent. In most cases, applica-
tions require a strong form of consistency. Informally, this means that updates are
to be propagated more or less immediately between replicas. There are various al-
ter/natives for implementing strong consistency, which are discussed in a separate
section. Also, attention is paid to caching protocols, which form a special case of
consistency protocols.

7.1 INTRODUCTION

In this section, we start with discussing the important reasons for wanting to
replicate data in the first place. We concentrate on replication as a technique for
achieving scalability, and motivate why reasoning about consistency is so impor-
tant.

7.1.1 Reasons for Replication

There are two primary reasons for replicating data: reliability and perfor-
mance. First, data are replicated to increase the reliability of a system. If a file
system has been replicated it may be possible to continue working after one rep-
lica crashes by simply switching to one of the other replicas. Also, by maintaining
multiple copies, it becomes possible to provide better protection against corrupted
data. For example, imagine there are three copies of a file and every read and
write operation is performed on each copy. We can safeguard ourselves against a
single, failing write operation, by considering the value that is returned by at least
two copies as being the correct one.

The other reason for replicating data is performance. Replication for perfor-
mance is important when the distributed system needs to scale in numbers and
geographical area. Scaling in numbers. occurs, for example, when an increasing
number of processes needs to access data that are managed by a single server. In
that case, performance can be improved by replicating the server and subse-
quently dividing the work.

Scaling with respect to the size of a geographical area may also require repli-
cation. The basic idea is that by placing a copy of data in the proximity of the
process using them, the time to access the data decreases. As a consequence, the
performance as perceived by that process increases. This example also illustrates
that the benefits of replication for performance may be hard to evaluate. Although
a client process may perceive better performance, it may also be the case that
more network bandwidth is now consumed keeping all replicas up to date.

SEC. 7.1 INTRODUCTION 275

If replication helps to improve reliability and performance, who could be
against it? Unfortunately, there is a price to be paid when data are replicated. The•..
problem with replication is that having multiple copies may lead to consistency
problems. Whenever a copy is modified, that copy becomes different from the
rest. Consequently, modifications have to be carried out on all copies to ensure
consistency. Exactly when and how those modifications need to be carried out
determines the price of replication.

To understand the problem, consider improving access times to Web pages. If
no special measures are taken, fetching a page from a remote Web server may
sometimes even take seconds to complete. To improve performance, Web brow-
sers often locally store a copy of a previously fetched Web page (i.e., they cache a
Web page). If a user requires that page again, the browser automatically returns
the local copy. The access time as perceived by the user is excellent. However, if
the user always wants to have the latest version of a page, he may be in for bad
luck. The problem is that if the page has been modified in the meantime, modifi-
cations will not have been propagated to cached copies, making those copies out-
of-date.

One solution to the problem of returning a stale copy to the user is to forbid
the browser to keep local copies in the first place, effectively letting the server be
fully in charge of replication. However, this solution may still lead to poor access
times if no replica is placed near the user. Another- solution is to let the Web
server invalidate or update each cached copy, but this requires that the server
keeps track of all caches and sending them messages. This, in turn, may degrade
the overall performance of the server. We return to performance versus scalability
issues below.

7.1.2 Replication as Scaling Technique

Replication and caching for performance are widely applied as scaling tech-
niques. Scalability issues generally appear in the form of performance problems.
Placing copies of data close to the processes using them can improve performance
through reduction of access time and thus solve scalability problems.

A possible trade-off that needs to be made is that keeping copies up to date
may require more network bandwidth. Consider a process P that accesses a local
replica N times per second, whereas the replica itself is updated M times per sec-
ond. Assume that an update completely refreshes the previous version of the local
replica. If N «M, that is, the access-to-update ratio is very low, we have the
situation where many updated versions of the local replica will never be accessed
by P, rendering the network communication for those versions useless. In this
case, it may have been better not to install a local replica close to P, or to apply a
different strategy for updating the replica. We return to these issues below.

A more serious problem, however, is that keeping multiple copies consistent
may itself be subject to serious scalability problems. Intuitively, a collection of

276 CONSISTENCY AND REPLlCA TION CHAP. 7

copies is consistent when the copies are always the same. This means that a read
operation performed at any copy will always return the same result. Consequently,
when an update operation is performed on one copy, the update should be pro-
pagated to all copies before a subsequent operation takes place, no matter at
which copy that operation is initiated or performed.

This type of consistency is sometimes informally (and imprecisely) referred, to
as tight consistency as provided by what is also called synchronous replication.
(In the next section, we will provide precise definitions of consistency and intro-
duce a range of consistency models.) The key idea is that an update is performed
at all copies as a single atomic operation, or transaction. Unfortunately, imple-
menting atomicity involving a large number of replicas that may be widely dis-
persed across a large-scale network is inherently difficult when operations are
also required to complete quickly.

Difficulties come from the fact that we need to synchronize all replicas. In
essence, this means that all replicas first need to reach agreement on when exactly
an update is to be performed locally. For example, replicas may need to decide on
a global ordering of operations using Lamport timestamps, or let a coordinator
assign such an order. Global synchronization simply takes a lot of communication
time, especially when replicas are spread across a wide-area network.

We are now faced with a dilemma. On the one hand, scalability problems can
be alleviated by applying replication and.caching, leading to improved perfor-
mance. On the other hand, to keep all copies consistent generally requires global
synchronization, which is inherently costly in terms of performance. The cure
may be worse than the disease.

In many cases, the only real solution is to loosen the consistency constraints.
In other words, if we can relax the requirement that updates need to be executed
as atomic operations, we may be able to avoid (instantaneous) global synchroniza-
tions, and may thus gain performance. The price paid is that copies may not al-
ways be the same everywhere. As it turns out, to what extent consistency can be
loosened depends highly on the access and update patterns of the replicated data,
as well as on the purpose for which those data are used.

In the following sections, we first consider a range of consistency models by
providing precise definitions of what consistency actually means. We then con-
tinue with our discussion of the different ways to implement consistency models
through what are called distribution and consistency protocols. Different ap-
proaches to classifying consistency and replication can be found in Gray et a1.
(1996) and Wiesmann et a1. (2000).

7.2 DATA-CENTRIC CONSISTENCY MODELS

Traditionally, consistency has been discussed in the context of read and write
operations on shared data, available by means of (distributed) shared memory. a
(distributed) shared database, or a (distributed) file system. In this section, we use

SEC. 7.2 DATA-CENTRIC CONSISTENCY MODELS 277

the broader term data store. A data store may be physically distributed across
multiple machines. In particular, each process that can access data from the store
is assumed to have a local (or nearby) copy available of the entire store. Write op-
erations are propagated to the other copies, as shown in Fig. 7-1. A data operation
is classified as a write operation when it changes the data, and is otherwise classi-
tied as a read operation.

Figure 7·1. The general organization of a logical data store, physically distrib-
uted and replicated across multiple processes.

A consistency model is essentially a contract between processes and the data
store. It says that if processes agree to obey certain.rules, the store promises to
work correctly. Normally, a process that performs a read operation on a data item,
expects the operation to return a value that shows the results of the last write oper-
ation on that data.

In the absence of a global clock, it is difficult to define precisely which write
operation is the last one. As an alternative, we need to provide other definitions,
leading to a range of consistency models. Each model effectively restricts the
values that a read operation on a data item can return. As is to be expected, the
ones with major restrictions are easy to use, for example when developing appli-
cations, whereas those with minor restrictions are sometimes difficult. The trade-
off is, of course, that the easy-to-use models do not perform nearly as well as the
difficult ones. Such is life.

7.2.1 Continuous Consistency

From what we have discussed so far, it should be clear that there is no such
thing as a best solution to replicating data. Replicating data poses consistency
problems that cannot be solved efficiently in a general way. Only if we loosen
consistency can there be hope for attaining efficient solutions. Unfortunately,
there are also no general rules for loosening consistency: exactly what can be
tolerated is highly dependent on applications.

There are different ways for applications to specify what inconsistencies they
can tolerate. Yu and Vahdat (2002) take a general approach by distinguishing

278 CONSISTENCY AND REPLICA nON CHAP. 7

three independent axes for defining inconsistencies: deviation in numerical values
between replicas, deviation in staleness between replicas, and deviation with
respect to the ordering of update operations. They refer to these deviations as
forming continuous consistency ranges.

Measuring inconsistency in terms of numerical deviations can be used by ap-
plications for which the data have numerical semantics. One obvious example is
the replication of records containing stock market prices. In this case, an applica-
tion may specify that two copies should not deviate more than $0.02, which would
be an absolute numerical deviation. Alternatively, a relative numerical deviation
could be specified, stating that two copies should differ by no more than, for ex-
ample, 0.5%. In both cases, we would see that if a stock goes up (and one of the
replicas is immediately updated) without violating the specified numerical devia-
tions, replicas would still be considered to be mutually consistent.

Numerical deviation can also be understood in terms of the number of updates
that have been applied to a given replica, but have not yet been seen by others.
For example, a Web cache may not have seen a batch of operations carried out by
a Web server. In this case, the associated deviation in the value is also referred to
as its weight.

Staleness deviations relate to the last time a replica was updated. For some
applications, it can be tolerated that a replica provides old data as long as it is not
too old. For example, weather reports typically stay reasonably accurate over
some time, say a few hours. In such cases, a main server may receive timely
updates, but may decide to propagate updates to the replicas only once in a while.

Finally, there are classes of applications in which the ordering of updates are
allowed to be different at the various replicas, as long as the differences remain
bounded. One way of looking at these updates is that they are applied tentatively
to a local copy, awaiting global agreement from all replicas. As a consequence,
some updates may need to be rolled back and applied in a different order before
becoming permanent. Intuitively, ordering deviations are much harder to grasp
than the other two consistency metrics. We will provide examples below to clarify
matters.

The Notion of a Conit

To define inconsistencies, Yu and Vahdat introduce a consistency unit, abbre-
viated to conit. A conit specifies the unit over which consistency is to be meas-
ured. For example, in our stock-exchange example, a conit could be defined as a
record representing a single stock. Another example is an individual weather re-
port.

To give an example of a conit, and at the same time illustrate numerical and
ordering deviations, consider the two replicas as shown in Fig. 7-2. Each replica i
maintains a two-dimensional vector clock vq, just like the ones we described in

SEC. 7.2 279

Figure 7-2. An example of keeping track of consistency deviations [adapted
from (Yu and Vahdat, 2002)].

In this example we see two replicas that operate on a conit containing the data
items x and y. Both variables are assumed to have been initialized to O.Replica A
received the operation

5,B :x ~x +2

from replica B and has made it permanent (i.e., the operation has been committed
at A and cannot be rolled back). Replica A has three tentative update operations:
8,A, 12,A, and 14,A, which brings its ordering deviation to 3. Also note that
due to the last operation 14,A, A's vector clock becomes (15,5).

The only operation from B that A has not yet seen is IO,B, bringing its
numerical deviation with respect to operations to 1. In this example, the weight of
this deviation can be expressed as the maximum difference between the (commit-
ted) values of x and y at A, and the result from operations at B not seen by A. The
committed value at A is (x,y) = (2,0), whereas the-for A unseen-operation at B
yields a difference of y = 5.

A similar reasoning shows that B has two tentative update operations: 5,B
and 10,B , which means it has an ordering deviation of 2. Because B has not yet
seen a single operation from A, its vector clock becomes (0, 11). The numerical
deviation is 3 with a total weight of 6. This last value comes from the fact B's
committed value is (x,y) = (0,0), whereas the tentative operations at A will
already bring x to 6.

Note that there is a trade-off between maintaining fine-grained and coarse-
grained conits. If a conit represents a lot of data, such as a complete database,
then updates are aggregated for all the data in the conit. As a consequence, this

DATA-CENTRIC CONSISTENCY MODELS

280

may bring replicas sooner in an inconsistent state. For example, assume that in
Fig. 7-3 two replicas may differ in no more than one outstanding update. In that
case, when the data items in Fig. 7-3(a) have each been updated once at the first
replica, the second one will need to be updated as well. This is not the case when
choosing a smaller conit, as shown in Fig. 7-3(b). There, the replicas are still con-
sidered to be up to date. This problem is particularly important when the data
items contained in a conit are used completely independently, in which case they
are said to falsely share the conit.

Figure 7-3. Choosing the appropriate granularity for a conit. (a) Two updates
lead to update propagation. (b) No update propagation is needed (yet).

Unfortunately, making conits very small is not a good idea, for the simple rea-
son that the total number of conits that need to be managed grows as well. In other
words, there is an overhead related to managing the conits that needs to be taken
into account. This overhead, in tum, may adversely affect overall performance,
which has to be taken into account.

Although from a conceptual point of view conits form an attractive means for
capturing consistency requirements, there are two important issues that need to be
dealt with before they can be put to practical use. First, in order to enforce consis-
tency we need to have protocols. Protocols for continuous consistency are dis-
cussed later in this chapter.

A second issue is that program developers must specify the consistency re-
quirements for their applications. Practice indicates that obtaining such require-
-ments may be extremely difficult. Programmers are generally not used to handling
replication, let alone understanding what it means to provide detailed information
on consistency. Therefore, it is mandatory that there are simple and easy-to-under-
stand programming interfaces.

Continuous consistency can be implemented as a toolkit which appears to pro-
grammers as just another library that they link with their applications. A conit is
simply declared alongside an update of a data item. For example, the fragment of
pseudocode

AffectsConit(ConitQ, 1, 1);
append message m to queue Q;

CHAP. 7CONSISTENCY AND REPLICA nON

SEC. 7.2 DATA-CENTRIC CONSISTENCY MODELS 281

states that appending a message to queue Q belongs to a conit named ""ConitQ."
Likewise, operations may now also be declared as being dependent on conits:

DependsOnConit(ConitQ, 4, 0, 60);
read message m from head of queue Q;

In this case, the call to DependsOnConitO specifies that the numerical deviation,
ordering deviation, and staleness should be limited to the values 4, 0, and 60 (sec-
onds), respectively. This can be interpreted as that there should be at most 4
unseen update operations at other replicas, there should be no tentative local
updates, and the local copy of Q should have been checked for staleness no more
than 60 seconds ago. If these requirements are not fulfilled, the underlying
middle ware will attempt to bring the local copy of Q to a state such that the read
operation can be carried out.

7.2.2 Consistent Ordering of Operations
Besides continuous consistency, there is a huge body of work on data-centric

consistency models from the past decades. An important class of models comes
from the field of concurrent programming. Confronted with the fact that in paral-
lel and distributed computing multiple processes will need to share resources and
access these resources simultaneously, researchers have sought to express the
semantics of concurrent accesses when shared resources are replicated. This has
led to at least one important consistency model that is widely used. In the follow-
ing, we concentrate on what is known as sequential consistency, and we will also
discuss a weaker variant, namely causal consistency.

The models that we discuss in this section all deal with consistently ordering
operations on shared, replicated data. In principle, the models augment those of
continuous consistency in the sense that when tentative updates at replicas need to
be committed, replicas will need to reach agreement on a global ordering of those
updates. In other words, they need to agree on a consistent ordering of those
updates. The consistency models we discuss next are all about reaching such con-
sistent orderings.

Sequential Consistency

In the following, we will use a special notation in which we draw the opera-
tions of a process along a time axis. The time axis is always drawn horizontally,
with time increasing from left to right. The symbols

mean that a write by process P; to data item x with the value a and a read from
that item by Pi returning b have been done, respectively. We assume that each
data item is initially NIL. When there is no confusion concerning which process is
accessing data, we omit the index from the symbols Wand R.

282 CONSISTENCY AND REPLICATION CHAP. 7

As an example, in Fig. 7-4 PI does a write to a data item x, modifying its val-
ue to a. Note that, in principle, this operation WI (x)a is first performed on a copy
of the data store that is local to PI, and is then subsequently propagated to the
other local copies. In our example, P2 later reads the value NIL, and some time
after that a (from its local copy of the store). What we are seeing here is that it
took some time to propagate the update of x to P2, which is perfectly acceptable.

Sequential consistency is an important data-centric consistency model,
which was first defined by Lamport (1979) in the context of shared memory for
multiprocessor systems. In general, a data store is said to be sequentially con-
sistent when it satisfies the following condition:

The result of any execution is the same as if the (read and write) opera-
tions by all processes on the data store were executed in some sequential
order and the operations of-each individual process appear in this se-
quence in the order specified by its program.

What this definition means is that when processes run concurrently on (possi-
bly) different machines, any valid interleaving of read and write operations is
acceptable behavior, but all processes see the same interleaving of operations.
Note that nothing is said about time; that is, there is no reference to the "most
recent" write operation on a data item. Note that in this context, a process "sees"
writes from all processes but only its own reads.

That time does not playa role can be seen from Fig. 7-5. Consider four proc-
esses operating on the same data item x. In Fig. 7-5(a) process PI first performs
W(x)a to x. Later (in absolute time), process P2 also performs a write operation,
by setting the value of x to b. However, both processes P3 and P4 first read value
b, and later value a. In other words, the write operation of process P2 appears to
have taken place before that of PI·

In contrast, Fig.7-5(b) violates sequential consistency because not all proc-
esses see the same interleaving of write operations. In particular, to process P3, it
appears as if the data item has first been changed to b, and later to a. On the other
hand, P4 will conclude that the final value is b.

To make the notion of sequential consistency more concrete, consider three
concurrently-executing processes PI, P2, and P3, shown in Fig. 7-6 (Dubois et aI.,
1988). The data items in this example are formed by the three integer variables x,
y, and z, which are stored in a (possibly distributed) shared sequentially consistent

Figure 7-4. Behavior of two processes operating on the same data item. The
horizontal axis is time.

SEC. 7.2 DATA-CENTRIC CONSISTENCY MODELS 283

Figure 7-5. (a) A sequentially consistent data store. (b) A data store that is not
sequentially consistent.

Figure 7-6. Three concurrently-executing processes.

data store. We assume that each variable is initialized to O. In this example, an
assignment corresponds to a write operation, whereas a print statement corres-
ponds to a simultaneous read operation of its two arguments. All statements are
assumed to be indivisible.

Various interleaved execution sequences are possible. With six independent
statements, there are potentially 720 (6!) possible execution sequences, although
some of these violate program order. Consider the 120 (5!) sequences that begin
with x ~ 1. Half of these have print (r.z) before y ~ 1 and thus violate program
order. Half also have print (x,y) before z ~ 1 and also violate program order.
Only 1/4 of the 120 sequences, or 30, are valid. Another 30 valid sequences are
possible starting with y ~ 1 and another 30 can begin with z ~ 1, for a total of 90
valid execution sequences. Four of these are shown in Fig. 7-7.

In Fig. 7-7(a), the three processes are run in order, first Ph then P2, then P3.
The other three examples demonstrate different, but equally valid, interleavings of
the statements in time. Each of the three processes prints two variables. Since the
only values each variable can take on are the initial value (0), or the assigned
value (1), each process produces a 2-bit string. The numbers after Prints are the
actual outputs that appear on the output device.

If weconcatenate the output of PI, P2, and P3 in that order, we get a 6-bit
string that characterizes a particular interleaving of statements. This is the string
listed as the Signature in Fig. 7-7. Below we will characterize each ordering by
its signature rather than by its printout.

Not all 64 signature patterns are allowed. As a trivial example, 000000 is not
permitted, because that would imply that the print statements ran before the
assignment statements, violating the requirement that statements are executed in

284 CONSISTENCY AND REPLICATION CHAP. 7

Figure 7-7. Four valid execution sequences for the processes of Fig. 7-6. The
vertical axis is time.

program order. A more subtle example is 001001. The first two bits, 00, mean that
y and z were both 0 when PI did its printing. This situation occurs only when PI
executes both statements before P2 or P3 starts. The next two bits, 10, mean that
P2 must run after P, has started but before P3 has started. The last two bits, 01,
mean that P3 must complete before P, starts, but we have already seen that PI
must go first. Therefore, 001001 is not allowed.

In short, the 90 different valid statement orderings produce a variety of dif-
ferent program results (less than 64, though) that are allowed under the assump-
tion of sequential consistency. The contract between the processes and the distrib-
uted shared data store is that the processes must accept all of these as valid re-
sults. In other words, the processes must accept the four results shown in Fig. 7-7
and all the other valid results as proper answers, and must work correctly if any of
them occurs. A program that works for some of these results and not for others
violates the contract with the data store and is incorrect.

Causal Consistency

The causal consistency model (Hutto and Ahamad, 1990) represents a weak-
ening of sequential consistency in that it makes a distinction between events that
are potentially causally related and those that are not. We already came across
causality when discussing vector timestamps in the previous chapter. If event b is
caused or influenced by an earlier event a, causality requires that everyone else
first see a, then see b.

Consider a simple interaction by means of a distributed shared database. Sup-
pose that process P, writes a data item x. Then P2 reads x and writes y. Here the
reading of x and the writing of y are potentially causally related because the

SEC. 7.2 DATA-CENTRIC CONSISTENCY MODELS 285

computation of y may have depended on the value of x as read by Pz (i.e., the
value written by PI)'

On the other hand, if two processes spontaneously and simultaneously write
two different data items, these are not causally related. Operations that are not
causally related are said to be concurrent.

For a data store to be considered causally consistent, it is necessary that the
store obeys the following condition:

Writes that are potentially causally related must be seen by all processes
in the same order. Concurrent writes may be seen in a different order on
different machines.

As an example of causal consistency, consider Fig. 7-8. Here we have an event
sequence that is allowed with a causally-consistent store, but which is forbidden
with a sequentially-consistent store or a strictly consistent store. The thing to note
is that the writes Wz(x)b and WI (x)c are concurrent, so it is not required that all
processes see them in the same order.

Figure 7-8. This sequence is allowed with a causally-consistent store, but not
with a sequentially consistent store.

Now consider a second example. In Fig. 7-9(a) we have Wz(x)b potentially
depending on WI (x)a because the b may be a result of a computation involving
the value read by Rz(x)a. The two writes are causally related, so all processes
must see them in the same order. Therefore, Fig. 7-9(a) is incorrect. On the other
hand, in Fig. 7-9(b) the read has been removed, so WI (x)a and Wz(x)b are now
concurrent writes. A causally-consistent store does not require concurrent writes
to be globally ordered, so Fig.7-9(b) is correct. Note that Fig.7-9(b) reflects a
situation that would not be acceptable for a sequentially consistent store.

Figure 7-9. (a) A violation of a causally-consistent store. (b) A correct se-
quence of events in a causally-consistent store.

Implementing causal consistency requires keeping track of which processes
have seen which writes. It effectively means that a dependency graph of which

286 CONSISTENCY AND REPLICA DON CHAP. 7

operation is dependent on which other operations must be constructed and main-
tained. One way of doing this is by means of vector timestamps, as we discussed
in the previous chapter. We return to the use of vector timestamps to capture
causality later in this chapter.

Grouping Operations

Sequential and causal consistency are defined at the level read and write oper-
ations. This level of granularity is for historical reasons: these models have ini-
tially been developed for shared-memory multiprocessor systems and were actual-
ly implemented at the hardware level.

The fine granularity of these consistency models in many cases did not match
the granularity as provided by applications. What we see there is that concurrency
between programs sharing data is generally kept under control through synchroni-
zation mechanisms for mutual exclusion and transactions. Effectively, what hap-
pens is that at the program level read and write operations are bracketed by the
pair of operations ENTER_CS and LEAVE_CS where "CS" stands for critical
section. As we explained in Chap. 6, the synchronization between processes takes
place by means of these two operations. In terms of our distributed data store, this
means that a process that has successfully executed ENTER_CS will be ensured
that the data in its local store is up to date. At that point, it can safely execute a
series of read and write operations on that store, and subsequently wrap things up
by calling LEAVE_CS.

In essence, what happens is that within a program the data that are operated
on by a series of read and write operations are protected against concurrent ac-
cesses that would lead to seeing something else than the result of executing the
series as a whole. Put differently, the bracketing turns the series of read and write
operations into an atomically executed unit, thus raising the level of granularity.

In order to reach this point, we do need to have precise semantics concerning
the operations ENTER_CS and LEAVE_CS. These semantics can be formulated
in terms of shared synchronization variables. There are different ways to use
these variables. We take the general approach in which each variable has some
associated data, which could amount to the complete set of shared data. We adopt
the convention that when a process enters its critical section it should acquire the
relevant synchronization variables, and likewise when it leaves the critical sec-
tion, it releases these variables. Note that the data in a process' critical section
may be associated to different synchronization variables.

Each synchronization variable has a current owner, namely, the process that
last acquired it. The owner may enter and exit critical sections repeatedly without
having to send any messages on the network. A process not currently owning a
synchronization variable but wanting to acquire it has to send a message to the
current owner asking for ownership and the current values of the data associated
with that synchronization variable. It is also possible for several processes to

SEC. 7.2 DATA-CENTRIC CONSISTENCY MODELS 287

Figure 7·10. A valid event sequence for entry consistency.

One of the programming problems with entry consistency is properly associat-
ing data with synchronization variables. One straightforward approach is to expli-
citly tell the middleware which data are going to be accessed, as is generally done

simultaneously own a synchronization variable in nonexclusive mode, meaning
that they can read, but not write, the associated data.

We now demand that the following criteria are met (Bershad et al., 1993):

1. An acquire access of a synchronization variable is not allowed to
perform with respect to a process until all updates to the guarded
shared data have been performed with respect to that process.

2. Before an exclusive mode access to a synchronization variable by a
process is allowed to perform with respect to that process, no other
process may hold the synchronization variable, not even in nonex-
clusive mode.

3. After an exclusive mode access to a synchronization variable has
been performed, any other process' next nonexclusive mode access
to that synchronization variable may not be performed until it has
performed with respect to that variable's owner.

The first condition says that when a process does an acquire, the acquire may not
complete (i.e., return control to the next statement) until all the guarded shared
data have been brought up to date. In other words, at an acquire, all remote
changes to the guarded data must be made visible.

The second condition says that before updating a shared data item, a process
must enter a critical section in exclusive mode to make sure that no other process
is trying to update the shared data at the same time.

The third condition says that if a process wants to enter a critical region in
nonexclusive mode, it must first check with the owner of the synchronization vari-
able guarding the critical region to fetch the most recent copies of the guarded
shared data.

Fig. 7-10 shows an example of what is known as entry consistency. Instead
of operating on the entire shared data, in this example we associate locks with
each data item. In this case, P I does an acquire for x, changes x once, after which
it also does an acquire for y. Process P2 does an acquire for x but not for Y'.so that
it will read value a for x, but may read NIL for y. Because process P3 first does an
acquire for y, it will read the value b when y is released by Pl'

288 CONSISTENCY AND REPLICATION CHAP. 7

by declaring which database tables will be affected by a transaction. In an object-
based approach, we could implicitly associate a unique synchronization variable
with each declared object, effectively serializing all invocations to such objects.

Consistency versus Coherence

At this point, it is useful to clarify the difference between two closely related
concepts. The models we have discussed so far all deal with the fact that a number
of processes execute read and write operations on a set of data items. A consis-
tency model describes what can be expected with respect to that set when multi-
ple processes concurrently operate on that data. The set is then said to be con-
sistent if it adheres to the rules described by the model.

Where data consistency is concerned with a set of data items, coherence
models describe what can be expected to only a single data item (Cantin et aI.,
2005). In this case, we assume that a data item is replicated at several places; it is
said to be coherent when the various copies abide to the rules as defined by its as-
sociated coherence model. A popular model is that of sequential consistency, but
now applied to only a single data item. In effect, it means that in the case of
concurrent writes, all processes will eventually see the same order of updates tak-
ing place.

7.3 CLIENT-CENTRIC CONSISTENCY MODELS

The consistency models described in the previous section aim at providing a
systemwide consistent view on a data store. An important assumption is that
concurrent processes may be simultaneously updating the data store, and that it is
necessary to provide consistency in the face of such concurrency. For example, in
the case of object-based entry consistency, the data store guarantees that when an
object is called, the calling process is provided with a copy of the object that re-
flects all changes to the object that have been made so far, possibly by other proc-
esses. During the call, it is also guaranteed that no other process can interfere-
that is, mutual exclusive access is provided to the calling process.

Being able to handle-concurrent operations on shared data while maintaining
sequential consistency is fundamental to distributed systems. For performance
reasons, sequential consistency may possibly be guaranteed only when processes
use synchronization mechanisms such as transactions or locks.

In this section, we take a look at a special class of distributed data stores. The
data stores we consider are characterized by the lack of simultaneous updates, or
when such updates happen, they can easily be resolved. Most operations involve
reading data. These data stores offer a very weak consistency model, called even-
tual consistency. By introducing special client-centric consistency models, it turns
out that many inconsistencies can be hidden in a relatively cheap way.

SEC. 7.3 CLIENT-CENTRIC CONSISTENCY MODELS 289

7.3.1 Eventual Consistency

To what extent processes actually operate in a concurrent fashion, and to what
extent consistency needs to be guaranteed, may vary. There are many examples in
which concurrency appears only in a restricted form. For example, in many data-
base systems, most processes hardly ever perform update operations; they mostly
read data from the database. Only one, or very few processes perform update op-
erations. The question then is how fast updates should be made available to only-
reading processes.

As another example, consider a worldwide naming system such as DNS. The
DNS name space is partitioned into domains, where each domain is assigned to a
naming authority, which acts as owner of that domain. Only that authority is al-
lowed to update its part of the name space. Consequently, conflicts resulting from
two operations that both want to perform an update on the same data (i.e., write-
write conflicts), never occur. The only situation that needs to be handled are
read-write conflicts, in which one process wants to update a data item while an-
other is concurrently attempting to read that item. As it turns out, it is often
acceptable to propagate an update in a lazy fashion, meaning that a reading proc-
ess will see an update only after some time has passed since the update took place.

Yet another example is the World Wide Web. In virtually all cases, Web
pages are updated by a single authority, such as a webmaster or the actual owner
of the page. There are normally no write-write conflicts to resolve. On the other
hand, to improve efficiency, browsers and Web proxies are often configured to
keep a fetched page in a local cache and to return that page upon the next request.

An important aspect of both types of Web caches is that they may return out-
of-date Web pages. In other words, the cached page that is returned to the re-
questing client is an older version compared to the one available at the actual Web
server. As it turns out, many users find this inconsistency acceptable (to a certain
degree).

These examples can be viewed as cases of (large-scale) distributed and repli-
cated databases that tolerate a relatively high degree of inconsistency. They have
in common that if no updates take place for a long time, all replicas will gradually
become consistent. This form of consistency is called eventual consistency.

Data stores that are eventually consistent thus have the property that in the
absence of updates, all replicas converge toward identical copies of each other.
Eventual consistency essentially requires only that updates are guaranteed to pro-
pagate to all replicas. Write-write conflicts are often relatively easy to solve when
assuming that only a small group of processes can perform updates. Eventual con-
sistency is therefore often cheap to implement.

Eventual consistent data stores work tine as long as clients always access the
same replica. However, problems arise when different replicas are accessed over a
short period of time. This is best illustrated by considering a mobile user ac-
cessing a distributed database, as shown in Fig. 7-11.

290 CONSISTENCY AND REPLICATION CHAP. 7

Figure '-11. The principle of a mobile user accessing different replicas of a
distributed database.

The mobile user accesses the database by connecting to one of the replicas in
a transparent way. In other words, the application running on the user's portable
computer is unaware on which replica it is actually operating. Assume the user
performs several update operations and then disconnects again. Later, he accesses
the database again, possibly after moving to a different location or by using a dif-
ferent access device. At that point, the user may be connected to a different rep-
lica than before, as shown in Fig. 7-11. However, if the updates performed prev-
iously have not yet been propagated, the user will notice inconsistent behavior. In
particular, he would expect to see all previously made changes, but instead, it
appears as if nothing at all has happened.

This example is typical for eventually-consistent data stores and is caused by
the fact that users may sometimes operate on different replicas. The problem can
be alleviated by introducing client-centric consistency. In essence, client-centric
consistency provides guarantees for a single client concerning the consistency of
accesses to a data store by that client. No guarantees are given concerning concur-
rent accesses by different clients.

Client-centric consistency models originate from the work on Bayou [see, for
example Terry et al. (1994) and Terry et aI., 1998)]. Bayou is a database system
developed for mobile computing, where it is assumed that network connectivity is
unreliable and subject to various performance problems. Wireless networks and
networks that span large areas, such as the Internet, fall into this category.

SEC. 7.3 CLIENT-CENTRIC CONSISTENCY MODELS 291
Bayou essentially distinguishes four different consistency models. To explain

these models, we again consider a data store that is physically distributed across
multiple machines. When a process accesses the data store, it generally connects
to the locally (or nearest) available copy, although, in principle, any copy will do
just fine. All read and write operations are performed on that local copy. Updates
are eventually propagated to the other copies. To simplify matters, we assume that
data items have an associated owner, which is the only process that is permitted to
modify that item. In this way, we avoid write-write conflicts.

Client-centric consistency models are described using the following notations.
Let Xi[t] denote the version of data item x at local copy L, at time t. Version Xi(t]
is the result of a series of write operations at Li that took place since initialization.
\Ve denote this set as WS(xi[tD. If operations in WS(xJtIJ) have also been per-
formed at local copy Lj at a later time t2, we write WS(xi(td~[t2]). If the order-
ing of operations or the timing is clear from the context, the time index will be
omitted.

7.3.2 Monotonic Reads

The first client-centric consistency model is that of monotonic reads. A data
store is said to provide monotonic-read consistency if the following condition
holds:

..If a process reads the value of a data item x, any successive read opera-
tion on x by that process will always return that same value or a more
recent value.

In other words, monotonic-read consistency guarantees that if a process has seen a
value of x at time t, it will never see an older version of x at a later time.

As an example where monotonic reads are useful, consider a distributed e-
mail database. In such a database, each user's mailbox may be distributed and
replicated across multiple machines. Mail can be inserted in a mailbox at any lo-
cation. However, updates are propagated in a lazy (i.e., on demand) fashion. Only
when a copy needs certain data for consistency are those data propagated to that
copy. Suppose a user reads his mail in San Francisco. Assume that only reading
mail does not affect the mailbox, that is, messages are not removed, stored in
subdirectories, or even tagged as having already been read, and so on. When the
user later flies to New York and opens his mailbox again, monotonic-read consis-
tency guarantees that the messages that were in the mailbox in San Francisco will
also be in the mailbox when it is opened in New York.

Using a notation similar to that for data-centric consistency models, mono-
tonic-read consistency can be graphically represented as shown in Fig. 7-12.
Along the vertical axis, two different local copies of the data store are shown, L I

and L 2. Time is shown along the horizontal axis as before. In all cases, we are

292 CONSISTENCY AND REPLICATION CHAP. 7

interested in the operations carried out by a single process P. These specific oper-
ations are shown in boldface are connected by a dashed line representing the order
in which they are carried out by P.

Figure 7-12. The read operations performed by a single process P at two dif-
ferent local copies of the same data store. (a) A monotonic-read consistent datu
store. (b) A data store that does not provide monotonic reads.

In Fig. 7-l2(a), process P first performs a read operation on x at L I, returning
the value of Xl (at that time). This value results from the write operations in
WS(x I) performed at L I . Later, P performs a read operation on x at L 2, shown as
R (X2)' To guarantee monotonic-read consistency, all operations in WS(x 1) should
have been propagated to L2 before the second read operation takes place. In other
words, we need to know for sure that WS(x I) is part of WS(x 2)' which is
expressed as WS(x I ;X2)'

In contrast, Fig. 7-l2(b) shows a situation in which monotonic-read consisten-
cy is not guaranteed. After process P has read x I at L I, it later performs the oper-
ation R(X2) at L2. However, only the write operations in WS(X2) have been per-
formed at L2• No guarantees are given that this set also contains all operations
contained in WS (x I)' .

7.3.3 Monotonic Writes

In many situations, it is important that write operations are propagated in the
correct order to all copies of the data store. This property is expressed in mon-
otonic-write consistency. In a monotonic-write consistent store, the following
condition holds:

A write operation by a process on a data item x is completed before any
successive write operation on X by the same process.

Thus completing a write operation means that the copy on which a successive op-
eration is performed reflects the effect of a previous write operation by the same
process, no matter where that operation was initiated. In other words, a write op-
eration on a copy of item x is performed only if that copy has been brought up to
date by means of any preceding write operation, which may have taken place on
other copies of x. If need be, the new write must wait for old ones to finish.

SEC. 7.3 CLIENT-CENTRIC CONSISTENCY MODELS 293

Note that monotonic-write consistency resembles data-centric FIFO consis-
tency. The essence of FIFO consistency is that write operations by the same proc-
ess are performed in the correct order everywhere. This ordering constraint also
applies to monotonic writes, except that we are now considering consistency only
for a single process instead of for a collection of concurrent processes.

Bringing a copy of x up to date need not be necessary when each write opera-
tion completely overwrites the present value of x. However, write operations are
often performed on only part of the state of a data item. Consider, for example, a
software library. In many cases, updating such a library is done by replacing one
or more functions, leading to a next version. With monotonic-write consistency,
guarantees are given that if an update is performed on a copy of the library, all
preceding updates will be performed first. The resulting library will then indeed
become the most recent version and will include all updates that have led to previ-
ous versions of the library.

Monotonic-write consistency is shown in Fig. 7-13. In Fig. 7-13(a), process P
performs a write operation on x at local copy L1, presented as the operation
W(XI). Later, P performs another write operation on x, but this time at L2, shown
as W(X2). To ensure monotonic-write consistency, it is necessary that the previous
write operation at L1 has already been propagated to L2• This explains operation
W(Xl) at L2, and why it takes place before W(X2)·

Figure 7-13. The write operations performed by a single process P at two dif-
ferent local copies of the same data store. (a) A monotonic-write consistent data
store. (b) A data store that does not provide monotonic-write consistency.

In contrast, Fig. 7-13(b) shows a situation in which monotonic-write consis-
tency is not guaranteed. Compared to Fig. 7-13(a), what is missing is the propaga-
tion of W (x 1) to copy L 2. In other words, no guarantees can be given that the
copy of x on which the second write is being performed has the same or more
recent value at the time W (x I)completed at L I.

Note that, by the definition of monotonic-write consistency, write operations
by the same process are performed in the same order as they are initiated. A
somewhat weaker form of monotonic writes is one in which the effects of a write
operation are seen only if all preceding writes have been carried out as well, but
perhaps not in the order in which they have been originally initiated. This consis-
tency is applicable in those cases in which write operations are commutative, so
that ordering is really not necessary. Details are found in Terry et al. (1994).

294 CONSISTENCY AND REPLICATION CHAP. 7

7.3.4 Read Your Writes

A client-centric consistency model that is closely related to monotonic reads
is as follows. A data store is said to provide read-your-writes consistency, if the
following condition holds:

The effect of a write operation by a process on data item x will always be
seen by a successive read operation on x by the same process.

In other words, a write operation is always completed before a successive read op-
eration by the same process, no matter where that read operation takes place.

The absence of read-your-writes consistency is sometimes experienced when
updating Web documents and subsequently viewing the effects. Update operations
frequently take place by means of a standard editor or word processor, which
saves the new version on a file system that is shared by the Web server. The
user's Web browser accesses that same file, possibly after requesting it from the
local Web server. However, once the file has been fetched, either the server or the
browser often caches a local copy for subsequent accesses. Consequently, when
the Web page is updated, the user will not see the effects if the browser or the
server returns the cached copy instead of the original file. Read-your-writes con-
sistency can guarantee that if the editor and browser are integrated into a single
program, the cache is invalidated when the page is updated, so that the updated
file is fetched and displayed.

Similar effects occur when updating passwords. For example, to enter a digi-
tal library on the Web, it is often necessary to have an account with an accom-
panying password. However, changing a password make take some time to come
into effect, with the result that the library may be inaccessible to the user for a few
minutes. The delay can be caused because a separate server is used to manage pass-
words and it may take some time to subsequently propagate (encrypted) passwords
to the various servers that constitute the library.

Fig.7-14(a) shows a data store that provides read-your-writes consistency.
Note that Fig. 7-14(a) is very similar to Fig. 7-12(a), except that consistency is
now determined by the last write operation by process P, instead of its last read.

Figure 7-14. (a) A data store that provides read-your-writes consistency. (b) A
data store that does not.

In Fig. 7-14(a), process P performed a write operation W(XI) and later a read
operation at a different local copy. Read-your-writes consistency guarantees that

SEC. 7.3 CLIENT-CENTRIC CONSISTENCY MODELS 295

the effects of the write operation can be seen by the succeeding read operation.
This is expressed by WS(XI ;X2), which states that W(Xl) is part of WS(X2)' In
contrast, in Fig. 7-14(b), W(Xl) has been left out of WS(X2), meaning that the ef-
fects of the previous write operation by process P have not been propagated to L2·

7.3.5 Writes Follow Reads

The last client-centric consistency model is one in which updates are pro-
pagated as the result of previous read operations. A data store is said to provide
writes-follow-reads consistency, if the following holds.

A write operation by a process on a data item x following a previous read
operation on x by the same process is guaranteed to take place on the
same or a more recent value of x that was read.

In other words, any successive write operation by a process on a data item x will
be performed on a copy of x that is up to date with the value most recently read by
that process.

Writes-follow-reads consistency can be used to guarantee that users of a net-
work newsgroup see a posting of a reaction to an article only after they have seen
the original article (Terry et aI., 1994). To understand the problem, assume that a
user first reads an article A. Then, he reacts by posting a response B. By requiring
writes-follow-reads consistency, B will be written to any copy of the newsgroup
only after A has been written as well. Note that users who only read articles need
not require any specific client-centric consistency model. The writes-follows-
reads consistency assures that reactions to articles are stored at a local copy only
if the original is stored there as well.

Figure 7-15. (a) A writes-follow-reads consistent data store. (b) A data store
that does not provide writes-follow-reads consistency.

This consistency model is shown in Fig. 7-15. In Fig. 7-15(a), a process reads
x at local copy L 1. The write operations that led to the value just read, also appear
in the write set at L 2. where the same process later performs a write operation.
(Note that other processes at L2 see those write operations as well.) In contrast, no
guarantees are given that the operation performed at L2, as shown in Fig. 7-15(b),
are performed on a copy that is consistent with the one just read at L 1 •

We will return to client-centric consistency models when we discuss imple-
mentations later on in this chapter.

296 CONSISTENCY AND REPLICA nON CHAP. 7

7.4 REPLICA MANAGEMENT

A key issue for any distributed system that supports replication is to decide
where, when, and by whom replicas should be placed, and subsequently which
mechanisms to use for keeping the replicas consistent. The placement problem it-
self should be split into two subproblems: that of placing replica servers, and that
of placing content. The difference is a subtle but important one and the two issues
are often not clearly separated. Replica-server placement is concerned with find-
ing the best locations to place a server that can host (part of) a data store. Content
placement deals with finding the best servers for placing content. Note that this
often means that we are looking for the optimal placement of only a single data
item. Obviously, before content placement can take place, replica servers will
have to be placed first. In the following, take a look at these two different place-
ment problems, followed by a discussion on the basic mechanisms for managing
the replicated content.

7.4.1 Replica-Server Placement

The placement of replica servers is not an intensively studied problem for the
simple reason that it is often more of a management and commercial issue than an
optimization problem. Nonetheless, analysis of client and network properties are
useful to come to informed decisions.

There are various ways to compute the.best placement of replica servers, but
all boil down to an optimization problem in which the best K out of N locations
need to be selected (K < N). These problems are known to be computationally
complex and can be solved only through heuristics. Qiu et al. (2001) take the dis-
tance between clients and locations as their starting point. Distance can be meas-
ured in terms of latency or bandwidth. Their solution selects one server at a time
such that the average distance between that server and its clients is minimal given
that already k servers have been placed (meaning that there are N - k locations
left).

As an alternative, Radoslavov et aI. (2001) propose to ignore the position of
clients and only take the topology of the Internet as formed by the autonomous
systems. An autonomous system (AS) can best be.viewed as a network in which
the nodes all run the same routing protocol and which is managed by a single
organization. As of January 2006, there were just over 20,000 ASes. Radoslavov
et aI. first consider the largest AS and place a server on the router with the largest
number of network interfaces (i.e., links). This algorithm is then repeated with the
second largest AS, and so on.

As it turns out, client-unaware server placement achieves similar results as
client-aware placement, under the assumption that clients are uniformly distrib-
uted across the Internet (relative to the existing topology). To what extent this as-
sumption is true is unclear. It has not been well studied.

SEC. 7.4 REPLICA MANAGEMENT 297

One problem with these algorithms is that they are computationally expen-
sive. For example, both the previous algorithms have a complexity that is higher
than O(N'2), where N is the number of locations to inspect. In practice, this means
that for even a few thousand locations, a computation may need to run for tens of
minutes. This may be unacceptable, notably when there are flash crowds (a sud-
den burst of requests for one specific site, which occur regularly on the Internet).
In that case, quickly determining where replica servers are needed is essential,
after which a specific one can be selected for content placement.

Szymaniak et al. (2006) have developed a method by which a region for plac-
ing replicas can be quickly identified. A region is identified to be a collection of
nodes accessing the same content, but for which the internode latency is low. The
goal of the algorithm is first to select the most demanding regions-that is, the
one with the most nodes-and then to let one of the nodes in such a region act as
replica server.

To this end, nodes are assumed to be positioned in an m-dimensional geo-
metric space, as we discussed in the previous chapter. The basic idea is to identify
the K largest clusters and assign a node from each cluster to host replicated con-
tent. To identify these clusters, the entire space is partitioned into cells. The K
most dense cells are then chosen for placing a replica server. A cell is nothing but
an m-dimensional hypercube. For a two-dimensional space, this corresponds to a
rectangle.

Obviously, the cell size is important, as shown in Fig. 7-16. If cells are
chosen too large, then multiple clusters of nodes may be contained in the same
cell. In that case, too few replica servers for those clusters would be chosen. On
the other hand, choosing small cells may lead to the situation that a single cluster
is spread across a number of cells, leading to choosing too many replica servers.

Figure 7-16. Choosing a proper cell size for server placement.

As it turns out, an appropriate cell size can be computed as a simple function
of the average distance between two nodes and the number of required replicas.
With this cell size, it can be shown that the algorithm performs as well as the
close-to-optimal one described in Qiu et al. (2001), but having a much lower com-
plexity: O(Nxmax {log (N), K}). To give an impression what this result means:

298 CONSISTENCY AND REPLICATION CHAP. 7

experiments show that computing the 20 best replica locations for a collection of
64,000 nodes is approximately 50.000 times faster. As a consequence, replica-
server placement can now be done in real time.

7.4.2 Content Replication and Placement

Let us now move away from server placement and concentrate on content
placement. When it comes to content replication and placement, three different
types of replicas can be distinguished logically organized as shown in Fig. 7- 17.

Figure 7-17. The logical organization of different kinds of copies of a data store
into three concentric rings.

Permanent Replicas

Permanent replicas can be considered as the initial set of replicas that consti-
tute a distributed data store. In many cases, the number of permanent replicas is
small. Consider, for example, a Web site. Distribution of a Web site generally
comes in one of two forms. The first kind of distribution is one in which the files
that constitute a site are replicated across a limited number of servers at a single
location. Whenever a request comes in, it is forwarded to one of the servers, for
instance, using a round-robin strategy. .

The second form of distributed Web sites is what is called mirroring. In this
case, a Web site is copied to a limited number of servers, called mirror sites.
which are geographically spread across the Internet. In most cases, clients simply
choose one of the various mirror sites from a list offered to them. Mirrored v..'eb
sites have in common with cluster-based Web sites that there are only a few num-
ber of replicas, which are more or less statically configured.

Similar static organizations also appear with distributed databases (OSZu and
Valduriez, 1999). Again, the database can be distributed and replicated acrOSS ~\
number of servers that together form a cluster of servers, often referred to as ~\
shared-nothing architecture, emphasizing that neither disks nor main memory

SEC. 7.4 REPLICA MANAGEMENT 299

are shared by processors. Alternatively, a database is distributed and possibly rep-
licated across a number of geographically dispersed sites. This architecture is gen-
erally deployed in federated databases (Sheth and Larson, 1990).

Server-Initiated Replicas

In contrast to permanent replicas, server-initiated replicas are copies of a data
store that exist to enhance performance and which are created at the initiative of
the (owner of the) data store. Consider, for example, a Web server placedin New
York. Normally, this server can handle incoming requests quite easily, but it may
happen that over a couple of days a sudden burst of requests come in from an
unexpected location far from the server. In that case, it may be worthwhile to
install a number of temporary replicas in regions where requests are coming from.

The problem of dynamically placing replicas is also being addressed in Web
hosting services. These services offer a (relatively static) collection of servers
spread across the Internet that can maintain and provide access to Web files
belonging to third parties. To provide optimal facilities such hosting services can
dynamically replicate files to servers where those files are needed to enhance per-
formance, that is, close to demanding (groups of) clients. Sivasubramanian et
al. (2004b) provide an in-depth overview of replication in Web hosting services to
which we will return in Chap. 12.

Given that the replica servers are already in place, deciding where to place
content is easier than in the case of server placement. An approach to dynamic
replication of files in the case of a Web hosting service is described in Rabinovich
et al. (1999). The algorithm is designed to support Web pages for which reason it
assumes that updates are relatively rare compared to read requests. Using tiles as
the unit of data, the algorithm works as follows.

The algorithm for dynamic replication takes two issues into account. First,
replication can take place to reduce the load on a server. Second, specific files on
a server can be migrated or replicated to servers placed in the proximity of clients
that issue many requests for those files. In the following pages, we concentrate
only on this second issue. We also leave out a number of details, which can be
found in Rabinovich et al. (1999).

Each server keeps track of access counts per file, and where access requests
come from. In particular, it is assumed that, given a client C, each server can
determine which of the servers in the Web hosting service is closest to C. (Such
information can be obtained, for example, from routing databases.) If client C 1

and client C 2 share the same "closest" server P, all access requests for file Fat
server Q from eland C2 are jointly registered at Q as a single access count
cntQ(P,F). This situation is shown in Fig. 7-18.

When the number of requests for a specific file F at server S drops below a
deletion threshold del (S,F), that file can be removed from S. As a consequence,
the number of replicas of that file is reduced, possibly leading to higher work

300 CONSISTENCY AND REPLICATION CHAP. 7

Figure 7-18. Counting access requests from different clients.

loads at other servers. Special measures are taken to ensure that at least one copy
of each file continues to exist.

A replication threshold rep (5, F), which is always chosen higher than the
deletion threshold, indicates that the number of requests for a specific file is so
high that it may be worthwhile replicating it on another server. If the number of
requests lie somewhere between the deletion and replication threshold, the file is
allowed only to be migrated. In other words, in that case it is important to at least
keep the number of replicas for that file the same.

When a server Q decides to reevaluate the placement of the files it stores, it
checks the access count for each file. If the total number of access requests for F
at Q drops below the deletion threshold del (Q,F), it will delete F unless it is the
last copy. Furthermore, if for some server P, cntQ(p,F) exceeds more than half of
the total requests for F at Q, server P is requested to take over the copy of F. In
other words, server Q will attempt to migrate F to P.

Migration of file F to server P may not always succeed, for example, because
P is already heavily loaded or is out of disk space. In that case, Q will attempt to
replicate F on other servers. Of course, replication can take place only if the total
number of access requests for F at Q exceeds the replication threshold rep (Q,F).
Server Q checks all other servers in the Web hosting service, starting with the one
farthest away. If, for some server R, cntQ(R,F) ex-ceeds a certain fraction of all re-
quests for F at Q, an attempt is made to replicate F to R.

Server-initiated replication continues to increase in popularity in time, espe-
cially in the context of Web hosting services such as the one just described. Note
that as long as guarantees can be given that each data item is hosted by at least
one server, it may suffice to use only server-initiated replication and not have any
permanent replicas. Nevertheless, permanent replicas are still often useful as a
back-up facility, or to be used as the only replicas that are allowed to be changed
to guarantee consistency. Server-initiated replicas are then used for placing read-
only copies close to clients.

SEC. 7.4 REPLICA MANAGEMENT 301

Client-Initiated Replicas

An important kind of replica is the one initiated by a client. Client-initiated
replicas are more commonly known as (client) caches. In essence, a cache is a
local storage facility that is used by a client to temporarily store a copy of the data
it has just requested. In principle, managing the cache is left entirely to the client.
The data store from where the data had been fetched has nothing to do with keep-
ing cached data consistent. However, as we shall see, there are many occasions in
which the client can rely on participation from the.data store to inform it when
cached data has become stale.

Client caches are used only to improve access times to data. Normally, when
a client wants access to some data, it connects to the nearest copy of the data store
from where it fetches the data it wants to read, or to where it stores the data it had
just modified. When most operations involve only reading data, performance can
be improved by letting the client store requested data in a nearby cache. Such a
cache could be located on the client's machine, or on a separate machine in the
same local-area network as the client. The next time that same data needs to be
read, the client can simply fetch it from this local cache. This scheme works fine
as long as the fetched data have not been modified in the meantime.

Data are generally kept in a cache for a limited amount of time, for example,
to prevent extremely stale data from being used, or simply to make room for other
data. Whenever requested data can be fetched from the local cache, a cache bit is
said to have occurred. To improve the number of cache hits, caches can be shared
between clients. The underlying assumption is that a data request from client C 1

may also be useful for a request from another nearby client C2·
Whether this assumption is correct depends very much on the type of data

store. For example, in traditional file systems, data files are rarely shared at all
(see, e.g., Muntz and Honeyman, 1992; and Blaze, 1993) rendering a shared cache
useless. Likewise, it turns out that using Web caches to share data is also losing
some ground, partly also because of the improvement in network and server per-
formance. Instead, server-initiated replication schemes are becoming more effec-
tive.

Placement of client caches is relatively simple: a cache is normally placed on
the same machine as its client, or otherwise on a machine shared by clients on the
same local-area network. However, in some cases, extra levels of caching are..
introduced by system administrators by placing a shared cache between a number
of departments or organizations, or even placing a shared cache for an entire
region such as a province or country.

Yet another approach is to place (cache) servers at specific points in a wide-
area network and let a client locate the nearest server. When the server is located,
it can be requested to hold copies of the data the client was previously fetching
from somewhere else, as described in Noble et al. (1999). We will return to cach-
ing later in this chapter when discussing consistency protocols.

302 CONSISTENCY AND REPLICA nON CHAP. 7

7.4.3 Content Distribution

Replica management also deals with propagation of (updated) content to the
relevant replica servers. There are various trade-offs to make, which we discuss
next.

State versus Operations

An important design issue concerns what is actually to be propagated. Basi-
cally, there are three possibilities:

1. Propagate only a notification of an update.

2. Transfer data from one copy to another.

3. Propagate the update operation to other copies.

Propagating a notification is what invalidation protocols do. In an invalida-
tion protocol, other copies are informed that an update has taken place and that the
data they contain are no longer valid. The invalidation may specify which part of
the data store has been updated, so that only part of a copy is actually invalidated.
The important issue is that no more than a notification is propagated. Whenever
an operation on an invalidated copy is requested, that copy generally needs to be
updated first, depending on the specific consistency model that is to be supported.

The main advantage of invalidation protocols is that they use little network
bandwidth. The only information that needs to be transferred is a specification of
which data are no longer valid. Such protocols generally work best when there are
many update operations compared to read operations, that is, the read-to-write
ratio is relatively small.

Consider, for example, a data store in which updates are propagated by send-
ing the modified data to all replicas. If the size of the modified data is large, and
updates occur frequently compared to read operations, we may have the situation
that two updates occur after one another without any read operation being per-
formed between them. Consequently, propagation of the first update to all replicas
is effectively useless, as it will be overwritten by the second update. Instead, send-
ing a notification that the data have been modified would have been more effi-
cient.

Transferring the modified data among replicas is the second alternative, and is
useful when the read-to-write ratio is relatively high. In that case, the probability
that an update will be effective in the sense that the modified data will be read be-
fore the next update takes place is high. Instead of propagating modified data, it is
also possible to log the changes and transfer only those logs to save bandwidth. In
addition, transfers are often aggregated in the sense that multiple modifications
are packed into a single message, thus saving communication overhead.

SEC. 7.4 REPLICA MANAGEMENT 303

The third approach is not to transfer any data modifications at all, but to tell
each replica which update operation it should perform (and sending only the pa-
rameter values that those operations need). This approach, also referred to as
active replication, assumes that each replica is represented by a process capable
of "actively" keeping its associated data up to date by performing operations
(Schneider, 1990). The main benefit of active replication is that updates can often
be propagated at minimal bandwidth costs, provided the size of the parameters as-
sociated with an operation are relatively small. Moreover, the operations can be of
arbitrary complexity, which may allow further improvements in keeping replicas
consistent. On the other hand, more processing power may be required by each
replica, especially in those cases when operations are relatively complex.

Pull versus Push Protocols

Another design issue is whether updates are pulled or pushed. In a push-
based approach, also referred to as server-based protocols, updates are pro-
pagated to other replicas without those replicas even asking for the updates.
Push-based approaches are often used between permanent and server-initiated
replicas, but can also be used to push updates to client caches. Server-based proto-
cols are applied when replicas generally need to maintain a relatively high degree
of consistency. In other words, replicas need to be kept identical.

This need for a high degree of consistency is related to the fact that permanent
and server-initiated replicas, as well as large shared caches, are often shared by
many clients, which, in tum, mainly perform read operations. Consequently, the
read-to-update ratio at each replica is relatively high. In these cases, push-based
protocols are efficient in the sense that every pushed update can be expected to be
of use for one or more readers. In addition, push-based protocols make consistent
data immediately available when asked for.

In contrast, in a pull-based approach, a server or client requests another
server to send it any updates it has at that moment. Pull-based protocols, also call-
ed client-based protocols, are often used by client caches. For example, a com-
mon strategy applied to Web caches is first to check whether cached data items
are still up to date. When a cache receives a request for items that are still locally
available, the cache checks with the original Web server whether those data items
have been modified since they were cached. In the case of a modification, the
modified data are first transferred to the cache, and then returned to the requesting
client. If no modifications took place, the cached data are returned. In other
words, the client polls the server to see whether an update is needed.

A pull-based approach is efficient when the read-to-update ratio is relatively
low. This is often the case with (nonshared) client caches, which have only one
client. However, even when a cache is shared by many clients, a pull-based ap-
proach may also prove to be efficient when the cached data items are rarely

304 CONSISTENCY AND REPLICATION CHAP. 7

shared. The main drawback of a pull-based strategy in comparison to a push-
based approach is that the response time increases in the case of a cache miss.

When comparing push-based and pull-based solutions, there are a number of
trade-offs to be made, as shown in Fig. 7-19. For simplicity, consider a client-
server system consisting of a single, nondistributed server, and a number of client
processes, each having their own cache.

Figure 7-19. A comparison between push-based and pull-based protocols in the
case of multiple-client. single-server systems.

An important issue is that in push-based protocols, the server needs to keep
track of all client caches. Apart from the fact that stateful servers are often less
fault tolerant, as we discussed in Chap. 3, keeping track of all client caches may
introduce a considerable overhead at the server. For example, in a push-based ap-
proach, a Web server may easily need to keep track of tens of thousands of client
caches. Each time a Web page is updated, the server will need to go through its
list of client caches holding a copy of that page, and subsequently propagate the
update. Worse yet, if a client purges a page due to lack of space, it has to inform
the server, leading to even more communication.

The messages that need to be sent between a client and the server also differ.
In a push-based approach, the only communication is that the server sends updates
to each client. When updates are actually only invalidations, additional communi-
cation is needed by a client to fetch the modified data. In a pull-based approach, a
client will have to poll the server, and, if necessary. fetch the modified data.

Finally, the response time at the client is also different. When a server pushes
modified data to the client caches, it is clear that the response time at the client
side is zero. When invalidations are pushed, the response time is the same as in
the pull-based approach, and is determined by the time it takes to fetch the modi-
fied data from the server.

These trade-offs have lead to a hybrid form of update propagation based on
leases. A lease is a promise by the server that it will push updates to the client for
a specified time. When a lease expires, the client is forced to poll the server for
updates and pull in the modified data if necessary. An alternative is that a client
requests a new lease for pushing updates when the previous lease expires.

Leases were originally introduced by Gray and Cheriton (1989). They pro-
vide a convenient mechanism for dynamically switching between a push-based
and pull-based strategy. Duvvuri et al. (2003) describe a flexible lease system that

SEC. 7.4 REPLICA MANAGEMENT 305

;1110\\"s the expiration time to be dynamically adapted depending on different lease
criteria. They distinguish the following three types of leases. (Note that in all
cases. updates are pushed by the server as long as the lease has not expired.)

First, age-based leases are given out on data items depending on the last time
the item was modified. The underlying assumption is that data that have not been
modified for a long time can be expected to remain unmodified for some time yet
to come. This assumption has shown to be reasonable in the case of Web-based
data. By granting long-lasting leases to data items that are expected to remain
unmodified, the number of update messages can be strongly reduced compared to
the case where all leases have the same expiration time.

Another lease criterion is how often a specific client requests its ·cached copy
to be updated. With renewal-frequency-based leases, a server will hand out a
long-lasting lease to a client whose cache often needs to be refreshed. On the
other hand, a client that asks only occasionally for a specific data item will be
handed a short-term lease for that item. The effect of this strategy is that the ser-
ver essentially keeps track only of those clients where its data are popular; more-
over, those clients are offered a high degree of consistency.

The last criterion is that of state-space overhead at the server. When the server
realizes that it is gradually becoming overloaded, it lowers the expiration time of
new leases it hands out to clients. The effect of this strategy is that the server
needs to keep track of fewer clients as leases expire more quickly. In other words,
the server dynamically switches to a more stateless mode of operation, thereby
offloading itself so that it can handle requests more efficiently.

Lnicasting versus Multicasting

Related to pushing or pulling updates is deciding whether unicasting or multi-
casting should be used. In unicast communication, when a server that is part of the
data store sends its update to N other servers, it does so by sending N separate
messages, one to each server. With multicasting, the underlying network takes
care of sending a message efficiently to multiple receivers.

In many cases. it is cheaper to use available multicasting facilities. An
extreme situation is when all replicas are located in the same local-area network
and that hardware broadcasting is available. In that case, broadcasting or multi-
casting a message is no more expensive than a single point-to-point message. Uni-
casting updates would then be less efficient.

Multicasting can often be efficiently combined with a push-based approach to
propagating updates. When the two are carefully integrated, a server that decides
to push its updates to a number of other servers simply uses a single multicast
group to send its updates. In contrast, with a pull-based approach, it is generally
only a single client or server that requests its copy to be updated. In that case, uni-
casting may be the most efficient solution.

306 CONSISTENCY AND REPLICATION CHAP. 7

7.5 CONSISTENCY PROTOCOLS

So far, we have mainly concentrated on various consistency models and gen-
eral design issues for consistency protocols. In this section, we concentrate on the
actual implementation of consistency models by taking a look at several consis-
tency protocols. A consistency protocol describes an implementation of a specif-
ic consistency model. We follow the organization of our discussion on consisten-
cy models by first taking a look at data-centric models, followed by protocols for
client-centric models.

7.5.1 Continuous Consistency

As part of their work on continuous consistency, Yu and Vahdat have
developed a number of protocols to tackle the three forms of consistency. In the
following, we briefly consider a number of solutions, omitting details for clarity.

Bounding Numerical Deviation

We first concentrate on one solution for keeping the numerical deviation with-
in bounds. Again, our purpose is not to go into all the details for each protocol, but
rather to give the general idea. Details for bounding numerical deviation can be
found in Yu and Vahdat (2000b).

We concentrate on writes to a single data item x. Each write W(x) has an as-
sociated weight that represents the numerical value by which x is updated,
denoted as weight (lV (x)). or simply weight (W). For simplicity, we assume that
weight (W) > O. Each write W is initially submitted to one out of the N available
replica servers, in which case that server becomes the write's origin, denoted as
origin (W). If we consider the system at a specific moment in time we will see
several submitted writes that still need to be propagated to all servers. To this end,
each server S, will keep track of a log L, of writes that it has performed on its own
local copy of x.

Let TW[i,j] be the writes executed by server S, that originated from server Sj:

Note that TW[i,i] represents the aggregated writes submitted to Si' Our goal is
for any time t, to let the current value Vi at server S, deviate within bounds from
the actual value v (t) of x. This actual value is completely determined by all sub-
mitted writes. That is. if r (0) is the initial value of x, then

and

SEC. 7.5 CONSISTENCY PROTOCOLS 307

Bounding Staleness Deviations

There are many ways to keep the staleness of replicas within specified
bounds. One simple approach is to let server Sk keep a real-time vector clock
RVCk where RVCk[i] = T(i) means that Sk has seen all writes that have been sub-
mitted to S, up to time T(i). In this case, we assume that each submitted write is
timestamped by its origin server, and that T(i) denotes the time local to Si.

If the clocks between the replica servers are loosely synchronized, then an
acceptable protocol for bounding staleness would be the following. Whenever
server Sk notes that T(k) - RVCk[i] is about to exceed a specified limit, it simply
starts pulling in writes that originated from S, with a timestamp later than
RVCk[i]·

Note that in this case a replica server is responsible for keeping its copy of x
up to date regarding writes that have been issued elsewhere. In contrast, when
maintaining numerical bounds, we followed a push approach by letting an origin
server keep replicas up to date by forwarding writes. The problem with pushing
writes in the case of staleness is that no guarantees can be given for consistency
when it is unknown in advance what the maximal propagation time will be. This
situation is somewhat improved by pulling in updates, as multiple servers can help
to keep a server's copy of x fresh (up to date).

Note that Vi ~ V (t). Let us concentrate only on absolute deviations. In particular,
for every server Si, we associate an upperbound bi such that we need to enforce:

Writes submitted to a server S, will need to be propagated to all other servers.
There are different ways in which this can be done, but typically an epidemic pro-
tocol will allow rapid dissemination of updates. In any case, when a server S, pro-
pagates a write originating from ~ to Sb the latter will be able to learn about the
value TW [i,j] at the time the write was sent. In other words, Sk can maintain a
view TWk[i,j] of what it believes S, will have as value for TW[i,j]. Obviously,

The whole idea is that when server Sk notices that S, has not been keeping in
the right pace with the updates that have been submitted to Sb it forwards writes
from its log to Si. This forwarding effectively advances the view l1tl-Hi,k] that Sk
has of TW[i,k], making the deviation TIV[i,k] - ~[i,k] smaller. In particular,
Sk advances its view on TW[i,k] when an application submits a new write that
would increase TW[k,k] - ~[i,k] beyond bi / (N -1). We leave it as an exer-
cise to show that advancement always ensures that v (t) - Vi ~ bi•

308 CONSISTENCY AND REPLICATION CHAP. 7

Bounding Ordering Deviations

Recall that ordering deviations in continuous consistency are caused by the
fact that a replica server tentatively applies updates that have been submitted to it.
As a result, each server will have a local queue of tentative writes for which the
actual order in which they are to be applied to the local copy of x still needs to,be
determined. The ordering deviation is bounded by specifying the maximal length
of the queue of tentative writes.

As a consequence, detecting when ordering consistency needs to be enforced
is simple: when the length of this local queue exceeds a specified maximal length.
At that point, a server will no longer accept any newly submitted writes, but will
instead attempt to commit tentative writes by negotiating with other servers in
which order its writes should be executed. In other words, we need to enforce a
globally consistent ordering of tentative writes. There are many ways in doing
this, but it turns out that so-called primary-based or quorum-based protocols are
used in practice. We discuss these protocols next.

7.5.2 Primary-Based Protocols

In practice, we see that distributed applications generally follow consistency
models that are relatively easy to understand. These models include those for
bounding staleness deviations, and to a lesser extent also those for bounding num-
erical deviations. When it comes to models that handle consistent ordering of op-
erations, sequential consistency, notably those in which operations can be grouped
through locking or transactions are popular.

As soon as consistency models.become slightly difficult to understand for ap-
plication developers, we see that they are ignored even if performance could be
improved. The bottom line is that if the semantics of a consistency model are not
intuitively clear, application developers will have a hard time building correct ap-
plications. Simplicity is appreciated (and perhaps justifiably so).

In the case of sequential consistency, it turns out that primary-based protocols
prevail. In these protocols, each data item x in the data store has an associated pri-
mary, which is responsible for coordinating write operations on x. A distinction
can be made as to whether the primary is fixed at a remote server or if write oper-
ations can be carried out locally after moving the primary to the process where the
write operation is initiated. Let us take a look at this class of protocols.

Remote- Write Protocols

The simplest primary-based protocol that supports replication is the one in
which all write operations need to be forwarded to a fixed single server. Read op-
erations can be carried out locally. Such schemes are also known as primary-
backup protocols (Budhiraja et al., 1993). A primary-backup protocol works as
shown in Fig. 7-20. A process wanting to perform a write operation on data item

SEC. 7.5 CONSISTENCY PROTOCOLS 309

x, forwards that operation to the primary server for x. The primary performs the
update on its local copy of x, and subsequently forwards the update to the backup
servers. Each backup server performs the update as well, and sends an ack-
nowledgment back to the primary. When all backups have updated their local
copy, the primary sends an acknowledgment back to the initial process.

Figure 7-20. The principle of a primary-backup protocol.

A potential performance problem with this scheme is that it may take a rela-
tively long time before the process that initiated the update is allowed to continue.
In effect, an update is implemented as a blocking operation. An alternative is to
use a nonblocking approach. As soon as the primary has updated its local copy of
x, it returns an acknowledgment. After that, it tells the backup servers to perform
the update as well. Nonblocking primary-backup protocols are discussed in
Budhiraja and Marzullo (1992).

The main problem with nonblocking primary-backup protocols has to do with
fault tolerance. In a blocking scheme, the client process knows for sure that the
update operation is backed up by several other servers. This is not the case with a
nonblocking solution. The advantage, of course, is that write operations may
speed up considerably. We will return to fault tolerance issues extensively in the
next chapter.

Primary-backup protocols provide a straightforward implementation of se-
quential consistency, as the primary can order all incoming writes in a globally
unique time order. Evidently, all processes see all write operations in the same
order, no matter which backup server they use to perform read operations. Also,
with blocking protocols, processes will always see the effects of their most recent
write operation (note that this cannot be guaranteed with a nonblocking protocol
without taking special measures).

310 CONSISTENCY AND REPLICA nON CHAP. 7

Local- Write Protocols

A variant of primary-backup protocols is one in which the primary copy
migrates between processes that wish to perform a write operation. As before,
whenever a process wants to update data item x, it locates the primary copy of x,
and subsequently moves it to its own location, as shown in Fig. 7-21. The main ad-
vantage of this approach is that multiple, successive write operations can be car-
ried out locally, while reading processes can still access their local copy. How-
ever, such an improvement can be achieved only if a nonblocking protocol is fol-
lowed by which updates are propagated to the replicas after the primary has fin-
ished with locally performing the updates.

Figure 7-21. Primary-backup protocol in which the primary migrates to the
process wanting to perform an update.

This primary-backup local-write protocol can also be applied to mobile com-
puters that are able to operate in disconnected mode. Before disconnecting, the
mobile computer becomes the primary server for each data item it expects to up-
date. While being disconnected, all update operations are carried out locally.
while other processes can still perform read operations (but no updates). Later.
when connecting again, updates are propagated from the primary to the backups.
bringing the data store in a consistent state again. We will return to operating in
disconnected mode in Chap. 11 when we discuss distributed file systems.

As a last variant of this scheme, nonblocking local-write primary-based proto-
cols are also used for distributed file systems in general. In this case, there may be
a fixed central server through which normally all write operations take place, as in
the case of remote-write primary backup. However, the server temporarily allows
one of the replicas to perform a series of local updates, as this may considerably

SEC. 7.5 CONSISTENCY PROTOCOLS 311

speed up performance. When the replica server is done, the updates are propaga-
ted to the central server, from where they are then distributed to the other replica
servers.

7.5.3 Replicated-Write Protocols

In replicated-write protocols, write operations can be carried out at multiple
replicas instead of only one, as in the case of primary-based replicas. A distinction
can be made between active replication, in which an operation is forwarded to all
replicas, and consistency protocols based on majority voting.

Active Replication

In active replication, each replica has an associated process that carries out
update operations. In contrast to other protocols, updates are generally propagated
by means of the write operation that causes the update. In other words, the opera-
tion is sent to each replica. However, it is also possible to send the update, as dis-
cussed before.

One problem with active replication is that operations need to be carried out
in the same order everywhere. Consequently, what is needed is a totally-ordered
multicast mechanism. Such a multicast can be implemented using Lamport's logi-
cal clocks, as discussed in the previous chapter. Unfortunately, this implementa-
tion of multicasting does not scale well in large distributed systems. As an alterna-
tive, total ordering can be achieved using a central coordinator, also called a se-
quencer. One approach is to first forward each operation to the sequencer, which
assigns it a unique sequence number and subsequently forwards the operation to
all replicas. Operations are carried out in the order of their sequence number.
Clearly, this implementation of totally-ordered multicasting strongly resembles
primary-based consistency protocols.

Note that using a sequencer does not solve the scalability problem. In fact, if
totally-ordered multicasting is needed, a combination of symmetric multicasting
using Lamport timestamps and sequencers may be necessary. Such a solution is
described in Rodrigues et al. (1996).

Quorum-Based Protocols

A different approach to supporting replicated writes is to use voting as origi-
nally proposed by Thomas (1979) and generalized by Gifford (1979). The basic
idea is to require clients to request and acquire the permission of multiple servers
before either reading or writing a replicated data item.

As a simple example of how the algorithm works, consider a distributed file
system and suppose that a file is replicated on N servers. We could make a rule
stating that to update a file, a client must first contact at least half the servers plus

312 CONSISTENCY AND REPLICATION CHAP. 7

one (a majority) and get them to agree to do the update. Once they have agreed,
the file is changed and a new version number is associated with the new file. The
version number is used to identify the version of the file and is the same for all the
newly updated files.

To read a replicated file, a client must also contact at least half the servers
plus one and ask them to send the version numbers associated with the file. If all
the version numbers are the same, this must be the most recent version because 'an
attempt to update only the remaining servers would fail because there are not
enough of them.

For example. if there are five servers and a client determines that three of
them have version 8, it is impossible that the other two have version 9. After all,
any successful update from version 8 to version 9 requires getting three servers to
agree to it, not just two.

Gifford's scheme is actually somewhat more general than this. In it, to read a
file of which N replicas exist, a client needs to assemble a read quorum, an arbi-
trary collection of any NR servers, or more. Similarly, to modify a file, a write
quorum of at least Nw servers is required. The values of NR and Nw are subject to
the following two constraints:

The first constraint is used to prevent read-write conflicts, whereas the second
prevents write-write conflicts. Only after the appropriate number of servers has
agreed to participate can a file be read or written.

To see how this algorithm works, consider Fig. 7-22(a), which has NR = 3 and
Nw = 10. Imagine that the most recent write quorum consisted of the 10 servers C
through 1.All of these get the new version and the new version number. Any sub-
sequent read quorum of three servers will have to contain at least one member of
this set. When the client looks at the version numbers, it will know which is most
recent and take that one.

In Fig. 7-.22(b)and (c), we see two more examples. In Fig. 7-22(b) a write-
write conflict may occur because Nw $N /2. In particular, if one client chooses
{A,B, C,E,F,G} as its write set and another client chooses {D,H,I.J,K,L} as its
write set, then clearly we will run into trouble as the two updates will both be
accepted without detecting that they actually conflict.

The situation shown in Fig. 7-22(c) is especially interesting because it sets NR

to one, making it possible to read a replicated file by finding any copy and using
it. The price paid for this good read performance, however, is that write updates
need to acquire all copies. This scheme is generally referred to as Read-One,
Write-All (ROWA). There are several variations of quorum-based replication
protocols. A good overview is presented in Jalote (1994).

SEC. 7.5 CONSISTENCY PROTOCOLS 313

Figure 7-22. Three examples of the voting algorithm. (a) A correct choice of
read and write set. (b) A choice that may lead to write-write conflicts. (c) A
correct choice, known as ROW A (read one, write all).

7.5.4 Cache-Coherence Protocols

Caches form a special case of replication, in the sense that they are generally
controlled by clients instead of servers. However, cache-coherence protocols,
which ensure that a cache is consistent with the server-initiated replicas are, in
principle, not very different from the consistency protocols discussed so far.

There has been much research in the design and implementation of caches,
especially in the context of shared-memory multiprocessor systems. Many solu-
tions are based on support from the underlying hardware, for example, by assum-
ing that snooping or efficient broadcasting can be done. In the context of
middleware-based distributed systems that are built on top of general ...purpose
operating systems, software-based solutions to caches are more interesting. In this
case, two separate criteria are often maintained to classify caching protocols (Min
and Baer, 1992; Lilja, 1993; and Tartalja and Milutinovic, 1997).

First, caching solutions may differ in their coherence detection strategy, that
is, when inconsistencies are actually detected. In static solutions, a compiler is
assumed to perform the necessary analysis prior to execution, and to determine
which data may actually lead to inconsistencies because they may be cached. The
compiler simply inserts instructions that avoid inconsistencies. Dynamic solutions
are typically applied in the distributed systems studied in this book. In these solu-
tions, inconsistencies are detected at runtime. For example, a check is made with
the server to see whether the cached data have been modified since they were
cached.

In the case of distributed databases, dynamic detection-based protocols can be
further classified by considering exactly when during a transaction the detection is
done. Franklin et al. (1997) distinguish the following three cases. First, when dur-
ing a transaction a cached data item is accessed, the client needs to verify whether
that data item is still consistent with the version stored at the (possibly replicated)

314 CONSISTENCY AND REPLICATION CHAP. 7

server. The transaction cannot proceed to use the cached version until its consis-
tency has been definitively validated.

A second, optimistic, approach is to let the transaction proceed while verifica-
tion is taking place. In this case, it is assumed that the cached data were up to date
when the transaction started. If that assumption later proves to be false, the tran-
saction will have to abort.

The third approach is to verify whether the cached data are up to date only
when the transaction commits. This approach is comparable to the optimistic con-
currency control scheme discussed in the previous chapter. In effect. the trans-
action just starts operating on the cached data and hopes for the best. After all the
work has been done, accessed data are verified for consistency. When stale data
were used, the transaction is aborted.

Another design issue for cache-coherence protocols is the coherence enforce-
ment strategy, which determines how caches are kept consistent with the copies
stored at servers. The simplest solution is to disallow shared data to be cached at
all. Instead, shared data are kept only at the servers, which maintain consistency
using one of the primary-based or replication-write protocols discussed above.
Clients are allowed to cache only private data. Obviously, this solution can offer
only limited performance improvements.

When shared data can be cached, there are two approaches to enforce cache
coherence. The first is to let a server send an invalidation to all caches whenever a
data item is modified. The second is to simply propagate the update. Most caching
systems use one of these two schemes. Dynamically choosing between sending
invalidations or updates is sometimes supported in client-server databases (Frank-
lin et al., 1997).

Finally, we also need to consider what happens when a. process modifies
cached data. When read-only caches are used, update operations can be performed
only by servers, which subsequently follow some distribution protocol to ensure
that updates are propagated to caches. In many cases, a pull-based approach is fol-
lowed. In this case, a client detects that its cache is stale, and requests a server for
an update.

An alternative approach is to allow clients to directly modify the cached data,
and forward the update to the servers. This approach is followed in write-through
caches, which are often used in distributed file systems. In effect, write-through
caching is similar to a primary-based local-write protocol in which the client's
cache has become a temporary primary. To guarantee (sequential) consistency, it
is necessary that the client has been granted exclusive write permissions, or other-
wise write-write conflicts may occur.

Write-through caches potentially offer improved performance over other
schemes as all operations can be carried out locally. Further improvements can be
made if we delay the propagation of updates by allowing multiple writes to take
place before informing the servers. This leads to what is known as a write-back
cache, which is, again, mainly applied in distributed file systems.

SEC. 7.5 CONSISTENCY PROTOCOLS 315
7.5.5 Implementing Client-Centric Consistency

For our last topic on consistency protocols, let us draw our attention to imple-
menting client-centric consistency. Implementing client-centric consistency is
relatively straightforward if performance issues are ignored. In the following
pages, we first describe such an implementation, followed by a description of a
more realistic implementation.

A Naive Implementation

In a naive implementation of client-centric consistency, each write operation
W is assigned a globally unique identifier. Such an identifier is assigned by the
server to which the write had been submitted. As in the case of continuous consis-
tency, we refer to this server as the origin of W. Then, for each client, we keep
track of two sets of writes. The read set for a client consists of the writes relevant
for the read operations performed by a client. Likewise, the write set consists of
the (identifiers of the) writes performed by the client.

Monotonic-read consistency is implemented as follows. When a client per-
forms a read operation at a server, that server is handed the client's read set to
check whether all the identified writes have taken place locally. (The size of such
a set may introduce a performance problem, for which a solution is discussed
below.) If not, it contacts the other servers to ensure that it is brought up to date
before carrying out the read operation. Alternatively, the read operation is for-
warded to a server where the write operations have already taken place. After the
read operation is performed, the write operations that have taken place at the
selected server and which are relevant for the read operation are added tothe cli-
ent's read set.

Note that it should be possible to determine exactly where the write opera-
tions identified in the read set have taken place. For example, the write identifier
could include the identifier of the server to which the operation was submitted.
That server is required to, for example, log the write operation so that it can be
replayed at another server. In addition, write operations should be performed in
the order they were submitted. Ordering can be achieved by letting the client gen-
erate a globally unique sequence number that is included in the write identifier. If
each data item can be modified only by its owner, the latter can supply the se-
quence number.

Monotonic-write consistency is implemented analogous to monotonic reads.
Whenever a client initiates a new write operation at a server, the server is handed
over the client's write set. (Again, the size of the set may be prohibitively large in
the face of performance requirements. An alternative solution is discussed below.)
It then ensures that the identified write operations are performed first and in the
correct order. After performing the new operation, that operation's write identifier
is added to the write set. Note that bringing the current server up to date with the

316 CONSISTENCY AND REPLICATION CHAP. 7

client's write set may introduce a considerable increase in the client's response
time since the client then wait for the operation to fully complete.

Likewise, read-your-writes consistency requires that the server where the read
operation is performed has seen all the write operations in the client's write set.
The writes can simply be fetched from other servers before the read operation is
performed, although this may lead to a poor response time. Alternatively, the cli-
ent-side software can search for a server where the identified write operations in
the client's write set have already been performed.

Finally, writes-follow-reads consistency can be implemented by first bringing
the selected server up to date with the write operations in the client's read set, and
then later adding the identifier of the write operation to the write set, along with
the identifiers in the read set (which have now become relevant for the write oper-
ation just performed).

Improving Efficiency

It is easy to see that the read set and write set associated with each client can
become very large. To keep these sets manageable, a client's read and write oper-
ations are grouped into sessions. A session is typically associated with an applica-
tion: it is opened when the application starts and is closed when it exits. However,
sessions may also be associated with applications that are temporarily exited, such
as user agents for e-mail. Whenever a client closes a session, the sets are simply
cleared. Of course, if a client opens a session that it never closes, the associated
read and write sets can still become very large.

The main problem with the naive implementation lies in the representation of
the read and write sets. Each set consists of a number of identifiers for write oper-
ations. Whenever a client forwards a read or write request to a server, a\ set of
identifiers is handed to the server as well to see whether all write operations rel-
evant to the request have been carried out by that server.

This information can be more efficiently represented by means of vector time-
stamps as follows. First, whenever a server accepts a new write operation W, it
assigns that operation a globally unique identifier along with a timestamp ts (W).
A subsequent write operation submitted to that server is assigned a higher-valued
timestamp. Each server S, maintains a vector timestamp WVCj, where WVCj U] is
equal to the timestamp of the most recent write operation originating from Sj that
has been processed by Sj. For clarity, assume that for each server, writes from ~
are processed in the order that they were submitted.

Whenever a client issues a request to perform a read or write operation 0 at a
specific server, that server returns its current timestamp along with the results of
O. Read and write sets are subsequently represented by vector timestamps. More
specifically, for each session A, we construct a vector timestamp SVCA with
SVCA [i] set equal to the maximum timestamp of all write operations in A that ori-
ginate from server Sj:

SEC. 7.5 CONSISTENCY PROTOCOLS 317

Again, we see how vector timestamps can provide an elegant and compact
way of representing history in a distributed system.

7.6 SUMMARY

There are primarily two reasons for replicating data: improving the reliability
of a distributed system and improving performance. Replication introduces a con-
sistency problem: whenever a replica is updated, that replica becomes different
from the others. To keep replicas consistent, we need to propagate updates in such
a way that temporary inconsistencies are not noticed. Unfortunately, doing so may
severely degrade performance, especially in large-scale distributed systems.

The only solution to this problem is to relax consistency somewhat. Different
consistency models exist. For continuous consistency, the goal is set to bounds to
numerical deviation between replicas, staleness deviation, and deviations in the
ordering of operations.

Numerical deviation refers to the value by which replicas may be different.
This type of deviation is highly application dependent, but can, for example, be
used in replication of stocks. Staleness deviation refers to the time by which a
replica is still considered to be consistent, despite that updates may have taken
place some time ago. Staleness deviation is often used for Web caches. Finally,
ordering deviation refers to the maximum number of tentative writes that may be
outstanding at any server without having synchronized with the other replica ser-
vers.

Consistent ordering of operations has since long formed the basis for many
consistency models. Many variations exist, but only a few seem to prevail among
application developers. Sequential consistency essentially provides the semantics
that programmers expect in concurrent programming: all write operations are seen
by everyone in the same order. Less used, but still relevant, is causal consistency,

In other words, the timestamp of a session always represents the latest write oper-
ations that have been seen by the applications that are being executed as part of
that session. The compactness is obtained by representing all observed write oper-
ations originating from the same server through a single timestamp.

As an example, suppose a client, as part of session A, logs in at server Si' To
that end, it passes SVCA to Si' Assume that SVCAUJ > WVCiUJ. What this means
is that S, has not yet seen all the writes originating from ~ that the client has seen.
Depending on the required consistency, server S, may now have to fetch these
writes before being able to consistently report back to the client. Once the opera-
tion has been performed, server S, will return its current timestamp WvCi. At that
point, SVCA is adjusted to:

318 CONSISTENCY AND REPLICATION CHAP. 7

which reflects that operations that are potentially dependent on each other are car-
ried out in the order of that dependency.

Weaker consistency models consider series of read and write operations. In
particular, they assume that each series is appropriately "bracketed" by accom-
panying operations on synchronization variables, such as locks. Although this re-
quires explicit effort from programmers, these models are generally easier to
implement in an efficient way than, for example, pure sequential consistency.

As opposed to these data-centric models, researchers in the field of distributed
databases for mobile users have defined a number of client-centric consistency
models. Such models do not consider the fact that data may be shared by several
users, but instead, concentrate on the consistency that an individual client should
be offered. The underlying assumption is that a client connects to different repli-
cas in the course of time, but that such differences should be made transparent. In
essence, client-centric consistency models ensure that whenever a client connects
to a new replica, that replica is brought up to date with the data that had been
manipulated by that client before, and which may possibly reside at other replica
sites.

To propagate updates, different techniques can be applied. A distinction needs
to be made concerning what is exactly propagated, to where updates are pro-
pagated, and by whom propagation is initiated. We can decide to propagate notifi-
cations, operations, or state. Likewise, not every replica always needs to be up-
dated immediately. Which replica is updated at which time depends on the dis-
tribution protocol. Finally, a choice can be made whether updates are pushed to
other replicas, or that a replica pulls in updates from another replica.

Consistency protocols describe specific implementations of consistency
models. With respect to sequential consistency and its variants, a distinction can
be made between primary-based protocols and replicated-write protocols. In
primary-based protocols, all update operations are forwarded to a primary copy
that subsequently ensures the update is properly ordered and forwarded. In
replicated-write protocols, an update is forwarded to several replicas at the same
time. In that case, correctly ordering operations often becomes more difficult.

PROBLEMS

1. Access to shared Java objects can be serialized by declaring its methods as being syn-
chronized. Is this enough to guarantee serialization when such an object is replicated?

2. Explain in your own words what the main reason is for actually considering weak con-
sistency models.

3. Explain how replication in DNS takes place, and why it actually works so well.

CHAP. 7 PROBLEMS 319

~. During the discussion of consistency models, we often referred to the contract be-
tween the software and data store. Why is such a contract needed?

5. Given the replicas in Fig. 7-2, what would need to be done to finalize the values in the
conit such that both A and B see the same result?

6. In Fig. 7-7, is 001110 a legal output for a sequentially consistent memory? Explain
your answer.

7. It is often argued that weak consistency models impose an extra burden for pro-
grammers. To what extent is this statement actually true?

8. Does totally-ordered multicasting by means of a sequencer and for the sake of consis-
tency in active replication, violate the end-to-end argument in system design?

9. What kind of consistency would you use to implement an electronic stock market?
Explain your answer.

10. Consider a personal mailbox for a mobile user, implemented as part of a wide-area
distributed database. What kind of client-centric consistency would be most appropri-
ate?

11. Describe a simple implementation of read-your-writes consistency for displaying Web
pages that have just been updated.

12. To make matters simple, we assumed that there were no write-write conflicts in
Bayou. Of course, this is an unrealistic assumption. Explain how conflicts may hap-
pen.

13. When using a lease, is it necessary that the clocks of a client and the server, respec-
tively, are tightly synchronized?

14. We have stated that totally-ordered multicasting using Lamport's logical clocks does
not scale. Explain why.

15. Show that, in the case of continuous consistency, having a server Sk advance its view
TWk(i,k) whenever it receives a fresh update that would increase TW(k,k) - TWk(i,k)
beyond OJ / N - 1), ensures that v (t)- Vj :5OJ.

16. For continuous consistency, we have assumed that each write only increases the value
of data item x. Sketch a solution in which it is also possible to decrease x's value.

17. Consider a nonblocking primary-backup protocol used to guarantee sequential consis-
tency in a distributed data store. Does such a data store always provide read-your-
writes consistency?

18. For active replication to work in general, it is necessary that all operations be carried
out in the same order at each replica. Is this ordering always necessary?

19. To implement totally-ordered multicasting by means of a sequencer, one approach is
to first forward an operation to the sequencer, which then assigns it a unique number
and subsequently multicasts the operation. Mention two alternative approaches, and
compare the three solutions.

20. A file is replicated on 10 servers. List all the combinations of read quorum and write
quorum that are permitted by the voting algorithm.

320 CONSISTENCY AND REPLICA nON CHAP. 7

21. State-based leases are used to offload a server by letting it allow to keep track of as
few clients as needed. Will this approach necessarily lead to better performance?

22. (Lab assignment) For this exercise, you are to implement a simple system that sup-
ports multicast RPC. We assume that there are multiple, replicated servers and that
each client communicates with a server through an RPC. However, when dealing with
replication, a client will need to send an RPC request to each replica. Program the cli-
ent such that to the application it appears as if a single RPC is sent. Assume you are
replicating for performance, but that servers are susceptible to failures.

8
FAULT TOLERANCE

A characteristic feature of distributed systems that distinguishes them from
single-machine systems is the notion of partial failure. A partial failure may hap-
pen when one component in a distributed system fails. This failure may affect the
proper operation of other components, while at the same time leaving yet other
components totally unaffected. In contrast, a failure in nondistributed systems is
often total in the sense that it affects all components, and may easily bring down
the entire system.

An important goal in distributed systems design is to construct the system in
such a way that it can automatically recover from partial failures without seriously
affecting the overall performance. In particular, whenever a failure occurs, the
distributed system should continue to operate in an acceptable way while repairs
are being made, that is, it should tolerate faults and continue to operate to some
extent even in their presence.

In this chapter, we take a closer look at techniques for making distributed sys-
tems fault tolerant. After providing some general background on fault tolerance,
we will look at process resilience and reliable multicasting. Process resilience
incorporates techniques by which one or more processes can fail without seriously
disturbing the rest of the system. Related to this issue is reliable multicasting, by
which message transmission to a collection of processes is guaranteed to succeed.
Reliable multicasting is often necessary to keep processes synchronized.

Atomicity is a property that is important in many applications. For example,
in distributed transactions, it is necessary to guarantee that every operation in a

321

322 FAULT TOLERANCE CHAP. 8

transaction is carried out or none of them are. Fundamental to atomicity in distrib-
uted systems is the notion of distributed commit protocols, which are discussed in
a separate section in this chapter.

Finally, we will examine how to recover from a failure. In particular, we con-
sider when and how the state of a distributed system should be saved to allow re-
covery to that state later on.

8.1 INTRODUCTION TO FAULT TOLERANCE

Fault tolerance has been subject to much research in computer science. In this
section, we start with presenting the basic concepts related to processing failures,
followed by a discussion of failure models. The key technique for handling
failures is redundancy, which is also discussed. For more general information on
fault tolerance in distributed systems, see, for example Jalote (1994) or (Shooman,
2002).

8.1.1 Basic Concepts

To understand the role of fault tolerance in distributed systems we first need
to take a closer look at what it actually means for a distributed system to tolerate
faults. Being fault tolerant is strongly related to what are called dependable sys-
tems. Dependability is a term that covers a number of useful requirements for
distributed systems including the following (Kopetz and Verissimo, 1993):

1. Availability

2. Reliability

3. Safety

4. Maintainability

Avail ability is defined as the property that a system is ready to be used im-
mediately. In general, it refers to the probability that the system is operating
correctly. at any given moment and is available to perform its functions on behalf
of its users. In other words, a highly available system is one that will most likely
be working at a given instant in time.

Reliability refers to the property that a system can run continuously without
failure. In contrast to availability, reliability is defined in terms of a time interval
instead of an instant in time. A highly-reliable system is one that will most likely
continue to work without interruption during a relatively long period of time. This
is a subtle but important difference when compared to availability. If a system
goes down for one millisecond every hour, it has an availability of over 99.9999
percent, but is still highly unreliable. Similarly, a system that never crashes but is

SEC. 8.1 INTRODUCTION TO FAULT TOLERANCE 323
shut down for two weeks every August has high reliability but only 96 percent
availability. The two are not the same.

Safety refers to the situation that when a system temporarily fails to operate
correctly, nothing catastrophic happens. For example, many process control sys-
tems, such as those used for controlling nuclear power plants or sending people
into space, are required to provide a high degree of safety. If such control systems
temporarily fail for only a very brief moment, the effects could be disastrous.
Many examples from the past (and probably many more yet to come) show how
hard it is to build safe systems.

Finally, maintainability refers to how easy a failed system can be repaired. A -
highly maintainable system may also show a high degree of availability, espe-
cially if failures can be detected and repaired automatically. However, as we shall
see later in this chapter, automatically recovering from failures is easier said than
done.

Often, dependable systems are also required to provide a high degree of secu-
rity, especially when it comes to issues such as integrity. We will discuss security
in the next chapter.

A system is said to fail when it cannot meet its promises. In particular, if a
distributed system is designed to provide its users with a number of services, the
system has failed when one or more of those services cannot be (completely) pro-
vided. An error is a part of a system's state that may lead to a failure. For ex-
ample, when transmitting packets across a network, it is to be expected that some
packets have been damaged when they arrive at the receiver. Damaged in this
context means that the receiver may incorrectly sense a bit value (e.g., reading a 1
instead of a 0), or may even be unable to detect that something has arrived.

The cause of an error is called a fault. Clearly, finding out what caused an
error is important. For example, a wrong or bad transmission medium may easily
cause packets to be damaged. In this case, it is relatively easy to remove the fault.
However, transmission errors may also be caused by bad weather conditions such
as in wireless networks. Changing the weather to reduce or prevent errors is a bit
trickier.

Building dependable systems closely relates to controlling faults. A distinc-
tion can be made between preventing, removing, and forecasting faults (Avizienis
et aI., 2004). For our purposes, the most important issue is fault tolerance, mean-
ing that a system can provide its services even in the presence of faults. In other
words, the system can tolerate faults and continue to operate normally.

Faults are generally classified as transient, intermittent, or permanent. Tran-
sient faults occur once and then disappear. If the operation is repeated, the fault
goes away. A bird flying through the beam of a microwave transmitter may cause
lost bits on some network (not to mention a roasted bird). If the transmission times
out and is retried, it will probably work the second time.

An intermittent fault occurs, then vanishes of its own accord, then reappears,
and so on. A loose contact on a connector will often cause an intermittent fault.

324 FAULT TOLERANCE CHAP. 8

Intermittent faults cause a great deal of aggravation because they are difficult to
diagnose. Typically, when the fault doctor shows up, the system works fine.

A permanent fault is one that continues to exist until the faulty component is
replaced. Burnt-out chips, software bugs, and disk head crashes are examples of
permanent faults.

8.1.2 Failure Models

A system that fails is not adequately providing the services it was designed
for. If we consider a distributed system as a collection of servers that communi-
cate with one another and with their clients, not adequately providing services
means that servers, communication channels, or possibly both, are not doing what
they are supposed to do. However, a malfunctioning server itself may not always
be the fault we are looking for. If such a server depends on other servers to ade-
quately provide its services, the cause of an error may need to be searched for
somewhere else.

Such dependency relations appear in abundance in distributed systems. A fail-
ing disk may make life difficult for a file server that is designed to provide a
highly available file system. If such a file server is part of a distributed database,
the proper working of the entire database may be at stake, as only part of its data
may be accessible.

To get a better grasp on how serious a failure actually is, several classification
schemes have been developed. One such scheme is shown in Fig. 8-1, and is
based on schemes described in Cristian (1991) and Hadzilacos and Toueg (1993).

Figure 8-1. Different types of failures.

A crash failure occurs when a server prematurely halts, but was working
correctly until it stopped. An important aspect of crash failures is that once the
server has halted, nothing is heard from it anymore. A typical example of a crash
failure is an operating system that comes to a grinding halt, and for which there is
only one solution: reboot it. Many personal computer systems suffer from crash

SEC. 8.1 INTRODUCTION TO FAULT TOLERANCE 325
failures so often that people have come to expect them to be normal. Conse-
quently, moving the reset button from the back of a cabinet to the front was done
for good reason. Perhaps one day it can be moved to the back again, or even re-
moved altogether.

An omission failure occurs when a server fails to respond to a request.
Several things might go wrong. In the case of a receive omission failure, possibly
the server never got the request in the first place. Note that it may well be the case
that the connection between a client and a server has been correctly established,
but that there was no thread listening to incoming requests. Also, a receive omis-
sion failure will generally not affect the current state of the server, as the server is
unaware of any message sent to it.

Likewise, a send omission failure happens when the server has done its work,
but somehow fails in sending a response. Such a failure may happen, for example,
when a send buffer overflows while the server was not prepared for such a situa-
tion. Note that, in contrast to a receive omission failure, the server may now be in
a state reflecting that it has just completed a service for the client. As a conse-
quence, if the sending of its response fails, the server has to be prepared for the
client to reissue its previous request.

Other types of omission failures not related to communication may be caused
by software errors such as infinite loops or improper memory management by
which the server is said to "hang."

Another class of failures is related to timing. Timing failures occur when the
response lies outside a specified real-time interval. As we saw with isochronous
data streams in Chap. 4, providing data too soon may easily cause trouble for a
recipient if there is not enough buffer space to hold all the incoming data. More
common, however, is that a server responds too late, in which case a performance
failure is said to occur.

A serious type of failure is a response failure, by which the server's response
is simply incorrect. Two kinds of response failures may happen. In the case of a
value failure, a server simply provides the wrong reply to a request. For example,
a search engine that systematically returns Web pages not related to any of the
search terms used. has failed.

The other type of response failure is known as a state transition failure.
This kind of failure happens when the server reacts unexpectedly to an incoming
request. For example, if a server receives a message it cannot recognize, a state
transition failure happens if no measures have been taken to handle such mes-
sages. In particular, a faulty server may incorrectly take default actions it should
never have initiated.

The most serious are arbitrary failures, also known as Byzantine failures.
In effect, when arbitrary failures occur, clients should be prepared for the worst.
In particular, it may happen that a server is producing output it should never have
produced, but which cannot be detected as being incorrect Worse yet a faulty
server may even be maliciously working together with other servers to produce

326 FAULT TOLERANCE CHAP. 8

intentionally wrong answers. This situation illustrates why security is also consid-
ered an important requirement when talking about dependable systems. The term
"Byzantine" refers to the Byzantine Empire, a time (330-1453) and place (the
Balkans and modem Turkey) in which endless conspiracies, intrigue, and untruth-
fulness were alleged to be common in ruling circles. Byzantine faults were first
analyzed by Pease et al. (1980) and Lamport et al. (1982). We return to such fail-
ures below.

Arbitrary failures are closely related to crash failures. The definition of crash
failures as presented above is the most benign way for a server to halt. They are
also referred to as fail-stop failures. In effect, a fail-stop server will simply stop
producing output in such a way that its halting can be detected by other processes.
In the best case, the server may have been so friendly to announce it is about to
crash; otherwise it simply stops.

Of course, in real life, servers halt by exhibiting omission or crash failures,
and are not so friendly as to announce in advance that they are going to stop. It is
up to the other processes to decide that a server has prematurely halted. However,
in such fail-silent systems, the other process may incorrectly conclude that a
server has halted. Instead, the server may just be unexpectedly slow, that is, it is
exhibiting performance failures.

Finally, there are also occasions in which the server is producing random out-
put, but this output can be recognized by other processes as plain junk. The server
is then exhibiting arbitrary failures, but in a benign way. These faults are also
referred to as being fail-safe.

8.1.3 Failure Masking b)' Redundancy

If a system is to be fault tolerant, the best it can do is to try to hide the
occurrence of failures from other processes. The key technique for masking faults
is to use redundancy. Three kinds are possible: information redundancy, time
redundancy, and physical redundancy [see also Johnson (1995)]. With informa-
tion redundancy, extra bits are added to allow recovery from garbled bits. For ex-
ample, a Hamming code can be added to transmitted data to recover from noise on
the transmission line.

With time redundancy, an action is performed, and then. if need be, it is per-
formed again. Transactions (see Chap. 1) use this approach. If a transaction
aborts, it can be redone with no harm. Time redundancy is especially helpful
when the faults are transient or intermittent.

With physical redundancy, extra equipment or processes are added to make it
possible for the system as a whole to tolerate the loss or malfunctioning of some
components. Physical redundancy can thus be done either in hardware or in soft-
ware. For example, extra processes can be added to the system so that if a small
number of them crash, the system can still function correctly. In other words, by

SEC. 8.1 INTRODUCTION TO FAULT TOLERANCE 327

Figure 8-2. Triple modular redundancy.

In Fig. 8-2(b), each device is replicated three times. Following each stage in
the circuit is a triplicated voter. Each voter is a circuit that has three inputs and
one output. If two or three of the inputs are the same, the output is equal to that
input. If all three inputs are different, the output is undefined. This kind of design
is known as TMR (Triple Modular Redundancy).

Suppose that element Az fails. Each of the voters, Vb Vz, and V3 gets two
good (identical) inputs and one rogue input, and each of them outputs the correct
value to the second stage. In essence, the effect of Az failing is completely mask-
ed, so that the inputs to B I, Bz, and B3 are exactly the same as they would have
been had no fault occurred.

Now consider what happens if B3 and C1 are also faulty, in addition to Az·
These effects are also masked, so the three final outputs are still correct.

At first it may not be obvious why three voters are needed at each stage. After
all, one voter could also detect and pass though the majority view. However, a
voter is also a component and can also be faulty. Suppose, for example, that voter
V I malfunctions. The input to B I will then be wrong, but as long as everything
else works, Bz and B3 will produce the same output and V4, Vs, and V6 will all
produce the correct result into stage three. A fault in VI is effectively no different

replicating processes, a high degree of fault tolerance may be achieved. We return
to this type of software redundancy below.

Physical redundancy is a well-known technique for providing fault tolerance.
It is used in biology (mammals have two eyes, two ears, two lungs, etc.), aircraft
(747s have four engines but can fly on three), and sports (multiple referees in case
one misses an event). It has also been used for fault tolerance in electronic circuits
for years; it is illustrative to see how it has been applied there. Consider, for ex-
ample, the circuit of Fig. 8-2(a). Here signals pass through devices A, B, and C, in
sequence. If one of them is faulty, the final result will probably be incorrect.

328 FAULT TOLERANCE CHAP. 8

than a fault in B I. In both cases B I produces incorrect output, but in both cases it
is voted down later and the final result is still correct.

