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PREFACE

Distributed systems form a rapidly changing field of computer science. Since
the previous edition of this book, exciting new topics have emerged such as peer-
to-peer computing and sensor networks, while others have become much more
mature, like Web services and Web applications in general. Changes such as these
required that we revised our original text to bring it up-to-date.

This second edition reflects a major revision in comparison to the previous
one. We have added a separate chapter on architectures reflecting the progress
that has been made on organizing distributed systems. Another major difference is
that there is now much more material on decentralized systems, in particular
peer-to-peer computing. Not only do we discuss the basic techaiques, we also pay
attention to their applications, such as file sharing, information dissemination,
content-delivery networks, and publish/subscribe systems.

Next to these two major subjects, new subjects are discussed throughout the
book. For example, we have added material on sensor networks, virtualization,
server ¢lusters, and Grid computing. Special attention is paid to self-management
of distributed systems, an increasingly important topic as systems continue to
scale.

Of course, we have also modernized the material where appropriate. For
example, when discussing consistency and replication, we now focus on con-
sistency models that are more appropriate for modem distributed systems rather
than the original models, which were tailored to high-performance distributed
computing. Likewise, we have added material on modem distributed algorithms,
ingluding GPS-based clock synchronization and localization algorithms.

xvii



Xviil PREFACE

Although unusual., we have nevertheless been able to reduce the total number
of pages. This reduction is partly caused by discarding subjects such as distsibuted
garbage collection and electronic payment protocols, and also reorganizing the
last four chapters.

As in the previous edition, the book is divided into two pasts. Principles of
distributed systems are discussed in chapters 2-9, whereas overall approaches to
how distsibuted applications should be developed (the paradigms) are discussed in
chapters 10-13. Unlike the previous edition, however, we have decided not to dis-
cuss complete case studies in the paradigm chapters. Instead, each principlev is
now explained through a representative case. For example, object invocations are
now discussed as a communication principle in Chap. 10 on object-based distri-
buted systems. This approach allowed us to condense the material, but also to
make it more enjoyable to read and study. .

Of course. we continue to draw extensively from practice to explain what dis-
tributed systems are all about. Various aspects of real-life systems such as Web-
Sphere MQ, DNS, GPS, Apache, CORBA, Ice, NFS, Akamai, TIBIRendezvous.
Jini, and many more are discussed throughout the book.. These examples illustrate
the thin line between theory and practice, which makes disteibuted systems such
an exciting field.

A number of people have conttibuted to this book in vasious ways. We would
especially like to thank D. Robert Adams, Arno Bakker, Coskun Bayrak, Jacques
Chassin de Kergommeaux, Randy Chow, Michel Chaudton, Puneet Singh
Chawla, Fabio Costa, Cong Du, Dick Epema, Kevin Fenwick, Chandan:a Gamage. .
Ali Ghodsi, Giorgio Ingargiola, Mark Jelasity, Ahmed Kamel, Gregory Kaptham-
mer, Jeroen Ketema, Onno Kubbe, Patricia Lago, Steve MacDonadd, Michael J.
McCarthy, M. Tamer Ozsu, Guillaume Pierre, Avi Shahar, Swaminathan Sivasu-
bramanian, Chintan Shah, Ruud Stegers, Paul Tymann, Craig E. Wills, Reuven
Yagel, and Dgkai Zhu for reading pacts of the manuscript, helping identifying
mistakes in the previous edition, and offering useful comments.

Finally, we would like to thank our families. Suzanne has been through this
process seventeen times now. That's a lot of times for me but also for her. Not
once has she sgid: "Enough is enough" although surely the thought has occurred
to her. Thapk you. Barbara and Marvin now have a much better idea of what
professors do for a living and know the difference between a good textbook and a
bad one. They are now an inspiration to me to try to produce more good ones
than bad ones (AST). '

Because I took a sabbatical leave to update the book, the whole business of
writing was also much more enjoyable for Mazi€lle, She is beginning te get used
to it, but continues to remajn supportive while aleiting me when it is indeed time
to redirect attention to more important. issues. lowe her many thanks. Max. and
Elke by now have a much better idea of what writing a book means, but compared
to what they are reading themselves, find it difficult. to understand what is so exci-
ting about these strange things called distributed systems. Ican't blame them (MvS).



INTRODUCTION

", Computer systems are undergoing a revolution. From 1945, when the modem
‘c;omputerera began, until about 1985, computers were large and expensive. Even
minicomputers cost at least tens of thousands of dollars each. As a result, most
organizations had only a handful of computers, and for lack of a way to connect
them, these operated independently from one another.

Starting around the the mid-1980s, however, two advances in technology
began to change that situation. The first was the development of powerful miero-
processors. Initially, these were 8-bit machines, but soon 16-, 32-, and 64-bit
CPUs became common. Many of these had the computing power of a mainframe
(i.e., large) computer, but for a fraction of the price.

The amount of improvement that has occurred in computer technology in the
past half century is truly staggering and totally unprecedented in other industries.
From a machine that cost 10 million dollars and executed 1 instruction per second.
we have come to machines that cost 1000 dollars and are able to execute 1 billion
instructions per second, a price/performance gain of 1013.If cars had improved at
billion miles per gallon. (Unfortunately, it would probably also have a 200-page
manual telling how to open the door.)

The second development was the invention of high-speed computer networks.
Local-area networks, or LANs allow hundreds of machines within a building to
be connected in such a way that small amounts of information can be transferred
between machines in a few microseconds or so. Larger amounts of data can be

1



2 INTRODUCTION CHAP. ]

moved between machines at rates of 100 million to 10 billion bits/sec. Wide-area
networks or WANSs allow miJlions of machines all over the earth to be connected
at speeds varying from 64 Kbps (kilobits per second) to gigabits per second.

The result of these technologies is that it is now not only feasible, but easy, to
put together computing systems composed of large numbers of computers con-
nected by a high-speed network. They are usually caned computer networks or
distributed systems, in contrast to the previous centralized systems (or single-
processor systems) consisting of a single computer, its peripherals, and perhaps
some remote terminals.

1.1 DEFINITION OF A DISTRIBUTED SYSTEM

Various definitions of distributed systems have been given in the literature,
none of them satisfactory, and none of them in agreement with any of the others.
For our purposes it is sufficient to give a loose characterization:

A distributed system is a collection of independent computers that
appears to its users as a single coherent system.

This definition has several important aspects. The first one is that a distributed
system consists of components (i.e., computers) that are autonomous. A second
aspect is that users (be they people or programs) think they are dealing with a sin-
gle system. This means that one way or the other the autonomous components
need to collaborate. How to establish this collaboration lies at the heart of devel-
oping distributed systems. Note that no assumptions are made concerning the type
of computers. In principle, even within a single system, they could range from
high-performance mainframe computers to small nodes in sensor networks. Like-
wise, no assumptions are made on the way that computers are interconnected. We
will return to these aspects later in this chapter.

Instead of going further with definitions, it is perhaps more useful to concen-
trate on important characteristics of distributed systems. One important charac-
teristic is that differences between the various computers and the ways in which
they communicate are mostly hidden from users. The same holds for the internal
organization of the distributed system. Another important characteristic is that
users and applications can interact with a distributed system in a consistent and
uniform way, regardless of where and when interaction takes place.

In principle, distributed systems should also be relatively easy to expand or
scale. This characteristic is a direct consequence of having independent com-
puters, but at the same time, hiding how these computers actually take part in the
system as a whole. A distributed system will normally be continuously available,
although perhaps some parts may be temporarily out of order. Users and applica-
tions should not notice that parts are being replaced or fixed, or that new parts are
added to serve more users or applications..
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In order to support heterogeneous computers and networks while offering a
single-system view, distributed systems are often organized by means of a layer of
software-that is, logically placed between a higher-level layer consisting of users
and applications, and a layer underneath consisting of operating systems and basic
communigation facilities, as shown in Fig. 1-1 Accordingly, such a distributed
system is sometimes called middleware.

Computer 1 Computer 2 Computer 3 Computer 4
1 1

Appl. A Application B Appl.C
I 1
Distributed system layer {middleware)

LocalOS1 || |[tocalos2 || |[Locaios3 || || LocalOS4

Network

Figure I-I., A distzibuted system organized as middleware. The middleware
layer extends over multiple machines, and offers each application the same in-
texface.

Fig. 1-1 shows four networked computers and three applications, of which ap-
plication B is distributed across computers 2 and 3. Each application is offered the
same interface. The distributed system provides the means for components of a
single distributed application to communicate with each other, but also to let dif-
ferent applications communicate. At the same time, it hides, as best and reason-
able as possible, the differences in hardware and operating systems from each ap-

plication.

1.2 GOALS

Just because it is possible to build distributed systems does not necessarily
mean that it is a good idea. After all, with current technology it is also possible to
put four floppy disk drives on a personal computer. It is just that doing so would
be pointless. In this section we discuss four important goals that should be met to
make building a distributed system worth the effort. A distributed system should
make resources easily accessible; it should reasonably hide the fact that resources
are distributed across a network; it should be open; and it should be scalable.

1.2.1 Making Resources Accessible

The main goal of a distributed system is to make it easy for the users (and ap-
plications) to access remote resources, and to share them in a controlled and effi-
gient way. Resources can be just about anything, but typical examples inelude
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things like printers, computers, storage facilities, data, files, Web pages, and net-
works, to name just a few. There are many reasons for wanting to share resources.
One obvious reason is that of economics. For example, it is cheaper to let a printer
be shared by several users in a small office than having to buy and maintain a sep-
arate printer for each user. Likewise, it makes economic sense to share costly re-
sources such as supercomputers, high-performance storage systems, imagesetters,
and other expensive peripherals.

Connecting users and resources also makes it easier to collaborate and ex-
change information, as is clearly illustrated by the success of the Internet with its
simple protocols for exchanging files, mail. documents, audio, and video. The
connectivity of the Internet is now leading to numerous virtual organizations in
which geographically widely-dispersed groups of people work together by means
of groupware, that is, software for coJJaborative editing, teleconferencing, and so
on. Likewise, the Internet connectivity has enabled electronic commerce allowing
us to buy and sell all kinds of goods without actually having to go to a store or
even leave home.

However, as connectivity and sharing increase, security is becoming increas-
ingly important. In current practice, systems provide little protection against
eavesdropping or intrusion on communication. Passwords and other sensitive in-
formation are often sent as cleartext (i.e., unencrypted) through the network, or
stored at servers that we can only hope are trustworthy. In this sense, there is
much room for improvement. For example, it is currently possible to order goods
by merely supplying a credit card number. Rarely is proof required that the custo-
mer owns the card. In the future, placing orders this way may be possible only if
you can actually prove that you physically possess the card by inserting it into a
card reader.

Another security problem is that of tracking communication to build up a
preference profile of a specific user (Wang et al., 1998). Such tracking explicitly
violates privacy, especially if it is done without notifying the user. A related prob-
lem is that increased connectivity can also lead to unwanted communication, such
as electronic junk mail, often called spam. In such cases, what we may need is to
protect ourselves using special information filters that select incoming messages
based on their content.

1.2.2 Distribution Transparency

An important goal of a distributed system is to hide the fact that its processes
and resources are physically distributed across multiple computers. A distributed
system that is able to present itself to users and applications as if it were only a
single computer system is said to be transparent.  Let us first take a look at what
kinds of transparency exist in distributed systems. After that we will address the
more general question whether transparency is always required.
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Types of Transparency

The concept of transparency can be applied to several aspects of a distributed
system, the most important ones shown in Fig. 1-2.

Transparency Description
Access Hide differences in data representation and how a resource is accessed
Location Hide where a resource is located

. Migration Hide that a resource may move to another location

. Relocation Hide that a resource may be moved to another location while in use
Replication Hide that a resource is replicated N
Concurrency Hide that a resource may be shared by several competitive users
Failure Hide the failure and recovery of a resource

Figure 1-2. Different forms of transparency in a distributed system (ISO, 1995).

Access transparency deals with hiding differences in data representation and
the way that resources can be accessed by users. At a basic level, we wish to hide
differences in machine architectures, but more important is that we reach agree-
ment on how data is to be represented by different machines and operating sys-
tems. For example, a distributed system may have computer systems that run dif-
ferent operating systems, each having their own file-naming conventions. Differ-
ences in naming conventions, as well as how files can be manipulated, should all
be hidden from users and applications. -

An important group of transparency types has to do with the location of a re-
source. Location transparency refers to the fact that users cannot tell where a re-
source is physically located in the system. Naming plays an important role in
achieving location transparency. In particular, location transparency can be
achieved by assigning only logical names to resources, that is, names in which the
location of a resource is not secretly encoded. An example of a such a name is the
URL http:/twww.prenhall. com/adex. html.  which gives no clue about the location
of Prentice Hall's main Web server. The URL also gives no clue as to whether
index.html has always been at its current location or was recently moved there.
Distributed systems in which resources can be moved without affecting how those
resources can be accessed are said to provide migration transparency. Even
‘stronger is the situation in which resources can be relocated while they are being
accessed without the user or application noticing anything. Ia such cases, the sys-
tem is said to support relocation transparency. An example of relocation trans-
parency is when mobile users can continue to use their wireless laptops while
moving from place to place without ever being (temporarily) disconnected.

As we shall see, replication plays a very important role in distributed systems.
For example, resources may be replicated to increase availability or to improve
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performance by placing a copy close to the place where it is accessed. Replica-
tion transparency deals with hiding the fact that several copies of a resource
exist. To hide replication from users, it is necessary that all replicas have the same
name. Consequently, a system that supports replication transparency should gen-
erally support location transparency as well, because it would otherwise be impos-
sible to refer to replicas at different locations.

We already mentioned that an important goal of distributed systems is to al-
low sharing of resources. In many cases, sharing resources is done in a coopera-
tive way, as in the case of communication. However. there are also many ex-
amples of competitive sharing of resources. For example, two independent users
may each have stored their files on the same file server or may be accessing the
same tables in a shared database. In such cases, it is important that each user does
not notice that the other is making use of the same resource. This phenomenon is
called concurrency transparency. An important issue is that concurrent access
to a shared resource leaves that resource in a consistent state. Consistency can be
achieved through locking mechanisms, by which users are, in turn, given ex-
clusive access to the desired resource. A more refined mechanism is to make use
of transactions, but as we shall see in later chapters, transactions are quite difficult
to implement in distributed systems.

A popular alternative definition of a distributed system, due to Leslie Lam-
port, is "You know you have one when the crash of a computer you've never
heard of stops you from getting any work done." This description puts the finger
on another important issue of distributed systems design: dealing with failures.
Making a distributed system failure transparent means that a user does not no-
tice that a resource (he has possibly never heard of) fails to work propetly, and
that the system subsequently recovers from that failure. Masking failures is one of
the hardest issues in distributed systems and is even impossible when certain
apparently realistic assumptions are made, as we will discuss in Chap. 8. The
main difficulty in masking failures lies in the inability to distinguish between a
dead resource and a painfully slow resource. For example, when contacting a busy
Web server, a browser will eventually time out and report that the Web page is
unavailable..At that point, the user cannot conclude that the server is really down.

Degree of Transparency

~Although distribution transparency is generally considered preferable for any
distributed system, there are situations in which attempting to completely hide all
distribution aspects from users is not a good idea. An example is requesting your
electronic newspaper to appear in your mailbox before 7 AM. local time, as usual,
while you are currently at the other end of the world living in a different time
zone. Your morning paper will not be the morning paper you are used to.
Likewise, a wide-area distributed system that connects a process in San Fran-
cisco to a process in Amsterdam cannot be expected to hide the fact that Mother
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Nature will not allow it to send a message from one process to the other in less
than about 35 milliseconds. In practice it takes several hundreds of milliseconds
using a computer network. Signal transmission is not only limited by the speed of
light. but also by limited processing capacities of the intermediate switches.

There is also a trade-off between a high degree of transparency and the per-
formance of a system. For example, many Internet applications repeatedly try to
contact a server before finally giving up. Consequently, attempting to mask a tran-
sient server failure before trying another one may slow down the system as a
whole. In such a case, it may have been better to give up earlier, or at least let the
user cancel the attempts to make contact

Another example is where we need to guarantee that several replicas, located
on different continents, need to be consistent all the time. In other words, if one
copy is changed, that change should be propagated to all copies before allowing
any other operation. It is clear that a single update operation may now even take
seconds to complete, something that cannot be hidden from users.

Finally, there are situations in which it is not at all obvious that hiding distri-
bution is a good idea. As distributed systems are expanding to devices that people
carry around, and where the very notion of location and context awareness is
becoming increasingly important, it may be best to actually expose distribution
rather than trying to hide it. This distribution exposure will become more evident
when we discuss embedded and ubiquitous distributed systems later in this chap-
ter. As a simple example, consider an office worker who wants to print a file from
her notebook computer. It is better to send the print job to a busy nearby printer,
rather than to an idle one at corporate headquarters in a different country.

There are also other arguments against distribution transparency. Recognizing
that full distribution transparency is simply impossible, we should ask ourselves
whether it is even wise to pretend that we can achieve it. It may be much better to
make distribution explicit so that the user and application developer are never
tricked into believing that there is such a thing as transparency. The result will be
that users will much better understand the (sometimes unexpected) behavior of a
distributed system, and are thus much better prepared to deal with this behavior.

The conglusion is that aiming for distribution transparency may be a nice goal
when designing and implementing distributed systems, but that it should be con-
sidered together with other issues such as performance and comprehensibility.
The price for not being able to achieve full transparency may be surprisingly high.

1.2.3 Openness

Another important goal of distributed systems is openness. An open distxkib-
uted system is a system that offers services according to standard rules that
describe the syntax and semantics of those services. For example, in computer
networks, standard rules govern the format, contents, and meaning of messages
sent and received. Such rules are formalized in protocols. In distributed systems,
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services are generally specified through intexfaces, which are often described in
an Interface Definition Language (IDL). Interface definitions written in an IDL
nearly always capture only the syntax of services. In other words, they specify
precisely the names of the functions that are available together with types of the
parameters, return values, possible exceptions that can be raised, and so on. The
hard part is specifying precisely what those services do, that is, the semantics of
interfaces. In practice, such specifications are always given in an informal way by
means of natural language.

If properly specified, an interface definition allows an arbitrary process that
needs a certain interface to talk to another process that provides that intexface. It
also allows two independent parties to build completely different implementations
of those interfaces, leading to two separate distributed systems that operate in
exactly the same way. Proper specifications are complete and neutral. Complete
means that everything that is necessary to make an implementation has indeed
been specified. However, many interface definitions are not at all complete. so
that it is necessary for a developer to add implementation-specific details. Just as
important is the fact that specifications do not prescribe what an implementation
should look like: they should be neutral. Completeness and neutrality are impor-
tant for interoperability and portability (Blair and Stefani, 1998). Iateroperabil- .
ity characterizes the extent by which two implementations of systems or com-
ponents from different manufacturers can co-exist and work together by merely
relying on each other's services as specified by a common standard. Poxtability
characterizes to what extent an application developed for a distributed system A
can be executed. without modification, on a different distributed system B that
implements the same interfaces as A.

Another important goal for an open distributed system is that it should be easy
to configure the system out of different components (possibly from different de-
velopers). Also, it should be easy to add new components or replace existing ones
without affecting those components that stay in place. In other words, an open dis-
tributed system should also be extensible. For example, in an extensible system,
it should be relatively easy to add parts that run on a different operating system. or
even to replace an entire file system. As many of us know from daily practice,
attaining such flexibility is easier said than done.

Separating Policy from Mechanism

To achieve flexibility in open distributed systems, it is crucial that the system
is organized as a collection of relatively small and easily replaceable or adaptable
components. This implies that we should provide definitions not only for the
highest-level interfaces, that is, those seen"by users and applications, but also
definitions for interfaces to internal parts pJ the system and describe how those
parts interact. This approach is relatively new. Many older and even contemporary
systems are constructed using a monolithic approach in which components are



SEC. 1.2 GOALS 9

only logically separated but implemented as one. huge program. This approach
mgkes it hard to replace or adapt a component without affecting the entire system.
Monolithic systems thus tend to be closed instead of open.

The need for changing a distributed system is often caused by a component
that does not provide the optimal policy for a specific user or application. As an
example, consider caching in the World Wide Web. Browsers generally allow
users to adapt their caching policy by specifying the size of the cache, and wheth-
er a cached document should always be checked for consistency, or perhaps only
once per session. However, the user cannot influence other caching parameters,
such as how long a document may remain in the cache, or which document should
be removed when the cache fills up. Also, it is impossible to make caching deci-
sions based on the content of a document. For instance, a user may want to cache
railroad timetables, knowing that these hardly change, but never information on
current traffic conditions on the highways.

What we need is a separation between policy and mechanism. In the case of
Web caching, for example, a browser should ideally provide facilities for only
storing documents, and at the same time allow users to decide which documents
are stored and for how long. In practice, this can be implemented by offering a
rich set of parameters that the user can set (dynamically). Even better is that a
user can implement his own policy in the form of a component that can be
plugged into the browser. Of course, that component must have an interface that
tl;e browser can understand so that it can call procedures of that interface.

1.2.4 Scalability

Worldwide connectivity through the Internet is rapidly becoming as common
as being able to send a postcard to anyone anywhere around the world. With this
in mind, scalability is one of the most important design goals for developers of
distributed systems.

Scalability of a system can be measured along at least three different dimen-
sions (Neuman, 1994). First, a system can be scalable with respect to its size,
meaning that we can easily add more users and resources to the system. Second, a
geographically scalable system is one in which the users and resources may lie far
apart. Third, a system can be administratively scalable,/~~aning that it can still be
easy to manage even if it spans many independent administrative organizations.
Unfortunately, a system that is scalable in one or more of these dimensions often
exhibits some loss of performance as the system scales up.

Scalability Problems

When a system needs to scéle, very different types of problems need to be
solved. Let us first consider scaling with respect to size. If more users or resources
need to be supported, we are often confronted with the limitations of centralized
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services, data, and algorithms (see Fig. 1-3). For example, many services are cen-
tralized in the sense that they are implemented by means of only a single server
running on a specific machine in the distributed system. The problem with this
scheme is obvious: the server can become a bottleneck as the number of users and
applications grows. Even if we have virtually unlimited processing and storage ca-
pacity, communication with that server will eventually prohibit further growth.

Unfortunately. using only a single server is sometimes unavoidable. Imagine
that we have a service for managing highly confidential information such as medi-
cal records, bank accounts. and so on. In such cases, it may be best to implement
that service by means of a single server in a highly secured separate room, and
protected from other parts of the distributed system through special network com-
ponents. Copying the server to several locations to enhance performance maybe
out of the question as it would make the service less secure.

Concept Example
Centralized services A single server for all users
Centralized data A single on-line telephone book
Centralized algorithms | Doing routing based on complete information

Figure 1-3. Examples of scalability limitations.

Just as bad as centralized services are centralized data. How should we keep
track of the telephone numbers and addresses of 50 million people? Suppose that
each data record could be fit into 50 characters. A single 2.5-gigabyte disk parti-
tion would provide enough storage. But here again, having a single database
would undoubtedly saturate all the communication lines into and out of it. Like-
wise, imagine how the Internet would work if its Domain Name System (DNS)
was still implemented as a single table. DNS maintains information on millions of
computers worldwide and forms an essential service for locating Web servers. If
each request to resolve a URL had to be forwarded to that one and only DNS
server, it is dear that no one would be using the Web (which, by the way, would
solve the problem).

Finally, centralized algorithms are also a bad idea. In a large distributed sys-
tem, an enormous number of messages have tobe routed over many lines. From a
theoretical point of view, the optimal way to do this is collect complete informa-
tion about the load on all machines and lines, and then run an algorithm to com-
pute all the optimal routes. This information can then be spread around the system
to improve the routing.

. The trouble is that collecting and transporting all the input and output infor-
mation would again be a bad idea because these messages would overload part of
the network. In fact, any algorithm that operates by collecting information from
all the sites, sends it to a single machine for processing, and then distributes the
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results should generally be avoided. Only decentralized algorithms should be
used. These algorithms generally have the following characteristics, which distin-
zuish them from centralized algorithms:

1. No machine has complete information about the system state.
2. Machines make decisions based only on local information,
3. Failure of one machine does not ruin the algorithm.

4. There is no implicit assumption that a global clock exists.

The first three follow from what we have said so far. The last is perhaps less obvi-
ous but also important. Any algorithm that starts out with: "At precisely 12:00:00
all machines shall note the size of their output queue" will fail because it is
impossible to get all the clocks exactly synchronized. Algorithms should take into
account the lack of exact clock synchronization. The larger the system, the larger
the uncertainty. On a single LAN, with considerable effort it may be possible to
get all clocks synchronized down to a few microseconds, but doing this nationally
or internationally is tricky.

Geographical scalability has its own problems. One of the main reasons why
it is currently hard to scale existing distributed systems that were designed for
local-area networks is that they are based on synchronous commumication. In
this form of communication, a party requesting service, generally referred to as a
client, blocks until a reply is sent back. This approach generally works fine in
LANs where communication between two machines is generally at worst a few
hundred microseconds. However, in a wide-area system, we need to take into ac-
count that interprocess communication may be hundreds of milliseconds, three
orders of magnitude slower. Building interactive applications using synchronous
communication in wide-area systems requires a great deal of care (and not a little
patience).

Another problem that hinders geographical scalability is that communication
in wide-area networks is inherently unreliable, and virtually always point-to-point.
In contrast, local-area networks generally provide highly reliable communication
facilities based on broadcasting, making it much easier to develop distributed sys-
tems. For example, consider the problem of locating a service. In a local-area sys-
tem, a process can simply broadcast a message to eve\) machine, asking if it is
running the service it needs. Only those machines that Havethat service respond,
each providing its network address in the reply message. Such a location scheme
is unthinkable in a wide-area system: just imagine what would happen if we tried
to locate a service this way in the Internet. Instead, special location services need
to be designed, which may need to scale worldwide and be capable of servicing a
billion users. We return to such services in Chap. 5.

Geographical scalability is strongly related to the problems of centralized
solutions that hinder size scalability. If we have a system with many centralized
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components, it is clear that geographical scalability will be limited due to the per-
formance and reliability problems resulting from wide-area communication. In ad-
dition, centralized components now lead to a waste of network resources. Imagine
that a single mail server is used for an entire country. This would mean that send-
ing an e-mail to your neighbor would first have to go to the central mail server,
which may be hundreds of miles away. Clearly, this is not the way to go.

Finally, a difficult, and in many cases open question is how to scale a distrib-
uted system across multiple, independent administrative domains. A major prob-
lem that needs to be solved is that of conflicting policies with respect to resource
usage (and payment), management, and security.

For example, many components of a distributed system that reside within a
single domain can often be trusted by users that operate within that same domain.
In such cases, system administration may have tested and certified applications,
and may have taken special measures to ensure that such components cannot be
tampered with. In essence, the users trust theiz system administrators. However,
this trust does not expand naturally across domain boundasies.

If a distributed system expands into another domain, two types of security
measures need to be taken. First of all, the distributed system has to protect itself
against malicious attacks from the new domain. For example, users from the new
domain may have only read access to the file system in its original domain. Like-
wise, facilities such as expensive image setters or high-pesformance computers
may not be made available to foreign users. Second, the new domain has to pro-
tect itself against malicious attacks from the distributed system. A typical example
is that of downloading programs such as applets in Web browsers. Basically, the
new domain does not know behavior what to expect from such foreign code, and
may therefore decide to severely limit the access rights. for such code. The prob-
lem, as We shall see in Chap. 9, is how to enforce those limitations.

Scaling Techniques

Having discussed some of the scalability problems brings us to the question of
how those problems can generally be solved. Im most cases, scalability problems
in distributed systems appear as pexformance problems caused by limited capagity
of servers and network. There are now basically only three techniques for scaling:
hiding communication latencies, distribution, and replication [see also Neuman
(1994) 1. ~

Hiding communication latencies is important to achieve geographical. scala-
bility. The basic idea is simple: try to avoid waiting for responses to remote (and
potentially distant) serviee requests as much as possible. For example, when a ser-
vice has been requested at a remote machine, an alternative to waiting for a reply
from the server is to do other useful work at the requester's side. Essentially, what
this means is constructing the requesting appligation in such a way that it uses
only asynchronous communication. = When a reply comes in, the application is
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interrupted and a special handler is called to complete the previously-issued re-
quest. Asynchronous communication can often be used in batch-processing sys-
tems and parallel applications, in which more or less independent tasks can be
scheduled for execution while another task is waiting for communication to com-
plete. Alternatively, a new thread of control can be started to perforrnthe request.
Although it blocks waiting for the reply, other threads in the process can continue.

However, there are many applications that cannot make effective use of asyn-
chronous communication. For example, in interactive applications when a user
sends a request he will generally have nothing better to do than to wait for the
answer. In such cases, a much better solution is to reduce the overall communica-
tion, for example, by moving part of the computation that is normally done at the
server to the client process requesting the service. A typical case where this ap-
proach works is accessing databases using forms. Filling in forms can be done by
sending a separate message for each field, and waiting for an acknowledgment
from the server, as shown in Fig. 1-4(a). For example, the server may check for
syntactic errors before accepting an entry. A much better solution is to ship the
code for filling in the form, and possibly checking the entries, to the client, and
have the client return a completed form, as shown in Fig. 1-4(b). This approach
of shipping code is now widely supported by the Web in the form of Java applets
and Javascript.

Client Server
FIRST NAME [MAARTEN | @@_;"
LAST NAME [VaN STEEN ] E—>
E-MAIL [STEEN@CS.VUNL ) [=> ) —>
E|=>»
5]
> 4 A
/
Check form Process form
(a)
Client Server
FIRST NAME[MAARTEN — — |
LAST NAME [vaN STeen | N VAN STEEN >
E-MAIL [STEEN@CSVUNL | STEEN@CS.VUNL
: @ >
A ] N
Check form ' Process form

(b)
Figure 1-4. The difference between letting (a) a server or (b) a client check

forms as they are being filled.

Another important scaling technique is distuibution. Distribution involves
taking a component, splitting it into smaller parts, and subsequently spreading
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those parts across the system. An excellent example of distribution is the Internet
Domain Name System (DNS). The DNS name space is hierarchically organized
into a tree of domains, which are divided into nonoverlapping zones, as shown in
Fig. 1-5. The names in each zone are handled by a single name server. Without
going into too many details, one can think of each path name,being the name of a
host in the Internet, and thus associated with a network address of that host. Basi-
cally, resolving a name means returning the network address of the associated
host. Consider, for example, the name nl.vu.csflits. To resolve this name, it is
first passed to the server of zone 21 (see Fig. 1-5) which returns the address of the
server for zone 22, to which the rest of name, vu.csflits, can be handed. The
server for 22 will return the address of the server for zone 23, which is capable of
handling the last part of the name and will return the address of the associated
host,

Generic Countries
[« > |« .

Figure - 1-5. An example of dividing the DNS name space into zones.

This example illustrates how the naming service, as provided by DNS, is dis-
tributed across several machines, thus avoiding that a single server has to deal
with all requests for name resolution.

As another example, consider the World Wide Web. To most users, the Web
appears to be an enormous document-based information system in which each
document has its own unique name in the form of a URL. Conceptually, it may
even appear as if there is only a single server. However, the Web is physically
distributed across a large number of servers, each handling a number of Web doc-
uments. The name of the server handling a document is encoded into that docu-
ment's URL. It is only because of this distribution of documents that the Web has
been capable of scaling to its current size.

Considering that scalability problems often appear in the form of performance
degradation, it is generally a good idea to actually replicate components across a
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distributed system. Replication not only increases availability, but also helps to
bglance the load between components leading to better pexformance. Also, in geo-
!I1lphjcally widely-dispersed ~systems, having a copy nearby can hide much of the
~omrnugication latency problems mentioned before.

Caching 1is a special form of replication, although the distinction between the
two is often hard to make or even artificial. As in the case of replication, caching
results. in making a copy of a resource, generally in the proximity of the client ac-
cessing that resource. However, in contrast to replication, caching is a decision
made by the client of a resource, and not by the owner of a resource. Also, cach-
ing happens on demand whereas replication is often planned in advance.

There is one sexious drawback to caching and replication that may adversely
affect scalability. Because we now have multiple copies of a resource, modifying
one copy makes that copy different from the others. Consequently, caching and
replication leads to consistency problems.

To what extent inconsistencies can be tolerated depends highly on the usage
of a resource. For example, many Web users fmd it acceptable that theix' browser
returns a cached document of which the validity has not been checked for the last
few minutes. However, there are also many cases in which strong consistency
guarantees need to be met, such as in the case of electronic stock exchanges and
auctions. The problem with strong consistency is that an update must be immedi-
ately propagated to all other copies. Moreover, if two updates happen concur-
rently, it is often also required that each copy is updated in the same order. Situa-
tions such as these generally require some global synchionization mechanism.
Unfortunately, such mechanisms are extremely hard or even impossible to imple-
ment in a scalable way, as she insists that photons and electrical signals obey a
speed limit of 187 miles/msec (the speed of light). Consequently, scaling by repli-
cation may introduce other, inherently nonscalable solutions. We return to replica-
tion and consistency in Chap. 7.

When considering these scaling techniques, one could argue that size scalabil-
ity is the least problematic from a technical point of view. In many cases, simply
increasing the capacity of a machine will the save the day (at least temporaxily
and perhaps at significant costs). Geographical scalability ' is a much tougher prob-
lem as Mother Nature is getting in our way. Nevertheless, practiee shows that
combining distribution, replication, and caching techniques with different forms
of consistency will often prove sufficient in many cases. Finally, administrative
scalability seems to be the most difficult one, rattly also because we need to solve
nontechnical problems (e.g., politics of organizations and human collaboration).
Nevertheless, progress has been made in this area, by simply ignoring administra-
tive domains. The introduction and now widespread use of peer-to-peer technol-
ogy demonstrates what can be achieved if end users simply take over control
(Aberer and Hauswirth, 2005; Lua et al., 2005; and Oram, 2001). However, let it
be clear that peer-to-peer technology can at best be only a paktial solution to solv-
ing administrative scalability. Eventually, it will have to be dealt with.
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1.2.5 Pitfalls

It should be clear by now that developing distributgd systems can be a formid-
able task. As we will see many times throughout this bgok, there are so many
issues to consider at the same time that it seems that only complexity can be the
result, Nevertheless, by following a number of design principles, distributed sys-
tems can be developed that strongly adhere to the goals we set out in this chapter.
Many principles follow the basic rules of decent software engineering and wiJI not
be repeated here.

However, distributed systems differ from traditional software because com-
ponents are dispersed across a network. Not taking this dispersion into account
during design time is what makes so many systems needlessly complex and re-
sults in mistakes that need to be patched later on. Peter Deutsch, then at Sun
Microsystems, formulated these mistakes as the following false assumptions that
everyone makes when developing a distributed application for the first time:

1. The network is reliable.

The network is secure.

The network is homogeneous.
The topology does not change.
Latency is zero.

Bandwidth is infinite.

NS s w D

Transport cost is zero.

8. There is one administrator.

Note how these assumptions relate to properties that are unique to distributed sys-
tems: reliability, security, heterogeneity, and topology of the network; latency and
bandwidth; transport costs; and finally administrative domains. When developing
nondistributed applications, many of these issues will most likely not show up.

Most of the principles we discuss in this book relate immediately to these
assumptions. In all cases, we will be discussing solutions to problems, that are
caused by the fact that one or more assumptions are false. For example, reliable
networks simply do not exist, leading to the impossibility of achieving failure
transparency. We devote an entire chapter to deal with the fact that networked
commupjication is inherently insecure. We have already argued that distributed
systems need to tgke heterogeneity into account. In a similar vein, when discuss-
ing replication for solving scalability problems, we are essentially tackling latency
and bandwidth problems. We will also touch upon management issues at various
points throughout this book, dealing with the false assumptions of zero-cost tran-
sportation and a single admianistrative domain.



SEC. 1.3 TYPES OF DISTRIBUTED SYSTEMS 17

1.3 TYPES OF DISTRIBUTED SYSTEMS

Before starting to discuss the principles of distributed systems, let us first take
a closer look at the various types of distributed systems. In the following we make
a distinction between distributed computing systems, distributed information sys-
tems, and distributed embedded systems. )

1.3.1 Distributed Computing Systems

An important class of distributed systems is the one used for high-perfor-
mance computing tasks. Roughly speaking, one can make a distinction between
two subgroups. In cluster computing the underlying hardware consists of a col-
lection of similar workstations or PCs, closely connected by means of a high-
speed local-area network. In addition, each node runs the same operating system.
~ The situation becomes quite different in the case of grid computing. This
subgroup consists of distributed systems that are often constructed as a federation
of computer systems, where each system may fall under a different administrative
domain, and may be very different when it comes to hardware, software, and
deployed network technology.

Cluster Computing Systems;

Cluster computing systems became popular when the price/performance ratio
of personal computers and workstations improved. At a certain point, it became
financially and technically attractive to build a supercomputer using off-the-shelf
technology by simply hooking up a collection of relatively simple computers in a
high-speed network. In virtually all cases, cluster computing is used for parallel
programming in which a single (compute intensive) program is run in parallel on
multiple machines.

Master node Compute node Compute node Compute node
Management Component Component Component
application of of of
paraliel parallel o0 00O parallel
Parallel libs application application application

l Local OS ] ; l Local OS J , Local OS !
L L L B B E B F N B N B ¥ N ] . ]
Remote access r r Standard network

High-speed network

Figure 1-6. An example of a cluster computing system.
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One well-known example of a cluster computer is formed by Linux-based
Beowulf clusters, of which the general configuration is shown in Fig. 1-6. Each
cluster consists of a collection of compute nodes that are controlled and accessed
by means of a single master node. The master typically handles the allocation of
nodes to a particular parallel program, maintains a batch queue of submitted jobs,
and provides an interface for the users of the system. As such, the master actually
runs the middleware needed for the execution of programs and management of the
cluster, while the compute nodes often need nothing else but a standard operating
system.

An important part of this middleware is formed by the libraries for executing
parallel programs. As we will discuss in Chap. 4, many of these libraries effec-
tively provide only advanced message-based communication facilities, but are not
capable of handling faulty processes, security, etc.

As an glternative to this hierarchical organization, a symmetric approach is
followed in the MOSIX system (Amar et at, 2004). MOSIX attempts to provide
a single-system image of a cluster, meaning that to a process a cluster computer
offers the ultimate distribution transparency by appearing to be a single computer.
As we mentioned, providing such an image under all circumstances is impossible.
In the case of MOSIX, the high degree of transparency is provided by allowing
processes to dynamically and preemptively migrate between the nodes that make
up the ¢luster. Process migration allows a user to start an application on any node
(referred to as the home node), after which it can transparently move to other
nodes, for example, to make efficient use of resources. We will return to process
migration in Chap. 3.

Grid Computing Systems

A characteristic feature of cluster computing is its homogeneity. In most
cases, the computers in a cluster are largely the same, they all have the same oper-
ating system, and are all connected through the same network. In contrast, grid
computing systems have a high degree of heterogeneity: no assumptions are made
concerning hardware, operating systems, networks, administrative domains, secu-
rity policies, etc.

A key issue in a grid computing system is that resources from different organ-
izations are brought together to allow the collaboration of a group of people or
institutions. Such a collaboration is realized in the form of a virtual organization.
The people belonging to the same virtual organization have access rights to the re-
sources that are provided to that organization. Typically, resources consist of
compute servers (including supercomputers, possibly implemented as ¢luster com-
puters), storage facilities, and databases. In addition, special networked deviees
such as telescopes, sensors, etc., can be provided as well.

Given its nature, much of the software for realizing grid computing evolves
around providing access to resources from different administrative domains, and
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to only those users and applications that belong to a specific virtual organization.
For this reason, focus is often on architectural issues. An architecture proposed by
Foster et al. (2001). is shown in Fig. 1-7

| Applications I

l Collecti‘\:e layer l

y A
Connectivity layer }———-l Resource layer ]

y Y

I Fabric léyer ]

Figure 1-7. A layered architecture for grid computing systems.

The architecture consists of four layers. The lowest fabric layer provides in-
terfaces to local resources at a specific site. Note that these interfaces are tailored
to allow sharing of resources within a virtual organization. Typically, they will
provide functions for querying the state and capabilities of a resource, along with
functions for actual resource management (e.g., locking resources).

The connectivity layer consists of communication protocols for supporting
grid transactions that span the usage of multiple resources. For example, protocols
are needed to transfer data between resources, or to simply access a resource from
a remote location. In addition, the connectivity layer will contain security proto-
cols to authenticate users and resources. Note that in many cases human users are
not authenticated; instead, programs acting on behalf of the users are authenti-
cated. In this sense, delegating rights from a user to programs is an important
function that needs to be supported in the connectivity layer. We return exten-
sively to delegation when discussing security in distributed systems.

The resource layer is responsible for managing a single resource. It uses the
functions provided by the connectivity layer and calls directly the interfaces made
available by the fabric layer. For example, this layer will offer functions for
obtaining configuration information on a specific resource, or, in general, to per-
form specific operations such as creating a process or reading data. The resource
layer is thus seen to be responsible for access control, and hence will rely on the
authentication performed as part of the connectivity layer.

The next layer in the hierarchy is the collective layer. It deals with handling
access to multiple resources and typically consists of services for resource
discovery, allocation and scheduling of tasks onto multiple resources, data repli-
cation, and so on. Unlike the connectivity and resource layer, which consist of a
relatively small, standard collection of protocols, the collective layer may consist
of many different protocols for many different purposes, reflecting the broad spec-
trum of services it may offer to a virtual organization.
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Finally, the application layer consists of the applications that operate within a
virtual organization and which make use of the grid computing environment..

Typically the collective, connectivity, and resource layer form the heart of
what could be called a grid middleware layer. These layers jointly provide access
to and management of resources that are potentially dispersed across multiple
sites. An important observation from a middleware perspective is that with grid
computing the notion of a site (or administrative unit) is common. This prevalence
is emphasized by the gradual shift toward a service-oriented architecture in
which sites offer access to the various layers through a collection of Vv'eb services
(Joseph et al.. 2004). This, by now, has led to the definition of an alternative ar-
chitecture known as the Open Grid Services Architecture (OGSA). This archi-
tecture consists of various layers and many components, making it rather com-
plex. Complexity seems to be the fate of any standardization process. Details on
OGSA can be found in Foster et al. (2005).

1.3.2 Distsibuted Information Systems

Another important class of distributed systems is found in organizations that
were confronted with a wealth of networked applications, but for which interoper-
ability turned out to be a painful experience. Many of the existing middleware
solutions are the result of working with an infrastructure in which it was easier to
integrate applications into an enterprise-wide information system (Bernstein,
1996; and Alonso et al., 2004).

We can distinguish several levels at which integration took place. In many
cases, a networked application simply consisted of a server running that applica-
tion (often including a database) and making it available to remote programs, call-
ed clients. Such clients could send a request to the server for executing a specific
operation, after which a response would be sent back. Integration at the lowest
level would allow clients to wrap a number of requests, possibly for different ser-
vers, into a single larger request and have it executed as a distributed transac-
tion. The key idea was that all, or none of the requests would be executed.

As applications became more sophisticated and were gradually separated into
independent components (notably distinguishing database components from proc-
essing components), it became clear that integration should also take place by let-
ting applications communicate directly with each other. This has now led to a
huge industry that concentrates on enterprise application integration (EAIl). In
the following, we concentrate on these two forms of distributed systems.

Transaction Processing Systems

To clarify our discussion, let us concentrate on database applications. In prac-
tice, operations on a database are usually carried out in the form of transactions.
Programming using transactions requires special primitives that must either be
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supplied by the underlying distributed system or by the language runtime system.
Typical examples of transaction primitives are shown in Fig. 1-8. The exact list
of primitives depends on what kinds of objects are being used in the transaction
(Gray and Reuter, 1993). In a mail system, there might be primitives to send,
receive, and forward mail. In an accounting system, they might be quite different.
READ and WRITE are typical examples, however. Ordinary statements, procedure
calls, and so on, are also allowed inside a transaction. In particular, we mention
that remote procedure calls (RPCs), that is, procedure calls to remote servers, are
often also encapsulated in a transaction, leading to what is known as a tran-
sactional RPC. We discuss RPCs extensively in Chap. 4.

Primitive Description
BEGIN_TRANSACTION Mark the start of a transaction
END_TRANSACTION Terminate the transaction and try to commit
ABORT_TRANSACTION | Kill the transaction and restore the old values
READ ~ Read data from a file, a table, or otherwise
WRITE Write data to a file, a table, or otherwise

Figure 1-8. Example primitives for transactions.

BEGIN_ TRANSACTION and END_TRANSACTION are used to delimit the
scope of a transaction. The operations between them form the body of the tran-
saction. The characteristic feature of a transaction is either all of these operations
are executed or none are executed. These may be system calls, library procedures,
or bracketing statements in a language, depending on the implementation.

This all-or-nothing property of transactions is one of the four characteristic
properties that transactions have. More specifically, transactions are:

1. Atomic: To the outside world, the transaction happens indivisibly.
2. Consistent: The transaction does not violate system invariants.
3. Isolated: Concurrent transactions do not interfere with each other.

4. Durable: Once a transaction commits, the changes are permanent.

These properties are often referred to by their initial letters: ACID.

The first key property exhibited by all transactions is that they are atomic.
This property ensures that each transaction either happens completely, or not at
all, and if it happens, it happens in a single indivisible, instantaneous action.
While a transaction is in progress, other processes (whether or not they are them-
selves involved in transactions) cannot see any of the intermediate states.

The second property says that they are consistent. What this means is that if
the system has certain invariants that must always hold, if they held before the
transaction, they will hold afterward too. For example. in a banking system, a key
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invariant is the law of conservation of money. After every internal transfer, the
amount of money in the bank must be the same as it was before the transfer, but
for a brief moment during the transaction, this invariant may be violated. The vio-
lation is not visible outside the transaction, however.

The third property says that transactions are isolated or serializable. What it
means is that if two or more transactions are running at the same time, to each of
them and to other processes, the final result looks as though all transactions ian
sequentially in some (system dependent) order.

The fourth property says that transactions are durable. It refers to the fact
that once a transaction commits, no matter what happens, the transaction goes for-
ward and the results become permanent. No failure after the commit can undo the
results or cause them to be lost. (Durability is discussed extensively in Chap. 8.)

So far, transactions have been defined on a single database. A nested tran-
saction is constructed from a number of subtransactions, as shown in Fig. 1-9.
The top-level transaction may fork off children that run in parallel with one anoth-
er, on different machines, to gain performance or simplify programming. Each of
these children may also execute one or more subtransactions, or fork off its own
children.

Nested transaction

Subtransaction Subtransaction

12 1 i 1

Airline database Hotel database
Two different (independent) databases

Figure 1-9. A nested transaction.

Subtransactions give rise to a subtle, but important, problem. Imagine that a
transaction starts several subtransactions in parallel, and one of these commits.
making its results visible to the parent transaction. After further computation, the
parent aborts, restoring the entire system to the state it had before the top-level
transaction started. Consequently, the results of the subtransaction that committed
must nevertheless be undone. Thus the permanence referred to above applies only
to top-level transactions.

Since transactions can be nested arbitrarily deeply, considerable administra-
tion is needed to get everything right. The semantics are clear, however. When
any transaction or subtransaction starts, it is conceptually given a private copy of
all data in the entire system for it to manipulate as it wishes. If it aborts, its private
universe just vanishes, as if it had never existed. If it commits, its private universe
replaces the parent's universe. Thus if a subtransaction commits and then later a
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new subtransaction is started, the second one sees the results produced by the first
one. Likewise, if an enclosing (higher-level) transaction aborts, all its underlying
subtransactions have to be aborted as well.

Nested transactions are important in distributed systems, for they provide a
natural way of distributing a transaction across multiple machines. They follow a
logical division of the work of the original transaction. For example, a transaction
for planning a trip by which three different flights need to be reserved can be logi-
cally split up into three subtransactions. Each of these subtransactions can be
managed separately and independent of the other two.

In the early days of enterprise middleware systems, the component that hand-
led distributed (or nested) transactions formed the core for integrating applications
at the server or database level. This component was called a transaction proc-
essing monitor or TP monitor for short. Its main task was to allow an application
to access multiple server/databases by offering it a transactional programming
model, as shown in Fig. 1-10.

Server~
Reply
Transaction Reques
Requests a t
eques
Client ] | TP monitor | Server
application i -«
Reply
Repl
Py Request
Reply Server

Figure 1-10. The role of a TP monitor in distributed systems.

Enterprise Application Integration

As mentioned, the more applications became decoupled from the databases
they were built upon, the more evident it became that facilities were needed to
integrate applications independent from their databases. In particular, application
components should be able to communicate directly with each other and not mere-
ly by means of the request/reply behavior that was supported by transaction proc-
essing systems.

This need for interapplication communication led to many different communi-
cation models, which we will discuss in detail in this book (and for which reason
we shall keep it brief for now). The main idea was that existing applications could
directly exchange information, as shown in Fig. 1-11.
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Figure 1-11. MiddJeware as a communication facilitator in enterpsise applica-
tion integration.

Several types of communication middleware exist. With remote procedure
calls (RPC), an application component can effectively send a request to another
application component by doing a local procedure call, which results in the re-
quest being packaged as a message and sent to the callee. Likewise, the result will
be sent back and returned to the application as the result of the procedure call.

As the popularity of object technology increased, techniques were developed
to allow calls to remote objects, leading to what is known as remote method
invocations (RMI). An RMI is essentially the same as an RPC, except that it op-
erates on objects instead of applications.

RPC and RMI have the disadvantage that the caller and callee both need to be
up and running at the time of communication. In addition, they need to know ex-
actly how to refer to each other. This tight coupling is often experienced as a seri-
ous drawback, and has led to what is known as message-oniented middleware, or
simply MOM. In this case, applications simply send messages to logical contact
points, often described by means of a subject. Likewise, applications can indicate
their interest for a specific type of message, after which the communication mid-
dleware will take care that those messages are delivered to those applications.
These so-called publish/subscribe systems form an important and expanding
class of distributed systems. We will discuss them at length in Chap. 13.

1.3.3 Distributed Pervasive Systems

The distributed systems we have been discussing so far are largely charac-
terized by their stability: nodes are fixed and have a more or less permanent and
high-quality connection to a network. To a certain extent, this stability has been
realized through the various techniques that are discussed in this book and which
aim at achieving distribution transparency. For example, the wealth of techniques
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for masking failures and recovery will give the impression that only occasionally
things may go wrong. Likewise, we have been able to hide aspects related to the
actual network location of a node, effectively allowing users and applications to
believe that nodes stay put.

However, matters have become very different with the introduction of mobile
and embedded computing devices. We are now confronted with distributed sys-
tems in which instability is the default behavior. The devices in these, what we
refer to as distributed pervasive systems, are often characterized by being small,
battery-powered, mobile, and having only a wireless connection, although not all
these characteristics apply to all devices. Moreover, these characteristics need not
necessarily be interpreted as restrictive, as is illustrated by the p0531b111t1es of
modem smart phones (Roussos et al., 2005).

As its name suggests, a distributed pervasive system is part of our surround-
ings (and as such, is generally inherently distributed). An important feature is the
general lack of human administrative control. At best, devices can be configured
by their owners, but otherwise they need to automatically discover their environ-
ment and "nestle in" as best as possible. This nestling in has been made more pre-
cise by Grimm et al. (2004) by formulating the following three requirements for
pervasive applications:

1. Embrace contextual changes.
2. Encourage ad hoc composition.

3. Recognize sharing as the default.

Embracing contextual changes means that a device must be continuously be
aware of the fact that its environment may change all the time. One of the sim-
plest changes is discovering that a network is no longer available, for example,
because a user is moving between base stations. In such a case, the application
should react, possibly by automatically connecting to another network, or taking
other appropriate actions.

Encouraging ad hoc composition refers to the fact that many devices in per-
vasive systems will be used in very different ways by different users. As a result,
it should be easy to configure the suite of applications running on a device, either
by the user or through automated (but controlled) interposition.

One very important aspect of pervasive systems is that devices generally join
the system in order to access (and possibly provide) information. This calls for
means to easily read, store, manage, and share information. In light of the inter-
mittent and changing connectivity of devices, the space where accessible informa-
tion resides will most likely change all the time.

Mascolo et al. (2004) as well as Niemela and Latvakoski (2004) came to simi-
lar conclusions: in the presence of mobility, devices should support easy and ap-
plication-dependent adaptation to their local environment. They should be able to
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efficiently discover services and react accordingly. It should be elear from these
requirements that distribution transparency is not really in place in pervasive sys-
tems. In fact, distribution of data, processes, and control is inkerent to these sys-
tems, for whigh reason it may be better just to simply expose it rather than trying
to hide it, Let us now take a look at some concrete examples of pervasive systems.

Home Systems

An increasingly popular type of pervasive system, but which may perhaps be
the least constrained, are systems built around home networks. These systems
generally consist of one or more personal computers, but more importantly inte-
grate typical consumer electronics such as TVs, audio and video equipment. gam-
ing devices, (smart) phones, PDAs, and other personal wearables into a single sys-
tem. In addition, we can expect that all kinds of devices such as kitchen appli-
ances, surveillance cameras, clocks, controllers for lighting, and so on, will all be
hooked up into a single distributed system.

From a system's perspective there are several challenges that need to be ad-
dressed before pervasive home systems become reality. An important one is that
such a system should be completely self-configuring and self-managing. It cannot
be expected that end users are willing and able to keep a distributed home system
up and running if its components are prone to errors (as is the case with many of
today's devices.) Much has already been accomplished through the Umiversal
Plug and Play (UPnP) standards by which devices automatically obtain IP ad-
dresses, can discover each other, etc. (DPnP Forum, 2003). However, more is
needed. For example, it is unclear how software and firmware in devices can be
easily. updated without manual intervention, or when updates do take place, that
compatibility with other devices is not violated.

Another pressing issue is managing what is known as a "personal space.”
Recognizing that a home system consists of many shared as well as personal de-
vices, and that the data in a home system is also subject to sharing restrictions,
much attention is paid to realizing such personal spaces. For example, part of
Alice's persongl space may consist of her agenda, family photo's, a diary. music
and videos that she bought, etc. These personal assets should be stored in such a
way that Alice "has access to them whenever appropriate. Moreover. parts of this
personal space should be (temporarily) accessible to others, for example. when
she needs to make a business appointment.,

Fortunately, things may become simpler. It has long been thought that the per-
sonal spaces related to home systems were inherently distributed across the vari-
ous devices. Obviously, such a dispersion can easily lead to significant synchroni-
zation problems. However, problems may be alleviated due to the rapid increase
in the capacity of hard disks, along with a decrease in their size. Configuring a
multi-terabyte storage unit for a personal computer is not really a problem. At the
same time, portable hard disks having a capacity of hundreds of gigabytes are
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being placed inside relatively small portable media players. With these continu-
ously increasing capagities, we may see pervasive home systems adopt an archi-
tecture in which a single machine acts as a master (and is hidden away somewhere
in the basement next to the central heating), and all other fixed devises simply
provide a convenient integface for humans. Personal devices will then be cram-
med with daily needed information, but will never run out of storage.

However, having enough storage does not solve the problem of managing per-
sonal spaces. Being able to store huge amounts. of data shifts the problem to stor-
ing relevant data and being able to find it later. Increasingly we will see pervasive
systems, like home networks, equipped with what are called recommenders, pro-
grams that consult, what other users have stored in order to identify. similar taste,
and from that subsequently derive which content to place in one's personal space.
An interesting observation 1is that the amount of information that recommender
programs need to do their' work is often small enough to allow them to be run on
PDAs (Miller et al., 2004).

Electronic Health Care Systems

Another important and upcoming class of pervasive systems are those related
to (personal) electronic_ health care. With the increasing cost of medical treatment,
new devices are being developed to monitor the well-being of individuals and to
automatically contact physicians when needed. In many of these systems, a majior
goal is to prevent people from being hospitalized.

Personal health care systems are often equipped with various sensors organ-
ized in a (preferably wireless) body-area network (BAN). An important issue is
that such a network should at worst only minimally hinder a person. To this end,
the network should be able to operate while a person is moving, with no strings
(i.e., wires) attached to immobile devices.

This requirement leads to two obvious organizations, as shown in Fig. 1-12.
In the first one, a central hub is part of the BAN and collects- data as needed. From
time to time, this data is then offloaded to a larger storage deviee. The advantage
of this scheme is that the hub can also manage the BAN. In the second scensrio,
the BAN is continuously hooked up to an external network, again through a wire-
less connection, to which it sends monitored data. Separate techmiques will need
to be deployed for managing the BAN. Of course, further connections to a physi-
cian or other people may exist as well.

From a distributed system's perspective we are immediately confronted with

questions such as:

1. Where and how should monitored data be stored?

2. How can we prevent loss of crucial data?

(98]

What infrastructure is needed to generate and propagate elerts?
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Figure 1-12. Monitoring a person in a pervasive electronic health care system,
using (a) a local hub or (b) a continuous wireless connection.

4. How can physicians provide online feedback?
5. How can extreme robustness of the monitoring system be realized?

6. What are the security issues and how can the proper policies be
enforced?

Unlike home systems, we cannot expect the architecture of pervasive health care
systems to move toward single-server systems and have the monitoring devices
operate with minimal functionality. On the contrary: for reasons of efficiency, de-
vices and body-area networks will be required to support in-network data proc-
essing, meaning that monitoring data will, for example, have to be aggregated be-
fore permanently storing it or sending it to a physician. Unlike the case for distrib-
uted information systems, there is yet no clear answer to these questions.

Sensor Networks

Our last example of pervasive systems is sensor networks. These networks in
many cases form part of the enabling technology for pervasiveness and we see
that many solutions for sensor networks return in pervasive applications. What
makes sensor networks interesting from a distributed system's perspective is that
in virtually all cases they are used for processing information. In this sense, they
do more than just provide communication services. which is what traditional com-
puter networks are all about, Akyildiz et al. (2002) provide an overview from a
networking perspective. A more systems-oriented introduction to sensor networks
is given by Zhao and Guibas (2004). Strongly related are mesh networks which
essentially form a collection of (fixed) nodes that communicate through wireless
links. These networks may form the basis for many medium-scale distributed sys-
tems. An overview is provided in Akyildiz et al. (2005).

External
storage
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A sensor network typically consists of tens to hundreds or thousands of rela-
tively smgll nodes, each equipped with a sensing device. Most sensor networks
use wireless communication, and the nodes are often battery powered. Their lim-
ited resources, restricted communication capabilities, and constrained power con-
sumption demand that efficiency be high on the list of design criteria.

The relation with distributed systems can be made clear by considering sensor
networks as distributed databases. This view is quite common and easy to under-
stand when realizing that many sensor networks are deployed for measurement
and surveillance applications (Bonnet et al., 2002). In these cases, an operator
would like to extract information from (a part of) the network by simply issuing
queries such as "What is the northbound traffic load on Highway I?" Such
queries resemble those of traditional databases. In this case, the answer will prob-
ably need to be provided through collaboration of many sensors located around
Highway 1, while leaving other sensors untouched.

To organize a sensor network as a distributed database, there are essentially
two extremes, as shown in Fig. 1-13. First, sensors do not cooperate but simply
send their data to a centralized database located at the operator's site. The other
extreme is to forward queries to relevant sensors and to let each compute an
answer, requiring the operator to sensibly aggregate the returned answers.

Neither of these solutions is very attractive. The first one requires that sensors
send all their measured data through the network, which may waste network re-
sources and energy. The second solution may also be wasteful as it discards the
aggregation capabilities of sensors which would allow much less data to be re-
turned to the operator. What is needed are facilities for in-network data proc-
essing, as we also encountered in pervasive health care systems.

In-network processing can be done in numerous ways. One obvious one is to
forward a query to all sensor nodes along a tree encompassing all nodes and to
subsequently aggregate the results as they are propagated back to the root, where
the initiator is located. Aggregation will take place where two or more branches of
the tree come to together. As simple as this scheme may sound, it introduces diffi-

cult questions:
1. How do we (dynamically) set up an efficient tree in a sensor network?
2. How does aggregation of results take place? Can it be controlled?

3. What happens when network links fail?

These questions have been partly addressed in TinyDB, which' implements a de-
clarative(database) interface to wireless sensor networks. In essence, TinyDB can
use any tree-based routing algorithm. Aa intermediate node will collect and ag-
gregate the results from its children, along with its own findings, and send that
toward the root, To make matters efficient, queries span a period of time allowing

(e
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Figure 1-13. Organizing a sensor network database, while storing and proc-
essing data (a) only at the operator's site or (b) only at the sensors.

for careful scheduling of operations so that network resources and energy are
optimally consumed. Details can be found in Madden et al, (2005).

However, when queries can be initiated from different points in the network,
using single-rooted trees such as in TinyDB may not be efficient enough. As an
alternative, sensor networks may be equipped with special nodes where results are
forwarded to, as well as the queries related to those results. To give a simple ex-
ample, queries and results related temperature readings are collected at a different
location than those related to humidity measurements. This approach corresponds
directly to the notion of publish/subscribe systems, which we will discuss exten-
sively in Chap. 13.

1.4 SUMMARY

Distributed systems consist of autonomous computers that work together to
give the appearance of a single coherent system. One important advantage is that
they make it easier to integrate different applications running on different com-
puters into a single system. Another advantage is that when properly designed,
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distributed systems scale well with respect to the size of the underlying network.
These advantages often come at the cost of more complex software, degradation
of performance, and also often weaker security. Nevertheless, there is consid-
erable interest worldwide in building and installing distributed systems.

Distributed systems often aim at hiding many of the intricacies related to the
distribution of processes, data, and control. However, this distribution transpar-
ency not only comes at a performance price, but in practical situations it can never
be fully achieved. The fact that trade-offs need to be made between achieviag var-
ious forms of distribution transparency is inherent to the design of distributed sys-
tems, and can easily complicate their understanding. -

Matters are further complicated by the fact that many developers initially
mgke assumptions about the underlying network that are fundamentally wrong.
Later, when assumptions are dropped, it may turn out to be difficult to mask
unwanted behavior. A typical example is assuming that network latency isnot sig-
pificant, Later, when porting an existing system to a wide-area network, hiding
latencies may deeply affect the system's original design. ‘Other pitfalls include
assuming that the network is reliable, static, secure, and homogeneous.

Different types of distributed systems exist which can be classified as being
oriented toward supporting computations, information processing, and pervasive-
ness. Distributed computing systems are typically deployed for high-performance
applications often originating from the field of parallel computing. A huge class
of distributed can be found in traditional office environments where we see data-
bases playing an important role. Typically, transaction processing systems are
deployed in these environments. Finally, an emerging class of distributed systems
is where components are small and the system is composed in an ad hoc fashion,
but most of all is no longer managed through a system administrator. This last
class is typically represented by ubiquitous computing environments.

PROBLEMS

1, An alternative definition for a distzibuted system is that of a collection of independent
computers providing the view of being a single system, that is, it is completely hidden
from users that there even multiple computers. Give an example where this view
would come in very handy.

2. What is the role of middleware: in a distributed system?

3. Many networked systems are organized in terms of a back office and a front office.

How does organizations match with the coherent view we demand for a distributed
~~m? — .

4. Explgin what is meant by (distribution) transparency, and give examples of different
types of transparency.
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5.

10.

11.

12.

13.

14.

15.

INTRODUCTION CHAP. 1

Why is it sometimes so hard to hide the occurrence and recovery from failures in a
distzibuted system?

. Why is it not always a good idea to aim at implementing the highest degree of trans-

parency possible?

. What is an open distiibuted system and what benefits. does openness provide?

Describe precisely what is meant by a scalable system.

Scalability can be achieved by applying different techniques. What are these tech-
niques?

Explain what is meant by a virtual organization and give a hint on how such organiza-
tions could be implemented.

When a transaction is aborted. we have said that the world is restored to its previous
state. as though the transaction had never happened. We lied. Give an example where
resetting the wozld is impossible.

Executing nested transactions requires some form of coordination. Explain what a
coordinator should actually do.

We argued that distribution transparency may not be in place for pervasive systems.
This statement is not true for all types of transparencies. Give an example.

We already gave some examples of distiibuted pervasive systems: home systems.
electronic health-care systems. and sensor networks. Extend this list with more ex-
amples.

(Lab assignment) Sketch a design for.a home system consisting of a separate media
server that will allow for the attachment of a wireless client. The latter is connected to
(analog) audio/video equipment and transforms the digital media streams to analog
output.. The server runs on a separate machine. possibly connected to the Internet. but
has no keybaeard and/or monitor connected. '
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.. Distgibuted systems are often complex pieces of software of which the com-
ponents are by definition dispersed across multiple machines. To master their
complexity, it is crucial that these systems are propenly organized. There are dif-
ferent ways on how to view the organization of a distributed system, but an obvi-
ous one is to make a distinction between the logical organization of the collection
of soffware components and on the other hand the actual physical realization.

The organization of distgibuted systems is mostly about the software com-
ponents that constitute the system. These software architectures tell us how the
various software components are to be organized and how they should interact.- In
this chapter we will first pay attention to some commonly applied approaches
toward organizing (distzibuted) computer systems.

The actual realization of a distributed system requires that we instantiate and
place software components on real machines. There are many different choices
that can be made in doing so. The final instantiation of a software architecture is
also referred to as a system architecture. In this chapter we will look into tradi-
tional centralized architectures in which a single server implements most of the
software components (and thus functionality), while remote clients can access that
server using simple communication means. In addition, we consider decentralized
architectures in which machines more or less play equal roles, as well as hybrid
organizations.

As we explained in Chap. I, an important goal of distributed systems is to
separate applications from underlying platforms by providing a middleware layer.

33
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Adopting such a layer is an important architectural decision, and its main purpose
is to provide distribution transparency. However, trade-offs need to be made to
achieve transparency, which has led to various techniques to make middleware
adaptive. We discuss some of the more commonly applied ones in this chapter, as
they affect the organization of the middleware itself.

Adaptability in distributed systems can also be achieved by having the system
monitor its own behavior and taking appropmiate measutes when needed. This 'in-
sight has led to a class of what are now referred to as autonomic « systems. These
distributed systems are frequently organized in the form of feedback control
loops. which form an important architectural element during a system's design. In
this chapter, we devote a section to autonomic distsibuted systems.

2.1 ARCHITECTURAL STYLES

We start our discussion on architectures by first considering the logical organ-
ization of distributed systems into software components, also referred to as soft-
ware architecture (Bass et al., 2003). Research on software architectures has
matured considerably and it is now commonly accepted that designing or adopting
an architecture is crucial for the successful development of large systems.

For our discussion, the notion of an architectural style is important.. Such a
style is formulated in terms of components, the way that components are con-
nected to each other, the data exchanged between components. and finally how
these elements are jointly configured into a system. A component is a modular
unit with well-defined required and provided intesfaces that is replaceable within
its environment (OMG, 2004b). As we shall discuss below, the important issue
about a component for distributed systems is that it cani be replaced, provided we
respect its integfaces. A somewhat more difficult. concept to grasp is that of a con-
ne¢tor, which is generally described as a mechanism that mediates communica-
tion, coordination, or cooperation among components (Mehta et al., 2000; and
Shaw and Clements, 1997). For example, a connector can be formed by the faeili-
ties for (remote) procedure calls, message passing, or streaming data.

Using components and connectors, we can come to various configurations,
which, in tum have been classified into architectural styles. Several styles have by
now been identified, of which the most important ones for distributed systems are:

1. Layered architectures
2. Object-based architectures
3. Data-centered architectures

4. Event-based architectures

The basic idea for the layered style is simple: components are organized in a
layered fashion where a component at layer L, is allowed to call components at
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the underlying layer Li:«, but not the other way around, as shown in Fig. 2-I(a).
This model has been widely adopted by the networking community; we briefly
review it in Chap. 4. An key observation is that control generally flows from layer
to layer: requests go down the hierarchy whereas the results flow upward.

A far looser organization is followed in object-based architectures, which
are illustrated in Fig. 2-1(b). In essence, each object corresponds to what we have
defined as a component, and these components are connected through a (remote)
procedure call mechanism. Not surprisingly, this software architecture matches
the client-server system architecture we described above. The layered and object-
based architectures still form the most important styles for large software systems

(Bass et al., 2003).

Layer N
A
A
Layer b1 Method call
Request ‘ T A Response
flow l flow \
¢ ! Object
Layer 2 ¥
4 Object
Y
Layer 1

(a) (b)
Figure 2-1, The (a) layered and (b) object-based architectural. style.

Data-centered architectures evolve around the idea that processes commun-
icate through a common (passive or active) repository. It can be argued that for
distributed systems these architectures are as important as the layered and object-
based architectures. For example, a wealth of networked applications have been
developed that rely on a shared distributed file system in which virtually all com-
munication tgkes place through files. Likewise, Web-based distributed systems,
which we discuss extensively in Chap. 12, are largely data-centric: processes
communicate through the use of shared Web-based data services.

In event-based architectures, processes essentially communicate through the
propagation of events, which optionally also carry data, as shown in Fig. 2-2(a).
For distributed systems, event propagation has generally been associated with
what are known as publish/subscribe systems (Eugster et al., 2003). The basie
idea is that processes publish events after which the middleware ensures that only
those processes that subscribed to those events will receive them. The main
advantage of event-based systems is that processes are loosely coupled. In princi-
ple, they need not explicitly refer to each other. This is also referred to as being
decoupled in space, or referentially decoupled.
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Component Component Component Component
. 7 [
Event delivery ' Data delivery
< Event bus > :
A
Pubiish Shared (persistent) data space
Component

(a) (b)
Figure 2-2. The (a) event-based and (b) shared data-space architectural style.

Event-based architectures can be combined with data-centered architectures,
yielding what is also known as shared data. spaces. The essence of shared data
spaces is that processes are now also decoupled in time: they need not both be ac-
tive when communication takes place. Furthermore, many shared data spaces use
a SQL-like interface to the shared repository in that sense that data can be ac-
cessed using a description rather than an explicit reference, as is the case with
files. We devote Chap. 13 to this architectural style.

What makes these software architectures important for distributed systems is
that they all aim at achieving (at a reasonable level) distribution transparency.
However, as we have argued, distribution transparency requires making trade-offs
between performance, fault tolerance, ease-of-programming, and so on. As there
is no single solution that will meet the requirements for all possible distributed ap-
plications, researchers have abandoned the idea that a single distributed system
can be used to cover 90% of all possible cases.

2.2 SYSTEM ARCHITECTURES

Now that we have briefly discussed some common architectural styles, let us
take a look at how many distributed systems are actually organized by considering
where software components are placed. Deciding on software components, their
interaction, and their placement leads 10 an instance of a software architecture,
also called a system architecture (Bass et al., 2003). We will discuss centralized
and decentralized organizations, as wen as various hybrid forms.

2.2.1 Centralized Architectures

Despite the lack of consensus on many distributed systems issues, there is one
issue that many researchers and practitioners agree upon: thinking in terms of cli-
ents that request services from servers helps us understand and manage the com-
plexity of distributed systems and that is a good thing.

Publist

—

N —

—
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In the basic client-server model, processes in a distributed system are divided
into two (possibly overlapping) groups. A server is a process implementing a spe-
cific service, for example, a file system service or a database service. A client is a
process that requests a service from a server by sending it a request and subse-
quently waiting for the server's reply. This client-server interaction, also known
as request-reply behavior is shown in Fig. 2-3

Wait for result
Client

Request

Provide service Time —>

Figure 2-3. General interaction between a client and a server.

Communication between a client and a server can be implemented by means
of a simple connectionless protocol when the underlying network is fairly reliable
as in many local-area networks. In these cases, when a client requests a service, it
simply packages a message for the server, identifying the service it wants, along
with the necessary input data. The message is then sent to the server. The latter, in
turn, will always wait for an incoming request, subsequently process it, and pack-
age the results in a reply message that is then sent to the client.

Using a connectionless protocol has the obvious advantage of being efficient.
As long as messages do not get lost or corrupted, the request/reply protocol just
sketched works fine. Unfortunately, making the protocol resistant to occasional
transmission failures is not trivial. The only thing we can do is possibly let the cli-
ent resend the request when no reply message comes in. The problem, however, is
that the client cannot detect whether the original request message was lost, or that
transmission of the reply failed. If the reply was lost, then resending a request
may result in performing the operation twice. If the operation was something like
"transfer $10,000 from my bank account,”" then clearly, it would have been better

that we simply reported an error instead. On the other hand, if the operation was

"tell me how much money I have left," it would be perfectly acceptable to resend
the request. When an operation can be repeated multiple times without harm, it is
said to be idempotent. Since some requests are idempotent and others are not it
should be clear that there is no single solution for dealing with lost messages. We
defer a detailed discussion on handling transmission failures to Chap. 8.

As an alternative, many client-server systems use a reliable connection-
oriented protocol. Although this solution is not entirely appropriate in a local-area
network due to relatively low performance, it works perfectly tine in wide-area
systems in which communication is inherently unreliable. For example, virtually
all Internet application protocols are based on reliable TCPIIPconnections. In this
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case, whenever a client requests a service, it first sets up a connection to the
server before sending the request. The server generally uses that same connection
to send the reply message, after which the connection is torn down. The trouble is
that setting up and tearing down a connection is relatively costly, especially when
the request and reply messages are small.

Application Layering

The client-server model has been subject to many debates and controversies
over the years. One of the main issues was how to draw a clear distinction be-
tween a client and a server. Not surprisingly, there is often no clear distinction.
For example, a server for a distributed database may continuously act as a client
because it is forwarding requests to different file servers responsible for imple-
menting the database tables. In such a case, the database server itself essentially
does no more than process queries.

However, considering that many client-server applications are targeted toward
supporting user access to databases, many people have advocated a distinction be-
tween the following three levels, essentially following the layered architectural
style we discussed previously:

1. The user-intecface level
2. The processing level
3. The data level

The user-intexface level contains all that is necessary to directly interface with the
user, such as display management. The processing level typically contains the ap-
plications. The data level manages the actual data that is being acted on.

Clients typically implement the user-interface level. This level consists of the
programs that allow end users to interact with applications. There is a consid-
erable difference in how sophisticated user-interface programs are.

The simplest user-intexface program is nothing more than a character-based
screen. Such an interface has been typically used in mainframe environments. In
those cases where the mainframe controls all interaction, including the keyboard
and monitor, one can hardly speak of a client-server environment. However, in
many cases, the user's terminal does some local processing such as echoing typed
keystrokes, or supporting form-like interfaces in which a complete entry is to be
edited before sending it to the main computer.

Nowadays, even in mainframe environments, we see more advanced user in-
terfaces. Typically, the client machine offers at least a graphical display in which
pop-up or pull-down menus are used, and of which many of the screen controls
are handled through a mouse instead of the keyboard. Typical examples of such
interfaces include the X-Windows interfaces as used in many UNIX environments,
and earlier interfaces developed for MS-DOS PCs and Apple Macintoshes.
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Modern user interfaces offer considerably more functionality by allowing ap-
plications to share a single graphical window, and to use that window to exchange
data through user actions. For example, to delete a file, it is usually possible to
move the icon representing that file to an icon representing a trash can. Likewise,
many word processors allow a user to move text in a document to another position
by using only the mouse. We return to user interfaces in Chap. 3.

Many client-server applications can be constructed from roughly three dif-
ferent pieces: a part that handles interaction with a user, a part that operates on a
database or file system, and a middle part that generally contains the core func-
tionality of an application. This middle part is logically placed at the processing
level, In contrast to user interfaces and databases, there are not many aspects com-
mon to the processing level. Therefore, we shall give several examples to make
this level clearer.

As a first example, consider an Internet search engine. Ignoring all the
animated banners, images, and other fancy window dressing, the user interface of
a search engine is very simple: a user types in a string of keywords and is subse-
quently presented with a list of titles of Web pages. The back end is formed by a
huge database of Web pages that have been prefetched and indexed. The core of
the search engine is a program that transforms the user's string of keywords into
one or more database queries. It subsequently ranks the results into a list, and
transforms that list into a series of HTML pages. Within the client-server model,
this information retrieval part is typically placed at the processing level. Fig. 2-4
shows this organization.

. User-interface
User interface level
\ HTML page
Keyword expression containing list
HTML '
generator Processing

Query % Ranked list level
generator of page titles
" Ranking

algorithm

Database queries

Web page titles

with meta-information

Database Data level

with Web pages

Figure 2-4. The simplified organization of an Internet search engine into three different
layers.

As a second example, consider a decision support system for a stock broker-
age. Analogous to a search engine, such a system can be divided into a front end
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implementing the user interface, a back end for accessing a database with the
financial data, and the analysis programs between these two. Analysis of financial
data may require sophisticated methods and techniques from statistics and artifi-
cial intelligence. In some cases, the core of a financial decision support system
may even need to bg executed on high-pexformance computers in order to achieve
the throughput and responsiveness that is expected from its users.

As a last example, consider a typical desktop package, consisting of a word
processor, a spreadsheet application, communication facilities, and so on. Such
"office" suites are generally integrated through a common user interface that sup-
ports compound documents, and operates on files from the user's home directory.
(In an office environment, this home directory is often placed on a remote file
server,) In this example, the processing level consists of a relatively large collec-
tion of programs, each having rather simple processing capabilities.

The data level in the client-server model contains the programs that maintain
the actual data on which the applications operate. An important property of this
level is that data are often persistent, that is, even if no application is running,
data will be stored somewhere for next use. In its simplest form, the data level
consists of a file system, but it is more common to use a full-fledged database. In
the client-server model, the data level is typically implemented at the server side.

Besides merely storing data, the data level is generally also responsible for
keeping data consistent across different applications. When databases are being
used, maintaining consistency means that metadata such as table descriptions,
entry constraints and application-specific metadata are also stored at this level.
For example, in the case of a bank, we may want to generate a notification when a
customer's credit card debt reaches a certain value. This type of information can
be maintained through a database trigger that activates a handler for that trigger at
the appropriate moment.

In most business-oriented environments, the data level is organized as a rela-
tional database. Data independence is crucial here.. The data are organized inde-
pendent of the applications in such a way that changes in that organization do not
affect applications, and neither do the applications affect the data organization.
Using relational databases in the client-server model helps separate the processing
level from the data level, as processing and data are considered independent..

However, relational databases are not always the ideal choice. A charac-
teristic feature of many applications is that they operate on complex data types
that are more easily modeled in terms of objects than in terms of relations. Exam-
ples of such data types range from simple polygons and circles to representations
of aircraft designs, as is the case with computer-aided design (CAD) systems.

In those cases where data operations are more easily expressed in terms of ob-
ject manipulations, it makes sense to implement the data level by means of an ob-
ject-oriented or object-relational database. Notably the latter type has gained
popularity as these databases build upon the widely dispersed relational data
model, while offering the advantages that object-orientation gives.
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IVlultitiered Architectures

The distinction into three logical levels as discussed so far, suggests a number
of possibilities for physically distributing a client-server application across several
machines. The simplest organization is to have only two types of machines:

1. A ¢lient machine containing only the programs implementing (part
of) the user-intexface level

2. A server machine containing the rest, that is the programs imple-
menting the processing and data level

In this organization everything is handled by the server while the client is essen-
tially no more than a dumb terminal, possibly with a pretty graphical interface.
There are many other possibilities, of which we explore some of the more com-
mon ones in this section.

One approach for organizing the clients and servers is to distribute the pro-
grams in the application layers of the previous section across different machines,
as shown in Fig. 2-5 [see also Umar (1997); and Jing et al. (1999)]. As a first
step, we make a distinction between only two kinds of machines: client machines
and server machines, leading to what is also referred to as a (physically) two-
tiered architecture.

Client machine

-
.

User inten‘aceJ User interface User interface User interface ! User interface

! - Application Application l Application

-------- ¢______-___-~--‘-'$ ‘k_a"i/’ Database |

Userinterface‘ P $ _“'7”‘“*--~~$ ________
l Application [ Application Application L ]
l Database Database Database Database r

Server machine
(a) (b) (© (d) (e)

Figure 2-5. Alternative client-server organizations (a)-te).

One possible organization is to have only the terminal-dependent part of the
user interface on the client machine, as shown in Fig. 2-5(a), and give the applica-
tions remote control over the presentation of their data. An alternative is to place
the entire user-integface software on the client side, as shown in Fig. 2-5(b). In
such cases, we essentially divide the application into a graphical front end, which
communicates with the rest of the application (residing at the server) through an
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application-specific protocol, In this model, the front end (the elient software)
does no processing other than necessary for presenting the application's interface.

Continuing along this line of reasoning, we may also move part of the applica-
tion to the front end, as shown in Fig. 2-5(c). An example where this makes sense
is where the application makes use of a form that needs to be filled in entirely be-
fore it can be processed. The front end can then check the correctness and consis-
tency of the form, and where necessary interact with the user. Another example of
the organization of Fig. 2:.5(c),is that of a word processor in which the basie edit-
ing functions execute on the client side where they operate on locally cached, or
in-memory data. but where the advanced support tools such as checking the spel-
ling and grammar execute on the server side.

In many g¢lient-server environments, the organizations shown in Fig. 2-5(d)
and Fig. 2-5(e) are particularly popular. These organizations are used where the
client machine is a PC or workstation, connected through a network to a distrib-
uted file system or database. Essentially, most of the applicatiea is running on the
client machine, but all operations on files or database entries go to the server: For
example, many banking applications run on an end-user's machine where the user
prepares transactions and such. Once finished, the application contacts the data-
base on the bank's server and uploads the transactions for further processing.
Fig. 2-5(e) represents the situation where the client's local disk contains part of
the data. For example, when browsing the Web, a client can gradually build a
huge cache on local disk of most recent inspected Web pages.

We note that for a few years there has been a strong trend to move away from
the configurations shown in Fig. 2-5(d) and Fig. 2-5(¢) in those case that elient
software is placed at end-user machines. In these cases, most of the processing
and data storage is handled at the server side. The reason for this is simple: al-
though client machines do a lot, they are also more problematic to manage. Hav-
ing more functionality on the client machine makes client-side software more
prone to errors and more dependent on the client's underlying platform (i.e.,
operating system and resources). From a system's management perspective, hav-
ing what are called fat ¢lients is not optimal. Instead the thin clients as repres-
ented by the. organizations shown in Fig. 2-5(a)-(c) are much easier, perhaps at
the cost of less sophistigated user interfaces and client-perceived performance.

Note that this trend does not imply that we no longer need distributed systems.
On the contrary, what we are seeing is that server-side solutions are becoming
increasingly more distributed as a single server is being replaced by multiple ser-
vers running on different machines. In particular, when distinguishing only elient
and server machines as we have done so far, we miss the point that a server may
sometimes need to act as a ¢lient, as shown in Fig. 2-6, leading to a (physically)
three-tiered architecture.

In this architecture, programs that form part of the processing level reside on a
separate server, but may additionally be partly distributed across the elient and
server machines. A typical example of where a three-tiered architecture is used is
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Figure 2-6. An example of a server acting as client.

in transaction processing. As we discussed in Chap. 1, a separate process, called
the transaction processing monitor, coordinates all transactions across possibly
different data servers. /

Another, but very different example where we often see a three-tiered archi-
tecture is in the organization of Web sites. In this case, a Web server acts as an
entry point to a site, passing requests to an application server where the actual
processing takes place. This application server, in tum, interacts with a database
server. For example, an application server may be responsible for running the
code to inspect the available inventory of some goods as offered by an electronic
bookstore. To do so, it may need to interact with a database containing the raw
inventory data. We will come back to Web site organization in Chap. 12.

2.2.2 Decentralized Architectures

Multitiered client-server architectures are a direct consequence of dividing ap-
plications into a user-interface, processing components, and a data level. The dif-
ferent tiers correspond directly with the logical organization of applications. In
many business environments, distributed processing is equivalent to organizing a
client-server application as a multitiered architecture. We refer to this type of dis-
tribution as vertigal distgzibution. The characteristic feature of vertical distribu-
tion is that it is achieved by placing logically different components on different
machines. The term is related to the concept of vertical fragmentation as used in
distributed relational databases, where it means that tables are split column-wise,
and subsequently distributed across multiple machines (Oszu and Valduriez,
1999).

Again, from a system management perspective, having a vertical distribution
can help: functions are logically and physically split across multiple machines,
where each machine is tailored to a specific group of functions. However, vertical
distribution 1s only one way of organizing client-server applications. In modem
architectures, it is often the distribution of the clients and the servers that counts,
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which we refer to as horizontal distribution.  In this type of distsibution, a elient
or server may be physically split up into logically equivalent parts, but each past is
operating on its own share of the complete data set, thus balancing the load. In
this section we will take a look at a class of modern system architectures that sup-
port horizontal distribution, known as peer-to-peer  systems.

From a high-level perspective, the processes that constitute a peer-to-peer sys-
tem are all equal. This means that the functions that need to be camsied out are
represented by every process that constitutes the distributed system. As a conse-
quence, much of the interaction between processes is symmetric: each process
will act as a ¢lient and a server at the same time (which is also referred to as act-
ing as a servent). |

Given this symmetric behavior, peer-to-peer architectures evolve .around the
question how to organize the processes in an oveslay network, that is, a network
in which the nodes are formed by the processes and the links represent the pos-
sible communication channels (which are usually realized a§ TCP connections). In
general, a process cannot communicate directly with an érbitrary other process,
but is required to send messages thyough the available communication channels.
Two types of ovetlay networks exist: those that are structured and those that are
not, These two types are surveyed extensively in Lua et al. (2005) along with
numerous examples. Aberer et al.(2005) provide a reference architecture that
allows for a more formal comparison of the different types of peer-to-peer sys-
tems. A survey taken from the perspective of content distsibution is provided by
Androutsellis- Theotokis and Spinellis (2004).

Structured  Peer-to-Peer  Architectures

In a structured peer-to-peer architecture, the oveslay network is constructed
using a deterministic procedure. By far the most-used procedure is to organize the
processes through a distributed hash table (DHT). In a DHT -based system, data
items are assigned a random key from a large identifier space, such as a 128-bit or
160-bit identifier. Likewise, nodes in the system are also assigned a random num-
ber from the same identifier space. The crux of every DHT-based system is then
to implement an efficient and detemministic scheme that uniquely maps the key of
a data item to the identifier of a node based on some distance metric (Balakrish-
nan. 2003). Most importantly, when looking up a data item, the network address
of the node responsible for that data item is returned. Effectively, this is accom-
plished by routing arequest for a data item to the responsible node.

For example, in the Chord system (Stoica et al., 2003) the nodes are logically
organized in a ring such that a data item with. key k is mapped to the node with- the
smallest identifier id ~ k. This node is referred to as the successor of key k and
denoted as succ(k), as shown in Fig. 2-7. To actually look up the data item, an ap-
plication running on an arbittary node would then call the function LOOKUP(k)
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which would subsequently return the network address of succ(k). At that point,
the application can contact the node to obtain a copy of the data item.

..... 0—~@

{14} {13,14,15} {01

Actual node

.\.

Associated
data keys

Figure 2-7. The mapping of data items onto nodes in Chord.

We will not go into algorithms for looking up a key now, but defer that dis-
cussion until Chap. 5 where we describe details of various naming systems.
Instead, let us concentrate on how nodes organize themselves into an overlay net-
work, or, in other words, membership management. In the following, it is im-
portant to realize that looking up a key does not follow the logical organization of
nodes in the ring from Fig. 2-7. Rather, each node will maintain shortcuts to other
nodes in such a way that lookups can generally be done in O(log (N) ) number of
steps, where N is the number of nodes participating in the overlay.

Now consider Chord again. When a node wants to join the system, it starts
with generating a random identifier id. Note that if the identifier space is large
enough, then provided the random number generator is of good quality, the proba-
bility .of generating an identifier that is already assigned to an actual node is close
to zero. Then, the node can simply do a lookup on id, which will return the net-
work address of succiid). At that point, the joining node can simply contact
succiid) and its predecessor and insert itself in the ring. Of course, this scheme re-
quires that each node also stores information on its predecessor. Insertion also
yields that each data item whose key is now associated with node id, is transferred
from succijd).

Leaving is just as simple: node id informs its departure to its predecessor and
successor, and transfers its data items to succ(id).

Similar approaches are followed in other DHT-based systems. As an example,
consider the Content Addressable Network (CAN), described in Ratnasamy et
al.(2001). CAN deploys a d-dimensional Cartesian coordinate space, which is
completely partitioned among all all the nodes that participate in the system. For
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purpose of illustration. let us consider only the 2-dimensional case, of whigh an
example is shown in Fig. 2-8.

Keys associated with

node at (0.6,0.7)
(0.1) | (1.1
\ (0.9,0.9) (0.9,0.9)
[ ] B
(0.2,0.8) (0.2,0.8)
[ ] [ ]
(0.6,0.7) (0.6,07)
Actual node (o_g‘o.e) (0'960'6)
(0.2,0.3)
L
(0.7,0.2) (0.7,0.2)
L] [ ]
(0,0) (1,0)

® (®)

Figure 2-8. (a) The mapping of data items onto nodes in CAN. (b) Splitting a
region when a node joins.

Fig.2-8(a) shows how the two-dimensional space [0, 1]x[O, 1] is divided
among six nodes. Each node has an associated region. Every data item in CAN
will be assigned a unique point in this space, after which it is also clear whigh
node is responsible for that data. (ignoring data items that fall on the border of
multiple regions, for which a detesministic assignment rule is used).

When a node P wants to join a CAN system, it picks an arbitrary  point from
the coordinate space and subsequently looks up the node Q in whose region that
point falls. This lookup is accomplished through positioned-based routing. of
which the details are deferred until later chapters. Node Q then splits its region
into two halves, as shown in Fig. 2-8(b). and one half is assigned to the node P.
Nodes keep track of their neighbors, that is, nodes responsible for adjacent region.
When splitting a region, the joining node P can easily come to know who its new
neighbors are by asking node P. As in Chord, the data items for which node P is
now responsible are transferred from node Q.

Leaving is a bit more problematic in CAN. Assume that in Fig. 2-8. the node
with coordinate (0.6, 0.7) leaves. Its region will be assigned to one of its neigh-
bors, say the node at (0.9,0.9), but it is clear that simply merging it and obtaining
a rectangle cannot be done. In this case, the node at (0.9,0.9) will simply take care
of that region and inform the old neighbors of this fact. Obviously. this may lead
to less symmetric partitioning of the coordinate space, for which reason a back-
ground process is periodically started to repartition the entire space.
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Unstructured Peer-to- Peer Architectures

Unstructured peer-to-peer systems largely rely on randomized algorithms for
constructing an overlay network. The main idea is that each node maintains a list
of neighbors, but that this list is constructed in a more or less random way. Like-
wise, data items are assumed to be randomly placed on nodes. As a consequence,
when a node needs to locate a specific data item, the only thing it can effectively
do is flood the network with a search query (Risson and Moors, 2006). We will
return to searching in unstructured overlay networks in Chap. 5, and for now con-
centrate on membership management. '

One of the goals of many unstructured peer-to-peer systems is to construct an
overlay network that resembles a random graph. The basic model is that each
node maintains a list of ¢ neighbors, where, ideally, each of these neighbors rep-
resents a randomly chosen live node from the current set of nodes. The list of
neighbors is also referred to as a partial view. There are many ways to construct
such a partial view. Jelasity et al. (2004, 2005a) have developed a framework that
captures many different algorithms for overlay construction to allow for evalua-
tions and comparison. In this framework, it is assumed that nodes regularly
exchange entries from their partial view. Each entry identifies another node in the
network, and has an associated age that indicates how old the reference to that
node is. Two threads are used, as shown in Fig. 2-9.

The active thread takes the initiative to communicate with another node. It
selects that node from its current partial view. Assuming that entries need to be
pushed to the selected peer, it continues by constructing a buffer containing ¢/2+ I
entries, including an entry identifying itself. The other entries are taken from the
current partial view.

W \ne note I~ a\~On puU mode it ~I\\ ~a\\Im aq 'ieSp~il~e"i~ID fue ~e\e'\:..~\\
peer. That peer, in the meantime, will also have constructed a buffer by means the
passive thread shown in Fig. 2-9(b), whose activities strongly resemble that of the
active thread.

The crucial point is the construction of a new partial view. This view, for ini-
tiating as well as for the contacted peer, will contain exactly, ¢ entries, part of
which will come from received buffer. In essence, there are two ways to construct
the new view. First, the two nodes may decide to discard the entries that they had
sent to each other. Effectively, this means that they will swap part of their original
views. The second approach is to discard as many old entries as possible. In gen-
eral, it turns out that the two approaches are complementary [see Jelasity et al.
(2005a) for the details]. It turns out that many membership management protocols
for unstructured overlays fit this framework. There are a number of interesting
observations to make.

First, let us assume that when a node wants to join it contacts an arbitrary
other node, possibly from a list of well-known access points. This access point is
just a regular member of the overlay, except that we can assume it to be highly
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Actions by active thread (periodically repeated):

select a peer P from the current partial view;
if PUSH_MODE ({
mybuffer = [(MyAddress, 0)];
permute partial view;
move H oldest entries to the end;
append first ¢/2 entries to mybuffer;
send mybuffer to P;
} else {
send trigger to P;
}
if PULL_MODE {
receive P's buffer;

}

construct a new pattial view from the current one and P's buffer;
increment the age of every entry in the new partial view;
(a)
Actions by passive thread:

receive buffer from any process Q;

if PULL_MODE {
mybuffer = [(MyAddress, O0)];
permute partial view;
move H oldest entries to the end;
append first ¢/2 entries to mybuffer;
send mybuffer to P;

}

construct a new partial view from the current one and P's buffer;
increment the age of every entry in the new partial view;
(b)

Figure 2-9. (a) The steps taken by the active thread. (b) The steps take by the
passive thread.

avgilable. In this case, it turns out that protocols that use only push mode or only
pull mode can fairly easily lead to disconnected overlays. In other words, groups
of nodes will become isolated and will never be able to reach every other node in
the network. Clearly, this is an undesitable feature, for which reason it makes
more sense to let nodes actually exchange entries.

Second, leaving the network turns out to be a very simple operation provided
the nodes exchange partial views on a regular basis. In this case, a node can sim-
ply depart without informing any other node. What will happen is that when a
node P selects one of its apparent neighbors, say node Q, and discovers that Q no
longer responds, it simply removes the entry from its partial view to select another
peer. It turns out that when constructing a new partial view, a node follows the
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policy to discard as many old entries as possible, departed nodes will rapidly be
forgotten. In other words, entries referring to departed nodes will automatieally be
quickly removed from partial views.

However, there is a price to pay when this strategy is followed. To explain,
consider for a node P the set of nodes that have an entry in their partial view that
refers to P. Technically, this is known as the indegree of a node. The higher node
P's indegree is, the higher the probability that some other node will decide to con-
tact P. In other words, there is a danger that P will become a popular node, which
could easily bring it into an imbalanced position regarding workload. Systemati-
cally discarding old entries turns out to promote nodes to ones having a high inde-
gree. There are other trade-offs in addition, for which we refer to Jelasity et al.
(2005a). ‘

Topology Management of Overlay Networks.

Although it would seem that structured and unstructured peer-to-peer systems
form strict independent classes, this 'need actually not be case [see also Castro et
al, (2005)]. One key observation is that by carefully exchanging and selecting en-
tries from partial views, it is possible to construct and maintain specific topologies
of overlay networks. This topology management is achieved by adopting a two-
layered approach, as shown in Fig. 2-10.

Structured Protocol for /’—r Links to topology-
fucture specific . specific other nodes
overlay overlay [~

A
Random peer

— e e i am . e = e e e = e e e— — —

Protocol for
randomized
view

Random

overlay

’4; Links to randomly
§, chosen other nodes

Figure 2-10. A two-layered approach for constructing and maintaining specific
oveglay topologies using techniques from unstructured peer-to-peer systems.

The lowest layer constitutes an unstructured peer-to-peer system in which
nodes periodically exchange entries of their partial views with the aim to maintain
an accurate random graph. Accuracy in this case refers to the fact that the partial
view should be filled with entries referring to randomly selected /ive nodes.

The lowest layer passes its partial view to the higher layer, where an addi-
tional selection of entries takes place. This then leads to a second list of neighbors
corresponding to the desired topology. Jelasity and Babaoglu (2005) propose to
use a ranking fuuction by which nodes are ordered according to some criterion
relative to a given node. A simple ranking function is to order a set of nodes by
increasing distance from a given node P. In that case, node P will gradually build
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up a list of its nearest neighbors, provided the lowest layer continues to pass ran-
domly selected nodes. ,

As an illustration, consider a logical grid of size N x N with a node placed on
each point of the grid. Every node is required to maintain a list of ¢ nearest neigh-
bors, where the distance between a node at (al,a2) and (b1,b2) is defined as
dtd, with d;=min(N-1ai-bil, lai-bil). If the lowest layer periodieally exe-
cutes the protocol as outlined in Fig. 2-9, the topology that will evolve is a torus,
shown in Fig. 2-11.

Figure 2-11. Generating a spegific overlay network wusing a two-layered
unstructured peer-to-peer system [adapted with permission from Jelasity and Ba-
baoglu (2005)].

Of course, completely different ranking functions can be used. Notably those
that are related to capturing the semantic proximity of the data items as stored at
a peer node are interesting. This proximity allows for the construction of seman-
tic overlay networks that allow for highly efficient search algorithms in unstruc-
tured peer-to-peer systems. We will return to these systems in Chap. 5 when we
discuss attribute-based naming.

Superpeers

Notably in unstructured peer-to-peer systems, locating relevant data items can
become problematic as the network grows. The reason for this scalability problem
is simple: as there is no deterministic way of routing a lookup request to a speeific
data item, essentiglly the only technique a node can resort to is flooding the re-
quest. There are vgrious ways in which flooding can be dammed, as we will dis-
cuss in Chap. 5, but as an alternative many peer-to-peer systems have proposed to
mgke use of spegial nodes that maintain an index of data items.

There are other situations in which abandoning the symmetric nature of peer-
to-peer systems is sensible. Consider a collaboration of nodes that offer resources
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to each other. For example, in a collaborative content delivery network (CDN),
nodes may offer storage for hosting copies of Web pages allowing Web clients to
access pages nearby, and thus to access them quickly. In this case a node P may
need to seek for resources in a specific part of the network. In that case, making
use of a broker that collects resource usage for a number of nodes that are in each
other's proximity will allow to quickly select a node with sufficient resources.

Nodes such as those maintaining an index or acting as a broker are generally
referred to as superpeers. As their name suggests, superpeers are often also org-
anizedin a peer-to-peer network, leading to a hierarchical organization as ex-
plained in Yang and Garcia-Molina (2003). A simple example of such an organi-
zation is shown in Fig. 2-12. In this organization, every regular peeris connected
as a client to a superpeer. All communication from and to a regular peer proceeds
through that peer's associated superpeer.

Regular peer

Superpeer

Superpeer
network

Figure 2-12. A hierarchical organization of nodes into a superpeer network.

In many cases, the client-superpeer relation is fixed: whenever a regular peer
joins the network, it attaches to one of the superpeers and remains attached until it
leaves the network. Obviously, it is expected that superpeers are long-lived proc-
esses with a high availability. To compensate for potential unstable behavior of a
superpeer, backup schemes can be deployed, such as pairing every superpeer with
another one and requiring clients to attach to both.

Having a fixed association with a superpeer may not always be the best solu-
tion. For example, in the case of file-sharing networks, it may be better for a client
to attach to a superpeer that maintains an index of files that the client is generally
interested in. In that case, chances are bigger that when a client is looking for a
specific file, its superpeer will know where to find it. Garbacki et al. (2005) des-
cribe a relatively simple scheme in which the client-superpeer relation can change
as clients discover better superpeers to associate with. In particular, a superpeer
returning the result of a lookup operation is given preference over other super-
peers., . A
As we have seen, peer-to-peer networks offer a flexible means for nodes to
join and leave the network. However, with superpeer networks a new problem is
introduced, namely how to select the nodes that are eligible to become superpeer.
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This problem is closely related to the leader-election problem, which we discuss
in Chap. 6, when we return to electing superpeers in a peer-to-peer network:

2.2.3 Hybrid Architectures

So far, we have focused on client-server architectures and a number of peer-
to-peer architectures. Many distributed systems combine architectural features, as
we already came across in superpeer networks. In this section we take a look at
some specific classes of distributed systems in which client-server solutions are
combined with decentralized architectures.

Edge-Server Systems

An important ¢lass of distributed systems that is organized according to a
hybrid architecture is formed by edge-server systemsi These systems are deploy-
ed on the Internet where servers are placed "at the edge" of the network. This
edge is formed by the boundary between enterprise networks and the actual Inter-
net, for example, as provided by an Internet Service Provider (ISP). Likewise,
where end users at home connect to the Internet through their ISP, the ISP can be
considered as residing at the edge of the Internet. This leads to a general organiza-
tion as shown in Fig. 2-13.

(] [ [ Client Content provider

Core Internet

Edge server

_ Enterprise network

Figuré 2-13. Viewing the Internet as consisting of a collection of edge servers.

End users, or ¢lients in general, connect to the Internet by means of an edge
server. The edge server's main purpose is to serve content, possibly after applying
filtering and transcoding functions. More interesting is the fact that a collection of
edge servers can be used to optimize content and application distribution. The
basi¢ model is that for a specific organization, one edge server acts as an origin
server from which all content originates. That server can use other edge servers
for replicating Web pages and such (Leff et al., 2004: Nayate et al., 2004; and
Rabinovich and Spatscheck, 2002). We will return to edge-server systems in
Chap. 12 when we discuss Web-based solutions.
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Collaborative Distsibuted Systems

Hybrid structures are notably deployed in collaborative distributed systems.
The main issue in many of these systems to first get started, for which often a
traditional glient-server scheme is deployed. Once a node has joined the system, it
can use a fully decentralized scheme for collaboration.

To mgke matters concrete, let us first consider the BitTorrent file-sharing sys-
tem (Cohen, 2003). BitTorrent is a peer-to-peer file downloading system. Its prin-
cipal working is shown in Fig. 2-14 The basic idea is that when an end user is
looking for a file, he downloads chunks of the file from other users until the
downloaded chupks can be assembled together yielding the complete file. An im-
portant design goal was to ensure collaboration. In most file-sharing systems, a
significant fraction of participants merely download files but otherwise contribute
¢close to nothing (Adar and Huberman, 2000; Saroiu et al., 2003; and Yang et al.,
2005). To this end, a file can be downloaded only when the downloading elient is
providing content to someone else. We will return to this "tit-for-tat" behavior

shortly.

Client node
K out of N nodes
Node 1
Lookup(F)

A BitTorrent > torrent file > List of nodes Node 2

Web page | Ref.to for F Ref. to storing F

file tracker

i Tracker

Web server  server File server Node N

Figure 2-14. The pringipal working of BitTorrent [adapted with permission
from Pouwelse et al. (2004)].

To download a me, a user needs to access a global directory, which isjust one
of a few well-known Web sites. Such a directory contains references to what are
called .torrent files. A .torrent file contains the information that is needed to
download a specific file. In particular, it refers to what is known as a tracker,
which is a server that is keeping an accurate account of active nodes that have
(chunks) of the requested file. An active node is one that is currently downloading
another file. Obviously, there will be many different trackers, although (there will
generally be only a single tracker per file (or collection of files).

Once the nodes have been identified from where chunks can be downloaded,
the downloading node effectively becomes active. At that point, it will be forced
to help others, for example by providing chunks of the file it is downloading that
others do not yet have. This enforcement comes from a very simple rule: if node P
notices that node Q is downloading more than it is uploading, P can deeide to
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decrease the rate at which it sends data f0Q. This scheme works well provided P
has something to download from Q. For this reason, nodes are often supplied with
references to many other nodes putting them in a better position to trade data.

Clearly, BitTorrent combines centralized with decentralized solutions. As it
turns out, the bottleneck of the system is, not surprisingly, formed by the trackers.

As another example, consider the Globule collaborative content distribution
network (Pierre and van Steen, 2006). Globule strongly resembles the edge-
server architecture mentioned above. In this case, instead of edge servers, end
users (but also organizations) voluntarily provide enhanced Web servers that are
capable of collaborating in the replication of Web pages. In its simplest form,
each such server has the following components:

1. A component that can redirect client requests to other servers.
2. A component for analyzing access patterns.

3. A component for managing the replication of Web pages.

The server provided by Alice is the Web server that normally handles the traffic
for Alice's Web site and is called the origin server for that site. It collaborates
with other servers, for example, the one provided by Bob, to host the pages from
Bob's site. In this sense, Globule is a decentralized distributed system. Requests
for Alice's Web site are initially forwarded to her server, at which point they may
be redirected to one of the other servers. Distributed redirection is also supported.

However, Globule also has a centralized component in the form of its broker.
The broker is responsible for registering servers, and making these servers ksown
to others. Servers communicate with the broker completely analogous to what one
would expect in a glient-server system. For reasons of availability, the broker can
be replicated, but as we shall later in this book, this type of replication is widely
applied in order to achieve reliable client-server computing.

2.3 ARCHITECTURES VERSUS MIDDLEW ARE

When considering the architectural issues we have discussed so far, a question
that comes to mind is where middleware fits in. As we discussed in Chap. 1,
middleware forms a layer between applications and distributed platforms. as
shown in Fig. 1-1. An important purpose is to provide a degree of distribution
transparency, that is, to a certain extent hiding the distribution of-data, processing,
and control from applications.

What is comonly seen in practice is that middleware systems actually follow a
specific architectural sytle. For example, many middleware solutions have ad-
opted an object-based architectural style, such as CORBA (OMG. 2004a). Oth-
ers, like TIB/Rendezvous (TIBCO, 2005) provide middleware that follows the
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event-based architectural style. In later chapters, we will come across more ex-
amples of architectural styles.

Having middleware molded according to a specific architectural style has the
benefit that designing applications may become simpler. However, an obvious
drawback is that the middleware may no longer be optimal for what an application
developer had in mind. For example, COREA initially offered only objects that
could be invoked by remote clients. Later, it was felt that having only this form of
interaction was too restrictive, so that other interaction patterns such as messaging
were added. Obviously, adding new features can easily lead to bloated middle-
ware solutions.

In addition, although middleware is meant to provide distribution trans-
parency, it is generally felt that specific solutions should be adaptable to applica-
tion requirements. One solution to this problem is to make several versions of a
middleware system, where each version is tailored to a specific class of applica-
tions. An approach that is generally considered better is to make middleware sys-
tems such that they are easy to configure, adapt, and customize as needed by an
application. As a result, systems are now being developed in which a stricter
separation between policies and mechanisms is being made. This has led to sever-
al mechanisms by which the behavior of middleware can be modified (Sadjadi
and McKinley, 2003). Let us take a look at some of the commonly followed ap-

proaches.
2.3.1 Interceptors

Conceptually, an interceptor is nothing but a software construct that will
break the usual flow of control and allow other (application specific) code to be
executed. To make interceptors generic may require a substantial implementation
effort, as illustrated in Schmidt et al. (2000), and it is unclear whether in such
cases generality should be preferred over restricted applicability and simplieity.
Also, in many cases having only limited interception facilities will improve
management of the software and the distributed system as a whole.

To make matters concrete, consider interception as supported in many object-
based distributed systems. The basic idea is simple: an object 4 can call a method
that belongs to an object B, while the latter resides on a different machine than A.
As we explain in detail later in the book, such a remote-object invocation is car-
ried as a three-step approach:

1. Object A is offered a local interface that is exactly the same as the in-
terface offered by object B. A simply calls the method available i
that interface.

2. The call by 4 is transformed into a generic object invocation, made
possible through a general object-invocation interface offered by the
middleware at the machine where 4 resides.



56 ARCHITECTURES CHAP. 2
3. Finally, the generic object invocation is transformed into a message
that is sent through the transport-level network interface as offered

by A's local operating system.

This scheme is shown in Fig. 2-15.
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Figure 2-15. Using interceptors; to handle remote-object invocations.

After the first step, the call B.do_something(value) is transformed into a gen-
eric cgll such as invoke(B, &do something, value) with a reference to B's method
and the parameters that go along with the call. Now imagine that object B is repli-
cated. In that case, each replica should actually be invoked. This is a elear point
where interception can help. What the request-level interceptor will do is simply
call invoke(B, &do something, value) for each of the replicas. The beauty of this
an is that the object A need not be aware of the replication of B, but also the ob-
ject middleware need not have special components that deal with this replicated
call, Only the request-level interceptor, which may be added to the middleware
needs to know about B's replication.

In the end, a call to a remote object will have to be sent over the network. In
practice, this means that the messaging interface as offered by the local operating
system will need to be invoked. At that level, a message-level interceptor may
assist in transferring the invocation to the target object. For example, imagine that
the parameter value actually corresponds to a huge array of data. In that case, it
may bg wise to fragment the data into smaller parts to have it assembled again at



SEC. 2.3 ARCHITECTURES VERSUS MIDDLEWARE 57

the destination. Such a fragmentation may improve performance or reliability.
Again, the middleware need not be aware of this fragmentation; the lower-level
interceptor will transparently handle the rest of the communication with the local
operating system.

2.3.2 General Approaches to Adaptive Software

What interceptors actually offer is a means to adapt the middleware. The need
for adaptation comes from the fact that the environment in which distributed ap-
plications are executed changes continuously. Changes include those resulting
from mobility, a strong variance in the quality-of-service of networks, failing
hardware, and battery drainage, amongst others. Rather than making applications
responsible for reacting to changes, this task is placed in the middleware.

These strong influences from the environment have brought many designers
of middleware to consider the construction of adaptive software. However, adap-
tive software has not been as successful as anticipated. As many researchers and
developers consider it to be an important aspect of modern distributed systems, let
us briefly pay some attention to it. McKinley et al. (2004) distinguish three basic
techniques to come to software adaptation:

1. Separation of concerns
- 2. Computational reflection

3. Component-based design

Separating concerns relates to the traditional way of modularizing systems:
separate the parts that implement functionality from those that take care of other
things (known as extra functinalities) such as reliability, performance, security,
etc. One can argue that developing middleware for distributed applications is
largely about handling extra functionalities independent from applications. The
main problem is that we cannot easily separate these extra functionalities by
means of modularization. For example, simply putting security into a separate
module is not going to work. Likewise, it is hard to imagine how fault tolerance
can be isolated into a separate box and sold as an independent service. Separating
and subsequently weaving these cross-cutting concerns into a (distributed) system
is the major theme addressed by aspect-oriented software development (Filman
et al., 2005). However, aspect orientation has not yet been successfully applied to
developing large-scale distributed systems, and it can be expected that there is
still a long way to go before it reaches that stage.

Computational reflection refers to the ability of a program to inspect itself
and, if necessary, adapt its behavior (Kon et al., 2002). Reflection has been built
into programming languages, including Java, and offers a powerful facility for
runtime modifications. In addition, some middleware systems provide the means
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to apply reflective techniques. However, just as in the case of aspect orientation,
reflective middleware has yet to prove itself as a powerful tool to manage the
complexity of large-scale distributed systems. As mentioned by Blair et al. (2004),
applying reflection to a broad domain of applications is yet to be done.

Finally, component-based design supports adaptation through composition. A
system may either be configured statically at design time, or dynamically at run-
time. The latter requires support for late binding, a technique that has been suc-
cessfully applied in programming language environments, but also for operating
systems where modules can be loaded and unloaded at will. Research is now well
underway to allow automatically selection of the best implementation of a com-
ponent during runtime (Yellin, 2003), but again, the process remains complex for
distributed systems, especially when considering that replacement of one compon-
ent requires knowning what the effect of that replacement on other components
will be. In many cases, components are less independent as one may think.

2.3.3 Discussion

Software architectures for distributed systems, notably found as middleware,
are bulky and complex. In large part, this bulkiness and complexity arises from
the need to be general in the sense that distribution transparency needs to be pro-
vided. At the same time applications have specific extra-functional requirements
that conflict with aiming at fully achieving this transparency. These conflicting
requirements for generality and specialization have resulted in middleware solu-
tions that are highly flexible. The price to pay, however, is complexity. For ex-
ample, Zhang and Jacobsen (2004) report a 50% increase in the size of a particu-
lar software product in just four years since its introduction, whereas the total
number of files for that product had tripled during the same period. Obviously,
this is not an encouraging direction to pursue.

Considering that virtually all large software systems are nowadays required to
execute in a networked environment, we can ask ourselves whether the complex-
ity of disfributed systems is simply an inherent feature of attempting to make dis-
tribution transparent, Of course, issues such as openness are equally important,
but the need for flexibility has never been so prevalent as in the case of
middleware.

Coyler et al, (2003) argue that what is needed is a stronger focus on (external)
simpli¢ity, a simpler way to construct middleware by components, and application
independence. Whether any of the techniques mentioned above forms the solution
is subject to debate. In particular, none of the proposed techniques so far have
found massive adoption, nor have they been successfully applied tQ large-scale
systems.

The underlying assumption is that we need adaptive software in the sense that
the software should be allowed to change as the environment changes. However,
one should question whether adapting to a changing environment is a good reason
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to adopt changing the software. Faulty hardware, security attacks, energy drain-
age, and so on, all seem to be environmental influences that can (and should) be
anticipated by software.

The strongest, and certainly most valid, argument for supporting adaptive
software is that many distributed systems cannot be shut down. This constraint
calls for solutions to replace and upgrade components on the fly, but is not ¢lear
whether any of the solutions proposed above are the best ones to tackle this
maintenance problem.

What then remains is that distributed systems should be able to react to
changes in their environment by, for example, switching policies for allocating re-
sources. All the software components to enable such an adaptation will already be
in place. It is the algorithms contained in these components and which dictate the
behavior that change their settings. The challenge is to let such reactive behavior
take place without human intervention. This approach is seen to work better when
discussing the physical organization of distributed systems when decisions are
taken about where components are placed, for example. We discuss such system
architectural issues next.

2.4 SELF-MANAGEMENT IN DISTRIBUTED SYSTEMS

Distributed systems-and notably their associated middleware-need to pro-
vide general solutions toward shielding undesirable features inherent to network-
ing so that they can support as many applications as possible. On the other hand,
full distribution transparency is not what most applications actually want, re-
sulting in application-specific solutions that need to be supported as well. We
have argued that, for this reason, distributed systems should be adaptive, but not-
ably when it comes to adapting their execution behavior and not the software
components they comprise.

When adaptation needs to be done automatically, we see a strong interplay
between system architectures and software architectures. On the one hand, we
need to organize the components of a distributed system such that monitoring and
adjustments can be done, while on the other hand we need to decide where the
processes are to be executed that handle the adaptation.

In this section we pay explicit attention to organizing distributed systems as
high-level feedback-control systems allowing automatic adaptations to changes.
This phenomenon is also known as autonomic computing (Kephart, 2003) or
self.star systems (Babaoglu et al., 2005). The latter name indicates the variety by
which automatic adaptations are being captured: self-managing, self-healing,
self-configuring, self-optimizing, and so on. We resort simply to using the name
self-managing systems as coverage of its many variants.
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2.4.1 The Feedback Control Model

There are many different views on self-managing systems, but what most
have in common (either explicitly or implicitly) is the assumption that adaptations
take place by means of one or more feedback control loops. Accordingly, sys-
tems that are organized by means of such loops are referred to as feedback coi-
trol systems. Feedback control has since long been applied in various engineer-
ing fields, and its mathematical foundations are gradually also finding their way in
computing systems (Hellerstein et al., 2004; and Diao et al., 2005). For self-
managing systems, the architectural issues are initially the most interesting. The
basic idea behind this organization is quite simple, as shown in Fig. 2-16.

Uncontrollable parameters (disturbance / noise)

Y

Initial configuration ~~  Corrections o Observed output
2\ H > Core of distributed system
A NP2
+-
Reference input X X
Adjustment Metric
measures estimation
A
Analysis |
Adijustment triggers Measured output

Figure 2-16. The logical organization of a feedback control system.

The core of a feedback control system is formed by the components that need
to be managed. These components are assumed to be driven through controllable
input parameters, but their behavior may be influenced by all kinds of uncontrol-
lable input, also known as disturbance or noise input. Although disturbance will
often come from the environment in which a distributed system is executing, it
may well be the case that unanticipated component interaction causes unexpected
behavior. ]

There are essentially three elements that form the feedback control loop. First,
the system itself needs to be monitored, which requires that various aspects of the
system need to be measured. In many cases, measuring behavior is easier said
than done. For example, round-trip delays in the Internet may vary wildly, and
also depend on what exactly is being measured. In such cases, accurately estimat-
ing a delay may be difficult indeed. Matters are further complicated when a node
A needs to estimate the latency between two other completely different nodes B
and C, without being able to intrude on either two nodes. For reasons as this, a
feedback control loop generally contains a logical metsic estimation component.
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Another part of the feedback control loop analyzes the measurements and
compares these to reference values. This feedback analysis component forms the
heart of the control loop, as it will contain the algorithms that decide on possible
adaptations.

The last group of components consist of various mechanisms to directly influ-
ence the behavior of the system. There can be many different mechanisms: plac-
ing replicas, changing scheduling priorities, switching services, moving data for
reasons'of availability, redirecting requests to different servers, etc. The analysis
component will need to be aware of these mechanisms and their (expected) effect
on system behavior. Therefore, it will trigger one or several mechanisms, to sub-
sequently later observe the effect.

An interesting observation is that the feedback control loop also fits the man-
ual management of systems. The main difference is that the analysis component is
replaced by human administrators. However, in order to propeily manage any dis-
tributed system, these administrators will need decent monitoring equipment as
well as decent mechanisms to control the behavior of the system. It should be
clear that properly analyzing measured data and triggering the correct actions
makes the development of self-managing systems so difficult.

It should be stressed that Fig. 2-16 shows the logical organization of a self-
managing system, and as such corresponds to what we have seen when discussing
software architectures. However, the physical organization may be very different.
For example, the analysis component may be fully distributed across the system.
Likewise, taking performance measurements are usually done at each machine
that is part of the distributed system. Let us now take a look at a few concrete ex-
amples on how to monitor, analyze, and correct distributed systems in an auto-
matic fashion. These examples will also illustrate this distinction between logical
and physical organization.

2.4.2 Example: Systems Monitoring with Astrolabe

As our first example, we consider Astrolabe (Van Renesse et al., 2003), which
is a system that can support general monitoring of very large distributed systems.
In the context of self-managing systems, Astrolabe is to be positioned as a general
tool for observing systems behavior. Its output can be used to feed into an analysis
component for deciding on corrective actions.

Astrolabe organizes a large collection of hosts into a hierarchy of zones. The
lowest-level zones consist of just a single host, which are subsequently grouped
into zones of increasing size. The top-level zone covers all hosts. Every host runs
an Astrolabe process, called an agent, that collects information on the zones in
whigh that host is contained. The agent also communicates with other agents with
the aim to spread zone information across the entire system.

Each host maintains a set of attributes for collecting local information. For
example, a host may keep track of specific files it stores, its resource usage, and
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so on. Only the attributes as maintained directly by hosts, that is, at the lowest
level of the hierarchy are writable. Each zone can also have a collection of attri-
butes, but the values of these attributes are computed from the values of lower
level zones.

Consider the following simple example shown in Fig. 2-17 with three hosts,
A, B, and C grouped into a zone. Each machine keeps track of its IP address, CPU
load, available free memory. and the number of active processes. Each of these
attributes can be directly written using local information from each host: At the
zone level, only aggregated information can be collected, such as the average
CPU load, or the average number of active processes.

avg_load | avg_mein | avg_procs
0.06 055 47

Machine A Machine B Machine C
1

L IP-addr load | mem| procs
192.168.1.21 0.03| 0.80 43
192.168.1.3} 0.05| 0.50 20
192.168.1.4

Figure 2-17. Data collection and information aggregation in Astrolabe.

Fig. 2-17 shows how the information as gathered by each machine can be
viewed as a record in a database, and that these records jointly form a relation
(table). This representation is done on purpose: it is the way that Astrolabe views
all the collected data. However, per zone information can only be computed from
the basic records as maintained by hosts.

Aggregated information is obtained by programmable aggregation functions,
which are very similar to functions available in the relational database language
SQL. For example, assuming that the host information from Fig. 2-17 is main-
tained in a local table called hostinfo, we could collect the average number of
processes for the zone containing machines A, B, and C, through the simple SQL

query
SELECT AVG(procs) AS aV9 procs FROM hostinfo

Combined with a few ephancements to SQL, it is not hard to imagine that more

informative queries can be formulated.
Queries such as these are continuously evaluated by each agent running on

each host. Obviously, this is possible only if zone information is propagated to all

—
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nodes that comprise Astrolabe. To this end, an agent running on a host is responsi-
ble for computing parts of the tables of its associated zones. Records for which it
holds no computational responsibility are occasionally sent to it through a simple,
yet effective exchange procedure known as gossiping. Gossiping protocols will
be discussed in detgil in Chap. 4. Likewise, an agent will pass computed results to
other agents as well.

The result of this information exchange is that eventually, all agents that
needed to assist in obtaining some aggregated information will see the same result
(provided that no changes occur in the meantime).

2.4.3 Example: Differentiating Replication Strategies in Globule

Let us now tgke a look at Globule, a collaborative content distribution net-
work (Pierre and van Steen, 2006). Globule relies on end-user servers being
placed in the Internet, and that these servers collaborate to optimize performance
through replication of Web pages. To this end, each origin server (i.e., the server
responsible for handling updates of a specific Web site), keeps track of access pat-
terns on a per-page basis. Access patterns are expressed as read and write opera-
tions for a page, each operation being timestamped and logged by the origin
server for that page. '

In its simplest form, Globule assumes that the Internet can be viewed as an
edge-server system as we explained before. In particular, it assumes that requests
can always be passed through an appropriate edge server, as shown in Fig. 2-18.
This simple model allows an origin server to see what would have happened if it
had placed a replica on a specific edge server. On the one hand, placing a replica
closer to clients would improve client-perceived latency, but this will induce
traffic between the origin server and that edge server in order to keep a replica
consistent with the original page. -

Origin server

[JJ L] Client [1L10L] Client
Figure 2-18. The edge-server model assumed by Globule.

When an origin server receives a request for a page, it records the IP address
from where the request originated, and looks up the ISP or enterprise network

\
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associated with that request using the WHOIS Internet service (Deutsch et al.,
1995). The origin server then looks for the nearest existing replica server that
could act as edge server for that client, and subsequently computes the latency to
that server along with the maximal bandwidth. In its simplest configuration, Glo-
bule assumes that the latency between the replica server and the requesting user
machine is negligible, and likewise that bandwidth between the two is plentiful.

Once enough requests for a page have been collected, the origin server per-
forms a simple "what-if analysis." Such an analysis boils down to evaluating sev-
eral replication policies, where a policy describes where a specific page is repli-
cated to, and how that page is kept consistent. Each replication policy incurs a
cost that can be expressed as a simple linear function:

cost=(W1 xm1)+(w2xm2)+ ... *+(wnxmp)

where mk denotes a performance metric and wk is the weight indicating how im-
portant that metric is. Typical performance metrics are the aggregated delays be-
tween a client and a replica server when returning copies of Web pages, the total
consumed bandwidth between the origin server and a replica server for keeping a
replica consistent, and the number of stale copies that are (allowed to be) returned
to a client (Pierre et al., 2002).

For example, assume that the typical delay between the time a client C issues
a request and when that page is returned from the best replica server is de ms.
Note that what the best replica server is, is determined by a replication policy. Let
m 1 denote the aggregated delay over a given time period, that is, m1 =L de. If
the origin server wants to optimize client-perceived latency, it will choose a rela-
~tively high value for wi- As a consequence, only those policies that actually
minimize m 1 will show to have relatively low costs.

In Globule, an origin server regularly evaluates a few tens of replication pol-
ices using a trace-driven simulation, for each Web page separately. From these
simulations, a best policy is selected and subsequently enforced. This may imply
that new replicas are installed at different edge servers, or that a different way of
keeping replicas consistent is chosen. The collecting of traces, the evaluation of
replication policies, and the enforcement of a selected policy is all done automati-
cally.

There ‘are a number of subtle issues that need to be dealt with. For one thing,
it is unclear how many requests need to be collected before an evaluation of the
current policy can take place. To explain, suppose that at time 7, the origin server
selects policy p for the next period until'li+I' This selection takes place based on
a series of past requests that were issued between Ti-1 and . Of course, in hind-
sight at time '7i+/, the server may come to the conclusion that it should have
selected policy p* given the actual requests that were issued between Ti and Ti+1.
If p* is different from p, then the selection ofp at i was wrong.

As it turns out, the percentage of wrong predictions is dependent on the length
of the series of requests (called the trace length) that are used to predict and select
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|

Error in prediction

Trace length used for selecting next policy -——>

Figure 2-19. The dependency between predistion accuracy and trace length:

a next policy. This dependency is sketched in Fig. 2-19. What is seen is that the
error in predicting the best policy goes up if the trace is not long enough. This is
easily explgined by the fact that we need enough requests to do a proper evalua-
tion. However, the error also increases if we use too many requests. The reason
for this is that a very long trace length captures-so many changes in access pat-
terns that predicting the best policy to follow becomes difficult, if not impossible.
This phenomenon is well known and is analogous to trying to predict the weather
for tomorrow by looking at what happened during the immediately preceding 100
years. A much better prediction can be made by just looking only at the recent
ast,

P Finding the optimal trace length can be done automatically as well. We leave
it as an exercise to sketch a solution to this problem.

2.404 Example: Automatic. Component Repair Management in Jade

When mgintaining g¢lusters of computers, each running sophisticated servers,
it becomes important to alleviate management problems. One approach that can
be applied to servers that are built using a component-based approach, is to detect
component failures and have them automatically replaced. The Jade system fol-
lows this approach (Bouchengk et al., 2005). We describe it briefly in this sec-
tion. “

Jade is built on the Fractal component model, a Java implementation of a
framework that allows components to be added and removed at runtime (Bruneton
et al., 2004). A component in Fractal can have two types of interfaces. A server
interface 1is used to call methods that are implemented by that component: A cli-
ent interface is used by a component to call other components. Components are
connected to each other by binding interfaces. For example, a elient interface of
component C 1 can be bound to the server interface of component C2 A primitive
binding means that a call to a client interface directly leads to calling the bounded
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server interface. In the case of composite binding, the call may proceed through
one or more other components, for example, because the client and server inter-
face did not match and some kind of conversion is needed. Another reason may be
that the connected components lie on different machines.

Jade uses the notion of a repair management domain. Such a domain con-
sists of a number of nodes, where each node represents a server along with the
components that are executed by that server. There is a separate node manager
which is responsible for adding and removing nodes from the domain. The node
manager may be replicated for assuring high availability.

Each node is equipped with failure detectors, which monitor the health of a
node or one of its components and report any failures to the node manager. Typi-
cally, these detectors consider exceptional changes in the state of component, the
usage of resources, and the actual failure of a component. Note that the latter may
actually mean that a machine has crashed.

When a failure has been detected, a repair procedure is started. Such a proce-
dure is driven by a repair policy, partly executed by the node manager. Policies
are stated explicitly and are carried out depending on the detected failure. For ex-
ample, suppose a node failure has been detected. In that case, the repair policy
may prescribe that the following steps are to be carried out:

1. Terminate every binding between a component on a nonfaulty node,
and a component on the node that just failed.

2. Request the node manager to start and add a new node to the domain.

3. Configure the new node with exactly the same components as those
on the crashed node.

4. Re-establish all the bindings that were previously terminated.

In this example, the repair policy is simple and will only work when no cru-
cial data has been lost (the crashed components are said to be stateless).

The approach followed by Jade is an example of self-management: upon the
detection of a failure, a repair policy is automatically executed to bring the system
as a whole into a state in which it was before the crash. Being a component-based
system, this automatic repair requires specific support to allow components to be
added and removed at runtime. In general, turning legacy applications into self-
managing systems is not possible.

2.5 SUMMARY

Distributed systems can be organized in many different ways. We can make a
distinction between software architecture and system architecture. The latter con-
siders where the components that constitute a distributed system are placed across
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the various machines. The former is more concerned about the logical organiza-
tion of the software: how do components_ interact, it what ways can they be struc-
tured, how can they be made independent, and so on.

A key idea when talking about architectures is architectural style. A style
reflects the basic pringiple that is followed in organizing the interaction between
the software components compmuising a distiibuted system. Important styles
inglude layering, object orientation, event orientation, and data-space orientation.

There are many different orgamizations of distsibuted systems. An important
class is where machines are divided into clients and servers. A client sends a re-
quest to a server, who will then produce a result that is retwrned to the elient. The
client-server architecture reflects the traditional way of modulasizing software in
which a module calls the functions available in another module. By placing dif-
ferent components on different machines, we obtain a natural physical- disteibution
of functions across a collection of machines. ,

Client-server architectures are often highly centralized. In decentralized archi-
tectures we often see an equal role played by the processes that constitute a dis-
tributed system, also kpown as peer-to-peer systems. In peer-to-peer systems, the
processes are organized into an ovetlay network, which is a logieal network in
which every process has a local list of other peers that it can communicate with.
The overlay network can be structured, in which case detemministic schemes can-
be deployed for routing messages between processes. In unsteuctured networks,
the list of peers is more or less random, implying that search algorithms need to be

* deployed for locating data or other processes.

As an alternative, self-managing distiibuted systems have been developed.
These systems, to an extent, merge ideas from system and software architectures.
Self-managing systems can be generally organized as feedback-contrel loops.
Such loops contain a monitoing component by the behavior of the disteibuted sys-
tem is measured, an analysis component to see whether anything needs to be
adjusted, and a collection of various instruments for changing the behavior.
Feedback -control loops can be integrated into distsibuted systems at numerous
places. Much research is still needed before a common understanding how such
loops such be developed and deployedis reached.

PROBLEMS

1. If a client and a server are placed far apart, we may see network latency dominating
overall performance. How can we tackle this problem?

2. What is a three-tiered client-server architecture?

3. What is the difference between a vertical distribution and a horizontal distribution?
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10.

11.

12.

13.

14.

" 15.

16.

17.

18.
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Consider a chain of processes Ph P2, ..., P» implementing a multitiered ¢lient-server
architecture. Process Pi is client of process P+, and Pi will return a reply to Pi-1 only
after receiving a reply from P+ What are the main problems with this organization
when taking a look at the request-reply pexformance at process PI?

In a structured overlay network, messages are routed according to the topology of the
ovetlay. What is an important disadvantage of this approach?

Consider the CAN network from Fig. 2-8. How would you route a message from the
node with coordinates (0.2,0.3) to the one with coordinates (0.9,0.6)?

Considering that a node in CAN knows the coordinates of its immediate neighbors, a
reasonable routing policy would be to forward a message to the closest node toward
the destination. How good is this policy?

Consider an unstructured oveklay network in which each node randomly chooses c
neighbors. If P and Q are both neighbors of R, what is the probability that they are
also neighbars of each other?

Consider again an unstructured oveslay network in which every node randomly
chooses c neighbors. To search for a file, a node floods a request to its neighbors and
requests those to flood the request once more. How many nodes will be reached?

Not every node in a peer-to-peer- network should become superpeer. What are reason-
able requizements that a superpeer should meet?

Consider a BitTorrent system in which each node has an outgoing link with a
bandwidth capacity’ Bour and an incoming link with. bandwidth. capacity Bin' Some of
these nodes (called seeds) voluntatily offer files to be downloaded by others. What is
the maximum download capacity of a BitTorrent client if we assume that it can con-
tact at most one seed at a time?

Give a compelling (techmical) argument why the tit-for-tat policy as used in BitTorrent
is far from optimal for file sharing in the Internet..

We gave two examples of using interceptors in adaptive middleware. What other ex-
amples come to mind?

To what extent are interceptors dependent on the middle ware where they are
deployed? -.
Modem cars are stuffed with electronic devices. Give some examples of feedback

control systems in cars.

Give an example of a self-managing system in which the analysis component is com-
pletely distributed or even hidden.

Sketch a solution to automatically determine the best trace length for predicting repli-
cation policies in Globule.

(Lab assignment) Using existing software, design and implement a BitTorrent-based
system for distributing files to many clients from a single, powenful server. Matters are
simplified by using a standard Web server that can operate as tracker.



PROCESSES

In this chapter, we take a closer look at how the different types of processes
playa crucial role in distributed systems. The concept of a process originates from
the field of operating systems where it is generally defined as a program in execu-
tion. From an operating-system perspective, the management and scheduling of
processes are perhaps the most important issues to deal with. However, when it
comes to distributed systems, other issues tum out to be equally or more impor-
tant,

For example, to efficiently organize client-server systems, it is often con-
venient to mgke use of multithreading techniques. As we discuss in the first sec-
tion, a main contribution of threads in distributed systems is that they allow e¢lients
and servers to be constructed such that communication and local processing can
overlap, resulting in a high level of performance.

In recent years, the concept of virtualization has gained popularity. Virtualiza-
tion allows an application, and possibly also its complete environment ineluding
the operating system, to run concurrently with other applications, but highly in-
dependent of the underlying hardware and platforms, leading to a high degree of
portability. Moreover, virtualization helps in isolating failures caused by errors or
security problems. It is an important concept for distributed systems, and we pay
attention to it in a separate section.

As we argued in Chap. 2, client-server organizations are important in distrib-
uted systems. In this chapter, we take a closer look at typical organizations of both
clients and servers. We also pay attention to general design issues for servers.

69
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An important issue, especially in wide-area distributed systems, is moving
processes between different machines. Process migration or more specifically,
code migration, can help in achieving scalability, but can also help to dynamically
configure clients and servers. What is actually meant by code migration and what
its implications are is also discussed in this chapter.

3.1 THREADS

Although processes form a building block in distributed systems, practice
indicates that the granularity of processes as provided by the operating systems on
which distributed systems are built is not sufficient. Instead, it turns out that hav-
ing a finer granularity in the form of multiple threads of control per process makes
it much easier to build distributed applications and to attain better performance. In
this section, we take a closer look at the role of threads in distributed systems and
explain why they are so important. More on threads and how they can be used to
build applications can be found in Lewis and Berg (998) and Stevens (1999).

3.1.1 Introduction to Threads

To understand the role of threads in distributed systems, it is important to
understand what a process is, and how processes and threads relate. To execute a
program, an operating system creates a number of virtual processors, each one for
running a different program. To keep track of these virtual processors, the operat-
ing system has a process table, containing entries to store CPU register values,
memory maps, open files, accounting information. privileges, etc. A process is
often defined as a program in execution, that is, a program that is currently being
executed on one of the operating system's virtual processors. An important issue
is that the operating system takes great care to ensure that independent processes
cannot maliciously or inadvertently affect the correctness of each other's behav-
ior. In other words, the fact that multiple processes may be concurrently sharing
the same CPU and other hardware resources is made transparent. Usually, the op-
erating system requires hardware support to enforce this separation.

This concurrency transparency comes at a relatively high price. For example,
each time a process is created, the operating system must create a complete
independent address space. Allocation can mean initializing memory segments by,
for example, zeroing a data segment, copying the associated program into a text
segment, and setting up a stack for temporary data. Likewise, switching the CPU
between two processes may be relatively expensive as well. Apart from saving the
CPU context (which consists of register values, program counter, stack pointer,
etc.), the operating system will also have to modify registers of the memory
management unit (MMU) and invalidate address translation caches such as in the
translation lookaside buffer (TLB). In addition, if the operating system supports
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more processes than it can simultaneously hold in main memory, it may have to
swap processes between main memory and disk before the actual switch can teke
place.

Like a process, a thread executes its own piece of code, independently from
other threads. However, in contrast to processes, no attempt is made to achieve a
high degree of concurrency transparency if this would result in performance de-
gradation. Therefore, a thread system generally maintains only the minimum in-
formation to allow a CPU to be shared by several threads. In particular, a thread
context often consists of nothing more than the CPU context, along with some
other information for thread management. For example, a thread system may keep
track of the fact that a thread is currently blocked on a mutex variable, so as not to
select it for execution. Information that is not strictly necessary to manage multi-
ple threads is generally ignored. For this reason, protecting data against inap-
propriate access by threads within a single process is left entirely to application
developers.

There are two important implications of this approach. First of all, the perfor-
mance of a multithreaded application need hardly ever be worse than that of its
single-threaded counterpart. In fact, in many cases, multithreading leads to a per-
formance gain. Second, because threads are not automatically protected against
each other the way processes are, development of multithkeaded applications re-
quires additional intellectual effort. Proper design and keeping things simple, as
usual, help a lot, Unfortunately, current practice does not demonstrate that this

principle is equally well understood.
Thread Usage in Nondistributed Systems

Before discussing the role of threads in distributed systems, let us first consid-
er their usage in traditional, nondistributed systems. There are several benefits to
multithreaded processes that have increased the populasity of using thread sys-
tems.

i'"ne most 1:m-poron\ \)/J\'tI\ \,~'m.'t~i g~ v W\ v ~ ~A~F te-t. N~d ~t()c-
ess, ~l1L~~~'l:~-a, I1Q.ckiu~&'!&tenvall is executed. tile Qrocess as a wriore is
MocKea'. 10 Jllustrate, corrsriter Jer <1fiflliccti<dt? * S~K cZSeZ S~€.2dShe>ebrOgE.wll, » a,nmj‘
asscattc tkat« «sercootioUOIIS)Y.:md 1Z;IcEacJ)ve)y w..avts JD!h.ange values, Aw im-
portant property of a spreadsheet program is that It maintains the Tuncnonei
dependencies between different cells, often from different spreadsheets. There-
fore, whenever a cell is modified, all dependent cells are automatieally updated.
When a user changes the value in a single cell, such a modification can trigger a
large series of computations. If there is only a single thread of control, computa-
tion cannot proceed while the program is waiting for input. Likewise, it is not easy
to provide input while dependencies are being calculated. The easy solution is to
have at least two threads of control: one for handling interaction with the user and
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one for updating the spreadgheet, In the mean time, a third thread could be used
for backing up the spreadsheet to disk while the other two are doing their work.

Another advantage of multithreading is that it becomes possible to exploit
parallelism when executing the program on a multiprocessor system. In that case,
each thread is assigned to a different CPU while shared data are stored in shared
main memory. When properly designed, such parallelism can be transparent: the
process will run equally well on a uniprocessor system, albeit slower. Multi-
threading for parallelism is becoming increasingly important with the availability
of relatively cheap multiprocessor workstations. Such computer systems are typi-
cally used for running servers in client-server applications.

Multithreading is glso useful in the context of large applications. Such appli-
cations are often developed as a collection of cooperating programs, each to be
executed by a separate process. This approach is typical for a UNIX environment:
Cooperation between programs is implemented by means of interprocess commu-
nication (IPC) mechanisms. For UNIX systems, these mechanisms typically in-
clude (named) pipes, message queues, and shared memory segments [see also
Stevens and Rago (2005)]. The major drawback of all IPC mechanisms is that
communication often requires extensive context switching, shown at three dif-
ferent points in Fig. 3-1.

Process A Process B

S1: Switch from user space

to kemnel space T S3: Switch from kernel

space to user space

Operating system

S2: Switch context from
process A to process B

Figure 3-1. Context switching as the result of IPC.

Because IPC requires kernel intervention, a process will generally first have
to switch from user mode to kernel mode, shown as S 1in Fig. 3-1. This requires
changing the memory map in the MMU, as well as flushing the TLB. Within the
kernel, a process context switch takes place (52 in the figure), after which the
other party can be activated by switching from kernel mode to user mode again
(53 in Fig. 3-1). The latter switch again requires changing the MMU map and
flushing the TLB.

Instead of using processes, an application can also be constructed such that dif-
ferent parts are executed by separate threads. Communication between those parts
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is entirely dealt with by using shared data. Thread switching can sometimes be
done entirely in user space, although in other implementations, the kernel is aware
of threads and schedules them. The effect can be a dramatic improvement in per-
formance.

Finglly, there is also a pure software engineering reason to use thieads: many
applications are simply easier to structure as a collection of cooperating threads.
Think of applications that need to perform several (more or less independent)
tasks. For example, in the case of a word processor, separate threads can be used
for handling user input, spelling and grammar checking, document layout, index

generation, etc.
Thread Implementation

Threads are often provided in the form of a thread package. Such a package
contains operations to create and destroy threads as well as operations on syn-
chronization vgriables such as mutexes and condition variables. There are basi-
cally two approaches to implement a thread package. The first approach is to con-
struct a thread library that is executed entirely in user mode. The second approach
is to have the kernel be aware of threads and schedule them.

A user-level thread library has a number of advantages. First, it is cheap to
create and destroy threads. Because all thread administration is kept in the user's
address space, the price of creating a thread is primarily determined by the cost
for allocating memory to set up a thread stack. Analogously, destroying a thread
mainly involves freeing memory for the stack, which is no longer used. Both oper-
ations are cheap.

A second advantage of user-level threads is that switching thread context can
often be done in just a few instructions. Basically, only the values of the CPU reg-
isters need to be stored and subsequently reloaded with the previously stored
values of the thread to which it is being switched. There is no need to change
memory maps, flush the TLB, do CPU accounting, and so on. Switching thread
context is done when two threads need to synchronize, for example, when enter-
ing a section of shared data.

However, a major drawback of user-level threads is that invocation of a
blocking system call will immediately block the entire process to which the thread
belongs, and thus also all the other threads in that process. As we explained,
threads are partigularly useful to structure large applications into parts that could
be logigally executed at the same time. In that case, blocking on I/O should not
prevent other parts to be executed in the meantime. For such applications, user-
level threads are of no help.

These problems can be mostly circumvented by implementing threads in the
operating system's kernel, Unfortunately, there is a high price to pay: every thread
operation (creation, deletion, synchronization, etc.), will have to be carried out by
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the kernel. requiring a system call. Switching thread contexts may now become as
expensive as switching process contexts. As a result, most of the performance
benefits of using threads instead of processes then disappears.

A solution lies in a hybrid form of user-level and kernel-level threads, gener-
ally referred to as lightweight processes (LWP). An LWP runs in the context of
a single (heavy-weight) process, and there can be several LWPs per process. In
addition to having LWPs, a system also offers a user-level thread package. offer-
ing applications the usual operations for creating and destroying threads. In addi-
tion. the package provides facilities for thread synchronization. such as mutexes
and condition variables. The important issue is that the thread package is imple-
mented entirely in user space. In other words. all operations on threads are carried
out without intervention of the kernel. ' |

Thread state
User space
.— Thread
;;-.‘ ==
L L Lightweight process
Kernel space /
LWP executing a thread

Figure 3-2. Combining kernel-level lightweight processes and user-level threads.

The thread package can be shared by multiple LWPs, as shown in Fig. 3-2.
This means that each LWP can be running its own (user-level) thread. Multi-
threaded applications are constructed by creating threads, and subsequently as-
signing each thread to an LWP. Assigning a thread to an LWP is normally impli-
cit and hidden from the programmer.

The combination of (user-level) threads and L\VPs works as follows. The
thread package has a single routine to schedule the next thread. When creating an
LWP (which is done by means of a system call), the LWP is given its own stack,
and is instructed to execute the scheduling routine in search of a thread to execute.
If there are several LWPs, then each of them executes the scheduler. The thread
table, which is used to keep track of the current set of threads, is thus shared by
the LWPs. Protecting this table to guarantee mutually exclusive access is done by
means of mutexes that are implemented entirely in user space. In other words,
synchronization between LWPs does not require any kernel support.

When an LWP finds a runnable thread, it switches context to that thread.
Meanwhile, other LWPs may be looking for other runnable threads as well. If a
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thread needs to block on a mutex or condition variable, it does the necessary
administration and eventually calls the scheduling routine. "When another runnable
thread has been found, a context switch is made to that thread. The beauty of all
this is that the LWP executing the thread need not be informed: the context switch
is implemented completely in user space and appears to the LWP as normal pro-
gram code.

Now let us see what happens when a thread does a blocking system call. In
that case, execution changes from user mode to kernel mode. but still continues in
the context of the current LWP. At the point where the current LWP can no longer
continue, the operating system may decide to switch context to another LWP,
which also implies that a context switch is made back to user mode. The selected
LWP will simply continue where it had prev10usly left off.

There are several advantages to using LWPs in combination with a user-level
thread package. First, creating, destroying, and synchronizing threads is relatively
cheap and involves no kernel intervention at all. Second, provided that a process
has enough LWPs, a blocking system call will not suspend the entire process.
Third, there is no need for an application to know about the LWPs. All it sees are
user-level threads. Fourth, LWPs can be easily used in multiprocessing environ-
ments, by executing different LWPs on different CPUs. This multiprocessing can
be hidden entirely from the application. The only drawback of lightweight proc-
esses in combination with user-level threads is that we still need to create and des-
troy LWPs, which is just as expensive as with kernel-level threads. However,
creating and destroying LWPs needs to be done only occasionally, and is often
fully controlled by the operating system.

An alternative, but similar approach to lightweight processes, is to make use
of scheduler activations (Anderson et al., 1991). The most essential difference
between scheduler activations and LWPs is that when a thread blocks on a system
call, the kernel does an upcall to the thread package, effectively calling the
scheduler routine to select the next runnable thread. The same procedure is re-
peated when a thread is unblocked. The advantage of this approach is that it saves
management of LWPs by the kernel. However, the use of upcalls is considered
less elegant, as it violates the structure of layered systems, in which calls only to
the next lower-level layer are permitted.

3.1.2 Threads in Distributed Systems

An important property of threads is that they can provide a convenient means
of allowing blocking system calls without blocking the entire process in which the
thread is running. This property makes threads particularly attractive to use in dis-
tributed systems as it makes it much easier to express communication in the form
of maintaining multiple logical connections at the same time. We illustrate this
point by taking a closer look at multithreaded clients and servers, respectively.
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Multithreaded Clients.

To establish a high degree of distribution transparency, distributed systems
that operate in wide-area networks may need to conceal long interprocess mes-
sage propagation times. The round-trip delay in a wide-area network can easily be
in the order of hundreds of milliseconds. or sometimes even seconds.

The usual way to hide communication latencies is to initiate communication
and immediately proceed with something else. A typical example where this hap-
pens is in Web browsers. In many cases, a Web document consists of an HTML
file containing plain text along with a collection of images, icons, etc. To fetch
each element of a Web document, the browser has to set up a TCPIIP connection,
read the incoming data, and pass it to a display component. Setting up a connec-
tion as well as reading incoming data are inherently blocking operations. When
dealing with long-haul communication, we also have the disadvantage that the
time for each operation to complete may be relatively long.

A Web browser often starts with fetching the HTML page and subsequently
displays it, To hide communication latencies as much as possible, some browsers
start displaying data while it is still coming in. While the text is made available to
the user, ingluding the facilities for scrolling and such, the browser continues with
fetching other files that make up the page, such as the images. The latter are dis-
played as they are brought in. The user need thus not wait until all the components
of the entire page are fetched before the page is made available.

In effect, it is seen that the Web browser is doing a number of tasks simul-
taneously. As it turns out, developing the browser as a multithreaded elient simpli-
fies matters considerably. As soon as the main HTML file has been fetched, sepa-
rate threads can be activated to take care of fetching the other parts. Each thread
sets up a separate connection to the server and pulls in the data. Setting up a con-
nection and reading data from the server can be programmed using the standard
(blocking) system calls, assuming that a blocking call does not suspend the entire
process. As is also illustrated in Stevens (1998), the code for each thread is the
same and, above all, simple. Meanwhile, the user notices only delays in the dis-
play of images and such, but can otherwise browse through the document:

There is another important benefit to using multithseaded Web browsers in
which severgl connections can be opened simultaneously. In the previous ex-
ample, several connections were set up to the same server. If that server is heavily
loaded, or just plain slow, no real performance improvements will be notieed
compared to pulling in the files that make up the page strictly one after the other:

However, in many cases, Web servers have been replicated across multiple
machines, where each server provides exactly the same set of Web documents.
The replicated servers are located at the same site, and are known under the same
name. When a request for a Web page comes in, the request is forwarded to one
of the servers, often using a round-robin strategy or some other load-balaneing
technique (Katzetal., 1994). When using a multithreaded client, connections may
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be set up to different replicas, allowing data to be transferred in parallel, effec-
tively establishing that the entire Web document is fully displayed in a much
shorter time than with a nonreplicated server. This approach is possible only if the
client can handle truly parallel streams of incoming data. Threads are ideal for this

purpose.

~ultithreaded Servers

Although there are important benefits to multithreaded clients, as we have
seen, the main use of multithreading in distributed systems is found at the server
side. Practice shows that multithteading not only simplifies server code consid-
erably, but also makes it much easier to develop servers that exploit parallelism to
attgin high performance, even on uniprocessor systems. However, now that multi-
processor computers are widely available as general-purpose workstations, multi-
threading for parallelism is even more useful.

To understand the benefits of threads for writing server code, consider the
orggnization of a file server that occasionally has to block waiting for the disk.
The file server normally waits for an incoming request for a file operation, subse-
quently carries out the request, and then sends back the reply. One possible, and
particularly popular organization is shown in Fig. 3-3. Here one thread, the
dispatcher, reads incoming requests for a file operation. The requests are sent by
clients to a well-known end point for this server. After examining the request, the
server chooses an idle (i.e., blocked) worker thread and hands it the request.

Request dispatched
Dispatcher thread to a worker thread P Server

A L

= |
. /T»-’\‘ |+ Worker thread

Request coming in
from the network

Operating system

Figure 3-3. A multithreaded server organized in a dispatcher/worker model.

The worker proceeds by performing a blocking read on the local file system,
which may cause the thread to be suspended until the data are fetched from disk.
If the thread is suspended, another thread is selected to be executed. For example,
the dispatcher may be selected to acquire more work. Alternatively, another
worker thread can be selected that is now ready to run.