Although not all fault-tolerant distributed systems use TMR, the technique is
very general, and should give a clear feeling for what a fault-tolerant system is, as
opposed to a system whose individual components are highly reliable but whose
organization cannot tolerate faults (i.e., operate correctly even in the presence of
faulty components). Of course, TMR can be applied recursively, for example, 'to
make a chip highly reliable by using TMR inside it, unknown to the designers
who use the chip, possibly in their own circuit containing multiple copies of the
chips along with voters.

8.2 PROCESS RESILIENCE

Now that the basic issues of fault tolerance have been discussed, let us con-
centrate on how fault tolerance can actually be achieved in distributed systems.
The first topic we discuss is protection against process failures, which is achieved
by replicating processes into groups. In the following pages, we consider the gen-
eral design issues of process groups, and discuss what a fault-tolerant group actu-
ally is. Also, we look at how to reach agreement within a process group when one
or more of its members cannot be trusted to give correct answers.

8.2.1 Design Issues

The key approach to tolerating a faulty process is to organize several identical
processes into a group. The key property that all groupshave is that when a mes-
sage is sent to the group itself, all members of the group receive it. In this way, if
one process in a group fails, hopefully some other process can take over for it
(Guerraoui and Schiper, 1997).

Process groups may be dynamic. New groups can be created and old groups
can be destroyed. A process can join a group or leave one during system opera-
tion. A process can be a member of several groups at the same time. Consequent-
ly, mechanisms are needed for managing groups and group membership.

Groups are roughly analogous to social organizations. Alice might be a
member of a book club, a tennis club, and an environmental organization. On a
particular day, she might receive mailings (messages) announcing a new birthday
cake cookbook from the book club, the annual Mother's Day tennis tournament
from the tennis club, and the start of a campaign to save the Southern groundhog
from the environmental organization. At any moment, she is free to leave any or
all of these groups, and possibly join other groups.

The purpose of introducing groups is to allow processes to deal with collec-
tions of processes as a single abstraction. Thus a process can send a message to a
group of servers without having to know who they are or how many there are or
where they are, which may change from one call to the next.

SEC. 8.2 PROCESS RESILIENCE 329
Flat Groups versus Hierarchical Groups

An important distinction between different groups has to do with their internal
structure. In some groups, all the processes are equal. No one is boss and all deci-
sions are made collectively. In other groups, some kind of hierarchy exists. For
example, one process is the coordinator and all the others are workers. In this
model, when a request for work is generated, either by an external client or by one
of the workers, it is sent to the coordinator. The coordinator then decides which
worker is best suited to carry it out, and forwards it there. More complex hierar-
chies are also possible, of course. These communication patterns are illustrated in
Fig. 8-3.

Figure 8-3. (a) Communication in a flat group. (b) Communication in a simple
hierarchical group.

Each of these organizations has its own advantages and disadvantages. The
flat group is symmetrical and has no single point of failure. If one of the processes
crashes, the group simply becomes smaller, but can otherwise continue. A disad-
vantage is that decision making is more complicated. For example, to decide any-
thing, a vote often has to be taken, incurring some delay and overhead.

The hierarchical group has the opposite properties. Loss of the coordinator
brings the entire group to a grinding halt, but as"long as it is running, it can make
decisions without bothering everyone else.

Group Membership

When group communication is present, some method is needed for creating
and deleting groups, as well as for allowing processes to join and leave groups.
One possible approach is to have a group server to which all these requests can
be sent. The group server can then maintain a complete data base of all the groups

330 FAULT TOLERANCE CHAP. 8

and their exact membership. This method is straightforward, efficient, and fairly
easy to implement. Unfortunately, it shares a major disadvantage with all central-
ized techniques: a single point of failure. If the group server crashes, group
management ceases to exist. Probably most or all groups will have to be recon-
structed from scratch, possibly terminating whatever work was going on.

The opposite approach is to manage group membership in a distributed way.
For example, if (reliable) multicasting is available, an outsider can send a mes-
sage to all group members announcing its wish to join the group.

Ideally, to leave a group, a member just sends a goodbye message to every-
one. In the context of fault tolerance, assuming fail-stop semantics is generally not
appropriate. The trouble is, there is no polite announcement that a process crashes
as there is when a process leaves voluntarily. The other members have to discover
this experimentally by noticing that the crashed member no longer responds to
anything. Once it is certain that the crashed member is really down (and not just
slow), it can be removed from the group.

Another knotty issue is that leaving and joining have to be synchronous with
data messages being sent. In other words, starting at the instant that a process has
joined a group, it must receive all messages sent to that group. Similarly, as soon
as a process has left a group, it must not receive any more messages from the
group, and the other members must not receive any more messages from it. One
way of making sure that a join or leave is integrated into the message stream at
the right place is to convert this operation into a sequence of messages sent to the
whole group.

One final issue relating to group membership is what to do if so many ma-
chines go down that the group can no longer function-at all. Some protocol is
needed to rebuild the group. Invariably, some process will have to take the initia-
tive to start the ball rolling, but what happens if two or three try at the same time?
The protocol must to be able to withstand this.

8.2.2 Failure Masking and Replication

Process groups are part of the solution for building fault-tolerant systems. In
particular, having a group of identical processes allows us to mask one or more
faulty processes in that group. In other words, we can replicate processes and
organize them into a group to replace a single (vulnerable) process with a (fault
tolerant) group. As discussed in the previous chapter, there are two ways to ap-
proach such replication: by means of primary-based protocols, or through
replicated-write protocols.

Primary-based replication in the case of fault tolerance generally appears in
the form of a primary-backup protocol. In this case, a group of processes is organ-
ized in a hierarchical fashion in which a primary coordinates all write operations.
In practice, the primary is fixed, although its role can be taken over by one of the

SEC. 8.2 PROCESS RESILIENCE 331
backups. if need be. In effect, when the primary crashes, the backups execute
some election algorithm to choose a new primary.

As we explained in the previous chapter, replicated-write protocols are used
in the form of active replication, as well as by means of quorum-based protocols.
These solutions correspond to organizing a collection of identical processes into a
flat group. The main advantage is that such groups have no single point of failure,
at the cost of distributed coordination.

An important issue with using process groups to tolerate faults is how much
replication is needed. To simplify our discussion, let us consider only replicated-
write systems. A system is said to be k fault tolerant if it can survive faults in k
components and still meet its specifications. If the components, say processes, fail
silently, then having k + 1 of them is enough to provide k fault tolerance. If k of
them simply stop, then the answer from the other one can be used.

On the other hand, if processes exhibit Byzantine failures, continuing to run
when sick and sending out erroneous or random replies, a minimum of 2k + 1
processors are needed to achieve k fault tolerance. In the worst case, the k failing
processes could accidentally (or even intentionally) generate the same reply.
However, the remaining k + 1 will also produce the same answer, so the client or
voter can just believe the majority.

Of course, in theory it is fine to say that a system is k fault tolerant and just let
the k + I identical replies outvote the k identical replies, but in practice it is hard
to imagine circumstances in which one can say with certainty that k processes can
fail but k + 1 processes cannot fail. Thus even in a fault-tolerant system some kind
of statistical analysis may be needed.

An implicit precondition for this model to be relevant is that all requests
arrive at all servers in the same order, also called the atomic multicast problem.
Actually, this condition can be relaxed slightly, since reads do not matter and
some writes may commute, but the general problem remains. Atomic multicasting
is discussed in detail in a later section.

8.2.3 Agreement in Faulty Systems

Organizing replicated processes into a group helps to increase fault tolerance.
As we mentioned, if a client can base its decisions through a voting mechanism,
we can even tolerate that k out of 2k + 1 processes are lying about their result.
The assumption we are making, however, is that processes do not team up to pro-
duce a wrong result.

In general, matters become more intricate if we demand that a process group
reaches an agreement, which is needed in many cases. Some examples are: elect-
ing a coordinator, deciding whether or not to commit a transaction, dividing up
tasks among workers. and synchronization, among numerous other possibilities.
When the communication and processes are all perfect, reaching such agreement
is often straightforward, but when they are not, problems arise.

332 FAULT TOLERANCE CHAP. 8

The general goal of distributed agreement algorithms is to have all the non-
faulty processes reach consensus on some issue, and to establish that consensus
within a finite number of steps. The problem is complicated by the fact that dif-
ferent assumptions about the underlying system require different solutions, assum-
ing solutions even exist. Turek and Shasha (1992) distinguish the following cases,

1. Synchronous versus asynchronous systems. A system is synchro-
nous if and only if the processes are known to operate in a lock-step
mode. Formally, this means that there should be some constant c ;?: 1,
such that if any processor has taken c + 1 steps, every other process
has taken at least 1 step. A system that is not synchronous is said to
be asynchronous.

2. Communication delay is bounded or not. Delay is bounded if and on-
ly if we know that every message is delivered with a globally and
predetermined maximum time.

3. Message delivery is ordered or not. In other words, we distinguish
the situation where messages from the same sender are deli vered in
the order that they were sent, from the situation in which we do not
have such guarantees.

4. Message transmission is done through unicasting or multicasting.

As it turns out, reaching agreement is only possible for the situations shown in
Fig. 8-4. In all other cases, it can be shown that no solution exists. Note that most
distributed systems in practice assume that processes behave asynchronously,
message transmission is unicast, and communication delays are unbounded. As a
consequence, we need to make use of ordered (reliable) message delivery, such as
provided as by TCP. Fig. 8-4 illustrates the nontrivial nature of distributed agree-
ment when processes may fail.

The problem was originally studied by Lamport et al. (1982) and is also
known as the Byzantine agreement problem, referring to the numerous wars in
which several armies needed to reach agreement on, for example, troop strengths
while being faced with traitorous generals, conniving lieutenants, and so on. Con-
sider the following solution, described in Lamport et al. (1982). In this case, we
assume that processes are synchronous, messages are unicast while preserving
ordering, and communication delay is bounded. We assume that there are N proc-
esses, where each process i will provide a value Vi to the others. The goal is let
each process construct a vector V of length N, such that if process i is nonfaulty,
V[iJ = Vi' Otherwise, V[i] is undefined. We assume that there are at most k faulty
processes.

In Fig. 8-5 we illustrate the working of the algorithm for the case of N = 4 and
k = 1. For these parameters, the algorithm operates in four steps. In step 1, every

SEC. 8.2 PROCESS RESILIENCE 333

Figure 8-4. Circumstances under which distributed agreement can be reached.

nonfaulty process i sends Vi to every other process using reliable unicasting.
Faulty processes may send anything. Moreover, because we are using multicast-
ing, they may send different values to different processes. Let Vi =i. In Fig. 8-5(a)
we see that process 1 reports 1, process 2 reports 2, process 3 lies to everyone,
giving x, y, and z, respectively, and process 4 reports a value of 4. In step 2, the
results of the announcements of step 1 are collected together in the form of the
vectors of Fig. 8-5(b).

Figure 8-5. The Byzantine agreement problem for three nonfaulty and one faul-
ty process. (a) Each process sends their value to the others. (b) The vectors that
each process assembles based on (a). (c) The vectors that each process receives
in step 3.

Step 3 consists of every process passing its vector from Fig. 8-5(b) to every
other process. In this way, every process gets three vectors, one from every other
process. Here, too, process 3 lies, inventing 12 new values, a through 1.The re-
sults of step 3 are shown in Fig. 8-5(c). Finally, in step 4, each process examines
the ith element of each of the newly received vectors. If any value has a majority,

334 FAULT TOLERANCE CHAP. 8

that value is put into the result vector. If no value has a majority, the correspond-
ing element of the result vector is marked UNKNOWN. From Fig. 8-5(c) we see
that 1, 2, and 4 all come to agreement on the values for VI, v 2, and v 4, which is
the correct result. What these processes conclude regarding v 3 cannot be decided,
but is also irrelevant. The goal of Byzantine agreement is that consensus is
reached on the value for the nonfaulty processes only.

Now let us revisit this problem for N = 3 and k = 1, that is, only two nonfaulty
process and one faulty one, as illustrated in Fig. 8-6. Here we see that in Fig. 8-
6(c) neither of the correctly behaving processes sees a majority for element 1, ele-
ment 2, or element 3, so all of them are marked UNKNOWN. The algorithm has
failed to produce agreement.

Figure 8-6. The same as Fig. 8-5, except now with two correct process and one
faulty process.

In their paper, Lamport et a1. (1982) proved that in a system with k faulty
processes, agreement can be achieved only if 2k + 1 correctly functioning proc-
esses are present, for a total of 3k + 1. Put in slightly different terms, agreement is
possible only if more than two-thirds of the processes are working properly.

Another way of looking at this problem, is as follows. Basically, what we
need to achieve is a majority vote among a group of nonfaulty processes regard-
less of whether there are also faulty ones among their midsts. If there are k faulty
processes, we need to ensure that their vote, along with that of any correct process
who have been mislead by the faulty ones, still corresponds to the majority vote of
the nonfaulty processes. With 2k + 1 nonfaulty processes, this can be achieved by

. requiring that agreement is reached only if more than two-thirds of the votes are
the same. In other words, if more than two-thirds of the processes agree on the
same decision, this decision corresponds to the same majority vote by the group of
nonfaulty processes.

However, reaching agreement can be even worse. Fischer et a1.(1985) proved
that in a distributed system in which messages cannot be guaranteed to be
delivered within a known, finite time, no agreement is possible if even one proc-
ess is faulty (albeit if that one process fails silently). The problem with such sys-
tems is that arbitrarily slow processes are indistinguishable from crashed ones
(i.e., you cannot tell the dead from the living). Many other theoretical results are

SEC. 8.2 PROCESS RESILIENCE 335
known about when agreement is possible and when it is not. Surveys of these re-
sults are given in Barborak et al. (1993) and Turek and Shasha (1992).

It should also be noted that the schemes described so far assume that nodes
are either Byzantine, or collaborative. The latter cannot always be simply
assumed when processes are from different administrative domains. In that case,
they will more likely exhibit rational behavior, for example, by reporting timeouts
when doing so is cheaper than executing an update operation. How to deal with
these cases is not trivial. A first step toward a solution is captured in the form of
BAR fault tolerance, which stands for Byzantine, Altruism, and Rationality. '
BAR fault tolerance is described in Aiyer et al. (2005).

8.2.4 Failure Detection

It may have become clear from our discussions so far that in order to properly
mask failures, we generally need to detect them as well. Failure detection is one
of the cornerstones of fault tolerance in distributed systems. What it all boils down
to is that for a group of processes, nonfaulty members should be able to decide
who is still a member, and who is not. In other words, we need to be able to detect
when a member has failed.

When it comes to detecting process failures, there are essentially only two
mechanisms. Either processes actively send "are you alive?" messages to each
other (for which they obviously expect an answer), or passively wait until mes-
sages come in from different processes. The latter approach makes sense only
when it can be guaranteed that there is enough communication between processes.
In practice, actively pinging processes is usually followed.

There has been a huge body of theoretical work on failure detectors. What it
all boils down to is that a timeout mechanism is used to check whether a process
has failed. In real settings, there are two major problems with this approach. First,
due to unreliable networks, simply stating that a process has failed because it does
not return an answer to a ping message may be wrong. In other words, it is quite
easy to generate false positives. If a false positive has the effect that a perfectly
healthy process is removed from a membership list, then clearly we are doing
something wrong.

Another serious problem is that timeouts are just plain crude. As noticed by
Birman (2005), there is hardly any work on building proper failure detection
subsystems that take more into account than only the lack of a reply to a single
message. This statement is even more evident when looking at industry-deployed
distributed systems.

There are various issues that need to be taken into account when designing a
failure detection subsystem [see also Zhuang et al. (2005)]. For example, failure
detection can take place through gossiping in which each node regularly
announces to its neighbors that it is still up and running. As we mentioned, an
alternative is to let nodes actively probe each other.

336 FAULT TOLERANCE CHAP. 8

Failure detection can also be done as a side-effect of regularly exchanging in-
formation with neighbors, as is the case with gossip-based information dissemina-
tion (which we discussed in Chap. 4). This approach is essentially also adopted in
Obduro (Vogels, 2003): processes periodically gossip their service availability.
This information is gradually disseminated through the network by gossiping.
Eventually, every process will know about every other process, but more impor-
tantly, will have enough information locally available to decide whether a process
has failed or not. A member for which the availability information is old, will
presumably have failed.

Another important issue is that a failure detection subsystem should ideally be
able to distinguish network failures from node failures. One way of dealing with
this problem is not to let a single node decide whether one of its neighbors has
crashed. Instead, when noticing a timeout on a ping message, a node requests oth-
er neighbors to see whether they can reach the presumed failing node. Of course,
positive information can also be shared: if a node is still alive, that information
can be forwarded to other interested parties (who may be detecting a link failure
to the suspected node).

This brings us to another key issue: when a member failure is detected, how
should other nonfaulty processes be informed? One simple, and somewhat radical
approach is the one followed in FUSE (Dunagan et al., 2004). In FUSE, proc-
esses can be joined in a group that spans a wide-area network. The group mem-
bers create a spanning tree that is used for monitoring member failures. Members
send ping messages to their neighbors. When a neighbor does not respond, the
pinging node immediately switches to a state in which it will also no longer re-
spond to pings from other nodes. By recursion, it is seen that a single node failure
is rapidly promoted to a group failure notification. FUSE does not suffer a lot
from link failures for the simple reason that it relies on point-to-point TCP con-
nections between group members.

8.3 RELIABLE CLIENT-SERVER COMMUNICATION

In many cases, fault tolerance in distributed systems concentrates on faulty
processes. However, we also need to consider communication failures. Most of
the failure models discussed previously apply equally well to communication
channels. In particular, a communication channel may exhibit crash, omission,
timing, and arbitrary failures. In practice, when building reliable communication
channels, the focus is on masking crash and omission failures. Arbitrary failures
may occur in the form of duplicate messages, resulting from the fact that in a
computer network messages may be buffered for a relatively long time, and are
reinjected into the network after the original sender has already issued a
retransmission [see, for example, Tanenbaum, 2003)].

SEC. 8.3 RELIABLE CLIENT-SERVER COMMUNICATION 337

8.3.1 Point-to-Point Communication

In many distributed systems, reliable point-to-point communication is esta-
blished by making use of a reliable transport protocol, such as TCP. TCP masks
omission failures, which occur in the form of lost messages, by using ack-
nowledgments and retransmissions. Such failures are completely hidden from a
TCP client.

However, crash failures of connections are not masked. A crash failure may
occur when (for whatever reason) a TCP connection is abruptly broken so that no
more messages can be transmitted through the channel. In most cases, the client is
informed that the channel has crashed by raising an exception. The only way to
mask such failures is to let the distributed system attempt to automatically set up a
new connection, by simply resending a connection request. The underlying
assumptioriis that the other side is still, or again, responsive to such requests.

8.3.2 RPC Semantics in the Presence of Failures

Let us now take a closer look at client-server communication when using
high-level communication facilities such as Remote Procedure Calls (RPCs). The
goal of RPC is to hide communication by making remote procedure calls look just
like local ones. With a few exceptions, so far we have come fairly close. Indeed,
as long as both client and server are functioning perfectly, RPC does its job well.
The problem comes about when errors occur. It is then that the differences be-
tween local and remote calls are not always easy to mask.

To structure our discussion, let us distinguish between five different classes of
failures that can occur in RPC systems, as follows:

1. The client is unable to locate the server.

2. The request message from the client to the server is lost.

3. The server crashes after receiving a request.

4. The reply message from the server to the client is lost.

5. The client crashes after sending a request.

Each of these categories poses different problems and requires different solutions.

Client Cannot Locate the Server

To start with, it can happen that the client cannot locate a suitable server. All
servers might be down, for example. Alternatively, suppose that the client is com-
piled using a particular version of the client stub, and the binary is not used for a
considerable period of time. In the meantime, the server evolves and a new ver-
sion of the interface is installed; new stubs are generated and put into use. When

338 FAULT TOLERANCE CHAP. 8

the client is eventuaIJy run, the binder will be unable to match it up with a server
and will report failure. While this mechanism is used to protect the client from ac-
cidentally trying to talk to a server that may not agree with it in terms of what pa-
rameters are required or what it is supposed to do, the problem remains of how
should this failure be dealt with.

One possible solution is to have the error raise an exception. In some lan-
guages, (e.g., Java), programmers can write special procedures that are invoked
upon specific errors, such as division by zero. In C, signal handlers can be used
for this purpose. In other words, we could define a new signal type SIGNO-
SERVER, and allow it to be handled in the same way as other signals.

This approach, too, has drawbacks. To start with, not every language has
exceptions or signals. Another point is that having to write an exception or signal
handler destroys the transparency we have been trying to achieve. Suppose that
you are a programmer and your boss tells you to write the sum procedure. You
smile and tell her it will be written, tested, and documented in five minutes. Then
she mentions that you also have to write an exception handler as well, just in case
the procedure is not there today. At this point it is pretty hard to maintain the illu-
sion that remote procedures are no different from local ones, since writing an
exception handler for "Cannot locate server" would be a rather unusual request in
a single-processor system. So much for transparency.

Lost Request Messages

The second item on the list is dealing with lost request messages. This is the
easiest one to deal with: just have the operating system or client stub start a timer
when sending the request. If the timer expires before a reply or acknowledgment
comes back, the message is sent again. If the message was truly lost, the server
will not be able to tell the difference between the retransmission and the original,
and everything will work fine. Unless, of course, so many request messages are
lost that the client gives up and falsely concludes that the server is down, in which
case we are back to "Cannot locate server." If the request was not lost, the only
thing we need to do is let the server be able to detect it is dealing with a
retransmission. Unfortunately, doing so is not so simple, as we explain when dis-
cussing lost replies.

Server Crashes

The next failure on the list is a server crash. The normal sequence of events at
a server is shown in Fig. 8-7(a). A request arrives, is carried out, and a reply is
sent. Now consider Fig. 8-7(b). A request arrives and is carried out, just as be-
fore, but the server crashes before it can send the reply. Finally, look at Fig. 8-
7(c). Again a request arrives, but this time the server crashes before it can even
be carried out. And, of course, no reply is sent back.

SEC. 8.3 RELIABLE CLIENT-SERVER COMMUNICATION 339

Figure 8-7. A server in client-server communication. (a) The normal case.
(b) Crash after execution. (c) Crash before execution.

The annoying part of Fig. 8-7 is that the correct treatment differs for (b) and
(c). In (b) the system has to report failure back to the client (e.g., raise, an excep-
tion), whereas in (c) it can just retransmit the request. The problem is that the cli-
ent's operating system cannot tell which is which. All it knows is that its timer has
expired.

Three schools of thought exist on what to do here (Spector, 1982). One philo-
sophy is to wait until the server reboots (or rebind to a new server) and try the op-
eration again. The idea is to keep trying until a reply has been received, then give
it to the client. This technique is called at least once semantics and guarantees
that the RPC has been carried out at least one time, but possibly more.

The second philosophy gives up immediately and reports back failure. This
way is called at-most-once semantics and guarantees that the RPC has been car-
ried out at most one time, but possibly none at all.

The third philosophy is to guarantee nothing. When a server crashes, the cli-
ent gets no help and no promises about what happened. The RPC may have been
carried out anywhere from zero to a large number of times. The main virtue of
this scheme is that it is easy to implement.

None of these are terribly attractive. What one would like is exactly once
semantics, but in general, there is no way to arrange this. Imagine that the remote
operation consists of printing some text, and that the server sends a completion
message to the client when the text is printed. Also assume that when a client
issues a request, it receives an acknowledgment that the request has been
delivered to the server. There are two strategies the server can follow. It can either
send a completion message just before it actually tells the printer to do its work,
or after the text has been printed.

Assume that the server crashes and subsequently recovers. It announces to all
clients that it has just crashed but is now up and running again. The problem is
that the client does not know whether its request to print some text will actually be
carried out.

There are four strategies the client can follow. First, the client can decide to
never reissue a request, at the risk that the text will not be printed. Second, it can
decide to always reissue a request, but this may lead to its text being printed
twice. Third, it can decide to reissue a request only if it did not yet receive an

The parentheses indicate an event that can no longer happen because the server
already crashed. Fig. 8-8 shows all possible combinations. As can be readily veri-
fied, there is no combination of client strategy and server strategy that will work
correctly under all possible event sequences. The bottom line is that the client can
never know whether the server crashed just before or after having the text printed.

Figure 8-8. Different combinations of client and server strategies in the pres-
ence of server crashes.

acknowledgment that its print request had been delivered to the server. In that
case, the client is counting on the fact that the server crashed before the print re-
quest could be delivered. The fourth and last strategy is to reissue a request only if
it has received an acknowledgment for the print request.

With two strategies for the server, and four for the client, there are a total of
eight combinations to consider. Unfortunately, no combination is satisfactory. To
explain, note that there are three events that can happen at the server: send the
completion message (M), print the text (P), and crash (C). These events can occur
in six different orderings:

1. M ~P ~C: A crash occurs after sending the completion message
and printing the text.

2. M ~C (~P): A crash happens after sending the completion mes-
sage, but before the text could be printed.

3. p ~M ~C: A crash occurs after sending the completion message
and printing the text.

4. P~C(~M): The text printed, after which a crash occurs before the
completion message could be sent.

5. C (~P ~M): A crash happens before the server could do anything.

6. C(~M ~P): A crash happens before the server could do anything.

340 FAULT TOLERANCE CHAP. 8

SEC. 8.3 RELIABLE CLIENT-SERVER COMMUNICATION 341

In short, the possibility of server crashes radically changes the nature of RPC
and clearly distinguishes single-processor systems from distributed systems. In the
former case, a server crash also implies a client crash, so recovery is neither pos-
sible nor necessary. In the latter it is both possible and necessary to take action.

Lost Reply Messages

Lost replies can also be difficult to deal with. The obvious solution is just to
rely on a timer again that has been set by the client's operating system. If no reply
is forthcoming within a reasonable period, just send the request once more. The
trouble with this solution is that the client is not really sure why there was no ans-
wer. Did the request or reply get lost, or is the server merely slow? It may make a
difference.

In particular, some operations can safely be repeated as often as necessary
with no damage being done. A request such as asking for the first 1024 bytes of a
file has no side effects and can be executed as often as necessary without any
harm being done. A request that has this property is said to be idempotent.

Now consider a request to a banking server asking to transfer a million dollars
from one account to another. If the request arrives and is carried out, but the reply
is lost, the client will not know this and will retransmit the message. The bank
server will interpret this request as a new one, and will carry it out too. Two mil-
lion dollars will be transferred. Heaven forbid that the reply is lost 10 times.
Transferring money is not idempotent.

One way of solving this problem is to try to structure all the requests in an
idempotent way. In practice, however, many requests (e.g., transferring money)
are inherently nonidempotent, so something else is needed. Another method is to
have the client assign each request a sequence number. By having the server keep
track of the most recently received sequence number from each client that is using
it, the server can tell the difference between an original request and a retransmis-
sion and can refuse to carry out any request a second time. However, the server
will still have to send a response to the client. Note that this approach does require
that the server maintains administration on each client. Furthermore, it is not clear
how long to maintain this administration. An additional safeguard is to have a bit
in the message header that is used to distinguish initial requests from retransmis-
sions (the idea being that it is always safe to perform an original request; retrans-
missions may require more care).

Client Crashes

The final item on the list of failures is the client crash. What happens if a cli-
ent sends a request to a server to do some work and crashes before the server
replies? At this point a computation is active and no parent is waiting for the re-
sult. Such an unwanted computation is called an orphan.

342 FAULT TOLERANCE CHAP. 8

Orphans can cause a variety of problems that can interfere with normal opera-
tion of the system. As a bare minimum, they waste CPU cycles. They can also
lock files or otherwise tie up valuable resources. Finally, if the client reboots and
does the RPC again, but the reply from the orphan comes back immediately after-
ward, confusion can result.

What can be done about orphans? Nelson (1981) proposed four solutions. In
solution 1, before a client stub sends an RPC message, it makes a log entry telling
what it is about to do. The log is kept on disk or some other medium that survives
crashes. After a reboot, the log is checked and the orphan is explicitly killed off.
This solution is called orphan extermination.

The disadvantage of this scheme is the horrendous expense of writing a disk
record for every RPC. Furthermore, it may not even work, since orphans them-
selves may do RPCs, thus creating grandorphans or further descendants that are
difficult or impossible to locate. Finally, the network may be partitioned, due to a
failed gateway, making it impossible to kill them, even if they can be located. All
in all, this is not a promising approach.

In solution 2. called reincarnation, all these problems can be solved without
the need to write disk records. The way it works is to divide time up into sequen-
tially numbered epochs. When a client reboots, it broadcasts a message to all ma-
chines declaring the start of a new epoch. When such a broadcast comes in, all re-
mote computations on behalf of that client are killed. Of course, if the network is
partitioned, some orphans may survive. Fortunately, however, when they report
back, their replies will contain an obsolete epoch number, making them easy to
detect.

Solution 3 is a variant on this idea, but somewhat less draconian. It is called
gentle reincarnation. When an epoch broadcast comes in, each machine checks
to see if it has any remote computations running locally, and if so, tries its best to
locate their owners. Only if the owners cannot be located anywhere is the compu-
tation killed.

Finally, we have solution 4, expiration, in which each RPC is given a stan-
dard amount of time, T, to do the job. If it cannot finish, it must explicitly ask for
another quantum, which is a nuisance. On the other hand, if after a crash the client
waits a time T before rebooting, all orphans are sure to be gone. The problem to
be solved here is choosing a reasonable value of Tin the face of RPCs with wildly
differing requirements.

In practice, all of these methods are crude and undesirable. Worse yet, killing
an orphan may have unforeseen consequences. For example, suppose that an
orphan has obtained locks on one or more files or data base records. If the orphan
is suddenly killed, these locks may remain forever. Also, an orphan may have
already made entries in various remote queues to start up other processes at some
future time, so even killing the orphan may not remove all traces of it. Conceiv-
ably, it may even started again, with unforeseen consequences. Orphan elimina-
tion is discussed in more detail by Panzieri and Shrivastava (1988).

SEC. 8.4 RELIABLE GROUP COMMUNICATION 343

8.4 RELIABLE GROUP COMMUNICATION

Considering how important process resilience by replication is, it is not
surprising that reliable multicast services are important as well. Such services
guarantee that messages are delivered to all members in a process group. Unfor-
tunately, reliable multicasting turns out to be surprisingly tricky. In this section,
we take a closer look at the issues involved in reliably delivering messages to a
process group.

8.4.1 Basic Reliable-Multicasting Schemes

Although most transport layers offer reliable point-to-point channels, they
rarely offer reliable communication to a collection of processes. The best they can
offer is to let each process set up a point-to-point connection to each other process
it wants to communicate with. Obviously, such an organization is not very effi-
cient as it may waste network bandwidth. Nevertheless, if the number of proc-
esses is small, achieving reliability through multiple reliable point-to-point chan-
nels is a simple and often straightforward solution.

To go beyond this simple case, we need to define precisely what reliable mul-
ticasting is. Intuitively, it means that a message that is sent to a process group
should be delivered to each member of that group. However, what happens if dur-
ing communication a process joins the group? Should that process also receive the
message? Likewise, we should also determine what happens if a (sending) process
crashes during communication.

To cover such situations, a distinction should be made between reliable com-
munication in the presence of faulty processes, and reliable communication when
processes are assumed to operate correctly. In the first case, multicasting is con-
sidered to be reliable when it can be guaranteed that all nonfaulty group members
receive the message. The tricky part is that agreement should be reached on what
the group actually looks like before a message can be delivered, in addition to var-
ious ordering constraints. We return to these matters when we discussw atomic
multicasts below.

The situation becomes simpler if we assume agreement exists on who is a
member of the group and who is not. In particular, if we assume that processes do
not fail, and processes do not join or leave the group while communication is
going on, reliable multicasting simply means that every message should be de-
livered to each current group member. In the simplest case, there is no require-
ment that all group members receive messages in the same order, but sometimes
this feature is needed.

This weaker form of reliable multicasting is relatively easy to implement,
again subject to the condition that the number of receivers is limited. Consider
the case that a single sender wants to multicast a message to multiple receivers.

344 FAULT TOLERANCE CHAP. 8

Assume that the underlying communication system offers only unreliable multi-
casting, meaning that a multicast message may be lost part way and delivered to
some, but not all, of the intended receivers.

Figure 8-9. A simple solution to reliable multicasting when all receivers are
known and are assumed not to fail. (a) Message transmission. (b) Reporting
feedback.

A simple solution is shown in Fig. 8-9. The sending process assigns a se-
quence number to each message it multicasts. We assume that messages are re-
ceived in the order they are sent. In this way, it is easy for a receiver to detect it is
missing a message. Each multicast message is stored locally in a history buffer at
the sender. Assuming the receivers are known to the sender, the sender simply
keeps the message in its history buffer until each receiver has returned an acknow-
ledgment. If a receiver detects it is missing a message, it may return a negative
acknowledgment, requesting the sender for a retransmission. Alternatively, the
sender may automatically retransmit the message when it has not received all ack-
nowledgments within a certain time.

There are various design trade-offs to be made. For example, to reduce the
number of messages returned to the sender, acknowledgments could possibly be
piggybacked with other messages. Also, retransmitting a message can be done
using point-to-point communication to each requesting process, or using a single
multicast message sent to all processes. A extensive and detailed survey of total-
order broadcasts can be found in Defago et al. (2004).

SEC. 8.4 RELIABLE GROUP COMMUNICATION 345

8.4.2 Scalability in Reliable Multicasting

The main problem with the reliable multicast scheme just described is that it
cannot support large numbers of receivers. If there are N receivers, the sender
must be prepared to accept at least N acknowledgments. With many receivers, the
sender may be swamped with such feedback messages, which is also referred to
as a feedback implosion. In addition, we may also need to take into account that
the receivers are spread across a wide-area network.

One solution to this problem is not to have receivers acknowledge the receipt
of a message. Instead, a receiver returns a feedback message only to inform the
sender it is missing a message. Returning only such negative acknowledgments
can be shown to generally scale better [see, for example, Towsley et al. (1997)]~
but no hard guarantees can be given that feedback implosions will never happen.

Another problem with returning only negative acknowledgments is that the
sender will, in theory, be forced to keep a message in its history buffer forever.
Because the sender can never know if a message has been correctly delivered to
all receivers, it should always be prepared for a receiver requesting the retrans-
mission of an old message. In practice, the sender will remove a message from its
history buffer after some time has elapsed to prevent the buffer from overflowing.
However, removing a message is done at the risk of a request for a retransmission
not being honored.

Several proposals for scalable reliable multicasting exist. A comparison be-
tween different schemes can be found in Levine and Garcia-Luna-Aceves (1998).
We now briefly discuss two very different approaches that are representative of
many existing solutions.

Nonhierarchical Feedback Control

The key issue to scalable solutions for reliable multicasting is to reduce the
number of feedback messages that are returned to the sender. A popular model
that has been applied to several wide-area applications is feedback suppression.
This scheme underlies the Scalable Reliable Multicasting (SRM) protocol
developed by Floyd et al. (1997) and works as follows.

First, in SRM, receivers never acknowledge the successful delivery of a mul-
ticast message, but instead, report only when they are missing a message. How
message loss is detected is left to the application. Only negative acknowledgments
are returned as feedback. Whenever a receiver notices that it missed a message, it
multicasts its feedback to the rest of the group.

Multicasting feedback allows another group member to suppress its own feed-
back. Suppose several receivers missed message m. Each of them will need to re-
turn a negative acknowledgment to the sender, S, so that m can be retransmitted.
However, if we assume that retransmissions are always multicast to the entire
group, it is sufficient that only a single request for retransmission reaches S.

346 FAULT TOLERANCE CHAP. 8

For this reason, a receiver R that did not receive message 111 schedules a feed-
back message with some random delay. That is, the request for retransmission is
not sent until some random time has elapsed. If, in the meantime, another request
for retransmission for m reaches R, R will suppress its own feedback, knowing
that m will be retransmitted shortly. In this way, ideally, only a single feedback
message will reach S, which in turn subsequently retransmits m. This scheme is
shown in Fig. 8-10.

Figure 8·10. Several receivers have scheduled a request for retransmission, but
the first retransmission request leads to the suppression of others.

Feedback suppression has shown to scale reasonably well, and has been used
as the underlying mechanism for a number of collaborative Internet applications,
such as a shared whiteboard. However, the approach also introduces a number of
serious problems. First, ensuring that only one request for retransmission is re-
turned to the sender requires a reasonably accurate scheduling of feedback mes-
sages at each receiver. Otherwise, many receivers will still return their feedback
at the same time. Setting timers accordingly in a group of processes that is
dispersed across a wide-area network is not that easy.

Another problem is that multicasting feedback also interrupts those processes
to which the message has been successfully delivered. In other words, other re-
ceivers are forced to receive and process messages that are useless to them. The
only solution to this problem is to let receivers that have not received message 111

join a separate multicast group for m, as explained in Kasera et al. (1997). Unfor-
tunately, this solution requires that groups can be managed in a highly efficient
manner, which is hard to accomplish in a wide-area system. A better approach is
therefore to let receivers that tend to miss the same messages team up and share
the same multicast channel for feedback messages and retransmissions. Details on
this approach are found in Liu et al. (1998).

To enhance the scalability of SRM, it is useful to let receivers assist in local
recovery. In particular, if a receiver to which message m has been successfully
delivered, receives a request for retransmission, it can decide to multicast m even
before the retransmission request reaches the original sender. Further details can
be found in Floyd et al. (1997) and Liu et aI. (1998).

SEC. 8.4 RELIABLE GROUP COMMUNICATION 347

Hierarchical Feedback Control

Feedback suppression as just described is basically a nonhierarchical solution.
However, achieving scalability for very large groups of receivers requires that
hierarchical approaches are adopted. In essence, a hierarchical solution to reliable
multicasting works as shown in Fig. 8-11.

Figure 8-11. The essence of hierarchical reliable multicasting. Each local coor-
dinator forwards the message to its children and later handles retransmission re-
quests.

To simplify matters, assume there is only a single sender that needs to multi-
cast messages to a very large group of receivers. The group of receivers is parti-
tioned into a number of subgroups, which are subsequently organized into a tree.
The subgroup containing the sender forms the root of the tree. Within each sub-
group, any reliable multicasting scheme that works for small groups can be used.

Each subgroup appoints a local coordinator, which is responsible for handling
retransmission requests of receivers contained in its subgroup. The local coordina-
tor will thus have its own history buffer. If the coordinator itself has missed a
message m, it asks the coordinator of the parent subgroup to retransmit m. In a
scheme based on acknowledgments, a local coordinator sends an acknowledgment
to its parent if it has received the message. If a coordinator has received ack-
nowledgments for message m from all members in its subgroup, as well as from
its children, it can remove m from its history buffer.

The main problem with hierarchical solutions is the construction of the tree.
In many cases, a tree needs to be constructed dynamically. One approach is to
make use of the multicast tree in the underlying network, if there is one. In princi-
ple, the approach is then to enhance each multicast router in the network layer in
such a way that it can act as a local coordinator in the way just described. Unfor-
tunately, as a practical matter, such adaptations to existing computer networks are

348 FAULT TOLERANCE CHAP. 8

not easy to do. For these reasons, application-level multicasting solutions as we
discussed in Chap. 4 have gained popularity.

In conclusion, building reliable multicast schemes that can scale to a large
number of receivers spread across a wide-area network, is a difficult problem. No
single best solution exists, and each solution introduces new problems.

8.4.3 Atomic Multicast

Let us now return to the situation in which we need to achieve reliable multi-
casting in the presence of process failures. In particular, what is often needed in a
distributed system is the guarantee that a message is delivered to either all proc-
esses or to none at all. In addition, it is generally also required that all messages
are delivered in the same order to all processes. This is also known as the atomic
multicast problem.

To see why atomicity is so important, consider a replicated database con-
structed as an application on top of a distributed system. The distributed system
offers reliable multicasting facilities. In particular, it allows the construction of
process groups to which messages can be reliably sent. The replicated database is
therefore constructed as a group of processes, one process for each replica. Up-
date operations are always multicast to all replicas and subsequently performed
locally. In other words, we assume that an active-replication protocol is used.

Suppose that now that a series of updates is to be performed, but that during
the execution of one of the updates, a replica crashes. Consequently, that update is
lost for that replica but on the other hand, it is correctly performed at the other
replicas.

When the replica that just crashed recovers, at best it can recover to the same
state it had before the crash; however, it may have missed several updates. At that
point, it is essential that it is brought up to date with the other replicas. Bringing
the replica into the same state as the others requires that we know exactly which
operations it missed, and in which order these operations are to be performed.

Now suppose that the underlying distributed system supported atomic multi-
casting. In that case, the update operation that was sent to all replicas just before
one of them crashed is either performed at all nonfaulty replicas, or by none at all.
In particular, with atomic multicasting, the operation can be performed by all
correctly operating replicas only if they have reached agreement on the group
membership. In other words, the update is performed if the remaining replicas
have agreed that the crashed replica no longer belongs to the group.

When the crashed replica recovers, it is now forced to join the group once
more. No update operations will be forwarded until it is registered as being a
member again. Joining the group requires that its state is brought up to date with
the rest of the group members. Consequently, atomic multicasting ensures that
nonfaulty processes maintain a consistent view of the database, and forces recon-
ciliation when a replica recovers and rejoins the group.

SEC. 8.4 RELIABLE GROUP COMMUNICA nON 349

Virtual Synchrony

Reliable multicast in the presence of process failures can be accurately de-
fined in terms of process groups and changes to group membership. As we did
earlier, we make a distinction between receiving and delivering a message. In par-
ticular, we again adopt a model in which the distributed system consists of a com-
munication layer, as shown in Fig. 8-12. Within this communication layer, mes-
sages are sent and received. A received message is locally buffered in the commu-
nication layer until it can be delivered to the application that is logically placed at
a higher layer.

Figure 8-12. The logical organization of a distributed system to distinguish between
message receipt and message delivery.

The whole idea of atomic multicasting is that a multicast message m is uniq-
uely associated with a list of processes to which it should be delivered. This
delivery list corresponds to a group view, namely, the view on the set of proc-
esses contained in the group, which the sender had at the time message m was
multicast. An important observation is that each process on that list has the same
view. In other words, they should all agree that m should be delivered to each one
of them and to no other process.

Now suppose that the message m is multicast at the time its sender has group
view G. Furthermore, assume that while the multicast is taking place, another
process joins or leaves the group. This change in group membership is naturally
announced to all processes in G. Stated somewhat differently, a view change
takes place by multicasting a message vc announcing the joining or leaving of a
process. We now have two multicast messages simultaneously in transit: m and
vc. What we need to guarantee is that m is either delivered to all processes in G
before each one of them is delivered message vc, or m is not delivered at all. Note
that this requirement is somewhat comparable to totally-ordered multicasting,
which we discussed in Chap. 6.

350 FAULT TOLERANCE CHAP. 8

A question that quickly comes to mind is that if m is not delivered to any
process, how can we speak of a reliable multicast protocol? In principle. there is
only one case in which delivery of m is allowed to fail: when the group member-
ship change is the result of the sender of m crashing. In that case, either all mem-
bers of G should hear the abort of the new member, or none. Alternatively, m may
be ignored by each member, which corresponds to the situation that the sender
crashed before m was sent.

This stronger form of reliable multicast guarantees that a message multicast to
group view G is delivered to each nonfaulty process in G. If the sender of the
message crashes during the multicast, the message may either be delivered to all
remaining processes, or ignored by each of them. A reliable multicast with this
property is said to be virtually synchronous (Birman and Joseph, 1987).

Consider the four processes shown in Fig. 8-13. At a certain point in time,
process PI joins the group, which then consists of Ph P2, P3, and P4• After some
messages have been multicast, P3 crashes. However, before crashing. it suc-
ceeded in multicasting a message to process P2 and P4, but not to PI. However,
virtual synchrony guarantees that the message is not delivered at all, effectively
establishing the situation that the message was never sent before P3 crashed.

Figure 8-13. The principle of virtual synchronous multicast.

After P3 has been removed from the group, communication proceeds between
the remaining group members. Later, when P3 recovers. it can join the group
again, after its state has been brought up to date.

The principle of virtual synchrony comes from the fact that all multicasts take
place between view changes. Put somewhat differently, a view change acts as a
barrier across which no multicast can pass. In a sense. it is comparable to the use
of a synchronization variable in distributed data stores as discussed in the previous
chapter. All multicasts that are in transit while a view change takes place are com-
pleted before the view change comes into effect. The implementation of virtual
synchrony is not trivial as we will discuss in detail below.

SEC. 8.4 RELIABLE GROUP COMMUNICATION 351
~Iessage Ordering

Virtual synchrony allows an application developer to think about multicasts as
taking place in epochs that are separated by group membership changes. How-
ever, nothing has yet been said concerning the ordering of multicasts. In general,
four different orderings are distinguished:

1. Unordered multicasts

2. FIFO-ordered multicasts

3. Causally-ordered multicasts

4. Totally-ordered multicasts

A reliable, unordered multicast is a virtually synchronous multicast in
which no guarantees are given concerning the order in which received messages
are delivered by different processes. To explain, assume that reliable multicasting
is supported by a library providing a send and a receive primitive. The receive op-
eration blocks the calling process until a message is delivered to it.

Figure 8-14. Three communicating processes in the same group. The ordering
of events per process is shown along the vertical axis.

Now suppose a sender PI multicasts two messages to a group while two other
processes in that group are waiting for messages to arrive, as shown in Fig. 8-14.
Assuming that processes do not crash or leave the group during these multicasts, it
is possible that the communication layer at P2 first receives message m 1 and then
m 2. Because there are no message-ordering constraints, the messages may be
delivered to P1 in the order that they are received. In contrast, the communication
layer at P3 may first receive message m2 followed by m I, and delivers these two
in this same order to P3•

In the case of reliable FIFO-ordered multicasts. the communication layer is
forced to deliver incoming messages from the same process in the same order as
they have been sent. Consider the ·communication within a group of four proc-
esses, as shown in Fig. 8-15. With FIFO ordering, the only thing that matters is
that message m 1 is always delivered before m-; and. likewise, that message m3 is
always delivered before m s, This rule has to be obeyed by all processes in the
group. In other words, when the communication layer at P3 receives m2 first, it
will wait with delivery to P3 until it has received and delivered mI'

352 FAULT TOLERANCE CHAP. 8

Figure 8-15. Four processes in the same group with two different senders, and a
possible delivery order of messages under FIFO-ordered multicasting.

However, there is no constraint regarding the delivery of messages sent by
different processes. In other words, if process P2 receives m 1 before 1113, it may
deliver the two messages in that order. Meanwhile, process P3 may have received
m 3 before receiving mI' FIFO ordering states that P3 may deliver m 3 before m h
although this delivery order is different from that of P2.

Finally, reliable causally-ordered multicast delivers messages so that poten-
tial causality between different messages is preserved. In other words. if a mes-
sage m 1 causally precedes another message m2, regardless of whether they were
multicast by the same sender, then the communication layer at each receiver will
always deliver m 2 after it has received and delivered m l' Note that causally-
ordered multicasts can be implemented using vector timestamps as discussed in
Chap. 6.

Besides these three orderings, there may be the additional constraint that mes-
sage delivery is to be totally ordered as well. Total-ordered delivery means that
regardless of whether message delivery is unordered, FIFO ordered, or causally
ordered, it is required additionally that when messages are delivered, they are de-
livered in the same order to all group members.

For example, with the combination of FIFO and totally-ordered multicast,
processes P2 and P3 in Fig. 8-15 may both first deliver message m-; and then mes-
sage mI.' However, if P2 delivers ml before m3, while P3 delivers m-; before
delivering m 1, they would violate the total-ordering constraint. Note that FIFO
ordering should still be respected. In other words, m 2 should be delivered after
m 1 and, accordingly, m 4 should be delivered after m 3. .

Virtually synchronous reliable multicasting offering totally-ordered delivery
of messages is called atomic multicasting. With the three different message ord-
ering constraints discussed above, this leads to six forms of reliable multicasting
as shown in Fig. 8-16 (Hadzilacos and Toueg, 1993).

Implementing Virtual Synchrony

Let us now consider a possible implementation of a virtually synchronous
reliable multicast. An example of such an implementation appears in Isis, a fault-
tolerant distributed system that has been in practical use in industry for several

SEC. 8.4 RELIABLE GROUP COMMUNICA nON 353

Figure 8-16. Six different versions of virtually synchronous reliable multicasting.

years. We will focus on some of the implementation issues of this technique as
described in Birman et al. (1991).

Reliable multicasting in Isis makes use of available reliable point-to-point
communication facilities of the underlying network, in particular, TCP. Multicast-
ing a message m to a group of processes is implemented by reliably sending m to
each group member. As a consequence, although each transmission is guaranteed
to succeed, there are no guarantees that all group members receive m. In particu-
lar, the sender may fail before having transmitted m to each member.

Besides reliable point-to-point communication, Isis also assumes that mes-
sages from the same source are received by a communication layer in the order
they were sent by that source. In practice, this requirement is solved by using TCP
connections for point-to-point communication.

The main problem that needs to be solved is to guarantee that all messages
sent to view G are delivered to all nonfaulty processes in G before the next group
membership change takes place. The first issue that needs to be taken care of is
making sure that each process in G has received all messages that were sent to G.
Note that because the sender of a message m to G may have failed before com-
pleting its multicast, there may indeed be processes in G that will never receive m.
Because the sender has crashed, these processes should get m from somewhere
else. How a process detects it is missing a message is explained next.

The solution to this problem is to let every process in G keep m until it knows
for sure that all members in G have received it. If m has been received by all
members in G, m is said to be stable. Only stable messages are allowed to be
delivered. To ensure stability, it is sufficient to select an arbitrary (operational)
process in G and request it to send m to all other processes.

To be more specific, assume the current view is Gj, but that it is necessary to
install the next view G;+l. Without loss of generality, we may assume that G; and
Gj+1 differ by at most one process. A process P notices the view change when it
receives a view-change message. Such a message may come from the process
wanting to join or leave the group, or from a process that had detected the failure
of a process in G; that is now to be removed, as shown in Fig. 8-17(a).

354 FAULT TOLERANCE CHAP. 8

When a process P receives the view-change message for Gi+1, it first for-
wards a copy of any unstable message from G, it still has to every process in Gi+1,

and subsequently marks it as being stable. Recall that Isis assumes point-to-point
communication is reliable, so that forwarded messages are never lost. Such for-
warding guarantees that all messages in G, that have been received by at least one
process are received by all nonfaulty processes in Gi. Note that it would also have
been sufficient to elect a single coordinator to forward unstable messages.

Figure 8-17. (a) Process 4 notices that process 7 has crashed and sends a view
change. (b) Process 6 sends out all its unstable messages, followed by a flush
message. (c) Process 6 installs the new view when it has received a flush mes-
sage from everyone else.

To indicate that P no longer has any unstable messages and that it is prepared
to install Gi+1 as soon as the other processes can do that as well, it multicasts a
flush message for Gi+b as shown in Fig. 8-17(b). After P has received a flush
message for Gi+1 from each other process, it can safely install the new view
'[shown in Fig. 8-17(c)].

When. a process Q receives a message m that was sent in Gi, and Q still be-
'lieves the current view is G;, it delivers. m taking any additional message-ordering
'constraints into account. If it had already received 171, 'it considers the message to
'be a duplicate and further discards it. .

Because process Q will eventually receive the view-change message for Gi+1,

lit will also first forward any of its unstable messages and subsequently wrap
Lpnngsup by sending a flush message.for Gi+l,., Note that due. to the message ord-
f¢ring underlying the communication layer, a flushmessage from a process is al-
\vays; received after the receipt of au unstable message from that same process. .
. 'the major flaw in the protocol described so Ifar is that it cannot deal with
'process failures while a new view change is being announced. In particular, it
'assumes that until the new view Gi+1 has been installed by each member in Gi+1,

'no-process in Gi+1 will fail (which would lead to a next view Gi+2)' This problem

SEC. 8.4 RELIABLE GROUP COMMUNICATION 355

is solved by announcing view changes for any view Gi+k even while previous
changes have not yet been installed by all processes. The details are left as an
exercise for the reader.

8.5 DISTRIBUTED COMMIT

The atomic multicasting problem discussed in the previous section is an ex-
ample of a more general problem, known as distributed commit. The distributed
commit problem involves having an operation being performed by each member
of a process group, or none at all. In the case of reliable multicasting, the opera-
tion is the delivery of a message. With distributed transactions, the operation may
be the commit of a transaction at a single site that takes part in the transaction.
Other examples of distributed commit, and how it can be solved are discussed in
Tanisch (2000).

Distributed commit is often established by means of a coordinator. In a simple
scheme, this coordinator tells all other processes that are also involved, called par-
ticipants, whether or not to (locally) perform the operation in question. This
scheme is referred to as a one-phase commit protocol. It has the obvious draw-
back that if one of the participants cannot actually perform the operation, there is
no way to tell the coordinator. For example, in the case of distributed transactions,
a local commit may not be possible because this would violate concurrency con-
trol constraints.

In practice, more sophisticated schemes are needed, the most common one
being the two-phase commit protocol, which is discussed in detail below. The
main drawback of this protocol is that it cannot efficiently handle the failure of
the coordinator. To that end, a three-phase protocol has been developed, which we
also discuss.

8.5.1 Two-Phase Commit

The original two-phase commit protocol (2PC) is due to Gray (1978)
Without loss of generality, consider a distributed transaction involving the partici-
pation of a number of processes each running on a different machine. Assuming
that no failures occur, the protocol consists of the following two phases, each con-
sisting of two steps [see also Bernstein et al. (1987)]:

1. The coordinator sends a VOTE-.REQUEST message to all partici-
pants.

2. When a participant receives a VOTE-.REQUEST message, it returns
either a VOTE_COMMIT message to the coordinator telling the coor-
dinator that it is prepared to locally commit its part of the transaction,
or otherwise a VOTE-ABORT message.

356 FAULT TOLERANCE CHAP. 8·

Figure 8~18. (a) The finite state machine for the coordinator in ;2PC. (b) The
finite state machine for a participant.

Several problems arise when this basic 2PC protocol is used in a system
where failures occur. First, note that the coordinator as well as the participants
have states in which they block waiting for incoming messages. Consequently, the
protocol can easily fail when a process crashes for other processes may be inde-
finitely waiting for a message from that process. For this reason, timeout mechan-
ism are used. These mechanisms are explained in the following pages.

When taking a look at the finite state machines in Fig. 8-18, it can be seen that
there are a total of three states in which either a coordinator or participant is
blocked waiting for an incoming message. First, a participant may be waiting in
its INIT state for a VOTE-REQUEST message from the coordinator. If that mes-
sage is not received after some time, the participant will simply decide to locally
abort the transaction, and thus send a VOTE..ABORT message to the coordinator.

Likewise, the coordinator can be blocked in state "~4IT,waiting for the votes•..
of each participant. If not all votes have been collected after a certain period of

3. The coordinator collects all votes from the participants. If all partici-
pants have voted to commit the transaction, then so will the coordi-
nator. In that case, it sends a GLOBAL_COMMIT message to all par-
ticipants. However, if one participant had voted to abort the tran-
saction, the coordinator will also decide to abort the transaction and
multicasts a GLOBAL..ABORT message.

4. Each participant that voted for a commit waits for the final reaction
by the coordinator. If a participant receives a GLOBAL_COMMIT
message, it locally commits the transaction. Otherwise, when receiv-
ing a GLOBAL..ABORT message, the transaction is locally aborted
as well.

The first phase is the voting phase, and consists of steps 1 and 2. The second
phase is the decision phase, and consists of steps 3 and 4. These four steps are
shown as finite state diagrams in Fig. 8-18.

SEC. 8.5 DISTRIBUTED COMMIT 357
time, the coordinator should vote for an abort as well, and subsequently send
GLOBAL....ABORT to all participants.

Finally, a participant can be blocked in state READY, waiting for the global
vote as sent by the coordinator. If that message is not received within a given
time, the participant cannot simply decide to abort the transaction. Instead, it must
find out which message the coordinator actually sent. The simplest solution to this
problem is to let each participant block until the coordinator recovers again.

A better solution is to let a participant P contact another participant Q to see if
it can decide from Q's current state what it should do. For example, suppose that
Q had reached state COMMIT. This is possible only if the coordinator had sent a
GLOBAL_COMMIT message to Q just before crashing. Apparently; this message
had not yet been sent to P. Consequently, P may now also decide to locally com-
mit. Likewise, if Q is in state ABORT, P can safely abort as well.

Now suppose that Q is still in state INIT. This situation can occur when the
coordinator has sent a VOTE....REQUEST to all participants, but this message has
reached P (which subsequently responded with a VOTE_COMMIT message), but
has not reached Q. In other words, the coordinator had crashed while multicasting
VOTE....REQUEST. In this case, it is safe to abort the transaction: both P and Q
can make a transition to state ABORT.

The most difficult situation occurs when Q is also in state READY, waiting for
a response from the coordinator. In particular, if it turns out that all participants
are in state READY, no decision can be taken. The problem is that although all
participants are willing to commit, they still need the coordinator's vote to reach
the final decision. Consequently, the protocol blocks until the coordinator recov-
ers.

The various options are summarized in Fig. 8-19.

Figure 8-19. Actions taken by a participant P when residing in state READY
and having contacted another participant Q.

To ensure that a process can actually recover, it is necessary that it saves its
state to persistent storage. (How saving data can be done in a fault-tolerant way is
discussed later in this chapter.) For example, if a participant was in state INIT, it
can safely decide to locally abort the transaction when it recovers, and then
inform the coordinator. Likewise, when it had already taken a decision such as

358 FAULT TOLERANCE CHAP: 8

Figure 8-20. Outline of the steps taken by the coordinator in a two-phase com-
mit protocol.

If not all votes have been collected but no more votes are received within a
given time interval prescribed in advance, the coordinator assumes that one or
more participants have failed. Consequently, it should abort the transaction and
multicasts a GLOBAL-ABORT to the (remaining) participants.

when it crashed while being in either state COMMIT or ABORT, it is in order to
recover to that state again, and retransmit its decision to the coordinator.

Problems arise when a participant crashed while residing in state READY. In
that case. when recovering, it cannot decide on its own what it should do next,
that is, commit or abort the transaction. Consequently, it is forced to contact other
participants to find what it should do, analogous to the situation when it times out
while residing in state READY as described above. '

The coordinator has only two critical states it needs to keep track of. When it
starts the 2PC protocol, it should record that it is entering state WAIT so that it can
possibly retransmit the VOTEJ?EQUEST message to all participants after recov-
ering. Likewise, if it had come to a decision in the second phase, it is sufficient if
that decision has been recorded so that it can be retransmitted when recovering.

An outline of the actions that are executed by the coordinator is given in
Fig. 8-20. The coordinator starts by multicasting a VOTEJ?EQUEST to all parti-
cipants in order to collect their votes. It subsequently records that it is entering the
WAIT state, after which it waits for incoming votes from participants.

SEC. 8.5 DISTRIBUTED COMMIT 359

If no failures occur, the coordinator will eventually have collected all votes. If
all participants as well as the coordinator vote to commit, GLOBAL_COMMIT is
first logged and subsequently sent to all processes. Otherwise, the coordinator
multicasts a GLOBAL-ABORT (after recording it in the local log).

Fig. 8-21(a) showsthe steps taken by a participant. First, the process waits for
a vote request from the coordinator. Note that this waiting can be done by a sepa-
rate thread running in the process's address space. If no message comes in, the
transaction is simply aborted. Apparently, the coordinator had failed.

After receiving a vote request, the participant may decide to vote for commit-
ting the transaction for which it first records its decision in a local log, and then
informs the coordinator by sending a VOTE_COMMIT message. The participant
must then wait for the global decision. Assuming this decision (which again
should come from the coordinator) comes in on time, it is simply written to the
local log, after which it can be carried out.

However, if the participant times out while waiting for the coordinator's deci-
sion to come in, it executes a termination protocol by first multicasting a
DECISION-REQUEST message to the other processes, after which it subse-
quently blocks while waiting for a response. When a response comes in (possibly
from the coordinator, which is assumed to eventually recover), the participant
writes the decision to its local log and handles it accordingly.

Each participant should be prepared to accept requests for a global decision
from other participants. To that end, assume each participant starts a separate
thread, executing concurrently with the main thread of the participant as shown in
Fig.8-21(b). This thread blocks until it receives a decision request. It can only be
of help to anther process if its associated participant has already reached a final
decision. In other words, if GLOBAL_COMMIT or GLOBAL-ABORT had been
written to the local log, it is certain that the coordinator had at least sent its deci-
sion to this process. In addition, the thread may also decide to send a
GLOBAL-ABORT when its associated participant is still in state INIT, as dis-
cussed previously. In all other cases, the receiving thread cannot help, and the re-
questing participant will not be responded to.

What is seen is that it may be possible that a participant will need to block
until the coordinator recovers. This situation occurs when all participants have re-
ceived and processed the VOTE-REQUEST from the coordinator, while in the
meantime, the coordinator crashed. In that case, participants cannot cooperatively
decide on the final action to take. For this reason, 2PC is also referred to as a
blocking commit protocol.

There are several solutions to avoid blocking. One solution, described by
Babaoglu and Toueg (1993), is to use a multicast primitive by which a receiver
immediately multicasts a received message to all other processes. It can be shown
that this approach allows a participant to reach a final decision, even if the coordi-
nator has not yet recovered. Another solution is the three-phase commit protocol,
which is the last topic of this section and is discussed next.

360 FAULT TOLERANCE CHAP. 8

Figure 8-21. (a) The steps taken by a participant process in 2PC. (b) The steps
for handling incoming decision requests.

SEC. 8.5 DISTRIBUTED COMMIT 361

8.5.2 Three-Phase Commit

A problem with the two-phase commit protocol is that when the coordinator
has crashed, participants may not be able to reach a final decision. Consequently,
participants may need to remain blocked until the coordinator recovers. Skeen
(1981) developed a variant of 2PC, called the three-phase commit protocol
(3PC), that avoids blocking processes in the presence of fail-stop crashes. Al-
though 3PC is widely referred to in the literature, it is not applied often in practice
as the conditions under which 2PC blocks rarely occur. We discuss the protocol,
as it provides further insight into solving fault-tolerance problems in distributed
systems.

Like 2PC, 3PC is also formulated in terms of a coordinator and a number of
participants. Their respective finite state machines are shown in Fig. 8-22. The
essence of the protocol is that the states of the coordinator and each participant
satisfy the following two conditions:

1. There is no single state from which it is possible to make a transition
directly to either a COMMIT or an ABORT state.

2. There is no state in which it is not possible to make a final decision,
and from which a transition to a COMMIT state can be made.

It can be shown that these two conditions are necessary and sufficient for a com-
mit protocol to be nonblocking (Skeen and Stonebraker, 1983).

Figure 8-22. (a) The finite state machine for the coordinator in 3PC. (b) The
finite state machine for a participant.

The coordinator in 3PC starts with sending a VOTE....REQUEST message to all
participants, after which it waits for incoming responses. If any participant votes
to abort the transaction, the final decision will be to abort as well, so the coordina-
tor sends GLOBAL-ABORT. However, when the transaction can be committed, a

362 FAULT TOLERANCE CHAP. 8

PREPARE_COMMIT message is sent. Only after each participant has acknowl-
edged it is now prepared to commit, will the coordinator send the final
GLOBAL_COMMIT message by which the transaction is actually committed.

Again, there are only a few situations in which a process is blocked while
waiting for incoming messages. First, if a participant is waiting for a vote request
from the coordinator while residing in state INIT, it will eventually make a transi-
tion to state ABORT, thereby assuming that the coordinator has crashed. This
situation is identical to that in 2PC. Analogously, the coordinator may be in state
WAIT, waiting for the votes from participants. On a timeout, the coordinator will
conclude that a participant crashed, and will thus abort the transaction by multi-
casting a GLOBAL-ABORT message.

Now suppose the coordinator is blocked in state PRECOMMIT. On a timeout,
it will conclude that one of the participants had crashed, but that participant is
known to have voted for committing the transaction. Consequently, the coordina-
tor can safely instruct the operational participants to commit by multicasting a
GLOBAL_COMMIT message. In addition, it relies on a recovery protocol for the
crashed participant to eventually commit its part of the transaction when it comes
up again.

A participant P may block in the READY state or in the PRECOMMIT state.
On a timeout, P can conclude only that the coordinator has failed, so that it now
needs to find out what to do next. As in 2PC, if P contacts any other participant
that is in state COMMIT (or ABORD, P should move to that state as well. In addi-
tion, if all participants are in state PRECOMMIT, the transaction can be safely
committed.

Again analogous to 2PC, if another participant Q is still in the INIT state, the
transaction can safely be aborted. It is important to note that Q can be in state
INIT only if no other participant is in state PRECOMMIT. A participant can reach
PRECOMMIT only if the coordinator had reached state PRECOMMIT before
crashing, and has thus received a vote to commit from each participant. In other
words, no participant can reside in state INIT while another participant is in state
PRECOMMIT.

If each: of the participants that P can contact is in state READ Y (and they
together form a majority), the transaction should be aborted. The point to note is
that another participant may have crashed and will later recover. However, neither
P, nor any other of the operational participants knows what the state of the
crashed participant will be when it recovers. If the process recovers to state INIT,
then deciding to abort the transaction is the only correct decision. At worst, the
process may recover to state PRECOMMIT, but in that case, it cannot do any
harm to still abort the transaction.

This situation is the major difference with 2PC, where a crashed participant
could recover to a COMMIT state while all the others were still in state READ Y.
In that case, the remaining operational processes could not reach a final decision
and would have to wait until the crashed process recovered. With 3PC, if any

SEC. 8.5 DISTRIBUTED COMMIT 363

operational process is in its READ Y state, no crashed process will recover to a
state other than INIT, ABORT, or PRECOMMIT. For this reason, surviving proc-
esses can always come to a final decision.

Finally, if the processes that P can reach are in state PRECOMMIT (and they
forma majority), then it is safe to commit the transaction. Again, it can be shown
that in this case, all other processes will either be in state READY or at least, will
recover to state READY, PRECOMMIT, or COMMIT when they had crashed.

Further details on 3PC can be found in Bernstein et al. (1987) and Chow and
Johnson (1997).

8.6 RECOVERY

So far, we have mainly concentrated on algorithms that allow us to tolerate
faults. However, once a failure has occurred, it is essential that the process where
the failure happened can recover to a correct state. In what follows, we first con-
centrate on what it actually means to recover to a correct state, and subsequently
when and how the state of a distributed system can be recorded and recovered to,
by means of checkpointing and message logging.

8.6.1 Introduction

Fundamental to fault tolerance is the recovery from an error. Recall that an
error is that part of a system that may lead to a failure. The whole idea of error
recovery is to replace an erroneous state with an error-free state. There are essen-
tially two forms of error recovery.

In backward recovery, the main issue is to bring the system from its present
erroneous state back into a previously correct state. To do so, it will be necessary
to record the system's state from time to time, and to restore such a recorded state
when things go wrong. Each time (part of) the system's present state is recorded,
a checkpoint is said to be made.

Another form of error recovery is forward recovery. In this case, when the
system has entered an erroneous state, instead of moving back to a previous,
checkpointed state, an attempt is made to bring the system in a correct new state
from which it can continue to execute. The main problem with forward error re-
covery mechanisms is that it has to be known in advance which errors may occur.
Only in that case is it possible to correct those errors and move to a new state.

The distinction between backward and forward error recovery is easily
explained when considering the implementation of reliable communication. The
common approach to recover from a lost packet is to let the sender retransmit that
packet. In effect, packet retransmission establishes that we attempt to go back to a
previous, correct state, namely the one in which the packet that was lost is being

364 FAULT TOLERANCE CHAP. 8

sent. Reliable communication through packet retransmission is therefore an ex-
ample of applying backward error recovery techniques.

An alternative approach is to use a method known as erasure correction. In
this approach. a missing packet is constructed from other, successfully delivered
packets. For example, in an (n,k) block erasure code, a set of k source packets is
encoded into a set of n encoded packets, such that any set of k encoded packets is
enough to reconstruct the original k source packets. Typical values are k =16' or
k=32, and k<11~2k [see, for example, Rizzo (1997)]. If not enough packets have
yet been delivered, the sender will have to continue transmitting packets until a
previously lost packet can be constructed. Erasure correction is a typical example
of a forward error recovery approach.

By and large, backward error recovery techniques are widely applied as a
general mechanism for recovering from failures in distributed systems. The major
benefit of backward error recovery is that it is a generally applicable method
independent of any specific system or process. In other words, it can be integrated
into (the middleware layer) of a distributed system as a general-purpose service.

However, backward error recovery also introduces some problems (Singhal
and Shivaratri, 1994). First, restoring a system or process to a previous state is
generally a relatively costly operation in terms of performance. As will be dis-
cussed in succeeding sections, much work generally needs to be done to recover
from, for example, a process crash or site failure. A potential way out of this prob-
lem, is to devise very cheap mechanisms by which components are simply re-
booted. We will return to this approach below.

Second, because backward error recovery mechanisms are independent of the
distributed application for which they are actually used, no guarantees can be
given that once recovery has taken place, the same or similar failure will not hap-
pen again. If such guarantees are needed, handling errors often requires that the
application gets into the loop of recovery. In other words, full-fledged failure tran-
sparency can generally not be provided by backward error recovery mechanisms.

Finally, although backward error recovery requires checkpointing, some states
can simply never be rolled back to. For example, once a (possibly malicious) per-
son has taken the $1.000 that suddenly came rolling out of the incorrectly func-
tioning automated teller machine, there is only a small chance that money will be
stuffed back in the machine. Likewise, recovering to a previous state in most
UNIX systems after having enthusiastically typed

rrn -fr *
but from the wrong working directory, may turn a few people pale. Some things
are simply irreversible.

Checkpointing allows the recovery to a previous correct state. However, tak-
ing a checkpoint is often a costly operation and may have a severe performance
penalty. As a consequence, many fault-tolerant distributed systems combine
checkpointing with message logging. In this case, after a checkpoint has been

SEC. 8.6 RECOVERY 365

taken, a process logs its messages before sending them off (called sender-based
logging). An alternative solution is to let the receiving process first log an incom-
ing message before delivering it to the application it is executing. This scheme is
also referred to as receiver-based logging. When a receiving process crashes, it
is necessary to restore the most recently checkpointed state, and from there on
replay the messages that have been sent. Consequently, combining checkpoints
with message logging makes it possible to restore a state that lies beyond the most
recent checkpoint without the cost of checkpointing.

Another important distinction between checkpointing and schemes that addi-
tionally use logs follows. In a system where only checkpointing is used, processes
will be restored to a checkpointed state. From there on, their behavior may be dif-
ferent than it was before the failure occurred. For example, because communica-
tion times are not deterministic, messages may now be delivered in a different or-
der, in tum leading to different reactions by the receivers. However, if message
logging takes place, an actual replay of the events that happened since the last
checkpoint takes place. Such a replay makes it easier to interact with the outside
world,

For example, consider the case that a failure occurred because a user provided
erroneous input. If only checkpointing is used, the system would have to take a
checkpoint before accepting the user's input in order to recover to exactly the
same state. With message logging, an older checkpoint can be used, after which a
replay of events can take place up to the point that the user should provide input.
In practice, the combination of having fewer checkpoints and message logging is
more efficient than having to take many checkpoints.

Stable Storage

To be able to recover to a previous state, it is necessary that information need-
ed to enable recovery is safely stored. Safely in this context means that recovery
information survives process crashes and site failures, but possibly also various
storage media failures. Stable storage plays an important role when it comes to
recovery in distributed systems. We discuss it briefly here.

Storage comes in three categories. First there is ordinary RAM memory,
which is wiped out when the power fails or a machine crashes. Next there is disk
storage, which survives CPU failures but which can be lost in disk head crashes.

Finally, there is also stable storage, which is designed to survive anything ex-
cept major calamities such as floods and earthquakes. Stable storage can be im-
plemented with a pair of ordinary disks, as shown in Fig. 8-23(a). Each block on
drive 2 is an exact copy of the corresponding block on drive 1. When a block is
updated, first the block on drive 1 is updated and verified. then the same block on
drive 2 is done.

Suppose that the system crashes after drive 1 is updated but before the update
on drive 2, as shown in Fig. 8-23(b). Upon recovery, the disk can be compared

366 FAULT TOLERANCE CHAP. 8

Figure 8-23. (a) Stable storage. (b) Crash after drive I is updated. (c) Bad
spot.

block for block. Whenever two corresponding blocks differ, it can be assumed
that drive 1 is the correct one (because drive 1 is always updated before drive 2),
so the new block is copied from drive 1 to drive 2. When the recovery process is
complete, both drives will again be identical.

Another potential problem is the spontaneous decay of a block. Dust particles
or general wear and tear can give a previously valid block a sudden checksum
error, without cause or warning, as shown in Fig. 8-23(c). When such an error is
detected, the bad block can be regenerated from the corresponding block on the
other drive.

As a consequence of its implementation, stable storage is well suited to appli-
cations that require a high degree of fault tolerance, such as atomic transactions.
When data are written to stable storage and then read back to check that they have
been written correctly, the chance of them subsequently being lost is extremely
small.

In the next two sections we go into further details concerning checkpoints and
message logging. Elnozahy et al. (2002) provide a survey of checkpointing and
logging in distributed systems. Various algorithmic details can be found in Chow
and Johnson (1997).

8.6.2 Checkpointing

In a fault-tolerant distributed system, backward error recovery requires that
the system regularly saves its state onto stable storage. In particular, we need to
record a consistent global state, also called a distributed snapshot. In a distrib-
uted snapshot, if a process P has recorded the receipt of a message, then there

SEC. 8.6 RECOVERY 367

should also be a process Q that has recorded the sending of that message. After
all, it must have come from somewhere.

Figure 8-24. A recovery line.

In backward error recovery schemes, each process saves its state from time to
time to a locally-available stable storage. To recover after a process or system
failure requires that we construct a consistent global state from these local states.
In particular, it is best to recover to the most recent distributed snapshot, also
referred to as a recovery line. In other words, a recovery line corresponds to the
most recent consistent collection of checkpoints, as shown in Fig. 8-24.

Independent Checkpointing

Unfortunately, the distributed nature of checkpointing (in which each process
simply records its local state from time to time in an uncoordinated fashion) may
make it difficult to find a recovery line. To discover a recovery line requires that
each process is rolled back to its most recently saved state. If these local states
jointly do not form a distributed snapshot, further rolling back is necessary.
Below, we will describe a way to find a recovery line. This process of a cascaded
rollback may lead to what is called the domino effect and is shown in Fig. 8-25.

Figure 8-25. The domino effect.

When process P2 crashes, we need to restore its state to the most recently
saved checkpoint. As a consequence, process PI will also need to be rolled back.

368 FAULT TOLERANCE CHAP. 8

Unfortunately, the two most recently saved local states do not form a consistent
global state: the state saved by P2 indicates the receipt of a message m, but no
other process can be identified as its sender. Consequently, P2 needs to be rolled
back to an earlier state.

However, the next state to which P2 is rolled back also cannot be used as part
of a distributed snapshot. In this case, PI will have recorded the receipt of mes-
sage m I, but there is no recorded event of this message being sent. It is therefore
necessary to also roll PI back to a previous state. In this example, it turns out that
the recovery line is actually the initial state of the system. . .

As processes take local checkpoints independent of each other, this method is
also referred to as independent checkpointing. An alternative solution is to glo-
bally coordinate checkpointing, as we discuss below, but coordination requires
global synchronization, which may introduce performance problems. Another dis-
advantage of independent checkpointing is that each local storage needs to be
cleaned up periodically, for example, by running a special distributed garbage col-
lector. However, the main disadvantage lies in computing the recovery line.

Implementing independent checkpointing requires that dependencies are
recorded in such a way that processes can jointly roll back to a consistent global
state. To that end, let CPi(m) denote the m-th checkpoint taken by process Pi'
Also, let INTi(m) denote the interval between checkpoints CPi(m-l) and CPi(m).

When process Pi sends a message in interval INTi(m), it piggybacks the pair
(i,m) to the receiving process. When process Pj receives a message in interval
IN1j(n), along with the pair of indices (i,m), it then records the dependency
INTi(m)-7IN1j(n). Whenever Ij takes checkpoint CPln), it additionally writes
this dependency to its local stable storage, along with the rest of the recovery in-
formation that is part of CPln).

Now suppose that at a certain moment, process' PI is required to roll back to
checkpoint CPi(m-l). To ensure global consistency, we need to ensure that all
processes that have received messages from Pi and were sent in interval INTi (m),
are rolled back to a checkpointed state preceding the receipt of such messages. In
particular, .process Pj in our example, will need to be rolled back at least to check-
point CPj(n-l). If CPj(n-l) does not lead to a globally consistent state, further
rolling back may be necessary.

Calculating the recovery line requires an analysis of the interval dependencies
recorded by each process when a checkpoint was taken. Without going into any
further details, it turns out that such calculations are fairly complex and do not
justify the need for independent checkpointing in comparison to coordinated
checkpointing. In addition, as it turns out, it is often not the coordination between
processes that is the dominating performance factor, but the overhead as the result
of having to save the state to local stable storage. Therefore, coordinated check-
pointing, which is much simpler than independent checkpointing, is often more
popular, and will presumably stay so even when systems grow to much larger
sizes (Elnozahy and Planck, 2004).

SEC. 8.6 RECOVERY 369
Coordinated Checkpointing

As its name suggests, in coordinated checkpointing all processes synchron-
ize to jointly write their state to local stable storage. The main advantage of coor-
dinated checkpointing is that the saved state is automatically globally consistent,
so that cascaded rollbacks leading to the domino effect are avoided. The distrib-
uted snapshot algorithm discussed in Chap. 6 can be used to coordinate check-
pointing. This algorithm is an example of nonblocking checkpoint coordination.

A simpler solution is to use a two-phase blocking protocol. A coordinator first
multicasts a CHECKPOINT .-REQUEST message to all processes. When a process
receives such a message, it takes a local checkpoint, queues any subsequent mes-
sage handed to it by the application it is executing, and acknowledges to the coor-
dinator that it is has taken a checkpoint. When the coordinator has received an
acknowledgment from all processes, it multicasts a CHECKPOINT ...DONE mes-
sage to allow the (blocked) processes to continue.

It is easy to see that this approach will also lead to a globally consistent state,
because no incoming message will ever be registered as part of a checkpoint. The
reason for this is that any message that follows a request for taking a checkpoint is
not considered to be part of the local checkpoint. At the same time, outgoing mes-
sages (as handed to the checkpointing process by the application it is running), are
queued locally until the CHECKPOINT ...DONE message is received.

An improvement to this algorithm is to multicast a checkpoint request only to
those processes that depend on the recovery of the coordinator, and ignore the
other processes. A process is dependent on the coordinator if it has received a
message that is directly or indirectly causally related to a message that the coordi-
nator had sent since the last checkpoint. This leads to the notion of an incremen-
tal snapshot.

To take an incremental snapshot, the coordinator multicasts a checkpoint re-
quest only to those processes it had sent a message to since it last took a check-
point. When a process P receives such a request, it forwards the request to all
those processes to which P itself had sent a message since the last checkpoint, and
so on. A process forwards the request only once. When all processes have been
identified, a second multicast is used to actually trigger checkpointing and to let
the processes continue where they had left off.

8.6.3 Message Logging

Considering that checkpointing is an expensive operation, especially concern-
ing the operations involved in writing state to stable storage, techniques have been
sought to reduce the number of checkpoints, but still enable recovery. An impor-
tant technique in distributed systems is logging messages.

The basic idea underlying message logging is that if the transmission of mes-
sages can be replayed, we can still reach a globally consistent state but without

370 FAULT TOLERANCE CHAP. 8

having to restore that state from stable storage. Instead, a checkpointed state is
taken as a starting point, and all messages that have been sent since are simply
retransmitted and handled accordingly.

This approach works fine under the assumption of what is called a piecewise
deterministic model. In such a model, the execution of each process is assumed
to take place as a series of intervals in which events take place. These events are
the same as those discussed in the context of Lamport's happened-before relation-
ship in Chap. 6. For example, an event may be the execution of an instruction, the
sending of a message, and so on. Each interval in the piecewise deterministic
model is assumed to start with a nondeterministic event, such as the receipt of a
message. However, from that moment on, the execution of the process is com-
pletely deterministic. An interval ends with the last event before a nondeterminis-
tic event occurs.

In effect, an interval can be replayed with a known result, that is, in a com-
pletely deterministic way, provided it is replayed starting with the same nondeter-
ministic event as before. Consequently, if we record all nondeterministic events in
such a model, it becomes possible to completely replay the entire execution of a
process in a deterministic way.

Considering that message logs are necessary to recover from a process crash
so that a globally consistent state is restored, it becomes important to know pre-
cisely when messages are to be logged. Following the approach described by
Alvisi and Marzullo (1998), it turns out that many existing message-logging
schemes can be easily characterized, if we concentrate on how they deal with
orphan processes.

An orphan process is a process that survives the crash of another process, but
whose state is inconsistent with the crashed process after its recovery. As an ex-
ample, consider the situation shown in Fig. 8-26. Process Q receives messages
m 1 and m 2 from process P and R, respectively, and subsequently sends a message
m 3 to R. However, in contrast to all other messages, message m 2 is not logged. If
process Q crashes and later recovers again, only the logged messages required for
the recovery of Q are replayed, in our example, mI' Because m 2 was not logged,
its transmission will not be replayed, meaning that the transmission of m 3 also
may not take place. Fig. 8-26.

However, the situation after the recovery of Q is inconsistent with that before
its recovery. In particular, R holds a message (m 3) that was sent before the crash,
but whose receipt and delivery do not take place when replaying what had hap-
pened before the crash. Such inconsistencies should obviously be avoided.

Characterizing Message-Logging Schemes

To characterize different message-logging schemes, we follow the approach
described in Alvisi and Marzullo (1998). Each message m is considered to have a
header that contains all information necessary to retransmit m, and to properly

SEC. 8.6 RECOVERY 371

Figure 8-26. Incorrect replay of messages after recovery, leading to an orphan
process.

handle it. For example, each header will identify the sender and the receiver, but
also a sequence number to recognize it as a duplicate. In addition, a delivery num-
ber may be added to decide when exactly it should be handed over to the receiv-

. ing application.
A message is said to be stable if it can no longer be lost, for example, because

it has been written to stable storage. Stable messages can thus be used for
recovery by replaying their transmission.

Each message m leads to a set DEP (m) of processes that depend on the
delivery of m. In particular, DEP (m) consists of those processes to which m has
been delivered. In addition, if another message m' is causally dependent on the
delivery of m, and m' has been delivered to a process Q, then Q will also be con-
tained in DEP (m). Note that m' is causally dependent on the delivery of m, if it
were sent by the same process that previously delivered m, or which had delivered
another message that was causally dependent on the delivery of m.

The set COPY(m) consists of those processes that have a copy of m, but not
(yet) in their local stable storage. When a process Q delivers message m, it also
becomes a member of COPY(m). Note that COPY(m) consists of those processes
that could hand over a copy of m that can be used to replay the transmission of m.
If all these processes crash, replaying the transmission of m is clearly not feasible.

Using these notations, it is now easy to define precisely what an orphan proc-
ess is. Suppose that in a distributed system some processes have just crashed. Let
Q be one of the surviving processes. Process Q is an orphan process if there is a
message m, such that Q is contained in DEP (m), while at the same time every
process in COPY(m) has crashed.' In other words, an orphan process appears
when it is dependent on m, but there is no way to replay m's transmission.

To avoid orphan processes, we thus need to ensure that if each process in
COPY(m) crashed, then no surviving process is left in DEP(m). In other words,
all processes in DEP (m) should have crashed as well. This condition can be
enforced if we can guarantee that whenever a process becomes a member of
DEP(m), it also becomes a member of COPY(m). In other words, whenever a
process becomes dependent on the delivery of m, it will always keep a copy of m.

372 FAULT TOLERANCE CHAP. 8

There are essentially two approaches that can now be followed. The first ap-
proach is represented by what are called pessimistic logging protocols. These
protocols take care that for each nonstable message m, there is at most one proc-
ess dependent on m. In other words, pessimistic logging protocols ensure that each
nonstable message m is delivered to at most one process. Note that as soon as m is
delivered to, say process P, P becomes a member of COpy (m).

The worst that can happen is that process P crashes without m ever having
been logged. With pessimistic logging, P is not allowed to send any messages af-
ter the delivery of m without first having ensured that m has been written to stable
storage. Consequently, no other processes will ever become dependent on the de-
livery of m to P, without having the possibility of replaying the transmission of m.
In this way, orphan processes are always avoided.

In contrast, in an optimistic logging protocol. the actual work is done after a
crash occurs. In particular, assume that for some message m, each process in
COpy (m) has crashed. In an optimistic approach, any orphan process in DEP (m)
is rolled back to a state in which it no longer belongs to DEP(m). Clearly,
optimistic logging protocols need to keep track of dependencies, which compli-
cates their implementation.

As pointed out in Elnozahy et al. (2002), pessimistic logging is so much sim-
pler than optimistic approaches, that it is the preferred way of message logging in
practical distributed systems design.

8.6.4 Recovery-Oriented Computing

A related way of handling recovery is essentially to start over again. The
underlying principle toward this way of masking failures is that it may be much
cheaper to optimize for recovery, then it is aiming for systems that are free from
failures for a long time. This approach is also referred to as recovery-oriented
computing (Candea et aI., 2004a).

There are different flavors of recovery-oriented computing. One flavor is to
simply reboot (part of a system) and has been explored to restart Internet servers
(Candea et al., 2004b, 2006). In order to be able reboot only a part of the system,
it is crucial the fault is properly localized. At that point, rebooting simply means
deleting all instances of the identified components. along with the threads operat-
ing on them, and (often) to just restart the associated requests. Note that fault
localization itself may be a nontrivial exercise (Steinder and Sethi. 2004).

To enable rebooting as a practical recovery technique requires that com-
ponents are largely decoupled in the sense that there are few or no dependencies
between different components. If there are strong dependencies, then fault locali-
zation and analysis may still require that a complete server needs to be restarted at
which point applying traditional recovery techniques as the ones we just discussed
may be more efficient.

SEC. 8.6 RECOVERY 373

Another flavor of recovery-oriented computing is to apply checkpointing and
recovery techniques, but to continue execution in a changed environment. The
basic idea here is that many failures can be simply avoided if programs are given
some more buffer space, memory is zeroed before allocated, changing the order-
ing of message delivery (as long as this does not affect semantics), and so on (Qin
et aI., 2005). The key idea is to tackle software failures (whereas many of the
techniques discussed so far are aimed at, or are based on hardware failures).
Because software execution is highly deterministic, changing an execution
environment may save the day, but, of course, without repairing anything.

8.7 SUMMARY

Fault tolerance is an important subject in distributed systems design. Fault
tolerance is defined as the characteristic by which a system can mask the
occurrence and recovery from failures. In other words, a system is fault tolerant if
it can continue to operate in the presence of failures.

Several types of failures exist. A crash failure occurs when a process simply
halts. An omission failure occurs when a process does not respond to incoming re-
quests. When a process responds too soon or too late to a request, it is said to
exhibit a timing failure. Responding to an incoming request, but in the wrong
way, is an example of a response failure. The most difficult failures to handle are
those by which a process exhibits any kind of failure, called arbitrary or Byzan-
tine failures.

Redundancy is the key technique needed to achieve fault tolerance. When
applied to processes, the notion of process groups becomes important. A process
group consists of a number of processes that closely cooperate to provide a ser-
vice. In fault-tolerant process groups, one or more processes can fail without
affecting the availability of the service the group implements. Often, it is neces-
sary that communication within the group be highly reliable, and adheres to
stringent ordering and atomicity properties in order to achieve fault tolerance.

Reliable group communication, also called reliable multicasting, comes in dif-
ferent forms. As long as groups are relatively small, it turns out that implementing
reliability is feasible. However, as soon as very large groups need to be supported,
scalability of reliable multicasting becomes problematic. The key issue in achiev-
ing scalability is to reduce the number of feedback messages by which receivers
report the (un)successful receipt of a multicasted message.

Matters become worse when atomicity is to be provided. In atomic multicast
protocols, it is essential that each group member have the same view concerning
to which members a multicasted message has been delivered. Atomic multicasting
can be precisely formulated in terms of a virtual synchronous execution model. In
essence, this model introduces boundaries between which group membership does

374 FAULT TOLERANCE CHAP. 8

not change and which messages are reliably transmitted. A message can never
cross a boundary.

Group membership changes are an example where each process needs to
agree on the same list of members. Such agreement can be reached by means of a
commit protocol, of which the two-phase commit protocol is the most widely
applied. In a two-phase commit protocol, a coordinator first checks whether all
processes agree to perform the same operation (i.e., whether they all agree to
commit), and in a second round, multicasts the outcome of that poll. A three-
phase commit protocol is used to handle the crash of the coordinator without hav-
ing to block all processes to reach agreement until the coordinator recovers.

Recovery in fault-tolerant systems is invariably achieved by checkpointing the
state of the system on a regular basis. Checkpointing is completely distributed.
Unfortunately, taking a checkpoint is an expensive operation. To improve perfor-
mance, many distributed systems combine checkpointing with message logging.
By logging the communication between processes, it becomes possible to replay
the execution of the system after a crash has occurred.

PROBLEMS

1. Dependable systems are often required to provide a high degree of security. Why?

2. What makes the fail-stop model in the case of crash failures so difficult to implement?

3. Consider a Web browser that returns an outdated cached page instead of a more recent
one that had been updated at the server. Is this a failure, and if so, what kind of
failure?

4. Can the model of triple modular redundancy described in the text handle Byzantine
failures?

5. How many failed elements (devices plus voters) can Fig. 8-2 handle? Give an ex-
ample of the worst case that can be masked.

6. Does TMR generalize to five elements per group instead of three? If so, what proper-
ties does it have?

7. For each of the following applications. do you think at-least-once semantics or at-
most-once semantics is best? Discuss.

(a) Reading and writing files from a file server.
(b) Compiling a program.
(c) Remote banking.

8. With asynchronous RPCs, a client is blocked until its request has been accepted by the
server. To what extent do failures affect the semantics of asynchronous RPCs?

9. Giye an example in which group communication requires no message ordering at all.

CHAP. 8 PROBLEMS 375

10. In reliable multicasting, is it always necessary that the communication layer keeps a
copy of a message for retransmission purposes?

11. To what extent is scalability of atomic multicasting important?

12. In the text, we suggest that atomic multicasting can save the day when it comes to per-
forming updates on an agreed set of processes. To what extent can we guarantee that
each update is actually performed?

13. Virtual synchrony is analogous to weak consistency in distributed data stores, with
group view changes acting as synchronization points. In this context, what would be
the analog of strong consistency?

14. What are the permissible delivery orderings for the combination of FIFO and total-
ordered multicasting in Fig. 8-15?

15. Adapt the protocol for installing a next view Gi+1 in the case of virtual synchrony so
that it can tolerate process failures.

16. In the two-phase commit protocol, why can blocking never be completely eliminated,
even when the participants elect a new coordinator?

17. In our explanation of three-phase commit, it appears that committing a transaction is
based on majority voting. Is this true?

18. In a piecewise deterministic execution model, is it sufficient to log only messages, or
do we need to log other events as well?

19. Explain how the write-ahead log in distributed transactions can be used to recover
from failures.

20. Does a stateless server need to take checkpoints?

21. Receiver-based message logging is generally considered better than sender-based log-
ging. Why?

9
SECURITY

The last principle of distributed systems that we discuss is security. Security is
by no means the least important principle. However, one could argue that it is one
of the most difficult principles, as security needs to be pervasive throughout a sys-
tem. A single design flaw with respect to security may render all security meas-
ures useless. In this chapter, we concentrate on the various mechanisms that are
generally incorporated in distributed systems to support security.

We start with introducing the basic issues of security. Building all kinds of se-
curity mechanisms into a system does not really make sense unless it is known
how those mechanisms are to be used, and against what. This requires that we
know about the security policy that is to be enforced. The notion of a security pol-
icy, along with some general design issues for mechanisms that help enforce such
policies, are discussed first. We also briefly touch upon the necessary cryptogra-
phy.

Security in distributed systems can roughly be divided into two parts. One
part concerns the communication between users or processes, possibly residing on
different machines. The principal mechanism for ensuring secure communication
is that of a secure channel. Secure channels, and more specifically, authentication,
message integrity, and confidentiality, are discussed in a separate section.

The other part concerns authorization, which deals with ensuring that a proc-
ess gets only those access rights to the resources in a distributed system it is enti-
tled to. Authorization is covered in a separate section dealing with access control.
In addition to traditional access control mechanisms, we also focus on access con-
trol when we have to deal with mobile code such as agents.

377

378 SECURITY CHAP. 9

Secure channels and access control require mechanisms to distribute crypto-
graphic keys, but also mechanisms to add and remove users from a system. These
topics are covered by what is known as security management. In a separate sec-
tion, we discuss issues dealing with managing cryptographic keys, secure group
management, and handing out certificates that prove the owner is entitled to ac-
cess specified resources.

9.1 INTRODUCTION TO SECURITY

We start our description of security in distributed systems by taking a look at
some general security issues. First, it is necessary to define what a secure system
is. We distinguish security policies from security mechanisms. and take a look at
the Globus wide-area system for which a security policy has been explicitly for-
mulated. Our second concern is to consider some general design issues for secure
systems. Finally, we briefly discuss some cryptographic algorithms, which play a
key role in the design of security protocols.

9.1.1 Security Threats, Policies, and Mechanisms

Security in a computer system is strongly related to the notion of dependabil-
ity. Informally, a dependable computer system is one that we justifiably trust to
deliver its services (Laprie, 1995). As mentioned in Chap. 7, dependability in-
cludes availability, reliability, safety, and maintainability. However, if we are to
put our trust in a computer system, then confidentiality and integrity should also
be taken into account. Confidentiality refers to the property of a computer sys-
tem whereby its information is disclosed only to authorized parties. Integrity is
the characteristic that alterations to a system's assets can be made only in an auth-
orized way. In other words, improper alterations in a secure computer system
should be detectable and recoverable. Major assets of any computer system are its
hardware, software, and data.

Another way of looking at security in computer systems is that we attempt to
protect the services and data it offers against security threats. There are four
types of security threats to consider (Pfleeger, 2003):

1. Interception

2. Interruption

3. Modification

4. Fabrication

The concept of interception refers to the situation that an unauthorized party
has gained access to a service or data. A typical example of interception is where

SEC. 9.1 INTRODUCTION TO SECURITY 379

communication between two parties has been overheard by someone else. Inter-
ception also happens when data are illegally copied, for example, after breaking
into a person's private directory in a file system.

An example of interruption is when a file is corrupted or lost. More generally
interruption refers to the situation in which services or data become unavailable,
unusable, destroyed, and so on. In this sense, denial of service attacks by which
someone maliciously attempts to make a service inaccessible to other parties is a
security threat that classifies as interruption.

Modifications involve unauthorized changing of data or tampering with a ser-
vice so that it no longer adheres to its original specifications. Examples of modifi-
cations include intercepting and subsequently changing transmitted data, tamper-
ing with database entries, and changing a program so that it secretly logs the
activities of its user.

Fabrication refers to the situation in which additional data or activity are gen-
erated that would normally not exist. For example, an intruder may attempt to add
an entry into a password file or database. Likewise, it is sometimes possible to
break into a system by replaying previously sent messages. We shall come across
such examples later in this chapter.

Note that interruption, modification, and fabrication can each be seen as a
form of data falsification.

Simply stating that a system should be able to protect itself against all pos-
sible security threats is not the way to actually build a secure system. What is first
needed is a description of security requirements, that is, a security policy. A secu-
rity policy describes precisely which actions the entities in a system are allowed
to take and which ones are prohibited. Entities include users, services, data, ma-
chines, and so on. Once a security policy has been laid down, it becomes possible
to concentrate on the security mechanisms by which a policy can be enforced.
Important security mechanisms are:

1. Encryption

2. Authentication

3. Authorization

4. Auditing

Encryption is fundamental to computer security. Encryption transforms data
into something an attacker cannot understand. In other words, encryption provides
a means to implement data confidentiality. In addition, encryption allows us to
check whether data have been modified. It thus also provides support for integrity
checks.

Authentication is used to verify the claimed identity of a user, client, server,
host, or other entity. In the case of clients, the basic premise is that before a ser-
vice starts to perform any work on behalf of a client, the service must learn the

380 SECURITY CHAP. 9

client's identity (unless the service is available to all). Typically, users are auth-
enticated by means of passwords, but there are many other ways to authenticate
clients.

After a client has been authenticated, it is necessary to check whether that cli-
ent is authorized to perform the action requested. Access to records in a medical
database is a typical example. Depending on who accesses the database. permis-
sion may be granted to read records, to modify certain fields in a record, or to add
or remove a record.

Auditing tools are used to trace which clients accessed what, and which way.
Although auditing does not really provide any protection against security threats,
audit logs can be extremely useful for the analysis of a security breach, and subse-
quently taking measures against intruders. For this reason, attackers are generally
keen not to leave any traces that could eventually lead to exposing their identity.
In this sense, logging accesses makes attacking sometimes a riskier business.

Example: The Globus Security Architecture

The notion of security policy and the role that security mechanisms play in
distributed systems for enforcing such policies is often best explained by taking a
look at a concrete example. Consider the security policy defined for the Globus
wide-area system (Chervenak et al., 2000). Globus is a system supporting large-
scale distributed computations in which many hosts, files, and other resources are
simultaneously used for doing a computation. Such environments are also referred
to as computational grids (Foster and Kesselman, 2003). Resources in these grids
are often located in different administrative domains that may be located in dif-
ferent parts of the world.

Because users and resources are vast in number and widely spread across dif-
ferent administrative domains, security is essential. To devise and properly use se-
curity mechanisms, it is necessary to understand what exactly needs to be pro-
tected, and what the assumptions are with respect to security. Simplifying matters
somewhat, the security policy for Globus entails the following eight statements,
which we explain below (Foster et al., 1998):

1. The environment consists of multiple administrative domains. -

2. Local operations (i.e., operations that are carried out only within a
single domain) are subject to a local domain security policy only.

3. Global operations (i.e., operations involving several domains) require
the initiator to be known in each domain where the operation is car-
ried out.

4. Operations between entities in different domains require mutual
authentication.

5. Global authentication replaces local authentication.

SEC. 9.1 INTRODUCTION TO SECURITY 381

6. Controlling access to resources is subject to local security only.

7. Users can delegate rights to processes.

8. A group of processes in the same domain can share credentials.

Globus assumes that the environment consists of multiple administrative do-
mains, where each domain has its own local security policy. It is assumed that lo-
cal policies cannot be changed just because the domain participates in Globus, nor
can the overall policy of Globus override local security decisions. Consequently,
security in Globus will restrict itself to operations that affect multiple domains.

Related to this issue is that Globus assumes that operations that are entirely
local to a domain are subject only to that domain's security policy. In other words,
if an operation is initiated and carried out within a single domain, all security
issues will be carried out using local security measures only. Globus will not im-
pose additional measures. .

The Globus security policy states that requests for operations can be initiated
either globally or locally. The initiator, be it a user or process acting on behalf of a
user, must be locally known within each domain where that operation is carried
out. For example, a user may have a global name that is mapped to domain-spe-
cific local names. How exactly that mapping takes place is left to each domain.

An important policy statement is that operations between entities in different
domains require mutual authentication. This means, for example, that if a user in
one domain makes use of a service from another domain, then the identity of the
user will have to be verified. Equally important is that the user will have to be
assured that he is using a service he thinks he is using. We return to authentica-
tion, extensively, later in this chapter.

The above two policy issues are combined into the following security require-
ment. If the identity of a user has been verified, and that user is also known
locally in a domain, then he can act as being authenticated for that local domain.
This means that Globus requires that its systemwide authentication measures are
sufficient to consider that a user has already been authenticated for a remote do-
main (where that user is known) when accessing resources in that domain. Addi-
tional authentication by that domain should not be necessary.

Once a user (or process acting on behalf of a user) has been authenticated, it is
still necessary to verify the exact access rights with respect to resources. For ex-
ample,a user wanting to modify a file will first have to be authenticated, after
which it can be checked whether or not that user is actually permitted to modify
the file. The Globus security policy states that such access control decisions are
made entirely local within the domain where the accessed resource is located.

To explain the seventh statement, consider a mobile agent in Globus that car-
ries out a task by initiating several operations in different domains, one after an-
other. Such an agent may take a long time to complete its task. To avoid having

382 SECURITY CHAP. 9

to communicate with the user on whose behalf the agent is acting, Globus requires
that processes can be delegated a subset of the user's rights. As a consequence, by
authenticating an agent and subsequently checking its rights, Globus should be ab-
le to allow an agent to initiate an operation without having to contact the agent's
owner.

As a final policy statement, Globus requires that groups of processes running
with a single domain and acting on behalf of the same user may share a single set
of credentials. As will be explained below, credentials are needed for authentica-
tion. This statement essentially opens the road to scalable solutions for authentica-
tion by not demanding that each process carries its own unique set of credentials.

The Globus security policy allows its designers to concentrate on developing
an overall solution for security. By assuming each domain enforces its own -secu-
rity policy, Globus concentrates only on security threats involving multiple do-
mains. In particular, the security policy indicates that the important design issues
are the representation of a user in a remote domain, and the allocation of re-
sources from a remote domain to a user or his representative. What Globus there-
fore primarily needs, are mechanisms for cross-domain authentication, and mak-
ing a user known in remote domains.

For this purpose, two types of representatives are introduced. A user proxy is
a process that is given permission to act on behalf of a user for a limited period of
time. Resources are represented by resource proxies. A resource proxy is a proc-
ess running within a specific domain that is used to translate global operations on
a resource into local operations that comply with that particular domain's security
policy. For example, a user proxy typically communicates with a resource proxy
when access to that resource is required.

The Globus security architecture essentially consists of entities such as users,
user proxies, resource proxies, and general processes. These entities are located in
domains and interact with each other. In particular, the security architecture de-
fines four different protocols, as illustrated in Fig. 9-1 [see also Foster et a1.
(1998)].

The first protocol describes precisely how a user can create a user proxy and
delegate rights to that proxy. In particular, in order to let the user proxy act on
behalf of its user, the user gives the proxy an appropriate set of credentials.

The second protocol specifies how a user proxy can request the allocation of a
resource in a remote domain. In essence, the protocol tells a resource proxy to
create a process in the remote domain after mutual authentication has taken place.
That process represents the user (just as the user proxy did), but operates in the
same domain as the requested resource. The process is given access to the re-
source subject to the access control decisions local to that domain.

A process created in a remote domain may initiate additional computations in
other domains. Consequently, a protocol is needed to allocate resources in a re-
mote domain as requested by a process other than a user proxy. In the Globus sys-
tem, this type of allocation is done via the user proxy, by letting a process have its

SEC. 9.1 ThITRODUCTIONTOSECURITY 383

Figure 9-1. The Globus security architecture.

associated user proxy request the allocation of resources, essentially following the
second protocol.

The fourth and last protocol in the Globus security architecture is the way a
user can make himself known in a domain. Assuming that a user has an account in
a domain, what needs to be established is that the systemwide credentials as held
by a user proxy are automatically converted to credentials that are recognized by
the specific domain. The protocol prescribes how the mapping between the global
credentials and the local ones can be registered by the user in a mapping table
local to that domain.

Specific details of each protocol are described in Foster et al. (1998). The im-
portant issue here is that the Globus security architecture reflects its security pol-
icy as stated above. The mechanisms used to implement that architecture, in par-
ticular the above mentioned protocols, are common to many distributed systems,
and are discussed extensively in this chapter. The main difficulty in designing
secure distributed systems is not so much caused by security mechanisms, but by

384 SECURITY CHAP. 9

deciding on how those mechanisms are to be used to enforce a security policy. In
the next section, we consider some of these design decisions.

9.1.2 Design Issues

A distributed system, or any computer system for that matter, must provide
security services by which a wide range of security policies can be implemented.
There are a number of important design issues that need to be taken into account
when implementing general-purpose security services. In the following pages, we
discuss three of these issues: focus of control, layering of security mechanisms,
and simplicity [see also Gollmann (2006)].