78 PROCESSES CHAP. 3

Now consider how the file server might have been written in the absence of
threads. One possibility is to have it operate as a single thread. The main loop of
the file server gets a request, examines it, and carries it out to completion before
getting the next one. While waiting for the disk, the server is idle and does not
process any other requests. Consequently, requests from other clients cannot be
handled. In addition, if the file server is running on a dedicated machine, as is
commonly the case, the CPU is simply idle while the file server is waiting for the
disk. The net result is that many fewer requests/sec can be processed. Thus
threads gain considerable performance, but each thread is programmed sequen-
tially, in the usual way.

So far we have seen two possible designs: a multithseaded file server and a
single-threaded file server. Suppose that threads are not available but the system
designers find the performance loss due to single threading unacceptable. A third
possibility is to run the server as a big finite-state machine. When a request comes
in, the one and only thread examines it. If it can be satisfied from the cache, fine,
but if not, a message must be sent to the disk.

However, instead of blocking, it records the state of the current request in a
table and then goes and gets the next message. The next message may either be a
request for new work or a reply from the disk about a previous operation. If it is
new work, that work is started. If it is a reply from the disk, the relevant informa-
tion is fetched from the table and the reply processed and subsequently sent to the
client, In this scheme, the server will have to make use of nonblocking calls to
send and receive. »

In this design, the "sequential process" model that we had in the first two
cases is lost, The state of the computation must be explicitly saved and restored in
the table for every message sent and received. In effect, we are simulating threads
and their stacks the hard way. The process is being operated as a finite-state ma-
chine that gets an event and then reacts to it, depending on what is in it.

Model Characteristics
Threads Parallelism, blocking system calls
'Singie-threaded process | No parallelism, blocking system calls
Finite-state machine Parallelism, nonblocking system calls

Figure 3-4. Thiee ways to construct a server.

It should now be clear what threads have to offer. They make it possible to
retain the idea of sequential processes that make blocking system calls (e.g., an
RPC to talk to the disk) and still achieve parallelism. Blocking system calls make
programming easier and parallelism improves performance. The single-threaded
server retains the ease and simplicity of blocking system calls, but gives up some

—
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amount of performance. The finite-state machine approach achieves high perfor-
mance through parallelism, but uses nonblocking calls, thus is hard to program.
These models are summarized in Fig. 3-4.

3.2 VIRTUALIZATION

Threads and processes can be seen as a way to do more things at the same
time. In effect, they allow us build (pieces of) programs that appear to be executed
simultaneously. On a single-processor computer, this simultaneous execution is,
of course, an illusion. As there is only a single CPU, only an instruction from a
single thread or process will be executed at a time. By rapidly switching between
threads and processes, the illusion of parallelism is created.

This separation between having a single CPU and being able to pretend there
are more can be extended to other resources as well, leading to what is known as
resource virtualization. This virtualization has been applied for many decades,
but has received renewed interest as (distributed) computer systems have become
more commonplace and complex, leading to the situation that application soft-
ware is mostly always outliving its underlying systems software and hardware. In
this section, we pay some attention to the role of virtualization and discuss how it
can be realized.

3.2.1 The Role of Virtualization in Distaibuted Systems

In practice, every (distributed) computer system offers a programming inter-
face to higher level software, as shown in Fig. 3-5(a). There are many different
types of interfaces, ranging from the basic instruction set as offered by a CPU to
the vast collection of application programming interfaces that are shipped with
many current middleware systems. In its essence, virtualization deals with extend-
ing or replacing an existing interface so as to mimic the behavior of another sys-
tem, as shown in Fig.3-5(b). We will come to discuss technical details on vir-
tualization shortly, but let us first concentrate on why virtualization is important
for distributed systems.

One of the most important reasons for introducing virtualization in the 1970s,
was to allow legacy software to run on expensive mainframe hardware. The soft-
ware not only included various applications, but in fact also the operating systems
they were developed for. This approach toward supporting legacy software has
been successfully applied on the IBM 370 mainframes (and their successors) that
offered a virtual machine to which different operating systems had been ported.

As hardware became cheaper, computers became more powerful, and the
number of different operating system flavors was reducing, virtualization became
less of an issue. However, matters have changed again since the late 1990s for
several reasons, which we will now discuss.
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Program
Interface A i
Program Imptementation of
mimicking A on B
interface A InterfaceB
Hardware/software system A Hardware/software system B

(a) (b)

Figure 3-5. (a) Genegal organization between a program, intesface, and system.
(b) General organization of virtualizing system A on top of system B.

First, while hardware and low-level systems software change reasonably fast,
software at higher levels of abstraction (e.g., middleware and applications), are
much more stable. In other words, we are facing the situation that legacy software
cannot be maintained in the same pace as the platforms it relies on. Virtualization
can help here by porting the legacy interfaces to the new platforms and thus im-
mediately opening up the latter for large classes of existing programs.

Equally important is the fact that networking has become completely per-
vasive. It is hard to imagine that a modern computer is not connected to a net-
work, In practice, this connectivity requires that system administrators maintain a
large and heterogeneous collection of server computers, each one running very
different applications, which can be accessed by clients. At the same time the var-
ious resources should be easily accessible to these applications. Virtualization can
help a lot; the diversity of platforms and machines can be reduced by essentially
letting each application run on its own virtual machine, possibly including the
related libraries and operating system, which, in turn, run on a common platform.

This last type of virtualization provides a high degree of portability and flexi-
bility. For example, in order to realize content delivery networks that can easily
support replication of dynamic content, Awadallah and Rosenblum (2002) argue
that management becomes much easier if edge servers would support virtuali-
zation, allowing a complete site, including its environment to be dynamically
copied. As we will discuss later, it is primarily such portability arguments that
make virtualization an important mechanism for distributed systems.

3.2.2 Architectures of Virtual Machines
There are many different ways in which virtualization can be realized in prac-

tice. An overview of these various approaches is described by Smith and Nair
(2005). To understand the differences in virtualization, it is important to realize
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that computer systems generally offer four different types of interfaces, at four
different levels:

1. An interface between the hardware and software, consisting of ma-
chine instructions that can be invoked by any program.

2. An interface between the hardware and software, consisting of ma-
chine instructions that can be invoked only by privileged programs,
such as an operating system.

3. An intexface consisting of system calls as offered by an operating
system.

4. An interface consisting of library calls, generally forming what is
known as an application programming interface (API). In many
cases, the aforementioned system calls are hidden by an API.

These different types are shown in Fig. 3-6. The essence of virtualization is to
mimic the behavior of these interfaces.

Application

Library functions

System calls
Privileged General
instructions ~~Ygrr———rmrrmer Lm——— instructions

Hardware

Figure - 3-6. Various interfaces offered by computer systems.

Virtualization can take place in two different ways. First, we can build a run-
time system that essentially provides an abstract instruction set that is to be used
for executing applications. Instructions can be interpreted (as is the case for the
Java runtime environment), but could also be emulated as is done for running
Windows applications on UNIX platforms. Note that in the latter case, the emula-
tor will also have to mimic the behavior of system calls, which has proven to be
generally far from trivial. This type of virtualization leads to what Smith and Nair
(2005) call a process virtual machine, stressing that virtualization is done essen-
tially only for a single process.

An alternative approach toward virtualization is to provide a system that is
essentially implemented as a layer completely shielding the original hardware, but
offering the complete instruction set of that same (or other hardware) as an inter-
face. Crucial is the fact that this interface can be offered simultaneously to dif-
ferent programs. As a result, it is now possible to have multiple, and different
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operating systems run independently and concurrently on the same platform. The
layer is generally referred to as a virtual machine monitor (VMM). Typical ex-
amples of this approach are VMware (Sugerman et al., 2001) and Xen (Barham et
at, 2003). These two different approaches are shown in Fig. 3-7.
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Application Applications
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Runtime system 1 Operating system
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Virtual machine monitor
| =1 | MR T I

Hardware Hardware

(a) (b)

Figure 3-7. (a) A process virtual machine, with multiple instances of (applica-
tion, runtime) combinations. (b) A virtual machine monitor. with multiple in-
stances of (applications, operating system) combinations.

As argued by Rosenblum and Garfinkel (2005), VMMs will become increas-
ingly important in the context of reliability and security for (distributed) systems.
As they allow for the isolation of a complete application and its environment, a
failure caused by an error or security attack need no longer affect a complete ma-
chine. In addition, as we also mentioned before, portability is greatly improved as
VMMs provide a further decoupling between hardware and software, allowing a
complete environment to be moved from one machine to another.

3.3 CLIENTS

In the previous chapters we discussed the client-server modeL the roles of eli-
ents and servers, and the ways they interact. Let us now take a eloser look at the
anatomy of clients and servers, respectively. We start in this section with a discus-
sion of clients. Servers are discussed in the next section.

3.3.1 Networked User Intexfaces

A major task of ¢lient machines is to provide the means for users to interact
with remote servers. There are roughly two ways in which this interaction can be
supported. First, for each remote service the client machine will have a separate
counterpart that can contact the service over the network. A typical example is an
agenda running on a user's PDA that needs to synchronize with a remote, possibly
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shared agenda. In this case, an application-level protocol will handle the syn-
chronization, as shown in Fig. 3-8(a).

Client machine Server machine Client machine Server machine
Catine | I Appl. '] o Appl. U
Application e Application- » Application Application-

A specific A : independent ‘
Middleware protocol Middleware Middleware protocol |  Middleware
Local bS Local OS Local bS Local OS

Network - Network

(@) (b)

Figure 3-8. (a) A networked application with its own protocol.. (b) A general
solution to allow access to remote applications.

A second solution is to provide direct access to remote services by only offer-
ing a convenient user interface. Effectively, this means that the client machine is
used only as a terminal with no need for local storage, leading to an application-
neutral solution as shown in Fig. 3-8(b). In the case of networked user interfaces,
everything is processed and stored at the server. This thin-glient approach is
receiving more attention as Internet connectivity increases, and hand-held devices
are becoming more sophisticated. As we argued in the previous chapter, thin-cli-
ent solutions are also popular as they ease the task of system management. Let us
take a look at how networked user interfaces can be supported.

Example: The X Window System

Perhaps one of the oldest and still widely-used networked user interfaces is
the X Window system. The X Window System, generally referred to simply as
X, is used to control bit-mapped terminals, which include a moaitor, keyboard,
and a pointing device such as a mouse. In a sense, X can be viewed as that part of
an operating system that controls the terminal. The heart of the system is formed
by what we shall call the X kernel.. It contains all the terminal-specific device
drivers, and as such, is generally highly hardware dependent.

The X kernel offers a relatively low-level interface for controlling the screen,
but also for capturing events from the keyboard and mouse. This interface is made
available to applications as a library called Xlib. This general organization is
shown in Fig. 3-9.

The interesting aspect of X is that the X kernel and the X applications need
not necessagily reside on the same machine. In particular, X provides the X proto-
col, which is an application-level communication protocol by which an instance of
Xlib can exchange data and events with the X kernel. For example, Xlib can send



84 PROCESSES CHAP. 3

Application server Application server User's terminal

Window Application | | xiip interface

manager

Xlib & Xiib
Local OS Local OS X protocol
i R
\_ > X kernel
Device drivers

Terminal (includes display
keyboard, mouse, etc.)

Figure 3-9. The basic organization of the X Window System.

requests to the X kernel for creating or killing a window, setting colors, and defin-
ing the type of cursor to display, among many other requests. In turn, the X kernel
will react to local events such as keyboard and mouse input by sending event
packets back to X7ib.

Several applications can communicate at the same time with the X kernel.
There is one specific application that is given special rights, known as the win-
dow manager. This application can dictate the "look and feel" of the display as
it appears to the user, For example, the window manager can prescribe how each
window is decorated with extra buttons, how windows are to be placed on the dis-
play, and so. Other applications will have to adhere to these rules.

It is interesting to note how the X window system actually fits into elient-
server computing. From what we have described so far, it should be elear that the
X kernel receives requests to manipulate the display. It gets these requests from
(possibly remote) applications. In this sense, the X kernel acts as a server, while
the applications play the role of clients. This terminology has been adopted by X,
and although strictly speaking is correct, it can easily lead to confusion.

Thin-Client Network Computing

Obviously, applications manipulate a display using the speeific display com-
mands as offered by X. These commands are generally sent over the network
where they are subsequently executed by the X kernel. By its nature, applications
written for X should preferably separate application logic from user-interface
commands. Unfortunately, this is often not the case. As reported by Lai and Nieh
(2002), it turns out that much of the application logic and user interaction are
tightly coupled, meaning that an application will send many requests to the X ker-
nel for which it will expect a response before being able to meke a next step. This
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synchronous behavior may adversely affect performance when operating over a
wide-area network with long latencies.

There are several solutions to this problem. One is to re-engineer the imple-
mentation of the X protocol, as is done with NX (Pinzari, 2003). An important
part of this work concentrates on bandwidth reduction by compressing X mes-
sages. First, messages are considered to consist of a fixed part, which is treated as
an identifier, and a variable part. In many cases, multiple messages will have the
same identifier in which case they will often contain similar data. This property
can be used to send only the differences between messages having the same iden-
tifier.

Both the sending and receiving side maintain a local cache of which the en-
tries can be looked up using the identifier of a message. When a message is sent,
it is first looked up in the local cache. If found, this means that a previous mes-
sage with the same identifier but possibly different data had been sent. In that
case, differential encoding is used to send only the differences between the two.
At the receiving side, the message is also looked up in the local cache, after which
decoding through the differences can take place. In the cache miss, standard
compression techniques are used, which generally already leads to factor four
improvement in bandwidth. Overall, this technique has reported bandwidth reduc-
tions up to a factor 1000, which allows X to also run through low-bandwidth links
of only 9600 kbps.

An important side effect of caching messages is that the sender and receiver
have shared information on what the current status of the display is. For example,
the application can request geometric information on various objects by simply re-
questing lookups in the local cache. Having this shared information alone already
reduces the number of messages required to keep the application and the display
synchronized.

Despite these improvements, X still requires having a display server running.
This may be asking a lot, especially if the display is something as simple as a cell
phone. One solution to keeping the software at the display very simple is to let all
the processing take place at the application side. Effectively, this means that the
entire display is controlled up to the pixel level at the application side. Changes in
the bitmap are then sent over the network to the display, where they are im-
mediately transferred to the local frame buffer.

This approach requires sophisticated compression techniques in order to
prevent bandwidth availability to become a problem. For example, consider dis-
playing a video stream at a rate of 30 frames per second on a 320 x 240 screen.
Such a screen size is common for many PDAs. If each pixel is encoded by 24 bits,
then without compression we would need a bandwidth of approximately 53 Mbps.
Compression is clearly needed in such a case, and many techniques are currently
being deployed. Note, however, that compression requires decompression at the
receiver, which, in turn, may be computationally expensive without hardware sup-
port. Hardware support can be provided, but this raises the devices cost.
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The drawback of sending raw pixel data in comparison to higher-level proto-
cols such as X is that it is impossible to make any use of application semantics, as
these are effectively lost at that level. Baratto et al. (2005) propose a different
technique. In theiy solution, referred to as THINC, they provide a few high-level
display commands that operate at the level ofthe video device drivers. These com-
mands are thus deyice dependent, more powerful than raw pixel operations, but
less powerful compared to what a protocol such as X offers. The result is that dis-
play servers can be much simpler, which is good for CPU usage, while at the
same time application-dependent optimizations can be used to reduce bandwidth
and synchronization.

In THINC, display requests from the application are intercepted and transla-
ted into the lower level commands. By intercepting application requests, THINe
can mgke use of application semantics to decide what combination of lower level
commands can be used best, Translated commands are not immediately sent out
to the display, but are instead queued. By batching several commands it is pos-
sible to aggregate display commands into a single one, leading to fewer messages.
For example, when a new command for drawing in a particular region of the
screen effectively overwrites what a previous (and still queued) command would
have established, the latter need not be sent out to the display. Finally, instead of
letting the display ask for refreshments, THINC always pushes updates as they
come available. This push approach saves latency as there is no need for an
update request to be sent out by the display.

As it turns out, the approach followed by THINC provides better overall per-
formance, although very much in line with that shown by NX. Details on perfor-
mance comparison can be found in Baratto et al.(2005).

Compound Documents.

Modem user interfaces do a lot more than systems such as X or its simple ap-
plications. In particular, many user interfaces allow applications to share a single
graphigcgl window, and to use that window to exchange data through user actions.
Additional actions that can be performed by the user include what are generally
called drag-and-drop operations, and in-place editing, respectively.

A typical example of drag-and-drop functionality is moving an icon repres-
enting a file 4 to an icon representing a trash can, resulting in the file being
deleted. In this case, the user interface will need to do more than just arrange
icons on the display: it will have to pass the name of the file A to the applieation
assogiated with the trash can as soon as 4's icon has been moved above that of the
trash can application. Other examples easily come to mind.

In-place editing can best be illustrated by means of a document containing
text and graphics. Imagine that the document is being displayed within a standard
word processor. As soon as the user places the mouse above an image, the user in-
terface passes that information to a drawing program to allow the user to modify
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the image. For example, the user may have rotated the image, whieh may effect
the placement of the image in the document. The user interface therefore finds out
what the new height and width of the image are, and passes this information to the
word processor, The latter, in tum, can then automatically update the page layout
of the document.

The key idea behind these user intexfaces is the notion of a compound docu-
ment, whigh can be defined as a collection of documents, possibly of very dif-
ferent kinds (like text, images, spreadsheets, etc.), which are seamlessly integrated
at the user-integface level, A user interface that can handle compound documents
hides the fact that different applications operate on different parts of the docu-
ment, To the user, all parts are integrated in a seamless way. When changing one
part affects other parts, the user interface can take appropriate measures, for ex-
ample, by notifying the relevant applications.

Analogous to the situation described for the X Window System, the applica-
tions associated with a compound document do not have to execute on the client's
machine. However, it should be clear that user interfaces that support compound
documents may have to do a lot more processing than those that do not:

3.3.2 Client-Side Software for Distribution Transparency

Client software comprises more than just user interfaces. In many cases, parts
of the processing and data level in a client-server application are executed on the
client side as well. A special class is formed by embedded client software, such as
for automatic teller machines (ATMs), cash registers, barcode readers, TV set-top
boxes, etc. In these cases, the user interface is a relatively small part of the elient
software, in contrast to the local processing and communieation facilities.

Besides the user interface and other application-related software, elient soft-
ware comprises components for achieving distribution transparency. Ideally, a eli-
ent should not be aware that it is communicating with remote processes. In con-
trast, distribution is often less transparent to servers for reasons of performance
and correctness. For example, in Chap. 6 we will show that replicated servers
sometimes need to communicate in order to establish that operations are per-
formed in a specific order at each replica.

Access transparency is generally handled through the generation of a elient
stub from an interface definition of what the server has to offer. The stub provides
the same interface as available at the server, but hides the possible differences in
machine architectures, as well as the actual communieation.

There are different ways to handle location, migration, and relocation tran-
sparency. Using a convenient naming system is crucial, as we shall also see in the
next chapter. In many cases, cooperation with client-side software is also impor-
tant, For example, when a ¢lient is already bound to a server, the elient can be
directly informed when the server changes location. In this case, the elient's mid-
dleware can hide the server's current geographical location from the user, and
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also transparently rebind to the server if necessary. At worst, the client's applica-
tion may notice a temporary loss of performance.

In a similar way, many distributed systems implement replication transpar-
ency by means of ¢lient-side solutions. For example, imagine a distributed system
with replicated servers, Such replication can be achieved by forwarding a request
to each replica, as shown in Fig. 3-10. Client-side software can transparently col-
lect all responses and pass a single response to the client application. ‘

Client machine Server 1 Server 2 Server 3
Client Server Server Server
appl app! appl appl -
:

-

Replicated request

Client side handles
request replication

Figure 3-10. Transparent replication of a server using a client-side solution.

Finally, consider failure transparency. Masking communication failures with a
server is typically done through client middleware. For example, client middle-
ware can be configured to repeatedly attempt to connect to a server, or perhaps try
another server after several attempts. There are even situations in which the ¢lient
middleware returns data it had cached during a previous session, as is sometimes
done by Web browsers that fail to connect to a server.

Concurrency transparency can be handled through special intermediate ser-
vers, notably transaction monitors, and requires less support from client software.
Likewise, persistence transparency is often completely handled at the server.

3.4 SERVERS

Let us now take a closer look at the organization of servers. In the following
pages, we first concentrate on a number of general design issues for servers, to be
followed by a discussion of server clusters.

3.4.1 General Design Issues

A server is a process implementing a specific service on behalf of a collection
of ¢clients. In essence, each server is organized in the same way: it waits for an
incoming request from a client and subsequently ensures that the request is taken
care of, after which it waits for the next incoming request.
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There are several ways to organize servers. In the case of an iterative server,
the server itself handles the request and, if necessary, returns a response to the re-
questing ¢lient, A concurrent server does not handle the request itself, but passes
it to a separate thread or another process, after which it immediately waits for the
next incoming request, A multithreaded server is an example of a concurrent
server. An alternative implementation of a concurrent server is to fork a new proc-
ess for each new incoming request. This approach is followed in many UNIX sys-
tems. The thread or process that handles the request is responsible for returning a
response to the requesting client.

Another issue is where clients contact a server. In all cases, clients send re-
quests to an end point, also called a port, at the machine where the server is run-
ning. Each server listens to a specific end point. How do clients know the end
point of a service? One approach is to globally assign end points for well-known
services. For example, servers that handle Internet FTP requests always listen to
TCP port 21, Likewise, an HTTP server for the World Wide Web will always
listen to TCP port 80. These end points have been assigned by the Iaternet
Assigned Numbers Authority (IANA), and are documented. in Reynolds and Pos-
tel (1994). With assigned end points, the client only needs to find the network ad-
dress of the machine where the server is running. As we explain in the next
chapter, name services can be used for that purpose.

There are many services that do not require a preassigned end point. For ex-
ample, a time-of-day server may use an end point that is dynamically assigned to
it 9Y its local operating system. In that case, a client will first have to look up the
end point, One solution is to have a special daemon running on each machine that
runs servers. The daemon keeps track of the current end point of each serviee im-
plemented by a co-located server. The daemon itself listens to a well-known end
point, A client will first contact the daemon, request the end point, and then c~m-
tact the specific server, as shown in Fig. 3-11(a).

It is common to associate an end point with a specific service. However, actu-
ally implementing each service by means of a separate server may be a waste of
resources. For example, in a typical UNIX system, it is common to have lots of
servers running simultaneously, with most of them passively waiting until a ¢lient
request comes in. Instead of having to keep track of so many passive processes, it
is often more efficient to have a single superserver listening to each end point as-
sociated with a specific service, as shown in Fig. 3-11(b). This is the approach
taken, for example, with the inerd daemon in UNIX. Inetd listens to a number of
well-known ports for Internet services. When a request comes in, the daemon
forks a process to take further care of the request. That process will exit after it is
finished.

Another issue that needs to be taken into account when designing a server is
whether and how a server can be interrupted. For example, consider a user who
has just degided to upload a huge file to an FTP server. Then, suddenly realizing
that it is the wrong file, he wants to interrupt the server to cancel further data
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Figure 3-11. (a) Client-to-server binding using a daemon. (b) Client-to-server
binding using a superserver..

transmission. There are several ways to do this. One approach that works only too
well in the current Internet (and is sometimes the only alternative) is for the user
to abrupt]ly exit the client application (which will automatically break the connec-
tion to the server), immediately restart it, and pretend nothing happened. The ser-
ver will eventyally tear down the old connection, thinking the client has probably
crashed.

A much better approach for handling communication interrupts is to develop
the client and server such that it is possible to send out-of-band data, which is
data that is-to be processed by the server before any other data from that client.
One solution is to let the server listen to a separate control end point to which the
client sends out-of-band data, while at the same time listening (with a lower prior-
ity) to the end point through which the normal data passes. Another solution is to
send out-of-band data across the same connection thgough which the e¢lient is
sending the origina] request.. In TCP, for example, it is possible to transmit urgent
data. When urgent data are received at the server, the latter is interrupted (e.g.e
through a signal in UNIX systems), after which it can inspect the data and handle
them accordingly.

A final, important design issue, is whether or not the server is stateless. A
stateless server does not keep information on the state of its clients, and can
change its own state without having to inform any client (Birman, 2005). A Web
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server, for example, is stateless. It merely responds to incoming HTTP requests,
which can be either for uploading a file to the server or (most often) for fetching a
file. When the request has been processed, the Web server forgets the client com-
pletely. Likewise, the collection of files that a Web server manages (possibly in
cooperation with a file server), can be changed without ¢lients having to be in-
formed. .

Note that in many stateless designs, the server actually does maintain infor-
mation on its glients, but crucial is the fact that if this information is lost, it will
not lead to a disruption of the service offered by the server. For example, a Web
server generally logs all client requests. This information is useful, for example, to
degcide whether certain documents should be replicated, and where they should be
replicated to. Clearly, there is no penalty other than perhaps in the form of subop-
timal performance if the log is lost.

A particular form of a stateless design is where the server maintains what is
known as soft state. In this case, the server promises to maintain state on behalf
of the client, but only for a limited time. After that time has expired, the server
falls back to default behavior, thereby discarding any information it kept on
account of the assogiated client. An example of this type of state is a server
promising to keep a ¢lient informed about updates, but only for a limited time.
After that, the client is required to poll the server for updates. Soft-state ap-
proaches originate from protocol design in computer networks, but can be equally
applied to server design (Clark, 1989; and Lui et al., 2004).

In contrast, a stateful server generally maintains persistent information on its
clients. This means that the information needs to be explicitly deleted by the
server, A typical example is a file server that allows a client to keep a local copy
of a file, even for performing update operations. Such a server would maintain a
table containing (glient, file) entries. Such a table allows the server to keep track
of which glient currently has the update permissions on which file, and thus possi-
bly also the most recent version of that file.

This approach can improve the performance of read and write operations as
perceived by the client, Performance improvement over stateless servers is often
an important benefit of stateful designs. However, the example also illustrates the
major drawback of stateful servers. If the server crashes, it has to recover its table
of (glient, file) entries, or otherwise it cannot guarantee that it has processed the
most recent updates on a file. In general, a stateful server needs to recover its en-
tire state as it was just before the crash. As we discuss in Chap. 8, enabling
recovery can introduce considerable complexity. In a stateless design, no special
measures need to be taken at all for a crashed server to recover. It simply starts
running again, and waits for client requests to come in.

Ling et al, (2004) argue that one should actually make a distinction between
(temporary) session state and permanent state. The example above is typieal for
session state: it is associated with a series of operations by a single user and
should be maintained for a some time, but not indefiaitely. As it turns out, session
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state is often maintained in three-tiered client-server architectures, where the ap-
plication server actually needs to access a database server through a series of
queries before being able to respond to the requesting client.. The issue here is that
no real harm is done if session state is lost, provided that the client can simply re-
issue the original request.. This observation allows for simpler and less reliable
storage of state.

What remains for permanent state is typically information maintained in data-
bases, such as customer information, keys associated with purchased software,
etc. However, for most distsibuted systems, maintaining session state already im-
plies a stateful design requiking special measures when failures do happen and
making explicit assumptions about the durability of state stored at the server. We
will return to these matters extensively when discussing fault tolerance. "

When designing a server, the choice for a stateless or stateful design should
not affect the services provided by the server. For example, if files have to be
opened before they can be read from, or written to, then a stateless server should
one way or the other mimic this behavior. A common solution, which we discuss
in more detail in Chap. 11. is that the server responds to a read or write request by
first opening the referred file, then does the actual. read or write operation, and im-
mediately closes the file again.

In other cases, a server may want to keep a record on a client's behavior so
that it can. more effectively respond to its requests. For example, Web servers
sometimes offer the possibility to immediately direct a client to his favorite pages.
This approach is possible only if the server has history information on that client..
When the server cannot maintain state, a common solution is then to let the c¢lient
send along additional information on its previous accesses. In the case of the Web,
this information is often transparently stored by the client's browser in what is
called a cookie, which is a small piece of data containing client-specific informa-
tion that is of interest to the server. Cookies are never executed by a browser; they
are merely stored.

The first time a client accesses a server, the latter sends a cookie along with
the requested Web pages back to the browser, after which the browser safely
tucks the cookie away. Each subsequent time the client accesses the server, its
cookie for that server is sent along with the request. Although in principle, this ap-
proach works fine, the fact that cookies are sent back for safekeeping by the
browser is often hidden entirely from users. So much for privacy. Unlike most of
grandma's cookies, these cookies should stay where they are baked.

3.4.2 Server Clusters

In Chap. 1 we briefly discussed cluster computing as one of the many appear-
ances of distributed systems. We now take a closer look at the organization of
server clusters, along with the salient design issues.
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General Organization

Simply put, a server cluster is nothing else but a collection of machines con-
nected through a network, where each machine runs one or more servers. The
server glusters that we consider here, are the ones in which the machines are con-
nected through a local-area network, often offering high bandwidth and low
latency. _

In most cases, a server cluster is logically organized into three tiers, as shown
in Fig. 3-12. The first tier consists of a (logical) switch through which client re-
quests are routed. Such a switch can vary widely. For example, transport-layer
switches accept incoming TCP connection requests and pass requests on to one of
servers in the cluster, as we discuss below. A completely different example is a
Web server that accepts incoming HTTP requests, but that partly passes requests
to application servers for further processing only to later collect results and return

an HTTP response.

1
Logical switch ; Appiication/compute servers \ Distributed
(possibly muitiple) | : file/database
\ ! system

' :

: '

Dispatched ! !
Client requests request )
:
[}

\

\ {

[}

| :

First tier Second tier Third tier

Figure 3-12. The general organization of a three-tiened! server cluster.

As in any multitiered client-server architecture, many server clusters also con-
tain servers dedicated to application processing. In cluster computing, these are
typically servers running on high-performance hardware dedicated to delivering
compute power. However, in the case of enterprise server clusters, it may be the
case that applications need only run on relatively low-end machines, as the re-
quired compute power is not the bottleneck, but access to storage is.

This brings us the third tier, which consists of data-processing servers, notably
file and database servers. Again, depending on the usage of the server €luster,
these servers may be running an specialized machines, configured for high-speed
disk access and having large server-side data caches.

Of course, not all server clusters will follow this strict separation. It is fre-
quently the case that each machine is equipped with its own local storage, often
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integrating application and data processing in a single server leading to a two-
tiered architecture. For example, when dealing with streaming media by means of
a server gluster, it is common to deploy a two-tiered system architecture, where
each machine acts as a dedicated media server (Steinmetz and Nahrstedt, 2004).

When a server gluster offers multiple services, it may happen that different
machines run different application servers. As a consequence, the switch will
have to be able to distinguish services or otherwise it cannot forward requests to
the proper machines. As it turns out, many second-tier machines run only a single
application. This limitation comes from dependencies on available software and
hardware, but also that different applications are often managed by different ad-
ministrators. The latter do not like to interfere with each other's machines.

As a consequence, we may find that certain machines are temporarily idle,
while others are receiving an overload of requests. What would be useful is to
temporgrily migrate services to idle machines. A solution proposed in Awadallah
and Rosenblum (2004), is to use virtual machines allowing a relative easy migra-
tion of code to real machines. We will return to code migration later in this
chapter.

Let us take a ¢loser look at the first tier, consisting of the switch. An impor-
tant design goal for server ¢lusters is to hide the fact that there are multiple ser-
vers. In other words, ¢lient applications running on remote machines should have
no need to knpow anything about the internal organization of the eluster. This ac-
cess transparency is invariably offered by means of a single access point, in turn
implemented through some kind of hardware switch such as a dedicated machine.

The switch forms the entry point for the server cluster, offering a single net-
work address. For scalability and availability, a server ¢luster may have multiple
access points, where each access point is then realized by a separate dedieated
machine. We consider only the case of a single access point:

A standard way of accessing a server cluster is to set up a TCP connection
over which application-level requests are then sent as part of a session. A session
ends by tearing down the connection. In the case of transport-layer switches, the
switch accepts incoming TCP connection requests, and hands off such connec-
tions to one of the servers (Hunt et al, 1997; and Pai et al., 1998). The prineiple
working of what is commonly known as TCP handoff is shown in Fig. 3-13.

When the switch receives a TCP connection request, it subsequently identifies
the best server for handling that request, and forwards the request packet to that
server. The server, in turn, will send an acknowledgment back to the requesting
client, but inserting the switch's IP address as the source field of the header of the
IP packet carrying the TCP segment. Note that this spoofing is necessary for the
client to continue executing the TCP protocol: it is expecting an answer back from
the switch, not from some arbitrary server it is has never heard of before. Clearly,
a TCP-handoff implementation requires operating-system level modifications.

It can already be seen that the switch can play an important role in distributing
the load among the various servers. By deciding where to forward a request to, the
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Figure 3-13. The principle ofTCP handoff.

switch also degides which server is to handle further processing of the request:
The simplest load-balancing policy that the switch can follow is round robin: each
time it picks the next server from its list to forward a request to. -

More advanced server selection criteria can be deployed as well. For example,
assume multiple serviges are offered by the server cluster. If the switch can distin-
guish those services when a request comes in, it can then take informed deeisions
on where to forward the request to. This server selection can still take place at the
transport level, provided services are distinguished by means of a port number.
One step further is to have the switch actually inspect the payload of the incoming
request, This method can be applied only if it is known what that payload can look
like. For example, in the case of Web servers, the switch can eventually expect an
HTTP request, based on which it can then decide who is to process it: We will re-
turn to such content-aware request distribution when we discuss Web-based

systems in Chap. 12.

Distributed Servers

The server glusters discussed so far are generally rather statically configured.
In these clusters, there is often an separate administration machine that keeps
track of available servers, and passes this information to other machines as
appropriate, such as the switch.

As we mentioned, most server clusters offer a single access point: When that
point fails, the cluster becomes unavailable. To eliminate this potential problem,
several access points can be provided, of which the addresses are made publiely
avgilable. For example, the Domain Name System (DNS) can return several ad-
dresses, all belonging to the same host name. This approach still requires elients
to make several attempts if one of the addresses fails. Moreover, this does not
solve the problem of requiring static access points.
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Having stability, like a long-living access point, is a desirable feature from a
client's and a server's perspective. On the other hand, it also desirable to have a
high degree of flexibility in configuring a server cluster, including the switch.
This observation has lead to a design of a distributed server which effectively is
nothing but a possibly dynamically changing set of machines, with also possibly
varying access points, but which nevertheless-appears to the outside world as a
single. powerful machine. The design of such a distributed server is given in Szy-
maniak et al, (2005). We describe it briefly here.

The basic idea behind a distributed server is that clients benefit from a robust,
high-performing, stable server. These properties can often be provided by high-
end mainframes, of which some have an acclaimed mean time between failure of
more than 40 years. However, by grouping simpler machines transparently into a
cluster, and not relying on the availability of a single machine, it may be possible
to achieve a better degree of stability than by each component individually. For
example, such a cluster could be dynamically configured from end-user machines,
as in the case of a collaborative distributed system.

Let us concentrate on how a stable access point can be achieved in such a sys-
tem. The main idea is to make use of available networking services, notably
mobility support for IP version 6 (MIPv6). In MIPv6, a mobile node is assumed to
have a home network where it normally resides and for which it has an assoeci-
ated stable address, known as its home address (HoA). This home network has a
special router attached, known as the home agent, which will take care of traffic
to the mobile node when it is away. To this end, when a mobile node attaches to a
foreign network, it will receive a temporary care-of address (CoA) where it can
be reached. This care-of address is reported to the node's home agent who will
then see to it that all traffic is forwarded to the mobile node. Note that applica-
tions communicating with the mobile node will only see the address associated
with the node's home network. They will never see the care-of address.

This principle can be used to offer a stable address of a distributed server. In
this case, a single unique contact address is initially assigned to the server clus-
ter. The contact address will be the server's life-time address to be used in all
communication with the outside world. At any time, one node in the distributed
server will operate as an access point using that contact address, but this role can
easily be taken over by another node. What happens is that the access point
records its own address as the care-of address at the home agent associated with
the distributed server. At that point, all traffic will be directed to the access point,
who will then take care in distributing requests among the currently participating
nodes. If the access point fails, a simple fail-over mechanism comes into place by
which another access point reports a new care-of address.

This simple configuration would make the home agent as well as the access
point a potential bottleneck as all traffic would flow through these two machines.
This situation can be avoided by using an MIPv6 feature known as route optimize-
tion. Route optimization works as follows. Whenever a mobile node with home

—
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address HA reports its current care-of address, say CA, the horne agent can for-
ward CA to a client, The latter will then locally store the pair (HA, CAY- From
that moment on, communication will be directly forwarded to CA. Although the
application at the client side can still use the horne address, the underlying suppost
software for MIPv6 will translate that address to CA and use that instead.
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Figure 3-14. Route optimization in a distributed server.

" Route optimization can be used to make different clients believe they are
communicating with a single server, where, in fact, each ¢lient is communicating
with a different member node of the distributed server, as shown in Fig. 3-14. To
this end, when an access point of a distributed server forwards a request from eli-
ent C1 to, say node S1 (with address CA 1)' it passes enough information to S1 to
let it initiate the route optimization procedure by which eventually the elient is
made to believe that the care-of address is CA - This will allow C1 to store the
pair (HA, CA1)'" During this procedure, the access point (as well as the horne.
agent) tunnel most of the traffic between C1 and St- This will prevent the horne
agent from believing that the care-of address has changed, so that it will continue
to communicate with the access point.

Of course, while this route optimization procedure is taking place, requests
from other glients may still corne in. These remain in a pending state at the access
point until they can be forwarded. The request from another ¢lient C2 may then be
forwarded to member node S2 (with address C4 2), allowing the latter to let elient
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C, store the pair (HA, CA,. As a result, different clients will be directly com-
municating with different members of the distributed server, where each client ap-
plication still has the illusion that this server has address HA. The home agent
continues to communicate with the access point talking to the contact address.

3.4.3 Managing Server Clusters

A server cluster should appear to the outside world as a single computer, as is
indeed often the case. However, when it comes to managing a cluster, the situa-
tion changes dramatically. Several attempts have been made to ease the manage-
ment of server clusters as we discuss next.

Common Approaches

By far the most common approach to managing a server cluster is to extend
the traditional managing functions of a single computer to that of a cluster, In its
most primitive form, this means that an administrator can log into a node from a
remote client and execute local managing commands to monitor, install, and
change components.

Somewhat more advanced is to hide the fact that you need to login into a node
and instead provide an interface at an administration machine that allows to col-
lect information from one or more servers, upgrade components, add and remove
nodes, etc. The main advantage of the latter approach is that collective operations,
which operate on a group of servers, can be more easily provided. This type of
managing server clusters is widely applied in practice, exemplified by manage-
ment software such as Cluster Systems Management from IBM (Hochstetler and
Beringer, 2004). ‘

However, as soon as clusters grow beyond several tens of nodes, this type of
management is not the way to go. Many data centers need to manage thousands of
servers, organized into many clusters but all operating collaboratively. Doing this
by means of centralized administration servers is simply out of the question.
Moreover, it can be easily seen that very large clusters need continuous repair
management (ingcluding upgrades). To simplify matters, if p is the probability that
a server is currently faulty, and we assume that faults are independent, then for a
¢luster of N servers to operate without a single server being faulty is (/_p)N. With
p=D.00/ and N=1000, there is only a 36 percent chance that all the servers are
correctly functioning.

As it turns out, support for very large server clusters is almost always ad hoc.
There are various rules of thumb that should be considered (Brewer, 2001), but
there is no systematic approach to dealing with massive systems management.
Cluster management is still very much in its infancy, although it can be expected
that the self-managing solutions as discussed in the previous chapter will eventu-
ally find their way in this area, after more experience with them has been gained.
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Example: PlanetLab

Let us now tgke a closer look at a somewhat unusual cluster server. PlanetLab
is a collaborative distributed system in which different orgamizations each donate
one or more computers, adding up to a total of hundredss of nodes. Together, these
computers form a I-tier server cluster, where access, processing, and storage can
all tgke place on each node individually. Management of PlanetLab is by neces-
sity almost entirely distributed. Before we explain its basic prineiples, let us first
describe the main architectural features (Peterson et al., 2005).

In PlanetLab, an organization donates one or more nodes, where each node is
easiest thought of as just a single computer, although it could elso be itself a elus-
ter of machines. Each node is organized as shown in Fig. 3-15. There are two im-
portant components (Bavier et al., 2004). The first one is the virtwad machine
monitor (VMM), which is an ephanced Linux operating system. The erhance-
ments mainly comprise adjustments for supporting the second component, namely
vservers. A (Linux) vserver can. best be thought of as a separate envieonment in
which a group of processes run. Processes from different vservers are completely
independent. | They cannot ditectly share any resources such as files, me&in memo-
ry, and network connections as is normally the case with processes running on top
of an operating systems. Instead, a vserver provides an enviionment consisting of
its own collection of software packages, programs, and networking facilities. For
example, a vserver may provide an enviionment in which a process will notice
that it can mgke use of Python 1.5.2 in combination with an older Apache Web
server, say httpd 1,3.1. In contrast, another vserver may support- the latest ver-
sions of Python and h#tpd. In this sense, calling a vserver a "server" is a bit of a
misnomer as it really only isolates groups of processes from each other. We return

to vservers briefly below.
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Figure 3-15. The basic organization of a PlanetLab nede.

The Linux VMM ensures that vservers are separated: processes in different
vservers are executed concurrently and independently, each making use only of
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the software packages and programs available in their own environment.. The iso-
lation between processes in different vservers is strict. For example, two proc-
esses in different vservers may have the same user ill, but this does not imply that
they stem from the same user. This separation considerably eases supporting users
from different organizations that want to use PlanetLab as, for example, a testbed
to experiment with completely different distributed systems and applications.

To support such experimentations, PlanetLab introduces the notion of a slice,
which is a set of vservers, each vserver running on a different node. A slice can
thus be thought of as a virtual server cluster, implemented by means of a collec-
tion of virtual machines. The virtual machines in PlanetLab run on top of the
Linux operating system, which has been extended with a number of kernel mod-
ules _

There are several issues that make management of PlanetLab a special prob-
lem. Three salient ones are:

1. Nodes belong to different organizations. Each organization should be
allowed to specify who is allowed to run applications on their nodes,
and restrict resource usage appropriately.

2. There are various monitoring tools available, but they all assume a
very specific combination of hardware and software. Moreover, they
are all tailored to be used within a single organization.

3. Programs from different slices but running on the same node should
not interfere with each other. This problem is similar to process
independence in operating systems.

Let us take a look at each of these issues in more detail.

Central to managing PlanetLab resources is the node manager. FEach node
has such a manager, implemented by means of a separate vserver, whose only task
is to create other vservers on the node it manages and to control resource alloca-
tion. The node manager does not make any policy decisions; it is merely a mech-
anism to provide the essential ingredients to get a program running on a given
node.

Keeping track of resources is done by means of a resource specification, or
rspee for short. An rspee specifies a time interval during which certain resources
have been allocated. Resources include disk space, file descriptors, inbound and
outbound network bandwidth, transport-level end points, main memory, and CPU
usage. An rspee is identified through a globally unique 128-bitidentifier known as
a resource capability (reap). Given an reap, the node manager can look up the as-
sociated rspee in a local table.

Resources are bound to slices. In other words, in order to make use of re-
sources, it is necessary to create a slice. Each slice is associated with a service
provider, which can best be seen as an entity having an account on PlanetLab.
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Every slice can then be identified by a iprincipal.sid, , sliceuag) pair, where the
principal.iid identifies the provider and slice.stag is an identifier chosen by the
provider.

To create a new slice, each node will run a slice creation service (SCS),
which, in tum, can contact the node manager requesting it to create a vserver and
to allocate resources. The node manager itself cannot be contacted directly over a
network, allowing it to concentrate only on local resource management. In tum,
the SCS will not accept slice-creation requests from just anybody. Only speeific
slice authorities are eligible for requesting the creation of a slice. Each slice
authority will have access rights to a collection of nodes. The simplest model is
that there is only a single slice authority that is allowed to request .slice creation
on all nodes. '

To complete the picture, a service provider will contact a slice authority and
request it to create a slice across a collection of nodes. The service provider will
be kpnown to the slice authority, for example, because it has been previously
authenticated and subsequently registered as a PlanetLab user. In practice, Planet-
Lab users contact a slice authority by means of a Web-based serviee. Further
details can be found in Chun and Spalink (2003).

What this procedure reveals is that managing PlanetLab is done through inter-
medigries. One important class of such intermediaries is formed by slice authori-
ties. Such authorities have obtained credentials at nodes to create slides. Obtain-
ing these credentials has been achieved out-of-band, essentially by contacting sys-
tefn administrators at various sites. Obviously, this is a time-consuming process
which not be carried out by end users (or, in PlanetLab terminology; service pro-
viders).

Besides slice authorities, there are also management authorities. Where a slice
authority concentrates only on managing slices, a management authority is re-
sponsible for keeping an eye on nodes. In particular, it ensures that the nodes
under its regime run the basic PlanetLab software and abide to the rules set out by
PlanetlLab. Service providers trust that a management authority provides nodes
thatwill behave properly.

Management
authority

Node owner Service provider

Slice authority

Figure 3-16. The management relationships between various PlanetLab entities.



102 PROCESSES CHAP. 3

This organization leads to the management structure shown in Fig. 3-16.
described in terms of trust relationships in Peterson et at (2005). The relations
are as follows:

1. A node owner puts its node under the regime of a management
authority, possibly restricting usage where appropriate.

2. A management authority provides the necessary software to add a
node to PlanetLab.

3. A service provider registers itself with a management authority.
trusting it to provide well-behaving nodes.

4. A service provider contacts a slice authority to create a slice on a
collection of nodes.

5. The slice authority needs to authenticate the service provider.

6. A node owner provides a slice creation service for a slice authority to
create slices. It essentially delegates resource management to the
slice authority.

7. A management authority delegates the creation of slices to a slice
authority.

These relationships cover the problem of delegating nodes in a controlled way
such that a node owner can rely on a decent and secure management. The second
issue that needs to be handled is monitoring. What is needed is a unified approach
to allow users to see how well their programs are behaving within a specific slice.

PlanetLab follows a simple approach. Every node is equipped with a collec-
tion of sensors, each sensor being capable of reporting information such as CPU
usage, disk activity, and so on. Sensors can be arbitrarily complex, but the impor-
tant issue is that,they always report information on a per-node basis. This informa-
tion is made available by means of a Web server: every sensor is accessible
through simple HTTP requests (Bavier et at, 2004).

Admittedly, this approach to monitoring is still rather primitive, but it should
be seen as a basis for advanced 'monitoring schemes. For example, there is, in
principle, no reason why Astrolabe, which we discussed in Chap. 2, cannot be
used for aggregated sensor readings across multiple nodes.

Finally, to come to our third management issue, namely the protection of pro-
grams against each other, PlanetLab uses Linux virtual servers (called vservers) to
isolate slices. As mentioned, the main idea of a vserver is to run applications in
there own environment, which includes all files that are normally shared across a
single machine. Such a separation can be achieved relatively easy by means of the
UNIX chroot command, which effectively changes the root of the file system from
where applications will look for files. Only the superuser can execute chroot.
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Of course, more is needed. Linux virtual servers not only separate the file sys-
tem, but also normally shared information on processes, network addresses, mem-
ory usage, and so oi1. As a consequence, a physical machine is actually partitioned
into multiple units, each unit corresponding to a full-fledged Linux environment,
isolated from the other parts. An overview of Linux virtual servers can be found

in Potzl et al. (2005).

3.5 CODE MIGRATION

So far, we have been mainly concerned with distributed systems in which
communigcation is limited to passing data. However, there are situations in which
passing programs, sometimes even while they are being executed, simplifies the
design of a distributed system. In this section, we take a detailed look at what
code migration actually is. We start by considering different approaches to code
migration, followed by a discussion on how to deal with the local resources that a
migrating program uses. A particularly hard problem is migrating code in hetero-
geneous systems, which is also discussed.

3.5.1 Approaches to Code Migration

Before taking a look at the different forms of code migration, let us first con-
sider why it may be useful to migrate code.

Reasons for Migrating Code

Traditionally, code migration in distributed systems took place in the form of
process migration in which an entire process was moved from one machine to
another (Milojicic et al., 2000). Moving a running process to a different machine
is a costly and intricate task, and there had better be a good reason for doing so.
That reason has always been performance. The basic idea is that overall system
performance can be improved if processes are moved from heavily-loaded to
lightly-loaded machines. Load is often expressed in terms of the CPU queue
length or CPU utilization, but other performance indicators are used as well.

Load distribution algorithms by which decisions are made concerning the al-
location and redistribution of tasks with respect to a set of processors, play an im-
portant role in compute-intensive systems. However, in many modem distributed
systems, optimizing computing capacity is less an issue than, for example, trying
to minimize communication. Moreover, due to the heterogeneity of the underlying
platforms and computer networks, performance improvement through code migra-
tion is often based on qualitative reasoning instead of mathematical models.

Consider, as an example, a client-server system in which the server manages a
huge database. If a ¢client application needs to perform many database operations
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involving large quantities of data, it may be better to ship part of the ¢lient appli-
cation to the server and send only the results across the network. Otherwise, the
network may be swamped with the transfer of data from the server to the elient. In
this case, code migration is based on the assumption that it generally makes sense
to process data close to where those data reside. |

This same reason can be used for migrating parts of the server to the elient.
For example, in many interactive database applications, clients need to fill in forms
that are subsequently translated into a series of database operations. Processing
the form at the client side, and sending only the completed form to the server, can
sometimes avoid that a relatively large number of small messages need to cross
the network. The result is that the client perceives better performance, while at the
same time the server spends less time on form processing and communication.

Support for code migration can also help improve performance by exploiting
parallelism, but without the usual intricacies related to parallel programming. A
typical example is searching for information in the Web. It is relatively simple to
implement a search query in the form of a small mobile program, called a mobile
agent, that moves from site to site. By making several copies of such a program,
and sending each off to different sites, we may be able to achieve a linear speed-
up compared to using just a single program instance.

Besides improving performance, there are other reasons for supporting code
migration as well. The most important one is that of flexibility. The traditional ap-
proach to building distributed applications is to partition the application into dif-
ferent parts, and decide in advance where each part should be executed. This ap-
proach, for example, has led to the different multitiered client-server applications
discussed in Chap. 2.

However, if code can move between different machines, it becomes possible
to dynamically configure distributed systems. For example, suppose a server
implements a standardized interface to a file system. To allow remote clients to
access the file system, the server makes use of a proprietary protocol. Normally,
the client-side implementation of the file system intexface, which is based on that
protocol, would need to be linked with the client application. This approach re-
quires that the software be readily available to the client at the time the ¢lient ap-
plication is being developed.

An alternative is to let the server provide the client's implementation no
sooner than is strictly necessary, that is, when the client binds to the server. At
that point, the client dynamically downloads the implementation, goes through the
necessary initialization steps, and subsequently invokes the server. This principle
is shown in Fig. 3-17. This model of dynamically moving code from a remote site
does require that the protocol for downloading and initializing code is stan-
dardized. Also, it is necessary that the downloaded code can be executed on the
client's machine. Different solutions are discussed below and in later chapters.

The important advantage of this model of dynamically downloading elient-
side software is that clients need not have all the software preinstalled to talk to
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Figure 3-17. The principle of dynamically comfiguring a client to communicate
to a server. The client first fetches the necessary software, and then invokes the
server.

servers. Instead, the software can be moved in as necessary, and likewise, dis-
carded when no longer needed. Another advantage is that as long as interfaces are
standardized, we can change the client-server protocol and its implementation as
often as we like. Changes will not affect existing client applications that rely on
the server. There are, of course, also disadvantages. The most serious one, which
we discuss in Chap. 9, has to do with security. Blindly trusting that the down-
loaded code implements only the advertised interface while accessing your unpro-
tected hard disk and does not send the juiciest parts to heaven-knows-who may
not always be such a good idea.

Models for Code Migration

Although code migration suggests that we move only code between machines,
the term actually covers a much richer area. Traditionally, communication in dis-
tributed systems is concerned with exchanging data between processes. Code
migration in the broadest sense deals with moving programs between machines,
with the intention to have those programs be executed at the target. In some cases,
as in process migration, the execution status of a program, pending signals, and
other parts of the environment must be moved as well.

To get a better understanding of the different models for code migration, we
use a framework described in Fuggetta et al. (1998). In this framework, a process
consists of three segments. The code segment is the part that contains the set of in-
structions that make up the program that is being executed. The resource segment
contains references to external resources needed. by the process, such as files,
printers, devices, other processes, and so on. Finally, an execution segment 1is used
to store the current execution state of a process, consisting of private data, the
stack, and, of course, the program counter.
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The bare minimum for code migration is to provide only weak mobility. In
this model, it is possible to transfer only the code segment, along with perhaps
some initialization data. A characteristic feature of weak mobility is that a trans-
ferred program is always started from one of several predefined starting positions.
This is what happens, for example, with Java applets, which always start execu-
tion from the beginning. The benefit of this approach is its simplicity. Weak
mobility requires only that the target machine can execute that code, which essen:
tially boils down to making the code portable. We return to these matters when
discussing migration in heterogeneous systems.

In contrast to weak mobility, in systems that support strong mobility the ex-
ecution segment can be transferred as well. The characteristic feature of strong
mobility is that a running process can be stopped, subsequently moved to another
machine, and then resume execution where it left off. Clearly, strong mobility is
much more general than weak mobility, but also much harder to implement.

Irrespective of whether mobility is weak or strong, a further distinction can be
made between sender-initiated and receiver-initiated migration. In sender-
initiated migration, migration is initiated at the machine where the code currently
resides or is being executed. Typically, sender-initiated migration is done when
uploading programs to a compute server. Another example is sending a search
program across the Internet to a Web database server to perform the queries at
that server. In receiver-initiated migration, the initiative for code migration is
taken by the target machine. Java applets are an example of this approach.

Receiver-initiated migration is simpler than sender-initiated migration. In
many cases, code migration occurs between a client and a server, where the elient
takes the initiative for migration. Securely uploading code to a server, as is done
in sender-initiated migration, often requires that the client has previously been
registered and authenticated at that server. In other words, the server is required to
know all its ¢lients, the reason being is that the client will presumably want access
to the server's resources such as its disk. Protecting such resources is essential. In
contrast, downloading code as in the receiver-initiated case, can often be done
anonymously. Moreover, the server is generally not interested in the elient's re-
sources. Instead, code migration to the client is done only for improving elient-
side performance. To that end, only a limited number of resources need to be pro-
tected, such as memory and network connections. We return to secure code
migration extensively in Chap. 9.

In the case of wegk mobility, it also makes a difference if the migrated code is
executed by the target process, or whether a separate process is started. For ex-
ample, Java applets are simply downloaded by a Web browser and are executed in
the browser's address space. The benefit of this approach is that there is no need
to start a separate process, thereby avoiding communication at the target machine.
The main drawback is that the target process needs to be protected against mali-
cious or inadvertent code executions. A simple solution is to let the operating sys-
tem tgke care of that by creating a separate process to execute the migrated code.
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Note that this solution does not solve the resource-access problems mentioned
above. They still have to be dealt with.

Instead of moving a running process, also referred to as process migration,
strong mobility can also be supported by remote cloning. In contrast to process
migration, cloning yields an exact copy of the original process, but now running
on a different machine. The cloned process is executed in parallel to the original
process. In UNIX systems, remote cloning takes place by forking off a child proc-
ess and letting that child continue on a remote machine. The benefit of cloning is
that the model closely resembles the one that is already used in many applications.
The only difference is that the cloned process is executed on a different machine.
In this sense, migration by cloning is a simple way to improve distribution tran-
sparency. '

The various alternatives for code migration are summarized in Fig. 3-18.
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Figure 3-18. Alternatives for code migration.

3.5.2 Migration and Local Resources

So far, only the migration of the code and execution segment has been taken
into account. The resource segment requires some special attention. What often
makes code migration so difficult is that the resource segment cannot always be
simply transferred along with the other segments without being changed. For ex-
ample, suppose a process holds a reference to a specific TCP port through which
it was communicating with other (remote) processes. Such a reference is held in
its resource segment. When the process moves to another location, it will have to
give up the port and request a new one at the destination. In other cases, trans-
ferring a reference need not be a problem. For example, a reference to a file by
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means of an absolute URL will remain valid irrespective of the machine where
the process that holds the URL resides.

To understand the implications that code migration has on the resource seg-
ment, Fuggetta et al, (1998) distinguish three types of process-to-resource bind-
ings. The strongest binding is when a process refers to a resource by its identifier.
In that case, the process requires precisely the referenced resource, and nothing
else. An example of such a binding by identifier is when a process uses a VRL
to refer to a specific Web site or when it refers to an FrP server by means of that
server's Internet address. In the same line of reasoning, references to local com-
munication end points also lead to a binding by identifier.

A wegker form of process-to-resource binding is when only the value of a re-
source is needed. In that case, the execution of the process would not be affected
if another resource would provide that same value. A typical example of binding
by value is when a program relies on standard libraries, such as those for pro-
gramming in C or Java. Such libraries should always be locally available, but their
exact location in the local file system may differ between sites. Not the specific
files, but their content is important for the proper execution of the process.

Finglly, the weakest form of binding is when a process indicates it needs only
a resource of a spegific type. This binding by type is exemplified by references to
local devices, such as monitors, printers, and so on.

When migrating code, we often need to change the references to resources,
but cannot affect the kind of process-to-resource binding. If, and exactly how a
reference should be changed, depends on whether that resource can be moved
along with the code to the target machine. More specifically, we need to consider
the resource-to-machine bindings, and distinguish the following cases. Unat-
tached resources can be easily moved between different machines, and are typi-
cally (data) files associated only with the program that is to be migrated. In con-
trast, moving or copying a fastened resource may be possible, but only at rela-
tively high costs. Typical examples of fastened resources are local databases and
complete Web sites. Although such resources are, in theory, not dependent on
their current machine, it is often infeasible to move them to another environment.
Finally, fixed resources are intimately bound to a specific machine or environ-
ment and cannot be moved. Fixed resources are often local devices. Another ex-
ample of a fixed resource is a local communication end point.

Combining three types of process-to-resource bindings, and thxee types of re-
source-to-machine bindings, leads to nine combinations that we need to consider
when migrating code. These nine combinations are shown in Fig. 3-19.

Let us first consider the possibilities when a process is bound to a resource by
identifier. When the resource is unattached, it is generally best to move it along
with the migrating code. However, when the resource is shared by other proc-
esses, an glternative is to establish a global reference, that is, a reference that can
cross machine boundaries. An example of such a reference is a URL. When the
resource is fastened or fixed, the best solution is also to create a global reference.
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Resource-to-machine binding
Unattached Fastened Fixed
Process- | By identifier MV (or GR) GR (or MV) GR
to-resource | By value CP (or MV,GR) GR (or CP) GR
binding | By type RB (or MV,CP) | RB (or GR,CP) | RB (or GR)
GR  Establish a global systemwide reference

MV Move the resource
CP  Copy the value of the resource
RB  Rebind process to locally-available resource

Figure 3-19. Actions to be taken with respect to the references “to lo-
cal resources when migrating code to another machine.

It is important to realize that establishing a global reference may be more than
just making use of URLs, and that the use of such a reference is sometimes prohi-
bitively expensive. Consider, for example, a program that generates high-quality
images for a dedicated multimedia workstation. Fabricating high-quality images
in real time is a compute-intensive task, for which reason the program may be
moved to a high-performance compute server. Establishing a global reference to
the multimedia workstation means setting up a communication path between the
compute server and the workstation. In addition, there is significant processing
involved at both the server and the workstation to meet the bandwidth require-
ments of transferring the images. The net result may be that moving the program
to the compute server is not such a good idea, only because the cost of the global
reference is too high.

Another example of where establishing a global reference is not always that
easy is when migrating a process that is making use of a local communication end
point, In that case, we are dealing with a fixed resource to which the process is
bound by the identifier. There are basically two solutions. One solution is to let
the process set up a connection to the source machine after it has migrated and
install a separate process at the source machine that simply forwards all incoming
messages. The main drawback of this approach is that whenever the source ma-
chine malfunctions, communication with the migrated process may fail. The alter-
native solution is to have all processes that communicated with the migrating
process, change their global reference, and send messages to the new communica-
tion end point at the target machine.

The situation is different when dealing with bindings by value. Consider first
a fixed resource. The combination of a fixed resource and binding by value
occurs, for example, when a process assumes that memory can be shared between
processes. Establishing a global reference in this case would mean that we need to
implement a distributed form of shared memory. In many cases, this is not really a
viable or efficient solution.
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Fastened resources that are referred to by their value, are typically runtime
libraries. Normally, copies of such resources are readily available on the target
machine, or should otherwise be copied before code migration takes place. Estab-
lishing a global reference is a better alternative when huge amounts of data are to
be copied, as may be the case with dictionaries and thesauruses in text processing
systems.

The easiest case is when dealing with unattached resources. The best solution
is to copy (or move) the resource to the new destination, unless it is shared by a
number of processes. In the latter case, establishing a global reference is the only
option.

The last case deals with bindings by type. Irrespective of the resource-to-ma-
chine binding. the obvious solution is to rebind the process to a locally available
resource of the same type. Only when such a resource is not available, will we
need to copy or move the original one to the new destination, or establish a global
reference.

3.5.3 Migration in Heterogeneous Systems

So far, we have tacitly assumed that the migrated code can be easily executed
at the target machine. This assumption is in order when dealing with homogene-
ous systems. In general, however, distributed systems are constructed on a hetero-
geneous collection of platforms, each having their own operating system and ma-
chine architecture. Migration in such systems requires that each platform is sup-
ported, that is, that the code segment can be executed on each platform. Also, we
need to ensure that the execution segment can be properly represented at each
platform. .

The problems coming from heterogeneity are in many respects the same as
those of portability. Not surprisingly, solutions are also very similar. For example,
at the end of the 1970s, a simple solution to alleviate many of the problems of
porting Pascal to different machines was to generate machine-independent inter-
mediate code for an abstract virtual machine (Barron, 1981). That machine, of
course, would need to be implemented on many platforms, but it would then allow
Pascal programs to be run anywhere. Although this simple idea was widely used
for some years, it never really caught on as the general solution to portability
problems for other languages, notably C.

About 25 years later, code migration in heterogeneous systems is being
attacked by scripting languages and highly portable languages such as Java. In
essence, these solutions adopt the same approach as was done for porting Pascal:
All such solutions have in common that they rely on a (process) virtual machine
that either directly interprets source code (as in the case of scripting languages), or
otherwise interprets intermediate code generated by a compiler (as in Java). Being
in the right place at the right time is also important for language developers.

—



SEC. 3.5 CODE MIGRATION 111

Recent developments have started to weaken the dependency on programming
languages. In particular, solutions have been proposed not only to migrate proc-
esses, but to migrate entire computing environments. The basic idea is to compart-
mentalize the overall environment and to provide processes in the same part their
own view on their computing environment.

If the compartmentalization is done properly, it becomes possible to decouple
a part from the underlying system and actually migrate it to another machine. In
this way, migration would actually provide a form of strong mobility for proc-
esses, as they can then be moved at any point during their execution, and continue
where they left off when migration completes. Moreover, many of the intricacies
related to migrating processes while they have bindings to local resources may be
solved, as these bindings are in many cases simply preserved. The local resources,
namely, are often part of the environment that is being migrated.

There are several reasons for wanting to migrate entire environments, but
perhaps the most important one is that it allows continuation of operation while a
machine needs to be shutdown. For example, in a server cluster, the systems
administrator may decide to shut down or replace a machine, but will not have to
stop all its running processes. Instead, it can temporarily freeze an environment,
move it to another machine (where it sits next to other, existing environments),
and simply unfreeze it again. Clearly, this is an extremely powerful way to man-
age long-running compute environments and their processes.

Let us consider one specific example of migrating virtual machines, as dis-
cussed in Clark et al. (2005). In this case, the authors concentrated on real-time
migration of a virtualized operating system, typically something that would be
convenient in a cluster of servers where a tight coupling is achieved through a sin-
gle, shared local-area network. Under these circumstances, migration involves
two major problems: migrating the entire memory image and migrating bindings
to local resources.

As to the first problem, there are, in principle, three ways to handle migration
(which can be combined):

1. Pushing memory pages to the new machine and resending the ones
that are later modified during the migration process.

2. Stopping the current virtual machine; migrate memory, and start the
new virtual machine.

3. Letting the new virtual machine pull in new pages as needed, that is,
let processes start on the new virtual machine immediately and copy
memory pages on demand.

The second option may lead to unacceptable downtime if the migrating virtual
machine is running a live service, that is, one that offers continuous service. On
the other hand, a pure on-demand approach as represented by the third option may
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extensively prolong the migration period, but may also lead to poor performance
because it takes a long time before the working set of the migrated processes has
been moved to the new machine.

As an alternative, Clark et al. (2005) propose to use a pre-copy approach
which combines the first option, along with a brief stop-and-copy phase as repres-
ented by the second option. As it turns out, this combination can lead to service
downtimes of 200 ms or less.

Concerning local resources, matters are simplified when dealing only with a
cluster server, First, because there is a single network, the only thing that needs to
be done is to announce the new network-to-MAC address binding, so that elients
can contact the migrated processes at the correct network intexface. Finally, if it
can be assumed that storage is provided as a separate tier (like we showed in
Fig. 3-12), then migrating binding to files is similarly simple.

The overall effect is that, instead of migrating processes, we now actually see
that an entire operating system can be moved between machines.

3.6 SUMMARY

Processes play a fundamental role in distributed systems as they form a basis
for commupication between different machines. An important issue is how proc-
esses are internglly organized and, in particular, whether or not they support mul-
tiple threads of control, Threads in distributed systems are particularly useful to
continue using the CPU when a blocking I/O operation is performed. In this way,
it becomes possible to build highly-efficient servers that run multiple threads in
parallel, of which several may be blocking to wait until disk I/O or network com-
munication completes.

Organizing a distributed application in terms of ¢clients and servers has proven
to be useful, Client processes generally implement user interfaces, whieh may
range from very simple displays to advanced interfaces that can handle compound
documents. Client software is furthermore aimed at achieving distribution tran-
sparency by hiding details concerning the communication with servers, where
those servers are currently located, and whether or not servers are replicated. In
addition, g¢lient software is partly responsible for hiding failures and recovery
from failures.

Servers are often more intricate than clients, but are nevertheless subject to
only a relatively few design issues. For example, servers can either be iterative or
concurrent, implement one or more services, and can be stateless or stateful:
Other design issues degl with addressing services and mechanisms to interrupt a
server after a service request has been issued and is possibly elfeady being proc-
essed.

Special attention needs to be paid when organizing servers into a eluster. A
common objective is hide the internals of a cluster from the outside world. This

—r
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means that the organization of the cluster should be shielded from applications.
To this end, most clusters use a single entry point that can hand off messages to
servers in the cluster. A challenging problem is to transparently replace this single
entry point by a fully distributed solution.

An important topic for distributed systems is the migration of code between
different machines. Two important reasons to support code migration are increas-
ing performance and flexibility. When communication is expensive, we can some-
times reduce communication by shipping computations from the server to the cli-
ent, and let the client do as much local processing as possible. Flexibility is
increased if a client can dynamically download software needed to communicate
with a specific server. The downloaded software can be specifically targeted to
that server, without forcing the client to have it preinstalled.

Code migration brings along problems related to usage of local resources for
which it is required that either resources are migrated as well, new bindings to
local resources at the target machine are established, or for which systemwide net-
work references are used. Another problem is that code migration requires that we
take heterogeneity into account. Current practice indicates that the best solution to
handle heterogeneity is to use virtual machines. These can take either the form of
process virtual machines as in the case of, for example, Java, or through using vir-
tual machine monitors that effectively allow the migration of a collection of proc-
esses along with their underlying operating system.

PROBLEMS

1. In this problem you are to compare reading a file using a single-threaded file server
and a multithreaded server. It takes 15 msec to get a request for work, dispatch it, and
do the rest of the necessary processing, assuming that the data needed are in a cache in
main memory. If a disk operation is needed, as is the case one-third of the time, an ad-
ditional 75 msec is required, during which time the thread sleeps. How many re-
quests/sec can the server handle if it is single threaded? If it is multithreaded?

2. Would it make sense to limit the number of threads in a server process?

3. In the text, we described a multithreaded tile server, showing why it is better than a
single-threaded server and a finite-state machine server. Are there any circumstances
in which a single-threaded server might be better? Give an example.

4. Statically associating only a single thrxead with a lightweight process is not such a
good idea. Why not?

5. Having only a single lightweight process per procé'ss is also not such a good idea.
Why not?

6. Describe a simple scheme in which there are as many lightweight processes as there
are runnable threads.
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7.

10.

11.

12.

13.
14.

15.

16.

17.

18.

X designates a user's terminal as hosting the server, while the application is referred
to as the client.. Does this make sense?

. The X protocol suffers from ’scalability problems. How can these problems be tackled?

Proxies can support replication transparency by invoking each replica, as explained in
the text, Can (the server side of) an application be subject to a replicated calls?

Constructing a concurrent server by spawning a process has some advantages and
disadvantages compared to multithreaded servers. Mention a few.

Sketch the design of a multithreaded server that supports multiple protocols using
sockets as its transport-level intexface to the undeslying operating system.

How can we prevent an application from circumventing a window manager, and thus
being able to completely mess up a screen?

Is a server that mgaintains a TCP/IP connection to a ¢lient stateful or stateless?

Imagine a Web server that maintains a table in which elient IP addresses are mapped
to the most recently accessed Web pages. When a client connects to the server, the
server looks up the glient in its table, and if found, returns the registered page. Is this
server stateful or stateless?

Strong mobility in UNIX systems could be supported by allowing a process to fork a
child on a remote machine. Explain how this would work.-

In Fig. 3-18 it is suggested that strong mobility cannot be combined with executing
migrated code in a target process. Give a counterexample.

Consider a process P that requites access to file /' which is locally available on the
machine where P is currently running. When P moves to another machine, it still re-
quires access to F. If the file-to-machine binding is fixed, how could the systemwide
reference to F be implemented?

Describe in detgil how TCI' packets flow in the case of TCP handoff, along with the
information on source and destination addresses in the various headers.



COMMUNICATION

Interprocess communication is at the heart of all distributed systems. It makes
no sense to study distributed systems without carefully examining the ways that
processes on different machines can exchange information. Communication in
distributed systems is always based on low-level message passing as offered by
the underlying network. Expressing communication through message passing is
harder than using primitives based on shared memory, as available for nondistrib-
uted platforms. Modem distributed systems often consist of thousands or even
millions of processes scattered across a network with unreliable communication
such as the Internet. Unless the primitive communication facilities of computer
networks are replaced by something else, development of large-scale distributed
applications is extremely difficult.

In this chapter, we start by discussing the rules that communicating processes
must adhere to, known as protocols, and concentrate on structuring those proto-
cols in the form of layers. We then look at three widely-used models for commu-
nication: Remote Procedure Call (RPC), Message-Oriented Middleware (MOM),
and data streaming. We also discuss the general problem of sending data to multi-
ple receivers, called multicasting.

Our first model for communication in distributed systems is the remote proce-
dure call (RPC). An RPC aims at hiding most of the intricacies of message pass-
ing, and is ideal for client-server applications.

In many distributed applications, communication does not follow the rather
strict pattern of client-server interaction. In those cases, it turns out that thinking
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in terms of messages is more appropriate. However, the low-level communication
facilities of computer networks are in many ways not suitable due to their lack of
distribution transparency. An alternative is to use a high-level message-queuing
model, in which communication proceeds much the same as in electronic mail
systems. Message-oriented middleware (MOM) is a subject important enough to
warrant a section of its own.

With the advent of multimedia distributed systems, it became apparent that
many systems were lacking support for communication of continuous media, such
as audio and video. What is needed is the notion of a stream that can support the

continuous flow of messages, subject to various timing constraints. Streams are
discussed in a separate section.

Finally, since our understanding of setting up multicast facilities has im-
proved, novel and elegant solutions for data dissemination have emerged. We pay
separate attention to this subject in the last section of this chapter:

4.1 FUNDAMENTALS

Before we start our discussion on communication in distributed systems, we
first recapitulate some of the fundamental issues related to communieation. In the
next section we briefly discuss network communication protocols, as these form
the basis for any distributed system. After that, we take a different approach by
classifying the different types of communication that occurs in distributed sys-

tems.
4.1.1 Layered Protocols

Due to the absence of shared memory, all communication in distributed sys-
tems is based on sending and receiving (low level) messages. When process A
wants to communigate with process B, it first builds a message in its own address
space. Then.it executes a system call that causes the operating system to send the
message over the network to B. Although this basic idea sounds simple enough,
in order to prevent chaos, A and B have to agree on the meaning of the bits being
sent, If 4 sends a brilliant new novel written in French and encoded in IBM's
EBCDIC character code, and B expects the inventory of a supermarket written in
English and encoded in ASCII, communication will be less than optimal:

Many different agreements are needed. How many volts should be used to
signal a O-bit,and how many volts for a I-bit? How does the receiver know which
is the last bit of the message? How can it detect if a message has been damaged or
lost, and what should it do if it finds out? How long are numbers, strings, and
other data items, and how are they represented? In short, agreements are needed at
a variety of levels, varying from the low-level details of bit transmission to the
high-level details of how information is to be expressed.
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To make it easier to deal with the numerous levels and issues involved in
communication, the International Standards Organization (ISO) developed a refer-
ence model that clearly identifies the various levels involved, gives them standard
names, and points out which level should do which job. This model is called the
Open Systems Interconnection Reference Model (Day and Zimmerman, 1983),
usually abbreviated as ISO OSI or sometimes just the OSI model. It should be
emphasized that the protocols that were developed as part of the OSI model were
never widely used and are essentially dead now. However, the underlying model
itself has proved to be-quite useful for understanding computer networks. Al-
though we do not intend to give a full description of this model and all of its im-
plications here, a short introduction will be helpful. For more details, see Tanen-
baum (2003).

The OSI model is designed to allow open systems to communicate. An open
system is one that is prepared to communicate with any other open system by us-
ing standard rules that govern the format, contents, and meaning of the messages
sent and received. These rules are formalized in what are called protocols. To
allow a group of computers to communicate over a network, they must all agree
on the protocols to be used. A distinction is made between two general types of
protocols. With connection oriented protocols, before exchanging data the sender
and receiver first explicitly establish a connection, and possibly negotiate the pro-
tocol they will use. When they are done, they must release (terminate) the con-
nection. The telephone is a connection-oxiented communication system. With
connectionless protocols, no setup in advance is needed. The sender just transmits
the first message when it is ready. Dropping a letter in a mailbox is an example of
connectionless communication. With computers, both connection-oriented and
connectionless communication are common.