Focus of Control

When considering the protection of a (possibly distributed) application, there
are essentially three different approaches that can be followed, as shown in
Fig. 9-2. The first approach is to concentrate directly on the protection of the data
that is associated with the application. By direct, we mean that irrespective of the
various operations that can possibly be performed on a data item, the primary con-
cern is to ensure data integrity. Typically, this type of protection occurs in data-
base systems in which various integrity constraints can be formulated that are au-
tomatically checked each time a data item is modified [see, for example, Doom
and Rivero (2002)].

The second approach is to concentrate on protection by specifying exactly
which operations may be invoked, and by whom, when certain data or resources
are to be accessed. In this case. the focus of control is strongly related to access
control mechanisms, which we discuss extensively later in this chapter. For ex-
ample, in an object-based system, it may be decided to specify for each method
that is made available to clients which clients are permitted to invoke that method.
Alternatively, access control methods can be applied to an entire interface offered
by an object, or to the entire object itself. This approach thus allows for various
granularities of access control.

A third approach is to focus directly on users by taking measures by which
-only specific people have access to the application, irrespective of the operations
they want to carry out. For example, a database in a bank may be protected by
denying access to anyone except the bank's upper management and people specif-
ically authorized to access it. As another example, in many universities, certain
data and applications are restricted to be used by faculty and staff members only,
whereas access by students is not allowed. In effect, control is focused on defining
roles that users have, and once a user's role has been verified, access to a resource
is either granted or denied. As part of designing a secure system, it is thus neces-
sary to define roles that people may have, and provide mechanisms to support
role-based access control. We return to roles later in this chapter.

SEC. 9.1 INTRODUCTION TO SECURITY 385

Figure 9-2. Three approaches for protection against security threats. (a) Pro-
tection against invalid operations (b) Protection against unauthorized invoca-
tions. (c) Protection against unauthorized users.

Layering of Security Mechanisms

An important issue in designing secure systems is to decide at which level se-
curity mechanisms should be placed. A level in this context is related to the logi-
cal organization of a system into a number of layers. For example, computer net-
works are often organized into layers following some reference model, as we dis...
cussed in Chap. 4. In Chap. 1, we introduced the organization of distributed sys-
tems consisting of separate layers for applications, middleware, operating system
services, and the operating system kernel. Combining the layered organization of
computer networks and distributed systems, leads roughly to what is shown in
Fig. 9-3.

In essence, Fig. 9-3 separates general-purpose services from communication
services. This separation is important for understanding the layering of security in
distributed systems and, in particular, the notion of trust. The difference between
trust and security is important. A system is either secure or it is not (taking various
probabilistic measures into account), but whether a client considers a system to be
secure is a matter of trust (Bishop, 2003). Security is technical; trust is emotional.
In which layer security mechanisms are placed depends on the trust a client has in
how secure the services are in a particular layer.

386 SECURITY CHAP. 9

Figure 9-3. The logical organization of a distributed system into several layers.

As an example, consider an organization located at different sites that are con-
nected through a communication service such as Switched Multi-megabit Data
Service (SMDS). An SMDS network can be thought of as a link-level backbone
connecting various local-area networks at possibly geographically dispersed sites,
as shown in Fig. 9-4.

Figure 9-4. Several sites connected through a wide-area backbone service.

Security can be provided by placing encryption devices at each SMDS router,
as also shown in Fig. 9-4. These devices automatically encrypt and decrypt pack-
ets that are sent between sites, but do not otherwise provide secure communica-
tion between hosts at the same site. If Alice at site A sends a message to Bob at
site B, and she is worried about her message being intercepted, she must at least
trust the encryption of intersite traffic to work properly. This means, for example,
that she must trust the system administrators at both sites to have taken the proper
measures against tampering with the devices.

Now suppose that Alice does not trust the security of intersite traffic. She may
then decide to take her own measures by using a transport-level security service
such as SSL. SSL stands for Secure Sockets Layer and can be used to securely
send messages across a TCP connection. We will discuss the details of SSL later
Chap. 12 when discussing Web-based systems. The important thing to observe
here is that SSL allows Alice to set up a secure connection to Bob. All transport-

SEC. 9.1 INTRODUCTION TO SECURITY 387

level messages will be encrypted-and at the SMDS ·level as well, but that is of
no concern to Alice. In this case, Alice will have to put her trust into SSL. In other
words, she believes that SSL is secure.

In distributed systems, security mechanisms are often placed in the middle-
ware layer. If Alice does not trust SSL, she may want to use a local secure RPC
service. Again, she will have to trust this RPC service to do what it promises, such
as not leaking information or properly authenticating clients and servers.

Security services that are placed in the middleware layer of a distributed sys-
tem can be trusted only if the services they rely on to be secure are indeed secure.
For example, if a secure RPC service is partly implemented by means of SSL,
then trust in the RPC service depends on how much trust one has in SSL. If SSL is
not trusted, then there can be no trust in the security of the RPC service.

Distribution of Security Mechanisms

Dependencies between services regarding trust lead to the notion of a
Trusted Computing Base (TCB). A TCB is the set of all security mechanisms
in a (distributed) computer system that are needed to enforce a security policy,
and that thus need to be trusted. The smaller the TCB, the better. If a distributed
system is built as middleware on an existing network operating system, its securi-
ty may depend on the security of the underlying local operating systems. In other
words, the TCB in a distributed system may include the local operating systems at
various hosts.

Consider a file server in a distributed file system. Such a server may need to
rely on the various protection mechanisms offered by its local operating system.
Such mechanisms include not only those for protecting files against accesses by
processes other than the file server, but also mechanisms to protect the file server
from being maliciously brought down.

Middleware-based distributed systems thus require trust in the existing local
operating systems they depend on. If such trust does not exist, then part of the
functionality of the local operating systems may need to be incorporated into the
distributed system itself. Consider a microkernel operating system, in which most
operating-system services run as normal user processes. In this case, the file sys-
tem, for instance, can be entirely replaced by one tailored to the specific needs of
a distributed system, including its various security measures.

Consistent with this approach is to separate security services from other types
of services by distributing services across different machines depending on
amount of security required. For example, for a secure distributed file system, it
may be possible to isolate the file server from clients by placing the server on a
machine with a trusted operating system, possibly running a dedicated secure file
system. Clients and their applications are placed on untrusted machines.

This separation effectively reduces the TCB to a relatively small number of
machines and software components. By subsequently protecting those machines

388 SECURITY CHAP. 9

against security attacks from the outside, overall trust in the security of the distrib-
uted system can be increased. Preventing clients and their applications direct ac-
cess to critical services is followed in the Reduced Interfaces for Secure System
Components (RISSC) approach, as described in Neumann (1995). In the RISSC
approach. any security-critical server is placed on a separate machine isolated
from end-user systems using low-level secure network interfaces, as shown in
Fig. 9-5. Clients and their applications run on different machines and can access
the secured server only through these network interfaces.

Simplicity

Another important design issue related to deciding in which layer to place se-
curity mechanisms is that of simplicity. Designing a secure computer system is
generally considered a difficult task. Consequently, if a system designer can use a
few, simple mechanisms that are easily understood and trusted to work, the better
it is.

Unfortunately, simple mechanisms are not always sufficient for implementing
security policies. Consider once again the situation in which Alice wants to send a
message to Bob as discussed above. Link-level encryption is a simple and easy-
to-understand mechanism to protect against interception of intersite message
traffic. However, much more is needed if Alice wants to be sure that only Bob
will receive her messages. In that case, user-level authentication, services are
needed, and Alice may need to be aware of how such services work in order to put
her trust in it. User-level authentication may therefore require at least a notion of
cryptographic keys and awareness of mechanisms such as certificates, despite the
fact that many security services are highly automated and hidden from users.

In other cases, the application itself is inherently complex and introducing se-
curity only makes matters worse. An example application domain involving com-
plex security protocols (as we discuss later in this chapter) is that of digital pay-
ment systems. The complexity of digital payment protocols is often caused by the
fact that multiple parties need to communicate to make a payment. In these cases.

SEC. 9.1 INTRODUCTION TO SECURITY 389

it is important that the underlying mechanisms that are used to implement the pro-
tocols are relatively simple and easy to understand. Simplicity will contribute to
the trust that end users will put into the application and, more importantly, will
contribute to convincing the designers that the system has no security holes.

9.1.3 Cryptography

Fundamental to security in distributed systems is the use of cryptographic
techniques. The basic idea of applying these techniques is simple. Consider a
sender S wanting to transmit message m to a receiver R. To protect the message
against security threats, the sender first encrypts it into an unintelligible message
m', and subsequently sends m' to R. R, in tum, must decrypt the received mes-
sage into its original form m.

Encryption and decryption are accomplished by using cryptographic methods
parameterized by keys, as shown in Fig. 9-6. The original form of the message
that is sent is called the plaintext, shown as P in Fig. 9-6; the encrypted form is
referred to as the ciphertext, illustrated as C.

Figure 9-6. Intruders and eavesdroppers in communication.

To describe the various security protocols that are used in building security
services for distributed systems, it is useful to have a notation to relate plaintext,
ciphertext, and keys. Following the common notational conventions, we will use
C = EK(P) to denote that the ciphertext C is obtained by encrypting the plaintext
P using key K. Likewise, P = DK(C) is used to express the decryption of the
ciphertext C using key K, resulting in the plaintext P.

Returning to our example shown in Fig. 9-6, while transferring a message as
ciphertext C, there are three different attacks that we need to protect against, and
for which encryption helps. First, an intruder may intercept the message without
either the sender or receiver being aware that eavesdropping is happening. Of

390 SECURITY CHAP. 9

course, if the transmitted message has been encrypted in such a way that it cannot
be easily decrypted without having the proper key, interception is useless: the in-
truder will see only unintelligible data. (By the way, the fact alone that a message
is being transmitted may sometimes be enough for an intruder to draw conclu-
sions. For example, if during a world crisis the amount of traffic into the White
House suddenly drops dramatically while the amount of traffic going into a cer-
tain mountain in Colorado increases by the same amount, there may be useful in-
formation in knowing that.)

The second type of attack that needs to be dealt with is that of modifying the
message. Modifying plaintext is easy; modifying ciphertext that has been properly
encrypted is much more difficult because the intruder will first have to decrypt the
message before he can meaningfully modify it. In addition, he will also have to
properly encrypt it again or otherwise the receiver may notice that the message
has been tampered with.

The third type of attack is when an intruder inserts encrypted messages into
the communication system, attempting to make R believe these messages came
from S. Again. as we shall see later in this chapter, encryption can help protect
against such attacks. Note that if an intruder can modify messages, he can also
insert messages.

There is a fundamental distinction between different cryptographic systems,
based on whether or not the encryption and decryption key are the same. In a
symmetric cryptosystem, the same key is used to encrypt and decrypt a message.
In other words,

Symmetric cryptosystems are also referred to as secret-key or shared-key systems,
because the sender and receiver are required to share the same key, and to ensure
that protection works, this shared key must be kept secret; no one else is allowed
to see the key. We will use the notation KA,B to denote a key shared by A and B.

In an asymmetric cryptosystem, the keys for encryption and decryption are
different, but together form a unique pair. In other words, there is a separate key
KE for enciyption and one for decryption, KD, such that

P = DK (Ev (P))
D AE

One of the keys in an asymmetric cryptosystem is kept private; the other is made
public. For this reason, asymmetric cryptosystems are also referred to as public-
key systems. In what follows, we use the notation K1 to denote a public key
belonging to A, and KA as its corresponding private key.

Anticipating the detailed discussions on security protocols later in this
chapter, which one of the encryption or decryption keys that is actually made pub-
lic depends on how the keys are used. For example, if Alice wants to send a confi-
dential message to Bob, she should use Bob's public key to encrypt the message.
Because Bob is the only one holding the private decryption key, he is also the
only person that can decrypt the message.

SEC. 9.1 INTRODUCTION TO SECURITY 391

On the other hand, suppose that Bob wants to know for sure that the message
he just received actually came from Alice. In that case, Alice can keep her en-
cryption key private to encrypt the messages she sends. If Bob can successfully
decrypt a message using Alice's public key (and the plaintext in the message has
enough information to make it meaningful to Bob), he knows that message must
have come from Alice, because the decryption key is uniquely tied to the encryp-
tion key. We return to such algorithms in detail below.

One final application of cryptography in distributed systems is the use of hash
functions. A hash function H takes a message m of arbitrary length as input and
produces a bit string h having a fixed length as output:

A hash h is somewhat comparable to the extra bits that are appended to a message
in communication systems to allow for error detection, such a cyclic-redundancy
check (CRC).

Hash functions that are used in cryptographic systems have a number of
essential properties. First, they are one-way functions, meaning that it is compu-
tationally infeasible to find the input m that corresponds to a known output h. On
the other hand, computing h from m is easy. Second, they have the weak collision
resistance property, meaning that given an input m and its associated output
h = H (m), it is computationally infeasible to find another, different input m' ::/;m,
such that H (m) = H (m '). Finally, cryptographic hash functions also have the
strong collision resistance property, which means that, when given only H, it is
computationally infeasible to find any two different input values m and m'; such
that H(m) = H(m').

Similar properties must apply to any encryption function E and the keys that
are used. Furthermore, for any encryption function E, it should be computationally
infeasible to find the key K when given the plaintext P and associated ciphertext
C = EK(P). Likewise, analogous to collision resistance, when given a plaintext P
and a key K, it should be effectively impossible to find another key K' such that
EK(P) = EK,(P).

The art and science of devising algorithms for cryptographic systems has a
long and fascinating history (Kahn, 1967), and building secure systems is often
surprisingly difficult, or even impossible (Schneier, 2000). It is beyond the scope
of this book to discuss any of these algorithms in detail. However, to give some
impression of cryptography in computer systems, we will now briefly present
three representative algorithms. Detailed information on these and other crypto-
graphic algorithms can be found in Ferguson and Schneier (2003), Menezes et aI.,
(1996), and Schneier (1996).

Before we go into the details of the various protocols, Fig. 9-7 summarizes the
notation and abbreviations we use in the mathematical expressions to follow.

392 SECURITY CHAP. 9

Figure 9-7. Notation used in this chapter.

Symmetric Cryptosystems: DES

Our first example of a cryptographic algorithm is the Data Encryption Stan-
dard (DES), which is used for symmetric cryptosystems. DES is designed to
operate on 64-bit blocks of data. A block is transformed into an encrypted (64 bit)
block of output in 16 rounds, where each round uses a different 48-bit key for
encryption. Each of these 16 keys is derived from a 56-bit master key, as shown in
Fig. 9-8(a). Before an input block starts its 16 rounds of encryption, it is first sub-
ject to an initial permutation, of which the inverse is later applied to the encrypted
output leading to the final output block.

Figure 9-8. (a) The principle of DES. (b) Outline of one encryption round.

SEC. 9.1 INTRODUCTION TO SECURITY 393

Each encryption round i takes the 64-bit block produced by the previous round
i-I as its input, as shown in Fig. 9-8(b). The 64 bits are split into a left part Lj-1
and a right part R, -1, each containing 32 bits. The right part is used for the left
part in the next round, that is, L, = R, -1.

The hard work is done in the mangler function f.This function takes a 32-bit
block Rj-1 as input, together with a 48-bit key Ki, and produces a 32-bit block that
is XORed with Lj-1 to produce Ri. (XOR is an abbreviation for the exclusive or
operation.) The mangler function first expands Rj-1 to a 48-bit block and XORs it
with Kj• The result is partitioned into eight chunks of six bits each. Each chunk is
then fed into a different S-box, which is an operation that substitutes each of the
64 possible 6-bit inputs into one of 16 possible 4-bit outputs. The .eight output
chunks of four bits each are then combined into a 32-bit value and permuted
again.

The 48-bit key K, for round i is derived from the 56-bit master key as follows.
First, the master key is permuted and divided into two 28-bit halves. For each
round, each half is first rotated one or two bits to the left, after which 24 bits are
extracted. Together with 24 bits from the other rotated half, a 48-bit key is con-
structed. The details of one encryption round are shown in Fig. 9-9.

Figure 9-9. Details of per-round key generation in DES.

The principle of DES is quite simple, but the algorithm is difficult to break
using analytical methods. Using a brute-force attack by simply searching for a key
that will do the job has become easy as has been demonstrated a number of times.
However, using DES three times in a special encrypt-decrypt-encrypt mode with

394 SECURITY CHAP. 9

different keys, also known as Triple DES is much more safe and is still often
used [see also Barker (2004)].

What makes DES difficult to attack by analysis is that the rationale behind the
design has never been explained in public. For example, it is known that taking
other S-boxes than are currently used in the standard, makes the algorithm sub-
stantially easier to break (see Pfleeger, 2003 for a brief analysis of DES). A
rationale for the design and use of the S-boxes was published only after "new"
attack models had been devised in the 1990s. DES proved to be quite resistant to
these attacks, and its designers revealed that the newly devised models were
already known to them when they developed DES in 1974 (Coppersmith, 1994).

DES has been used as a standard encryption technique for years, but is cur-
rently in the process of being replaced by the Rijndael algorithm blocks of 128
bits. There are also variants with larger keys and larger data blocks. The algorithm
has been designed to be fast enough so that it can even be implemented on smart
cards, which form an increasingly important application area for cryptography.

Public-Key Cryptosystems: RSA

Our second example of a cryptographic algorithm is very widely used for
public-key systems: RSA, named after its inventors: Rivest, Shamir, and Adleman
(1978). The security of RSA comes from the fact that no methods are known to
efficiently find the prime factors of large numbers. It can be shown that each
integer can be written as the product of prime numbers. For example, 2100 can be
written as

2100 = 2 x 2 x 3 x 5 x 5 x 7

making 2, 3, 5, and 7 the prime factors in 2100. In RSA, the private and public
keys are constructed from very large prime numbers (consisting of hundreds of
decimal digits). As it turns out, breaking RSA is equivalent to finding those two
prime numbers. So far, this has shown to be computationally infeasible despite
mathematicians working on the problem for centuries.

Generating the private and public keys requires four steps:

1. Choose two very large prime numbers, p and q.

2. Compute n = p x q and z = (p - 1) x (q -1).

3. Choose a number d that is relatively prime to z.

4. Compute the number e such that e x d = 1 mod z.

One of the numbers, say d, can subsequently be used for decryption, whereas e is
used for encryption. Only one of these two is made public, depending on what the
algorithm is being used for.

SEC. 9.1 INTRODUCTION TO SECURITY 395

Let us consider the case that Alice wants to keep the messages she sends to
Bob confidential. In other words, she wants to ensure that no one but Bob can
intercept and read her messages to him. RSA considers each message m to be just
a string of bits. Each message is first divided into fixed-length blocks, where each
block-ei., interpreted as a binary number, should lie in the interval 0 :s; m, < n.

To encrypt message m, the sender calculates for each block m, the value
c, = mf (mod n), which is then sent to the receiver. Decryption at the receiver's
side takes place by computing m, = cf (mod n). Note that for the encryption, both
e and n are needed, whereas decryption.requires knowing the values d and n.

When comparing RSA to symmetric cryptosystems such as DES, RSA has the
drawback of being computationally more complex. As it turns out, encrypting
messages using RSA is approximately 100-1000 times slower than DES, depend-
ing on the implementation technique used. As a consequence, many cryptographic
systems use RSA to exchange only shared keys in a secure way, but much less for
actually encrypting "normal" data. We will see examples of the combination of
these two techniques later in succeeding sections.

Hash Functions: MD5

As a last example of a widely-used cryptographic algorithm, we take a look at
MD5 (Rivest, 1992). l\'ID5 is a hash function for computing a 128-bit, fixed
length message digest from an arbitrary length binary input string. The input
string is first padded to a total length of 448 bits (modulo 512), after which the
length of the original bit string is added as a 64-bit integer. In effect, the input is
converted to a series of 512-bit blocks.

The structure of the algorithm is shown in Fig. 9-10. Starting with some con-
stant 128-bit value, the algorithm proceeds in k phases, where k is the number of
512-bit blocks comprising the padded message. During each phase, a 128-bit dig-
est is computed out of a 512-bit block of data coming from the padded message,
and the 128-bit digest computed in the preceding phase.

Figure 9-10. The structure of M05.

396 SECURITY CHAP. 9

A phase in MD5 consists of four rounds of computations. where each round uses
one of the following four functions:

F(x.y.z) = (x AND y) OR «NOT x) AND z)
G (r.y.z) = (x AND z) OR (y AND (NOT z)
Htx.y.z) =x XOR y XOR z
I (z.y.z) = y XOR (x OR (NOT z)

Each of these functions operates on 32-bit variables x, y. and z. To illustrate how
these functions are used, consider a 512-bit block b from the padded message that
is being processed during phase k. Block b is divided into 16 32-bit subblocks
bo,b I •••• ,b 15. During the first round, function F is used to change four variables
(denoted as p, q, r, and s, respectively) in 16 iterations as shown in Fig. 9-11
These variables are carried to each next round, and after a phase has finished,
passed on to the next phase. There are a total of 64 predefined constants Ci, The
notation x <<< n is used to denote a left rotate: the bits in x are shifted n positions
to the left, where the bit shifted off the left is placed in the rightmost position.

Figure 9-11. The 16 iterations during the first round in a phase in MD5.

The second round uses the function G in a similar fashion, whereas H and I
are used in the third and fourth round, respectively. Each step thus consists of 64
iterations. after which the next phase is started, but now with the values that P. q,
r, and s have at that point.

9.2 SECURE CHANNELS

In the preceding chapters. we have frequently used the client-server model as
a convenient way to organize a distributed system. In this model, servers may pos-
sibly be distributed and replicated, but also act as clients with respect to other ser-
vers. When considering security in distributed systems, it is once again useful to
think in terms of clients and servers. In particular, making a distributed system
secure essentially boils down to two predominant issues. The first issue is how to

SEC. 9.2 SECURE CHANNELS 397

make the communication between clients and servers secure. Secure communica-
tion requires authentication of the communicating parties. In many cases it also
requires ensuring message integrity and possibly confidentiality as well. As part
of this problem, we also need to consider protecting the communication within a
group of servers.

The second issue is that of authorization: once a server has accepted a request
from a client, how can it find out whether that client is authorized to have that re-
quest carried out? Authorization is related to the problem of controlling access to
resources, which we discuss extensively in the next section. In this section, we
concentrate on protecting the communication within a distributed system.

The issue of protecting communication between clients and servers, can be
thought of in terms of setting up a secure channel between communicating par-
ties (Voydock and Kent, 1983). A secure channel protects senders and receivers
against interception, modification, and fabrication of messages. It does not also
necessarily protect against interruption. Protecting messages against interception
is done by ensuring confidentiality: the secure channel ensures that its messages
cannot be eavesdropped by intruders. Protecting against modification and fabrica-
tion by intruders is done through protocols for mutual authentication and message
integrity. In the following pages, we first discuss various protocols that can be
used for authentication, using symmetric as well as public-key cryptosystems. A
detailed description of the logics underlying authentication can be found in Lamp-
son et al. (1992). We discuss confidentiality and message integrity separately.

9.2.1 Authentication

Before going into the details of various authentication protocols, it is worth-
while noting that authentication and message integrity cannot do without each
other. Consider, for example, a distributed system that supports authentication of
two communicating parties, but does not provide mechanisms to ensure message
integrity. In such a system, Bob may know for sure that Alice is the sender of a
message m. However, if Bob cannot be given guarantees that m has not been mod-
ified during transmission, what use is it to him to know that Alice sent (the origi-
nal version of) m?

Likewise, suppose that only message integrity is supported, but no mechan-
isms exist for authentication. When Bob receives a message stating that he has
just won $1,000,000 in the lottery, how happy can he be if he cannot verify that
the message was sent by the organizers of that lottery?

Consequently, authentication and message integrity should go together. In
many protocols, the combination works roughly as follows. Again, assume that
Alice and Bob want to communicate, and that Alice takes the initiative in setting
up a channel. Alice starts by sending a message to Bob, or otherwise to a trusted
third party who will help set up the channel. Once the channel has been set up,

398 SECURITY CHAP. 9

Alice knows for sure that she is talking to Bob, and Bob knows for sure he is talk-
ing to Alice. they can exchange messages.

To subsequently ensure integrity of the data messages that are exchanged
after authentication has taken place, it is common practice to use secret-key cryp-
tography by means of session keys. A session key is a shared (secret) key that is
used to encrypt messages for integrity and possibly also confidentiality. Such a
key is generally used only for as long as the channel exists. When the channel, is
closed, its associated session key is discarded (or actually, securely destroyed).
We return to session keys below.

Authentication Based on a Shared Secret Key

Let us start by taking a look at an authentication protocol based on a secret
key that is already shared between Alice and Bob. How the two actually managed
to obtain a shared key in a secure way is discussed later in this chapter. In the
description of the protocol, Alice and Bob are abbreviated by A and B, respec-
tively, and their shared key is denoted as KA,B' The protocol takes a common ap-
proach whereby one party challenges the other to a response that can be correct
only if the other knows the shared secret key. Such solutions are also known as
challenge-response protocols. '

In the case of authentication based on a shared secret key, the protocol
proceeds as shown in Fig. 9-12. First, Alice sends her identity to Bob (message
1), indicating that she wants to set up a communication channel between the two.
Bob subsequently sends a challenge RB to Alice, shown as message 2. Such a
challenge could take the form of a random number. Alice is required to encrypt
the challenge with the secret key KA,B that she shares with Bob, and return the
encrypted challenge to Bob. This response is shown as message 3 in Fig. 9-12
containing KA,B(RB)·

Figure 9-12. Authentication based on a shared secret key.

When Bob receives the response KA,B(RB) to his challenge RB, he can decrypt
the message using the shared key again to see if it contains RB· If so, he then
knows that Alice is on the other side, for who else could have encrypted RB with

SEC. 9.2 SECURE CHANNELS 399

K-t.B in the first place? In other words, Bob has now verified that he is indeed talk-
ing to Alice. However, note that Alice has not yet verified that it is indeed Bob on
the other side of the channel. Therefore, she sends a challenge R.tt (message 4),
which Bob responds to by returning ~.B(R.tt), shown as message 5. When Alice
decrypts it with KA,B and sees her "R.tt, she knows she is talking to Bob.

One of the harder issues in security is designing protocols that actually work.
To illustrate how easily things can go wrong, consider an "optimization" of the
authentication protocol in which the number of messages has been reduced from
five to three, as shown in Fig. 9-13. The basic idea is that if Alice eventually
wants to challenge Bob anyway, she might as well send a challenge along with
her identity when setting up the channel. Likewise, Bob returns his. response to
that challenge, along with his own challenge in a single message.

Figure 9-13. Authentication based on a shared secret key, but using three in-
stead of five messages.

Unfortunately, this protocol no longer works. It can easily be defeated by
what is known as a reflection attack. To explain how such an attack works, con-
sider an intruder called Chuck, whom we denote as C in our protocols. Chuck's
goal is to set up a channel with Bob so that Bob believes he is talking to Alice.
Chuck can establish this if he responds correctly to a challenge sent by Bob, for
instance, by returning the encrypted version of a number that Bob sent. Without
knowledge of KA•B, only Bob can do such an encryption, and this is precisely what
Chuck tricks Bob into doing.

The attack is illustrated in Fig. 9-14. Chuck starts out by sending a message
containing Alice's identity A, along with a challenge Re. Bob returns his chal-
lenge RB and the response KA.B(Re) in a single message. At that point, Chuck
would need to prove he knows the secret key by returning KA,B(RB) to Bob. Unfor-
tunately, he does not have KA,B' Instead, what he does is attempt to set up a sec-
ond channel to let Bob do the encryption for him.

Therefore, Chuck sends A and RB in a single message as before, but now pre-
tends that he wants a second channel. This is shown as message 3 in Fig. 9-14.
Bob, not recognizing that he, himself, had used RB before as a challenge, responds
with KA,B(RB) and another challenge Rs2, shown as message 4. At that point,

400 SECURITY CHAP. 9

Figure 9-14. The reflection attack.

Chuck has KA,B (RB) and finishes setting up the first session by returning message
5 containing the response KA,B(RB), which was originally requested from the chal-
lenge sent in message 2.

As explained in Kaufman et al. (2003), one of the mistakes made during the
adaptation of the original protocol was that the two parties in the new version of
the protocol were using the same challenge in two different runs of the protocol.
A better design is to always use different challenges for the initiator and for the
responder. For example, if Alice always uses an odd number and Bob an even
number, Bob would have recognized that something fishy was going on when
receiving R

B
in message 3 in Fig. 9-14. (Unfortunately, this solution is subject to

. other attacks, notably the one known as the "man-in-the-middle-attack," which is
explained in Ferguson and Schneier, 2003). In general, letting the two parties set-
ting up a secure channel do a number of things identically is not a good idea.

Another principle that is violated in the adapted protocol is that Bob gave
away valuable information in the form of the response KA,B(Rd without knowing
for sure to whom he was giving it. This principle was not violated in the original
protocol, in which Alice first needed to prove her identity, after which Bob was
willing to pass her encrypted information.

There. are other principles that developers of cryptographic protocols have
gradually come to learn over the years, and we will present some of them when
discussing other protocols below. One important lesson is that designing security
protocols that do what they are supposed to do is often much harder than it looks.
Also, tweaking an existing protocol to improve its performance, can easily affect
its correctness as we demonstrated above. More on design principles for protocols
can be found in Abadi and Needham (1996).

Authentication Using a Key Distribution Center

One of the problems with using a shared secret key for authentication is scala-
bility. If a distributed system contains N hosts, and each host is required to share a
secret key with each of the other N - 1 hosts, the system as a whole needs to

SEC. 9.2 SECURE CHANNELS 401

manage N (N - 1)/2 keys, and each host has to manage N - I keys. For large N,
this will lead to problems. An alternative is to use a centralized approach by
means of a Key Distribution Center (KDC). This KDC shares a secret key with
each of the hosts, but no pair of hosts is required to have a shared secret key as
well. In other words, using a KDC requires that we manage N keys instead of
N (N - 1)/2, which is clearly an improvement.

If Alice wants to set up a secure channel with Bob, she can do so with the
help of a (trusted) KDC. The whole idea is that the KDC hands out a key to both
Alice and Bob that they can use for communication, shown in Fig. 9-15.

Figure 9-15. The principle of using a KDC.

Alice first sends a message to the KDC, telling it that she wants to talk to
Bob. The KDC returns a message containing a shared secret key KA,B that she can
use. The message is encrypted with the secret key KA,KDC that Alice shares with
the KDC. In addition, the KDC sends KA,B also to Bob, but now encrypted with
the secret key KB KDC it shares with Bob.,

The main drawback of this approach is that Alice may want to start setting up
a secure channel with Bob even before Bob had received the shared key from the
KDC. In addition, the KDC is required to get Bob into the loop by passing him the
key. These problems can be circumvented if the KDC just passes KB,KDC(KA,B)

back to Alice, and lets her take care of connecting to Bob. This leads to the proto-
col shown in Fig. 9-16. The message ~,KDC(KA,B) is also known as a ticket. It is
Alice's job to pass this ticket to Bob. Note that Bob is still the only one that can
make sensible use of the ticket, as he is the only one besides the KDC who knows
how to decrypt the information it contains.

The protocol shown in Fig. 9-16 is actually a variant of a well-known example
of an authentication protocol using a KDC, known as the Needham-Schroeder
authentication protocol, named after its inventors (Needham and Schroeder,
1978). A different variant of the protocol is being used in the Kerberos system,
which we describe later. The Needham-Schroeder protocol, shown in Fig. 9-17, is
a multiway challenge-response protocol and works as follows.

When Alice wants to set up a secure channel with Bob, she sends a request to
the KDC containing a challenge RA, along with her identity A and, of course, that

402 SECURITY CHAP. 9

Figure 9-16. Using a ticket and letting Alice set up a connection to Bob.

Figure 9-17. The Needham-Schroeder authentication protocol.

of Bob. The KDC responds by giving her the ticket KB KDC(KA B), along with the, ,

secret key KA,B that she can subsequently share with Bob.
The challenge R

A
1 that Alice sends to the KDC along with her request to set

up a channel to Bob is also known as a nonce. A nonce is a random number that is
used only once, such as one chosen from a very large set. The main purpose of a
nonce is to uniquely relate two messages to each other, in this case message 1 and
message 2. In particular, by including RA 1 again in message 2, Alice will know for
sure that message 2 is sent as a response to message 1, and that it is not, for ex-
ample, a replay of an older message.

To understand the problem at hand, assume that we did not use nonces, and
that Chuck has stolen one of Bob's old keys, say KB~~DC' In addition, Chuck has
intercepted an old response KA.KDcCB,KA,B,KB~fDC(A,KA.B)) that the KDC had re-
turned to a previous request from Alice to talk to Bob. Meanwhile, Bob will have
negotiated a new shared secret key with the KDC. However, Chuck patiently
waits until Alice again requests to set up a secure channel with Bob. At that point,
he replays the old response, and fools Alice into making her believe she is talking

SEC. 9.2 SECURE CHANNELS 403

to Bob, because he can decrypt the ticket and prove he knows the shared secret
key K.4..B' Clearly this is unacceptable and must be defended against.

By including a nonce, such an attack is impossible, because replaying an older
message will immediately be discovered. In particular, the nonce in the response
messagewill not match the nonce in the original request.

Message 2 also contains B, the identity of Bob. By including B, the KDC pro-
tects Alice against the following attack. Suppose that B was left out of message 2.
In that case, Chuck could modify message 1 by replacing the identity of Bob with
his own identity, say C. The KDC would then think Alice wantsto set up a secure
channel to Chuck, and responds accordingly. As soon as Alice wants to contact
Bob,Chuck intercepts the message and fools Alice into believing she is talking to
Bob. By copying the identity of the other party from message 1 to message 2,
Alice will immediately detect that her request had been modified.

After the KDC has passed the ticket to Alice, the secure channel between
Alice and Bob can be set up. Alice starts with sending message 3, which contains
the ticket to Bob, and a challenge RA 2 encrypted with the shared key KA,B. that the
KDC had just generated. Bob then decrypts the ticket to find the shared key, and
returns a response RA 2 - 1 along with a challenge RB for Alice.

The following remark regarding message 4 is in order. In general, by re-
turning RA2 - 1 and not just RA2, Bob not only proves he knows the shared secret
key, but also that he has actually decrypted the challenge. Again, this ties message
4 to message 3 in the same way that the nonce ~ tied message 2 to message 1.
The protocol is thus more protected against replays.

However, in this special case, it would have been sufficient to just return
KA,B(RA2,RB), for the simple reason that this message has not yet been used any-
where in the protocol before. KA,B(RA2,RB) already proves that Bob has been
capable of decrypting the challenge sent in message 3. Message 4 as shown in
Fig. 9-17 is due to historical reasons.

The Needham-Schroeder protocol as presented here still has the weak point
that if Chuck ever got a hold of an old key ~,B' he could replay message 3 and
get Bob to set up a channel. Bob will then believe he is talking to Alice, while, in
fact, Chuck is at the other end. In this case, we need to relate message 3 to mes-
sage 1, that is, make the key dependent on the initial request from Alice to set up
a channel with Bob. The solution is shown in Fig. 9-18.

The trick is to incorporate a nonce in the request sent by Alice to the KDC.
However, the nonce has to come from Bob: this assures Bob that whoever wants
to set up a secure channel with him, will have gotten the appropriate information
from the KDC. Therefore, Alice first requests Bob to send her a nonce RB 1,

encrypted with the key shared between Bob and the KDC. Alice incorporates this
nonce in her request to the KDC, which will then subsequently decrypt it and put
the result in the generated ticket. In this way, Bob will know for sure that the ses-
sion key is tied to the original request from Alice to talk to Bob.

404 SECURITY CHAP. 9

Figure 9-18. Protection against malicious reuse of a previously generated ses-
sion key in the Needham-Schroeder protocol.

Figure 9-19. Mutual authentication in a public-key cryptosystem.

Authentication Using Public-Key Cryptography

Let us now look at authentication with a public-key cryptosystem that does
not require a KDC. Again, consider the situation that Alice wants to set up a
secure channel to Bob, and that both are in the possession of each other's public
key. A typical authentication protocol based on public-key cryptography is shown
in Fig. 9-19, which we explain next.

Alice starts with sending ~ challenge RA to Bob encrypted with his public key
!G. It is Bob's job to decrypt the message and return the challenge to Alice. Be-
cause Bob is the only person that can decrypt the message (using the private key
that is associated with the public key Alice used). Alice will know that she is talk-
ing to Bob. Note that it is important that Alice is guaranteed to be using Bob's
public key, and not the public key of someone impersonating Bob. How such
guarantees can be given is discussed later in this chapter.

When Bob receives Alice's request to set up a channel, he returns the
decrypted challenge, along with his own challenge RB to authenticate Alice. In ad-
dition, he generates a session key KA,B that can be used for further communica-
tion. Bob's response to Alice's challenge, his own challenge, and the session key

SEC. 9.2 SECURE CHANNELS 405

are put into a message encrypted with the public key K;t belonging to Alice,
shown as message 2 in Fig. 9-19. Only Alice will be capable of decrypting this
message using the private key Ki. associated with K;t.

Alice, finally, returns her response to Bob's challenge using the session key
KA.B .generated by Bob. In that way, she will have proven that she could decrypt
message 2, and thus that she is actually Alice to whom Bob is talking.

9.2.2 Message Integrity and Confidentiality

Besides authentication, a secure channel should also provide guarantees for
message integrity and confidentiality. Message integrity means that messages are
protected against surrepitious medification; confidentiality ensures that messages
cannot be intercepted and read by eavesdroppers. Confidentiality is easily esta-
blished by simply encrypting a message before sending it. Encryption can take
place either through a secret key shared with the receiver or alternatively by using
the receiver's public key. However, protecting a message against modifications is
somewhat more complicated, as we discuss next.

Digital Signatures

Message integrity often goes beyond the actual transfer through a secure
channel. Consider the situation in which Bob has just sold Alice a collector's item
of some phonograph record for $500. The whole deal was done through e-mail. In
the end, Alice sends Bob a message confirming that she will buy the record for
$500. In addition to authentication, there are at least two issues that need to be
taken care of regarding the integrity of the message.

1. Alice needs to be assured that Bob will not maliciously change the
$500 mentioned in her message into something higher, and claim she
promised more than $500.

2. Bob needs to be assured that Alice cannot deny ever having sent the
message, for example, because she had second thoughts.

These two issues can be dealt with if Alice digitally signs the message in such
a way that her signature is uniquely tied to its content. The unique association be-
tween a message and its signature prevents that modifications to the message will
go unnoticed. In addition, if Alice's signature can be verified to be genuine, she
cannot later repudiate the fact that she signed the message.

There are several ways to place digital signatures. One popular form is to use
a public-key cryptosystem such as RSA, as shown in Fig. 9-20. When Alice
sends a message m to Bob, she encrypts it with her private key K;., and sends it

406 SECURITY CHAP. 9

off to Bob. If she also wants to keep the message content a secret, she can use
Bob's public key and send K/i(m,KA(m», which combines m and the version
signed by Alice.

Figure 9·20. Digital signing a message using public-key cryptography.

When the message arrives at Bob, he can decrypt it using Alice's public key.
If he can be assured that the public key is indeed owned by Alice, then decrypting
the signed version of m and successfully comparing it to 111 can mean only that it
came from Alice. Alice is protected against any malicious modifications to m by
Bob, because Bob will always have to prove that the modified version of m was
also signed by Alice. In other words, the decrypted message alone essentially
never counts as proof. It is also in Bob's own interest to keep the signed version of
m toprotect himself against repudiation by Alice.

There are a number of problems with this scheme, although the protocol in it-
self is correct. First, the validity of Alice's signature holds only as long as Alice's
private key remains a secret. If Alice wants to bail out of the deal even after send-
ing Bob her confirmation, she could claim. that her private key was stolen before
the message was sent.

Another problem occurs when Alice decides to change her private key. Doing
so may in itself be not such a bad idea, as changing keys from time to time gener-
ally helps against intrusion. However, once Alice has changed her key, her state-
ment sent to Bob becomes worthless. What may be needed in such cases is a cen-
tral authority that keeps track of when keys are changed, in addition to using time-
stamps when signing messages.

Another problem with this scheme is that Alice encrypts the entire message
with her private key. Such an encryption may be costly in terms of processing re-
quirements (or even mathematically infeasible as we assume that the message
interpreted as a binary number is bounded by a predefined maximum), and is actu-
ally unnecessary. Recall that we need to uniquely associate a signature with a only
specific message. A cheaper and arguably more elegant scheme is to use a mes-
sage digest.

As we explained, a message digest is a fixed-length bit string h that has been
computed from an arbitrary-length message 111 by means of a cryptographic hash
function H. If m is changed to m', its hash H (111') will be different from h = H (m)
so that it can easily be detected that a modification has taken place.

SEC. 9.2 SECURE CHANNELS 407

To digitally sign a message, Alice can first compute a message digest and
subsequently encrypt the digest with her private key, as shown in Fig. 9-21. The
encrypted digest is sent along with the message to Bob. Note that the message it-
self is sent as plaintext: everyone is allowed to read it. If confidentiality is re-
quired, then the message should also be encrypted with Bob's public key.

Figure 9-21. Digitally signing a message using a message digest.

When Bob receives the message and its encrypted digest, he need merely
decrypt the digest with Alice's public key, and separately calculate the message
digest. If the digest calculated from the received message and thedecrypted digest
match, Bob knows the message has been signed by Alice.

Session Keys

During the establishment of a secure channel, after the authentication phase
has completed, the communicating parties generally use a unique shared session
key for confidentiality. The session key is safely discarded when the channel is no
longer used. An alternative would have been to use the same keys for confiden-
tiality as those that are used for setting up the secure channel. However, there are
a number of important benefits to using session keys (Kaufman et aI., 2003).

First, when a key is used often, it becomes easier to reveal it. In a sense, cryp-
tographic keys are subject to "wear and tear" just like ordinary keys. The basic
idea is that if an intruder can intercept a lot of data that have been encrypted using
the same key, it becomes possible to mount attacks to find certain characteristics
of the keys used, and possibly reveal the plaintext or the key itself. For this rea-
son, it is much safer to use the authentication keys as little as possible. In addition,
such keys are often exchanged using some relatively time-expensive out-of-band
mechanism such as regular mail or telephone. Exchanging keys that way should
be kept to a minimum.

Another important reason for generating a unique key for each secure channel
is to ensure protection against replay attacks as we have come across previously a

408 SECURITY CHAP. 9

number of times. By using a unique session key each time a secure channel is set
up, the communicating parties are at least protected against replaying an entire
session. To protect replaying individual messages from a previous session, addi-
tional measures are generally needed such as including timestamps or sequence
numbers as part of the message content.

Suppose that message integrity and confidentiality were achieved by using the
same key used for session establishment. In that case, whenever the key is com-
promised, an intruder may be able to decrypt messages transferred during an old
conversation, clearly not a desirable feature. Instead, it is much safer to use per-
session keys, because if such a key is compromised, at worst, only a single session
is affected. Messages sent during other sessions stay confidential.

Related to this last point is that Alice may want to exchange some confiden-
tial data with Bob, but she does not trust him so much that she would give him in-
formation in the form of data that have been encrypted with long-lasting keys. She
may want to reserve such keys for highly-confidential messages that she ex-
changes with parties she really trusts. In such cases, using a relatively cheap ses-
sion key to talk to Bob is sufficient.

By and large, authentication keys are often established in such a way that re-
placing them is relatively expensive. Therefore, the combination of such long-
lasting keys with the much cheaper and more temporary session keys is often a
good choice for implementing secure channels for exchanging data.

9.2.3 Secure Group Communication

So far, we have concentrated on setting up a secure communication channel
between two parties. In distributed systems, however, it is often necessary to
enable secure communication between more than just two parties. A typical ex-
ample is that of a replicated server for which all communication between the rep-
licas should be protected against modification, fabrication, and interception, just
as in the case of two-party secure channels. In this section, we take a closer look
at secure group communication.

Confidential Group Communication

First, consider the problem of protecting communication between a group of
N users against eavesdropping. To ensure confidentiality, a simple scheme is to let
all group members share the same secret key, which is used to encrypt and de-
crypt all messages transmitted between group members. Because the secret key in
this scheme is shared by all members, it is necessary that all members are trusted
to indeed keep the key a secret. This prerequisite alone makes the use of a single
shared secret key for confidential group communication more vulnerable to
attacks compared to two-party secure channels.

SEC. 9.2 SECURE CHANNELS 409
An alternative solution is to use a separate shared secret key between each

pair of group members. As soon as one member turns out to be leaking informa-
tion, the others can simply stop sending messages to that member, but still use the
keys they were using to communicate with each other. However, instead of having
to maintain one key, it is now necessary to maintain N(N - 1)/2 keys, which may
be a difficult problem by itself.

Using a public-key cryptosystem can improve matters. In that case, each
member has its own (public key, private key) pair, in which the public key can be
used by all members for sending confidential messages. In this case, a total of N
key pairs are needed. If one member ceases to be trustworthy, it is simply re-
moved from the group without having been able to compromise the other keys.

Secure Replicated Servers

Now consider a completely different problem: a client issues a request to a
group of replicated servers. The servers may have been replicated for reasons of
fault tolerance or performance, but in any case, the client expects the response to
be trustworthy. In other words, regardless of whether the group of servers is sub-
ject to Byzantine failures as we discussed in the previous chapter, a client expects
that the returned response has not been subject to a security attack. Such an attack
could happen if one or more servers had been successfully corrupted by an in-
truder.

A solution to protect the client against such attacks is to collect the responses
from all servers and authenticate each one of them.If a majority exists among the
responses from the noncorrupted (i.e., authenticated) servers, the client can trust
the response to be correct as well. Unfortunately, this approach reveals the repli-
cation of the servers, thus violating replication transparency.

Reiter et al. (1994) proposes a solution to a secure, replicated server in which
replication transparency is maintained. The advantage of their scheme is that be-
cause clients are unaware of the actual replicas, it becomes much easier to add or
remove replicas in a secure way. We return to managing secure groups below
when discussing key management.

The essence of secure and transparent replicated servers lies in what is known
as secret sharing. When multiple users (or processes) share a secret, none of
them knows the entire secret. Instead, the secret can be revealed only if they all
get together. Such schemes can be extremely useful. Consider, for example,
launching a nuclear missile. Such an act generally requires the authorization of at
least two people. Each of them holds a private key that should be used in combi-
nation with the other to actually launch a missile. Using only a single key will not
do.

In the case of secure, replicated servers, what we are seeking is a solution by
which at most k out of the N servers can produce an incorrect answer, and of those
k servers, at most c ~ k have actually been corrupted by an intruder. Note that this

410 SECURITY CHAP. 9

requirement makes the service itself k fault tolerant as discussed in the previous
chapter. The difference lies in the fact that we now classify a maliciously cor-
rupted server as being faulty.

Now consider the situation in which the servers are actively replicated. In oth-
er words, a request is sent to all servers simultaneously, and subsequently handled
by each of them. Each server produces a response that it returns to the client. For
a securely replicated group of servers, we require that each server accompanies, its
response with a digital signature. If r, is the response from server S;, let md (ri)
denote the message digest computed by server Si. This digest is signed with server
S, 's private key K] .

Suppose that we want to protect the client against at most c corrupted servers.
In other words, the server group should be able to tolerate corruption by at most c
servers, and still be capable of producing a response that the client can put its trust
in. If the signatures of the individual servers could be combined in such a way that
at least c +1 signatures are needed to construct a valid signature for the response,
then this would solve our problem. In other words, we want to let the replicated
servers generate a secret valid signature with the property that c corrupted ser-
versalone are not enough to produce that signature.

As an example, consider a group of five replicated servers that should be able
to tolerate two corrupted servers, and still produce a response that a client can
trust. Each server S, sends its response r, to the client, along with its signature
sig (S;,r;) = Kj(md (r;)). Consequently, the client will eventually have received
five triplets «r., md (r;), sig (S;, rJ> from which it should derive the correct
response. This situation is shown in Fig. 9-22.

Each digest md (ri) is also calculated by the client. If r, is incorrect, then nor-
mally this can be detected by computing Kt(Kj(md(ri)))' However, this method
can no longer be applied, because no individual server can be trusted. Instead, the
client uses a special, publicly-known decryption function D, which takes a set
V = {sig (S,r),sig (S',r'),sig (S",r")} of three signatures as input, and produces a
single digest as output:

dout = D (V) = D (sig (S, r),sig (S', r'),sig (S", r"))

For details on D, see Reiter (1994). There are 5!/(3!2!)=10 possible combinations
of three signatures that the client can use as input for D. If one of these combina-
tions produces a correct digest md (r;) for some response r., then the client can
consider r, as being correct. In particular, it can trust that the response has been
produced by at least three honest servers.

To improve replication transparency, Reiter and Birman let each server S;
broadcast a message containing its response r, to the other servers, along with the
associated signature sig (Si,r;). When a server has received at least c + 1 of such
messages, including its own message. it attempts to compute a valid signature for "
one of the responses. If this succeeds for, say, response r and the set V of c + 1
signatures. the server sends r and V as a single message to the client. The client

SEC. 9.2 SECURE CHANNELS 411

Figure 9-22. Sharing a secret signature in a group of replicated servers.

can subsequently verify the correctness of r by checking its signature, that is,
whether md(r) = D(V).

What we have just described is also known as.an (m,n)-threshold scheme
with, in our example, m = c + 1 and n = N, the number of servers. In an (m,n)-
threshold scheme, a message has been divided into n pieces, known as shadows,
since any m shadows can be used to reconstruct the original message, but using
m - 1 or fewer messages cannot. There are several ways to construct (m,n)-
threshold schemes. Details can be found in Schneier (1996).

9.2.4 Example: Kerberos

It should be clear by now that incorporating security into distributed systems
IS not trivial. Problems are caused by the fact that the entire system must be
secure; if some part is insecure, the whole system may be compromised. To assist
the construction of distributed systems that can enforce a myriad of security poli-
cies, a number of supporting systems have been developed that can be used as a
basis for further development. An important system that is widely used is Ker-
heros (Steiner et al., 1988; and Kohl and Neuman, 1994).

Kerberos was developed at M.LT. and is based on the Needham-Schroeder
authentication protocol we described earlier. There are currently two different
versions of Kerberos in use, version 4 (V4) and version 5 (V5). Both versions are
conceptually similar, with V5 being much more flexible and scalable. A detailed

412 SECURITY CHAP. 9

description of V5 can be found in Neuman et al. (2005), whereas practical infor-
mation on running Kerberos is described by Garman (2003).

Kerberos can be viewed as a security system that assists clients in setting up a
secure channel with any server that is part of a distributed system. Security is
based on shared secret keys. There are two different components. The Authenti-
cation Server (AS) is responsible for handling a login request from a user. The
AS authenticates a user and provides a key that can be used to set up secure chan-
nels with servers. Setting up secure channels is handled by a Ticket Granting
Service (TGS). The TGS hands out special messages, known as tickets, that are
used to convince a server that the client is really who he or she claims to be. We
give concrete examples of tickets below.

Let us take a look at how Alice logs onto a distributed system that uses Ker-
beros and how she can set up a secure channel with server Bob. For Alice to log
onto the system, she can use any workstation available. The workstation sends her
name in plaintext to the AS, which returns a session key KA. TGS and a ticket that
she will need to hand over to the TGS.

The ticket that is returned by the AS contains the identity of Alice, along with
a generated secret key that Alice and the TGS can use to communicate with each
other. The ticket itself will be handed over to the TGS by Alice. Therefore, it is
important that no one but the TGS can read it. For this reason, the ticket is
encrypted with the secret key KAS,TGS shared between the AS and the TGS.

This part of the login procedure is shown as messages 1, 2, and 3 in Fig. 9-23.
Message 1 is not really a message, but corresponds to Alice typing in her login
name at a workstation. Message 2 contains that name and is sent to the AS. Mes-
sage 3 contains the session key.KA,TGS and the ticket KAS,TGS(A,KA,TGS)' To ensure
privacy, message 3 is encrypted with the secret key KA,AS shared between Alice
-and the AS.

Figure 9-23. Authentication in Kerberos.

When the workstation receives the response from the AS, it prompts Alice for
her password (shown as message 4). which it uses to subsequently generate the
shared key KA,AS' (It is relatively simple to take a character string password, apply

SEC. 9.2 SECURE CHANNELS 413

3 cryptographic hash, and then take the first 56 bits as the secret key.) Note that
this approach not only has the advantage that Alice's password is never sent as
plaintext across the network, but also that the workstation does not even have to
temporarily store it. Moreover, as soon as it has generated the shared key ~,AS'

the workstation will fmd the session key ~,TGS' and can forget about Alice's
password and use only the shared secret KA,AS'

After this part of the authentication has taken place, Alice can consider herself
logged into the system through the current workstation. The ticket received from
the AS is stored temporarily (typically for 8-24 hours), and will be used for ac-
cessing remote services. Of course, if Alice leaves her workstation, she should
destroy any cached tickets. If she wants to talk to Bob, she requests the TGS to
generate a session key for Bob, shown as message 6 in Fig. 9-23. The fact that
Alice has the ticket KAS,TGS(A,~,TGS) proves that she is Alice. The TGS responds
with a session key KA,B, again encapsulated in a ticket that Alice will later have to
pass to Bob.

Message 6 also contains a timestamp, t, encrypted with the secret key shared
between Alice and the TGS. This timestamp is used to prevent Chuck from mali-
ciously replaying message 6 again, and trying to set up a channel to Bob. The
TGS will verify the timestamp before returning a ticket to Alice. If it differs more
than a few minutes from the current time, the request for a ticket is rejected.

This scheme establishes what is known as single sign-on. As long as Alice
does not change workstations, there is no need for her to authenticate herself to
any"other server that is part of the distributed system. This feature is important
when having to deal with many different services that are spread across multiple
machines. In principle, servers in a way have delegated client authentication to the
AS and TGS, and will accept requests from any client that has a valid ticket. Of
course, services such as remote login will require that the associated user has an
account, but this is independent from authentication through Kerberos.

Setting up a secure channel with Bob is now straightforward, and is shown in
Fig. 9-24. First, Alice sends to Bob a message containing the ticket she got from
the TGS, along with an encrypted timestamp. When Bob decrypts the ticket, he
notices that Alice is talking to him, because only the TGS could have constructed
the ticket. He also finds the secret key KA,B, allowing him to verify the timestamp.
At that point, Bob knows he is talking to Alice and not someone maliciously
replaying message 1. By responding with KA,8(t + 1), Bob proves to Alice that he
is indeed Bob.

9.3 ACCESS CONTROL

In the client-server model, which we have used so far, once a client and a
server have set up a secure channel, the client can issue requests that are to be car-
ried out by the server. Requests involve carrying out operations on resources that

414 SECURITY CHAP. 9

Figure 9-24. Setting up a secure channel in Kerberos.

are controlled by the server. A general situation is that of an object server that has
a number of objects under its control. A request from a client generally involves
invoking a method of a specific object. Such a request can be carried out only if
the client has sufficient access rights for that invocation.

Formally, verifying access rights is referred to as access control, whereas
authorization is about granting access rights. The two terms are strongly related
to each other and are often used in an interchangeable way. There are many ways
to achieve access control. We start with discussing some of the general issues,
concentrating on different models for handling access control. One important way
of actually controlling access to resources is to build a firewall that protects appli-
cations or even an entire network. Firewalls are discussed separately. With the ad-
vent of code mobility, access control could no longer be done using only the tradi-
tional methods. Instead, new techniques had to be devised, which are also dis-
cussed in this section.

9.3.1 General Issues in Access Control

In order to understand the various issues involved in access control, the sim-
ple model shown in Fig. 9-25 is generally adopted. It consists of subjects that
issue a request to access an object. An object is very much like the objects we
have been discussing so far. It can be thought of as encapsulating its own state and
implementing the operations on that state. The operations of an object that sub-
jects can request to be carried out are made available through interfaces. Subjects
can best be thought of as being processes acting on behalf of users, but can also be
objects that need the services of other objects in order to carry out their work.

Figure 9-25. General model of controlling access to objects.

Controlling the access to an object is all about protecting the object against
invocations by subjects that are not allowed to have specific (or even any) of the

SEC. 9.3 ACCESS CONTROL 415

methods carried out. Also, protection may include object management issues,
such as creating, renaming, or deleting objects. Protection is often enforced by a
program called a reference monitor. A reference monitor records which subject
may do what, and decides whether a subject is allowed to have a specific opera-
tion carried out. This monitor is called (e.g., by the underlying trusted operating
system) each time an object is invoked. Consequently, it is extremely important
that the reference monitor is itself tamperproof: an attacker must not be able to
fool around with it.

Access Control Matrix

A common approach to modeling the access rights of subjects with respect to
objects is to construct an access control matrix. Each subject is represented by a
row in this matrix; each object is represented by a column. If the matrix is denoted
M, then an entry M [s,o] lists precisely which operations subject s can request to
be carried out on object o. In other words, whenever a subject s requests the invo-
cation of method m of object 0, the reference monitor should check whether m is
listed in M [s,o]. If m is not listed in 1\1[s,o], the invocation fails.

Considering that a system may easily need to support thousands of users and
millions of objects that require protection, implementing an access control matrix
as a true matrix is not the way to go. Many entries in the matrix will be empty: a
single subject will generally have access to relatively few objects. Therefore,
other, more efficient ways are followed to implement an access control matrix.

One widely-applied approach is to have each object maintain a list of the ac-
cess rights of subjects that want to access the object. In essence, this means that
the matrix is distributed column-wise across all objects, and that empty entries are
left out. This type of implementation leads to what is called an Access Control
List(ACL). Each object is assumed to have its own associated ACL.

Another approach is to distribute the matrix row-wise by giving each subject a
list of capabilities it has for each object. In other words, a capability corresponds
to an entry in the access control matrix. Not having a capability for a specific ob-
ject means that the subject has no access rights for that object.

A capability can be compared to a ticket: its holder is given certain rights that
are associated with that ticket. It is also clear that a ticket should be protected
against modifications by its holder. One approach that is particularly suited in dis-
tributed systems and which has been applied extensively in Amoeba (Tanenbaum
et aI., 1990), is to protect (a list of) capabilities with a signature. We return to
these and other matters later when discussing security management.

The difference between how ACLs and capabilities are used to protect the ac-
cess to an object is shown in Fig. 9-26. Using ACLs, when a client sends a re-
quest to a server, the server's reference monitor will check whether it knows the
client and if that client is known and allowed to have the requested operation car-
ried out, as shown in Fig. 9-26(a).

416 SECURITY CHAP. 9

Figure 9-26. Comparison between ACLs and capabilities for protecting objects.
(a) Using an ACL. (b) Using capabilities.

However, when using capabilities, a client simply sends its request to the
server. The server is not interested in whether it knows the client; the capability
says enough. Therefore, the server peed only check whether the capability is valid
and whether the requested operation is listed in the capability. This approach to
protecting objects by means of capabilities is shown in Fig. 9-26(b).

Protection Domains

ACLs and capabilities help in efficiently implementing an access control ma-
trix by ignoring all empty entries. Nevertheless, an ACL or a capability list can
still become quite large if no further measures are taken.

One general way of reducing ACLs is to make use of protection domains. For-
mally, a protection domain is a set of (object, access rights) pairs. Each pair
specifies for a given object exactly which operations are allowed to be carried out
(Saltzer and Schroeder, 1975). Requests for carrying out an operation are always
issued within a domain. Therefore, whenever a subject requests an operation to be
carried out at an object, the reference monitor first looks up the protection domain
associated with that request. Then, given the domain, the reference monitor can
subsequently check whether the request is allowed to be carried out. Different
uses of protection domains exist.

SEC. 9.3 ACCESS CONTROL 417

One approach is to construct groups of users. Consider, for example, a Web
page on a company's internal intranet. Such a page should be available to every
employee, but otherwise to no one else. Instead of adding an entry for each pos-
sible employee to the ACL for that Web page, it may be decided to have a sepa-
rate group Employee containing all current employees. Whenever a user accesses
the Web page, the reference monitor need only check whether that user is an
employee. Which users belong to the group Employee is kept in a separate list
(which, of course, is protected against unauthorized access).
. Matters can be made more flexible by introducing hierarchical groups. For ex-
ample, if an organization has three different branches at, say, Amsterdam, New
York, and San Francisco, it may want to subdivide its Employee group into sub-
groups, one for each city, leading to an organization as shown in Fig. '9-27.

Figure 9-27. The hierarchical organization of protection domains as groups of
users.

Accessing Web pages of the organization's intranet should be permitted by all
employees. However, changing for example Web pages associated with the
Amsterdam branch should be permitted only by a subset of employees in Amster-
dam. If user Dick from Amsterdam wants to read a Web page from the intranet,
the reference monitor needs to first look up the subsets Employee.AlviS,
Employee.N'YC, and Employee-SF that jointly comprise the set Employee. It then
has to check if one of these sets contains Dick. The advantage of having hierarchi-
cal groups is that managing group membership is relatively easy, and that very
large groups can be constructed efficiently. An obvious disadvantage is that look-
ing up a member can be quite costly if the membership database is distributed.

Instead of letting the reference monitor do all the work, an alternative is to let
each subject carry a certificate listing the groups it belongs to. So, whenever Dick
wants to read a Web page from the company's intranet, he hands over his certifi-
cate to the reference monitor stating that he is a member of Employee-AMS. To
guarantee that the certificate is genuine and has not been tampered with, it should
be protected by means of, for example, a digital signature. Certificates are seen to
be comparable to capabilities. We return to these issues later.

418 SECURITY CHAP. 9

Related to having groups as protection domains, it is also possible to imple-
ment protection domains as roles. In role-based access control, a user always logs
into the system with a specific role, which is often associated with a function the
user has in an organization (Sandhu et al., 1996). A user may have several func-
tions. For example, Dick could simultaneously be head of a department, manager
of a project, and member of a personnel search committee. Depending on the role
he takes when logging in, he may be assigned different privileges. In other words,
his role determines the protection domain (i.e., group) in which he will operate.

When assigning roles to users and requiring that users take on a specific role
when logging in. it should also be possible for users to change their roles if neces-
sary. For example, it may be required to allow Dick as head of the department to
occasionally change to his role of project manager. Note that such changes are dif-
ficult to express when implementing protection domains only as groups.

Besides using protection domains, efficiency can be further improved by
(hierarchically) grouping objects based on the operations they provide .. For ex-
ample, instead of considering individual objects, objects are grouped according to
the interfaces they provide, possibly using subtyping [also referred to as interface
inheritance, see Gamma et aI. (1994)] to achieve a hierarchy. In this case, when a
subject requests an operation to be carried out at an object, the reference monitor
looks up to which interface the operation for that object belongs. It then checks
whether the subject is allowed to call an operation belonging to that interface,
rather than if it can call the operation for the specific object.

Combining protection domains and grouping of objects is also possible. Using
both techniques, along with specific data structures and restricted operations on
objects, Gladney (1997) describes how to implement ACLs for very large collec-
tions of objects that are used in digital libraries.

9.3.2 Firewalls

So far, we have shown how protection can be established using cryptographic
techniques, combined with some implementation of an access control matrix.
These approaches work fine as long as all communicating parties play according
to the same set of rules. Such rules may be enforced when developing a stand-
alone distributed system that is isolated from the rest of the world. However, mat-
ters become more complicated when outsiders are allowed to access the resources
controlled by a distributed system. Examples of such accesses including sending
mail, downloading files, uploading tax forms, and so on.

To protect resources under these circumstances, a different approach is need-
ed. In practice, what happens is that external access to any part of a distributed
system is controlled by a special kind of reference monitor known as a firewall
(Cheswick and Bellovin, 2000; and Zwicky et aI., 2000). Essentially, a firewall -
disconnects any part of a distributed system from the outside world, as shown in
Fig. 9-28. All outgoing, but especially all incoming packets are routed through a

SEC. 9.3 ACCESS CONTROL 419

special computer and inspected before they are passed. Unauthorized traffic is dis-
carded and not allowed to continue. An important issue is that the firewall itself
should be heavily protected against any kind of security threat: it should never
fail.

Figure 9-28. A common implementation of a firewall.

Firewalls essentially come in two different flavors that are often combined.
An important type of firewall is a packet-filtering gateway. This type of firewall
operates as a router and makes decisions as to whether or not to pass a network
packet based on the source and destination address as contained in the packet's
header. Typically, the packet-filtering gateway shown on the outside LAN in
Fig. 9-28 would protect against incoming packets, whereas the one on the inside
LAN would filter outgoing packets.

For example, to protect an internal Web server against requests from hosts
that are not on the internal network, a packet-filtering gateway could decide to
drop all incoming packets addressed to the Web server.

More subtle is the situation in which a company's network consists of multi-
ple local-area networks connected, for example, through an SMDS network as we
discussed before. Each LAN can be protected by means of a packet-filtering gate-
way, which is configured to pass incoming traffic only if it originated from a host
on one of the other LANs. In this way, a private virtual network can be set up.

The other type of firewall is an application-level gateway. In contrast to a
packet-filtering gateway, which inspects only the header of network packets, this
type of firewall actually inspects the content of an incoming or outgoing message.
A typical example is a mail gateway that discards incoming or outgoing mail
exceeding a certain size. More sophisticated mail gateways exist that are, for ex-
ample, capable of filtering spam e-mail.

Another example of an application-level gateway is one that allows external
access to a digital library server, but will supply only abstracts of documents. If an
external user wants more, an electronic payment protocol is started. Users inside
the firewall have direct access to the library service.

420 SECURITY CHAP. 9

A special kind of application-level gateway is what is known as a proxy gate-
way. This type of firewall works as a front end to a specific kind of application,
and ensures that only those messages are passed that meet certain criteria. Con-
sider, for example, surfing the Web. As we discuss in the next section, many Web
pages contain scripts or applets that are to be executed in a user's browser. To
prevent such code to be downloaded to the inside LAN, all Web traffic could be
directed through a Web proxy gateway. This gateway accepts regular HTTP re-
quests, either from inside or outside the firewall. In other words, it appears to its
users as a normal Web server. However, it filters all incoming and outgoing
traffic, either by discarding certain requests and pages, or modifying pages when
they contain executable code.

9.3.3 Secure Mobile Code

As we discussed in Chap. 3, an important development in modem distributed
systems is the ability to migrate code between hosts instead of just migrating pas-
sive data. However, mobile code introduces a number of serious security threats.
For one thing, when sending an agent across the Internet, its owner will want to
protect it against malicious hosts that try to steal or modify information carried by
the agent.

Another issue is that hosts need to be protected against malicious agents. Most
users of distributed systems will not be experts in systems technology and have no
way of telling whether the program they are fetching from another host can be
trusted not to corrupt their computer. In many cases it may be difficult even for an
expert to detect that a program is actually being downloaded at all.

Unless security measures are taken, once a malicious program has settled it-
self in a computer, it can easily corrupt its host. We are faced with an access con-
trol problem: the program should not be allowed unauthorized access to the host's
resources. As we shall see. protecting a host against downloaded malicious pro-
grams is not always easy. The problem is not so much as to avoid downloading of
programs. Instead, what we are looking for is supporting mobile code that we can
allow access to local resources in a flexible, yet fully controlled manner.

Protecting an Agent

Before we take a look at protecting a computer system against downloaded
malicious code, let us first take a look at the opposite situation. Consider a mobile
agent that is roaming a distributed system on behalf of a user. Such an agent may
be searching for the cheapest airplane ticket from Nairobi to Malindi, and has
been authorized by its owner to make a reservation as soon as it found a flight.
For this purpose, the agent may carry an electronic credit card.

Obviously, we need protection here. Whenever the agent moves to a host, that
host should not be allowed to steal the agent's credit card information. Also, the

SEC. 9.3 ACCESS CONTROL 421

:.lgentshould be protected against modifications that make the owner pay much
more than actually is needed. For example, if Chuck's Cheaper Charters can see
that the agent has not yet visited its cheaper competitor Alice Airlines, Chuck
should be prevented from changing the agent so that it will not visit Alice Air-
lines' host. Other examples that require protection of an agent against attacks
from a hostile host include maliciously destroying an agent, or tampering with an
agent such that it will attack or steal from its owner when it returns.

Unfortunately, fully protecting an agent against all kinds of attacks is impos-
sible (Farmer et aI., 1996). This impossibility is primarily caused by the fact that
no hard guarantees can be given that a host will do what it promises. An alterna-
tive approach is therefore to organize agents in such a way that modifications can
at least be detected. This approach has been followed in the Ajanta system (Kat-
nik and Tripathi, 2001). Ajanta provides three mechanisms that allow an agent's
owner to detect that the agent has been tampered with: read-only state, append-
only logs, and selective revealing of state to certain servers.

The read-only state of an Ajanta agent consists of a collection of data items
that is signed by the agent's owner. Signing takes place when the agent is con-
structed and initialized before it is sent off to other hosts. The owner first con-
structs a message digest, which it subsequently encrypts with its private key.
When the agent arrives at a host, that host can easily detect whether the read-only
state has been tampered with by verifying the state against the signed message di-
gest of the original state.

To allow an agent to collect information while moving between hosts, Ajanta
provides secure append-only logs. These logs are characterized by the fact that
data can only be appended to the log; there is no way that data can be removed or
modified without the owner being able to detect this. Using an append-only log
works as follows. Initially, the log is empty and has only an associated checksum
Cinit calculated as Cinit = ~wner(N), where KblVner is the public key of the agent's
owner, and N is a secret nonce known only to the owner.

When the agent moves to a server S that wants to hand it some data X, S appends
X to the log then signs X with its signature sig (S,X), and calculates a checksum:

Cnew = Kbwner(Cold, sig (S,X), S)

where Cold is the checksum that was used previously.
When the agent comes back to its owner, the owner can easily verify whether

the log has been tampered with. The owner starts reading the log at the end by
successively computing K~wner(C) on the checksum C. Each iteration returns a
checksum C"ext for the next iteration, along with sig (S,X) and S for some server
S. The owner can then verify whether or not the then-last element in the log
matches sig (S,X). If so, the element is removed and processed, after which the
next iteration step is taken. The iteration stops when the initial checksum is
reached. or when the owner notices that the log as been tampered with because a
signature does not match.

422 SECURITY CHAP. 9

Finally, Ajanta supports selective revealing of state by providing an array of
data items, where each entry is intended for a designated server. Each entry is en-
crypted with the designated server's public key to ensure confidentiality. The en-
tire array is signed by the agent's owner to ensure integrity of the array as a
whole. In other words, if any entry is modified by a malicious host, any of the
designated servers will notice and can take appropriate action.

Besides protecting an agent against malicious hosts, Ajanta also provides vari-
ous mechanisms to protect hosts against malicious agents. As we discuss next,
many of these mechanisms are also supplied by other systems that support mobile
code. Further information on Ajanta can be found in Tripathi et aI. (1999).

Protecting the Target

Although protecting mobile code against a malicious host is important, more
attention has been paid to protecting hosts against malicious mobile code. If send-
ing an agent into the outside world is considered too dangerous, a user will gener-
ally have alternatives to get the job done for which the agent was intended. How-
ever, there are often no alternatives to letting an agent into your system, other than
locking it out completely. Therefore, if it is once decided that the agent can come
in, the user needs full control over what the agent can do.

As we just discussed, although protecting an agent from modification may be
impossible, at least it is possible for the agent's owner to detect that modifications
have been made. At worst, the owner will have to discard the agent when it re-
turns, but otherwise no harm will have been done. However, when dealing with
malicious incoming agents, simply detecting that your resources have been har-
assed is too late. Instead, it is essential to protect all resources against unauthor-
ized access by downloaded code.

One approach to protection is to construct a sandbox. A sandbox is a tech-
nique by which a downloaded program is executed in such a way that each of its
instructions can be fully controlled. If an attempt is made to execute an instruction
that has been forbidden by the host, execution of the program will be stopped.
Likewise, execution is halted when an instruction accesses certain registers or
areas in memory that the host has not allowed.

Implementing a sandbox is not easy. One approach is to check the executable
code when it is downloaded, and to insert additional instructions for situations that
can be checked only at runtime (Wahbe et al., 1993). Fortunately. matters
become much simpler when dealing with interpreted code. Let us briefly consider
the approach taken in Java [see also MacGregor et al. (1998)]. Each Java pro-
gram consists of a number of classes from which objects are created. There are no
global variables and functions; everything has to be declared as part of a class.
Program execution starts at a method called main. A Java program is compiled to
a set of instructions that are interpreted by what is called the Java Virtual
Machine (JVM). For a client to download and execute a compiled Java program,

SEC. 9.3 ACCESS CONTROL 423

it is therefore necessary that the client process is running the JVM. The JVM will
subsequently handle the actual execution of the downloaded program by interpret-
ing each of its instructions, starting at the instructions that comprise main.

In a Java sandbox, protection starts by ensuring that the component that hand-
les the transfer of a program to the client machine can be trusted. Downloading in
Java is taken care of by a set of class loaders. Each class loader is responsible for
fetching a specified class from a server and installing it in the client's address
space so that the JVM can create objects from it. Because a class loader is just an-
other Java class, it is possible that a downloaded program contains its own class
loaders. The first thing that is handled by a sandbox is that exclusively trusted
class loaders are used. In particular, a Java program is not allowedto create its
own class loaders by which it could circumvent the way class loading is normally
handled.

The second component of a Java sandbox consists of a byte code verifier,
which checks whether a downloaded class obeys the security rules of the sandbox.
In particular, the verifier checks that the class contains no illegal instructions or
instructions that could somehow corrupt the stack or memory. Not all classes are
checked, as shown in Fig. 9-29; only the ones that are downloaded from an exter-
nal server to the client. Classes that are located on the client's machine are gener-
ally trusted, although their integrity could also be easily verified.

Figure 9-29. The organization of a Java sandbox.

Finally, when a class has been securely downloaded and verified, the JVM
can instantiate objects from it and execute those object's methods. To further
prevent objects from unauthorized access to the client's resources, a security
manager is used to perform various checks at runtime. Java programs intended to
be downloaded are forced to make use of the security manager; there is no way

424 SECURITY CHAP. 9

they can circumvent it. This means, for example, that any I/O operation is vetted
for validity and will not be carried out if the security manager says "no." The se-
curity manager thus plays the role of a reference monitor we discussed earlier.

A typical security manager will disallow many operations to be carried out.
For example, virtually an security managers deny access to local files and allow a
program only to set up a connection to the server from where it came. Manipulat-
ing the JVM is obviously not allowed as well. However, a program is permitted to
access the graphics library for display purposes and to catch events such as mov-
ing the mouse or clicking its buttons.

The original Java security manager implemented a rather strict security policy
in which it made no distinction between different downloaded programs, or even
programs from different servers. In many cases, the initial Java sandbox model
was overly restricted and more flexibility was required. Below, we discuss an al-
ternative approach that is currently followed.

An approach in line with sandboxing, but which offers somewhat more flexi-
bility, is to create a playground for downloaded mobile code (Malkhi and Reiter,
2000). A playground is a separate, designated machine exclusively reserved for
running mobile code. Resources local to the playground, such as files or network
connections to external servers are available to programs executing in the play-
ground, subject to normal protection mechanisms. However, resources local to
other machines are physically disconnected from the playground and cannot be
accessed by downloaded code. Users on these other machines can access the play-
ground in a traditional way, for example, by means of RPCs. However, no mobile
code is ever downloaded to machines not in the playground. This distinction be-
tween a sandbox and a playground is shown in Fig. 9-30.

Figure 9·30. (a) A sandbox. (b) A playground.

A next step toward increased flexibility is to require that each downloaded
program can be authenticated, and to subsequently enforce a specific security pol-
icy based on where the program came from. Demanding that programs can be

SEC. 9.3 ACCESS CONTROL 425

authenticated is relatively easy: mobile code can be signed, just like any other
document. This code-signing approach is often applied as an alternative to sand-
boxing as well. In effect, only code from trusted servers is accepted.

However, the difficult part is enforcing a security policy. Wallach et al.
(1997) propose three mechanisms in the case of Java programs. The first approach
is based on the use of object references as capabilities. To access a local resource
such as a file, a program must have been given a reference to a specific object that
handles file operations when it was downloaded. If no such reference is given,
there is no way that files can be accessed. This principle is shown in Fig. 9-31.

Figure 9-31. The principle of using Java object references as capabilities.

All interfaces to objects that implement the file system are initially hidden
from the program by simply not handing out any references to these interfaces.
Java's strong type checking ensures that it is impossible to construct a reference to
one of these interfaces at runtime. In addition, we can use the property of Java to
keep certain variables and methods completely internal to a class. In particular, a
program can be prevented from instantiating its own file-handling objects, by
essentially hiding the operation that creates new objects from a given class. (In
Java terminology, a constructor is made private to its associated class.)

The second mechanism for enforcing a security policy is (extended) stack
introspection. In essence, any call to a method m of a local resource is preceded
by a call to a special procedure enable_privilege that checks whether the caller is
authorized to invoke m on that resource. If the invocation is authorized, the caller
is given temporary privileges for the duration of the call. Before returning control
to the invoker when m is finished, the special procedure disable_privilege is
invoked to disable these privileges.

To enforce calls to enable_privilege and disable_privilege, a developer of in-
terfaces to local resources could be required to insert these calls in the appropriate
places. However, it is much better to let the Java interpreter handle the calls
automatically. This is the standard approach followed in, for example, Web brow-
sers for dealing with Java applets. An elegant solution is as follows. Whenever an

426 SECURITY CHAP. 9

invocation to a local resource is made, the Java interpreter automatically calls
enable_privilege, which subsequently checks whether the call is permitted. If so, a
call to disable_privilege is pushed on the stack to ensure that privileges are dis-
abled when the method call returns. This approach prevents malicious pro-
grammers from circumventing the rules.

Figure 9-32. The principle of stack introspection.

Another important advantage of using the stack is that it enables a much better
way of checking privileges. Suppose that a program invokes a local object 0 1,
which, in turn, invokes object 02. Although 0 1 may have permission to invoke
02, if the invoker of 0 1 is not trusted to invoke a specific method belonging to
02, then this chain of invocations should not be allowed. Stack introspection
makes it easy to check such chains, as the interpreter need merely inspect each
stack frame starting at the top to see if there is a frame having the right privileges
enabled (in which case the call is permitted), or if there is a frame that explicitly
forbids access to the current resource (in which case the call is immediately termi-
nated). This approach is shown in Fig. 9-32.

In essence, stack introspection allows for the attachment of privileges to clas-
ses or methods, and the checking of those privileges for each caller separately. In
this way, It is possible to implement class-based protection domains, as is
explained in detail in Gong and Schemers (1998).

The third approach to enforcing a security policy is by means of name space
management. The idea is put forth below. To give programs access to local re-
sources, they first need to attain access by including the appropriate files that con-
tain the classes implementing those resources. Inclusion requires that a name is
given to the interpreter, which then resolves it to a class, which is subsequently
loaded at runtime. To enforce a security policy for a specific downloaded pro-
gram, the same name can be resolved to different classes, depending on where the
downloaded program came from. Typically, name resolution is handled by class
loaders, which need to be adapted to implement this approach. Details of how this
can be done can be found in Wallach et al. (1997).

SEC. 9.3 ACCESS CONTROL 427

The approach described so far associates privileges with classes or methods
bas~d on where a downloaded program came from. By virtue of the Java inter-
preter, it is possible to enforce security policies through the mechanisms described
above. In this sense, the security architecture becomes highly language dependent,
and will need to be developed anew for other languages. Language-independent
solutions, such as, for example, described in Jaeger et a1. (1999), require a more
general approach to enforcing security, and are also harder to implement. In these
cases, support is needed from a secure operating system that is aware of down-
loaded mobile code and which enforces all calls to local resources to run through
the kernel where subsequent checking is done.

9.3.4 Denial of Service

Access control is generally about carefully ensuring that resources are ac-
cessed only by authorized processes. A particularly annoying type of attack that is
related to access control is maliciously preventing authorized processes from ac-
cessing resources. Defenses against such denial-of-service (DoS) attacks are
becoming increasingly important as distributed systems are opened up through the
Internet. Where DoS attacks that come from one or a few sources can often be
handled quite effectively, matters become much more difficult when having to
deal with distributed denial of service (DDoS).

In DDoS attacks, a huge collection of processes jointly attempt to bring down
a networked service. In these cases, we often see that the attackers have suc-
ceeded in hijacking a large group of machines which unknowingly participate in
the attack. Specht and Lee (2004) distinguish two types of attacks: those aimed at
bandwidth depletion and those aimed at resource depletion.

Bandwidth depletion can be accomplished by simply sending many messages
to a single machine. The effect is that normal messages will hardly be able to
reach the receiver. Resource depletion attacks concentrate on letting the receiver
use up resources on otherwise useless messages. A well-known resource-depletion
attack is TCP SYN-flooding. In this case, the attacker attempts to initiate a huge
amount of connections (i.e., send SYN packets as part of the three-way hand-
shake), but will otherwise never respond to acknowledgments from the receiver.

There is no single method to protect against DDoS attacks. One problem is
that attackers make use of innocent victims by secretly installing software on their
machines. In these cases, the only solution is to have machines continuously mon-
itor their state by checking files for pollution. Considering the ease by which a
virus can spread over the Internet, relying only on this countermeasure is not
feasible.

Much better is to continuously monitor network traffic, for example, starting
at the egress routers where packets leave an organization's network. Experience
shows that by dropping packets whose source address does not belong to the

428 SECURITY CHAP. 9

organization's network we can prevent a lot of havoc. In general, the more pack-
ets can be filtered close to the sources, the better.

Alternatively, it is also possible to concentrate on ingress routers, that is,
where traffic flows into an organization's network. The problem is that detecting
an attack at an ingress router is too late as the network will probably already be
unreachable for regular traffic. Better is to have routers further in the Internet,
such as in the networks of ISPs, start dropping packets when they suspect that 'an
attack is going on. This approach is followed by Gil and Poletto (2001), where a
router will drop packets when it notices that the rate between the number of pack-
ets to a specific node is disproportionate to the number of packets from that node.

In general, a myriad of techniques need to be deployed, whereas new attacks
continue to emerge. A practical overview of the state-of-the-art in denial-of-ser-
vice attacks and solutions can be found in Mirkovic et a1.(2005); a detailed taxon-
omy is presented in Mirkovic and Reiher (2004).

9.4 SECURITY MANAGEMENT

So far, we have considered secure channels and access control, but have
hardly touched upon the issue how, for example, keys are obtained. In this sec-
tion, we take a closer look at security management. In particular, we distinguish
three different subjects. First, we need to consider the general management of
cryptographic keys, and especially the means by which public keys are distrib-
uted. As it turns out, certificates play an important role here.

Second, we discuss the problem of securely managing a group of servers by
.concentrating on the problem of adding a new group member that is trusted by the
current members. Clearly, in the face of distributed and replicated services, it is
important that security is not compromised by admitting a malicious process to a
group.

Third, we pay attention to authorization management by looking at capabili-
ties and what are known as attribute certificates. An important issue in distributed
systems with respect to authorization management is that one process can del-
egate some or all of its access rights to another process. Delegating rights in a
secure way has its own subtleties as we also discuss in this section.

9.4.1 Key Management

So far, we have described various cryptographic protocols in which we (impli-
citly) assumed that various keys were readily available. For example, in the case
of public-key cryptosystems, we assumed that a sender of a message had the pub-
lic key of the receiver at its disposal so that it could encrypt the message to ensure
confidentiality. Likewise, in the case of authentication using a key distribution
center (KDC), we assumed each party already shared a secret key with the KDC.

SEC. 9.4 SECURITY MANAGEMENT 429
However, establishing and distributing keys is not a trivial matter. For ex-

ample, distributing secret keys by means of an unsecured channel is out of the
. ------questIOnand in many-cases we need to resort to out-of-band methods. Also,

mechanisms are needed to revoke keys, that is, prevent a key from being used
after it has been compromised or invalidated. For example, revocation is neces-
sary when a key has been compromised.

Key Establishment

Let us start with considering how session keys can be established. When Alice
wants to set up a secure channel with Bob, she may first use Bob's public key to
initiate communication as shown in Fig. 9-19. If Bob accepts, he can subsequently
generate the session key and return it to Alice encrypted with Alice's public key.
By encrypting the shared session key before its transmission, it can be safely
passed across the network.

A similar scheme can be used to generate and distribute a session key when
Alice and Bob already share a secret key. However, both methods require that the
communicating parties already have the means available to establish a secure
channel. In other words, some form of key establishment and distribution must
already have taken place. The same argument applies when a shared secret key is
established by means of a trusted third party, such as a KDC.

,An elegant and widely-applied scheme for establishing a shared key across an
insecure channel is the Diffie- Hellman key exchange (Diffie and Hellman,
1976). The protocol works as follows. Suppose that Alice and Bob want to estab-
lish a shared secret key. The first requirement is that they agree on two large num-
bers, nand g that are subject to a number of mathematical properties (which we
do not discuss here). Both n and g can be made public; there is no need to hide
them from outsiders. Alice picks a large random number, say x, which she keeps
secret Likewise, Bob picks his own secret large number, say y. At this point there
is enough information to construct a secret key, as shown in Fig. 9-33.

Figure 9-33. The principle of Diffie-Hellman key exchange.

Alice starts by sending s' mod n to Bob, along with n and g. It is important to
note that this information can be sent as plaintext, as it is virtually impossible to

430 SECURITY CHAP. 9

compute x given gX mod n. When Bob receives the message, he subsequently cal-
culates (gX mod n}'"which is mathematically equal to gX.\' mod n. In addition, he
sends gY mod n to Alice, who can then compute (gY mod nt = gXY mod n. Conse-
quently, both Alice and Bob, and only those two, will now hav~etne shared secret -
key gXY mod n. Note that neither of them needed to make their private number (x
and y, respectively), known to the other.

Diffie- Hellman can be viewed as a public-key cryptosystem. In the case, of
Alice, x is her private key, whereas gX mod n is her public key. As we discuss
next, securely distributing the public key is essential to making Diffie-Hellman
work in practice.

Key Distribution

One of the more difficult parts in key management is the actual distribution of
initial keys. In a symmetric cryptosystem, the initial shared secret key must be
communicated along a secure channel that provides authentication as well as con-
fidentiality, as shown in Fig. 9-34(a). If there are no keys available to Alice and
Bob to set up such a secure channel, it is necessary to distribute the key out-of-
band. In other words, Alice and Bob will have to get in touch with each other
using some other communication means than the network. For example, one of
them may phone the other, or send the key on a floppy disk using snail mail.

In the case of a public-key cryptosystem, we need to distribute the public key
in such a way that the receivers can be sure that the key is indeed paired to a
claimed private key. In other words, as shown in Fig. 9-34(b), although the public
key itself may be sent as plaintext, it is necessary that the channel through which
it is sent can provide authentication. The private key, of course, needs to be sent
across a secure channel providing authentication as well as confidentiality.

When it comes to key distribution, the authenticated distribution of public
keys is perhaps the most interesting. In practice, public-key distribution takes
place by means of public-key certificates. Such a certificate consists of a public
key together with a string identifying the entity to which that key is associated.
The entity 'could be a user, but also a host or some special device. The public key
and identifier have together been signed by a certification authority, and this sig-
nature has been placed on the certificate as well. (The identity of the certification
authority is naturally part of the certificate.) Signing takes place by means of a
private key KCA that belongs to the certification authority. The corresponding
public key K~A is assumed to be well known. For example, the public keys of var-
ious certification authorities are built into most Web browsers and shipped with
the binaries.

Using a public-key certificate works as follows. Assume that a client wishes
to ascertain that the public key found in the certificate indeed belongs to the iden-
tified entity. It then uses the public key of the associated certification authority to
verify the certificate's signature. If the signature on the certificate matches the

SECURITY MANAGEMENT 431

Figure 9-34. (a) Secret-key distribution. (b) Public-key distribution [see also
Menezes et al. (1996)].

(public key, identifier)-pair, the client accepts that the public key indeed belongs
to the identified entity.

It is important to note that by accepting the certificate as being in order, the
client actually trusts that the certificate has not been forged. In particular, the cli-
ent must assume that the public key KtA indeed belongs to the associated certifi-
cation authority. If in doubt, it should be possible to verify the validity of KtA
through another certificate coming from a different, possibly more trusted certifi-
cation authority.

Such hierarchical trust models in which the highest-level certification author-
ity must be trusted by everyone, are not uncommon. For example, Privacy
Enhanced Mail (PEM) uses a three-level trust model in which lowest-level cer-
tification authorities can be authenticated by Policy Certification Authorities
(PCA), which in turn can be authenticated by the Internet Policy Registration
Authority (IPRA). If a user does not trust the IPRA, or does not think he can

SEC. 9.4

432 SECURITY CHAP. 9

safely talk to the IPRA, there is no hope he will ever trust e-mail messages to be
sent in a secure way when using PEM. More information on this model can be
found in Kent (993). Other trust models are discussed in Menezes et al. (1996).

Lifetime of Certificates

An important issue concerning certificates is their longevity. First let us con-
sider the situation in which a certification authority hands out lifelong certificates.
Essentially, what the certificate then states is that the public key will always be
valid for the entity identified by the certificate. Clearly, such a statement is not
what we want. If the private key of the identified entity is ever compromised, no
unsuspecting client should ever be able to use the public key (let alone malicious
clients). In that case, we need a mechanism to revoke the certificate by making it
publicly-known that the certificate is no longer valid,

There are several ways to revoke a certificate. One common approach is with
a Certificate Revocation List (CRL) published regularly by the certification
authority. Whenever a client checks a certificate, it will have to check the CRL to
see whether the certificate has been revoked or not. This means that the client will
at least have to contact the certification authority each time a new CRL is pub-
lished. Note that if a CRL is published daily, it also takes a day to revoke a certifi-
cate. Meanwhile, a compromised certificate can be falsely used until it is pub-
lished on the next CRL. Consequently, the time between publishing CRLs cannot
be too long. In addition, getting a CRL incurs some overhead.

An alternative approach is to restrict the lifetime of each certificate. In es-
sence, this approach is analogous to handing out leases as we discussed in
Chap. 6. The validity of a certificate automatically expires after some time. If for
whatever reason the certificate should be revoked before it expires, the certifica-
tion authority can still publish it on a CRL. However, this approach will still force
clients to check the latest CRL whenever verifvins a certificate. In other words,. •...
they will need to contact the certification authority or a trusted database contain-
ing the latest CRL.

A final extreme case is to reduce the lifetime of a certificate to nearly zero. In
-effect, this means that certificates are no longer used; instead, a client will always
have to contact the certification authority to check the validity of a public key. As
a consequence, the certification authority must be continuously online.

In practice, certificates are handed out with restricted lifetimes. In the case of
Internet applications, the expiration time is often as much as a year (Stein, 1998).
Such an approach requires that CRLs are published regularly, but that they are
also inspected when certificates are checked. Practice indicates that client applica-
tions hardly ever consult CRLs and simply assume a certificate to be valid until it
expires. In this respect, when it comes to Internet security in practice, there is still
much room for improvement, unfortunately.

SEC. 9.4 SECURITY MANAGEMENT 433

9.4.2 Secure Group Management

Many security systems make use of special services such as Key Distribution
Centers (KDCs) or Certification Authorities (CAs). These services demonstrate a
difficult problem in distributed systems. In the first place, they must be trusted. To
enhance the trust in security services, it is necessary to provide a high degree of
protection against all kinds of security threats. For example, as soon as a CA has
been compromised, it becomes impossible to verify the validity of a public key,
making the entire security system completely worthless.

On the other hand, it is also necessary that many security services offer high
availability. For example, in the case of a KDC, each time two processes want to
set up a secure channel, at least one of them will need to contact the KDC for a
shared secret key. If the KDC is not available, secure communication cannot be
established unless an alternative technique for key establishment is available, such
as the Diffie-Hellman key exchange.

The solution to high availability is replication. On the other hand, replication
makes a server more vulnerable to security attacks. We already discussed how
secure group communication can take place by sharing a secret among the group
members. In effect, no single group member is capable of compromising certifi-
cates, making the group itself highly secure. What remains to consider is how to
actually manage a group of replicated servers. Reiter et al. (1994) propose the fol-
lowing solution.

The problem that needs to be solved is to ensure that when a process asks to
join a group G, the integrity of the group is not compromised. A group G is
assumed to use a secret key eKe shared by all group members for encrypting
group messages. In addition, it also uses a public/private key pair (Kt;, K(;) for
communication with nongroup members.

Whenever a process P wants to join a group G, it sends a join request JR iden-
tifying G and P, P's local time T, a generated reply pad RP and a generated secret
key Kp,e. RP and Kp.e are jointly encrypted using the group's public key K(;, as
shown as message I in Fig. 9-35. The use of RP and Kp,G is explained in more
detail below. The join request JR is signed by P, and is sent along with a certifi-
cate containing P's public key. We have used the widely-applied notation [M1A to
denote. that message M has been signed by subject A.

When a group member Q receives such a join request, it first authenticates P,
after which communication with the other group members takes place to see
whether P can be admitted as a group member. Authentication of P takes place in
the usual way by means of the certificate. The timestamp T is used to make sure
that the certificate was still valid at the time it was sent. (Note that we need to be
sure that the time has not been tampered with as well.) Group member Q verifies
the signature of the certification authority and subsequently extracts P's public
key from the certificate to check the validity of JR. At that point, a group-specific
protocol is followed to see whether all group members agree on admitting P.

434 SECURITY CHAP. 9

Figure 9-35. Securely admitting a new group member.

IfP is allowed to join the group, Q returns a group admittance message GA,
shown as message 2 in Fig. 9-35, identifying P and containing a nonce N. The
reply pad RP is used to encrypt the group's communication key CKG· In addition,
P will also need the group's private key KG, which is encrypted with CKG· Mes-
sage GA is subsequently signed by Q using key Kp.G·

Process P can now authenticate Q, because only a true group member can
have discovered the secret key Kp,G' The nonce N in this protocol is not used for
security; instead, when P sends back N encrypted with Kp,G (message 3), Q then
knows that P has received all the necessary keys, and has therefore now indeed
joined the group.

Note that instead of using the reply pad RP, P and Q could also have encrypt-
ted CKG using P's public key. However, because RP is used only once, namely
for the encryption of the group's communication key in message GA, using RP is
safer. If P's private key were ever to revealed, it would become possible to also
reveal CKG, which would compromise the secrecy of all group communication.

9.4.3 Authorization Management

Managing security in distributed systems is also concerned with managing ac-
cess rights. So far, we have hardly touched upon the issue of how access rights are
initially granted to users or groups of users, and how they are subsequently main-
tained in an unforgeable way. It is time to correct this omission.

In nondistributed systems, managing access rights is relatively easy. When a
new user is added to the system, that user is given initial rights, for example, to
create files and subdirectories in a specific directory. create processes, use CPU
time, and so on. In other words, a complete account for a user is set up for one
specific machine in which all rights have been specified in advance by the system
administrators.

In a distributed system, matters are complicated by the fact that resources~e
spread across several machines. If the approach for nondistributed systems were
to be followed, it would be necessary to create an account for each user on each
machine. In essence, this is the approach followed in network operating systems.

SEC. 9.4 SECURITY MANAGEMENT 435

Matters can be simplified a bit by creating a single account on a central server.
That server is consulted each time a user accesses certain resources or machines.

Capabilities and Attribute Certificates

A much better approach that has been widely applied in distributed systems is
the use of capabilities. As we explained briefly above, a capability is an unforge-
able data structure for a specific resource, specifying exactly the access rights that
the holder of the capability has with respect to that resource. Different implemen-
tations of capabilities exist. Here, we briefly discuss the implementation as used
in the Amoeba operating system (Tanenbaum et al., 1986).

Amoeba was one of the first object-based distributed systems. Its model of
distributed objects is that of remote objects. In other words, an object resides at a
server while clients are offered transparent access to that object by means of a
proxy. To invoke an operation on an object, a client passes a capability to its local
operating system, which then locates the server where the object resides and sub-
sequently does an RPC to that server.

A capability is a 128-bit identifier, internally organized as shown in Fig. 9-36.
The first 48 bits are initialized by the object's server when the object is created
and effectively form a machine-independent identifier of the object's server,
referred to as the server port. Amoeba uses broadcasting to locate the machine
where the server is currently located.

Figure 9-36. A capability in Amoeba.

The next 24 bits are used to identify the object at the given server. Note that
the server port together with the object identifier form a 72-bit systemwide unique
identifier for every object in Amoeba. The next 8 bits are used to specify the ac-
cess rights of the holder of the capability. Finally, the 48-bits check field is used to
make a capability unforgeable, as we explain in the following pages.

When an object is created, its server picks a random check field and stores it
both in the capability as well as internally in its own tables. All the right bits in a
new capability are initially on, and it is this owner capability that is returned to
the client. When the capability is sent back to the server in a request to perform an
operation, the check field is verified.

To create a restricted capability, a client can pass a capability back to the
server, along with a bit mask for the new rights. The server takes the original
check field from its tables, XORs it with the new rights (which must be a subset of
the rights in the capability), and then runs the result through a one-way function.

436 SECURITY CHAP. 9

The server then creates a new capability, with the same value in the object
field. but with the new rights bits in the rights field and the output of the one-way
function in the check field. The new capability is then returned to the caller. The
client may send this new capability to another process, if it wishes.

The method of generating restricted capabilities is illustrated in Fig. 9-37. In
this example, the owner has turned off all the rights except one. For example, the
restricted capability might allow the object to be read, but nothing else. The
meaning of the rights field is different for each object type since the legal opera-
tions themselves also vary from object type to object type.

Figure 9-37. Generation of a restricted capability from an owner capability.

When the restricted capability comes back to the server, the server sees from
the rights field that it is not an owner capability because at least one bit is turned
off. The server then fetches the original random number from its tables, XORs it
with the rights field from the capability, and runs the result through the one-way
function. If the result agrees with the check field, the capability is accepted as
valid.

It should be obvious from this algorithm that a user who tries to add rights that
he does not have will simply invalidate the capability. Inverting the check field in
a restricted capability to get the argument (C XOR 00000001 in Fig. 9-37) is
impossible because the function f is a one-way function. It is through this crypto-
graphic technique that capabilities are protected from tampering. Note that f es-
sentially does the same as computing a message digest as discussed earlier.
Changing anything in the original message (like inverting a bit), will immediately
be detected.

A generalization of capabilities that is sometimes used in modern distributed
systems is the attribute certificate. Unlike the certificates discussed above that
are used to verify the validity of a public key, attribute certificates are used to list. -
certain (attribute, value)-pairs that apply to an identified entity. In particular, attri-
bute certificates can be used to list the access rights that the holder of a certificate
has with respect to the identified resource.

SEC. 9.4 SECURITY MANAGEMENT 437

Like other certificates, attribute certificates are handed out by special certifi-
cation authorities, usually called attribute certification authorities. Compared
to Amoeba's capabilities, such an authority corresponds to an object's server. In
general, however, the attribute certification authority and the server managing the
entity for which a certificate has been created need not be the same. The access
rights listed in a certificate are signed by the attribute certification authority.

Delegation

Now consider the following problem. A user wants to have a large file printed
for which he has read-only access rights. In order not to bother others too much,
the user sends a request to the print server, asking it to start printing the file no
earlier than 2 0'clock in the morning. Instead of sending the entire file to the
printer, the user passes the file name to the printer so that it can copy it to its
spooling directory, if necessary, when actually needed.

Although this scheme seems to be perfectly in order, there is one major prob-
lem: the printer will generally not have the appropriate access permissions to the
named file. In other words, if no special measures are taken, as soon as the print
server wants to read the file in order to print it, the system will deny the server ac-
cess to the file. This problem could have been solved if the user had temporarily
delegated his access rights for the file to the print server.

Delegation of access rights is an important technique for implementing pro-
tection in computer systems and distributed systems, in particular. The basic idea
is simple: by passing certain access rights from one process to another, it becomes
easier to distribute work between several processes without adversely affecting
the protection of resources. In the case of distributed systems, processes may run
on different machines and even within different administrative domains as we dis-
cussed for Globus. Delegation can avoid much overhead as protection can often
be handled locally.

There are several ways to implement delegation. A general approach as
described in Neuman (1993), is to make use of a proxy. A proxy in the context of
security in computer systems is a token that allows its owner to operate with the
same or restricted rights and privileges as the subject that granted the token. (Note
that this notion of a proxy is different from a proxy as a synonym for a client-side
stub. Although we try to avoid overloading terms, we make an exception here as
the term "proxy" in the definition above is too widely used to ignore.) A process
can create a proxy with at best the same rights and privileges it has itself. If a
process creates a new proxy based on one it currently has, the derived proxy will
have at least the same restrictions as the original one, and possibly more.

Before considering a general scheme for delegation, consider the following
two approaches. First, delegation is relatively simple if Alice knows everyone. If
she wants to delegate rights to Bob, she merely needs to construct a certificate

438 SECURITY CHAP. 9

saying "Alice says Bob has rights R." such as [A,B,R lA. If Bob wants to pass
some of these rights to Charlie, he will ask Charlie to contact Alice and ask her
for an appropriate certificate.

In a second simple case Alice can simply construct a certificate saying "The
bearer of this certificate has rights R." However, in this case we need to protect
the certificate against illegal copying, as is done with securely passing capabilities
between processes. Neuman's scheme handles this case, as well as avoiding the
issue that Alice needs to know everyone to whom rights need to be delegated.

A proxy in Neuman's scheme has two parts, as illustrated in Fig. 9-38. Let A
be the process that created the proxy. The first part of the proxy is a set
C = {R,S;'.o.\}'}, consisting of a set R of access rights that have been delegated by
A, along with a publicly-known part of a secret that is used to authenticate the
holder of the certificate. We will explain the use of S;roxy below. The certificate
carries the signature sig (A, C) of A, to protect it against modifications. The second
part contains the other part of the secret, denoted as Sprox)" It is essential that Spro:>,:y
is protected against disclosure when delegating rights to another process.

Figure 9-38. The general structure of a proxy as used for delegation.

Another way of looking at the proxy is as follows. If Alice wants to delegate
some of her rights to Bob, she makes a list of rights (R) that Bob can exercise. By
signing the list, she prevents Bob from tampering with it. However, having only a
signed list of rights is often not enough. If Bob wants to exercise his rights, he
may have to prove that he actually got the list from Alice and did not, for ex-
ample, steal it from someone else. Therefore, Alice comes up with a very nasty
question (S;ro.x:J that only she knows the answer to (Sproxy)' Anyone can easily
verify the correctness of the answer when given the question. The question is
appended to the list before Alice adds her signature.

When delegating some of her rights, Alice gives the signed list of rights,
along with the nasty question, to Bob. She also gives Bob the answer ensuring that
no one can intercept it. Bob now has a list of rights, signed by Alice, which he can
hand over to, say, Charlie, when necessary. Charlie will ask him the nasty ques-
tion at the bottom of the list. If Bob knows the answer to it, Charlie will know for
sure that Alice had indeed delegated the listed rights to Bob.

An important property of this scheme is that Alice need not be consulted. In
fact, Bob may decide to pass on (some of) the rights on the list to Dave. In doing
so, he will also tell Dave the answer to the question. so that Dave can prove the

SEC. 9.4 SECURITY MANAGEMENT 439

list was handed over to him by someone entitled to it. Alice never needs to know
about Dave at all.

A protocol for delegating and exercising rights is shown in Fig. 9-39. Assume
that Alice and Bob share a secret key ~,B that can be used for encrypting mes-
sages they send to each other. Then, Alice first sends Bob the certificate
C = {R,S;roxy}, signed with sig(A,C) (and denoted again as [R,S;roxy]A)' There is
no need to encrypt this message: it can be sent as plaintext. Only the private part
of the secret needs to be encrypted, shown as KA,B(S;roxy) in message 1.

Figure 9-39. Using a proxy to delegate and prove ownership of access rights.

Now suppose that Bob wants an operation to be carried out at an object that
resides at a specific server. Also, assume that Alice is authorized to have that op-
eration carried out, and that she has delegated those rights to Bob. Therefore, Bob
hands over his credentials to the server in the form of the signed certificate

'+[R,Sproxy]A'
At that point, the server will be able to verify that C has not been tampered

with: any modification to the list of rights, or the nasty question will be noticed,
because both have been jointly signed by Alice. However, the server does not
know yet whether Bob is the rightful owner of the certificate. To verify this, the
server must use the secret that came with C.