In the OSI model, communication is divided up into seven levels or layers, as
shown in Fig. 4-1. Each layer deals with one specific aspect of the communica-
tion. In this way, the problem can be divided up into manageable pieces, each of
which can be solved independent of the others. Each layer provides an interface to
the one above it. The interface consists of a set of operations that together define
the service the layer is prepared to offer its users.

When process A on machine 1 wants to communicate with process B on ma-
chine 2, it builds a message and passes the message to the application layer on its
machine. This layer might be a library procedure, for example, but it could also be
implemented in some other way (e.g., inside the operating system, on an external
network processor, etc.). The application layer software then adds a header to the
front of the message and passes the resulting message across the layer 6/7 inter-
face to the presentation layer. The presentation layer in tum adds its own header
and passes the result down to the session layer, and so on. Some layers add not
only a header to the front, but also a trailer to the end. When it hits the bottom,
the physical layer actually transmits the message (which by now might look as
shown in Fig. 4-2) by putting it onto the physical transmission medium.
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Presentation { (77777 6
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Figure 4-1. Layers, interfaces, and protocols in the OSI model.
— Data link layer header
— Network layer header
Transport layer header
Session layer header
Presentation layer header
r Application layer header
MeSsage o Data “nk
layer trailer

—e——

vf
Bits that actually appear on the network

Figure 4-2. A typical message as it appears on the network.-

When the message arrives at machine 2, it is passed upward, with each layer
stripping off and examining its own header. Finally, the message esrives at the re-
ceiver, process B, which may reply to it using the reverse path. The information in
the layer »n header is used for the layer n protocol.

As an example of why layered protocols are important, consider communica-
tion between two companies, Zippy Airlines and its caterer, Mushy Meals, Inc.
Every month, the head of passenger service at Zippy asks her secretary to contact
the sales manager's secretary at Mushy to order 100,000 boxes of rubber chieken.
Traditionally, the orders went via the post office. However, as the postal service
deteriorated, at some point the two secretaries decided to abandon it and commun-
icate bye-mail. They could do this without bothering their bosses, since their pro-
tocol deals with the physical transmission of the orders, not their contents.
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Similarly, the head of passenger service can decide to drop the rubber chicken
and go for Mushy's new special, prime rib of goat, without that decision affecting
the secretaries. The thing to notice is that we have two layers here, the bosses and
the secretaries. Each layer has its own protocol (subjects of discussion and tech-
nology) that can be changed independently of the other one. It is precisely this
independence that makes layered protocols attractive. Each one can be changed as
technology improves, without the other ones being affected.

In the OSI model, there are not two layers, but seven, as we saw in Fig. 4-1.
The collection of protocols used in a particular system is called a protocol suite
or protocol stack.. It is important to distinguish a reference model from its actual
protocols.  As we mentioned, the OSI protocols were never popular. In contrast,
protocols developed for the Internet, such as TCP and IP, are mostly used. In the
following sections, we will briefly examine each of the OSI layers in turn, starting
at the bottom. However, instead of giving examples of OSI protocols, where
appropriate, we will point out some of the Internet protocols used in each layer.

Lower-Level Protocols

We start with discussing the three lowest layers of the OSI protocol suite.
Together, these layers implement the basic functions that encompass a computer
network. ;

The physical layer is concerned with transmitting the Osand Is. How many
volts to use for 0 and 1, how many bits per second can be sent, and whether
transmission can take place in both directions simultaneously are key issues in the
physical layer. In addition, the size and shape of the network connector (plug), as
well as the number of pins and meaning of each are of concern here.

The physical layer protocol deals with standardizing the electrical, mechani-
cal, and signaling interfaces so that when one machine sends a 0 bit it is actually
received as a 0 bit and not a 1 bit. Many physical layer standards have been devel-
oped (for different media), for example, the RS-232-C standard for serial commu-
nication lines.

The physical layer just sends bits. As long as no errors occur, all is well.
However, real communication networks are subject to errors, so some mechanism
is needed to detect and correct them. This mechanism is the main task of the data
link layer. What it does is to group the bits into units, sometimes called frames,
and see that each frame is correctly received.

The data link layer does its work by putting a special bit pattern on the start
and end of each frame to mark them, as well as computing a checksum by adding
up all the bytes in the frame in a certain way. The data link layer appends the
checksum to the frame. When the frame arrives, the receiver recomputes the
checksum from the data and compares the result to the checksum following the
frame. If the two agree, the frame is considered correct and is accepted. It they
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disagree. the receiver asks the sender to retransmit it. Frames are assigned se-
quence numbers (in the header), so everyone can tell which is which.

On a LAN, there is usually no need for the sender to locate the receiver. It just
puts the message out on the network and the receiver takes it off. A wide-area net-
work, however, consists of a large number of machines, each with some number
of lines to other machines, rather like a large-scale map showing major cities and
roads connecting them. For a message to get from the sender to the receiver it
may have to make a number of hops, at each one choosing an outgoing line to use.
The question of how to choose the best path is called routing, and is essentially
the primary task of the network layer.

The problem is complicated by the fact that the shortest route is not always
the best route. What really matters is the amount of delay on a given route, which,
in tum, is related to the amount of traffic and the number of messages queued up
for transmission over the various lines. The delay can thus change over the course
of time. Some routing algorithms try to adapt to changing loads, whereas others
are content to make decisions based on long-term averages.

At present, the most widely used network protocol is the connectionless IP
(Internet Protocol), which is part of the Internet protocol suite. An IP packet
(the technical term for a message in the network layer) can be sent without any
setup. Each IP packet is routed to its destination independent of all others. No
internal path is selected and remembered.

Transport Protocols

The transport layer forms the last part of what could be called a basie network
protocol stack, in the sense that it implements all those services that are not pro-
vided at the interface of the network layer, but which are reasonably needed to
build network applications. In other words, the transport layer turns the underlying
network into something that an application developer can use.

Packets can be lost on the way from the sender to the receiver. Although some
applications can handle their own error recovery, others prefer a reliable connec-
tion. The job of the transport layer is to provide this service. The idea is that the
application layer should be able to deliver a message to the transport: layer with
the expectation that it will be delivered without loss. ‘

Upon receiving a message from the application layer, the transport layer
bregks it into pieces small enough for transmission, assigns each -one a sequence
number, and then sends them all. The discussion in the transport layer header con-
cerns whigh packets have been sent, which have been received, how many more
the receiver has room to accept, which should be retransmitted, and similar topics.

Reliable transport connections (which by definition are connection oriented)
can be built on top of connection-oriented or connectionless network services. In
the former case all the packets will arrive in the correct sequence (if they arrive at
all), but in the latter case it is possible for one packet to take a different route and



SEC, 4.1 FUNDAMENTALS 121

arrive earlier than the packet sent before it. It is up to the transport layer software
to put everything back in order to maintain the illusion that a transport connection
is like a big tube-you put messages into it and they come out undamaged and in
the same order in which they went in. Providing this end-to-end communication
behavior is an important aspect of the transport layer.

The Internet transport protocol is called TCP (Transmission Control Proto-
col) and is described in detail in Comer (2006). The combination TCPIIP is now
used as a de facto standard for network communication. The Internet protocol
suite also supports a connectionless transport protocol called UDP (Universal
Datagram Protocol), which is essentially just IP with some minor additions. User
programs that do not need a connection-oxiented protocol normally use UDP.

Additional transport protocols are regularly proposed. For example, to support
real-time data transfer, the Real-time Transport =Protocol (RTP) has been de-
fined. RTP is a framework protocol in the sense that it specifies packet formats
for real-time data without providing the actual mechanisms for guaranteeing data
delivery. In addition, it specifies a protocol for monitoring and controlling data
transfer of RTP packets (Schulzrinne et al., 2003).

Higher- Level Protocols

Above the transport layer, OSI distinguished three additional layers. In prac-
tice, only the application layer is ever used. In fact, in the Internet protocol suite,
everything above the transport layer is grouped together. In the face of middle-
ware systems, we shall see in this section that neither the OSI nor the Internet ap-
proach is really appropriate.

The session layer is essentially an enhanced version of the transport layer. It
provides dialog control, to keep track of which party is currently talking, and it
provides synchronization facilities. The latter are useful to allow users to insert
checkpoints into long transfers, so that in the event of a crash, it is necessary to go
back only to the last checkpoint, rather than all the way back to the beginning. In
practice, few applications are interested in the session layer and it is rarely sup-
ported. It is not even present in the Internet protocol suite. However, in the con-
text of developing middleware solutions, the concept of a session and its related
protocols has turned out to be quite relevant, notably when defining higher-level
communication protocols.

Unlike the lower layers, which are concerned with getting the bits from the
sender to the receiver reliably and efficiently, the presentation layer is concerned
with the meaning of the bits. Most messages do not consist of random bit strings,
but more structured information such as people's names, addresses, amounts of
money, and so on. In the presentation layer it is possible to define records contain-
ing fields like these and then have the sender notify the receiver that a message
contains a particular record in a certain format. This makes it easier for machines
with different internal representations to communicate with each other.
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The OSI application layer was originally intended to contain a collection of
standard network appligations such as those for electronic mail, file transfer, and
terminal emulation. By now, it has become the container for all applications and
protocols that in one way or the other do not fit into one of the underlying layers.
From the perspective of the OSI reference model, virtually all distributed systems
are just applications.

What is missing in this model is a clear distinction between applications, ap-
plication-spegific protocols, and general-purpose protocols. For example, the
Internet File Transfer Protocol (FTP) (Postel and Reynolds, 1985; and Horowitz
and Lunt, 1997) defines a protocol for transferring files between a elient and ser-
ver machine. The protocol should not be confused with the fip program, which is
an end-user application for transferring files and which also (not entirely by coin-
cidence) happens to implement the Internet FrP.

Another example of a typical application-specific protocol is the HyperText
Transfer Protocol (HTTP) (Fielding et al., 1999), which is designed to remotely
manage and handle the transfer of Web pages. The protocol is implemented by
applications such as Web browsers and Web servers. However, HTTP is now also
used by systems that are not intrinsically tied to the Web. For example, Java's ob-
ject-invocation mechanism uses HTTP to request the invocation of remote objects
that are protected by a firewall (Sun Microsystems, 2004b).

There are glso many general-purpose protocols that are useful to many appli-
cations, but which cannot be qualified as transport protocols. In many cases, such
protocols fall into the category of middleware protocols, which we discuss next:

Middleware Protocols

Middleware is an application that logically lives (mostly) in the application
layer, but which contgins many general-purpose protocols that warrant their own
layers, independent of other, more specific applications. A distinction can be
made between high-level communication protocols and protocols for establishing
various middleware services.

There are numerous protocols to support a variety of middleware services. For
example, as we discuss in Chap. 9, there are various ways to establish authentica-
tion, that is, provide proof of a claimed identity. Authentication protocols are not
closely tigd to any specific application, but instead, can be integrated into a mid-
dleware system as a general service. Likewise, authorization protocols by which
authenticated users and processes are granted access only to those resources for
which they have authorization. tend to have a general, application-independent
nature.

As another example, we shall consider a number of distributed commit proto-
cols in Chap. 8. Commit protocols establish that in a group of processes either all
processes carry out a particular operation, or that the operation is not carried out
at all. This phenomenon is also referred to as atomigity and is widely applied in
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transactions. As we shall see, besides transactions, other applications, like fault-
tolerant ones, can also take advantage of distributed commit protocols.

As a last example, consider a distributed locking protocol by which a resource
can be protected against simultaneous access by a collection of processes that are
distributed across multiple machines. We shall come across a number of such pro-
tocols in Chap. 6. Again, this is an example of a protocol that can be used to
implement a general middleware service, but which, at the same time, is highly
independent of any specific application.

Middleware communication protocols support high-level communication ser-
vices. For example, in the next two sections we shall discuss protocols that allow
a process to call a procedure or invoke an object on a remote machine in a highly
transparent way. Likewise, there are high-level communication services for set-
ting and synchronizing streams for transferring real-time data, such as needed for
multimedia applications. As a last example, some middleware systems offer reli-
able multicast services that scale to thousands of receivers spread across a wide-
area network.

Some of the middleware communication protocols could equally well belong
in the transport layer, but there may be specific reasons to keep them at a higher
level, For example, reliable multicasting services that guarantee scalability can be
implemented only if application requirements are taken into account. Conse-
quently, a middleware system may offer different (tunable) protocols, each in tum
iraplernented using different transport protocols, but offering a single interface.

Application | [ TTTTTmThoTTmmmmmammmmmm e 6
_______ Middleware protocol ______

Middleware 5

Transport protocol

Transport | {77700t ROT RO oo 4
... Network protocol________

Network 3
________ Data link protocol _______

Data link 2
- _.._Physical protocol________

Physical 1

Network

Figure 4-3. An adapted reference model for networked communication.

Taking this approach to layering leads to a slightly adapted reference model
for communication, as shown in Fig. 4-3. Compared to the OSI model, the ses-
sion and presentation layer have been replaced by a single middleware layer that
contains application-independent protocols. These protocols do not belong in the
lower layers we just discussed. The original transport services may also be offered
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as a middleware service, without being modified. This approach is somewhat an-
alogous to offering UDP at the transport level. Likewise, middleware communica-
tion services may include message-passing services comparable to those offered
by the transport layer.

In the remginder of this chapter, we concentrate on four high-level middle-
ware communication serviges: remote procedure calls, message queuing services,
support for communication of continuous media through streams, and multicast-
ing. Before doing so, there are other general criteria for distinguishing (middle-
ware) communication which we discuss next.

4.1.2 Types of Communication

To understand the various alternatives in communication that middleware can
offer to applications, we view the middleware as an additional service in elient-
server computing, as shown in Fig. 4-4. Consider, for example an electronie mail
system. In principle, the core of the mail delivery system can be seen as a
middleware communication service. Each host runs a user agent allowing users to
compose, send, and receive e-mail. A sending user agent passes such mail to the
mail delivery system, expecting it, in tum, to eventually deliver the mail to the
intended recipient, Likewise, the user agent at the receiver's side connects to the
mail delivery system to see whether any mail has come in. If so, the messages are
transferred to the user agent so that they can be displayed and read by the user:

Synchronize at Synchronize at Synchronize after
request submission request delivery processing by server

Client I/ / /I/

Request

interrupt

Storage
facility

Server Time —>

Figure 4-4. Viewing middleware as an intermediate (distributed) service in ap-
plication-level communication. ’

An electronic mail system is a typical example in which communication is
persistent, With persistent communication, a message that has been submitted
for transmission is stored by the communication middleware as long as it takes to
deliver it to the receiver. In this case, the middleware will store the message at
one or several of the storage facilities shown in Fig. 4-4. As a consequence, it is
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not necessary for the sending application to continue execution after submitting
the message. Likewise, the receiving application need not be executing when the
message is submitted.

In contrast, with transient communication, a message is stored by the com-
munication system only as long as the sending and receiving application are exe-
cuting. More precisely, in terms of Fig. 4-4, the middleware cannot deliver a mes-
sage due to a transmission interrupt, or because the recipient is currently not
active, it will simply be discarded. Typically, all transport-level communication
services offer only transient communication. In this case, the communication sys-
tem consists traditional store-and-forward routers. If a router cannot deliver a
message to the next one or the destination host, it will simply drop the message.

Besides being persistent or transient, communication can also be asynchro-
nous or synchronous. The characteristic feature of asynchronous commumication
is that a sender continues immediately after it has submitted its message for
transmission. This means that the message is (temporarily) stored immediately by
the middleware upon submission. With synchronous communication, the sender
is blocked until its request is known to be accepted. There are essentially three
points where synchronization can take place. First, the sender may be blocked
until the middleware notifies that it will take over transmission of the request.
Second, the sender may synchronize until its request has been delivered to the
intended recipient. Third, synchronization may take place by letting the sender
wait until its request has been fully processed, that is, up the time that the reci-
pient returns a response.

Various combinations of persistence and synchronization occur in practice.
Popular ones are persistence in combination with synchronization at request sub-
mission, which is a common scheme for many message-queuing systems, which
we discuss later in this chapter. Likewise, transient communication with syn-
chronization after the request has been fully processed is also widely used. This
scheme corresponds with remote procedure calls, which we also discuss below.

Besides persistence and synchronization, we should also make a distinction
between discrete and streaming communication. The examples so far all fall in the
category of discrete communication: the parties communicate by messages, each
message forming a complete unit of information. In contrast, streaming involves
sending multiple messages, one after the other, where the messages are related to
each other by the order they are sent, or because there is a temporal relationship.
We return to streaming communication extensively below.

4.2 REMOTE PROCEDURE  CALL

Many distributed systems have been based on explicit message exchange be-
tween processes. However, the procedures send and receive do not conceal com-
munication at all, which is important to achieve access transparency in distributed
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systems. This problem has long been known, but little was done about it until a
paper by Birrell and Nelson (1984) introduced a completely different way of han-
dling communication. Although the idea is refreshingly simple (once someone has
thought of it). the implications are often subtle. In this section we will examine
the concept, its implementation, its strengths, and its weaknesses.

In a nutshell, what Birrelll and Nelson suggested was allowing programs to
call procedures located on other machines. When a process on machine A calls' a
procedure on machine B, the calling process on A is suspended, and execution of
the called procedure takes place on B. Information can be transported from the
caller to the callee in the parameters and can come back in the procedure result..
No message passing at all is visible to the programmer. This method is known as
Remote Procedure Call, or often just RPC. :

While the basic idea sounds simple and elegant, subtle problems exist.. To
start with, because the calling and called procedures run on different machines,
they execute in different address spaces, which causes complications. Parameters
and results also have to be passed, which can be complicated, especially if the ma-
chines are not identical. Finally, either or both machines can crash and each of the
possible failures causes different problems. Still, most of these can be dealt with,
and RPC is a widely-used technique that undenlies many distsibuted systems.

4.2.1 Basic RPC Operation

We first start with discussing conventional procedure calls, and then explain
how the call itself can be split into a client and server part that are each executed
on different machines.

Conventional Procedure Call

To understand how RPC works, it is important first to fully understand how a
conventional (i.e., single machine) procedure call works. Consider a call in C like

count =tead(td, but, nbytes);

where fd is an.integer indicating a file, buf is an array of characters into which
data are read, and nbytes is another integer telling how many bytes to read. If the
call is made from the main program, the stack will be as shown in Fig. 4-5(a) be-
fore the call. To make the call, the caller pushes the parameters onto the stack in
order, last one first, as shown in Fig. 4-5(b). (The reason that C compilers push
the parameters in reverse order has to do with printj--by doing so, print! can al-
ways locate its first parameter, the format string.) After the read procedure has
finished running, it puts the return value in a register, removes the return address,
and transfers control back to the caller. The caller then removes the parameters
from the stack, returning the stack to the original state it had before the call.
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Main program's Main program's
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Figure 4-5. (a) Parameter passing in a local procedure call: the stack before the
call to read. (b) The stack while the called procedure is active.

Several things are worth noting. For one, in C, parameters can be call-by-
value or call-by-reference. A value parameter, such asfd or nbytes, is simply
copied to the stack as shown in Fig. 4-5(b). To the called procedure, a value pa-
rameter is just an initialized local variable. The called procedure may modify it,
but such changes do not affect the original value at the calling side.

A reference parameter in C is a pointer to a variable (i.e., the address of the
variable), rather than the value of the variable. In the call to read. the second pa-
rameter is a reference parameter because arrays are always passed by reference in
C. What is actually pushed onto the stack is the address of the character array. If
the called procedure uses this parameter to store something into the character
array, it does modify the array in the calling procedure. The difference between
call-by-value and call-by-reference is quite important for RPC, as we shall see.

One other parameter passing mechanism also exists, although it is not used in
C. It is called call-by-copy/restore. It consists of having the variable copied to
the stack by the caller, as in call-by-value, and then copied back after the call,
overwriting the caller's original value. Under most conditions, this achieves
exactly the same effect as call-by-reference, but in some situations. such as the
same parameter being present multiple times in the parameter list. the semantics
are different, The call-by-copy/restore mechanism is not used in many languages.

The decision of which parameter passing mechanism to use is normally made
by the language designers and is a fixed property of the language. Sometimes it
depends on the data type being passed. In C, for example, integers and other
scalar types are always passed by value, whereas arrays are always passed by ref-
erence, as we have seen. Some Ada compilers use copy/restore for in out parame-
ters, but others use call-by-reference. The language definition permits either
choice, which makes the semantics a bit fuzzy.
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Client and Server Stubs

The idea behind RPC is to make a remote procedure call look as much as pos-
sible like a local one. In other words, we want RPC to be transparent-the  calling
procedure should not be aware that the called procedure is executing on a dif-
ferent machine or vice versa. Suppose that a program needs to read some data
from a file. The programmer puts a call to read in the code to get the data. In a
traditional (single-processor) system, the read routine is extracted from the library
by the linker and inserted into the object program. It is a short procedure, which is
generally implemented by calling an equivalent read system call. In other words,
the read procedure is a kind of interface between the user code and the local
operating system. _

Even though read does a system call, it is called in the usual way, by pushing
the parameters onto the stack, as shown in Fig. 4-5(b). Thus the programmer does
not know that read is actually doing something fishy.

RPC achieves its transparency in an analogous way. When read is actually a
remote procedure (e.g., one that will run on the file server's machine), a different
version of read, called a client stub, is put into the library. Like the original one,
it, too, is called using the calling sequence of Fig. 4-5(b). Also like the original
one, it too, does a call to the local operating system. Only unlike the original one,
it does not ask the operating system to give it data. Instead, it packs the parame-
ters into a message and requests that message to be sent to the server as illustrated
in Fig. 4-6. Following the call to send, the client stub calls receive, blocking it-
self until the reply comes back.

Wait for result

ClieNt  se—— oo oo o
/ A\
Call remote Return
procedure from call
Request Reply
Y
Server --=---mre--o- - e— oo

Call local procedure Time ——»
and return results

Figure 4-6. Principle of RPC between a client and server program.

When the message arrives at the server, the server's operating system passes
it up to a server stub. A server stub is the server-side equivalent of a client stub:
it is a piece of code that transforms requests coming in over the network into local
procedure calls. Typically the server stub will have called receive and be blocked
waiting for incoming messages. The server stub unpacks the parameters from the
message and then calls the server procedure in the usual way (i.e., as in Fig. 4-5).
From the server's point of view, it is as though it is being called directly by the
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client-the parameters and return address are all on the stack where they belong
and nothing seems unusual, The server performs its work and then returns the re-
sult to the cgller in the usual way. For example, in the case of read, the server will
fill the buffer, pointed to by the second parameter, with the data. This buffer will
be internal to the server stub. '

When the server stub gets control back after the call has completed, it packs
the result (the buffer) in a message and calls send to return it to the elient: After
that, the server stub usually does a call to receive again, to wait for the next
incoming request.

When the message gets back to the client machine, the client's operating sys-
tem sees that it is addressed to the client process (or actually the elient stub, but
the operating system cannot see the difference). The message is copied to the
waiting buffer and the ¢lient process unblocked. The client stub inspects the mes-
sage, unpacks the result, copies it to its caller, and returns in the usual way. When
the caller gets control following the call to read, all it knows is that its data are
available. It has no idea that the work was done remotely instead of by the local
operating system. ~

This blissful ignorance on the part of the client is the beauty of the whole
scheme. As far as it is concerned, remote services are accessed by making ordi-
nary (i.e., local) procedure calls, not by calling send and receive. All the details
of the message passing are hidden away in the two library procedures, just as the
detgils of actually making system calls are hidden away in traditional libraries.

- To summgrize, a remote procedure call occurs in the following steps:

-H

The client procedure calls the client stub in the normal way.

The client stub builds a message and calls the local operating system.
The client's AS sends the message to the remote as.

The remote AS gives the message to the server stub.

The server stub unpacks the parameters and calls the server.

The server does the work and returns the result to the stub.

The server stub packs it in a message and calls its local aS.

The server's AS sends the message to the elient's as.

The client's AS gives the message to the client stub.

I - VR

_‘
e

The stub unpacks the result and returns to the client:

The net effect of all these steps is to convert the local call by the elient procedure
to the client stub, to a local call to the server procedure without either elient or
server being aware of the intermediate steps or the existence of the network.
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4.2.2 Parameter Passing

The function of the client stub is to take its parameters, pack them into a mes-
sage, and send them to the server stub. While this sounds straightforward, it is not
quite as simple as it at first appears. In this section we will look at some of the
issues concerned with: parameter passing in RPC systems.

Passing Value Parameters .

Packing parameters into a message is called parameter marshaling. As a
very simple example, consider a remote procedure, add(i, j), that takes two integer
parameters [ and j and returns their arithmetic sum as a result. (As a practical
matter, one would not normally make such a simple procedure remote due to the
overhead, but as an example it will do.) The call to add, is shown in the left-hand
postion (in the client process) in Fig. 4-7. The client stub takes its two parameters
and puts them in a message as indicated, It also puts the name or number of the
procedure to be called in the message because the server might support several
different calls, and it has to be told which one is required.

Client machine Server machine

Client process Server process
1. Client call to .
procedure Implementation 6. Stub makes
of add local call to "add"
- Server stub i
Client stub ™
proc: “add" proc: "add”
int__val()) message int.__vai(j) message
R A
: proc: “add" 4. Server OS
_ int:__val() ) to server stub

3. Message is sent
across the network

Figure 4-7. The steps involved in a doing a remote computation through RPC.

When the message arrives at the server, the stub examines the message to see
which procedure is needed and then makes the appropriate call. If the server also
supports other remote procedures, the server stub might have a switch statement
in it to select the procedure to be called, depending on the first field of the mes-
sage. The actual call from the stub to the server looks like the original client call,
except that the parameters are variables initialized from the incoming message.

When the server has finished, the server stub gains control again. It takes the
result. sent back by the server and packs it into a message. This message is sent
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back back to the glient stub. whi¢h unpacks it to extract the result and returns the
value to the waiting client procedure.

As long as the glient and server machines are identigal. and ell the parameters
and results are scalar types. such as integers, characters, and Booleans, this model
works fine. However, in a large distiibuted system, it is common that multiple ma-
chine types are present., Each machine often has its own representation for num-
bers, characters, and other data items. For example, IRM mainframes use the
EBCDIC character code, whereas IBM personal computers:  use ASCIL- As a con-
sequence, it is not possible to pass a character parameter from an IBM PC elient
to an IBM mainframe server using the simple scheme of Fig. 4-7: the server will
interpret the character incorrectly.

Similar problems can occur with the representation of integers (one's comple-
ment versus two's complement) and floating-point numbers. In addition, an even
more annoying problem exists because some machines, such as the Intel Pentium,
number their bytes from right to left, whereas others, such as the Sun SPARC,
number them the other way. The Intel format is called little endian and the
SPARC format is called big endian, after the politisians in Gulliver's Travels
who went to war over which end of an egg to break (Cohen, 1981). As an ex-
ample, consider a procedure with two parameters, an integer and a four-character
string. Each parameter requirgs one 32-bit word. Fig.4-8(a) shows what the pa-
rameter portion of a message built by a client stub on an Intel Pentium might look
like, The first word contains the integer parameter, 5 in this case, and the second
contains the string "JILL."

3] 12] 11] o [of [1f [2f |3 0F |11 121 |8

o 1o o |5 5/ ol o o ol o] of 5

7] 16| 15| 14 |4i |5& |8} |7 4) |si |s&f |7i

L lL J J| Ll L el el )
(a) (b) ()

Figure 4-8. (a) The original message on the Pentium. (b) The message after re-
ceipt on the SPARe. , (c) The message after being inverted. The little numbers in
boxes indicate the address of each byte.

Since messages are transferred byte for byte (actually, bit for bit) over the net-
work, the first byte sent is the first byte to arrive. In Fig. 4=8(b) we show what the
message of Fig. 4-8(a) would look like if received by a SPARC, which numbers
its bytes with byte 0 at the left (high-order byte) instead of at the right (low-order
byte) as do all the Intel chips. When the server stub readss the parameters at %S,i'
dresses 0 and 4, respectively, it will find an integer equal to 83,886,080 (5x2 )
and a string "JILL".

One obvious, but unfortunately incorrect, approach is to simply invert the
bytes of each word after they are received, leading to Fig. 4-8(c). Now the integer
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is 5 and the string is "LLIJ". The problem here is that integers are reversed by the
different byte ordering, but strings are not. Without additional information about
what is a string and what is aninteger, there is no way to repair the damage.

Passing Reference Parameters

We now come to a difficult problem: How are pointers, or in general, refer-
ences passed? The answer is: only with the greatest of difficulty, if at all.
Remember that a pointer is meaningful only within the address space of the proc-
ess in which it is being used. Getting back to our read example discussed earlier,
if the second parameter (the address of the buffer) happens to be 1000 on the cli-
ent, one cannot just pass the number 1000 to the server and expect it to work.
Address 1000 on the server might be in the middle of the program text.

One solution is just to forbid pointers and reference parameters in general.
However, these are so important that this solution is highly undesirable. In fact, it
is not necessary either. In the read example, the client stub knows that the second
parameter points to an array of characters. Suppose, for the moment, that it also
knows how big the array is. One strategy then becomes apparent: copy the array
into the message and send it to the server. The server stub can then call the server
with a pointer to this array, even though this pointer has a different numerical val-
ue than the second parameter of read has. Changes the server makes using the
pointer (e.g., storing data into it) directly affect the message buffer inside the
server stub. When the server finishes, the original message can be sent back to the
client stub, which then copies it back to the client. In effect, call-by-reference has
been replaced by copy/restore. Although this is not always identical, it frequently
is good enough.

One optimization makes this mechanism twice as efficient. If the stubs know
whether the buffer is an input parameter or an output parameter to the server, one
of the copies can be eliminated. If the array is input to the server (e.g., in a call to
write) it need not be copied back. If it is output, it need not be sent over in the first
place.

As a final comment, it is worth noting that although we can now handle point-
ers to simple arrays and structures, we still cannot handle the most general case of
a pointer to an arbitrary data structure such as a complex graph. Some systems
attempt to deal with this case by actually passing the pointer to the server stub and
generating special code in the server procedure for using pointers. For example, a
request may be sent back to the client to provide the referenced data.

Parameter Specification and Stub Generation

From what we have explained so far, it is clear that hiding a remote procedure
call requires that the caller and the callee agree on the format of the messages
they exchange, and that they follow the same steps when it comes to, for example,
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passing complex data structures. In other words, both sides in an RPC should fol-
low the same protocol or the RPC will not work correctly.

As a simple example, consider the procedure of Fig. 4-9(a). It has three pa-
rameters, a character, a floating-point number, and an array of five integers.
Assuming a word is four bytes, the RPC protocol might prescribe that we should
transmit a character in the rightmost byte of a word (leaving the next 3 bytes
empty), a float as a whole word, and an array asa group of words equal to the
array length, preceded by a word giving the length, as shown in Fig. 4-9(b). Thus
given these rules, the ¢lient stub for foobar knows that it must use the format of
Fig. 4-9(b), and the server stub knows that incoming messages for foobar will
have the format of Fig. 4-9(b).

foobar's local
jables

foobar( char x; float y; int z[5] ) z[2}
{ ‘ z[3]

=

(a) (®)

Figure 4-9. (a) A procedure. (b) The corresponding message.

Defining the message format is one aspect of an RPC protocol, but it is not
sufficient, What we also need is the client and the server to agree on the repres-
entation of simple data structures, such as integers, characters, Booleans, etc. For
example, the protocol could prescribe that integers are represented in two's com-
plement, characters in 16-bit Unicode, and floats in the IEEE standard #754 for-
mat, with everything stored in little endian. With this additional information, mes-
sages can be unambiguously interpreted.

With the encoding rules now pinned down to the last bit, the only thing that
remains to be done is that the caller and callee agree on the actual exchange of
messages. For example, it may be decided to use a connection-oriented transport
servige such as TCPIIP. An alternative is to use an unreliable datagram service
and let the client and server implement an error control scheme as part of the RPC
protocol, In practice, several variants exist.

Once the RPC protocol has been fully defined, the ¢lient and server stubs
need to be implemented. Fortunately, stubs for the same protocol but different
procedures normally differ only in their interface to the applications. An interface
consists of a collection of procedures that can be called by a client, and which are
implemented by a server. An interface is usually available in the same programing
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language as the one in whigh the client or server is written (although this is strictly
speaking, not necessary). To simplify matters, interfaces are often specified by
means of an Integface Definition Language (IDL). An interface specified in
such an IDL is then subsequently compiled into a client stub and a server stub,
along with the appropriate compile-time or run-time interfaces.

Practice shows that using an intexface definition language considerably sim-
plifies glient-server applications based on RPCs. Because it is easy to fully gen-
erate glient and server stubs, all RPC-based middleware systems offer an IDL to
support application development. In some cases, using the IDL is even mandatory,
as we shall see in later chapters.

4.2.3 Asynchronous RPC

As in conventional procedure calls, when a client calls a remote procedure,
the ¢client will block until a reply is returned. This strict request-reply behavior is
unnecessary when there is no result to return, and only leads to blocking the client
while it could have proceeded and have done useful work just after requesting the
remote procedure to be called. Examples of where there is often no need to wait
for a reply include: transferring money from one account to another, adding en-
tries into a database, starting remote services, batch processing, and so on.

To support such situations, RPC systems may provide facilities for what are
called asynchronous RPCs, by which a client immediately continues after issu-
ing the RPC request. With asynchronous RPCs, the server immediately sends a
reply back to the client the moment the RPC request is received, after which it
calls the requested procedure. The reply acts as an acknowledgment to the client
further blocking as soon as it has received the server's acknowledgment. Fig. 4-
10(b) shows how client and server interact in the case of asynchronous RPCs. For
comparison, Fig. 4-10(a) shows the normal request-reply behavior,

Asynchronous RPCs can also be useful when a reply will be returned but the
client is not prepared to wait for it and do nothing in the meantime. For example,
a client may want to prefetch the network addresses of a set of hosts that it
expects to contact soon. While a naming service is collecting those addresses, the
¢lient may want to do other things. In such cases, it makes sense to organize the
commupication between the client and server through two asynchronous RPCs, as
shown in Fig. 4-11. The client first calls the server to hand over a list of host
names that should be looked up, and continues when the server has acknowledged
the receipt of that list, The second call is done by the server, who calls the client
to hand over the addresses it found. Combining two asynchronous RPCs is some-
times also referred to as a deferred synchronous RPC.

It should be noted that variants of asynchronous RPCs exist in which the cli-
ent continues executing immediately after sending the request to the server. In
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Figure 4-10. (a) The interaction between client and server in a traditional RPc..
(b) The interaction using asynchronous RPc..
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Figure 4-11. A ¢lient and server interacting through two asynchronous RPCs.

other words, the glient does not wait for an acknowledgment of the server's ac-
ceptance of the request, We refer to such RPCs as one-way RPCs. The problem
with this approach is that when reliability is not guaranteed, the ¢lient cannot
know for sure whether or not its request will be processed. We return to these
matters in Chap. 8. Likewise, in the case of deferred synchronous RPC, the elient
may poll the server to see whether the results are available yet instead of letting
the server calling back the client.

4.2.4 Example: DCE RPC

Remote procedure calls have been widely adopted as the basis of middleware
and distributed systems in general. In this section, we take a closer look at one
specific RPC system: the Distributed Computing Environment (DeE), which
was developed by the Open Software Foundation (OSF), now called The Open
Group. DCE RPC is not as popular as some other RPC systems, notably Sun RPC.
However, DCE RPC is nevertheless representative of other RPC systems, and its
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specifications have been adopted in Microsoft's base system for distributed com-
puting, DCOM (Eddon and Eddon, ]998). We start with a brief introduction to
DCE, after which we consider the principal workings of DCE RPC. Detailed tech-
nical information on how to develop RPC-based applications can be found in

Stevens (1999).

Introduction to DCE

DCE is a true middleware system in that it is designed to execute as a layer of
abstraction between existing (network) operating systems and distributed applica-
tions. Initially designed for UNIX, it has now been ported to all major operating
systems including VMS and Windows variants, as well as desktop operating sys-
tems. The idea is that the customer can take a collection of existing machines, add
the DCE software, and then be able to run distributed applications, all without dis-
turbing existing (nondistributed) applications. Although most of the DCE package
runs in user space, in some configurations a piece (part of the distributed file sys-
tem) must be added to the kernel. The Open Group itself only sells source code,
which vendors integrate into their systems. _

The programming model underlying all of DCE is the client-server model,
which was extensively discussed in the previous chapter. User processes act as
clients to access remote services provided by server processes. Some of these ser-
vices are part of DCE itself, but others belong to the applications and are written
by the applications programmers. All communication between clients and servers
takes place by means of RPCs.

There are a number of services that form part of DCE itself. The distributed
file servige is a worldwide file system that provides a transparent. way of ac-
cessing any file in the system in the same way. It can either be built on top of the
hosts' native file systems or used instead of them. The directory service is used
to keep track of the location of all resources in the system. These resources in-
clude machines, printers, servers, data, and much more, and they may be distrib-
uted geographically over the entire world. The directory service allows a process
to ask for a‘resource and not have to be concerned about where it is, unless the
process cares. The security service allows resources of all kinds to be protected,
so access can be restricted to authorized persons. Finally, the distributed time
service is a service that attempts to keep clocks on the different machines globally
synchronized. As we shall see in later chapters, having some notion of global time
makes it much easier to ensure consistency in a distributed system.

Goals of DCE RPC

The goals of the DCE RPC system are relatively traditional. First and
foremost, the RPC system makes it possible for a client to access a remote service
by simply calling a local procedure. This interface makes it possible for client
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(i.e., application) programs to be written in a simple way, familiar to most pro-
grammers. It also makes it easy to have large volumes of existing code run in a
distributed environment with few, if any, changes.

It is up to the RPC system to hide all the details from the ¢lients, and, to some
extent, from the servers as well. To start with, the RPC system can automaticelly
locate the correct server, and subsequently set up the communication between cli-
ent and server software (generally called binding). It can also handle the mes-
sage transport in both directions, fragmenting and reassembling them as needed
(e.g., if one of the parameters is a large array). Finally, the RPC system can auto-
matically handle data type conversions between the client and the server, even if
they run on different architectures and have a different byte ordering;- _

As a consequence of the RPC system's ability to hide the details, ¢lients and
servers are highly independent of one another. A client can be written in Java and
a server in C, or vige versa. A client and server can run on different hardware plat-
forms and use different operating systems. A yasiety of network protocols and
data representations are also supported, all without any intervention from the eli-

ent or server.
Writing a Client and a Server

- The DCE RPC system consists of a number of components, in¢luding lan-
guages, libraries, daemons, and utility programs, among others. Together these
make it possible to write clients and servers. In this section we will describe the
pieces and how they fit together. The entire process of writing and using an RPC
client and server is summarized in Fig. 4-12.

In a glient-server system, the glue that holds everything together is the inter-
face definition, as specified in the Interface Definition Language, or IDL. It
permits procedure deglarations in a form closely resembling function prototypes
in ANSI C. IDL files can also contain type definitions, constant deelarations, and
other information needed to correctly marshal parameters and unmarshal results.
Ideally, the interface definition should also contain a formal definition of what the
procedures do, but such a definition is beyond the current state of the art, so the
interface definition just defines the syntax of the calls, not their semantics. At best
the writer can add a few comments describing what the procedures do.

A crugial element in every IDL file is a globally unique identifier for the
specified interface. The client sends this identifier in the first RPC message and
the server verifies that it is correct. In this way, if a client inadvertently tries to
bind to the wrong server, or even to an older version of the right server, the server
will detect the error and the binding will not take place.

Interface definitions and unique identifiers are closely related in DCE. As
illustrated in Fig. 4-12, the first step in writing a client/server application is usual-
ly calling the uuidgen program, asking it to generate a prototype IDL file contain-
ing an interface identifier guaranteed never to be used again in any interface
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Figure 4-12. The steps in writing a client and a server in DeE RPC,

generated anywhere by wuuidgen. Uniqueness is ensured by encoding in it the lo-
cation and time of creation. It consists of a 128-bit binary number represented in
the IDL file as an ASCII string in hexadecimal.

The next step is editing the IDL file, filling in the names of the remote proce-
dures and their parameters. It is worth noting that RPC is not totally transpar-
ent-for example, the client and server cannot share global variables-but the
IDL rules make it impossible to express constructs that are not supported.

When the IDL file is complete, the IDL compiler is called to process it. The
output of the IDL compiler consists of three files:

1. A header file (e.g., interface.h, in C terms).

2. The client stub.

3. The server stub.
The header file contains the unique identifier, type definitions, constant defini-
tions, and function prototypes. It should be included (using #include) in both the

¢client and server code. The client stub contains the actual procedures that the ¢li-
ent program will call. These procedures are the ones responsible for collecting and
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packing the parameters into the outgoing message and then calling the runtime
system to send it, The client stub also handles unpacking the reply and returning
values to the ¢lient, The server stub contains the procedures called by the runtime
system on the server machine when an incoming message arrives. These, in tum,
call the actual server procedures that do the work.

The next step is for the application writer to write the client and server code.
Both of these are then compiled, as are the two stub procedures. The resulting eli-
ent code and client stub object files are then linked with the runtime library to pro-
duce the executable binary for the client. Similarly, the server code and server
stub are compiled and linked to produce the server's binary. At runtime, the elient
and server are started so that the application is actually executed as well.

Binding a Client to a Server

To allow a ¢lient to call a server, it is necessary that the server be registered
and prepared to accept incoming calls. Registration of a server makes it possible
for a client to locate the server and bind to it. Server location is done in two steps:

1. Locate the server's machine.

2. Locate the server (i.e., the correct process) on that machine.

The second step is somewhat subtle. Basically, what it comes down to is that to
communicate with a server, the client needs to know an end point, on the server's
machine to which it can send messages. An end point (also commonly known as a
port) is used by the server's operating system to distinguish incoming messages
for different processes. In DCE, a table of (server, end point)pairs 1is maintained
on each server machine by a process called the DCE daemon. Before it becomes
available for incoming requests, the server must ask the operating system for an
end point, It then registers this end point with the DCE daemon. The DCE daemon
records this information (including which protocols the server speaks) in the end
point table for future use.

The server also registers with the directory service by providing it the network
address of the server's machine and a name under which the server can be looked
up. Binding a ¢lient to a server then proceeds as shown in Fig. 4-13.

Let us assume that the client wants to bind to a video server that is locally
known under the name /local/multimedia/uideo/movies .. It passes this name to the
directory server, which returns the network address of the machine running the
video server. The ¢lient then goes to the DCE daemon on that machine (whi¢h has
a well-known end point), and asks it to look up the end point of the video server in
its end point table. Armed with this information, the RPC can now take place. On
subsequent RPCs this lookup is not needed. DCE also gives clients the ability to
do more sophisticated searches for a suitable server when that is needed. Secure
RPC is also an option where confidentiality or data integrity is crucial.
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Figure 4-13. Client-to-server binding in DCE.

Pexforming an RPC

The actual RPC is carried out transparently and in the usual way. The ¢lient
stub marshals the parameters to the runtime library for transmission using the pro-
tocol chosen at binding time. When a message arrives at the server side, it is
routed to the correct server based on the end point contained in the incoming mes-
sage. The runtime library passes the message to the server stub, which unmarshals
the parameters and calls the server. The reply goes back by the reverse route.

DCE provides several semantic options. The default is at-most-once opera-
tion, in which case no call is ever carried out more than once, even in the face of
system crashes. In practice, what this means is that if a server crashes during, an
RPC and then recovers quickly, the client does not repeat the operation, for fear
that it might already have been carried out once.

Alternatively, it is possible to mark a remote procedure as idempotent (in the
IDL file), in which case it can be repeated multiple times without harm. For ex-
ample, reading a specified block from a file can be tried over and over until it
succeeds. When an idempotent RPC fails due to a server crash. the ¢lient can wait
until the server reboots and then try again. Other semantics are also available (but
rarely used), including broadcasting the RPC to all the machines on the local net-
work, We return to RPC semantics in Chap. 8, when discussing RPC in the pres-
ence of failures.

4.3 MESSAGE-ORIENTED COMMUNICATION

Remote procedure calls and remote object invocations contribute to hiding
communigcation in distributed systems, that is, they enhance access transparency.
Unfortunately, neither mechanism is always appropriate. In particular, when it
cannot be assumed that the receiving side is executing at the time a request is
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issued, alternative communication services are needed. Likewise, the inherent
synchronous nature of RPCs, by which a client is blocked until its request has
been processed, sometimes needs to be replaced by something else.

That something else is messaging. In this section we concentrate on message-
oriented communpication in distributed systems by first taking a closer look at
what exactly synchronous behavior is and what its implications are. Then, we dis-
cuss messaging systems that assume that parties are executing at the time of com-
munication. Finally, we will examine message-queuing systems that allow proc-
esses to exchange information, even if the other party is not executing at the time
communication is initiated.

4.3.1 Message-Oriented Transient Communication

Many distributed systems and applications are built directly on top of the sim-

ple message-oriented model offered by the transport layer. To better understand

and appreciate the message-oriented systems as part of middleware solutions, we
first discuss messaging through transport-level sockets.

Berkeley Sockets

Special attention has been paid to standardizing the interface of the transport
layer to allow programmers to make use of its entire suite of (messaging) proto-
cols through a simple set of primitives. Also, standard interfaces make it easier to
port an application to a different machine.

As an example, we briefly discuss the sockets intesface as introduced in the
1970s in Berkeley UNIX. Another important interface is XTI, which stands for
the X10pen Transport Interface, formerly called the Transport Layer Interface
(TLI), and developed by AT&T. Sockets and XTI are very similar in their model
of network programming, but differ in their set of primitives.

Conceptually, a socket is a communication end point to which an application
can write data that are to be sent out over the underlying network, and from which
incoming data can be read. A socket forms an abstraction over the actual commu-
nication end point that is used by the local operating system for a specific tran-
sport protocol, In the following text, we concentrate on the socket primitives for
TCP, which are shown in Fig. 4-14.

Servers generally execute the first four primitives, normally in the order
given. When calling the socket primitive, the caller creates a new communication
end point for a spegific transport protocol. Internally, creating a communication
end point means that the local operating system reserves resources to accommo-
date sending and receiving messages for the specified protocol.

The bind primitive associates a local address with the newly-created socket.
For example, a server should bind the IP address of its machine together with a
(possibly well-known) port number to a socket. Binding tells the operating system
that the server wants to receive messages only on the specified address and port.
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Primitive Meaning

Socket Create a new communication end point

Bind Attach a local address to a socket

Listen Announce willingness to accept connections
Accept Block caller until a connection request arrives
Connect Actively attempt to establish a connection
Send Send some data over the connection

Receive Receive some data over the connection
Close Release the connection

Figure 4-14. The socket primitives for TCPIIP.

The listen primitive is called only in the case of connection-oriented commu-
nication. It is a nonblocking call that allows the local operating system to reserve
enough buffers for a specified maximum number of connections that the caller is
willing to accept.

A call to accept blocks the caller until a connection request arrives. When a
request arrives, the local operating system creates a new socket with the same pro-
perties as the original one, and returns it to the caller. This approach will allow the
server to, for example, fork off a process that will subsequently handle the actual
communication through the new connection. The server, in the meantime, can go
back and wait for another connection request on the original socket.

Let us now take a look at the client side. Here, too, a socket must first be
created using the socket primitive, but explicitly binding the socket to a local ad-
dress is not necessary, since the operating system can dynamically allocate a port
when the connection is set up. The connect primitive requires that the caller speci-
fies the transport-level address to which a connection request is to be sent. The
client is blocked until a connection has been set up successfully, after which both
sides can start exchanging information through the send and receive primitives.
Finally, closing a connection is symmetric when using sockets, and is established
by having both the client and server call the close primitive. The general pattern
followed by a client and server for connection-oriented communication using
sockets is shown in Fig. 4-15. Details about network programuming using sockets
and other interfaces in a UNIX environment can be found in Stevens (1998).

The Message-Passing Iatenface (MPI)

With the advent of high-petformance multicomputers, developers have been
looking for message-oriented primitives that would allow them to easily write
highly efficient applications. This means that the primitives should be at a con-
venient level of abstraction (to ease application development), and that their



SEC, 4,3 MESSAGE-ORIENTED. COMMUNICATION 143

o N S Y
['socket F»[ bind - listen 3 accept ljad > write close |

A ! A}
e ; H H N
Synchronization point ———5 i Communication \
\ 4 ! A |
[socket } Pconnectl-»  write |——»{ read close |
Client L

Figure 4-15. Connection-oriented communication pattern using sockets;

implementation incurs only minimal overhead. Sockets were deemed insufficient
for two reasons. First, they were at the wrong level of abstraction by supporting
only simple send and receive primitives. Second, sockets had been designed to
communicate across networks using general-purpose protocol stacks such as
TCPIIP. They were not considered suitable for the proprietary protocols devel-
oped for high-speed interconnection networks, such as those used in high-perfor-
mance server clusters. Those protocols required an 'interface that could handle
more advanced features, such as different forms of buffering and synchronization.

The result was that most interconnection networks and high-performance
multicomputers were shipped with proprietary communication libraries. These
libraries offered a wealth of high-level and generally efficient communication
primitives. Of course, all libraries were mutually incompatible, so that application
developers now had a portability problem.

The need to be hardware and platform independent eventually led to the
definition of a standard for message passing, simply called the Message-Passing
Interface or MPI. MPI is designed for parallel applications and as such is
tailored to transient communication. It makes direct use of the underlying net-
work.. Also, it assumes that serious failures such as process crashes or network
partitions are fatal and do not require automatic recovery.

MPI assumes communication takes place within a knowngroup of processes.
Each group is assigned an identifier. Each process within a group is also assigned
a (local) identifier. A (group/D, process/D) pair therefore uniquely identifies the
source or destination of a message, and is used instead of a transport-level ad-
dress. There may be several, possibly overlapping groups of processes involved in
a computation and that are all executing at the same time.

At the core of MPI are messaging primitives to support transient communica-
tion, of which the most intuitive ones are summarized in Fig. 4-16.

Transient asynchronous communication is supported by means of the
MPI_bsend primitive. The sender submits a message for transmission, which is
generally first copied to a local buffer in the MPI runtime system. When the mes-
sage has been copied. the sender continues. The local MPI runtime system will
remove the message from its local buffer and take care of transmission as soon as
a receiver has called a receive primitive.
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Primitive Meaning
MPIi_bsend Append outgoing message to a local send buffer
MPI_send Send a message and wait until copied to local or remote buffer
MPI_ssend Send a message and wait until receipt starts
MPI_sendrecv | Send a message and wait for reply
MPI _isend Pass reference to outgoing message, and continue
MPI_issend Pass reference to outgoing message, and wait until receipt starts
MPI_recv Receive a message; block if there is none
MPI _irecv Check if there is an incoming message, but do not block

Figure . 4-16. Some of the most intuitive message-passing primitives of MPI.

There is also a blocking send operation, called MPLsend, of which the sem-
antics are implementation dependent. The primitive MPLsend may either block
the caller until the specified message has been copied to the MPI runtime system
at the sender's side, or until the receiver has initiated a receive operation. Syn-
chronous communication by which the sender blocks until its request is accepted
for further processing is available through the MPIl~ssend primitive. Finally, the
strongest form of synchronous communication is also supported: when a sender
calls MPLsendrecv, it sends a request to the receiver and blocks until the latter
returns a reply. Basically, this primitive corresponds to a normal RPC.

Both MPLsend and MPLssend have variants that avoid copying messages
from user buffers to buffers internal to the local MPI runtime system. These vari-
ants correspond to a form of asynchronous communication. With MPI_isend, a
sender passes a pointer to the message after which the MPI runtime system tekes
care of communigation. The sender immediately continues. To prevent overwrit-
ing the message before communication completes, MPI offers primitives to check
for completion, or even to block if required. As with MPLsend, whether the mes-
sage has actually been transferred to the receiver or that it has merely been copied
by the local MPI runtime system to an internal buffer is left unspecified.

Likewise, with MPLissend, a sender also passes only a pointer to the :MPI
runtime system. When the runtime system indicates it has processed the message,
the sender is then guaranteed that the receiver has accepted the message and is
now working on it. ;

The operation MPLrecv is called to receive a message; it blocks the caller
until a message arrives. There is also an asynchronous variant, called MPLirecv,
by which a receiver indicates that is prepared to accept a message. The receiver
can check whether or not a message has indeed arrived, or block until one does.

The semantics of MPI communication primitives are not always straightfor-
ward, and different primitives can sometimes be interchanged without effecting
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the correctness of a program. The official reason why so many different forms of
communication are supported is that it gives implementers of MPI systems
enough possibilities for optimizing pexformance. Cynies might say the committee
could not make up its collective mind, so it threw in everything. MPI has been
designed for high-performance parallel applications, which makes it easier to
understand its diversity in different communication primitives.

More on MPI can be found in Gropp et al. (1998b) The complete reference in
which the over 100 functions in MPI are explained in detail, can be found in Snir

et al, (1998) and Gropp et al. (1998a)
4.3.2 Message-Oriented Persistent Communication

We now come to an important class of message-oriented middle ware serviees,
generally known as message-queuing  systems, or just Message-Oriented — Mid-
dleware (MOM). Message-queuing systems provide extensive support for per-
sistent asynchronous communication. The essence of these systems is that they
offer intermediate-term storage capacity for messages, without requining either the
sender or receiver to be active duxing message transmission. An important differ-
ence with Berkeley sockets and MPI is that message-queuing systems are typi-
cally targeted to support message transfers that are allowed to take minutes in-
stead of seconds or milliseconds. We first explain a general approach to message-
queuing systems, and conclude this section by comparing them to more traditional
systems, notably the Internet e-mail systems.

Message-Queuing  Model

The basic idea behind a message-queuing system is that applications com-
munigate by inserting messages in specific queues. These messages are forwarded
over a series of communication servers and are eventually delivered to the desti-
nation, even if it was down when the message was sent. In practice, most commu-
nication servers are directly connected to each other. In other words, a message is
generally transferred directly to a destination server. In principle, each application
has its own private queue to which other applications can send messages. A queue
can be read only by its associated applieation, but it is also possible for multiple
applications to share a single queue.

An important aspect of message-queuing systems is that a sender is generally
given only the guarantees that its message will eventually be inserted in the re-
cipient's queue. No guarantees are given about when, or even if the message will
actually be read, which is completely determined by the behavior of the recipient..

These semantics permit communication loosely-coupled in time. There is thus
no need for the receiver to be executing when a message is being sent to its queue.
Likewise, there is no need for the sender to be executing at the moment its mes-
sage is picked up by the receiver. The sender and receiver can execute completely
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independently of each other. In fact, once a message has been deposited in a
queue, it will remain there until it is removed, irrespective of whether its sender or
receiver is executing. This gives us four combinations with respect to the execu-
tion mode of the sender and receiver, as shown in Fig. 4-17.

Sender Sender Sender Sender
running running passive passive

________

il <«
[ <

<
[

Receiver Receiver Receiver Receiyer
running passive running passive

(a) (b) () (d)

Figure 4-17. Four combinations for loosely-coupled communications using
queues.

In Fig.4-17(a), both the sender and receiver execute during the entire
transmission of a message. In.Fig. 4-17(b), only the sender is executing, while the
receiver is passive, that is, in a state in which message delivery is not possible.
Nevertheless, the sender can still send messages. The combination of a passive
sender and an executing receiver is shown in Fig. 4-17(c). In this case, the re-
ceiver can read messages that were sent to it, but it is not necessary 'that their re-
spective senders are executing as well. Finally, in Fig. 4-17(d), we see the situa-
tion that the system is storing (and possibly transmitting) messages even while
sender and receiver are passive.

Messages can, in pringiple, contain any data. The only important aspect from
the perspective of middleware is that messages are properly addressed. In prac-
tice, addpessing is done by providing a systemwide unique name of the destination
queue. In some cases, message size may be limited, although it is also possible
that the undeflying system takes care of fragmenting and assembling large mes-
sages in a way that is completely transparent to applications. An effect of this ap-
proach is that the basic interface offered to applications can be extremely simple,
as shown in Fig. 4-18.

The put primitive is called by a sender to pass a message to the underlying
system that is to be appended to the specified queue. As we explained. this is a
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Primitive Meaning

Put Append a message to a specified queue

Get Block until the specified queue is nonempty, and remove the first message
Poll Check a specified queue for messages, and remove the first. Never block
Notify Install a handier to be called when a message is put into the specified queue

Figure 4-18. Basic inteiface to a queue in a message-queuing system.

nonblocking call. The get primitive is a blocking call by which an authorized pro-
cess can remove the longest pending message in the specified queue. The process
is blocked only if the queue is empty. Variations on this call allow searching for a
specific message in the queue, for example, using a priority, or a matching pat-
tern. The nonblocking variant is given by the poll primitive. If the queue is empty,
or if a specific message could not be found, the calling process simply continues.

Finally, most queuing systems also allow a process to install a handler as a
callback function, which is automatically invoked whenever a message is put into
the queue. Callbacks can also be used to automatically start a process that will
fetch messages from the queue if no process is currently executing. This approach
is often implemented by means of a daemon on the receiver's side that continu-
ously monitors the queue for incoming messages and handles accordingly.

General Architecture of a Message-Queuing System

Let us now take a closer look at what a general message-queuing system looks
like. One of the first restrictions that we make is that messages can be put only
into queues that are local to the sender, that is, queues on the same machine, or no
worse than on a machine nearby such as on the same LAN that can be efficiently
reached through an RPC. Such a queue is called the source queue. Likewise,
messages can be read only from local queues. However, a message put into a
queue will contain the specification of a destination queue to which it should be
transferred. It is the responsibility of a message-queuing system to provide queues
to senders and receivers and take care that messages are transferred from their
source to their destination queue.

It is important to realize that the collection of queues is distributed across
multiple machines. Consequently, for a message-queuing system to transfer mes-
sages, it should maintain a mapping of queues to network locations. In practice,
this means that it should maintain a (possibly distributed) database of queue
names to network locations, as shown in Fig. 4-19. Note that such a mapping is
completely analogous to the use of the Domain Name System (DNS) for e-mail in
the Internet. For example, when sending a message to the logical mail address
steen@cs.vunl,  the mailing system will query DNS to find the network (i.e., IP)
address of the recipient's mail server to use for the actual message transfer.

1
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Figure 4-19. The relationship between queue-level addressing and network-
level addressing.

Queues are managed by queue managers. Normally, a queue manager inter-
acts directly with the application that is sending or receiving a message. However,
there are also special queue managers that operate as routers, or relays: they for-
ward incoming messages to other queue managers. In this way, a message-
queuing system may gradually grow into a complete, application-level, overlay
network, on top of an existing computer network. This approach is similar to the
construction of the early MBone over the Internet, in which ordinary user proc-
esses were configured as multicast routers. As it turns out, multicasting through
overlay networks is still important as we will discuss later in this chapter.

Relays can be convenient for a number of reasons. For example, in many mes-
sage-queuing systems, there is no general naming service available that can dy-
nappically maintain qneue-to-location ~mappings. Instead, the topology of the
queuing network is static, and each queue manager needs a copy of the queue-to-
location mapping. It is needless to say that in large-scale queuing systems. this ap-
proach can easily lead to network-management problems.

One solution is to use a few routers that know about the network topology.
When a sender 4 puts a message for destination B in its local queue, that message
is first transferred to the nearest router, say R/, as shown in Fig. 4-20. At that
point, the router knows what to do with the message and forwards it in the direc-
tion of B. For example, R/ may derive from B's name that the message should be
forwarded to router R2. In this way, only the routers need to be updated when
queues are added or removed. while every other queue manager has to know only
where the nearest router is.

Relays can thus generally help build scalable message-queuing systems. How-
ever, as queuing networks grow, it is clear that the manual configuration of net-
works will rapidly become completely unmanageable. The only solution is to
adopt dynamic routing schemes as is done for computer networks. In that respect,
it is somewhat surprising that such solutions are not yet integrated into some of
the popular message-queuing systems.
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Figure 4-20. The general organization of a message-queuing system with routers.

Another reason why relays are used is that they allow for secondary proc-
essing of messages. For example, messages may need to be logged for reasons of
security or fault tolerance. A special form of relay that we discuss in the next sec-
tion is one that acts as a gateway, transfonming messages into a format that can be
understood by the receiver.

Finally, relays can be used for multicasting purposes. In that case, an incom-
ing message is simply put into each send queue.

Message Brokers

An important application area of message-queuing systems is integrating
existing and new applications into a single, coherent distributed information sys-
tem. Integration requires that applications can understand the messages they re-
ceive. In practice, this requires the sender to have its outgoing messages in the
same format as that of the receiver.

The problem with this approach is that each time an application is added to
the system that requires a separate message format, each potential receiver will
have to be adjusted in order to produce that format...

An alternative is to agree on a common message format, as is done with tradi-
tional network protocols. Unfortunately, this approach will generally not work for
message-queuing  systems. The problem is the level of abstraction at which these
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systems operate. A common message format makes sense only if the collection of
processes that mgke use of that format indeed have enough in common. If the col-
lection of applications that make up a distributed information system is highly di-
verse (which it often is), then the best common format may well be no more than
a sequence of bytes.

Although a few common message formats for specific application domains
have been defined, the general approach is to learn to live with different formats,
and try to provide the means to make conversions as simple as possible. In mes-
sage-queuing systems, conversions are handled by special nodes in a queuing net-
work, known as message brokers. A message broker acts as an application-level
gateway in a message-queuing system. Its main purpose is to convert inconxing
messages so that they can be understood by the destination application. Note that
to a message-queuing system, a message broker is just another application. as
shown in Fig. 4-21. In other words, a message broker is generally not considered
to be an integral part of the queuing system.

Repository with
conversion rules . .
Source client Message broker and programs Destination client
\ \ /
\ \ [
Broker
program

0S L:J <~—% 1 :l H Iaygrs % 1

Network

Figure 4-21. The general organization of a message broker in a message-
queuing system.

A message broker can be as simple as a reformatter for messages. For ex-
ample, assume an incoming message contains a table from a database, in which
records are separated by a special end-oj-record delimiter and fields within a rec-
ord have a kpown, fixed length. If the destination application expects a different
delippiter between records, and also expects that fields have variable lengths, a
message broker can be used to convert messages to the format expected by the
destination.

In a more advanced setting, a message broker may act as an application-level
gateway, such as one that handles the conversion between two different database
applications. In such cases, frequently it cannot be guaranteed that all information
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contained in the incoming message can actually be transformed into something
appropriate for the outgoing message.

However, more common is the use of a message broker for advanced enter-
prise application integration (EAI) as we discussed in Chap. 1. Ia this case,
rather than (only) convetting messages, a broker is responsible for matching appli-
cations based on the messages that are being exchanged. In such a model, called
publish/subscribe, applications send messages in the form of publishing. In par-
ticular, they may publish a message on topic X, which is then sent to the broker.
Applications that have stated their interest in messages on topic X, that is, who
have subscribed to those messages, will then receive these messages from the
broker. More advanced forms of mediation are also possible, but we will defer
further discussion until Chap. 13. '

At the heart of a message broker lies a repository of rules and programs that
can transform a message of type 77 to one of type 72. The problem is defining
the rules and developing the programs. Most message broker products come with
sophisticated development tools, but the bottom line is still that the repository
needs to be filled by experts. Here we see a perfect example where commereial -
products are often misleadingly said to provide "intelligence," where, in fact, the
only intelligence is to be found in the heads of those experts.

A Note on Message-Queuing Systems

Considering what we have said about message-queuing systems, it would
appear that they have long existed in the form of implementations for e-mail ser-
vices. E-mail systems are generally implemented through a collection of mail ser-
vers that store and forward messages on behalf of the users on hosts directly con-
nected to the server. Routing is generally left out, as e-mail systems can make
direct use of the underlying transport services. For example, in the mail protocol
for the Internet, SMTP (Postel, 1982), a message is transferred by setting up a
direct TCP connection to the destination mail server.

What magkes e-mail systems special compared to message-queuing systems is
that they are primarily aimed at providing direct support for end users. This
explains, for example, why a number of groupware applications are based directly
on an e-mail system (Khoshafian and Buckiewicz 1995). In addition, e-mail sys-
tems may have very specific requirements such as automatic message filtering,
support for advanced messaging databases (e.g., to easily retrieve previously
stored messages), and so on.

General message-queuing systems are not aimed at supporting only end users.
An important issue is that they are set up to enable persistent communication be-
tween processes, regardless of whether a process is running a user application.
handling access to a database, performing computations, and so on. This approach
leads to a different set of requirements for message-queuing systems than pure e-
mail systems. For example, e-mail systems generally need not provide guaranteed
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message delivery, message priorities, logging facilities, efficient multicasting,
load balancing, fault tolerance, and so on for general usage.

General-purpose message-queuing systems, therefore, have a wide range of
applications, including e-mail, workflow, groupware, and batch processing. How-
ever, as we have stated before, the most important application area is the integra-
tion of a (possibly widely-dispersed) collection of databases and applications into
a federated information system (Hohpe and Woolf, 2004). For example, a query
expanding several databases may need to be split into subqueries that are for-
warded to individual databases. Message-queuing systems assist by providing the
basic means to package each subquery into a message and routing it to the ap-
propriate database. Other communication facilities we have discussed in this
chapter are far less appropriate. '

4.3.3 Example: IBM's WebSphere Message-Queuing System

To help understand how message-queuing systems work in practice, let us
take a look at one specific system, namely the message-queuing system that is
part of IBM's WebSphere product. Formerly known as MQSeries, it is now
referred to as WebSphere MQ. There is a wealth of documentation on Web-
Sphere MQ, and in the following we can only resort to the basic principles. Many
architectural details concerning message-queuing networks can be found in IBM
(2005b, 2005d). Programming message-queuing networks is not something that
can be learned on a Sunday afternoon, and MQ's programming guide (IBM,
2005a) is a good example showing that going from principles to practice may
require substantial effort. ‘

Overview

The basic architecture of an MQ queuing network is quite straightforward,
and is shown in Fig. 4-22. All queues are managed by queue managers. A
queue manager is responsible for removing messages from its send queues, and
forwarding those to other queue managers. Likewise, a queue manager is respon-
sible for handling incoming messages by picking them up from the underlying
network and subsequently storing each message in the appropriate input queue. To
give an impression of what messaging can mean: a message has a maximum de-
fault size of 4 MB, but this can be increased up to 100 MB. A queue is normally
restricted to 2 GB of data, but depending on the undeilying operating system, this
maximum can be easily set higher.

Queue managers are pairwise connected through message channels, which
are an abstraction of transport-level connections. A message channel is a unidirec-
tional, reliable connection between a sending and a receiving queue manager,
through which queued messages are transported. For example, an Internet-based
message channel is implemented as a TCP connection. Each of the two ends of a
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message channel is managed by a message channel agent (MCA). A sending
:MCA is basically doing nothing else than checking send queues for a message,
wrapping it into a transport-level packet, and sending it along the connection to its
associated receiving MCA. Likewise, the basic task of a receiving MCA is listen-
ing for an incoming packet, unwrapping it, and subsequently storing the unwrap-
ped message into the appropriate queue.

Client's receive - .
Receiving client

Sending client Routing table Send queue queue \ |
\ N
Queue - Queue
Program manager manager Program
MQ Interface
Server
RPC Local network ; \
Enterprise network
(synchronous) To other remote
Message passing queue managers
(asynchronous)

////// Figure 4-22. General organization of IBM's message-queuing system.

Queue managers can be linked into the same process as the application for
which it manages the queues. In that case, the queues are hidden from the applica-
tion behind a standard intesface, but effectively can be directly manipulated by the
application. An alternative organization is one in which queue managers and ap-
plications run on separate machines. In that case, the application is offered the
same interface as when the queue manager is colocated on the same machine.
However, the interface is implemented as a proxy that communicates with the
queue manager using traditional RPC-based synchzonous communication. In this
way, MQ basically retains the model that only queues local to an application can
be accessed.

Channels

An important component of MQ is formed by the message channels. Each
message channel has exactly one associated send queue from which it fetches the
messages it should transfer to the other end. Transfer along the channel can take
place only if both its sending and receiving MCA are up and running. Apart from
starting both MCAs manually, there are several alternative ways to start a chan-
nel, some of which we discuss next..



154 COMMUNICATION CHAP. 4

One alternative is to have an application directly start its end of a channel by
activating the sending or receiving MCA. However, from a transparency point of
view, this is not a very attractive alternative. A better approach to start a sending
MeA is to configure the channel's send queue to set off a trigger when a message
is first put into the queue. That trigger is associated with a handler to start the
sending MCA so that it can remove messages from the send queue.

Another alternative is to start an MCA over the network. In partieular, if one
side of a channel is already active, it can send a control message requesting that
the other MCA to be started. Such a control message is sent to a daemon listening
to a well-known address on the same machine as where the other MCA is to be
started.

Channels are stopped automatically after a specified time has expired during
which no more messages were dropped into the send queue.

Each MCA has a set of associated attributes that determine the overall be-
havior of a channel, Some of the attributes are listed in Fig. 4-23. Attribute values
of the sending and receiving MCA should be compatible and perhaps negotiated
first before a channel can be set up. For example, both MCAs should obviously
support the same transport protocol. An example of a nonnegotiable attribute is
whether or not messages are to be delivered in the same order as they are put into
the send queue. If one MCA wants FIFO delivery, the other must comply. An ex-
ample of a negotiable atfribute value is the maximum message length, which will
simply be chosen as the minimum value specified by either MCA.

Attribute Description
. Transport type Determines the transport protocol to be used
- FIFO delivery indicates that messages are to be delivered in the order they are sent

Message length Maximum length of a single message
?Setup retry count | Specifies maximum number of retries to start up the remote MCA
| Delivery retries Maximum times MCA will try to put received message into queue

Figure 4-23. Some attributes associated with message channel agents.

Message Transfer

To transfer a message from one queue manager to another (possibly remote)
queue manager, it is necessary that each message carries its destination address,
for which a transmission header is used. An address in MQ consists of two parts.
The first part consists of the name of the queue manager to which the message is
to be delivered. The second part is the name of the destination queue resorting
under that manager to which the message is to be appended.

Besides the destination address, it is also necessary to specify the route that a
message should follow. Route specification is done by providing the name of the
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local send queue to which a message is to be appended. Thus it is not necessary to
provide the full route in a message. Recall that each message channel has exactly
one send queue. By telling to which send queue a message is to be appended, we
efectively specify to which queue manager a message is to be forwarded.

In most cases, routes are explicitly stored inside a queue manager in a routing
table. An entry in a routing table is a pait (destOM, send(Q), where destOM 1is the
name of the destination queue manager, and sendQ is the name of the local send
queue to which a message for that queue manager should be appended. (A routing
table entry is called an alias in MQ.)

It is possible that a message needs to be transferred across multiple queue
managers before reaching its destination. Whenever such an intermediate queue
manager receives the message, it simply extracts the name of the destination
queue manager from the message header, and does a routing-table look-up to find
the local send queue to which the message should be appended.

It is important to realize that each queue manager has a systemwide unique
name that is effectively used as an identifier for that queue manager. The problem
with using these names is that replacing a queue manager, or changing its name,
will affect all applications that send messages to it. Problems can be alleviated by
using a local alias for queue manager names. An alias defined within a queue
manager M/ is another name for a queue manager M2, but which is available only
to applications integfacing to M/. An alias allows the use of the same (logical)
name for a queue, even if the queue manager of that queue changes. Changing the
name of a queue manager requires that we change its alias in all queue managers.
However, applications can be left unaffected.

Alias table Routing table

LA1_|QMC QM8 | sa1 Alias table  Routing table
LA2 [QMD QMC | sQ1 LA1 | QMA QMA | SN
MD | SQ2 LA2 | QMD QMmC | sQt

QMD | SQt1

Ql
sozE_‘ I_EJ sof 3
" s
g =] sat QB

Routing table g1 |11} QMC Routing table
ama | sq1
ama | sq1
amc| s@2 sz I QMB | sot
QmB | SQ1i QMD | sSQ1
Alias table
LA | QMA [l sat
LA2 | QMC
QMD

Figure 4-24. The general organization of an MQ quéuing network using routing
tables and aliases.
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The principle of using routing tables and aliases is shown in Fig. 4-24. For
example, an application linked to queue manager QMA can refer to a remote
queue manager using the local alias LAJ. The queue manager will first look up
the actual destination in the alias table to find it is queue manager QMC: The
route to QMC is found in the routing table, which states that messages for QMC
should be appended to the outgoing queue SQ/, which is used to transfer mes-
sages to queue manager OMB. The latter will use its routing table to forward the
message to QMC.

Following this approach of routing and aliasing leads to a programming inter-
face that, fundamentally, is relatively simple, called the Message Queue Inter-
face (MQI). The most important primitives of MQI are summarized in Fig. 4-25.

Primitive | Description

MQopen | Open a (possibly remote) queue
MQclose 5 Close a queue

MQput ‘ Put a message into an opened queue
MQget ' Get a message from a (local) queue

Figure 4-25. Primitjives available in the message-queuing interface.

To put messages into a queue, an application calls the MQopen primitive,
specifying a destination queue in a specific queue manager. The queue manager
can be named using the locally-available alias. Whether the destination queue is
actually remote or not is completely transparent to the application. = MQopen
should also be called if the application wants to get messages from its local queue.
Only local queues can be opened for reading incoming messages. When an appli-
cation is finished with accessing a queue, it should close it by calling MQclose.

Messages can be written to, or read from, a queue using MQput and MQget,
respectively. In principle, messages are removed from a queue on a priority basis.
Messages with the same priority are removed on a first-in, first-out basis, that is,
the longest pending message is removed first. It is also possible to request for spe-
cific messages. Finally, MQ provides facilities to signal applications when mes-
sages have grrived, thus avoiding that an application willl continuously have to
poll a message queue for incoming messages.

Managing Overlay Networks

From the description so far, it should be clear that an important past of manag-
ing MQ systems is connecting the various queue managers into a consistent over-
lay network., Moreover, this network needs to be maintained over time. For small
networks, this maintenance willl not require much more than average administra-
tive work, but matters become complicated when message queuing is used to
integrate and disintegrate large existing systems.
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A major issue with MQ is that overlay networks need to be manually adminis-
trated. This administration not only involves creating channels between queue
managers, but also filling in the routing tables. Obviously, this can grow into a
nightmare. Unfortunately, management support for MQ systems is advanced only
in the sense that an administrator can set virtually every possible attribute, and
tweak any thinkable configuration. However, the bottom line is that channels and
routing tables need to be manually maintained.

At the heart of overlay management is the channel control function com-
ponent, which logically sits between message channel agents. This component
allows an operator to monitor exactly what is going on at two end points of a
channel, In addition, it is used to create channels and routing tables, but also to
manage the queue managers that host the message channel agents. In a way, this
approach to overlay management strongly resembles the management of cluster
servers where a single administration server is used. In the latter case, the server
essentially offers only a remote shell to each machine in the cluster, along with a
few collective operations to handle groups of machines. The good news about dis-
tributed-systems management is that it offers lots of opportunities if you are look-
ing for an area to explore new solutions to serious problems.