There are several ways to implement S;roxy and S;roxy. For example, assume
S;roxy is a public key and S;roxy the corresponding private key. Z can then chal-
lenge Bob by sending him a nonce N, encrypted with S;roxy. By decrypting
S;roxy (N) and returning N, Bob proves he knows the secret and is thus the rightful
holder of the certificate. There are other ways to implement secure delegation as
well, but the basic idea is always the same: show you know a secret.

9.S SUMMARY

Security plays an extremely important role in distributed systems. A distrib-
uted system should provide the mechanisms that allow a variety of different secu-
rity policies to be enforced. Developing and properly applying those mechanisms
generally makes security a difficult engineering exercise.

440 SECURITY CHAP. 9

Three important issues can be distinguished. The first issue is that a distrib-
uted system should offer facilities to establish secure channels between processes.
A secure channel. in principle, provides the means to mutually authenticate the
communicating parties, and protect messages against tampering during their
transmission. A secure channel generally also provides confidentiality so that no
one but the communicating parties can read the messages that go through the
channel.

An important design issue is whether to use only a symmetric cryptosystem
(which is based on shared secret keys), or to combine it with a public-key system.
Current practice shows the use of public-key cryptography for distributing short-
term shared secret keys. The latter are known as session keys.

The second issue in secure distributed systems is access control, or authoriza-
tion. Authorization deals with protecting resources in such a way that only proc-
esses that have the proper access rights can actual access and use those resources.
Access control always take place after a process has been authenticated. Related
to access control is preventing denial-of-service, which turns out to a difficult
problem for systems that are accessible through the Internet.

There are two ways of implementing access control. First, each resource can
maintain an access control list, listing exactly the access rights of each user or
process. Alternatively, a process can carry a certificate stating precisely what its
rights are for a particular set of resources. The main benefit of using certificates is
that a process can easily pass its ticket to another process, that is, delegate its ac-
cess rights. Certificates, however, have the drawback that they are often difficult
to revoke.

Special attention is needed when dealing with access control in the case of
mobile code. Besides being able to protect mobile code against a malicious host, it
is generally more important to protect a host against malicious mobile code.
Several proposals have been made, of which the sandbox is currently the most
widely-applied one. However, sandboxes are rather restrictive, and more flexible
approaches based on true protection domains have been devised as well.

The third issue in secure distributed systems concerns management. There are
essentially two important subtopics: key management and authorization manage-
ment. Key management includes the distribution of cryptographic keys, for which
certificates as issued by trusted third parties play an important role. Important
with respect to authorization management are attribute certificates and delegation.

PROBLEMS

1. Which mechanisms could a distributed system provide as security services to applica-
tion developers that believe only in the end-to-end argument in system's design. as
discussed in Chap. 61

CtLA..P-.- 9 PROBLEMS 441

2. In the RISSC approach, can all security be concentrated on secure servers or not?

3. Suppose that you were asked to develop a distributed application that would allow
teachers to set up exams. Give at least three statements that would be part of the secu-
rity policy for such an application.

4. Would it be safe to join message 3 and message 4 in the authentication protocol shown
in Fig. 9-12, into KA.B(Rs,RA)?

5. Why is it not necessary in Fig. 9-15 for the KDC to know for sure it was talking to
Alice when it receives a request for a secret key that Alice can share with Bob?

6. What is wrong in implementing a nonce as a timestamp?

7. In message 2 of the Needham-Schroeder authentication protocol, 'the ticket is
encrypted with the secret key shared between Alice and the KDC. Is this encryption
necessary?

8. Can we safely adapt the authentication protocol shown in Fig. 9-19 such that message
3 consists only of RB?

9. Devise a simple authentication protocol using signatures in a public-key cryptosystem.

10. Assume Alice wants to send a message m to Bob. Instead of encrypting m with Bob's
public key Kt, she generates a session key KA.B and then sends [KA.B(m),Kt(KA.B)]·
Why is this scheme generally better? (Hint: consider performance issues.)

11•.What is the role of the timestamp in message 6 in Fig. 9-23, and why does it need to
be encrypted?

12. Complete Fig. 9-23 by adding the communication for authentication between Alice
and Bob.

13. How can role changes be expressed in an access control matrix?

14. How are ACLs implemented in a UNIX file system?

15. How can an organization enforce the use of a Web proxy gateway and prevent its
users to directly access external Web servers?

16. Referring to Fig. 9-31, to what extent does the use of Java object references as capa-
bilities actually depend on the Java language?

17. Name three problems that will be encountered when developers of interfaces to local
resources are required to insert calls to enable and disable privileges to protect against
unauthorized access by mobile programs as explained in the text.

18. Name a few advantages and disadvantages of using centralized servers for key
management.

19. The Diffie-Hellman key-exchange protocol can also be used to establish a shared
secret key between three parties. Explain how.

20. There is no authentication in the Diffie-Hellman key-exchange protocol. By exploiting
this property, a malicious third party, Chuck, can easily break into the key exchange
taking place between Alice and Bob, and subsequently ruin the security. Explain how
this would work.

442 SECURITY CHAP. 9

21. Give a straightforward way how capabilities in Amoeba can be revoked.

22. Does it make sense to restrict the lifetime of a session key? If so, give an example how
that could be established.

23. (Lab assignment) Install and configure a Kerberos v5 environment for a distributed
system consisting of three different machines. One of these machines should be run-
ning the KDC. Make sure you can setup a (Kerberos) telnet connection between any
two machines, but making use of only a single registered password at the KOC. Many
of the details on running Kerberos are explained in Garman (2003).

10
DISTRIBUTED

OBJECT-BASED SYSTEMS

With this chapter, we switch from our discussion of principles to an examina-
tion of various paradigms that are used to organize distributed systems. The first
paradigm consists of distributed objects. In distributed object-based systems, the
notion of an object plays a key role in establishing distribution transparency. In
principle, everything is treated as an object and clients are offered services and re-
sources in the form of objects that they can invoke.

Distributed objects form an important paradigm because it is relatively easy to
hide distribution aspects behind an object's interface. Furthermore, because an ob-
ject can be virtually anything, it is also a powerful paradigm for building systems.
In this chapter, we will take a look at how the principles of distributed systems are
applied to a number of well-known object-based systems. In particular, we cover
aspects of CORBA, Java-based systems, and Globe.

10.1 ARCHITECTURE

Object orientation forms an important paradigm in software development.
Ever since its introduction, it has enjoyed a huge popularity. This popularity stems
from the natural ability to build software into well-defined and more or less
independent components. Developers could concentrate on implementing specific
functionality independent from other developers.

443

444 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 10

Object orientation began to be used for developing distributed systems in the
1980s. Again, the notion of an independent object hosted by a remote server while
attaining a high degree of distribution transparency formed a solid basis for de-
veloping a new generation of distributed systems. In this section, we will first take
a deeper look into the general architecture of object-based distributed systems,
after which we can see how specific principles have been deployed in these sys-
tems.

10.1.1 Distributed Objects

The key feature of an object is that it encapsulates data. called the state, and
the operations on those data, called the methods. Methods are made available
through an interface. It is important to understand that there is no "legal" way a
process can access or manipulate the state of an object other than by invoking
methods made available to it via an object's interface. An object may implement
multiple interfaces. Likewise, given an interface definition, there may be several
objects that offer an implementation for it.

This separation between interfaces and the objects implementing these inter-
faces is crucial for distributed systems. A strict separation allows us to place an
interface at one machine, while the object itself resides on another machine. This
organization, which is shown in Fig. 10-1, is commonly referred to as a distrib-
uted object.

Figure 10-1. Common organization of a remote object with client-side proxy.

When a client binds to a distributed object. an implementation of the object"s
interface, called a proxy, is then loaded into the client's address space. A proxy is

SEC. 10.1 ARCHITECTURE 445

analogous to a client stub in RPC systems. The only thing it does is marshal meth-
od invocations into messages and unmarshal reply messages to return the result of
the method invocation to the client. The actual object resides at a server machine,
where it offers the same interface as it does on the client machine. Incoming invo-
cation requests are first passed to a server stub, which unmarshals them to make
method invocations at the object's interface at the server. The server stub is also
responsible for marshaling replies and forwarding reply messages to the client-
side proxy.

The server-side stub is often referred to as a skeleton as it provides the bare
means for letting the server middleware access the user-defined objects. In prac-
tice, it often contains incomplete code in the form of a language-specific class that
needs to be further specialized by the developer.

A characteristic, but somewhat counterintuitive feature of most distributed ob-
jects is that their state is not distributed: it resides at a single machine. Only the
interfaces implemented by the object are made available on other machines. Such
objects are also referred to as remote objects. In a general distributed object, the
state itself may be physically distributed across multiple machines, but this distri-
bution is also hidden from clients behind the object's interfaces.

Compile- Time versus Runtime Objects

Objects in distributed systems appear in many forms. The most obvious form
is the one that is directly related to language-level objects such as those supported
by Java, C++, or other object-oriented languages, which are referred to as
compile-time objects. In this case, an object is defined as the instance of a class.
A class is a description of an abstract type in terms of a module with data ele-
ments and operations on that data (Meyer, 1997).

Using compile-time objects in distributed systems often makes it much easier
to build distributed applications. For example, in Java, an object can be fully de-
fined by means of its class and the interfaces that the class implements. Compiling
the class definition results in code that allows it to instantiate Java objects. The in-
terfaces can be compiled into client-side and server-side stubs, allowing the Java
objects to be invoked from a remote machine. A Java developer can be largely
unaware of the distribution of objects: he sees only Java programming code.

The obvious drawback of compile-time objects is the dependency on a partic-
ular programming language. Therefore, an alternative way of constructing distrib-
uted objects is to do this explicitly during runtime. This approach is followed in
many object-based distributed systems, as it is independent of the programming
language in which distributed applications are written. In particular, an applica-
tion may be constructed from objects written in multiple languages.

When dealing with runtime objects, how objects are actually implemented is
basically left open. For example, a developer may choose to write a C library con-
taining a number of functions that can all work on a common data file. The

446 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 10

essence is how to let such an implementation appear to be an object whose meth-
ods can be invoked from a remote machine. A common approach is to use an ob-
ject adapter, which acts as a wrapper around the implementation with the sole
purpose to give it the appearance of an object. The term adapter is derived from a
design pattern described in Gamma et al. (1994), which allows an interface to be
converted into something that a client expects. An example object adapter is one
that dynami<.:aUybinds to the C library mentioned above and opens an associated
data file representing an object's current state.

Object adapters play an important role in object-based distributed systems. To
make \\Tapping as easy as possible, objects are solely defined in terms of the in-
terfaces they implement. An implementation of an interface can then be registered
at an adapter, which can subsequently make that interface available for (remote)
invocations. The adapter will take care that invocation requests are carried out,
and thus provide an image of remote objects to its clients. We return to the organi-
zation of ohject servers and adapters later in this chapter.

Persistent and Transient Objects

Besides the distinction between language-level objects and runtime objects,
there is also a distinction between persistent and transient objects. A persistent
object is 011<.: that continues to exist even if it is currently not contained in the ad-
dress space of any server process. In other words, a persistent object is not depen-
dent on its current server. In practice, this means that the server that is currently
managing the persistent object, can store the object's state on secondary storage
and then exit. Later, a newly started server can read the object's state from storage
into its own address space, and handle invocation requests. In contrast, a tran-
sient object is an object that exists only as long as the server that is hosting the
object. As S'lon as that server exits, the object ceases to exist as well. There used
to be much controversy about having persistent objects; some people believe that
transient O~.K'ctsare enough. To take the discussion away from middleware issues,
most object-hased distributed systems simply support both types.

10.1.2 Exulnple: Enterprise Java Beans

The Jav., programming language and associated model has formed the foun-
dation for numerous distributed systems and applications. Its popularity can be
attributed to the straightforward support for object orientation, combined with the
inherent SUpport for remote method invocation. As we will discuss later in this
chapter, Jav., provides a high degree of access transparency, making it easier to
use than, foi example, the combination of C with remote procedure calling.

Ever sin\.'t' its introduction, there has been a strong incentive to provide facili-
ties that won III ease the development of distributed applications. These facilities
go well bey, \Ild language support, requiring a runtime environment that supports

SEC. 10.1 ARCHITECTURE 447

traditional multitiered client-server architectures. To this end, much work has
been put into the development of (Enterprise) Java Beans (EJB).

An EJB is essentially a Java object that is hosted by a special server offering
different ways for remote clients to invoke that object. Crucial is that this server
provides the support to separate application functionality from systems-oriented
functionality. The latter includes functions for looking up objects, storing objects,
letting objects be part of a transaction, and so on. How this separation can be real-
ized is discussed below when we concentrate on object servers. How to develop
EJBs is described in detail by Monson-Hafael et al. (2004). The specifications
can be found in Sun Microsystems (2005a).

Figure 10-2. General architecture of an EJB server.

With this separation in mind, EJBs can be pictured as shown in Fig. 10-2.
The important issue is that an EJB is embedded inside a container which effec-
tively provides interfaces to underlying services that are implemented by the ap-
plication server. The container can more or less automatically bind the EJB to
these services, meaning that the correct references are readily available to a pro-
grammer. Typical services include those for remote method invocation (RMI),
database access (JDBC), naming (JNDI), and messaging (JMS). Making use of
these services is more or less automated, but does require that the programmer
makes a distinction between four kinds of EJBs:

1. Stateless session beans

2. Stateful session beans

3. Entity beans

4. Message-driven beans

448 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 10

As its name suggests, a stateless session bean is a transient object that is
invoked once, does its work, after which it discards any information it nl'l'lkd to
perform the service it offered to a client. For example, a stateless session bean
could be used to implement a service that lists the top-ranked books. In this case,
the bean would typically consist of an SQL query that is submitted to an dawhase.
The results would be put into a special format that the client can handle. utter
which its work would have been completed and the listed books discarded.

In contrast, a stateful session bean maintains client-related state. The r:lIHmi-
cal example is a bean implementing an electronic shopping cart like those "ilkly
deployed for electronic commerce. In this case, a client would typically be abk to
put things in a cart, remove items, and use the cart to go to an electronic c1ll,,'kllut.
The bean, in tum, would typically access databases for getting current prirr~and
information on number of items still in stock. However, its lifetime would still he
limited, which is why it is referred to as a session bean: when the client is finished
(possibly having invoked the object several times), the bean will automatically he
destroyed.

An entity bean can be considered to be a long-lived persistent objr,'1. As
such, an entity bean will generally be stored in a database, and likewise, will, -ttcn
also be part of distributed transactions. Typically, entity beans store infonl\;IIion
that may be needed a next time a specific client access the server. In setlill~s for
electronic commerce, an entity bean can be used to record customer inforlll:l1ion,
for example, shipping address, billing address, credit card information, and s,' on.
In these cases, when a client logs in, his associated entity bean will be n'sh'red
and used for further processing.

Finally, message-driven beans are used to program objects that should react
to incoming messages (and likewise, be able to send messages). Message-driyen
beans cannot be invoked directly by a client, but rather fit into a publish-suh" .:ribe
way of communication, which we briefly discussed in Chap. 4. What it boils
down to is that a message-driven bean is automatically called by the server when
a specific message m is received, to which the server (or rather an application it is
hosting) had previously subscribed. The bean contains application code hu han-
dling the message, after which the server simply discards it. Message·driven
beans are thus seen to be stateless. We will return extensively to this type Ill' :I.)m-
munication in Chap. 13.

10.1.3 Example: Globe Distributed Shared Objects

Let us now take a look at a completely different type of object-based dl:-rrib-
uted system. Globe is a system in which scalability plays a central rolt'. All
aspects that deal with constructing a large-scale wide-area system that can surport
huge numbers of users and objects drive the design of Globe. Fundamental h) this
approach is the way objects are viewed. Like other object-based systems. ,lr5ects
in Globe are expected to encapsulate state and operations on that state.

SEC. 10.1 ARCHITECTURE 449

~ important difference with other object-based systems is that objects are
also expected to encapsulate the implementation of policies that prescribe the dis-
tribution of an object's state across multiple machines. In other words, each object
determines how its state will be distributed over its replicas. Each object also con-
trols its own policies in other areas as well.

By and large, objects in Globe are put in charge as much as possible. For ex-
ample, an object decides how, when, and where its state should be migrated. Also,
an object decides if its state is to be replicated, and if so, how replication should
take place. In addition, an object may also determine its security policy and
implementation. Below, we describe how such encapsulation is achieved.

Object Model

Unlike most other object-based distributed systems, Globe does not adopt the
remote-object modeL Instead, objects in Globe can be physically distributed,
meaning that the state of an object can be distributed and replicated across multi-
ple processes. This organization is shown in Fig. 10-3, which shows an object that
is distributed across four processes, each running on a different machine. Objects
in Globe are referred to as distributed shared objects, to reflect that objects are
normally shared between several processes. The object model originates from the
distributed objects used in Orca as described in Bal (1989). Similar approaches
have been followed for fragmented objects (Makpangou et aL, 1994).

Figure 10-3. The organization of a Globe distributed shared object.

A process that is bound to a distributed shared object is offered a local imple-
mentation of the interfaces provided by that object. Such a local implementation is
called a local representative, or simply local object. In principle, whether or not
a local object has state is completely transparent to the bound process. All imple-
mentation details of an object are hidden behind the interfaces offered to a proc-
ess. The only thing visible outside the local object are its methods.

450 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 10

Globe local objects come in two flavors. A primitive local object is a local
object that does not contain any other local objects. In contrast. a composite local
object is an object that is composed of multiple (possibly composite) local ob-
jects. Composition is used to construct a local object that is needed for implemen-
ting distributed shared objects. This local object is shown in Fig. 10-4 and consists
of at least four subobjects.

Figure 10-4. The general organization of a local object for distributed shared
objects in Globe.

The semantics subobject implements the functionality provided by a distrib-
uted shared object. In essence, it corresponds to ordinary remote objects, similar
in flavor to EIBs.

The communication snbobject is used to provide a standard interface to the
underlying network. This subobject offers a number of message-passing primi-
tives for connection-oriented as well as connectionless communication. There are
also more advanced communication subobjects available that implement multi-
casting interfaces. Communication subobjects can be used that implement reliable
communication, while others offer only unreliable communication.

Crucial to virtually all distributed shared objects is the replication subobject.
This subobject implements the actual distribution strategy for an object. As in the
case of the communication subobject, its interface is standardized. The replication
subobject is responsible for deciding exactly when a method as provided by the
semantics subobject is to be carried out. For example, a replication subobject that
implements active replication will ensure that all method invocations are carried
out in the same order at each replica. In this case, the subobject will have to com-
municate with the replication subobjects in other local objects that comprise the
distributed shared object.

SEC. 10.1 ARCHITECTURE 451

The control. subobject is used as an intermediate between the user-defined
interfaces of the semantics subobject and the standardized interfaces of the repli-
cation subobject. In addition, it is responsible for exporting the interfaces of the
semantics subobject to the process bound to the distributed shared object. All
method invocations requested by that process are marshaled by the control subob-
ject and passed to the replication subobject.

The replication subobject will eventually allow the control subobject to carry
on with an invocation request and to return the results to the process. Likewise,
invocation requests from remote processes are eventually passed to the control
subobject as well. Such a request is then unmarshaled, after which the invocation
is carried out by the control subobject, passing results back to the replication
subobject.

10.2 PROCESSES
A key role in object-based distributed systems is played by object servers, that

is, the server designed to host distributed objects. In the following, we first con-
centrate on general aspects of object servers, after which we will discuss the
open-source JBoss server.

10.2.1 Object Servers

An object server is a server tailored to support distributed objects. The impor-
tant difference between a general object server and other (more traditional) ser-
vers is that an object server by itself does not provide a specific service. Specific
services are implemented by the objects that reside in the server. Essentially, the
server provides only the means to invoke local objects, based on requests from re-
mote clients. As a consequence, it is relatively easy to change services by simply
adding and removing objects.

An object server thus acts as a place where objects live. An object consists of
two parts: data representing its state and the code for executing its methods.
Whether or not these parts are separated, or whether method implementations are
shared by multiple objects, depends on the object server. Also, there are differ-
ences in the wayan object server invokes its objects. For example, in a mul-
tithreadedserver, each object may be assigned a separate thread, or a separate
thread may be used for each invocation request. These and other issues are dis-
cussed next.

Alternatives for Invoking Objects

For an object to be invoked, the object server needs to know which code to
execute, on which data it should operate, whether it should start a separate thread
to take care of the invocation, and so on. A simple approach is to assume that all

452 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 10

objects look alike and that there is only one way to invoke an object. Unfor-
tunately. such an approach is generally inflexible and often unnecessarily con-
strains developers of distributed objects.

A much better approach is for a server to support different policies. Consider,
for example, transient objects. RecaJI that a transient object is an object that exists
only as long as its server exists, but possibly for a shorter period of time. An in-
memory, read-only copy of a file could typically be implemented as a transient
object. Likewise, a calculator could also be implemented as a transient object. A
reasonable policy is to create a transient object at the first invocation request and
to destroy it as soon as no clients are bound to it anymore.

The advantage of this approach is that a transient object will need a server's
resources only as long as the object is really needed. The drawback is that an in-
vocation may take some time to complete, because the object needs to be created
first. Therefore, an alternative policy is sometimes to create all transient objects at
the time the server is initialized, at the cost of consuming resources even when no
client is making use of the object.

In a similar fashion, a server could follow the policy that each of its objects is
placed in a memory segment of its own. In other words, objects share neither code
nor data. Such a policy may be necessary when an object implementation does not
separate code and data, or when objects need to be separated for security reasons.
In the latter case, the server will need to provide special measures, or require sup-
port from the underlying operating system, to ensure that segment boundaries are
not violated. .

The alternative approach is to let objects at least share their code. For ex-
ample, a database containing objects that belong to the same class can be effi-
ciently implemented by loading the class implementation only once into the ser-
ver. When a request for an object invocation comes in, the server need only fetch
that object's state from the database and execute the requested method.

Likewise, there are many different policies with respect to threading. The
simplest approach is to implement the server with only a single thread of control.
Alternatively, the server may have several threads, one for each of its objects.
Whenever an invocation request comes in for an object, the server passes the re-
quest to the thread responsible for that object. If the thread is currently busy, the
request is temporarily queued.

The advantage of this approach is that objects are automatically protected
against concurrent access: all invocations are serialized through the single thread
associated with the object. Neat and simple. Of course, it is also possible to use a
separate thread for each invocation request, requiring that objects should have
already been protected against concurrent access. Independent of using a thread
per object or thread per method is the choice of whether threads are created on
demand or the server maintains a pool of threads. Generally there is no single best
policy. Which one to use depends on whether threads are available, how much
performance matters, and similar factors.

SEC. 10.2 PROCESSES 453

Object Adapter

Decisions on how to invoke an object are commonly referred to as activation
policies, to emphasize that in many cases the object itself must first be brought
into the server's address space (i.e., activated) before it can actually be invoked.
What is needed then is a mechanism to group objects per policy. Such a mechan-
ism is sometimes called an object adapter, or alternatively an object wrapper.
An object adapter can best be thought of as software implementing a specific ac-
tivation policy. The main issue, however, is that object adapters come as generic
components to assist developers of distributed objects, and which need only to be
configured for a specific policy.

An object adapter has one or more objects under its control. Because a server
should be capable of simultaneously supporting objects that require different
activation policies, several object adapters may reside in the same server at the
same time. When an invocation request is delivered to the server, that request is
first dispatched to the appropriate object adapter, as shown in Fig. 10-5.

Figure 10-5. Organization of an object server supporting different activation policies.

An important observation is that object adapters are unaware of the specific
interfaces of the objects they control. Otherwise, they could never be generic. The
only issue that is important to an object adapter is that it can extract an object ref-
erence from an invocation request, and subsequently dispatch the request to the
referenced object, but now following a specific activation policy. As is also 0;-
lustrated in Fig. 10-5, rather than passing the request directly to the object, an

454 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 10

adapter hands an invocation request to the server-side stub of that object. The
stub, also called a skeleton, is normally generated from the interface definitions of
the object, unmarshals the request and invokes the appropriate method.

An object adapter can support different activation policies by simply configur-
ing it at runtime. For example, in CORBA-compliant systems (OMG, 2004a), it is
possible to specify whether an object should continue to exist after its associated
adapter has stopped. Likewise, an adapter can be configured to generate object i-
dentifiers, or to let the application provide one. As a final example, an adapter can
be configured to operate in single-threaded or multithreaded mode as we ex-
plained above.

As a side remark, note that although in Fig. 10-5 we have spoken aboutob-
jects, we have said nothing about what these objects actually are. In particular, it
should be stressed that as part of the implementation of such an object the server
may (indirectly) access databases or call special library routines. The implementa-
tion details are hidden for the object adapter who communicates only with a skele-
ton. As such. the actual implementation may have nothing to do with what we
often see with language-level (i.e., compile-time) objects. For this reason, a dif-
ferent terminology is generally adopted. A servant is the general term for a piece
of code that forms the implementation of an object. In this light, a Java bean can
be seen as nothing but just another kind of servant.

10.2.2 Example: The Ice Runtime System

Let us take a look at how distributed objects are handled in practice. We
briefly consider the Ice distributed-object system, which has been partly de-
veloped in response to the intricacies of commercial object-based distributed sys-
tems (Henning, 2004). In this section, we concentrate on the core of an Ice object
server and defer other parts of the system to later sections.

An object server in Ice is nothing but an ordinary process that simply starts
with initializing the Ice runtime system (RTS). The basis of the runtime environ-
ment is formed by what is called a communicator. A communicator is a compon-
ent that manages a number of basic resources, of which the most important one is
formed by a pool of threads. Likewise, it will have associated dynamically allo-
cated memory, and so on. In addition, a communicator provides the means for
configuring the environment. For example, it is possible to specify maximum
message lengths, maximum invocation retries, and so on.

Normally, an object server would have only a single communicator. However,
when different applications need to be fully separated and protected from each
other, a separate communicator (with possibly a different configuration) can be
created within the same process. At the very least, such an approach would sepa-
rate the different thread pools so that if one application has consumed all its
threads, then this would not affect the other application.

SEC. 10.2 PROCESSES 455

A communicator can also be used to create an object adapter, such as shown
in Fig. 10-6. We note that the code is simplified and incomplete. More examples
and detailed information on Ice can be found in Henning and Spruiell (2005).

Figure 10-6. Example of creating an object server in Ice.

In this example, we start with creating and initializing the runtime environ-
ment. When that is done, an object adapter is created. In this case, it is instructed
to listen for incoming TCP connections on port 10000. Note that the adapter is
created in the context of the just created communicator. We are now in the posi-
tion to create an object and to subsequently add that object to the adapter. Finally,
the adapter is activated, meaning that, under the hood. a thread is activated that
will start listening for incoming requests.

This code does not yet show much differentiation in activation policies. Poli-
cies can be changed by modifying the properties of an adapter. One family of pro-
perties is related to maintaining an adapter-specific set of threads that are used for
handling incoming requests. For example, one can specify that there should al-
ways be only one thread, effectively serializing all accesses to objects that have
been added to the adapter.

Again, note that we have not specified MyObject. Like before, this could be a
simple C++ object. but also one that accesses databases and other external ser-
vices that jointly implement an object. By registering MyObject with an adapter,
such implementation details are completely hidden from clients, who now believe
that they are invoking a remote object.

In the example above, an object is created as part of the application, after
which it is added to an adapter. Effectively, this means that an adapter may need
to support many objects at the same time, leading to potential scalability prob-
lems. An alternative solution is to dynamically load objects into memory when
they are needed. To do this, Ice provides support for special objects known as
locators. A locator is called when the adapter receives an incoming request for an

456 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 10

object that has not been explicitly added. In that case, the request is forwarded to
the locator, whose job is to further handle the request.

To make matters more concrete, suppose a locator is handed a request for an
object of which the locator knows that its state is stored in a relational database
system. Of course, there is no magic here: the locator has been programmed expli-
citly to handle such requests. In this case, the object's identifier may correspond
to the key of a record in which that state is stored. The locator will then simply do
a lookup on that key, fetch the state, and will then be able to further process the
request.

There can be more than one locator added to an adapter. In that case, the
adapter would keep track of which object identifiers would belong to the same
locator. Using multiple locators allows supporting many objects by a single
adapter. Of course, objects (or rather their state) would need to be loaded at run-
time, but this dynamic behavior would possibly make the server itself relatively
simple.

10.3 COMMUNICATION

We now draw our attention to the way communication is handled in object-
based distributed systems. Not surprisingly, these systems generally offer the
means for a remote client to invoke an object. This mechanism is largely based on
remote procedure calls (RPCs), which we discussed extensively in Chap. 4. How-
ever, before this can happen, there are numerous issues that need to be dealt with.

10.3.1 Binding a Client to an Object

An interesting difference between traditional RPC systems and systems sup-
porting distributed objects is that the latter generally provides systemwide object
references. Such object references can be freely passed between processes on dif-
ferent machines, for example as parameters to method invocations. By hiding the
actual implementation of an object reference, that is. making it opaque, and
perhaps even using it as the only way to reference _objects, distribution trans-
parency is enhanced compared to traditional RPCs.

When a process holds an object reference, it must first bind to the referenced
object before invoking any of its methods. Binding results in a proxy being placed
in the process's address space, implementing an interface containing the methods
the process can invoke. In many cases, binding is done automatically. When the
underlying system is given an object reference, it needs a way to locate the server
that manages the actual object, and place a proxy in the client's address space.

With implicit binding, the client is offered a simple mechanism that allows it
to directly invoke methods using only a reference to an object. For example, C++

SEC. 10.3 COMMUNICATION 457

allows overloading the unary member selection operator ("-7") permitting us to
introduce object references as if they were ordinary pointers as shown in Fig. 10-
7(a). With implicit binding, the client is transparently bound to the object at the
moment the reference is resolved to the actual object. In contrast, with explicit
binding. the client should first call a special function to bind to the object before
it can actually invoke its methods. Explicit binding generally returns a pointer to a
proxy that is then become locally available, as shown in Fig. 10-7(b).

Figure 10-7. (a) An example with implicit binding using only global references.
(b) An example with explicit binding using global and local references.

Implementation of Object References

It is clear that an object reference must contain enough information to allow a
client to bind to an object. A simple object reference would include the network
address of the machine where the actual object resides, along with an end point
identifying the server that manages the object, plus an indication of which object.
Note that part of this information will be provided by an object adapter. However,
there are a number of drawbacks to this scheme.

First, if the server's machine crashes and the server is assigned a different end
point after recovery, all object references have become invalid. This problem can
be solved as is done in DCE: have a local daemon per machine listen to a well-
known end point and keep track of the server-to-end point assignments in an end
point table. When binding a client to an object, we first ask the daemon for the
server's current end point. This approach requires that we encode a server ID into
the object reference that can be used as an index into the end point table. The
server, in tum, is always required to register itself with the local daemon.

However, encoding the network address of the server's machine into an object
reference is not always a good idea. The problem with this approach is that the
server can never move to another machine without invalidating all the references
to the objects it manages. An obvious solution is to expand the idea of a local

458 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 10

daemon maintaining an end point table to a location server that keeps track of the
machine where an object's server is currently running. An object reference would
then contain the network address of the location server, along with a systemwide
identifier for the server. Note that this solution comes close to implementing flat
name spaces as we discussed in Chap. 5.

What we have tacitly assumed so far is that the client and server have some-
how already been configured to use the same protocol stack. Not only does this
mean that they use the same transport protocol, for example, TCP; furthermore it
means that they use the same protocol for marshaling and unmarshaling parame-
ters. They must also use the same protocol for setting up an initial connection,
handle errors and flow control the same way, and so on.

We can safely drop this assumption provided we add more information in the
object reference. Such information may include the identification of the protocol
that is used to bind to an object and of those that are supported by the object's
server. For example, a single server may simultaneously support data coming in
over a TCP connection, as well as incoming UDP datagrams. It is then the client's
responsibility to get a proxy implementation for at least one of the protocols iden-
tified in the object reference.

We can even take this approach one step further, and include an implementa-
tion handle in the object reference, which refers to a complete implementation of
a proxy that the client can dynamically load when binding to the object. For ex-
ample, an implementation handle could take the form of a URL pointing to an
archive file, such as jtp:l/ftp.clientware.orglproxies!javaiproxy-v}.}a.zip. The
binding protocol would then only need to prescribe that such a file should be
dynamically downloaded, unpacked, installed, and subsequently instantiated. The
benefit of this approach is that the client need not worry about whether it has an
implementation of a specific protocol available. In addition, it gives the object
developer the freedom to design object-specific proxies. However, we do need to
take special security measures to ensure the client that it can trust the downloaded
code.

10.3.2 Static versus Dynamic Remote Method Invocations

After a client is bound to an object, it can invoke the object's methods through
the proxy. Such a remote method invocation. or simply RMI, is very similar to
an RPC when it comes to issues such as marshaling and parameter passing. An
essential difference between an RMI and an RPC is that RMIs generally support
systemwide object references as explained above. Also, it is not necessary to have
only general-purpose client-side and server-side stubs available. Instead, we can
more easily accommodate object-specific stubs as we also explained.

The usual way to provide RMI support is to specify the object's interfaces in
an interface definition language, similar to the approach followed with RPCs.

SEC. 10.3 COMMUNICATION 459

Alternatively. we can make use of an object-based language such as Java, that
will handle stub generation automatically. This approach of using predefined in-
terface definitions is generally referred to as static invocation. Static invocations
require that the interfaces of an object are known when the client application is
being developed. It also implies that if interfaces change, then the client applica-
tion must be recompiled before it can make use of the new interfaces.

As an alternative, method invocations can also be done in a more dynamic
fashion. In particular, it is sometimes convenient to be able to compose a method
invocation at runtime, also referred to as a dynamic invocation. The essential
difference with static invocation is that an application selects at runtime which
method it will invoke at a remote object. Dynamic invocation generally takes a
form such as

invoke(object, method, inpuLparameters, outpuLparameters);

where object identifies the distributed object, method is a parameter specifying
exactly which method should be invoked, input-parameters is a data structure that
holds the values of that method's input parameters, and output-parameters refers
to a data structure where output values can be stored.

For example, consider appending an integer int to a file object fobject, for
which the object provides the method append. In this case, a static invocation
would take the form

where the operation id(append) returns an identifier for the method append.
To illustrate the usefulness of dynamic invocations, consider an object

browser that is used to examine sets of objects. Assume that the browser supports
remote object invocations. Such a browser is capable of binding to a distributed
object and subsequently presenting the object's interface to its user. The user
could then be asked to choose a method and provide values for its parameters,
after which the browser can do the actual invocation. Typically, such an object
browser should be developed to support any possible interface. Such an approach
requires that interfaces can be inspected at runtime, and that method invocations
can be dynamically constructed.

Another application of dynamic invocations is a batch processing service to
which invocation requests can be handed along with a time when the invocation
should be done. The service can be implemented by a queue of invocation re-
quests, ordered by the time that invocations are to be done. The main loop of the
service would simply wait until the next invocation is scheduled, remove the re-
quest from the queue, and call invoke as given above.

460 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP.]0

10.3.3 Parameter Passing

Because most RMI systems support systemwide object references, passing pa-
rameters in method invocations is generally less restricted than in the case of
RPCs. However. there are some subtleties that can make RMls trickier than one
might initially expect. as we briefly discuss in the following pages.

Let us first consider the situation that there are only distributed objects. 'In
other words. all objects in the system can be accessed from remote machines. In
that case, we can consistently use object references as parameters in method invo-
cations. References are passed by value, and thus copied from one machine to the
other. When a process is given an object reference as the result of a method invo-
cation, it can simply bind to the object referred to when needed later.

Unfortunately, using only distributed objects can be highly inefficient, espe-
cially when objects are small, such as integers, or worse yet, Booleans. Each invo-
cation by a client that is not colocated in the same server as the object, generates a
request between different address spaces or, even worse; between different ma-
chines. Therefore, references to remote objects and those to local objects are often
treated differently.

When invoking a method with an object reference as parameter, that reference
is copied and passed as a value parameter only when it refers to a remote object.
In this case, the object is literally passed by reference. However, when the refer-
ence refers to a local object, that is an object in the same address space as the cli-
ent, the referred object is copied as a whole and passed along with the invocation.
In other words, the object is passed by value.

These two situations are illustrated in Fig. 10-8, which shows a client program
running on machine A, and a server program on machine C. The client has a refer-
ence to a local object 0 1 that it uses as a parameter when calling the server pro-
gram on machine C. In addition, it holds a reference to a remote object 02 resid-
ing at machine B, which is also used as a parameter. When calling the server, a
copy of 0 1 is passed to the server on machine C, along with only a copy of the
reference to 0 2.

Note that whether we are dealing with a reference to a local object or a refer-
ence to a remote object can be highly transparent, such as in Java. In Java, the dis-
tinction is visible only because local objects are essentially of a different data type
than remote objects. Otherwise, both types of references are treated very much the
same [see also Wollrath et al. (1996)]. On the other hand, when using conven-
tional programming languages such as C, a reference to a local object can be as
simple as a pointer, which can never be used to refer to a remote object.

The side effect of invoking a method with an object reference as parameter is
that we may be copying an object. Obviously, hiding this aspect is unacceptable,
so that we are consequently forced to make an explicit distinction between local
and distributed objects. Clearly, this distinction not only violates distribution tran-
sparency, but also makes it harder to write distributed applications.

Figure 10-8. The situation when passing an object by reference or by value.

10.3.4 Example: Java RMI

In Java, distributed objects have been integrated into the language. An impor-
tant goal was to keep as much of the semantics of nondistributed objects as pos-
sible. In other words, the Java language developers have aimed for a high degree
of distribution transparency. However, as we shall see, Java's developers have
also decided to make distribution apparent where a high degree of transparency
was simply too inefficient, difficult, or impossible to realize.

The Java Distributed-Object Model

Java also adopts remote objects as the only form of distributed objects. Recall
that a remote object is a distributed object whose state always resides on a single
machine, but whose interfaces can be made available to remote processes. Inter-
faces are implemented in the usual way by means of a proxy, which offers exactly
the same interfaces as the remote object. A proxy itself appears as a local object
in the client's address space.

There are only a few, but subtle and important, differences between remote
objects and local objects. First, cloning local or remote objects are different. Clon-
ing a local object 0 results in a new object of the same type as 0 with exactly the
same state. Cloning thus returns an exact copy of the object that is cloned. These
semantics are hard to apply to a remote object. If we were to make an exact copy
of a remote object, we would not only have to clone the actual object at its server,
but also the proxy at each client that is currently bound to the remote object. Clon-
ing a remote object is therefore an operation that can be executed only by the
server. It results in an exact copy of the actual object in the server's address space.

461COMMUNICATIONSEC. 10.3

462 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 10

Proxies of the actual object are thus not cloned. If a client at a remote machine
wants access to the cloned object at the server, it will first have to bind to that ob-
ject again.

Java Remote Object Invocation

As the distinction between local and remote objects is hardly visible at the
language level, Java can also hide most of the differences during a remote method
invocation. For example, any primitive or object type can be passed as a parame-
ter to an RMI, provided only that the type can be marshaled. In Java terminology,
this means that it must be serializable. Although, in principle, most objects can
be serialized, serialization is not always allowed or possible. Typically, platform-
dependent objects such as file descriptors and sockets, cannot be serialized.

The only distinction made between local and remote objects during an RMI is
that local objects are passed by value (including large objects such as arrays),
whereas remote objects are passed by reference. In other words, a local object is
first copied after which the copy is used as parameter value. For a remote object, a
reference to the object is passed as parameter instead of a copy of the object, as
was also shown in Fig. 10-8.

In Java RMI, a reference to a remote object is essentially implemented as we
explained in Sec. 10.3.3. Such a reference consists of the network address and end
point of the server, as well as a local identifier for the actual object in the server's
address space. That local identifier is used only by the server. As we also
explained, a reference to a remote object also needs to encode the protocol stack
that is used by a client and the server to communicate. To understand how such a
stack is encoded in the case of Java RMI, it is important to realize that each object
in Java is an instance of a class. A class, in tum, contains an implementation of
one or more interfaces.

In essence, a remote object is built from two different classes. One class con-
tains an implementation of server-side code, which we call the server class. This
class contains an implementation of that part of the remote object that will be run-
ning on a server. In other words, it contains the description of the object's state, as
well as an implementation of the methods that operate on that state. The server-
side stub, that is, the skeleton, is generated from the interface specifications of the
object.

The other class contains an implementation of the client-side code, which we
call the client class. This class contains an implementation of a proxy. Like the
skeleton, this class is also generated from the object's interface specification. In
its simplest form, the only thing a proxy does is to convert each method call into a
message that is sent to the server-side implementation of the remote object, and
convert a reply message into the result if a method call. For each call, it sets up a
connection with the server, which is subsequently tom down when the call is fin-
ished. For this purpose, the proxy needs the server's network address and end

SEC. 10.3 COMMUNICATION 463

point as mentioned above. This information, along with the local identifier of the
object at the server, is always stored as part of the state of a proxy.

Consequently, a proxy has all the information it needs to let a client invoke
methods of the remote object. In Java, proxies are serializable. In other words, it
is possible to marshal a proxy and send it as a series of bytes to another process,
where it can be unmarshaled and used to invoke methods on the remote object. In
other words, a proxy can be used as a reference to a remote object.

This approach is consistent with Java's way of integrating local and distrib-
uted objects. Recall that in an RMI, a local object is passed by making a copy of
it, while a remote object is passed by means of a systemwide object reference. A
proxy is treated as nothing else but a local object. Consequently, it is possible to
pass a serializable proxy as parameter in an RMI. The side effect is that such a
proxy can be used as a reference to the remote object.

In principle, when marshaling a proxy, its complete implementation, that is,
all its state and code, is converted to a series of bytes. Marshaling the code like
this is not very efficient and may lead to very large references. Therefore, when
marshaling a proxy in Java, what actually happens is that an implementation
handle is generated, specifying precisely which classes are needed to construct the
proxy. Possibly, some of these classes first need to be downloaded from a remote
site. The implementation handle replaces the marshaled code as part of a remote-
object reference. In effect, references to remote objects in Java are in the order of
a few hundred bytes.

This approach to referencing remote objects is highly flexible and is one of
the distinguishing features of Java RMI (Waldo, 1998). In particular, it allows for
object-specific solutions. For example, consider a remote object whose state
changes only once in a while. We can tum such an object into a truly distributed
object by copying the entire state to a client at binding time. Each time the client
invokes a method, it operates on the local copy. To ensure consistency, each invo-
cation also checks whether the state at the server has changed, in which case the
local copy is refreshed. Likewise, methods that modify the state are forwarded to
the server. The developer of the remote object will now have to implement only
the necessary client-side code, and have it dynamically downloaded when the cli-
ent binds to the object.

Being able to pass proxies as parameters works only because each process is
executing the same Java virtual machine. In other words, each process is running
in the same execution environment. A marshaled proxy is simply unmarshaled at
the receiving side, after which its code can be executed. In contrast, in DCE for
example, passing stubs is out of the question, as different processes may be run-
ning in execution environments that differ with respect to language, operating sys-
tem, and hardware. Instead, a DCE process first needs to (dynamically) link in a
locally-available stub that has been previously compiled specifically for the proc-
ess's execution environment. By passing a reference to a stub as parameter in an
RPC, it is possible to refer to objects across process boundaries.

464 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 10

10.3.5 Object-Based Messaging

Although RMI is the preferred way of handling communication in object-
based distributed systems, messaging has also found its way as an important alter-
native. There are various object-based messaging systems available, and, as can
be expected, offer very much the same functionality. In this section we will take a
closer look at CORBA messaging, partly because it also provides an interesting
way of combining method invocation and message-oriented communication.

CORBA is a well-known specification for distributed systems. Over the years,
several implementations have come to existence, although it remains to be seen to
what extent CORBA itself will ever become truly popular. However, independent
of popularity, the CORBA specifications are comprehensive (which to many also
means they are very complex). Recognizing the popularity of messaging systems,
CORBA was quick to include a specification of a messaging service.

What makes messaging in CORBA different from other systems is its inherent
object-based approach to communication. In particular, the designers of the mes-
saging service needed to retain the model that all communication takes place by
invoking an object. In the case of messaging, this design constraint resulted in two
forms of asynchronous method invocations (in addition to other forms that were
provided by CORBA as well).

An asynchronous method invocation is analogous to an asynchronous RPC:
the caller continues after initiating the invocation without waiting for a result. In
CORBA's callback model, a client provides an object that implements an inter-
face containing callback methods. These methods can be called by the underlying
communication system to pass the result of an asynchronous invocation. An im-
portant design issue is that asynchronous method invocations do not affect the ori-
ginal implementation of an object. In other words, it is the client's responsibility
to transform the original synchronous invocation into an asynchronous one; the
server is presented with a normal (synchronous) invocation request.

Constructing an asynchronous invocation is done in two steps. First, the origi-
nal interface as implemented by the object is replaced by two new interfaces that
are to be implemented by client-side software only. One interface contains the
specification of methods that the client can call. None of these methods returns a
value or has any output parameter. The second interface is the callback interface.
For each operation in the original interface, it contains a method that will be call-
ed by the client's runtime system to pass the results of the associated method as
called by the client.

As an example, consider an object implementing a simple interface with just
one method:

int add(in int i, in int j, out int k);

Assume that this method takes two nonnegative integers i and j and returns i + j
as output parameter k. The operation is assumed to return -1 if the operation did

SEC. 10.3 COMMUNICATION 465

not complete successfully. Transforming the original (synchronous) method invo-
cation into an asynchronous one with callbacks is achieved by first generating the
following pair of method specifications (for our purposes, we choose convenient
names instead of following the strict rules as specified in OMG (2004a):

In effect, all output parameters from the original method specification are re-
moved from the method that is to be called by the client, and returned as input pa-
rameters of the callback operations. Likewise, if the original method specified a
return value, that value is passed as an input parameter to the callback operation.

The second step consists of compiling the generated interfaces. As a result,
the client is offered a stub that allows it to asynchronously invoke sendcb_add.
However, the client will need to provide an implementation for the callback inter-
face, in our example containing the method replycb_add. This last method is call-
ed by the client's local runtime system (RTS), resulting in an upcall to the client
application. Note that these changes do not affect the server-side implementation
of the object. Using this example, the callback model is summarized in Fig. 10-9.

Figure 10-9. CORBA's callback model for asynchronous method invocation.

As an alternative to callbacks, CORBA provides a polling model. In this
model, the client is offered a collection of operations to poll its local RTS for
incoming results. As in the callback model, the client is responsible for transform-
ing the original synchronous method invocations into asynchronous ones. Again,
most of the work can be done by automatically deriving the appropriate method
specifications from the original interface as implemented by the object.

Returning to our example, the method add will lead to the following two gen-
erated method specifications (again, we conveniently adopt our own naming con-
ventions):

466 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 10

The most important difference between the polling and callback models is that the
method replypolLadd will have to be implemented by the client's RTS. This im-
plementation can be automatically generated from interface specifications, just as
the client-side stub is automatically generated as we explained for RPCs. The pol-
ling model is summarized in Fig. 10-10. Again, notice that the implementation of
the object as it appears at the server's side does not have to be changed.

Figure 10-10. CORBA's polling model for asynchronous method invocation.

What is missing from the models described so far is that the messages sent be-
tween a client and a server, including the response to an asynchronous invocation,
are stored by the underlying system in case the client or server is not yet running.
Fortunately, most of the issues concerning- such persistent communication do not
affect the asynchronous invocation model discussed so far. What is needed is to
set up a collection of message servers that will allow messages (be they invoca-
tion requests or responses), to be temporarily stored until their delivery can take
place.

To this end, the COREA specifications also include interface definitions for
what are called routers, which are analogous to the message routers we discussed
in Chap. 4, and which can be implemented, for example, using IBM's WebSphere
queue managers.

Likewise, Java has its own Java Messaging Service (JMS) which is again
very similar to what we have discussed before [see Sun Microsystems (2004a)].
We will return to messaging more extensively in Chap. 13 when we discuss the
publish/subscribe paradigm.

10.4 NAMING

The interesting aspect of naming in object-based distributed systems evolves
around the way that object references are supported. We already described these
object references in the case of Java. where they effectively correspond to port-
able proxy implementations. However, this a language-dependent way of being
able to refer to remote objects. Again taking CORBA as an example, let us see

SEC. 10.4 NAMING 467
how basic naming can also be provided in a language and platform-independent
way. We also discuss a completely different scheme, which is used in the Globe
distributed system.

10.4.1 CORBA Object References

Fundamental to CORBA is the way its objects are referenced. When a client
holds an object reference, it can invoke the methods implemented by the refer-
enced object. It is important to distinguish the object reference that a client proc-
ess uses to invoke a method, and the one implemented by the underlying RTS.

A process (be it client or server) can use only a language-specific implemen-
tation of an object reference. In most cases, this takes the form of a pointer to a
local representation of the object. That reference cannot be passed from process A
to process B, as it has meaning only within the address space of process A.
Instead, process A will first have to marshal the pointer into a process-independent
representation. The operation to do so is provided by its RTS. Once marshaled,
the reference can be passed to process B, which can unmarshal it again. Note that
processes A and B may be executing programs written in different languages.

In contrast, the underlying RTS will have its own language-independent
representation of an object reference. This representation may even differ from
the marshaled version it hands over to processes that want to exchange a refer-
enee. The important thing is that when a process refers to an object, its underlying
RTS is implicitly passed enough information to know which object is actually
being referenced. Such information is normally passed by the client and server-
side stubs that are generated from the interface specifications of an object.

One of the problems that early versions of CORBA had was that each imple-
mentation could decide on how it represented an object reference. Consequently,
if process A wanted to pass a reference to process B as described above, this
would generally succeed only if both processes were using the same CORBA
implementation. Otherwise, the marshaled version of the reference held by proc-
ess A would be meaningless to the RTS used by process B.

Current CORBA systems all support the same language-independent repres-
entation of an object reference, which is called an Interoperable Object Refer-
ence or lOR. Whether or not a CORBA implementation uses IORs internally is
not all that important. However, when passing an object reference between two
different CORBA systems, it is passed as an lOR. An lOR contains all the infor-
mation needed to identify an object. The general layout of an lOR is shown in
Fig. 10-11, along with specific information for the communication protocol used
in CORBA.

Each lOR starts with a repository identifier. This identifier is assigned to an
interface so that it can be stored and looked up in an interface repository. It is used
to retrieve information on an interface at runtime, and can assist in, for example,

468 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 10

Figure 10-11. The organization of an lOR with specific information for IIOP.

type checking or dynamically constructing an invocation. Note that if this identi-
fier is to be useful, both the client and server must have access to the same inter-
face repository, or at least use the same identifier to identify interfaces.

The most important part of each lOR is formed by what are called tagged
profiles. Each such profile contains the complete information to invoke an ob-
ject. If the object server supports several protocols, information on each protocol
can be included in a separate tagged profile. CORBA used the Internet Inter-
ORB Protocol (IIOP) for communication between nodes. (An ORB or Object
Request Broker is the name used by CORBA for their object-based runtime sys-
tem.) nap is essentially a dedicated protocol for supported remote method invo-
cations. Details on the profile used for nap are also shown in Fig. 10-11.

The nap profile is identified by a ProfileID field in the tagged profile. Its
body consists of five fields. The IlOP version field identifies the version of nap
that is used in this profile.

The Host field is a string identifying exactly on which host the object is
located. The host can be specified either by means of a complete DNS domain
name (such as soling.cs.vu.nl), or by using the string representation of that host's
IF address, such as 130.37.24.11.

The Port field contains the port number to which the object's server is listen-
ing for incoming requests.

The Object key field contains server-specific information for demultiplexing
incoming requests to the appropriate object. For example, an object identifier gen-
erated by a CORBA object adapter will generally be part of such an object key.
Also, this key will identify the specific adapter.

Finally, there is a Components field that optionally contains more information
needed for properly invoking the referenced object. For example, this field may
contain security information indicating how the reference should be handled, or
what to do in the case the referenced server is (temporarily) unavailable.

SEC. lOA NAMING 469

10.4.2 Globe Object References

Let us now take a look at a different way of referencing objects. In Globe,
each distributed shared object is assigned a globally unique object identifier
(OlD), which is a 256-bit string. A Globe aID is a true identifier as defined in
Chap. 5. In other words, a Globe OlD refers to at most one distributed shared ob-
ject; it is never reused for another object; and each object has at most one aID.

Globe aIDs can be used only for comparing object references. For example,
suppose processes A and.B are each bound to a distributed shared object. Each
process can request the OlD of the object they are bound to. If and only if the two
aIDs are the same, then A and B are considered to be bound to the same object.

Unlike CORBA references, Globe aIDs cannot be used to directly contact an
object. Instead, to locate an object, it is necessary to look up a contact address for
that object in a location service. This service returns a contact address, which is
comparable to the location-dependent object references as used in CORBA and
other distributed systems. Although Globe uses its own specific location service,
in principle any of the location services discussed in Chap. 5 would do.

Ignoring some minor details, a contact address has two parts. The first one is
an address identifier by which the location service can identify the proper leaf
node to which insert or delete operations for the associated contact address are to
forwarded. Recall that because contact addresses are location dependent, it is im-
portant to insert and delete them starting at an appropriate leaf node.

'The second part consists of actual address information, but this information is
completely opaque to the location service. To the location service, an address is
just an array of bytes that can equally stand for an actual network address, a
marshaled interface pointer, or even a complete marshaled proxy.

Two kinds of addresses are currently supported in Globe. A stacked address
represents a layered protocol suite, where each layer is represented by the three-
field record shown in Fig. 10-12.

Figure 10-12. The representation of a protocol layer in a stacked contact address.

The Protocol identifier is a constant representing a known protocol. Typical
protocol identifiers include TCP, UDP, and IP. The Protocol address field con-
tains a protocol-specific address, such as TCP port number, or an IPv4 network
address. Finally, an Implementation handle can be optionally provided to indicate

470 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 10

where a default implementation for the protocol can be found. Typically, an im-
plementation handle is represented as a URL.

The second type of contact address is an instance address, which consists of
the two fields shown in Fig. 10-13. Again, the address contains an implementa-
tion handle, which is nothing but a reference to a file in a class repository where
an implementation of a local object can be found. That local object should be
loaded by the process that is currently binding to the object.

Figure 10-13. The representation of an instance contact address.

Loading follows a standard protocol, similar to class loading in Java. After the
implementation has been loaded and the local object created, initialization takes
place by passing the initialization string to the object. At that point, the object i-
dentifier has been completed resolved.

Note the difference in object referencing between CORBA and Globe, a dif-
ference which occurs frequently in distributed object-based systems. Where
CORBA references contain exact information where to contact an object, Globe
references require an additional lookup step to retrieve that information. This dis-
tinction also appears in systems such as Ice, where the CORBA equivalent is
referred to as a direct reference, and the Globe equivalent as an indirect reference
(Henning and Spruiell, 2005).

10.5 SYNCHRONIZATION

There are only a few issues regarding synchronization in distributed systems
that are specific to dealing with distributed objects. In particular, the fact that
implementation details are hidden behind interfaces may cause problems: when a
process invokes a (remote) object, it has no knowledge whether that invocation
will lead to invoking other objects. As a consequence, if an object is protected
against concurrent accesses, we may have a cascading set of locks that the invok-
ing process is unaware of, as sketched in Fig. 10-14(a).

In contrast, when dealing with data resources such as files or database tables
that are protected by locks, the pattern for the control flow is actually visible to
the process using those resources, as shown in Fig. 10-14(b). As a consequence,
the process can also exert more control at runtime when things go wrong, such as
giving up locks when it believes a deadlock has occurred. Note that transaction
processing systems generally follow the pattern shown in Fig. 10-14(b).

SEC. 10.5 SYNCHRONIZATION 471

Figure 10-14. Differences in control flow for locking objects

In object-based distributed systems it is therefore important to know where
and when synchronization takes place. An obvious location for synchronization is
at the object server. If multiple invocation requests for the same object arrive, the
server can decide to serialize those requests (and possibly keep a lock on an object
when it needs to do a remote invocation itself).

However, letting the object server maintain locks complicates matters in the
case that invoking clients crash. For this reason, locking can also be done at the
client side, an approach that has been adopted in Java. Unfortunately, this scheme
has its own drawbacks.

As we mentioned before, the difference between local and remote objects in
Java is often difficult to make. Matters become more complicated when objects
are protected by declaring its methods to be synchronized. If two processes sim-
ultaneously call a synchronized method, only one of the processes will proceed
while the other will be blocked. In this way, we can ensure that access to an ob-
ject's internal data is completely serialized. A process can also be blocked inside
an object, waiting for some condition to become true.

.Logically, blocking in a remote object is simple. Suppose that client A calls a
synchronized method of a remote object. To make access to remote objects look
always exactly the same as to local objects, it would be necessary to block A in
the client-side stub that implements the object's interface and to which A has
direct access. Likewise, another client on a different machine would need to be
blocked locally as well before its request can be sent to the server. The conse-
quence is that we need to synchronize different clients at different machines. As
we discussed in Chap. 6, distributed synchronization can be fairly complex.

An alternative approach would be to allow blocking only at the server. In
principle, this works fine, but problems arise when a client crashes while its invo-
cation is being handled by the server. As we discussed in Chap. 8, we may require
relatively sophisticated protocols to handle this situation, and which that may sig-
nificantly affect the overall performance of remote method invocations.

472 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 10

Therefore, the designers of Java RMI have chosen to restrict blocking on re-
mote objects only to the proxies (Wollrath et aI., 1996). This means that threads
in the same process will be prevented from concurrently accessing the same re-
mote object, but threads in different processes will not. Obviously, these syn-
chronization semantics are tricky: at the syntactic level (i.e., when reading source
code) we may see a nice, clean design. Only when the distributed application is
actually executed, unanticipated behavior may be observed that should have been
dealt with at design time. Here we see a clear example where striving for distribu-
tion transparency is not the way to go.

10.6 CONSISTENCY AND REPLICATION

Many object-based distributed systems follow a traditional approach toward
replicated objects, effectively treating them as containers of data with their own
special operations. As a result, when we consider how replication is handled in
systems supporting Java beans, or CORBA-compliant distributed systems, there is
not really that much new to report other than what we have discussed in Chap. 7.

For this reason, we focus on a few particular topics regarding consistency and
replication that are more profound in object-based distributed systems than others.
We will first consider consistency and move to replicated invocations.

10.6.1 Entry Consistency

As we mentioned in Chap. 7, data-centric consistency for distributed objects
comes naturally in the form of entry consistency. Recall that in this case, the goal
is to group operations on shared data using synchronization variables (e.g., in the
form of locks). As objects naturally combine data and the operations on that data,
locking objects during an invocation serializes access and keeps them consistent.

Although conceptually associating a lock with an object is simple, it does not
necessarily 'provide a proper solution when an object is replicated. There are two
issues that need to be solved for implementing entry consistency. The first one is
that we need a means to prevent concurrent execution of 'multiple invocations on
the same object. In other words, when any method of an object is being executed,
no other methods may be executed. This requirement ensures that access to the
internal data of an object is indeed serialized. Simply using local locking mechan-
isms will ensure this serialization.

The second issue is that in the case of a replicated object, we need to ensure
that all changes to the replicated state of the object are the same. In other words,
we need to make sure that no two independent method invocations take place on
different replicas at the same time. This requirement implies that we need to order
invocations such that each replica sees all invocations in the same order. This

SEC. 10.6 CONSISTENCY AND REPLICATION 473

requirement can generally be met in one of two ways: (1) using a primary-based
approach or (2) using totally-ordered multicast to the replicas.

In many cases, designing replicated objects is done by first designing a single
object, possibly protecting it against concurrent access through local locking, and
subsequently replicating it. If we were to use a primary-based scheme, then addi-
tional effort from the application developer is needed to serialize object invoca-
tions. Therefore, it is often convenient to assume that the underlying middleware
supports totally-ordered multicasting, as this would not require any changes at the
clients, nor would it require additional programming effort from application
developers. Of course, how the totally ordered multicasting is realized by the
middleware should be transparent. For all the application may know its imple-
mentation may use a primary-based scheme, but it could equally well be based on
Lamport clocks.

However, even if the underlying middleware provides totally-ordered multi-
casting, more may be needed to guarantee orderly object invocation. The problem
is one of granularity: although all replicas of an object server may receive invoca-
tion requests in the same order, we need to ensure that all threads in those servers
process those requests in the correct order as well. The problem is sketched in
Fig. 10-15.

Figure to-IS. Deterministic thread scheduling for replicated object servers.

Multithreaded (object) servers simply pick up an incoming request, pass it on
to an available thread, and wait for the next request to come in. The server's
thread scheduler subsequently allocates the CPU to runnable threads. Of course, if
the middleware has done its best to provide a total ordering for request delivery,
the thread schedulers should operate in a deterministic fashion in order not to mix
the ordering of method invocations on the same object. In other words, If threads

474 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 10

rl and rT from Fig. 10-15 handle the same incoming (replicated) invocation re-
quest, they should both be scheduled before r~and r~,respectively.

Of course, simply scheduling all threads deterministically is not necessary. In
principle, if we already have totally-ordered request delivery, we need only to
ensure that all requests for the same replicated object are handled in the order they
were delivered. Such an approach would allow invocations for different objects to
be processed concurrently, and without further restrictions from the thread sched-
uler. Unfortunately, only few systems exist that support such concurrency.

One approach, described in Basile et aI. (2002), ensures that threads sharing
the same (local) lock are scheduled in the same order on every replica. At the
basics lies a primary-based scheme in which one of the replica servers takes the
lead in determining, for a specific lock, which thread goes first. An improvement
that avoids frequent communication between servers is described in Basile et al.
(2003). Note that threads that do not share a lock can thus operate concurrently on
each server.

One drawback of this scheme is that it operates at the level of the underlying
operating system, meaning that every lock needs to be managed. By providing ap-
plication-level information, a huge improvement in performance can be made by
identifying only those locks that are needed for serializing access to replicated ob-
jects (Taiani et aI., 2005). We return to these issues when we discuss fault toler-
ance for Java.

Replication Frameworks

An interesting aspect of most distributed object-based systems is that by
nature of the object technology it is often possible to make a clean separation be-
tween devising functionality and handling extra-functional issues such as replica-
tion. As we explained in Chap. 2, a powerful mechanism to accomplish this
separation is formed by interceptors.

Babaoglu et al. (2004) describe a framework in which they use interceptors to
replicate Java beans for J2EE servers. The idea is relatively simple: invocations to
objects are intercepted at three different points, as also shown in Fig. 10-16:

1. At the client side just before the invocation is passed to the stub.

2. Inside the client's stub, where the interception forms part of the
replication algorithm.

3. At the server side, just before the object is about to be invoked.

The first interception is needed when it turns out that the caller is replicated.
In that case, synchronization with the other callers may be needed as we may be
dealing with a replicated invocation as discussed before.

SEC. 10.6 CONSISTENCY AND REPLICATION 475

Figure 10-16. A general framework for separating replication algorithms from
objects in an EJB environment.

Once it has been decided that the invocation can be carried out, the intercep-
tor in the client-side stub can take decisions on where to be forward the request to,
or possibly implement a fail-over mechanism when a replica cannot be reached.

Finally, the server-side interceptor handles the invocation. In fact, this inter-
ceptor is split into two. At the first point, just after the request has come in and be-
fore it is handed over to an adapter, the replication algorithm gets control. It can
then analyze for whom the request is intended allowing it to activate, if necessary,
any replication objects that it needs to carry out the replication. The second point
is just before the invocation, allowing the replication algorithm to, for example,
get and set attribute values of the replicated object.

The interesting aspect is that the framework can be set up independent of any
replication algorithm, thus leading to a complete separation of object functionality
and replication of objects.

10.6.2 Replicated Invocations

Another problem that needs to be solved is that of replicated invocations.
Consider an object A calling another object B as shown in Fig. 10-17. Object B is
assumed to call yet another object C. If B is replicated, each replica of B will, in
principle, call C independently. The problem is that C is now called multiple
times instead of only once. If the called method on C results in the transfer of
$100,000, then clearly, someone is going to complain sooner or later.

There are not many general-purpose solutions to solve the problem of repli-
cated invocations. One solution is to simply forbid it (Maassen et aI., 2001),
which makes sense when performance is at stake. However, when replicating for
fault tolerance, the following solution proposed by Mazouni et ale (1995) may be
deployed. Their solution is independent of the replication policy, that is, the exact
details of how replicas are kept consistent. The essence is to provide a replica-
tion-aware communication layer on top of which (replicated) objects execute.
When a replicated object B invokes another replicated object C, the invocation

476 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 10

Figure 10-17. The problem of replicated method invocations.

request is first assigned the same, unique identifier by each replica of B. At that
point, a coordinator of the replicas of B forwards its request to all the replicas of
object C, while the other replicas of B hold back their copy of the invocation re-
quest, as shown in Fig. lO-18(a). The result is that only a single request is for-
warded to each replica of C.

Figure 10-18. (a) Forwarding an invocation request from a replicated object to
another replicated object. (b) Returning a reply from one replicated object to an-
other.

The same mechanism is used to ensure that only a single reply message is re-
turned to the replicas of B. This situation is shown in Fig. lO-18(b). A coordinator

SEC. 10.6 CONSISTENCY AND REPLICATION 477
of the replicas of C notices it is dealing with a replicated reply message that has
been generated by each replica of C. However, only the coordinator forwards that
reply to the replicas of object B, while the other replicas of C hold back their copy
of the reply message.

When a replica of B receives a reply message for an invocation request it had
either forwarded to C or held back because it was not the coordinator, the reply is
then handed to the actual object.

In essence, the scheme just described is based on using multicast communica-
tion, but in preventing that the same message is multicast by different replicas. As
such, it is essentially a sender-based scheme. An alternative solution is to let a
receiving replica detect multiple copies of incoming messages belonging to the
same invocation, and to pass only one copy to its associated object. Details of this
scheme are left as an exercise.

10.7 FAULT TOLERANCE

Like replication, fault tolerance in most distributed object-based systems use
the same mechanisms as in other distributed systems, following the principles we
discussed in Chap. 8. However, when it comes to standardization, CORBA argu-
ably provides the most comprehensive specification.

10.7.1 Example: Fault-Tolerant CORBA

The basic approach for dealing with failures in CORBA is to replicate objects
into object groups. Such a group consists of one or more identical copies of the
same object. However, an object group can be referenced as if it were a single ob-
ject. A group offers the same interface as the replicas it contains. In other words,
replication is transparent to clients. Different replication strategies are supported,
including primary-backup replication, active replication, and quorum-based repli-
cation. These strategies have all been discussed in Chap. 7. There are various
other properties associated with object groups, the details of which can be found
in OMO (2004a).

To provide replication and failure transparency as much as possible, object
groups should not be distinguishable from normal CORBA objects, unless an ap-
plication prefers otherwise. An important issue, in this respect, is how object
groups are referenced. The approach followed is to use a special kind of lOR,
called an Interoperable Object Group Reference (IOGR). The key difference
with a normal lOR is that an IOOR contains multiple references to different ob-
jects, notably replicas in the same object group. In contrast, an lOR may also con-
tain multiple references, but all of them will refer to the same object, although
possibly using a different access protocol.

Whenever a client passes an IOGR to its runtime system (RTS), that RTS
attempts to bind to one of the referenced replicas. In the case of lIOP, the RTS
may possibly use additional information it finds in one of the IIOP profiles of the
lOGR. Such information can be stored in the Components field we discussed pre-
viously. For example, a specific lIOP profile may refer to the primary or a backup
of an object group, as shown in Fig. 10-19, by means of the separate tags
TAGYRIMARYand TAGJ3ACKUP, respectively.

Figure 10-19. A possible organization of an IOGR for an object group having a
primary and backups.

If binding to one of the replicas fails, the client RTS may continue by attempt-
ing to bind to another replica, thereby following any policy for next selecting a
replica that it suits to best. To the client. the binding procedure is completely tran-
sparent; it appears as if the client is binding to a regular CORBA object.

An Example Architecture

To support object groups and to handle additional failure management, it is
necessary to add components to CORBA. One possible architecture of a fault-
tolerant version of CORBA is shown in Fig. 10-20. This architecture is derived
from the Eternal system (Moser et al., 1998: and Narasimhan et al., 2000), which
provides a fault tolerance infrastructure constructed on top of the Totem reliable
group communication system (Moser et al., 1996).

There are several components that play an important role in this architecture.
By far the most important one is the replication manager, which is responsible
for creating and managing a group of replicated objects. In principle, there is only
one replication manager, although it may be replicated for fault tolerance.

As we have stated, to a client there is no fundamental difference between an
object group and any other type of CORBA object. To create an object group, a
client simply invokes the normal create.iobject operation as offered, in this case.

CHAP. 10DISTRIBUTED OBJECT-BASED SYSTEMS478

SEC. 10.7 FAULT TOLERANCE 479

Figure 10-20. An example architecture of a fault-tolerant CORBA system.

by the replication manager, specifying the type of object to create. The client
remains unaware of the fact that it is implicitly creating an object group. The
number of replicas that are created when starting a new object group is normally
determined by the system-dependent default value. The replica manager is also
responsible for replacing a replica in the case of a failure, thereby ensuring that
the number of replicas does not drop below a specified minimum.

The architecture also shows the use of message-level interceptors. In the case
of the Eternal system, each invocation is intercepted and passed to a separate rep-
lication component that maintains the required consistency for an object group
and which ensures that messages are logged to enable recovery.

Invocations are subsequently sent to the other group members using reliable,
totally-ordered multicasting. In the case of active replication, an invocation re-
quest is passed to each replica object by handing it to that object's underlying run-
time system. However, in the case of passive replication, an invocation request is
passed only to the RTS of the primary, whereas the other servers only log the
invocation request for recovery purposes. When the primary has completed the
invocation, its state is then multicast to the backups.

This architecture is based on using interceptors. Alternative solutions exist as
well, including those in which fault tolerance has been incorporated in the runtime
system (potentially affecting interoperability), or in which special services are
used on top of the RTS to provide fault tolerance. Besides these differences, prac-
tice shows that there are other problems not (yet) covered by the CORBA stan-
dard. As an example of one problem that occurs in practice, if replicas are created
on different implementations, there is no guarantee that this approach will actually
work. A review of the different approaches and an assessment of fault tolerance in
CORBA is discussed in Felber and Narasimhan (2004).

480 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP.]0

10.7.2 Example: Fault-Tolerant Java

Considering the popularity of Java as a language and platform for developing
distributed applications, some effort has also been into adding fault tolerance to
the Java runtime system. An interesting approach is to ensure that the Java virtual
machine can be used for active replication.

Active replication essentially dictates that the replica servers execute as deter-
ministic finite-state machines (Schneider, 1990). An excellent candidate in Java
to fulfill this role is the Java Virtual Machine (JVM). Unfortunately, the JVM is
not deterministic at all. There are various causes for nondeterministic behavior,
identified independently by Napper et al. (2003) and Friedman and Kama (2003):

1. JVM can execute native code, that is, code that is external to the
JVM and provided to the latter through an interface. The JVM treats
native code like a black box: it sees only the interface, but has no
clue about the (potentially nondeterministic) behavior that a call
causes. Therefore, in order to use the NM for active replication, it is
necessary to make sure that native code behaves in a deterministic
way.

2. Input data may be subject to non determinism. For example, a shared
variable that can be manipulated by multiple threads may change for
different instances of the JVM as 10nQ as threads are allowed to...
operate concurrently. To control this behavior, shared data should at
the very least be protected through locks. As it turned out, the Java
runtime environment did not always adhere to this rule, despite its
support for multithreading.

3. In the presence of failures, different JVMs will produce different out-
put revealing that the machines have been replicated. This difference
may cause problems when the JVMs need to brought back into the
same state. Matters are simplified if one can assume that all output is
idempotent (i.e., can simply be replayed), or is testable so that one
can check whether output was produced before a crash or not. Note
that this assumption is necessary in order to allow a replica server to
decide whether or not it should re-execute an operation.

Practice shows that turning the JVM into a deterministic finite-state machine
is by no means trivial. One problem that needs to be solved is the fact that replica
servers may crash. One possible organization is to let the servers run according to
a primary-backup scheme. In such a scheme, one server coordinates all actions
that need to be performed, and from time to time instructs the backup to do the
same. Careful coordination between primary and backup is required, of course.

SEC. 10.7 FAULT TOLERANCE 481

Note that despite the fact that replica servers are organized in a primary-
backup setting, we are still dealing with active replication: the replicas are kept up
to date by letting each of them execute the same operations in the same order.
However, to ensure the same nondeterministic behavior by all of the servers, the
behavior of one server is taken as the one to follow.

In this setting, the approach followed by Friedman and Kama (2003) is to let
the primary first execute the instructions of what is called a frame. A frame con-
sists of the execution of several context switches and ends either because all
threads are blocking for I/O to complete, or after a predefined number of context
switches has taken place. Whenever a thread issues an I/O operation, the thread is
blocked by the JVM put on hold. When a frame starts, the primary lets all I/O re-
quests proceed, one after the other, and the results are sent to the other replicas. In
this way, at least deterministic behavior with respect to I/O operations is enforced.

The problem with this scheme is easily seen: the primary is always ahead of
the other replicas. There are two situations we need to consider. First, if a replica
server other than the primary crashes, no real harm is done except that the degree
of fault tolerance drops. On the other hand, when the primary crashes, we may
find ourselves in a situation that data (or rather, operations) are lost.

To minimize the damage, the primary works on a per-frame basis. That is, it
sends update information to the other replicas only after completion of its current
frame. The effect of this approach is that when the primary is working on the k-th
frame, that the other replica servers have all the information needed to process the
frame preceding the k-th one. The damage can be limited by making frames small,
at the price of more communication between the primary and the backups.

10.8 SECURITY

Obviously, security plays an important role in any distributed system and ob-
ject-based ones are no exception. When considering most object-based distributed
systems, the fact that distributed objects are remote objects immediately leads to a
situation in which security architectures for distributed systems are very similar.
In essence, each object is protected through standard authentication and authoriza-
tion mechanisms, like the ones we discussed in Chap. 9.

To make clear how security can fit in specifically in an object-based distrib-
uted system, we shall discuss the security architecture for the Globe system. As
we mentioned before, Globe supports truly distributed objects in which the state
of a single object can be spread and replicated across multiple machines. Remote
objects are just a special case of Globe objects. Therefore, by considering the
Globe security architecture, we can also see how its approach can be equally
applied to more traditional object-based distributed systems. After discussing
Globe, we briefly take a look at security in traditional object-based systems.

482 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 10

10.8.1 Example: Globe

As we said, Globe is one of the few distributed object-based systems in which
an object's state can be physically distributed and replicated across multiple ma-
chines. This approach also introduces specific security problems, which have led
to an architecture as described in Popescu et a1.(2002).

Overview

When we consider the general case of invoking a method on a remote object,
there are at least two issues that are important from a security perspective: (1) is
the caller invoking the correct object and (2) is the caller allowed to invoke that
method. We refer to these two issues as secure object binding and secure meth-
od invocation, respectively. The former has everything to do with authentication,
whereas the latter involves authorization. For Globe and other systems that sup-
port either replication or moving objects around, we have an additional problem,
namely that of platform security. This kind of security comprises two issues.
First, how can the platform to which a (local) object is copied be protected against
any malicious code contained in the object, and secondly, how can the object be
protected against a malicious replica server.

Being able to copy objects to other hosts also brings up another problem.
Because the object server that is hosting a copy of an object need not always be
fully trusted, there must be a mechanism that prevents that every replica server
hosting an object from being allowed to also execute any of an object's methods.
For example, an object's owner may want to restrict the execution of update
methods to a small group of replica servers, whereas methods that only read the
state of an object may be executed by any authenticated server. Enforcing such
policies can be done through reverse access control, which we discuss in more
detail below.

There are several mechanisms deployed in Globe to establish security. First,
every Globe object has an associated public/private key pair, referred to as the ob-
ject key. The basic idea is that anyone who has knowledge about an object's
private key can set the access policies for users and servers. In addition, every
replica has an associated replica key, which is also constructed as a public/private
key pair. This key pair is generated by the object server currently hosting the spe-
cific replica. As we will see, the replica key is used to make sure that a specific
replica is part of a given distributed shared object. Finally, each user is also
assumed to have a unique public/private key pair, known as the user key.

These keys are used to set the various access rights in the form of certificates.
Certificates are handed out per object. There are three types, as shown in Fig. 10-
21. A user certificate is associated with a specific user and specifies exactly
which methods that user is allowed to invoke. To this end, the certificate contains

SEC. 10.8

a bit string U with the same length as the number of methods available for the ob-
ject. U (i] = 1 if and only if the user is allowed to invoke method Mi' Likewise,
there is also a replica certificate that specifies, for a given replica server, which
methods it is allowed to execute. It also has an associated bit string R, where
R [i] = i if and only if the server is allowed to execute method Mi'

Figure 10-21. Certificates in Globe: (a) a user certificate, (b) a replica certifi-
cate, (c) an administrative certificate.

For example, the user certificate in Fig. 10-21(a) tells that Alice (who can be
identified through her public key xu;» has the right to invoke methods M 2, M 5,
M 6, and M 7 (note that we start indexing U at 0). Likewise, the replica certificate
states that the server owning Kkepl is allowed to execute methods M 0, M 1, M 5,

M6, andM7·
An administrative certificate can be used by any authorized entity to issue

user and replica certificates. In the case, the Rand U bit strings specify for which
methods and which entities a certificate can be created. Moreover, there is bit
indicating whether an administrative entity can delegate (part of) its rights to
someone else. Note that when Bob in his role as administrator creates a user certi-
ficate for Alice, he will sign that certificate with his own signature, not that of the
object. As a consequence, Alice's certificate will need to be traced back to Bob's
administrative certificate, and eventually to an administrative certificate signed
with the object's private key.

Administrative certificates come in handy when considering that some Globe
objects may be massively replicated. For example, an object's owner may want to
manage only a relatively small set of permanent replicas, but delegate the creation
of server-initiated replicas to the servers hosting those permanent replicas. In that
case, the owner may decide to allow a permanent replica to install other replicas
for read-only access by all users. Whenever Alice wants to invoke a read-only
method, she will succeed (provided she is authorized). However, when wanting to
invoke an update method, she will have to contact one of the permanent replicas,
as none of the other replica servers is allowed to execute such methods.

As we explained, the binding process in Globe requires that an object identi-
fier (OlD) is resolved to a contact address. In principle, any system that supports

SECURITY 483

484 DISTRIBUTED OBJECT· BASED SYSTEMS CHAP. 10

flat names can be used for this purpose. To securely associate an object's public
key to its DID, we simply compute the DID as a 160-bit secure hash of the public
key. In this way, anyone can verify whether a given public key belongs to a given
DID. These identifier are also known as self-certifying names, a concept
pioneered in the Secure File System (Mazieres et aI., 1999), which we will discuss
in Chap. I J.

We can also check .whether a replica R belongs to an object O. In that case,
we merely need to inspect the replica certificate for R, and check who issued it.
The signer may be an entity with administrative rights, in which case we need to
inspect its administrative certificate. The bottom line is that we can construct a
chain of certificates of which the last one is signed using the object's private key.
In that case, we know that R is part of O.

To mutually protect objects and hosts against each other, techniques for
mobile code, as described in Chap. 9 are deployed. Detecting that objects have
been tampered with can be done with special auditing techniques which we will
describe in Chap. J 2.

Secure Method Invocation

Let us now look into the details of securely invoking a method of a Globe ob-
ject. The complete path from requesting an invocation to actually executing the
operation at a replica is sketched in Fig. 10-22. A total of 13 steps need to be exe-
cuted in sequence, as shown in the figure and described in the following text.

Figure 10-22. Secure method invocation in Globe.

SEC. 10.8 SECURITY 485
-l-. First, an application issues a invocation request by locally calling the

associatedmethod, just.like calling a procedure in an RPC.

2. The control subobject checks the user permissions with the informa-
tion stored in the local security object. In this case, the security ob-
ject should have a valid user certificate.

3. The request is marshaled and passed on.

4. The replication subobject requests the middleware to set up a secure
channel to a suitable replica.

5. The security object first initiates a replica lookup. To achieve this
goal, it could use any naming service that can look up replicas that
have been specified to be able to execute certain methods. The Globe
location service has been modified to handle such lookups (Ballin-
tijn, 2003).

6. Once a suitable replica has been found, the security subobject can set
up a secure channel with its peer, after which control is returned to
the replication subobject. Note that part of this establishment re-
quires that the replica proves it is allowed to carry out the requested
invocation.

7. The request is now passed on to the communication subobject.

8. The subobject encrypts and signs the request so that it can pass
through the channel.

9. After its receipt, the request is decrypted and authenticated.

10. The request is then simply passed on to the server-side replication
subobject.

11. Authorization takes place: in this case the user certificate from the
client-side stub has been passed to the replica so that we can verify
that the request can indeed be carried out.

12. The request is then unmarshaled.

13. Finally, the operation can be executed.

Although this may seem to be a relatively large number of steps, the example
shows how a secure method invocation can be broken down into small units, each
unit being necessary to ensure that an authenticated client can carry out an author-
ized invocation at an authenticated replica. Virtually all object-based distributed
systems follow these steps. The difference with Globe is that a suitable replica
needs to be located, and that this replica needs to prove it may execute the method
call. We leave such a proof as an exercise to the reader.

486 DISTRIBUTED OBJECT-BASED SYSTEMS CHAP. 10

10.8.2 Security for Remote Objects

When using remote objects we often see that the object reference itself is im-
plemented as a complete client-side stub, containing all the information that is
needed to access the remote object. In its simplest form, the reference contains the
exact contact address for the object and uses a standard marshaling and communi-
cation protocol to ship an invocation to the remote object.

However, in systems such as Java, the client-side stub (called a proxy) can be
virtually anything. The basic idea is that the developer of a remote object also
develops the proxy and subsequently registers the proxy with a directory service.
When a client is looking for the object, it will eventually contact the directory ser-
vice, retrieve the proxy, and install it. There are obviously some serious problems
with this approach.

First, if the directory service is hijacked, then an attacker may be able to re-
turn a bogus proxy to the client. In effect, such a proxy may be able to comprom-
ise all communication between the client and the server hosting the remote object,
damaging both of them.

Second, the client has no way to authenticate the server: it only has the proxy
and all communication with the server necessarily goes through that proxy. This
may be an undesirable situation, especially because the client now simply needs to
trust the proxy that it will do its work correctly.

Likewise, it may be more difficult for the server to authenticate the client.
Authentication may be necessary when sensitive information is sent to the client.
Also, because client authentication is now tied to the proxy, we may also have the
situation that an attacker is spoofing a client causing damage to the remote object.

Li et al. (2004b) describe a general security architecture that can be used to
make remote object Invocations safer. In their model, they assume that proxies are
indeed provided by the developer of a remote object and registered with a direc-
tory service. This approach is followed in Java RMI, but also Jini (Sun Microsys-
terns, 2005).

The first problem to solve is to authenticate a remote object. In their solution,
Li and Mitchell propose a two-step approach. First, the proxy which is down-
loaded from a directory service is signed by the remote object allowing the client
to verify its origin. The proxy; in tum, will authenticate the object using TLS with
server authentication, as we discussed in Chap. 9. Note that it is the object
developer's task to make sure that the proxy indeed properly authenticates the ob-
ject. The client will have to rely on this behavior, but because it is capable of
authenticating the proxy, relying on object authentication is at the same level as
trusting the remote object to behave decently.

To authenticate the client, a separate authenticator is used. When a client is
looking up the remote object, it will be directed to this authenticator from which it
downloads an authentication proxy. This is a special proxy that offers an inter-
face by which the client can have itself authenticated by the remote object. If this

SEC. 10.8 SECURITY 487

authentication succeeds. then the remote object (or actually, its object server) will
pass on the actual proxy to the client. Note that this approach allows for authenti-
cation independent of the protocol used by the actual proxy, which is considered
an important adyantage.

Another important advantage of separating client authentication is that it is
now possible to pass dedicated proxies to clients. For example, certain clients may
be allowed to request only execution of read-only methods. In such a case, after
authentication has taken place, the client will be handed a proxy that offers only
such methods, and no other. More refined access control can easily be envisaged.

10.9 SUMMARY

Most object-based distributed systems use a remote-object model in which an
object is hosted by server that allows remote clients to do method invocations. In
many cases, these objects will be constructed at runtime, effectively meaning that
their state, and possibly also code is loaded into an object server when a client
does a remote invocation. Globe is a system in which truly distributed shared ob-
jects are supported. In this case, an object's state may be physically distributed
and replicated across multiple machines.

To support distributed objects, it is important to separate functionality from
extra-functional properties such as fault tolerance or scalability. To this end,
advanced object servers have been developed for hosting objects. An object server
provides many services to basic objects, including facilities for storing objects, or
to ensure serialization of incoming requests. Another important role is providing
the illusion to the outside world that a collection of data and procedures operating
on that data correspond to the concept of an object. This role is implemented by
means of object adapters.

When it comes to communication, the prevalent way to invoke an object is by
means of a remote method invocation (RMI), which is very similar to an RPC. An
important difference is that distributed objects generally provide a systemwide ob-
ject reference, allowing a process to access an object from any machine. Global
object reference solve many of the parameter-passing problems that hinder access
transparency of RPCs.

There are many different ways in which these object references can be imple-
mented, ranging from simple passive data structures describing precisely where a
remote object can be contacted, to portable code that need simply be invoked by a
client. The latter approach is now commonly adopted for Java RMI.

There are no special measures in most systems to handle object synchroniza-
tion. An important exception is the way that synchronized Java methods are
treated: the synchronization takes place only between clients running on the same
machine. Clients running on different machines need to take special synchroniza-
tion measures. These measures are not part of the Java language.

488 DISTRffiUTED OBJECT-BASED SYSTEMS CHAP. 10

Entry consistency is an obvious consistency model for distributed objects and
is (often implicitly) supported in many systems. It is obvious as we can naturally
associate a separate lock for each object. One of the problems resulting from
replicating objects are replicated invocations. This problem is more evident be-
cause objects tend to be treated as black boxes.

Fault tolerance in distributed object-based systems very much follows the ap-
proaches used for other distributed systems. One exception is formed by tryingto
make the Java virtual machine fault tolerant by letting it operate as a deterministic
finite state machine. Then, by replicating a number of these machines, we obtain a
natural way for providing fault tolerance.

Security for distributed objects evolves around the idea of supporting secure
method invocation. A comprehensive example that generalizes these invocations
to replicated objects is Globe. As it turns out, it is possible to cleanly separate pol-
icies from mechanisms. This is true for authentication as well as authorization.
Special attention needs to be paid to systems in which the client is required to
download a proxy from a directory service, as is commonly the case for Java.

PROBLEMS

1. We made a distinction between remote objects and distributed objects. What is the
difference?

2. Why is it useful to define the interfaces of an object in an Interface Definition
Language?

3. Some implementations of distributed-object middleware systems are entirely based on
dynamic method invocations. Even static invocations are compiled to dynamic ones.
What is the benefit of this approach?

4. Outline a simple protocol that implements at-most-once semantics for an object invo-
cation. .

5. Should the client and server-side objects for asynchronous method invocation be per-
sistent?

6. In the text, we mentioned that an implementation of CORBA's asynchronous method
invocation do not affect the server-side implementation of an object. Explain why this
is the case.

7. Give an example in which the (inadvertent) use of callback mechanisms can easily
lead to an unwanted situation.

8. Is it possible for an object to have more than one servant?

9. Is it possible to have system-specific implementations of CORBA object references
while still being able to exchange references with other CORBA-based systems?

CHAP. 10 PROBLEMS 489

10. How can we authenticate the contact addresses returned by a lookup service for secure
Globe objects?

11. What is the key difference between object references in CORBA and those in Globe?

12. Consider Globe. Outline a simple protocol by which a secure channel is set up be-
tween a user proxy (which has access to the Alice's private key) and a replica that we
know for certain can execute a given method.

13. Give an example implementation of an object reference that allows a client to bind to
a transient remote object.

14. Java and other languages support exceptions, which are raised when an error occurs.
How would you implement exceptions in RPCs and RMls?

15. How would you incorporate persistent asynchronous communication into a model of
communication based on RMls to remote objects?

16. Consider a distributed object-based system that supports object replication, in which
all method invocations are totally ordered. Also, assume that an object invocation is
atomic (e.g., because every object is automatically locked when invoked). Does such a
system provide entry consistency? What about sequential consistency'?

17. Describe a receiver-based scheme for dealing with replicated invocations, as men-
tioned in the text.

11
DISTRIBUTED FILE SYSTEMS

Considering that sharing data is fundamental to distributed systems, it is not
surprising that distributed file systems form the basis for many distributed applica-
tions. Distributed file systems allow multiple processes to share data over long
periods of time in a secure and reliable way. As such, they have been used as the
basic layer for distributed systems and applications. In this chapter, we consider
distributed file systems as a paradigm for general-purpose distributed systems.

11.1 ARCHITECTURE

We start our discussion on distributed file systems by looking at how they are
generally organized. Most systems are built following a traditional client-server
architecture, but fully decentralized solutions exist as well. In the following, we
will take a look at both kinds of organizations.

11.1.1 Client-Server Architectures

Many distributed files systems are organized along the lines of client-server
architectures. with Sun Microsystem's Network File System (NFS) being one of
the most widely-deployed ones for UNIX-based systems. We will take NFS as a
canonical example for server-based distributed tile systems throughout this chap-
ter. In particular, we concentrate on NFSv3, the widely-used third version of NFS

491

492 DISTRIBUTED FILE SYSTEMS CHAP. 11

(Callaghan, 2000) and NFSv4, the most recent, fourth version (Shepler et al.,
2003). We will discuss the differences between them as well.

The basic idea behind NFS is that each file server. provides a standardized
view of its local file system. In other words, it should not matter how that local
file system is implemented; each NFS server supports the same model. This ap-
proach has been adopted for other distributed files systems as well. NFS comes
with a communication protocol that allows clients to access the files stored on a
server, thus allowing a heterogeneous collection of processes, possibly running on
different operating systems and machines, to share a common file system.

The model underlying NFS and similar systems is that of a remote file ser-
vice. In this model, clients are offered transparent access to a file system that is
managed by a remote server. However, clients are normally unaware of the actual
location of files. Instead, they are offered an interface to a file system that is simi-
lar to the interface offered by a conventional local file system. In particular, the
client is offered only an interface containing various file operations, but the server
is responsible for implementing those operations. This model is therefore also
referred to as the remote access model. It is shown in Fig. 11-I(a).

Figure 11-1. (a) The remote access model. (b) The upload/download model.

In contrast, in the upload/download model a client accesses a file locally
after having downloaded it from the server, as shown in Fig. 11-l(b).When the
client is finished with the file, it is uploaded back to the server again so that it can
be used by another client. The Internet's FTP service can be used this way when a
client downloads a complete file, modifies it, and then puts it back.

NFS has been implemented for a large number of different operating systems,
although the UNIX-based versions are predominant. For virtually all modern UNIX
systems, NFS is generally implemented following the layered architecture shown
in Fig. 11-2.

A client accesses the file system using the system calls provided by its local
operating system. However, the local UNIX file system interface is replaced by an

SEC. 11.1 ARCHITECTURE 493

Figure 11-2. The basicNf'S architecture for UNIX systems.

interface to the Virtual File System (VFS), which by now is a de facto standard
for interfacing to different (distributed) file systems (Kleiman, 1986). Virtually
all modem operating systems provide VFS, and not doing so more or less forces
developers to largely reimplement huge of an operating system when adopting a
new file-system structure. With NFS, operations on the VFS interface are either
passed to a local file system, or passed to a separate component known as the
~FS client, which takes care of handling access to files stored at a remote server.
In :N'FS,all client-server communication is done through RPCs. The NFS client•..
implements the NFS file system operations as RPCs to the server. Note that the
operations offered by the VFS interface can be different from those offered by the
NFS client. The whole idea of the VFS is to hide the differences between various
file systems.

On the server side, we see a similar organization. The NFS server is responsi-
ble for handling incoming client requests. The RPC stub unmarshals requests and
the NFS server converts them to regular VFS file operations that are subsequently
passed to the VFS layer. Again, the VFS is responsible for implementing a local
file system in which the actual files are stored.

An important advantage of this scheme is that NFS is largely independent of
local file systems. In principle, it really does not matter whether the operating sys-
tem at the client or server implements a UNIX file system, a Windows 2000 file
system, or even an old MS-DOS file system. The only important issue is that these
file systems are compliant with the file system model offered by NFS. For ex-
ample, MS-DOS with its short file names cannot be used to implement an NFS
server in a fully transparent way.

494 DISTRIBUTED ALE SYSTEMS CHAP. II

File System Model

The file system model offered by NFS is almost the same as the one offered
by UNIX-based systems. Files are treated as uninterpreted sequences of bytes.
They are hierarchically organized into a naming graph in which nodes represent
directories and files. NFS also supports hard links as well as symbolic links, like
any UNIX file system. Files are named, but are otherwise accessed by means of a
UNIX-like file handle. which we discuss in detail below. In other words, to access
a file, a client must first look up its name in a naming service and obtain the asso-
ciated file handle. Furthermore, each file has a number of attributes whose values
can be looked up and changed. We return to file naming in detail later in this
chapter.

Fig. 11-3 shows the general file operations supported by NFS versions 3 and
4, respectively. The create operation is used to create a file, but has somewhat dif-
ferent meanings in NFSv3 and NFSv4. In version 3, the operation is used for
creating regular files. Special files are created using separate operations. The link
operation is used to create hard links. Symlink is used to create symbolic links.
Mkdiris used to create subdirectories. Special files, such as device files, sockets,
and named pipes are created by means of the mknod operation.

This situation is changed completely in NFSv4, where create is used for
creating nonregular files, which include symbolic links, directories, and special
files. Hard links are still created using a separate link operation, but regular files
are created by means of the open operation, which is new to NFS and is a major
deviation from the approach to file handling in older versions. Up until version 4,
NFS was designed to allow its file servers to be stateless. For reasons we discuss
later in this chapter, this design criterion has been abandoned in NFSv4, in which
it is assumed that servers will generally maintain state between operations on the
same file.

The operation rename is used to change the name of an existing file the same
as in UNIX.

Files are deleted by means of the remove operation. In version 4, this opera-
tion is used to remove any kind of file. In previous versions, a separate rmdir oper-
ation was needed to remove a subdirectory. A file is removed by its name and has
the effect that the number of hard links to it is decreased by one. If the number of
links drops to zero, the file may be destroyed.

Version 4 allows clients to open and close (regular) files. Opening a nonexist-
ing file has the side effect that a new file is created. To open a file, a client pro-
vides a name, along with various values for attributes. For example, a client may
specify that a file should be opened for write access. After a file has been success-
fully opened, a client can access that file by means of its file handle. That handle
is also used to close the file, by which the client tells the server that it will no
longer need to have access to the file. The server, in tum, can release any state it
maintained to provide that client access to the file.

SEC. 11.1 ARCHITECTURE 495

Figure 11-3. An incomplete list of file system operations supported by NFS.

The lookup operation is used to look up a file handle for a given path name. In
NFSv3, the lookup operation will not resolve a name beyond a mount point.
(Recall from Chap. 5 that a mount point is a directory that essentially represents a
link to a subdirectory in a foreign name space.) For example, assume that the
name /remote/vu refers to a mount point in a naming graph. When resolving the
name /remote/vu/mbox, the lookup operation in NFSv3 will return the file handle
for the mount point Iremotelvu along with the remainder of the path name (i.e.,
mboxy. The client is then required to explicitly mount the file system that is need-
ed to complete the name lookup. A file system in this context is the collection of
files, attributes, directories, and data blocks that are jointly implemented as a logi-
cal block device (Tanenbaum and Woodhull, 2006).

In version 4, matters have been simplified. In this case, lookup will attempt to
resolve the entire name, even if this means crossing mount points. Note that this
approach is possible only if a file system has already been mounted at mount
points. The client is able to detect that a mount point has been crossed by inspect-
ing the file system identifier that is later returned when the lookup completes.

There is a separate operation readdir to read the entries in a directory. This
operation returns a list of (name, file handle) pairs along with attribute values that

496 DISTRIBUTED FILE SYSTEMS CHAP. 11

the client requested. The client can also specify how many entries should be re-
turned. The operation returns an offset that can be used in a subsequent call to
readdir in order to read the next series of entries.

Operation readlink is used to read the data associated with a symbolic link.
Normally, this data corresponds to a path name that can be subsequently looked
up. Note that the lookup operation cannot handle symbolic links. Instead, when a
symbolic link is reached, name resolution stops and the client is required to first
call readlink to find out where name resolution should continue.

Files have various attributes associated with them. Again, there are important
differences between NFS version 3 and 4, which we discuss in detail later. Typi-
cal attributes include the type of the file (telling whether we are dealing with a di-
rectory, a symbolic link, a special file, etc.), the file length, the identifier of the
file system that contains the file, and the last time the file was modified. File attri-
butes can be read and set using the operations getattr and setattr, respectively.

Finally, there are operations for reading data from a file, and writing data to a
file. Reading data by means of the operation read is completely straightforward.
The client specifies the offset and the number of bytes to be read. The client is re-
turned the actual number of bytes that have been read, along with additional status
information (e.g., whether the end-of-file has been reached).

Writing data to a file is done using the write operation. The client again speci-
fies the position in the file where writing should start, the number of bytes to be
written, and the data. In addition, it can instruct the server to ensure that all data
are to be written to stable storage (we discussed stable storage in Chap. 8). N""FS
servers are required to support storage devices that can survive power supply
failures, operating system failures, and hardware failures.

11.1.2 Cluster-Based Distributed File Systems

NFS is a typical example for many distributed file systems, which are gener-
ally organized according to a traditional client-server architecture. This architec-
ture is often enhanced for server clusters with a few differences.

Considering that server clusters are often used for parallel applications, it is
not surprising that their associated file systems are adjusted accordingly. One
well-known technique is to deploy file-striping techniques, by which a single file
is distributed across multiple servers. The basic idea is simple: by distributing a
large file across multiple servers, it becomes possible to fetch different parts in
parallel. Of course, such an organization works well only if the application is or-
ganized in such a way that parallel data access makes sense. This generally re-
quires that the data as stored in the file have a very regular structure, for example,
a (dense) matrix.

For general-purpose applications, or those with irregular or many different .
types of data structures, file striping may not be an effective tool. In those cases. it
is often more convenient to partition the file system as a whole and simply store

SEC. 11.1 ARCHITECTURE 497

different files on different servers, but not to partition a single file across multiple
servers. The difference between these two approaches is shown in Fig. 11-4.

More interesting are the cases of organizing a distributed file system for very
large data centers such as those used by companies like Amazon and Google.
These companies offer services to Web clients resulting in reads and updates to a
massive number of files distributed across literally tens of thousands of computers
[see also Barroso et al. (2003)]. In such environments, the traditional assumptions
concerning distributed file systems no longer hold. For example, we can expect
that at any single moment there will be a computer malfunctioning.

To address these problems, Google, for example, has developed its own Goo-
gle file system (GFS), of which the design is described in Ghemawat et al.
(2003). Google files tend to be very large, commonly ranging up to multiple giga-
bytes, where each one contains lots of smaller objects. Moreover, updates to files
usually take place by appending data rather than overwriting parts of a file. These
observations, along with the fact that server failures are the norm rather than the
exception, lead to constructing clusters of servers as shown in Fig. 11-5.

,-, ,-,
Figure 11-4. The difference between (a) distributing whole files across several
servers and (b) striping files for parallel access.

Figure 11-S. The organization of a Google cluster of servers.

Each GFS cluster consists of a single master along with multiple chunk ser-
vers. Each GFS file is divided into chunks of 64 Mbyte each, after which these

498 DISTRIBUTED FILE SYSTEMS CHAP. 11

chunks are distributed across what are called chunk servers. An important obser-
vation is that a GFS master is contacted only for metadata information. In particu-
lar, a GFS client passes a file name and chunk index to the master, expecting a
contact address for the chunk. The contact address contains all the information to
access the correct chunk server to obtain the required file chunk.

To this end, the GFS master essentially maintains a name space, along with a
mapping from file name to chunks. Each chunk has an associated identifier that
will allow a chunk server to lookup it up. In addition, the master keeps track of
where a chunk is located. Chunks are replicated to handle failures, but no more
than that. An interesting feature is that the GFS master does not attempt to keep
an accurate account of chunk locations. Instead, it occasionally contacts the chunk
servers to see which chunks they have stored.

The advantage of this scheme is simplicity. Note that the master is in control
of allocating chunks to chunk servers. In addition, the chunk servers keep an
account of what they have stored. As a consequence, once the master has obtained
chunk locations, it has an accurate picture of where data is stored. However, mat-
ters would become complicated if this view had to be consistent all the time. For
example, every time a chunk server crashes or when a server is added, the master
would need to be informed. Instead, it is much simpler to refresh its information
from the current set of chunk servers through polling. GFS clients simply get to
know which chunk servers the master believes is storing the requested data.
Because chunks are replicated anyway, there is a high probability that a chunk is
available on at least one of the chunk servers.

Why does this scheme scale? An important design issue is that the master is
largely in control, but that it does not form a bottleneck due to all the work it
needs to do. Two important types of measures have been taken to accommodate
scalability.

First, and by far the most important one, is that the bulk of the actual work is
done by chunk servers. When a client needs to access data, it contacts the master
to find out which chunk servers hold that data. After that, it communicates only
with the chunk servers. Chunks are replicated according to a primary-backup
scheme. When the client is performing an update operation, it contacts the nearest
chunk server holding that data, and pushes its updates to that server. This server
will push the update to the next closest one holding the data, and so on. Once all
updates have been propagated, the client will contact the primary chunk server,
who will then assign a sequence number to the update operation and pass it on to
the backups. Meanwhile, the master is kept out of the loop.

Second, the (hierarchical) name space for files is implemented using a simple
single-level table, in which path names are mapped to metadata (such as the
equivalent of inodes in traditional file systems). Moreover, this entire table is kept
in main memory, along with the mapping of files to chunks. Updates on these data
are logged to persistent storage. When the log becomes too large, a checkpoint is
made by which the main-memory data is stored in such a way that it can be

SEC. 11.1 ARCHITECTURE 499

immediately mapped back into main memory. As a consequence, the intensity of
I/O of a GFS master is strongly reduced.

This organization allows a single master to control a few hundred chunk ser-
vers, which is a considerable size for a single cluster. By subsequently organizing
a service such as Google into smaller services that are mapped onto clusters, it is
not hard to imagine that a huge collection of clusters can be made to work
together.

11.1.3 Symmetric Architectures

Of course, fully symmetric organizations that are based on peer-to-peer tech-
nology also exist. All current proposals use a DHT-based system for distributing
data, combined with a key-based lookup mechanism. An important difference is
whether they build a file system on top of a distributed storage layer, or whether
whole files are stored on the participating nodes.

An example of the first type of file system is Ivy, a distributed file system that
is built using a Chord DHT-based system. Ivy is described in Muthitacharoen et
al. (2002). Their system essentially consists of three separate layers as shown in
Fig. 11-6. The lowest layer is formed by a Chord system providing basic decen-
tralized lookup facilities. In the middle is a fully distributed block-oriented stor-
age layer. Finally, on top there is a layer implementing an NFS-like file system.

Figure 11-6. The organization of the Ivy distributed file system.

Data storage in Ivy is realized by a Chord-based, block-oriented distributed
storage system called DHash (Dabek et al., 2001). In essence, DHash is quite
simple. It only knows about data blocks, each block typically having a size of 8
KB. Ivy uses two kinds of data blocks. A content-hash block has an associated
key, which is computed as the secure hash of the block's content. In this way,
whenever a block is looked up, a client can immediately verify whether the cor-
rect block has been looked up, or that another or corrupted version is returned.

500 DISTRIBUTED FILE SYSTEMS CHAP. II

Furthermore, Ivy also makes use of public-key blocks, which are blocks having a
public key as lookup key, and whose content has been signed with the associated
private key.

To increase availability, DHash replicates every block B to the k immediate
successors of the server responsible for storing B. In addition, looked up blocks
are also cached along the route that the lookup request followed.