4.4 STREAM-ORIENTED COMMUNICATION

E3

Communication as discussed so far has concentrated on exchanging more-or-
less independent and complete units of information. Examples include a request
for invoking a procedure, the reply to such a request, and messages exchanged be-
tween applications as in message-queuing systems. The characteristic feature of
this type of communication is that it does not matter at what particular point in
time communication takes place. Although a system may perform too slow or too
fast, timing has no effect on correctness.

There are also forms of communication in which timing plays a crucial role.
Consider, for example, an audio stream built up as a sequence of 16-bit samples,
each representing the amplitude of the sound wave as is done through Pulse Code
Modulation (PCM). Also assume that the audio stream represents CD quality,
meaning that the original sound wave has been sampled at a frequency of 44,100
Hz. To reproduce the original sound, it is essential that the samples in the audio
stream are played out in the order they appear in the stream, but also at intervals
of exactly 1/44,100 sec. Playing out at a different rate will produce an incorrect
version of the original sound.

The question that we address in this section is which facilities a distributed
system should offer to exchange time-dependent information such as audio and
video streams. Various network protocols that deal with stream-oriented commu-
nication are discussed in Halsall (2001). Steinmetz and Nahrstedt (2004) provide
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an overall introduction to multimedia issues, part of which forms stream-oriented
communigation. Query processing on data streams is discussed in Babcock et al.
(2002).

4.4.1 Support for Continuous Media

Support for the exchange of time-dependent information is often formulated
as support for continuous media. A medium refers to the means by which infor-
mation is conveyed. These means include storage and transmission media, pres-
entation media such as a monitor, and so on. An important type of medium is the
way that information is represented. In other words, how is information encoded
in a computer system? Different representations are used for different types of in-
formation. For example, text is generally encoded as ASCII or Unicode. Images
can be represented in different formats such as GIF or IPEG. Audio streams can
be encoded in a computer system by, for example, taking 16-bit samples using
PCM.

In continuous (representation) media, the temporal relationships between
different data items are fundamental to correctly interpreting what the data actual-
ly means. We already gave an example of reproducing a sound wave by playing
out an audio stream. As another example, consider motion. Motion can be repres-
ented by a series of images in which successive images must be displayed at a
uniform spaging 7 in time, typically 30-40 msec per image. Correct reproduction
requires not only showing the stills in the correct order, but also at a constant fre-
quency of /iT images per second. }

In contrast to continuous media, discrete (representation) media, is charac-
terized by the fact that temporal relationships between data items are not funda-
mental to correctly interpreting the data. Typical examples of discrete media
ingclude representations of text and still images, but also object code or executable

files.

Data. Stream

To capture the exchange of time-dependent information, distributed systems
generally provide support for data streams. A data stream is nothing but a se-
quence of data units. Data streams can be applied to discrete as well as continuous
media. For example, UNIX pipes or TCPIIP connections are typical examples of
(byte-oriented) discrete data streams. Playing an audio file typically requires set-
ting up a continuous data stream between the file and the audio deviee.

Timing is crucial to continuous data streams. To capture timing aspects, a dis-
tinction is often made between different transmission modes. In asynchronous
transipission mode the data items in a stream are transmitted one after the other,
but there are no further timing constraints on when transmission of items should
tgke place. This is typically the case for discrete data streams. For example, a file



SEC, 44 STREAM-ORIENTED COMMUNICATION 159

can be transferred as a data stream, but it is mostly irrelevant exactly when the
transfer of each item completes.

In synchronous transmission mode, there is a maximum end-to-end delay
defined for each unit in a data stream. Whether a data unit is transferred much fas-
ter than the maximum tolerated delay is not important, For example, a sensor may
sample temperature at a certain rate and pass it through a network to an operator.
In that case, it may be important that the end-to-end propagation time through the
network is guaranteed to be lower than the time interval between taking samples,
but it cannot do any harm if samples are propagated much faster than necessary.

Finally, in isochronous transmission mode, it is necessary that data units are
transferred on time. This means that data transfer is subject to a maximum and
minimum end-to-enddelay, also referred to as bounded (delay) jitter. Isochronous
transmission mode is particularly interesting for distributed multimedia systems,
as it plays a crucial role in representing audio and video. In this chapter, we con-
sider only continuous data streams using isochronous transmission, which we will
refer to simply as streams.

Streams can be simple or complex. A simple stream consists of only a single
sequence of data, whereas a complex stream consists of several related simple
streams, called substreams. The relation between the substreams in a complex
stream is often also time dependent. For example, stereo audio can be transmitted
by means of a complex stream consisting of two substreams, each used for a sin-
gle audio channel, It is important, however, that those two substreams are continu-
ously synchronized. In other words, data units from each stream are to be com-
municated pairwise to ensure the effect of stereo. Another example of a complex
stream 1is one for transmitting a movie. Such a stream could consist of a single
video stream, along with two streams for transmitting the sound of the movie in
stereo. A fourth stream might contain subtitles for the deaf, or a translation into a
different language than the audio. Again, synchronization of the substreams is im-
portant, If synchronization fails, reproduction of the movie fails. We return to
stream synchronization below.

From a distributed systems perspective, we can distinguish several elements
that are needed for supporting streams. For simplicity, we concentrate on stream-
ing stored data, as opposed to streaming live data. In the latter case. data is cap-
tured in real time and sent over the network to recipients. The main difference be-
tween the two is that streaming live data leaves less opportunities for tuning a
stream. Following Wu et al, (2001), we can then sketch a general ¢lient-server ar-
chitecture for supporting continuous multimedia streams as shown in Fig. 4-26.

This general architecture reveals a number of important issues that need to be
dealt with. In the first place, the multimedia data, notably video and to a lesser
extent audio, will need to be compressed substantially in order to reduce the re-
quired storage and especially the network capacity. More important from the per-
spective of communigation are controlling the quality of the transmission and syn-
chronization issues. We discuss these issues next.
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Stream synchronization

Multimedia server Client /
Stream P / Stream
J, decoder decoder
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multimedia data A
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Figure 4-26. A general architecture for streaming stored multimedia data over a
network.

4.4.2 Streams and Quality of Service

Timing (and other nonfunctional) requirements are generally expressed as
Quality of Serviee (QoS) requirements. These requirements describe what is
needed from the underlying distributed system and network to ensure that, for ex-
ample, the temporal relationships in a stream can be preserved. QoS for continu-
ous data streams mainly concerns timeliness, volume, and reliability. In this sec-
tion we take a closer look at QoS and its relation to setting up a stream.

Much has been said about how to specify required QoS (see, e.g., Jin and
Nabhrstedt, 2004). From an application's perspective, in many cases it boils down
to specifying a few important properties (Halsall, 2001):

1. The required bit rate at which data should be transported.

2. The maximum delay until a session has been set up (i.e., when an ap-
plication can start sending data).

3. The maximum end-to-end delay (i.e., how long it will take until a
data unit makes it to a recipient).

4. The maximum delay variance, or jitter.

5. The maximum round-trip delay.

It should be noted that many refinements can be made to these specifications, as
explained, for example, by Steinmetz and Nahrstadt (2004). However, when deal-
ing with stream-oriented communication that is based on the Internet protocol
stack, we simply have to live with the fact that the basis of communication is
formed by an extremely simple, best-effort datagram service: IP. When the going
gets tough, as may easily be the case in the Internet, the specification of IP allows
a protocol implementation to drop packets whenever it sees fit. Many, if not all
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distributed systems that support stream-oriented communieation, are currently
built on top of the Internet protocol stack. So much for QoS speeifications. (Actu-
ally, IP does provide some QoS support, but it is rarely implemented.)

Enforaing QoS

Given that the underlying system offers only a best-effort delivery service, a
distributed system can try to conceal as much as possible of the lack of quality of
servige. Fortunately, there are several mechanisms that it can deploy.

First, the situation is not really so bad as sketched so far. For example, the
Internet provides a means for differentiating classes of data by means of its dif-
ferentiated services. A sending host can essentially mark outgoing packets as
belonging to one of several ¢lasses, including an expedited forwarding elass that
essentially specifies that a packet should be forwarded by the current router with
absolute priority (Davie et al., 2002). In addition, there is also an assured for-
warding class, by which traffic is divided into four subelasses, along with thiee
ways to drop packets if the network gets congested. Assured forwarding therefore
effectively defines a range of priorities that can be assigned to packets, and as
such allows applications to differentiate time-sensitive packets from noncritieal
ones.

Besides these network-level solutions, a distributed system can also help in
getting data across to receivers. Although there are generally not many tools avail-
able, one that is particularly useful is to use buffers to reduce jitter. The prineiple
is simple, as shown in Fig. 4-27. Assuming that packets are delayed with a cer-
tain vgriance when transmitted over the network, the receiver simply stores them
in a buffer for a maximum amount of time. This will allow the receiver to pass
packets to the application at a regular rate, knowing that there will always be
enough packets entering the buffer to be played back at that rate.

Packet departs source @ EJ
Packet arrives at buffer EI E] El @
Time in buffer
Packet removed from buffer I< ! > E] B E @ H

Gap in playback
llllllllllllllllllllIJ__l

0 5 10 15 20
Time (sec)

Figure 4-27. Using a buffer to reduce jitter.

Of course, things may go wrong, as is illustrated by packet #8 in Fig. 4-27.
The size of the receiver's buffer corresponds to 9 seconds of packets to pass to the
application. Unfortunately, packet #8 took 11 seconds to reach the receiver, at
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which time the buffer will have been completely emptied. The result is a gap in
the playback at the application. The only solution is to increase the buffer size.
The obvious drawback is that the delay at which the receiving application can
start playing back the data contained in the packets increases as well.

Other techniques can be used as well. Realizing that we are dealing with an
underlying best-effort service also means that packets may be lost: To compensate
for this loss in quality of service. we need to apply error correction techniqu.es
(Perkins et al., 1998; and Wah et al., 2000). Requesting the sender to retransmit a
missing packet is generally out of the question, so that forward error correction
(FEe) needs to be applied. A well-known technique is to encode the outgoing
packets in such a way that any k out of n received packets is enough to reconstruct
k correct packets.

One problem that may occur is that a single packet contains multiple audio
and video frames. As a consequence, when a packet is lost, the receiver may actu-
ally perceive a large gap when playing out frames. This effect can be somewhat
circumvented by interleaving frames, as shown in Fig. 4-28. In this way, when a
packet is lost, the resulting gap in successive frames is distributed over time.
Note, however, that this approach does require a larger receive buffer in com-
parison to noninterleaving, and thus imposes a higher start delay for the receiving
application. For example, when considering Fig.4-28(b), to play the first four
frames, the receiver will need to have four packets delivered, instead of only one
packet in comparison to noninterleaved transmission.

Lost packet
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L.ost packet
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Figure 4-28. The effect of packet loss in (a) noninterleaved transmission and
(b) intetleaved transmission.
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4.4.3 Stream Synchronization

An important issue in multimedia systems is that different streams, possibly in
the form of a complex stream, are mutually synchsonized. Synchronization of
streams degls with maintaining temporal relations between streams. Two types of
synchgonization occur.

The simplest form of synchronization is that between a discrete data stream
and a continuous data stream. Consider, for example, a slide show on the Web
that has been enhanced with audio. Each slide is transferred from the server to the
client in the form of a discrete data stream. At the same time, the elient should
play out a specific (part of an) audio stream that matches the current slide that is
also fetched from the server. In this case, the audio stream is to be 'synchronized
with the presentation of slides.

A more demanding type of synchronization is that between continuous data
streams. A dgily example is playing a movie in which the video stream needs to
be synchgonized with the audio, commonly referred to as lip syncheonization.
Another example of synchronization is playing a stereo audio stream consisting of
two substreams, one for each channel.. Proper play out requires that the two sub-
streams are tightly synchronized: a difference of more than 20 psee can distort the
stereo effect.

Synchronization takes place at the level of the data units of which a stream is
made up. Iy other words, we can synchmonize two streams only between data
units. The choige of what exactly a data unit is depends very much on the level of
abstraction at which a data stream is viewed. To make things concrete, consider
aggin a CD-quality (single-channel) audio stream. At the finest granularity, such a
stream appears as a sequence of 16-bit samples. With a sampling frequency of
44,100 Hz, synchronization with other audio streams could, in theory, take place
approximately every 23 usee. For high-quality stereo effects, it turns out that syn-
chronization at this level is indeed necessary.

However, when we consider synchronization between an audio stream and a
video stream for lip synchronization, a much coarser granularity can be taken. As
we explained, video frames need to be displayed at a rate of 25 Hz or more. Tak-
ing the widely-used NTSC standard of 29.97 Hz, we could group audio samples
into logical units that last as long as a video frame is displayed (33 msec). With an
audio sampling frequency of 44,100 Hz, an audio data unit can thus be as large as
1470 samples, or 11,760 bytes (assuming each sample is 16 bits). In practice,
larger units lasting 40 or even 80 msec can be tolerated (Steinmetz, 1996).

Synchronization Mechanisms

Lgt us now see how synchronization is actually done. Two issues need to be
distinguished: (1) the basic mechanisms for synchsonizing two steeams, and (2)
the distribution of those mechanisms in a networked environment. -



164 COMMUNICATION CHAP. 4

Synchronization mechanisms can be viewed at several different levels of
abstraction. At the lowest level, synchronization is done explicitly by operating on
the data units of simple streams. This principle is shown in Fig. 4-29. In essence,
there is a process that simply executes read and write operations on several simple
streams, ensuring that those operations adhere to specific timing and synchroniza-
tion constraints.

Receiver's machine

Application
Procedure that reads
two audio data units for

each video data unit N l—> D

N

|

Incoming stream \r;:

\ 0S
J

Figure 4-29. The principle of explicit synchzonization on the level data units.

For example, consider a movie that is presented as two input streams. The
video stream contains uncompressed low-quality images of 320x240 pixels, each
encoded by a single byte, leading to video data units of 76,800 bytes each.
Assume that images are to be displayed at 30 Hz, or one image every 33 msec.
The audio stream is assumed to contain audio samples grouped into units of 11760
bytes, each corresponding to 33 ms of audio, as explained above. If the input proc-
ess can handle 2.5 MB/sec, we can achieve lip synchronization by simply alternat-
ing between reading an image and reading a block of audio samples every 33 ms.

The drawback of this approach is that the application is made completely
responsible for implementing synchronization while it has only low-level facilities
available. A better approach is to offer an application an interface that allows it to
more easily control streams and devices. Returning to our example, assume that
the video display has a control interface that allows it to specify the rate at which
images should be displayed. In addition, the interface offers the facility to register
a user-defined handler that is called each time ¥ new images have arrived. An
analogous interface is offered by the audio device. With these control interfaces,
an application developer can write a simple monitor program consisting of two
handlers, one for each stream, that jointly check if the video and audio stream are
sufficiently synchronized, and if necessary, adjust the rate at which video or audio
units are presented.

This last example is illustrated in Fig. 4-30, and is typical for many mul-
timedia middleware systems. In effect, multimedia middleware offers a collection
of interfaces for controlling audio and video streams, including intexfaces for con-
trolling devices such as monitors, cameras, microphones, etc. Each device and
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stream has its own high-level intesfaces, including intesfaces for notifying an ap-
plication when some event occurred. The latter are subsequently used to write
handlers for synchronizing streams. Examples of such intesfaces are given in Blair

and Stefani (1998).

Application tells
Receiver's machine middleware what

) _ to do with incoming
Multimedia control Application / streams

is part of middleware y

Middieware layer ———{

Incoming stream l oS
AN ),

Network ~——---"--

Figure 4-30. The principle of synchronization as supported by high-level intexfaces.

The distribution of synchronization mechanisms is another issue that needs to
be looked at, First, the receiving side of a complex stream consisting of sub-
streams that require synchronization, needs to kmow exactly what to do. In other
words, it must have a complete synchronization specification locally available.
Common practice is to provide this information implicitly by multiplexing the dif-
ferent streams into a single stream ‘containing all data units, ineluding those for
synchronization.

This latter approach to synchronization is followed for MPEG streams. The
MPEG (Motion Pigfure Experts., Group) standards form. a collection of algo-
rithms for compressing video and audio. Several MPEG standards exist. MPEG-2,
for example, was originally designed for compressing broadcast quality video into
4 to 6 Mbps. In MPEG-2, an unlimited number of continuous and discrete streams
can be merged into a single stream. Each input stream is first turned into a stream
of packets that carry a timestamp based on a 90-kHz system <¢lock. These streams
are subsequently mﬁltiplexed into a program stream then consisting of variable-
length packets, but whi¢ch have in common that they all have the same time base.
The receiving side demultiplexes the stream, again using the timestamps of each
packet as the basi¢ mechanism for interstteam synchuonization.

Another important issue is whether synchronization should take place at the
sending or the receiving side. If the sender handles synchwonization, it may be
possible to merge streams into a single stream with a different type of data unit:
Consider again a stereo audio stream consisting of two substreams, one for each
channel., One possibility is to transfer each stream independently to the receiver
and let the latter synchronize the samples pairwise. Obviously, as each substream
may be subject to different delays, synchuonization can be exteemely difficult, A



166 COMMUNICATION CHAP. 4

better approach is to merge the two substreams at the sender. The resulting stream
consists of data units consisting of pairs of samples, one for each channel. The re-
ceiver now merely has to read in a data unit, and split it into a left and right sam-
ple. Delays for both channels are now identical.

4.5 MULTICAST COMMUNICATION

An important topic in communication in distributed systems is the support for
sending data to multiple receivers, also known as multicast communication. For
many years, this topic has belonged to the domain of network protocols, where
numerous proposals for network-level and transport-level solutions have been im-
plemented and evaluated (Janie, 2005; and Obraczka, 1998). A major issue in all
solutions was setting up the communication paths for information dissemination.
In practice, this involved a huge management effort, in many cases requiring
human intervention. In addition, as long as there is no convergence of proposals,
ISPs have shown to be reluctant to support multicasting (Diot et al., 2000).

With the advent of peer-to-peer technology, and notably structured overlay
management, it became easier to set up communication paths. As peer-to-peer
solutions are typically deployed at the application layer, various application-level
multicasting techniques have been introduced. In this section, we will take a brief
look at these techniques.

Multicast communication can also be accomplished in other ways than setting
up explicit communication paths. As we also explore in this section. gossip-based
information dissemination provides simple (yet often less efficient) ways for mul-
ticasting.

4.5.1 Application-Level Multicasting

The basic idea in application-level multicasting is that nodes organize into an
overlay network, which is then used to disseminate information to its members.
An important observation is that network routers are not involved in group
membership. As a consequence, the connections between nodes in the overlay
network may cross several physical links, and as such, routing messages within
the overlay may not be optimal in comparison to what could have been achieved
by network-level routing.

A crucial design issue is the construction of the overlay network. In essence,
there are two approaches (El-Sayed, 2003). First, nodes may organize themselves
directly into a tree, meaning that there is a unique (overlay) path between every
pair of nodes. An alternative approach is that nodes organize into a mesh network
in which every node will have multiple neighbors and, in general, there exist mul-
tiple paths between every pair of nodes. The main difference between the two is
that the latter generally provides higher robustness: if a connection breaks (e.g.,
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because a node fails), there will still be an opportunity to disseminate information
without having to immediately reorganize the entire oveilay network.

To make matters concrete, let us consider a relatively simple scheme for con-
structing a multicast tree i Chord, which we described in Chap. 2. This scheme
was originally proposed for Scribe (Castro et al., 2002) which is an application-
level multicasting scheme built on top of Pastry (Rowstron and Druschel, 2001).
The latter is also a DHT -based peer-to-peer system.

Assume a node wants to start: a multicast session. To this end, it simply gen-
erates a multicast identifier, say mid which is just a randomly-chosen 160-bit key.
It then looks up succ(mid), which is the node responsible for that key, and pro-
motes it to become the root of the multicast tree that will be used to sending data
to interested nodes. In order to join the tree, a node P simply executes the opera-
tion LOOKUP(mid) having the effect that a lookwp message with the request to
join the multicast group mid will be routed from P to succimid). As we men-
tioned before, the routing algorithm. itself will be explained in detail in Chap. 5.

On its way toward the root, the join request will pass several nodes. Assume it
first reaches node Q. If Q had never seen a join request for mid before, it will
become a forwarder for that group. At that point, P will become a child of Q
whereas the latter will continue to forward the join request to the root. If the next
node on the root, say R is also not yet a forwarder, it will become one and record
Q.as its child and continue to send the join request.

On the other hand, if Q (or R) is already a forwarder for mid, it will also
record the previous sender as its child (i.e., P or Q, respectively), but there will
not be a need to send the join request to the root anymore, as Q (or R) will already
be a member of the multicast tree.

Nodes such as P that have explicitly requested to join the multicast tree are,
by definition, also forwarders. The result of this scheme is that we construct a
multicast tree across the oveglay network with two types of nodes: pure forward-
ers that act as helpers, and nodes that are also forwarders, but have explicitly re-
quested to join the tree. Multicasting is now simple: a node merely sends a multi-
cast message toward the root of the tree by again executing the LOOKUP(mid) op-
eration, after which that message can. be sent along the tree.

We note that this high-level descuiption of multicasting in Sckibe does not do
justice to its original design. The interested reader is therefore encouraged to take
a look at the details, which can be found in Castro et al. (2002).

Overlay Construction

From the high-level descuiption given above, it should be clear' that although
building a tree by itself is not that difficult once we have organized the nedes into
an oveglay, building an efficient tree may be a different story. Note that in our
description so far, the selection of nodes that participate in the tree does not take
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into account any performance metrics: it is purely based on the (logical) routing
messages through the overlay.

End host Router

yo

Overlay network

- Figure 4-31. The relation between links in an oveslay and actual network-level routes.

To understand the problem at hand, take a look at Fig. 4-31 which shows a
small set of four nodes that are organized in a simple overlay network, with node
A forming the root of a multicast tree. The costs for traversing a physical link are
also shown. Now, whenever A multicasts a message to the other nodes, it is seen
that this message will traverse each of the links <.B,Rb», <Ra, Rb>, «Rc, Rd»,
and <D, Rdy twice. The overlay network would have been more efficient if we
had not constructed an overlay link from B to D, but instead from A to C. Such a
configuration would have saved the double traversal across links «Ra, Rb> and
<Rc, Rd>. :

The quality of an application-level multicast tree is generally measured by
three different metrics: link stress, stretch, and tree cost. Link stress is defined
per link and counts how often a packet crosses the same link (Chu et al., 2002). A
link stress greater than 1 comes from the fact that although at a logical level a
packet may be forwarded along two different connections, part of those connec-
tions may actually correspond to the same physical link, as we showed in Fig. 4-
31,

The stretch or Relative Delay Penalty (RDP) measures the ratio in the delay
between two nodes in the overlay, and the delay that those two nodes would
experience in the undetlying network. For example, in the overlay network, mes-
sages from B to C follow the route B ~ Rb ~ Ra ~ Rc ~ C, having a total cost
of 59 units. However, messages would have been routed in the undexlying net-
work along the path B ~ Rb ~ Rd ~ Rc ~ C, with a total cost of -+/ units, lead-
ing to a stretch of 1,255. Obviously, when constructing an ovexlay network, the
goal is to minimize the aggregated stretch, or similarly, the average RDP meas-
ured over all node pairs.

Finally, the tree cost is a global metric, generally related to minimizing the
aggregated link costs. For example, if the cost of a link is taken to be the delay be-
tween its two end nodes, then optimizing the tree cost boils down to finding a
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minimal spanning tree in which the total time for disseminating information to all
nodes is minimal.

To simplify matters somewhat, assume that a multicast group has an associ-
ated and well-known node that keeps track of the nodes that have joined the tree.
When a new node issues a join request, it contacts this rendezvous nede to obtain
a (potentially partial) list of members. The goal is to select the best member that
can operate as the new node's parent in the tree. Who should it select? There are
many alternatives and different proposals often follow very different solutions.

Consider, for example, a multicast group with only a single source. In this
case, the selection of the best node is obvious: it should be the source (because in
that case we can be assured that the stretch will be equal to 1). However, in doing
so, we would introduce a star topology with the source in the middle. Although
simple, it is not difficult to imagine the source may easily become overloaded. In
other words, selection of a node will generally be constrained in such a way that
only those nodes may be chosen who have % or less neighbors, with £ being a
design parameter. This constraint severely complicates the tree-establishment al-
gorithm, as a good solution may require that part of the existing tree is reconfig-
ured.

Tan et al, (2003) provide an extensive overview and evaluation of various
solutions to this problem. As an illustration, let us take a closer look at one specif-
ic family, known as switch-trees (Helder and Jamin, 2002). The basic idea is
simple. Assume we already have a multicast tree with a single source as root, In
this tree, a node P can switch parents by dropping the link to its current parent in
favor of a link to another node. The only constraints imposed on switching links is
that the new parent can never be a member of the subtree rooted at P (as this
would partition the tree and create a loop), and that the new parent will not have
too many immediate children. The latter is needed to limit the load of forWarding
messages by any single node.

There are different criteria for deciding to switch parents. A simple one is to
optimize the route to the source, effectively minimizing the delay when a message
is to be multicast, To this end, each node regularly receives information on other
nodes (we will explain one specific way of doing this below). At that point, the
node can evaluate whether another node would be a better parent in terms of delay
along the route to the source, and if so, initiates a switch.

~ Another criteria could be whether the delay to the potential other parent is
lower than to the current parent. If every node takes this as a criterion, then the
aggregated delays of the resulting tree should ideally be minimal. In other words,
this is an example of optimizing the cost of the tree as we explained above. How-
ever, more information would be needed to construct such a tree, but as it turns
out, this simple scheme is a reasonable heuristic leading to a good approximation
of a minimal spanning tree. ‘

As an example, consider the case where a node P receives information on the
neighbors of its parent, Note that the neighbors consist of P's grandparent, along
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with the other siblings of P's parent. Node P can then evaluate the delays to each
of these nodes and subsequently choose the one with the lowest delay, say Q, as
its new parent, To that end, it sends a switch request to Q. To prevent loops from
being formed due to concurrent switching requests. a node that has an outstanding
switch request will simply refuse to process any incoming requests. In effect, this
leads to a situation where only completely independent switches can be carried
out simultaneously. Furthermore, P will provide Q with enough information to
allow the latter to conclude that both nodes have the same parent, or that Q is the
grandparent,

An important problem that we have not yet addressed is node failure. In the
case of switch-trees, a simple solution is proposed: whenever a node notices that
its parent has failed, it simply attaches itself to the root. At that point, the optimi-
zation protocol can proceed as usual and will eventually place the node at a good
point in the multicast tree. Experiments described in Helder and Jamin (2002)
show that the resulting tree is indeed close to a minimal spanning one.

4.5.2 Gossip-Based Data. Dissemination

An increasingly important technique for disseminating information is to rely
on epidemic behavior. Observing how diseases spread among people, researchers
have since long investigated whether simple techniques could be developed for
spreading information in very large-scale distributed systems. The main goal of
these epidemic protocols is to rapidly propagate information among a large col-
lection of nodes using only local information. In other words, there is no central
component by which information dissemination is coordinated.

To explain the general principles of these algorithms, we assume that all -up-
dates for a specific data item are initiated at a single node. In this way, we simply
avoid write-write conflicts. The following presentation is based on the classical
paper by Demers et al. (1987) on epidemic algorithms. A recent overview of epi-
demic information dissemination can be found in Eugster at el. (2004).

Information Dissemination Models

As the name suggests, epidemic algorithms are based on the theory of epi-
demics, which studies the spreading of infectious diseases. In the case of large-
scale distributed systems, instead of spreading diseases, they spread information.
Research on epidemics for distributed systems also aims at a completely different
goal: whereas health organizations will do their utmost best to prevent infectious
diseases from spreading across large groups of people, designers of epidemic al-
gorithms for distributed systems will try to "infect" all nodes with new informa-
tion as fast as possible.

Using the terminology from epidemics, a node that is part of a distributed sys-
tem is called infected if it holds data that it is willing to spread to other nodes. A
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node that has not yet seen this data is called susceptible. Finally, an updated
node that is not willing or able to spread its data is said to be removed. Note that
we assume we can distinguish old from new data, for example, because it has
been timestamped or versioned. In this light, nodes are also said to spread updates.

A popular propagation model is that of anti-entropy. In this model, a node P
picks another node Q at random, and subsequently exchanges updates with Q.
There are three approaches to exchanging updates:

1. P only pushes its own updates to O
2. P only pulls in new updates from Q
3. P and Q send updates to each other (i.e., a push-pull approach)

When it comes to rapidly spreading updates, only pushing updates turns out to
be a bad choige. Intuitively, this can be understood as follows. First, note that in a
pure push-based approach, updates can be propagated only by infected nodes.
However, if many nodes are infected, the probability of each one selecting a sus-
ceptible node is relatively small. Consequently, chances are that a particular node
remains susceptible for a long period simply because it is not selected by an
infected node.

_ In contrast, the pull-based approach works much better when many nodes are
infected. In that case, spreading updates is essentially triggered by susceptible
nodes. Chances are large that such a node will contact an infected one to subse-
quently pull in the updates and become infected as well.

It can be shown that if only a single node is infected, updates will rapidly
spread across all nodes using either form of anti-entropy, although push-pull
remains the best strategy (Jelasity et al., 2005a). Define a round as spanning a
period in which every node will at least once have taken the initiative to exchange
updates with a randomly chosen other node. It can then be shown that the number
of rounds to propagate a single update to all nodes takes O(log (N)) rounds, where
N is the number of nodes in the system. This indicates indeed that propagating
updates is fast, but above all scalable.

One specific variant of this approach is called rumor spreading, or simply
gossiping. It works as follows. If node P has just been updated for data item x, it
contacts an arbitrary other node Q and tries to push the update to Q. However, it is
possible that Q was already updated by another node. In that case, P may lose
interest in spreading the update any further, say with probability 77k In other
words, it then becomes removed.

Gossiping is completely analogous to real life. When Bob has some hot news
to spread around, he may phone his friend Alice telling her all about it. Alice, like
Bob, will be really excited to spread the gossip to her friends as well. However,
she will become disappointed when phoning a friend, say Chuck, only to hear that
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the news has already reached him. Chances are that she will stop phoning other
friends, for what good is it if they already know?

Gossiping turns out to be an excellent way of rapidly spreading news. How-
ever, it cannot guarantee that all nodes will actually be updated (Demers et al.,
1987). It can be shown that when there is a large number of nodes that participate
in the epidemics, the fraction s of nodes that will remain ignorant of an update,
that is, remain susceptible, satisfies the equation: '

s — e-(k +vy(1-1Y

Fig. 4-32 shows in (s) as a function of k. For example, if k =4, In (51)=-4.97,
so that s is less than 0.007, meaning that less than 0.7% of the nodes remain sus-
ceptible. Nevertheless, special measures are needed to guarantee that those nodes
will also be updated. Combining anti-entropy with gossiping will do the trick.
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Figure 4-32. The relation between the fraction s of update-ignorant nodes and
the parameter k in pure gossiping. The graph displays Inis) as a function of k.

One of the main advantages of epidemic algorithms is their scalability, due to
the fact that the number of synchronizations between processes is relatively small
compared to other propagation methods. For wide-area systems, Lin and Marzullo
(1999) show that it makes sense to take the actual network topology into account
to achieve better results. In their approach, nodes that are connected to only a few
other nodes are contacted with a relatively high probability. The underlying
assumption is that such nodes form a bridge to other remote parts of the network;
therefore, they should be contacted as soon as possible. This approach is referred
to as directional gossiping and comes in different variants.

This problem touches upon an important assumption that most epidemic solu-
tions make, namely that a node can randomly select any other node to gossip with.
This implies that, in principle, the complete set of nodes should be known to each
member. In a large system, this assumption can never hold.
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Fortunately, there is no need to have such a list. As we explained in Chap. 2,
mgintaining a partial view that is more or less continuously updated will organize
the collection of nodes into a random graph. By regularly updating the partial
view of each node, random selection is no longer a problem.

Removwing Data.

Epidemic algorithms are extremely good for spreading updates. However,
they have a rather strange side-effect: spreading the deletion of a data item is
hard. The essence of the problem lies in the fact that deletion of a data item des-
troys all information on that item. Consequently, when a data item is simply re-
moved from a node, that node will eventually receive old copies of the data item
and interpret those as updates on something it did not have before.

The trick is to record the deletion of a data item as just another update, and
keep a record of that deletion. In this way, old copies will not be interpreted as
something new, but merely treated as versions that have been updated by a delete
operation. The recording of a deletion is done by spreading death certificates.

Of course, the problem with death certificates is that they should eventually
be ¢leaned up, or otherwise each node will gradually build a huge local database
of historical information on deleted data items that is otherwise not used. Demers
et al, (1987) propose to use what they call dormant death certificates. Each death
certificate is timestamped when it is created. If it can be assumed that updates
propagate to all nodes within a known finite time, then death certificates can be
removed after this maximum propagation time has elapsed.

However, to provide hard guarantees that deletions are indeed spread to all
nodes, only a very few nodes maintain dormant death certificates that are never
thrown away. Assume node P has such a certificate for data item x. If by any
chance an obsolete update for x reaches P, P will react by simply spreading the
death certificate forx again. "

Applications

‘To finalize this presentation, let us take a look at some interesting applications
of epidemic protocols. We already mentioned spreading updates, which is perhaps
the most widely-deployed application. Also, in Chap. 2 we discussed how provid-
ing positioning information about nodes can assist in constructing specific topolo=
gies. In the same light, gossiping can be used to discover nodes that have a few
outgoing wide-area links, to subsequently apply directional gossiping as we men-
tioned above. .

Another interesting application area is simply collecting, or actually aggregat-
ing information (Jelasity et al., 2005b). Consider the following information
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exchange. Every node i initially chooses an arbitrary number, say xi- When node i
contacts nodej, they each update their value as:

x,-,xj<-—(x,-+xj)/2

Obviously. after this exchange, both i andj will have the same value. In fact. it is
not difficult to see that eventually all nodes will have the same value, namely, the
average of all initial values. Propagation speed is again exponential..

What use does computing the average have? Consider the situation that all
nodes i have set xi to zero, except for x 1, which has set it to I

‘ 1ifi=1
YNEeN0ifi> 1

If there N nodes, then eventually each node will compute the average, which is
liN. As a consequence, every node i can estimate the size of the system as being
IlIxi' This information alone can be used to dynamically adjust various system pa-
rameters. For example, the size of the partial view (i.e., the number of neighbors
that each nodes keeps track of) should be dependent on the total number of parti-
cipating nodes. Knowing this number will allow a node to dynamically adjust the
size of its partial view. Indeed, this can be viewed as a property of self-manage-
ment, '

Computing the average may prove to be difficult when nodes regularly join
and leave the system. One practical solution to this problem is to introduce
epochs. Assuming that node I is stable, it simply starts a new epoch now and then.
When node i sees a new epoch for the first time, it resets its own variable xi to
zero and starts computing the average again.

Of course, other results can also be computed. For example, instead of having
a fixed node (x 1) start the computation of the average, we can easily pick a ran-
dom node as follows. Every node i initially sets xi to a random number from the
same interval, say [0,1], and also stores it permanently as m;. Upon an exchange
between nodes i andj, each change their value to:

X;,Xj ¢ max(x;, X; )

Each node i for which m,; <x will lose the competition for being the initiator in
starting the computation of the average. In the end, there will be a single winner.
Of course, although it is easy to conclude that a node has lost, it is much more dif-
ficult to decide that it has won, as it remains uncertain whether all results have
come in. The solution to this problem is to be optimistic: a node always assumes it
is the winner until proven otherwise. At that point, it simply resets the variable it
is using for computing the average to zero. Note that by now, several different
computations (in our example computing a maximum and computing an average)
may be executing concurrently.

—

—
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4.6 SU~IMARY

Having powerful and flexible facilities for communication between processes
is essential for any distributed system. In traditional network applications, com-
munication is often based on the low-level message-passing primitives offered by
the transport layer. An important issue in middleware systems is to offer a higher
level of abstraction that will make it easier to express communication between
processes than the support offered by the interface to the transport layer.

One of the most widely used abstractions is the Remote Procedure Call
(RPC). The essence of an RPC is that a service is implemented by means of a pro-
cedure, of which the body is executed at a server. The client is offered only the
signature of the procedure, that is, the procedure's name along with its parame-
ters. When the client calls the procedure, the client-side implementation, called a
stub, takes care of wrapping the parameter values into a message and sending that
to the server. The latter calls the actual procedure and returns the results, again in
a message. The client's stub extracts the result values from the return message and
passes it back to the calling client application.

RPCs offer synchronous communication facilities, by which a client is
blocked until the server has sent a reply. Although variations of either mechanism
exist by which this strict synchronous model is relaxed, it turns out that general-
purpose, high-level message-oriented models are often more convenient.

In message-otiented models, the issues are whether or not communication is
persistent, and whether or not communication is synchronous. The essence of per-
sistent communication is that a message that is submitted for transmission, is
stored by the communication system as long as it takes to deliver it. In other
words, neither the sender nor the receiver needs to be up and running for message
transmission to take place. In transient communication, no storage facilities are
offered, so that the receiver must be prepared to accept the message when it is
sent,

In asynchronous communication, the sender is allowed to continue im-
mediately after the message has been submitted for transmission, possibly before
it has even been sent, In synchronous communication, the sender is blocked at
least until a message has been received. Alternatively, the sender may be blocked
until message delivery has taken place or even until the receiver has responded as
with RPCs. '

Message-ogiented middleware models generally offer persistent asynchronous
communication, and are used where RPCs are not appropriate. They are often
used to assist the integration of (widely-dispersed) collections of databases into
large-scale information systems. Other applications include e-mail and workflow.

A very different form of communication is that of streaming, in which the
issue is whether or not two successive messages have a temporal relationship. In
continuous data streams, a maximum end-to-end delay is specified for each mes-
sage. In addition, it is also required that messages are sent subject to a minimum
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end-to-end delay. Typical examples of such continuous data streams are video and
audio streams. Exactly what the temporal relations are, or what is expected from
the underlying communication subsystem in terms of quality of service is often
difficult to specify and to implement. A complicating factor is the role of jitter.
Even if the average performance is acceptable, substantial variations in delivery
time may lead to unacceptable performance.

Finally, an important class of communication protocols in distributed systems
is multicasting. The basic idea is to disseminate information from one sender to
multiple receivers. We have discussed two different approaches. First, multicast-
ing can be achieved by setting up a tree from the sender to the receivers. Consid-
ering that it is now well understood how nodes can self-organize into peer-to-peer
system, solutions have also appeared to dynamically set up trees in a decentral-
ized fashion.

Another important class of dissemination solutions deploys epidemic proto-
cols. These protocols have proven to be very simple, yet extremely robust. Apart
from merely spreading messages, epidemic protocols can also be efficiently
deployed for aggregating information across a large distributed system.

PROBLEMS

1. In many layered protocols, each layer has its own header. Surely it would be more
efficient to have a single header at the front of each message with all the control in it
than all these separate headers. Why is this not done?

2. Why are transport-level communication services often inappropriate for building dis-
tributed applications?

3. A reliable multicast service allows a sender to reliably pass messages to a collection of
receivers. Does such a service belong to a middleware layer, or should it be part of a
lower-level layer?

4. Consider a procedure incr with two integer parameters. The procedure adds one to
each parameter. Now suppose that it is called with the same vaxiable twice, for ex-
ample. as incr(i, i). If i is initially O. what. value will it have afterward if call-by-refer-
ence is used? How about if copy/restore is used?

5. C has a construction called a union, in which a field of a record (called a struct in C)
can hold anyone of several alternatives. At run time, there is no sure-fire way to tell
which one is in there. Does this feature of C have any implications for remote proce-
dure call? Explain your answer.

6. One way to handle parameter conversion in RPC systems is to have each machine
send parameters in its native representation, with the other one doing the translation, if
need be. The native system could be indicated by a code in the first byte. However,
since locating the first byte im the first woxd is precisely the problem, can. this work?
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7.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Assume a client calls an asynchronous RPC to a server, and subsequently waits until
the server returns a result using another asynchronous: RPC. Is this approach the same
as letting the client execute a normal RPC? What if we replace the asynchuwonous
RPCs with asynchronous RPCs?

Instead of letting a server register itself with: a daemon as in DCE, we could also
choose to always assign it the same end point. That end point can then be used in ref-
erences to objects in the server's address space. What is the main drawback of this

scheme?

Would it be useful also to make a distinction between static and dynamic RPCs?

Describe how connectionless communication between a client and a server proceeds
when using sockets. :

. Explain the difference between the primitives MPLbsend and MPLisend in MPI.

Suppose that you could make use of only transient asynchronous communication
primitives, including only an asynchronous receive primitive. How would you imple-
ment primitives for transient synchronous communication?

Suppose that you could make use of only transient synchsonous communication primi-
tives. How would you implement primitives for transient asynchronous communica-

tion?

Does it make sense to implement persistent asynchtonous communication by means of
RPCs?

In the text we stated that in order to automatically start a process -to fetch messages
from an input queue, a daemon is often used that monitors the input queue. Give an
alternative implementation that does not make use of a daemon.

Routing tables in IBM WebSphere, and in many other message-queuing systems, are
configured manually. Describe a simple way to do this automatically.

With persistent communication, a receiver generally has its own local buffer where
messages can be stored when the receiver is not executing. To create such a buffer, we
may need to specify its size. Give an argument why this is preferable, as well as one
against specification of the size.

Explain why transient synchronous communication has inherent scalability problems,
and how these could be solved.

Give an example where multicasting is also useful for discrete data streams.

Suppose that in a sensor network measured temperatures are not timestarnped by the
sensor, but are immediately sent to the operator.. Would it be enough to guarantee only

a maximum end-to-end delay?

How could you guarantee a maximum end-to-end delay when a collection of com-
puters is organized in a (logical or physigal)' ring?

How could you guarantee a minimum end-to-end delay when a collection of com-
puters is organized in a (logical or physical) ring?
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23.

24.

25.

Despite that multigasting is technically feasible, there is very little support to deploy it
in the Internet, The answer to this problem is to be sought in down-to-earth- business
models: no one really kpows how to make money out of multicasting. What scheme
can you invent?

Normally, application-level multicast trees are optimaized with respect stretch, which is
measured in terms of delay or hop counts. Give an example where this metrio- could
lead to very poor trees.

When searching for files in an unstructured peer-to-peer system, it may help to restrict
the search to nodes that have files similar to yours. Explain how gossiping can help to
find those nodes.



NAMING

Names playa very important role in all computer systems. They are used to
share resources, to uniquely identify entities, to refer to locations, and more. An
important issue with naming is that a name can be resolved to the entity it refers
to. Name resolution thus allows a process to access the named entity. To resolve
names, it is necessary to implement a naming system. The difference between na-
ming in distributed systems and nondistributed systems lies in the way naming
systems are implemented.

In a distributed system, the implementation of a naming system is itself often
distributed across multiple machines. How this distribution is done plays a key
role in the efficiency and scalability of the naming system. In this chapter, we
concentrate on three different, important ways that names are used in distributed
systems.

First, after discussing some general issues with respect to naming, we take a
closer look at the organization and implementation of human-friendly names.
Typical examples of such names include those for file systems and the World
Wide Web. Building worldwide, scalable naming systems is a primary concern
for these types of names.

Second, names are used to locate entities in a way that is independent of their
current location. As it turns out, naming systems for human-friendly names are
not particularly suited for supporting this type of tracking down entities. Most
names do not even hint at the entity's location. Alternative organizations are
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needed, such as those being used for mobile telephony where names are location-
independent identifiers, and those for distributed hash tables.

Finally, humans often prefer to describe entities by means of various charac-
teristics, leading to a situation in which we need to resolve a description by means
of attributes to an entity adhering to that description. This type of name resolution
is notoriously difficult and we will pay separate attention to it.

5.1 NAMES, IDENTIFIERS, AND ADDRESSES

Let us start by taking a closer look at what a name actually is. A name in a
distributed system is a string of bits or characters that is used to refer to an entity.
An entity in a distributed system can be practically anything. Typical examples
include resources such as hosts, printers, disks, and files. Other well-known ex-
amples of entities that are often explicitly named are processes, users, mailboxes,
newsgroups, Web pages, graphical windows, messages, network connections, and
SO on.

Entities can be operated on. For example, a resource such as a printer offers
an interface containing operations for printing a document, requesting the status of
a print job, and the like. Furthermore, an entity such as a network connection may
provide operations for sending and receiving data, setting quality-of-service pa-
rameters, requesting the status, and so forth.

To operate on an entity, it is necessary to access it, for which we need an ac-
cess point. An access point is yet another, but special, kind of entity in a distrib-
uted system. The name of an access point is called an address. The address of an
access point of an entity is also simply called an address of that entity.

An entity can offer more than one access point. As a comparison, a telephone
can be viewed as an access point of a person, whereas the telephone number cor-
responds to an address. Indeed, many people nowadays have several telephone
numbers, each number corresponding to a point where they can be reached. In a
distributed system, a typical example of an access point is a host running a spesif-
ic server, with its address formed by the combination of, for example, an IF ad-
dress and port number (i.e., the server's transport-level address).

An entity may change its access points in the course of time. For example.
when a mobile computer moves to another location, it is often assigned a different
IP address than the one it had before. Likewise, when a person moves to another
city or country, it is often necessary to change telephone numbers as well. In a
similar fashion, changing jobs or Internet Service Providers, means changing your
e-mail address.

An address is thus just a special kind of name: it refers to an access poiat of
an entity. Because an access point is tightly associated with an entity, it wowdd
seem convenient to use the address of an access point as a regular name for the as-
sociated entity. Nevertheless, this is hardly ever done as such naming is generally
very inflexible and often human unfriendly.
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For example, it is not uncommon to regularly reorganize a distributed system,
so that a specific server is now running on a different host than previously. The
old machine on which the server used to be running may be reassigned to a com-
pletely different server. In other words, an entity may easily change an access
point, or an access point may be reassigned to a different entity. If an address is
used to refer to an entity, we will have an invalid reference the instant the access
point changes or is reassigned to another entity. Therefore, it is much better to let
a service be known by a separate name independent of the address of the associ-
ated server. :

Likewise, if an entity offers more than one access point, it is not clear which
address to use as a reference. For instance, many organizations distribute their
Web service across several servers. If we would use the addresses of those servers
as a reference for the Web service, it is not obvious which address should be
chosen as the best one. Again, a much better solution is to have a single name for
the Web service independent from the addresses of the different Web servers.

These examples illustrate that a name for an entity that is independent from its
addresses is often much easier and more flexible to use. Such a name is called lo-
cation independent.

In addition to addresses, there are other types of names that deserve special
treatment, such as names that are used to uniquely identify an entity. A true iden-
tifier is a name that has the following properties (Wieringa and de Jonge, 1995):

1. An identifier refers to at most one entity.
2. Each entity is referred to by at most one identifier.

3. An identifier always refers to the same entity (i.e., it is never reused).

By using identifiers, it becomes much easier to unambiguously refer to an entity.
For example, assume two processes each refer to an entity by means of an identi-
fier.To check if the processes are referring to the same entity, it is sufficient to
test if the two identifiers are equal. Such a test would not be sufficient if the two
processes were using regular, nonunique, nonidentifying names. For example, the
name "John Smith" cannot be taken as a unique reference to just a single person.

Likewise, if an address can be reassigned to a different entity, we cannot use
an address as an identifier. Consider the use of telephone numbers, which are rea-
sonably stable in the sense that a telephone number for some time refers to the
same person or organization. However, using a telephone number as an identifier
will not work, as it can be reassigned in the course of time. Consequently, Bob's
new bakery may be receiving phone calls for Alice's old antique store for a long
time. In this case, it would have been better to use a true identifier for Alice in-
stead of her phone number.

Addresses and identifiers are two important types of names that are each used
for very different purposes. In many computer systems, addresses and identifiers
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are represented in machine-readable form only, that is, in the form of bit strings.
For example, an Ethernet address is essentially a random string of 48 bits. Like-
wise, memory addresses are typically represented as 32-bit or 64-bit strings.

Another important type of name is that which is tailored to be used by
humans, also referred to as human-friendly names. In contrast to addresses and
identifiers, a human-friendly name is generally represented as a character string.
These names appear in many different forms. For example, files in UNIX systems
have character-string names that can be as long as 255 characters, and which are
defined entirely by the user. Similarly, DNS names are represented as relatively
simple case-insensitive character strings.

Having names, identifiers, and addresses brings us to the central theme of this
chapter: how do we resolve names and identifiers to addresses? Before we go into
various solutions, it is important to realize that there is often a close relationship
between name resolution in distributed systems and message routing. In principle,
a naming system maintains a name-to-address binding which in its simplest
form is just a table of (name, address) pairs. However, in distributed systems that
span large networks and for which many resources need to be named, a central-
ized table is not going to work.

Instead, what often happens is that a name is decomposed into several parts
such asJip.cs. vu.nl and that name resolution takes place through a recursive look-
up of those parts. For example, a client needing to know the address of the FTP
server named by jip.cs.vu.nl  would first resolve nl/ to find the server N'Swml) re-
sponsible for names that end with n/, after which the rest of the name is passed to
server NS(nl). This server may then resolve the name vu to the server NStvu.ni)
responsible for names that end with vu.n/ who can further handle the remaining
name;tp.cs. Eventually, this leads to routing the name resolution request as:

NS() ~ NSml) ~ NS(unl) ~ address ofjip.cs.vu.nl

where NS(.) denotes the server that can return the address of NS(nl), also known
as the root server. NS(vu.nl) will return the actual address of the FTP server. It is
interesting to note that the boundaries between name resolution and message rout-
ing are starting to blur.

In the following sections we will consider three different classes of naming
systems. First, we will take a look at how identifiers can be resolved to addresses.
In this case, we will also see an example where name resolution is actually indis-

tinguishable from message routing. After that, we consider human-friendly names
and descriptive names (i.e., entities that are described by a collection of names).

5.2 FLAT NAMING

Above, we explained that identifiers are convenient to uniquely represent enti-
ties. In many cases, identifiers are simply random bit strings. which we con-
veniently refer to as unstructured, or flat names. An important property of such a
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name is that it does not contain any information whatsoever on how to locate the
access point of its associated entity. In the following, we will take a look at how
flat names can be resolved, or, equivalently, how we can locate an entity when
given only its identifier.

5.2.1 Simple Solutions

We first consider two simple solutions for locating an entity. Both solutions
are applicable only to local-area networks. Nevertheless, in that environment, they
often do the job well, making their simplicity particularly attractive.

Broadcasting and Multicasting

Consider a distributed system built on a computer network:that offers efficient
broadcasting facilities. Typically, such facilities are offered by local-area net-
works in which all machines are connected to a single cable or the logical equiv-
alent thereof. Also, local-area wireless networks fall into this category.

Locating an entity in such an environment is simple: a message containing the
identifier of the entity is broadcast to each machine and each machine is requested
to check whether it has that entity. Only the machines that can offer an access
point for the entity send a reply message containing the address of that access
point,

- This principle is used in the Internet Address Resolution Protocol (ARP) to
find the data-link address of a machine when given only an IP address (Plummer,
1982). In essence, a machine broadcasts a packet on the local network asking
who is the owner of a given IP address. When the message arrives at a machine,
the receiver checks whether it should listen to the requested IP address. If so, it
sends a reply packet containing, for example, its Ethernet address.

Broadcasting becomes inefficient when the network grows. Not only is net-
work bandwidth wasted by request messages, but, more seriously, too many hosts
maybe interrupted by requests they cannot answer. One possible solution is to
switch to multicasting, by which only a restricted group of hosts receives the re-
quest, For example, Ethernet networks support data-link level multicasting
directly in hardware.

Multicasting can also be used to locate entities in point-to-point networks. For
example, the Internet supports network-level multicasting by allowing hosts to
join a specific multicast group. Such groups are identified by a multicast address.
When a host sends a message to a multicast address, the network layer provides a
best-effort service to deliver that message to all group members. Efficient imple-
mentations for multicasting in the Internet are discussed in Deering and Cheriton
(1990) and Deering et al. (1996).

A multicast address can be used as a general location service for multiple
entities. For example, consider an organization where each employee has his or
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her own mobile computer. When such a computer connects to the locally avail-
able network. it is dynamically assigned an IP address. In addition, itjoins a spe-
cific multicast group. When a process wants to locate computer A, it sends a
"where is A?" request to the multicast group. If 4 is connected, it responds with
its current IP address.

Another way to use a multicast address is to associate it with a replicated enti-
ty, and to use multicasting to locate the nearest replica. When sending a request to
the multicast address, each replica responds with its current (normal) IP address.
A crude way to select the nearest replica is to choose the one whose reply comes
in first, We will discuss other ones in later chapters. As it turns out. selecting a
nearest replica is generally not that easy.

Forwarding Pointers

Another popular approach to locating mobile entities is to make use of for-
warding pointers (Fowler, 1985). The principle is simple: when an entity moves
from A to B, it leaves behind in A a reference to its new location at B. The main
advantage of this approach is its simplicity: as soon as an entity has been located,
for example by using a traditional naming service, a client can look up the current
address by following the chain of forwarding pointers.

There are also a number of important drawbacks. First, if no special measures
are taken, a chain for a highly mobile entity can become so long that locating that
entity is prohibitively expensive. Second, all intermediate locations in a chain will
have to maintain their part of the chain of forwarding pointers as long as needed.
A third (and related) drawback is the vulnerability to broken links. As soon as any
forwarding pointer is lost (for whatever reason) the entity can no longer be reach-
ed. An important issue is, therefore, to keep chains relatively short, and to ensure
that forwarding pointers are robust.

To better understand how forwarding pointers work, consider their use with
respect to remote objects: objects that can be accessed by means of a remote pro-
cedure call. Following the approach in SSP chains (Shapiro et al., 1992), each
forwarding pointer is implemented as a (client stub, server stub) pair as shown in
Fig. 5-1. (We note that in Shapiro's original terminology, a server stub was called
a scion, leading to (stub.scion} pairs, which explains its name.) A server stub con-
tains either a local reference to the actual object or a local reference to a remote
client stub for that object.

Whenever an object moves from address space A to B, it leaves behind a eli-
ent stub in its place in A and installs a server stub that refers to it in B. An interest-
ing aspect of this approach is that migration is completely transparent to a elient.
The only thing the client sees of an object is a client stub. How, and to which lo-
cation that ¢lient stub forwards its invocations, are hidden from the ¢lient. Also
note that this use of forwarding pointers is not like looking up an address. Instead.
a client's request is forwarded along the chain to the actual object.
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Figure 5-1. The principle of forwarding pointers using (client stub, server stub)
pairs.

To short-cut a chain of (client stub, server stub) pairs, an object invocation
carries the identification of the client stub from where that invocation was ini-
tiated. A client-stub identification consists of the client's transport-level address,
combined with a locally generated number to identify that stub. When the invoca-
tion reaches the object at its current location, a response is sent back to the client
stub where the invocation was initiated (often without going back up the chain).
The current location is piggybacked with this response, and the client stub adjusts
its companion server stub to the one in the object's current location. This principle
is shown in Fig. 5-2.

) Server stub is no
Invocation longer referenced

request is by any client stub ™
sent to object XB_-D\

Client stub sets
a shortcut

\J

Server stub at object's
current process returns
the current location

(a) (b)

Figure 5-2. Redirecting a forwarding pointer by storing a shortcut in a client stub.

There is a trade-off between sending the response directly to the initiating cli-
ent stub, or along the reverse path of forwarding pointers. Ia the former case,
communication is faster because fewer processes may need to be passed. On the
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other hand, only the initiating client stub can be adjusted, whereas sending the res-
ponse along the reverse path allows adjustment of all intermediate stubs.

When a server stub is no longer referred to by any client, it can be removed.
This by itself is strongly related to distributed garbage collection, a generally far
from trivial problem that we will not further discuss here. The interested reader is
referred to Abdullahi and Ringwood (1998), Plainfosse and Shapiro (1995), and
Veiga and Ferreira (2005).

Now suppose that process P; in Fig. 5-1 passes its reference to object O to
process P, Reference passing is done by installing a copy p' of client stub p in
the address space of process P,. Client stub p' refers to the same server stub as p,
so that the forwarding invocation mechanism works the same as before.

Problems arise when a process in a chain of (client stub, server stub) pairs
crashes or becomes otherwise unreachable. Several solutions are possible. One
possibility, as followed in Emerald (Jul et al., 1988) and in the LII system (Black
and Artsy, 1990), is to let the machine where an object was created (called the ob-
ject's home location), always keep a reference to its current location. That refer-
ence is stored and maintained in a fault-tolerant way. When a chain is broken, the
object's home location is asked where the object is now. To allow an object's
home location to change, a traditional naming service can be used to record the
current horne location. Such home-based approaches are discussed next.

5.2.2 Home-Based Approaches

The use of broadcasting and forwarding pointers imposes scalability prob-
lems. Broadcasting or multicasting is difficult to implement efficiently in large-
scale networks whereas long chains of forwarding pointers introduce performance
problems and are susceptible to broken links.

A popular approach to supporting mobile entities in large-scale networks is to
introduce a home location, which keeps track of the current location of an entity.
Special techniques may be applied to safeguard against network or process fail-
ures. In practice, the home location is often chosen to be the place where an entity
was created.

The home-based approach is used as a fall-back mechanism for location ser-
vices based on forwarding pointers, as discussed above. Another example where
the home-based approach is followed is in Mobile IP (Johnson et al., 2004), which
we briefly explained in Chap. 3. Each mobile host uses a fixed IP address. All
communication to that IP address is initially directed to the mobile host's home
agent. This home agent is located on the local-area network corresponding to the
network address contained in the mobile host's IP address. In the case of IPy6, it
is realized as a network-layer component. Whenever the mobile host moves to an-
other network, it requests a temporary address that it can use for communication.
This care-of address is registered at the home agent.

—
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When the home agent receives a packet for the mobile host, it looks up the
host's current location. If the host is on the current local network, the packet is
simply forwarded. Otherwise, it is tunneled to the host's current location, that is,
wrapped as data in an IP packet and sent to the care-of address. At the same time,
the sender of the packet is informed of the host's current location. This principle
is shown in Fig. 5-3. Note that the IP address is effectively used as an identifier
for the mobile host.

Host's home

location 1. Send packet to host at its home

- D >N,
X 2 d %
X 2. Return address frd
\ of current location d

AN Client's
location

]

™\, 3. Tunnel packet to
axcurrent location

4. Send successive packets
to current location o

74

Host's present location

Figure 5-3. The principle of Mobile IP.

Fig. 5-3 also illustrates another drawback of home-based approaches in large-
scale networks. To communicate with a mobile entity, a client first has to contact
the home, which may be at a completely different location than the entity itself.
The result is an increase in communication latency.

A drawback of the home-based approach is the use of a fixed home location.
For one thing, it must be ensured that the home location always exists. Otherwise,
contacting the entity will become impossible. Problems are aggravated when a
long-lived entity decides to move permanently to a completely different part of
the network than where its home is located. In that case, it would have been better
if the home could have moved along with the host.

A solution to this problem is to register the home at a traditional naming ser-
vice and to let a client first look up the location of the home. Because the home
location can be assumed to be relatively stable, that location can be effectively
cached after it has been looked up.
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5.2.3 Distributed Hash Tables

Let us now take a closer look at recent developments on how to resolve an i-
dentifier to the address of the associated entity. We have already mentioned dis-
tributed hash tables a number of times, but have deferred discussion on how they
actually work. In this section we correct this situation by first considering the
Chord system as an easy-to-explain DHT-based system. In its simplest form,
DHT-based systems do not consider network proximity at all, This negligence
may easily lead to performance problems. We also discuss solutions for network-

aware systems.
General Mechanism

Various DHT-based systems exist, of which a brief overview is given in
Balakrishnan et al. (2003). The Chord system (Stoica et al., 2003) is repres-
entative for many of them, although there are subtle important differences that
influence their complexity in maintenance and lookup protocols. As we explained
briefly in Chap. 2, Chord uses an m-bit identifier space to assign randomly-chosen
identifiers to nodes as well as keys to specific entities. The latter can be virtually
anything: files, processes, etc. The number m of bits is usually 128 or 160,
depending on which hash function is used. An entity with key k falls under the
jurisdiction of the node with the smallest identifier id ~ k. This node is referred to
as the successor of k and denoted as succ(k).

The main issue in DHT-based systems is to efficiently resolve a key k to the
address of succ(k). An obvious nonscalable approach is let each node p keep
track of the successor succ(p+ 1) as well as its predecessor pred(p). In that case,
whenever a node p receives a request to resolve key k, it will simply forward the
request to one of its two neighbors-whichever one is appropriate-unless
pred (p) <k -:;an which case node p should return its own address to the process
that initiated the resolution of key k.

Instead of this linear approach toward key lookup, each Chord node maintains
a finger table of at most m entries. If FTp, denotes the finger table of node p, then

FT, [i]=succ (p+2i‘1)

Put in other words, the i-th entry points to the first node succeeding p by at least
1-1. Note that these references are actually short-cuts to existing nodes in the i-
dentifier space, where the, short-cutted distance from node p increases exponen-
tially as the index in the finger table increases. To look up a key k, node p will
then immediately forward the request to node ¢ with index j in p's finger table

where:
q =FI, U1Sk< FT, [j+1]

(For clarity, we ignore modulo arithmetic.)
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To illustrate this lookup, consider resolving k& =26 from node 1 as shown
Fig. 5-4. First, node 1 will look up kK =26 in its fmger table to discover that this
value is larger than FT 1[5], meaning that the request will be forwarded to node
18=FTd5]. Node 18, in tum, will select node 20, as FT;3 [2] <k ~FT;s [3].
Finally, the request is forwarded from node 20 to node 21 and from there to node
28, which is responsible for £ =26. At that point, the address of node 28 is re-
turned to node 1 and the key has been resolved. For similar reasons, when node 28
is requested to resolve the key k& = 12, a request will be routed as shown by the
dashed line in Fig. 5-4. It can be shown that a lookup will generally require
O(log (N)) steps, with N being the number of nodes in the system.
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Figure 5-4. Resolving key 26 from node 1and key 12 from node 28 in a Chord system.

In large distributed systems the collection of participating nodes can be
expected to change all the time. Not only will nodes join and leave voluntarily, we
also need to consider the case of nodes failing (and thus effectively leaving the
system), to later recover again (at which point they join again).
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Joining a DHT-based system such as Chord is relatively simple. Suppose node
p wants to join. It simply contacts an arbitrary node in the existing system and re-
quests a lookup for succip-r 1). Once this node has been identified, p can insert it-
self into the ring. Likewise, leaving can be just as simple. Note that nodes also
keep track of their predecessor.

Obviously, the complexity comes from keeping the finger tables up-to-date.
Most important is that for every node g, FTg [1] is correct as this entry refers to,the
next node in the ring, that is, the successor of ¢ +1. In order to achieve this goal,
each node ¢ regularly runs a simple procedure that contacts succ( g+ 1) and re-
quests to return pred( succ(q+1)). If g :;pred (succ (g +1)) then ¢ knows its infor-
mation is consistent with that of its successor. Otherwise, if ¢'s successor has
updated its predecessor, then apparently a new node p had entered the system,
with g <P::; succ(q+l), so that ¢ will adjust FTg [1] to p. At that point, it will
also check whether p has recorded ¢ as its predecessor. If not, another adjustment
of FTg [1] is needed.

In a similar way, to update a finger table, node ¢ simply needs to find the suc-
cessor for k ;g + 1= for each entry i. Again, this can be done by issuing a re-
quest to resolve succ(k). In Chord, such requests are issued regularly by means of
a background process. |

Likewise, each node ¢ will regularly check whether its predecessor is alive. If
the predecessor has failed, the only thing that ¢ can do is record the fact by setting
pred( g) to "unkpown". On the other hand, when node ¢ is updating its link to the
next known node in the ring, and finds that the predecessor of succi g+ 1) has been
set to "upkpown," it will simply notify succ( g+ I) that it suspects it to be the
predecessor. By and large, these simple procedures ensure that a Chord system is
generally consistent, only perhaps with exception of a few nodes. The details can
be found in Stoica et al. (2003).

Exploiting Network Proximity

One of the potential problems with systems such as Chord is that requests
may be routed erratically across the Internet. For example, assume that node 1 in
Fig. 5-4 is placed in Amsterdam, The Netherlands; node 18 in San Diego, Califor-
nia; node 20 in Amsterdam again; and node 21 in San Diego. The result of resolv-
ing key 26 will then incur three wide-area message transfers which arguably could
have been reduced to at most one. To minimize these pathological cases, design-
ing a DHT-based system requires taking the underlying network into account.

Castro et al, (2002b) distinguish three different ways for making a DHT -based
system aware of the underlying network. In the case of topology-based assign-
ment of node identifiers the idea is to assign identifiers such that two nearby
nodes will have identifiers that are also close to each other. It is not difficult to
imagine that this approach may impose severe problems in the case of relatively
simple systems such as Chord. In the case where node identifiers are sampled
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from a one-dimensional space, mapping a logical ring to the Internet is far from
trivial, Moreover, such a mapping can easily expose correlated failures: nodes on
the same enterprise network will have identifiers from a relatively small interval.
When that network becomes unreachable, we suddenly have a gap in the other-
wise uniform distribution of identifiers.

With proximity routing, nodes maintain a list of alternatives to forward a re-
quest to. For example, instead of having only a single successor, each node in
Chord could equally well keep track of » successors. In fact, this redundancy can
be applied for every e~try in 3: finger table. For node p, FIp [i] points to the first
node in the range fp+2"",p+2" 1].  There is no reason why p cannot keep track of
r nodes in that range: if needed, each one of them can be used to route a lookup
request for a key k >p+2°-1. | In that case, when choosing to forward a lookup re-
quest, a node can pick one of the » successors that is closest to itself, but also
satisfies the constraint that the identifier of the chosen node should be smaller
than that of the requested key. An additional advantage of having multiple succes-
sors for every table entry is that node failures need not immediately lead to
failures of lookups, as multiple routes can be explored.

Finally, in proximity neighbor selection the idea is to optimize routing tables
such that the nearest node is selected as neighbor. This selection works only when
there are more nodes to choose from. In Chord, this is normally not the case.
However, in other protocols such as Pastry (Rowstron and Druschel, 2001), when
a node joins it receives information about the current overlay from multiple other
nodes. This information is used by the new node to construct a routing table.
Obviously, when there are alternative nodes to choose from, proximity neighbor
selection will allow the joining node to choose the best one.

Note that it may not be that easy to draw a line between proximity routing and
proximity neighbor selection. In fact, when Chord is modified to include r succes-
sors for each finger table entry, proximity neighbor selection resorts to identifying
the closest » neighbors, which comes very close to proximity routing as we just
explained (Dabek at al., 2004b).

Finally, we also note that a distinction can be made between iterative and
recursive lookups. In the former case, a node that is requested to look up a key
will return the network address of the next node found to the requesting process.
The process will then request that next node to take another step in resolving the
key. An alternative, and essentially the way that we have explained it so far, is to
let a node forward a lookup request to the next node. Both approaches have their
advantages and disadvantages, which we explore later in this chapter.

5.2.4 Hierarchical Approaches

In this section, we first discuss a general approach to a hierarchical location
scheme, after which a number of optimizations are presented. The approach we
present is based on the Globe location service, described in detail in Ballintijn
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(2003). An overview can be found in van Steen et al. (1998b). This is a general-
purpose location service that is representative of many hierarchical location ser-
vices proposed for what are called Personal Communication Systems, of which a
general overview can be found in Pitoura and Samaras (2001).

In a hierarchical scheme, a network is divided into a collection of domains.
There is a single top-level domain that spans the entire network. Each domain can
be subdivided into multiple, smaUer subdomains. A lowest-level domain, called a
leaf domain, typically corresponds to a local-area network in a computer network
or a cell in a mobile telephone network,

Each domain D has an associated directory node dirt D) that keeps track of the
entities in that domain. This leads to a tree of directory nodes. The directory node
of the top-level domain, caUed the root (directory) node, knows about all enti-
ties. This general organization of a network into domains and directory nodes is
illustrated in Fig. 5-5.

The root direetory Top-level
node dir(T) domain T
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Directory node
dir(5) of domain 5

A subdomain 5
... oftop-leve~do~ain T
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A leaf domain, contained in 5

Figure 5-5. Hierarchical orgamization of a location servi¢e into domains, each
having an associated directory' node.

To keep track of the whereabouts of an entity, each entity currently located in
a domain D is represented by a location record in the directory node dir(D). A
location record for entity £ in the directory node N for a leaf domain D contains
the entity's current address in that domain. In contrast, the directory node N’ for
the next higher-level domain D’ that contains D, will have a location record for E
containing only a pointer to N. Likewise. the parent node of N' will store a loca-
tion record for E containing only a pointer to N. Consequently, the root node will
have a location record for each entity, where each location record stores a pointer
to the directory node of the next lower-level subdomain where that record's asso-
ciated entity is currently located.

An entity may have multiple addresses, for example if it is replicated. If an
entity has an address in leaf domain D 1 and D, respectively, then the directory
node of the smallest domain containing both D 1 and D2, will have two pointers,
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one for each subdomain containing an address. This leads to the general organiza-
tion of the tree as shown in Fig. 5-6.

Field with no data

Field for domain  __----__ )
dom(N) with ~ )/ Location record

% \‘\/
pointertoN —— \' for E at nos‘e M

-

Location record
with only one field,
containing an address

Domain D1

Domain D2

Figure 5-6. Ap example of storing information of an entity having two ad-
dresses in different leaf domains.

Let us now consider how a lookup operation proceeds in such a hierarchical
location servige. As is shown in Fig. 5-7, a client wishing to locate an entity E,
issues a lookup request to the directory node of the leaf domain D in which the
client resides. If the directory node does not store a location record for the entity,
then the entity is currently not located in D. Consequently, the node forwards the
request to its parent, Note that the parent node represents a larger domain than its
child. If the parent also has no location record for E, the lookup request is for-
warded to a next level higher, and so on.

Node knows
about E, so request
Node has no is forwarded to child

record for E, so
that request is
forwarded to
parent

-

Figure 5-7. Looking up a location in a hierarchically organized location service.

As soon as the request reaches a directory node M that stores a location record
for entity E, we know that E is somewhere in the domain dom(M) represented by
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node M. In Fig. 5-7, M is shown to store a location record containing a pointer to
one of its subdomains. The lookup request is then forwarded to the directory node
of that subdomain, which in tum forwards it further down the tree, until the re-
quest finally reaches a leaf node. The location record stored in the leaf node will
contain the address of E in that leaf domain. This address can then be returned to
the client that initially requested the lookup to take place.

An important observation with respect to hierarchical location services is that
the lookup operation exploits locality. In principle, the entity is searched in a gra-
dually increasing ring centered around the requesting client. The search area is
expanded each time the lookup request is forwarded to a next higher-level direc-
tory node. In the worst case, the search continues until the request reaches the root
node. Because the root node has a location record for each entity, the request can
then simply be forwarded along a downward path of pointers to one of the leaf
nodes.

Update operations exploit locality in a similar fashion, as shown in Fig. 5-8.
Consider an entity E that has created a replica in leaf domain D for which it needs
to insert its address. The insertion is initiated at the leaf node dir(D) of D which
immediately forwards the insert request to its parent. The parent will forward the
insert request as well, until it reaches a directory node M that already stores a lo-
cation record for E.

Node M will then store a pointer in the location record for E, refeiring to the
child node from where the insert request was forwarded. At that point, the child
node creates a location record for E, containing a pointer to the next lower-level
node from where the request came. This process continues until we reach the leaf
node from which the insert was initiated. The leaf node, finally, creates a record
with the entity's address in the associated leaf domain.