Files are implemented as a separate data structure on top of DHash. To
achieve this goal, each user maintains a log of operations it carries out on files.
For simplicity, we assume that there is only a single user per node so that each
node will have its own log. A log is a linked list of immutable records, where each
record contains all the information related to an operation on the Ivy file system.
Each node appends records only to its own, local, log. Only a log's head is mut-
able, and points to the most recently appended record. Each record is stored in a
separate content-hash block, whereas a log's head is kept in a public-key block.

There are different types of records, roughly corresponding to the different
operations supported by NFS. For example, when performing an update operation
on a file, a write record is created, containing the file's identifier along with the
offset for the pile pointer and the data that is being written. Likewise, there are
records for creating files (i.e., adding a new inode), manipulating directories, etc.

To create a new file system, a node simply creates a new log along with a new
inode that will serve as the root. Ivy deploys what is known as an NFS loopback
server which is just a local user-level server that accepts NFS requests from local
clients. In the case of Ivy, this NFS server supports mounting the newly created
file system allowing applications to access it as any other NFS file system.

When performing a read operation, the local Ivy NFS server makes a pass
over the log, collecting data from those records that represent write operations on
the same block of data, allowing it to retrieve the most recently stored values.
Note that because each record is stored as a DHash block, multiple lookups across
the overlay network may be needed to retrieve the relevant values.

Instead of using a separate block-oriented storage layer, alternative designs
propose to distribute whole files instead of data blocks. The developers of Kosha
(Butt et al. 2004) propose to distribute files at a specific directory level. In their
approach, each node has a mount point named /kosha containing the files that are
to be distributed using a DHT-based system. Distributing files at directory level I
means that all files in a subdirectory /kosha/a will be stored at the same node.
Likewise, distribution at level 2 implies that all files stored in subdirectory
/kosha/aJaa are stored at the same node. Taking a level-I distribution as an ex-
ample, the node responsible for storing files under /koshaJa is found by computing
the hash of a and taking that as the key in a lookup.

The potential drawback of this approach is that a node may run out of disk
space to store all the files contained in the subdirectory that it is responsible for.
Again, a simple solution is found in placing a branch of that subdirectory on an-
other node and creating a symbolic link to where the branch is now stored.

SEC. 11.2 PROCESSES 501

11.2 PROCESSES

When it comes to processes, distributed file systems have no unusual proper-
ties. In many cases, there will be different types of cooperating processes: storage
servers and file managers, just as we described above for the various organiza-
tions.

The most interesting aspect concerning file system processes is whether or not
they should be stateless. NFS is a good example illustrating the trade-offs. One of
its long-lasting distinguishing features (compared to other distributed file sys-
tems), was the fact that servers were stateless. In other words, the NFS protocol
did not require that servers maintained any client state. This approach was fol-
lowed in versions 2 and 3, but has been abandoned for version 4.

The primary advantage of the stateless approach is simplicity. For example,
when a stateless server crashes, there is essentially no need to enter a recovery
phase to bring the server to a previous state. However, as we explained in Chap. 8,
we still need to take into account that the client cannot be given any guarantees
whether or not a request has actually been carried out.

The stateless approach in the NFS protocol could not always be fully followed
in practical implementations. For example; locking a file cannot easily be done by
a stateless server. In the case of NFS, a separate lock manager is used to handle
this situation. Likewise, certain authentication protocols require that the server
maintains state on its clients. Nevertheless, NFS servers could generally be
designed in such a way that only very little information on clients needed to be
maintained. For the most part, the scheme worked adequately.

Starting with version 4, the stateless approach was abandoned, although the
new protocol is designed in such a way that a server does not need to maintain
much information about its clients. Besides those just mentioned, there are other
reasons to choose for a stateful approach. An important reason is that NFS version
4 is expected to also work across wide-area networks. This requires that clients
can make effective use of caches, in tum requiring an efficient cache consistency
protocol. Such protocols often work best in collaboration with a server that main-
tains some information on files as used by its clients. For example, a server may
associate a lease with each file it hands out to a client, promising to give the client
exclusive read and write access until the lease expires or is refreshed. We return
to such issues later in this chapter.

The most apparent difference with the previous versions is the support for the
open operation. In addition, NFS supports callback procedures by which a server
can do an RPC to a client. Clearly, callbacks also require a server to keep track of
its clients.

Similar reasoning has affected the design of other distributed file systems. By
and large, it turns out that maintaining a fully stateless design can be quite diffi-
cult, often leading to building stateful solutions as an enhancement, such as is the
case with NFS file locking.

502 DISTRIBUTED FILE SYSTEMS CHAP. 11

11.3 COMMUNICATION

As with processes, there is nothing particularly special or unusual about com-
munication in distributed file systems. Many of them are based on remote proce-
dure calls (RPCs), although some interesting enhancements have been made to
support special cases. The main reason for choosing an RPC mechanism is to
make the system independent from underlying operating systems, networks, and
transport protocols.

11.3.1 RPCs in NFS

For example, in NFS, all communication between a client and server proceeds
along the Open Network Computing RPC (ONC RPC) protocol, which is for-
mally defined in Srinivasan (1995a), along with a standard for representing mar-
shaled data (Srinivasan, 1995b). ONC RPC is similar to other RPC systems as we
discussed in Chap. 4.

Every NFS operation can be implemented as a single remote procedure call to
a file server. In fact, up until NFSv4, the client was made responsible for making
the server's life as easy as possible by keeping requests relatively simple. For ex-
ample, in order to read data from a file for the first time, a client normally first
had to look up the file handle using the lookup operation, after which it could
issue a read request, as shown in Fig. 11-7(a).

Figure 11-7. (a) Reading data from a file in NFS version 3. (b) Reading data
using a compound procedure in version 4.

This approach required two successive RPCs. The drawback became apparent
when considering the use of NFS in a wide-area system. In that case, the extra
latency of a second RPC led to performance degradation. To circumvent such
problems, NFSv4 supports compound procedures by which several RPCs can be
grouped into a single request, as shown in Fig. 11-7(b).

SEC. 11.3 COMMUNICATION 503

In our example, the client combines the lookup and read request into a single
RPC. In the case of version 4, it is also necessary to open the file before reading
can take place. After the file handle has been looked up, it is passed to the open
operation, after which the server continues with the read operation. The overall
effect in this example is that only two messages need to be exchanged between
the client and server.

There are no transactional semantics associated with compound procedures.
The operations grouped together in a compound procedure are simply handled in
the order as requested. If there are concurrent operations from other clients, then
no measures are taken to avoid conflicts. If an operation fails for whatever reason,
then no further operations in the compound procedure are executed, and the re-
sults found so far are returned to the client. For example, if lookup fails, a sue-
ceeding open is not even attempted.

11.3.2 The RPC2 Subsystem

Another interesting enhancement to RPCs has been developed as part of the
Coda file system (Kistler and Satyanarayanan, 1992). RPC2 is a package that
offers reliable RPCs on top of the (unreliable) UDP protocol. Each time a remote
procedure is called, the RPC2 client code starts a new thread that sends an invoca-
tion request to the server and subsequently blocks until it receives an answer. As
request processing may take an arbitrary time to complete, the server regularly
sends back messages to the client to let it know it is still working on the request. If
the server dies, sooner or later this thread will notice that the messages have
ceased and report back failure to the calling application.

An interesting aspect of RPC2 is its support for side effects. A side effect is a
mechanism by which the client and server can communicate using an applica-
tion-specific protocol. Consider, for example, a client opening a file at a video
server. What is needed in this case is that the client and server set up a continuous
data stream with an isochronous transmission mode. In other words, data transfer
from the server to the client is guaranteed to be within a minimum and maximum
end-to-end delay.

RPC2 allows the client and the server to set up a separate connection for
transferring the video data to the client on time. Connection setup is done as a side
effect of an RPC call to the server. For this purpose, the RPC2 runtime system
provides an interface of side-effect routines that is to be implemented by the ap-
plication developer. For example, there are routines for setting up a connection
and routines for transferring data. These routines are automatically called by the
RPC2 runtime system at the client and server, respectively, but their implementa-
tion is otherwise completely independent of RPC2. This principle of side effects is
shown in Fig. 11-8.

Another feature of RPC2 that makes it different from other RPC systems is its
support for multicasting. An important design issue in Coda is that servers keep

Figure 11-8. Side effects in Coda's RPC2 system.

track of which clients have a local copy of a file. When a file is modified, a server
invalidates local copies by notifying the appropriate clients through an RPC.
Clearly, if a server can notify only one client at a time, invalidating all clients may
take some time, as illustrated in Fig. 11-9(a).

Figure 11-9. (a) Sending an invalidation message one at a time. (b) Sending in-
validation messages in parallel.

The problem is caused by the fact that an RPC may occasionally fail. Invali-
dating files in a strict sequential order may be delayed considerably because the
server cannot reach a possibly crashed client, but will give up on that client only
after a relatively long expiration time. Meanwhile, other clients will still be read-
ing from their local copies.

An alternative (and better) solution is shown in Fig. 11-9(b). Here, instead of
invalidating each copy one by one. the server sends an invalidation message to all
clients at the same time. As a consequence, all nonfailing clients are notified in
the same time as it would take to do an immediate RPC. Also, the server notices

504 DISTRIBUTED FILE SYSTEMS CHAP. 11

SEC. 11.3 COMMUNICATION 505

within the usual expiration time that certain clients are failing to respond to the
RPC, and can declare such clients as being crashed.

Parallel RPCs are implemented by means of the MultiRPC system, which is
part of the RPC2 package (Satyanarayanan and Siegel, 1990). An important
aspect of MultiRPC is that the parallel invocation of RPCs is fully transparent to
the callee. In other words, the receiver of a MuitiRPC call cannot distinzuish that

"-

call from a normal RPC. At the caller's side, parallel execution is also largely
transparent. For example, the semantics of MultiRPC in the presence of failures
are much the same as that of a normal RPC. Likewise, the side-effect mechanisms
can be used in the same way as before.

MultiRPC is implemented by essentially executing multiple RPCs in parallel.
This means that the caller explicitly sends an RPC request to each recipient. How-
ever, instead of immediately waiting for a response, it defers blocking until all re-
quests have been sent. In other words, the caller invokes a number of one-way
RPCs, after which it blocks until all responses have been received from the non-
failing recipients. An alternative approach to parallel execution of RPCs in Mul-
tiRPC is provided by setting up a multicast group, and sending an RPC to all
group members using IF multicast.

11.3.3 File-Oriented Communication in Plan 9

Finally, it is worth mentioning a completely different approach to handling
communication in distributed file systems. Plan 9 (Pike et al., 1995). is not so
much a distributed file system, but rather a file-based distributed system. All re-
sources are accessed in the same way, namely with file-like syntax and opera-
tions, including even resources such as processes and network interfaces. This
idea is inherited from UNIX, which also attempts to offer file-like interfaces to re-
sources, but it has been exploited much further and more consistently in Plan 9.
To illustrate, network interfaces are represented by a file system, in this case con-
sisting of a collection of special files. This approach is similar to UNIX, although
network interfaces in UNIX are represented by tiles and not file systems. (Note
that a file system in this context is again the logical block device containing all
the data and metadata that comprise a collection of files.) In Plan 9, for example,
an individual TCP connection is represented by a subdirectory consisting of the
files shown in Fig. 11-10.

The file ctl is used to send control commands to the connection. For example,
to open a telnet session to a machine with IP address 192.31.231.42 using port 23,
requires that the sender writes the text string "connect 192.31.231.42!23" to file
ctl. The receiver would previously have written the string "announce 23" to its
own ctl file, indicating that it can accept incoming session requests.

The data file is used to exchange data by simply performing read and write
operations. These operations follow the usual UNIX semantics for file operations.

506 DISTRIBUTED FILE SYSTEMS CHAP.]]

Figure 11-10. Files associated with a single TCP connection in Plan 9.

For example, to write data to a connection, a process simply invokes the operation

res = write(td, but, nbytes);

where fd is the file descriptor returned after opening the data file, buf is a pointer
to a buffer containing the data to be written, and nbytes is the number of bytes that
should be extracted from the buffer. The number of bytes actually written is re-
turned and stored in the variable res.

The file listen is used to wait for connection setup requests. After a process
has announced its willingness to accept new connections, it can do a blocking
read on file listen. If a request comes in, the call returns a file descriptor to a new
etl file corresponding to a newly-created connection directory. It is thus seen how
a completely file-oriented approach toward communication can be realized.

11.4 NAMING

Naming arguably plays an important role in distributed file systems. In vir-
tually all cases, names are organized in a hierarchical name space like those we
discussed in Chap. 5. In the following we will again consider NFS as a repres-
entative for how naming is often handled in distributed file systems.

11.4.1 Naming in NFS

The fundamental idea underlying the NFS naming model is to provide clients
complete transparent access to a remote file system as maintained by a server.
This transparency is achieved by letting a client be able to mount a remote file
system into its own local file system, as shown in Fig. 11-11.

Instead of mounting an entire file system, NFS allows clients to mount only
part of a file system. as also shown in Fig. 11-11. A server is said to export a di-
rectory when it makes that directory and its entries available to clients. An
exported directory can be mounted into a client's local name space.

SEC. 11.4

Figure 11-11. Mounting (part of) a remote file system in NFS.

This design approach has a serious implication: in principle, users do not
share name spaces. As shown in Fig. 11-11, the file named Iremotelvulmbox at
client A is named /work/me/mbox at client B. A file's name therefore depends on
how clients organize their own local name space, and where exported directories
are mounted. The drawback of this approach in a distributed file system is that
sharing files becomes much harder. For example, Alice cannot tell Bob about a
file using the name she assigned to that file, for that name may have a completely
different meaning in Bob's name space of files.

There are several ways to solve this problem, but the most common one is to
provide each client with a name space that is partly standardized. For example,
each client may be using the local directory lusr/bin to mount a file system con-
taining a standard collection of programs that are available to everyone. Likewise,
the directory Ilocal may be used as a standard to mount a local file system that is
located on the client's host.

An NFS server can itself mount directories that are exported by other servers.
However, it is not allowed to export those directories to its own clients. Instead, a
client will have to explicitly mount such a directory from the server that maintains
it, as shown in Fig. 11-12. This restriction comes partly from simplicity. If a
server could export a directory that it mounted from another server, it would have
to return special file handles that include an identifier for a server. NFS does not
support such file handles.

To explain this point in more detail, assume that server A hosts a file system
FSA from which it exports the directory Ipackages. This directory contains a sub-
directory /draw that acts as a mount point for a file system FSs that is exported by
server B and mounted by A. Let A also export Ipackagesldraw to its own clients,

NAMING 507

CHAP. 11

Figure 11-12. Mounting nested directories from multiple servers in NFS.

and assume that a client has mounted /packages into its local directory /bin as
shown in Fig. 11-12.

If name resolution is iterative (as is the case in NFSv3), then to resolve the
name /bin/draw/install, the client contacts server A when it has locally resolved
/bin and requests A to return a file handle for directory /draw. In that case, server
A should return a file handle that includes an identifier for server B, for only B can
resolve the rest of the path name, in this case /install. As we have said, this kind
of name resolution is not supported by NFS.

Name resolution in NFSv3 (and earlier versions) is strictly iterative in the
sense that only a single file name at a time can be looked up. In other words,
resolving a name such as /bin/draw/install requires three separate calls to the NFS
server. Moreover, the client is fully responsible for implementing the resolution of
a path name. NFSv4 also supports recursive name lookups. In this case, a client
can pass a complete path name to a server and request that server to resolve it.

There is another peculiarity with NFS name lookups that has been solved with
version 4. Consider a file server hosting several file systems. With the strict itera-
tive name resolution in version 3, whenever a lookup was done for a directory on
which another file system was mounted, the lookup would return the file handle of "
the directory. Subsequently reading that directory would return its original con-
tent, not that of the root directory of the mounted file system.

DISTRIBUTED FILE SYSTEMS508

SEC. tt.4 NAMING 509

File Handles

A file handle is a reference to a file within a file system. It is independent of
the name of the file it refers to. A file handle is created by the server that is host-
ing the file system and is unique with respect to all file systems exported by the
server. It is created when the file is created. The client is kept ignorant of the
actual content of a file handle; it is completely opaque. File handles were 32 bytes
in NFS version 2, but were variable up to 64 bytes in version 3 and 128 bytes in
version 4. Of course, the length of a file handle is not opaque.

Ideally, a file handle is implemented as a true identifier for a file relative to a
file system. For one thing, this means that as long as the file exists, it should have
one and the same file handle. This persistence requirement allows a client to store
a file handle locally once the associated file has been looked up by means of its
name. One benefit is performance: as most file operations require a file handle in-
stead of a name, the client can avoid having to look up a name repeatedly before
every file operation. Another benefit of this approach is that the client can now
access the file independent of its (current) names.

Because a file handle can be locally stored by a client, it is also important that
a server does not reuse a file handle after deleting a file. Otherwise, a client may
mistakenly access the wrong file when it uses its locally stored file handle.

Note that the combination of iterative name lookups and not letting a lookup
operation allow crossing a mount point introduces a problem with getting an ini-
tial file handle. In order to access files in a remote file system, a client will need
to provide the server with a file handle of the directory where the lookup should
take place, along with the name of the file or directory that is to be resolved.
NFSv3 solves this problem through a separate mount protocol, by which a client
actually mounts a remote file system. After mounting, the client is passed back the
root file handle of the mounted file system, which it can subsequently use as a
starting point for looking up names.

---------'foexplain. assume that in our previous example that both file systems FSA

and FSB are hosted by a singleserver, If the client has mounted /packages into its
local directory /bin, then looking up the file name draw at the server would return
the file handle for draw. A subsequent call to the server for listing the directory
entries of draw by means of readdir would then return the list of directory entries
that were originally stored in FSA in subdirectory /packages/draw. Only if the cli-
ent had also mounted file system FSB, would it be possible to properly resolve the
path name draw/install relative to /bin.

NFSv4 solves this problem by allowing lookups to cross mount points at a
server. In particular, lookup returns the file handle of the mounted directory in-
stead of that of the original directory. The client can detect that the lookup has
crossed a mount point by inspecting the file system identifier of the looked up file.
If required, the client can locally mount that file system as well.

510 DISTRIBUTED FILE SYSTEMS CHAP. 11

In NFSv4, this problem is solved by providing a separate operation putrootfh
that tells the server to solve all file names relative to the root file handle of.the file

,~

system it manages. The root file handle can be usea-fOIOok up any other file
handle in the server's file system. This approach has the additional benefit that
there is no need for a separate mount protocol. Instead, mounting can be in-
tegrated into the regular protocol for looking up files. A client can simply mount a
remote file system byrequesting the server to resolve names relative to the file
system's root file handle using putrootfh.

Automounting

As we mentioned, the NFS naming model essentially provides users with their
own name space. Sharing in this model may become difficult if users name the
same file differently. One solution to this problem is to provide each user with a
local name space that is partly standardized, and subsequently mounting remote
file systems the same for each user.

Another problem with the NFS naming model has to do with deciding when a
remote file system should be mounted. Consider a large system with thousands of
users. Assume that each user has a local directory !home that is used to mount the
home directories of other users. For example, Alice's home directory may be
locally available to her as !home/alice, although the actual files are stored on a re-
mote server. This directory can be automatically mounted when Alice logs into
her workstation. In addition, she may have access to Bob's public files by ac-
cessing Bob's directory through /home/bob.

The question, however, is whether Bob's home directory should also be
mounted automatically when Alice logs in. The benefit of this approach would be
that the whole business of mounting file systems would be transparent to Alice.
However, if this policy were followed for every user, logging in could incur a lot
of communication and administrative overhead. In addition, it would require that
all users are known in advance. A much better approach is to transparently mount
another user's home directory on demand, that is, when it is first needed.

On-demand mounting of a remote file system (or actually an exported direc-
tory) is handled in NFS by an automounter, which runs as a separate process on
the client's machine. The principle underlying an automounter is relatively sim- .
ple. Consider a simple automounter implemented as a user-level NFS server on a
UNIX operating system. For alternative implementations, see Callaghan (2000).

Assume that for each user, the home directories of all users are available
through the local directory !home, as described above. When a client machine
boots, the automounter starts with mounting this directory. The effect of this local
mount is that whenever a program attempts to access /home, the UNIX kernel will
forward a lookup operation to the NFS client. which in this case, will forward the
request to the automounter in its role as NFS server. as shown in Fig. 11-13.

SEC. 11.4 NAMING 511

Figure 11-13. A simple automounter for NFS.

For example, suppose that Alice logs in. The login program will attempt to
read the directory /home/alice to find information such as login scripts. The auto-
mounter will thus receive the request to look up subdirectory /home/alice, for
which reason it first creates a subdirectory /alice in /home. It then looks up the
NFS server that exports Alice's home directory to subsequently mount that direc-
tory in /home/alice. At that point, the login program can proceed.

The problem with this approach is that the automounter will have to be invol-
ved in all file operations to guarantee transparency. If a referenced file is not lo-
cally available because the corresponding file system has not yet been mounted,
the automounter will have to know. In particular, it will need to handle all read
and write requests, even for file systems that have already been mounted. This ap-
proach may incur a large performance problem. It would be better to have the auto
mounter only mountlunmount directories, but otherwise stay out of the loop.

A simple solution is to let the automounter mount directories in a special
subdirectory, and install a symbolic link to each mounted directory. This approach
is shown in Fig. 11-14.

In our example, the user home directories are mounted as subdirectories of
/tmp _mnt. When Alice logs in, the automounter mounts her home directory in
/tmp _mnt/home/alice and creates a symbolic link /home/alice that refers to that
subdirectory. In this case, whenever Alice executes a command such as

Is -I /home/alice

the NFS server that exports Alice's home directory is contacted directly without
further involvement of the automounter.

512 DISTRIBUTED FILE SYSTEMS CHAP. 11

Figure 11-14. Using symbolic links with automounting.

11.4.2 Constructing a Global Name Space

Large distributed systems are commonly constructed by gluing together vari-
ous legacy systems into one whole. When it comes to offering shared access to
files, having a global name space is about the minimal glue that one would like to
have. At present, file systems are mostly opened for sharing by using primitive
means such as access through FTP. This approach, for example, is generally used
in Grid computing.

More sophisticated approaches are followed by truly wide-area distributed file
systems, but these often require modifications to operating system kernels in order
to be adopted. Therefore, researchers have been looking for approaches to in-
tegrate existing file systems into a single, global name space but using only user-
level solutions. One such system, simply called Global Name Space Service
(GNS) is proposed by Anderson et a1.(2004).

GNS does not provide interfaces to access files. Instead, it merely provides
the means to set up a global name space in which several existing name spaces
have been merged. To this end, a GNS client maintains a virtual tree in which
each node is either a directory or a junction. A junction is a special node that
indicates that.name resolution is to be taken over by another process, and as such
bears some resemblance with a mount point in traditional file system. There are
five different types of junctions, as shown in Fig. 11-15.

A GNS junction simply refers to another GNS instance, which is just another
virtual tree hosted at possibly another process. The two logical junctions contain
information that is needed to contact a location service. The latter will provide the
contact address for accessing a file system and a file, respectively. A physical
file-system name refers to a file system at another server, and corresponds largely
to a contact address that a logical junction would need. For example, a URL such
as ftp:l/ftp.cs.vu.nllpub would contain all the information to access files at the
indicated FrP server. Analogously, a URL such as http/rwww.cs.vu.nl/index.hnn
is a typical example of a physical file name.

http://http/rwww.cs.vu.nl/index.hnn

SEC. 11.4 NAMING 513

Figure 11-15. Junctions in GNS.

Obviously, a junction should contain all the information needed to continue
name resolution. There are many ways of doing this, but considering that there are
so many different file systems, each specific junction will require its own imple-
mentation. Fortunately, there are also many common ways of accessing remote
files, including protocols for communicating with NFS servers, FTP servers, and
Windows-based machines (notably CIFS).

GNS has the advantage of decoupling the naming of files from their actual lo-
cation. In no way does a virtual tree relate to where files and directories are physi-
cally placed. In addition, by using a location service it is also possible to move
files around without rendering their names unresolvable. In that case, the new
physical location needs to be registered at the location service. Note that this is
completely the same as what we have discussed in Chap. 5.

11.5 SYNCHRONIZATION

Let us now continue our discussion by focusing on synchronization issues in
distributed file systems. There are various issues that require our attention. In the
first place, synchronization for file systems would not be an issue if files were not
shared. However, in a distributed system, the semantics of file sharing becomes a
bit tricky when performance issues are at stake. To this end, different solutions
have been proposed of which we discuss the most important ones next.

11.5.1 Semantics of File Sharing

When two or more users share the same file at the same time, it is necessary
to define the semantics of reading and writing precisely to avoid problems. In sin-
gle-processor systems that permit processes to share files, such as UNIX, the
semantics normally state that when a read operation follows a write operation, the
read returns the value just written, as shown in Fig. 11-16(a). Similarly, when
two writes happen in quick succession, followed by a read, the value read is the
value stored by the last write. In effect, the system enforces an absolute time

514 DISTRIBUTED FILE SYSTEMS CHAP. II

ordering on all operations and always returns the most recent value. We will refer
to this model as UNIX semantics. This model is easy to understand and straight-
forward to implement.

Figure 11-16. (a) On a single processor. when a read follows a write, the value
returned by the read is the value just written. (b) In a distributed system with
caching, obsolete values may be returned.

In a distributed system, UNIX semantics can be achieved easily as long as
there is only one file server and clients do not cache files. All reads and writes go
directly to the file server, which processes them strictly sequentially. This ap-
proach gives UNIX semantics (except for the minor problem that network delays
may cause a read that occurred a microsecond after a write to arrive at the server
first and thus gets the old value).

In practice, however, the performance of a distributed system in which all file
requests must go to a single server is frequently poor. This problem is often solved
by allowing clients to maintain local copies of heavily-used files in their private
(local) caches. Although we will discuss the details of file caching below, for the
moment it is sufficient to point out that if a client locally modifies a cached file
and shortly thereafter another client reads the file from the server, the second cli-
ent will get an obsolete file, as illustrated in Fig. 11-16(b).

SEC. 11.5 SYNCHRONIZATION 515
One way out of this difficulty is to propagate all changes to cached files back

to the server immediately. Although conceptually simple, this approach is ineffi-
cient. An alternative solution is to relax the semantics of file sharing. Instead of
requiring a read to see the effects of all previous writes, one can have a new rule
that says: "Changes to an open file are initially visible only to the process (or pos-
sibly machine) that modified the file. Only when the file is closed are the changes
made visible to other processes (or machines)." The adoption of such a rule does
not change what happens in Fig. 11-16(b). but it does redefine the actual behavior
(B getting the original value of the file) as being the correct one. When A closes
the tile, it sends a copy to the server, so that subsequent reads get the new value,
as required. .

This rule is widely-implemented and is known as session semantics. Most
distributed file systems implement session semantics. This means that although in
theory they follow the remote access model of Fig. ll-l(a), most implementations
make use of local caches, effectively implementing the upload/download model of
Fig. 11-l(b).

Using session semantics raises the question of what happens if two or more
clients are simultaneously caching and modifying the same file. One solution is to
say that as each file is closed in turn, its value is sent back to the server, so the
final result depends on whose close request is most recently processed by the
server. A less pleasant, but easier to implement alternative is to say that the final
result is one of the candidates, but leave the choice of which one unspecified.

A completely different approach to the semantics of file sharing in a distrib-
uted system is to make all files immutable. There is thus no way to open a file for
writing. In effect, the only operations on files are create and read.

What is possible is to create an entirely new file and enter it into the directory
system under the name of a previous existing file, which now becomes inacces-
sible (at least under that name). Thus although it becomes impossible to modify
the file x, it remains possible to replace x by a new file atomically. In other words,
although files cannot be updated, directories can be. Once we have decided that
files cannot be changed at all, the problem of how to deal with two processes, one
of which is writing on a file and the other of which is reading it, just disappears,
greatly simplifying the design.

What does remain is the problem of what happens when two processes try to
replace the same file at the same time. As with session semantics, the best solu-
tion here seems to be to allow one of the new files to replace the old one, either
the last one or nondeterministically.

A somewhat stickier problem is what to do if a file is replaced while another
process is busy reading it. One solution is to somehow arrange for the reader to
continue using the old file, even if it is no longer in any directory, analogous to
the way UNIX allows a process that has a file open to continue using it, even after
it has been deleted from all directories. Another solution is to detect that the file
has changed and make subsequent attempts to read from it fail.

516 DISTRIBUTED FILE SYSTEMS CHAP. 11

A fourth way to deal with shared files in a distributed system is to use
atom\%ic transactions. To summarize briefly. to access a file or a group of files, a
process first executes some type of BEGIN_TRANSACTION primitive to signal
that what follows must be executed indivisibly. Then come system calls to read
and write one or more files. When the requested work has been completed, an
END_ TRANSACTION primitive is executed. The key property of this method is
that the system guarantees that all the calls contained within the transaction Will
be carried out in order, without any interference from other, concurrent tran-
sactions. If two or more transactions start up at the same time, the system ensures
that the final result is the same as if they were all run in some (undefined) sequen-
tial order.

In Fig. 11-17 we summarize the four approaches we have discussed for deal-
ing with shared files in a distributed system.

Figure 11-17. Four ways of dealing with the shared files in a distributed system.

11.5.2 File Locking

Notably in client-server architectures with stateless servers, we need addition-
al facilities for synchronizing access to shared files. The traditional way of doing
this is to make use of a lock manager. Without exception, a lock manager follows
the centralized locking scheme as we discussed in Chap. 6.

However, matters are not as simple as we just sketched. Although a central
lock manager is generally deployed, the complexity in locking comes from the
need to allow concurrent access to the same file. For this reason, a great number
of different locks exist, and moreover, the granularity of locks may also differ. Let
us consider NFSv4 again.

Conceptually, file locking in NFSv4 is simple. There are essentially only four
operations related to locking, as shown in Fig. 11-18. NFSv4 distinguishes read
locks from write locks. Multiple clients can simultaneously access the same part
of a file provided they only read data. A write lock is needed to obtain exclusive
access to modify part of a file.

Operation lock is used to request a read or write lock on a consecutive range
of bytes in a file. It is a nonblocking operation: if the lock cannot be granted due
to another conflicting lock, the client gets back an error message and has to poll
the server at a later time. There is no automatic retry. Alternatively, the client can

SEC. 11.5 SYNCHRONIZATION 517

Figure 11-18. NFSv4 operations related to file locking.

request to be put on a FIFO-ordered list maintained by the server. As soon as the
conflicting lock has been removed, the server will grant the next lock to the client
at the top of the list, provided it polls the server before a certain time expires. This
approach prevents the server from having to notify clients, while still being fair to
clients whose lock request could not be granted because grants are made in FIFO
order.

The lockt operation is used to test whether a conflicting lock exists. For ex-
ample, a client can test whether there are any read locks granted on a specific
range of bytes in a file, before requesting a write lock for those bytes. In the case
of a conflict, the requesting client is informed exactly who is causing the conflict
and on which range of bytes. It can be implemented more efficiently than lock, be-
cause there is no need to attempt to open a file.

Removing a lock from a file is done by means of the lockuoperation.
Locks are granted for a specific time (determined by the server). In other

words, they have an associated lease. Unless a client renews the lease on a lock it
has been granted, the server will automatically remove it. This approach is fol-
lowed for other server-provided resources as well and helps in recovery after
failures. Using the renew operation, a client requests the server to renew the lease
on its lock (and, in fact, other resources as well).

In addition to these operations, there is also an implicit way to lock a file,
referred to as share reservation. Share reservation is completely independent
from locking, and can be used to implement NFS for Windows-based systems.
When a client opens a file, it specifies the type of access it requires (namely
READ, WRITE, or BOTH), and which type of access the server should deny other
clients (NONE, READ, WRITE, or BOTH). If the server cannot meet the client's
requirements, the open operation will fail for that client. In Fig. 11-19 we show
exactly what happens when a new client opens a file that has already been suc-
cessfully opened by another client. For an already opened file, we distinguish two
different state variables. The access state specifies how the file is currently being
accessed by the current client. The denial state specifies what accesses by new cli-
ents are not permitted.

In Fig. 11-19(a), we show what happens when a client tries to open a file re-
questing a specific type of access, given the current denial state of that file.

518 DISTRIBUTED FILE SYSTEMS CHAP. 11

Figure 11-19. The result of an open operation with share reservations in NFS.
(a) When the client requests shared access given the current denial state.
(b) When the client requests a denial state given the current file access state.

Likewise, Fig. 11-19(b) shows the result of opening a file that is currently being
accessed by another client, but now requesting certain access types to be disal-
lowed.

NFSv4 is by no means an exception when it comes to offering synchroniza-
tion mechanisms for shared files. In fact, it is by now accepted that any simple set
of primitives such as only complete-file locking, reflects poor design. Complexity
in locking schemes comes mostly from the fact that a fine granularity of locking is
required to allow for concurrent access to shared files. Some attempts to reduce
complexity while keeping performance have been taken [see, e.g., Bums et al.
(2001)], but the situation remains somewhat unsatisfactory. In the end, we may be
looking at completely redesigning our applications for scalability rather than try-
ing to patch situations that come from wanting to share data the way we did in
nondistributed systems.

11.5.3 Sharing Files in Coda

The session semantics in NFS dictate that the last process that closes a file
will have its changes propagated to the server; any updates in concurrent, but ear-
lier sessions will be lost. A somewhat more subtle approach can also be taken. To
accommodate file sharing, the Coda file system (Kistler and Satyanaryanan, 1992)
uses a special allocation scheme that bears some similarities to share reservations
in NFS. To understand how the scheme works. the following is important. When a
client successfully opens a file 1, an entire copy of f is transferred to the client's

SEC. 11.5 SYNCHRONIZA nON 519

machine. The server records that the client has a copy of f. So far, this approach is
similar to open delegation in NFS.

Now suppose client A has opened file f for writing. When another client B
wants to open f as well, it will fail. This failure is caused by the fact that the
server has recorded that client A might have already modified f. On the other
hand, had client A opened f for reading, an attempt by client B to get a copy from
the server for reading would succeed. An attempt by B to open for writing would
succeed as well.

Now consider what happens when several copies of fhave been stored locally
at various clients. Given what we have just said, only one client will be able to
modify f. If this client modifies f and subsequently closes the file, the file will be
transferred back to the server. However, every other client may proceed to read its
local copy despite the fact that the copy is actually outdated.

The reason for this apparently inconsistent behavior is that a session is treated
as a transaction in Coda. Consider Fig. 11-20, which shows the time line for two
processes, A and B. Assume A has opened f for reading, leading to session SA·
Client B has opened f for writing, shown as session S8·

Figure 11·20. The transactional behavior in sharing files in Coda.

When B closes session S8' it transfers the updated version of f to the server,
which will then send an invalidation message to A. A will now know that it is
reading from an older version of f. However, from a transactional point of view,
this really does not matter because session SA could be considered to have been
scheduled before session S8.

11.6 CONSISTENCY AND REPLICATION

Caching and replication play an important role in distributed file systems,
most notably when they are designed to operate over wide-area networks. In what
follows, we will take a look at various aspects related to client-side caching of file

520 DISTRIBUTED FILE SYSTEMS CHAP. 11

data, as well as the replication of file servers. Also, we consider the role of repli-
cation in peer-to-peer file-sharing systems.

11.6.1 Client-Side Caching

To see how client-side caching is deployed in practice, we return to our ex-
ample systems NFS and Coda.

Caching in NFS

Caching in NFSv3 has been mainly left outside of the protocol. This approach
has led to the implementation of different caching policies, most of which never
guaranteed consistency. At best, cached data could be stale for a few seconds
compared to the data stored at a server. However, implementations also exist that
allowed cached data to be stale for 30 seconds without the client knowing. This
state of affairs is less than desirable.

NFSv4 solves some of these consistency problems, but essentially still leaves
cache consistency to be handled in an implementation-dependent way. The gener-
al caching model that is assumed by NFS is shown in Fig. 11-21. Each client can
have a memory cache that contains data previously read from the server. In addi-
tion, there may also be a disk cache that is added as an extension to the memory
cache, using the same consistency parameters.

Figure 11-21. Client-side caching in NFS.

Typically, clients cache file data, attributes, file handles, and directories. Dif-
ferent strategies exist to handle consistency of the cached data, cached attributes,
and so on. Let us first take a look at caching file data.

NFSv4 supports two different approaches for caching file data. The simplest
approach is when a client opens a file and caches the data it obtains from the
server as the result of various read operations. In addition, write operations can be
carried out in the cache as well. When the client closes the file, NFS requires that

SEC. 11.6 CONSISTENCY AND REPLICA nON 521

if modifications havetakerrpl-a€e,th~ cached data must be flushed back to the
server. This approach corresponds to implementing session semantics as discussed
earlier.

Once (part ot) a file has been cached, a client can keep its data in the cache
even after closing the file. Also, several clients on the same machine can share a
single cache. NFS requires that whenever a client opens a previously closed file
that has been (partly) cached, the client must immediately revalidate the cached
data. Revalidation takes place by checking when the file was last modified and
invalidating the cache in case it contains stale data.

In NFSv4 a server may delegate some of its rights to a client when a file is
opened. Open delegation takes place when the client machine is. allowed to
locally handle open and close operations from other clients on the same machine.
Normally, the server is in charge of checking whether opening a file should
succeed or not, for example, because share reservations need to be taken into ac-
count. With open delegation, the client machine is sometimes allowed to make
such decisions, avoiding the need to contact the server.

.For example, if a server has delegated the opening of a file to a client that re-
quested write permissions, file locking requests from other clients on the same
machine can also be handled locally. The server will still handle locking requests
from clients on other machines, by simply denying those clients access to the file.
Note that this scheme does not work in the case of delegating a file to a client that
requested only read permissions. In that case, whenever another local client wants
to have write permissions, it will have to contact the server; it is not possible to
handle the request locally.

An important consequence of delegating a file to a client is that the server
needs to be able to recall the delegation, for example, when another client on a
different machine needs to obtain access rights to the file. Recalling a delegation
requires that the server can do a callback to the client, as illustrated in Fig. 11-22.

Figure 11-22. Using the NFSv4 callback mechanism to recall file delegation.

A callback is implemented in NFS using its underlying RPC mechanisms.
Note, however, that callbacks require that the server keeps track of clients to
which it has delegated a file. Here, we see another example where an NFS server

522 DISTRIBUTED FILE SYSTEMS CHAP. 11

can no longer be implemented in a stateless manner. Note, how-ever,lfiatihe com-
bination of delegation and stateful servers may lead to various problems in the
presence of client and server failures. For example, what should a server do when
it had delegated a file to a now unresponsive client? As we discuss shortly, leases
will generally form an adequate practical solution.

Clients can also cache attribute values, but are largely left on their own when
it comes to keeping cached values consistent. In particular, attribute values of the
same file cached by two different clients may be different unless the clients keep
these attributes mutually consistent. Modifications to an attribute value should be
immediately forwarded to the server, thus following a write-through cache coher-
ence policy.

A similar approach is followed for caching file handles (or rather; the name-
to-file handle mapping) and directories. To mitigate the effects of inconsistencies,
NFS uses leases on cached attributes, file handles, and directories. After some
time has elapsed, cache entries are thus automatically invalidated and revalidation
is needed before they are used again.

Client-Side Caching in Coda

Client-side caching is crucial to the operation of Coda for two reasons. First,
caching is done to achieve scalability. Second, caching provides a higher degree
of fault tolerance as the client becomes less dependent on the availability of the
server. For these two reasons, clients in Coda always cache entire files. In other
words, when a file is opened for either reading or writing, an entire copy of the
file is transferred to the client, where it is subsequently cached.

Unlike many other distributed file systems. cache coherence in Coda is main-
tained by means of callbacks. We already came across this phenomenon when dis-
cussing file-sharing semantics. For each file, the server from which a client had
fetched the file keeps track of which clients have a copy of that file cached lo-
cally. A server is said to record a callback promise for a client. When a client
updates its local copy of the file for the first time, it notifies the server, which, in
tum, sends an invalidation message to the other clients. Such an invalidation mes-
sage is called a callback break, because the server will then discard the callback
promise it held for the client it just sent an invalidation.

The interesting aspect of this scheme is that as long as a client knows it has an
outstanding callback promise at the server, it can safely access the file locally. In
particular, suppose a client opens a file and finds it is still in its cache. It can then
use that file provided the server still has a callback promise on the file for that cli-
ent. The client will have to check with the server if that promise still holds. If so,
there is no need to transfer the file from the server to the client again.

This approach is illustrated in Fig. 11-23, which is an extension of Fig. 11-20.
When client A starts session SA, the server records a callback promise. The same
happens when B starts session SB' However, when B closes SB, the server breaks

Figure 11-23. The use of local copies when opening a session in Coda.

The consequence is that when A later wants to open session SA, it will find its
local copy of fto be invalid, so that it will have to fetch the latest version from the
server. On the other hand, when B opens session Ss, it will notice that the server
still has an outstanding callback promise implying that B can simply re-use the
local copy it still has from session SB'

Client-Side Caching for Portable Devices

One important development for many distributed systems is that many storage
devices can no longer be assumed to be permanently connected to the system
through a network. Instead, users have various types of storage devices that are
semi-permanently connected, for example, through cradles or docking stations.
Typical examples include PDAs, laptop devices, but also portable multimedia de-
vices such as movie and audio players.

In most cases, an explicit upload/download model is used for maintaining files
on portable storage devices. Matters can be simplified if the storage device is
viewed as part of a distributed file system. In that case, whenever a file needs to
be accessed, it may be fetched from the local device or over the connection to the
rest of the system. These two cases need to be distinguished.

Tolia et al. (2004) propose to take a very simple approach by storing locally a
cryptographic hash of the data contained in files. These hashes are stored on the
portable device and used to redirect requests for associated content. For example,
when a directory listing is stored locally, instead of storing the data of each listed
tile, only the computed has is stored. Then, when a file is fetched, the system will
first check whether the file is locally available and up-to-date. Note that a stale

SEC. 11.6

its promise to callback client A by sending A a callback break. Note that due to the
transactional semantics of Coda, when client A closes session SA, nothing special
happens; the closing is simply accepted as one would expect.

523CONSISTENCY AND REPLICATION

524 DISTRIBUTED FILE SYSTEMS CHAP.] 1

file will have a different hash than the one stored in the directory listing. If the file
is locally available, it can be returned to the client, otherwise a data transfer will
need to take place.

Obviously, when a device is disconnected it will be impossible to transfer any
data. Various techniques exist to ensure with high probability that likely to-be-
used files are indeed stored locally on the device. Compared to the on-demand
data transfer approach inherent to most caching schemes, in these cases we would
need to deploy file-prefetching techniques. However, for many portable storage
devices, we can expect that the user will use special programs to pre-install files
on the device.

11.6.2 Server-Side Replication

In contrast to client-side caching, server-side replication in distributed file
systems is less common. Of course, replication is applied when availability is at
stake, but from a performance perspective it makes more sense to deploy caches
in which a whole file, or otherwise large parts of it, are made locally available to a
client. An important reason why client-side caching is so popular is that practice
shows that file sharing is relatively rare. When sharing takes place, it is often only
for reading data, in which case caching is an excellent solution.

Another problem with server-side replication for performance is that a combi-
nation of a high degree of replication and a low read/write ratio may actually
degrade performance. This is easy to understand when realizing that every update
operation needs to be carried out at every replica. In other words, for an N-fold
replicated file, a single update request will lead to an N-fold increase of update
operations. Moreover, concurrent updates need to be synchronized, leading to
more communication and further performance reduction.

For these reasons, file servers are generally replicated only for fault tolerance.
In the following, we illustrate this type of replication for the Coda file system.

Server Replication in Coda

Coda allows file servers to be replicated. As we mentioned, the unit of repli-
cation is a collection of files called a volume. In essence, a volume corresponds
to a UNIXdisk partition, that is, a traditional file system like the ones directly sup-
ported by operating systems, although volumes are generally much smaller. The
collection of Coda servers that have a copy of a volume, are known as that
volume's Volume Storage Group, or simply VSG. In the presence of failures, a
client may not have access to all servers in a volume's VSG. A client's Accessi-
ble Volume Storage Group (AVSG) for a volume consists of those servers in
that volume's VSG that the client can contact at the moment. If the AVSG is
empty, the client is said to be disconnected.

SEC. 11.6 CONSISTENCY AND REPLICA nON 525
Coda uses a replicated-write protocol to maintain consistency of a replicated

volume. In particular, it uses a variant of Read-One, Write-All (ROWA), which
was explained in Chap. 7. When a client needs to read a file, it contacts one of the
members in its AVSG of the volume to which that file belongs. However, when
closing a session on an updated file, the client transfers it in parallel to each
member in the AVSG. This parallel transfer is accomplished by means of Mul-
tiRPC as explained before.

This scheme works fine as long as there are no failures, that is, for each client,
that client's AVSG of a volume is the same as its VSG. However, in the presence
of failures, things may go wrong. Consider a volume that is replicated across three
servers 81, 82, and 83, For client A, assume its AVSG covers servers 81 and 82
whereas client B has access only to server 83, as shown in Fig. 11-24.

Coda uses an optimistic strategy for file replication. In particular, both A and
B will be allowed to open a file, f, for writing, update their respective copies, and
transfer their copy back to the members in their AVSG. Obviously, there will be
different versions of t stored in the VSG. The question is how this inconsistency
can be detected and resolved.

The solution adopted by Coda is deploying a versioning scheme. In particular,
a server Sj in a VSG maintains a Coda version vector CV\ti(f) for each file tcon-
tained in that VSG. If CV\ti(f)U] = k, thenserver Sj knows that server ~ has seen
at least version k of file f CV\ti(f)[i] is the number of the current version of t
stored at server 8i. An update of t at server Sj will lead to an increment of
CV\ti(f)[i]. Note that version vectors are completely analogous to the vector
timestamps discussed in Chap. 6.

Returning to our three-server example, CV\ti(f) is initially equal to [1,1,1] for
each server Sj. When client A reads tfrom one of the servers in its AVSG, say 81,

it also receives CWI (f). After updating f, client A multicasts fto each server in
its AVSG, that is, 81 and 82, Both servers will then record that their respective
copy has been updated, but not that of 83, In other words,

Figure 11-24. Two clients with a different AVSG for the same replicated file.

526 DISTRIBUTED FILE SYSTEMS CHAP. 11

Meanwhile, client B will be allowed to open a session in which it receives a
copy of f from server S3, and subsequently update f as well. When closing its ses-
sion and transferring the update to S3, server S3 will update its version vector to
CW3(f)=[l,1,2J.

When the partition is healed, the three servers will need to reintegrate their
copies of f.By comparing their version vectors, they will notice that a conflict has
occurred that needs to be repaired. In many cases, conflict resolution can be auto-
mated in an application-dependent way, as discussed in Kumar and Satyanaray-
anan (1995). However, there are also many cases in which users will have to
assist in resolving a conflict manually, especially when different users have
changed the same part of the same file in different ways.

11.6.3 Replication in Peer-to-Peer File Systems

Let us now examine replication in peer-to-peer file-sharing systems. Here,
replication also plays an important role, notably for speeding up search and look-
up requests, but also to balance load between nodes. An important property in
these systems is that virtually all files are read only. Updates consist only in the
form of adding files to the system. A distinction should be made between unstruc-
tured and structured peer-to-peer systems.

Unstructured Peer-to-Peer Systems

Fundamental to unstructured peer-to-peer systems is that looking up data boils
down to searching that data in the network. Effectively, this means that a node
will simply have to, for example, broadcast a search query to its neighbors, from
where the query may be forwarded, and so on. Obviously, searching through ~~
broadcasting is generally not a good idea, and special measures need to be taken
to avoid performance problems. Searching in peer-to-peer systems is discussed
extensively in Risson and Moors (2006).

Independent of the way broadcasting is limited, it should be clear that if files
are replicated, searching becomes easier and faster. One extreme is to replicate a
file at all nodes, which would imply that searching for any file can be done en-
tirely local. However, given that nodes have a limited capacity, full replication is
out of the question. The problem is then to find an optimal replication strategy,
where optimality is defined by the number of different nodes that need to process
a specific query before a file is found.

Cohen and Shenker (2002) have examined this problem, assuming that file
replication can be controlled. In other words, assuming that nodes in an unstruc-
tured peer-to-peer system can be instructed to hold copies of files, what is then the .-
best allocation of file copies to nodes?

Let us consider two extremes. One policy is to uniformly distribute 11 copies
of each file across the entire network. This policy ignores that different files may

SEC. 11.6 CONSISTENCY AND REPLICATION 527

have different request rates, that is, that some files are more popular than others.
As an alternative, another policy is to replicate files according to how often they
are searched for: the more popular a file is, the more replicas we create and distri-
bute across the overlay.

As a side remark, note that this last policy may make it very expensive to
locate unpopular files. Strange as this may seem, such searches may prove to be
increasingly important from an economic point of view. The reasoning is simple:
with the Internet allowing fast and easy access to tons of information, exploiting
niche markets suddenly becomes attractive. So, if you are interested in getting the
right equipment for, let's say a recumbent bicycle, the Internet is the place to go
to provided its search facilities will allow you to efficiently discover the appropri-
ate seller.

Quite surprisingly, it turns out that the uniform and the popular policy perform
just as good when looking at the average number of nodes that need to be queried.
The distribution of queries is the same in both cases, and such that the distribution
of documents in the popular policy follows the distribution of queries. Moreover,
it turns out that any allocation "between" these two is better. Obtaining such an
allocation is doable, but not trivial.

Replication in unstructured peer-to-peer systems happens naturally when
users download files from others and subsequently make them available to the
community. Controlling these networks is very difficult in practice, except when
parts are controlled by a single organization. Moreover, as indicated by studies
conducted on BitTorrent, there is also an important social factor when it comes to
replicating files and making them available (Pouwelse et al., 2005). For example,
some people show altruistic behavior, or simply continue to make files no longer
available than strictly necessary after they have completed their download. The
question comes to mind whether systems can be devised that exploit this behavior.

Structured Peer-to-Peer Systems

Considering the efficiency of lookup operations in structured peer-to-peer sys-
tems, replication is primarily deployed to balance the load between the nodes. We
already encountered in Chap. 5 how a "structured" form of replication, as
exploited by Ramasubramanian and Sirer (2004b) could even reduce the average
lookup steps to O(1). However, when it comes to load balancing, different ap-
proaches need to be explored.

One commonly applied method is to simply replicate a file along the path that
a query has followed from source to destination. This replication policy will have
the effect that most replicas will be placed close to the node responsible for stor-
ing the file, and will thus indeed offload that node when there is a high request
rate. However, such a replication policy does not take the load of other nodes into
account, and may thus easily lead to an imbalanced system.

528 DISTRIBUTED FILE SYSTEMS CHAP. 11

To address these problems, Gopalakrishnan et al. (2004) propose a different
scheme that takes the current load of nodes along the query route into account.
The principal idea is to store replicas at the source node of a query, and to cache
pointers to such replicas in nodes along the query route from source to destination.
More specifically, when a query from node P to Q is routed through node R, R
will check whether any of its files should be offloaded to P. It does so by simply
looking at its own query load. If R is serving too many lookup requests for files it
is currently storing in comparison to the load imposed on P, it can ask P to install
copies of R's most requested files. This principle is sketched in Fig. 11-25.

Figure 11-25. Balancing load in a peer-to-peer system by replication.

If P can accept file f from R, each node visited on the route from P to R will
install a pointer for fto P, indicating that a replica of f can be found at P.

Clearly, disseminating information on where replicas are stored is important
for this scheme to work. Therefore, when routing a query through the overlay, a
node may also pass on information concerning the replicas it is hosting. This in-
formation may then lead to further installment of pointers, allowing nodes to take
informed decisions of redirecting requests to nodes that hold a replica of a re-
quested file. These pointers are placed in a limited-size cache and are replaced
following a simple least-recently used policy (i.e., cached pointers referring to
files that are never asked for, will be removed quickly).

11.6.4 File Replication in Grid Systems

As our last subject concerning replication of files, let us consider what hap-
pens in Grid computing. Naturally, performance plays a crucial role in this area as
many Grid applications are highly compute-intensive. In addition, we see that ap-
plications often also need to process vast amounts of data. As a result, much effort
has been put into replicating files to where applications are being executed. The
means to do so, however, are (somewhat) surprisingly simple.

A key observation is that in many Grid applications data are read only. Data
are often produced from sensors, or from other applications, but rarely updated or
otherwise modified after they are produced and stored. As a result, data replica-
tion can be applied in abundance, and this is exactly what happens.

SEC. 11.6 CONSISTENCY AND REPLICATION 529

Unfortunately, the size of the data sets are sometimes so enormous that spe-
cial measures need to be taken to avoid that data providers (i.e., those machine
storing data sets) become overloaded due to the amount of data they need to trans-
fer over the network. On the other hand, because much of the data is heavily repli-
cated, balancing the load for retrieving copies is less of an issue.

Replication in Grid systems mainly evolves around the problem of locating
the best sources to copy data from. This problem can be solved by special replica
location services, very similar to the location services we discussed for naming
systems. One obvious approach that has been developed for the Globus toolkit is
to use a DHT-based system such as Chord for decentralized lookup of replicas
(Cai et aI., 2004). In this case, a client passes a file name to any node of the ser-
vice, where it is converted to a key and subsequently looked up. The information
returned to the client contains contact addresses for the requested files.

To keep matters simple, located files are subsequently downloaded from vari-
ous sites using an FTP-like protocol, after which the client can register its own
replicas with the replication location service. This architecture is described in
more detail in Chervenak et al. (2005), but the approach is fairly straightforward.

11.7 FAULT TOLERANCE

Fault tolerance in distributed file systems is handled according to the princi-
ples we discussed in Chap. 8. As we already mentioned, in many cases, replica-
tion is deployed to create fault-tolerant server groups. In this section, we will
therefore concentrate on some special issues in fault tolerance for distributed file
systems.

11.7.1 Handling Byzantine Failures

One of the problems that is often ignored when dealing with fault tolerance is
that servers may exhibit arbitrary failures. In other words, most systems do not
consider the Byzantine failures we discussed in Chap. 8. Besides complexity, the
reason for ignoring these type of failures has to do with the strong assumptions
that need to be made regarding the execution environment. Notably, it must be
assumed that communication delays are bounded.

In practical settings, such an assumption is not realistic. For this reason, Cas-
tro and Liskov (2002) have devised a solution for handling Byzantine failures that
can also operate in networks such as the Internet. We discuss this protocol here, as
it can (and has been) directly applied to distributed file systems, notably an NFS-
based system. Of course, there are other applications as well. The basic idea is to
deploy active replication by constructing a collection of finite state machines and
to have the nonfaulty processes in this collection execute operations in the same
order. Assuming that at most k processes fail at once, a client sends an operation

530 DISTRIBUTED FILE SYSTEMS CHAP. 11

to the entire group and accepts an answer that is returned by at least k +] dif-
ferent processes.

To achieve protection against Byzantine failures, the server group must con-
sist of at least 3k +] processes. The difficult part in achieving this protection is to
ensure that nonfaulty processes execute all operations in the same order. A simple
means to achieve this goal is to assign a coordinator that simply serializes all op-
erations by attaching asequence number to each request. The problem. of course,
is that the coordinator may fail.

It is with failing coordinators that the problems start. Very much like with vir-
tual synchrony, processes go through a series of views, where in each view the
members agree on the nonfaulty processes, and initiate a view change when the
current master appears to be failing. This latter can be detected if we assume that
sequence numbers are handed out one after the other, so that a gap, or a timeout
for an operation may indicate that something is wrong. Note that processes may
falsely conclude that a new view needs to be installed. However, this will not af-
fect the correctness of the system.

An important part of the protocol relies on the fact that requests can be cor-
rectly ordered. To this end, a quorum mechanism is used: whenever a process
receives a request to execute operation 0 with number n in view v, it sends this to
all other processes, and waits until it has received a confirmation from at least 2k
others that have seen the same request. In this way, we obtain a quorum of size
2k + 1 for the request. Such a confirmation is called a quorum certificate. In
essence, it tells us that a sufficiently large number of processes have stored the
same request and that it is thus safe to proceed.

The whole protocol consists of five phases, shown in Fig. 11-26.

Figure 11-26. The different phases in Byzantine fault tolerance.

During the first phase, a client sends a request to the entire server group. Once the
master has received the request, it multicasts a sequence number in a pre-prepare
phase so that the associated operation will be properly ordered. At that point. the
slave replicas need to ensure that the master's sequence number is accepted by a
quorum, provided that each of them accepts the master's proposal. Therefore, if a

SEC. 11.7 FAULT TOLERANCE 531
slave accepts the proposed sequence number, it multicasts this acceptance to the
others. During the commit phase, agreement has been reached and all processes
inform each other and execute the operation, after which the client can finally see
the result.

When considering the various phases, it may seem that after the prepare
phase. all processes should have agreed on the same ordering of requests. How-
ever, this is true only within the same view: if there was a need to change to a new
view, different processes may have the same sequence number for different opera-
tions, but which were assigned in different views. For this reason, we need the
commit phase as well, in which each process now tells the others that it has stored
the request in its local log, and for the current view. As a consequence, even if
there is a need to recover from a crash, a process will know exactly which se-
quence number had been assigned, and during which view.

Again, a committed operation can be executed as soon as a nonfaulty process
has seen the same 2k commit messages (and they should match its own inten-
tions). Again, we now have a quorum of 2k + 1 for executing the operation. Of
course, pending operations with lower sequence numbers should be executed first.

Changing to a new view essentially follows the view changes for virtual syn-
chrony as described in Chap. 8. In this case, a process needs to send information
on the pre-prepared messages that it knows of, as well as the received prepared
messages from the previous view. We will skip further details here.

The protocol has been implemented for an NFS-based file system, along with
various important optimizations and carefully crafted data structures, of which the
details can be found in Castro and Liskov (2002). A description of a wrapper that
will allow the incorporation of Byzantine fault tolerance with legacy applications
can be found in Castro et al. (2003).

11.7.2 High Availability in Peer-to-Peer Systems

An issue that has received special attention is ensuring availability in peer-to
peer systems. On the one hand, it would seem that by simply replicating files
availability is easy to guarantee. The problem, however, is that the unavailabilitj
of nodes is so high that this simple reasoning no longer holds. As we explained iI
Chap. 8, the key solution to high availability is redundancy. When it comes t<
files, there are essentially two different methods to realize redundancy: replicatior
and erasure coding.

Erasure coding is a well-known technique by which a file is partitioned intc
m fragments which are subsequently recoded into n > m fragments. The crucia
issue in this coding scheme is that any set of m encoded fragments is sufficient tc
reconstruct the original file. In this case, the redundancy factor is equal tc
rec=.n/m. Assuming an average node availability of a, and a required file unavai-
lability of E, we need to guarantee that at least m fragments are available, that is:

532 DISTRIBUTED FILE SYSTEMS CHAP. 11

If we compare this to replicating files, we see that file unavailability is completely
dictated by the probability that all its rrep replicas are unavailable. If we assume
that node departures are independent and identically distributed. we have

1 - E = 1 - (1 - a/rep

Applying some algebraic manipulations and approximations. we can express the
difference between replication and erasure coding by considering the ratio rrep/'rec
in its relation to the availability a of nodes. This relation is shown in Fig. 11-27,
for which we have set 111 = 5 [see also Bhagwan et al. (2004) and Rodrigues and
Liskov (2005)].

Figure 11-27. The ratio rrep/rec as a function of node availability a.

What we see from this figure is that under all circumstances, erasure coding
requires less redundancy than simply replicating files. In other words, replicating
files for increasing availability in peer-to-peer networks in which nodes regularly
come and go is less efficient from a storage perspective than using erasure coding
techniques.

One may argue that these savings in storage are not really an issue anymore as
disk capacity is often overwhelming. However, when realizing that maintaining
redundancy will impose communication, then lower redundancy is going to save
bandwidth usage. This performance gain is notably important when the nodes
correspond to user machines connected to the Internet through asymmetric DSL
or cable lines, where outgoing links often have a capacity of only a few hundred
Kbps.

11.8 SECURITY

Many of the security principles that we discussed in Chap. 9 are directly
applied to distributed file systems. Security in distributed file systems organized
along a client-server architecture is to have the servers handle authentication and

SEC. 11.8 SECURITY 533

access control. This is a straightforward way of dealing with security, an approach
that has been adopted, for example, in systems such as NFS.

In such cases, it is common to have a separate authentication service, such as
Kerberos, while the file servers simply handle authorization. A major drawback of
this scheme is that it requires centralized administration of users, which may
severely hinder scalability. In the following, we first briefly discuss security in
NFS as an example of the traditional approach, after which we pay attention to
alternative approaches.

11.8.1 Security in NFS

As we mentioned before, the basic idea behind NFS is that a remote file sys-
tem should be presented to clients as if it were a local file system. In this light, it
should come as no surprise that security in NFS mainly focuses on the communi-
cation between a client and a server. Secure communication means that a secure
channel between the two should be set up as we discussed in Chap. 9.

In addition to secure RPCs, it is necessary to control file accesses. which are
handled by means of access control file attributes in NFS. A file server is in
charge of verifying the access rights of its clients, as we will explain below. Com-
bined with secure RPCs, the NFS security architecture is shown in Fig. 11-28.

Figure 11-28. The NFS security architecture.

Secure RPCs

Because NFS is layered on top of an RPC system, setting up a secure channel
in NFS boils down to establishing secure RPCs. Up until NFSv4, a secure RPC
meant that only authentication was taken care of. There were three ways for doing
authentication. We will now examine each one in tum.

534 DISTRIBUTED ALE SYSTEMS
I

CHAP. 11

The most widely-used method, one that actually hardly does any authentica-
tion, is known as system authentication. In this UNIX-based method. a client sim-
ply passes its effective user ID and group ID to the server, along with a list of
groups it claims to be a member of. This information is sent to the server as un-
signed plaintext. In other words. the server has no way at all of verifying whether
the claimed user and group identifiers are actually associated with the sender. In
essence, the server assumes that the client has passed a proper login procedure,
and that it can trust the client's machine.

The second authentication method in older NFS versions uses Diffie-Hellman
key exchange to establish a session key, leading to what is caJJed secure NFS.
We explained how Diffie-Hellman key exchange works in Chap. 9. This approach
is much better than system authentication, but is more complex. for which reason
it is implemented less frequently. Diffie-Hellman can be viewed as a public-key
cryptosystem. Initially, there was no way to securely distribute a server's public
key, but this was later corrected with the introduction of a secure name service. A
point of criticism has always been the use of relatively small public keys, which
are only 192 bits in NFS. It has been shown that breaking a Diffie-Hellman sys-
tem with such short keys is nearly trivial (Lamacchia and Odlyzko, 1991).

The third authentication protocol is Kerberos, which we also described in
Chap. 9.

With the introduction of NFSv4, security is enhanced by the support for
RPCSEC_GSS. RPCSEC_GSS is a general security framework that can support
a myriad of security mechanism for setting up secure channels (Eisler et aI.,
1997). In particular, it not only provides the hooks for different authentication
systems, but also supports message integrity and confidentiality, two features that
were not supported in older versions of NFS.

RPCSEC_GSS is based on a standard interface for security services, namely
GSS-API, which is fully described in Linn (1997). The RPCSEC_GSS is layered
on top of this interface, leading to the organization shown in Fig. 11-29.

For NFSv4, RPCSEC_GSS should be configured with support for Kerberos
V5. In addition, the system must also support a method known as LIPKEY,
described in Eisler (2000). LIPKEY is a public-key system that allows clients to
be authenticated using a password while servers can be authenticated using a pub-
lic key.

The important aspect of secure RPC in NFS is that the designers have chosen
not to provide their own security mechanisms, but only to provide a standard way
for handling security. As a consequence, proven security mechanisms, such Ker-
beros, can be incorporated into an NFS implementation without affecting other
parts of the system. Also, if an existing security mechanisms turns out to be
flawed (such as in the case of Diffie-Hellman when using small keys), it can
easily be replaced.

It should be noted that because RPCSEC_GSS is implemented as part of the
RPC layer that underlies the NFS protocols. it can also be used for older versions

SEC. 11.8 SECURITY 535

Figure 11-29. Secure RPC'in NrSv4.

of NFS. However, this adaptation to the RPC layer became available only with
the introduction of NFSv4.

Access Control

Authorization in NFS is analogous to secure RPC: it provides the mechanisms
but does not specify any particular policy. Access control is supported by means
of the ACL file attribute. This attribute is a list of access control entries, where
each entry specifies the access rights for a specific user or group. Many of the op-
erations that NFS distinguishes with respect to access control are relatively
straightforward and include those for reading, writing, and executing files, mani-
pulating file attributes, listing directories, and so on.

Noteworthy is also the synchronize operation that essentially tells whether a
process that is colocated with a server can directly access a file, bypassing the
NFS protocol for improved performance. The NFS model for access control has
much richer semantics than most UNIX models. This difference comes from the
requirements that NFS should be able to interoperate with Windows systems. The
underlying thought is that it is much easier to fit the UNIX model of access control
to that of Windows, then the other way around.

Another aspect that makes access control different from file systems such as
in UNIX, is that access can be specified for different users and different groups.
Traditionally, access to a file is specified for a single user (the owner of the file),
a single group of users (e.g., members of a project team), and for everyone else.
NFS has many different kinds of users and processes, as shown in Fig. 11-30.

536 DISTRIBUTED FILE SYSTEMS CHAP.] 1

Figure 11-30. The various kinds of users and processes distinguished by NFS
with respect to access control.

11.8.2 Decentralized Authentication

One of the main problems with systems such as NFS is that in order to prop-
erly handle authentication, it is necessary that users are registered through a cen-
tral system administration. A solution to this problem is provided by using the
Secure File Systems (SFS) in combination with decentralized authentication ser-
vers. The basic idea. described in full detail in Kaminsky et aI. (2003) is quite
simple. What other systems lack is the possibility for a user to specify that a re-
mote user has certain privileges on his files. Invirtually all cases, users must be
globally known to all authentication servers. A simpler approach would be to let
Alice specify that "Bob, whose details can be found at X," has certain privileges.
The authentication server that handles Alice's credentials could then contact
server X to get information on Bob.

An important problem to solve is to have Alice's server know for sure it is
dealing with Bob's authentication server. This problem can be solved using self-
certifying names, a concept introduced in SFS (Mazieres et aI., 1999) aimed at
separating key management from file-system security. The overall organization of
SFS is shown in Fig. 11-31. To ensure portability across a wide range of ma-
chines, SFS has been integrated with various NFSv3 components. On the client
machine, there are three different components. not counting the user's program.
The NFS client is used as an interface to user programs, and exchanges informa-
tion with an SFS client. The latter appears to the NFS client as being just another
NFS server.

The SFS client is responsible for setting up a secure channel with an SFS
server. It is also responsible for communicating with a locally-available SFS user
agent, which is a program that automatically handles user authentication. SFS

SEC. 11.8 SECURITY 537

Figure 11-31. The organization of SFS.

does not prescribe how user authentication should take place. In correspondence
with its design goals, SFS separates such matters and uses different agents for dif-
ferent user-authentication protocols.

'On the server side there are also three components. The NFS server is again
used for portability reasons. This server communicates with the SFS server which
operates as an NFS client to the NFS server. The SFS server forms the core proc-
ess of SFS. This process is responsible for handling file requests from SFS clients.
Analogous to the SFS agent, an SFS server communicates with a separate authen-
tication server to handle user authentication.

What makes SFS unique in comparison to other distributed file systems is its
organization of its name space. SFS provides a global name space that is rooted in
a directory called /sfs. An SFS client allows its users to create symbolic links
within this name space. More importantly, SFS uses self-certifying pathnames to
name its files. Such a pathname essentially carries all the information to authenti-
cate the SFS server that is providing the file named by the pathname. A self-
certifying pathname consists of three parts, as shown in Fig. 11-32.

Figure 11-32. A self-certifying pathname in SFS.

The first part of the name consists of a location LOC, which is either a DNS
domain name identifying the SFS server, or its corresponding IP address. SFS

538 DISTRIBUTED ALE SYSTEMS CHAP. 11

assumes that each server S has a public key Ks. The second part of a self-
certifying pathname is a host identifier HID that is computed by taking a crypto-
graphic hash H over the server's location and its public key:

HID is represented by a 32-digit number in base 32. The third part is formed by
the local pathname on the SFS server under which the file is actually stored. '

Whenever a client accesses an SFS server, it can authenticate that server by
simply asking it for its public key. Using the well-known hash function H, the cli-
ent can then compute HID and verify it against the value found in the pathname.
If the two match. the client knows it is talking to the server bearing the name as
found in the location.

How does this approach separate key management from file system security?
The problem that SFS solves is that obtaining a server's public key can be com-
pletely separated from file system security issues. One approach to getting the ser-
ver's key is letting a client contact the server and requesting the key as described
above. However. it is also possible to locally store a collection of keys, for ex-
ample by system administrators. In this case, there is no need to contact a server.
Instead, when resolving a pathname, the server's key is looked up locally after
which the host ID can be verified using the location part of the path name.

To simplify matters, naming transparency can be achieved by using symbolic
links. For example, assume a client wants to access a file named

To hide the host ill, a user can create a symbolic link

and subsequently use only the pathname /sfs/vucs/home/steen/mbox . Resolution
of that name will automatically expand to the full SFS pathname, and using the
public key found locally, authenticate the SFS server named sjs.vu.cs.nl.

In a similar fashion, SFS can be supported by certification authorities. Typi-
cally, such an authority would maintain links to the SFS servers for which it is
acting. As an example, consider an SFS certification authority CA that runs the
SFS server named

Assuming the client has already installed a symbolic link

the certification authority could use another symbolic link

that points to the SFS server sfs.vu.cs.nl. In this case, a client can simply refer to

SEC. 11.8 SECURITY 539

/certsfs/vucs/home/steen/mbox knowing that it is accessing a file server whose
public key has been certified by the certification authority CA.

Returning to our problem of decentralized authentication, it should now be
clear that we have all the mechanisms in place to avoid requiring Bob to be regis-
tered at Alice's authentication server. Instead, the latter can simply contact Bob's
server provided it is given a name. That name already contains a public key so
that Alice's server can verify the identity of Bob's server. After that, Alice's
server can accept Bob's privileges as indicated by Alice. As said, the details of
this scheme can be found in Kaminsky et al. (2003).

11.8.3 Secure Peer-to-Peer File-Sharing Systems

So far, we have discussed distributed file systems that were relatively easy to
secure. Traditional systems either use straightforward authentication and access
control mechanisms extended with secure communication, or we can leverage
traditional authentication to a completely decentralized scheme. However, matters
become complicated when dealing with fully decentralized systems that rely on
collaboration, such as in peer-to-peer file-sharing systems.

Secure Lookups in DHT-Based Systems

There are various issues to deal with (Castro et al., 2002a; and Wallach,
2002). Let us consider DHT-based systems. In this case, we need to rely on
secure lookup operations, which essentially boil down to a need for secure rout-
ing. This means that when a nonfaulty node looks up a key k, its request is indeed
forwarded to the node responsible for the data associated with k, or a node storing
a copy of that data. Secure routing requires that three issues are dealt with:

1. Nodes are assigned identifiers in a secure way.

2. Routing tables are securely maintained.

3. Lookup requests are securely forwarded between nodes.

When nodes are not securely assigned their identifier, we may face the prob-
lem that a malicious node can assign itself an ID so that all lookups for specific
keys will be directed to itself, or forwarded along the route that it is part of. This
situation becomes more serious when nodes can team up, effectively allowing a
group to form a huge "sink" for many lookup requests. Likewise, without secure
identifier assignment, a single node may also be able to assign itself many identi-
fiers, also known as a Sybil attack, creating the same effect (Douceur, 2002).

More general than the Sybil attack is an attack by which a malicious node
controls so many of a nonfaulty node's neighbors, that it becomes virtually impos-
sible for correct nodes to operate properly. This phenomenon is also known as an

540 DISTRIBUTED FILE SYSTEMS CHAP. 11

eclipse attack, and is analyzed in Singh et al. (2006). Defending yourself against
such an attack is difficult. One reasonable solution is to constrain the number of
incoming edges for each node. In this way, an attacker can have only a limited
number of correct nodes pointing to it. To also prevent an attacker from taking
over all incoming links to correct nodes, the number of outgoing links should also
be constrained [see also Singh et al. (2004)]. Problematic in all these cases is that
a centralized authority is needed for handing out node identifiers. Obviously, such
an authority goes against the decentralized nature of peer-to-peer systems.

When routing tables can be filled in with alternative nodes. as is often the
case when optimizing for network proximity, an attacker can easily convince a
node to point to malicious nodes. Note that this problem does not occur when
there are strong constraints on filling routing table entries, such as in the case of
Chord. The solution, therefore, is to mix choosing alternatives with a more con-
strained filling of tables [of which details are described in Castro et al. (2002a)].

Finally, to defend against message-forwarding attacks, a node may simply
forward messages along several routes. One way to do this is to initiate a lookup
from different source nodes.

Secure Collaborative Storage

However, the mere fact that nodes are required to collaborate introduces more
problems. For example, collaboration may dictate that nodes should offer about
the same amount of storage that they use from others. Enforcing this policy can be
quite tricky. One solution is to a apply a secure trading of storage, as for Samsara,
as described in Cox and Noble (2003).

The idea is quite simple: when a server P wants to store one of its files f on
another server Q, it makes storage available of a size equal to that of f, and
reserves that space exclusively for Q. In other words, Q now has an outstanding
claim at A, as shown in Fig. 11-33.

Figure 11·33. The principle of storage claims in the Samsara peer-to-peer system.

To make this scheme work, each participant reserves an amount of storage
and divides that into equal-sized chunks. Each chunk consists of incompressible

SEC. 11.8 SECURITY 541

data. In Samsara, chunk c, consists of a 160-bit hash value hi computed over a
secret passphrase W concatenated with the number i. Now assume that claims are
handed out in units of 256 bytes. In that case, the first claim is computed by taking
the first 12 chunks along with the first 16 bytes of next chunk. These chunks are
concatenated and encrypted using a private key K. In general, claim C, is com-
puted as

11.9 SUMMARY

Distributed file systems form an important paradigm for building distributed
systems. They are generally organized according to the client-server model, with
client-side caching and support for server replication to meet scalability require-
ments. In addition, caching and replication are needed to achieve high availability.
More recently, symmetric architectures such as those in peer-to-peer file-sharing
systems have emerged. In these cases, an important issue is whether whole files or
data blocks are distributed.

where k=jxI3. Whenever P wants to make use of storage at Q, Q returns a collec-
tion of claims that P is now forced to store. Of course, Q need never store its own
claims. Instead, it can compute when needed. '.

The trick now is that once in a while, Q may want to check whether P is still
storing its claims. If P cannot prove that it is doing so, Q can simply discard P's
data. One blunt way of letting P prove it still has the claims is returning copies to
Q. Obviously, this will waste a lot of bandwidth. Assume that Q had handed out
claims Cj\, ••• , Cjk to P. In that case, Q passes a 160-bit string d to P, and re-
quests it to compute the 160-bit hash d 1 of d concatenated with Cj\ . This hash is
then to be concatenated with Cj2, producing a hash value d2, and so on. In the
end. P need only return dn to prove it still holds all the claims.

Of course, Q may also want to replicate its files to another node, say R. In
doing so, it will have to hold claims for R. However, if Q is running out of
storage, but has claimed storage at P, it may decide to pass those claims to R in-
stead. This principle works as follows.

Assume that P is holding a claim CQ for Q, and Q is supposed to hold a claim
CR for R. Because there is no restriction on what Q can store at P, Q might as well
decide to store CR at P. Then, whenever R wants to check whether Q is still hold-
ing its claim, Q will pass a value d to Q and request it to compute the hash of d
concatenated with CR' To do so, Q simply passes d on to P, requests P to compute
the hash, and returns the result to R. If it turns out that P is no longer holding the
claim, Q will be punished by R, and Q, in turn, can punish P by removing stored
data.

542 DISTRIBUTED FILE SYSTEMS CHAP. II

Instead of building a distributed file system directly on top of the transport
layer it is common practice to assume the existence of an RPC layer, so that all
operations can be simply expressed as RPCs to a file server instead of having to
use primitive message-passing operations. Some variants of RPC have been
developed, such as the MultiRPC provided in Coda, which allows a number of
servers to be called in parallel.

What makes distributed file systems different from nondistributed file systems
is the semantics of sharing files. Ideally, a file system allows a client to always
read the data that have most recently been written to a file. These UNIX file-
sharing semantics are very hard to implement efficiently in a distributed system.
NFS supports a weaker form known as session semantics, by which the final ver-
sion of a file is determined by the last client that closes a file, which it had previ-
ously opened for writing. In Coda, file sharing adheres to transactional semantics
in the sense that reading clients will only get to see the most recent updates if they
reopen a file. Transactional semantics in Coda do not cover all the ACID proper-
ties of regular transactions. In the case that a file server stays in control of all op-
erations, actual UNIX semantics can be provided, although scalability is then an
issue. In all cases, it is necessary to allow concurrent updates on files, which
brings relatively intricate locking and reservation schemes into play.

To achieve acceptable performance, distributed file systems generally allow
clients to cache an entire file. This whole-file caching approach is supported, for
example, in NFS, although it is also possible to store only very large chunks of a
file. Once a file has been opened and (partly) transferred to the client, all opera-
tions are carried out locally. Updates are flushed to the server when the file is
closed again.

_Replication also plays an important role in peer-to-peer systems, although
matters are strongly simplified because files are generally read-only. More impor-
tant in these systems is trying to reach acceptable load balance, as naive replica-
tion schemes can easily lead to hot spots holding many files and thus become
potential bottlenecks.

Fault tolerance is usually dealt with using traditional methods. However, it is
also possible to build file systems that can deal with Byzantine failures, even
when the system as a whole is running on the Internet. In this case, by assuming
reasonable timeouts and initiating new server groups (possibly based on false
failure detection), practical solutions can be built. Notably for distributed file sys-
tems, one should consider to apply erasure coding techniques to reduce the overall
replication factor when aiming for only high availability.

Security is of paramount importance for any distributed system, including file
systems. NFS hardly provides any security mechanisms itself, but instead imple-
ments standardized interfaces that allow different existing security systems to be
used, such as, for example Kerberos. SFS is different in the sense it allows file
names to include information on the file server's public key. This approach sim-
plifies key management in large-scale systems. In effect, SFS distributes a key by

SEC. 11.9 SlThtlMARY 543

including it in the name of a file. SFS can be used to implement a decentralized
authentication scheme. Achieving security in peer-to-peer file-sharing systems is
difficult, partly because of the assumed collaborative nature in which nodes will
always tend to act selfish. Also, making lookups secure turns out to be a difficult
problem that actually requires a central authority for handing out node identifiers.

PROBLElVIS

1. Is a file server implementing NFS version 3 required to be stateless?

2. Explain whether or not NFS is to be considered a distributed file system.

3. Despite that GFS scales well, it could be argued that the master is still a potential
bottleneck. What would be a reasonable alternative to replace it?

4. Using RPC2's side effects is convenient for continuous data streams. Give another ex-
ample in which it makes sense to use an application-specific protocol next to RPC.

5. NFS does not provide a global, shared name space. Is there a way to mimic such a
name space?

6. Give a simple extension to the NFS lookup operation that would allow iterative name
lookup in combination with a server exporting directories that it mounted from another
server.

7. In UNIX-based operating systems, opening a file using a file handle can be done only
in the kernel. Give a possible implementation of an NFS file handle for a user-level
NFS server for a UNIX system.

8. Using an automounter that installs symbolic links as described in the text makes it
harder to hide the fact that mounting is transparent. Why?

9. Suppose that the current denial state of a file in NFS is WRITE. Is it possible that an-
other client can first successfully open that file and then request a write lock?

10. Taking into account cache coherence as discussed in Chap. 7, which kind of cache-
coherence protocol does NFS implement?

11. Does NFS implement entry consistency?

12. We stated that NFS implements the remote access model to file handling. It can be
argued that it also supports the upload/download model. Explain why.

13. In NFS, attributes are cached using a write-through cache coherence policy. Is it
necessary to forward all attributes changes immediately?

14. What calling semantics does RPC2 provide in the presence of failures?

15. Explain how Coda solves read-write conflicts on a file that is shared between multiple
readers and only a single writer.

544 DISTRIBUTED FILE SYSTEMS CHAP. 11

16. Using self-certifying path names, is a client always ensured it is communicating with a
nonmalicious server?

17. (Lab assignment) One of the easiest ways for building a UNIX-based distributed sys-
tem, is to couple a number of machines by means of NFS. For this assignment. you are
to connect two file systems on different computers by means of NFS. In particular,
install an NFS server on one machine such that various parts of its file system are
automatically mounted when the first machine boots.

18. (Lab assignment) To integrate UNIX-based machines with Windows clients, one can
make use of Samba servers. Extend the previous assignment by making a UNIX-hased
system available to a Windows client. by installing and configuring a Samba server.
At the same time. the file system should remain accessible through NFS.

12
DISTRIBUTED

WEB-BASED SYSTEMS

The World Wide Web (WWW) can be viewed as a huge distributed system
consisting of millions of clients and servers for accessing linked documents.
Servers maintain collections of documents, while clients provide users an easy-
to-use interface for presenting and accessing those documents.

The Web started as a project at CERN, the European Particle Physics Labora-
tory in Geneva, to let its large and geographically dispersed group of researchers
access shared documents using a simple hypertext system. A document could be
anything that could be displayed on a user's computer terminal, such as personal
notes, reports, figures, blueprints, drawings, and so on. By linking documents to
each other, it became easy to integrate documents from different projects into a
new document without the necessity for centralized changes. The only thing need-
ed was to construct a document providing links to other relevant documents [see
also Berners-Lee et al. (1994)].

The Web gradually grew slowly to sites other than high-energy physics, but
popularity sharply increased when graphical user interfaces became available,
notably Mosaic (Vetter et al., 1994). Mosaic provided an easy-to-use interface to
present and access documents by merely clicking a mouse button. A document
was fetched from a server, transferred to a client, and presented on the screen. To
a user, there was conceptually no difference between a document stored locally or
in another part of the world. In this sense, distribution was transparent.

545

546 DISTRIBUTED WEB-BASED SYSTEMS CHAP. L2'

Since 1994, Web developments have been initiated by the World Wide Web
Consortium, a collaboration between CERN and MJ.T. This consortium is re-
sponsible for standardizing protocols, improving interoperability, and further en-
hancing the capabilities of the Web. In addition, we see many new developments
take place outside this consortium, not always leading to the compability one
would hope for. By now, the Web is more than just a simple document-based sys-
tem. Notably with the introduction of Web services we are seeing a huge distrib-
uted system emerging in which services rather than just documents are being
used, composed, and offered to any user or machine that can find use of them.

In this chapter we will take a closer look at this rapidly growing and pervasive
system. Considering that the Web itself is so young and that so much as changed
in such a short time, our description can only be a snapshot of its current state.
However, as we shall see, many concepts underlying Web technology are based
on the principles discussed in the first part of this book. Also, we will see that for
many concepts, there is still much room for improvement.

12.1 ARCHITECTURE

The architecture of Web-based distributed systems is not fundamentally dif-
ferent from other distributed systems. However, it is interesting to see how the ini-
tial idea of supporting distributed documents has evolved since its inception in
1990s. Documents turned from being purely static and passive to dynamically
generated containing all kinds of active elements. Furthermore, in recent years,
many organizations have begun supporting services instead of just documents. In
the following, we discuss the architectural impacts of these shifts.

12.1.1 Traditional Web-Based Systems

Unlike many of the distributed systems we have been discussing so far, Web-
based distributed systems are relatively new. In this sense. it is somewhat difficult
to talk about traditional Web-based systems, although there is a clear distinction
between the systems that were available at the beginning and those that are used
today. .

Many Web-based systems are still organized as relatively simple client-server
architectures. The core of a Web site is formed by a process that has access to a
local file system storing documents. The simplest way to refer to a document is by
means of a reference called a Uniform Resource Locator (URL). It specifies
where a document is located, often by embedding the DNS name of its associated
server along with a file name by which the server can look up the document in its
local file system. Furthermore. a URL specifies the application-level protocol for
transferring the document across the network. There are several different proto-
cols available, as we explain below.

SEC. 12.1 ARCHITECTURE 547

A client interacts with Web servers through a special application known as a
browser. A browser is responsible for properly displaying a document. Also, a
browser accepts input from a user mostly by letting the user select a reference to
another document, which it then subsequently fetches and displays. The commu-
nication between a browser and Web server is standardized: they both adhere to
the HyperText Transfer Protocol (HTTP) which we will discuss below. This
leads to the overall organization shown in Fig. 12-1.

Figure 12-1. The overall organization of a traditional Web site.

The Web has evolved considerably since its introduction. By now, there is a
wealth of methods and tools to produce information that can be processed by Web
clients and Web servers. In the following, we will go into detail on how the Web
acts as a distributed system. However, we skip most of the methods and tools used
to construct Web documents, as they often have no direct relationship to the dis-
tributed nature of the Web. A good introduction on how to build Web-based appli-
cations can be found in Sebesta (2006).

Web Documents

Fundamental to the Web is that virtually all information comes in the form of
a document. The concept of a document is to be taken in its broadest sense: not
only can it contain plain text, but a document may also include all kinds of
dynamic features such as audio, video, animations and so on. In many cases, spe-
cial helper applications are needed to make a document "come to life." Such in-
terpreters will typically be integrated with a user's browser.

Most documents can be roughly divided into two parts: a main part that at the
very least acts as a template for the second part, which consists of many different
bits and pieces that jointly constitute the document that is displayed in a browser.
The main part is generally written in a markup language, very similar to the type
of languages that are used in word-processing systems. The most widely-used
markup language in the Web is HTML, which is an acronym for HyperText

548 DISTRIBUTED WEB-BASED SYSTEMS CHAP.]2

Markup Language. As its name suggests, HT1\1L allows the embedding of links
to other documents. When activating such links in a browser, the referenced docu-
ment will be fetched from its associated server.

Another, increasingly important markup language is the Extensible Markup
Language (XML) which, as its name suggests, provides much more flexibility in
defining what a document should look like. The major difference between HTML
and XML is that the latter includes the definitions of the elements that mark up a
document. In other words, it is a meta-markup language. This approach provides a
lot of flexibility when it comes to specifying exactly what a document looks like:
there is no need to stick to a single model as dictated by a fixed markup language
such as HTML.

HTML and XML can also include all kinds of tags that refer to embedded
documents, that is, references to files that should be included to make a docu-
ment complete. It can be argued that the embedded documents turn a Web docu-
ment into something active. Especially when considering that an embedded docu-
ment can be a complete program that is executed on-the-fly as part of displaying
information, it is not hard to imagine the kind of things that can be done.

Embedded documents come in all sorts and flavors. This immediately raises
an issue how browsers can be equipped to handle the different file formats and
ways to interpret embedded documents. Essentially, we need only two things: a
way of specifying the type of an embedded document, and a way of allowing a
browser to handle data of a specific type.

Each (embedded) document has an associated MIME type. MIME stands for
Multipurpose Internet Mail Exchange and, as its name suggests, was originally
developed to provide information on the content of a message body that was sent
as part of electronic mail. MIME distinguishes various types of message contents.
These types are also used in the WWW, but it is noted that standardization is dif-
ficult with new data formats showing up almost daily.

MIME makes a distinction between top-level types and subtypes. Some com-
mon top-level types are shown in Fig. 12-2 and include types for text, image.
audio, and video. There is a special application type that indicates that the docu-
ment contains data that are related to a specific application. In practice, only that
application will be able to transform the document into something that can be
understood by a human.

The multipart type is used for composite documents, that is, documents that
consists of several parts where each part will again have its own associated top-
level type.

For each top-level type, there may be several subtypes available, of which
some are also shown in Fig. 12-2. The type of a document is then represented as a
combination of top-level type and subtype, such as, for example, applica-
tion/PDF. In this case, it is expected that a separate application is needed for
processing the document, which is represented in PDF. Many subtypes are experi-
mental, meaning that a special format is used requiring its own application at the

SEC. 12.1 ARCHITECTURE 549

Figure 12-2. Six top-level MIME types and some common subtypes.

user' s side. In practice, it is the Web server who will provide this application,
either as a separate program that will run aside a browser, or as a so-called plug-
in that can be installed as part of the browser.

This (changing) variety of document types forces browsers to be extensible.
To this end, some standardization has taken place to allow plug-ins adhering to
certain interfaces to be easily integrated in a browser. When certain types become
popular enough, they are often shipped with browsers or their updates. We return
to this issue below when discussing client-side software.

Multitiered Architectures

The combination of HTML (or any other markup language such as XML)
with scripting provides a powerful means for expressing documents. However, we
have hardly discussed where documents are actually processed, and what kind of
processing takes place. The WWW started out as the relatively simple two-tiered
client-server system shown previously in Fig. 12-1. By now, this simple architec-
ture has been extended with numerous components to support the advanced type
of documents we just described.

One of the first enhancements to the basic architecture was support for simple
user interaction by means of the Common Gateway Interface or simply CGI.
CGI defines a standard way by which a Web server can execute a program taking
user data as input. Usually, user data come from an HTML form; it specifies the

550

program that is to be executed at the server side, along with parameter values that
are filled in by the user. Once the form has been completed, the program's name
and collected parameter values are sent to the server, as shown in Fig. 12-3.

Figure 12-3. The principle of using server-side CGI programs.

When the server sees the request it starts the program named in the request
and passes it the parameter values. At that point, the program simply does its work
and generally returns the results in the form of a document that is sent back to the
user's browser to be displayed.

CGI programs can be as sophisticated as a developer wants. For example, as
shown in Fig. 12-3, many programs operate on a database local to the Web server.
After processing the data, the program generates an HT1\1Ldocument and returns
that document to the server. The server will then pass the document to the client.
An interesting observation is that to the server, it appears as if it is asking the CGI
program to fetch a document. In other words, the server does nothing but delegate
the fetching of a document to an external program.

The main task of a server used to be handling client requests by simply fetch-
ing documents. With CGI programs, fetching a document could be delegated in
such a way that the server would remain unaware of whether a document had
been generated on the fly, or actually read from the local file system. Note that we
have just described a two-tiered organization of server-side software.

However, servers nowadays do much more than just fetching documents. One
of the most important enhancements is that servers can also process a document

- before passing it to the client. In particular, a document may contain a server-side
script, which is executed by the server when the document has been fetched lo-
cally. The result of executing a script is sent along with the rest of the document
to the client. The script itself is not sent. In other words, using a server-side script
changes a document by essentially replacing the script with the results of its ex-
ecution.

As server-side processing of Web documents increasingly requires more flexi-
bility, it should come as no surprise that many Web sites are now organized as a
three-tiered architecture consisting of a Web server. an application server, and a
database. The Web server is the traditional Web server that we had before; the

DISTRIBUTED WEB-BASED SYSTEMS CHAP. 12

SEC. 12.1 ARCHITECTURE 551
application server runs all kinds of programs that mayor may not access the third
tier. consisting of a database. For example, a server may accept a customer's
query, search its database of matching products, and then construct a clickable
Web page listing the products found. In many cases the server is responsible for
running Java programs, called servlets, that maintain things like shopping carts,
implement recommendations, keep lists of favorite items, and so on.

This three-tiered organization introduces a problem, however: a decrease in
performance. Although from an architectural point of view it makes sense to dis-
tinguish three tiers, practice shows that the application server and database are
potential bottlenecks. Notably improving database performance can tum out to be
a nasty problem. We will return to this issue below when discussing caching and
replication as solutions to performance problems.

12.1.2 Web Services

So far, we have implicitly assumed that the client-side software of a Web-
based system consists of a browser that acts as the interface to a user. This
assumption is no longer universally true anymore. There is a rapidly growing
group of Web-based systems that are offering general services to remote applica-
tions without immediate interactions from end users. This orsanization leads to

<-

the concept of Web services (Alonso et aI., 2004).

Web Services Fundamentals

Simply stated, a Web service is nothing but a traditional service (e.g., a na-
ming service, a weather-reporting service, an electronic supplier, etc.) that is
made available over the Internet. What makes a Web service special is that it
adheres to a collection of standards that will allow it to be discovered and ac-
cessed over the Internet by client applications that follow those standards as well.
It should come as no surprise then, that those standards form the core of Web ser-
vices architecture [see also Booth et al. (2004)].

The principle of providing and using a Web service is quite simple, and is
shown in Fig. 12-4. The basic idea is that some client application can call upon
the services as provided by a server application. Standardization takes place with
respect to how those services are described such that they can be looked up by a
client application. In addition, we need to ensure that service call proceeds along
the rules set by the server application. Note that this principle is no different from
what is needed to realize a remote procedure call.

An important component in the Web services architecture is formed by a di-
rectory service storing service descriptions. This service adheres to the Universal
Description, Discovery and Integration standard (UDDI). As its name sug-
gests, UDOr prescribes the layout of a database containing service descriptions
that will allow Web service clients to browse for relevant services.

552 DISTRIBUTED WEB-BASED SYSTEMS CHAP. 12

Figure 12-4. The principle of a Web service.

Services are described by means of the Web Services Definition Language
(WSDL) which is a formal language very much the same as the interface defini-
tion languages used to support RPC-based communication. A WSDL description
contains the precise definitions of the interfaces provided by a service, that is, pro-
cedure specification, data types, the (logical) location of services, etc. An impor-
tant issue of a WSDL description is that can be automatically translated to .client-
side and server-side stubs, again, analogous to the generation of stubs in ordinary
RPC-based systems.

Finally, a core element of a Web service is the specification of how communi-
cation takes place. To this end, the Simple Object Access Protocol (SOAP) is
used, which is essentially a framework in which much of the communication be-
tween two processes can be standardized. We will discuss SOAP in detail below,
where it will also become clear that calling the framework simple is not really jus-
tified.

Web Services Composition and Coordination

The architecture described so far is relatively straightforward: a service is im-
plemented by means of an application and its invocation takes place according to
a specific standard. Of course, the application itself may be complex and, in fact,
its components may be completely distributed across a local-area network. In such
cases, the Web service is most likely implemented by means of an internal proxy
or daemon that interacts with the various components constituting the distributed

SEC. 12.1 ARCHITECTURE 553
application. In that case, all the principles we have discussed so far can be readily
applied as we have discussed.

In the model so far, a Web service is offered in the form of a single invoca-
tion. In practice, much more complex invocation structures need to take place be-
fore a service can be considered as completed. For example, take an electronic
bookstore. Ordering a book requires selecting a book, paying, and ensuring its
delivery. From a service perspective, the actual service should be modeled as a
transaction consisting of multiple steps that need to be carried out in a specific
order. In other words, we are dealing with a complex service that is built from a
number of basic services.

Complexity increases when considering Web services that are offered by
combining Web services from different providers. A typical example is devising a
Web-based shop. Most shops consist roughly of three parts: a first part by which
the goods that a client requires are selected, a second one that handles the pay-
ment of those goods, and a third one that takes care of shipping and subsequent
tracking of goods. In order to set up such a shop, a provider may want to make use
of a electronic bank service that can handle payment, but also a special delivery
service that handles the shipping of goods. In this way, a provider can concentrate
on its core business, namely the offering of goods.

In these scenarios it is important that a customer sees a coherent service:
namely a shop where he can select, pay, and rely on proper delivery. However, in-
ternally we need to deal with a situation in which possibly three different organi-
zations need to act in a coordinated way. Providing proper support for such com-
posite services forms an essential element of Web services. There are at least two
classes of problems that need to be solved. First, how can the coordination be-
tween Web services, possibly from different organizations, take place? Second,
how can services be easily composed?

Coordination among Web services is tackled through coordination protocols.
Such a protocol prescribes the various steps that need to take place for (compos-
ite) service to succeed. The issue, of course, is to enforce the parties taking part in
such protocol take the correct steps at the right moment. There are various ways to
achieve this; the simplest is to have a single coordinator that controls the mes-
sages exchanged between the participating parties.

However, although various solutions exist, from the Web services perspective
it is important to standardize the commonalities in coordination protocols. For
one, it is important that when a party wants to participate in a specific protocol,
that it knows with which other process(es) it should communicate. In addition, it
may very well be that a process is involved in multiple coordination protocols at
the same time. Therefore, identifying the instance of a protocol is important as
well. Finally, a process should know which role it is to fulfill.

These issues are standardized in what is known as \Veb Services Coordina-
tion (Frend et al., 2005). From an architectural point of view, it defines a separate
service for handling coordination protocols. The coordination of a protocol is part

554 DISTRIBUTED WEB-BASED SYSTEMS CHAP.]2

of this service. Processes can register themselves as participating in the coordina-
tion so that their peers know about them.

To make matters concrete, consider a coordination service for variants of the
two-phase protocol (2PC) we discussed in Chap. 8. The whole idea is that such a
service would implement the coordinator for various protocol instances. One obvi-
ous implementation is that a single process plays the role of coordinator for multi-
ple protocol instances. An alternative is that have each coordinator be implemen-
ted by a separate thread.

A process can request the activation of a specific protocol. At that point, it
will essentially be returned an identifier that it can pass to other processes for reg-
istering as participants in the newly-created protocol instance. Of course, all parti-
cipating processes will be required to implement the specific interfaces of the pro-
tocol that the coordination service is supporting. Once all participants have regis-
tered, the coordinator can send the VOTE_REQUEST, COMMIT, and other mes-
sages that are part of the 2PC protocol to the participants when needed.

It is not difficult to see that due to the commonality in, for example, 2PC pro-
tocols, standardization of interfaces and messages to exchange will make it much
easier to compose and coordinate Web services. The actual work that needs to be
done is not very difficult. In this respect, the added value of a coordination service
is to be sought entirely in the standardization.

Clearly, a coordination service already offers facilities for composing a Web
service out of other services. There is only one potential problem: how the service
is composed is public. In many cases, this is not a desirable property, as it would
allow any competitor to set up exactly the same composite service. What is need-
ed, therefore, are facilities for setting up private coordinators. We will not go into
any details here, as they do not touch upon the principles of service composition
in Web-based systems. Also, this type of composition is still very much in flux
(and may continue to be so for a long time). The interested reader is referred to
(Alonso et aI., 2004).

12.2 PROCESSES

We now turn to the most important processes used in Web-based systems and
their internal organization. .

12.2.1 Clients

The most important Web client is a piece of software called a Web browser,
which enables a user to navigate through Web pages by fetching those pages from
servers and subsequently displaying them on the user"s screen. A browser typi-
cally provides an interface by which hyperlinks are displayed in such a way that
the user can easily select them through a single mouse click.

SEC. l2.2 PROCESSES 555
Web browsers used to be simple programs, but that was long ago. Logically,

they consist of several components, shown in Fig. 12-5 [see also Grosskurth and
Godfrey (2005)].

Figure 12-5. The logical components of a Web browser.

An important aspect of Web browsers is that they should (ideally) be platform
independent. This goal is often achieved by making use of standard graphical
libraries, shown as the display back end, along with standard networking libraries.

The core of a browser is formed by the browser engine and the rendering en-
gine. The latter contains all the code for properly displaying documents as we
explained before. This rendering at the very least requires parsing HTML or
XML, but may also require script interpretation. In most case, there is only an in-
terpreter for Javascript included, but in theory other interpreters may be included
as well. The browser engine provides the mechanisms for an end user to go over a
document, select parts of it, activate hyperlinks, etc.

One of the problems that Web browser designers have to face is that a
browser should be easily extensible so that it, in principle, can support any type of
document that is returned by a server. The approach followed in most cases is to
offer facilities for what are known as plug-ins. As mentioned before, a plug-in is
a small program that can be dynamically loaded into a browser for handling a spe-
cific document type. The latter is generally given as a MIME type. A plug-in
should be locally available. possibly after being specifically transferred by a user
from a remote server. Plug-ins normally offer a standard interface to the browser
and, likewise, expect a standard interface from the browser. Logically, they form
an extension of the rendering engine shown in Fig. 12-5.

Another client-side process that is often used is a Web proxy (Luotonen and
Altis, 1994). Originally, such a process was used toallow a browser to handle ap-
plication-level protocols other than HTTP, as shown in Fig. 12-6. For example, to
transfer a file from an FTP server, the browser can issue an HTTP request to a
local FTP proxy, which will then fetch the file and return it embedded as HTTP.

556 DISTRIBUTED WEB-BASED SYSTEMS CHAP. 12

Figure 12-6. Using a Web proxy when the browser does not speak FTP.

By now. most Web browsers are capable of supporting a variety of protocols,
or can otherwise be dynamically extended to do so. and for that reason do not
need proxies. However, proxies are still used for other reasons. For example, a
proxy can be configured for filtering requests and responses (bringing it close to
an application-level firewall), logging, compression, but most of all caching. We
return to proxy caching below. A widely-used Web proxy is Squid, which has
been developed as an open-source project. Detailed information on Squid can he
found in Wessels (2004).

12.2.2 The Apache Web Server

By far the most popular Web server is Apache, which is estimated to be used
to host approximately 70% of all Web sites. Apache is a complex piece of soft-
ware, and with the numerous enhancements to the types of documents that are
now offered in the Web, it is important that the server is highly configurable and
extensible, and at the same time largely independent of specific platforms.

Making the server platform independent is realized by essentially providing
its own basic runtime environment, which is then subsequently implemented for
different operating systems. This runtime environment, known as the Apache
Portable Runtime (APR), is a library that provides a platform-independent inter-
face for file handling, networking, locking, threads, and so on. When extending
Apache (as we will discuss shortly), portability is largely guaranteed provided that
only calls to the APR are made and that calls to platform-specific libraries are
avoided.

As we said, Apache is tailored not only to provide flexibility (in the sense that
it can be configured to considerable detail), but also that it is relatively easy to
extend its functionality. For example, later in this chapter we will discuss adaptive
replication in Globule, a home-brew content delivery network developed in the
authors' group at the Vrije Universiteit Amsterdam. Globule is implemented as an
extension to Apache, based on the APR, but also largely independent of other
extensions developed for Apache.

From a certain perspective, Apache can be considered as a completely general
server tailored to produce a response to an incoming request. Of course, there are
all kinds of hidden dependencies and assumptions by which Apache turns out to
be primarily suited for handling requests for Web documents. For example, as we

SEC. 12.2 PROCESSES 557

mentioned. Web browsers and servers use HTTP as their communication protocol.
HTTP is virtually always implemented on top of TCP, for which reason the core
of Apache assumes that all incoming requests adhere to a TCP-based connection-
oriented way of communication. Requests based on, for example, UDP cannot be
properly handled without modifying the Apache core.

However, the Apache core makes few assumptions on how incoming requests
should be handled. Its overall organization is shown in Fig. 12-7. Fundamental to
this organization is the concept of a hook, which is nothing but a placeholder for a
specific group of functions. The Apache core assumes that requests are processed
in a number of phases, each phase consisting of a few hooks. Each hook thus rep-
resents a.group of similar actions that need to be executed as part of processing a
request.

Figure 12-7. The general organization of the Apache Web server.

For example, there is a hook to translate a URL to a local file name. Such a
translation will almost certainly need to be done when processing a request. Like-
wise, there is a hook for writing information to a log, a hook for checking a cli-
ent's identification, a hook for checking access rights, and a hook for checking
which MIME type the request is related to (e.g., to make sure that the request can
be properly handled). As shown in Fig. 12-7, the hooks are processed in a pre-
determined order. It is here that we explicitly see that Apache enforces a specific
flow of control concerning the processing of requests.

The functions associated with a hook are all provided by separate modules.
Although in principle a developer could change the set of hooks that will be

SS8 DISTRIBUTED WEB-BASED SYSTEMS CHAP.]2

processed by Apache, it is far more common to write modules containing the
functions that need to be called as part of processing the standard hooks provided
by unmodified Apache. The underlying principle is fairly straightforward. Every
hook can contain a set of functions that each should match a specific function pro-
totype (i.e., list of parameters and return type). A module developer will write
functions for specific hooks. When compiling Apache, the developer specifies
which function should be added to which hook. The latter is shown in Fig. 12-7 as
the various links between functions and hooks.