Node knows
Node has no about E, so request
record for E, is no longer forwarded
sore i Node creates record
quest is .
forwarded - and stores pointer \
toparent  ____ > -

' Node creates
~~~~~ record and
stores address

Domain D

]
t
! Inse
' request

CY (b)

Figure 5-8. (a) An insert request is forwarded to the first node that knows about
entity' E. (b) A chain of forwarding pointers to the leaf node is created.
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Inserting an address as just described leads to installing the chain of pointers
in a top-down fashion starting at the lowest-level directory node that has a loca-
tion record for entity E. An alternative is to create a location record before passing
the insert request to the parent node. In other words, the chain of pointers is con-
structed from the bottom up. The advantage of the latter is that an address
becomes avgilable for lookups as soon as possible. Consequently, if a parent node
is temporarily unreachable, the address can still be looked up within the domain
represented by the current node.

A delete operation is analogous to an insert operation. When an address for
entity £ in leaf domain D needs to be removed, directory node dix(D) is requested
to remove that address from its location record for E. If that location record
becomes empty, that is, it contains no other addresses for £ in D, the record can
be removed. In that case, the parent node of direD) wants to remove its pointer to
dir(D). If the location record for E at the parent now also becomes empty, that
record should be removed as well and the next higher-level directory node should
be informed. Again, this process continues until a pointer is removed from a loca-
tion record that remains nonempty afterward or until the root is reached.

5.3 STRUCTURED NAMING

- Flat names are good for machines, but are generally not very convenient for
humans to use. As an alternative, naming systems generally support structured
names that are composed from simple, human-readable names. Not only file na-
ming, but also host naming on the Internet follow this approach. In this section,
we concentrate on structured names and the way that these names are resolved to

addresses.
5.3.1 Name Spaces

Names are commonly organized into what is called a name space. Name
spaces for structured names can be represented as a labeled, directed graph with
two types of nodes. A leaf node represents a named entity and has the property
that it has no outgoing edges. A leaf node generally stores information on the enti-
ty it is representing-for example, its address-so that a client can access it:
Alternatively, it can store the state of that entity, such as in the case of file sys-
tems 'in which a leaf node actually contains the complete file it is representing.
We return to the contents of nodes below. .

In contrast to a leaf node, a directory nede has a number of outgoing edges,
each labeled with a name, as shown in Fig. 5-9. Each node in a naming graph is
considered as yet another entity in a distributed system, and, in particular, has an
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associated identifier. A directory node stores a table in which an outgoing edge is
represented as a pair (edge label, node identifier). Such a table is called a direc-
tory table.

Data stored in n1 no
n2: "elke" home keys
n3: ‘max” "/keys"
nd: "steen” '
n,1 ns "/home/steen/keys"
elke max steen

Leaf node O @ i e

D twmre mbox
Directory node
! vy O *fhome/steen/mbox"

Figure 5-9. A general naming graph with. a single root node.

The naming graph shown in Fig. 5-9 has one node, namely no, which has only
outgoing and no incoming edges. Such a node is called the root (node) of the na-
ming graph. Although it is possible for a naming graph to have several root nodes,
for simplicity, many naming systems have only one. Each path in a naming graph
can be referred to by the sequence of labels corresponding to the edges in that
path, such as

Nt-clabel-l, label-2, ..., label-n>

where N refers to the first node in the path. Such a sequence is called a path
name. If the first node in a path name is the root of the naming graph, it is called
an"absolute path name. Otherwise, it is called a relative path name.

It is important to realize that names are always organized in a name space. As
a consequence, a name is always defined relative only to a directory node. In this
sense, the term "absolute name" is somewhat misleading. Likewise, the differ-
ence between global and local names can often be confusing. A global name is a
name that denotes the same entity, no matter where that name is used in a system.
In other words, a global name is always interpreted with respect to the same direc-
tory node. In contrast, a local name is a name whose interpretation depends on
where that name is being used. Put differently, a local name is essentially a rela-
tive name whose directory in which it is contained is (implicitly) known. We re-
turn to these issues later when we discuss name resolution.

This description of a naming graph comes close to what is implemented in
many file systems. However, instead of writing the sequence of edge labels to rep-
represent a path name, path names in file systems are generally represented as a
single string in which the labels are separated by a special separator character,
such as a slash ("1"). This character is also used to indicate whether a path name
is absolute. For example, in Fig. 5-9, instead of using no:<home, steen, mbox>,

—
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that is, the actual path name, it is common practice to use its string representation
Thome/steen/mbox. Note also that when there are several paths that lead to the
same node, that node can be represented by different path names. For example,
node 75 in Fig. 5-9 can be referred to by Thome/steenlkeys as well as /keys. The
string representation of path names can be equally well applied to naming graphs
other than those used for only file systems. In Plan 9 (Pike et al., 1995), all re-
sources, such as processes, hosts, I/O devices, and network interfaces, are named
in the same fashion as traditional files. This approach is analogous to implement-
ing a single naming graph for all resources in a distributed system.

There are many different ways to organize a name space. As we mentioned,
most name spaces have only a single root node. In many cases, a name space is
also strictly hierarchical in the sense that the naming graph is organized as a tree.
This means that each node except the root has exactly one incoming edge; the root
has no incoming edges. As a consequence, each node also has exactly one associ-
ated (absolute) path name.

The naming graph shown in Fig. 5-9 is an example of directed acyclic graph.
In such an organization, a node can have more than one incoming edge, but the
graph is not permitted to have a cycle. There are also name spaces that do not
have this restriction.

To make matters more concrete, consider the way that files in a traditional
UNIX file system are named. In a naming graph for UNIX, a directory node repres-
ents a file directory, whereas a leaf node represents a file. There is a single root
directory, represented in the naming graph by the root node. The implementation
of the naming graph is an integral part of the complete implementation of the file
system. That implementation consists of a contiguous series of blocks from a logi-
cal disk, generally divided into a boot block, a superblock, a series of index nodes
(called inodes), and file data blocks. See also Crowley (1997), Silberschatz et al.
(2005), and Tanenbaum and Woodhull (2006). This organization is shown in
Fig. 5-10.

Superblock File data blocks
\ e
— T~
) — /
Boot block Index nodes Disk block

Figure 5-10. The general organization of the UNIX file system implementation
on a logical disk of contiguous disk blocks:

The boot block is a special block of data and instructions that are automati-
cally loaded into main memory when the system is booted. The boot block is used
to load the operating system into main memory.
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The superblock contains information on the entire file system. such as its size,
which blocks on disk are not yet allocated, which inodes are not yet used, and so
on. Inodes are referred to by an index number, starting at number zero, which is
reserved for the inode representing the root directory.

Each inode contains information on where the data of its associated file can
be found on disk. In addition, an inode contains information on its owner, time of
creation and last modification, protection, and the like. Consequently, when given
the index number of an inode, it is possible to access its associated file. Each di-
rectory is implemented as a file as well. This is also the case for the root direc-
tory, which contains a mapping between file names and index numbers of inodes.
It is thus seen that the index number of an inode corresponds to a node identifier
in the naming graph. ‘

5.3.2 Name Resolution

Name spaces offer a convenient mechanism for storing and retrieving infor-
mation about entities by means of names. More generally, given a path name, it
should be possible to look up any information stored in the node referred to by
that name. The process of looking up a name is called name resolution.

To explain how name resolution works, let us consider a path name such as
Ni<label y.label g, ... label;y. Resolution of this name starts at node N of the na-
ming graph, where the name /abel} is looked up in the directory table, and which
returns the identifier of the node to which label} refers. Resolution then continues
at the identified node by looking up the name /abel-, in its directory table, and so
on. Assuming that the named path actually exists, resolution stops at the last node
referred to by label.; by returning the content of that node.

A name lookup returns the identifier of a node from where the name resolu-
tion process continues. In particular, it is necessary to access the directory table of
the identified node. Consider again a naming graph for a UNIX file system. As
mentioned, a node identifier is implemented as the index number of an inode.
Accessing a directory table means that first the inode has to be read to find out
where the actual data are stored on disk, and then subsequently to read the data
blocks containing the directory table.

Closure Mechanism

Name resolution can take place only if we know how and where to start. In
our example, the starting node was given, and we assumed we had access to its di-
rectory table. Knowing how and where to start name resolution is generally
referred to as a closure mechanisin. Essentially, a closure mechanism deals with
selecting the initial node in a name space from which name resolution is to start
(Radia, 1989). What makes closure mechanisms sometimes hard to understand is
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that they are necessarily partly implicit and may be very different when compar-
ing them to each other.

For example. name resolution in the naming graph for a UNIX file system
makes use of the fact that the inode of the root directory is the first inode in the
logical disk representing the file system. Its actual byte offset is calculated from
the values in other fields of the superblock, together with hard-coded information
in the operating system itself on the internal organization of the superblock.

To make this point clear, consider the string representation of a file name such
as Thomelsteendmbox. ~ To resolve this name, it is necessary to already have access
to the directory table of the root node of the appropriate naming graph. Being a
root node, the node itself cannot have been looked up unless it is implemented as
a different node in a another naming graph, say G. But in that case, it would have
been necessary to already have access to the root node of G. Consequently, re-
solving a file name requires that some mechanism has already been implemented
by which the resolution process can start.

A completely different example is the use of the string "0031204430784".
Many people will not know what to do with these numbers, unless they are told
that the sequence is a telephone number. That information is enough to start the
resolution process, in particular, by dialing the number. The telephone system
subsequently does the rest.

As a last example, consider the use of global and local names in distributed
systems. A typical example of a local name is an environment variable. For ex-
ample, in UNIX systems, the variable named HOME 1is used to refer to the home
directory of a user. Each user has its own copy of this variable, which is initialized
to the global, systemwide name corresponding to the user's home directory. The
closure mechanism associated with environment variables ensures that the name
of the variable is properly resolved by looking it up in a user-specific table.

Linking and Mounting

Strongly related to name resolution is the use of aliases. An alias is another
name for the same entity. An environment variable is an example of an alias. In
terms of naming graphs, there are basically two different ways to implement an
alias. The first approach is to simply allow multiple absolute paths names to refer
to the same node in a naming graph. This approach is illustrated in Fig. 5-9, in
which node ns can be referred to by two different path names. In UNIXterminol-
ogy, both path names /keys and /homelsteen/keys in Fig. 5-9 are called hard links
to node #s.

The second approach is to represent an entity by a leaf node, say N, but in-
stead of storing the address or state of that entity, the node stores an absolute path
name. When first resolving an absolute path name that leads to N, name resolution
will return the path name stored in N, at which point it can continue with resolving
that new path name. This principle corresponds to the use of symbolic links in
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UNIX file systems, and is illustrated in Fig. 5-11.. In this example, the path name
/home/steeu/kexs, which refers to a node containing the absolute path name /keys,
is a symbolic link to node ns.

Data stored in n1
n2: "elke”
n3: "max”

n4: "steen”

Leaf node

Directory node

Figure 5-11. The concept of a symbolic link explained in a naming graph.

Name resolution as described so far takes place completely within a single
name space. However, name resolution can also be used to merge different name
spaces in a transparent way. Let us first consider a mounted file system. In terms
of our naming model, a mounted file system corresponds to letting a directory
node store the identifier of a directory node from a different name space, which
we refer to as a foreign name space. The directory node storing the node identifier
is called a mount point. Accordingly, the directory node in the foreign name
space is called a mounting point. Normally, the mounting point is the root of a
name space. During name resolution, the mounting point is,looked up and resolu-
tion proceeds by accessing its directory table.

The pringiple of mounting can be generalized to other name spaces as well. In
particular, what is needed is a directory node that acts as a mount point and stores
all the necessary information for identifying and accessing the mounting point in
the foreign name space. This approach is followed in many distributed file sys-
tems. '

Consider a collection of name spaces that is distributed across different ma-
chines. In particular, each name space is implemented by a different server, each
possibly running on a separate machine. Consequently. if we want to mount a
foreign name space NS 2 into a name space NS 1, it may be necessary to communi-
cate over a network with the server of NS 2, as that server may be running on a
different machine than the server for NS i- To mount a foreign name space in a
distributed system requires at least the following information:

1. The name of an access protocol.
2. The name of the server.

3. The name of the mounting point in the foreign name space.
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Note that each of these names needs to be resolved. The name of an access proto-
col needs to be resolved to the implementation of a protocol by which communi-
cation with the server of the foreign name space can take place. The name of the
server needs to be resolved to an address where that server can be reached. As the
last part in name resolution, the name of the mounting point needs to be resolved
to a node identifier in the foreign name space.

In nondistributed systems, none of the three points may actually be needed.
For example, in UNIX, there is no access protocol and no server. Also, the name
of the mounting point is not necessary, as it is simply the root directory of the
foreign name space.

The name of the mounting point is to be resolved by the server of the foreign
name space. However, we also need name spaces and implementations for the ac-
cess protocol and the server name. One possibility is to represent the three names
listed above as a URL.

To make matters concrete, consider a situation in which a user with a laptop
computer wants to access files that are stored on a remote file server. The client
machine and the file server are both configured with Sun's Network File System
(NFS), which we will discuss in detail in Chap. 11. NFS is a distributed file sys-
tem that comes with a protocol that describes precisely how a client can access a
file stored on a (remote) NFS file server. In particular, to allow NFS to work a-
cross the Internet, a client can specify exactly which file it wants to access by
means of an NFS URL, for example, nfs:I/flits.cs. vu.nl//homelsteen. ~ This URL
names a file (which happens to be a directory) called /homalsteen on an NFS file
serverflits.cs. vu.nl, which can be accessed by a client by means of the NFS proto-
col (Shepler et al., 2003).

The name nfs is a well-known name in the sense that worldwide agreement
exists on how to interpret that name. Given that we are dealing with a URL, the
name nfs will be resolved to an implementation of the NFS protocol. The server
name is resolved to its address using DNS, which is discussed in a later section.
As we said, /homea/steen 1s resolved by the server of the foreign name space.

The organization of a file system on the client machine is partly shown in
Fig. 5-12. The root directory has a number of user-defined entries, including a
subdirectory called Iremote. This subdirectory is intended to include mount points
for foreign name spaces such as the user's home directory at the Vrije Universi-
teit. To this end, a directory node named lremote/vu is used to store the URL
nfs:l/flits.cs. vu.nll/homelsteen.

Now consider the name /remotelvulmbox.  This name is resolved by starting
in the root directory on the client's machine and continues until the node Ire-
mote/vu. is reached. The process of name resolution then continues by returning
the URL nfs:l/flits.cs. vu.nl//homelsteen, in turn leading the client machine to con-
tact the file serverflits.cs. vu.nl by means of the NFS protocol, and to subsequently
access directory /home/steen. Name resolution can then be continued by reading
the file named mbox in that directory, after which the resolution process stops.



202 NAMING CHAP. 5

Name server Name server for foreign name space
X Machine A Machine B

remote ‘eys home
O O

YU (Pnis:/Hiits.cs.vuni//home/steen” ) / \iteen

e SO,

0s

e

/ Network
Reference to foreign name space

Figure 5-12. Mountjng remote name spaces through a specific access protocol..

Distributed systems that allow mounting a remote file system as just described
allow a client machine to, for example, execute the following commands:

cd /remote/vu
Is -I

which subsequently lists the files in the directory /iomea/steen.. on the remote file
server. The beauty of all this is that the user is spared the details of the actual ac-
cess to the remote server. Ideally, only some loss in performance is noticed com-
pared to accessing locally-available files. In effect, to the client it appears that the
name space rooted on the local machine, and the one rooted at /iome/steen on the
remote machine, form a single name space.

5.3.3 The Implementation of a Name Space

A name space forms the heart of a naming service, that is, a service that
allows users and processes to add, remove, and look up names. A naming service
is implemented by name servers. If a distributed system is restricted to a local-
area network, it is often feasible to implement a naming service by means of only
a single name server. However, in large-scale distributed systems with many enti-
ties, possibly spread across a large geographical area, it is necessary to distribute
the implementation of a name space over multiple name servers.
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Name Space Distribution

Name spaces for a large-scale, possibly worldwide distributed system, are
usually organized hierarchically. As before, assume such a name space has only a
single root node. To effectively implement such a name space, it is convenient to
partition it into logical layers. Cheriton and Mann (1989) distinguish the following
three layers.

The global layer is formed by highest-level nodes, that is, the root node and
other directory nodes logically close to the root, namely its children. Nodes in the
global layer are often characterized by their stability, in the sense that directory
tables are rarely changed. Such nodes may represent organizations.. or groups of
organizations, for which names are stored in the name space.

The administrational layer is formed by directory nodes that together are
managed within a single organization. A characteristic feature of the directory
nodes in the administrational layer is that they represent groups of entities that
belong to the same organization or administrational unit. For example, there may
be a directory node for each' department in an organization, or a directory node
from which all hosts can be found. Another directory node may be used as the
starting point for naming all users, and so forth. The nodes in the admiaistrational
layer are relatively stable, although changes generally occur more frequently than
to nodes in the global layer.

Finally, the managerial layer consists of nodes that may typically change
regularly. For example, nodes representing hosts in the local network belong to
this layer. For the same reason, the layer includes nodes representing shared files
such as those for libraries or binaries. Another important class of nodes includes
those that represent user-defined directories and files. In contrast to the global and
administrational layer, the nodes in the managerial layer are maintained not only
by system administrators, but also by individual end users of a distributed system.

To make matters more concrete, Fig. 5-13 shows an example of the parti-
tioning of part of the DNS name space, including the names of files within an
organization that can be accessed through the Internet, for example, Web pages
and transferable files. The name space is divided into nonovexlapping parts, called
zones in DNS (Mockapetris, 1987). A zone is a part of the name space that is im-
plemented by a separate name server. Some of these zones are illustrated in
Fig. 5-13.

If we take a look at availability and performance, name servers in each layer
have to meet different requirements. High availability is especially critical for
name servers in the global layer. If a name server fails, a large part of the name
space will be unreachable because name resolution cannot proceed beyond the
failing server.

Performance is somewhat subtle. Due to the low rate of change of nodes in
the global layer, the results of lookup operations generally remain valid for a long
time. Consequently, those results can be effectively cached (i.e., stored locally) by
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Figure 5-13. An example partitioning of the DNS name space, ineluding
Internet-accessible files, into three layers.

the clients. The next time the same lookup operation is performed, the results can
be retrieved from the client's cache instead of letting the name server return the
results. As a result, name servers in the global layer do not have to respond
quickly to a single lookup request. On the other hand, throughput may be impor-
tant, especially in large-scale systems with millions of users.

The availability and performance requirements for name servers in the global
layer can be met by replicating servers, in combination with ¢lient-side caching.
As we discuss in Chap. 7, updates in this layer generally do not have to come into
effect immediately, making it much easier to keep replicas consistent.

Availability for a name server in the administrational layer is primaxily impor-
tant for glients in the same organization as the name server. If the name server
fails, many resources within the organization become unreachable because they
cannot be looked up. On the other hand, it may be less important that resources in
an organization are temporarily unreachable for users outside that organization.

With respect to performance, name servers in the administrational layer have
similar characteristics as those in the global layer. Because changes to nodes do
not occur gll that often, caching lookup results can be highly effective, making
performance less critical, However, in contrast to the global layer, the administra-
tiongllayer should take care that lookup results are returned within a few millisec-
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onds, either directly from the server or from the client's local cache. Likewise,
updates should generally be processed quicker than those of the global layer. For
example, it is unacceptable that an account for a new user takes hours to become
effective.

These requirements can often be met by using high-performance machines to
run name servers. In addition, client-side caching should be applied, combined
with replication for increased overall availability.

Availability requirements for name servers at the managerial level are gener-
ally less demanding. In particular, it often suffices to use a single (dedicated) ma-
chine to run name servers at the risk of temporary unavailability. However, per-
formance is crucial. Users expect operations to take place immediately. Because
updates occur regularly, client-side caching is often less effective, unless special
measures are taken, which we discuss in Chap. 7.

Item Global | Administrational| Managerial
Geographical scale of network | Worldwide | Organization Department
Total number of nodes Few Many Vast numbers
Responsiveness to lookups Seconds Milliseconds Immediate
Update propagation Lazy Immediate Immediate
Number of replicas Many None or few None
Is client-side caching applied? | Yes Yes Sometimes

Figure 5-14. A compasison between name servers for implementing nodes from
a large-scale name space partitioned into a global layer, an administrational
layer, and a managerial layer.

A comparison between name servers at different layers is shown in Fig. 5-14.
In distributed systems, name servers in the global and administrational layer are
the most difficult to implement. Difficulties are caused by replication and cach-
ing, which are needed for availability and performance, but which also introduce
consistency problems. Some of the problems are aggravated by the fact that
caches and replicas are spread across a wide-area network, which introduces long
communication delays thereby making synchronization even harder. Replication
and caching are discussed extensively in Chap. 7.

Implementation of Name Resolution

The distribution of a name space across multiple name servers affects the
implementation of name resolution. To explain the implementation of name reso-
lution in large-scale name services, we assume for the moment that name servers
are not replicated and that no client-side caches are used. Each client has access to
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a local name resolver, which is responsible for ensuring that the name resolution
process is carried out, Referring to Fig. 5-13, assume the (absolute) path name

root: «nl, vu, cs,ftp, pub, globe, index.html>

is to be resolved. Using a URL notation, this path name would correspond to
fip:/lfip.cs. vu.nl/pub/globelindex.html. . There are now two ways to implement
name resolution.

In iterative name resolution, a name resolver hands over the complete name
to the root name server. It is assumed that the address where the root server can be
contacted is well known. The root server will resolve the path name as far as it
can, and return the result to the client. In our example, the root server can resolve
only the label nl, for which it will return the address of the assoeiated name ser-
ver.

At that point, the ¢lient passes the remaining path name (i.e., nl: <wu, cs, jip,
pub, globe, index.html> ) to that name server. This server can resolve only the
label vu, and returns the address of the associated name server, along with the
remaining path name vu:<cs, fip, pub, globe, index.html>.

The client's name resolver will then contact this next name server, which
responds by resolving the label ¢s, and subsequently alsofip, returning the address
of the FTP server along with the path name fip:<pub, globe, index.htmi>. -~ The
client then contacts the FTP server, requesting it to resolve the last part of the ori-
ginal path name. The FTP server will subsequently resolve the labels pub. globe,
and index.html, and transfer the requested file (in this case using FTP). This proc-
ess of iterative name resolution is shown in Fig. 5-15. (The notation #<cs> 1is
used to indicate the address of the server responsible for handling the node

referred to by <cs>.)

1. <nl,vu,cs,ftp> > Root
. #<nl>, <vu,cs,ftp> name server | ...t # o
3. <vu,cs.ftp> »| Name server o 1!
— ni node :
Client's 4 #evu>, <csftp> o .. i .
name | 0 et ;
resolver. |_5- <Csftp> »| Name server ;
< vu node :
6. #i<cs>, <ftp> = tb———————————
...... 151 S
7. <fip> »| Name server
‘T} F<ftp> cs node
tip
<nl,vu,cs,ftp> T l #<nl,vu,cs,ftp> Nodes are / :
managed by : O :

the same server -7 reseenee T i

Figure  5-15. The principle of iterative name resolution.
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In practice, the last step, namely contacting the FTP server and requesting it
to transfer the file with path name fip i-cpub, globe, index.himl», is cakried out
separately by the client process. In other words, the client would normally hand
only the path name root: «nl, vu, cs, ffp> to the name resolver, from which it
would expect the address where it can contact the FTP server, as is also shown in
Fig. 5-15.

An alternative to iterative name resolution is to use recursion duxing name
resolution. Instead of returning each intermediate result back to the client's name
resolver, with recursive name resolution, a name server passes the result to the
next name server it finds. So, for example, when the root name server finds the
addiess of the name server implementing the node named n/, it requests. that name
server to resolve the path name nl:<vu, cs fip' pub, globe, index.html>. Using
recursive name resolution as well, this next server will resolve the complete path
and eventually return the file index.html to the root server, which, in tum, will
pass that file to the client's name resolver.

Recursive name resolution is shown in Fig. 5-16. As in iterative name resolu-
tion, the last resolution step (contacting the FTP' server and asking it to transfer
the indicated file) is generally casried out as a separate process by the client..

1. <nl,vu,cs,ftp>

> Root
8. #<ni,vu,cs,ftp> name server 2. <vu,cs,ftp>
7. #<vu,cs, ftp> Nan;ue sgrver
ni node
Client's 3. <cs,ftp>
name
resolver 6. #<cs, ftp> Name server
vu node 4. <ftp>
5. #<ftp>< Name server
¢s node

<ni,vu,cs,ftp> T l#<nl,vu,cs,ftp>

Figure 5-16. The principle of recursive name resolution.

The main drawback of recursive name resolution is that it puts a higher per-
formance demand on each name server. Basically, a name server is required to
handle the complete resolution of a path name, although it may do so in coopera-
tion with other name servers. This additional burden is generally so high that
name servers in the global layer of a name space suppott only iterative name reso-
lution. _

There are two important advantages to recursive name resolution. The first
advantage is that caching results is more effective compared to iterative name
resolution. The second advantage is that communication costs may be reduced. To
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explain these advantages, assume that a client's name resolver will accept path
names referring only to nodes in the global or administrational layer of the name
space. To resolve that part ofa path name that corresponds to nodes in the manag-
erial layer, a client will separately contact the name server returned by its name
resolver, as we discussed above.

Recursive name resolution allows each name server to gradually learn the ad-
dress of each name server responsible for implementing lower-level nodes. As a
result, caching can be effectively used to enhance performance. For example,
when the root server is requested to resolve the path name root:<nl, vu, cs; ftp>,
it will eventually get the address of the name server implementing the node
referred to by that path name. To come to that point, the name server for the n/
node has to look up the address of the name server for the vu node, whereas the
latter has to look up the address of the name server handling the ¢s node.

Because changes to nodes in the global and administrational layer do not
occur often, the root name server can effectively cache the returned address.
Moreover, because the address is also returned, by recursion, to the name server
responsible for implementing the vu node and to the one implementing the n/
node, it might as well be cached at those servers too.

Likewise, the results of intermediate name lookups can also be returned and
cached. For example, the server for the n/ node will have to look up the address of
the vu node server. That address can be returned to the root server when the n/
server returns the result of the original name lookup. A complete overview of the
resolution process, and the results that can be cached by each name server is
shown in Fig. 5-17.

Server Should Looks up | Passesto  Receives Returns
for node resolve chiid - and caches | to requester
cs <ftp> #i<fip> — L — #<ftp>
vu <cs,ftp> #<cs> <ftp> - #<ftp> #<Cs>

7‘ #<cs, ftp>
nl <vu,cs,ftp> #<vu> <cs,fip> . #<cs> #<vu>
 #<cs,ftp> #<vu,cs>
#<vu,cs,ftp>
root <nl,vu,cs,ftp> | #<nl> <vu,cs,fip> | #<vu> #<nl>
" #<vu,CcS> #<nl,vu>
. #<vu,csftp> | #<nlvu,cs>
#<nl,vu,cs,ftp> |

Figure 5-17. Recursive name resolution of «nl, ru, cs. jip>. Name servers
cache intermediate results for subsequent lookups.

The mgin benefit of this approach is that, eventually. lookup operations can be
handled quite efficiently. For example, suppose that another client later requests
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resolution of the path name root:<nl, Vvii cs, flits>. This name is passed to the
root, which can immediately forward it to the name server for the c¢s node, and re-
quest it to resolve the remaining path name cs.: <jlits>.

With iterative name resolution, caching is necessarily restricted to the client's
name resolver. Consequently, if a client 4 requests the resolution of a name, and
another client B later requests that same name to be resolved, name resolution will
have to pass through the same name servers as was done for client A. As a com-
promise, many organizations use a local, intermediate name server that is shared
by all clients. This local name server handles all naming requests and caches re-
sults. Such an intermediate server is also convenient from a management point of
view. For example, only that server needs to know where the root name server is
located; other machines do not require this information. '

The second advantage of recursive name resolution is that it is often cheaper
with respect to communication. Again, consider the resolution of the path name
root:<nl, vu, cs, fip> and assume the client is located in San Francisco. Assuming
that the client knows the address of the server for the n/ node, with recursive name
resolution, communication follows the route from the client's host in San Fran-
cisco to the n/ server in The Netherlands, shown as R 1 in Fig. 5-18. From there
on, communication is subsequently needed between the n/ server and the name
server of the Vrije Universiteit on the university campus in Amsterdam, The
Netherlands. This communication is shown as R 2. Finally, communication is
needed between the vu server and the name server in the Computer Science
Department, shown as R 3. The route for the reply is the same, but in the opposite
direction. Clearly, communication costs are dictated by the message exchange be-
tween the client's host and the n/ server.

In contrast, with iterative name resolution, the client's host has to communi-
cate separately with the n/ server, the vu server, and the cs server, of which the
total costs may be roughly three times that of recursive name resolution. The
arrows in Fig. 5-18 labeled /1, /2, and /3 show the communication path for itera-
tive name resolution.

5.3.4 Example: The Domain Name System

One of the largest distributed naming services in use today is the Internet
Domain Name System (DNS). DNS is primarily used for looking up IP addresses
of hosts and mail servers. In the following pages, we concentrate on the organiza-
tion of the DNS name space, and the information stored in its nodes. Also, we
take a closer look at the actual implementation of DNS. More information can be
found in Mockapetris (1987) and Albitz and Liu (2001). A recent assessment of
DNS, notably concerning whether it still fits the needs of the current Internet, can
be found in Levien (2005). From this report, one can draw the somewhat surpris-
ing conclusion that even after more than 30 years, DNS gives no indication that it
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n! node
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. St 2 »| Name server
Client Sl vu node
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Figure 5-18. The comparison between recursive and iterative name resolution
with respect to communication costs.

needs to be replaced. We would argue that the main cause lies in the designer's
deep understanding of how to keep matters simple. Practice in other fields of dis-
tributed systems indicates that not many are gifted with such an understanding.

The DNS Name Space

The DNS name space is hierarchically organized as a rooted tree. A label is a
case-insensitive string made up of alphanumeric characters. A label has a max-
imum length of 63 characters; the length of a complete path name is restricted to
255 characters. The string representation of a path name consists of listing its la-
bels, starting with the rightmost one, and separating the labels by a dot (H."). The
root is represented by a dot. So, for example, the path name root: <nl, wu, cs,
flits>, is represented by the stringflits.cs. vu.nl, which includes the rightmost dot
to indicate the root node. We generally omit this dot for readability.

Because each node in the DNS name space has exactly one incoming edge
(with the exception of the root node, which has no incoming edges), the label at-
tached toa node's incoming edge is also used as the name for that node. A subtree
is called a domain; a path name to its root node is called a domain name. Note
that, just like a path name, a domain name can be either absolute or relative.

The contents of a node is formed by a collection of resource records. There
are different types of resource records. The major ones are shown in Fig. 5-19.

A node in the DNS name space often will represent several entities at the
same time. For example, a domain name such as vu.n/ is used to represent a do-
main and a zone. In this case, the domain is implemented by means of several
(nonoverlapping) zones.

An S04 (start of authority) resource record contains information such as an
e-mail address of the system administrator responsible for the represented zone.
the name of the host where data on the zone can be fetched, and so on.
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Type of | Associated Description
record entity
SOA Zone Holds information on the represented zone
A Host Contains an IP address of the host this node represents
MX Domain Refers to a mail server to handle mail addressed to this node
SRV Domain Refers to a server handling a specific service
NS Zone Refers to a name server that implements the represented zone
CNAME | Node Symbolic link with the primary name of the represented node
PTR Host Contains the canonical name of a host .
HINFO Host Holds information on the host this node represents
TXT Any kind Contains any entity-specific information considered useful

Figure 5-19. The most important types of resource records forming the contents
of nodes in the DNS name space.

. An A4 (address) record, represents a particular host in the Internet. The 4
record contains an IP address for that host to allow communication. If a host has
several IP addresses, as is the case with multi-homed machines, the node will con-
tain an A record for each address.

Another type of record is the MX (mail exchange) record, which is like a sym-
bolic link to a node representing a mail server. For example, the node representing
the domain cs.vu.nl has an MX record containing the name zephyr.cs.vu.nl, which
refers to a mail server. That server will handle all incoming mail addressed to
users in the c¢s. vu.nl domain. There may be several MX records stored in a node.

Related to MX records are SRV records, which contain the name of a server
for a specific service. SRV records are defined in Gulbrandsen (2000). The ser-
vice itself is identified by means of a name along with the name of a protocol. For
example, the Web server in the cs.vu.n/ domain could be named by means of an
SRV record such as Jutp:ctcp.cs.vu.nl, This record would then refer to the actual
name of the server (which is soling.cs. vu.nl). An important advantage of SRV
records is that clients need no longer know the DNS name of the host providing a
specific service. Instead, only service names need to be standardized, after which
the providing host can be looked up.

Nodes that represent a zone, contain one or more NS (name server) records.
Like MX records, an NS record contains the name of a name server that imple-
ments the zone represented by the node. In principle, each node in the name space
can store an NS record referring to the name server that implements it. However,
as we discuss below, the implementation of the DNS name space is such that only
nodes representing zones need to store NS records.

DNS distinguishes aliases from what are called canonical names. Each host
is assumed to have a canonical, or primary name. An alias is implemented by
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means of node storing a CNAME record containing the canonical name of a host.
The name of the node storing such a record is thus the same as a symbolic link, as
was shown in Fig. 5-JJ.

DNS maintains an inverse mapping of IP addresses to host names by means of
PTR (pointer) records. To accommodate the lookups of host names when given
only an IP address, DNS maintains a domain named in-addr.arpa, which contains
nodes that represent Internet hosts and which are named by the IP address of the
represented host. For example, host tVww.cs.\'u.nl has IP address 130.37.20.20.
DNS creates a node named 20.20.37.130.in-addr.mpa, ~ which is used to store the
canonical name of that host (which happens to be soling.cs. vu.nl j in a PTR record.

The last two record types are HINFO records and TXT records. An HINFO
(host info) record is used to store additional information on a host such as its ma-
chine type and operating system. In a similar fashion, 7XT records are used for
any other kind of data that a user finds useful to store about the entity represented
by the node.

DNS Implementation

In essence, the DNS name space can be divided into a global layer and an
administrational layer as shown in Fig. 5-13. The managerial layer, which is gen-
erally formed by local file systems, is formally not part of DNS and is therefore
also not managed by it.

Each zone is implemented by a name server, which is virtually always repli-
cated for availability. Updates for a zone are normally handled by the primary
name server. Updates take place by modifying the DNS database local to the pri-
mary server. Secondary name servers do not access the database directly, but, in-
stead, request the primary server to transfer its content. The latter is called a zone
transfer in DNS terminology.

A DNS database is implemented as a (small) collection of files, of which the
most important one contains all the resource records for all the nodes in a particu-
lar zone. This approach allows nodes to be simply identified by means of their do-
main name, by which the notion of a node identifier reduces to an (implicit) index
into a file.

To better understand these implementation issues, Fig. 5-20 shows a small
part of the file that contains most of the information for the c¢s.vu.n/ domain (the
file has been edited for simplicity). The file shows the contents of several nodes
that are part of the c¢s. vu.nl domain, where each node is identified by means of its
domain name.

The node cs.vu.nl represents the domain as well as the zone. Its SOA resource
record contains specific information on the validity of this file. which will not
concern us further. There are four name servers for this zone, referred to by their
canonical host names in the NS records. The TXT record is used to give some



SEC. 5.3 STRUCTURED NAMING 213

additional information on this zone, but cannot be automatically processed by any
name server. Furthermore, there is a single mail server that can handle incoming
mail addressed to users in this domain. The number preceding the name of a mail
server specifies a selection prionity. A sending mail server should always first at-
tempt to contact the mail server with. the lowest number.

Name Record type Record value
cs.vu.nl. SOA star.cs.vu.nl. hostmaster.cs.vu.nl.
2005092900 7200 3600 2419200 3600
cs.vu.nl. XT "Vrije Universiteit - Math. & Comp. Sc."
cs.vu.nl. MX 1 mail.few.vu.nl. R
cs.vu.ni. NS ns.vu.nl.
cs.vu.nl. NS top.cs.vu.nl.
cs.vu.nl. NS solo.cs.vu.nl.
cs.vu.nl. NS star.cs.vu.nl.
star.cs.vu.nl. A 130.37.24.6
star.cs.vu.nl. A 192.31.231.42
star.cs.vu.nl. MX 1 star.cs.vu.nl.
star.cs.vu.nl. MX 666 zephyr.cs.vu.nl.
star.cs.vu.nl. HINFO “Sun” "Unix"
zephyr.cs.vu.nl. A 130.37.20.10
zephyr.cs.vu.nl. MX 1 zephyr.cs.vu.nl.
zephyr.cs.vu.nl. MX 2 tornado.cs.vu.nl.
zephyr.cs.vu.nl. HINFO "Sun® "Unix"
ftp.cs.vu.nl. CNAME soling.cs.vu.nl.
www.cs.vu.nl. CNAME soling.cs.vu.nl.
soling.cs.vu.nl. A 130.37.20.20
| soling.cs.vu.nl. MX 1 soling.cs.vu.nl.
soling.cs.vu.nl. MX 666 zephyr.cs.vu.nl.
soling.cs.vu.nl. HINFO "Sun" "Unix*
| vucs-dasi.cs.vu.nl. PTR 0.198.37.130.in-addr.arpa.
vucs-dasi.cs.vu.nl. A 130.37.198.0
inkt.cs.vu.nl. HINFO "OCE" "Proprietary”
inkt.cs.vu.nl. A 192.168.4.3
pen.cs.vu.ni. HINFO "OCE" "Proprietary”
pen.cs.vu.nl. A 192.168.4.2
localhost.cs.vu.nl. A 127.0.0.1

Figure 5-20. An excerpt from the DNS database for the zone cs. vU.1/1,

The host star.cs. vu.nl operates as a name server for this zone. Name servers

additional robustness has been created by giviag two separate network intexfaces,
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each represented by a separate A resource record. In this way, the effects of a bro-
ken network link can be somewhat alleviated as the server will remain accessible.

The next four lines (for zephyr.cs..vu.nl) give the necessary ' information about
one of the department's mail servers. Note that this mail server is also backed up
by another mail server, whose path is tornado.cs..vu.nl.

The next six lines show a typical configuration in which the department's
Web server, as well as the department's’ FTP server are implemented by a single
machine, called soling. c¢s.vu.nl. By executing both servers on the same machine
(and essentially using that machine only for Internet services and not anything
else), system management becomes easier. For example, both servers will have
the same view of the file system, and for efficiency, part of the file system may be
implemented on seoling.cs.vu.nl,  This approach is often applied in the case of
WWW and FTP services.

The following two lines show information on one of the department's older
server glusters. In this case, it tells us that the address 730.37.198.0 is associated
with the host name vucs-dasl.cs.vu.nl,

The next four lines show information on two major printers connected to the
local network.. Note that addresses in the range /92.168.0.0 to 192.168.255.255
are private: they can be accessed only from inside the local network and are not
accessible from an arbitrary ' Internet host..

Name Record type Record value
cs.vu.nl. NS solo.cs.vu.nl.
cs.vu.nl. NS star.cs.vu.ni.
cs.vu.nl. NS ns.vu.nl.
cs.vu.nl. NS top.cs.vu.nl.
ns.vu.nl. A 130.37.129.4
top.cs.vu.nl. A 130.37.20.4
solo.cs.vu.nl. A 130.37.20.5
star.cs.vu.nl. A 130.37.24.6
star.cs.vu.nl. A 192.31.231.42

Figure 5-21, Part of the description for the vu.n/ domain which contains the
cs. vu.nl domain.

Because the cs.vu.n/ domain is implemented as a single zone. Fig. 5-20 does
not include references to other zones. The way to refer to nodes in a subdomain
that are implemented in a different zone is shown in Fig. 5-21. What needs to be
done is to specify a name server for the subdomain by simply giving its domain
name and IP address. When resolving a name for a node that lies in the cs.vu.nl
domain, name resolution will continue at a certain point by reading the DNS data-
base stored by the name server for the cs.vu.n/ domain.
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Decentralized DNS Implementations

The implementation of DNS we described so far is the standard one. It fol-
lows a hierarchy of servers with 13 well-known root servers and ending in mil-
lions of servers at the leaves. An important observation is that higher-level nodes
receive many more requests than lower-level nodes. Only by caching the name-
to-address bindings of these higher levels is it possible to avoid sending requests
to them and thus swamping them.

These scalability problems can be avoided alt-ogetherwith fully decentralized
solutions. In particular, we can compute the hash of a DNS name, and subse-
quently take that hash as a key value to be looked up in a distributed-hash table or
a hierarchical location service with a fully partitioned root node. The obvious
drawback of this approach is that we lose the structure of the original name. This
loss may prevent efficient implementations of, for example, finding all children in
a specific domain.

On the other hand, there are many advantages to mapping DNS to a DHT-
based implementation, notably its scalability. As argued by Walfish et al. (2004),
when there is a need for many names, using identifiers as a semantic-free way of
accessing data will allow different systems to make use of a single naming sys-
tem. The reason is simple: by now it is well understood how a huge collection of
(flat) names can be efficiently supported. What needs to be done is to maintain the
mapping of identifier-to-name information, where in this case a name may come
from the DNS space, be a URL, and so on. Using identifiers can be made easier
by letting users or organizations use a strict local name space. The latter is com-
pletely analogous to maintaining a private setting of environment variables on a
computer.

Mapping DNS onto DHT-based peer-to-peer systems has been explored in
CoDoNS (Ramasubramanian and Sirer, 2004a). They used a DHT-based system
in which the prefixes of keys are used to route to a node. To explain, consider the
case that each digit from an identifier is taken from the set {0, ..., -/ }, where b
is the base number. For example, in Chord, b = 2. If we assume that b = 4, then
consider a node whose identifier is 3210. In their system, this node is assumed to
keep a routing table of nodes having the following identifiers:

no: a node whose identifier has prefix 0
ni: a node whose identifier has prefix 1
na: a node whose identifier has prefix 2
7 30: a node whose identifier has prefix 30
nai: a node whose identifier has prefix 31
n33: a node whose identifier has prefix 33

n320:  anode whose identifier has prefix320
n322:  anode whose identifier has prefix 322
n323:  anode whose identifier has prefix 323



216 NAMING CHAP. 5

Node 3210 is responsible for handling keys that have prefix 321. If it receives a
lookup request for key 3123, it will forward it to node 113b which, in turn, will see
whether it needs to forward it to a node whose identifier has prefix 312. (We
should note that each node maintains two other lists that it can use for routing if it
misses an entry in its routing table.) Details of this approach can be found for Pas-
try (Rowstron and Druschel, 2001) and Tapestry (Zhao et al., 2004).

Returning to CoDoNS, a node responsible for key k stores the DNS resource
records associated with domain name that hashes to k. The interesting part, how-
ever, is that CoDoNS attempts to minimize the number of hops in routing a re-
quest by replicating resource records. The principle strategy is simple: node 3210
will replicate its content to nodes having prefix 321. Such a replication will re-
duce each routing path ending in node 3210 by one hop. Of course, this replica-
tion can be applied again to all nodes having prefix 32, and so on.

When a DNS record gets replicated to all nodes with i matching prefixes, it is
said to be replicated at level i. Note that a record replicated at level i (generally)
requires i lookup steps to be found. However, there is a trade-off between the
level of replication and the use of network and node resources. What CoDoNS
does is replicate to the extent that the resulting aggregate lookup latency is less
than a given constant C.

More specifically, think for a moment about the frequency distribution of the
queries. Imagine ranking the lookup queries by how often a specific key is re-
quested putting the most requested key in first position. The distribution of the
lookups is said to be Zipf-like if the frequency of the n-#2 ranked item is propor-
tional to I/n a, with a close to 1. George Zipf was a Harvard linguist who
discovered this distribution while studying word-use frequencies in a natural lan-
guage. However, as it turns out, it also applies among many other things, to the
population of cities, size of earthquakes, top-income distributions, revenues of
corporations, and, perhaps no longer surprisingly, DNS queries (Jung et al., 2002).

Now, if xi is the fraction of most popular records that are to be replicated at
level /i, then Ramasubramanian and Sirer (2004b) show that xi can be expressed
by the following formula (for our purposes, only the fact that this formula exists is
actually important; we will see how to use it shortly):

(1-a)

d'(logN—-C)
1+d+ - - - +d'0sV-1

with d=b1=*®

where N is the number of nodes in the network and a is the parameter in the Zipf
distribution.

This formula allows to take informed decisions on which DNS records should
be replicated. To make matters concrete, consider the case that » =32 and
a =0.9. Then, in a network with 10,000 nodes and 1,000,000 DNS records, and
trying to achieve an average of C=7 hop only when doing a lookup, we will have
that Xo =0.0000701674, meaning that only the 70 most popular DNS records
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should be replicated everywhere. Likewise, with x 1 =0.00330605, the 3306 next
most popular records should be replicated at level 1. Of course, it is required that
xi < 1. In this example, xx =0.155769 and x3 > 1, so that only the next most
popular 155,769 records get replicated and all the others or not. Nevertheless, on
average, a single hop is enough to find a requested DNS record.

S.4 ATTRIBUTE-BASED NAMING

Flat and structured names generally provide a unique and location-indepen-
dent way of referring to entities. Moreover, structured names have been partly
designed to provide a human-friendly way to name entities so that they can be
conveniently accessed. In most cases, it is assumed that the name refers to only a
single entity. However, location independence and human friendliness are not the
only criterion for naming entities. In particular, as more information is being made
available it becomes important to effectively search for entities. This approach re-
quires that a user can provide merely a description of what he is looking for.

There are many ways in which descriptions can be provided, but a popular
one in distributed systems is to describe an entity in terms of (attribute, value)
pairs, generally referred to as attribute-based naming. In this approach, an enti-
ty is assumed to have an associated collection of attributes. Each attribute says
something about that entity. By specifying which values a specific attribute should
have, a user essentially constrains the set of entities that he is interested in. It is up
to the naming system to return one or more entities that meet the user's descrip-
tion. In this section we take a closer look at attribute-based naming systems.

5.4.1 Directory Services

Attribute-based naming systems are also known as directory serviees, where-
as systems that support structured naming are generally called naming systems.
With directory services, entities have a set of associated attributes that can be
used for searching. In some cases, the choice of attributes can be relatively sim-
ple. For example, in an e-mail system, messages can be tagged with attributes for
the sender, recipient, subject, and so on. However, even in the case of e-mail,
matters become difficult when other types of descriptors are needed, as is illus-
trated by the difficulty of developing filters that will allow only certain messages
(based on their descriptors) to be passed through.

What it all boils down to is that designing an appropriate set of attributes is
not trivial. In most cases, attribute design has to be done manually. Even if there
is consensus on the set of attributes to use, practice shows that setting the values
consistently by a diverse group of people is a problem by itself, as many will have
experienced when accessing music and video databases on the Internet.
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To alleviate some of these problems, research has been conducted on unifying
the ways that resources can be described. In the context of distributed systems,
one particularly relevant development is the resource description framework
(RDF). Fundamental to the RDF model is that resources are described as triplets
consisting of a subject, a predicate, and an object. For example, (Person, name,
Alice) describes a resource Person whose name 1is Alice. In RDF, each subject,
predicate, or object can be a resource itself. This means that Alice may be imple-
mented as reference to a file that can be subsequently retrieved. In the case of a
predicate, such a resource could contain a textual description of that predicate. Of
course, resources associated with subjects and objects could be anything. Refer-
ences in RDF are essentially URLs.

If resource descriptions are stored, it becomes possible to query that storage in
a way that is common for many attributed-based naming systems. For example, an
application could ask for the information associated with a person named Alice.
Such a query would return a reference to the person resource associated with
Alice. This resource can then subsequently be fetched by the application. More in-
formation on RDF can be found in Manola and Miller (2004).

In this example, the resource descriptions are stored at a central location.
There is no reason why the resources should reside at the same location as well.
However, not having the descriptions in the same place may incur a serious per-
formance problem. Unlike structured naming systems, looking up values in an at-
tribute-based naming system essentially requires an exhaustive search through all
descriptors. When considering performance, such a search is less of problem with-
in a single data store, but separate techniques need to be applied when the data is
distributed across multiple, potentially dispersed computers. In the following, we
will take a look at different approaches to solving this problem in distributed sys-

tems.
5.4.2 Hierarchical Implementations: LDAP

A common approach to tackling distributed directory services is to combine
structured naming with attribute-based naming. This approach has been widely
adopted, for example, in Microsoft's Active Directory service and other systems.
Many of these systems use, or rely on the lightweight directory access protocol
commonly referred simply as LDAP. The LDAP directory service has been
derived from OS1's X.500 directory service. As with many OSI services, the qual-
ity of their associated implementations hindered widespread use, and simplifica-
tions were needed to make it useful. Detailed information on LDAP can be found
in Arkills (2003).

Conceptually, an LDAP directory service consists of a number of records,
usuglly referred to as directory entries. A directory entry is comparable to a re-
source record in DNS. Each record is made up of a collection of (attribute. value)
pairs, where each attribute has an associated type. A distinction is made between
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single-valued attributes and multiple-valued attributes. The latter typically repres-
ent arrays and lists. As an example, a simple directory entry identifying the net-
work addresses of some general servers from Fig. 5-20 is shown in Fig. 5-22.

Attribute Abbr. Value
Country C NL
Locality L Amsterdam
Organization O Vrije Universiteit
OrganizationalUnit | OU Comp. Sc.
CommonName CN Main server
Mail _Servers — 137.37.20.3, 130.37.24.6, 137.37.20.10
FTP_Server —_ 130.37.20.20
WWW _Server — 130.37.20.20

Figure 5-22. A simple example of an LDAP directory entry using LDAP na-
ming conventions.

In our example, we have used a naming convention described in the LDAP
standards, which applies to the first five attributes. The attributes Organization
and Organization Unit describe, respectively, the organization and the department
assogiated with the data that are stored in the record. Likewise, the attributes
Locality and Country: provide additional information on where the entry is stored.
The CommonName attribute is often used as an (ambiguous) name to identify an
entry within a limited part of the directory. For example, the name "Main server"
may be enough to find our example entry given the specific values for the other
four attributes Country, Locality, Organization, and Organizational Unit. In our
example, only attribute Mgjl..Servers has multiple values associated with it. All
other attributes have only a single value. ‘

The collection of all directory entries in an LDAP directory service is called a
diregtory information base (DIB). An important aspect of a DIB is that each
record is uniquely named so that it can be looked up. Such a globally unique name
appears as a sequence of naming attributes in each record. Each naming attribute
is called a relative distinguished name, or RDN for short. In our example in
Fig: 5-22, the first five attributes are all naming attributes. Using the conventional
abbreviations for representing naming attributes in LDAP, as shown in Fig. 5-22,
the attributes Country, Organization, and Organizational Unit could be used to
form the globally unique name

/C=NL/O=Vrije Universiteit/OU=Comp. Sc.

analogous to the DNS name nlvu.cs,
As in DNS, the use of globally unique names by listing RDNs in sequence,
leads to a hierarchy of the collection of directory entries, which is referred to as a
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directory information tree (DIT). A DIT essentially forms the naming graph of
an LDAP directory service in which each node represents a directory entry. In ad-
dition. a node may also act as a directory in the traditional sense, in that there may
be several children for which the node acts as parent. To explain, consider the na-
ming graph as partly shown in Fig. 5-23(a). (Recall that labels are associated with

edges.)

O = Vrije Universiteit

QU = Comp. Sc.
CN = Main server
/ amn
N
Host_Name = star Host_Name = zephyr
(a)
Attribute Value Attribute Value
Country NL Country NL
Locality Amsterdam Locality Amsterdam
Organization Vrije Universiteit Organization " Vrije Universiteit
OrganizationalUnit| Comp. Sc. OrganizationalUnit: Comp. Sc.
CommonName Main server | CommonName | Main server
Host_Name star Host_Name | zephyr
Host_Address 192.31.231.42 Host_Address . 137.37.20.10

(b)

Figure 5-23. (a) Part of a directary information tree. (b) Two directory entries
having Host.Name as RDN.

Node N corresponds to the directory entry shown,in Fig. 5-22. At the same
time, this node acts as a parent to a number of other directory entries that have an
additional naming attribute Host....Name that is used as an RDN. For example, such
entries may be used to represent hosts as shown in Fig. 5-23(b).

A node in an LDAP naming graph can thus simultaneously represent a direc-
tory in the traditional sense as we discussed previously, as well as an LDAP rec-
ord. This distinction is supported by two different lookup operations. The read op-
eration is used to read a single record given its path name in the DIT. In contrast,
the list operation is used to list the names of all outgoing edges of a given node in
the DIT. Each name corresponds to a child node of the given node. Note that the
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list operation does not return any records; it merely returns names. In other words,
calling read with as input the name '

/C=NUO= Vrije UniversiteitlOU=Comp. ScICN=Main server

will return the record shown in Fig. 5-22, whereas calling list will return the
names star and zephyr from the entries shown in Fig. 5-23(b) as well as the names
of other hosts that have been registered in a similar way.

Implementing an LDAP directory service proceeds in much the same way as
implementing a naming service such as DNS, except that LDAP supports more
lookup operations as we will discuss shortly. When dealing with a large-scale di-
rectory, the DIT is usually partitioned and distributed across several servers,
known as directory service agents, (DSA). Each part of a partitioned DIT thus
corresponds to a zone in DNS. Likewise, each DSA behaves very much the same
as a normal name server, except that it implements a number of typical directory
services, such as advanced search operations.

Clients are represented by what are called directory ~user agents; or simply
DUAs. A DUA is similar to a name resolver in structured-naming services. A
DUA exchanges information with a DSA according to a standardized access pro-
tocol,

What makes an LDAP implementation different from a DNS implementation
are the facilities for searching through a DIB. In particular, facilities are provided
to search for a directory entry given a set of criteria that attributes of the searched
entries should meet. For example, suppose that we want a list of all main servers
at the Vrije Universiteit. Using the notation defined in Howes (1997), such a list
can be returned using a search operation such as

answer = search("&(C=NL)(O=Vrije  Universiteit)(OU=")(CN=Main  server)")

In this example, we have specified that the place to look for main servers is the
organization named Vrije Universiteit in country NL, but that we are not
interested in a particular organizational unit. However, each returned result should
have the CN attribute equal to Main server.

As we already mentioned, searching in a directory service is generally an
expensive operation. For example, to find all main servers at the Vrije Universiteit
requires searching all entries at each department and combining the results in a
single answer. In other words, we will generally need to access several leaf nodes
of a DIT in order to get an answer. In practice, this also means that several DSAs
need to be accessed. In contrast, naming services can often be implemented in
such a way that a lookup operation requires accessing only a single leaf node.

This whole setup of LDAP can be taken one step further by allowing several
trees to co-exist, while also being linked to each other. This approach is followed
in Microsoft's Active Directory leading to aforest of LDAP domains (Allen and
Lowe-Nozxis, 2003). Obviously, searching in such an organization can be
overwhelmingly complex. To circumvent some of the scalability problems, Active
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Directory usually assumes there is a global index server (called a global catalog)
that can be searched first. The index will indicate which LDAP domains need to
be searched further. :

Although LDAP by itself already exploits hierarchy for scalability, it is com-
mon to combine LDAP with DNS. For example, every tree in LDAP needs to be
accessible at the root (known in Active Directory as a domain controller). The
root is often known under a DNS name, which, in tum, can be found through an
appropriate SRV record as we explained above.

LDAP typically represents a standard way of supporting attribute-based na-
ming. Other recent directory services following this more traditional approach
have been developed as well, notably in the context of grid computing and Web
services. One specific example is the universal directory and discovery integra-
tion or simply UDDI.

These services assume an implementation in which one, or otherwise only a
few nodes cooperate to maintain a simple distributed database. From a technologi-
cal point of view, there is no real novelty here. Likewise, there is also nothing
really new to report when it comes to introducing terminology, as can be readily
observed when going through the hundreds of pages of the UDDI specifications
(Clement et al., 2004). The fundamental scheme is always the same: scalability is
achieved by making several of these databases accessible to applications, which
are then responsible for querying each database separately and aggregating the re-
sults. So much for middleware support.

5.4.3 Decentralized Implementations

With the advent of peer-to-peer systems, researchers have also been looking
for solutions for decentralized attribute-based naming systems. The key issue here
is that (attribute, value) pairs need to be efficiently mapped so that searching can
be done efficiently, that is, by avoiding an exhaustive search through the entire
attribute space. In the following we will take a look at several ways how to estab-
lish such a mapping.

Mapping to Distributed Hash Tables

Let us first consider the case where (attribute, value) pairs need to be sup-
ported by a DHT-based system. First, assume that queries consist of a conjunction
of pairs as with LDAP, that is. a user specifies a list of attributes, along with the
unique value he wants to see for every respective attribute. The main advantage of
this type of query is that no ranges need to be supported. Range queries may signi-
ficantly increase the complexity of mapping pairs to a DHT.

Single-valued queries are supported in the INSrrwine system (Balazinska et
al,, 2002). Each entity (referred to as a resource) is assumed to be described by
means of possibly hierarchically organized attributes such as shown in Fig. 5-24.
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Each such description is translated into an attribute-value  tree (AVTree) whieh
is then used as the basis for an encoding that maps well onto a DHT -based system.

description {

type = book type genre

description {
author = Tolkien book fantasy
title = LOTR
} author
genre = fantasy
} Tolkien LOTR

(a) (b)

Figure 5-24. (a) A general desciiption of a resource. (b) Its representation as an
AVTree.

The main issue is to transform the AVTrees into a collection of keys that can
be looked up in a DHT system. In this case, every path originating in the root is
assigned a unique hash value, where a path descuiption starts with a link (repres-
enting an attgibute), and ends either in a node (value), or another link. Taking
Fig. 5-24(b) as our example, the following hashes of all such paths are considered:

hl: hash(type-book)

h?2:  hash(type-book-author)

h3:  hashttype-book-author- Tolkien)
hy: hash(type-book-title)

h5:  hash(type-book-title-LOTR)

h6:  hash(genre-fantasy)

A node responsible for hash value hi will keep (a reference to) the actual resource.
In our example, this may lead to six nodes stoiing information on Tolkien's Lord
of the Rings. However, the benefit of this redundancy is that it will allow sup-
porting partial quesies. For example, consider a query such as "Retwrn books writ-
ten by Tolkien." This query is translated into the AVTree shown in Fig. 5-25
leading to computing the following three hashes:

hi: hash(type-book)

h2:  hash( type-book -author)

h3: hashttype-book-author- Tolkien)

These values will be sent to nodes that store information on Tolkien' s books, and
will at least return Lord of the Rings. Note that a hash such as /4 1 is rather general
and will be generated often. These type of hashes can be filtered out of the sys-
tem. Moreover, it is not diffieult to see that only the most specific hashes need to
be evaluated. Further details can be found in Balzinska et al. (2002).

Now let's take a look at another type of query, namely those that can contain
range specifications for attribute values. For example, someone looking for a
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description {
type = book type
description {
author = Tolkien book
itle="

} author
genre =*
} Tolkien

(a) (b)

Figure 5-25. (a) The resource description of a query. (b) Its representation as an
AVTree.

house will generally want to specify that the price must fall within a specific
range. Again. several solutions have been proposed and we will come across some
of them when discussing publish/subscribe systems in Chap. 13. Here, we discuss
a solution adopted in the SWORD resource discovery system (Oppenheimer et al.,
2005).

In SWORD, (attribute, value) pairs as provided by a resource description are
first transformed into a key for a DHT. Note that these pairs always contain a sin-
gle value; only queries may contain value ranges for attributes. When computing
the hash, the name of the attribute and its value are kept separate. In other words,
specific bits in the resulting key will identify the attribute name, while others
identify its value. In addition, the key will contain a number of random bits to
guarantee uniqueness among all keys that need to be generated.

In this way, the space of attributes is conveniently partitioned: if 11 bits are re-
served to code attribute names, 2" different server groups can be used, one group
for each attribute name. Likewise, by using m bits to encode values, a further par-
titioning per server group can be applied to store specific (attribute, value) pairs.
DHTs are used only for distributing attribute names.

For each attribute name, the possible range of its value is panitioned into
subranges and a single server is assigned to each subrange. To explain, consider a
resource description with two attributes: a 1 taking values in the range [1..10] and
a2 taking values in the range [101...200]. Assume there are two servers for a I:
su takes care of recording values of a7 in [1..5], and s:2 for values in [6..10].
Likewise, server s2;1 records values for «2 in range [101..150] and server s22 for
values in [151..200]. Then, when the resource gets values (a1 =7,a2 = 175),
server s 12 and server s22 will have to be informed.

The advantage of this scheme is that range queries can be easily supported.
When a query is issued to return resources that have a2 lying between 165 and
189, the query can be forwarded to server s22 who can then return the resources
that match the query range. The drawback, however, is that updates need to be
sent to multiple servers. Moreover, it is not immediately clear how well the load is

—~—
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balanced between the various servers. In particular, if certain range queries tum
out to be very popular, specific servers will receive a high fraction of all queries.
How this load-balancing problem can be tackled for DHT-based systems is dis-
cussed in Bharambe atal. (2004).

Semantic. Overlay Networks.

The decentralized implementations of attribute-based naming already show an
increasing degree of autonomy of the various nodes. The system is less sensitive
to nodes joining and leaving in comparison to, for example, distributed LDAP-
based systems. This degree of autonomy is further increased when nodes have
descriptions of resources that are there to be discovered by others. In other words,
there is no a priori deterministic scheme by which (attribute, value) paits are
spread across a collection of nodes.

Not having such a scheme forces nodes to discover where requested resources
are. Such a discovery is typical for unstructured overlay networks, which we
already discussed in Chap. 2. In order to make searching efficient, it is impostant
that a node has references to others that can most likely answer its queries. If we
mgke the assumption that queries originating from node P are strongly related to
the resources that P has, then we are seeking to provide P with a collection of
links to semantically proximal neighbors. Recall that such a list is also known as a
partial view. Semantical proximity can be defined in different ways, but it boils
down to keeping track of nodes with similar resources. The nodes and these links
will then form what is known as a semantic oveilay network.

A common approach to semantic overlay networks is to assume that there is
commonality in the meta information maintained at each node. In other words, the
resources stored at each node are described using the same collection of attributes,
or, more precisely, the same data schema (Crespo and Garcia-Molina, 2003).
Having such a schema will allow defining specific similarity functions between
nodes. Each node will then keep only links to the K most similar neighbors and
query those nodes first when looking for specific data. Note that this approach
makes sense only if we can generally assume that a query initiated at a node
relates to the content stored at that node.

Unfortunately, assuming commonality in data schemas is generally wrong. In
practice, the meta information on resources is highly inconsistent across different
nodes and reaching consensus and what and how to describe resources is elose to
impossible. For this reason, semantic overlay networks will generally need to find
different ways to define similarity.

One approach is to forget about attributes altogether and consider only very
simple descriptors such as file names. Passively constructing an overlay can be
done by keeping track of which nodes respond positively to file searches. For ex-
ample, Sripanidkulchai et al. (2003) first send a query to a node's semantic neigh-
bors, but if the requested file is not there a (limited) broadcast is then done. Of
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course, such a broadcast may lead to an update of the semantic-neighbors list. As
a note, it is interesting to see that if a node requests its semantic neighbors to for-
ward a query to their semantic neighbors, that the effect is minimal (Handrukande
et al., 2004). This phenomenon can be explained by what is known as the small-
world effect which essentially states that the friends of Alice are also each other's
friends (Watts. 1999).

A more proactive approach toward constructing a semantic-neighbor list 'is
proposed by Voulgaris and van Steen (2005) who use a simple semantic. proxim-
ity function defined on the file lists FLp and FLqg of two nodes P and Q, respec-
tively. This function simply counts the number of common files in FLp and FLo.
The goal is then to optimize the proximity function by letting a node keep a list of
only those neighbors that have the most files in common with it.

Semantic P;gm(:t:g ' //# Links to nodes with
many files in common
overlay overlay Q: y

! Random peer

—-— - —— — m— = e e e e e e e e aem — e —

Random Protocol for 4 Links to randomly

overlay ranc‘il?;:\Jzed QI chosen other nodes

Figure 5-26. Maintaining a semantic ovetlay through gossiping.

To this end, a two-layered gossiping scheme is deployed as shown in Fig. 5-
26. The bottom layer consists of an epidemic protocol that aims at maintaining a
partial view of uniform randomly-selected nodes. There are different ways to
achieve this as we explained in Chap. 2 [see also Jelasity et al. (2005a)]. The top
layer maintains a list of semantically proximal neighbors through gossiping. To
initiate an exchange, an node P can randomly select a neighbor Q from its current
list, but the trick is to let P send only those entries that are semantically closest to
Q. In tum, when P receives entries from Q, it will eventually keep a partial view
consisting omnly of the semantically closest nodes. As it turns out, the partial views
as maintained by the top layer will rapidly converge to an optimum.

As will have become clear by now, semantic. overlay networks are closely
related to decentralized searching. An extensive overview of searching in all kinds
of peer-to-peer systems is discussed in Risson and Moors (2006).

5.5 SUMMARY

Names are used to refer to entities. Essentially, there are three types of names.
An address is the name of an access point associated with an entity, also simply
called the address of an entity. An identifier is another type of name. It has three
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properties: each entity is referred to by exactly one identifier, an identifier refers
to only one entity, and is never assigned to another entity. Finally, human-friendly
names are targeted to be used by humans and as such are represented as character
strings. Given these types, we make a distinction between flat naming, structured
naming, and attribute-based naming.

Systems for flat naming essentially need to resolve an identifier to the address
of its associated entity. This locating of an entity can be done in different ways.
The first approach is to use broadcasting or multicasting. The identifier of the en-
tity is broadcast to every process in the distributed system. The process offering
an access point for the entity responds by providing an address for that access
point, Obviously, this approach has limited scalability.

A second approach is to use forwarding pointers. Each time an entity moves
to a next location, it leaves behind a pointer telling where it will be next. Locating
the entity requires traversing the path of forwarding pointers. To avoid large
chains of pointers, it is important to reduce chains periodically

A third approach is to allocate a home to an entity. Each time an entity moves
to another location, it informs its home where it is. Locating an.entity proceeds by
first asking its home for the current location.

A fourth approach is to organize all nodes into a structured peer-to-peer sys-
tem, and systematically assign nodes to entities taking their respective identifiers
into account, By subsequently devising a routing algorithm by which lookup re-
quests are moved toward the node responsible for a given entity, efficient and
robust name resolution is possible.

A fifth approach is to build a hierarchical search tree. The network is divided
into nonoverlapping domains. Domains can be grouped into higher-level (nono-
verlapping) domains, and so on. There is a single top-level domain that covers the
entire network. Each domain at every level has an associated directory node. If an
entity is located in a domain D, the directory node of the next higher-level domain
will have a pointer to D. A lowest-level directory node stores the address of the
entity. The top-level directory node knows about all entities.

Structured names are easily organized in a name space. A name space can be
represented by a naming graph in which a node represents a named entity and the
label on an edge represents the name under which that entity is known. A node
having multiple outgoing edges represents a collection of entities and is also
known as a context node or directory. Large-scale naming graphs are often organ-
ized as rooted acyclic directed graphs.

Naming graphs are convenient to organize human-friendly names in a struc-
tured way. An entity can be referred to by a path name. Name resolution is the
process of traversing the naming graph by looking up the components of a path
name, one at a time. A large-scale naming graph is implemented by distributing
its nodes across multiple name servers. When resolving a path name by traversing
the naming graph, name resolution continues at the next name server as soon as a
node is reached implemented by that server.
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More problematic are attribute-based naming schemes in which entities are
described by a collection of (attribute, value) pairs. Queries are also formulated as
such pairs, essentially requiring an exhaustive search through all descriptors. Such
a search is only feasible when the descriptors are stored in a single database.
However, alternative solutions have been devised by which the pairs are mapped
onto DHT-based systems, essentially leading to a distribution of the collection of
entity descriptors.

Related to attribute-based naming is to gradually replace name resolution by
distributed search techniques. This approach is followed in semantic overlay net-
works, in which nodes maintain a local Est of other nodes that have semantically
similar content, These semantic lists allow for efficient search to take place by
which first the immediate neighbors are queried, and only after that has had no
success will a (limited) broadcast be deployed. : |

PROBLEMS

1. Give an example of where an address of an entity E needs to be further resolved into
another address to actually access E.

2. Would you consider a URL such as hutp:/www.acme org/index.html  to be location
independent? What about Atp:/www.acme.nllindex html?

Give some examples of true identifiers.
Is an identifier allowed to contain information on the entity it refers to?

Outline an efficient implementation of globally unique identifiers.

A A

Consider the Chord system as shown in Fig. 5-4 and assume that node 7 has just
joined the network., What would its finger table be and would there be any changes to
other finger tables?

7. Consider a Chord DHT-based system for which k bits of an m-bit identifier space have
been reserved for assigning to superpeers. If identifiers are randomly assigned, how
many superpeers can one expect to have in an N-node system?

8. If we insert a node into a Chord system, do we need to instantly update all the finger
tables?

9. What is a major drawback of recursive lookups when resolving a key in a DHT-based
system?

10. A special form of locating an entity is called anycasting, by which a service is identi-
fied by means of an IF address (see. for example, RFC 1546). Sending a request to an
anycast address, returns a response from a server implementing the service identified
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12.

13.

14.

15.

16.
17.

18.

19.

20.
21,

22.

23.

24.

by that anycast address. Outline the implementation of an anycast service based on the
hierarchical location service described in Sec. 5.2.4.

. Considering that a two-tiered home-based approach is a specialization of a hierarchi-

cal location service, where is the root?

Suppose that it is known that a specific mobile entity will almost never move outside
domain D, and if it does. it can be expected to return soon. How can. this information
be used to speed up the lookup operation in a hierarchical. location service?

In a hierarchical location service with. a depth of k, how many location records need to
be updated at most when a mobile entity changes its location?

Consider an entity’ moving from location A to B. while passing several intermediate lo-
cations where it will reside for only a relatively short time. When arsiving at B, it set-
tles down for a while. Changing an addiess in a hierarchical location service may still
take a relatively long time to complete, and should therefore be avoided when visiting
an intermediate location. How can the entity be located at an intermediate location?

The root node in hierarchical location services may become a potential bottleneck.
How can this problem be effectively circumvented?

Give an example of how the closure mechanism for a URL could work.

Explain the difference between a hard link and a soft link in UNIX systems. Are there
things that can be done with a hard link that cannot be done with a soft link or vice

versa?

High-level name servers in DNS, that is, name servers implementing nodes in the
DNS name space that are close to the root, generally do not support recursive name
resolution. Can we expect much pexformance improvement if they did?

Explain how DNS can be used to implement a home-based approach to locating
mobile hosts.

How is a mounting point looked up in most UNIX systems?

Consider a distributed file system that uses per-user name spaces. In other words, each
user has his own, private name space. Can names from such name spaces be used to
share resources between two different users?

Consider DNS. To refer to a node N in a subdomain implemented as a different zone
than the current domain, a name server for that zone needs to be specified. Is it always
necessary to include a resource record for that server's address, or is it sometimes suf-
ficient to provide only its domain name?

Counting common files is a rather naive way of defining semantic proximity. Assume
you were to build semantic oveklay networks based on text documents, what other
semantic proximity function can you think of?

(Lab assignment) Set up your own DNS server. Install BIND on either a Windows or
UNIX machine and configure it for a few simple names. Test your configuration using
tools such as the Domain Information Groper (DIG). Make sure your DNS database
includes records for name servers, mail servers, and standard servers. Note that if you



230

NAMING CHAP. 5

are running BIND on a machine with host name HOSTNAME, you should be able to
resolve names of the form RESOURCE-NAME.HOSTNAME.



SYNCHRONIZATION

In the previous chapters, we have looked at processes and communication be-
tween processes. While communication is important, it is not the entire story.
Closely related is how processes cooperate and synchronize with one another.
Cooperation is partly supported by means of naming, which allows processes to at
least share resources, or entities in general..

In this chapter, we mainly concentrate on how processes can. synchsonize. For
example, it is important that multiple processes do not simultaneously access a
shared resource, such as printer, but instead cooperate in granting each other tem-
porary exclusive access. Another example is that multiple processes may some-
times need to agree on the ordesing of events, such as whether message m/ from
process P was sent before or after message m2 from process Q.

As it turns out, synchronization in distributed systems is often much more dif-
ficult. compared to synchromization in uniprocessor or multiprocessor systems.
The problems and solutions that are discussed in this chapter are, by their nature,
rather general, and occur in many different situations in distributed systems.

We start. with a discussion of the issue of synchronization based on actual
time, followed by synchronization in which only relative ordesing matters. rather
than ordering in absolute time. ‘

In many cases, it is important that a group of processes can appoint one proc-
ess as a coordinator, which can be done by means of election algosithms. We dis-
cuss vagious election algorithms in a separate section.

231
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Distributed algorithms come in all sorts and flavors and have been developed
for very different types of distributed systems. Many examples (and further refer-
ences) can be found in Andrews (2000) and Guerraoui and Rodrigues (2006).
More formal approaches to a wealth of algorithms can be found in text books
from Attiya and Welch (2004), Lynch (1996), and (Tel, 2000).

6.1 CLOCK SYNCHRONIZATION

In a centralized system, time is unambiguous. When a process wants to know
the time, it makes a system call and the kernel tells it. If process 4 asks for the
time. and then a little later process B asks for the time, the value that B gets will
be higher than (or possibly equal to) the value 4 got. It will certainly not be lower.
In a distributed system, achieving agreement on time is not trivial.

Just think, for a moment, about the implications of the lack of global time on
the UNIX make program, as a single example. Normally, in UNIX, large programs
are split up into multiple source files, so that a change to one source file only re-
quires one file to be recompiled, not all the files. If a program consists of 100
files, not having to recompile everything because one file has been changed
greatly increases the speed at which programmers can work.

The way make normally works is simple. When the programmer has finished
changing all the source files, he runs make, which examines the times at which all
the source and object files were last modified. If the source file input. ¢ has time
2151 and the corresponding object file input.o has time 2150, make knows that
input.c has been changed since input.o was created, and thus input.c must be re-
compiled. On the other hand, if output.c has time 2144 and output.o has time 2145,
no compilation is needed. Thus make goes through all the source files to find out
which ones need to be recompiled and calls the compiler to recompile them.

Now imagine what could happen in a distributed system in which there were
no global agreement on time. Suppose that output.o has time 2144 as above, and
shortly thereafter output.c is modified but is assigned time 2143 because the clock
on its machine is slightly behind, as shown in Fig. 6-1. Make will not call the
compiler. The resulting executable binary program will then contain a mixture of
object files from the old sources and the new sources. It will probably crash and
the programmer will go crazy trying to understand what is wrong with the code.

There are many more examples where an accurate account of time is needed.
The example above can easily be reformulated to file timestamps in general. In
addition, think of application domains such as financial brokerage, security audit-
ing, and collaborative sensing, and it will become clear that accurate timing is im-
portant. Since time is so basic to the way people think and the effect of not having
all the clocks synchronized can be so dramatic, it is fitting that we begin our study
of synchronization with the simple question: Is it possible to synchronize all the
clocks in a distributed system? The answer is surprisingly complicated.
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Computer on 2144 2145 2146 2147 4— Time according
+ } } . to local clock

which Comp"er 24 1 T 1
runs output.o created

Computer on 2142 2143 2144 2145 «— Time according
which editor } T } ; to local clock
runs

output.c created

Figure 6-1. When each machine has its own clock, an event that occurred after
another event may nevertheless be assigned an eaxlier time.

6.1.1 Physical Clocks

Nearly all computers have a circuit for keeping track of time. Despite the
widespread use of the word "clock" to refer to these devices, they are not actually
clocks in the usual sense. Timer is perhaps a better word. A computer timer is
usually a precisely machined quartz crystal. When kept under tension, quartz crys-
tals oscillate at a well-defined frequency that depends on the kind of crystal, how
it is cut, and the amount of tension. Associated with each crystal are two registers,
a counter and a holding register. Each oscillation of the crystal decrements the

“counter by one. When the counter gets to zero, an interrupt is generated and the

counter is reloaded from the holding register. In this way, it is possible to program

" a timer to generate an interrupt 60 times a second, or at any other desired fre-

quency. Each interrupt is called one clock tick.

When the system is booted, it usually asks the user to enter the date and time,
which is then converted to the number of ticks after some known starting date and
stored in memory. Most computers have a special battery-backed up CMOS RAM
so that the date and time need not be entered on subsequent boots. At every clock
tick, the interrupt service procedure adds one to the time stored in memory. In this
way, the (software) clock is kept up to date.

With a single computer and a single clock, it does not matter much if this
clock is off by a small amount. Since all processes on the machine use the same:
clock, they will still be internally consistent. For example, if the file input.c has
time 2151 and file input.o has time 2150, make will recompile the source file,
even if the clock is off by 2 and the true times are 2153 and 2152, respectively.
All that really matters are the relative times.

As soon as multiple CPUs are introduced, each with its own clock, the situa-
tion changes radically. Although the frequency at which a crystal oscillator runs is
usually fairly stable, it is impossible to guarantee that the crystals in different
computers all run at exactly the same frequency. In practice, when a system has n
computers, alln crystals will run at slightly different rates, causing the (software)
clocks gradually to get out of synch and give different values when read out. This
difference in time values is called clock skew. As a consequence of this clock
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skew, programs that expect the time associated with a file, object, process, or
message to be correct and independent of the machine on which it was generated
(i.e., which clock it used) can fail, as we saw in the make example above.

In some systems (e.g., real-time systems), the actual clock time is important.
Under these ¢ircumstances, external physical clocks are needed. For reasons of ef-
ficiency and redundancy, multiple physical clocks are generally considered desir-
able, which yields two problems: (1) How do we synchronize them with real-
world ¢locks. and (2) How do we synchronize the clocks with each other?

Before answering these questions, let us digress slightly to see how time is ac-
tually measured. It is not nearly as easy as one might think, especially when high
accuracy is required. Since the invention of mechanical clocks in the 17th century,
time has been measured astronomically. Every day, the sun appears to rise on the
eastern horizon, then climbs to a maximum height in the sky, and finally sinks in
the west, The event of the sun's reaching its highest apparent point in the sky is
called the transit of the sun. This event occurs at about noon each day. The in-
terval between two consecutive transits of the sun is called the solar day. Since
there are 24 hours in a day, each containing 3600 seconds, the solar second is de-
fined as exactly 1186400th of a solar day. The geometry of the mean solar day cal-
culation is shown in Fig. 6-2.

Earth's orbit

A transit of the sun
occurs when the
sun reaches the
highest point of

the day

At the transit of the sun

n days later, the earth

has rotated fewer
than 360°

Earth on day O at the
transit of the sun

To distant galaxy

To distant galaxy

Earth on day n at the
transit of the sun

Figure 6-2. Computation of the mean solar day.

In the 1940s, it was established that the period of the earth's rotation is not
constant, The earth is slowing down due to tidal friction and atmospheric drag.
Based on studies of growth patterns in ancient coral, geologists now believe that
300 million years ago there were about 400 days per year. The length of the year
(the time for one trip around the sun) is not thought to have changed; the day has
simply become longer. In addition to this long-term trend, short-term variations in
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the length of the day also occur, probably caused by turbulence deep in the earth's
core of molten iron. These revelations led astronomers to compute the length of
the day by measuring a large number of days and taking the average before divid-
ing by 86,400. The resulting quantity was called the mean solar second.

With the invention of the atomic clock in 1948, it became possible to measure
time much more accurately, and independent of the wiggling and wobbling of the
earth, by counting transitions of the cesium 133 atom. The physicists took over the
job of timekeeping from the astronomers and defined the second to be the time it
takes the cesium 133 atom to make exactly 9,192,631,770 transitions. The choice
of 9,192,631,770 was made to make the atomic second equal to the mean solar
second in the year of its introduction. Currently, several laboratories around the
world have cesium 133 clocks. Periodically, each laboratory tells the Bureau
International de I'Heure (BIR) in Paris how many times its clock has ticked. The
BIR averages these to produce International Atomic Time, which is abbreviated
TAl. Thus TAI is just the mean number of ticks of the cesium 133 clocks since
midnight on Jan. 1,1958 (the beginning of time) divided by 9,192,631,770.

Although TAl is highly stable and available to anyone who wants to go to the
trouble of buying a cesium clock, there is a serious problem with it; 86,400 TAl
seconds is now about 3 msec less than a mean solar day (because the mean solar
day is getting longer all the time). Using TAI for keeping time would mean that
over the course of the years, noon would get earlier and earlier, until it would
eventually occur in the wee hours of the morning. People might notice this and we
could have the same kind of situation as occurred in 1582 when Pope Gregory
XIII decreed that 10 days be omitted from the calendar. This event caused riots in
the streets because landlords demanded a full month's rent and bankers a full
month's interest, while employers refused to pay workers for the 10 days they did
not work, to mention only a few of the conflicts. The Protestant countries, as a
matter of principle, refused to have anything to do with papal decrees and did not
accept the Gregorian calendar for 170 years.
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Figure 6-3. TAl seconds are of constant length, unlike solar seconds. Leap
seconds are introduced when necessary to keep in phase with the sun.

BIR solves the problem by introducing leap seconds whenever the dis-
crepancy between TAI and solar time grows to 800 msec. The use of leap seconds
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is 1Jlustrated in Fig. 6-3. This correction gives rise to a time system based on con-
stant TAI seconds but which stays in phase with the apparent motion of the sun. It
is caned Universal Coordinated Time, but is abbreviated as UTC. UTC is the
basis of all modern civil timekeeping. It has essentially replaced the old standard,
Greenwich Mean Time. which is astronomical time.

Most electric power companies synchronize the timing of their 60-Hz or 50-
Hz clocks to UTC, so when BIH announces a leap second, the power companies
raise their frequency to 61 Hz or 51 Hz for 60 or 50 sec. to advance all the elocks
in their distribution area. Since [ sec is a noticeable interval for a computer, an
operating system that needs to keep accurate time over a period of years must
have special software to account for leap seconds as they are announced (unless
they use the power line for time, which is usually too crude). The total number of
leap seconds introduced into UTC so far is about 30.

To provide UTC to people who need precise time, the National Institute of
Standard Time (NIST) operates a shortwave radio station with call letters WWV
from Fort Collins, Colorado. WWYV broadcasts a short pulse at the start of each
UTC second. The accuracy of WWYV itself is about £l msec, but due to random
atmospheric fluctuations that can affect the length of the signal path, in practice
the accuracy is no better than +10 msec. In England, the station MSF, operating
from Rugby, Warwicksghire, provides a similar service, as do stations in several
other countries.

Several earth satellites also offer a UTC service. The Geostationary Environ-
ment Operational Satellite can provide UTC accurately to 0.5 msec, and some
other satellites do even better.

Using either shortwave radio or satellite services requires an accurate kaow-
ledge of the relative position of the sender and receiver, in order to compensate
for the signal propagation delay. Radio receivers for WWV, GEOS, and the other
UTC sources are commercially available.

6.1.2 Global Positioning System

As a step toward actugl clock synchronization problems, we first consider a
related problem, namely determining one's geographieal position anywhere on
Earth. This positioning problem is by itself solved through a highly speeific. dedi-
cated distributed system, namely GPS, which is an acronym for global posi-
tioning system. GPS is a satellite-based distributed system that was launched in
1978. Although it has been used mainly for military applications, in recent years it
has found its way to many ¢ivilian applications, notably for traffic navigation.
However, many more application domains exist. For example, GPS phones now
allow to let callers track each other's position, a feature which may show to be
extremely handy when you are lost or in trouble. This principle can easily be
applied to tracking other things as well, including pets, children, cars, boats, and
so on. An excellent overview of GPS is provided by Zogg (2002).
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GPS uses 29 satellites each circulating in an orbit at a height of approximately
20,000 km. Each satellite has up to four atomic clocks, which are regularly cali-
brated from special stations on Earth. A satellite continuously broadcasts. its posi-
tion, and time stamps each message with its local time. This broadcasting allows
every receiver on Earth to accurately compute its own position using, in pxingiple,
only three satellites. To explain, let us first assume that all clocks, including the
receiver's, are synchronized.

In order to compute a position, consider first the two-dimensional case, as
shown in Fig. 6-4, in which two satellites are drawn, along with the circles repres-
enting points at the same distance from each respective satellite. The y-axis
represents. the height, while the x-axis represents. a straight line along the Easth's
sugface at sea level.. Ignosing the highest point, we see that the intersection of the

two circles is a unique point (in this case, perhaps somewhere up a mountain).

A

Height

Point to be
ignored

(14,14)

\

A

Figure 6-4. Computing a position in a two-dimensional. space.

This principle of intersecting circles can be expanded to thiee dimensions,
meaning that we need three satellites to determine the longitude, latitude, and alti-
tude of a receiver on Earth. This positioning is all faigly straightforward, but mat-
ters become complicated when we can no longer assume that all clocks are per-
fectly synchrnonized.

There are two important real-world facts that we need to take into account:.

1. It takes a while before data on a satellite's position reaches the re-
cerver,

2. The recaiver's clock is generally not in synch with that of a satellite.

Assume that the timestamp from a satellite is completely accurate. Let A, denote
the deviation of the receiver's clock from the actual time. When a message is
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received from satellite / with timestamp 77, then the measured delay b, by the re-
ceiver consists of two components: the actual delay, along with its own deviation:
) Aiz(];zow_Ti)"'Ar |
As signals travel with the speed of light, ¢, the measured distance of the satellite is
clearly cb.i’ With
di = c(Thow — T})

being the real distance between the receiver and the satellite, the measured dis-
tance can be rewritten to d; + c b.,. The real distance is simply computed as:

di = ’\/(xi - xr)2+(yi - yr)2+(zi - Zr)2

where Xi, )'i. and zi denote the coordinates of satellite .. What we see now is that if
we have four satellites, we get four equations in four unknowns, allowing us to
solve the coordinates xp )p and z, for the receiver, but also b.,. In other words, a
GPS measurement will also give an account of the actual time. Later in this
chapter we will return to determining positions following a similar approach.

So far, we have assumed that measurements are perfectly accurate. Of course,
they are not, For one thing, GPS does not take leap seconds into account. In other
words, there is a systematic deviation from UTe, which by January 1, 2006 is 14
seconds. Such an error can be easily compensated for in software. However, there
are many other sources of errors, starting with the fact that the atomic clocks in
the satellites are not always in perfect synch, the position of a satellite is not
known precisely, the receiver's clock has a finite accuracy, the signal propagation
speed is not constant (as signals slow down when entering, e.g., the ionosphere),
and so on. Moreover, we all know that the earth is not a perfect sphere, leading to
further corrections.

By and large, computing an accurate position is far from a trivial undertaking
and requires going down into many gory details. Nevertheless, even with rela-
tively cheap GPS receivers, positioning can be precise within a range of 1-5
meters. Moreover, professional receivers (which can easily be hooked up in a
computer network) have a claimed error of less than 20-35 nanoseconds. Again,
we refer to the excellent overview by Zogg (2002) as a first step toward getting
acquainted with the details. ‘

6.1.3 Clock Synchronization Algorithms

If one machine has a WWYV receiver, the goal becomes keeping all the other
machines synchronized to it. If no machines have WWYV receivers, each machine
keeps track of its own time, and the goal is to keep all the machines together as
well as possible. Many algorithms have been proposed for doing this synchxoniza-
tion. A survey is given in Ramanathan et al.(1990).
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All the algorithms have the same underlying model of the system. Each ma-
chine is assumed to have a timer that causes an interrupt A times a second. When
this timer goes off, the interrupt handler adds 1 to a software clock that keeps
track of the number of ticks (interrupts) since some agreed-upon time in the past.
Let us call the value of this clock C. More specifically, when the UTC time is ¢,
the value of the clock on machine p is CpU). In a perfect world, we would have
CpU)=tfor all p and all z In other words, C;U)=dCldt ideally should be 1. C;(t)-
is called the frequency of p'» clock at time 7 The skew of the clock is defined as
C;(t) - 1and denotes the extent to which the frequency differs from that of a per-
fect clock. The offset relative to a specific time ¢is CpU) - ¢

Real timers do not interrupt exactly H times a second. Theoretically, a timer
with H = 60 should generate 216,000 ticks per hour. In practice, the relative error
obtainable with modem timer chips is about 10->, meaning that a particular ma-
chine can get a value in the range 215,998 to 216,002 ticks per hour. More pre-
cisely, if there exists some constant p such that

dc
l-p<s—<1+
ps— P

the timer can be said to be working within its specification. The constant p is
specified by the manufacturer and is known as the maximum drift rate. Note
that the maximum drift rate specifies to what extent a clock's skew is allowed to
fluctuate. Slow, perfect, and fast clocks are shown in Fig. 6-5.

dc >1
Clock time, C dt dc _ 1

g &

<\,0 c}O
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i ") &
a9~
UTC, t

Figure 6-5. The relation between clock time and UTe when clocks, tick at dif-
ferent rates.

If two clocks are drifting from UTC in the opposite direction, at a time dt
after they were synchronized, they may be as much as 2p & apart. If the operating
system designers want to guarantee that no two clocks ever differ by more than 0,
clocks must be resynchronized (in software) at least every 0/2p seconds. The var-
ious algorithms differ in precisely how this resynchronization is done.
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Network Time Protocol

A common approach in many protocols and originally proposed by Cristian
(1989) is to let clients contact a time server. The latter can accurately provide the
current time, for example, because it is equipped with a WWYV receiver or an
accurate clock. The problem, of course, is that when contacting the server, mes-
sage delays will have outdated the reported time. The trick is to find a good esti-
mation for these delays. Consider the situation sketched in Fig. 6-6.

dTreq dTres

Figure 6-6. Getting the current time from a time server.

In this case, A will send a request to B, timestamped with value Ti- B, in turn,
will record the time of receipt T2 (taken from its own local clock), and returns a
response timestamped with value 73, and piggybacking the previously recorded
value T2. Finally, A records the time of the response's arrival, T4. Let us assume
that the propagation delays from A to B is roughly the same as B to A, meaning
that 7,-T; .= T,-T;3 In that case, A can estimate its offset relative to Bas

0T Ty =T+ (Ty-T3) Tr-T)+(T3-T4)
I 2 - 2

Of course, time is not allowed to run backward. If A's clock is fast, € < 0, mean-
ing that 4 should. in principle, set its clock backward. This is not allowed as it
could cause serious problems such as an object file compiled just after the clock
change having a time earlier than the source which was modified just before the
clock change. ,

Such a change must be introduced gradually. One way is as follows. Suppose
that the timer is set to generate 100 interrupts per second. Normally, each interrupt
would add 10 msec to the time. When slowing down, the interrupt routine adds
only 9 msec each time until the correction has been made. Similarly, the clock can
be advanced gradually by adding 11 msec at each interrupt instead of jumping it
forward all at once.

In the case of the network time protocol (NTP), this protocol is set up pair-
wise between servers. In other words, B will also probe 4 for its current time. The
offset € is computed as given above, along with the estimation 8 for the delay:
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(T, -T)HT4—-T3)
2

o=

Eight pairs of (8,8) values are buffered, finally taking the minimal value found for
8 as the best estimation for the delay between the two servers, and subsequently
the associated value € as the most reliable estimation of the offset.

Applying NTP symmetrically should, in principle, also let B adjust its clock to
that of A. However, if B's clock is known to be more accurate, then such an
adjustment would be foolish. To solve this problem, NTP divides servers into
strata. A server with a reference clock such as a WWYV receiver or an atomic
clock, is known to be a stratum-I server (the clock itself is said to operate at
stratum 0). When A contacts B, it will only adjust its time if its own stratum level
is higher than that of B.. Moreover, after the synchronization, 4's stratum level
will become one higher than that of B. In other words, if B is a stratum-k server,
then 4 will become a stratum-(k+1) server if its original stratum level was already
larger than k. Due to the symmetry of NTP, if A's stratum level was lower than
that of B, B will adjust itself to A.

There are many important features about NTP, of which many relate to identi-
fying and masking errors, but also security attacks. NTP is described in Mills
(1992) and is known to achieve (worldwide) accuracy in the range of 1-50 msec.
The newest version (NTPv4) was initially documented only by means of its
implementation, but a detailed description can now be found in Mills (2006).

The Berkeley Algorithm

In many algorithms such as NTP, the time server is passive. Other machines
periodically ask it for the time. All it does is respond to their queries. In Berkeley
UNIX, exactly the opposite approach is taken (Gusella and Zatti, 1989). Here the
time server (actually, a time daemon) is active, polling every machine from time
to time to ask what time it is there. Based on the answers, it computes an average
time and tells all the other machines to advance their clocks to the new time or
slow their clocks down until some specified reduction has been achieved. This
method is suitable for a system in which no machine has a WWV receiver. The
time daemon's time must be set manually by the operator periodically. The meth-
od is illustrated in Fig. 6-7.

In Fig. 6-7(a), at 3:00, the time daemon tells the other machines its time and
asks for theirs. In Fig. 6-7(b), they respond with how far ahead or behind the time
daemon they are. Armed with these numbers, the time daemon computes the aver-
age and tells each machine how to adjust its clock [see Fig. 6-7(¢)].

Note that for many purposes, it is sufficient that all machines agree on the
same time. It is not essential that this time also agrees with the real time as
announced on the radio every hour. If in our example of Fig. 6-7 the time
daemon's clock would never be manually calibrated, no harm is done provided
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Time daemon
3:00 3-:00 3:00 0 : 3:05 +5

3:00 @ 9 -10 @ :> +15 @ 9
I ws:oo [ +25 [ -20
[ Network ] | | | |

(a) (b) (©)

Figure 6:7. (a) The time daemon asks all the other machines for their elock
values. (b) The machines answer. (c) The time daemon tells everyone how to
adjust their' clock.

none of the other nodes communicates with external computers. Everyone will
just happily agree on a current time, without that value having any relation with

reality.
Clock Synchronization in Wireless Networks-

An important advantage of more traditional distributed systems is that we can
easily and efficiently deploy time servers. Moreover, most machines can contact
each other, allowing for a relatively simple dissemination of information. These
assumptions are no longer valid in many wireless networks, notably sensor net-
works. Nodes are resource constrained, and multihop routing is expensive. In ad-
dition, it is often important to optimize algorithms for energy consumption. These
and other observations have led to the design of very different elock synchroniza-
tion glgorithms for wireless networks. In the following, we consider one specific
solution. Sivrikaya and Yener (2004) provide a brief overview of other solutions.
An extensive survey can be found in Sundararaman. et al. (2005).

Reference broadcast synchronization (RBS) is a clock synchronization pro-
tocol that is quite different from other proposals (Elson et al., 2002). First, the
protocol does not assume that there is a single node with an accurate account of
the actual time avgilable. Instead of aiming to provide all nodes UTe time, it aims
at merely internally synchronizing the clocks, just as the Berkeley algorithm does.
Second, the solutions we have discussed so far are designed to bring the sender
and receiver into synch, essentially following a two-way protocol: RBS deviates
from this pattern by letting only the receivers synchronize, keeping the sender out
of the loop.

In RBS, a sender broadcasts a reference message that will allow its receivers
to adjust their g¢locks. A key observation is that in a sensor network the time to
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propagate a signal to other nodes is roughly constant, provided no multi-hop rout-
ing is assumed. Propagation time in this case is measured from the moment that a
message leaves the network interface of the sender. As a consequence, two impor-
tant sources for variation in message transfer no longer play a role in estimating
delays: the time spent to construct a message, and the time spent to access the net-
work, This principle is shown in Fig. 6-8.

Message preparation Message preparation

Time spent in NIC Time spent in NIC

l-»‘«-l—ﬂ Delivery time A_,"_Z_» Delivery time

A , , to app. — A | , to app. —
B il B \!‘ >
C ' 1 % C r I
i > N
Critical path Critical path

(@) (b)

Figure 6-8. (a) The usual critical path in detemmining network delays. (b) The
critical path in the case of RBS.

Note that in protocols such as NTP, a timestamp is added to the message before it
is passed on the network interface. Furthermore, as wireless networks are based
on a contention protocol, there is generally no saying how long it will take before
a message can actually be transmitted. These factors of nondeterminism are elim-
inated in RBS. What remains is the delivery time at the receiver, but this time
varies considerably less than the network-access time.

The idea underlying RBS is simple: when a node broadcasts a reference mes-
sage m, each node p simply records the time 73m that it received m. Note that 7zm
is read from p' s local clock. Ignoring clock skew, two nodes p and g can exchange
each other's delivery times in order to estimate their mutual, relative offset:

> Gk = Typ)
M

Offset [p,q]=

where M is the total number of reference messages sent. This information is im-
portant. node p will know the value of g's clock relative to its own value. More-
over, if it simply stores these offsets, there is no need to adjust its own clock,
which saves energy.

Unfortunately, clocks can drift apart. The effect is that simply computing the
average offset as done above will not work: the last values sent are simply less
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accurate than the first ones. Moreover, as time goes by, the offset will presumably
increase. Elson et al. use a very simple algorithm to compensate for this: instead
of computing an average they apply standard linear regression to compute the
offset as a function:

Offset [p.q (1) = u+f

The constants a and P are computed from the pairs (TpkTqf). This new form 'will
allow a much more accurate computation of q's current clock value by node p,
and vice versa.

6.2 LOGICAL CLOCKS

So far, we have assumed that clock synchronization is naturally related to real
time. However, we have also seen that it may be sufficient that every node agrees
on a current time, without that time necessarily being the same as the real time.
We can go one step further. For running make, for example, it is adequate that two
nodes agree that input.o is outdated by a new version of input.c. In this case,
keeping track of each other's events (such as a producing a new version of
input.c) is what matters. For these algoxithms, it is conventional to speak of the
clocks as logical clocks.

In a classicc paper, Lamport (1978) showed that although clock synchroniza-
tion is possible, it need not be absolute. If two processes do not interact, it is not
necessary that their clocks be synchronized because the lack of synchsonization
would not be observable and thus could not cause problems. Furthermore, he
pointed out that what usually matters is not that all processes agree on exactly
what time it is, but rather that they agree on the order in which events occur. In
the make example, what counts is whether input.c is older or newer than input.o,
not their absolute creation times.

In this section we will discuss Lamport's algorithm, which synchuonizes logi-
cal clocks. Also, we discuss an extension to Lamport's approach, - called vector
timestamps.

6.2.1 Lamport's Logical Clocks

To synchronize logical clocks, Lamport defined a relation called happens-be-
fore. The expression a ~ b is read "a happens before b” and means that all
processes agree that first event a occurs, then afterward, event b occurs. The
happens-before relation can be observed directly in two situations:

1. If a and b are events in the same process, and a occurs before b, then
a ~ b is true.

2. If a is the event of a message being sent by one process, and b is the
event of the message being received by another process, then a ~ b
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is also true. A message cannot be received before it is sent, or even at
the same time it is sent, since it takes a finite, nonzero amount of
time to arrive. '

Happens-before is a transitive relation, so if a ~ band b ~ ¢, thena ~ c. If
two events, x and y, happen in different processes that do not exchange messages
(not even indirectly via third parties), then x ~ y is not true, but neither isy ~ x.
These events are said to be concurrent, which simply means that nothing can be
said (or need be said) about when the events happened or which event happened
first,

What we need is a way of measuring a notion of time such that for every
event, a, we can assign it a time value C (a) on which all processes agree. These
time values must have the property that if a ~ b, then C(a) < C(b). To rephrase
the conditions we stated earlier, if a and b are two events within the same process
and a occurs before b, then C(a) < C(b). Similarly, if a is the sending of a mes-
sage by one process and b is the reception of that message by another process,
then C (a) and C (b) must be assigned in such a way that everyone agrees on the
values of C (a) and C(b) with C(a) < C(b). In addition, the clock time, C, must
always go forward (increasing), never backward (decreasing). Corrections to time
can be made by adding a positive value, never by subtracting one.

Now let us look at the algorithm Lamport proposed for assigning times to
events. Consider the three processes depicted in Fig. 6-9(a). The processes run on
different machines, each with its own clock, running at its own speed. As can be
seen from the figure, when the clock has ticked 6 times in process P/, it has ticked
8 times in process P; and 10 times in process P3' Each clock runs at a constant
rate, but the rates are different due to differences in the crystals.

P1 P2 ’_@__ P1 P2 P3
6fm |8 i0 6|._m |8 10
i3] {16 20 i3] {16 50
18 24 m, 30 18 24 m, 30
30 40 30, 30 | P2 adjusts | 40 56
36 48 60 36| its clock |4g 60
) 561 |70 i3 (i ™ |70
48 64 80 48 69 80
s |72 %0 (70l s |77 )
60 80 100 76] p, adjustsL85 100

its clock
(a) (b)

Figure 6-9. (a) Three processes, each with its own clock. The clocks run at dif-
ferent rates. (b) Lamport's algorithm corrects the clocks.
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At time 6, process P; sends message i1 to process P>+ How long this mes-
sage takes to arrive depends on whose clock you believe. In any event, the elock
in process P, reads 16 when it arrives. If the message carries the starting time, 6,
in it, process P, will conclude that it took 10ticks to make the journey. This value
is certainly possible. According to this reasoning, message m2 from P2 to R takes
16 ticks, again a plausible value.

Now consider message m3- It leaves process P; at 60 and arrives at P2 at'56.
Similarly, message m4 from P, to Pl leaves at 64 and arrives at 54. These values
are clearly impossible. It is this situation that must be prevented.

Lamport's solution follows directly from the happens-before relation. Since
m3 left at 60, it must arrive at 61 or later. Therefore, each message carries the
sending time according to the sender's clock. When a message arrives and the re-
ceiver's ¢lock shows a value prior to the time the message was sent, the receiver
fast forwards its ¢lock to be one more than the sending time. In Fig. 6-9(b) we see
that 1713now arrives at 61. Similarly, ms arrives at 70.

To prepare for our discussion on vector clocks, let us formulate this procedure
more precisely. At this point, it is important to distinguish three different layers of
software as we already encountered in Chap. 1:the network, a middleware layer,
and an application layer, as shown in Fig. 6-10. What follows is typically part of

the middleware layer.

Application layer
Application sends mes.sig—e“\% _______ %Message |s _d.e_li_v.e_r-e_d—tf :a_p—p_li_cation
Adjust local clock Adjust local clock Middleware layer
and timestamp message
viddoware sends message” | | Vossage s eceived
Network layer

Figure 6-10. The positioning of Lamport's logical clocks in distributed systems.

To implement Lamport's logical clocks, each process Pi maintains a local counter
G. These counters are updated as follows steps (Raynal and Singhal, 1996):

1. Before executing an event (i.e., sending a message over the network,
delivering a message to an application, or some other internal event),

Pi executes G = G + 1.

2. When process Pi sends a message m to Pj' it sets /s timestamp
ts (m) equal to G after having executed the previous step.
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3. Upon the receipt of a message m, process I/ adjusts its own local
counter as O f- max {O, ts(m) }, after which it then executes the
first step and delivers the message to the application.

In some situations, an additional requirement is desirable: no two events ever
occur at exactly the same time. To achieve this goal, we can attach the number of
the process in which the event occurs to the low-order end of the time, separated
by a decimal point. For example, an event at time 40 at process Pi will be time-
stamped with 40.i. )

Note that by assigning the event time C(a) f= q(a) if a happened at process
Pi at time q(a), we have a distributed implementation of the global time value we
were initially seeking for. '

Example: Totally Ordered Multigasting

As an application of Lamport's logical clocks, consider the situation in which
a database has been replicated across several sites. For'example, to improve query
performance, a bank may place copies of an account database in two different
cities, say New York and San Francisco. A query is always forwarded to the
nearest copy. The price for a fast response to a query is partly paid in higher
update costs, because each update operation must be carried out at each replica.

In fact, there is a more stringent requirement with respect to updates. Assume
a customer in San Francisco wants to add $100 to his account, which currently
contains $1,000. At the same time, a bank employee in New York initiates an
update by which the customer's account is to be increased with 1 percent interest.
Both updates should be carried out at both copies of the database. However, due
to communication delays in the underlying network, the updates may arrive in the
order as shown in Fig. 6-11.

/9( Updatet 9999}?-2.--.%

Replicated database Update 2 is

Update 1 is
performed before performed before
update 2 update 1

Figure 6-11. Updating a replicated database: and leaving it in an inconsistent
state.

The customer's update operation is performed in San Francisco before the
interest update. In contrast, the copy of the account in the New York replica is
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first updated with the 1 percent interest, and after that with the $100 deposit. Con-
sequently, the San Francisco database will record a total amount of $1,] 11,
whereas the New York database records $1,110.

The problem that we are faced with is that the two update operations should
have been performed in the same order at each copy. Although it makes a differ-
ence whether the deposit is processed before the interest update or the other, way
around, which order is followed is not important from a consistency point of view.
The important issue is that both copies should be exactly the same. In general,
situations such as these require a totally-ordered multicast, that is, a multicast
operation by which all messages are delivered in the same order to each recei ver,
Lamport's logical clocks can be used to implement totally-ordered mu1t1 casts in a
completely distributed fashion.

Consider a group of processes multicasting messages to each other. Each mes-
sage is always timestamped with the current (logical) time of its sender. When a
message is multicast, it is conceptually also sent to the sender. In addition, we
assume that messages from the same sender are received in the order they were
sent, and that no messages are lost.

When a process receives a message, it is put into a local queue, ordered ac-
cording to its timestamp. The receiver multicasts an acknowledgment to the other
processes. Note that if we follow Lamport's algorithm for adjusting local clocks,
the timestamp of the received message is lower than the timestamp of the ack-
nowledgment. The interesting aspect of this approach is that all processes will
eventually have the same copy of the local queue (provided no messages are re-
moved).

A process can deliver a queued message to the application it is running only
when that message is at the head of the queue and has been acknowledged by each
other process. At that point, the message is removed from the queue and handed
over to the application; the associated acknowledgments can simply be removed.
Because each process has the same copy of the queue, all messages are delivered
in the same order everywhere. In other words, we have established totally-ordered
multicasting.

As we shall see in later chapters. totally-ordered multicasting is an important
vehicle for replicated services where the replicas are kept consistent by letting
them execute the same operations in the same order everywhere. As the replicas
essentially follow the same transitions in the same finite state machine, it is also
known as state machine replication (Schneider, 1990).

6.2.2 Vector Clocks

Lamport's logical clocks lead to a situation where all events in a distributed
system are totally ordered with the property that if event ¢ happened before event
b, then a will also be positioned in that ordering before b, that is, C (a) < C (b).
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However, with Lamport : clocks, nothing can be said about the relationship be-
tween two events a and b by merely compasing their time values C(a) and C(b),
respectively. In other words, if C(a) < C(b), then this does not necessarily imply
that @ indeed happened before b. Something more is needed for that.

To explain, consider the messages as sent by the thxee processes shown in
Fig. 6-12. Denote by [I'snd(mi) the logical time at which message m, was sent, and
likewise, by T.v (mi) the time of its receipt.. By construction, we kmow that for
each message ['snd(mi) < T.cy(mi). But what can we conglude in general from
T.cvmi) < I'snd(mj)?

P Py P3
0 [0] 0
6l_m, |8 i0
5[ —fis| m |35
i8 sie 5
54 321 ms [0
30 _z_;_p__\ 50
36 48 60
)
42 G e |70
48 69 80
o s |77 e
76 85 100

Figure 6-12. Concurrent message transmission using logical clocks.

In the case for which mi=m 1 and mj=m 3, we kmow that these values
correspond to events that took place at process Pz, meaning that m-; was indeed
sent after the receipt of message mi. This may indicate that the sending of mes-
sage m-; depended on what was received through message mi. However, we also
know that T,.C¥m 1) <I'syd (m z). However, the sending of m z has nothing to do
with the receipt of mi.

The problem is that Lamport . clocks do not capture causality. Causality can
be captured by means of vector clocks. A vector clock VC (a) assigned to an
event a has the property that if VC (a) < VC (b) for some event b, then event a is
known to causally precede event b. Vector clocks are constructed by letting each
process P; maintain a vector V(i with the following two properties:

1. VCj[i] is the number of events that have occurred so far at Pi. In
other words, VCj[i] is the local logical clock at process Pi.

2. If VCjU] =k then Pi knows that k events have occurred at Pj. It is
thus Pi's knowledge of the local time at Pj. -

The first property is maintained by incrementing VCj[i] at the occurrence of each
new event that happens at process Pi. The second property is maintained by
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piggybacking vectors along with messages that are sent. In particular, the follow-
ing steps are performed:

1. Before executing an event (i.e., sending a message over the network,
delivering a message to an application, or some other internal event),
Pi executes VCj [l] ~ VCj[i] T+ 1.

2. When process Pi sends a message m to [, it sets m's (vector) time-
stamp ts (m) equal to VCj after having executed the previous step.

3. Upon the receipt of a message m, process lj adjusts its own vector by
setting VCj [k] ~ max{VCj [k], ts(m)[k]} for each k after which it
executes the first step and delivers the message to the application.

Note that if an event a has timestamp ts(a), then ts(a)[l ]-1 denotes the number
of events processed at P; that causally precede a. As a consequence, when [j
receives a message from Pi with timestamp ts (m), it knows about the number of
events that have occurred at Pi that causally preceded the sending of m. More im-
portant, however, is that /j is also told how many events at other processes have
taken place before Pi sent message m. In other words, timestamp ts (m) tells the
receiver how many events in other processes have preceded the sending of m, and
on which m may causally depend.

Enforaing Causal Communication

Using vector clocks, it is now possible to ensure that a message is delivered
only if all messages that causally precede it have also been received as well. To
enable such a scheme, we will assume that messages are multicast within a group
of processes. Note that this causally-ordered multicasting is weaker than the
totally-ordered multicasting we discussed earlier. Specifically, if two messages
are not in any way related to each other, we do not care in which order they are
delivered to applications. They may even be delivered in different order at differ-
ent locations. -

Furthermore, we assume that clocks are only adjusted when sending and
receiving messages. In particular, upon sending a message, process P; will only
increment VCj[i] by 1. When it receives a message m with timestamp ts(m), it
only adjusts VCj [k] to max{VCj [k], tsqu)lk]} for each k.

Now suppose that /j receives a message m from Pi with (vector) timestamp
ts (m). The delivery of the message to the application layer will then be delayed
until the following two conditions are met:

L s(m)[i]=VC[i]+1
2. ts(m)[k] < VG[k] for all k+i
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The first condition states that m is the next message that /j was expecting from
process Pi' The second condition states that i has seen all the messages that have
been seen by Pi when it sent message m. Note that there is no need for process P;
to delay the delivery of its own messages.

As an example, consider thiee processes Po, P, and P, as shown in Fig. 6-
13. At local time (1,0,0), P/ sends message m to the other two processes. After
its receipt by PI, the latter decides to send m», which arrives at P2 sooner than m.
At that point, the delivery of m» is delayed by P, until. m has been received and
delivered to P,'s application layer.

VG, =(1,0,0) VGCy=(1,1,0)
i

0

VC, = (1,1,0)
1

VC,=(0,00)  VC,=(1,0,0)

Figure 6-13. Enforcing causal communigation.

A Note on Ordered Message Delivery

Some middleware systems, notably ISIS and its successor Horus (Birman and
van Renesse, 1994), provide support for totally-ordered and causally-ordered (reli-
able) multicasting. There has been some controversy whether such suppott should
be provided as part of the message-communication layer, or whether applications
should handle ordering'(see, e.g., Cheriton and Skeen, 1993; and Bimman, 1994).
Matters have not been settled, but more important is that the arguments still hold
today.

There are two main problems with letting the middle ware deal with message
ordering. First, because the middle ware cannot tell what a message actually con-
tains, only potential causality is captured. For example, two messages from the
same sender that are completely independent will always be marked as causally
related by the middleware layer. This approach is oveily restuictive and may lead
to efficiency problems.

A second problem is that not all causality may be captured. Consider an elec-
tronic bulletin board. Suppose Alice posts an article. If she then phones Bob tel-
ling about what she just wrote, Bob may post another article as a reaction without
having seen Alice's posting on the board. In other words, there is a causality be-
tween Bob's posting and that of Alice due to external communication. This
causality 1is not captured by the bulletin board system.
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In essence, ordering issues, like many other application-specific communica-
tion issues, can be adequately solved by looking at the application for which com-
munication is taking place. This is also known as the end-to-end argument in
systems design (Saltzer et al., 1984). A drawback of having only application-
level solutions is that a developer is forced to concentrate on issues that do not im-
mediately relate to the core functionality of the application. For example, ordering
may not be the most important problem when developing a messaging system
such as an electronic bulletin board. In that case, having an underlying communi-
cation layer handle ordering may tum out to be convenient. We will come across
the end-to-end argument a number of times, notably when dealing with security in
distributed systems.

6.3 MUTUAL EXCLUSION

Fundamental to distributed systems is the concurrency and collaboration
among multiple processes. In many cases, this also means that processes will need
to simultaneously access the same resources. To prevent that such concurrent ac-
cesses corrupt the resource, or make it inconsistent, solutions are needed to grant
mutual exclusive access by processes. In this section, we take a look at some of
the more important distributed algorithms that have been proposed. A recent sur-
vey of distributed algorithms for mutual exclusion is provided by Saxena and Rai
(2003). Older, but still relevant is Velazquez (1993).

6.3.1 Overview

Distributed mutual exclusion algorithms can be classified into two different
categories. In token-based solutions mutual exclusion is achieved by passing a
special message between the processes, known as a token. There is only one
token available and who ever has that token is allowed to access the shared re-
source. When finished, the token is passed on to a next process. If a process hav-
ing the token is not interested in accessing the resource, it simply passes it on.

Token-based solutions have a few important properties. First, depending on
the how the processes are organized, they can fairly easily ensure that every proc-
ess will get a chance at accessing the resource. In other words, they avoid starva-
tion. Second, deadlocks by which several processes are waiting for each other to
proceed, can easily be avoided, contributing to their simplicity. Unfortunately, the
main drawback of token-based solutions is a rather serious one: when the token is
lost (e.g., because the process holding it crashed), an intricate distributed proce-
dure needs to be started to ensure that a new token is created, but above all, that it
is also the only token.

As an alternative, many distributed mutual exclusion algorithms follow a
permission-based approach. In this case. a process wanting to access the re-
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source first requires the permission of other processes. There are many different
ways toward granting such a permission and in the sections that follow we will

consider a few of them.
6.3.2 A Centralized Algorithm

The most straightforward way to achieve mutual. exclusion in a distributed
system is to simulate how it is done in a one-processor system. One process is
elected as the coordinator. Whenever a process wants to access a shared resource,
it sends a request message to the coordinator stating which resource it wants to ac-
cess and asking for permission. If no other process is currently accessing that re-
source, the coordinator sends back a reply granting permission, as shown in
Fig.6-14(a). When the reply arrives, the requesting process can go ahead.

R t
Request OK eques /4 Release L
7 No reply
Queue is @
. / empty
Coordinator

(a) (b) ()

Figure 6-14. (a) Process 1| asks the coordimator for permission to access a
shared resource. Permission is granted. (b) Process 2 then asks pemmission to ac-
cess the same resource. The coordinator does not reply. (c¢) When process 1
releases the resource, it tells the coordinator, which then replies to 2.

Now suppose that another process, 2 in Fig. 6-14(b), asks for permission to
access the resource. The coordinator knows that a different process is already at
the resource, so it cannot grant permission. The exact method used to deny per-
mission is system dependent. In Fig. 6-14(b), the coordinator just refrains from
replying, thus blocking process 2, which is waiting for a reply. Alternatively, it
could send a reply saying "permission denied." Either way, it queues the request
from 2 for the time being and waits for more messages.

When process 1 is finished with the resource, it sends a message to the coordi-
nator releasing its exclusive access, as shown in Fig.6-14(c). The coordinator
takes the first item off the queue of deferred requests and sends that process a
grant message. If the process was still blocked (i.e., this is the first message to it),
it unblocks and accesses the resource. If an explicit message has already been sent
denying permission, the process will have to poll for incoming traffic or block
later. Either way, when it sees the grant, it can go ahead as well.

It is easy to see that the algorithm guarantees mutual exclusion: the coordina-
tor only lets one process at a time to the resource. It is also fair, since requests are
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granted in the order in which they are received. No process ever waits forever (no
starvation). The scheme is easy to implement, too, and requires only three mes-
sages per use of resource (request, grant, release). It's simplicity makes an attrac-
tive solution for many practical situations.

The centralized approach also has shortcomings. The coordinator is a single
point of failure, so if it crashes, the entire system may go down. If processes nor-
mally block after making a request, they cannot distinguish a dead coordinator
from "permission denied" since in both cases no message comes back. In addi-
tion, in a large system, a single coordinator can become a performance bottleneck.
Nevertheless, the benefits coming from its simplicity outweigh in many cases the
potential drawbacks. Moreover, distributed solutions are not necessarily better, as
our next example illustrates. |

6.3.3 A Decentralized Algorithm

Having a single coordinator is often a poor approach. Let us take a look at
fully decentralized solution. Lin et al. (2004) propose to use a voting algorithm
that can be executed using a DHT-based system. In essence, their solution extends
the central coordinator in the following way. Each resource is assumed to be repli-
cated n times. Every replica has its own coordinator for controlling the access by
concurrent processes.

However, whenever a process wants to access the resource, it will simply
need to get a majority vote from 111 > n/2 coordinators. Unlike in the centralized
scheme discussed before, we assume that when a coordinator does not give per-
mission to access a resource (which it will do when it had granted permission te
another process), it will tell the requester.

This scheme essentially makes the original centralized solution less vulner-
able to failures of a single coordinator. The assumption is that when a coordinator
crashes, it recovers quickly but will have forgotten any vote it gave before it
crashed. Another way of viewing this is that a coordinator resets itself at arbitrary
moments. The risk that we are taking is that a reset will make the coordinator for-
get that it had previously granted permission to some process to access the re-
source. As a consequence, it may incorrectly grant this permission again to anoth-
er process after its recovery.

Let p be the probability that a coordinator resets during a time interval 4t The
probability P [k] that k out of m coordinators reset during the same interval is then

Pk]= [’,’j]p“ (1-py*

Given that at least 2m - n coordinators need to reset in order to violate the
correctness of the voting mechanism, the probability that such a violation occurs

is then y P [k]. To give an impression of what this could mean, assume

Kkdk=2m-
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that we are dealing with a DHT-based system in which each node participates for
about 3 hours in a row. Let M be 10 seconds, which is considered to be a conser-
vative value for a single process to want to access a shared resource. (Different
mechanisms are needed for very long allocations.) With » =32 and m = 0.75n, the
probability of violating correctness is less than 10740. This probability is surely
smaller than the availability of any resource.

To implement this scheme, Lin et al. (2004) use a DHT-based system in
which a resource is replicated » times. Assume that the resource is known under
its unique name mame. We can then assume that the i-zh replica is named
rname-i which is then used to compute a unique key using a known hash function.
As a consequence, every process can generate the n keys given a resource's name,
and subsequently lookup each node responsible for a replica (and controlling ac-
cess to that replica).

If permission to access the resource is denied (i.e., a process gets less than m
votes), it is assumed that it will back off for a randomly-chosen time, and make a
next attempt later. The problem with this scheme is that if many nodes want to ac-
cess the same resource, it turns out that the utilization rapidly drops. In other
words, there are so many nodes competing to get access that eventually no one is
able to get enough votes leaving the resource unused. A solution to solve this
problem can be found in Lin et al. (2004).

6.3.4 A Distributed Algorithm

To many, having a probabilistically correct algorithm is just not good enough.
So researchers have looked for deterministic distributed mutual exclusion algo-
rithms. Lamport's 1978 paper on clock synchronization presented the first one.
Ricart and Agrawala (1981) made it more efficient. In this section we will
describe their method.

Ricart and Agrawala's algorithm requires that there be a total ordering of all
events in the system. That is, for any pair of events, such as messages, it must be
unambiguous which one actually happened first. Lamport's algorithm presented in
Sec. 6.2.1 is one way to achieve this ordering and can be used to provide time-
stamps for distributed mutual exclusion.

The algorithm works as follows. When a process wants to access a shared re-
source, it builds a message containing the name of the resource, its process num-
ber, and the current (logical) time. It then sends the message to all other proc-
esses, conceptually including itself. The sending of messages is assumed to be
reliable; that is, no message is lost. .

When a process receives a request message from another process, the action it
takes depends on its own state with respect to the resource named in the message.
Three different cases have to be clearly distinguished:
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1, If the receiver is not accessing the resource and does not want to ac-
cess it, it sends back an OK message to the sender.

2. If the receiver already has access to the resource, it simply does not
reply. Instead, it queues the request.

3. If the receiver wants to access the resource as well but has not yet
done so, it compares the timestamp of the incoming message with me.
one contained in the message that it has sent everyone. The lowest
one wins. If the incoming message has a lower timestamp, the re-
ceiver sends back an OK message. If its own message has a lower
timestamp, the receiver queues the incoming request and sends noth-
ing.

After sending out requests asking permission, a process sits back and waits
until everyone else has given permission. As soon as all the permissions are in, it
may go ghead. When it is finished, it sends OK messages to all processes on its
queue and deletes them all from the queue.

Let us try to understand why the algorithm works. If there is no condlict, it
¢clearly works. However, suppose that two processes try to simultaneously access
the resource, as shown in Fig. 6-15(a).
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Figure 6-15. (a) Two processes want to access a shared resource at the same
moment., (b) Process 0 has the lowest timestamp. so it wins. (c) When process 0
is done, it sends an OK also, so 2 can now go ahead.

Process 0 sends everyone a request with timestamp 8, while at the same time,
process 2 sends everyone a request with timestamp 12. Process 1 is not interested
in the resource, so it sends OK to both senders. Processes 0 and 2 beth sece the
copflict and compare timestamps. Process 2 sees that it has lost, so it grants per-
mission to 0 by sending OK. Process 0 now queues the request from 2 for later
processing and access the resource, as shown in Fig. 6-15(b). When it is fimished,
it removes the request from 2 from its queue and sends an OK message to process
2, allowing the latter to go ahead, as shown in Fig. 6-15(c). The algorithm: works
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because in the case of a conflict, the lowest timestamp wins and everyone agrees
on the ordering of the timestamps.

Note that the situation in Fig. 6-15 would have been essentially different if
process 2 had sent its message earlier in time so that process 0 had gotten it and
granted permission before making its own request. In this case, 2 would have
notiged that it itself had already access to the resource at the time of the request,
and queued it instead of sending a reply.

As with the centralized algorithm discussed above, mutual exclusion is
guaranteed without deadlock or starvation. The number of messages required per
entry is now 2(n - 1), where the total number of processes in the system is n. Best
of all, no single point of failure exists.

Unfortunately, the single point of failure has been replaced by n points of
failure. If any process crashes, it will fail to respond to requests. This silence will
be interpreted (incorrectly) as denial of permission, thus blocking all subsequent
attempts by all processes to enter all critical regions. Since the probability of one
of the n processes failing is at least n times as large as a single coordinator failing,
we have managed to replace a poor algorithm with one that is more than n times
worse and requires much more network traffic as well.

The algorithm can be patched up by the same trick that we proposed earlier.
When a request comes in, the receiver always sends a reply, either granting or
denying permission. Whenever either a request or a reply is lost, the sender times
out and keeps trying until either a reply comes back or the sender concludes that
the destination is dead. After a request is denied, the sender should block waiting
for a subsequent OK message.

Another problem with this algorithm is that either a multicast communication
primitive must be used. or each process must maintain the group membership list
itself, including processes entering the group, leaving the group, and crashing.
The method works best with small groups of processes that never change their
group memberships.

Finally, recall that one of the problems with the centralized algorithm is that
making it handle all requests can lead to a bottleneck. In the distributed algorithm,
all processes are involved in al/l decisions concerning accessing the shared re-
source. If one process is unable to handle the load, it is unlikely that forcing
everyone to do exactly the same thing in parallel is going to help much.

Various minor improvements are possible to this algorithm. For example, get-
ting permission from everyone is really overkill. All that is needed is a method to
prevent two processes from accessing the resource at the same time. The algo-
rithm can be modified to grant permission when it has collected permission from a
simple majority of the other processes, rather than from all of them. Of course, in
this variation, after a process has granted permission to one process, it cannot
grant the same permission to another process until the first one has finished.

Nevertheless, this algorithm is slower, more complicated, more expensive,
and less robust that the original centralized one. Why bother studying it under
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these conditions? For one thing, it shows that a distributed algorithm is at least
possible, something that was not obvious when we started. Also, by pointing out
the shortcomings, we may stimulate future theoreticians to try to produce algo-
rithms that are actually useful. Finally, like eating spinach and learning Latin in
high school, some things are said to be good for you in some abstract way. It may
take some time to discover exactly what.

6.3.5 A Token Ring Algorithm

A completely different approach to deterministically achieving mutual exe¢lu-
sion in a distributed system is illustrated in Fig. 6-16. Here we have a bus net-
work, as shown in Fig. 6-16(a), (e.g., Ethernet), with no inherent ordering of the
processes. In software, a logical ring is constructed in which each process is
assigned a position in the ring, as shown in Fig. 6-16(b). The ring positions may
be allocated in numerical order of network addresses or some other means. It does
not matter what the ordering is. All that matters is that each process knows who is
next in line after itself.

PPPPPPPY

(@) (b)

Figure 6-16. (a) An unordered group of processes on a network.. (b) A logical
ring constructed in software.

When the ring is initialized, process 0 is given a token. The token circulates
around the ring. It is passed from process & to process k +1 (modulo the ring size)
in point-to-point messages. When a process acquires the token from its neighbor,
it checks to see if it needs to access the shared resource. If so, the process goes
ahead, does all the work it needs to, and releases the resources. After it has fin-
ished, it passes the token along the ring. It is not permitted to immediately enter
the resource again using the same token.

If a process is handed the token by its neighbor and is not interested in the re-
source, it just passes the token along. As a consequence, when no processes need
the resource, the token just circulates at high speed around the ring.

The correctness of this algorithm is easy to see. Only one process has the
token at any instant, so only one process can actually get to the resource. Since
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the token circulates among the processes in a well-defined order, starvation can-
not occur. Once a process decides it wants to have access to the resource, at worst
it will have to wait for every other process to use the resource.

As usual, this algorithm has problems too. If the token is ever lost, it must be
regenerated. In fact, detecting that it is lost is difficult, since the amount of time
between successive appearances of the token on the network is unbounded. The
fact that the token has not been spotted for an hour does not mean that it has been
lost; somebody may still be using it.

The algorithm also runs into trouble if a process crashes, but recovery is
easier than in the other cases. If we require a process receiving the token to ac-
knowledge receipt, a dead process will be detected when its neighbor tries to give
it the token and fails. At that point the dead process can be removed from the
group, and the token holder can throw the token over the head of the dead process
to the next member down the line, or the one after that, if necessary. Of course,
doing so requires that everyone maintain the current ring configuration.

6.3.6 A Comparison ofthe Four Algoxithms

A brief comparison of the four mutual exclusion algorithms we have looked at
is instructive. In Fig. 6-17 we have listed the algorithms and three key properties:
the number of messages required for a process to access and release a shared re-
source, the delay before access can occur (assuming messages are passed sequen-
tially over a network), and some problems associated with each algorithm.

Messages per | Delay before entry
Algorithm entry/exit (in message times) Problems
Centralized 3 2 | Coordinator crash
Decentralized | 3mk, k=1.2,... 2m Starvation, low efficiency
Distributed 2(n-1) 2(n-1) Crash of any process
Token ring 110 Oton-1 Lost token, process crash

Figure 6-17. A comparison of three mutual exclusion algorithms.

The centralized algorithm is simplest and also most efficient. It requires only
three messages to enter and leave a critical region: a request, a grant to enter, and
a release to exit. In the decentralized case, we see that these messages need to be
carried out for each of the m coordinators, but now it is possible that several
attempts need to be made (for which we introduce the variable k). The distributed
algorithm requires n - 1request messages, one to each of the other processes, and
an additional »n - 1 grant messages, for a total of 2(n- 1). (We assume that only
point-to-point communication channels are used.) With the token ring algorithm,
the number is variable. If every process constantly wants to enter a critical region.
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then each token pass will result in one entry and exit, for an average of one mes-
sage per critical region entered. At the other extreme, the token may sometimes
circulate for hours without anyone being interested in it. In this case, the number
of messages per entry into a critical region is unbounded.

The delay from the moment a process needs to enter a critical region until its
actual entry also varies for the three algorithms. When the time using a resource is
short, the dominant factor in the delay is the actual mechanism for accessing a re-
source. When resources are used for a long time period, the dominant factor is
waiting for everyone else to take their tum. In Fig. 6-17 we show the former case.
It takes only two message times to enter a critical region in the centralized case,
but 3mk times for the decentralized case, where k is the number of attempts that
need to be made. Assuming that messages are sent one after the other, 2(n - 1)
message times are needed in the distributed case. For the token ring, the time
varies from 0 (token just arrived) to n - 1 (token just departed).

Finally, all algorithms except the decentralized one suffer badly in the event
of crashes. Special measures and additional complexity must be introduced to
avoid having a crash bring down the entire system. It is ironic that the distributed
algorithms are even more sensitive to crashes than the centralized one. In a system
that is designed to be fault tolerant, none of these would be suitable, but if crashes
are very infrequent, they might do. The decentralized algorithm is less sensitive to
crashes, but processes may suffer from starvation and special measures are needed
to guarantee efficiency.

6.4 GLOBAL POSITIONING OF NODES

When the number of nodes in a distributed system grows, it becomes increas-
ingly difficult for any node to keep track of the others. Such knowledge may be
important for executing distributed algorithms such as routing, multicasting, data
placement, searching, and so on. We have already seen different examples in
which large collections of nodes are organized into specific topologies that facili-
tate the efficient execution of such algorithms. In this section, we take a look at
another organization that is related to timing issues.

In geometric overlay networks each node is given a position in an 111
dimensional geometric space, such that the distance between two nodes in that
space reflects a real-world performance metric. The simplest, and most applied
example, is where distance corresponds to internode latency. In other words.
given two nodes P and Q, then the distance d(P,Q) reflects how long it would
take for a message to travel from P to Q and vice versa.

There are many applications of geometric overlay networks. Consider the
situation where a Web site at server O has been replicated to multiple servers
S;msk  on the Internet. When a client C requests a page from O, the latter may
decide to redirect that request to the server closest to C, that is, the one that will
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give the best response time. If the geometric location of C is known, as well as
those of each replica server, 0 can then simply pick that server S; for which
d(C,SJ 1s minimal. Note that such a selection requires only local processing at O.
In other words, there is, for example, no need to sample all the latencies between
C and each of the replica servers.

Another example, which we will work out in detail in the following chapter, is
optimal replica placement. Consider again a Web site that has gathered the posi-
tions of its glients. If the site were to replicate its content to K servers, it can com-
pute the K best positions where to place replicas such that the average client-to-
replica response time is minimal. Performing such computations is almost trivially
feasible if clients and servers have geometric positions that reflect internode laten-
cies. |

As a last example, consider position-based routing (Araujo and Rodrigues,
2005; and Stojmenovic, 2002). In such schemes, a message is forwarded to its
destination using only positioning information. For example, a naive routing al-
gorithm to let each node forward a message to the neighbor closest to the destina-
tion. Although it can be easily shown that this specific algorithm need not con-
verge, it illustrates that only local information is used to take a decision. There is
no need to propagate link information or such to all nodes in the network, as is the
case with conventional routing algorithms.

-

Figure 6-18. Computing a node's position in a two-dimensional space.

Theoretically, positioning a node in an m-dimensional geometric space re-
quires m *+1 distance measures to nodes with known positions. This can be easily
seen by considering the case m = 2, as shown in Fig. 6-18. Assuming that node P
wants to compute its own position, it contacts three other nodes with known posi-
tions and measures its distance to each of them. Contacting only one node would
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tell P about the ¢ircle it is located on; contacting only two nodes would tell it
about the position of the intersection of two circles (which generally consists of
two points); a third node would subsequently allow P to compute is actual loca-
tion.

Just as in GPS, node P can compute is own coordinates (xp,yp) by solving the
three equations with the two unknowns Xp and yp:

d; =\ (x; = xp)>+(3; — yp)? (i=1,2.3)

As said, d, generally corresponds to measuring the latency between P and the
node at (XjyJ. This latency can be estimated as being half the round-trip delay,
but it should be glear that its value will be different over time. The effect is a dif-
ferent positioning whenever P would want to recompute its position. Moreover, if
other nodes would use P's current position to compute their own coordinates, then
it should be glear that the error in positioning P will affect the accuracy of the
positioning of other nodes.

Moreover, it should also be clear that measured distances by different nodes
will generally not even be consistent. For example, assume we are computing dis-
tances in a one-dimensional space as shown in Fig. 6-19. In this example, we see
that although R measures its distance to Q as 2.0, and d (P, Q) has been measured
to be 1.0, when R measures d (P,R) it finds 3.2, which is clearly inconsistent with
the other two measurements.

e 3.2 ¥
P10 20 R
i 2 3 4
P Q R

Figure 6-19. Inconsistent distance measurements in a one-dimensional space.

Fig. 6-19 also suggests how this situation can be improved. In our simple ex-
ample, we could solve the inconsistencies by merely computing positions in a
two-dimensiongl space. This by itself, however, is not a general solution when
dealing with many measurements. In fact, considering that Internet latency meas-
urements may violate the tgiangle inequality, it is generally impossible to resolve
inconsistencies completely. The triangle inequality states that in a geometric
snace. for any arbitrary three nodes P, Q, and R it must always be true that
dP,K)" Sa-<r~ +a<<J).

There are various ways to approach these issues. One approach, proposed by
Ng and Zhang (2002) is to use L special nodes b 1* ... ,br, known as landmarks.

Landmarks measure their pairwise latencies d(bjb) and subsequently let a
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central node compute the coordinates for each landmark. To this end, the central
node seeks to minimize the following aggregated error function:

L L [de,b)-db;b)
Z 2|7 dmpy

i=lj=i+l

where d(bi,b) corresponds to the geometric distance, that is, the distance after
nodes b; and b; have been positioned.

The hidden parameter in minimizing the aggregated error function is the
dimension m. Obviously, we have that L > m, but nothing prevents us from choos-
ing a value for m that is much smaller than L. In that case. a node P measures its
distance to each of the L landmarks and computes its coordinates by minimizing

L | d(p;,Py-d(®;,P)
i§1 d(btsP)

As it turns out, with well-chosen landmarks, m can be as small as 6 or 7, with
d(P,Q) being no more than a factor 2 different from the actual latency d(P,Q) for
arbitrary nodes P and Q (Szyamniak et al., 2004).

Another way to tackle this problem is to view the collection of nodes as a
huge system in which nodes are attached to each other thxough springs. In this
case, | d(P,Q) - d(P,Q) | indicates to what extent nodes P and Q are displaced
relative to the situation in which the system of springs would be at rest. By letting
each node (slightly) change its position, it can be shown that the system will even-
tually converge to an optimal organization in which the aggregated error is mini-
mal. This approach is followed in Vivaldi, of which the details can be found in
Dabek et al. (2004a).

6.5 ELECTION ALGORITHMS

Many disteibuted algonithms require one process to act as coordinator, initia-
tor, or otherwise petform some special role. In general, it does not matter which
process takes on this special responsibility, but one of them has to do it. In this
section we will look at algosithms for electing a coordinator (using this as a gen-
eric name for the special process).

If all processes are exactly the same, with no distinguishing characteristics,
there is no way to select one of them to be special -.Consequently, we will assume
that each process has a unique number, for example, its network addsess (for sim-
plicity, we will assume one process per machine). In general, election algorithms
attempt to locate the process with the highest process number and designate it as
coordinator. The algorithms differ in the way they do the location.
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Furthermore, we also assume that every process knows the process number of
every other process. What the processes do not know is which ones are. currently
up and which ones are currently down. The goal of an election algorithm is to en-
sure that when an election starts, it concludes with all processes agreeing on who
the new coordinator is to be. There are many algorithms and variations, of which
several important ones are discussed in the text books by Lynch (1996) and Tel
(2000), respectively.

6.5.1 Traditional Election Algorithms

We start with tgking a look at two traditional election algorithms to give an
impression what whole groups of researchers have been doing in the past decades.
In subsequent sections, we pay attention to new applications of the election prob-

lem.
The Bully Algorithm

As a first example, consider the bully algoxithm devised by Gareia-Molina
(1982). When any process notices that the coordinator is no longer responding to
requests, it initiates an election. A process, P, holds an election as follows:

~

P sends an ELECTION message to all processes with higher numbers.

2. Ifno one responds, P wins the election and becomes coordinator .-

W

If one of the higher-ups answers, it takes over. P's job is done.

At any moment, a process can get an ELECTION message from one of its
lower-numbered colleagues. When such a message arrives, the receiver sends an
OK message back to the sender to indicate that he is alive and will take over: The
receiver then holds an election, unless it is already holding one. Eventually, all
processes give up but one, and that one is the new coordinator. It announces its
victory by sending all processes a message telling them that starting immediately
it is the new coordinator. '

If a process that was previously down comes back up, it holds an election. f it
happens to be the highest-numbered process currently running, it will win the
election and tgke over the coordinator's job. Thus the biggest guy in town always
wins, hence the name "bully algorithm."

In Fig. 6-20 we see an example of how the bully algorithm works. The group
consists of eight processes, numbered from 0 to 7. Previously process 7 was the
coordinator, but it has just crashed. Process 4 is the first one to notice this, so it
sends ELECTION messages to all the processes higher than it, namely 5, 6, and 7.
as shown in Fig. 6-20(a). Processes 5 and 6 both respond with OK, as shown in
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Fig. 6-20(b). Upon getting the first of these responses, 4 knows that its job is
over. It knows that one of these bigwigs will take over and become coordinator. It
just sits back and waits to see who the winner will be (although at this point it can
make a pretty good guess).

oK @@
O, @®@ ©

Previous coordinator
has crashed

(@) (b) ©

(d) (e)

Figure 6:20. The bully election algoxithm. (a) Process 4 holds an election. (b)
Processes 5 and 6 respond. telling 4 to stop. (c) Now 5 and 6 each hold an elec-
tion. (d) Process 6 tells 5 to stop. (e) Process 6 wins and tells everyone.

In Fig. 6-20(c), both 5 and 6 hold elections, each one only sending messages
to those processes higher than itself. In Fig. 6-20(d) process 6 tells 5 that it will
take over. At this point 6 knows that 7 is dead and that it (6) is the winner. If there
is state information to be collected from disk or elsewhere to pick up where the
old coordinator left off, 6 must now do what is needed. When it is ready to take
over, 6 announces this by sending a COORDINATOR message to all running proc-
esses. When 4 gets this message, it can now continue with the operation it was
trying to do when it discovered that 7 was dead, but using 6 as the coordinator this
time. In this way the failure of 7 is handled and the work can continue.

If process 7 is ever restarted, it will just send an the others a COORDINATOR
message and bully them into submission.
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A Ring Algorithm

Another election algorithm is based on the use of a ring. Unlike some ring al-
gorithms, this one does not use a token. We assume that the processes are physi-
cally or logically ordered, so that each process knows who its successor is. When
any process notices that the coordinator is not functioning, it builds an ELEC-
TION message containing its own process number and sends the message to'its
successor. If the successor is down, the sender skips over the successor and goes
to the next member along the ring. or the one after that, until a running process is
located. At each step along the way, the sender adds its own process number to
the list in the message effectively making itself a candidate to be elected as coor-
dinator. : '

Eventually, the message gets back to the process that started it all. That proc-
ess recognizes this event when it receives an incoming message containing its
own process number. At that point, the message type is changed to COORDINA-
TOR and circulated once again, this time to inform everyone else who the coordi-
nator is (the list member with the highest number) and who the members of the
new ring are. When this message has circulated once, it is removed and everyone

goes back to work.

Eilection message

e
[2]

o

Previous coordinator
has crashed

No response

Figure 6-21. Election algorithm using a ring.

In Fig. 6-21 we see what happens if two processes, 2 and 5, discover simul-
taneously that the previous coordinator, process 7, has crashed. Each of these
builds an ELECTION message and and each of them starts circulating its mes-
sage, independent of the other one. Eventually, both messages will go all the way
around, and bgth 2 and 5 will convert them into COORDINATOR messages, with
exactly the same members and in the same order. When both have gone around
again, both will be removed. It does no harm to have extra messages circulating;
at worst it consumes a little bandwidth, but this not considered wasteful.
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6.5.2 Elections in Wireless Environments

Traditional election algosithms are generally based on assumptions that are
not realistic in wireless environments. For example, they assume that message
passing is reliable and that the topology of the network does not change. These
assumptions are false in most wigeless environments, espesially those for mobile
ad hoc networks.

Only few protocols for elections have been developed that work in ad hoc net-
works. Vasudevan et al, (2004) propose a solution that can handle failing nodes
and partitioning networks. An important property of their solution is that the best
leader can be elected rather than just a random as was more or less the case in the
previously discussed solutions. Their protocol works as follows. To- Vsimplify our
discussion, we concentrate only on ad hoc networks and ignore that nodes can
move.

Consider a wireless ad hoc network. To elect a leader, any node in the net-
work, called the source, can initiate an election by sending an ELECTION mes-
sage to its immediate neighbors (i.e., the nodes in its range). When a node
receives an ELECTION for the first time, it designates the sender as its parent,
and subsequently sends out an ELECTION message to all its immediate neigh-
bors, except for the parent.. When a node receives an ELECTION message from a
node other than its parent, it merely ackmowledges the receipt.-

When node R has designated node Q as its parent, it forwards the ELECTION
message to its immediate neighbors (exeluding Q) and waits for ackmowledgments
to come in before ackpowledging the ELECTION message from Q. This waiting
has an important consequence. First, note that neighbors that have already
selected a parent will immediately respond to R. More spesifically, if all neigh-
bors already have a parent, R is a leaf node and will be able to report  back to Q
quickly. In doing so, it will also report information such as its battery lifetime and
other resource capacities.

This information will later allow Q to compare R's capacities to that of other
downstream nodes, and select the best eligible node for leadership. Of course, Q
had sent an ELECTION message only because its own parent P had done so as
well. In tum, when Q eventually ackmowledges the ELECTION message previ-
ously sent by P, it will pass the most eligible node to P as well. In this way, the
source will eventually get to know which node is best to be selected as leader,
after which it will broadcast this information to all other nodes.

This process is illustrated in Fig. 6-22. Nodes have been labeled a to j, along
with their capagity. Node a initiates an election by broadcasting an ELECTION
message to nodes band j, as shown in Fig. 6-22(b). After that step, ELECTION
messages are propagated to all nodes, ending with the situation shown in Fig. 6-
22(e), where we have omitted the last broadcast by nodes f and i: From there on,
each node reports to its parent the node with the best capacity, as shown in
Fig.6-22(f).  For example, when node g receives the ackmowledgments from its
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Broadcasting
node

g receives
e broadcast
from b first

f receives
broadcast
from e first

Figure 6-22. Election algorithm in a wireless network, with node a as the source.
(a) Initial network.. (b)-(e) The build-tree phase (last broadcast step by nodes f
and i not shown). (f) Repouting of best node to source.

children e and h, it will notice that h is the best node, propagating [h, 8] to its own
parent, node b. In the end, the source will note that 4 is the best leader and will
broadcast this information to all other nodes.
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When multiple elections are initiated, each node will decide to join only one
election. To this end, each source tags its ELECTION message with a unique i-
dentifier. Nodes will participate only in the election with the highest identifier,
stopping any running participation in other elections. v

With some minor adjustments, the protocol can be shown to operate also
when the network partitions, and when nodes join and leave. The details can be
found in Vasudevan et al. (2004).

- 6.5.3 Elections in Large-Scale Systems

The algorithms we have been discussing so far generally apply-to relatively
small distributed systems. Moreover, the algorithms concentrate on the selection
of only a single node. There are situations when several nodes should actually be
selected, such as in the case of superpeers in peer-to-peer networks, which we
discussed in Chap. 2. In this section, we concentrate specifically on the problem
of selecting superpeers.

Lo et al. (2005) identified the following requirements that need to be met for
superpeer selection:

1. Normal nodes should have low-latency access to superpeers.
2. Superpeers should be evenly distributed across the overlay network.

3. There should be a predefined portion of superpeers relative to the
total number of nodes in the overlay network.

4. Each superpeer should not need to serve more than a fixed number of
normal nodes.

Fortunately, these requirements are relatively easy to meet in most peer-to-peer
systems, given the fact that the overlay network is either structured (as in DHT-
based systems), or randomly unstructured (as, for example, can be realized with
gossip-based solutions). Let us take a look at solutions proposed by Lo et al.
(2005).

In the case of DHT-based systems, the basic idea is to reserve a fraction of the
identifier space for superpeers. Recall that in DHT-based systems each node
receives a random and uniformly assigned m-bit identifier. Now suppose we
reserve the first (i.e., leftmost) & bits to identify superpeers. For example, if we
need N superpeers, then the first rlogy (N)/ bits of any key can be used to identify
these nodes.

To explain, assume we have a (small) Chord system with m =8 and k =3.
When looking up the node responsible for a specific key p, we can first decide to
route the lookup request to the node responsible for the pattern

p AND 11100000
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which is then treated as the superpeer. Note that each node id can check whether
it is a supemeer by looking up

id AND 11100000

to see if this request is routed to itself. Provided node identifiers are uniformaly
assigned to nodes. it can be seen that with a total of N nodes the number of
superpeers is, on average. equal 2km N,

A completely different approach is based on positioning nodes in an m-
dimensional geometric space as we discussed above. In this case, assume we need
to place N superpeers evenly throughout the overlay. The basic idea is simple: a
total of N tokens are spread across N randomly-chosen nodes. No node can hold
more than one token. Each token represents a repelling force by which another
token is inglined to move away. The net effect is that if all tokens exert the same
repulsion force, they will move away from each other and spread themselves
evenly in the geometric space.

This approach requires that nodes holding a token learn about other tokens.
To this end, La et al, propose to use a gossiping protocol by which a token's force
is disseminated throughout the network. If a node discovers that the total forces
that are acting on it exceed a threshold, it will move the token in the direction of
the combined forces, as shown in Fig. 6-23.

%\ Token-holdmg node

Repulsion .
force of Aon C s O Normal node

O ,‘ Ta
¥ Resulting movement by which
the token at C is passed to another node
Node D will become token holder —~O'D

Figure 6-23. Moving tokens in a two-dimensional. space using repulsion forces.

When a token is held by a node for a given amount of time, that node will pro-
mote itself to superpeer.

6.6 SUMMARY

Strongly related to communication between processes is the issue of how
processes in distributed systems synchronize. Synchronization is all about doing
the right thing at the right time. A problem in distributed systems, and computer
networks in general, is that there is no notion of a globally shared clock. In other
words, processes on different machines have their own idea of what time it is.
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There are various way to synchronize clocks in a distributed system, but all
methods are essentially based on exchanging clock values, while taking into
account the time it takes to send and receive messages. Variations in communica-
tion delays and the way those variations are dealt with, largely determine the
accuracy of clock synchronization algorithms.

Related to these synchronization problems is positioning nodes in a geometric
overlay. The basic idea is to assign each node coordinates from an rn-dimensional
space such that the geometric distance can be used as an accurate measure for the
latency between two nodes. The method of assigning coordinates strongly resem-
bles the one applied in determining the location and time in GPS.

In many cases, knowing the absolute time is not necessary. What counts is
that related events at different processes happen in the correct order. Lamport
showed that by introducing a notion of logical clocks, it is possible for a collec-
tion of processes to reach global agreement on the correct ordering of events. In
essence, each event e, such as sending or receiving a message, is assigned a glo-
bally unique logical timestamp C (e) such that when event a happened before b,
C(a) < C(pb). Lamport timestamps can be extended to vector timestamps: if
C(a) < C(b), we even know that event a causally preceded b.

An important class of synchronization algorithms is that of distributed mutual
exclusion. These algorithms ensure that in a distributed collection of processes, at
most one process at a time has access to a shared resource. Distributed mutual
exclusion can easily be achieved if we make use of a coordinator that keeps track
of whose turn it is. Fully distributed algorithms also exist, but have the drawback
that they are generally more susceptible to communication and process failures.

Synchronization between processes often requires that one process acts as a
coordinator. In those cases where the coordinator is not fixed, it is necessary that
processes in a distributed computation decide on who is going to be that coordina-
tor, Such a decision is taken by means of election .algorithms. Election algorithms
are primarily used in cases where the coordinator can crash. However, they can
also be applied for the selection of superpeers in peer-to-peer systems.

PROBLEMS

1. Name at least three sources of delay that can be introduced between WWYV broadcast-
ing the time and the processors in a distributed system setting their internal ¢locks.

2. Consider the behavior of two machines in a distributed system. Both have clocks that
are supposed to tick 1000 times per millisecond. One of them actually does, but the
other ticks only 990 times per millisecond. If UTC updates come in once a minute,
what is the maximum c¢lock skew that will occur?

3. One of the modem devices that have (silently) crept into distributed systems are GPS
receivers. Give examples of distributed applications that can use GPS information.
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4.

10.

11.

12.

13.

14.

15.

16.

When a node synchronizes its clock to that of another node, it is generally a good idea
to take previous measurements into account as well. Why? Also, give an example of
how such past readings could be taken into account..

. Add a new message to Fig. 6-9 that is concurrent with message A, that is, it neither

happens before A nor happens after A.

. To achieve totally-ordered multicasting with Lamport timestamps, is it strictly neces-

sary that each message is acknowledged?

. Consider a communication layer in which messages are delivered only in the order

that they were sent. Give an example in which even this ordering is unnecessarily re-
strictive.

Many distributed algorithms require the use of a coordinating process. To what extent
can such algorithms actually be considered distributed? Discuss.

. In the centralized approach to mutual exclusion (Fig. 6-14), upon receiving a message

from a process releasing its exclusive access to the resources it was using, the coordi-
nator normally grants permission to the first process on the queue. Give another pos-
sible algorithm for the coordinator..

Consider Fig. 6-14 again. Suppose that the coordinator crashes. Does this always bring
the system down? If not, under what circumstances does this happen? Is there any way
to avoid the problem and make the system able to tolerate coordinator crashes?

Ricart and Agrawala's algorithm has the problem that if a process has crashed and
does not reply to a request from another process to access a resources, the lack of
response will be interpreted as denial of permission. We suggested that all requests be
answered immediately to make it easy to detect crashed processes. Arxe there any cir-
cumstances where even this method is insufficient? Discuss.

How do the entries in Fig. 6-17 change if we assume that the algorithms can be imple-
mented on a LAN that supports hardware broadcasts?

A distributed system may have multiple, independent resources. Imagine that process
0 wants to access resource A and process 1 wants to access resource B. Can. Ricatt. and
Agrawala's algorithm lead to deadlocks? Explain your answer.

Suppose that two processes detect the demise of the coordinator simultancously and
both decide to hold an election using the bully algorithm. What happens?

In Fig. 6-21 we have two ELECTION ‘messages circulating simultaneously. While it
does no harm to have two of them, it would be more elezant if one could be killed off.
Devise an algorithm for doing this without affecting the operation of the basic election
algorithm.

(Lab assignment) UNIX systems provide many facilities to keep computers in synch,
notably the combination of the cromtab tool (which allows to automatically schedule
operations) and various synchionization commands are powesful.. Configure a UNIX
system that keeps the local time accurate with in the range of a single second. Like-

wise, configure an automatic backup facility by which a number of crucial files are .

automatically transferred to a remote machine once every’ 5 minutes. Your solution
should be efficient when it comes to bandwidth usage.



CONSISTENCY AND REPLICATION

:1i.;Anmportant issue in distributed systems is the replication of data. Data are
generally replicated to enhance reliability or improve performance. One of the
major problems is keeping replicas consistent. Informally, this means that when
one copy is updated we need to ensure that the other copies are updated as well;
otherwise the replicas will no longer be the same. In this chapter, we take a de-
tailed look at what consistency of replicated data .actually means and the various
ways that consistency can be achieved.

We start with a general introduction discussing why replication is useful and
how it relates to scalability. We then continue by focusing on what consistency
actually means. An important class of what are known as consistency models as-
sumes that multiple processes simultaneously access shared data. Consistency for
these situations can be formulated with respect to what processes can expect when
reading and updating the shared data, knowing that others are accessing that data
as well.

~ Consistency models for shared data are often hard to implement efficiently in
large-scale distributed systems. Moreover, in many cases simpler models can be
used, which are also often easier to implement. One specific class is formed by
client-centric consistency models, which concentrate, on consistency from the per-
spective of a single (possibly mobile) client. Client-centric consistency models are
discussed in a separate section.

Consistency is only half of the story. We also need to consider how consisten-
cy is actually implemented. There are essentially two, more or less independent,

273
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issues we need to consider. First of all, we start with concentrating on managing
replicas, which takes into account not only the placement of replica servers, but
also how content is distributed to these servers.

The second issue is how replicas are kept consistent. In most cases, applica-
tions require a strong form of consistency. Informally, this means that updates are
to be propagated more or less immediately between replicas. There are various al-
ter/natives for implementing strong consistency, which are discussed in a separate
section. Also, attention is paid to caching protocols, which form a speeial case of

consistency protocols.

7.1 INTRODUCTION

In this section, we start with discussing the important reasons for wanting to
replicate data in the first place. We concentrate on replication as a technique for
achieving scalability, and motivate why reasoning about consistency is so impor-
tant,