Because there may be tens of modules, each hook will generally contain sev-
eral functions. Normally. modules are considered to be mutual independent, so
that functions in the same hook will be executed in some arbitrary order. How-
ever, Apache can also handle module dependencies by letting a developer specify
an ordering in which functions from different modules should be processed. By
and large, the result is a Web server that is extremely versatile. Detailed informa-
tion on configuring Apache, as well as a good introduction to how it can be
extended can be found in Laurie and Laurie (2002).

12.2.3 Web Server Clusters

An important problem related to the client-server nature of the Web is that a
Web server can easily become overloaded. A practical solution employed in many
designs is to simply replicate a server on a cluster of servers and use a separate
mechanism, such as a front end, to redirect client requests to one of the replicas.
This principle is shown in Fig. 12-8, and is an example of horizontal distribution
as we discussed in Chap. 2.

Figure 12-8. The principle of using a server cluster in combination with a front
end to implement a Web service.

A crucial aspect of this organization is the design of the front end. as it can
become a serious performance bottleneck, what will all the traffic passing through
it. In general, a distinction is made between front ends operating as transport-
layer switches, and those that operate at the level of the application layer.

SEC. 12.2 PROCESSES 559
Whenever a client issues an HTTP request, it sets up a TCP connection to the

server. A transport-layer switch simply passes the data sent along the TCP con-
nection to one of the servers, depending on some measurement of the server's
load. The response from that server is returned to the switch, which will then for-
ward it to the requesting client. As an optimization, the switch and servers can
collaborate in implementing a TCP handotT, as we discussed in Chap. 3. The
main drawback of a transport-layer switch is that the switch cannot take into
account the content of the HTTP request that is sent along the TCP connection. At
best, it can only base its redirection decisions on server loads.

As a general rule, a better approach is to deploy content-aware request dis-
tribution, by which the front end first inspects an incoming HTTP request, and
then decides which server it should forward that request to. Content-aware distri-
bution has several advantages. For example, if the front end always forwards re-
quests for the same document to the same server, that server may be able to effec-
tively cache the document resulting in higher response times. In addition, it is pos-
sible to actually distribute the collection of documents among the servers instead
of having to replicate each document for each server. This approach makes more
efficient use of the available storage capacity and allows using dedicated servers
to handle special documents such as audio or video.

A problem with content-aware distribution is that the front end needs to do a
lot of work. Ideally, one would like to have the efficiency of TCP handoff and the
functionality of content-aware distribution. What we need to do is distribute the
work of the front end, and combine that with a transport-layer switch, as proposed
in Aron et al. (2000). In combination with TCP handoff, the front end has two
tasks. First, when a request initially comes in, it must decide which server will
handle the rest of the communication with the client. Second, the front end should
forward the client's TCP messages associated with the handed-off TCP connec-
tion.

Figure 12-9. A scalable content-aware cluster of Web servers.

560 DISTRIBUTED WEB-BASED SYSTEMS CHAP. 12

These two tasks can be distributed as shown in Fig. 12-9. The dispatcher is
responsible for deciding to which server a TCP connection should be handed off;
a distributor monitors incoming TCP traffic for a handed-off connection. The
switch is used to forward TCP messages to a distributor. When a client first con-
tacts the Web service, its TCP connection setup message is forwarded to a distri-
butor, which in tum contacts the dispatcher to let it decide to which server the
connection should be handed off. At that point, the switch is notified that it should
send all further TCP messages for that connection to the selected server.

There are various other alternatives and further refinements for setting up
Web server clusters. For example, instead of using any kind of front end, it is also
possible to use round-robin DNS by which a single domain name is associated
with multiple IP addresses. In this case, when resolving the host name of a Web
site, a client browser would receive a list of multiple addresses, each address cor-
responding to one of the Web servers. Normally, browsers choose the first address
on the list. However, what a popular DNS server such as BIND does is circulate
the entries of the list it returns (Albitz and Liu, 2001). As a consequence, we
obtain a simple distribution of requests over the servers in the cluster.

Finally, it is also possible not to use any sort of intermediate but simply to
give each Web server with the same IP address. In that case, we do need to as-
sume that the servers are all connected through a single broadcast LAN. What will
happen is that when an HTTP request arrives, the IP router connected to that LAN
will simply forward it to all servers, who then run the same distributed algorithm
to deterministically decide which of them will handle the request.

The different ways of organizing Web clusters and alternatives like the ones
we discussed above, are described in an excellent survey by Cardellini et
aL (2002). The interested reader is referred to their paper for further details and
references.

12.3 COMMUNICATION

When it comes to Web-based distributed systems, there are only a few com-
munication protocols that are used. First. for traditional Web systems, HTTP is
the standard protocol for exchanging messages. Second, when considering \Yeb
services, SOAP is the default way for message exchange. Both protocols will be
discussed in a fair amount of detail in this section.

12.3.1 Hypertext Transfer Protocol

All communication in the Web between clients and servers is based on the
Hypertext Transfer Protocol (HTTP). HTTP is a relatively simple client-server
protocol: a client sends a request message to a server and waits for a response
message. An important property of HTTP is that it is stateless. In other words. it

SEC. 12.3 COMMUNICATION 561

does not have any concept of open connection and does not require a server to
maintain information on its clients. HTTP is described in Fielding et al. (1999).

HTTP Connections

HTTP is based on TCP. Whenever a client issues a request to a server, it first
sets up a TCP connection to the server and then sends its request message on that
connection. The same connection is used for receiving the response. By using
TCP as its underlying protocol, HTTP need not be concerned about lost requests
and responses. A client and server may simply assume that their messages make it
to the other side. If things do go wrong, for example, the connection is broken or a
time-out occurs an error is reported. However, in general, no attempt is made to
recover from the failure.

One of the problems with the first versions of HTTP was its inefficient use of
TCP connections. Each Web document is constructed from a collection of dif-
ferent files from the same server. To properly display a document, it is necessary
that these files are also transferred to the client. Each of these files is, in principle,
just another document for which the client can issue a separate request to the ser-
ver where they are stored.

In HTTP version 1.0 and older, each request to a server required setting up a
separate connection, as shown in Fig. 12-10(a). When the server had responded,
the connection was broken down again. Such connections are referred to as being
nonpersistent. A major drawback of nonpersistent connections is that it is rela-
tively costly to set up a TCP connection. As a consequence, the time it can take to
transfer an entire document with all its elements to a client may be considerable.

Figure 12·10. (a) Using nonpersistent connections. (b) Using persistent connections.

Note that HTTP does not preclude that a client sets up several connections
simultaneously to the same server. This approach is often used to hide latency

562 DISTRIBUTED WEB-BASED SYSTEMS CHAP. 12

caused by the connection setup time, and to transfer data in parallel from the ser-
ver to the client. Many browsers use this approach to improve performance.

Another approach that is followed in HTTP version 1.1 is to make use of a
persistent connection, which can be used to issue several requests (and their re-
spective responses), without the need for a separate connection for each (re-
quest. response)-pair. To further improve performance, a client can issue several
requests in a row without waiting for the response to the first request (also refer-
red to as pipelining). Using persistent connections is illustrated in Fig. 12-] O(b).

HTTP Methods

HTTP has been designed as a general-purpose client-server protocol oriented
toward the transfer of documents in both directions. A client can request each of
these operations to be carried out at the server by sending a request message con-
taining the operation desired to the server. A list of the most commonly-used re-
quest messages is given in Fig. 12-11.

Figure 12-11. Operations supported by HTTP.

HTTP assumes that each document may have associated metadata, which are
stored in a separate header that is sent along with a request or response. The head
operation is submitted to the server when a client does not want the actual docu-
ment, but rather only its associated metadata. For example, using the head opera-
tion will return the time the referred document was modified. This operation can
be used to verify the validity of the document as cached by the client. It can also
be used to check whether a document exists, without having to actually transfer
the document.

The most important operation is get. This operation is used to actually fetch a
document from the server and return it to the requesting client. It is also possible
to specify that a document should be returned only if it has been modified after a
specific time. Also, HTTP allows documents to have associated tags. (character
strings) and to fetch a document only if it matches certain tags.

The put operation is the opposite of the get operation. A client can request a
server to store a document under a given name (which is sent along with the re-

SEC. 12.3 COMMUNICATION 563
quest). Of course, a server will in general not blindly execute put operations, but
will only accept such requests from authorized clients. How these security issues
are dealt with is discussed later.

The operation post is somewhat similar to storing a document, except that a
client will request data to be added to a document or collection of documents. A
typical example is posting an article to a news group. The distinguishing feature,
compared to a put operation is that a post operation tells to which group of docu-
ments an article should be "added." The article is sent along with the request. In
contrast, a put operation carries a document and the name under which the server
is requested to store that document.

Finally, the delete operation is used to request a server to remove the docu-
ment that is named in the message sent to the server. Again, whether or not dele-
tion actually takes place depends on various security measures. It may even be the
case that the server itself does not have the proper permissions to delete the
referred document. After all, the server is just a user process.

HTTP Messages

All communication between a client and server takes place through messages.
HTTP recognizes only request and response messages. A request message con-
sists of three parts, as shown in Fig. 12-12(a). The request line is mandatory and
identifies the operation that the client wants the server to carry out along with a
reference to the document associated with that request. A separate field is used to
identify the version of HTTP the client is expecting. We explain the additional
message headers below.

A response message starts with a status line containing a version number and
also a three-digit status code, as shown in Fig. 12-12(b). The code is briefly ex-
plained with a textual phrase that is sent along as part of the status line. For ex-
ample, status code 200 indicates that a request could be honored, and has the asso-
ciated phrase "OK." Other frequently used codes are:

400 (Bad Request)
403 (Forbidden)
404 (Not Found).

A request or response message may contain additional headers. For example,
if a client has requested a post operation for a read-only document, the server will
respond with a message having status code 405 ("Method Not Allowed") along
with an Allow message header specifying the permitted operations (e.g., head and
get). As another example, a client may be interested only in a document if it has
not been modified since some time T. In that case, the client's get request is aug-
mented with an If-Modified-Since message header specifying value T.

564 DISTRIBUTED WEB-BASED SYSTEMS CHAP. 12

Figure 12-12. (a) HTTP request message. (b) HTTP response message.

Fig. 12-13 shows a number of valid message headers that can be sent along
with a request or response. Most of the headers are self-explanatory, so we will
not discuss every one of them.

There are various message headers that the client can send to the server ex-
plaining what it is able to accept as response. For example, a client may be able to
accept responses that have been compressed using the gzip compression program
available on most Windows and UNIX machines. In that case, the client will send
an Accept-Encoding message header along with its request, with its content con-
taining "Accept-Encoding:gzip." Likewise, an Accept message header can be
used to specify, for example, that only HTML Web pages may be returned.

There are two message headers for security, but as we discuss later in this sec-
tion, Web security is usually handled with a separate transport-layer protocol.

The Location and Referer message header are used to redirect a client to an-
other document (note that "Referer" is misspelled in the specification). Redirect-
ing corresponds to the use of forwarding pointers for locating a document. as

SEC. 12.3 COMMUNICATION 565

Figure 12-13. Some HTTP message headers.

explained in Chap. 5. When a client issues a request for document D, the server
may possibly respond with a Location message header, specifying that the client
should reissue the request, but now for document D'. When using the reference to
D', the client can add a Referer message header containing the reference to D to
indicate what caused the redirection. In general, this message header is used to
indicate the client's most recently requested document.

The Upgrade message header is used to switch to another protocol. For ex-
ample, client and server may use HTTP/l.l initially only to have a generic way of
setting up a connection. The server may immediately respond with telling the cli-
ent that it wants to continue communication with a secure version of HTTP, such
as SHTTP (Rescorla and Schiffman, 1999). In that case, the server will send an
Upgrade message header with content "Upgrade:SHTTP."

566 DISTRIBUTED WEB;.BASED SYSTEMS CHAP. 12

12.3.2 Simple Object Access Protocol

Where HTTP is the standard communication protocol for traditional Web-
based distributed systems, the Simple Object Access Protocol (S()AP) forms the
standard for communication with Web services (Gudgin et aI., 20(3). SOAP has
made HTTP even more important than it already was: most SOAP cornmunica-
tions are implemented through HTTP. SOAP by itself is not a dirticult protocol.
Its main purpose is to provide a relatively simple means to let different parties
who may know very little of each other be able to communicate. J n other words,
the protocol is designed with the assumption that two communicating parties have
very little common knowledge.

Based on this assumption, it should come as no surprise that SOAP messages
are largely based on XML. Recall that XML is a meta-markup language, meaning
that an XML description includes the definition of the elements Ihat are used to
describe a document. In practice, this means that the definition ()f the syntax as
used for a message is part of that message. Providing this syntax allows a receiver
to parse very different types of messages. Of course, the meaning of a message is
still left undefined, and thus also what actions to take when a message comes in. If
the receiver cannot make any sense out of the contents of a message. no progress
can be made.

A SOAP message generally consists of two parts, which are jointly put inside
what is called a SOAP envelope. The body contains the actual m~ssage, whereas
the header is optional, containing information relevant for nodes along the path
from sender to receiver. Typically, such nodes consist of the various processes in
a multitiered implementation of a Web service. Everything in the envelope is
expressed in XML, that is, the header and the body.

Strange as it may seem, a SOAP envelope does not contain the address of the
recipient. Instead, SOAP explicitly assumes that the recipient is specified by the
protocol that is used to transfer messages. To this end, SOAP sp<;cifiesbindings
to underlying transfer protocols. At present, two such bindings exist: one to HTTP
and one to SMTP, the Internet mail-transfer protocol. So, for example, when a
SOAP message is bound to HTTP, the recipient will be specified in the form of a
URL, whereas a binding to SMTP will specify the recipient in the form of an e-
mail address.

These two different types of bindings also indicate two different styles of
interactions. The first, most common one. is the conversational exchange style.
In this style, two parties essentially exchange structured documents. For example,
such a document may contain a complete purchase order as one would fill in when
electronically booking a flight. The response to such an order could be a confir-
mation document, now containing an order number, flight information. a seat
reservation, and perhaps also a bar code that needs to be scanned when boarding.

In contrast, an RPC-style exchange adheres closer to the traditional request-
response behavior when invoking a Web service. In this case, the SOAP message

SEC. 11.3 COMMUNICATION 567

will identify explicitly the procedure to be called, and also provide a list of param-
eter values as input to that call. Likewise, the response will be a formal message
containing the response to the call.

Typically, an RPC-style exchange is supported by a binding to HTTP,
whereas a conversational style message will be bound to either SMTP or HTIP.
However, in practice, most SOAP messages are sent over HTTP.

An important observation is that, although XML makes it much easier to use a
general parser because syntax definitions are now part of a message, the XML
syntax itself is extremely verbose. As a result, parsing XML messages in practice
often introduces a serious performance bottleneck (Allman, 2003). In this respect,
it is somewhat surprising that improving XML performance receives-relatively lit-
tle attention, although solutions are underway (see, e.g., Kostoulas et al., 2006).

Figure 12-14. An example of an XML-based SOAP message.

What is equally surprising is that many people believe that XML specif-
ications can be conveniently read by human beings. The example shown in
Fig. 12-14 is taken from the official SOAP specification (Gudgin et al., 2003).
Discovering what this SOAP message conveys requires some searching, and it is
not hard to imagine that obscurity in general may come as a natural by-product of
using XML. The question then comes to mind, whether the text-based approach as
followed for XML has been the right one: no one can conveniently read XML
documents, and parsers are severely slowed down.

12.4 NAMING

The Web uses a single naming system to refer to documents. The names used
are called Uniform Resource Identifiers or simply URIs (Berners-Lee et al.,
2005). URIs come in two forms. A Uniform Resource Locator (URL) is a URI

568 DISTRIBUTED WEB-BASED SYSTEMS CHAP. 12

that identifies a document by including information on how and where to access
the document. In other words, a URL is a location-dependent reference to a docu-
ment. In contrast, a Uniform Resource Name (URN) acts as true identifier as
discussed in Chap. 5. A URN is used as a globally unique, location-independent,
and persistent reference to a document.

The actual syntax of a URI is determined by its associated scheme. The name
of a scheme is part of the URI. Many different schemes have been defined, and 'in
the following we will mention a few of them along with examples of their associ-
ated URIs. The http scheme is the best known, but it is not the only one. We
should also note that the difference between URL and URN is gradually diminish-
ing. Instead, it is now common to simply define URI name spaces [see also Daigle
et al. (2002)].

In the case 'of URLs, we see that they often contain information on how and
where to access a document. How to access a document is generally reflected by
the name of the scheme that is part of the URL, such as http,ftp, or telnet. Where
a document is located is embedded in a URL by means of the DNS name of the
server to which an access request can be sent, although an IP address can also be
used. The number of the port on which the server will be listening for such re-
quests is also part of the URL; when left out, a default port is used. Finally, a
URL also contains the name of the document to be looked up by that server, lead-
ing to the general structures shown in Fig. 12-15.

Figure 12-15. Often-used structures for URLs. (a) Using only a DNS name.
(b) Combining a DNS name with a port number. (c) Combining an IP address
with a port number.

Resolving a URL such as those shown in Fig. 12-15 is straightforward. If the
server is referred to by its DNS name, that name will need to be resolved to the
server's IP address. Using the port number contained in the URL, the client can
then contact the server using the protocol named by the scheme, and pass it the
document's name that forms the last part of the URL.

SEC. 12.4 NAMING 569

Figure 12-16. Examples of URIs.

Although URLs are still commonplace in the Web, various separate URI
name spaces have been proposed for other kinds of Web resources. Fig. 12-16
shows a number of examples of URIs. The http URI is used to transfer documents
using HTTP as we explained above. Likewise, there is an ftp URI for file transfer
using FTP.

An immediate form of documents is supported by data URIs (Masinter,
1998). In such a URI, the document itself is embedded in the URI, similar to em-
bedding the data of a file in an inode (Mullender and Tanenbaum, 1984). The ex-
ample shows a URI containing plain text for the Greek character string aPr·

URIs are often used as well for purposes other than referring to a document.
For example, a telnet URI is used for setting up a telnet session to a server. There
are also URIs for telephone-based communication as described in Schulzrinne
(2005). The tel URI as shown in Fig. 12-16 essentially embeds only a telephone
number and simply lets the client to establish a call across the telephone network.
In this case, the client will typically be a telephone. The modem URI can be used
to set up a modem-based connection with another computer. In the example, the
URI states that the remote modem should adhere to the ITU-T V32 standard.

12.5 SYNCHRONIZATION

Synchronization has not been much of an issue for most traditional Web-
based systems for two reasons. First, the strict client-server organization of the
Web, in which servers never exchange information with other servers (or clients
with other clients) means that there is nothing much to synchronize. Second, the
Web can be considered as being a read-mostly system. Updates are generally done
by a single person or entity, and hardly ever introduce write-write conflicts.

However, things are changing. For example, there is an increasing demand to
provide support for collaborative authoring of Web documents. In other words,

570 DISTRIBUTED WEB-BASED SYSTEMS CHAP. 12

the Web should provide support for concurrent updates of documents by a group
of collaborating users or processes. Likewise, with the introduction of Web ser-
vices, we are now seeing a need for servers to synchronize with each other and
that their actions are coordinated. We already discussed coordination in Web ser-
vices above. We therefore briefly pay some attention to synchronization for colla-
borative maintenance of Web documents.

Distributed authoring of Web documents is handled through a separate proto-
col, namely WebDAV (Goland et al., 1999). WebDAV stands for Web Distri-
buted Authoring and Versioning and provides a simple means to lock a shared
document, and to create, delete, copy, and move documents from remote Web ser-
vers. We briefly describe synchronization as supported in WebDA V. An overview
of how WebDA V can be used in a practical setting is provided in Kim et al.
(2004).

To synchronize concurrent access to a shared document, WebDA V supports a
simple locking mechanism. There are two types of write locks. An exclusive write
lock can be assigned to a single client, and will prevent any other client from
modifying the shared document while it is locked. There is also a shared write
lock, which allows multiple clients to simultaneously update the document. Be-
cause locking takes place at the granularity of an entire document, shared write
locks are convenient when clients modify different parts of the same document.
However, the clients, themselves, will need to take care that no write-write con-
flicts occur.

Assigning a lock is done by passing a lock token to the requesting client. The
server registers which client currently has the lock token. Whenever the client
wants to modify the document, it sends an HTTP post request to the server, along
with the lock token. The token shows that the client has write-access to the docu-
ment, for which reason the server will carry out the request.

An important design issue is that there is no need to maintain a connection be-
tween the client and the server while holding the lock. The client can simply
disconnect from the server after acquiring the lock. and reconnect to the server
when sending an HTTP request.

Note that when a client holding a lock token crashes. the server will one way
or the other have to reclaim the 10ck.WebDAV does not specify how servers
should handle these and similar situations, but leaves that open to specific imple-
mentations. The reasoning is that the best solution will depend on the type of doc-
uments that WebDAV is being used for. The reason for this approach is that there
is no general way to solve the problem of orphan locks in a clean way.

12.6 CONSISTENCY AND REPLICATION

Perhaps one of the most important systems-oriented developments in Web-
based distributed systems is ensuring that access to Web documents meets
stringent performance and availability requirements. These requirements have led

SEC. 12.6 CONSISTENCY AND REPLICATION 571

to numerous proposals for caching and replicating Web content, of which various
ones will be discussed in this section. Where the original schemes (which are still
largely deployed) have been targeted toward supporting static content, much
effort is also being put into support dynamic content, that is, supporting docu-
ments that are generated as the result of a request, as well as those containing
scripts and such. An excellent and complete picture of Web caching and replica-
tion is provided by Rabinovich and Spatscheck (2002).

12.6.1 Web Proxy Caching

Client-side caching generally occurs at two places. In the first. place, most
browsers are equipped with a simple caching facility. Whenever a document is
fetched it is stored in the browser's cache from where it is loaded the next time.
Clients can generally configure caching by indicating when consistency checking
should take place, as we explain for the general case below.

In the second place, a client's site often runs a Web proxy. As we explained, a
Web proxy accepts requests from local clients and passes these to Web servers.
When a response comes in, the result is passed to the client. The advantage of this
approach is that the proxy can cache the result and return that result to another cli-
ent, if necessary. In other words, a Web proxy can implement a shared cache.

In addition to caching at browsers and proxies, it is also possible to place
caches that cover a region, or even a country, thus leading to hierarchical caches.
Such schemes are mainly used to reduce network traffic, but have the disadvan-
tage of potentially incurring a higher latency compared to using nonhierarchical
schemes. This higher latency is caused by the need for the client to check multiple
caches rather than just one in the nonhierarchical scheme. However, this higher
latency is strongly related to the popularity of a document: for popular documents,
the chance of finding a copy in a cache closer to the client is higher than for a
unpopular document.

As an alternative to building hierarchical caches, one can also organize caches
for cooperative deployment as shown in Fig. 12-17. In cooperative caching or
distributed caching, whenever a cache miss occurs at a Web proxy, the proxy
first checks a number of neighboring proxies to see if one of them contains the re-
quested document. If such a check fails, the proxy forwards the request to the
Web server responsible for the document. This scheme is primarily deployed with
Web caches belonging to the same organization or institution that are colocated in
the same LAN. It is interesting to note that a study by Wolman et al. (1999) shows
that cooperative caching may be effective for only relatively small groups of cli-
ents (in the order of tens of thousands of users). However, such groups can also be
serviced by using a single proxy cache, which is much cheaper in terms of com-
munication and resource usage.

A comparison between hierarchical and cooperative caching by Rodriguez et
al. (2001) makes clear that there are various trade-offs to make. For example,

572 DISTRIBUTED WEB-BASED SYSTEMS CHAP. 12

because cooperative caches are generally connected through high-speed links, the
transmission time needed to fetch a document is much lower than for a hierarchi-
cal cache. Also, as is to be expected, storage requirements are less strict for coop-
erative caches than hierarchical ones. Also, they find that expected latencies for
hierarchical caches are lower than for distributed caches.

Different cache-consistency protocols have been deployed in the Web. To
guarantee that a document returned from the cache is consistent, some Web prox-
ies first send a conditional HTTP get request to the server with an additional If-
Modified-Since request header, specifying the last modification time associated
with the cached document. Only if the document has been changed since that
time, will the server return the entire document. Otherwise, the Web proxy can
simply return its cached version to the requesting local client. Following the ter-
minology introduced in Chap. 7, this corresponds to a pull-based protocol.

Unfortunately, this strategy requires that the proxy contacts a server for each
request. To improve performance at the cost of weaker consistency, the widely-
used Squid Web proxy (Wessels, 2004) assigns an expiration time T'expire that
depends on how long ago the document was last modified when it is cached. In
particular, if 1Jast.JTlodijied is the last modification time of a document (as recorded
by its owner), and Tcached is the time it was cached, then

with a = 0.2 (this value has been derived from practical experience). Until Texpire,

the document is considered valid and the proxy will not contact the server. After
the expiration time, the proxy requests the server to send a fresh copy, unless it

Figure 12-17. The principle of cooperative caching.

SEC. 12.6 CONSISTENCY AND REPLICATION 573

had not been modified. In other words, when a = 0, the strategy is the same as the
previous one we discussed.

Note that documents that have not been modified for a long time will not be
checked for modifications as soon as recently modified documents. The obvious
drawback is that a proxy may return an invalid document, that is, a document that
is older than the current version stored at the server. Worse yet, there is no way
for the client to detect the fact that it just received an obsolete document.

As an alternative to the pull-based protocol is that the server notifies proxies
that a document has been modified by sending an invalidation. The problem with
this approach for Web proxies is that the server may need to keep track of a large
number of proxies, inevitably leading to a scalability problem. However, by com-
bining leases and invalidations, Cao and Liu (1998) show that the state to be
maintained at the server can be kept within acceptable bounds. Note that this state
is largely dictated by the expiration times set for leases: the lower, the less caches
a server needs to keep track of. Nevertheless, invalidation protocols for Web
proxy caches are hardly ever applied.

A comparison of Web caching consistency policies can be found in Cao and
Oszu (2002). Their conclusion is that letting the server send invalidations can
outperform any other method in terms of bandwidth and perceived client latency,
while maintaining cached documents consistent with those at the origin server.
These findings hold for access patterns as often observed for electronic commerce
applications.

Another problem with Web proxy caches is that they can be used only for
static documents, that is, documents that are not generated on-the-fly by Web ser-
vers as the response to a client's request. These dynamically generated documents
are often unique in the sense that the same request from a client will presumably
lead to a different response the next time. For example, many documents contain
advertisements (called banners) which change for every request made. We return
to this situation below when we discuss caching and replication for Web applica-
tions.

Finally, we should also mention that much research has been conducted to
find out what the best cache replacement strategies are. Numerous proposals exist,
but by-and-Iarge, simple replacement strategies such as evicting the least recently
used object work well enough. An in-depth survey of replacement strategies is
presented in Podling and Boszormenyi (2003).

12.6.2 Replication for Web Hosting Systems

As the importance of the Web continues to increase as a vehicle for organiza-
tions to present themselves and to directly interact with end users, we see a shift
between maintaining the content of a Web site and making sure that the site is
easily and continuously accessible. This distinction has paved the way for content
delivery networks (CDNs). The main idea underlying these CDNs is that they

act as a Web hosting service, providing an infrastructure for distributing and repli-
cating the Web documents of multiple sites across the Internet. The size of the
infrastructure can be impressive. For example, as of 2006, Akamai is reported to
have over 18,000 servers spread across 70 countries.

The sheer size of a CON requires that hosted documents are automatically
distributed and replicated, leading to the architecture of a self-managing system as
we discussed in Chap. 2. In most cases, a large-scale CON is organized along the
lines of a feedback-control loop, as shown in Fig. 12-]8 and which is described
extensively in Sivasubramanian et al. (2004b).

Figure 12-18. The general organization of a CDN as a feedback-control system
(adapted from Sivasubramanian et al.. 2004b).

There are essentially three different kinds of aspects related to replication in
Web hosting systems: metric estimation, adaptation triggering, and taking approp-
riate measures. The latter can be subdivided into replica placement decisions, con-
sistency enforcement, and client-request routing. In the following, we briefly pay
attention to each these.

Metric Estimation

An interesting aspect of CONs is that they need to make a trade-off between
many aspects when it comes to hosting replicated content. For example, access
times for a document may be optimal if a document is massively replicated. but at
the same time this incurs a financial cost, as well as a cost in terms of bandwidth
usage for disseminating updates. By and large, there are many proposals for esti-
mating how well a CON is performing. These proposals can be grouped into sev-
eral classes.

First, there are latency metrics, by which the time is measured for an action.
for example, fetching a document, to take place. Trivial as this may seem.
estimating latencies becomes difficult when, for example, a process deciding on

574 DISTRIBUTED WEB-BASED SYSTEMS CHAP. 12

SEC. 12.6 CONSISTENCY AND REPLICA nON 575

the placement of replicas needs to know the delay between a client and some re-
mote server. Typically, an algorithm globally positioning nodes as discussed in
Chap. 6 will need to be deployed.

Instead of estimating latency, it may be more important to measure the avail-
able bandwidth between two nodes. This information is particularly important
when large documents need to be transferred, as in that case the responsiveness of
the system is largely dictated by the time that a document can be transferred.
There are various tools for measuring available bandwidth, but in all cases it turns
out that accurate measurements can be difficult to attain. Further information can
be found in Strauss et al. (2003).

Another class consists of spatial metrics which mainly consist of measuring
the distance between nodes in terms of the number of network-level routing hops,
or hops between autonomous systems. Again, determining the number of hops be-
tween two arbitrary nodes can be very difficult, and may also not even correlate
with latency (Huffaker et aI., 2002). Moreover, simply looking at routing tables is
not going to work when low-level techniques such as multi-protocol label
switching (MPLS) are deployed. MPLS circumvents network-level routing by
using virtual-circuit techniques to immediately and efficiently forward packets to
their destination [see also Guichard et al. (2005)]. Packets may thus follow com-
pletely different routes than advertised in the tables of network-level routers.

A third class is formed by network usage metrics which most often entails
consumed bandwidth. Computing consumed bandwidth in terms of the number of
bytes to transfer is generally easy. However, to do this correctly, we need to take
into account how often the document is read, how often it is updated, and how
often it is replicated. We leave this as an exercise to the reader.

Consistency metrics tell us to what extent a replica is deviating from its mas-
ter copy. We already discussed extensively how consistency can be measured in
the context of continuous consistency in Chap. 7 (Yu and Vahdat, 2002).

Finally, financial metrics form another class for measuring how well a CDN
is doing. Although not technical at all, considering that most CDN operate on a
commercial basis, it is clear that in many cases financial metrics will be decisive.
Moreover, the financial metrics are closely related to the actual infrastructure of
the Internet. For example, most commercial CDNs place servers at the edge of the
Internet, meaning that they hire capacity from ISPs directly servicing end users.
At this point, business models become intertwined with technological issues, an
area that is not at all well understood. There is only few material available on the
relation between financial performance and technological issues (Janiga et aI.,
20(H).

From these examples it should become clear that simply measuring the perfor-
mance of a CDN, or even estimating its performance may by itself be an
extremely complex task. In practice, for commercial CDNs the issue that really
counts is whether they can meet the service-level agreements that have been made
with customers. These agreements are often formulated simply in terms of how

576 DISTRIBUTED WEB-BASED SYSTEMS CHAP. 12

quickly customers are to be serviced. It is then up to the CDN to make sure that
these agreements are met.•..

Adaptation Triggering

Another question that needs to be addressed is when and how adaptations are
to be triggered. A simple model is to periodically estimate metrics and subse-
quently take measures as needed. This approach is often seen in practice. Special
processes located at the servers collect information and periodically check for
changes.

A major drawback of periodic evaluation is that sudden changes may be
missed. One type of sudden change that is receiving considerable attention is that
of flash crowds. A flash crowd is a sudden burst in requests for a specific Web
document. In many cases, these type of bursts can bring down an entire service, in
tum causing a cascade of service outages as witnessed during several events in the
recent history of the Internet.

Handling flash crowds is difficult. A very expensive solution is to massively
replicate a Web site and as soon as request rates start to rapidly increase, requests
should be redirected to the replicas to offload the master copy. This type of over-
provisioning is obviously not the way to go. Instead, what is needed is a flash-
crowd predictor that will provide a server enough time to dynamically install
replicas of Web documents, after which it can redirect requests when the going
gets tough. One of the problems with attempting to predict flash crowds is that
they can be so very different. Fig. 12-19 shows access traces for four different
Web sites that suffered from a flash crowd. As a point of reference, Fig. 12-19(a)
shows regular access traces spanning two days. There are also some very strong
peaks, but otherwise there is nothing shocking going on. In contrast, Fig. 12-19(b)
shows a two-day trace with four sudden flash crowds. There is still some regular-
ity, which may be discovered after a while so that measures can be taken. How-
ever, the damage may be been done before reaching that point.

Fig. 12-19(c) shows a trace spanning six days with at least two flash crowds.
In this case, any predictor is going to have a serious problem, as it turns out that
both increases in request rate are almost instantaneously. Finally, Fig. 12-19(d)
shows a situation in which the first peak should probably cause no adaptations,
but the second obviously should. This situation turns out to be the type of
behavior that can be dealt with quite well through runtime analysis.

One promising method to predict flash crowds is using a simple linear extra-
polation technique. Baryshikov et al. (2005) propose to continuously measure the
number of requests to a document during a specific time interval [t - W,t), where
W is the window size. The interval itself is divided into small slots, where for
each slot the number of requests are counted. Then. by applying simple linear
regression. we can fit a curve ft expressing the number of accesses as a function
of time. By extrapolating the curve to time instances beyond t, we obtain a

SEC. 12.6

Figure 12-19. One normal and three different access patterns reflecting flash-
crowd behavior (adapted from Baryshnikov et al., 2005).

prediction for the number of requests. If the number of requests are predicted to
exceed a given threshold, an alarm is raised.

This method works remarkably well for multple access patterns. Unfortun-
ately, the window size as well as determining what the alarm threshold are sup-
posed to be depends highly on the Web server traffic. In practice, this means that
much manual fine tuning is needed to configure an ideal predictor for a specific
site. It is yet unknown how flash-crowd predictors can be automatically config-
ured.

Adjustment Measures

As mentioned, there are essentially only three (related) measures that can be
taken to change the behavior of a Web hosting service: changing the placement of
replicas, changing consistency enforcement, and deciding on how and when to
redirect client requests. We already discussed the first two measures extensively
in Chap. 7. Client-request redirection deserves some more attention. Before we
discuss some of the trade-offs, let us first consider how consistency and replica-
tion are dealt with in a practical setting by considering the Akamai situation
(Leighton and Lewin, 2000; and Dilley et al., 2002).

The basic idea is that each Web document consists of a main HTML (or
XML) page in which several other documents such as images, video, and audio

CONSISTENCY AND REPLICATION 577

578

have been embedded. To display the entire document, it is necessary that the
embedded documents are fetched by the user's browser as well. The assumption is
that these embedded documents rarely change, for which reason it makes sense to
cache or replicate them.

Each embedded document is normally referenced through a URL. However,
in Akamai's CON, such a URL is modified such that it refers to a virtual ghost,
which is a reference to an actual server in the CON. The URL also contains the
host name of the origin server for reasons we explain next. The modified URL is
resolved as follows, as is also shown in Fig. 12-20.

Figure 12-20. The principal working of the Akamai CDN.

The name of the virtual ghost includes a ONS name such as ghosting. com,
which is resolved by the regular ONS naming system to a CON DNS server (the
result of step 3). Each such ONS server keeps track of servers close to the client.
To this end, any of the proximity metrics we have discussed previously could be
used. In effect, the CON ONS servers redirects the client to a replica server best
for that client (step 4), which could mean the closest one, the least-loaded one. or
a combination of several such metrics (the actual redirection policy is propri-
etary).

Finally, the client forwards the request for the embedded document to the se-
lected CDN server. If this server does not yet have the document, it fetches it
from the original Web server (shown as step 6). caches it locally, and subse-
quently passes it to the client. If the document was already in the CDN server's
cache, it can be returned forthwith. Note that in order to fetch the embedded docu-
ment, the replica server must be able to send a request to the origin server. for
which reason its host name is also contained in the embedded document's URL.

An interesting aspect of this scheme is the simplicity by which consistency of
documents can be enforced. Clearly, whenever a main document is changed. a

DISTRIBUTED WEB-BASED SYSTEMS CHAP. 12

SEC. 12.6 CONSISTENCY AND REPLICATION 579

client will always be able to fetch it from the origin server. In the case of embed-
ded documents, a different approach needs to be followed as these documents are,
in principle, fetched from a nearby replica server. To this end, a URL for an
embedded document not only refers to a special host name that eventually leads to
a CDN DNS server, but also contains a unique identifier that is changed every
time the embedded document changes. In effect, this identifier changes the name
of the embedded document. As a consequence, when the client is redirected to a
specific CDN server, that server will not find the named document in its cache
and will thus fetch it from the origin server. The old document will eventually be
evicted from the server's cache as it is no longer referenced.

This example already shows the importance of client-request redirection. In
principle, by properly redirecting clients, a CDN can stay in coritrol when it
comes to client-perceived performance, but also taking into account global system
performance by, for example, avoiding that requests are sent to heavily loaded
servers. These so-called adaptive redirection policies can be applied when infor-
mation on the system's current behavior is provided to the processes that take
redirection decisions. This brings us partly back to the metric estimation tech-
niques discussed previously.

Besides the different policies, an important issue is whether request redirec-
tion is transparent to the client or not. In essence, there are only three redirection
techniques: TCP handoff, DNS redirection, and HTTP redirection. We already
discussed TCP handoff. This technique is applicable only for server clusters and
does not scale to wide-area networks.

DNS redirection is a transparent mechanism by which the client can be kept
completely unaware of where documents are located. Akamai's two-level redirec-
tion is one example of this technique. We can also directly deploy DNS to return
one of several addresses as we discussed before. Note, however, that DNS re-
direction can be applied only to an entire site: the name of individual documents
does not fit into the DNS name space.

HTTP redirection, finally, is a nontransparent mechanism. When a client re-
quests a specific document, it may be given an alternative URL as part of an
HTTP response message to which it is then redirected. An important observation
is that this URL is visible to the client's browser. In fact, the user may decide to
bookmark the referral URL, potentially rendering the redirection policy useless.

12.6.3 Replication of Web Applications

Up to this point we have mainly concentrated on caching and replicating static
Web content. In practice, we see that the Web is increasingly offering more
dynamically generated content, but that it is also expanding toward offering ser-
vices that can be called by remote applications. Also in these situations we see
that caching and replication can help considerably in improving the overall

580 DISTRIBUTED WEB-BASED SYSTEMS CHAP. 12

performance, although the methods to reach such improvements are more subtle
than what we discussed so far [see also Conti et al. (2005)].

When considering improving performance of Web applications through cach-
ing and replication, matters are complicated by the fact that several solutions can
be deployed, with no single one standing out as the best. Let us consider the
edge-server situation as sketched in Fig.]2-2]. In this case, we assume a CDN,in
which each hosted site has an origin server that acts as the authoritative site for all
read and update operations. An edge server is used to handle client requests, and
has the ability to store (partial) information as also kept at an origin server.

Figure 12-21. Alternatives for caching and replication with Web applications.

Recall that in an edge-server architecture, Web clients request data through an
edge server, which, in tum, gets its information from the origin server associated
with the specific Web site referred to by the client. As also shown in Fig. 12-21,
we assume that the origin server consists of a database from which responses are
dynamically created. Although we have shown only a single Web server, it is
common to organize each server according to a multitiered architecture as we dis-
cussed before. An edge server can now be roughly organized along the following
lines.

First, to improve performance, we can decide to apply full replication of the
data stored at the origin server. This scheme works well whenever the update ratio
is low and when queries require an extensive database search. As mentioned
above, we assume that all updates are carried out at the origin server, which takes
responsibility for keeping the replicas and the edge servers in a consistent state.
Read operations can thus take place at the edge servers. Here we see that replicat-
ing for performance will fail when the update ratio is high. as each update will

SEC. 12.6 CONSISTENCY AND REPLICATION 581

incur communication over a wide-area network to bring the replicas into a con-
sistent state. As shown in Sivasubramanian et al. (2004a), the read/update ratio is
the determining factor to what extent the origin database in a wide-area setting
should be replicated.

Another case for full replication is when queries are generally complex. In the
case of a relational database, this means that a query requires that multiple tables
need to be searched and processed, as is generally the case with a join operation.
Opposed to complex queries are simple ones that generally require access to only
a single table in order to produce a response. In the latter case, partial replication
by which only a subset of the data is stored at the edge server may suffice.

The problem with partial replication is that it may be very difficult to manu-
ally decide which data is needed at the edge server. Sivasubramanian et al. (2005)
propose to handle this automatically by replicating records according to the same
principle that Globule replicates its Web pages. As we discussed in Chap. 2, this
means that an origin server analyzes access traces for data records on which it
subsequently bases its decision on where to place records. Recall that in Globule,
decision-making was driven by taking the cost into account for executing read and
update operations once data was in place (and possibly replicated). Costs are
expressed in a simple linear function:

with mk being a performance metric (such as consumed bandwidth) and Wk > 0
the relative weight indicating how important that metric is.

An alternative to partial replication is to make use of content-aware caches.
The basic idea in this case is that an edge server maintains a local database that is
now tailored to the type of queries that can be handled at the origin server. To
explain, in a full-fledged database system a query will operate on a database in
which the data has been organized into tables such that, for example, redundancy
is minimized. Such databases are also said to be normalized.

In such databases, any query that adheres to the data schema can, in principle,
be processed, although perhaps at considerable costs. With content-aware caches,
an edge server maintains a database that is organized according to the structure of
queries. What this means is that queries are assumed to adhere to a limited num-
ber of templates, effectively meaning that the different kinds of queries that can
be processed is restricted. In these cases, whenever a query is received, the edge
server matches the query against the available templates, and subsequently looks
in its local database to compose a response, if possible. If the requested data is not
available, the query is forwarded to the origin server after which the response is
cached before returning it to the client.

In effect, what the edge server is doing is checking whether a query can be
answered with the data that is stored locally. This is also referred to as a query
containment check. Note that such data was stored locally as responses to previ-
ously issued queries. This approach works best when queries tend to be repeated.

582 DISTRIBUTED WEB-BASED SYSTEMS CHAP. 12

Part of the complexity of content-aware caching comes from the fact that the
data at the edge server needs to be kept consistent. To this end, the origin server
needs to know which records are associated with which templates, so that any
update of a record, or any update of a table, can be properly addressed by, for ex-
ample, sending an invalidation message to the appropriate edge servers. Another
source of complexity comes from the fact that queries still need to be processed, at
edge servers. In other words, there is nonnegligible computational power needed
to handle queries. Considering that databases often form a performance bottleneck
in Web servers, alternative solutions may be needed. Finally, caching results from
queries that span multiple tables (i.e., when queries are complex) such that a
query containment check can be carried out effectively is not trivial. The reason is
that the organization of the results may be very different from the organization of
the tables on which the query operated.

These observations lead us to a third solution, namely content-blind caching,
described in detail by Sivasubramanian et al. (2006). The idea of content-blind
caching is extremely simple: when a client submits a query to an edge server, the
server first computes a unique hash value for that query. Using this hash value, it
subsequently looks in its cache whether it has processed this query before. If not,
the query is forwarded to the origin and the result is cached before returning it to
the client. If the query had been processed before, the previously cached result is
returned to the client.

The main advantage of this scheme is the reduced computational effort that is
required from an edge server in comparison to the database approaches described
above. However, content-blind caching can be wasteful in terms of storage as the
caches may contain much more redundant data in comparison to content-aware
caching or database replication. Note that such redundancy also complicates the
process of keeping the cache up to date as the origin server may need to keep an
accurate account of which updates can potentially affect cached query results.
These problems can be alleviated when assuming that queries can match only a
limited set of predefined templates as we discussed above.

Obviously, these techniques can be equally well deployed for the upcoming
generation of Web services, but there is still much research needed before stable
solutions can be identified.

12.7 FAULT TOLERANCE

Fault tolerance in the Web-based distributed systems is mainly achieved
through client-side caching and server replication. No special methods are incor-
porated in, for example, HTTP to assist fault tolerance or recovery. Note, howev-
er, that high availability in the Web is achieved through redundancy that makes
use of generally available techniques in crucial services such as DNS. as an

SEC. 12.7 FAULT TOLERANCE 583

example we mentioned before, DNS allows several addresses to be returned as the
result of a name lookup. In traditional Web-based systems, fault tolerance can be
relatively easy to achieve considering the stateless design of servers, along with
the often static nature of the provided content.

When it comes to Web services, similar observations hold: hardly any new or
special techniques are introduced to deal with faults (Birman, 2005). However, it
should be clear that problems of masking failures and recoveries can be more
severe. For example, Web services support wide-area distributed transactions and
solutions will definitely have to deal with failing participating services or unreli-
able communication.

Even more important is that in the case of Web services we may easily be
dealing with complex calling graphs. Note that in many Web-based systems com-
puting follows a simple two-tiered client-server calling convention. This means
that a client calls a server, which then computes a response without the need of
additional external services. As said, fault tolerance can often be achieved by sim-
ply replicating the server or relying partly on result caching.

This situation no longer holds for Web services. In many cases, we are now
dealing with multitiered solutions in which servers also act as clients. Applying
replication to servers means that callers and callees need to handle replicated
invocations, just as in the case of replicated objects as we discussed back in
Chap. 10.

Problems are aggravated for services that have been designed to handle
Byzantine failures. Replication of components plays a crucial role here, but so
does the protocol that clients execute. In addition, we now have to face the situa-
tion that a Byzantine fault-tolerant (BFT) service may need to act as a client of
another nonreplicated service. A solution to this problem is proposed in Merideth
et al. (2005) that is based on the BFf system proposed by Castro and Liskov
(2002), which we discussed in Chap. 11.

There are three issues that need to be handled. First, clients of a BFT service
should see that service as just another Web service. In particular, this means that
the internal replication of that service should be hidden from the client, along with
a proper processing of responses. For example, a client needs to collect k + 1
identical answers from up to 2k + I responses, assuming that the BFf service is
designed to handle at most k failing processes. Typically, this type of response
processing can be hidden away in client-side stubs, which can be automatically
generated from WSDL specifications,

Second, a BFf service should guarantee internal consistency when acting as a
client. In particular, it needs to handle the case that the external service it is cal-
ling upon returns different answers to different replicas. This could happen, for
example, when the external service itself is failing for whatever reason. As a re-
sult, the replicas may need to run an additional agreement protocol as an exten-
sion to the protocols they are already executing to provide Byzantine fault toler-
ance. After executing this protocol, they can send their answers back to the client.

584 DISTRIBUTED WEB-BASED SYSTEMS CHAP. 12

Finally. external services should also treat a BFT service acting as a client, as
a single entity. In particular, a service cannot simply accept a request coming
from a single replica, but can proceed only when it has received at least k + I
identical requests from different replicas.

These three situations lead to three different pieces of software that need to be
integrated into toolkits for developing Web services. Details and performance
evaluations can be found in Merideth et al. (2005).

12.8 SECURITY

Considering the open nature of the Internet, devising a security architecture
that protects clients and servers against various attacks is crucially important.
Most of the security issues in the Web deal with setting up a secure channel be-
tween a client and server. The predominant approach for setting up a secure chan-
nel in the Web is to use the Secure Socket Layer (SSL), originally implemented
by Netscape. Although SSL has never been formally standardized, most Web cli-
ents and servers nevertheless support it. An update of SSL has been formally laid
down in RFC 2246 and RFC 3546, now referred to as the Transport Layer Secu-
rity (TLS) protocol (Dierks and Allen, 1996; and Blake-Wilson et aI., 2003).

As shown in Fig. 12-22, TLS is an application-independent security protocol
that is logically layered on top of a transport protocol. For reasons of simplicity,
TLS (and SSL) implementations are usually based on TCP. TLS can support a
variety of higher-level protocols, including HTTP, as we discuss below. For ex-
ample, it is possible to implement secure versions of FTP or Telnet using TLS.

Figure 12-22. The position of TLS in the Internet protocol stack.

TLS itself is organized into two layers. The core of the protocol is formed by
the TLS record protocol layer, which implements a secure channel between a
client and server. The exact characteristics of the channel are determined during
its setup, but may include message fragmentation and compression, which are
applied in conjunction with message authentication, integrity, and confidentiality.

SEC. 12.8 SECURITY 585

Setting up a secure channel proceeds in two phases, as shown in Fig. 12-23.
First, the client informs the server of the cryptographic algorithms it can handle,
as well as any compression methods it supports. The actual choice is always made
by the server, which reports its choice back to the client. These first two messages
shown in Fig. 12-23.

Figure 12-23. TLS with mutual authentication.

In the second phase, authentication takes place. The server is always required
to authenticate itself, for which reason it passes the client a certificate containing
its public key signed by a certification authority CA. If the server requires that the
client be authenticated, the client will have to send a certificate to the server as
well, shown as message 4 in Fig. 12-23.

The client generates a random number that will be used by both sides for con-
structing a session key, and sends this number to the server, encrypted with the
server's public key. In addition, if client authentication is required, the client signs
the number with its private key, leading to message 5 in Fig. 12-23. (In reality, a
separate message is sent with a scrambled and signed version of the random num-
ber, establishing the same effect.) At that point, the server can verify the identity
of the client, after which the secure channel has been set up.

12.9 SUMMARY

It can be argued that Web-based distributed systems have made networked ap-
plications popular with end users. Using the notion of a Web document as the
means for exchanging information comes close to the way people often communi-
cate in office environments and other settings. Everyone understands what a paper
document is, so extending this concept to electronic documents is quite logical for
most people.

The hypertext support as provided to Web end users has been of paramount
importance to the Web's popularity. In addition, end users generally see a simple

586 DISTRIBUTED WEB-BASED SYSTEMS CHAP. 12

client-server architecture in which documents are simply fetched from a specific
site. However, modem Web sites are organized along multitiered architectures in
which a final component is merely responsible for generating HTML or XML
pages as responses that can be displayed at the client.

Replacing the end user with an application has brought us Web services. From
a technological point of view, Web services by themselves are generally not spec-
tacular, although they are still in their infancy. What is important, however, is that
very different services need to be discovered and be accessible to authorized cli-
ents. As a result, huge efforts are spent on standardization of service descriptions,
communications, directories, and various interactions. Again. each standard by it-
self does not represent particularly new insights, but being a standard contributes
to the expansion of Web services.

Processes in the Web are tailored to handling HTTP requests, of which the
Apache Web server is a canonical example. Apache has proven to be a versatile
vehicle for handling HTTP-based systems, but can also be easily extended to
facilitate specific needs such as replication.

As the Web operates over the Internet, much attention has been paid to
improving performance through caching and replication. More or less standard
techniques have been developed for client-side caching, but when it comes to rep-
lication considerable advances have been made. Notably when replication of Web
applications is at stake, it turns out that different solutions will need to co-exist for
attaining optimal performance.

Both fault tolerance and security are generally handled using standard tech-
niques that have since long been applied for many other types of distributed sys-
tems.

PROBLEMS

1. To what extent is e-mail part of the Web's document model?

2. In many cases, Web sites are designed to be accessed by users. However, when it
comes to Web services, we see that Web sites become dependent on each other. Con-
sidering the three-tiered architecture of Fig. 12-3, where would you expect to see the
dependency occur?

3. The Web uses a file-based approach to documents by which a client first fetches a file
before it is opened and displayed. 'What is the consequence of this approach for mul-
timedia files?

4. One could argue that from an technological point of view Web services do not address
any new issues. What is the compelling argument to consider Web services important?

CHAP. 12 PROBLEMS 587

5. What would be the main advantage of using the distributed server discussed in Chap. 3
to implement a Web server cluster, in comparison to the way the such clusters are
organized as shown in Fig. 12-9. What is an obvious disadvantage?

6. Why do persistent connections generally improve performance compared to nonper-
sistent connections?

7. SOAP is often said to adhere to RPC semantics. Is this really true?

8. Explain the difference between a plug-in, an applet, a servlet, and a CGI program.

9. In WebDA V, is it sufficient for a client to show only the lock token to the server in
order to obtain write permissions?

10. Instead of letting a Web proxy compute an expiration time for a document, a server
could do this instead. What would be the benefit of such an approach?

11. With Web pages becoming highly personalized (because they can be dynamically gen-
erated on a per-client basis on demand), one could argue that Web caches will soon all
be obsolete. Yet, this is most likely not going to happen any time in the immediate
future. Explain why.

12. Does the Akamai CDN follow a pull-based or push-based distribution protocol?

13. Outline a simple scheme by which an Akamai CDN server can find out that a cached
embedded document is stale without checking the document's validity at the original
server.

14. Would it make sense to associate a replication strategy with each Web document sepa-
rately, as opposed to using one or only a few global strategies?

15. Assume that a nonreplicated document of size s bytes is requested r times per second.
If the document is replicated to k different servers, and assuming that updates are pro-
pagated separately to each replica, when will replication be cheaper than when the
document is not replicated?

16. Consider a Web site experiencing a flash crowd. What could be an appropriate meas-
ure to take in order to ensure that clients are still serviced well?

17. There are, in principle, three different techniques for redirecting clients to servers:
TCP handoff, DNS-based redirection, and HTTP-based redirection. What are the main
advantages and disadvantages of each technique?

18. Give an example in which a query containment check as performed by an edge server
supporting content-aware caching will return successfully.

19. (Lab assignment) Set up a simple Web-based system by installing and configuring
the Apache Web server for your local machine such that it can be accessed from a
local browser. If you have multiple computers in a local-area network, make sure that
the server can be accessed from any browser on that network.

20. (Lab assignment) WebDAV is supported by the Apache Web server and allows mul-
tiple users to share files for reading and writing over the Internet. Install and configure

588 DISTRIBUTED WEB-BASED SYSTEMS CHAP. 12

Apache for a WebDAV-enabled directory in a local-area network. Test the configura-
tion by using a WebDAV client.

13
DISTRIBUTED

COORDINATION-BASED SYSTEMS

In the previous chapters we took a look at different approaches to distributed
systems, in each chapter focusing on a single data type as the basis for distribu-
tion. The data type, being either an object, file, or (Web) document, has its origins
in nondistributed systems. It is adapted for distributed systems in such a way that
many issues about distribution can be made transparent to users and developers.

In this chapter we consider a generation of distributed systems that assume
that the various components of a system are inherently distributed and that the real
problem in developing such systems lies in coordinating the activities of different
components. In other words, instead of concentrating on the transparent distribu-
tion of components, emphasis lies on the coordination of activities between those
components.

We will see that some aspects of coordination have already been touched up-
on in the previous chapters, especially when considering event-based systems. As
it turns out, many conventional distributed systems are gradually incorporating
mechanisms that playa key role in coordination-based systems.

Before taking a look at practical examples of systems, we give a brief intro-
duction to the notion of coordination in distributed systems.

13.1 INTRODUCTION TO COORDINATION MODELS

Key to the approach followed in coordination-based systems is the clean
separation between computation and coordination. If we view a distributed system
as a collection of (possibly multithreaded) processes, then the computing part of a

589

590 DISTRIBUTED COORDINATION-BASED SYSTEMS CHAP. 13

distributed system is formed by the processes, each concerned with a specific
computational activity, which in principle, is carried out independently from the
activities of other processes.

In this model, the coordination part of a distributed system handles the com-
munication and cooperation between processes. It forms the glue that binds the
activities performed by processes into a whole (Gelernter and Carriero, 1992). In
distributed coordination-based systems, the focus is on how coordination between
the processes takes place.

Cabri et al. (2000) provide a taxonomy of coordination models for mobile
agents that can be applied equally to many other types of distributed systems.
Adapting their terminology to distributed systems in general, we make a distinc-
tion between models along two different dimensions, temporal and referential, as
shown in Fig. 13-1.

Figure 13-1. A taxonomy of coordination models (adapted from Cabri et al., 2000).

When processes are temporally and referentially coupled, coordination takes
place in a direct way, referred to as direct coordination. The referential coupling
generally appears in the form of explicit referencing in communication. For ex-
ample, a process can communicate only-if it knows the name or identifier of the
other processes it wants to exchange information with. Temporal coupling means
that processes that are communicating will both have to be up and running. This
coupling is analogous to the transient message-oriented communication we dis-
cussed in Chap. 4. .

A different type of coordination occurs when processes are temporally decou-
pled, but referentially coupled, which we refer to as mailbox coordination. In
this case, there is no need for two communicating processes to execute at the
same time in order to let communication take place. Instead, communication takes
place by putting messages in a (possibly shared) mailbox. This situation is analo-
gous to persistent message-oriented communication as described in Chap. 4. It is
necessary to explicitly address the mailbox that will hold the messages that are to
be exchanged. Consequently, there is a referential coupling.

The combination of referentially decoupled and temporally coupled systems
form the group of models for meeting-oriented coordination. In referentially
decoupled systems, processes do not know each other explicitly. In other words.
when a process wants to coordinate its activities with other processes, it cannot

SEC. 13.1 INTRODUCTION TO COORDINATION MODELS 591

directly refer to another process. Instead, there is a concept of a meeting in which
processes temporarily group together to coordinate their activities. The model
prescribes that the meeting processes are executing at the same time.

Meeting-based systems are often implemented by means of events, like the
ones supported by object-based distributed systems. In this chapter, we discuss an-
other mechanism for implementing meetings, namely publish/subscribe systems.
In these systems, processes can subscribe to messages containing information on
specific subjects, while other processes produce (i.e., publish) such messages.
Most publish/subscribe systems require that communicating processes are active
at the same time; hence there is a temporal coupling. However, the communicat-
ing processes may otherwise remain anonymous.

The most widely-known coordination model is the combination of referen- .
tially and temporally decoupled processes, exemplified by generative communi-
cation as introduced in the Linda programming system by Gelemter (1985). The
key idea in generative communication is that a collection of independent proc-
esses make use of a shared persistent dataspace of tuples. Tuples are tagged data
records consisting of a number (but possibly zero) typed fields. Processes can put
any type of record into the shared dataspace (i.e., they generate communication
records). Unlike the case with blackboards, there is no need to agree in advance
on the structure of tuples. Only the tag is used to distinguish between tuples
representing different kinds of information.

An interesting feature of these shared dataspaces is that they implement an
associative search mechanism for tuples. In other words, when a process wants to
extract a tuple from the dataspace, it essentially specifies (some of) the values of
the fields it is interested in. Any tuple that matches that specification is then re-
moved from the dataspace and passed to the process. If no match could be found,
the process can choose to block until there is a matching tuple. We defer the
details on this coordination model to later when discussing concrete systems.

We note that generative communication and shared dataspaces are often also
considered to be forms of publish/subscribe systems. In what follows, we shall
adopt this commonality as well. A good overview of publish/subscribe systems
(and taking a rather broad perspective) can be found in Eugster et al. (2003). In
this chapter we take the approach that in these systems there is at least referential
decoupling between processes, but preferably also temporal decoupling.

13.2 ARCHITECTURES

An important aspect of coordination-based systems is that communication
takes place by describing the characteristics of data items that are to be
exchanged. As a consequence, naming plays a crucial role. We return to naming
later in this chapter, but for now the important issue is that in many cases, data
items are not explicitly identified by senders and receivers.

592 DISTRIBUTED COORDINA nON-BASED SYSTEMS CHAP. 13

13.2.1 Overall Approach

Let us first assume that data items are described by a series of attributes. A
data item is said to be published when it is made available for other processes to
read. To that end. a subscription needs to be passed to the middleware, contain-
ing a description of the data items that the subscriber is interested in. Such a
description typically consists of some (attribute, value) pairs, possibly combined
with (attribute, range) pairs. In the latter case, the specified attribute is expected
to take on values within a specified range. Descriptions can sometimes be given
using all kinds of predicates formulated over the attributes, very similar in nature
to SQL-like queries in the case of relational databases. We will come across these
types of descriptors later in this chapter.

We are now confronted with a situation in which subscriptions need to be
matched against data items, as shown in Fig. 13-2. When matching succeeds,
there are two possible scenarios. In the first case, the middleware may decide to
forward the published data to its current set of subscribers, that is, processes with
a matching subscription. As an alternative, the middleware can also forward a
notification at which point subscribers can execute a read operation to retrieve
the published data item.

Figure 13-2. The principle of exchanging data items between publishers and subscribers.

In those cases in which data items are immediately forwarded to subscribers,
the middleware will generally not offer storage of data. Storage is either explicitly
handled by a separate service, or is the responsibility of subscribers. In other
words, we have a referentially decoupled, but temporally coupled system.

This situation is different when notifications are sent so that subscribers need
to explicitly read the published data. Necessarily, the middleware will have to
store data items. In these situations there are additional operations for data
management. It is also possible to attach a lease to a data item such that when the
lease expires that the data item is automatically deleted.

In the model described so far, we have assumed that there is a fixed set of n
attributes a I, ... ,an that is used to describe data items. In particular, each pub-
lished data item is assumed to have an associated vector «a b v I)' ...,(an' 1',J> of

SEC. 13.2 ARCHITECTURES 593
(attribute. value) pairs. In many coordination-based systems, this assumption is
false. Instead, what happens is that events are published, which can be viewed as
data items with only a single specified attribute.

Events complicate the processing of subscriptions. To illustrate, consider a
subscription such as "notify when room R4.20 is unoccupied and the door is
unlocked." Typically, a distributed system supporting such subscriptions can be
implemented by placing independent sensors for monitoring room occupancy
(e.g., motion sensors) and those for registering the status of a door lock. Following
the approach sketched so far, we would need to compose such primitive events
into a publishable data item to which processes can then subscribe. Event compo-
sition turns out to be a difficult task, notably when the primitive events are gen-
erated from sources dispersed across the distributed system.

Clearly, in coordination-based systems such as these, the crucial issue is the
efficient and scalable implementation of matching subscriptions to data items,
along with the construction of relevant data items. From the outside, a coordina-
tion approach provides lots of potential for building very large-scale distributed
systems due to the strong decoupling of processes. On the other hand, as we shall
see next, devising scalable implementations without losing this independence is
not a trivial exercise.

13.2.2 Traditional Architectures

The simplest solution for matching data items against subscriptions is to have
a centralized client-server architecture. This is a typical solution currently adopted
by many publish/subscribe systems, including IBM's WebSphere (IBM, 2005c)
and popular implementations for Sun's JMS (Sun Microsystems. 2004a). Like-
wise, implementations for the more elaborate generative communication models
such as Jini (Sun Microsystems, 2005b) and JavaSpaces (Freeman et al., 1999) are
mostly based on central servers. Let us take a look at two typical examples.

Example: Jini and JavaSpaces

Jini is a distributed system that consists of a mixture of different but related
elements. It is strongly related to the Java programming language, although many
of its principles can be implemented equally well in other languages. An impor-
tant part of the system is formed by a coordination model for generative commu-
nication. Jini provides temporal and referential decoupling of processes through a
coordination system called JavaSpaces (Freeman et aI., 1999), derived from
Linda. A JavaSpace is a shared dataspace that stores tuples representing a typed
set of references to Java objects. Multiple JavaSpaces may coexist in a single Jini
system.

Tuples are stored in serialized form. In other words, whenever a process
wants to store a tuple, that tuple is first marshaled, implying that all its fields are

594 DISTRIBUTED COORDINATION-BASED SYSTEMS CHAP. 13

marshaled as well. As a consequence, when a tuple contains two different fields
that refer to the same object, the tuple as stored in a JavaSpace implementation
will hold two marshaled copies of that object.

A tuple is put into a JavaSpace by means of a write operation, which first
marshals the tuple before storing it. Each time the write operation is called on a
tuple, another marshaled copy of that tuple is stored in the JavaSpace, as shown in
Fig. 13-3. We will refer to each marshaled copy as a tuple instance.

B Write B Read T

Insert a
copy of B
,---"'---
; A [[J Return C
: (and optionally

Tuple instance ! IBl [[J r--- remove it)
~ :C'••• .,I l---A-ja~aspace----~'

The interesting aspect of generative communication in Jini is the way that
tuple instances are read from a JavaSpace. To read a tuple instance, a process pro-
vides another tuple that it uses as a template for matching tuple instances as
stored in a JavaSpace. Like any other tuple, a template tuple is a typed set of ob-
ject references. Only tuple instances of the same type as the template can be read
from a JavaSpace. A field in the template tuple either contains a reference to an
actual object or contains the value NULL. For example, consider the class

Then a template declared as

will match the tuple

To match a tuple instance in a JavaSpace against a template tuple, the latter is
marshaled as usual, including its NULL fields. For each tuple instance of the same
type as the template, a field-by-field comparison is made with the template tuple.

Figure B-3. The general organization of a JavaSpace in Jini.

SEC. 13.2 ARCHITECTURES 595

Two fields match if they both have a copy of the same reference or if the field in
the template tuple is NULL. A tuple instance matches a template tuple if there is
a pairwise matching of their respective fields.

When a tuple instance is found that matches the template tuple provided as
part of a read operation, that tuple instance is unmarshaled and returned to the
reading process. There is also a take operation that additionally removes the tuple
instance from the JavaSpace. Both operations block the caller until a matching tu-
ple is found. It is possible to specify a maximum blocking time. In addition, there
are variants that simply return immediately if no matching tuple existed.

Processes that make use of JavaSpaces need not coexist at the same time. In
fact, if a JavaSpace is implemented using persistent storage, a complete Jini sys-
tem can be brought down and later restarted without losing any tuples.

Although Jini does not support it, it should be clear that having a central
server allows subscriptions to be fairly elaborate. For example, at the moment two
nonnull fields match if they are identical. However, realizing that each field rep-
resents an object, matching could also be evaluated by executing an object-specif-
ic comparison operator [see also Picco et al. (2005)]. In fact, if such an operator
can be overridden by an application, more-or-less arbitrary comparison semantics
can be implemented. It is important to note that such comparisons may require an
extensive search through currently stored data items. Such searches cannot be
easily efficiently implemented in a distributed way. It is exactly for this reason
that when elaborate matching rules are supported we will generally see only cen-
tralized implementations.

Another advantage of having a centralized implementation is that it becomes
easier to implement synchronization primitives. For example, the fact that a proc-
ess can block until a suitable data item is published, and then subsequently exe-
cute a destructive read by which the matching tuple is removed, offers facilities
for process synchronization without processes needing to know each other. Again,
synchronization in decentralized systems is inherently difficult as we also dis-
cussed in Chap. 6. We will return to synchronization below.

Example: TIBlRendezvous

An alternative solution to using central servers is to immediately disseminate
published data items to the appropriate subscribers using multicasting. This prin-
ciple is used in TIBlRendezvous, of which the basic architecture is shown in
Fig. 13-4 (TIBCO, 2005) In this approach, a data item is a message tagged with a
compound keyword describing its content, such as news. comp.os. books. A sub-
scriber provides (parts of) a keyword, or indicating the messages it wants to
receive, such as news.comp. *.books. These keywords are said to indicate the sub-
ject of a message.

Fundamental to its implementation is the use of broadcasting common in
local-area networks, although it also uses more efficient communication facilities

596 DISTRIBUTED COORDINATION-BASED SYSTEMS CHAP. 13

Figure 13-4. The principle of a publish/subscribe system as implemented in
TlB/Rendezvous.

when possible. For example, if it is known exactly where a subscriber resides,
point-to-point messages will generally be used. Each host on such a network will
run a rendezvous daemon, which takes care that messages are sent and delivered
according to their subject. Whenever a message is published, it is multicast to
each host on the network running a rendezvous daemon. Typically, multicasting is
implemented using the facilities offered by the underlying network, such as IP-
multicasting or hardware broadcasting.

Processes that subscribe to a subject pass their subscription to their local dae-
mon. The daemon constructs a table of (process, subject), entries and whenever a
message on subject S arrives, the daemon simply checks in its table for local sub-
scribers, and forwards the message to each one. If there are no subscribers for S,
the message is discarded immediately.

When using multicasting as is done in TIB/Rendezvous, there is no reason
why subscriptions cannot be elaborate and be more than string comparison as is
currently the case. The crucial observation here is that because messages are for-
warded to every node anyway, the potentially complex matching of published data
against subscriptions can be done entirely locally without further network commu-
nication. However, as we shall discuss later, simple comparison rules are required
whenever matching across wide-area networks is needed.

13.2.3 Peer-to-Peer Architectures

The traditional architectures followed by most coordination-based systems
suffer from scalability problems (although their commercial vendors will state
otherwise). Obviously, having a central server for matching subscriptions to pub-
lished data cannot scale beyond a few hundred clients. Likewise, using multicast-
ing requires special measures to extend beyond the realm of local-area networks.

SEC. 13.2 ARCHITECTURES 597

Moreover, if scalability is to be guaranteed, further restrictions on describing sub-
scriptions and data items may be necessary.

Much research has been spent on realizing coordination-based systems using
peer-to-peer technology. Straightforward implementations exist for those cases in
which keywords are used, as these can be hashed to unique identifiers for pub-
lished data. This approach has also been used for mapping (attribute, value) pairs
to identifiers. In these cases, matching reduces to a straightforward lookup of an i-
dentifier, which can be efficiently implemented in a DHT-based system. This ap-
proach works well for the more conventional publish/subscribe systems as illus-
trated by Tam and Jacobsen (2003), but also for generative communication (Busi
et aI., 2004).

Matters become complicated for more elaborate matching schemes. Notori-
ously difficult are the cases in which ranges need to be supported and only very
few proposals exist. In the following, we discuss one such proposal, devised by
one of the authors and his colleagues (Voulgaris et aI., 2006).

Example: A Gossip-Based Publish/Subscribe System

Consider a publish/subscribe system in which data items can be described by
means of N attributes aI, ... , aN whose value can be directly mapped to a float-
ing-point number. Such values include, for example, floats, integers, enumera-
tions, booleans, and strings. A subscription s takes the form of a tuple of (attri-
bute. value/ranees nairs. such as

In this example, s specifies that a 1 should be equal to 3.0, and a4 should lie in the
interval [0.0, 0.5). Other attributes are allowed to take on any value. For clarity,
assume that every node i enters only one subscription s..

Note that each subscription Si actually specifies a subset S, in the N-
dimensional space of floating-point numbers. Such a subset is also called a hyper-
space. For the system as a whole, only published data whose description falls in
the union S = uSj of these hyperspaces is of interest. The whole idea is to
automatically partition S into M disjoint hyperspaces S1, ... ,SM such that each
falls completely in one of the subscription hyperspaces Si, and together they cover
_ 1) 1_ _ •• .• Jr J"- 11 I .•I .•

Moreover, the system keeps M minimal in the sense that there is no partitioning
with fewer parts 8m. The whole idea is to register, for each hyperspace 8m,

exactly those nodes i for which 8m c Sj. In that case, when a data item is pub-
lished, the system need merely find the 8m to which that item belongs, from which
point it can forward the item to the associated nodes.

To this end, nodes regularly exchange subscriptions using an epidemic proto-
col. If two nodes i and j notice that their respective subscriptions intersect, that is
Sij == S, n Sj=t 0 they will record this fact and keep references to each other. If
they discover a third node k with Sijk == Sij () Sk =t 0, the three of them will con-
nect to each other so that a data item d from Sijk can be efficiently disseminated.
Note that if Sij - Sijk =t 0, nodes i and j will maintain their mutual references, but
now associate it strictly with Sij - Sijk'

In essence, what we are seeking is a means to cluster nodes into M different
groups, such that nodes i and j belong to the same group if and only if their sub-
scriptions S, and Sj intersect. Moreover, nodes in the same group should be organ-
ized into an overlay network that will allow efficient dissemination of a data item
in the hyperspace associated with that group. This situation for a single attribute is
sketched in Fig. 13-5.

Figure 13-5. Grouping nodes for supporting range queries in· a peer-to-peer
publish/subscribe system.

Here, we see a total of seven nodes in which the horizontal line for node i
indicates its range of interest for the value of the single attribute. Also shown is
the grouping of nodes into disjoint ranges of interests for values of the attribute.
For example, nodes 3, 4, 7, and 10 will be grouped together representing the inter-
val [16.5, 21.0]. Any data item with a value in this range should be disseminated
to only these four nodes. .

To construct these groups, the nodes are organized into a gossip-based un-
structured network. Each node maintains a list of references to other neighbors
(i.e., a partial view), which it periodically exchanges with one of its neighbors as
described in Chap. 2. Such an exchange will allow a node to learn about random
other nodes in the system. Every node keeps track of the nodes it discovers with'
overlapping interests (i.e., with an intersecting subscription).

At a certain moment, every node i will generally have references to other
nodes with overlapping interests. As part of exchanging information with a node j,
node i orders these nodes by their identifiers and selects the one with the lowest

598 DISTRIBUTED COORDINATION-BASED SYSTEMS CHAP. 13

SEC. 13.2 ARCHITECTURES 599

identifier i 1 > j, such that its subscription overlaps with that of node j, that is,
Sj,il == s., n Sj::l=0.

The next one to be selected is i 2 > i 1 such that its subscription also overlaps
with that of j, but only if it contains elements not yet covered by node i r- In other
words, we should have that Sj,il,iz == (Siz - Sj,i) (J Sj::l=0. This process is re-
peated until all nodes that have an overlapping interest with node i have been
inspected, leading to an ordered list i 1 < i 2 < ... < ill' Note that a node ik is in
this list because it covers a region R of common interest to node i and j not yet
jointly covered by nodes with a lower identifier than ik. In effect, node ik is the
first node that node j should forward a data item to that falls in this unique region
R. This procedure can be expanded to let node i construct a bidirectional ring.
Such a ring is also shown in Fig. 13-5.

Whenever a data item d is published, it is disseminated as quickly as possible
to any node that is interested in it. As it turns out, with the information available
at every node finding a node i interested in d is simple. From there on, node i need
simply forward d along the ring of subscribers for the particular range that d falls
into. To speed up dissemination, short-cuts are maintained for each ring as well.
Details can be found in Voulgaris et al. (2006).

Discussion

An approach somewhat similar to this gossip-based solution in the sense that
it attempts to find a partitioning of the space covered by the attribute's values, but
which uses a DHT-based system is described in Gupta et al. (2004). In another
proposal described in Bharambe (2004), each attribute a, is handled by a separate
process Pi, which in tum partitions the range of its attribute across multiple proc-
esses. When a data item d is published, it is forwarded to each Pi, where it is sub-
sequently stored at the process responsible for the d's value of a..

All these approaches are illustrative for the complexity when mapping a non-
trivial publish/subscribe system to a peer-to-peer network. In essence, this com-
plexity comes from the fact that supporting search in attribute-based naming sys-
tems is inherently difficult to establish in a decentralized fashion. We will again
come across these difficulties when discussing replication.

13.2.4 Mobility and Coordination

A topic that has received considerable attention in the literature is how to
combine publish/subscribe solutions with node mobility. In many cases, it is
assumed that there is a fixed basic infrastructure with access points for mobile
nodes. Under these assumptions, the issue becomes how to ensure that published
messages are not delivered more than once to a subscriber who switches access
points. One practical solution to this problem is to let subscribers keep track of the
messages they have already received and simply discard duplicates. Alternative,

600 DISTRIBUTED COORDINA nON-BASED SYSTEMS CHAP. 13

but more intricate solutions comprise routers that keep track of which messages
have been sent to which subscribers (see, e.g., Caporuscio et aI., 2003).

Example: Lime

In the case of generative communication, several solutions have been pro-
posed to operate a shared dataspace in which (some of) the nodes are mobile. A
canonical example in this case is Lime (Murphy et aI., 2001), which strongly re-
sembles the JavaSpace model we discussed previously.

In Lime, each process has its own associated dataspace, but when processes
are in each other's proximity such that they are connected, their dataspaces be-
come shared. Theoretically, being connected can mean that there is a route in a
joint underlying network that allows two processes to exchange data. In practice,
however, it either means that two processes are temporarily located on the same
physical host, or their respective hosts can communicate with each other through a
(single hop) wireless link. Formally, the processes should be member of the same
group and use the same group communication protocol.

Figure 13-6. Transient sharing of local dataspaces in Lime.

The local dataspaces of connected processes form a transiently shared data-
space that will allow processes to exchange tuples, as shown in Fig. 13-6. For ex-
ample, when a process P executes a write operation, the associated tuple is stored
in the process's local dataspace. In principle, it stays there until there is a match-
ing take operation, possibly from another process that is now in the same group as
P. In this way, the fact that we are actually dealing with a completely distributed
shared dataspace is transparent for participating processes. However, Lime also
allows breaking this transparency by specifying exactly for whom a tuple is
intended. Likewise, read and take operations can have an additional parameter
specifying from which process a tuple is expected.

To better control how tuples are distributed, dataspaces can carry out what are
known as reactions. A reaction specifies an action to be executed when a tuple

SEC. 13.2 ARCHITECTURES 601

matching a given template is found in the local dataspace. Each time a dataspace
changes, an executable reaction is selected at random, often leading to a further
modification of the dataspace. Reactions span the current shared dataspace, but
there are several restrictions to ensure that they can be executed efficiently. For
example, in the case of weak reactions, it is only guaranteed that the associated
actions are eventually executed, provided the matching data is still accessible.

The idea of reactions has been taken a step further in TOTA. where each tuple
has an associated code fragment telling exactly how that tuple should be moved
between dataspaces, possibly also including transformations (Mamei and Zam-
bonelli, 2004).

13.3 PROCESSES

There is nothing really special about the processes used in publish/subscribe
systems. In most cases, efficient mechanisms need to be deployed for searching in
a potentially large collection of data. The main problem is devising schemes that
work well in distributed environments. We return to this issue below when dis-
cussing consistency and replication.

13.4 COMMUNICATION

Communication in many publish/subscribe systems is relatively simple. For
example, in virtually every Java-based system. all communication proceeds
through remote method invocations. One important problem that needs to be
handled when publish/subscribe systems are spread across a wide-area system is
that published data should reach only the relevant subscribers. As we described
above, using a self-organizing method by which nodes in a peer-to-peer system
are automatically clustered, after which dissemination takes place per cluster is
one solution. An alternative solution is to deploy content-based routing.

13.4.1 Content-Based Routing

In content-based routing, the system is assumed to be built on top of a
point-to-point network in which messages are explicitly routed between nodes.
Crucial in this setup is that routers can take routing decisions by considering the
content of a message. More precisely, it is assumed that each message carries a
description of its content, and that this description can be used to cut-off routes for
which it is known that they do not lead to receivers interested in that message.

A practical approach toward content-based routing is proposed in Carzaniga
et al. (2004). Consider a publish/subscribe system consisting of N servers to
which clients (i.e., applications) can send messages, or from which they can read

602 DISTRIBUTED COORDINA nON-BASED SYSTEMS CHAP. 13

incoming messages. We assume that in order to read messages, an application will
have previously provided the server with a description of the kind of data it is
interested in. The server, in turn, will notify the application when relevant data
has arrived.

Carzaniga et a1. propose a two-layered routing scheme in which the lowest
layer consists of a shared broadcast tree connecting the N servers. There are vari-
ous ways for setting up such a tree, ranging from network-level multicast support
to application-level multicast trees as we discussed in Chap. 4. Here, we also as-
sume that such a tree has been set up with the N servers as end nodes, along with a
collection of intermediate nodes forming the routers. Note that the distinction be-
tween a server and a router is only a logical one: a single machine may host both
kinds of processes.

Consider first two extremes for content-based routing, assuming we need to
support only simple subject-based publish/subscribe in which each message is
tagged with a unique (noncompound) keyword. One extreme solution is to send
each published message to every server, and subsequently let the server check
whether any of its clients had subscribed to the subject of that message. In
essence, this is the approach followed in TIBlRendezvous.

Figure 13-7. Naive content-based routing.

The other extreme solution is to let every server broadcast its subscriptions to
all other servers. As a result, every server will be able to compile a list of (subject,
destination) pairs. Then, whenever an application submits a message on subject s,
its associated server prepends the destination servers to that message. When the
message reaches a router, the latter can use the list to decide on the paths that the
message should follow, as shown in Fig. 13-7.

Taking this last approach as our starting point, we can refine the capabilities
of routers for deciding where to forward messages to. To that end, each server
broadcasts its subscription across the network so that routers can compose rout-
ing filters. For example, assume that node 3 in Fig. 13-7 subscribes to messages
for which an attribute a lies in the range [0,3], but that node 4 wants messages
with a E [2,5]. In this case, router R"}. will create a routing filter as a table with an

SEC. 13.4 COMMUNICATION 603

entry for each of its outgoing links (in this case three: one to node 3, one to node
4, and one toward router R 1), as shown in Fig. 13-8.

Figure 13-8. A partially filled routing table.

More interesting is what happens at router R 1. In this example, the subscrip-
tions from nodes 3 and 4 dictate that any message with a lying in the interval
[0,3] u [2,5] = [0,5] should be forwarded along the path to router Rz, and this is
precisely the information that R 1 will store in its table. It is not difficult to ima-
gine that more intricate subscription compositions can be supported.

This simple example also illustrates that whenever a node leaves the system,
or when it is no longer interested in specific messages, it should cancel its sub-
scription and essentially broadcast this information to all routers. This cancella-
tion, in tum, may lead to adjusting various routing filters. Late adjustments will at
worst lead to unnecessary traffic as messages may be forwarded along paths for
which there are no longer subscribers. Nevertheless, timely adjustments are need-
ed to keep performance at an acceptable level.

One of the problems with content-based routing is that although the principle
of composing routing filters is simple, identifying the links along which an incom-
ing message must be forwarded can be compute-intensive. The computational
complexity comes from the implementation of matching attribute values to sub-
scriptions, which essentially boils down to an entry-by-entry comparison. How
this comparison can be done efficiently is described in Carzaniga et al. (2003).

13.4.2 Supporting Composite Subscriptions

The examples so far form relatively simple extensions to routing tables. These
extensions suffice when subscriptions take the form of vectors of (attribute,
value/range) pairs. However, there is often a need for more sophisticated expres-
sions of subscriptions. For example, it may be convenient to express composi-
tions of subscriptions in which a process specifies in a single subscription that it is
interested in very different types of data items. To illustrate, a process may want
to see data items on stocks from IBM and data on their revenues, but sending data
items of only one kind is not useful.

To handle subscription compositions, Li and Jacobsen (2005) proposed to
design routers analogous to rule databases. In effect, subscriptions are transformed
into rules stating under which conditions published data should be forwarded, and

604 DISTRIBUTED COORDINATION-BASED SYSTEMS CHAP. 13

along which outgoing links. It is not difficult to imagine that this may lead to
content-based routing schemes that are far more advanced than the routing filters
described above. Supporting subscription composition is strongly related to na-
ming issues in coordination-based systems, which we discuss next.

13.5 NAMING

Let us now pay some more attention to naming in coordination-based systems.
So far, we have mostly assumed that every published data item has an associated
vector of 11 (attribute, value) pairs and that processes can subscribe to data items
by specifying predicates over these attribute values. In general, this naming
scheme can be readily applied, although systems differ with respect to attribute
types, values. and the predicates that can be used.

For example. with JavaSpaces we saw that essentially only comparison for
equality is supported, although this can be relatively easily extended in applica-
tion-specific ways. Likewise, many commercial publish/subscribe systems sup-
port only rather primitive string-comparison operators.

One of the problems we already mentioned is that in many cases we cannot
simply assume that every data item is tagged with values for all attributes. In par-
ticular, we will see that a data item has only one associated (attribute, value) pair,
in which case it is also referred to as an event. Support for subscribing to events,
and notably composite events largely dictates the discussion on naming issues in
publish/subscribe systems. What we have discussed so far should be considered as
the more primitive means for supporting coordination in distributed systems. We
now address in more depth events and event composition.

When dealing with composite events, we need to take two different issues into
account. The first one is to describe compositions. Such descriptions form the
basis for subscriptions. The second issue is how to collect (primitive) events and
subsequently match them to subscriptions. Pietzuch et al. (2003) have proposed a
general framework for event composition in distributed systems. We take this
framework as the basis for our discussion.

13.5.1 Describing Composite Events

Let us first consider some examples of composite events to give a better idea
of the complexity that we may need to deal with. Fig. 13-9 shows examples of
increasingly complex composite events. In this example, R4.20 could be an air-
conditioned and secured computer room.

The first two subscriptions are relatively easy. S 1 is an example that can be
handled by a primitive discrete event, whereas S2 is a simple composition of two
discrete events. Subscription S3 is more complex as it requires that the system can
also report time-related events. Matters are further complicated if subscriptions

SEC. 13.5 NAMING 605

Figure 13-9. Examples of events in a distributed system.

involve aggregated values required for computing gradients (S4) or averages (S5)'
Note that in the case of S5 we are requiring a continuous monitoring of the system
in order to send notifications on time.

The basic idea behind an event-composition language for distributed systems
is to enable the formulation of subscriptions in terms of primitive events. In their
framework, Pietzuch et al. provide a relatively simple language for an extended
type of finite-state machine (FSM). The extensions allow for the specification of
sojourn times in states, as well as the generation of new (composite) events. The
precise details of their language are not important for our discussion here. What is
important is that subscriptions can be translated into FSMs.

Figure 13-10. The finite state machine for subscription S3 from Fig. 13-9.

To give an example, Fig. 13-10 shows the FSM for subscription S 3 from
Fig. 13-9. The special case is given by the timed state, indicated by the label
"t = 1Os" which specifies that a transition to the final state is made if the door is
not locked within 10 seconds.

Much more complex subscriptions can be described. An important aspect is
that these FSMs can often be decomposed into smaller FSMs that communicate
by passing events to each other. Note that such an event communication would
normally trigger a state transition at the FSM for which that event is intended. For
example, assume that we want to automatically tum off the lights in room R4.20

606 DISTRIBUTED COORDINA nON-BASED SYSTEMS CHAP. 13

after 2 seconds when we are certain that nobody is there anymore (and the door is
locked). In that case, we can reuse the FSM from Fig. 13-10 if we let it generate
an event for a second FSM that will trigger the lighting, as shown in Fig. 13-11

Figure 13-11. Two coupled FSMs.

The important observation here is that these two FSMs can be implemented as
separate processes in the distributed system. In this case, the FSM for controlling
the lighting will subscribe to the composed event that is triggered when R4.20 is
unoccupied and the door is locked. This leads to distributed detectors which we
discuss next.

13.5.2 Matching Events and Subscriptions

Now consider a publish/subscribe system supporting composite events. Every
subscription is provided in the form of an expression that can be translated into a
finite state machine (FSM). State transitions are essentially triggered by primitive
events that take place, such as leaving a room or locking a door.

To match events and subscriptions, we can follow a simple, naive implemen-
tation in which every subscriber runs a process implementing the finite state ma-
chine associated with its subscription. In that case, all the primitive events that are
relevant for a specific subscription will have to be forwarded to the subscriber.
Obviously, this will generally not be very efficient.

A much better approach is to consider the complete collection of subscrip-
tions, and decompose subscriptions into communicating finite state machines,
such that some of these FSMs are shared between different subscriptions. An ex-
ample of this sharing was shown in Fig. 13-11. This approach toward handling
subscriptions leads to what are known as distributed event detectors. Note that
a distribution of event detectors is similar in nature to the distributed resolution of

SEC. 13.5 NAMING 607

names in various naming systems. Primitive events lead to state transitions in rela-
tively simple finite state machines, in turn triggering the generation of composite
events. The latter can then lead to state transitions in other FSMs, again possibly
leading to further event generation. Of course, events translate to messages that
are sent over the network to processes that subscribed to them.

Besides optimizing through sharing, breaking down subscriptions into com-
municating FSMs also has the potential advantage of optimizing network usage.
Consider again the events related to monitoring the computer room we described
_above. Assuming that there only processes interested in the composite events, it
makes sense to compose these events close to the computer room. Such a place-
ment will prevent having to send the primitive events across the network. More-
over, when considering Fig. 13-9, we see that we may only need to send the alarm
when noticing that the room is unoccupied for 10 seconds while the door is
unlocked. Such an event will generally occur rarely in comparison to, for ex-
ample, (un)locking the door.

Decomposing subscriptions into distributed event detectors, and subsequently
optimally placing them across a distributed system is still subject to much re-
search. For example, the last word on subscription languages has not been said,
and especially the trade-off between expressiveness and efficiency of implemen-
tations will attract a lot of attention. In most cases, the more expressive a language
is, the more unlikely there will be an efficient distributed implementation.
Current proposals such as by Demers et al. (2006) and by Liu and Jacobsen (2004)
confirm this. It will take some years before we see these techniques being applied
to commercial publish/subscribe systems.

13.6 SYNCHRONIZATION

Synchronization in coordination-based systems is generally restricted to sys-
tems supporting generative communication. Matters are relatively straightforward
when only a single server is used. In that case, processes can be simply blocked
until tuples become available, but it is also simpler to remove them. Matters
become complicated when the shared dataspace is replicated and distributed a-
cross multiple servers, as we describe next.

13.7 CONSISTENCY AND REPLICATION

Replication plays a key role in the scalability of coordination-based systems,
and notably those for generative communication. In the following, we first consid-
er some standard approaches as have been explored in a number of systems such
as JavaSpaces. Next, we describe some recent results that allow for the dynamic
and automatic placement of tuples depending on their access patterns.

608 DISTRIBUTED COORDINATION-BASED SYSTEMS CHAP. 13

13.7.1 Static Approaches

The distributed implementation of a system supporting generative communi-
cation frequently requires special attention. We concentrate on possible distrib-
uted implementations of a JavaSpace server, that is, an implementation by which
the collection of tuple instances may be distributed and replicated across. several
machines. An overview of implementation techniques for tuple-based runtime
systems is given by Rowstron (2001).

General Considerations

An efficient distributed implementation of a JavaSpace has to solve two prob-
lems:

1. How to simulate associative addressing without massive searching.

2. How to distribute tuple instances among machines and locate them
later.

The key to both problems is to observe that each tuple is a typed data structure.
Splitting the tuple space into subspaces, each of whose tuples is of the same type
simplifies programming and makes certain optimizations possible. For example,
because tuples are typed, it becomes possible to determine at compile time which
subspace a call to a write, read, or take operates on. This partitioning means that
only a fraction of the set of tuple instances has to be searched.

In addition, each subspace can be organized as a hash table using (part of) its
i-th tuple field as the hash key. Recall that every field in a tuple instance is a
marshaled reference to an object. JavaSpaces does not prescribe how marshaling
should be done. Therefore, an implementation may decide to marshal a reference
in such a way that the first few bytes are used as an identifier of the type of the
object that is being marshaled. A call to a write, read, or take operation can then
be executed by computing the hash function of the ith field to find the position in
the table where the tuple instance belongs. Knowing the subspace and table posi-
tion eliminates all searching. Of course, if the ith field of a read or take operation
is NULL, hashing is not possible, so a complete search of the subspace is gener-
ally needed. By carefully choosing the field to hash on, however, searching can
often be avoided.

Additional optimizations are also used. For example, the hashing scheme
described above distributes the tuples of a given subspace into bins to restrict
searching to a single bin. It is possible to place different bins on different ma-
chines, both to spread the load more widely and to take advantage of locality. If
the hashing function is the type identifier modulo the number of machines, the
number of bins scales linearly with the system size [see also Bjornson (1993)].

SEC. 13.7 CONSISTENCY AND REPLICATION 609

On a network of computers, the best choice depends on the communication
architecture. If reliable broadcasting is available, a serious candidate is to repli-
cate all the subspaces in full on all machines, as shown in Fig. 13-12. When a
write is done, the new tuple instance is broadcast and entered into the appropriate
subspace on each machine. To do a read or take operation, the local subspace is
searched. However, since successful completion of a take requires removing the
tuple instance from the JavaSpace, a delete protocol is required to remove it from
all machines. To prevent race conditions and deadlocks, a two-phase commit pro-
tocol can be used.

Figure 13-12. A JavaSpace can be replicated on all machines. The dotted lines
show the partitioning of the JavaSpace into subspaces. (a) Tuples are broadcast
on write. (b) reads are local, but the removing an instance when calling take
must be broadcast.

This design is straightforward, but may not scale well as the system grows in
the number of tuple instances and the size of the network. For example, imple-
menting this scheme across a wide-area network is prohibitively expensive.

The inverse design is to do writes locally, storing the tuple instance only on
the machine that generated it, as shown in Fig. 13-13. To do a read or take, a
process must broadcast the template tuple. Each recipient then checks to see if it
has a match, sending back a reply if it does.

If the tuple instance is not present, or if the broadcast is not received at the
machine holding the tuple, the requesting machine retransmits the broadcast re-
quest ad infinitum, increasing the interval between broadcasts until a suitable
tuple instance materializes and the request can be satisfied. If two or more tuple

610 DISTRIBUTED COORDINATION-BASED SYSTEMS CHAP. 13

Figure 13-13. Nonreplicated JavaSpace. (a) A write is done locally. (b) A read
or take requires the template tuple to be broadcast in order to find a tuple in-
stance.

instances are sent, they are treated like local writes and the instances are effec-
tively moved from the machines that had them to the one doing the request. In
fact, the runtime system can even move tuples around on its own to balance the
load. Carriero and Gelemter (1986) used this method for implementing the Linda
tuple space on a LAN.

These two methods can be combined to produce a system with partial replica-
tion. As a simple example, imagine that all the machines logically form a rec-
tangular grid, as shown in Fig. 13-14. When a process on a machine A wants to
do a write, it broadcasts (or sends by point-to-point message) the tuple to all ma-
chines in its row of the grid. When a process on a machine B wants to read or take
a tuple instance, it broadcasts the template tuple to all machines in its column.
Due to the geometry, there will always be exactly one machine that sees both the
tuple instance and the template tuple (C in this example), and that machine makes
the match and sends the tuple instance to the process requesting for it. This ap-
proach is similar to using quorum-based replication as we discussed in Chap. 7.

The implementations we have discussed so far have serious scalability prob-
lems caused by the fact that multicasting is needed either to insert a tuple into a
tuple space, or to remove one. Wide-area implementations of tuple spaces do not
exist. At best, several different tuple spaces can coexist in a single system, where
each tuple space itself is implemented on a single server or on a local-area net-
work. This approach is used, for example, in PageSpaces (Ciancarini et al., 1998)

SEC. 13.7 CONSISTENCY AND REPLICATION 611

Figure 13-14. Partial broadcasting of tuples and template tuples.

and WCL (Rowstron and Wray, 1998). In WCL, each tuple-space server is
responsible for an entire tuple space. In other words, a process will always be
directed to exactly one server. However, it is possible to migrate a tuple space to a
different server to enhance performance. How to develop an efficient wide-area
implementation of tuple spaces is still an open question.

13.7.2 Dynamic Replication

Replication in coordination-based systems has generally been restricted to
static policies for parallel applications like those discussed above. In commercial
applications, we also see relatively simple schemes in which entire dataspaces or
otherwise statically predefined parts of a data set are subject to a single policy
(GigaSpaces, 2005). Inspired by the fine-grained replication of Web documents
in Globule, performance improvements can also be achieved when differentiating
replication between the different kinds of data stored in a dataspace. This dif-
ferentiation is supported by GSpace, which we briefly discuss in this section.

GSpace Overview

GSpace is a distributed coordination-based system that is built on top of Java-
Spaces (Russello et al., 2004, 2006). Distribution and replication of tuples in
GSpace is done for two different reasons: improving performance and availability.
A key element in this approach is the separation of concerns: tuples that need to

612 DISTRIBUTED COORDINATION-BASED SYSTEMS CHAP. 13

be replicated for availability may need to follow a different strategy than those for
which performance is at stake. For this reason, the architecture of GSpace has
been set up to support a variety of replication policies, and such that different
tuples may foUowdifferent policies.

Figure 13-15. Internal organization of a GSpace kernel.

The principal working is relatively simple. Every application is offered an in-
terface with a read, write, and take interface, similar to what is offered by Java-
Spaces. However, every call is picked up by a local invocation handler which
looks up the policy that should be followed for the specific call. A policy is sel-
ected based on the type and content of the tuple/template that is passed as part of
the call. Every policy is identified by a template, similar to the way that templates
are used to select tuples in other Java-based shared dataspaces as we discussed
previously.

The result of this selection is a reference to a distribution manager, which im-
plements the same interface, but now does it according to a specific replication
policy. For example, if a master/slave policy has been implemented, a read opera-
tion may be implemented by immediately reading a tuple from the locally avail-
able dataspace. Likewise, a write operation may require that the distribution man-
ager forwards the update to the master node and awaits an acknowledgment be-
fore performing the operation locally.

Finally, every GSpace kernel has a local dataspace, called a slice, which is
implemented as a full-fledged, nondistributed version of Jave.Spaces.

In this architecture (of which some components are not shown for clarity),
policy descriptors can be added at runtime, and likewise. distribution managers
can be changed as well. This setup allows for a fine-grained tuning of the distribu-
tion and replication of tuples, and as is shown in Russello et al. (2004), such fine-
tuning allows for much higher performance than is achievable with any fixed, glo-
bal strategy that is applied to all tuples in a dataspace.

SEC. 13.7 CONSISTENCY AND REPLICA nON 613

Adaptive Replication

However, the most important aspect with systems such as GSpace is that rep-
lication management is automated. In other words, rather than letting the applica-
tion developer figure out which combination of policies is the best, it is better to
let the system monitor access patterns and behavior and subsequently adopt poli-
cies as necessary.

To this end, GSpace follows the same approach as in Globule: it continuously
measures consumed network bandwidth. latency, and memory usage and depend-
ing on which of these metrics is considered most important, places tuples on dif-
ferent nodes and chooses the most appropriate way to keep replicas consistent.
The evaluation of which policy is the best for a given tuple is done by means of a
central coordinator which simply collects traces from the nodes that constitute the
GSpace system.

An interesting aspect is that from time to time we may need to switch from
one replication policy to another. There are several ways in which such a transi-
tion can take place. As GSpace aims to separate mechanisms from policies as best
as possible, it can also handle different transition policies. The default case is to
temporarily freeze all operations for a specific type of tuple, remove all replicas
and reinsert the tuple into the shared dataspace but now following the newly
selected replication policy. However, depending on the new replication policy, a
different way of making the transition may be possible (and cheaper). For ex-
ample, when switching from no replication to master/slave replication, one ap-
proach could be to lazily copy tuples to the slaves when they are first accessed.

13.8 FAULT TOLERANCE

When considering that fault tolerance is fundamental to any distributed sys-
tem, it is somewhat surprising how relatively little attention has been paid to fault
tolerance in coordination-based systems, including basic publish/subscribe sys-
tems as well as those supporting generative communication. In most cases, atten-
tion focuses on ensuring efficient reliability of data delivery, which essentially
boils down to guaranteeing reliable communication. When the middleware is also
expected to store data items, as is the case with generative communication, some
effort is paid to reliable storage. Let us take a closer look at these two cases.

13.8.1 Reliable Publish-Subscribe Communication

In coordination-based systems where published data items are matched only
against live subscribers, reliable communication plays a crucial role. In this case,
fault tolerance is most often implemented through the implementation of reliable
multicast systems that underly the actual publish/subscribe software. There are

614 DISTRIBUTED COORDINATION-BASED SYSTEMS CHAP.]3

several issues that are generally taken care of. First, independent of the way that
content-based routing takes place. a reliable multicast channel is set up. Second,
process fault tolerance needs to be handled. Let us take a look how these matters
are addressed in TIBlRendezvous.

Example: Fault Tolerance in TIBlRendezvous

TIB/Rendezvous assumes that the communication facilities of the underlying
network are inherently unreliable. To compensate for this unreliability. whenever
a rendezvous daemon publishes a message to other daemons, it will keep that
message for at least 60 seconds. When publishing a message, a daemon attaches a
(subject independent) sequence number to that message. A receiving daemon can
detect it is missing a message by looking at sequence numbers (recall that mes-
sages are delivered to all daemons). When a message has been missed, the pub-
lishing daemon is requested to retransmit the message.

This form of reliable communication cannot prevent that messages may still
be lost. For example, if a receiving daemon requests a retransmission of a mes-
sage that has been published more than 60 seconds ago, the publishing daemon
will generally not be able to help recover this lost message. Under normal cir-
cumstances, the publishing and subscribing applications will be notified that a
communication error has occurred. Error handling is then left to the applications
to deal with.

Much of the reliability of communication in TIBlRendezvous is based on the
reliability offered by the underlying network. TIBlRendezvous also provides reli-
able multicasting using (unreliable) IP multicasting as its underlying communica-
tion means. The scheme followed in TIB/Rendezvous is a transport-level multi-
cast protocol known as Pragmatic General Multicast (PGM), which is
described in Speakman et a1.(2001). We will discuss PGM briefly.

PGM does not provide hard guarantees that when a message is multicast it
will eventually be delivered to each receiver. Fig. 13-16(a) shows a situation in
which a message has been multicast along a tree, but it has not been delivered to
two receivers. PG11 relies on receivers detecting that they have missed messages
for which they will send a retransmission request (i.e., a NAK) to the sender. This
request is sent along the reverse path in the multicast tree rooted at the sender. as
shown in Fig. 13-16(b). Whenever a retransmission request reaches an intermedi-
ate node, that node may possibly have cached the requested message, at which
point it will handle the retransmission. Otherwise, the node simply forwards the
NAK to the next node toward the sender. The sender is ultimately responsible for
retransmitting a message.

PGM takes several measures to provide a scalable solution to reliable multi-
casting. First, if an intermediate node receives several retransmission requests for
exactly the same message, only one retransmission request is forwarded toward

615

Figure 13-16. The principle of PGM. (a) A message is sent along a multicast
tree. (b) A router will pass only a single NAK for each message. (c) A message
is retransmitted only to receivers that have asked for it.

the sender. In this way, an attempt is made to ensure that only a single NAK
reaches the sender, so that a feedback implosion is avoided. We already came a-
cross this problem in Chap. 8 when discussing scalability issues in reliable multi-
casting.

A second measure taken by PGM is to remember the path through which a
NAK traverses from receivers to the sender, as is shown in Fig. 13-16(c). When
the sender finally retransmits the requested message, PGM takes care that the
message is multicast only to those receivers that had requested retransmission.
Consequently, receivers to which the message had been successfully delivered are
not bothered by retransmissions for which they have no use.

Besides the basic reliability scheme and reliable multicasting through PGM,
TIB/Rendezvous provides further reliability by means of certified message
delivery. In this case, a process uses a special communication channel for send-
ing or receiving messages. The channel has an associated facility, called a ledger,
for keeping track of sent and received certified messages. A process that wants to
receive certified messages registers itself with the sender of such messages. In
effect, registration allows the channel to handle further reliability issues for which
the rendezvous daemons provide no support. Most of these issues are hidden from
applications and are handled by the channel's implementation.

When a ledger is implemented as a file, it becomes possible to provide reli-
able message delivery even in the presence of process failures. For example, when
a receiving process crashes, all messages it misses until it recovers again are
stored in a sender's ledger. Upon recovery, the receiver simply contacts the ledger
and requests the missed messages to be retransmitted.

To enable the masking of process failures, TIB/Rendezvous provides a simple
means to automatically activate or deactivate processes. In this context, an active

FAULT TOLERANCESEC. 13.8

616 DISTRIBUTED COORDINATION-BASED SYSTEMS CHAP. 13

process normally responds to all incoming messages, while an inactive one does
not. An inactive process is a running process that can handle only special events
as we explain shortly.

Processes can be organized into a group, with each process having a unique
rank associated with it. The rank of a process is determined by its (manually
assigned) weight, but no two processes in the same group may have the same
rank. For each group, TIB/Rendezvous will attempt to have a group-specific num-
ber of processes active, called the group's active goal. In many cases. the active
goal is set to one so that all communication with a group reduces to a primary-
based protocol as discussed in Chap. 7.

An active process regularly sends a message to all other members in the group
to announce that it is still up and running. Whenever such a heartbeat message is
missing, the middleware will automatically activate the highest-ranked process
that is currently inactive. Activation is accomplished by a callback to an action
operation that each group member is expected to implement. Likewise, when a
previously crashed process recovers again and becomes active, the lowest-ranked
currently active process will be automatically deactivated.

To keep consistent with the active processes, special measures need to be
taken by an inactive process before it can become active. A simple approach is to
let an inactive process subscribe to the same messages as any other group
member. An incoming message is processed as usual, but no reactions are ever
published. Note that this scheme is akin to active replication.