7.11 Reasons for Replication

There are two primary reasons for replicating data: reliability and perfor-
mance. Figst, data are replicated to increase the reliability of a system. If a file
system has been replicated it may be possible to continue working after one rep-
lica crashes by simply switching to one of the other replicas. Also, by maintaining
multiple copies, it becomes possible to provide better protection against corrupted
data. For example, imagine there are three copies of a file and every read and
write operation is performed on each copy. We can safeguard ourselves against a
single, failing write operation, by considering the value that is returned by at least
two copies as being the correct one.

The other reason for replicating data is performance. Replication for perfor-
mance is important when the distributed system needs to scale in numbers and
geographicagl area. Scaling in numbers. occurs, for example, when an increasing
number of processes needs to access data that are managed by a single server. In
that case, performance can be improved by replicating the server and subse-
quently dividing the work.

Scaling with respect to the size of a geographical area may also require repli-
cation. The basi¢ idea is that by placing a copy of data in the proximity of the
process using them, the time to access the data decreases. As a consequence, the
performance as perceived by that process increases. This example also illustrates
that the benefits of replication for performance may be hard to evaluate. Although
a client process may perceive better performance, it may also be the case that
more network bandwidth is now consumed keeping all replicas up to date.
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If replication helps to improve reliability and performance, who could be
ainst it? Unfortunately, there is a price to be paid when data are replicated. The
problem with replication is that having multiple copies may lead to consistency
problems. Whenever a copy is modified, that copy becomes different from the
rest, Consequently, modifications have to be carried out on all copies to ensure
consistency. Exactly when and how those modifications need to be carried out
determines the price of replication.

To understand the problem, consider improving access times to Web pages. If
no special measures are taken, fetching a page from a remote Web server may
sometimes even take seconds to complete. To improve performance, Web brow-
sers often locally store a copy of a previously fetched Web page (i.e., they cache a
Web page). If a user requires that page again, the browser automatically returns
the local copy. The access time as perceived by the user is excellent. However, if
the user always wants to have the latest version of a page, he may be in for bad
luck. The problem is that if the page has been modified in the meantime, modifi-
cations will not have been propagated to cached copies, making those copies out-
of-date.

One solution to the problem of returning a stale copy to the user is to forbid
the browser to keep local copies in the first place, effectively letting the server be
fully in charge of replication. However, this solution may still lead to poor access
times if no replica is placed near the user. Another-solution is to let the Web
server invalidate or update each cached copy, but this requires that the server
keeps track of all caches and sending them messages. This, in turn, may degrade
the overall performance of the server. We return to performance versus scalability
issues below.

7.1.2 Replication as Scaling Technique

Replication and caching for performance are widely applied as scaling tech-
niques. Scalability issues generally appear in the form of performance problems.
Placing copies of data close to the processes using them can improve performance
through reduction of access time and thus solve scalability problems.

A possible trade-off that needs to be made is that keeping copies up to date
may require more network bandwidth. Consider a process P that accesses a local
replica N times per second, whereas the replica itself is updated M times per sec-
ond. Assume that an update completely refreshes the previous version of the local
replica. If N «M, that is, the access-to-update ratio is very low, we have the
situation where many updated versions of the local replica will never be accessed
by P, rendering the network communication for those versions useless. In this
case, it may have been better not to install a local replica close to P, or to apply a
different strategy for updating the replica. We return to these issues below.

A more serious problem, however, is that keeping multiple copies consistent
may itself be subject to serious scalability problems. Intuitively, a collection of
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copies is consistent when the copies are always the same. This means that a read
operation pegformed at any copy will always return the same result.. Consequently,

when an update operation is performed on one copy, the update should be pro-
pagated to all copies before a subsequent operation takes place, no matter at
which copy that operation is initiated or pesformed.

This type. of consistency is sometimes informally (and imprecisely) referred, to
as tight consistency as provided by what is also called synchronous replication.
(In the next section, we will provide preeise definitions of consistency and intro-
duce a range of consistency models.) The key idea is that an update is performed
at all copies as a single atomic operation, or transaction. Unfortunately, imple-
menting atomicity involving a large number of replicas that may be widely dis-
persed across a large-scale network is inherently difficult- when operations are
also required to complete quickly.

Difficulties come from the fact that we need to synchronize all replicas. In
essence, this means that all replicas first need to reach agreement on when exactly
an update is to be performed locally. For example, replicas may need to decide on
a global ordering of operations using Lamport timestamps, or let a coordinator
assign such an order., Global synchronization simply takes a lot of communication
time, especially when replicas are spread across a wide-area network.

We are now faced with a dilemma. On the one hand, scalability problems can
be alleviated by applying replication and.caching, leading to improved pexfor-
mance. On the other hand, to keep all copies consistent generally requires global
synchronization, which is inherently costly in terms of performance. The cure
may be worse than. the disease.

In many cases, the only real solution is to loosen the consistency constraints.
In other words, if we can relax the requirement that updates need to be executed
as atomjc operations, we may be able to avoid (instantaneous) global synchroniza-
tions, and may thus gain petformance. The price paid is that copies may not al-
ways be the same everywhere. As it turns out, to what extent consistency can be
loosened depends highly on the access and update patterns of the replicated data,
as well as on the purpose for which those data are used.

In the following sections, we first consider a range of consistency models by
providing precise definitions of what consistency actually means. We then con-
tinue with our discussion of the different ways to implement consistency models
thyough what are called distribution and consistency protocols. Different ap-
proaches to glassifying consistency and replication can be found in Gray et al-.
(1996) and Wiesmann et al. (2000).

7.2 DATA-CENTRIC CONSISTENCY MODELS

Traditionally, consistency has been discussed in the context of read and write
operations on shared data, available by means of (distributed) shared memory. a
(distgibuted) shared database, or a (distsibuted) file system. In this section, we use
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the broader term data store. A data store may be physically distributed across
multiple machines. In particular, each process that can access data from the store
is assumed to have a local (or nearby) copy available of the entire store. Write op-
erations are propagated to the other copies, as shown in Fig. 7-1. A data operation
is classified as a write operation when it changes the data, and is otherwise classi-
tied as a read operation.

Process Process Process

Local copy

Distributed data store

Figure 7-1. The general organization of a logical data stbre, physically distrib-
uted and replieated across multiple processes.

A consistency model is essentially a contract between processes and the data
store. It says that if processes agree to obey certain.rules, the store promises to
work correctly. Normally, a process that performs a read operation on a data item,
expects the operation to return a value that shows the results of the last write oper-
ation on that data.

In the absence of a global clock, it is difficult to define precisely which write
operation is the last one. As an alternative, we need to provide other definitions,
leading to a range of consistency models. Each model effectively restricts the
values that a read operation on a data item can return. As is to be expected, the
ones with major restrictions are easy to use, for example when developing appli-
cations, whereas those with minor restrictions are sometimes difficult, The trade-
off is, of course, that the easy-to-use models do not perform nearly as well as the
difficult ones. Such is life.

7.2.1 Continuous Consistency

From what we have discussed so far, it should be clear that there is no such
thing as a best solution to replicating data. Replicating data poses consistency
problems that cannot be solved efficiently in a general way. Only if we loosen
consistency can there be hope for attaining efficient solutions. Unfortunately,
there are also no general rules for loosening consistency: exactly what can be
tolerated is highly dependent on applications. '

There are different ways for applications to specify what inconsistencies they
can tolerate. Yu and Vahdat (2002) take a general approach by distinguishing
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three independent axes for defining inconsistencies: deviation in numerical values
between replicas, deviation in staleness between replicas, and deviation with
respect to the ordering of update operations. They refer to these deviations as
forming continuous consistency ranges.

Measuring inconsistency in terms of numerical deviations can be used by ap-
plications for which the data have numerical semantics. One obvious example is
the replication of records containing stock market prices. In this case, an applica-
tion may specify that two copies should not deviate more than $0.02, which would
be an absolute numerical deviation. Alternatively, a relative numerical deviation
could be spegified, stating that two copies should differ by no more than, for ex-
ample, 0.5%. In both cases, we would see that if a stock goes up (and one of the
replicas is immediately updated) without violating the specified numerical devia-
tions, replicas would still be considered to be mutually consistent.

Numerical deviation can also be understood in terms of the number of updates
that have been applied to a given replica, but have not yet been seen by others.
For example, a Web cache may not have seen a batch of operations carried out by
a Web server. In this case, the associated deviation in the value is also referred to
as its weight.

Staleness deviations relate to the last time a replica was updated. For some
applications, it can be tolerated that a replica provides old data as long as it is not
too old. For example, weather reports typically stay reasonably accurate over
some time, say a few hours. In such cases, a main server may receive timely
updates, but may decide to propagate updates to the replicas only once in a while.

Finally, there are classes of applications in which the ordering of updates are
allowed to be different at the various replicas, as long as the differences remain
bounded. One way of looking at these updates is that they are applied tentatively
to a local copy, awaiting global agreement from all replicas. As a consequence,
some updates may need to be rolled back and applied in a different order before
becoming permanent, Intuitively, ordering deviations are much harder to grasp
than the other two consistency metrics. We will provide examples below to elarify

matters.
The Notion of a Comnit

To define inconsistencies, Yu and Vahdat introduce a consistency unit, abbre-
viated to conit. A conit specifies the unit over which consistency is to be meas-
ured. For example, in our stock-exchange example, a conit could be defined as a
record representing a single stock. Another example is an individual weather re-
port.

To give an example of a conit, and at the same time illustrate numerical and
ordering deviations, consider the two replicas as shown in Fig. 7-2. Each repliea i
maintains a two-dimensional vector clock V¢, just like the ones we described in
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Chap. 6. We use the notation ¢,i to express an operation that was carried out by
replica i at (its) logical time ¢.

Replica A Replica B
Conit _____. Conit _____.
r x=6y=3 ! 1 Xx=2;y=5 .
Operation Result Operation Resuit

<5B>|x=x+2| [x=2] {x=2]
ty=21 ty=s1
ty=s1 :
(x=0)

Vector clock A =(15,5) Vector clock B = (0, 11)
Order deviation =3 Order deviation =2
Numerical deviation = (1,5) Numerical deviation = (3, 6)

Figure 7-2. An example of keeping track of consistency deviations [adapted
from (Yu and Vahdat, 2002)].

In this example we see two replicas that operate on a conit containing the data
items x and y. Both variables are assumed to have been initialized to O.Replica 4
received the operation ‘

5B :x ~x +2

from replica B and has made it permanent (i.e., the operation has been committed
at A and cannot be rolled back). Replica 4 has three tentative update operations:
8A, 12A, and 1714,A, which brings its ordering deviation to 3. Also note that
due to the last operation 74,A, A's vector clock becomes (15,5).

The only operation from B that 4 has not yet seen is 10,B, bringing its
numerical deviation with respect to operations to 1.In this example, the weight of
this deviation can be expressed as the maximum difference between the (commit-
ted) values of x and y at A, and the result from operations at B not seen by A. The
committed value at A is (x,y) = (2,0), whereas the-for A unseen-eperation at B
yields a difference ofy = 5.

A similar reasoning shows that B has two tentative update operations: 3,8
and 10,8, which means it has an ordering deviation of 2. Because B has not yet
seen a single operation from A, its vector clock becomes (0, 11). The numerical
deviation is 3 with a total weight of 6. This last value comes from the fact B's
committed value is (xy) =(0,0), whereas the tentative operations at A will
already bring x to 6. :

Note that there is a trade-off between maintaining fine-grained and coarse-
grained conits. If a conit represents a lot of data, such as a complete database,
then updates are aggregated for all the data in the conit. As a consequence, this
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may bring replicas sooner in an inconsistent state. For example, assume that in
Fig. 7-3 two replicas may differ in no more than one outstanding update. In that
case, when the data items in Fig. 7-3(a) have each been updated once at the first
replica, the second one will need to be updated as well. This is not the case when
choosing a smaller conit, as shown in Fig. 7-3(b). There, the replicas are still con-
sidered to be up to date. This problem is particularly important when the data
items contained in a conit are used completely independently, in which case they
are said to falsely share the conit.

Conit Data item

Updatel “| Propagate | ‘mmmm. |0 POEE L tpooooooos
' o upda?es Postpone -
; - update
Update | ¥ propagation
Replica 1 Replica 2 Repiica 1 Replica 2

(a) (b)

Figure 7-3. Choosing the appropriate granularity for a conit. (a) Two updates
lead to update propagation. (b) No update propagation is needed (yet).

Unfortunately, making conits very small is not a good idea, for the simple rea-
son that the total number of conits that need to be managed grows as well. In other
words, there is an overhead related to managing the conits that needs to be taken
into account, This overhead, in tum, may adversely affect overall performance,
which has to be taken into account.

Although from a conceptual point of view conits form an attractive means for
capturing consistency requirements, there are two important issues that need to be
dealt with before they can be put to practical use. First, in order to enforce consis-
tency we need to have protocols. Protocols for continuous consistency are dis-
cussed later in this chapter. '

A second issue is that program developers must specify the consistency re-

quirements for their applications. Practice indicates that obtaining such require-
-ments may be extremely difficult. Programmers are generally not used to handling
replication, let alone understanding what it means to provide detailed information
on consistency. Therefore, it is mandatory that there are simple and easy-to-under-
stand programming intexfaces.

Continuous consistency can be implemented as a toolkit which appears to pro-
grammers as just another library that they link with their applications. A conit is
simply declared alongside an update of a data item. For example, the fragment of

pseudocode

AffectsConit(ConitQ, 1, 1);
append message m to queue Q;
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states that appending a message to queue Q belongs to a conit named ""ConitQ."
Likewise, operations may now also be declared as being dependent on conits:

DependsOnConit(ConitQ, 4, 0, 60);
read message m from head of queue Q;

In this case, the call to DependsOnConitO specifies that the numerical deviation,
ordering deviation, and staleness should be limited to the values 4, 0, and 60 (sec-
onds), respectively. This can be interpreted as that there should be at most 4
unseen update operations at other replicas, there should be no tentative local
updates, and the local copy of Q should have been checked for staleness no more
than 60 seconds ago. If these requirements are not fulfilled, the undenlying
middle ware will attempt to bring the local copy of Q to a state such that the read
operation can be carried out.

7.2.2 Consistent Ordering of Operations

Besides continuous consistency, there is a huge body of work on data-centric
consistency models from the past decades. An important class of models comes
from the field of concurrent programming. Confronted with the fact that in paral-
lel and distgibuted computing multiple processes will need to share resources and
access these resources simultaneously, researchers have sought to express the
semantics of concurrent accesses when shared resources are replicated. This has
led to at least one important consistency model that is widely used. In the follow-
ing, we concentrate on what is known as sequential consistency, and we will also
discuss a weaker variant, namely causal consistency.

The models that we discuss in this section all deal with consistently ordering
operations on shared, replicated data. In pringiple, the models augment those of
continuous consistency in the sense that when tentative updates at replicas need to
be committed, replicas will need to reach agreement on a global ordering of those
updates. In other words, they need to agree on a consistent ordering of those
updates. The consistency models we discuss next are all about reaching such con-
sistent ordexings.

Sequential ~Consistency

In the following, we will use a special notation in which we draw the opera-
tions of a process along a time axis. The time axis is always drawn horizontally,
with time increasing from left to right. The symbols

W.(x)a and R;(x)b

mean that a write by process P; to data item x with the value a and a read from
that item by Pi returning b have been done, respectively. We assume that each
data item is initially NI/L. When there is no confusion concerning which process is
accessing data, we omit the index from the symbols Wand R.
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P1: W(x)a
P2 R(XNIL  R(x)a

Figure 7-4. Behavior of two processes operating on the same data item. The
horizontal axis is time.

As an example, in Fig. 7-4 Pl does a write to a data item x, modifying its val-
ue to a. Note that, in principle, this operation WI (x)a is first performed on a copy
of the data store that is local to P/, and is then subsequently propagated to the
other local copies. In our example, P, later reads the value NIL, and some time
after that @ (from its local copy of the store). What we are seeing here is that it
took some time to propagate the update of x to P, which is perfectly acceptable.

Sequential consistency 1is an important data-centric consistency model,
which was first defined by Lamport (1979) in the context of shared memory for
multiprocessor systems. In general, a data store is said to be sequentially con-
sistent when it satisfies the following condition:

The result of any execution is the same as if the (read and write) opera-
tions by all processes on the data store were executed in some sequential
order and the operations of-each individual process appear in this se-
quence in the order specified by its program.

What this definition means is that when processes run concurrently on (possi-
bly) different machines, any valid interleaving of read and write operations is
acceptable behavior, but all processes see the same' interleaving of operations.
Note that nothing is said about time; that is, there is no reference to the "most
recent" write operation on a data item. Note that in this context, a process "sees"
writes from all processes but only its own reads.

That time does not playa role can be seen from Fig. 7-5. Consider four proc-
esses operating on the same data item x. In Fig. 7-5(a) process Pl first performs
W(x)a tox. Later (in absolute time), process P, also performs a write operation,
by setting the value of x to ». However, both processes P; and Py first read value
b, and later value a. In other words, the write operation of process P> appears to
have taken place before that of P/

In contrast, Fig.7-5(b) violates sequential consistency because not all proc-
esses see the same interleaving of write operations. In particular, to process P3 it
appears as if the data item has first been changed to b, and later to a. On the other
hand, P4 will conclude that the final value is .

To make the notion of sequential consistency more concrete, consider three
concurrently-executing processes Pl, P, and P3; shown in Fig. 7-6 (Dubois et al.,
1988). The data items in this example are formed by the three integer variables x,
v, and z, which are stored in a (possibly distributed) shared sequentially consistent
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P1: W(x)a P1: W(x)a

P2: W(x)b pP2: W(x)b

P3: R(x)b R(x)a P3: R(x)b R(x)a
P4: R(x)b R(x)a P4: R()a R(x)b

(@) (b)

Figure 7-5. (a) A sequentially consistent data store. (b) A data store that is not
sequentially consistent..

Process P1 Process P2 Process P3
X € 1; y<1,; z¢1;
print(y, 2); print(x, z); print(x, y);

Figure 7-6. Three concurrently-executing processes.

data store. We assume that each variable is initialized to O. In this example, an
assignment corresponds to a write operation, whereas a print statement corres-
ponds to a simultaneous read operation of its two arguments. All statements are
assumed to be indivisible.

_Various interleaved execution sequences are possible. With six independent
statements, there are potentially 720 (6!) possible execution sequences, although
some of these violate program order. Consider the 120 (5!) sequences that begin
with x ~ 1. Half of these have print (r.z) before y ~ 1 and thus violate program
order, Half also have print (x,y) before z ~ 1 and also violate program order.
Only 1/4 of the 120 sequences, or 30, are valid. Another 30 valid sequences are
possible starting withy ~ 1and another 30 can begin with z ~ 1, for a total of 90
valid execution sequences. Four of these are shown in Fig. 7-7.

In Fig. 7-7(a), the three processes are run in order, first Ph then P, then P;3.
The other three examples demonstrate different, but equally valid, interleavings of
the statements in time. Each of the three processes prints two variables. Since the
only values each variable can take on are the initial value (0), or the assigned
value (1), each process produces a 2-bit string. The numbers after Prints are the
actual outputs that appear on the output device.

If weconcatenate the output of P, P, and P; in that order, we get a 6-bit
string that charactetizes a particular interleaving of statements. This is the string
listed as the Signature in Fig. 7-7. Below we will characterize each ordering by
its signature rather than by its printout. ,

Not all 64 signature patterns are allowed. As a trivial example, 000000 is not
permitted, because that would imply that the print statements ran before the
assignment statements, violating the requirement that statements are executed in
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X € 1; X €1 y € 1, y€<1;
print(y, z); y 1, 26 1; X 1;
y < 1; print(x, z); print(x, y); 261,
print(x, 2); print(y, z); print(x, z); print(x, z);
z61; z461; x € 1; print(y, z);
print(x, y); print(x, y); print(y, z); print(x, y);

Prints: 001011 Prints: 101011 Prints: 010111 Prints: 111111
Signature: 001011 Signature: 101011 Signature: 110101 Signature: 111111

(@) (b) () _(d)

Figure 7-7. Four valid execution sequences for the processes of Fig. 7-6. The
vertical axis is time.

program order, A more subtle example is 001001. The first two bits, 00, mean that
y and z were both 0 when P/ did its printing. This situation occurs only when P/
executes both statements before P, or P; starts. The next two bits, 10, mean that
P, must run after P, has started but before P; has started. The last two bits, 01,
mean that P; must complete before P, starts, but we have already seen that P/
must go first. Therefore, 001001 is not allowed.

In short, the 90 different valid statement orderings produce a variety of dif-
ferent program results (less than 64, though) that are allowed under the assump-
tion of sequential consistency. The contract between the processes and the distrib-
uted shared data store is that the processes must accept all of these as valid re-
sults. In other words, the processes must accept the four results shown in Fig. 7-7
and all the other valid results as proper answers, and must work correctly if any of
them occurs. A program that works for some of these results and not for others
violates the contract with the data store and is incorrect.

Causal Consistency

The causal consistency model (Hutto and Ahamad, 1990) represents a weak-
ening of sequential consistency in that it makes a distinction between events that
are potentially causally related and those that are not. We already came across
causality when discussing vector timestamps in the previous chapter. If event 5 is
caused or influenced by an earlier event a@, causality requires that everyone else
first see a, then see b.

Consider a simple interaction by means of a distributed shared database. Sup-
pose that process P; writes a data item x. Then P, reads x and writes y. Here the
reading of x and the writing of y are potentially causally related because the
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computation of y may have depended on the value of x as read by P; (i.e., the
value written by PI)’

On the other hand, if two processes spontaneously and simultaneously write
two different data items, these are not causally related. Operations that are not
causally related are said to be concurrent.

For a data store to be considered causally consistent, it is necessary that the
store obeys the following condition:

Writes that are potentially causally related must be seen by all processes
in the same order. Concurrent writes may be seen in a different order on
different machines.

As an example of causal consistency, consider Fig. 7-8. Here we have an event
sequence that is allowed with a causally-consistent store, but which is forbidden
with a sequentially-consistent store or a strictly consistent store. The thing to note
is that the writes Wz(x)b and WI (x)c are concurrent, so it is not required that all
processes see them in the same order.

P1: W(x)a W(x)c

P2 R(x)Ja W(x)b

P3: R(x)a Rix)c R(x)b
P4: R(x)a , R(x)b Rx)c

Figure 7-8. This sequence is allowed with a causally-consistent store, but not
with a sequentially consistent store.

Now consider a second example. In Fig. 7-9(a) we have Wz(x)b potentially
depending on WI (x)a because the » may be a result of a computation involving
the value read by Rz(x)a. The two writes are causally related, so all processes
must see them in the same order. Therefore, Fig. 7-9(a) is incorrect. On the other
hand, in Fig. 7-9(b) the read has been removed, so WI (x)a and Wz(x)b are now
concurrent writes. A causally-consistent store does not require concurrent writes
to be globally ordered, so Fig.7-9(b) is correct. Note that Fig.7-9(b) reflects a
situation that would not be acceptable for a sequentially consistent store.

P1: W(x)a P1: W(x)a

P2: R(x)a W(x)b P2: W(x)b

P3: R(x)b R(x)a P3: R(x)b R(x)a
P4: R(x)a R(x)b P4: R(x)a R(x)b

(a) . (b)

Figure 7-9. (a) A violation of a causally-consistent store. (b) A correct se-
quence of events in a causally-eonsistent store.

Implementing causal consistency requires keeping track of which processes
have seen which writes. It effectively means that a dependency graph of which
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operation is dependent on which other operations must be constructed and main-
tained. One way of doing this is by means of vector timestamps, as we discussed
in the previous chapter. We return to the use of vector timestamps to capture
causality later in this chapter.

Grouping Operations

Sequential and causal consistency are defined at the level read and write oper-
ations. This level of granularity is for historical reasons: these models have ini-
tially been developed for shared-memory multiprocessor systems and were actual-
ly implemented at the hardware level. _

The fine granularity of these consistency models in many cases did not match
the granularity as provided by applications. What we see there is that concurrency
between programs sharing data is generally kept under control through synchroni-
zation mechanisms for mutual exclusion and transactions. Effectively, what hap-
pens is that at the program level read and write operations are bracketed by the
pair of operations ENTER_CS and LEAVE_CS where "CS" stands for critical
section. As we explained in Chap. 6, the synchronization between processes takes
place by means of these two operations. In terms of our distributed data store, this
means that a process that has successfully executed ENTER_CS will be ensured
that the data in its local store is up to date. At that point, it can safely execute a
series of read and write operations on that store, and subsequently wrap things up
by calling LEAVE_CS.

In essence, what happens is that within a program the data that are operated
on by a series of read and write operations are protected against concurrent ac-
cesses that would lead to seeing something else than the result of executing the
series as a whole. Put differently, the bracketing turns the series of read and write
operations into an atomically executed unit, thus raising the level of granulaxity.

In order to reach this point, we do need to have precise semantics concerning
the operations ENTER_CS and LEAVE_CS. These semantics can be formulated
in terms of shared synchronization variables. There are different ways to use
these variables. We take the general approach in which each variable has some
associated data, which could amount to the complete set of shared data. We adopt
the convention that when a process enters its critical section it should acquire the
relevant synchronization variables, and likewise when it leaves the critical sec-
tion, it releases these variables. Note that the data in a process' critical section
may be associated to different synchronization variables.

Each synchronization variable has a current owner, namely, the process that
last acquired it. The owner may enter and exit critical sections repeatedly without
having to send any messages on the network. A process not currently owning a
synchronization variable but wanting to acquire it has to send a message to the
current owner asking for ownership and the current values of the data associated
with that synchronization variable. It is also possible for several processes to
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simultaneously own a synchronization variable in nonexslusive mode, meaming

that they can read, but not write, the assosiated data.
We now demand that the following criteria are met (Bershad et al., 1993):

1. An acquire access of a synchronization variable is not allowed to
pexform with respect to a process until all updates to the guarded
shared data have been pexformed with respect to that process.

2. Before an exclusive mode access to a synchronization variable by a
process is allowed to pexform with respect to that process, no other
process may hold the synchronization variable, not even in nonex-
clusive mode.

3. After an exclusive mode access to a synchronization variable has
been performed, any other process' next nonexclusive mode access
to that synchronization variable may not be pexformed until it has
pexformed with respect to that variable's owner.

The first condition says that when a process does an acquire, the acquire may not
complete (i,e., return control to the next statement) until all the guarded shared
data have been brought up to date. In other words, at an acquire, ell remote
changes to the guarded data must be made visible.

The second condition says that before updating a shared data item, a process
must enter a critigal section in exglusive mode to make sure that no other process
is trying to update the shared data at the same time.

The third condition says that if a process wants to enter a critical region in
nonexg¢lusive mode, it must first check with the owner of the synchuwonization veri-
able guarding the critical region to fetch the most recent copies of the guarded
shared data.

Fig. 7-10 shows an example of what is known as entry consistency. Instead
of operating on the entire shared data, in this example we associate locks with
each data item. In this case, P11 does an acquire for x, changes x once, after which
it also does an acquire for y. Process P, does an acquire for x but not for Y'.so that
it will read value a for x, but may read NIL for y. Because process P3 first does an
acquire for y, it will read the value b when y is released by P/’

P1: Acg(Lx) W(x)a Acq(Ly) W(y)b Rel(Lx) Rel(Ly)
P2: Acq(Lx) R(x)a R(y) NIL
P3: Acq(Ly) R(y)b

Figure 7-10. A valid event sequence for entry consistency.

One of the programming problems with entry consistency is propenly associat-
ing data with synchgonization variables. One straightforward approach is to expli-
citly tell the middleware which data. are going to be accessed, as is generally done
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by declaring which database tables will be affected by a transaction. In an object-
based approach, we could implicitly associate a unique synchronization variable
with each declared object, effectively serializing all invocations to such objects.

Consistency versus Coherence

At this point, it is useful to clarify the difference between two closely related
concepts. The models we have discussed so far all deal with the fact that a number
of processes execute read and write operations on a set of data items. A consis-
tency model describes what can be expected with respect to that set when multi-
ple processes concurrently operate on that data. The set is then said to be con-
sistent if it adheres to the rules described by the model. : '

Where data consistency is concerned with a set of data items, coherence
models describe what can be expected to only a single data item (Cantin et al.,
2005). In this case, we assume that a data item is replicated at several places; it is
said to be coherent when the various copies abide to the rules as defined by its as-
sociated coherence model. A popular model is that of sequential consistency, but
now applied to only a single data item. In effect, it means that in the case of
concurrent writes, all processes will eventually see the same order of updates tak-
ing place.

7.3 CLIENT-CENTRIC CONSISTENCY MODELS

The consistency models described in the previous section aim at providing a
systemwide consistent view on a data store. An important assumption is that
concurrent processes may be simultaneously updating the data store, and that it is
necessary to provide consistency in the face of such concurrency. For example, in
the case of object-based entry consistency, the data store guarantees that when an
object is called, the calling process is provided with a copy of the object that re-
flects all changes to the object that have been made so far, possibly by other proc-
esses. During. the call, it is also guaranteed that no other process can interfere-
that is, mutual exclusive access is provided to the calling process.

Being able to handle-concurrent operations on shared data while maintaining
sequential consistency is fundamental to distributed systems. For performance
reasons, sequential consistency may possibly be guaranteed only when processes
use synchronization mechanisms such as transactions or locks.

In this section, we take a look at a special class of distributed data stores. The
data stores we consider are characterized by the lack of simultaneous updates, or
when such updates happen, they can easily be resolved. Most operations involve
reading data. These data stores offer a very weak consistency model, called even-
tual consistency. By introducing special client-centric consistency models, it turns
out that many inconsistencies can be hidden in a relatively cheap way.
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7.3.1 Eventual Consistency

To what extent processes actually operate in a concurrent fashion, and to what
extent consistency needs to be guaranteed, may vary. There are many examples in
which concurrency appears only in a restricted form. For example, in many data-
base systems, most processes hardly ever perform update operations; they mostly
read data from the database. Only one, or very few processes perform update op-
erations. The question then is how fast updates should be made available to only-
reading processes.

As another example, consider a worldwide naming system such as DNS. The
DNS name space is partitioned into domains, where each domain is assigned to a
ngming authority, which acts as owner of that domain. Only that authority is el-
lowed to update its part of the name space. Consequently, confligts resulting from
two operations that both want to peiform an update on the same data (i.e., write-
write confli¢ts), never occur. The only situation that needs to be handled are
read-write conflicts, in which one process wants to update a data item while an-
other is concurrently attempting to read that item. As it turns out, it is often
acceptable to propagate an update in a lazy fashion, meaning that a reading proc-
ess will see an update only after some time has passed since the update took place.

Yet another example is the World Wide Web. In virtually all cases, Web
pages are updated by a single authority, such as a webmaster or the actual owner
of the page. There are normally no write-write conflicts to resolve. On the other
hand, to improve efficiency, browsers and Web proxies are often configured to
keep a fetched page in a local cache and to return that page upon the next request.-

An important aspect of both types of Web caches is that they may retwrn out-
of-date Web pages. In other words, the cached page that is returned to the re-
questing ¢lient is an older version compared to the one available at the actual Web
server. As it turns out, many users find this inconsistency acceptable (to a certain
degree).

These examples can be viewed as cases of (large-scale) distributed and repli-
cated databases that tolerate a relatively high degree of inconsistency. They have
in common that if no updates take place for a long time, all replicas will gradually
become consistent., This form of consistency is called eventual consistency.

Data stores that are eventually consistent thus have the property that in the
absence of updates, all replicas converge toward identical copies of each other.
Eventual consistency essentially requires only that updates are guaranteed to pro-
pagate to all replicas. Write-write conflicts are often relatively easy to solve when
assuming that only a small group of processes can perform updates. Eventual con-
sistency 1is therefore often cheap to implement..

Eventual consistent data stores work tine as long as ¢lients always access the
same replica. However, problems arise when different replicas are accessed over a
short period of time. This is best illustrated by considering a mobile user ac-
cessing a distributed database, as shown in Fig. 7-11.



290 CONSISTENCY AND REPLICATION CHAP. 7

Client moves to other location
and (transparently) connects to

other replica
— L=,

Replicas need to maintain
client-centric consistency

Wide-area network

e e e, ——————
. o e = - -

Distributed and replicated database

Read and write operations
Portable computer

Figure '-11. The principle of a mobile user accessing different replicas of a
distributed database.

The mobile user accesses the database by connecting to one of the replicas in
a transparent way. In other words, the application running on the user's portable
computer is unaware on which replica it is actually operating. Assume the user
performs several update operations and then disconnects again. Later, he accesses
the database again, possibly after moving to a different location or by using a dif-
ferent access device. At that point, the user may be connected to a different rep-
lica than before, as shown in Fig. 7-11. However, if the updates performed prev-
iously have not yet been propagated, the user will notice inconsistent behavior. In
particular, he would expect to see all previously made changes, but instead, it
appears as if nothing at all has happened.

This example is typical for eventually-consistent data stores and is caused by
the fact that users may sometimes operate on different replicas. The problem can
be alleviated by introducing client-centric consistency. In essence, client-centric
consistency provides guarantees for a single client concerning the consistency of
accesses to a data store by that client. No guarantees are given concerning concur-
rent accesses by different clients.

Client-centric consistency models originate from the work on Bayou [see, for
example Terry et al. (1994) and Terry et al., 1998)]. Bayou is a database system
developed for mobile computing, where it is assumed that network connectivity is
unreliable and subject to various performance problems. Wireless networks and
networks that span large areas, such as the Internet, fall into this category.
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Bayou essentially distinguishes four different consistency models. To explain
these models, we again consider a data store that is physically distributed across
multiple machines. When a process accesses the data store, it generally connects
to the locally (or nearest) available copy, although, in principle, any copy will do
just fine. All read and write operations are performed on that local copy. Updates
are eventually propagated to the other copies. To simplify matters, we assume that
data items have an associated owner, which is the only process that is permitted to
modify that item. In this way, we avoid write-write conflicts.

Client-centric consistency models are described using the following notations.
Let Xi/tff denote the version of data item x at local copy L; at time ¢. Version Xi(i}
is the result of a series of write operations at Z; that took place since initialization.
\Ve denote this set as WS(xiftD. If operations in WS(xJtlJ) have also been per-
formed at local copy L; at a later time {2, we write WS(xi(td~[t2]). If the order-
ing of operations or the timing is clear from the context, the time index will be

omitted.
7.3.2 Monotonic Reads

The first client-centric consistency model is that of monotonic reads. A data
store is said to provide monotonic-read consistency if the following condition

holds:

“If a process reads the value of a data item x, any successive read opera-
tion on x by that process will always return that same value or a more

recent value.

In other words, monotonic-read consistency guarantees that if a process has seen a
value of x at time ¢, it will never see an older version of x at a later time.

As an example where monotonic reads are useful, consider a distributed e-
mail database. In such a database, each user's mailbox may be distributed and
replicated across multiple machines. Mail can be inserted in a mailbox at any lo-
cation. However, updates are propagated in a lazy (i.e., on demand) fashion. Only
when a copy needs certain data for consistency are those data propagated to that
copy. Suppose a user reads his mail in San Francisco. Assume that only reading
mail does not affect the mailbox, that is, messages are not removed, stored in
subdirectories, or even tagged as having already been read, and so on. When the
user later flies to New York and opens his mailbox again, monotonic-read consis-
tency guarantees that the messages that were in the mailbox in San Francisco will
also be in the mailbox when it is opened in New York.

Using a notation similar to that for data-centric consistency models, mono-
tonic-read consistency can be graphically represented as shown in Fig. 7-12.
Along the vertical axis, two different local copies of the data store are shown, L 1
and L2. Time is shown along the horizontal axis as before. In all cases, we are
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interested in the operations carried out by a single process P. These specific oper-

ations are shown in boldface are connected by a dashed line representing the order
in which they are carried out by P.

L1: WS(xq) R(x4)-., L1: WS(xy) R(xq)-+,

L2: WS(X 1;Xp) - R(x,) L2: WS(x,) - R(x,)
(a) (b)

Figure 7-12. The read operations peiformed by a single process P at two dif-
ferent local copies of the same data store. (a) A monotoniceread consistent datu
store. (b) A data store that does not provide monotonic reads.

In Fig. 7-12(a), process P first performs a read operation on x at L 1, returning
the value of x1 (at that time). This value results from the write operations in
WS(x1 performed at L 1. Later, P performs a read operation on x at L 2, shown as
R (x2)) To guarantee monotonic-read consistency, all operations in WS(x 1) should
have been propagated to L, before the second read operation takes place. In other
words, we need to know for sure that WS(x 1) is part of WS(x2) which is
expressed as WS(x 1,X2)'

In contrast, Fig. 7-12(b) shows a situation in which monotonic-read consisten-
cy is not guaranteed. After process P has read x 1 at L 1, it later performs the oper-
ation R(X2) at Ly However, only the write operations in WS(X2) have been per-
formed at L,» No guarantees are given that this set also contains all operations
contained in WS (x 1)" .

7.3.3 Monotonic Writes

In many situations, it is important that write operations are propagated in the
correct order to all copies of the data store. This property is expressed in mon-
otonic-write consistency. In a monotomnic-write consistent store, the following
condition holds:

A write operation by a process on a data item x is completed before any
successive write operation on X by the same process.

Thus completing a write operation means that the copy on which a successive op-
eration is performed reflects the effect of a previous write operation by the same
process, no matter where that operation was initiated. In other words, a write op-
eration on a copy of item x is performed only if that copy has been brought up to
date by means of any preceding write operation, which may have taken place on
other copies of x. If need be, the new write must wait for old ones to finish.

—
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Note that monotonic-wiite consistency resembles data-centric FIFO consis-
tency. The essence of FIFO consistency is that write operations by the same proc-
ess are performed in the correct order everywhere. This ordering constraint also
applies to monotonic writes, except that we are now considering consistency only
for asingle process instead of for a collection of concurrent processes.

Bringing a copy of x up to date need not be necessary when each write opera-
tion completely overwrites the present value of x. However, write operations are
often performed on only part of the state of a data item. Consider, for example, a
software library. In many cases, updating such a library is done by replacing one
or more functions, leading to a next version. With monotonic-wxite consistency,
guarantees are given that if an update is performed on a copy of the library, all
preceding updates will be performed first. The resulting library will then indeed
become the most recent version and will include all updates that have led to previ-
ous versions of the library.

Monotonic-wgite consistency is shown in Fig. 7-13. In Fig. 7-13(a), process P
performs a write operation on x at local copy Ls presented as the operation
W(Xl). Later, P performs another write operation on x, but this time at L2, shown
as W(x2). To ensure monotonic-write consistency, it is necessary that the previous
write operation at L, has already been propagated to Ly This explains operation
W(Xl) at Ly and why it takes place before W(X2)

L1: W(Xq)--mmmmmne L1 W(Xq)-mmmmmmem .

(a) | (b)

Figure 7-13. The write operations pexformed by a single process P at two dif-
ferent local copies of the same data store. (a) A monotonic-write consistent data
store. (b) A data store that does not provide monotonicswrite consistency.

In contrast, Fig. 7-13(b) shows a situation in which monotonic-write consis-
tency is not guaranteed. Compared to Fig. 7-13(a), what is missing is the propaga-
tion of W (x 1) to copy L2. In other words, no guarantees can be given that the
copy of x on which the second write is being performed has the same or more
recent value at the time W (x 1)completed at L 1.

Note that, by the definition of monotonic-write consistency, write operations
by the same process are performed in the same order as they are initiated. A
somewhat wegker form of monotonic writes is one in which the effects of a write
operation are seen only if all preceding writes have been carried out as well, but
perhaps not in the order in which they have been originally initiated. This consis-
tency is applicable in those cases in which write operations are commutative, so
that ordering is really not necessary. Details are found in Terry et al. (1994).
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7.3.4 Read Your Writes

A client-centric consistency model that is closely related to monotonic reads
is as follows. A data store is said to provide read-your-writes consistency, if the
following condition holds:

The effect of a write operation by a process on data item x will always be
seen by a successive read operation on x by the same process. ’

In other words, a write operation is always completed before a successive read op-
eration by the same process, no matter where that read operation takes place.

The absence of read-your-writes consistency is sometimes experienced when
updating Web documents and subsequently viewing the effects. Update operations
frequently take place by means of a standard editor or word processor, which
saves the new version on a file system that is shared by the Web server. The
user's Web browser accesses that same file, possibly after requesting it from the
local Web server. However, once the file has been fetched, either the server or the
browser often caches a local copy for subsequent accesses. Consequently, when
the Web page is updated, the user will not see the effects if the browser or the
server returns the cached copy instead of the original file. Read-your-writes con-
sistency can guarantee that if the editor and browser are integrated into a single
program, the cache is invalidated when the page is updated, so that the updated
file is fetched and displayed.

Similar effects occur when updating passwords. For example, to enter a digi-
tal library on the Web, it is often necessary to have an account with an accom-
panying password. However, changing a password make take some time to come
into effect, with the result that the library may be inaccessible to the user for a few
minutes. The delay can be caused because a separate server is used to manage pass-
words and it may take some time to subsequently propagate (encrypted) passwords
to the various servers that constitute the library.

Fig.7-14(a) shows a data store that provides read-your-writes consistency.
Note that Fig. 7-14(a) is very similar to Fig. 7-12(a), except that consistency is
now determined by the last write operation by process P, instead of its last read.

RERN /'S F— . L1 W(Xg)enomneonn \

L2: WS(X{;xg) “=----- R(X,) L2: WS(x,) M R(x,)

Figure 7-14. (a) A data store that provides read-your-writes consistency. (b) A
data store that does not.

In Fig. 7-14(a), process P performed a write operation W(X/) and later a read
operation at a different local copy. Read-your-writes consistency guarantees that
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the effects of the write operation can be seen by the succeeding read operation.
This is expressed by WS(XI ;X2), which states that W(X|) is part of WS(X2)' In
contrast, in Fig. 7-14(b), W(X]) has been left out of WS(X2), meaning that the ef-
fects of the previous write operation by process P have not been propagated to L2

7.3.5 Writes Follow Reads

The last client-centric consistency model is one in which updates are pro-
pagated as the result of previous read operations. A data store is said to provide
writes-follow-reads consistency, if the following holds.

A write operation by a process on a data item x following a previous read
operation on x by the same process is guaranteed to take place on the
same or a more recent value of x that was read.

In other words, any successive write operation by a process on a data item x will
be performed on a copy of x that is up to date with the value most recently read by
that process.

Writes-follow-reads consistency can be used to guarantee that users of a net-
work newsgroup see a posting of a reaction to an article only after they have seen
the original article (Terry et al., 1994). To understand the problem, assume that a
user first reads an article A. Then, he reacts by posting a response B. By requiring
writes-follow-reads consistency, B will be written to any copy of the newsgroup
only after A has been written as well. Note that users who only read articles need
not require any specific client-centric consistency model. The writes-follows-
reads consistency assures that reactions to articles are stored at a local copy oaly
if the original is stored there as well.

L1: WS(xy) R(xq)-+ O L1: WS(xy) R(xq)-+,

L2: WS(X 4;X5) - W(xy) L2: WS(x,) - W(x,)
(a) (b)

Figure 7-15. (a) A writes-follow-reads consistent data store. (b) A data store
that does not provide writes-follow-reads consistency.

This consistency model is shown in Fig. 7-15. In Fig. 7-15(a), a process reads
x at local copy L 1. The write operations that led to the value just read, also appear
in the write set at L2. where the same process later performs a write operation.
(Note that other processes at L, see those write operations as well.) In contrast, no
guarantees are given that the operation performed at L), as shown in Fig. 7-15(b),
are performed on a copy that is consistent with the one just read at L 1-

We will return to client-centric consistency models when we discuss imple-
mentations later on in this chapter.
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7.4 REPLICA MANAGEMENT

A key issue for any distributed system that supports replication is to decide
where, when, and by whom replicas should be placed, and subsequently which
mechanisms to use for keeping the replicas consistent. The placement problem it-
self should be split into two subproblems: that of placing replica servers, and that
of plaging content. The difference is a subtle but important one and the two issues
are often not clearly separated. Replica-server placement is concerned with find-
ing the best locations to place a server that can host (part of) a data store. Content
placement deals with finding the best servers for placing content. Note that this
often means that we are looking for the optimal placement of only a single data
item. Obviously, before content placement can take place, replica servers will
have to be placed first. In the following, take a look at these two different place-
ment problems, followed by a discussion on the basic mechanisms for managing
the replicated content.

7.4.1 Replica-Server Placement

The placement of replica servers is not an intensively studied problem for the
simple reason that it is often more of a management and commercial issue than an
optimization problem. Nonetheless, analysis of client and network properties are
useful to come to informed decisions.

There are various ways to compute the.best placement of replica servers, but
all boil down to an optimization problem in which the best K out of N locations
need to be selected (K <N). These problems are known to be computationally
complex and can be solved only through heuristics. Qiu et al. (2001) take the dis-
tance between clients and locations as their starting point. Distance can be meas-
ured in terms of latency or bandwidth. Their solution selects one server at a time
such that the average distance between that server and its clients is minimal given
that already k servers have been placed (meaning that there are N - k locations
left).

As an alternative, Radoslavov et al. (2001) propose to ignore the position of
clients and only take the topology of the Internet as formed by the autonomous
systems. An autonomous system (AS) can best be.viewed as a network in which
the nodes all run the same routing protocol and which is managed by a single
orgapization. As of January 2006, there were just over 20,000 ASes. Radoslavov
et al. first consider the largest AS and place a server on the router with the largest
number of network interfaces (i.e., links). This algorithm is then repeated with the
second largest AS, and so on.

As it turns out, client-unaware server placement achieves similar results as
client-aware placement, under the assumption that clients are uniformly distrib-
uted across the Internet (relative to the existing topology). To what extent this as-
sumption is true is unclear. It has not been well studied.
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One problem with these algorithms is that they are computationally expen-
sive. For example, both the previous algorithms have a complexity that is higher
than O(N'2), where N is the number of locations to inspect. In practice, this means
that for even a few thousand locations, a computation may need to run for tens of
minutes. This may be unacceptable, notably when there are flash crowds (a sud-
den burst of requests for one specific site, which occur regularly on the Internet).
In that case, quickly determining where replica servers are needed is essential,
after which a specific one can be selected for content placement.

Szymaniak et al, (2006) have developed a method by which a region for plac-
ing replicas can be quickly identified. A region is identified to be a collection of
nodes accessing the same content, but for which the internode latency is low. The
goal of the algorithm is first to select the most demanding regions-that is, the
one with the most nodes-and then to let one of the nodes in such a region act as
replica server.

To this end, nodes are assumed to be positioned in an m-dimensional geo-
metric space, as we discussed in the previous chapter. The basic idea is to identify
the K largest clusters and assign a node from each cluster to host replicated con-
tent, To identify these clusters, the entire space is partitioned into cells. The K
most dense cells are then chosen for placing a replica server. A cell is nothing but
an m-dimensional hypercube. For a two-dimensional space, this corresponds to a
rectangle.

~Obviously, the cell size is important, as shown in Fig. 7-16. If cells are
chosen too large, then multiple clusters of nodes may be contained in the same
cell, In that case, too few replica servers for those clusters would be chosen. On
the other hand, choosing small cells may lead to the situation that a single cluster
is spread across a number of cells, leading to choosing too many replica servers.
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Figure 7-16. Choosing a proper cell size for server placement.

As it turns out, an appropriate cell size can be computed as a simple function
of the average distance between two nodes and the number of required replicas.
With this cell size, it can be shown that the algorithm performs as well as the
close-to-optimal one described in Qiu et al. (2001), but having a much lower com-
plexity: O(Nxmax.{log (N), K}). To give an impression what this result means:
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expegiments show that computing the 20 best replica locations for a collection of
64,000 nodes is approximately 50.000 times faster. As a consequence, replica-
server placement can now be done in real time.

7.4.2 Content Replication and Placement
Let us now move away from server placement and concentrate on content

placement., When it comes to content replication and placement, three different
types of replicas can be distinguished logically organized as shown in Fig. 7- 17.

—>» Server-initiated replication
---p Client-initiated replication

Figure 7-17. The logical organization of different kinds of copies of a data store
into three concentric rings. )

Permanent Replicas

Permanent replicas can be considered as the initial set of replicas that consti-
tute a distgibuted data. store. In many cases, the number of permanent replicas is
small. Consider, for example, a Web site. Distuibution of a Web site generally
comes in one of two forms. The first kind of distsibution is one in which the files
that constitute a site are replicated across a limited number of servers at a single
location. Whenever a request comes in, it is forwarded to one of the servers, for
instance, using a round-robin strategy.

The second form of distgibuted Web sites is what is called mirroring.  In this
case, a Web site is copied to a limited numbar of servers, called mirror sites.
which are geographically spread across the Internet. In most cases, clients simply
choose one of the various mirror sites from a list offered to them. Mirrored V.'eb
sites have in common with cluster-based Web sites that there are only a few num-
ber of replicas, which are more or less statically configured.

Similar static organizations also appear with distsibuted databases (OSZu and
Valdugiez, 1999). Again, the database can be distzibuted and replicated aerOSS ~\
number of servers that together form a cluster of servers, often referred to as ~\
shared-nothing  architecturg,  emphasizing that neither disks nor main memory



SEC, 7.4 REPLICA MANAGEMENT 299

are shared by processors. Alternatively, a database is distributed and possibly rep-
licated across a number of geographically dispersed sites. This architecture is gen-
erally deployed in federated databases (Sheth and Larson, 1990).

Server-Initiated Replicas

In contrast to permanent replicas, server-initiated replicas are copies of a data
store that exist to enhance performance and which are created at the initiative of
the (owner of the) data store. Consider, for example, a Web server placedin New
York. Normally, this server can handle incoming requests quite easily, but it may
happen that over a couple of days a sudden burst of requests come in from an
unexpected location far from the server. In that case, it may be worthwhile to
install a number of temporary replicas in regions where requests are coming from.

The problem of dynamically placing replicas is also being addressed in Web
hosting services. These services offer a (relatively static) collection of servers
spread across the Internet that can maintain and provide access to Web files
belonging to third parties. To provide optimal facilities such hosting services can
dynamigally replicate files to servers where those files are needed to enhance per-
formance, that is, close to demanding (groups of) clients. Sivasubramanian et
al, (2004b) provide an in-depth overview of replication in Web hosting services to
which we will return in Chap. 12.

- Given that the replica servers are already in place, deciding where to place
content is easier than in the case of server placement. An approach to dynamic
replication of files in the case of a Web hosting service is described in Rabinovich
et al, (1999). The algorithm is designed to support Web pages for which reason it
assumes that updates are relatively rare compared to read requests. Using tiles as
the unit of data, the algorithm works as follows.

The algorithm for dynamic replication takes two issues into account. First,
replication can take place to reduce the load on a server. Second, specific files on
a server can be migrated or replicated to servers placed in the proximity of clients
that issue many requests for those files. In the following pages, we concentrate
only on this second issue. We also leave out a number of details, which can be
found in Rabinovich et al. (1999).

Each server keeps track of access counts per file, and where access requests
come from. In particular, it is assumed that, given a client C, each server can
determine which of the servers in the Web hosting service is closest to C. (Such
information can be obtained, for example, from routing databases.) If client C1
and client C2 share the same "closest" server P, all access requests for file Fat
server Q from eland C2 are jointly registered at Q as a single access count
cntQ(P,F). This situation is shown in Fig. 7-18.

When the number of requests for a specific file F at server S drops below a
deletion threshold del (S,F), that file can be removed from S. As a consequence,
the number of replicas of that file is reduced, possibly leading to higher work
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Q"
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Client Q copy of F
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Server Q counts access from Cyand
C» as if they would come from P

Figure 7-18. Counting access requests from different elients.

loads at other servers. Special measures are taken to ensure that at least one copy
of each file continues to exist.-

A replication threshold rep (5,F), which is always chosen higher than the
deletion threshold, indicates that the number of requests for a specific file is so
high that it may be worthwhile replicating it on another server.. If the number of
requests lie somewhere between the deletion and replication thseshold, the file is
allowed only to be migrated. In other words, in that case it is important to at least
keep the number of replicas for that file the same.

When a server Q decides to reevaluate the placement of the files it stores, it
checks the access count for each file. If the total number of access requests for F
at Q drops below the deletion thgeshold del/ (Q,F), it will delete F unless it is the
last copy. Furthermore, if for some server P, cntQ(p,F) exceeds more than half of
the total requests for F' at Q, server P is requested to take over the copy of F. In
other words, server Q will attempt to migrate F to P.

Migration of file F' to server P may not always succeed, for example, because
P is already heavily loaded or is out of disk space. In that case, Q will attempt to
replicate F on other servers. Of course, replication can take place only if the total
number of access requests for F at Q exceeds the replication theeshold rep (Q,F).
Server Q checks all other servers in the Web hosting service, starting with the one
farthest away. If, for some server R, cntQ(R,F) ex-ceeds a certain fraction of all re-
quests for F' at Q, an attempt is made to replicate [ to R.

Server-initiated replication continues to increase in populaxity in time, espe-
cially in the context of Web hosting services such as the one just described. Note
that as long as guarantees can be given that each data item is hosted by at least
one server, it may suffice to use only server-initiated replication and not have any
permanent replicas. Nevertheless, permanent replicas are stil often useful as a
back-up facility, or to be used as the only replicas that are ellowed to be changed
to guarantee consistency. Server-initiated replicas are then used for placing read-
only copies close to clients.
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Client-Initiated Replicas

An important kind of replica is the one initiated by a client, Client-initiated
replicas are more commonly known as (client) caches. In essence, a cache is a
locgl storage facility that is used by a client to temporarily store a copy of the data
it has just requested. In principle, managing the cache is left entirely to the elient.
The data store from where the data had been fetched has nothing to do with keep-
ing cached data consistent. However, as we shall see, there are many occasions in
which the ¢lient can rely on participation from the.data store to inform it when
cached data has become stale.

Client caches are used only to improve access times to data. Normally, when
a client wants access to some data, it connects to the nearest copy of the data store
from where it fetches the data it wants to read, or to where it stores the data it had
just modified. When most operations involve only reading data, performance can
be improved by letting the client store requested data in a nearby cache. Such a
cache could be located on the client's machine, or on a separate machine in the
same local-area network as the client. The next time that same data needs to be
read, the ¢lient can simply fetch it from this local cache. This scheme works fine
as long as the fetched data have not been modified in the meantime.

Data are generally kept in a cache for a limited amount of time, for example,
to prevent extremely stale data from being used, or simply to make room for other
data. Whenever requested data can be fetched from the local cache, a cache bit is
said to have occurred. To improve the number of cache hits, caches can be shared
between clients. The underlying assumption is that a data request from elient C 1
may also be useful for a request from another nearby ¢lient C2-

Whether this assumption is correct depends very much on the type of data
store. For example, in traditional file systems, data files are rarely shared at all
(see, e.g., Muntz and Honeyman, 1992; and Blaze, 1993) rendexing a shared cache
useless. Likewise, it turns out that using Web caches to share data is also losing
some ground, partly also because of the improvement in network and server per-
formance. Instead, server-initiated replication schemes are becoming more effec-
tive.

Placement of ¢lient caches is relatively simple: a cache is normally placed on
the same machine as its client, or otherwise on a machine shared by ¢lients on the
same local-area network. However, in some cases, extra levels of caching are
introduced by system administrators by placing a shared cache between a number
of departments or organizations, or even placing a shared cache for an entire
region such as a province or country.

Yet another approach is to place (cache) servers at specific points in a wide-
arca network and let a client locate the nearest server. When the server is located,
it can be requested to hold copies of the data the client was previously fetching
from somewhere else, as described in Noble et al. (1999). We will return to cach-
ing later in this chapter when discussing consistency protocols.
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7.4.3 Content Distribution

Replica management also deals with propagation of (updated) content to the
relevant replica servers. There are various trade-offs to make, which we discuss
next,

State versus Operations

An important design issue concerns what is actually to be propagated. Basi-
cally, there are three possibilities:

1. Propagate only a notification of an update.
2. Transfer data from one copy to another.
3. Propagate the update operation to other copies.

Propagating a notification is what invalidation protocols do. In an invalida-
tion protocol, other copies are informed that an update has taken place and that the
data they contain are no longer valid. The invalidation may specify which pest of
the data store has been updated, so that only part of a copy is actually invalidated.
The important issue is that no more than a notification is propagated. Whenever
an operation on an invalidated copy is requested, that copy generally needs to be
updated first, depending on the specific consistency model that is to be supported.

The main advantage of invalidation protocols is that they use little network
bandwidth. The only information that needs to be transferred is a specification of
which data are no longer valid. Such protocols generally work best when there are
many update operations compared to read operations, that is, the read-to-write
ratio is relatively small.

Consider, for example, a data store in which updates are propagated by send-
ing the modified data to all replicas. If the size of the modified data is large, and
updates occur frequently compared to read operations, we may have the situation
that two updates occur after one another without any read operation being per-
formed between them. Consequently, propagation of the first update to all replicas
is effectively useless, as it will be overwritten by the second update. Instead, send-
ing a notification that the data have been modified would have been more effi-
cient,

Transferring the modified data among replicas is the second alternative, and is
useful when the read-to-write ratio is relatively high. In that case, the probability
that an update will be effective in the sense that the modified data will be read be-
fore the next update takes place is high. Instead of propagating modified data, it is
also possible to log the changes and transfer only those logs to save bandwidth. In
addition, transfers are often aggregated in the sense that multiple modifications
are packed into a single message, thus saving communication overhead.
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The third approach is not to transfer any data modifications at all, but to tell
each replica which update operation it should perform (and sending only the pa-
rameter values that those operations need). This approach, also referred to as
active replication, assumes that each replica is represented by a process capable
of "actively" keeping its associated data up to date by performing operations
(Schneider, 1990). The main benefit of active replication is that updates can often
be propagated at minimal bandwidth costs, provided the size of the parameters as-
sociated with an operation are relatively small. Moreover, the operations can be of
arbitrary complexity, which may allow further improvements in keeping replicas
consistent. On the other hand, more processing power may be required by each
replica, especially in those cases when operations are relatively complex.

Pull versus Push Protocols

Another design issue is whether updates are pulled or pushed. In a push-
based approach, also referred to as server-based protocols, updates are pro-
pagated to other replicas without those replicas even asking for the updates.
Push-based approaches are often used between permanent and server-initiated
replicas, but can also be used to push updates to client caches. Server-based proto-
cols are applied when replicas generally need to maintain a relatively high degree
of consistency. In other words, replicas need to be kept identical.

- This need for a high degree of consistency is related to the fact that permanent
and server-initiated replicas, as well as large shared caches, are often shared by
many clients, which, in tum, mainly perform read operations. Consequently, the
read-to-update ratio at each replica is relatively high. In these cases, push-based
protocols are efficient in the sense that every pushed update can be expected to be
of use for one or more readers. In addition, push-based protocols make consistent
data immediately available when asked for.

In contrast, in a pull-based approach, a server or client requests another
server to send it any updates it has at that moment. Pull-based protocols, also call-
ed client-based protocols, are often used by client caches. For example, a com-
mon strategy applied to Web caches is first to check whether cached data items
are still up to date. When a cache receives a request for items that are still locally
available, the cache checks with the original Web server whether those data items
have been modified since they were cached. In the case of a modification, the
modified data are first transferred to the cache, and then returned to the requesting
client. If no modifications took place, the cached data are returned. In other
words, the client polls the server to see whether an update is needed.

A pull-based approach is efficient when the read-to-update ratio is relatively
low. This is often the case with (nonshared) client caches, which have only one
client. However, even when a cache is shared by many clients, a pull-based ap-
proach may also prove to be efficient when the cached data items are rarely
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shared. The main drawback of a pull-based strategy in comparison to a push-
based approach is that the response time increases in the case of a cache miss.

When compgring push-based and pull-based solutions, there are a number of
trade-offs to be made, as shown in Fig. 7-19. For simplicity, consider a elient-
server system consisting of a single, nondistributed server, and a number of elient
processes, each having their own cache.

Issue Push-based Puli-based
State at server List of client replicas and caches None
Messages sent Update (and possibly fetch update later) | Poll and update
Response time at client | Immediate (or fetch-update time) Fetch-update time

Figure 7-19. A compggison between push-based and pull-based protocols in the
case of multiple-client., single-server systems.

An important issue is that in push-based protocols, the server needs to keep
track of all client caches. Apart from the fact that stateful servers are often less
fault tolerant, as we discussed in Chap. 3, keeping track of all elient caches may
introduce a considerable overhead at the server. For example, in a push-based ap-
proach, a Web server may easily need to keep track of tens of thousands of elient
caches. Each time a Web page is updated, the server will need to go through its
list of client caches holding a copy of that page, and subsequently propagate the
update. Worse yet, if a ¢lient purges a page due to lack of space, it has to inform
the server, leading to even more communication.

The messages that need to be sent between a client and the server also differ:
In a push-based approach, the only communication is that the server sends updates
to each client, When updates are actually only invalidations, additional communi-
cation is needed by a glient to fetch the modified data. In a pull-based approach, a
client will have to poll the server, and, if necessary. fetch the modified data.

Finally, the response time at the client is also different. When a server pushes
modified data to the glient caches, it is clear that the response time at the elient
side is zero. When invalidations are pushed, the response time is the same as in
the pull-based approach, and is determined by the time it takes to fetch the modi-
fied data from the server.

These trade-offs have lead to a hybrid form of update propagation based on
leases. A lease is a promise by the server that it will push updates to the elient for
a spegified time. When a lease expires, the client is forced to poll the server for
updates and pull in the modified data if necessary. An alternative is that a elient
requests a new lease for pushing updates when the previous lease expires.

Leases were originally introduced by Gray and Cheriton (1989). They pro-
vide a convenient mechanism for dynamically switching between a push-based
and pull-based strategy. Duvvuri et al. (2003) describe a flexible lease system that
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;niows  the expiration time to be dynamically adapted depending on different lease
criteria. They distinguish the following three types of leases. (Note that in all
cases. updates are pushed by the server as long as the lease has not expired.)

First, age-based leases are given out on data items depending on the last time
the item was modified. The underlying assumption is that data that have not been
modified for a long time can be expected to remain unmodified for some time yet
to come. This assumption has shown to be reasonable in the case of Web-based
data. By granting long-lasting leases to data items that are expected to remain
unmodified, the number of update messages can be strongly reduced compared to
the case where all leases have the same expiration time.

Another lease criterion is how often a specific client requests its -cached copy
to be updated. With renewal-frequency-based leases, a server will hand out a
long-lasting lease to a client whose cache often needs to be refreshed. On the
other hand, a client that asks only occasionally for a specific data item will be
handed a short-term lease for that item. The effect of this strategy is that the ser-
ver essentially keeps track only of those clients where its data are popular; more-
over, those clients are offered a high degree of consistency.

The last criterion is that of state-space overhead at the server. When the server
realizes that it is gradually becoming overloaded, it lowers the expiration time of
new leases it hands out to clients. The effect of this strategy is that the server
needs to keep track of fewer clients as leases expire more quickly. In other words,
the server dynamically switches to a more stateless mode of operation, thereby
offloading itself so that it can handle requests more efficiently.

Lnicasting versus Multicasting

Related to pushing or pulling updates is deciding whether unicasting or multi-
casting should be used. In unicast communication, when a server that is part of the
data store sends its update to N other servers, it does so by sending N separate
messages, one to each server. With multicasting, the underlying network takes
care of sending a message efficiently to multiple receivers.

In many cases. it is cheaper to use available multicasting facilities. An
extreme situation is when all replicas are located in the same local-area network
and that hardware broadcasting is available. In that case, broadcasting or multi-
casting a message is no more expensive than a single point-to-point message. Uni-
casting updates would then be less efficient.

Multicasting can often be efficiently combined with a push-based approach to
propagating updates. When the two are carefully integrated, a server that decides
to push its updates to a number of other servers simply uses a single multicast
group to send its updates. In contrast, with a pull-based approach, it is generally
only a single client or server that requests its copy to be updated. In that case, uni-
casting may be the most efficient solution.
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7.5 CONSISTENCY PROTOCOLS

So far, we have mginly concentrated on various consistency models and gen-
eral design issues for consistency protocols. In this section, we concentrate on the
actual implementation of consistency models by taking a look at several consis-
tency protocols. A consistency protocol describes an implementation of a speeif-
ic consistency model, We follow the organization of our discussion on consisten-
cy models by first tgking a look at data-centric models, followed by protocols for
client-centric models.

7.5.1 Continuous Consistency

As part of their work on continuous consistency, Yu and Vahdat have
developed a number of protocols to tackle the three forms of consistency. In the
following, we briefly consider a number of solutions, omitting details for elarity.

Bounding Numerical Deviation

We first concentrate on one solution for keeping the numerical deviation with-
in bounds. Again, our purpose is not to go into all the details for each protocol, but
rather to give the general idea. Details for bounding numerical deviation can be

found in Yu and Vahdat (2000b).
We concentrate on writes to a single data item x. Each write W(x) has an as-

sociated weight that represents the numerical value by which x is updated,
denoted as weight (IV (x)). or simply weight (W). For simplicity, we assume that
weight (W) > 0. Each write W is initially submitted to one out of the N available
replica servers, in which case that server becomes the write's origin, denoted as
origin (W). If we consider the system at a specific moment in time we will see
several submitted writes that still need to be propagated to all servers. To this end,
each server S, will keep track of a log L, of writes that it has performed on its own

local copy of x. . ,
Let TW[ij] be the writes executed by server S; that originated from server

TWIij1=S {weight (W)|origin(W)=5; & W € L;}

Note that TW[i,ij represents the aggregated writes submitted to Si’ Our goal is
for any time ¢ to let the current value vi at server S; deviate within bounds from
the actugl value v(#) of x. This actual value is completely determined by all sub-
mitted writes. That is. if r (0) is the initial value ofx, then

N
v()=v(0)+ Y TWlkk]
k=1

and
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N
v=v(0)+ 3 TWik]
k=1

Note that vi ~ v (t). Let us concentrate only on absolute deviations. In pasticular,
for every server Si. we associate an upperbound b; such that we need to enforce:

v(t)—v; <0

Writes submitted to a server S; will need to be propagated to all other servers.
There are different ways in which this can be done, but typically an epidemic pro-
tocol will allow rapid dissemination of updates. In any case, when a server S; pro-
pagates a write originating from ~ to Sb the latter will be able to learn about the
value TW [ij] at the time the write was sent. In other words, Sk can maintain a
view TWK[ij] of what it believes S; will have as value for TW[ijJ.  Obviously,

0<STW i, j1<STWIi,j1< TWIj,j]

The whole idea is that when server Sk notices that S; has not been keeping in
‘the right pace with the updates that have been submitted to Sb it forwards writes
from its log to Si. This forwarding effectively advances the view [lti-Hik] that Sk
has of TW[ik], making the deviation TIV[ik] - ~[i,k].  smaller. In particular,
Sk advances its view on TW[ik] when an application submits a new write that
would increase TW[k,k] - ~[ik].  beyond bi/ (N -1). We leave it as an exer-
cise to show that advancement always ensures that v (1) - vi~ b

Bounding Staleness Deviations

There are many ways to keep the staleness of replicas within specified
bounds. One simple approach is to let server Sk keep a real-time vector clock
RVCk where RVCK[i] = T(i) means that Sk has seen all writes that have been sub-
mitted to S; up to time T(i). In this case, we assume that each submitted write is
timestamped by its origin server, and that T(i) denotes the time local to Si.

If the clocks between the replica servers are loosely synchronized, then an
acceptable protocol for bounding staleness would be the following. Whenever
server Sk notes that T(k) - RVCK[i] is about to exceed a specified limit, it simply
starts pulling in writes that originated from S; with a timestamp later than
RVCKk[i]-

Note that in this case a replica server is responsible for keeping its copy of x
up to date regarding writes that have been issued elsewhere. In contrast, when
maintaining numerical bounds, we followed a push approach by letting an origin
server keep replicas up to date by forwarding writes. The problem with pushing
writes in the case of staleness is that no guarantees can be given for consistency
when it is unkgown in advance what the maximal propagation time will be. This
situation is somewhat improved by pulling in updates, as multiple servers can help
to keep a server's copy of x fresh (up to date).



308 CONSISTENCY AND REPLICATION CHAP. 7
Bounding Ordering Deviations

Recall that ordering deviations in continuous consistency are caused by the
fact that a replica server tentatively applies updates that have been submitted to it:
As a result, each server will have a local queue of tentative writes for which the
actual order in which they are to be applied to the local copy of x still needs to,be
determined. The ordering deviation is bounded by specifying the maximal length
of the queue of tentative writes.

As a consequence, detecting when ordering consistency needs to be enforced
is simple: when the length of this local queue exceeds a specified maximal length.
At that point, a server will no longer accept any newly submitted writes, but will
instead attempt to commit tentative writes by negotiating with other servers in
which order its writes should be executed. In other words, we need to enforce a
globally consistent ordering of tentative writes. There are many ways in doing
this, but it turns out that so-called primary-based or quorum-based protocols are
used in practice. We discuss these protocols next.

7.5.2 Primary-Based Protocols

Ip practice, we see that distributed applications generally follow consistency
models that are relatively easy to understand. These models inelude those for
bounding staleness deviations, and to a lesser extent also those for bounding num-
erical deviations. When it comes to models that handle consistent ordering of op-
erations, sequential consistency, notably those in which operations can be grouped
through locking or transactions are popular.

As soon as consistency models.become slightly difficult to understand for ap-
plication developers, we see that they are ignored even if performance could be
improved. The bottom line is that if the semantics of a consistency model are not
intuitively glear, application developers will have a hard time building correct ap-
plications. Simplicity is appreciated (and perhaps justifiably so).

Ip the case of sequential consistency, it turns out that primary-based protocols
prevail, In these protocols, each data item x in the data store has an associated pri-
mary, which is responsible for coordinating write operations on x. A distinction
can be made as to whether the primary is fixed at a remote server or if write oper-
ations can be carried out locally after moving the primary to the process where the
write operation is initiated. Let us take a look at this ¢lass of protocols.

Remote- Write Protocols

The simplest primary-based protocol that supports replication is the one in
which all write operations need to be forwarded to a fixed single server. Read op-
erations can be carried out locally. Such schemes are also known as primary--
backup protocols (Budhiraja et al., 1993). A primary-backup protocol works as
shown in Fig. 7-20. A process wanting to perform a write operation on data item
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x, forwards that operation to the primary server for x. The primary performs the
update on its local copy of x, and subsequently forwards the update to the backup
servers. Each backup server performs the update as well, and sends an ack-
nowledgment back to the primary. When all backups have updated their local
copy, the primary sends an acknowledgment back to the initial process.

Client Client

Primary server :
yy for item x Backup server
Fe

W1| | W5 \ R1 /

| Data store
W
W4 3

W1. Write request R1. Read request
W2. Forward request to primary R2. Response to read
W3. Tell backups to update

W4, Acknowledge update

WS5. Acknowledge write completed

Figure 7-20. The pringiple of a primary-backup protocol..

A potential performance problem with this scheme is that it may take a rela-
tively long time before the process that initiated the update is allowed to continue.
In effect, an update is implemented as a blocking operation. An alternative is to
use a nonblocking approach. As soon as the primary has updated its local copy of
x, it returns an acknowledgment. After that, it tells the backup servers to perform
the update as well. Nonblocking primary-backup protocols are discussed in
Budhiraja and Marzullo (1992).

The main problem with nonblocking primary-backup protocols has to do with
fault tolerance. In a blocking scheme, the client process knows for sure that the
update operation is backed up by several other servers. This is not the case with a
nonblocking solution. The advantage, of course, is that write operations may
speed up considerably. We will return to fault tolerance issues extensively in the
next chapter.

Primary-backup protocols provide a straightforward implementation of se-
quential consistency, as the primary can order all incoming writes in a globally
unique time order. Evidently, all processes see all write operations in the same
order, no matter which backup server they use to perform read operations. Also,
with blocking protocols, processes will always see the effects of their most recent
write operation (note that this cannot be guaranteed with a nonblocking protocol

without taking special measures).
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Local- Write Protocols

A vagriant of primary-backup protocols is one in which the primary copy
migrates between processes that wish to perform a write operation. As before,
whenever a process wants to update data item x, it locates the primary copy of x,
and subsequently moves it to its own location, as shown in Fig. 7-21. The main ad-
vantage of this approach is that multiple, successive write operations can be car-
ried out locally, while reading processes can still access their local copy. How-
ever, such an improvement can be achieved only if a nonblocking protocol is fol-
lowed by which updates are propagated to the replicas after the primary has fin-
ished with locally performing the updates.

Client Client
Old primary New primary
A for item x for item x A Backup server
R1| |R2 \ \ W1t| | W3 /
W5 :

, >

Data store

W1. Write request R1. Read request
W2. Move item x to new primary R2. Response to read
W3. Acknowledge write completed

W4. Tell backups to update .

WS5. Acknowledge update

Figure 7-21. Primary-backup protocol in which the primary migrates to the
process wanting to perform an update.

This primary-backyp local-write protocol can also be applied to mobile com-
puters that are able to operate in disconnected mode. Before disconnecting, the
mobile computer becomes the primary server for each data item it expects to up-
date. While being disconnected, all update operations are carried out locally.
while other processes can still perform read operations (but no updates). Later:
when connecting again, updates are propagated from the primary to the backups.
bringing the data store in a consistent state again. We will return to operating in
disconnected mode in Chap. 11 when we discuss distributed file systems.

As a last vgriant of this scheme, nonblocking local-write primary-based proto-
cols are glso used for distributed file systems in general. In this case, there may be
a fixed central server through which normally all write operations take place, as in
the case of remote-write primary backup. However, the server temporarily allows
one of the replicas to perform a series of local updates, as this may considerably
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speed up performance. When the replica server is done, the updates are propaga-
ted to the central server, from where they are then distributed to the other replica

servers.
7.5.3 Replicated-Write. Protocols

In replicated-write protocols, write operations can be carried out at multiple
replicas instead of only one, as in the case of primary-based replicas. A distinction
can be made between active replication, in which an operation is forwarded to all
replicas, and consistency protocols based on majority voting.

Active Replication

In active replication, each replica has an associated process that carries out
update operations. In contrast to other protocols, updates a