13.8.2 Fault Tolerance in Shared Dataspaces

When dealing with generative communication, matters become more compli-
cated. As also noted in Tolksdorf and Rowstron (2000), as soon as fault tolerance
needs to be incorporated in shared dataspaces, solutions can often become so inef-
ficient that only centralized implementations are feasible. In such cases, tradi-
tional solutions are applied, notably using a central server that is backed up in
using a simple primary-backup protocol, in combination with checkpointing.

An alternative is to deploy replication more aggressively by placing copies of
data items across the various machines. This approach has been adopted in
GSpace, essentially deploying the same mechanisms it uses for improving perfor-
mance through replication. To this end, each node computes its availability, which
is then used in computing the availability of a single (replicated) data item
(Russello et at. 2006).

To compute its availability, a node regularly writes a timestamp to persistent
storage, allowing it to compute the time when it is up, and the time when it was
down. More precisely. availability is computed in terms of the mean time to
failure (MTTF) and the mean time to repair (MTTR):

SEC. 13.8 FAULT TOLERANCE 617

Note that it is necessary to regularly log timestamps and that Tf:art can be
taken only as a best estimate of when a crash occurred. However, the thus com-
puted availability will be pessimistic, as the actual time that a node crashed for the
eh time will be slightly later than Tran. Also, instead of taking averages since the
beginning, it is also possible to take only the last N crashes into account.

Figure 13-17. The time line of a node experiencing failures.

In GSpace, each type of data item has an associated primary node that is
responsible for computing that type's availability. Given that a data item is repli-
cated across m nodes, its availability is computed by considering the availability
a, of each of the m nodes leading to:

To compute MITF and MITR, a node simply looks at the logged timestamps. as
shown in Fig. 13-17. This will allow it to compute the averages for the time be-
tween failures, leading to an availability of:

By simply taking the availability of a data item into account, as well as those of
all nodes, the primary can compute an optimal placement for a data item that will
satisfy the availability requirements for a data item. In addition, it can also take
other factors into account, such as bandwidth usage and CPU loads. Note that
placement may change over time if these factors fluctuate.

13.9 SECURITY

Security in coordination-based systems poses a difficult problem. On the one
hand we have stated that processes should be referentially decoupled, but on the
other hand we should also ensure the integrity and confidentiality of data. This se-
curity is normally implemented through secure (multicast) channels, which effec-
tively require that senders and receivers can authenticate each other. Such authen-
tication violates referential decoupling.

618 DISTRIBUTED COORDINATION-BASED SYSTEMS CHAP. 13

To solve this problem there are different approaches. One common approach
is to set up a network of brokers that handle the processing of data and subscrip-
tions. Client processes will then contact the brokers, who then take care of authen-
tication and authorization. Note that such an approach does require that the clients
trust the brokers. However, as we shall see later, by differentiating between types
of brokers, it is not necessary that a client has to trust all brokers comprising the
system.

By nature of data coordination, authorization naturally translates to confiden-
tiality issues. We wiIJ now take a closer look at these issues, following the discus-
sion as presented in Wang et al. (2002).

13.9.1 Confidentiality

One important difference between many distributed systems and coordi-
nation-based ones is that in order to provide efficiency, the middleware needs to
inspect the content of published data. Without being able to do so, the middleware
can essentially only flood data to all potential subscribers. This poses the problem
of information confidentiality which refers to the fact that it is sometimes im-
portant to disallow the middleware to inspect published data. This problem can be
circumvented through end-to-end encryption; the routing substrate only sees
source and destination addresses.

If published data items are structured in the sense that every item contains
multiple fields, it is possible to deploy partial secrecy. For example, data regard-
ing real estate may need to be shipped between agents of the same office with
branches at different locations, but without revealing the exact address of the pro-
perty. To allow for content-based routing, the address field could be encrypted,
while the description of the property could be published in the clear. To this end,
Khurana and Koleva (2006) propose to use a per-field encryption scheme as intro-
duced in Bertino and Ferrari (2002). In this case, the agents belonging to the
same branch would share the secret key for decrypting the address. field. Of
course, this "Violatesreferential decoupling, but we will discuss a potential solution
to this problem later.

More problematic is the case when none of the .fields may be disclosed to the
middleware in plaintext. The only solution that remains is that content-based rout-
ing takes place on the encrypted data. As routers get to see only encrypted data.
possibly on a per-field basis, subscriptions will need to be encoded in such a way
that partial matching can take place. Note that a partial match is the basis that a
router uses to decide which outgoing link a published data item should be for-
warded on.

This problem comes very close to querying and searching through encrypted
data, something clearly next to impossible to achieve. As it turns out, maintaining
a high degree of secrecy while still offering reasonable performance is known to

SEC. 13.9 SECURITY 619

be very difficult (Kantarcioglu and Clifton, 2005). One of the problems is that if
per-field encryption is used, it becomes much easier to find out what the data is all
about.

Having to work on encrypted data also brings up the issue of subscription
confidentiality, which refers to the fact that subscriptions may not be disclosed to
the middleware either. In the case of subject-based addressing schemes, one solu-
tion is to simply use per-field encryption and apply matching on a strict field-by-
field basis. Partial matching can be accommodated in the case of compound key-
words, which can be represented as encrypted sets of their constituents. A sub-
scriber would then send encrypted forms of such constituents and let the routers
check for set membership, as also suggested by Raiciu and Rosenblum (2005). As
it turns out, it is even possible to support range queries, provided an efficient
scheme can be devised for representing intervals. A potential solution is discussed
in Li et al. (2004a).

Finally, publication confidentiality is also an issue. In this case, we are
touching upon the more traditional access control mechanisms in which certain
processes should not even be allowed to see certain messages. In such cases, pub-
lishers may want to explicitly restrict the group of possible subscribers. In many
cases, this control can be exerted out-of-band at the level of the publishing and
subscribing applications. However, it may convenient that the middleware offers a
service to handle such access control.

Decoupling Publishers from Subscribers

If it is necessary to protect data and subscriptions from the middleware,
Khurana and Koleva (2006) propose to make use of a special accounting service
(AS), which essentially sits between clients (publishers and subscribers) and the
actual publish/subscribe middleware. The basic idea is to decouple publishers
from subscribers while still providing information confidentiality. In their scheme,
subscribers register their interest in specific data items, which are subsequently
routed as usual. The data items are assumed to contain fields that have been
encrypted. To allow for decryption, once a message should be delivered to a sub-
scriber, the router passes it to the accounting service where it is transformed into a
message that only the subscriber can decrypt. This scheme is shown in Fig. 13-18.

A publisher registers itself at any node of the publish/subscribe network, that
is, ata broker. The broker forwards the registration information to the accounting
service which then generates a public key to be used by the publisher, and which
is signed by the AS. Of course, the AS keeps the associated private key to itself.
When a subscriber registers, it provides an encryption key that is forwarded by the
broker. It is necessary to go through a separate authentication phase to ensure that
only legitimate subscribers register. For example, brokers should generally not be
allowed to subscribe for published data.

620 DISTRIBUTED COORDINATION-BASED SYSTEMS CHAP. 13

Figure 13-18. Decoupling publishers from subscribers using an additional trust-
ed service.

Ignoring many details, when a data item is published, its critical fields will
have been encrypted by the publisher. When the data item arrives at a broker who
wishes to pass it on to a subscriber. the former requests the AS to transform the
message by first decrypting it, and then encrypt it with the key provided by the
subscriber. In this way, the brokers will never get to know about content that
should be kept secret, while at the same time, publishers and subscribers need not
share key information.

Of course. it is crucial that accounting service itself can scale. Various meas-
ures can be taken. but one reasonable approach is to introduce realms in a similar
way that Kerberos does. In this case, messages in transmission may need to be
transformed by re-encrypting them using the public key of a foreign accounting
service. For details, we refer the interested reader to (Khurana and Koleva, 20(6).

13.9.2 Secure Shared Dataspaces

Very little work has been done when it comes to making shared dataspaces
secure. A common approach is to simply encrypt the fields of data items and let
matching take place only when decryption succeeds and content matches with a
subscription. This approach is described in Vitek et al. (2003). One of the major
problems with this approach is that keys may need to be shared between publish-
ers and subscribers, or that the decryption keys of the publishers should be known
to authorized subscribers.

Of course, if the shared dataspace is trusted (i.e., the processes implementing
the dataspace are allowed to see the content of tuples), matters become much sim-
pler. Considering that most implementations make use of only a single server,
extending that server with authentication and authorization mechanisms is often
the approach followed in practice.

SEC. 13.10 SUMMARY 621

13.10 SUMMARY

Coordination-based distributed systems play an important role in building dis-
tributed applications. Most of these systems focus on referential uncoupling of
processes, meaning that processes need not explicitly refer to each other to enable
communication. In addition, it is also possible to provide temporal decoupling by
which processes do not have to coexist in order to communicate.

An important group of coordination-based systems is formed by those systems
that follow the publish/subscribe paradigm as is done in TIBlRendezvous. In this
model, messages do not carry the address of their receiver(s), but instead are ad-
dressed by a subject. Processes that wish to receive messages should subscribe to
a specific subject; the middleware will take care that messages are routed from
publishers to subscribers.

More sophisticated are the systems in which subscribers can formulate predi-
cates over the attributes of published data items. In such cases, we are dealing
with content-based publish/subscribe systems. For efficiency, it is important that
routers can install filters such that published data is forwarded only across those
outgoing links for which it is known that there are subscribers.

Another group of coordination-based systems uses generative communication,
which takes place by means of a shared dataspace of tuples. A tuple is a typed
data structure similar to a record. To read a tuple from a tuple space, a process
specifies what it is looking for by providing a template tuple. A tuple that matches
thar'ternplate is then selected and returned to the requesting process. If no match
could be found, the process blocks.

Coordination-based systems are different from many other distributed systems
in that they concentrate fully on providing a convenient way for processes to com-
municate without knowing each other in advance. Also, communication may con-
tinue in an anonymous way. The main advantage of this approach is flexibility as
it becomes easier to extend or change a system while it continues to operate.

The principles of distributed systems as discussed in the first part of the book
apply equally well to coordination-based systems, although caching and replica-
tion play a less prominent role in current implementations. In addition, naming is
strongly related to attribute-based searching as supported by directory services.
Problematic is the support for security, as it essentially violates the decoupling be-
tween publishers and subscribers. Problems are further aggravated when the
middleware should be shielded from the content of published data, making it
much more difficult to provide efficient solutions.

PROBLEMS

1. What type of coordination model would you classify the message-queuing systems
discussed in Chap. 41

622 DISTRIBUTED COORDINA nON-BASED SYSTEMS CHAP. 13

2. Outline an implementation of a publish/subscribe system based on a message-queuing
system like that of IBM WebSphere.

3. Explain why decentralized coordination-based systems have inherent scalability prob-
lems.

4. To what is a subject name in TIBlRendezvous actually resolved, and how does name
resolution take place?

5. Outline a simple implementation for totally-ordered message delivery in a
TIB/Rendezvous system.

6. In content-based routing such as used in the Siena system, which we described in the
text, we may be confronted with a serious management problem. Which problem is
that?

7. Assume a process is replicated in a TIBlRendezvous system. Give two solutions to
avoid so that messages from this replicated process are not published more than once.

8. To what extent do we need totally-ordered multicasting when processes are replicated
in a TIBlRendezvous system?

9. Describe a simple scheme for PGM that will allow receivers to detect missing mes-
sages, even the last one in a series.

10. How could a coordination model based on generative communication be implemented
in TIBlRendezvous?

11. A lease period in Jini is always specified as a duration and not as an absolute time at
which the lease expires. Why is this done?

12. What are the most important scalability problems in Jini?

13. Consider a distributed implementation of a JavaSpace in which tuples are replicated a-
cross several machines. Give a protocol to delete a tuple such that race conditions are
avoided when two processes try to delete the same tuple.

14. Suppose that a transaction Tin Jini requires a lock on an object that is currently locked
by another transaction T'. Explain what happens.

15. Suppose that a Jini client caches the tuple it obtained from a JavaSpace so that it can
avoid having to go to the JavaSpace the next time. Does this caching make any sense?

16. Answer the previous question, but now for the case that a client caches the results re-
turned by a lookup service.

17. Outline a simple implementation of a fault-tolerant JavaSpace.

18. In some subject-based publish/subscribe systems, secure solutions are sought in end-
to-end encryption beteen publishers and subscribers. However, this approach may
violate the initial design goals of coordination-based systems. How?

14
READING LIST

AND BIBLIOGRAPHY

In the previous 13 chapters we have touched upon a variety of topics. This
chapter is intended as an aid to readers interested in pursuing their study of distri-
buted systems further. Section 13.1 is a list of suggested readings. Section 13.2 is
an alphabetical bibliography of all books and articles cited in this book.

14.1 SUGGESTIONS FOR FURTHER READING

14.1.1 Introduction and General Works

Coulouris et al., Distributed Systems-Concepts and Design
A good general text on distributed systems. Its coverage is similar to the

material found in this book, but is organized completely different. There is much
material on distributed transactions, along with some older material on distributed
shared memory systems.

Foster and Kesselman, The Grid 2: Blueprint for a New Computing Infrastructure
This is the second edition of a book in which many Grid experts highlight

various issues of large-scale Grid computing. The book covers all the important
topics, including many examples on current and future applications.

623

624 READING LIST AND BIBLIOGRAPHY CHAP. 14

Neuman, "Scale in Distributed Systems"
One of the few papers that provides a systematic overview on the issue of

scale in distributed systems. It takes a look at caching, replication, and distribution
as scaling techniques, and provides a number of rule-of-thumbs to applying these
techniques for designing large-scale systems.

Silberschatz et aI.,Applied Operating System Concepts
A general textbook on operating systems including material on distributed

systems with an emphasis on file systems and distributed coordination.

Verissimo and Rodrigues, Distributed Systems for Systems Architects
An advanced reading on distributed systems, basically covering the same

material as in this book. Relatively more emphasis is put on fault tolerance and
real-time distributed systems. Attention is also paid to management of distributed
systems.

Zhao and Guibas, Wireless Sensor Networks
Many books on (wireless) sensor networks describe these systems from a net-

working approach. This book takes a more systems perspective, which makes it an
attractive read for those interested in distributed systems. The book gives a good
coverage of wireless sensor networks.

14.1.2 Architecture

Babaoglu et al., Self-star Properties in Complex Information Systems
Much has been said about self-* systems, but not always with the degree of

substance that would be preferred. This book contains a collection of papers from
authors with a variety of backgrounds that consider how self-* aspects, find their
way into modem computer systems.

Bass et aI., Software Architecture in Practice
This widely used book gives an excellent practical introduction and overview

on software architecture. Although the focus is not specifically toward distributed
systems, it provides an excellent basis for understanding the various ways that
complex software systems can be organized.

Hellerstein et aI., Feedback Control of Computing Systems
For those readers with some mathematical background, this book provides a

thorough treatment on how feedback control loops can be applied to (distributed)
computer systems. As such, it forms an alternative basis for much of the research
on self-* and autonomic computing systems.

SEC. 14.1 SUGGESTIONS FOR FURTHER READING 625

Lua et al., "A Survey and Comparison of Peer-to-Peer Overlay Network
Schemes"

An excellent survey of modem peer-to-peer systems, covering structured as
well as unstructured networks. This paper forms a good introduction for those
wanting to get deeper into the subject but do not really know where to start.

Oram, Peer-to-Peer: Harnessing the Power of Disruptive Technologies
This book bundles a number of papers on the first generation of peer-to-peer

networks. It covers various projects as well as important issues such as security,
trust, and accountability. Despite the fact that peer-to-peer technology has made a
lot of progress, this book is still valuable for understanding many. of the basic
issues that needed to be addressed.

White et aI., "An Architectural Approach to Autonomic Computing"
Written by the technical people behind the idea of autonomic computing, this

short paper gives a high-level overview of the requirements that need to be met
for self-* systems.

14.1.3 Processes

Andrews, Foundations of Multithreaded, Parallel, and Distributed Programming
If you ever need a thorough introduction to programming parallel and distri-

buted systems, this is the book to look for.

Lewis and Berg, Multithreaded Programming with Pthreads
Pthreads form the PoSIX standard for implementing threads for operating

systems and are widely supported by UNIX -based systems. Although the authors
concentrate on Pthreads, this book provides a good introduction to thread pro-
gramming in general. As such, it forms a solid basis for developing multithreaded
clients and servers.

Schmidt et aI., Pattern-Oriented Software Architecture-Patterns for Concurrent
and Networked Objects

Researchers have also looked at common design patterns in distributed sys-
tems. These patterns can ease the development of distributed systems as they
allow programmers to concentrate more on system-specific issues. In this book,
design patterns are discussed for service access, event handling, synchronization,
and concurrency.

Smith and Nair, Virtual Machines: Versatile Platforms for Systems and Processes
These authors have also published a brief overview of virtualization in the

May 2005 issue of Computer, but this book goes into many of the (often intricate)

626 READING LIST AND BffiLIOGRAPHY CHAP. 14

details of virtual machines. As we have mentioned in the text, virtual machines
are becoming increasingly important for distributed systems. This book forms an
excellent introduction into the subject.

Stevens and Rago, Advanced Programming in the UNIX Environment
If there is ever a need to purchase a single volume on programming on UNIX

systems, this is the book to consider. Like other books written by the late Richard
Stevens, this volume contains a wealth of detailed information on how to develop
servers and other types of programs. This second edition has been extended by
Rago, who is also well known for books on similar topics.

14.1.4 Communication

Birrell and Nelson, "Implementing Remote Procedure Calls"
A classical paper on the design and implementation of one of the first remote

procedure call systems.

Hohpe and Woolf, Enterprise Integration Patterns
Like other material on design patterns this book provides high-level over-

views on how to construct messaging solutions. The book forms an excellent read
for those wanting to design message-oriented solutions, and covers a wealth of
patterns that can be followed during the design phase.

Peterson and Davie, Computer Networks, A Systems Approach
An alternative textbook to computer networks which takes a somewhat simi-

lar approach as this book by considering a number of principles and how they
apply to networking.

Steinmetz and Nahrstedt, Multimedia Systems
A good textbook (although poorly copyedited) covering many aspects of (dis-

tributed) systems for multimedia processing, together forming a fine introduction
into the subject.

14.1.5 Naming

Albitz and Liu, DNS and BIND
BIND is a publicly available and widely-used implementation of a DNS

server. In this book, all the details are discussed on setting up a DNS domain
using BIND. As such, it provides a lot of practical information on the largest dis-
tributed naming service in use today.

SEC. 14.1 SUGGESTIONS FOR FURTHER READING 627
Balakrishnan et aI., "Looking up Data in P2P Systems"

An easy-to-read and good introduction into lookup mechanisms in peer-to-
peer systems. Only a few details are provided on the actual working of these
mechanisms, but forming a good starting-point for further reading.

Balakrishnan et aI., "A Layered Naming Architecture for the Internet"
In this paper, the authors argue to combine structured naming with flat nam-

ing, thereby distinguishing three different levels: (1) human-friendly names which
are to be mapped to service identifiers, (2) the service identifiers which are to be
mapped to end point identifiers that uniquely identify a host, and (3) the end
points that are to be mapped to network addresses. Of course, for those parts that
only identifiers are used, one can conveniently use a DHT-based system.

Loshin, Big Book of Lightweight Directory Access Protocol (LDAP) RFCs
LDAP-based systems are widely used in distributed systems. The ultimate

source for LDAP services are the RFCs as published by the JETF. Loshin has col-
lected all the relevant ones in a single volume, making it the comprehensive
source for designing and implementing LDAP services.

Needham, "Names"
An easy-to-read and excellent article on the role of names in distributed sys-

tems. Emphasis is on naming systems as discussed in Section 5.3, using DEC's
GNS as an example.

Pitoura and Samaras, "Locating Objects in Mobile Computing"
This article can be used as a comprehensive introduction to location services.

The authors discuss various kinds of location services, including those used in
telecommunications systems. The article has an extensive list of references that
can be used as starting point for further reading.

Saltzer, "Naming and Binding Objects"
Although written in 1978 and focused on nondistributed systems, this paper

should be the starting point for any research on naming. The author provides an
excellent treatment on the relation between names and objects, and, in particular,
what it takes to resolve a name to a referenced object. Separate attention is paid to
the concept of closure mechanisms.

14.1.6 Synchronization
Guerraoui and Rodrigues, Introduction to Reliable Distributed Programming

A somewhat misleading title for a book that largely concentrates on distri-
buted algorithms that achieve reliability. The book has accompanying software
that allows many of the theoretical descriptions to be tested in practice.

628 READING LIST AND BIBLIOGRAPHY CHAP.]4

Lynch, Distributed Algorithms
Using a single framework, the book describes many different kinds of distri-

buted algorithms. Three different timing models are considered: simple synchro-
nous models, asynchronous models without any timing assumptions, and partially
synchronous models, which come close to real systems. Once you get used to the
theoretical notation, you will find this book containing many useful algorithms.

Raynal and Singhal, "Logical Time: Capturing Causality in Distributed Systems"
This paper describes in relatively simple terms three types of logical clocks:

scalar time (i.e., Lamport timestamps), vector time, and matrix time. In addition,
the paper describes various implementations that have been used in a number of
practical and experimental distributed systems.

Tel, Introduction to Distributed Algorithms
An alternative introductory textbook for distributed algorithms, which concen-

trates solely on solutions for message-passing systems. Although quite theoretical,
in many cases the reader can quite easily construct solutions for real systems.

14.1.7 Consistency and Replication

Adve and Gharachorloo, "Shared Memory Consistency Models: A Tutorial"
Until recently, there have been many groups developing distributed systems in

which the physically dispersed memories where joined together into a single vir-
tual address space, leading to what are known as distributed shared memory sys-
tems. Various memory consistency models have been designed for these systems
and form the basis for the models discussed in Chap. 7. This paper provides an
excellent introduction into these memory consistency models.

Gray et aI., "The Dangers of Replication and a Solution"
The paper discusses the trade-off between replication implementing sequen-

tial consistency models (called eager replication) and lazy replication. Both forms
of replication are formulated for transactions. The problem with eager replication
is its poor scalability, whereas lazy replication may easily lead to difficult or
impossible conflict resolutions. The authors propose a hybrid scheme.

Saito and Shapiro, "Optimistic Replication"
The presents presents a taxonomy of optimistic replication algorithms as used

for weak consistency models. It describes an alternative way of looking at replica-
tion and its associated consistency protocols. An interesting issue is the discussion
on scalability of various solutions. The paper also includes a large number of use-
ful references.

SEC. 14.1 SUGGESTIONS FOR FURTHER READING 629

Sivasubramanian et aI., "Replication for Web Hosting Systems"
In this paper, the authors discuss the many aspects that need to be addressed

to handle replication for Web hosting systems, including replica placement, con-
sistency protocols, and routing requests to the best replica. The paper also
includes an extensive list of relevant material.

Wiesmann et aI., "Understanding Replication in Databases and Distributed Sys-
tems"

Traditionally, there has been a difference between dealing with replication in
distributed databases and in general-purpose distributed systems. In databases, the
main reason for replication used to be to improve performance. In general-purpose
distributed, replication has often been done for improving fault tolerance. The
papers presents a framework that allows solutions from these two areas to be more
easily compared.

14.1.8 Fault Tolerance

Marcus and Stern, Blueprints for High Availability
There are many issues to be considered when developing (distributed) systems

for high availability. The authors of this book take a pragmatic approach and
touch upon many of the technical and nontechnical issues.

Birman, Reliable Distributed Systems
Written by an authority in the field, this book contains a wealth of information

on the pitfalls of developing highly dependable distributed systems. The author
provides many examples from academia and industry to illustrate what can go
wrong and what can be done about it. The covers a wide variety of topics, includ-
ing client/server computing, Web services, object-based systems (CORBA), and
also peer-to-peer systems.

Cristian and Fetzer, The Timed Asynchronous Distributed System Model"
The paper discusses a more realistic model for distributed systems other than

the pure synchronous or asynchronous cases. Two important assumptions are that
services are complete within a specific time interval, and that communication is
unreliable and subject to performance failures. The paper demonstrates the appli-
cability of this model for capturing important properties of real distributed sys-
tems.

Guerraoui and Schiper, "Software-Based Replication for Fault Tolerance"
A brief and clear overview on how replication in distributed systems can be

applied for improving fault tolerance. Discusses primary-backup replication as
well as active replication, and relates replication to group communication.

630 READING LIST AND BIBLIOGRAPHY CHAP. 14

Jalote, Fault Tolerance in Distributed Systems
One of the few textbooks entirely directed toward fault tolerance in distri-

buted systems. The book covers reliable broadcasting, recovery, replication, and
process resilience. There is a separate chapter on software design faults.

14.1.9 Security

Anderson, Security Engineering: A Guide to Building Dependable Distributed
Systems

One of the very few books that successfully aims at covering the whole secu-
rity area. The book discusses the basics such as passwords, access control, and
cryptography. Security is tightly coupled to application domains, and security in
several domains is discussed: the military, banking, medical systems, among oth-
ers. Finally, social, organizational, and political aspects are discussed as well. A
great starting point for further reading and research.

Bishop, Computer Security: Art and Science
Although this book is not specifically written for distributed systems, it con-

tains a wealth of information of general issues for computer security, including
many of the topics discussed in Chap. 9. Furthermore, there is material on security
policies, assurance. evaluation, and many implementation issues.

Blaze et al, "The Role of Trust Management in Distributed Systems Security"
The paper argues that large-scale distributed systems should be able to grant

access to a resource using a simpler approach than current ones. In particular, if
the set of credentials accompanying a request is known to comply with a local
security policy, the request should be granted. In other words, authorization
should take place without separating authentication and access control. The paper
explains this model and shows how it can be implemented.

Kaufman et al., Network Security
This authoritative and frequently witty book is the first place to look for an

introduction to network security. Secret and public key algorithms and protocols,
message hashes, authentication, Kerberos, and e-mail are all explained at length.
The best parts are the interauthor (and even intra-author) discussions, labeled by
subscripts, as in: "12 could not get mel to be very specific ... "

Menezes at al., Handbook of Applied Cryptography
The title says it all. The book provides the necessary mathematical back-

ground to understand the many different cryptographic solutions for encryption,
hashing, and so on. Separate chapters are devoted to authentication, digital signa-
tures, key establishment, and key management.

SEC. 14.1 SUGGESTIONS FOR FURTHER READING 631

Rafaeli and Hutchison, A Survey of Key Management for Secure Group Communi-
cation

The title says it all. The authors discuss various schemes that can be used in
those systems where process groups need to communicate and interact in a secure
way. The paper concentrates on the means to manage and distribute keys.

Schneier, Secrets and Lies
By the same author as Applied Cryptography, this book focuses on explaining

security issues for nontechnical people. An important observation is that security
is not just a technological issue. In fact, what can be learned from reading this
book is that perhaps most of the security-related risks have to do with humans and
the way we organize things. As such, it supplements much of the material we
presented in Chap. 8.

14.1.10 Distributed Object-Based Systems

Emmerich, Engineering Distributed Objects
An excellent book devoted entirely to remote-object technology, paying

specific attention to CORBA, DCOM, and Java RMI. As such, it provides a good
basis for comparing these three popular object models. In addition, material is
presented on designing systems using remote objects, handling different forms of
communication, locating objects, persistence, transactions, and security.

Fleury and Reverbel, "The JBoss Extensible Server"
Many Web applications are based on the JBoss J2EE object server. In this

paper, the original developers of that server outline the underlying principles and
general design.

Henning, "The Rise and Fall of CORBA"
Written by an expert on CORBA development (but who has come to other

insights), this article contains strong arguments against the use of CORBA. Most
salient is the fact that Henning believes that CORBA is simply too complex and
that it does not make the lives of developers of distributed systems any easier.

Henning and Vinoski, Advanced CORBA Programming with C++
If you need material on programming CORBA, and in the meantime learning

a lot on what CORBA means in practice, this book will be your choice. Written
by two people involved in specifying and developing CORBA systems, the book
is full of practical and technical details without being limited to to a specific
CORBA implementation.

632 READING LIST AND BIBLIOGRAPHY CHAP. 14

14.1.11 Distributed File Systems

Blanco et aI., "A Survey of Data Management in Peer-to-Peer Systems"
An extensive survey, covering many important peer-to-peer systems. The

authors describe data management issues including data integration, query pro-
cessing, and data consistency. Pate, UNIX Filesystems: Evolution, Design, and
Implementation '

This book describes many of the filesystems that have been developed for
UNIX systems, but also contains a separate chapter on distributed file systems. It
gives an overview of the various NFS versions, as well as filesystems for server
clusters.

Satyanarayanan, "The Evolution of Coda"
Coda is an important distributed files system for supporting mobile users. In

particular, it has advanced features for supporting what are known as discon-
nected operations, by which a user can continue to work on his own set of files
without having contact with the main servers. This article describes how the sys-
tem has evolved over the years as new requirements surfaced.

Zhu et aI., "Hibernator: Helping Disk Arrays Sleep through the Winter"
Data centers use an incredible number of disks to get their work done. Obvi-

ously, this requires a vast amount of energy. This paper describes various tech-
niqueshow energy consumption can be brought down by, for example, distin-
guishing hot data from data that is not accessed so often.

14.1.12 Distributed Web-Based Systems

Alonso et al., Web Services: Concepts, Architectures and Applications
The popularity and intricacy of Web services has led to an endless stream of

documents, too many that can be characterized only as garbage. In contrast, this is
one of those very few books that gives a crystal-clear description of what Web
services are all about. Highly recommended as an introduction to the novice, an
overview for those who have read too much of the garbage, and an example for
those producing the garbage.

Chappell, Understanding .NET
The approach that Microsoft has taken to support the development of Web

services, is to combine many of their existing techniques into a single framework,
along with adding a number of new features. The result is called .NET. This
approach has caused much confusion on what this framework actually is. David
Chappell does a good job of explaining matters.

SEC. 14.1 SUGGESTIONS FOR FURTHER READING 633

Fielding, "Principled Design of the Modem Web Architecture"
From the chief designer of the Apache Web server, this paper discusses a gen-

eral approach on how to organize Web applications such that they can make best
use of the current set of protocols.

Podling and Boszormenyi, "A Survey of Web Cache Replacement Strategies"
We have barely touched upon the work that needs to be done when Web

caches become full. This paper gives an excellent overview on the choices that
can be made to evict content from caches when they fill up.

Rabinovich and Spatscheck, Web Caching and Replication
An excellent book that provides an overview as well as many details on con- .

tent distribution in the Web.

Sebesta, Programming the World Wide Web
We have barely touched upon the actual development of Web applications,

which generally involves using a myriad of tools and techniques. This book pro-
vides a comprehensive overview and forms a good starting point for developing
Web sites.

14.1.13 Distributed Coordination-Based Systems

Cabri et aI., "Uncoupling Coordination: Tuple-based Models for Mobility"
The authors give a good overview of Linda-like systems that can operate in

mobile, distributed environments. This paper also shows that there is still a lot of
research being conducted in a field that was initiated more than 15years ago.

Pietzuch and Bacon, "Hermes: A Distrib. Event-Based Middleware Architecture"
Hermes is a distributed publish/subscribe system developed at Cambridge

University, UK. It has been used as the basis for many experiments in large-scale
event-based systems, including security. This paper describes the basic organiza-
tion of Hermes.

Wells et aI., "Linda Implementations in Java for Concurrent Systems"
For those interested in modem implementations of tuple spaces in Java, this

paper provides a good overview. It is more or less focused on computing instead
of general tuple-space applications, but nevertheless demonstrates the various
tradeoffs that need to be made when performance is at stake.

Zhao et aI., "Subscription Propagation in Highly-Available Publish/Subscribe
Middleware' ,

Although a fairly technical article, this paper gives a good idea of some of the
issues that play a role when availability is an important design criterion in

634 READING LIST AND BIBLIOGRAPHY CHAP. 14

publish/subscribe systems. In particular, the authors consider how subscription
updates can be propagated when routing paths have been made redundant to
achieve high availability. It is not hard to imagine that, for example, out-of-order
message delivery can easily occur. Such cases need to be dealt with.

14.2 ALPHABETICAL BIBLIOGRAPHY

ABADI, M. and NEEDHAM, R.: "Prudent Engineering Practice for Cryptographic Proto-
cols." IEEE Trans. Softw. Eng., (22)1:6-15, Jan. 1996. Cited on page 400.

ABDULLAm. S. and RINGWOOD, G.: "Garbage Collecting the Internet: A Survey of Dis-
tributed Garbage Collection." ACM Comput. Surv., (30)3:330-373, Sept. 1998. Cited on
page 186.

ABERER, K. and HAUSWIRTH, M.: "Peer-to-Peer Systems." In Singh, M. (ed.), The
Practical Handbook of Internet Computing, chapter 35. Boca Raton, FL: eRC Press, 2005.
Cited on page 15.

ABERER, K., ALIMA, L. 0., GHODSI, A., GIRDZIJAUSKAS, S., HAUSWIRTH, M., and
HARIDI, S.: "The Essence of P2P: A Reference Architecture for Overlay Networks."
Proc. Fifth Int'l Con! Peer-to-Peer Comput., (Konstanz, Germany). Los Alamitos, CA:
IEEE Computer Society Press, 2005. pp. 11-20. Cited on page 44.

ADAR, E. and HUBERMAN, B. A.: "Free Riding on Gnutella." Hewlett Packard, Informa-
tion Dynamics Lab, Jan. 2000. Cited on page 53.

AIYER, A., ALVISI, L., CLEMENT, A., DAHLIN, M., and MARTIN, J.-P.: "BAR Fault
Tolerance for Cooperative Services." Proc. 20th Symp. Operating System Principles;
(Brighton, UK). New York, NY: ACM Press, 2005. pp. 45-58. Cited on page 335.

AKYILDIZ, I. F., SU, W., SANKARASUBRAMANIAM, Y., and CAYIRCI, E.: "A Survey
on Sensor Networks." IEEE Commun. Mag., (40)8:102-114, Aug. 2002. Cited on page
28.

AKYILDIZ, I~F., WANG, X., and WANG, W.: "Wireless Mesh Networks: A Survey."
Compo Netw., (47)4:445-487, Mar. 2005. Cited on page 28.

ALBITZ, P. and LIU, C.: DNS and BIND. Sebastopol, CA: O'Reilly & Associates, 4th ed.,
2001. Cited on pages 210,560,626.

ALLEN, R. and LOWE-NORRIS, A.: Windows 2000 Active Directory. Sebastopol, CA:
O'Reilly & Associates. 2nd ed., 2003. Cited on page 221.

ALLMAN, M.: "An Evaluation of XML-RPC." Perf. Eva/. ne«, (30)4:2-11, Mar. 2003.
Cited on page 567.

ALONSO, G., CASATI, F., KUNO, H., and MACmRAJU, V.: Web Services: Concepts,
Architectures and Applications. Berlin: Springer-Verlag, 2004. Cited on pages 20, 551,
554,632.

SEC. 14.2 ALPHABETICAL BIBLIOGRAPHY 635

ALVISI, L. and MARZULLO, K.: "Message Logging: Pessimistic, Optimistic, Causal, and
Optimal." IEEE Trans. Softw. Eng., (24)2:149-159, Feb. 1998. Cited on pages 370, 371.

AMAR, L., BARAK, A., and SHILOH, A.: "The MOSIX Direct File System Access
Method for Supporting Scalable Cluster File Systems." Cluster Comput., (7)2:141-150,
Apr. 2004. Cited on page 18.

ANDERSON, O. T., LUAN, L., EVERHART, C., PEREIRA, M., SARKAR, R., and XU, J.:
"Global Namespace for Files." IBM Syst. J., (43)4:702-722, Apr. 2004. Cited on page
512.

ANDERSON, R.: Security Engineering - A Guideto Building Dependable Distributed Sys-
tems. New York: John Wiley, 2001. Cited on page 630.

ANDERSON, T., BERSHAD, B., LAZOWSKA, E., and LEVY, H.: "Scheduler Activations:
Efficient Kernel Support for the User-Level Management of Parallelism." Proc. 13th
Symp. Operating System Principles. New York, NY: ACM Press, 1991. pp. 95-109. Cited
on page 75.

ANDREWS, G.: Foundations of Multithreaded, Parallel, and Distributed Programming.
Reading, MA: Addison-Wesley, 2000. Cited on pages 232, 625.

ANDROUTSELLIS-THEOTOKIS, S. and SPTh'ELLIS, D.: "A Survey of Peer-to-Peer Con-
tent Distribution Technologies." ACM Comput. Surv., (36)4:335-371, Dec. 2004. Cited on
page 44.

ARAUJO, F. and RODRIGUES, L.: "Survey on Position-Based Routing." Technical
Report MINEMA TR-01, University of Lisbon, Oct. 2005. Cited on page 261.

ARKILLS, B.: LDAP Directories Explained: An Introduction and Analysis. Reading, MA:
Addison-Wesley, 2003. Cited on page 218.

ARON, M., SANDERS, D., DRUSCHEL, P., and ZWAENEPOEL, W.: "Scalable Content-
aware Request Distribution in Cluster-based Network Servers." Proc. USENlX Ann.
Techn. Con! USENIX, 2000. pp. 323-336. Cited on page 559.

ATTIYA, H. and WELCH, J.: Distributed Computing Fundamentals, Simulations, and
Advanced Topics. New York: John Wiley, 2nd ed., 2004. Cited on page 232.

AVIZIENIS, A., LAPRIE, J.-C., RANDELL, B., and LANDWEHR, C.: "Basic Concepts and
Taxonomy of Dependable and Secure Computing." IEEE Trans. Depend. Secure Comput.,
(1)1:11-33, Jan. 2004. Cited on page 323.

AWADALLAH, A. and ROSENBLUM, M.: "The vMatrix: A Network of Virtual Machine
Monitors for Dynamic Content Distribution." Proc. Seventh Web Caching Workshop,
(Boulder, CO), 2002. Cited on page 80.

AWADALLAH, A. and ROSENBLUM, M.: "The vMatrix: Server Switching." Proc. Tenth
Workshop on Future Trends in Distributed Computing Systems, (Suzhou, China). Los
Alamitos, CA: IEEE Computer Society Press, 2004. pp. 110-118. Cited on page 94.

BABAOGLU, 0., JELASITY, M., MONTRESOR, A., FETZER, C., LEONARDI, S., VAN
MOORSEL, A., and VAN STEEN, M. (eds.): Self-star Properties in Complex Information
Systems, vol. 3460 of Lect. Notes Compo Sc. Berlin: Springer-Verlag, 2005. Cited on
pages 59, 624.

636 READING LIST AND BIBLIOGRAPHY CHAP. 14

BABAOGLU. O. and TOUEG, S.: "Non-Blocking Atomic Commitment." In Mullender, S.
(ed.), Distributed Systems, pp. 147-168. Wokingham: Addison-Wesley, 2nd ed., 1993.
Cited on page 359.

BABCOCK, B., BABU, S., DATAR, M., MOTWANI, R., and WIDOM, J.: "Models and
Issues in Data Stream Systems." Proc. 21st Symp. on Principles of Distributed Computing,
(Monterey, CA). New York, NY: ACM Press, 2002. pp. 1-16. Cited on page 158.

BAL, H.: The Shared Data-Object Model as a Paradigm for Programming Distributed
Systems. Ph.D .. Thesis, Vrije Universiteit, Amsterdam, 1989. Cited on page 449.

BALAKRISHNAN, H., KAASHOEK, M. F., KARGER, D., MORRIS, R., and STOICA, I.:
"Looking up Data in P2P Systems." Commun. ACM, (46)2:43-48, Feb. 2003. Cited on
pages 44, 188, 627.

BALAKRISHNAN, H., LAKSHMINARA YANAN, K., RATNASAMY, S., SHENKER, S.,
STOICA, I., and WALFlSH, M.: "A Layered Naming Architecture for the Internet." Proe.
SIGCOMM, (Portland, OR). New York, NY: ACM Press, 2004. pp. 343-352. Cited on
page 626.

BALAZINSKA, M., BALAKRISHNAN, H., and KARGER, D.: "INSfTwine: A Scalable
Peer-to-Peer Architecture for Intentional Resource Discovery." Proc. First lnt'l Conf,
Pervasive Computing, vol. 2414 of Leet. Notes Compo Sc., (Zurich, Switzerland). Berlin:
Springer-Verlag, 2002. pp. 195-210. Cited on pages 222, 223.

BALLINTUN, G.: Locating Objects in a Wide-area System. Ph.D. thesis, Vrije Universi-
teit Amsterdam, 2003. Cited on pages 192,485.

BARATTO, R. A., NlEH, J., and KIM, L.: "THINC: A Remote Display Architecture for
Thin-Client Computing." Proc. 20th Symp. Operating System Principles, (Brighton, UK).
New York, NY: ACM Press, 2005. pp. 277-290. Cited on pages 85, 86.

BARBORAK, M., MALEK, M., and DAHBURA, A.: "The Consensus Problem in Fault-
Tolerant Computing." ACM Comput. Surv., (25)2:171-220, June 1993. Cited-on page 335.

BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T., HO, A.,
NEUGEBAR, R., PRATT, I., and WARFIELD, A.: "Xen and the Art of Virtualization."
Proc. 19th Symp. Operating System Principles, (Bolton Landing, }\"'Y). New York, NY:
ACM Press, 2003. pp. 164-177. Cited on page 81.

BARKER, W.: - "Recommendation for the Triple Data Encryption Algorithm (TDEA)
Block Cipher." NIST Special Publication 800-67, May 2004. Cited on page 393.

BARRON, D.: Pascal - The Language and its implementation. New York: John Wiley,
1981. Cited on page 110.

BARROSO, L., DEAM, J., and HOLZE, U.: "Web Search for a Planet: The Google Cluster
Architecture." IEEE Micro, (23)2:21-28, Mar. 2003. Cited on page 497.

BARYSHNIKOV, Y., COFFMAN, E. G., PIERRE, G., RUBENSTEIN, D., SQUILLAN-
TE, M., and YIMWADSANA, T.: "Predictability of Web-Server Traffic Congestion." Proc.
Tenth Web Caching Workshop, (Sophia Antipolis, France). IEEE, 2005. pp. 97-103. Cited
on page 576.

SEC. 14.2 ALPHABETICAL BmLIOGRAPHY 637
BASILE, C., KALBARCZYK, Z., and IYER, R. K.: "A Preemptive Deterministic Schedul-
ing Algorithm for Multithreaded Replicas." Proc. Int'l Con! Dependable Systems and
Networks, (San Francisco, CA). Los Alamitos, CA: IEEE Computer Society Press, 2003.
pp. 149-158. Cited on page 474.

BASILE, c, WHISNANT, K., KALBARCZYK, Z., and IYER, R. K.: "Loose Synchroniza-
tion of Multithreaded Replicas." Proc. 21st Symp. on Reliable Distributed Systems,
(Osaka, Japan). Los Alamitos, CA: IEEE Computer Society Press, 2002. pp. 250-255.
Cited on page 474.

BASS, L., CLEMENTS, P., and KAZMAN, R.: Software Architecture in Practice. Reading,
MA: Addison-Wesley, 2nd-ed., 2003. Cited on pages 34, 35, 36, 624.

BAVIER, A., BOWMAN, M., CHUN, B., CULLER, D., KARLIN, S., J.\<IUIR,S.,
PETERSON, L., ROSCOE, T., SPALINK, T., and WAWRZONIAK, M.: "Operating System
Support for Planetary-Scale Network Services." Proc. First Symp. Networked Systems
Design and Impl., (San Francisco, CA). Berkeley, CA: USENIX, 2004. pp. 245-266.
Cited on pages 99, 102.

BERNERS-LEE, T., CAILLIAU, R., NIELSON, H. F., and SECRET, A.: "The World-Wide
Web." Commun. ACM, (37)8:76-82, Aug. 1994. Cited on page 545.

BERJ.'ffiRS-LEE, T., FIELDING, R., and MASINTER, L.: "Uniform Resource Identifiers
(URI): Generic Syntax." RFC 3986, Jan. 2005. Cited on page 567.

BERt"JSTEIN, P.: "Middleware: A Model for Distributed System Services." Commun.
ACM, (39)2:87-98, Feb. 1996. Cited on page 20.

BERJ."JSTEIN,P., HADZILACOS, V., and GOODMAN, N.: Concurrency Control and
Recovery in Database Systems. Reading, MA: Addison-Wesley, 1987. Cited on pages
355,363.

BERSHAD, B., ZEKAUSKAS, M., and SAWDON, W.: "The Midway Distributed Shared
Memory System." Proc. COMPCON. IEEE, 1993. pp. 528-537. Cited on page 286.

BERTINO, E. and FERRARI, E.: "Secure and Selective Dissemination of XML Docu-
ments." ACM Trans. In! Syst. Sec., (5)3:290-331, 2002. Cited on page 618.

BHAGWAN, R., TATI, K., CHENG, Y., SAVAGE, S., and VOELKER, G. M.: "Total Recall:
Systems Support for Automated Availability Management." Proc. First Symp. Networked
Systems Design and Impl., (San Francisco, CA). Berkeley, CA: USENIX, 2004. pp. 337-
350. Cited on page 532.

BHARAMBE, A. R., AGRAWAL, M., and SESHAN, S.: "Mercury: Supporting Scalable
Multi-Attribute Range Queries." Proc. SIGCOMM, (Portland, OR). New York, NY: ACM
Press, 2004. pp. 353-366. Cited on pages 225, 599.

BIRMAN, K.: Reliable Distributed Systems: Technologies, Web Services, and Applica-
tions. Berlin: Springer-Verlag, 2005. Cited on pages 90, 335, 582, 629.

BIRMAN, K.: "A Response to Cheriton and Skeen's Criticism of Causal and Totally
Ordered Communication." Oper. Syst. Rev., (28)1:11-21, Jan. 1994. Cited on page 251.

BIRMAN, K. and JOSEPH, T.: "Reliable Communication in the Presence of Failures."
ACM Trans. Compo Syst., (5)1:47-76, Feb. 1987. Cited on page 350.

638 READING LIST AND BIBLIOGRAPHY CHAP. 14

BIRMAN~K.~ SCHIPER, A., and STEPHENSON, P.: "Lightweight Causal and Atomic
Group Multicast." ACM Trans. Compo Syst., (9)3:272-314, Aug. 1991. Cited on page 353.

BIRMAN, K. and VAN RENESSE~R. (eds.): Reliable Distributed Computing with the Isis
Toolkit. Los Alamitos, CA: IEEE Computer Society Press, 1994. Cited on page 251.

BIRRELL, A. and NELSON, B.: "Implementing Remote Procedure Calls." ACM Trans.
CompoSyst., (2)1:39-59, Feb. 1984. Cited on pages 126,626.

BISHOP~M.: Computer Security: Art and Science. Reading, MA: Addison-Wesley, 2003.
Cited on pages 385, 630.

BJORNSON, R.: Linda on Distributed Memory Multicomputers. Ph.D. Thesis, Yale
University, Department of Computer Science, 1993. Cited on page 608.

BLACK~A. and ARTSY, Y.: "Implementing Location Independent Invocation." IEEE
Trans. Par. Distr. Syst., (J) 1:107-119, Jan. 1990. Cited on page 186.

BLAIR, G., COULSON, G., and GRACE, P.: "Research Directions in Reflective
Middleware: the Lancaster Experience." Proc. Third Workshop Reflective & Adaptive
Middleware, (Toronto, Canada). New York, NY: ACM Press, 2004. pp. 262-267. Cited on
page 58.

BLAIR, G. and STEFANI, J.-B.: Open Distributed Processing and Multimedia. Reading,
MA: Addison-Wesley, 1998. Cited on pages 8, 165.

BLAKE-WILSON, S., NYSTROM~ M., HOPWOOD, D.~MIKKELSEN~ J.~and WRIGHT, T.:
"Transport Layer Security (TLS) Extensions." RFC 3546, June 2003. Cited on page 584.

BLANCO~R.~AHMED~1'\.,HADALLER~D., SUNG, L. G. A.~LI, H.~and SOLIMAN~ M. A.:
"A Survey of Data Management in Peer-to-Peer Systems." Technical Report CS-2006-18,
University of Waterloo, Canada. June 2006. Cited on page 632.

BLAZE~M.~FEIGENBACM, J., IOANNIDIS, J.~and KEROMYTIS~ A.: "The Role of Trust
Management in Distributed Systems Security." In Vitek, J. and Jensen. C. (eds.), Secure
Internet Programming: Security Issues for Mobile and Distributed Objects, vol. 1603 of
Lect. Notes Compo Sc., pp. 185-210. Berlin: Springer-Verlag, 1999. Cited on page 630.

BLAZE, M.: Caching in Large-Scale Distributed File Systems. Ph.D. thesis, Department
of Computer Science, Princeton University, Jan. 1993. Cited on page 301.

BONNET, P., GEHRKE, J., and SESHADRI, P.: "Towards Sensor Database Systems."
Proc. Second1nt'l Con! Mobile Data Mgt., vol. 1987 of Lect. Notes Compo Sc., (Hong
Kong, China). Berlin: Springer-Verlag, 2002. pp. 3-14. Cited on page 29.

BOOTH, D.~HAAS~H., MCCABE, F:, NEWCOMER, E., CHAMPION, M.. FERRIS, C., and
ORCHARD, D.: "Web Services Architecture." W3C Working Group ~ote, Feb. 2004.
Cited on page 551.

BOUCHENAK, S., BOYER, F., HAGIMONT, D., KRAKOWIAK, S., MOS, A.,
DE PALMA3, N.~ QUEMA3~V., and STEFANI, J.-B.: "Architecture-Based Autonomous
Repair Management: An Application to J2EE Clusters." Proc. 24th Symp. on Reliable
Distributed Systems, (Orlando. FL). Los Alamitos, CA: IEEE Computer Society Press,
2005. pp. 13-24. Cited on page 65.

SEC. 14.2 ALPHABETICAL BIBLIOGRAPHY 639
BREWER. E.: "Lessons from Giant-Scale Services." IEEE Internet Comput., (5)4:46-55,
July 2001. Cited on page 98.

BRUNETON, E., COUPAYE, T., LECLERCQ, M., QUEMA, V., and STEFANI, J.-B.: "An
Open Component Model and Its Support in Java." Proe. Seventh Int'l Symp. Component-
based Softw. Eng., vol. 3054 of Leet. Notes Compo Se., (Edinburgh, UK). Berlin:
Springer- Verlag, 2004. pp. 7-22. Cited on page 65.

BUDHUARA, N., MARZULLO, K., SCHNEIDER, F., and TOUEG, S.: "The Primary-
Backup Approach." In Mullender, S. (ed.), Distributed Systems, pp. 199-216. Wokingham:
Addison-Wesley, 2nd ed., 1993. Cited on page 308.

BUDHIRAJA, N. and MARZULLO, K.: "Tradeoffs in Implementing Primary-Backup Pro-
tocols." Technical Report TR 92-1307, Department of Computer Science, Cornell Univer-
sity, 1992. Cited on page 309.

BURNS, R. C., REES, R. M., STOCKMEYER, L. J., and LONG, D. D. E.: "Scalable Session
Locking for a Distributed File System." Cluster Computing, (4)4:295-306, Oct. 2001.
Cited on page 518.

BUSI, N., MONTRESOR, A., and ZAVATTARO, G.: "Data-driven Coordination in Peer-
to-Peer Information Systems." Int'l J. Coop. Inf. Syst., (13)1:63-89, Mar. 2004. Cited on
page 597.

BUTT, A. R., JOHNSON, T. A., ZHENG, Y., and HU, Y. c, "Kosha: A Peer-to-Peer
Enhancement for the Network File System." Proc. Int'l Conf. Supercomputing, (Washing-
ton, DC). Los Alamitos, CA: IEEE Computer Society Press, 2004. pp. 51-61. Cited on
page 500.

CABRI, G., FERRARI, L., LEONARDI, L., MA1.\fEI,M., and ZAMBONELLI, F.: "Uncou-
pling Coordination: Tuple-based Models for Mobility." In Bellavista, Paolo and Corradi,
Antonio (eds.), The Handbook of Mobile Middleware. London, UK: CRC Press, 2006.
Cited on page 633.

CABRI, G., LEONARDI, L., and ZAMBONELLI, F.: "Mobile-Agent Coordination Models
for Internet Applications." IEEE Computer, (33)2:82-89, Feb. 2000. Cited on page 590.

CAl, M., CHERVENAK, A., and FRANK, M.: "A Peer-to-Peer Replica Location Service
Based on A Distributed Hash Table." Proc. High Perf. Comput., Netw., & Storage Conf.,
(Pittsburgh, PA). New York, NY: ACM Press, 2004. pp. 56-67. Cited on page 529.

CALLAGHAN, B.: NFS Illustrated. Reading, MA: Addison-Wesley, 2000. Cited on pages
492,510.

CANDEA, G., BROWN, A. B., FOX, A., and PATTERSON, D.: "Recovery-Oriented Com-
puting: Building Multitier Dependability." IEEE Computer, (37)11:60-67, Nov. 2004a.
Cited on page 372.

CANDEA, G., KAWAMOTO, S., FUJIKI, Y., FRIEDMAN, G., and FOX. A.: "Microreboot:
A Technique for Cheap Recovery." Proc. Sixth Symp. on Operating System Design and
Implementation, (San Francisco, CA). Berkeley, CA: USENIX, 2004b. pp. 31-44. Cited
on page 372.

640 READING LIST AND BIBLIOGRAPHY CHAP. 14

CANDEA, G., KICIMAN, E., KAWAMOTO, S., and FOX, A.: "Autonomous Recovery in
Componentized Internet Applications." Cluster Comput., (9)2: 175-190, Feb. 2006. Cited
on page 372.

CANTIN, J .•LIPASTI, M., and SMITH, J.: "The Complexity of Verifying Memory Coher-
ence and Consistency." IEEE Trans. Par. Distr. Syst., (16)7:663-671, July 2005. Cited on
page 288.

CAO, L. and OSZU, T.: "Evaluation of Strong Consistency Web Caching Techniques."
World Wide Web, (5)2:95-123, June 2002. Cited on page 573.

CAO. P. and L1U,c, "Maintaining Strong Cache Consistency in the World Wide Web."
IEEE Trans. Comp., (47)4:445-457, Apr. 1998. Cited on page 573.

CAPORUSCIO, M., CARZANIGA, A., and WOLF, A. L.: "Design and Evaluation of a Sup-
port Service for Mobile, Wireless Publish/Subscribe Applications." IEEE Trans.
Softw. Eng., (29)12:1059-1071, Dec. 2003. Cited on page 600.

CARDELLINI, v .•CASALICCmO, E., COLAJANNI, M., and YU, P.: "The State of the Art
in Locally Distributed Web-Server Systems." ACM Comput. Surv., (34)2:263-311, June
2002. Cited on page 560.

CARRIERO, N. and GELERNTER, D.: "The SlNet's Linda Kernel." ACM Trans.
Compo Syst., (32)2:110-129, May 1986. Cited on page 609.

CARZANIGA, A., RUTHERFORD, M. J., and WOLF, A. L.: "A Routing Scheme for
Content-Based Networking." Proc. 23rd INFOCOM Conf, (Hong Kong, China). Los
Alamitos, CA: IEEE Computer Society Press, 2004. Cited on page 601.

CARZANIGA, A. and WOLF, A. L.: "Forwarding in a Content-based Network." Proc.
SIGCOMM, (Karlsruhe, Germany). New York, NY: ACM Press, 2003. pp. 163-174. Cited
on page 603.

CASTRO, M., DRUSCHEL, P., GANESH, A., ROWSTRON, A., and WALLACH, D. S.:
"Secure Routing for Structured Peer-to-Peer Overlay Networks." Proc. Fifth Symp. on
Operating System Design and Implementation, (Boston, MA). New York, NY: ACM
Press, 2002a. pp. 299-314. Cited on pages 539, 540.

CASTRO, M., DRUSCHEL, P., BU, Y. C., and ROWSTRON, A.: "Topology-aware Routing
in Structured Peer-to-Peer Overlay Networks." Technical Report MSR-TR-2002-82,
Microsoft Research, Cambridge, UK, June 2002b. Cited on page 190. .

CASTRO, M., RODRIGUES, R., and LISKOV, B.: "BASE: Using Abstraction to Improve
Fault Tolerance." ACM Trans. Compo Syst., (21)3:236-269, Aug. 2003. Cited on page
531.

CASTRO, M., COSTA, M., and ROWSTRON, A.: "Debunking Some Myths about Struc-
tured and Unstructured Overlays." Proc. Second Symp. Networked Systems Design and
Imp!., (Boston, MA). Berkeley, CA: USENIX, 2005. Cited on page 49.

CASTRO, M., DRUSCHEL, P., KERM.4.RREC, A.-M., and ROWSTRON, A.: "Scribe: A
Large-Scale and Decentralized Application-Level Multicast Infrastructure." IEEE
J. Selected Areas Commun., (20)8: 100-110, Oct. 2002. Cited on page 167.

CASTRO, M. and LISKOV, B.: "Practical Byzantine Fault Tolerance and Proactive
Recovery." ACM Trans. Compo Syst., (20)4:398-461, Nov. 2002. Cited on pages 529, 531,
583.

SEC. 14.2 ALPHABETICAL BIBLIOGRAPHY 641

CHAPPELL, D.: Understanding .NET. Reading, MA: Addison-Wesley, 2002. Cited on
page 632.

CHERITON, D. and MANN, T.: "Decentralizing a Global Naming Service for Improved
Performance and Fault Tolerance." ACM Trans. Compo Syst., (7)2:147-183, May 1989.
Cited on page 203.

CHERITON, D. and SKEEN, D.: "Understanding the Limitations of Causally and Totally
Ordered Communication." Proc. 14th Symp. Operating System Principles. ACM, 1993.
pp. 44-57. Cited on page 251.

CHERVENAK, A., SCHULER, R., KESSELMAN, C., KOR..\.NDA,S., and MOE, B.: "Wide
Area Data Replication for Scientific Collaborations." Proc. Sixth Int'l Workshop on Grid
Computing, (Seattle, WA). New York, NY: ACM Press, 2005. Cited on page 529.

CHERVENAK, A., FOSTER, I., KESSELMAN, C., SALISBURY, C., and TUECKE, S.: "The
Data Grid: Towards an Architecture for the Distributed Management and Analysis of
Large Scientific Datasets." J. Netw. CompoApp., (23)3:187-200, July 2000. Cited on page
380.

CHESWICK, W. and BELLOVIN, S.: Firewalls and Internet Security. Reading, MA:
Addison-Wesley, 2nd ed., 2000. Cited on page 418.

CHOW, R. and JOHNSON, T.: Distributed Operating Systems and Algorithms. Reading,
MA: Addison-Wesley, 1997. Cited on pages 363, 366.

CHUN, B. and SPALINK, T.: "Slice Creation and Management." Technical Report PDN-
03.,.013, PlanetLab Consortium, July 2003. Cited on page 101.

CIANCARINI, P., TOLKSDORF, R., VITALI, F., and KNOCHE, A.: "Coordinating Multi-
agent Applications on the WWW: A Reference Architecture." IEEE Trans. Softw. Eng.,
(24)5:362-375, May 1998. Cited on page 610.

CLARK, c., FRASER, K., HAND, S., HANSEN, J. G., JUL, E., LIMPACH, C., PRATT, I.,
and WARFIELD, A.: "Live Migration of Virtual Machines." Proc. Second Symp.
Networked Systems Design and Impl., (Boston, MA). Berkeley, CA: USENIX, 2005.
Cited on page 111.

CLARK, D.: "The Design Philosophy of the DARPA Internet Protocols." Proc.
SIGCOMM, (Austin, TX). New York, NY: ACM Press, 1989. pp. 106-114. Cited on page
91.

CLEMENT, L., HATELY, A., VON RIEGEN, c., and ROGERS, T.: "Universal Description.
Discovery and Integration (UDDI)." Technical Report, OASIS UDDI, 2004. Cited on
page 222.

COHEN, B.: "Incentives Build Robustness in Bittorrent." Proc. First Workshop all

Economics of Peer-to-Peer Systems, (Berkeley, CA), 2003. Cited on page 53.

COHEN, D.: "On Holy Wars and a Plea for Peace." IEEE Computer, (14)10:48-54, Oct.
1981. Cited on page 131.

COHEN, E. and SHENKER, S.: "Replication Strategies in Unstructured Peer-to-Peer Net-
works." Proc. SIGCOMM, (Pittsburgh, PA). New York, NY: ACM Press, 2002. pp. 177-
190. Cited on page 526.

642 READING LIST AND BIBLIOGRAPHY CHAP. 14

COMER, D.: lnternetworking with TCPIIP, Volume I: Principles, Protocols, and Architec-
ture. Upper Saddle River, NJ: Prentice Hall, 5th ed., 2006. Cited on page 121.

CONTI, M., GREGORI, E., and LAPENNA, W.: "Content Delivery Policies in Rep1i-
catedWeb Services: Client-Side vs. Server-Side." Cluster Comput., (8)47-60, Jan. 2005.
Cited on page 579.

COPPERSMITH, D.: "The Data Encryption Standard (DES) and its Strength Against
Attacks." IBM J. Research and Development, (38)3:243-250, May 1994. Cited on page
394.

COULOURIS, G., DOLLIMORE, J., and KINDBERG, T.: Distributed Systems, Concepts
and Design. Reading, MA: Addison-Wesley, 4th ed., 2005. Cited on page 623.

COX, L. and NOBLE, B.: "Samsara: Honor Among Thieves in Peer-to-Peer Storage."
Proc. 19th Symp. Operating System Principles, (Bolton Landing, NY). New York, NY:
ACM Press, 2003. pp. 120-131. Cited on page 540.

COYLER, A., BLAIR, G., and RASHID, A.: "Managing Complexity In Middleware." Proc.
Second AOSD Workshop on Aspects, Components, and Patterns for Infrastructure
Software, 2003. Cited on page 58.

CRESPO, A. andGARCIA-MOILINA, H.: "Semantic Overlay Networks for P2P Sys-
terns." Technical Report, Stanford University, Department of Computer Science, 2003.
Cited on page 225.

CRISTIAN, F.: "Probabilistic Clock Synchronization." Distributed Computing, (3)146-
158, 1989. Cited on page 240.

CRISTIAN, F.: "Understanding Fault-Tolerant Distributed Systems." Commun. ACM,
(34)2:56-78, Feb. 1991. Cited on page 324.

CRISTIAN, F. and FETZER, C.: "The Timed Asynchronous Distributed System Model."
IEEE Trans. Par. Distr. Syst., (10)6:642-657, June 1999. Cited on page 629.

CROWLEY, C.: Operating Systems, A Design-Oriented Approach. Chicago: Irwin, 1997.
Cited on page 197.

DABEK, F., COX, R., KAASHOEK, F., and MORRIS, R.: "Vivaldi: A Decentralized Net-
work Coordinate System." Proc. SIGCOMM, (Portland, OR). New York, NY: ACM
Press, 2004a. Cited on page 263. .

DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS, R., and STOICA. I.: "Wide-area
Cooperative Storage with CFS." Proc. 18th Symp. Operating System Principles. ACM,
2001. Cited on page 499.

DABEK, F., LI, J., SIT, E., ROBERTSON, J., KAASHOEK, M. F., and MORRIS, R.:
"Designing a dht for low latency and high throughput." Proc. First Symp. Networked Sys-
tems Design and Impl., (San Francisco, CA). Berkeley, CA: USENIX, 2004b. pp. 85-98.
Cited on page 191.

DAIGLE, L., VAN GULIK, D., IANNELLA, R., and FALTSTROM, P.: "Uniform Resource
Names (URN) Namespace Definition Mechanisms." RFC 3406, Oct. 2002. Cited on page
568.

SEC. 14.2 ALPHABETICAL BIBLIOGRAPHY 643

DAVIE, B., CHARNY, A., BENNET, J., BENSON, K., BOUDEC, J. L., COURTNEY, W.,
S.DAVARI, FIROIU, V., and STll..IADIS, D.: "An Expedited Forwarding PHB (Per-Hop
Behavior)." RFC 3246, Mar. 2002. Cited on page 161.

DAY, J. and ZIMMERMAN, H.: "The OSI Reference Model." Proceedings of the IEEE,
(71)12:1334-1340, Dec. 1983. Cited on page 117.

DEERING, S., ESTRIN, D.• FARINACCI, D., JACOBSON, V., LIU, C.-G., and WEI, L.:
"The PIM Architecture for Wide-Area Multicast Routing." IEEE/ACM Trans. Netw.,
(4)2:153-162, Apr. 1996. Cited on page 183.

DEERING, S. and CHERITON, D.: "Multicast Routing in Datagram Internetworks and
Extended LANs." ACM Trans. Compo Syst., (8)2:85-110, May 1990. Cited on page 183.

DEMERS, A., GEHRKE, J., HONG, M., RIEDEWALD, M., and WHITE; W.: "Towards
Expressive Publish/Subscribe Systems." Proc. Tenth Int'l Conf. on Extended Database
Technology, (Munich, Germany), 2006. Cited on page 607.

DEMERS, A., GREENE, D., HAUSER, C., IRISH, W., LARSON, J., SHENKER, S.,
STURGIS, H., SWINEHART, D., and TERRY, D.: "Epidemic Algorithms for Replicated
Database Maintenance." Proc. Sixth Symp. on Principles of Distributed Computing, (Van-
couver). ACM, 1987. pp. 1-12. Cited on pages 170, 172.

DEUTSCH, P., SCHOULTZ, R., FALTSTROM, P., and WEIDER, C.: "Architecture of the
WHOIS++ Service." RFC 1835, Aug. 1995. Cited on page 63.

D\'FAGO, X., SHIPER, A., and URBrA}N, P.: "Total Order Broadcast and Multicast Algo-
rithms: Taxonomy and Survey." ACM Comput. Surv., (36)4:372-421, Dec. 2004. Cited on
page 344.
DIAO, Y., HELLERSTEIN, J., PAREKH, S., GRIFFITH, R., KAISER, G., and PHUNG, D.:
"A Control Theory Foundation for Self-Managing Computing Systems." IEEE J. Selected
Areas Commun., (23)12:2213-2222, Dec. 2005. Cited on page 60.

DIERKS, T. and ALLEN, C.: "The Transport Layer Security Protocol." RFC 2246, Jan.
1996. Cited on page 584.

DIFFIE, W. and HELLMA~, M.: "New Directions in Cryptography." IEEE Trans. Infor-
mation Theory, (IT-22)6:644-654, Nov. 1976. Cited on page 429.

DILLEY, J., MAGGS, B., PARIKH, J., PROKOP, H., SITARAMAN, R., and WEIHL, B.:
"Globally Distributed Content Delivery." IEEE Internet Comput., (6)5:50-58, Sept. 2002.
Cited on page 577.
DIOT, C., LEVINE, B., LYLES, B., KASSEM, H., and BALENSIEFEN, D.: "Deployment
Issues for the IP Multicast Service and Architecture." IEEE Network, (14)1:78-88, Jan.
2000. Cited on page 166.

DOORN, J. H. and RIVERO, L. C. (eds.): Database Integrity: Challenges and Solutions.
Hershey, PA: Idea Group, 2002. Cited on page 384.

DOUCEUR, J. R.: "The Sybil Attack." Proc. First Int'l Workshop on Peer-to-Peer Sys-
tems, vol. 2429 of Lect. Notes Compo Sc. Berlin: Springer-Verlag, 2002. pp. 251-260.
Cited on page 539.

644 READING LIST AND BIBLIOGRAPHY CHAP. 14

DUBOIS, M., SCHEURICH, C., and BRIGGS, F.: "Synchronization, Coherence, and Event
Ordering in Multiprocessors." IEEE Computer, (21)2:9~21, Feb. 1988. Cited on page 283.

DUNAGAN, J., HARVEY, N. J. A., JONES, M. B., KOSTIC, D., THEII\IER. M., and
WOLMAN, A.: "FUSE: Lightweight Guaranteed Distributed Failure Notification." Proc.
Sixth Symp. on Operating System Design and Implementation, (San Francisco, CA).
Berkeley, CA: USENIX, 2004. Cited on page 336.

DUVVURI, V., SHENOY, P., and TEWARI, R.: "Adaptive Leases: A Strong Consistency
Mechanism for the World Wide Web:' IEEE Trans. Know. Data Eng., (15)5:1~66-1276,
Sept. 2003. Cited on page 304.

EDDON, G. and EDDON, H.: Inside Distributed COM. Redmond, WA: Microsoft Press,
1998. Cited on page 136.

EISLER, M.: "LIPKEY - A Low Infrastructure Public Key Mechanism Using SPKM."
RFC 2847, June 2000. Cited on page 534.

EISLER, M., CHIU, A., and LING, 1...: "RPCSEC_GSS Protocol Specification." RFC
2203, Sept. 1997. Cited on page 534.

ELNOZAHY, E. N. and PLANK, J. S.: "Checkpointing for Peta-Scale Systems: A Look
into the Future of Practical Rollback-Recovery." IEEE Trans. Depend. Secure Comput.,
(1)2:97-108, Apr. 2004. Cited on page 368.

ELNOZAHY, E., ALVIS I, L., WANG, Y.-M., and JOHNSON, D.: "A Survey of Rollback-
Recovery Protocols in Message-Passing Systems." ACM Comput. Surv., (34)3:375-408,
Sept. 2002. Cited on pages 366, 372.

ELSON, J., GIROD, 1..., and ESTRIN, D.: "Fine-Grained Network Time Synchronization
using Reference Broadcasts." Proc. Fifth Symp. on Operating System Design and Imple-
mentation, (Boston, MAJ. New York, NY: ACM Press, 2002. pp. 147-163. Cited on page
242.

EMMERICH, W.: Engineering Distributed Objects. New York: John Wiley, 2000. Cited
on page 631.

EUGSTER, P., FELBER. P., GUERRAOUI, R., and KERl\lARREC, A.-M.: "The Many
Faces of Publish/Subscribe." ACM Comput. Surv., (35)2:114-131, June 2003. Cited on
pages 35, 59L

EUGSTER, P., GUERRAOUI, R., KERMARREC, A.-M., and ~IASSOULI'E, 1...: "Epidemic
Information Dissemination in Distributed Systems." IEEE Computer, (37)5:60-67, May
2004. Cited on page 170.

FARMER, W. M., GUTTMAN, J. D., and SWARUP, Y.: "Security for Mobile Agents:
Issues and Requirements:' Proc. 19th National Information S....•.stems Security Conf., 1996.
pp. 591-597. Cited on page 421.

FELBER, P. and NARASIMHAN, P.: "Experiences, Strategies, and Challenges in Building
Fault-Tolerant CORBA Systems." IEEE Computer, (53)5:497-511, May 2004. Cited on
page 479.

FERGUSON, N. and SCHNEIER, B.: Practical Cryptography. New York: John Wiley.
2003. Cited on pages 391. 400.

SEC. 14.2 ALPHABETICAL BIBLIOGRAPHY 645

FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H., MASINTER. L., LEACH, P., and
BERNERS-LEE, T.: "Hypertext Transfer Protocol - HTTP/1.1." RFC 2616, June 1999.
Cited on pages 122,560.
FIELDING, R. T. and TAYLOR, R. N.: "Principled Design of the Modem Web Architec-
ture." ACM Trans. Internet Techn., (2)2:115-150, 2002. Cited on page 633.

FILMAN, R. E., ELRAD, T., CLARKE, S., and AKSIT, M. (eds.): Aspect-Oriented Software
Development. Reading, MA: Addison-Wesley, 2005. Cited on page 57.

FISCHER, M., LYNCH, N., and PATTERSON, M.: "Impossibility of Distributed Con-
sensus with one Faulty Processor:' J. ACM, (32)2:374-382, Apr. 1985. Cited on page 334.

FLEURY, M. and REVERBEL, F.: "The JBoss Extensible Server." Proc. Middleware
2003, vol. 2672 of Lect. Notes Compo Sc., (Rio de Janeiro, Brazil). Berlin: Springer-
Verlag, 2003. pp. 344 - 373. Cited on page 631.

FLOYD, S., JACOBSON, V., MCCANNE, S., LID, C.-G., and ZHANG, L.: "A Reliable Mul-
ticast Framework for Light-weight Sessions and Application Level Framing." IEEE/ACM
Trans. Netw., (5)6:784-803, Dec. 1997. Cited on pages 345, 346.

FOSTER, I. and KESSELMAN, C.: The Grid 2: Blueprintfor a New Computing Infrastruc-
ture. San Mateo, CA: Morgan Kaufman, 2nd ed., 2003. Cited on pages 380,623.

FOSTER, I., KESSELMAN, C., TSUDIK, G., and TUECKE, S.: "A Security Architecture
for Computational Grids." Proc. Fifth Con! Computer and Communications Security.
ACM, 1998. pp.83-92. Cited on pages 380, 382, 383.

FOSTER, I., KESSELMAN, C., and TUECKE, S.: "The Anatomy of the Grid, Enabling
Scalable Virtual Organizations." Journal of Supercomputer Applications, (15)3:200-222,
Fall 2001. Cited on page 19.
FOSTER, I., KISHIMOTO, H., and SAVVA, A.: "The Open Grid Services Architecture,
Version 1.0." GGF Informational Document GFD-I.030, Jan. 2005. Cited on page 20.

FOWLER, R.: Decentralized Object Finding Using Forwarding Addresses. Ph.D. Thesis,
University of Washington, Seattle, 1985. Cited on page 184.

FRANKLIN, M. J., CAREY, M. J., and LIVNY, M.: "Transactional Client-Server Cache
Consistency: Alternatives and Performance." ACM Trans. Database Syst., (22)3:315-363,
Sept. 1997. Cited on pages 313, 314.
FREEMAN, E., HUPFER, S., and ARNOLD, K.: JavaSpaces, Principles, Patterns and
Practice. Reading, MA: Addison-Wesley, 1999. Cited on page 593.

FREUND, R.: "Web Services Coordination, Version 1.0, Feb. 2005. Cited on page 553.

FRIEDMAN, R. and KAMA, A.: "Transparent Fault-Tolerant Java Virtual Machine."
Proc. 22nd Symp. on Reliable Distributed Systems, (Florence, Italy). IEEE Computer
Society Press: IEEE Computer Society Press, 2003. pp. 319-328. Cited on pages 480,
481.

FUGGETTA, A., PICCO, G. P., and VIGNA, G.: "Understanding Code Mobility." IEEE
Trans. Softw. Eng., (24)5:342-361, May 1998. Cited on page 105.

GAMMA, E., HELM, R., JOHNSON, R., and VLISSIDES, J.: Design Patterns, Elements of
Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1994. Cited on
pages 418, 446.

646 READING LIST AND BIBLIOGRAPHY CHAP. 14

GARBACKI, P., EPEMA, D•• and VAN STEEN, M.: "A Two-Level Semantic Caching
Scheme for Super-Peer Networks." Proc. Tenth Web Caching Workshop, (Sophia Antipo-
lis, France). IEEE, 2005. Cited on page 51.

GARCIA-MOLINA, H.: "Elections in a Distributed Computing System." IEEE Trans.
Comp., (31) 1:48-59, Jan. 1982. Cited on page 264.

GARMAN, J.: Kerberos: The Definitive Guide. Sebastopol, CA: O'Reilly & Associates,
2003. Cited on pages 411, 442. '

GELERNTER, D.: "Generative Communication in Linda." ACM Trans. Prog, Lang. Syst., -
(7) 1:80-112, 1985. Cited on page 591.

GELERNTER, D. and CARRIERO, N.: "Coordination Languages and their Significance."
Commun. ACM, (35)2:96-107, Feb. 1992. Cited on page 590.

GHEMAWAT, S., GOBIOFF, H., and LEUNG, S.-T.: "The Google File System." Proc.
]9th Symp. Operating System Principles, (Bolton Landing, NY). New York, NY: ACM
Press, 2003. pp. 29-43. Cited on page 497.

GIFFORD, D.: "Weighted Voting for Replicated Data." Proc. Seventh Symp. Operating
System Principles. ACM, 1979. pp. 150-162. Cited on page 311.

GIGASPACES: GigaSpaces Cache 5.0 Documentation. New York. NY, 2005. Cited on
page 611.

GIL, T. M. and POLETTO, M.: "'MULTOPS: a Data-Structure for Bandwidth Attack
Detection." Proc. Tenth USENIX Security Symp., (Washington, DC). Berkeley, CA:
USENIX, 2001. pp. 23-38. Cited on page 427.

GLADNEY, H.: "Access Control for Large Collections." ACM Trans. In! Syst.,
(15)2:154-194, Apr. 1997. Cited on page 418.

GOLAND, Y., WHITEHEAD, E., FAIZI, A., CARTER. S., and JENSEN, D.: "HTTP Exten-
sions for Distributed Authoring - WEBDAV." RFC 2518, Feb. 1999. Cited on page 569.

GOLLMANN, D.: Computer Security. New York: John Wiley, 2nd ed., 2006. Cited on
page 384.

GONG, L. and SCHEMERS, R.: "Implementing Protection Domains in the Java Develop-
ment Kit 1.2." Proc. Svmp. Network and Distributed System Security. Internet Society,
1998. pp. 125-134. Cited on page 426.

GOPALAKRISR.""iAN,Y., SILAGHI, B., BHATTACHARJEE, B., and KELEHER, P.:
"Adaptive Replication in Peer-to-Peer Systems." Proc. 24th Int'l Con! on Distributed
Computing Systems, (Tokyo). Los Alamitos, CA: IEEE Computer Society Press, 2004. pp.
360-369. Cited on page 527.

GRAY, C. and CHERITON, D.: "Leases: An Efficient Fault-Tolerant Mechanism for Dis-
tributed File Cache Consistency." Proc.]2th Symp. Operating System Principles, (Litch-
field Park, AZ). New York, NY: ACM Press, 1989. pp. 202-210. Cited on page 304.

GRAY, J., HELLAND, P., O'NEIL, P., and SASHNA, D.: "The Dangers of Replication and
a Solution." Proc. SIGMOD lnt'l Con! on Management Of Data. ACM, 1996. pp. 173-
182. Cited on pages 276. 628.

SEC. 14.2 ALPHABETICAL BIBLIOGRAPHY 647

GRAY, J. and REUTER, A.: Transaction Processing: Concepts and Techniques. San
Mateo, CA: Morgan Kaufman, 1993. Cited on page 21.

GRAY, J.: "Notes on Database Operating Systems." In Bayer, R., Graham, R., and Seeg-
muller, G. (eds.), Operating Systems: An Advanced Course, vol. 60 of Lect. Notes Comp:
Sc., pp. 393-481. Berlin: Springer-Verlag, 1978. Cited on page 355.

GRIMM, R., DAVIS, J., LEMAR, E., MACBETH, A., SWANSON, S., ANDERSON, T.,
BERSHAD, B., BORRIELLO, G., GRIBBLE, S., and WETHERALL, D.: "System Support
for Pervasive Applications." ACM Trans. Compo Syst., (22)4:421-486, Nov. 2004. Cited
on page 25.

GROPP, W., HUSS·LEDERMAN, S., LUl\ISDAINE, A., LUSK, E., NITZBERG, B.,
SAPHIR, W., and SNIR, M.: MPI: The Complete Reference - The MPI-2 Extensions.
Cambridge, MA: MIT Press, 1998a. Cited on page 145. .

GROPP, W., LUSK, E., and SKJELLUM, A.: Using MPI, Portable Parallel Programming
with the Message-Passing Interface. Cambridge, MA: MIT Press, 2nd ed., 1998b. Cited
on page 145.

GROSSKURTH, A. and GODFREY, M. W.: "A Reference Architecture for Web
Browsers." Proc. 21st lnt'l Con! Softw. Mainten., (Budapest, Hungary). Los Alamitos,
CA: IEEE Computer Society Press, 2005. pp. 661-664. Cited on page 554.

GUDGIN, M., HADLEY, ~I., MENDELSOHN, N., MOREAU, J .•J., and NIELSE~, H. F.:
"SOAP Version 1.2." W3C Recommendation, June 2003. Cited on pages 565, 567.

GUERRAOUI, R. and RODRIGUES, L.: Introduction to Reliable Distributed Program-
ming. Berlin: Springer-Verlag, 2006. Cited on pages 232, 627.

GUERRAOUI, R. and SCHIPER, A.: "Software-Based Replication for Fault Tolerance."
IEEE Computer, (30)4:68-74, Apr. 1997. Cited on pages 328, 629.

GUICHARD, J., FAUCHEUR, F. L., and VASSEUR, J.·P.: Definitive MPLS Network
Designs. Indianapolis, IN: Cisco Press, 2005. Cited on page 575.

GULBRANDSEN, A., VIXIE, P., and ESIBOV, L.: "A dns IT for specifying the location of
services (dns srv)." RFC 2782, Feb. 2000. Cited on page 211.

GUPTA, A., SAHIN, O. D., AGRAWAL, D., and ABBADI, A. E.: "Meghdoot: Content-
Based Publish/Subscribe over P2P Networks." Proc. Middleware 2004, vol. 3231 of Lect.
Notes Compo Sc., (Toronto. Canada). Berlin: Springer-Verlag, 2004. pp. 254-273. Cited on
page 599.

GUSELLA, R. and ZATTl, S.: "The Accuracy of the Clock Synchronization Achieved by
TEMPO in Berkeley UNIX 4.3BSO." IEEE Trans. Softw. Eng., (15)7:847-853, July 1989.
Cited on page 241.

HADZILACOS, V. and TOUEG, S.: "Fault-Tolerant Broadcasts and Related Problems." In
Mullender, S. (ed.), Distributed Systems, pp. 97-145. Wokingham: Addison-Wesley, 2nd
ed., 1993. Cited on pages 324, 352.

HALSALL, F.: Multimedia Communications: Applications, Networks, Protocols and Stan-
dards. Reading, MA: Addison-Wesley, 2001. Cited on pages 157, 160.

648 READING LIST AND BIBLIOGRAPHY CHAP. 14

HANDURUKANDE. S~ KERMARREC, A.-M., FESSANT, F. L., and MASSOULI'E, L.:
"Exploiting Semantic Clustering in the eDonkey P2P network." Proc. l l th SIGOPS Euro-
pean Workshop, (Leuven, Belgium). New York, NY: ACM Press, 2004. Cited on page
226.

HELDER, D. A. and JAMIN, S.: "End-Host Multicast Communication Using Switch-Trees
Protocols." Proc. Second lnt'l Symp. Cluster Comput. & Grid, (Berlin, Germany). Los
Alamitos, CA: IEEE Computer Society Press, 2002. pp. 419-424. Cited on page]69.

HELLERSTEIN, J. L., DIAO, Y., PAREKH, S., and TILBURY, D. M.: Feedback Control of
Computing Systems. New York: John Wiley, 2004. Cited on pages 60, 624.

HENNING, M.: "A New Approach to Object-Oriented Middleware." iEEE Internet Com-
put., (8)1:66-75, Jan. 2004. Cited on page 454.

HENNING, M.: "The Rise and Fall of CORBA." ACM Queue, (4)5, 2006. Cited on page
631.

HENNING, M. and SPRUIELL, M.: Distributed Programming with Ice. ZeroC Inc., Bris-
bane, Australia, May 2005. Cited on pages 455,470.

HENNING, M. and VINOSKI, S.: Advanced CORBA Programming with C++. Reading,
MA: Addison-Wesley, 1999. Cited on page 631.

HOCHSTETLER, S. and BERINGER, B.: "Linux Clustering with CSM and GPFS."
Technical Report SG24-6601-02, International Technical Support Organization, IBM,
Austin, TX, Jan. 2004. Cited on page 98.

HOHPE, G. and WOOLF, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Reading, MA: Addison-Wesley, 2004. Cited on pages
152,626.

HOROWITZ, M. and LUNT, S.: "FTP Security Extensions." RFC 2228, Oct. 1997. Cited
on page 122. -

HOWES, T.: "The String Representation of LDAP Search Filters." RFC 2254, Dec. 1997.
Cited on page 221.

HUA CHU, Y., RAO, S. G., SESHAN, S., and ZHANG, H.: "A Case for End System Multi-
cast." IEEE J. Selected Areas Commun., (20)8:1456-1471, Oct. 2002. Cited on page 168.

HUFFAKER, B., FOMENKOV, M., PLUMMER, D. J., MOORE, D., and CLAFFY, K.:
"Distance Metrics in the Internet." Proc. Int'l Telecommun. Symp., (Natal RN, Brazil).
Los Alamitos, CA: IEEE Computer Society Press, 2002. Cited on page 575.

HUNT, G., NAHUM, E., and TRACEY, J.: "Enabling Content-Based Load Distribution for
Scalable Services." Technical Report, IBM TJ. Watson Research Center, May 1997.
Cited on page 94.

HUTTO, P. and AHAMAD, M.: "Slow Memory: Weakening Consistency to Enhance Con-
currency in Distributed Shared Memories." Proc. Tenth Int'l Con! on Distributed Com-
puting Systems. IEEE, 1990. pp. 302-311. Cited on page 284.

ffiM: WebSphere MQ Application Programming Guide, May 2005a. Cited on page 152.

SEC. 14.2 ALPHABETICAL BIBLIOGRAPHY 649

IBM: WebSphere MQ Intercommunication, May 2005b. Cited on page 152.

IBM: WebSphere MQ Publish/Subscribe User's Guide, May 2005c. Cited on page 593.

IBM: WebSphere MQ System Administration, lVlay2005d. Cited on page 152.

ISO: "Open Distributed Processing Reference Model." International Standard ISOIlEC IS
10746. 1995. Cited on page 5.

JAEGER, T., PRAKASH, A., LIEDTKE, J., and ISLAM, N.: "Flexible Control of Down-
loaded Executable Content." ACM Trans. Inf Syst. Sec., (2)2:177-228, May 1999. Cited
on page 426.

JALOTE, P.: Fault Tolerance in Distributed Systems. Englewood Cliffs, NJ: Prentice
Hall, 1994. Cited on pages 312, 322, 630.

JANIC. M.: Multicast in Network and Application Layer. Ph.d. Thesis, Delft University of
Technology, The Netherlands, Oct. 1005. Cited on page 166.

JANIGA, M. J., DIBNER, G., and GOVERNALI, F. J.: "Internet Infrastructure: Content
Delivery." Goldman Sachs Global Equity Research, Apr. 2001. Cited on page 575.

JELASITY, M., GUERRAOUI, R., KERMARREC, A.-M., and VAN STEEN, M.: "The Peer
Sampling Service: Experimental Evaluation of Unstructured Gossip-Based Implementa-
tions." Proc. Middleware 2004, vol. 3231 of Lect. Notes Compo Sc., (Toronto, Canada).
Berlin: Springer-Verlag, 2004. pp. 79-98. Cited on page 47.

JELASITY, M., VOULGARIS, S., GUERRAOUI, R., KERMARREC, A.-M., and VAN
STEE~, M.: "Gossip-based Peer Sampling." Technical Report, Vrije Universiteit, Depart-
ment of Computer Science. Sept. 2005a. Cited on pages 47, 49, 171, 226.

JELASITY, M. and BABAOGLU,O.: "T-Man: Gossip-based Overlay Topology Manage-
ment." Proc. Third Int'l Workshop Eng. Self-Organising App., (Utrecht, The Netherlands),
2005. Cited on pages 49, 50.

JELASITY, M., MONTRESOR, A., and BABAOGLU,O.: "Gossip-based Aggregation in
Large Dynamic Networks." ACM Trans. Compo Syst., (23)3:219-252. Aug. 2005b. Cited
on page 173.

JIN,J. and NAHRSTEDT, K.: "QoS Specification Languages for Distributed Multimedia
Applications: A Survey and Taxonomy." IEEE Multimedia, (11)3:74-87, July 2004. Cited
on page 160.

JING, J., HELAL, A., and ELMAGARMID, A.: "Client-Server Computing in Mobile
Environments." ACM Contput. Surv., (31)2:117-157, June 1999. Cited on page 41.

JOHl'\SON, B.: "An Introduction to the Design and Analysis of Fault-Tolerant Systems."
In Pradhan, D.K. (ed.), Fault-Tolerant Computer System Design, pp. 1-87. Upper Saddle
River, NJ: Prentice Hall, 1995. Cited on page 326.

JOHNSON, D., PERKINS, C., and ARKKO, J.: "Mobility Support for IPv6." RFC 3775,
June 2004. Cited on page 186.

JOSEPH, J., ERNEST, M., and FELLENSTEIN, C.: "Evolution of grid computing architec-
ture and grid adoption models." IBM Syst. J., (43)4:624-645, Apr. 2004. Cited on page 20.

650 READING LIST AND BIBLIOGRAPHY CHAP. 14

JUL, E.• LEVY, H., HUTCHINSON, N., and BLACK, A.: "Fine-Grained Mobility in the
Emerald System." ACM Trans. Compo Syst., (6)1:109-133, Feb. 1988. Cited on page 186.

JUNG, J., SIT, E., BALAKRISHNAN, H., and MORRIS, R.: "DNS Performance and the
Effectiveness of Caching." IEEE/ACM Trans. Netw., (10)5:589 - 603, Oct. 2002. Cited on
page 216.

KAHN, D.: The Codebreakers. New York: Macmillan, 1967. Cited on page 391.

KAMINSKY, M., SAVVIDES, G., MAZIhRES, D., and KAASHOEK, M. F.: "Decentralized
User Authentication in a Global File System." Proc. 19th Symp. Operating System Princi-
ples, (Bolton Landing, NY). New York, NY: ACM Press, 2003. pp. 60-73. Cited on pages
535,538.

KANTARCIOGLU, M. and CLIFTON, C.: "Security Issues in Querying Encrypted Data."
Proc. 19th Conf. Data & Appl. Security, vol. 3654 of Lect. Notes Compo Sc., (Storrs, CT).
Berlin: Springer-Verlag, 2005. pp. 325-337. Cited on page 618.

KARNIK, N. and TRIPATHI, A.: "Security in the Ajanta Mobile Agent System." Software
- Practice & Experience, (31)4:301-329, Apr. 2001. Cited on page 421.

KASERA, S., KUROSE, J., and TOWSLEY, D.: "Scalable Reliable Multicast Using Multi-
ple Multicast Groups." Proc. Int'l Conf. Measurements and Modeling of Computer Sys-
tems. ACM, 1997. pp. 64-74. Cited on page 346.

KATZ, E., BUTLER, M., and MCGRATH, R.: "A Scalable HTTP Server: The NCSA Pro-
totype." CompoNetw. & ISDN Syst., (27)2:155-164, Sept. 1994. Cited on page 76.

KAUFMAN, C., PERLMAN, R., and SPECINER, M.: Network Security: Private Communi-
cation in a Public World. Englewood Cliffs, NJ: Prentice Hall, 2nd ed., 2003. Cited on
pages 400, 630.

KENT, S.: "Internet Privacy Enhanced Mail." Commun. ACM, (36)8:48-60, Aug. 1993.
Cited on page 431.

KEPHART, J. O. and CHESS, D. M.: "The Vision of Autonomic Computing." IEEE Com-
puter, (36)1:41-50, Jan. 2003. Cited on page 59.

KHOSHAFIAN, S. and BUCKIEWICZ, M.: Introduction to Groupware, Workflow, and
Workgroup Computing. New York: John Wiley, 1995. Cited on page 151.

KHURANA, H. and KOLEVA, R.: "Scalable Security and Accounting Services for
Content-Based Publish Subscribe Systems." Int'l J. E-Business Res., (2), 2006. Cited on
pages 618, 619,620.

KIM, S., PAN, K., SIl\1])ERSON,E., and WHITEHEAD, J.: "Architecture and Data Model
of a WebDAV-based Collaborative System." Proc. Collaborative Techn. Symp.\jR, (San
Diego, CAY, 2004. pp. 48-55. Cited on page 570.

KISTLER, J. and SATYANARYANAN, M.: "Disconnected Operation in the Coda File Sys-
tem." ACM Trans. Compo Syst., (10)1:3-25, Feb. 1992. Cited on pages 503, 518.

KLEIMAN, S.: "Vnodes: an Architecture for Multiple File System Types in UNIX." Proc.
Summer Techn. Con! USENIX, 1986. pp. 238-247. Cited on page 493.

KOHL, J., NEUMAN, B., and T'SO, T.: "The Evolution of the Kerberos Authentication
System." In Brazier, F. and Johansen, D. (eds.), Distributed Open Systems, pp. 78-94. Los
Alamitos, CA: IEEE Computer Society Press, 1994. Cited on page 411.

SEC. 14.2 ALPHABETICAL BIBLIOGRAPHY 651

KON, F., COSTA, F., CAMPBELL, R., and BLAIR, G.: "The Case for Reflective
Middleware." Commun. ACM, (45)6:33-38, June 2002. Cited on page 57.

KOPETZ, H. and VERISSIMO, P.: "Real Time and Dependability Concepts." In Mul-
lender, S. (ed.), Distributed Systems, pp. 411-446. Wokingham: Addison-Wesley, 2nd ed.,
1993. Cited on page 322.

KOSTOULAS, M. G., MATSft, M., MENDELSOHN, N., PERKINS, E., HEIFETS, A., and
MERCALDI. M.: "XML Screamer: An Integrated Approach to High Performance XML
Parsing, Validation and Deserialization." Proc. 15th Int'l WWW Conf., (Edinburgh, Scot-
land). New York, NY: ACM Press, 2006. Cited on page 567.

KUMAR, P. and SATYANARAYANAN, M.: "Flexible and Safe Resolution of File Con-
flicts." Proc. Winter Techn. Con! USENIX, 1995. pp. 95-106. Cited on page 526.

LAI, A. and NIEH, J.: "Limits of Wide-Area Thin-Client Computing." Proc. Int'l Con!
Measurements and Modeling of Computer Systems, (Marina Del Rey, CA). New York,
NY: ACM Press, 2002. pp. 228-239. Cited on page 84.

LAMACCHI..-\.,B. and ODLYZKO, A.: "Computation of Discrete Logarithms in Prime
Fields." Designs, Codes, and Cryptography, (1)1:47-62, May 1991. Cited on page 534.

LAMPORT, L.: "Time, Clocks, and the Ordering of Events in a Distributed System."
Commun. ACA1, (21)7:558-565, July 1978. Cited on page 244.

LAMPORT, L.: "How to Make a Multiprocessor Computer that Correctly Executes Mul-
tiprocessor Programs." IEEE Trans. Comp., (C-29)9:690-691, Sept. 1979. Cited on page
282.

LAMPORT, L., SHOSTAK, R., and PAESE, M.: "Byzantine Generals Problem." ACM
Trans. Prog. Lang. Syst., (4)3:382-401, July 1982. Cited on pages 326, 332, 334.

LAMPSON, B., ABADI, M., BURROWS, M., and WOBBER, E.: "Authentication in Distri-
buted Systems: Theory and Practice." ACM Trans. Compo Syst., (10)4:265-310, Nov.
1992. Cited on page 397.

LAPRIE, J.-C.: "Dependability - Its Attributes, Impairments and Means." In Randell, B.,
Laprie, J.-c., Kopetz, H., and Littlewood, B. (eds.), Predictably Dependable Computing
Systems, pp. 3-24. Berlin: Springer-Verlag, 1995. Cited on page 378.

LAURIE, B. and LAURIE, P.: Apache: The Definitive Guide. Sebastopol, CA: O'Reilly &
Associates, 3rd ed., 2002. Cited on page 558.

LEFF, A. and RAYFIELD, J. T.: "Alternative Edge-server Architectures for Enterprise
JavaBeans Applications." Proc. Middleware 2004, vol. 3231 of Lect. Notes Compo Sc.,
(Toronto, Canada). Berlin: Springer-Verlag, 2004. pp. 195-211. Cited on page 52.

LEIGHTON, F. and LEWIN, D.: "Global Hosting System." United States Patent, Number
6,108,703, Aug. 2000. Cited on page 577.

LEVIEN, R. (ed.): Signposts in Cyberspace: The Domain Name System and Internet Navi-
gation. Washington, DC: National Academic Research Council, 2005. Cited on page 210.

LEVINE, B. and GARCIA-LUNA-ACEVES, J.: "A Comparison of Reliable Multicast Pro-
tocols." ACM Multimedia Systems Journal, (6)5:334-348, 1998. Cited on page 345.

652 READING LIST AND BIBLIOGRAPHY CHAP.]4

LEWIS. B. and BERG, D. J.: Multithreaded Programming with Pthreads. Englewood
Cliffs, NJ: Prentice Han, 2nd ed.,]998. Cited on pages 70, 625.

L1,G. and JACOBSEN, H.-A.: "Composite Subscriptions in Content-Based
Publish/Subscribe Systems:' Proc. Middleware 2005, vol. 3790 of Lect. Notes Compo Sc.,
(Grenoble, France). Berlin: Springer-Verlag, 2005. pp. 249-269. Cited on page 603.

LI. .I., LV, C; and SHI, W.: "An Efficient Scheme for Preserving Confidentiality in
Content-Based Publish-Subscribe Systems." Technical Report GIT-CC-04-01, Georgia
Institute of Technology, College of Computing, 2004a. Cited on page 6]9.

LI. N., MITCHELL, J. c., and TONG, D.: "Securing Java RMI-based Distributed Applica-
tions." Proc. 20th Ann. Computer Security Application Conf., (Tucson, AZ). ACSA.
2004b. Cited on page 486.

I..ILJA, D.: "Cache Coherence in Large-Scale Shared-Memory Multiprocessors: Issues and
Comparisons," ACM Comput. Surv., (25)3:303-338, Sept. 1993. Cited on page 3]3.

LIN, M.-J. and MARZULLO, K.: "Directional Gossip: Gossip in a Wide-Area Network."
In Proc. Third European Dependable Computing Conf., vol.]667 of Lect. Notes Compo
sc.. pp. 364-379. Berlin: Springer-Verlag, Sept. 1999. Cited on page 172.

LIN, S.-D., LlAN, Q., CHEN, M., , and ZHANG, Z.: "A Practical Distributed Mutual Exclu-
sion Protocol in Dynamic Peer-to-Peer Systems." Proc. Third Int'l Workshop on Peer-to-
Peer Systems, vol. 3279 of Lect. Notes Compo Sc., (La Jolla, CA). Berlin: Springer-Verlag,
2004. pp. 1] -21. Cited on pages 254, 255.

LING, B. C; KICIMAN, E., and FOX, A.: "Session State: Beyond Soft State." Proc. First
Symp. Networked Systems Design and Impl., (San Francisco, CA). Berkeley, CA:
USENIX, 2004. pp. 295-308. Cited on page 91.

LINN, J.: "Generic Security Service Application Program Interface, version 2." RFC
2078, Jan. 1997. Cited on page 534.

LIU, c.-c., ESTRIN, D., SHENKER, S., and ZHANG, L.: "Local Error Recovery in SRM:
Comparison of Two Approaches." IEEE/ACM Trans. Netw., (6)6:686-699, Dec. 1998.
Cited on page 346.

LIU, H. and JACOBSEN, H.-A.: "Modeling Uncertainties in Publish/Subscribe Systems."
Proc. 20th Int'l Con! Data Engineering, (Boston, MA). Los Alamitos, CA: IEEE Com-
puter Society Press, 2004. pp. 510-522. Cited on page 607.

LO, V., ZHOU, D., r.ru Y., GauthierDickey, c, and LI, .I.: "Scalable Supemode Selection
in Peer-to-Peer Overlay Networks." Proc. Second Hot Topics in Peer-to-Peer Systems,
(La Jolla, CA), 2005. Cited on page 269.

LOSHIN, P. (ed.): Big Book of Lightweight Directory Access Protocol (LDAP) RFCs. San
Mateo, CA: Morgan Kaufman, 2000. Cited on page 627.

LUA, E. K., CROWCROFT, J., PIAS, M., SHARMA, R., and LIM, S.: "A Survey and Com-
parison of Peer-to-Peer Overlay Network Schemes." IEEE Communications Surveys &
Tutorials, (7)2:22-73, Apr. 2005. Cited on pages 15,44, 625.

LUI, J., MISRA, V., and RUBENSTEIN, D.: "On the Robustness of Soft State Protocols."
Proc. 12th Int'l Con! on Network Protocols, (Berlin, Germany). Los Alamitos, CA: IEEE
Computer Society Press, 2004. pp. 50-60. Cited on page 91.

SEC. 14.2 ALPHABETICAL BIBLIOGRAPHY 653

LUOTONEN, A. and ALTIS, K.: "World-Wide Web Proxies." Compo Netw. & ISDN Syst.,
(27)2:1845-1855, 1994. Cited on page 555.

LYNCH, N.: Distributed Algorithms. San Mateo, CA: Morgan Kaufman, 1996. Cited on
pages 232, 263, 628.

MAASSEN, J., KIELMANN, T., and BAL, H. E.: "Parallel Application Experience with
Replicated Method Invocation." Cone. & Comput.: Prac. Exp., (13)8-9:681-712, 2001.
Cited on page 475.

MACGREGOR, R., DURBIN, D., OWLETT, J., and YEOl.\tL..\.i."lS,A.: Java Network Security.
Upper Saddle River, NJ: Prentice Hall, 1998. Cited on page 422.

MADDEN, S. R., FRANKLIN, M. J., HELLERSTEIN, J. M~ and HONG, W.: "TinyDB: An
Acquisitional Query Processing System for Sensor Networks." ACM Trims. Database
Syst., (30)1:122-173,2005. Cited on page 30.

MAKPANGOU, M., GOURHANT, Y., LE NARZUL, J..P., and SHAPIRO, M.: "Fragmented
Objects for Distributed Abstractions." In Casavant, T. and Singhal, M. (eds.), Readings in
Distributed Computing Systems, pp. 170-186. Los Alamitos, CA: IEEE Computer Society
Press, 1994. Cited on page 449.

MALKHI, D. and REITER, M.: "Secure Execution of Java Applets using a Remote Play-
ground." IEEE Trans. Softw. Eng., (26)12:1197-1209, Dec. 2000. Cited on page 424.

MAMEI, M. and ZAMBONELLI, F.: "Programming Pervasive and Mobile Computing
Applications with the TOTA Middleware." Proc. Second Int'l Conf. Pervasive Computing
and Communications (PerCom), (Orlando, FL). Los Alamitos, CA: IEEE Computer
Society Press, 2004. pp. 263-273. Cited on page 601.

MANOLA, F. and MILLER, E.: "RDF Primer." W3C Recommendation, Feb. 2004. Cited
on page 218.

MARCUS, E. and STERN, H.: Blueprints for High Availability. New York: John Wiley,
2nd ed., 2003. Cited on page 629.

MASCOLO, C., CAPRA, L., and EMMERICH, W.: "Principles of Mobile Computing
Middleware." In Mahmoud, Qusay H. (ed.), Middleware for Communications, chapter 12.
New York: John Wiley, 2004. Cited on page 25.

MASINTER, L.: "The Data URL Scheme." RFC 2397, Aug. 1998. Cited on page 568.

MAZIERES, D., KAMINSKY, M., KAASHOEK, M., and WITCHEL, E.: "Separating Key
Management from File System Security." Proc. 17th Symp. Operating System Principles.
ACM, 1999. pp. 124-139. Cited on pages 484,536.

MAZOUNI, K., GARBINATO, B., and GUERRAOUI, R.: "Building Reliable Client-Server
Software Using Actively Replicated Objects." In Graham, I., Magnusson, B., Meyer, B.,
and Nerson, J.-M (eds.), Technology of Object Oriented Languages and Systems, pp. 37-
53. Englewood Cliffs, NJ: Prentice Hall, 1995. Cited on page 475.

MCKINLEY, P., SADJADI, S~ KASTEN, E., and CHENG, B.: "Composing Adaptive
Software." IEEE Computer, (37)7:56-64, Jan. 2004. Cited on page 57.

MEHTA, N., MEDVIOOVIC, N., and PHADKE, S.: "Towards A Taxonomy Of Software
Connectors." Proc. 22nd lnt'l Conj. on Software Engineering, (Limerick, Ireland). New
York, NY: ACM Press, 2000. pp. 178-187. Cited on page 34.

654 READING LIST AND BIBLIOGRAPHY CHAP. 14

MENEZES, A. J., VAN OORSCHOT, P. C., and VANSTONE, S. A.: Handbook of Applied
Cryptography. Boca Raton: CRC Press, 3rd ed.,]996. Cited on pages 391,430.431,630.

MERIDETH, M. G., IYENGAR, A., MlKALSEN, T., TAl, S., ROUVELLOU, I., and
NARASIMHAN, P.: "Thema: Byzantine-Fault-Tolerant Middleware for Web-Service
Applications." Proc. 24th Symp. on Reliable Distributed Systems, (Orlando, FL). Los
Alamitos, CA: IEEE Computer Society Press, 2005. pp. 13]-142. Cited on page 583.

MEYER, B.: Object-Oriented Software Construction. Englewood Cliffs, NJ: Prentice
Hall, 2nd ed .. 1997. Cited on page 445.

MILLER, B. N., KONSTAN, J. A., and RIEDL, J.: "PocketLens: Toward a Personal
Recommender System." ACM Trans. In! Syst., (22)3:437-476, July 2004. Cited on page
27.
MILLS, D. L.: Computer Network Time Synchronization: The Network Time Protocol.
Boca Raton, FL: CRC Press, 2006. Cited on page 241.

MILLS, D. L.: "Network Time Protocol (version 3): Specification, Implementation, and
Analysis." RFC 1305, July 1992. Cited on page 241.

MILOJICIC, D., DOUGLIS, F., PAINDAVEINE, Y., WHEELER, R., and ZHOU, S.: "Pro-
cess Migration." ACM Comput. Surv., (32)3:241-299, Sept. 2000. Cited on page 103.

MIN, S. L. and BAER, J.-L.: "Design and Analysis of a Scalable Cache Coherence Scheme
Based on Clocks and Timestamps." IEEE Trans. Par. Distr. Syst., (3)1:25-44, Jan. 1992.
Cited on page 313.

MIRKOVIC, J., DIETRICH, S., and ANDPETER REIHER, D. D.: Internet Denial of Ser-
vice: Attack and Defense Mechanisms. Englewood Cliffs, NJ: Prentice Hall, 2005. Cited
on page 428.

MIRKOVIC, J. and REIHER, P.: "A Taxonomy of DDoS Attack and DDoS Defense
Mechanisms." ACM Compo Commun. Rev., (34)2:39-53, Apr. 2004. Cited on page 428.

MOCKAPETRIS, P.: "Domain Names - Concepts and Facilities." RFC 1034, Nov. 1987.
Cited on pages 203, 210.

MONSON-HAEFEL, R., BURKE, B., and LABOUREY, S.: Enterprise Java Beans. Sebas-
topol, CA: O'Reilly & Associates, 4th ed., 2004. Cited on page 447.

MOSER, L., MELLIAR-SMITH, P., AGARWAL, D., BUDHIA, R., and LINGLEY-
PAPADOPOULOS, C.: "Totem: A Fault-Tolerant Multicast Group Communication Sys-
tem." Commun. ACM, (39)4:54-63, Apr. 1996. Cited on page 478.

MOSER, L., MELLIOR-SMITH, P., and NARASThJHAK,P.: "Consistent Object Replica-
tion in the Eternal System." Theory and Practice of Object Systems, (4)2:81-92, 1998.
Cited on page 478.

MULLENDER, S. and TANENBAUM, A.: "Immediate Files." Software - Practice &
Experience, (14)3:365-368, 1984. Cited on page 568.

MUNTZ, D. and HONEYMAN, P.: "Multi-level Caching in Distributed File Systems."
Proc. Winter Techn. Conf. USENIX, 1992. pp. 305-313. Cited on page 301.

MURPHY, A., PICCO, G., and ROMAN, G.-C.: "Lime: A Middleware for Physical and
Logical Mobility." Proc. 21st 111t'1 Con! on Distr. Computing Systems, (Phoenix, AZ).
Los Alamitos, CA: IEEE Computer Society Press, 2001. pp. 524-533. Cited on page 600.

SEC. 14.2 ALPHABETICAL BIBLIOGRAPHY 655

MUTHITACHAROEN, A., MORRIS, R., GIL, T., and CHEN, B.: "Ivy: A ReadlWrite
Peer-to-Peer File System." Proc. Fifth Symp. on Operating System Design and Implemen-
tation, (Boston, MA). New York, NY: ACM Press, 2002. pp. 31-44. Cited on page 499.

NAPPER, J., ALVISI, L., and VIN, H. M.: "A Fault-Tolerant Java Virtual Machine." Proc.
Int'l Conf. Dependable Systems and Networks, (San Francisco, CA). Los Alamitos, CA:
IEEE Computer Society Press, 2003. pp. 425-434. Cited on page 480.

NARASIMHAN, P., MOSER, L., and MELLIAR-SMITH, P.: "The Eternal System." In
Urban, 1. and Dasgupta, P. (eds.), Encyclopedia of Distributed Computing. Dordrecht, The
Netherlands: Kluwer Academic Publishers, 2000. Cited on page 478.

NAYATE, A., DAHLIN, M., and IYENGAR, A.: "Transparent Information Dissemination."
Proc. Middleware 2004, voL 3231 of Lect. Notes Compo Sc., (Toronto, Canada). Berlin:
Springer-Verlag, 2004. pp. 212-2~1. Cited on page 52.

NEEDHAM, R. and SCHROEDER, M.: "Using Encryption for Authentication in Large
Networks of Computers." Commun. ACM, (21)12:993-999, Dec. 1978. Cited on page
402.

NEEDHAM, R.: "Names." In Mullender, S. (ed.), Distributed Systems, pp. 315-327. Wok-
ingham: Addison-Wesley, 2nd ed., 1993. Cited on page 627.

NELSON, B.: Remote Procedure Call. Ph.D. Thesis, Carnegie-Mellon University, 1981.
Cited on page 342.

NEUMAN, B.: "Scale in Distributed Systems." In Casavant, T. and Singhal, M. (eds.),
Readings in Distributed Computing Systems, pp. 463-489. Los Alamitos, CA: IEEE Com-
puter Society Press, 1994. Cited on pages 9, 12,624.

NEUMAN, B.: "Proxy-Based Authorization and Accounting for Distributed Systems."
Proc. 13th Int'l Conf. on Distributed Computing Systems. IEEE, 1993. pp. 283-291. Cited
on page 437.

NEUMAN, C., YU, T., HARTMAN, S., and RAEBURN, K.: "The Kerberos Network
Authentication Service." RFC 4120, July 2005. Cited on page 411.

NEUMANN, P.: "Architectures and Formal Representations for Secure Systems." Techni-
cal Report, Computer Science Laboratory, SRI International, Menlo Park, CA, Oct. 1995.
Cited on page 388.

NG, E. and ZHANG, H.: "Predicting Internet Network Distance with Coordinates-Based
Approaches." Proc. 21st INFOCOM Conf., (New York, NY). Los Alamitos, CA: IEEE
Computer Society Press, 2002. Cited on page 262.

NIEMELA, E. and LATVAKOSKI, J.: "Survey of Requirements and Solutions for Ubiqui-
tous Software." Proc. Third Int'l Conf. Mobile & Ubiq. Multimedia, (College Park, MY),
2004. pp. 71-78. Cited on page 25.

NOBLE, B., FLEIS, B., and KIM, M.: "A Case for fluid Replication." Proc. NetStore'99,
1999. Cited on page 30 I.

OBRACZKA, K.: "Multicast Transport Protocols: A Survey and Taxonomy." IEEE Com-
mun. Mag., (36)1:94-102, Jan. 1998. Cited on page 166.

656 READING LIST AND BIBLIOGRAPHY CHAP. 14

OMG: "The Common Object Request Broker: Core Specification, revision 3.0.3." OMG
Document formal/04-03-12, Object Management Group, Framingham, MA, Mar. 2004a.
Cited on pages 54, 454, 465, 477.

OMG: "UML 2.0 Superstructure Specification." OMG Document ptc/04-1O-02, Object
Management Group, Framingham, MA, Oct. 2004b. Cited on page 34.

OPPENHEIMER, D., ALBRECHT,J., PATTERSON,D., and VAHDAT, A.: "Design and
Implementation Tradeoffs for Wide-Area Resource Discovery." Proc. l-tth Int'l Symp. on
High Performance Distributed Computing, (Research Triangle Park, NC). Los Alamitos,
CA: IEEE Computer Society Press, 2005. Cited on page 224.

ORAM, A. (ed.): Peer-to-Peer: Harnessing the Power of Disruptive Technologies. Sebas-
topol, CA: O'Reilly & Associates, 2001. Cited on pages 15,625.

OZSU, T. and VALDURIEZ, P.: Principles of Distributed Database Systems. Upper Saddle
River, NJ: Prentice Hall, 2nd ed., 1999. Cited on pages 43, 298.

PAl, V., ARON, M., BANGA, G., SVENDSEN, M., DRUSCHEL, P., ZWAENEPOEL, W.,
and NAHUM, E.: "Locality-Aware Request Distribution in Cluster-Based Network
Servers." Proc. Eighth Int'l Con! Architectural Support for Programming Languages and
Operating Systems, (San Jose, CA). New York, NY: ACM Press, 1998. pp. 205-216.
Cited on page 94.

PANZIERI, F. and SHRIVASTAVA, S.: "Rajdoot: A Remote Procedure Call Mechanism
with Orphan Detection and Killing." IEEE Trans. Softw. Eng., (14)1:30-37, Jan. 1988.
Cited on page 342.

PARTRIDGE, c, MENDEZ, T., and MILLIKEN, W.: "Host Anycasting Service." RFC
1546, Nov. 1993. Cited on page 228.

PATE, S.: UNIX Filesystems: Evolution, Design, and Implementation. New York: John
Wiley, 2003. Cited on page 631.

PEASE, M., SHOSTAK, R., and LAMPORT, L.: "Reaching Agreement in the Presence of
Faults." J. ACM, (27)2:228-234, Apr. 1980. Cited on page 326.

PERKINS, C., HODSON, 0., and HARDMAN, V.: "A Survey of Packet Loss Recovery
Techniques for Streaming Audio." IEEE Network, (12)5:40-48, Sept. 1998. Cited on page
162.

PETERSON, L. and DAVIE, B.: Computer Networks, A Systems Approach. San Mateo,
CA: Morgan Kaufman, 3rd ed., 2003. Cited on page 626.

PETERSON, L., BAVIER, A., FIUCZYNSKI, M., MUIR, S:, and ROSCOE, T.: "Towards a
Comprehensive PlanetLab Architecture." Technical Report PDN-05-030, PlanetLab Con-
sortium, June 2005. Cited on page 99.

PFLEEGER, C.: Security in Computing. Upper Saddle River, NJ: Prentice Hall, 3rd ed.,
2003. Cited on pages 378, 394.

PICCO, G., BALZAROTTI, D.,. and COSTA, P.: "LighTS: A Lightweight, Customizable
Tuple Space Supporting Context-Aware Applications." Proc. Symp. Applied Computing,
(Santa Fe, NM). New York, NY: ACM Press, 2005. pp. 413-419. Cited on page 595.

SEC. 14.2 ALPHABETICAL BIBLIOGRAPHY 657

PIERRE, G. and VAN STEEN, M.: "Globule: A Collaborative Content Delivery Network."
IEEE Commun. Mag., (44)8, Aug. 1006. Cited on pages 54, 63.

PIERRE, G., VAN STEEN, M., and TANENBAUM, A.: "Dynamically Selecting Optimal
Distribution Strategies for Web Documents." IEEE Trans. Comp., (51)6:637-651, June
2002. Cited on page 64.

PIETZUCH, P. R. and BACON, J. M.: "Hermes: A Distributed Event-Based Middleware
Architecture." Proc. Workshop on Distributed Event-Based Systems, (Vienna, Austria).
Los Alamitos, CA: IEEE Computer Society Press, 2002. Cited on page 633.

PIKE, R., PRESOTTO, D., DORWARD, S., FLANDRENA, B., THOMPSON, K.,
TRICKEY, H., and WINTERBOTTOM, P.: "Plan 9 from Bell Labs." Computing Systems,
(8)3:221-254, Summer 1995. Cited on pages 197,505.

PINZARI, G.: "NX X Protocol Compression." Technical Report D-309/3-NXP-DOC,
NoMachine, Rome, Italy, Sept. 2003. Cited on page 84.

PITOURA, E. and SAMARAS, G.: "Locating Objects in Mobile Computing." IEEE Trans.
Know. Data Eng., (13)4:571-592, July2ool. Cited on pages 192,627.

PLAINFOSSE, D. and SHAPIRO, M.: "A Survey of Distributed Garbage Collection Tech-
niques." In Proc. Int'l Workshop Oll Memory Management, vol. 986 of Leet. Notes Compo
Sc., pp. 211-249. Berlin: Springer-Verlag, Sept. 1995. Cited on page 186.

PLUMMER, D.: "Ethernet Address Resolution Protocol." RFC 826, Nov. 1982. Cited on
page 183.

PODLING, S. and BOSZORMENYI, L.: "A Survey of Web Cache Replacement Stra-
tegies." ACM Comput. Surv., (35)4:374-398, Dec. 2003. Cited on pages 573, 632.

POPESCU, B., VAN STEEN, M., and TANENBAUM, A.: "A Security Architecture for
Object-Based Distributed Systems." Proc. 18th Ann. Computer Security Application
Conf, (Las Vegas, NA). ACSA, 2002. Cited on page 482.

POSTEL, J.: "Simple Mail Transfer Protocol." RFC 821, Aug. 1982. Cited on page 151.

POSTEL, J. and REYNOLDS, J.: "File Transfer Protocol." RFC 995, Oct. 1985. Cited on
page 122.

POTZL, H., ANDERSON, M., and STEINBRINK, B.: "Linux-VServer: Resource Efficient
Context Isolation." Free Software Magazine, no. 5, June 2005. Cited on page 103.

POUWELSE, J., GARBACKI, P., EPEMA, D., and SIPS, H.: "A Measurement Study of the
BitTorrent Peer-to-Peer File-Sharing System." Technical Report PDS-2004-003, Techni-
cal University Delft. Apr. 2004. Cited on page 53.

POUWELSE, J. A., GARBACKI, P., EPEMA, D. H. J., and SIPS, H. J.: "The Bittorrent P2P
File-Sharing System: Measurements and Analysis." Proc. Fourth Int'l Workshop on
Peer-to-Peer Systems, vol. 3640 of Lect. Notes Compo Sc., (Ithaca, NY). Berlin: Springer-
Verlag, 2005. pp. 205-216. Cited on page 527.

QIN, F., TUCEK, J., SUNDARESAN, J., and ZHOU, Y.: "Rx: Treating Bugs as Allergies -
A Safe Method to Survive Software Failures." Proc. 20th Symp. Operating System Princi-
ples, (Brighton, UK). New York, NY: ACM Press, 2005. pp. 235-248. Cited on page 372.

658 READING LIST AND BIBLIOGRAPHY CHAP. 14

QIU, L., PADMANABHAN. V., and VOELKER, G.: "On the Placement of Web Server
Replicas." Proc. 20th INFOCOM Conf., (Anchorage (AK». Los Alamitos, CA: IEEE
Computer Society Press, 2001. pp. 1587-1596. Cited on pages 296. '297.

RABINOVICH, M. and SPASTSCHECK, 0.: Web Caching and Replication. Reading, MA:
Addison-Wesley, 2002. Cited on pages 52, 570, 633.

RABINOVICH, M., RABINOVICH, I., RAJARAMAN, R., and AGGARWAL, A.: "A
Dynamic Object Replication and Migration Protocol for an Internet Hosting Service."
Proc. 19th Int'l Con): on Distributed Computing Systems. IEEE, 1999. pp. JOI-I13. Cited
on page 299.

RADIA, S.: Names, Contexts, and Closure Mechanisms in Distributed Computing Environ-
ments. Ph.D. Thesis, University of Waterloo, Ontario, 1989. Cited on page 198.

RADOSLAVOV, P., GOVINDAN, R., and ESTRIN, D.: "Topology-Informed Internet
Replica Placement." Proc. Sixth Web Caching Workshop, (Boston, MA). Amsterdam:
North-Holland, 2001. Cited on page 296.

RAFAELI, S. and HUTCHISON, D.: "A Survey of Key Management for Secure Group
Communication." ACM Comput. Surv., (35)3:309-329, Sept. 2003. Cited on page 631.

RAICIU, C. and ROSENBLUM, D.: "Enabling Confidentiality in Content-Based
Publish/Subscribe Infrastructures." Technical Report RN/05/30, Department of Computer
Science, University College London, 2005. Cited on page 619.

RAMANATHAN, P., SHIN, K., and BUTLER, R.: "Fault-Tolerant Clock Synchronization
in Distributed Systems." IEEE Computer, (23)10:33-42, Oct. 1990. Cited on page 238.

RAMASUBRAMANIAN, V. and SIRER, E. G.: "The Design and Implementation of a Next
Generation Name Service for the Internet." Proc. SIGCOMM, (Portland, OR). New York,
NY: ACM Press, 2004a. Cited on page 215.

RAMASUBRAMANIAN, V. and SIRER, E. G.: "Beehive: 0(1) Lookup Performance for
Power-Law Query Distributions in Peer-to-Peer Overlays." Proc. First Symp. Networked
Systems Design and Impl., (San Francisco, CA). Berkeley, CA: USENIX, 2004b. pp. 99-
112. Cited on pages 216, 527.

RATNASAMY, S., FRANCIS,P., HANDLEY, M., KARP, R., and SCHENKER, S.: "A Scal-
able Content-Addressable Network." Proc. SIGCOMM. ACM, 2001. pp. 161-p2. Cited
on page 45.

RAYNAL, M. and SINGHAL, M.: "Logical Time: Capturing Causality in Distributed Sys-
tems." IEEE Computer, (29)2:49-56, Feb. 1996. Cited on pages 246, 628.

REITER, M.: "How to Securely Replicate Services." ACM Trans. Prog. Lang. Syst.,
(16)3:986-1009, May 1994. Cited on pages 409.411.

REITER, M., BIRMAN, K., and VAN RENESSE. R.: "A Security Architecture for Fault-
Tolerant Systems." ACM Trans. Compo Syst., (12)4:340-371, Nov. 1994. Cited on page
433.

RESCORLA, E. and SCHIFFMAN, A.: "The Secure HyperText Transfer Protocol." RFC
2660, Aug. 1999. Cited on page 565.

SEC. 14.2 ALPHABETICAL BffiLIOGRAPHY 659

REYNOLDS, J. and POSTEL, J.: "Assigned Numbers." RFC 1700, Oct. 1994. Cited on
page 89.

RICART, G. and AGRAWALA, A.: "An Optimal Algorithm for Mutual Exclusion in Com-
puter Networks." Commun. ACM, (24)1:9-17, Jan. 1981. Cited on page 255.

RISSON, J. and MOORS, T.: "Survey of Research towards Robust Peer-to-Peer Networks:
Search Methods." CompoNetw., (50), 2006. Cited on pages 47, 226.

RIYEST, R.: "The MD5 Message Digest Algorithm." RFC 1321, Apr. 1992. Cited on
page 395.

RIVEST, R., SHAMIR, A., and ADLE.MAN,L.: "A Method for Obtaining Digital Signa-
tures and Public-key Cryptosystems." Commun. ACM, (21)2:120-126, Feb. 1978. Cited
on page 394. .

RIZZO, L.: "Effective Erasure Codes for Reliable Computer Communication Protocols."
ACJ1 Compo Commun. Rev., (27)2:24-36, Apr. 1997. Cited on page 364.

RODRIGUES, L., FONSECA, H., and VERISSIMO, P.: "Totally Ordered Multicast in
Large-Scale Systems." Proc. 16th Int'l Con! on Distributed Computing Systems. IEEE,
1996. pp. 503-510. Cited on page 311.

RODRIGUES, R. and LISKOV, B.: "High Availability in DHTs: Erasure Coding vs. Repli-
cation." Proc. Fourth Int'l Workshop on Peer-to-Peer Systems, (Ithaca, NY), 2005. Cited
on page 532.

RODRIGUEZ, P., SPANNER, C., and BIERSACK, E.: "Analysis of Web Caching Architec-
ture: Hierarchical and Distributed Caching." IEEE/ACM Trans. Netw., (21)4:404-418,
Aug. 2001. Cited on page 571.

ROSENBLUM, M. and GARFINKEL, T.: "Virtual Machine Monitors: Current Technology
and Future Trends." IEEE Computer, (38)5:39-47, May 2005. Cited on page 82.

ROUSSOS, G., MARSH, A. J., and MAGLAVERA, S.: "Enabling Pervasive Computing
with Smart Phones." IEEE Pervasive Comput., (4)2:20-26, Apr. 2005. Cited on page 25.

ROWSTRON, A.: "Run-time Systems for Coordination." In Omicini, A., Zambonelli, F.,
Klusch, M., and Tolksdorf, R. (eds.), Coordination of Internet Agents: Models, Technolo-
gies and Applications, pp. 78-96. Berlin: Springer-Verlag, 2001. Cited on page 607.

ROWSTRON, A. and DRUSCHEL, P.: "Pastry: Scalable, Distributed Object Location and
Routing for Large-Scale Peer-to-Peer Systems." Proc. Middleware 2001, vol. 2218 of
Lect. Notes Compo Sc. Berlin: Springer-Verlag, 2001. pp. 329-350. Cited on pages 167,
191,216.

ROWSTRON, A. and WRAY, S.: "A Run-Time System for WCL." In Bal, H., Belkhouche,
B., and Cardelli, L. (eds.), Internet Programming Languages, vol. 1686 of Lect. Notes
Compo Sc., pp. 78-96. Berlin: Springer-Verlag, 1998. Cited on page 610.

RUSSELLO, G., CHAUDRON, M., and VAN STEEN, M.: "Adapting Strategies for Distri-
buting Data in Shared Data Space." Proc. Int'l Symp. Distr. Objects & Appl. (DOA), vol.
3291 of Lect. Notes Compo Sc., (Agia Napa, Cyprus). Berlin: Springer-Verlag, 2004. pp.
1225-1242. Cited on pages 611, 612.

660 READING LIST AND BIBLIOGRAPHY CHAP. 14

RUSSELLO. G., CHAUDRON, M., VAN STEEN, M., and BOKHAROUSS. I.: "Dynamically
Adapting Tuple Replication for Managing Availability in a Shared Data Space." Sc.
Compo Programming, (63), 2006; Cited on pages 6] 1, 616.

SADJADI, S. and MCKINLEY, P.: "A Survey of Adaptive Middleware." Technical Report
MSU-CSE-03-35, Michigan State University, Computer Science and Engineering, Dec.
2003. Cited on page 55.

SAITO, Y. and SHAPIRO, M.: "Optimistic Replication." ACM Comput. Surv., (37)]:42-
81, Mar. 2005. Cited on page 628.

SALTZER, J. and SCHROEDER, M.: "The Protection of Information in Computer Sys-
tems." Proceedings of the IEEE, (63)9:1278-1308, Sept. 1975. Cited on page 416.

SALTZER, J.: "Naming and Binding Objects:' In Bayer, R.. Graham, R., and Seegmuller,
G. (eds.), Operating Systems: An Advanced Course, vol. 60 of Leet. Notes Compo Sc., pp.
99-208. Berlin: Springer-Verlag, 1978. Cited on page 627.

SALTZER, J., REED, D., and CLARK, D.: "End-to-End Arguments in System Design."
ACM Trans. Camp. Syst., (2)4:277-288, Nov.]984. Cited on page 252.

SANDHU, R. S., COYNE, E. J., FEINSTEIK H. 1.,., and YOUMAN, C. E.: "Role-Based
Access Control Models." IEEE Computer, (29)2:38-47, Feb. 1996. Cited on page 417.

SAROIU, S., GUMMADI, P. K., and GRIBBLE, S. D.: "Measuring and Analyzing the
Characteristics of Napster and Gnutella Hosts." A CM Multimedia Syst., (9)2: 170-184,
Aug. 2003. Cited on page 53.

SATYANARAYANAN,M.: "The Evolution of Coda." ACM Trans. Camp. Syst., (20)2:85-
124, May 2002. Cited on page 632.

SATYANARAYANAN, M. and SIEGEL. E.: "Parallel Communication in a Large Distri-
buted System." IEEE Trans. Comp., (39)3:328-348. Mar. 1990. Cited on page 505.

SAXENA, P. and RAI, J.: "A Survey of Permission-based Distributed Mutua] Exclusion
Algorithms." Computer Standards and Interfaces, (25)2:159-181, May 2003. Cited on
page 252.

SCHMIDT, D., STAL, M., ROHNERT. H., and BUSCHMANN, F.: Pattern-Oriented
Software Architecture - Patterns for Concurrent and Networked Objects. Nev.' York:
John Wiley, 2000. Cited on pages 55, 625.

SCHNEIDER, F.: "Implementing Fault- Tolerant Services Using the State Machine
Approach: A Tutorial." ACM Comput. SUn' .. (22)4:299-320, Dec. 1990. Cited on pages
248, 303, 480.

SCHNEIER, B.: Applied Cryptography. New York: John Wiley, 2nd ed., 1996. Cited on
pages 391. 411.

SCHNEIER, B.: Secrets and Lies. New York: John Wiley, 2000. Cited on pages 391, 630.

SCHULZRINNE, H.: "The tel URI for Telephone Numbers." RFC 3966, Jan. 2005. Cited
on page 569.

SCHULZRINNE, H., CASNER, S., FREDERICK, R.. and JACOBSON, V.: "RTP: A Trans-
port Protocol for Real-Time Applications." RFC 3550, July 2003. Cited on page] 21.

SEC. 14.2 ALPHABETICAL BmLIOGRAPHY 661

SEBESTA, R.: Programming the World Wide Web. Reading, MA: Addison-Wesley, 3rd
ed.,2oo6. Cited on pages 547, 633.

SHAPIRO, M., DICKMAN, P., and PLAINFOSSE, D.: "SSP Chains: Robust, Distributed
References Supporting Acyclic Garbage Collection." Technical Report 1799, INRIA,
Rocquencourt, France, Nov. 1992. Cited on page 184.

SHAW, M. and CLEMENTS, P.: "A Field Guide to Boxology: Preliminary Classification
of Architectural Styles for Software Systems." Proc. 21st Int'l Compo Softw. &
Appl. Conf.. 1997. pp. 6-13. Cited on page 34.

SHEPLER, S., CALLAGHAN, B., ROBINSON, D., THURLOW, R., BEAME, c.,
EISLER, M., and NOVECK, D.: "Network File System (NFS) Version 4 Protocol." RFC
3530, Apr. 2003. Cited on pages 201,492.

SHEm, A. P. and LARSON, J. A.: "Federated Database Systems for Managing Distri-
buted, Heterogeneous, and Autonomous Databases." A CM Comput. Surv., (22)3: 183-236,
Sept. 1990. Cited on page 299.

SHOOMAN, M. L.: Reliability of Computer Systems and Networks: Fault Tolerance,
Analysis, and Design. New York: John Wiley, 2002. Cited on page 322.

SILBERSCHATZ, A., GALVIN, P., and GAGi'Ii~,G.: Operating System Concepts. New
York: John Wiley, 7th ed., 2005. Cited on pages 197,624.

SINGH, A., CASTRO, M., DRUSCHEL, P., and ROWSTRON, A.: "Defending Against
Eclipse Attacks on Overlay Networks." Proc. 11th SIGOPS European Workshop, (Leu-
ven, Belgium). New York, NY: ACM Press, 2004. pp. 115-120. Cited on page 539.

SINGH, A., NGAN, T.-W., DRUSCHEL, P., and WALLACH, D. S.: "Eclipse Attacks on
Overlay Networks: Threats and Defenses." Proc. 25th INFOCOM Corf; (Barcelona,
Spain). Los Alamitos, CA: IEEE Computer Society Press, 2006. Cited on page 539.

SINGHAL, M. and SHIVARATRI, N.: Advanced Concepts in Operating Systems: Distri-
buted, Database, and Multiprocessor Operating Systems. New York: McGraw-Hill, 1994.
Cited on page 364.

SIVASUBRAMANIAN, S., PIERRE, G., and VAN STEEN, M.: "Replicating Web Applica-
tions On-Demand." Proc. First lnt'l Con! Services Comput., (Shanghai, China). Los
Alamitos, CA: IEEE Computer Society Press, 2004a. pp. 227-236. Cited on page 580.

SIVASUBRAMANIAN, S., PIERRE, G., VAN STEEN, M., and ALONSO, G.: "GlobeCBC:
Content-blind Result Caching for Dynamic Web Applications." Technical Report, Vrije
Universiteit, Department of Computer Science, Jan. 2006. Cited on page 582.

SIVASUBRAMANIAN, S., SZYMANIAK, M., PIERRE, G., and VAN STEEN, M.: "Replica-
tion for Web Hosting Systems." ACM Comput. Surv., (36)3:1-44, Sept. 2004b. Cited on
pages 299, 573, 629.

SIVASUBRAMANIAN, S., ALONSO, G., PIERRE, G., and VAN STEEN, M.: "GlobeDB:
Autonomic Data Replication for Web Applications." Proc. 14th Int'l WWW Conf), (Chiba,
Japan). New York, NY: ACM Press, 2005. pp. 33-42. Cited on page 581.

SIVRIKAYA, F. and YENER, B.: "Time Synchronization in Sensor Networks: A Survey."
IEEE Network, (18)4:45-50, July 2004. Cited on page 242.

662 READING LIST AND BIBLIOGRAPHY CHAP.]4

SKEEN, D.: "Nonblocking Commit Protocols." Proc. SIGMOD IIlt'I Conf. on Manage-
ment Of Data. ACM, 1981. pp. 133-142. Cited on page 359.

SKEEN, D. and STONEBRAKER, M.: "A Formal Model of Crash Recovery in a Distri-
buted System." IEEE Trans. Softw. Eng., (SE-9)3:219-228, Mar.]983. Cited on page
361.

SMITH, J. and NAIR, R.: "The Architecture of Virtual Machines." IEEE Computer,
(38)5:32-38, May 2005. Cited on pages 80, 81.

SMITH, J. and NAIR, R.: Virtual Machines: Versatile Platforms for Systems and
Processes. San Mateo, CA: Morgan Kaufman, 2005. Cited on page 625.

SNIR, M., OTTO, S., HUSS-LEDERMAN, S., WALKER, D., and DONGARRA, J.: MPI: The
Complete Reference - The MPI Core. Cambridge, MA: MIT Press. 1998. Cited on page
145.

SPEAKMAN, T., CROWCROFT, J., GEMMELL,J., FARINACCI, D., LI~, S.,
LESHCHINER, D., LUBY, M., MONTGOMERY, T., RIZZO, L., TWEEDLY, A.,
BHASKAR, N., EDMONSTONE, R., SUMANASEKERA, R., and VICISANO, L.: "PGM
Reliable Transport Protocol Specification." RFC 3208, Dec. 2001. Cited on page 6]4.

SPECHT, S. M. and LEE, R. B.: "Distributed Denial of Service: Taxonomies of Attacks,
Tools, and Countermeasures." Proc. Int'l Workshop on Security in Parallel and Distri-
buted Systems, (San Francisco, CA), 2004. pp. 543-550. Cited on page 427.

SPECTOR, A.: "Performing Remote Operations Efficiently on a Local Computer Net-
work." Commun. ACM, (25)4:246-260, Apr. 1982. Cited on page 339.

SRINIVASAN, R.: "RPC: Remote Procedure Call Protocol Specification Version 2." RFC
1831, Aug. 1995a. Cited on page 502.

SRINIVASAN, R.: "XDR: External Data Representation Standard;" RFC 1832, Aug.
1995b. Cited on page 502.

SRIPANIDKULCHAI, K., MAGGS, B., and ZIL-\.NG,H.: "Efficient Content Location
Using Interest-Based Locality in Peer-to-Peer Systems." Proc. 22nd INFOCOM Conf.,
(San Francisco, CA). Los Alamitos, CA: IEEE Computer Society Press, 2003. Cited on
page 225. .

STEIN, L.: Web Security, A Step-by-Step Reference Guide. Reading, MA: Addison-
Wesley, 1998. Cited on page 432.

STEINDER, M. and SETHI, A.: "A Survey of Fault Localization Techniques in Computer
Networks." Sc. Compo Programming, (53)165-194. May 2004. Cited on page 372.

STEINER, J., NEUMAN, C., and SCHILLER, J.: "Kerberos: An Authentication Service for
Open Network Systems." Proc. Winter Techn. Conf. USENIX, 1988. pp. 191-202. Cited
on page 411.

STEINMETZ, R.: "Human Perception of Jitter and Media Synchronization." IEEE
J. Selected Areas Commun., (14)1:61-72, Jan. 1996. Cited on page 163.

SEC. 14.2 ALPHABETICAL BIBLIOGRAPHY 663
STEINMETZ, R. and NAHRSTEDT, K.: Multimedia Systems. Berlin: Springer-Verlag.
2004. Cited on pages 93, 157, 160, 626.

STEVENS, W.: UNIX Network Programming - Networking APIs: Sockets and XTI.
Englewood Cliffs, NJ: Prentice Hall, 2nd ed., 1998. Cited on pages 76, 142.

STEVENS, W.: UNIX Network Programming - lnterprocess Communication. Englewood
Cliffs, NJ: Prentice Hall, 2nd ed., 1999. Cited on pages 70, 136.

STEVENS, W. and RAGO, S.: Advanced Programming in the UNIX Environment. Read-
ing, MA: Addison-Wesley, 2nd ed., 2005. Cited on pages 72, 626.

STOICA, I., MORRIS, R., LffiEN-NOWELL, D., KARGER, D. R., KAASHOEK, M. F.,
DABEK, F., and BALAKRISHNAN, H.: "Chord: A Scalable Peer-to-peer Lookup Protocol
for Internet Applications." IEEE/ACM Trans. Netw., (11)1:17-32, Feb. 2003. Cited on
pages 44, 188. .

STOJl\'IENOVIC, I.: "Position-based Routing in Ad Hoc Networks." IEEE Commun.
Mag., (40)7:128-134, July 2002. Cited on page 261.

STRAUSS, J., KATABI, D., and KAASHOEK, F.: "A Measurement Study of Available
Bandwidth Estimation Tools." Proc. Third Internet Measurement Conf, (Miami Beach,
FL, USA). New York, NY: ACM Press, 2003. pp. 39-44. Cited on page 575.

SUGERMAN, J., VENKITACHALAM, G., and LIM, B.-H.: "Virtualizing I/O Devices on
VMware Workstation s Hosted Virtual Machine Monitor." Proc. USENIX Ann.
Techn. Conf, (Boston, MA). Berkeley, CA: USENIX, 2001. pp. 1-14. Cited on page 81.

SUN MICROSYSTEMS: Java Message Service, Version 1.1. Sun Microsystems, Mountain
Ciew, Calif., Apr. 2004a. cited on pages 466, 593.

SUN MICROSYSTEMS: Java Remote Method Invocation Specification, JDK 1.5. Sun
Microsystems, Mountain View, Calif., 2004b. Cited on page 122.

SUN MICROSYSTEMS: EJB 3.0 Simplified API. Sun Microsystems, Mountain View,
Calif., Aug. 2005a. Cited on page 447.

SUN MICROSYSTEMS: Jini Technology Starter Kit, Version 2.1, Oct. 2oo5b. Cited on
pages 486, 593.

SUNDARARAMAN, B., BUY, U., and KSHEMKALYANI,A. D.: "Clock Synchronization
for Wireless Sensor Networks: A Survey." Ad-Hoc Networks, (3)3:281-323, May 2005.
Cited on page 242.

SZYMANIAK, M., PIERRE, G., and VAN STEEN, M.: "Scalable Cooperative Latency
Estimation." Proc. Tenth lnt'l Conf Parallel and Distributed Systems, (Newport Beach,
CA). Los Alamitos, CA: IEEE Computer Society Press, 2004. pp. 367-376. Cited on page
263.

SZYMANIAK, M., PIERRE, G., and VAN STEEN, M.: "A Single-Homed Ad hoc Distri-
buted Server." Technical Report IR-CS-013, Vrije Universiteit, Department of Computer
Science, Mar. 2005. Cited on page 96.

SZYMANIAK, M., PIERRE, G., and VAN STEEN, M.: "Latency-driven replica place-
ment." IPSJ Digital Courier, (2), 2006. Cited on page 297.

664 READING LIST AND BIBLIOGRAPHY CHAP. 14

TAIANI, F., .~ABRE,J.-C., and KILLUIAN, M.-O.: "A Multi-Level Meta-Object Protocol
for Fault-Tolerance in Complex Architectures." Proc. Int'l Conf. Dependable Systems and
Networks, (Yokohama, Japan). Los Alamitos, CA: IEEE Computer Society Press, 2005.
pp.270-279. Cited on page 474.

TAM, D., AZIMI, R., and JACOBSEN, H.-A.: "Building Content-Based Publish/Subscribe
Systems with Distributed Hash Tables." Proc. First Int'I Workshop on Databases, Infor-
mation Systems and Peer-to-Peer Computing, vol. 2944 of Lect. Notes Compo Sc., (Berlin,
Germany). Berlin: Springer-Verlag, 2003. pp. 138-152. Cited on page 597.

TAN, S.-W., WATERS, G., and CRAWFORD,J.: "A Survey and Performance Evaluation
of Scalable Tree-based Application Layer Multicast Protocols." Technical Report 9-03,
University of Kent, UK, July 2003. Cited on page 169.

TANENBAUM, A.: Computer Networks. Upper Saddle River, NJ: Prentice Hall, 4th ed.,
2003. Cited on pages 117, 336.

TANENBAUM, A., MULLENDER, S., and VAN RENESSE, R.: "Using Sparse Capabilities
in a Distributed Operating System." Proc. Sixth Int'l Conf. on Distributed Computing Sys-
tems. IEEE, 1986. pp. 558-563. Cited on page 435.

TANENBAUM, A., VAN RENESSE, R., VAN STAVEREN, H., SHARP, G., MULLEI\'DER,
S., JANSEN, J., and VAN ROSSUM, G.: "Experiences with the Amoeba Distributed
Operating System." Commun. ACM, (33)12:46-63, Dec. 1990. Cited on page 415.

TANENBAUM, A. and WOODHULL, A.: Operating Systems, Design and Implementation.
Englewood Cliffs, NJ: Prentice Hall, 3rd ed., 2006. Cited on pages 197,495.

TANISCH, P.: "Atomic Commit in Concurrent Computing." IEEE Concurrency, (8)4:34-
41, Oct. 2000. Cited on page 355.

TARTALJA, I. and MILUTINOVIC, V.: "Classifying Software-Based Cache Coherence
Solutions." IEEE Softw., (14)3:90-101, May 1997. Cited on page 313.

TEL, G.: Introduction to Distributed Algorithms. Cambridge, UK: Cambridge University
Press, 2nd ed., 2000. Cited on pages 232,263,628.

TERRY, D., DEMERS, A., PETERSEN, K., SPREITZER, M., THElMER, M., and
WELSH, B.: "Session Guarantees for Weakly Consistent Replicated Data." Proc. Third
Int'l Conf. on Parallel and Distributed Information Systems, (Austin, TX). Los Alamitos,
CA: IEEE Computer Society Press, 1994. pp. 140-149. Cited on pages 290, 293, 295.

TERRY, D., PETERSEN, K., SPREITZER, M., and THEIMER, M.: "The Case for Non-
transparent Replication: Examples from Bayou." IEEE Data Engineering, (21)4:12-20.
Dec. 1998. Cited on page 290. -

mOMAS, R.: "A Majority Consensus Approach to Concurrency Control for Multiple
Copy Databases." ACM Trans. Database Syst., (4)2:180-209, June 1979. Cited on page
311.

TIBCO: TIB/Rendezvous Concepts, Release 7.4. TIBCO Software Inc., Palo Alto. CA,
July 2005. Cited on pages 54, 595.

TOLIA, N., HARKES, J., KOZUCH, M., and SATYANARAYAN, M.: "Integrating Portable
and Distributed Storage." Proc. Third USENIX Conf. File and Storage Techn., (Boston.
MA). Berkeley, CA: USENIX, 2004. Cited on page 523.

SEC. 14.2 ALPHABETICAL BIBLIOGRAPHY 665

TOLKSDORF, R. and ROWSTRON, A.: "Evaluating Fault Tolerance Methods for Large-
scale Linda-like systems." Proc. Int'l Con! on Parallel and Distributed Processing Tech-
niques and Applications, vol. 2, (Las Vegas, NV), 2000. pp. 793-800. Cited on page 616.

TOWSLEY, D., KUROSE, J., and PINGALI, S.: "A Comparison of Sender-Initiated and
Receiver-Initiated Reliable Multicast Protocols." IEEE J. Selected Areas Commun.,
(15)3:398-407, Apr. 1997. Cited on page 345.

TRIPATHI, A., KARNIK, N., VORA, M., AHMED, T., and SINGH, R.: "Mobile Agent Pro-
gramming in Ajanta." Proc. 19th Int'l Can! on Distributed Computing Systems. IEEE,
1999. pp. 190-197. Cited on page 422.

TUREK, J. and SHASHA, S.: "The Many Faces of Consensus in Distributed Systems."
IEEE Computer, (25)6:8-17, June 1992. Cited on pages 332, 335.

UMAR, A.: Object-Oriented Client/Server Internet Environments. Upper Saddle River,
NJ: Prentice Hall, 1997. Cited on page 41.

UPnP Forum: "UPnP Device Architecture Version 1.0.1, Dec. 2003. Cited on page 26.

VAN RENESSE, R., BIRMAN, K., and VOGELS, W.: "Astrolabe: A Robust and Scalable
Technology for Distributed System Monitoring, Management, and Data Mining." ACM
Trans. Compo Syst., (21)2:164-206, May 2003. Cited on page 61.

VAN STEEN, M., HAUCK, F., HOMBURG, P., and TANENBAUM, A.: "Locating Objects
in Wide-Area Systems." IEEE Commun., (36)1:104-109, Jan. 1998. Cited on page 192.

VASUDEVAN, S., KUROSE, J. F., and TOWSLEY, D. F.: "Design and Analysis of a
Leader Election Algorithm for Mobile Ad Hoc Networks." Proc. 12th Int'l Conf. on Net-
work Protocols, (Berlin, Germany). Los Alamitos, CA: IEEE Computer Society Press,
2004. pp. 350-360. Cited on pages 267,268.

VEIGA, L. and FERREIRA, P.: "Asynchronous Complete Distributed Garbage Collec-
tion." Proc. 19th Int'l Parallel & Distributed Processing Symp., (Denver, CO). Los Alam-
itos, CA: IEEE Computer Society Press, 2005. Cited on page 186.

VELAZQUEZ, M.: "A Survey of Distributed Mutual Exclusion Algorithms." Technical
Report CS-93-116, University of Colorado at Boulder, Sept. 1993. Cited on page 252.

VERISSIMO, P. and RODRIGUES, L.: Distributed Systems for Systems Architects. Dor-
drecht, The Netherlands: Kluwer Academic Publishers, 2001. Cited on page 624.

VETTER, R., SPELL, C., and WARD, C.: "Mosaic and the World-Wide Web." IEEE Com-
puter, (27)10:49-57, Oct. 1994. Cited on page 545.

VITEK, J., BRYCE, c., and ORIOL, M.: "Coordinating Processes with Secure Spaces." Sc.
Compo Programming, (46)1-2,2003. Cited on page 620.

VOGELS, W.: "Tracking Service Availability in Long Running Business Activities."
Proc. First Int'l Conf. Service Oriented Comput., vol. 2910 of Lect. Notes Camp. Sc.,
(Trento, Italy). Berlin: Springer-Verlag, 2003. pp.395-408. Cited on page 336.

VOULGARIS, S. and VAN STEEN, M.: "Epidemic-style Management of Semantic Over-
lays for Content-Based Searching." Proc. 11th lnt'l Conf. Parallel and Distributed Com-
puting (Euro-Par), vol. 3648 of Lect. Notes Camp. Sc., (Lisbon, Portugal). Berlin:
Springer-Verlag, 2005. pp. 1143-1152. Cited on page 226.

666 READING LIST AND BIBLIOGRAPHY CHAP. 14

VOULGARIS, S.• RIVfERE, E., KERMARREC, A.-M., and VAN STEEN, M.: "Sub-2-Sub:
Self-Organizing Content-Based Publish and Subscribe for Dynamic and Large Scale Col-
laborative Networks." Proc. Fifth Inn Workshop on Peer-to-Peer Systems, (Santa Bar-
bara, CA), 2006. Cited on page 597.

VOYDOCK, V. and KENT, S.: "Security Mechanisms in High-Level Network Protocols."
ACM Comput. Surv., (15)2:135-171, June 1983. Cited on page 397.

WAH, B. W., SUoX., and LIN, D.: "A Survey of Error-Concealment Schemes for Real-
Time Audio and Video Transmissions over the Internet." Proc. Int'l Symp. Multimedia
Softw. Eng., (Taipei, Taiwan). Los Alamitos, CA: IEEE Computer Society Press, 2000. pp.
17-24. Cited on page 162.

WAHBE, R., LUCCO, S., ANDERSON, T., and GRAHAM,~S.: "Efficient Software-based
Fault Isolation." Proc. 14th Symp. Operating System Prt1iciples. ACM, 1993. pp. 203-
216. Cited on page 422.

WALDO, J.: "Remote Procedure Calls and Java Remote Method Invocation." IEEE Con-
currency, (6)3:5-7, July 1998. Cited on page 463.

WALFISH, M., BALAKRISHNAN, H., , and SHENKER, S.: "Untangling the Web from
DNS." Proc. First Symp. Networked Systems Design and Imp!., (San Francisco, CA). '
Berkeley, CA: USENIX, 2004. pp. 225-238. Cited on page 215.

WALLACH, D.: "A Survey of Peer-to-Peer Security Issues." Proc. Int'l Symp. Softw.
Security, vol. 2609 of Lect. Notes Compo Sc., (Tokyo, Japan). Berlin: Springer-Verlag,
2002. pp. 42-57. Cited on page 539.

WALLACH, D., BALFANZ, D., DEAN, D., and FELTEN, E.: "Extensible Security Archi-
tectures for Java." Proc. 16th Symp. Operating System Principles. ACM, 1997. pp. 116-
128. Cited on pages 424, 426.

WANG, C., CARZANIGA, A., EVANS, D., and WOLF, A. L.: "Security Issues and Require-
ments for Internet-Scale Publish-Subscribe Systems." Proc. 35th Hawaii Int'l Conf Sys-
tem Sciences, vol. 9. IEEE, 2002. pp. 303-310. Cited on page 618.

WANG, H., LO, M. K., and WANG, C.: "Consumer Privacy Concerns about Internet Mark-
eting." Commun. ACM, (41)3:63-70, Mar. 1998. Cited on page 4.

WATTS, D. J.: Small Worlds, The Dynamics of Networks between Order and Randomness.
Princeton, NJ: Princeton University Press, 1999. Cited on page 226. .

WELLS, G., CHALMERS, A., and CLAYTON, P.: "Linda Implementations in Java for
Concurrent Systems." Cone. & Comput.: Prac. Exp., (16)10:1005-1022, Aug. 2004.
Cited on page 633.

WESSELS, D.: Squid: The Definitive Guide. Sebastopol, CA: O'Reilly & Associates,
2004. Cited on pages 556, 572.

WHITE, S. R., HANSON, J. E., WHALLEY, I., CHESS, D. M., , and KEPHART, J. 0.: "An
Architectural Approach to Autonomic Computing." Proc. First Int'l Conf. Autonomic
Comput. , (New York, NY). Los Alamitos, CA: IEEE Computer Society Press, 2004. pp.
2-9. Cited on page 625.

WIERINGA, R. and DE JONGE, W.: "Object Identifiers, Keys, and Surrogates-Object
Identifiers Revisited." Theory and Practice of Object Systems, (1)2:101-114, 1995. Cited
on page 181.

SEC. 14.2 ALPHABETICAL BIBLIOGRAPHY 667
WIESMANN, M., PEDONE, F., SCHIPER, A., KEMME, B., and ALONSO, G.: "Under-
standing Replication in Databases and Distributed Systems." Proc. 20th Int'l Conf. on
Distributed Computing Systems. IEEE, 2000. pp. 264-274. Cited on page 276.

WOLLRA TH, A., RIGGS, R., and WALDO, J.: "A Distributed Object Model for the Java
System." Computing Systems, (9)4:265-290, Fall 1996. Cited on pages 460,472.

WOLMAN, A., VOELKER, G., SHARMA, N., CARDWELL, N., KARLIN, A., and
LEVY, H.: "On the Scale and Performance of Cooperative Web Proxy Caching." Proc.
17th Symp. Operating System Principles. ACM, 1999. pp. 16-31. Cited on page 571.

WU, D., HOU, Y., ZHU, W., ZHANG, Y., and PEHA, J.: "Streaming Video over the Inter-
net: Approaches and Directions." IEEE Trans. Circuits & Syst. Video Techn., (11)1:1-20,
Feb. 2001. Cited on page 159.

YANG, B. and GARCIA-MOLINA, H.: "Designing a Super-Peer Network." Proc. 19th
Int'l Con! Data Engineering, (Bangalore, India). Los Alamitos, CA: IEEE Computer
Society Press, 2003. pp. 49-60. Cited on page 51.

YANG, M., ZHANG, Z., LI, X., and DAI, Y.: "An Empirical Study of Free-Riding Behavior
in the Maze P2P File-Sharing System." Proc. Fourth Int'l Workshop on Peer-to-Peer Sys-
tems, Lect. Notes Compo Sc., (Ithaca, NY). Berlin: Springer-Verlag, 2005. Cited on page
53.

YELLIN, D.: "Competitive Algorithms for the Dynamic Selection of Component Imple-
mentations." IBM Syst. J., (42)1:85-97, Jan. 2003. Citedon page 58.

YU, H. and VAHDAT, A.: "Efficient Numerical Error Bounding for Replicated Network
Services." In Abbadi, Amr El, Brodie, Michael L., Chakravarthy, Sharma, Dayal,
Umeshwar, Kamel, Nabil, Schlageter, Gunter, and Whang, Kyu- Young (eds.), Proc.26th
Int'l Con! Very Large Data Bases, (Cairo, Egypt). San Mateo, CA: Morgan Kaufman,
2000. pp. 123-133. Cited on page 306.

YU, H. and VAHDAT, A.: "Design and Evaluation of a Conit-Based Continuous Con-
sistency Model for Replicated Services." ACM Trans. Compo Syst., (20)3:239-282, 2002.
Cited on pages 277, 279,575.

ZHANG, C. and JACOBSEN, H.-A.: "Resolving Feature Convolution in Middleware Sys-
tems." Proc. 19th OOPSLA, (Vancouver, Canada). New York, NY: ACM Press, 2004. pp.
188-205. Cited on page 58.

ZHAO, B., HUANG, L., STRIBLING, J., RHEA, S., JOSEPH, A., and KUBIATOWICZ, J.:
"Tapestry: A Resilient Global-Scale Overlay for Service Deployment." IEEE J. Selected
Areas Commun., (22)1:41-53, Jan. 2004. Cited on page 216.

ZHAO, F. and GUIBAS, L.: Wireless Sensor Networks. San Mateo, CA: Morgan Kaufman,
2004. Cited on pages 28, 624.

ZHAO, Y., STURMAN, D., and BHOLA, S.: "Subscription Propagation in Highly-Available
Publish/Subscribe Middleware." Proc. Middleware 2004, vol. 3231 of Lect. Notes Compo
Sc., (Toronto, Canada). Berlin: Springer-Verlag, 2004. pp. 274-293. Cited on page 633.

ZHU, Q., CHEN, Z., TAN, L., ZHOU, Y., KEETON, K., and WILKES, J.: "Hibernator:
Helping Disk Arrays Sleep through the Winter." Proc. 20th Symp. Operating System
Prin., (Brighton, UK). New York, NY: ACM Press, 2005. pp. 177-190. Cited on page 632.

668 READING LIST AND BIBLIOGRAPHY CHAP. 14

ZHUANG, S. Q., GEELS. D.• STOICA. I., and KATZ, R. H.: "On Failure Detection Algo-
rithms in Overlay Networks." Proc. 24th INFOCOM Conf., (Miami, FL). Los Alamitos,
CA: IEEE Computer Society Press, 2005. Cited on page 335.

ZOGG,J.-M.: "GPS Basics." Technical Report GPS-X-02007, UBlox, Mar. 2002. Cited
on page 236.

ZWICKY, E., COOPER, S., CHAPMAN, D., and RUSSELL, D.: Building Internet Firewalls.
Sebastopol, CA: O'Reilly & Associates, 2nd ed., 2000. Cited on page 418.

INDEX

A

Absolute path name, 196
Access control, 413-428

NFS, 535-536
Access control list, 415
Access control matrix, 415-416
Access point, 180
Access right, 414
Access transparency, 5
Accessible volume storage group, Coda, 524
ACID (see Atomic Consistent Isolated

Durable properties)
ACL (see Access Control List)
Activation policy, 453
Active goal, 616
Active replication, 303, 311
Adapter, object, 446, 453-454
Adaptive redirection policy, 579
Adaptive software, 57-58
Address, 180-182
Address identifier, 469
Address resolution protocol, 183

Administrational layer, 203
Agent, mobile, 420-422
Agreement, Byzantine, 332-335
Agreement in faulty systems, 331-335
Akamai,579
Alias, 199
Anti-entropy model, 171
Apache, 556-558
Apache portable runtime, 556-557
API (see Application Programming Interface)
Append-only log, 421
Application layer, 118, 122
Application layering, 38-40
Application-level gateway, 419
Application-level multicasting, 166-170
Application programming interface, 81
APR (see Apache Portable Runtime)
Arbitrary failure, 325
Architectural style, 34-36
Architecture, 33-67,54-59

centralized, 36-43
client-server, 491-496
data-centered, 35

669

670
Architecture (continued)

decentralized, 43-51
distributed file systems, 491-500
event-based, 35
hybrid, 52-54
multitiered, 41-43,549-551
object-based systems, 443-451
peer-to-peer, 596-599
publish/subscribe, 35
referentially decoupled, 35
software, 33
symmetric, 499-500
system, 33,36-54
traditional, 593-596
virtual machine, 80-82
Web-based system, 546-554

AS (see Authentication Server)
AS (see Autonomous System)
Aspect-oriented software development, 57
Assured forwarding, 161
Astrolabe, 61-63
Asymmetric cryptosystem, 390
Asynchronous communication, 12, 125
Asynchronous method invocation, 464
Asynchronous RPC, 134-135
Asynchronous system, 332
Asynchronous transmission mode, 158
At-least-once semantics, 339
At-most-once operation, 140,339
Atomic consistent isolated durable

property, 21-23
Atomic multicast, 331, 348-355
Atomic transaction, 21
Atomicity, 122
Attack, security, 389-391
Attribute. 592
Attribute-based naming, 217-226
Attribute certificate, 435-437
Attribute certification authority, 437
Attribute-value tree, 223
Auditing, 379, 380
Authentication, 379-380, 397-405, 411-412,

486-487,532-534,536-539
decentralized, 536-539
using a key distribution center, 400-404
using a public key. 404-405

INDEX

Authentication (coutinucdi
using a shared secret, 398-400
using Needham-Schroeder, 401-404

Authentication proxy. 486
Authentication server. 412
Authorization, 122.377,380,414,434-439
Authorization management. 434-435
Automounter, 510-512
Autonomic computing. 60
Autonomic system, 34
Autonomous system. 296
Availability, 203-205, 322 531-532, 616-617
AVSG (see Accessi ble Volume Storage GroUT
AVTree (see Attribute-Value Tree)

B

Backward recovery, 363
BAN (see Body Area Network)
Banner ad, 573
BAR fault tolerance, 335
Berkeley clock algorithm, 241-242
Berkeley sockets, 141-142
BFT (see Byzantine Fault Tolerance)
Big endian format, 131
Binding, 66, 137,456-458,566

object, 444,456-458
object, explicit, 457
object, implicit, 457

Binding by identifier, 108
Binding by type, 108
Binding by value, 108
BitTorrent, 53-54
Blocking commit protocol, 359
Body area network, 27
Broker. 54
Browser, 547
Bully algorithm, 264
Byte code verifier, 423
Byzantine agreement problem, 332
Byzantine failure, 325, 529-531
Byzantine fault tolerance, 583-584

c
Cache, 15,301

client-side, 520-524
Coda, 522-523
NFS, 520-522
portable devices, 523-524
Web, 571-573

Cache-coherence protocol, 313-314
Cache hit, 301
Call-by -copy/restore, 127
Call-by-reference, 127
Call-by-value, 127
Callback break, 522
Callback model, 464
Callback promise, 522
CAN (see Content Addressable Network)
Canonical name, 211
Capability, 415, 435-437
Care-of address, 96, 186
Causal consistency, 284-286
Causality, 249
Causally-ordered multicasting, 250-251
CDN (see Content Delivery Network)
Centralized system, 2
Certificate, 172, 417, 430, 432,

437-439,482-483
Certificate lifetime, 432
Certificate revocation list, 432
Certification authority, 430
Certified message delivery, 615
CGI (see Common Gateway Interface)
Challenge-response protocol, 398
Channel control function, 157
Checkpoint, 363
Checkpointing,366-369

coordinated, 369
independent, 367-368

Checksum, 119
Chunk server, 497
Ciphertext, 389
Class, object, 445
Class loader, Java. 423
Client, 11, 20, 37, 82-88

thin, 84-86
Web, 554-556

INDEX 671

Client-based protocol, 303
Client-centric consistency, 288-295
Client class, 462-463
Client interface, 66
Client-server architectures, 491-496
Client-server communication, 125-140,

336-339, 493
Client-side caching, 520-524
Client stub, 128-129
Clock skew, 233
Clock synchronization, 232-244

wireless, 242-244
Clock tick, 233
Closure mechanism, 198-199
Cluster, server, 92-98

Web server, 558-560
Cluster-based file systems, 496-499
Cluster computing, 17-18
Cluster management, 98-103
CoA (see Care-of Address)
Coda

file caching, 522-523
file sharing, 518-519
server replication, 524-526

Coda version vector, 525
Code migration, 103-112
Code-signing, 425
Coherence detection strategy, 313
Coherence enforcement strategy, 314
Collaborative distributed system, 53-54
Collaborative storage, 540-541
Common gateway interface, 549-550
Communication, 115-174

file system, 502-506
fundamentals, 116-125
message-oriented, 140-157
multicast, 166-174
Plan 9, 505-506
publish/subscribe, 613-616
reliable, 336-342
RPC, 125-140
stream-oriented. 157-166
using objects, 456-466
Web, 560-567

Communication subobject, Globe, 450
Complex service, 553

672
Complex stream, I59
Component, 34
Component repair, 65-66
Composite local object, 450
Composite service, 553
Composition, 603
Compound document, 86-87
Compound procedure, 502
Concurrency transparency, 6
Concurrent events, 245
Concurrent operations, 285
Concurrent server, 89
Confidential group communication, 408-409
Confidentiality, 378
Con it, 278-281
Connection oriented, 117
Connectionless protocol, 117
Connector, 34
Consistency, 15

file system, 519-529
object-based systems, 472-477
Web, 570-582

Consistency and replication, 273-318
Consistency model, 276-295, 288

client-centric consistency, 288-295,315-317
data-centric, 276-288
Eventual consistency, 289-291
monotonic-read consistency, 291-292
monotonic-write consistent, 292-293
read- your-writes consistency, 294-295
sequential consistency, 281-288
writes-follow-read, 295

Consistency protocol, 306-317
Consistency vs. coherence, 288
Contact address, 96, 469
Content addressable network, 46
Content-aware cache, 581
Content-aware request distribution, 559
Content-based routing, 601
Content-blind caching, 582
Content delivery network, 511, 556, 573-579
Content distribution, 302-305
Content-hash block. 499
Continuous consistency, 278, 306-308
Continuous media, 158-160
Control subobject, Globe, 451

INDEX

Conversational exchange style. 566
Cookie, 92
Cooperative caching, 571-573
Coordinated checkpointing, 369
Coordination-based system, 589-621

architecture, 591-601
communication, 601-604
consistency and replication, 607-613
fault tolerance, 613-167
introduction, 589-591
naming, 604-607
security, 617-620

Coordination model, 589-59 J
Coordination protocol, 553
CORBA,464

fault tolerance, 477-479
naming, 467-468

Counter, 233
Crash failure, 324
CRL (see Certificate Revocation List)
Cryptography, 389-396

DES, 391-394
RSA,394-395

D

Data-centered architecture, 35
Data encryption standard, 392-394
Data link layer, 118-119
Data store, 277
Data stream, 158
DeE (see Distributed Computing Environment -
DDoS (see Distributed Denial of Service attack
Deadlock, 252
Death certificate, 173
Decentralized architecture, 43-51
Decentralized authentication, 536-539
Decision support system, 40
Decryption, 389
Deferred synchronous RPC, 134
Delegation, 437-439
Denial-of-service attack, 427-428
Dependable system, 322
DES (see Data Encryption Standard)

INDEX

Destination queue, 147
DHash,499
DHT (see Distributed Hash Table)
DIB (see Directory Information Base)
Differentiated service, 161
Diffie-Hellman key exchange, 429-430
Digital signature, 405-407
Direct coordination, 590
Directional gossiping, 172
Directory information base, 219
Directory information tree, 220
Directory node, 195
Directory service, 136,217-218
Directory service agent, 221
Directory table, 196
Directory user agent, 221
Disconnected operation, 524
Discrete media, 158
Dispatcher, 77
Distributed caching, 571-573
Distributed commit, 355-363
Distributed computing environment,

135-140,463
daemon, 139

Distributed computing systems, 17-20
Distributed denial of service attack, 427-428
Distributed event detector, 606
Distributed file service, 136
Distributed file system, 491-541
Distributed hash table, 44, 188-191,222-225

secure, 539-540
Distributed information system, 20-24
Distributed object, 444-446

compile-time, 445-446
run-time, 445-446

Distributed pervasive systems, 24-30
Distributed server, 95
Distributed shared object, 449

Globe, 449-451
Distributed snapshot, 366
Distributed system, 2

collaborative, 53-54
communication, 115-176
consistency and replication, 273-318
definition, 2
fault tolerance, 321-374

673

Distributed system (continued)
file systems, 491-543
goals, 3-16
home, 26-27
naming, 179-228
object-based systems, 443-487
pervasive, 24-26
pitfalls, 16
processes 69-113
security, 377-439
synchronization, 231-271
thread, 75-79
types, 17-30
virtualization, 79-80
Web-based, 545-586

Distributed time service, 136
Distributed transaction, 20
Distribution, 13
Distribution transparency, 4-7, 87-88
DIT (see Directory Information Tree)
DNS (see Domain Name System)
Domain, 14, 192,210
Domain name, 210
Domain name system, 10,96,209-217

implementation, 212-217
name space, 210-212

Domino effect, 367
Drag-and-drop, 86
DSA (see Directory Service Agent)
DUA (see Directory User Agent)
Durable, 22
Dynamic invocation, 459

E
EAI (see Enterprise Application Integration)
Eclipse attack, 540
Edge server system, 52
EJB (see Enterprise Java Bean)
Election algorithm, 263-270

bully, 264-266
large-scale, 269-270
ring, 266-267
wireless, 267-269

Embedded document, 548

674 INDEX

Encryption, 379, 389
End point, 89, 139
End-to-end argument, 252
Enterprise application integration, 20-23. 151
Enterprise Java bean, 446-448
Entity bean, 448
Entry consistency, 287,472-475
Epidemic protocol, 170
Erasure coding, 531
Erasure correction, 364
Error. 323
Event, 593, 604
Event-based architecture, 35
Eventual consistency, 289-291
Exactly-once semantics, 339
Exception, 338
Expedited forwarding, 161
Expiration, orphan, 342
Explicit binding, 457
Exporting files, NFS, 506-509
Extensible markup language, 548
Extensible system, 8

F

Fail-safe fault, 326
Fail-silent system, 326
Fail-stop failure, 326
Failure, Byzantine, 325-326, 529-531

remote procedure call, 337-342
Failure detection, 335-336
Failure masking, 326-328
Failure model, 324-326
Failure transparent system, 6
Fastened resource, 108
Fat client, 42
Fault, 322
Fault tolerance, 321-374

basic concepts, 322-328
client-server communication, 336-342
CORBA,477-479
distributed commit, 355-363
file system, 529-532

Fault tolerance (continued)
group communication, 343-355
introduction, 322-328
Java, 480-481
object-based systems, 477-481
process resilence, 328-336
recovery, 363-373
Web, 582-584

FEC (see Forward EITor Correction)
Feedback analysis component, 61
Feedback control, 345-348
Feedback control loop, 60
Feedback control system, 60-61
Feedback suppression, 345
File handle, 494

NFS, 509-510
File locking, 516-518
File server, 6, 77-78,201,324,387,492
File sharing, Coda, 518-519
File sharing semantics, 513-516

session, 515
UNIX, 514

File-striping technique, 496
File system, cluster-based, 496-499

distributed, 494,496
symmetric, 499-500

File system communication, 502-506
File system consistency, 519-529
File system failures, Byzantine, 529-531
File system fault tolerance, 529-532
File system naming, 506-513
File system processes, 501
File system replication, 519-529
File system security, 532-541
File system synchronization, 513-519
File transfer protocol, 122
Finger table, 188
Firewall, 418-420
Fixed resource, 108
Flash crowd, 297, 576
Flash-crowd predictor, 576
Flat group, 329
Flat naming, 182-195
Flush message, 354
Forward error correction, 162
Forward recovery, 363-365

INDEX

Forwarder, 167
Forwarding pointer, 184
Frame, 119

NM,481
Frequency, clock, 239
FrP (see File Transfer Protocol)

G

Gateway, application level, 419
packet-filtering, 419
proxy, 420

Generative communication, 591
Gentle reincarnation, 342
Geographical scalability, 15
Geometric overlay network, 260
GFS (see Google File System)
Global layer, 203
Global name, 196
Global name space, 512-513
Global positioning system, 236-238
Globe, 448-451
Globe location service, 191-195
Globe object model, 449-451
Globe object reference, 469-470
Globe security, 482-485
Globe shared object, 448-451
Globe subobjects, 450-451
Globule 63-65
Globus, 380-384
GNS (see Global Name Space Service)
Google file system, 497
Gossip-based communication, 170-174
Gossiping, 63
GPS (see Global Positioning System)
Grandorphan, 342
Grid computing, 17-20
Group, flat, 329

hierarchical, 329
object, 477
protection, 417

Group communication, confidential, 408-409
reliable, 343-355
secure, 408-411

675

Group management, secure, 433-434
Group membership, 329-330
Group server. 329
Group view, 349
Groupware, 4

H

Happens-before relationship, 244, 340
Hard link, 199
Hash function, 391, 395-396
Header, message, 117
Health care systems, 27-28
Heartbeat message, 616
Helper application, 167,547
Hierarchical cache, 571
Hierarchical group, 329
High availability in peer-to-peer systems, 531-532
HoA (see Home Address)
Holding register, 233
Home address, 96
Home agent, 96, 186
Home-based. naming, 186-187
Home location, 186
Home network, 96
Hook, Apache, 557
Horizontal distribution, 44
HTML (see HyperText Markup Language)
HTTP (see Hypertext Transfer Protocol)
Human-friendly name, 182
Hybrid architecture, 52-54
Hyperlink,554-555
Hypertext markup language, 548
Hypertext transfer protocol, 122,547,560-561

messages, 563-565
methods, 562-563

I

Ice, 454-456
Idempotent operation, 37, 140,341
Identifier, 180-182

676

IDL (see Interface Definition Language)
IIOP (see Internet Inter-ORB Protocol)
Implementation handle, object, 458
Implicit binding, 456
In-network data processing, 28-29
In-place editing, 86
Incremental snapshot, 369
Indegree, 49
Independent checkpointing, 368
Infected node. 170
Information confidentiality, 618
Instance address, 470
Integrity, 378

message, 405-408
Interceptor, 55-57
Interface, 8

object, 444
Interface definition language, 8, 134, 137
Intermittent fault, 323
International atomic time, 235
Internet inter-ORB protocol, 468
Internet policy registration authority, 431
Internet protocol, 120
Internet search engine, 39
Internet service provider, 52
Interoperability, 8
Interoperable object group

reference, 477
Interoperable object reference, 467
Intruder, 389
Invalidation protocol, 302
Invocation, dynamic, 458-459

Java object, 462,463
object, 451-453,458-459
replicated, 475-477
secure, 484-485
static, 458-459

IOGR (see Interoperable Object
Group Reference)

lOR (see Interoperable Object Reference)
IP (see Internet Protocol)
IPRA (see Internet Policy

Registration Authority)
ISO OSI (see Open Systems

Interconnection Reference Model)

INDEX

Isochronous transmission mode,]59
Isolated, 22
ISP (see Internet Service Provider)
Iterative lookup. 191
Iterative name resolution, 206
Iterative server, 89

J

Jade, 65-66
Java bean, 446-448
Java class loader. 423
Java fault tolerance, 480-48]
Java messaging service, 466
Java object invocation, 462, 463
Java object model, 461-462
Java playground, 424
Java remote object invocation, 462-463
Java sandbox, 422
Java security, 420-425
Java virtual machine, 422
Javascript, 13, 555
JavaSpace, 593-595, 607-610
Jini. 486, 593-595
JMS (see Java Messaging Service)
Junction, 512
JVM (see Java Virtual Machine)

K

K fault tolerant, 331
KDC (see Key Distribution Center)
Kerberos. 4] 1-413
Kernel mode, 72, 75
Key. object, 482
Key distribution, 430-432
Key distribution center, 401
Key establishment, 429-430
Key management, 428-432

L

Lamport clock, 244-252, 255, 311
LAN (see Local Area Network)
Landmark, 262
Layered architecture, 34
Layered protocol, 116-124
LDAP (see Lightweight Directory

Access Protocol)
Leader-election, 52
Leaf domain, 192
Leaf node, 195
Leap second, 235
Lease, 304
Ledger, 615
Lightweight directory access

protocol, 218-226
Lightweight process, 74-75
Link stress, 168
Little endian format, 131
Local alias, 155
Local-area network, 1,99-101, 110,

419,445,467,505,548
Local name, 196
Local object, Globe, 449
Local representative, Globe, 449
Local-write protocol, 310-311
Location independent name, 181
Location record, 192
Location server, 458
Location transparency, 5
Logical clock, 244-252
LWP (see Lightweight Process)

M

Machine instruction, 81
Mailbox coordination, 590
Maintainability, 323
Managerial layer, 203
Managing overlay networks, 156-157
Markup language, 547
Matched, 592
Maximum drift rate, clock, 239

INDEX 677
MCA (see Message Channel Agent)
MD5 hash function, 395
Mean solar second, 235
Mean time to failure, 616
Mean time to repair, 616
Meeting-oriented coordination, 590
Membership management, 45
Mesh network, 28
Message broker, 149-150
Message channel, 152
Message channel agent, 153
Message confidentiality, 405-408
Message digest, 395
Message-driven bean, 448
Message integrity, 405-408
Message-level interceptor, 57
Message logging, 364, 369-372
Message ordering, 351-352
Message-oriented communication, 140-157
Message-oriented middleware, 24, 145
Message-passing interface, 142-145
Message queue interface, 155
Message-queuing model, 145-147
Message-queuing system, 145-157
Message transfer, 154-156
Messaging, object based, 464-466
Messaging service, Java, 466
Method, HTTP, 562-563

object, 444
Method invocation, secure, 484-485
Metric estimation, CDN, 574-576
Metric estimation component, 61
Middleware, 3,54-59, 122-124
Middleware protocol. 122-124
Migration, code, 103-112
Migration transparency, 5
MIME type, 548-549
Mirror site, 298
Mirroring, 298
Mobile agent, 104
Mobile code, 420-427
Model, distributed file system, 494-496

Globe object, 449-451
Java object, 461-462

Module, Apache, 557
MOM (see Message-Oriented Middleware)

678

Monotonic-read consistency. 291-292
Monotonic-write consistent. 292-293
MOSIX,]8
Mother nature, 15
Motion picture experts group, 165
Mounting, 199-202
Mounting point, 200, 495
MPEG (see Motion Picture Experts Group)
MPI (see Message-Passing Interface)
MPLS (see Multi-Protocol Label Switching)
MQI (see Message Queue Interface)
MTTF (see Mean Time To Failure)
MTTR (see Mean Time To Repair)
Multi-protocol label switching, 575
Multicast, atomic, 348-355

reliable, 351-352
Multicast communication, 166-174
Multicasting, 305

feedback control, 345-348
reliable, 343-344
RPC2, 503-504
scalable, 345

Multicomputer, 142-143
Multiprocessor, 72, 77, 231, 282, 286,313
Multipurpose internet mail exchange, 548
MultiRPC, 505
Multithreaded server, 77-79
Multithreading, 72
Multitiered architecture, 41-43, 549-551
Mutual exclusion, 252-260

centralized algorithm, 253-254
decentralized algotithm, 254-255
distributed algorithm, 255-258
token ring algorithm, 258-259

N
Name, 180-182
Name resolution, 198-202

implementation, 205-209
Name resolver, 206
Name space, 195-198

DNS.21O-212
global, 512-513
implementation, 202-209

INDEX

Name space distribution, 203-205
Name space management, 426
Name-to-address binding, 182
Naming, 179-228

attribute-based, 217-226
CORBA, 467-468
file system, 506-513
flat, 182-195
object-based. 466-470
structured. 195-217
Web, 567-569

Naming system, 217
Needham-Schroeder protocol, 401
Nested transaction, 22
Network, body area. 27

local area, 1
mesh, 28
sensor, 28-30
wide area, 2

Network file system. 20 I, 491
Network file system access control, 535-536
Network file system caching, 520-522
Network file system client, 493
Network file system loopback server, 500
Network file system naming, 506-511
Network file system RPC, 502-503
Network file system RPC2, 503-505
Network file system security, 533-536
Network file system server, 493
Network layer, 118, 120
Network time protocol, 240-241
NFS (see Network File System)
Node manager, PlanetLab, 100
Nonce. 402
Nonpersistent connection, 561-562
Normalized database, 581
Notification, 592
NTP (see Network Time Protocol)

o
Object. 414

interface, 444
persistent, 446

Object (continued)
remote, 445
state. 444
transient, 446

Object adapter, 446, 453-454
Object-based architecture, 35
Object-based messaging, 464-466
Object-based naming, 466-470
Object-based system processes, 451-456 _
Object-based systems, 443-487

consistency, 472-477
fault tolerance, 477-481
replication, 472-477
security, 481-487

Object binding, 444, 456-458
explicit, 457
implicit, 457

Object class, 445
Object group, 477
Object implementation handle, 458
Object invocation, 451-453, 458-459

Java, 462,463
parameter passing, 460-461

Object key, 482
Object method, 444
Object model, Globe, 449A51

Java, 461-462
Object proxy, 444
Object reference, 457-458

Globe, 469-470
Object requXest broker, 468
Object server, 451-454
Object synchronization, 470-472
Object wrapper, 453-454
OGSA (see Open Grid Services

Architecture)
Omission failure, 325
ONC RPC (see Open Network

Computing RPC)
One-phase commit protocol, 355
One-way function, 391
One-way RPC, 135
Open delegation, 521
Open distributed system. 7
Open grid services architecture, 20
Open network computing RPC, 502

INDEX 679
Open Systems Interconnection

Reference Model, 117
Openness, degree 7-9
Operating system, 70, 128, 387
Optimistic logging protocol, 372
ORB (see Object Request Broker)
Orca, 449
Ordered message delivery, 251-252
Origin server, 54
Orphan, 341-342, 370
Orphan extermination, 342
OSI model, 117
Out-of-band, 90
Overlay network, 44, 148
Owner capability, 435

p

Packet, 120
Packet-filtering gateway, 419
Parameter marshaling, 130,462
Parameter passing, 127, 130,458,460-461
Partial replication, 581
Partial view, 47. 225. 598
Path name, 196
PCA (see Policy Certification Authority)
Peer-to-peer system, 44-52

file replication, 526-529
security, 539-540
high availability, 531-532
structured,44A6,527-528
unstructured. 526-527

Peet-to-peer system. unstructured, 47-49
PEM (see Privacy Enhanced Mail)
Permanent fault. 324
Permanent replica, 298-300,483
Permission-based approach, 252
Persistence, 40
Persistent communication, 124
Persistent connection. 562
Persistent object, 446
Pessimistic logging protocol, 372
PGM (see Pragmatic General Multicast)
Physical clock, 233-236

680

Physical layer,]] 8-119
Piecewise deterministic model, 370
Ping message, 335
Pipelining, 562
Plaintext, 389
Plan 9, communication, 505-506
PlanetLab, 99- 103
Platform security, 482
Playground, Java, 424
Plug-in, Browser, 549

browser, 555
Policy and mechanism, 8-9
Policy certification authority, 431
Polling model, 465
Port, 89, 139
Portability, 8
Position-based routing, 261
Pragmatic general multicast, 614
Primary-backup protocol, 308
Primary-based protocol, 308-311
Prime factor, 394
Primitive local object, 450
Privacy, 4, 92,412,431
Privacy enhanced mail, 431
Process, 69-1 13

file system, 501
object-based system, 451-456
Web, 554-560

Process group, flat, 329
hierarchical, 329

Process migration, 103
Process table, 70
Process virtual machine, 81
Program stream, 165
Protection domain, 416-418
Protocol, 117

address resolution, 183
blocking commit, 359
cache-coherence, 313-314
challenge-response, 398
client-based, 303
connectionless, 117
coordination, 553
epidemic, 170
file transfer, 122
higher-level, 121-122

INDEX

Protocol (continued)
hypertext transfer, 122,547,560
Internet, 120
invalidation, 302
layered, 116-124
lightweight directory access, 218-226
local-write, 310-311
logging, 372
lower-level, 119-120
middleware, 122-] 24
Needham-Schroeder, 401
network time, 240-241
one-phase commit, 355
optimistic logging, 372
pessimistic logging, 372
primary-backup, 308
primary-based, 308-311
pull-based, 303
push-based, 303
quorum-based, 311-313
real-time transport, 121
remote-write, 308-309
replicated-write, 311-313
replication, 348
server-based, 303
simple object access, 552,566
TCP,121
three-phase commit, 361-363
transport, 120-121
two-phase commit, 355-360
X, 83-84

Protocol stack, 119
Protocol suite, 119
Proximity neighbor selection, 191
Proximity routing, 191
Proxy, 437, 486

object, 444
Proxy cache, 571, 573
Proxy gateway, 420
Public key authentication, 404-405
Public-key block, 500
Public-key certificate, 430
Public-key cryptosystem, 390
Publication confidentiality, 619
Publish/subscribe system, 24, 35, 151,591
Push-based protocol, 303

Q
QoS (see Quality of Service)
Quality of service, 160-162
Query containment check, 581
Queue manager, 148, 152
Queue name, 147
Quorum-based protocol, 311-313
Quorum certificate, 530

R

Random graph, 47
RBS (see Reference Broadcast

Sync hronization)
RDF (see Resource Description

Framework)
RDN (see Relative Distinguished Name)
RDP (see Relative Delay Penalty)
Read-one. write-all, 312
Read-only state, 421
Read quorum, 312
Read-write conflict, 289
Read-your-writes consistency, 294-295
Real-time transport protocol, 121
Receiver-based logging, 365
Receiver-initiated mobility, 106
Recommender, 27
Recovery, failure, 363-373
Recovery line, 367
Recovery-oriented computing, 372
Recursi ve lookup, 191
Recursi ve name resolution, 207
Redirect, 564
Reduced interfaces for secure

system component, 388
Reference, Globe object, 469-470

object, 457-458
Reference broadcast synchronization, 242
Reference clock, 241
Reference monitor, 415-4L8, 424
Referentially decoupled architecture, 35
Reflection attack, 399
Reincarnation, 342

INDEX 681

Relative delay penalty, 168
Relative distinguished name, 219
Relative path name, 196
Relay, 148
Reliability, 322
Reliable causally-ordered multicast, 352
Reliable communication, 336-355

client-server, 336-342
group, 343-355

Reliable FIFO-ordered multicast, 351
Reliable group communication, 343-355
Reliable multicast, 343-345
Reliable unordered multicast, 351
Relocation transparency, 5
Remote access model, 492
Remote file service, 492
Remote method invocation, 24, 458

Java, 461-463
Remote object, 445
Remote object security, 486-487
Remote procedure call, 24, 125-140,337,

342, 387, 502-505
call-by-copy/restore, 127
call-by-reference, 127
call-by-value, 127
client stub, 128
failure, 337-342
failure due to client crash, 341-342
failure due to lost reply, 342
failure due to lost request, 338
failure due to server crash, 338-340
failure to locate server, 337-338
NFS, 502-503
parameter marshaling, 130
secure, 533-535
server stub, 128

Remote procedure call 2, 503-505
Remote-write protocol, 308-309
Removed node, 171
Rendezvous daemon, 596
Rendezvous node. 169
Repair management domain, 66
Replica, client-initiated. 30 I

server-initiated. 299-301
Replica certificate, 483
Replica key. 482

682 INDEX

Replica location service, 529
Replica management 296-305
Replica-server placement 261, 296-298, 574
Replicated component, 14
Replicated-write protocol, 311-313
Replication, file system, 519-529

object-based systems, 472-477
peer-to-peer, 526-529
server-side, 524-526
Web, 570-582
Web applications, 579-582

Replication framework, 474-475
Replication invocation, 475-477
Replication manager, CORBA, 478
Replication subobject, Globe, 450
Replication transparency, 6
Request broker, object, 468
Request-level interceptor. 56
Request line, 563
Request-reply behavior, 37
Resilence, process, 328-336
Resource description framework, 218
Resource proxy, 382
Resource record, 210
Resource virtualization, 79
Response failure, 325
Reverse access control, 482
Revoking a certificate, 432
RISSC (see Reduced Interfaces for

Secure System Component)
Rivest, Shamir, Adleman

algorithm, 394-395
RMI (see Remote Method Invocation)
Role, 384. 418
Rollback, 367, 369
Root, 167. 196-197,199,206,208-210,510
Root file handle, 509-510
Root node. 192
Root server, 182
Round, gossip-based, 171
Round-robin DNS, 560
Router, CORBA, 466
Routing, 120
Routing filter, 602
ROW A (see Read-One, Write-All)
RPC (see Remote Procedure Call)

RPC-style exchange, 566
RPC2 (see Remote Procedure Ca1J ~)
RSA (see Rivest, Shamir, Adleman nlgorithmj j,

RTP (see Real-Time Transport Prolllcol)
Rumor spreading. 171
Runtime system, Ice, 454-456

s
S-box,393
Safety, 323
Sandbox, Java, 422
Scalability, 9-16

geographical, 15
Scalable multicasting. 345
Scalable reliable multicasting, 345
Scaling techniques, 12-15
Scheduler activation, 75
Scheme, 568
Script, server-side, 550-551
SCS (see Slice Creation Service)
Secret sharing, 409
Secure channel, 397-413
Secure file system, 536
Secure file system client, 536
Secure file system server, 537
Secure file system user agent, 536
Secure group communication, 408-4 J 1
Secure group management, 433-434
Secure method invocation, 482, 484-485
Secure NFS, 534 '
Secure object binding, 482
Secure replicated servers, 409-41 1
Secure RPC, 533-535
Secure socket layer, 386, 584
Secure storage, 540-541
Security, 377-439

access control, 413-428
cryptographic, 389-396
file system, 532-541
Globe, 482-485
Globus, 380-384
introduction, 378-396
Java, 420-425

Security tcontinuedi
NFS, 533-536
object-based systems, 481-487
peer-to-peer, 539-540
remote object, 486-487
secure channels, 396-413
Web, 584-585

Security attacks, 389-391
Security design issues, 384-389
Security management, 428-439
Security manager, Java, 423
Security mechanism, 379
Security policy, 379
Security service, 136
Security threats, 378-380
Selective revealing, 422
Self-certifying file system, 536-539
Self-certifying name, 484
Self-certifying pathname, 537
Self-managing system, 59-66
Self-star system, 59
Semantic overlay network, 50, 225
Semantic proximity 50, 226
Semantics, file sharing, 513-516
Semantics subobject, Globe, 450
Sender-based logging, 365
Sender-initiated, 106
Sensor network, 28-30
Sequencer, 311
Sequential consistency, 281-288
Serializability, 22
Serializable parameter marshaling, 462
Servant, 454
Servent,44
Server, 37, 88-103

Apache, 556-558
multithreaded, 77-79
object, 451-454
Web, 556-560

Server-based protocol, 303
Server cluster, 92-98
Server interface, 66
Server port, 435
Server replication, Coda, 524-526
Server-side replication, 524-526
Server-side script, 550-551

INDEX 683
Server stub, 128-129
Service, Web, 546
Service-oriented architecture, 20
Service provider, 101
Servlet, 551
Session, 316
Session key, 398,407-408
Session semantics, 515
Session state, 91
SFS (see Secure File System)
Shadow, 411
Share reservation, 517
Shared data space, 36
Shared-nothing architecture, 298
Shared objects, Globe, 448-451
Side effect, RPC2, 503
Simple object access protocol, 552, 566-567

envelop, 566
Simple stream, 159
Single-processor system, 2
Single sign-on, 413
Single-system image, 18
Skeleton, object, 445
Skew, clock, 239
Slice, 100
Slice authority, 101
Slice creation service, 101
Small-world effect, 226
SMDS (see Switched Multi-Megabit Data Service)
SOAP (see Simple Object Access Protocol)
Socket, 141-142

Berkeley, 141-142
Soft state, 91
Software architecture, 33
Solar day, 234
Solar second, 234
Source queue, 147
Squid, 556
SRM (see Scalable Reliable Multicasting)
SSL (see Secure Socket Layer)
SSP chain, 184-186
Stable message, 371
Stable storage, 365-366
Stack introspection, 425-426
Stacked address, 469
Starvation, 252

684

State, object 4.:J.4
State machine replication, 248
State transition failure, 325
Stateful server. 91
Stateful session bean, 448
Stateless server. 90
Stateless session bean, 448
Statelessness, 66
Static invocation, 459
Status line, 563
Stratum- 1 server, 241
Stream-oriented communication, 157-166
Stream synchronization, 163-166
Stretch, 168
Striping, 496-497
Strong collision resistance, 391
Strong consistency, 15,274
Strong mobility, 106
Structured naming, 195-217
Stub generation, 132-134
Subject, 414, 595
Subscription, 592
Subscription confidentiality, 619
Substream, 159
Superpeer, 50-52, 269
Superserver, 89
Susceptible node, 171
Switch-tree, 169
Switched multi-megabit data service, 386
Sybil attack, 539
Symbolic link, 199
Symmetric cryptosystem, 390
Synchronization, 125, 163-164,

231-271, 286-287
election algorithms, 263-270
file system, 513-519
logical clock, 244-252
mutual exclusion, 252-260
object, 470-472
physical clock, 232-244
stream, 163-166
Web, 569-570

Synchronization variable, 286
Synchronized object, 47 1
Synchronous communication, 11, 125
Synchronous system, 332

INDEX

Synchronous transmission mode. 159
System architecture, 33, 36-54
System call, 81

T

Tag, 562
Tagged profile, 468
TAl (see International Atomic Time)
TCB (see Trusted Computing Base)
TCP (see Transmission Control prolocol)
TCP handoff, 94, 559
Template, 594
TGS (see Ticket Granting Service)
Thin client, 42, 84-86
Thin-client approach, 83
THINC,86
Thread, 70-79

distributed system, 75-79
implementation, 73-75
worker, 77-78

Thread context, 71
Three-phase commit protocol, 361
Three-tiered architecture, 42
Threshold scheme, 411
TIBnRendezvous,595
Ticket, 401, 412
Ticket granting service, 412
Time server, 240-242
Timer, 233
Timing failure, 325
TLS (see Transport Layer Security)
TLS record protocol layer, 584
TMR (see Triple Modular Redundancy)
Token, 252, 258
Token-based solution, 252
Topology-based assignment of node identifier, ~
Topology management, network, 49-50
Total-ordered delivery, 352
Totally-ordered multicast, 247-248
TP monitor, 23
Tracker, 53
Transaction, 21
Transaction processing monitor, 23

Transaction processing system, 20-23
Transactional RPC, 21
Transient communication, 125
Transient fault, 323
Transient object, 446
Transit of the sun, 234
Transition policy, 613
Transmission control protocol, 121
Transmission mode, asynchronous, 158

isosynchronous, 158
synchronous, 158

Transparency, 4
access, 5
concurrency, 6
degree, 6-7
distribution, 4-7
failure, 6
location, 5
migration, 5
relocation, 5
replication, 6

Transport layer, 118, 120-121
Transport-layer security, 584
Transport-layer switch, 94
Tree cost, 168
Triangle inequality, 262
Triple DES, 394
Triple modular redundancy, 327-328
Trust model, 431
Trusted computing base, 387
Tuple, 591
Tuple instance, 594
Two-phase commit protocol, 355-360
Two-tiered architecture, 41

u
UDDI (see Universal Directory

and Discovery Integration)
UDP (see Universal Datagram Protocol)
Unattached resource, 108
Unicasting, 305
Uniform resource identifier, 567

INDEX 685

Uniform resource locator, 546,567
Uniform resource name, 568 .
Universal coordinated time, 236
Universal description, discovery

and integration, 551-552
Universal directory and discovery

integration, 222
Universal plug and play, 26
UNIX file sharing semantics, 514
Upload/download model, 492
UPnP (see Universal Plug aNd Play)
URI (see Uniform Resource Identifier)
URL (see Uniform Resource Locator)
URN (see Uniform Resource Name)
User certificate, 482
User key, 482
User proxy, 382
UTC (see Universal Coordinated Time)

v

Vector clock, 248-252
Vertical distribution, 43
Vertical fragmentation, 43
VFS (see Virtual File System)
View, 307
View change, 349
Virtual file System, 493
Virtual ghost, 578
Virtual machine, 80-82

Java, 422
Virtual machine monitor, 82
Virtual organization, 18-19
Virtual synchrony, 349-350

implementation, 352-355
Virtualization, 79-82
VMM (see Virtual Machine Monitor)
Volume, Coda, 524
Volume storage group, Coda, 524
Voting, 311
Vserver,99
VSG (see Volume Storage Group)

686 INDEX

w
WAN (see Wide-Area Network)
Weak collision resistance, 391
Weak consistency. 288
Weak mobility, 106
Web application replication, 579-582
Web browser, 547,554
Web caching, 571-573
Web client. 554-556
Web communication, 560-567
Web consistency, 570-582
Web distributed authoring and

versioning, 570
Web document, 547-549
Web fault tolerance, 582-584
Web naming, 567-569
Web proxy, 555
Web replication, 570-582
Web security, 584-585
Web server, 556-560
Web server cluster, 558-560
Web service, 546, 551-554
Web services composition, 552-554
Web services coordination, 552-4
Web services definition language, 552
Web synchronization, 569-570
WebDAV,570
WebSphere MQ, 152-157
Wide-area network, 2
Window manager, 84
Window size, 576
Wireless clock synchronization, 242-244
Wireless election algorithm, 267-269
Worker thread, 77-78
Wrapper, object, 453-454
Write-back cache, 314
Write quorum, 312
Write-through cache, 314
Write-write conflict, 289
Writes-follow-read, 295
WSDL (see Web Services Definition Language)
WWW(seeWorld Wide Web)

x
X kernel, 83
X protocol, 83-84
X window system, 83-84, 87
XlOpen transport interface, 141
XML (see Extensible Markup Language)
XTI (see XlOpen Transport Interface)

z
Zipf-like distribution, 216
Zone, 14,203
Zone transfer, 212

	Cover
	Title Page
	About the Authors
	Contents
	PREFACE
	1.INTRODUCTION
	1.1 DEFINITION OF A DISTRIBUTED SYSTEM
	1.2 GOALS
	1.2.1 Making Resources Accessible
	1.2.2 Distribution Transparency
	1.2.3 Openness
	1.2.4 Scalability
	1.2.5 Pitfalls

	1.3 TYPES OF DISTRIBUTED SYSTEMS
	1.3.1 Distributed Computing Systems
	1.3.2 Distributed Information Systems
	1.3.3 Distributed Pervasive Systems

	1.4 SUMMARY
	PROBLEMS

	2.ARCHITECTURES
	2.1 ARCHITECTURAL STYLES
	2.2 SYSTEM ARCHITECTURES
	2.2.1 Centralized Architectures
	2.2.2 Decentralized Architectures
	2.2.3 Hybrid Architectures

	2.3 ARCHITECTURES VERSUS MIDDLEW ARE
	2.3.1 Interceptors
	2.3.2 General Approaches to Adaptive Software
	2.3.3 Discussion

	2.4 SELF -MANAGEMENT IN DISTRIBUTED SYSTEMS
	2.4.1 The Feedback Control Model
	2.4.2 Example: Systems Monitoring with Astrolabe
	2.4.3 Example: Differentiating Replication Strategies in Globule

	2.5 SUMMARY
	PROBLEMS

	3.PROCESSES
	3.1 THREADS
	3.1.1 Introduction to Threads
	3.1.2 Threads in Distributed Systems

	3.2 VIRTUALIZATION
	3.2.1 The Role of Virtualization in Distributed Systems
	3.2.2 Architectures of Virtual Machines

	3.3 CLIENTS
	3.3.1 Networked User Interfaces
	3.3.2 Client-Side Software for Distribution Transparency

	3.4 SERVERS
	3.4.1 General Design Issues
	3.4.2 Server Clusters
	3.4.3 Managing Server Clusters

	3.5 CODE MIGRATION
	3.5.1 Approaches to Code Migration
	3.5.2 Migration and Local Resources
	3.5.3 Migration in Heterogeneous Systems

	3.6 SUMMARY
	PROBLEMS

	4.COMMUNICATION
	4.1 FUNDAMENTALS
	4.1.1 Layered Protocols
	4.1.2 Types of Communication

	4.2 REMOTE PROCEDURE CALL
	4.2.1 Basic RPC Operation
	4.2.2 Parameter Passing
	4.2.3 Asynchronous RPC
	4.2.4 Example: DCE RPC

	4.3 MESSAGE-ORIENTED COMMUNICATION
	4.3.1 Message-Oriented Transient Communication
	4.3.2 Message-Oriented Persistent Communication
	4.3.3 Example: IBM's WebSphere Message-Queuing System

	4.4 STREAM-ORIENTED COMMUNICATION
	4.4.1 Support for Continuous Media
	4.4.2 Streams and Quality of Service
	4.4.3 Stream Synchronization

	4.5 MULTICAST COMMUNICATION
	4.5.1 Application-Level Multicasting
	4.5.2 Gossip-Based Data Dissemination

	4.6 SUMMARY
	PROBLEMS

	5.NAMING
	5.1 NAMES, IDENTIFIERS, AND ADDRESSES
	5.2 FLAT NAMING
	5.2.1 Simple Solutions
	5.2.2 Home-Based Approaches
	5.2.3 Distributed Hash Tables
	5.2.4 Hierarchical Approaches

	5.3 STRUCTURED NAMING
	5.3.1 Name Spaces
	5.3.2 Name Resolution
	5.3.3 The Implementation of a Name Space
	5.3.4 Example: The Domain Name System

	5.4 ATTRIBUTE-BASED NAMING
	5.4.1 Directory Services
	5.4.2 Hierarchical Implementations: LDAP
	5.4.3 Decentralized Implementations

	5.5 SUMMARY
	PROBLEMS

	6.SYNCHRONIZATION
	6.1 CLOCK SYNCHRONIZATION
	6.1.1 Physical Clocks
	6.1.2 Global Positioning System
	6.1.3 Clock Synchronization Algorithms

	6.2 LOGICAL CLOCKS
	6.2.1 Lamport's Logical Clocks
	6.2.2 Vector Clocks

	6.3 MUTUAL EXCLUSION
	6.3.1 Overview
	6.3.2 A Centralized Algorithm
	6.3.3 A Decentralized Algorithm
	6.3.4 A Distributed Algorithm
	6.3.5 A Token Ring Algorithm
	6.3.6 A Comparison of the Four Algorithms

	6.4 GLOBAL POSITIONING OF NODES
	6.5 ELECTION ALGORITHMS
	6.5.1 Traditional Election Algorithms
	6.5.2 Elections in Wireless Environments
	6.5.3 Elections in Large-Scale Systems

	6.6 SUMMARY
	PROBLEMS

	7.CONSISTENCY AND REPLICATION
	7.1 INTRODUCTION
	7.1.1 Reasons for Replication
	7.1.2 Replication as Scaling Technique

	7.2 DATA-CENTRIC CONSISTENCY MODELS
	7.2.1 Continuous Consistency
	7.2.2 Consistent Ordering of Operations

	7.3 CLIENT-CENTRIC CONSISTENCY MODELS
	7.3.1 Eventual Consistency
	7.3.2 Monotonic Reads
	7.3.3 Monotonic Writes
	7.3.4 Read Your Writes
	7.3.5 Writes Follow Reads

	7.4 REPLICA MANAGEMENT
	7.4.1 Replica-Server Placement
	7.4.2 Content Replication and Placement
	7.4.3 Content Distribution

	7.5 CONSISTENCY PROTOCOLS
	7.5.1 Continuous Consistency
	7.5.2 Primary-Based Protocols
	7.5.3 Replicated-Write Protocols
	7.5.4 Cache-Coherence Protocols
	7.5.5 Implementing Client-Centric Consistency

	7.6 SUMMARY
	PROBLEMS

	8.FAULT TOLERANCE
	8.1 INTRODUCTION TO FAULT TOLERANCE
	8.1.1 Basic Concepts
	8.1.2 Failure Models
	8.1.3 Failure Masking b)' Redundancy

	8.2 PROCESS RESILIENCE
	8.2.1 Design Issues
	8.2.2 Failure Masking and Replication
	8.2.3 Agreement in Faulty Systems
	8.2.4 Failure Detection

	8.3 RELIABLE CLIENT-SERVER COMMUNICATION
	8.3.1 Point-to-Point Communication
	8.3.2 RPC Semantics in the Presence of Failures

	8.4 RELIABLE GROUP COMMUNICATION
	8.4.1 Basic Reliable-Multicasting Schemes
	8.4.2 Scalability in Reliable Multicasting
	8.4.3 Atomic Multicast

	8.5 DISTRIBUTED COMMIT
	8.5.1 Two-Phase Commit
	8.5.2 Three-Phase Commit

	8.6 RECOVERY
	8.6.1 Introduction
	8.6.2 Checkpointing
	8.6.3 Message Logging
	8.6.4 Recovery-Oriented Computing

	8.7 SUMMARY
	PROBLEMS

	9.SECURITY
	9.1 INTRODUCTION TO SECURITY
	9.1.1 Security Threats, Policies, and Mechanisms
	9.1.2 Design Issues
	9.1.3 Cryptography

	9.2 SECURE CHANNELS
	9.2.1 Authentication
	9.2.2 Message Integrity and Confidentiality
	9.2.3 Secure Group Communication
	9.2.4 Example: Kerberos

	9.3 ACCESS CONTROL
	9.3.1 General Issues in Access Control
	9.3.2 Firewalls
	9.3.3 Secure Mobile Code
	9.3.4 Denial of Service

	9.4 SECURITY MANAGEMENT
	9.4.1 Key Management
	9.4.2 Secure Group Management
	9.4.3 Authorization Management

	9.5 SUMMARY
	PROBLEMS

	10.DISTRIBUTED OBJECT-BASED SYSTEMS
	10.1 ARCHITECTURE
	10.1.1 Distributed Objects
	10.1.2 Exulnple: Enterprise Java Beans
	10.1.3 Example: Globe Distributed Shared Objects

	10.2 PROCESSES
	10.2.1 Object Servers
	10.2.2 Example: The Ice Runtime System

	10.3 COMMUNICATION
	10.3.1 Binding a Client to an Object
	10.3.2 Static versus Dynamic Remote Method Invocations
	10.3.3 Parameter Passing
	10.3.4 Example: Java RMI
	10.3.5 Object-Based Messaging

	10.4 NAMING
	10.4.1 CORBA Object References
	10.4.2 Globe Object References

	10.5 SYNCHRONIZATION
	10.6 CONSISTENCY AND REPLICATION
	10.6.1 Entry Consistency
	10.6.2 Replicated Invocations

	10.7 FAULT TOLERANCE
	10.7.1 Example: Fault-Tolerant CORBA
	10.7.2 Example: Fault-Tolerant Java

	10.8 SECURITY
	10.8.1 Example: Globe
	10.8.2 Security for Remote Objects

	10.9 SUMMARY
	PROBLEMS

	11.DISTRIBUTED FILE SYSTEMS
	11.1 ARCHITECTURE
	11.1.1 Client-Server Architectures
	11.1.2 Cluster-Based Distributed File Systems
	11.1.3 Symmetric Architectures

	11.2 PROCESSES
	11.3 COMMUNICATION
	11.3.1 RPCs in NFS
	11.3.2 The RPC2 Subsystem
	11.3.3 File-Oriented Communication in Plan 9

	11.4 NAMING
	11.4.1 Naming in NFS
	11.4.2 Constructing a Global Name Space

	11.5 SYNCHRONIZATION
	11.5.1 Semantics of File Sharing
	11.5.2 File Locking
	11.5.3 Sharing Files in Coda

	11.6 CONSISTENCY AND REPLICATION
	11.6.1 Client-Side Caching
	11.6.2 Server-Side Replication
	11.6.3 Replication in Peer-to-Peer File Systems
	11.6.4 File Replication in Grid Systems

	11.7 FAULT TOLERANCE
	11.7.1 Handling Byzantine Failures
	11.7.2 High Availability in Peer-to-Peer Systems

	11.8 SECURITY
	11.8.1 Security in NFS
	11.8.2 Decentralized Authentication
	11.8.3 Secure Peer-to-Peer File-Sharing Systems

	11.9 SUMMARY
	PROBLElVIS

	12.DISTRIBUTED WEB-BASED SYSTEMS
	12.1 ARCHITECTURE
	12.1.1 Traditional Web-Based Systems
	12.1.2 Web Services

	12.2 PROCESSES
	12.2.1 Clients
	12.2.2 The Apache Web Server
	12.2.3 Web Server Clusters

	12.3 COMMUNICATION
	12.3.1 Hypertext Transfer Protocol
	12.3.2 Simple Object Access Protocol

	12.4 NAMING
	12.5 SYNCHRONIZATION
	12.6 CONSISTENCY AND REPLICATION
	12.6.1 Web Proxy Caching
	12.6.2 Replication for Web Hosting Systems
	12.6.3 Replication of Web Applications

	12.7 FAULT TOLERANCE
	12.8 SECURITY
	12.9 SUMMARY
	PROBLEMS

	13.DISTRIBUTED COORDINATION-BASED SYSTEMS
	13.1 INTRODUCTION TO COORDINATION MODELS
	13.2 ARCHITECTURES
	13.2.1 Overall Approach
	13.2.2 Traditional Architectures
	13.2.3 Peer-to-Peer Architectures
	13.2.4 Mobility and Coordination

	13.3 PROCESSES
	13.4 COMMUNICATION
	13.4.1 Content-Based Routing
	13.4.2 Supporting Composite Subscriptions

	13.5 NAMING
	13.5.1 Describing Composite Events
	13.5.2 Matching Events and Subscriptions

	13.6 SYNCHRONIZATION
	13.7 CONSISTENCY AND REPLICATION
	13.7.1 Static Approaches
	13.7.2 Dynamic Replication

	13.8 FAULT TOLERANCE
	13.8.1 Reliable Publish-Subscribe Communication
	13.8.2 Fault Tolerance in Shared Dataspaces

	13.9 SECURITY
	13.9.1 Confidentiality
	13.9.2 Secure Shared Dataspaces

	13.10 SUMMARY
	PROBLEMS

	14.READING LIST AND BIBLIOGRAPHY
	14.1 SUGGESTIONS FOR FURTHER READING
	14.1.1 Introduction and General Works
	14.1.2 Architecture
	14.1.3 Processes
	14.1.4 Communication
	14.1.5 Naming
	14.1.6 Synchronization
	14.1.7 Consistency and Replication
	14.1.8 Fault Tolerance
	14.1.9 Security
	14.1.10 Distributed Object-Based Systems
	14.1.11 Distributed File Systems
	14.1.12 Distributed Web-Based Systems
	14.1.13 Distributed Coordination-Based Systems

	14.2 ALPHABETICAL BIBLIOGRAPHY

	INDEX

